## Chapter 1

c゙

## Boundary Value Problems

## MATHEMATICAL FORMULATION AND SOLUTION OF PHYSICAL PROBLEMS

In solving problems of science and engineering the following stopa are generally taken.

1. Mathematlcal formulation. To achieve such formulation we usually adopt mathematical models which serve to approximate the real objects under investigation.

## Example 1.

To investigate the motion of the earth or other planet about the sun we san choope pointe an mathematical models of the sun and earth. On the other hand, if we wish to investigate the motion of tha earth about its axia, the mathematical model cannot be a point but might be a sphere or evan more acenrately an ellipaold.

In the mathematical formulation we use known physical laws to get up equetiona describing the problem. If the laws are unknown we may even be led to set up axperimenta in order to discover them.

## Example 2.

In deacribing the motion of a planat about the sun we use Newton's laws to arrive at a differentiol equation involving the distance of the planet from the sun at any time.
2. Mathematical solution. Once a problem has been successfully formulated in terms of equations, we need to solve them for the unknowns involved, aubject to the various conditions which are given or implied in the physical problem. One important consideration is whether such solutions actually exist and, if they do exist, whether they are unique.

In the attempt to find solutions, the need for new kinds of mathematical analysis leading to new mathematicai problems $\rightarrow$ may arise.

Example 2.
J.B.J. Fourier, in attempting to solve a problem in heat flow which he had formulated in terms of partial differential equations, was led to the muthematical problem of expanaion of functions Into aerisa involving sines and cosines. Such series, now called Fouriar saries, are of interent from the point of view of mathematical theory and in phyaical applications, as we shall see in Chaptar 2.
3. Physical interpretation. After a solution has been obtained, it is useful to interpret it physically. Such interpretations may be of value in suggesting other kinds of problems, which could lead to new knowledge of a mathematical or physical nature.
In this book we shall be mainly concerned with the mathematical formulation of physical problems in terms of partial differential equations and with the solution of auch equations by methods commonly calied Fourier methods.

## DEFINITIONS PERTAINING TO PARTLAL DIFFERENTIAL EQUATIONS

A partial differential equation is an equation containing an unknown function of two or more varisbles and its partial derivatives with respect to these variables.

The order of a partial differential equation is the order of the highest derivative present.

## Exampla 4.

$\frac{\partial^{f} u}{\partial x \partial y}=2 x-v$ is a partial differential equation of order two, or a second-order partial differential equation. Here $u$ is the dependent vuriable while $x$ and $y$ are independent rariables.

A solution of a partial differential equation is any function which satisfies the equation jdentically.

The general solution is a solution which contains a number of arbitrsry independent functions equal to the order of the equation.

A particular solution is one which can be obtained from the general solution by particujar choice of the arbitrary functions.

## Example 5 .

As asen by uubstitution, $u=m^{2} y-\frac{1}{8} x y^{2}+F(x)+G(y)$ is a solution of the partial differential equation of Exemple 4. Beccuse it containg two arbitrary Independent functions $F^{\prime}(x)$ and $G(y)$, it is the genera! solution, H in particular $F(x)=\mathbf{2}$ ain $x, G(y)=8 y^{4}-5$, we obtain the particular solution

$$
u=x^{2} y-\frac{1}{y} x y^{2}+2 \sin x+3 y^{4}-5
$$

A singular solution ia one which cannot be obtained from the general aoiution by particular choice of the arbitrary functions.

## Exumple 6.

If $u=x \frac{\partial u}{\partial x}-\left(\frac{\partial u}{\partial z}\right)^{2}$, where $u$ is a function of $x$ and $y$, we see by substitution that both $u=z F(y)-[F(\mathbf{v})]^{*}$ and $u=x^{2 / 4}$ ore golutions. The first ia the general salution involving one arbitrary function $F(y)$. The second, which cannot be obtained from the general aolution by any choice of $F(y)$, is a aingular molution.

A boundary value problem involving a partial differential equation seeks all solutions of the equation which satisfy conditions called boundary conditions. Theorems relating to the existence and uniqueness of such solutions are called existence and uniqueness theorems.

## LINEAR PARTIAL DIFFERENTIAL EQUATIONS

The general linear partial differential equation of order two in two independent variables has the form

$$
\begin{equation*}
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=G \tag{1}
\end{equation*}
$$

where $A, B, \ldots, G$ may depend on $x$ and $y$ but not on $u$. A second-order equation with independent variables $x$ and $y$ which does not have the form (1) is called nominear.

If $G=0$ identically the equation is called homogeneous, while if $G, 0$ it is called nonhomogeneous, Generalizations to higher-order equations are easily made.

Because of the nature of the solutions of (1), the equation is often classified as elliptic, hyperbolic, or parabolic according as $B^{2}-4 A C$ is less than, greater than, or equal to zero. respectively.

## SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1. Vibrating string equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

This equation is applicable to the small transverse vibrations of a taut, fiexible string, such as a violin string, initially located on the $x$-axis and set into motion (see Fig. 1-1). The function $y(x, t)$ is the displacement of any point $x$ of the string at time $t$. The constant $a^{2}=7 / \mu$, whare $\tau$ is the (constant) tension in the string and $\mu$ is the (constant) mass per unit length of the string. It is assumed that no external forces act on the string and that


Flg. 1-1 it vibrates only due to its elasticity.

The equation can easily be generalized to higher dimensions, as for example the vibrations of a membrane or drumhead in two dimensions. In two dimensions, the equation is
2. Heat conduction equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)
$$

$$
\frac{\partial u}{\partial t}=\times \nabla^{2} u
$$

Here $u(x, y, z, t)$ is the temperature at position $(x, y, z)$ in a solid at time $t$. The constant $\kappa$, called the diffusivity, is equal to $K / \sigma \mu$, where the thermal conductivity $K$, the specific heat ond the density (mass per unit volume) $\mu$ are assumed constant. We call $\nabla^{2} u$ the Laplacion of $u$; it is given in three-dimenaional rectangular coordinates $(x, y, z)$ by

$$
\nabla^{a} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

3. Laplace's equation

$$
\nabla^{2} v=0
$$

This equation occurs in many fields. In the theory of heat conduction, for example, $v$ is the steady-state temperature, i.e. the temperature after a long time has elapsed, whose equation is obtained by putting $\partial u / \partial t=0$ in the heat conduction equation above. In the theory of gravitation or electricity $v$ represents the gravitational or electric potential respectively. For this reason the equation is often called the potential equation.

The problem of aolving $\nabla^{2} v=0$ inside a region $R$ when $v$ is some given function on the boundary of $\mathbb{R}$ is often called a Dirichlet problem.
4. Longitudinal vibrations of a beam

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

This equation describes the motion of a beam (Fig. 1-2, page 4). which can vibrate longitudinally (i.e. in the $x$-direction) the vibrations boing assumed. small. The variable $u(x, t)$ is the longitudinal dispiacement from the equilibrium position of the cross section at $x$. The constant $c^{2}=\mathrm{E} f_{\mu}$. where $E$ is the modulus of elasticity fatress divided by strain) and depends on the properties of the heam, $\mu$ is the density (mass per unit volume).

Note that this equation is the same as that for a vibrating string.
5. Transverse vibrations of a beam

$$
\frac{\partial^{2} v}{\partial t^{2}}+b^{2} \frac{\partial^{2} y}{\partial x^{2}}=0
$$

This equation describes the motion of a beam (initially located on the $x$-axis, eee Fig. 1-3) which is vibrating transversely (i.e. perpendicular to the $x$-direction) asauming small vibrstions. In this case $y(x, t)$ is the transverse displacement or deflection at any time $t$ of any point $x$. The constant $b^{2}=E / / A \mu$, where $E$ is the modulus of elasticity, $I$ is the moment of inertia of any cross aection about the $x$-axis, $A$ is the area of cross section and $\mu$ is the mass per unit length. In case an external tranaverse force $\mathcal{F}(x, t)$ is applied, the right-hand side of the equation is replaced by $b^{2} F(x, t) / E I$.


Fig. 1-2


Fig. $1=8$

## THE LAPLACIAN IN DIFFERENT COQRDINATE SYSTEMS

The Laplacian $\nabla^{2} u$ often arises in partial differential equations of science and engineering. Depending on the type of problem involved, the choice of coordinate aystem may be important in obtaining solutions. For example, if the problem involves a cylinder, it will often be convenient to use cylindrical coordinates; while if it involves a aphere, it will be convenient to use spherical coordinates.

The Laplacian in cylindrical coordinates ( $\rho, \phi_{1}, z$ (see Fig. 1-4) is given by

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \tag{2}
\end{equation*}
$$

The transformation equations between rectangular and cylindrical coordinates are

$$
\begin{equation*}
x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z \tag{3}
\end{equation*}
$$

where $\rho \geqq 0,0 \leq \phi<2 \pi,-\infty<z<\infty$.
The Laplacian in spherical coordinates ( $r, \theta, \phi$ ) (aee Fig. 1-5) is given by


Min 1-4


Fig. 1.s

$$
\begin{equation*}
\nabla^{2} u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \ddot{\theta}}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{\theta}} \tag{4}
\end{equation*}
$$

The transformation equations between rectangular and apherical coordinates are

$$
\begin{equation*}
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \tag{5}
\end{equation*}
$$

where $r \geqq 0,0 \leqq \theta \leqq \pi, 0 \leqq \phi<2 \pi$.

## METHODS OF SOLVING BOUNDARY VALUE PROBLEMS

There are many methods by which boundary value problems involving linear partial differential equations can be solved. In this book we shall be concerned with two methods which represent somewhat opposing points of view.

In the first method we seek to find the general solution of the partial differential equation and then particularize it to obtain the actual solution by using the boundary conditions. In the aecond method we first find particular solutions of the partial differential equation and then build up the actual solution by uae of these particular solutions. Of the two methods the second will be found to be of far greater applicability than the first.

1. General solutions. In this method we first find the general solution and then that particular solution which satisfies the boundary conditions. The following theorems are of fundamental importance.

Theorem 1-I (Superposition principle): If $u_{1}, u_{2}, \ldots, u_{n}$ are solutions of a linesr homogeneous partial differential equation, tinen $c_{2} u_{i}+c_{2} u_{1}+\cdots+c_{n} u_{n}$, where $c_{1}, c_{2}, \ldots, c_{n}$ are constants, is also a solution.

Theorem I-2: The general solution of a linear nonhomogeneous partial differential equation is obtained by adding a particular solution of the nonhomogeneous equation to the general solution of the homogeneous equation.
We can sometimes find general solutions by using the methoda of ordinary differential equations. See Problems 1.15 and 1.16 .

If $A, B, \ldots, F$ in (i) are constants, then the general solution of the homogeneous equation can be found by assuming that $u=e^{a x+o u}$, where $a$ and $b$ are constanta to be determined. See Problems 1.17-1.20.
2. Paricular solutions by separation of variables. In this method, which is simple but powerful, it is assumed that a solution can be expressed as a product of unknown functions each of which depends on only one of the independent variables. The success of the method hinges on being able to write the resulting equation 20 that one side depends on only one variable while the other side depends on the remaining variables-from which it is concluded that each side must be a constant. By repetition of this, the unknown functions can be determined. Superposition of these solutions can then be used to find the actual solution. See Problems 1.21-1.25.

## Solved Problems

## MATHEMATICAL FORMULATION OF PHYGICAL PROBLEMS

1.1. Derive the vibrating atring equation on page 8.

Heferring to Fig. 1-6, ataume that $\Delta s$ represente an element of are of the atring. Since the tension is casumed conutant, the net upwerd vertical force acting on Ar lis given by

$$
\begin{equation*}
r \sin t_{g}-r \sin t_{1} \tag{t}
\end{equation*}
$$

Bince aln e $=\tan \theta$, approximatoly, for mall angles, this force is

$$
\begin{equation*}
\left.r \frac{\partial y}{\partial x}\right|_{x+\Delta x}-+\left.\frac{\partial y}{\partial x}\right|_{x} \tag{k}
\end{equation*}
$$



Pig. 1.6
aning the fact that the slope is tan $f=\frac{\partial y}{\partial x}$. We use here the notation $\left.\frac{\partial y}{\partial x}\right|_{x}$ and $\left.\frac{\partial y}{\partial x}\right|_{x+a s}$ for the partial derivatives of $y$ with reapect to $m$ evaluated at $x$ and $x+\Delta x$, reapectively. By Nawton'a lsw thite net force is equal to the masa of the atring ( $\alpha$ ds) times the acceleration of $\Delta s$, which is given by


$$
\begin{equation*}
\cdot\left[\left.\frac{\partial y}{\partial x}\right|_{x+\Delta x}-\left.\frac{\partial y}{\partial x}\right|_{x}\right]=(x \Delta s)\left(\frac{\partial^{2} y}{\partial t^{2}}+e\right) \tag{8}
\end{equation*}
$$

If the vibrations are smatl, then $a^{\prime}=\Delta x$ approximately, so that (s) becomes on divistion by $\mu \Delta x$ :

$$
\begin{equation*}
\frac{\Sigma}{\mu} \frac{\left.\frac{\partial y}{\partial x}\right|_{x+\Delta x}-\left.\frac{\partial y}{\partial x}\right|_{x}}{\partial x}=\frac{\partial \partial y}{\partial t^{2}}+ \tag{4}
\end{equation*}
$$

Taldity the limit as $\Delta x \rightarrow 0$ (In which case $\rightarrow 0$ also), we have

$$
\frac{r}{z} \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{\partial^{2} y}{\partial t^{2}} \quad \text { or } \quad \frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad \text { where } a^{2}=\tau / \mu
$$

12 Write the boundary conditions for a vibrating atring of length $L$ for which (a) the ends $x=0$ and $x=L$ are fixed, (b) the initial shape is given by $f(x)$, (c) the initial valocity distribution fa given by $g(x)$, (d) the diaplacement at any point $x$ at time $t$ is bounded.
(a) If the otring is fixed at $x=0$ and $a=L$, then the displacement $y(x, t)$ at $x=0$ and $\approx=L$ muat be zero for all times $t>0$, i,e.

$$
y(0, t)=0, \quad y(L, t)=0 \quad t>0
$$

(b) Since the atring has an initial ahape given by $f(x)$, we must have

$$
y(x, 0)=f(x) \quad 0<x<L
$$

(c) Since the initial velocity of the otring at any polnt $x$ io $g(x)$, we must have

$$
y_{1}(x, 0)=g(x) \quad 0<z<L
$$

Note that $y_{t}(x, 0)$ is the same as $\partial y / \partial t$ evaluated at $t=0$.
(d) Since $y(x, t)$ in bounded, we can find a constant $M$ independent of $m$ end $t$ buch that

$$
|y(x, t)|<M \quad 0<x<L, t>0
$$

18. Write boundary conditions for a vibrating string for which (a) the end $x=0$ is moving eo that ita displacement is given in tarms of time by $G(t)$, (b) the end $x=L$ is not fixed but is free to move.
(a) The diaplacement at $x=0$ in given by $y(0,0)$. Thur we have

$$
Y(0, t)=G(t) \quad t>0
$$

(b) If $f$ is the tension, the transverse force acting at any point $z$ is

$$
T \frac{\partial y}{\partial x}=r y_{z}\{x, t)
$$

Since the end $x=L$ is free to move so that there is no force ncting on it, the boundary condition is given by

$$
\pi y_{x}(L, t)=0 \quad \text { or } \quad y_{x}(L, t)=0 \quad t>0
$$

1.4. Suppose that in Problem 1.1 the tension in the string is variable, i.e. depends on the particular point taken. Denoting this tension by $\tau(x)$, show that the equation for the vibrating string is

$$
\frac{\partial}{\partial x}\left[\tau(x) \frac{\partial y}{\partial x}\right]=\mu \frac{\partial^{2} y}{\partial t^{2}}
$$

In this case we write (z) of Problem 1.1 us

$$
\left.\left.\tau(x) \frac{\partial y}{\partial x}\right|_{x+\Delta x} \sim \tau(x) \frac{\partial y}{\partial z}\right|_{x}
$$

so that the corresponding equation (4) is

$$
\frac{\left.r(x) \frac{\partial y}{\partial x}\right|_{s+\Delta x}-\left.r(x) \frac{\partial y}{\partial x}\right|_{x}}{\mu \Delta x}=\frac{\partial^{2} y}{\partial t^{2}}+c
$$

Thus, taking the timit as $\Delta x \rightarrow 0$ (in which case e $\rightarrow 0$ ), we obtain

$$
\frac{\partial}{\partial x}\left[r(x) \frac{\partial y}{\partial x}\right]=\mu \frac{\partial{ }^{2} y}{\partial t^{2}}
$$

after multiplying by $\mu$.
1.5. Show that the heat flux across a plane in a conducting medium is given by $-K \frac{\partial u}{\partial n}$. where $u$ is the temperature. $n$ is a normal in a direction perpendicular to the plane and $K$ is the thermal conductivity of the medium.

Suppose we have two parallel planes I and II a distance $\Delta n$ spart (Fig. 1-7), having temperatares $u$ and $u+3 u$, respectively. Then the heat flows from the plane of higher temperature to the plane of lower temperature. Also, the amount of heat per unit area per unit time, called the heat flux, is directly proportional to the difference in temperature sid and inversely proportional to the distance. In. Thus wo have

$$
\begin{equation*}
\text { Heat fiux from I to II }=-K \frac{\Delta u}{\Delta n} \tag{I}
\end{equation*}
$$

where $K$ is the constant of proportionslity, called the thormal condutctivity. The minue sign oceurs in (I) since if $\Delta u>0$ the heat fow actually takes place from II to I.


Fig. 1-7

By taking the limit of ( $f$ ) as $\Delta n$ and thus an approaches zero, we have ms required:

$$
\begin{equation*}
\text { Heat fux across plane } I=-K \frac{\partial u}{\partial n} \tag{z}
\end{equation*}
$$

We sometimes call $\frac{\partial u}{\partial r}$ the gradient of $u$ which in vector form is $\nabla u$, ao that ( $(x)$ can be written

$$
\begin{equation*}
\text { Heat fiux across plane } I=-K \nabla u \tag{s}
\end{equation*}
$$

1.6. If the temperature at any point ( $x, y, z$ ) of a solid at time $t$ is $u(x, y, z, t)$ and if $K$, a and $\mu$ are reapectively the thermal conductivity, specific heat and density of the solid, all assumed constant, show that

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u \quad \text { where } \quad k=K / \sigma \mu
$$

Consider a arnall volume element of the aolid $V$, as indiested in Fig. 1-8 and greatly enlarged In Fig. 1-9. By Problem 1.5 the amount of heat per unit aree per unit time entering the element through face $\operatorname{PQRS}$ is $-\left.K \frac{\partial u}{\partial x}\right|_{y}$, where $\left.\frac{\partial y}{\partial x}\right|_{\text {, }}$ indicates the derivative of $u$ with reapect to $x$ evalusted at the pogition $x$. Since the area of face $P Q R S$ fo $\Delta y \Delta x$, the total amount of heat entering the element through face PQRS in time $\Delta t$ is

$$
\begin{equation*}
-\left.K \frac{\partial u}{\partial x}\right|_{x} \Delta y \Delta z \Delta t \tag{1}
\end{equation*}
$$

Similarly, the emount of heat leaving the element through face NWZT if

$$
\begin{equation*}
-\left.K \frac{\partial y}{\partial x}\right|_{I+\Delta x} \Delta y \Delta z \Delta t \tag{2}
\end{equation*}
$$

where $\left.\frac{\partial u}{\partial x}\right|_{x+\Delta x}$ indicates the derivative of $u$ with respect to $x$ evaluated at $a+\Delta x$.
The amount of heat which remains in the element is given by the amount entering minua the amount legving, which is, from (1) and (8),

$$
\begin{equation*}
\left\{\left.K^{\prime} \frac{\partial u}{\partial x}\right|_{x+\Delta r}-\left.K \frac{\partial u}{\partial x}\right|_{x}\right\} \Delta y \Delta x \Delta t \tag{s}
\end{equation*}
$$

In a aimikar way we can show that the amounts of heat remaining in the elemant due to heat transfer taking place in the $y$ - and a-directions are given by
and

$$
\begin{align*}
& \left\{\left.\left.K \frac{\partial u}{\partial y}\right|_{z+\Delta y} \rightarrow K \frac{\partial u}{\partial y}\right|_{u\}}\right\}_{\Delta z \Delta t \Delta t}  \tag{4}\\
& \left\{\left.K \frac{\partial u}{\partial z}\right|_{u+\Delta z}-\left.K \frac{\partial u}{\partial z}\right|_{z}\right\} \Delta z \Delta y \Delta t \tag{5}
\end{align*}
$$

respectivaly.
The total amount of heat gained by the element is given by the sum of (s), ( $\delta$ ) end ( 6 ). This amount of heat eerver to raise itn temperature by the smount au. Now, we know that the heat needed to raise the temperature of a mass $m$ by au if given by mosu, where $\sigma$ is the opecific heat. If the dengity of the colld is $\mu$, the mass is $m=\mu \Delta x \Delta y \Delta z$. Thus the quantity of heat given by the sum of (s), (4) and ( 5 ) is equal to

$$
\begin{equation*}
\pi \mu \Delta x \Delta y \Delta x \Delta u \tag{6}
\end{equation*}
$$

If we now equate the sum of (3), (4) and (5) to (0), and divide by $\Delta x \Delta y \Delta z \Delta t$, we find

$$
\left\{\frac{\left.K \frac{\partial u}{\partial x}\right|_{x+\Delta z}-\left.K \frac{\partial u}{\partial x}\right|_{x}}{\Delta x}\right\}+\left\{\left.K \frac{\partial u}{\partial y}\right|_{y+\Delta y}-\left.K \frac{\partial u}{\partial y}\right|_{y}\right\}+\left\{\frac{\left.\left.K \frac{\partial u}{\partial x}\right|_{x+\Delta z}-\left.K \frac{\partial u}{\partial z}\right|_{z}\right\}}{\Delta x}\right\}=\Delta \mu \frac{\Delta u}{\Delta t}
$$

In the limit at $\Delta x, \Delta y, \Delta z$ and $\Delta t$ all approach zero the above equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(K \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial v}\left(K \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial x}\left(K \frac{\partial u}{\partial z}\right)=\sigma \mu \frac{\partial u}{\partial z} \tag{7}
\end{equation*}
$$

of, as $K$ is a constant,

$$
\begin{equation*}
K\left(\frac{\partial a_{u}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{3}}+\frac{\partial^{2} u}{\partial 2^{2}}\right)=\partial \psi \frac{\partial u}{\partial t} \tag{8}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\frac{\partial u}{\partial t}=x \dot{v}_{\dot{u}} \tag{0}
\end{equation*}
$$

where $x=\frac{K}{\sigma \mu}$ is called the diffurivity.


Fig. I-8


Fig. 1-9
1.7. Work Problem 1.6 by using vector methods.

Let 6 be an arbitrary volume lying within the solid, and let $S$ denote its surface (nee Fig. 1-8). The total tux of heat across $S$, or the quantity of heat leaving $S$ ger unit time, is

$$
\iint_{S}(-K \nabla v) \cdot n d S
$$

where $n$ is an outward-drawn unit normal to $S$. Thus the quantity of heat entering $S$ per unit time is

$$
\begin{equation*}
\int_{i}(K \nabla u) \cdot n d S=\iint_{V} \int_{V} \nabla \cdot(K \nabla u) d V \tag{t}
\end{equation*}
$$

hat the niverento thenem. The heat contained in a volume $\boldsymbol{V}$ is given by

$$
\iint_{1} \int_{0}^{*} a_{4}+d I^{-}
$$

That in luta rite of increaze of heat is

$$
\begin{equation*}
\frac{A}{i t} \iint_{V}^{1} a_{H} a_{H} d V=\iint_{V} o_{i t} \frac{\partial u}{\partial t} d V \tag{8}
\end{equation*}
$$

Equatiate the rieht-hand sides of (1) and (2),

$$
\iint_{V} \int\left[a \mu \frac{\partial L}{\partial t}-\nabla \cdot\left(K \nabla_{U}\right)\right] d V-0
$$

and since $T^{\prime}$ is uthitrary, the integrand, assumed continumbs, nust he identically zerv, so that

$$
a \mu \frac{\partial u}{\partial t}=\nabla \cdot(K \nabla u)
$$

or if $K, \sigma_{1}$, are runstante,

$$
\begin{equation*}
\frac{\partial_{k}}{\partial_{t}}=\frac{K}{\sigma \mu} \nabla \cdot \nabla_{u} \quad+\nabla 2_{u t} \tag{5}
\end{equation*}
$$

1.8. Show that for steadystate heat flow the heat conduction equation of Problem 1.6 or 1.7 reduees to Laplace's equation, $\nabla^{2} u=0$.

In the ease of starsy-stite heat flow the semperature $u$ does not depend on time $t$, so that

1.9. A thin bar of diffusivity $x$ has its ends at $x=0$ and $x=l$ on the $x$-axis (see Fig. 1-10; Its lateral surface is insulated so that heat cannot enter or eacape.
(a) If the initial temperature is $f(x)$ and the ends are kept at temperature zero, set up the boundary value problem. (b) Work part (a) if the end $x=L$ is insulated. (c) Work part (e) if the end $\pi=L$ radiates into the surrounding medium, which is assumed to be at temperature $\tau_{0}$.

This is a problem in onc-dimensional heat conduction since the tempcrature can only depend on the position $x$ at any time $t$ and can thus be denoted by $u(x, t)$. The heat conduction equation is thus given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<L, t>0 \tag{I}
\end{equation*}
$$



Fig. 1-10
(a) Since the enda are kept at temperature zero, we have

$$
\begin{equation*}
u(0, t)=0, \quad u(L, t)=0 \quad t>0 \tag{l}
\end{equation*}
$$

Since the initial temperature is $f(x)$, we have

$$
\begin{equation*}
u(x, 0)=f(x) \quad 0<x<L \tag{s}
\end{equation*}
$$

Albo, from physical considerations the temperature must be bounded; hence

$$
\begin{equation*}
|u(x, t)|<M \quad 0<\pi<L, t>0 \tag{4}
\end{equation*}
$$

The problem of solving ( 1 ) subject to conditions ( 2 ), ( 5 ) and (4) is the required boundary value problem. A problem exactly equivalent to that considered above is that of an infinita alab of conducting material bounded by the planes $z=0$ and $x=L$, where the planea are kept at temperature zero and where the temperature distribution initially is $f(x)$.
(b) If the end $x=L$ is insulated instead of being at temperature zero, then we must find a replacement for the condition $\mathfrak{u}(L, t)=0$ in (2). To do this we note that if the end $x=L$ is insulated then the fux at $x=L$ is zero. Thus we have

$$
\begin{equation*}
-\left.K \frac{\partial u}{\partial x}\right|_{x=1}=0 \quad \text { or equivalently } \quad u_{s}(L, t)=0 \tag{5}
\end{equation*}
$$

which ia the required boundary condition.
(c) It fa known from physicul laws of heat transfer that the heat fux of radiation from one object at temperature $U_{1}$ to another wbject at temperature $U_{2}$ is given by $a\left(U_{1}^{4}-U_{2}^{4}\right)$, where $a$ is a constant and the temperatures $U_{1}$ and $U_{2}$ are given in abolute or Kelvin temperature which if the number of Celsius (centigrade) degrees plus 273. This law is often called Stefan's radiation law. From this we obtain the boundary condition

$$
\begin{equation*}
-K u_{x}(L, t)=a\left(u_{1}^{4}-u_{0}^{4}\right) \quad \text { where } \quad u_{1}=u(L, t) \tag{8}
\end{equation*}
$$

If $\mu_{1}$ and $u_{0}$ do not differ too greatly from each other, we can write

$$
\begin{aligned}
u_{1}^{4}-u_{0}^{4} & =\left(u_{1}-u_{0}\right)\left(u_{1}^{3}+\pi_{1}^{2} u_{0}+u_{1} u_{0}^{2}+u_{0}^{4}\right) \\
& \simeq\left(u_{1}-u_{0}\right) u_{0}^{3}\left[\left(\frac{u_{1}}{u_{0}}\right)^{3}+\left(\frac{u_{1}}{u_{0}}\right)^{2}+\frac{u_{1}}{u_{0}}+1\right] \\
& =4 u_{0}^{9}\left(u_{1}-u_{0}\right)
\end{aligned}
$$

since $\left(u_{1} / u_{0}\right)^{3},\left(u_{1} / u_{0}\right)^{2},\left(u_{1} / u_{0}\right)$ are approximately equal to 1 . Using this approximation, which is often referred to at Newton's law of cooling, we can write (6) as

$$
\begin{equation*}
-K u_{i}(L, t)=\beta\left(u_{1}-u_{0}\right) \tag{7}
\end{equation*}
$$

where $\beta$ if a constant.

## CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1.10. Determine whether each of the following partial differential equations is linear or monlinear, state the order of each equation, and name the dependent and independent variables.
(a) $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$
linear, order 2, dep, var. $n$, inh. var. $x, t$
(b) $x^{2} \frac{\partial^{4} R}{\partial y^{3}}=y^{3} \frac{\partial^{2} R}{\partial x^{2}}$
linear, order 3 , dep. var. $R$. ind. var. $x_{1} y$
(c) $W \frac{\partial^{2} W}{\partial r^{2}}=r s t$
nominear, order 2 , tiep. var. $W$, ind var. $r, s, t$
(d) $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \quad$ linear, order 2, dep. var $s$, ind, var. $x, y, 2$
(e) $\left(\frac{\partial z}{\partial u}\right)^{2}+\left(\frac{\partial z}{\partial v}\right)^{2}=1 \quad$ nonlinear, order 1, dep. var. $z$, ind. var. $u, v$
1.11. Classify each of the following equations as elliptic, hyperbolic or parabolic.
(a) $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$
$u=\phi, A=1, B=0, C=1: \quad B^{2}-4 A C=-1<0$ and the equation is elliptic.
(b) $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$
$y=t, A=\pi, B=0, C=0 ; \quad B^{2}-4 A C=0$ and the equation is parabolic.
(c) $\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}$
$y=t, u=y, A=a^{2}, B=0, C=-1 ; \quad B^{2}-4 A C=4 a^{2}>0 \quad$ and the equation is hyperbolic.
(d) $\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+4 \frac{\partial^{2} u}{\partial y^{2}}+5 \frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}+4 u=2 x-3 y$
$A=1 .+B=3, C=4 ; \quad B^{2}-4 A C=-7<0$ and the equation is elliptic,
(e) $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u t}{\partial y^{2}}+3 y^{2} \frac{\partial u}{\partial x}=0$
$A=x, B=0, C=y ; B^{2}-4 A C=-4 x y$. Hence, in the region $x y>0$ che equation is elliptic; in the region $x y<0$ the equation is hyperbolic; if $x y=0$, the equation is parabolic.

## SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

1.12. Show that $u(x, t)=e^{-8 t} \sin 2 x$ is a solution to the boundary value problem

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=\sin 2 x
$$

From $\mu\langle x, t\rangle=e^{-8 t} \sin 2 x$ we have

$$
u(0, t)=e^{-8 t} \sin 0=0, \quad u(\pi, t)=e^{-8 t} \sin 2 \pi=0, \quad u(x, 0)=e^{-0} \sin 2 x=\sin 2 x
$$

and the boundary conditions are satisfed.
Also $\quad \frac{\partial u}{\partial t}=-8 \varepsilon^{-3 t} \sin 2 x, \quad \frac{\partial u}{\partial x}=26^{-8 t} \cos 2 x, \quad \frac{\partial^{2} y}{\partial x^{2}}=-1 e^{-6 t} \sin 2 x$
Then substituting into the differential equation, we have

$$
-8 c^{-9 t} \sin 2 x=2\left(--4 c^{-4 t} \sin 2 x\right)
$$

which is an identity.
1.13. (a) Show that $v=F(y-8 x)$, where $F$ is an arbitrary differentiable function, is a general solution of the equation

$$
\frac{\partial v}{\partial x}+3 \frac{\partial v}{\partial y}=0
$$

(b) Find the particular solution which satisfies the condition $v(0, y)=4 \sin y$.
(a) Let $y-8 x=u$. Then $v=F(u)$ and

$$
\begin{aligned}
& \frac{\partial v}{\partial z}=\frac{\partial v}{\partial u} \frac{\partial u}{\partial x}=F^{\prime}(u)(-3)=-8 F^{\prime}(u) \\
& \frac{\partial v}{\partial y}=\frac{\partial v}{\partial u} \frac{\partial u}{\partial y}=F^{\prime}(u)(1)=F^{\prime}(u)
\end{aligned}
$$

Thus

$$
\frac{\partial v}{\partial x}+s \frac{\partial v}{\partial y}=0
$$

Since the equation is of order one, the solution $v=F(u)=F(y-3 x)$, which involves one stbitrary function, is a general solution.
(b) $v(x, y)=F(v-8 x)$. Then $v(0, y)=F(y)=4 \sin y$. But if $F(y)=4 \sin y$, then $v(x, y)=$ $F(y-8 x)=4 \operatorname{ain}(y-8 x)$ is the required solution.
1.14. (a) Show that $y(x, t)=F(2 x+5 t)+G(2 x-5 t)$ is a general solution of

$$
4 \frac{\partial^{2} y}{\partial t^{2}}=25 \frac{\partial^{2} y}{\partial x^{2}}
$$

(b) Find a particular solution satisfying the conditions

$$
y(0, t)=y(\pi, t)=0, \quad y(x, 0)=\sin 2 x, \quad y t(x, 0)=0
$$

(a) Let $2 x+5 t=u, 2 x-5 t=v$. Then $y=F(u)+G(v)$.

$$
\begin{align*}
& \frac{\partial y}{\partial t}=\frac{\partial F}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial G}{\partial v} \frac{\partial v}{\partial t}=F^{\prime}(u)(5)+G^{\prime}(v)(-5)=5 F^{\prime}(u)-5 G^{\prime}(v)  \tag{t}\\
& \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial}{\partial t}\left(5 F^{\prime \prime}(u)-5 G^{\prime}(v)=5 \frac{\partial F^{\prime}}{\partial u} \frac{\partial u}{\partial t}-5 \frac{\partial G^{\prime}}{\partial v} \frac{\partial v}{\partial t}=25 F^{\prime \prime}(u)+25 G^{\prime \prime}(v)\right.  \tag{y}\\
& \frac{\partial y}{\partial x}=\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial G}{\partial v} \frac{\partial v}{\partial x}=F^{\prime}(u)(2)+G^{\prime}(v)(2)=2 F^{\prime}(u)+2 G^{\prime}(v)  \tag{5}\\
& \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial}{\partial x}\left[2 F^{\prime}(u)+2 G^{\prime}(v)\right]=2 \frac{\partial F^{\prime}}{\partial u} \frac{\partial t}{\partial x}+2 \frac{\partial G^{\prime}}{\partial v} \frac{\partial v}{\partial x}=4 F^{\prime \prime}(u)+4 G^{\prime \prime}(v) \tag{t}
\end{align*}
$$

From ( 2 ) and ( 4 ), $4 \frac{\partial^{2} y}{\partial z^{2}}=25 \frac{\partial^{2} y}{\partial x^{2}}$ and the equation is satisfied. Since the equation is of order $\&$ and the solution involves two arbitrary functions, it is a general solution.
(b) We have from $y(x, t) \neq F(2 x+5 t)+G(2 x-5 t)$,

$$
\begin{equation*}
y(x, 0)=F(2 x)+G(2 x)=\sin 2 x \tag{5}
\end{equation*}
$$

Aleo

$$
y_{t}(x, t)=\frac{\partial y}{\partial t}=5 F^{\prime}(2 x+5 t)-5 G^{\prime}(2 x-5 t)
$$

so that

$$
\begin{equation*}
y_{d}(x, 0\}=5 F^{\prime}(2 x)-5 G^{\prime}(2 x)=0 \tag{6}
\end{equation*}
$$

Difirerentiating (5),

$$
\begin{equation*}
2 F^{\prime}(2 x)+2 G^{\prime}(2 x)=2 \cos 2 x \tag{7}
\end{equation*}
$$

From (6),

$$
\begin{equation*}
f^{\prime \prime}(2 x)=G^{\prime}(2 x) \tag{8}
\end{equation*}
$$

Then from (7), and (8),

$$
F^{\prime}(2 x)=G^{\prime}(2 x)=\frac{1}{2} \cos 2 x
$$

from which $\quad F(2 x)=\frac{1}{2} \sin 2 x+c_{1}, \quad G(2 x)=\frac{1}{2} \sin 2 x+c_{8}$
i.e.

$$
y(x, t)=\frac{1}{2} \sin (2 x+5 t)+\frac{1}{2} \sin (2 x-5 t)+c_{1}+c_{2}
$$

Using $y(0, t)=0$ or $\psi(\pi, t)=0, c_{1}+c_{2}=0$ go that

$$
y(x, t)=\frac{1}{2} \sin (2 x+5 t)+\frac{1}{2} \sin (2 x-5 t)=\sin 2 x \cos 5 t
$$

which can be checked as the required solution.

## METHOUS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

1.15. (a) Solve the equation $\frac{\partial^{2} z}{\partial x \partial y}=x^{2} \dot{y}$.
(b) Find the particular solution for which $z(x, 0)=x^{2}, z(1, y)=\cos y$.
(a). Write the equation as $\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=x^{2} y$. Then integrating with respect to $x$, we find

$$
\begin{equation*}
\frac{\partial z}{\partial y}=\frac{1}{z^{3}} x^{y}+F(y) \tag{i}
\end{equation*}
$$

where $F(y)$ is arbitrary.
Integrating (1) with respect to $y$,

$$
\begin{equation*}
z=\frac{1}{6} x^{3} y^{2}+\int F(y) d y+G(x) \tag{2}
\end{equation*}
$$

where $G(x)$ is arbitrary. The result (i) can be written

$$
\begin{equation*}
z=z(x, y)=\frac{1}{8} x^{2} y^{2}+H(y)+G(x) \tag{8}
\end{equation*}
$$

which has two erbitrary (tndopendent) functions and is therefore a sencral solution.
(b) Since $z(x, 0)=x^{2}$, we have from (3)

$$
\begin{equation*}
x^{2}=H(0)+G(x) \quad \text { or } \quad C(x)=x^{2}-H(0) \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
z=\frac{1}{4} x^{2} y^{2}+H(v)+x^{2}-H(0) \tag{5}
\end{equation*}
$$

Since $z(1, y)=$ cos $y$, we have from ( 5 )

$$
\cos y=\frac{1}{3} y^{2}+H(y)+1-H(0) \quad \text { or } \quad H(y)=\cos y-\frac{1}{b} y^{2}-1+H(0)
$$

Using (6) in (5), we find the required solution
1.16. Solve $t \frac{\partial^{2} u}{\partial x \partial t}+2 \frac{\partial u}{\partial x}=x^{2}$.

Write the equation as $\frac{\partial}{\partial x}\left[t \frac{\partial u}{\partial t}+2 u\right]=x^{1}$. Integrating with respect to $x_{1}$

$$
t \frac{\partial t t}{\partial t}+2 u=\frac{x^{3}}{3}+F(t) \quad \text { or } \quad \frac{\partial u}{\partial t}+\frac{2}{t} u=\frac{x^{3}}{3 t}+\frac{F(t)}{t}
$$

This is a linear equation having integrating factor $\int^{\int(2 / 0) d t}=e^{2 \ln t}=e^{\ln t^{2}}=t^{2}$. Then

$$
\frac{\partial}{\partial t}\left(t^{2} x\right)=\frac{x^{3} t}{3}+t F(t)
$$

Integratink, $\quad t^{2} u=\frac{x^{3} t^{2}}{6}+\int t F(t) d t+H(x)=\frac{x^{2} t^{2}}{6}+G(t)+H(x)$ and this is the required general solution.
1.17. Find solutions of $\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0$.

Assume $M=e^{a x+b u}$. Substituting in the given equation, we find

$$
\left(a^{2}+3 a b+2 b^{2}\right) e^{a x+b y}=0 \quad \text { or } \quad a^{2}+3 a b+2 b^{2}=0
$$

Then $(a+b)(a+2 b)=0$ and $a=-b, a=-2 b$. If $a=-b, e^{-b x+b y=}=e^{i(v-x)}$ is a solution for any value of $b$, If $a=-2 b, e^{-2 b s+b y}=e^{b(u-2 x)}$ is a solution for any value of $b$.

Since the equation is linear and bomggeneous, sums of these splutions are solutions (Theorem 1-1). For example, $3 e^{2(y-x)}-2 e^{3(y-x)}+5 e^{r(y-x)}$ is a solution (among many others), and one is thus led to $F(v-x)$ where $F$ is arbitrary, which can be verified as a solution. Similarly, $G(y-2 x)$, where $G$ is arbitrary, is a solution. The general solution found by addition is then given by

$$
\mu=F(y-x)+G(y-2 x)
$$

1.18. Find a general solution of

$$
\text { (a) } 2 \frac{\partial u}{\partial x}+3 \frac{\partial u}{\partial y}=2 u
$$

(b) $4 \frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(a) Let $u=e^{a x+b y}$. Then $2 a+8 b=2, \quad a=\frac{2-3 b}{2}$, and $e^{[(2-3 b) / 2] x+b y}=e^{x} e^{(b / 2)(2 y-3 x)}$ is a solation.

Thus $u=e^{x F}(2 y-3 x)$ is a general solution.
(b) Lat $u=a \operatorname{ax}+b y$. Then $4 a^{2}-4 a b+b^{2}=0$ and $b=2 a, 2 a$. From this $u=a \cos +2 y$ and


By analogy with repeated roots for ordinary differential equations we might be led to believe $z G(x+2 y)$ or $y G(x+2 y)$ to be another solution, and that this is in fact true ia easy to verify. Thus a general solution is

$$
u=F(x+2 y)+x G(x+2 y) \quad \text { or } \quad u=F(x+2 y)+y C(x+2 y)
$$

1.19. Solve $\quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=10 e^{2 \pi+y}$.

The hornogeneous equation $\frac{\partial^{2} u t}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ has general solution $u=F(x+i y)+G(x-i v)$ by Problem 1.39 (c).

To find a particular solution of the given equation assume $u=\alpha e^{i x+y}$ where a in an unknown constant. This is the method of undetermined coeffecients as in ofdinary differental equations. We find $\alpha=2$, so that the required general solvtion is

$$
u=F(x+i y)+G(x-i y)+2 e^{2}+v
$$

1.20. Solve $\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial y^{2}}=e^{2 x+y}$.

The homogeneous equation has general solution

$$
u=F(2 x+y)+G(2 x-y)
$$

To find a particular solution, we would normally sssume $t=\alpha e^{2 x+y}$ as in Problem 1.19 but this assumed solution is alruady included in $F(2 \pi+y)$ : Hence we assume as in ordinary differential equations that $u=a x e^{2 x+v}$ (or $u=a y p^{2 x+y}$ ). Substituting, we find $a=\frac{1}{4}$.

Then a general solution is

$$
u=F(2 x+y)+G(2 x-y)+\frac{1}{4} x^{2 x}+
$$

## SEPARATION OF VARIABLES

### 1.21. Solve the boundary value problem

$$
\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}, \quad u(0, y)=8 e^{-3 y}
$$

$b y$ the method of separation of variables.
Let $u=X Y$ in the given equation, where $X$ depends only on $x$ and $Y$ depends only on $y$.
Then $\quad X^{\prime} Y=4 X Y^{\prime} \quad$ or $\quad X^{\prime} / 4 X=Y^{\prime} / Y$
where $X^{\prime}=d X / d x$ and $Y^{\prime}=d Y / d y$,
Since $X$ depends only on $x$ and $Y$ depends only on $y$ and since $x$ and $y$ are independent variables, each side must be a constant, say $c$.

Then $X^{\prime}-4 c X=0, \quad X^{\prime}-c Y=0$, whose solations are $X=A e^{4 c z}, \quad Y=B e^{\text {ey }}$.
A solution is thus given by

$$
u(x, y)=X X=A B e^{r(t i x+z)}=K_{0} e(4 x 4 y)
$$

From the boundary condition,

$$
u(0, v)=K e^{t v}=s_{\varepsilon}-5 v
$$

which is possible if and only if $K=8$ and $c=-3$. Then $u(x, y)=8 e^{-9(4 x+v)}=8 e^{-12 x-8 y}$ is the zequired solution.
1.22. Solve Problem 1.21 if $u(0, y)=8 e^{-3 y}+4 e^{-8 y}$.
 principle of superposition so also is their sum; L.e. a solution is

$$
u(z, y)=K_{1} e_{1}(4 x+w)+K_{2}\left(c_{2}(4 x+v)\right.
$$

From the boundary condition,

$$
\pm(0, y)=K_{1} e^{c_{1} y}+K_{2} e^{c_{2} y}=8 e^{-9 y}+4 e^{-5 y}
$$

which is possible if and only if $K_{1}=8, K_{2}=4, c_{1}=-3, c_{2}=-5$.
Then $u(x, y)=8 e^{-3(4 x+y)}+4 e^{-54 x+w)}=8 e^{-2 t x-3 v}+4 e^{-20 x-5 y}$ is the required solution.
1.23. Solve $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, t>0$, given that $u(0, t)=u(3, t)=0$,

$$
u(x, 0)=5 \sin 4 \pi x-3 \sin 8 \pi x+2 \sin 10 \pi x, \quad|u(x, t)|<M
$$

where the last condition states that $u$ is bounded for $0<x<3, t>0$.
Let $w=X T$. Then $X T^{\prime}=X^{\prime \prime} T$ and $X^{\prime \prime} / X=T^{\prime} / 2 T^{\prime}$. Each side must be a constant, which we call $-\lambda^{2}$. (If we use $+\lambda^{2}$, the resulting solution obtained does not satisly the benndedness condition for real values of $\lambda_{0}$ ) Then

$$
X^{\prime \prime}+\lambda^{z} X=0, \quad J^{\prime \prime}+2 \lambda^{2} \frac{2}{}=0
$$

with rolutions

$$
X=A_{1} \cos \lambda x+B_{1} \sin \lambda x, \quad T=c_{1} \theta^{-2 \lambda_{1}}
$$

A solution of the partial differential equation is thus given by

$$
u(x, t)=X T=c_{1} \varepsilon^{-\lambda \lambda^{2} t}\left(A_{1} \cos \lambda x+B_{1} \sin \lambda x\right)=e^{-2 \lambda^{2} t}(A \cos \lambda x+B \sin \lambda x)
$$

Since $u(0, t)=0, e^{-2 \lambda^{2} t}(A)=0$ or $A=0$. Then

$$
u(x, t)=B s^{-2 \lambda^{2} t} \sin \lambda x
$$

Since $u(3, t)=0, B e^{-2 \lambda^{2} t} \sin 3 \lambda=0$. If $B=0$, the solution is identically sero, so we must have $\sin 3 \lambda=0$ or $3 \lambda=m$ m, $\lambda=m_{\pi} / 4$, where $m=0, \pm 1, \pm 2, \ldots$. Thus a solution is

$$
u(x, t)=B e^{-2 m^{2} y^{2} t / 9} \sin \frac{m \pi x}{3}
$$

Also, by the principle of superposition,

$$
\begin{equation*}
t(x, t)=B_{1} e^{-a_{m_{5}^{2}}^{2} t / 9} \sin \frac{m_{1 \pi} \pi}{3}+E_{3} e^{-2 m_{2}^{1} x^{2} t / 9} \sin \frac{m_{2} \pi x}{3}+B_{3} e^{-2 m_{3}^{2} x^{2} t / 9} \sin \frac{m_{3} \pi x}{3} \tag{1}
\end{equation*}
$$

is a solution. By the last boundary condition,

$$
\begin{aligned}
u(x, 0) & =B_{1} \sin \frac{m_{1} v x}{3}+B_{2} \sin \frac{m_{2} \pi x}{3}+B_{3} \sin \frac{m_{3} v x}{3} \\
& =6 \sin 4 \pi x-3 \sin B \pi x+2 \sin 10 \pi x
\end{aligned}
$$

which is possible it and only if $B_{1}=5 . m_{1}=12, B_{2}=-3, m_{2}=24, B_{3}=2, m_{3}=30$.
Substituting these in (1), the required solution is

$$
\begin{equation*}
u(x, t)=5 e^{-32 \pi^{2} t} \sin 4 \pi x-3 e^{-128 x^{\prime} t} \sin 8 \pi x+2 e^{-800 \sigma^{2} t} \sin 10 \pi x \tag{£}
\end{equation*}
$$

This boundary value problem has the following interpretation as a heat flow problom. A bar whose aurface is insulated (Fig. 1-11) has a length of 3 units and a diffusivity of 2 units. If its ends are kept at temperaturc zero units and its initial ternperature $u(x, 0)=5 \sin 4 \pi x-3 \sin 8 \pi x+$ $2 \sin 10 x z$, find the temperature at position $x$ at time $t$, i.e. find $u(x, t)$.


Fig. 1-11
1.24. Solve $\frac{\partial^{2} y}{\partial t^{2}}=16 \frac{\dot{a}^{2} y}{\partial x^{2}}, \quad 0<x<2, t>0$, subject to the conditions $y(0, t)=0, y(2, t)=0$, $y(x, 0)=6 \sin \pi x-3 \sin 4 \pi x, y_{1}(x, 0)=0,|w(x, t)|<M$.

Let $y=X T$, where $X$ depends only on $x, T$ depends only on $t$. Then substitution in the differential equation yieldg

$$
X T^{\prime \prime}=16 X^{\prime \prime} T \quad \text { or } \quad X^{\prime \prime} / X=T^{\prime \prime} / 16 T
$$

on separating the variablea. Since each side must be a constant, say $-\lambda^{2}$, we have

$$
X^{\prime \prime}+\lambda^{2} X=0 . \quad r^{\prime \prime}+16 \lambda^{2} T=0
$$

Solving these we find

$$
X=a_{1} \cos \lambda x+b_{1} \sin \lambda x, \quad T=a_{2} \cos 4 \lambda t+b_{2} \sin 4 \lambda t
$$

Thus a solution is

$$
\begin{equation*}
\nu(x, t)=\left(a_{1} \cos \lambda x+b_{1} \sin \lambda x\right)\left(a_{2} \cos 4 \lambda t+b_{2} \sin 4 \lambda t\right) \tag{I}
\end{equation*}
$$

To find the constants it is simpler to proceed by using first those boundary conditions involving two zeros, such as $y(0, t)=0, y_{t}(x, 0)=0$. From $y(0, t)=0$ we see from ( 1 ) that

$$
a_{1}\left(a_{2} \cos 4 \lambda t+b_{2} \sin 4 \lambda t\right)=0
$$

so that to obtain a non zero solution (i) we must have $a_{1}=0$. Thus (2) becomes

$$
\begin{equation*}
v(x, t)=\left(b_{1} \sin \lambda x\right)\left(a_{2} \cos 4 \lambda t+b_{2} \sin 4 \lambda t\right) \tag{e}
\end{equation*}
$$

Differentiation of ( $q$ ) with respect to $t$ yields

$$
y_{1}(x, t)=\left(b_{1} \sin \lambda x\right)\left(-4 \lambda a_{2} \sin 4 \lambda t+4 \lambda b_{2} \cos 4 \lambda t\right)
$$

so that we have on putting $t=0$ and using the condition $y_{1}(x, 0)=0$

$$
\begin{equation*}
u_{1}(x, 0)=\left(b_{1} \sin \lambda x\right)\left(4 \lambda b_{2}\right)=0 \tag{s}
\end{equation*}
$$

In order to obtain a solution ( 2 ) which is not zero we see from (s) that we must have $\delta_{2}=0$. Thus ( ${ }^{2}$ ) becomes

$$
y(x, t)=B \sin \lambda x \cos d \lambda t
$$

on putting $b_{2}=0$ and writing $B=b_{1} a_{2}$.
From $y(\mathbb{Q}, t)=0$ we now find
$B \sin 2 \lambda \cos 4 \lambda t=0$
and we see that we must have $\sin 2 \lambda=0$, i.e. $2 \lambda=m$ or $\lambda=m i_{\pi} / 2$ where $m=0,=1, \pm 2, \ldots$

Thus

$$
\begin{equation*}
\mathrm{y}(x, t)=B \sin \frac{\pi t \pi x}{2} \cos 2 m \pi t \tag{4}
\end{equation*}
$$

is a solution. Since this solution is bounded, the condition $|\boldsymbol{y}(x, t)|<M$ is automatically astisfied.
In order to satisfy the last condition, $\mathfrak{y}(x, 0)=5 \sin \pi x-3 \sin 4+x$, we firtt use the prineiple of euperposition to obtain the solution

$$
\begin{equation*}
y(x, t)=B_{1} \sin \frac{m_{1} \pi x}{2} \cos 2 m_{1} \pi t+B_{2} \sin \frac{m_{2 \pi} \pi}{2} \cos 2 m_{2} x t \tag{6}
\end{equation*}
$$

Then putting $t=0$ we arrive at

$$
\begin{aligned}
y(x, 0) & =B_{1} \sin \frac{m_{1} \pi x}{2}+B_{2} \sin \frac{m_{2 \pi} x}{2} \\
& =6 \sin \pi x-3 \sin 4 \pi x
\end{aligned}
$$

This is possible if and only if $B_{1}=6, m_{1}=2, B_{2}=-3, m_{2}=8$. Thus the reguired solution (5) is

$$
\begin{equation*}
y(x, t)=6 \sin \pi x \cos 4 \pi t-3 \sin 4 v x \cos 16 \pi t \tag{f}
\end{equation*}
$$

This beundary value probiem can be interprated physically in terms of the vibrations of atring. The string has its ends fixed et $x=0$ and $x=2$ and in given an initisl ahape $f(x)=6 \sin \pi x-$ $3 \sin d_{y x}$. It is then released so that its initial velocity is zero. Then ( 6 ) give日 the displacement of any point 2 of the string at any later time $t$.
1.25. Solve $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, t>0$, given that $u(0, t)=u(3, t)=0, u(x, 0)=f(x)$, $|u(x, t)|<M$.

This problem differs from Problem 1.23 only in the condition $u(x, 0)=f(x)$. In seeking to satisfy this last condition we sce that taking a finite number of terms, as in (i) of Problem 1.23, will be ingufficient for arbitrary $f(x)$. Thus we are led to assume that inflaitely many terme are taken, i.e.

$$
u(x, t)=\sum_{m=1}^{\infty} B_{m} e^{-2 m^{2} \pi^{1} d /} \sin \frac{m_{\pi} x}{3}
$$

The condtion $u(x, 0)=f(x)$ then leads to

$$
f(x)=\sum_{m=1}^{\infty} B_{m} \sin \frac{H \pi x}{3}
$$

or the problem of expansion of a function into a sine series. Such trigonometric expanaions, or Fourier aeries, will be considered in detaid in the next chapter.

## Supplementary Problems

## MATHEMATICAL FORMLILATION OF PHYSICAL PROBLEMS

126. If a taut, horizontal atring with fixed ends vibrates in a vertical plane under the infuence of gravfty, show that its equation is

$$
\frac{\partial^{2} y}{\partial t^{2}}=t^{2} \frac{\partial^{2} y}{\partial x^{2}}-y
$$

where $g$ is the acceleration due to gravity.
127. A thin bar located on the $x$-axis has jts ends at $x=0$ and $z=\delta$. The initial tempersture of the bar is $f(x), 0<x<L$, end the ends $x=0, x=L$ are maintained at constant temperatures $T_{3}, T_{z}$ respectively. Assuming the surrounding medium is at temperature $u_{0}$ and that Newton's law of cooling applies, show that the partial differential equation for the temperature of the bar at any point at any time is given by

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}-\beta\left(\mu-u_{0}\right)
$$

and write the correspanding boandary conditions.
8. Write the boundary conditions in Problem 1.27 if (a) the ends $x=0$ und $x=L$ are insulated, (b) the ends $x=0$ and $x=i$ radiate jnto the surrounding medium aceordiag to Newton's law of cooling.
39. The gravitationsi potential $u$ at any point $\langle x, y, z\rangle$ outside of a mass m located aithe point ( $X, Y, Z$ ) is defined as the mass $m$ divided by the distance of the point $(x, y, z)$ from $(X, Y, Z)$. Show that v sitisfies Laplace's equation $\nabla^{2} v=0$.
1.30. Extend the regult of Problem 1.29 to a solid body.
1.31. A string has its ands fixed al $x=0$ and $x=L$. It is displaced a diatance $h$ at its midpoint and then releasad. Formulate a boundary value problem for the displacement $y(x, t)$ of any point $x$ of the atring at time $t$.

## CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1.32. Determine whether egch of the following partial differential equationg is linesr or nonlinear, state the order of each equation, and name the depandent and independent variables.
(a) $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(o) $\frac{\partial \phi}{\partial x}=\frac{\partial^{3} \varphi}{\partial y^{3}}$
(e) $\frac{\partial z}{\partial r}+\frac{\partial z}{\partial s}=\frac{1}{z^{2}}$
(b) $\quad\left(x^{2}+y^{2}\right) \frac{\partial^{4} T}{d x^{4}}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}$
(d) $\frac{\partial^{2} y}{\partial t^{2}}-4 \frac{\partial^{2} y}{\partial x^{2}}=x^{2}$
133. Classify each of the following equations as eiliptic, hyperbolis or parabolic.
(a) $\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial y^{2}}=0$
(e) $\quad\left(x^{2}-1\right) \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+\left(y^{2}-1\right) \frac{\partial^{2} u}{\partial y^{2}}$
(b) $\frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x} \frac{u}{\partial y}=4$ $=x \frac{\partial u}{\partial x}+y \frac{\partial x}{\partial y}$
(c) $\frac{\partial^{2} x}{\partial x^{2}}-2 \frac{\hat{A}^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=x+3 v$
(f) $\left(M^{2}-1\right) \frac{\partial \partial^{2}}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0, \quad M>0$
(d) $\quad x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x} \partial y y y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$

## SOLUTIONS OF PARTIAL. DIFFERENTIAL EQUATIONS

1.34. Show that $z(x, y)=4 e^{-3 x} \cos 3 y$ is a solution to the boundary value problem

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\hat{\partial}^{2} z}{\partial y^{2}}=0, \quad x(x, \sigma / 2)=0, \quad z(x, 0)=4 B^{-3 x}
$$

1.35. (o) Show that $v(x, y)=x F(2 x+y)$ is a general solution of $x \frac{\partial v}{\partial x}-2 x \frac{\partial v}{\partial y}=v$.
(b) Find a particular solution satisfying $\quad v(1, y)=\mathbf{y}^{2}$.
i. Find a partiai differential equation having genernl solution $u=P(x-3 y)+G(2 x+y)$.

Find a partial differential equation having general solution

$$
\text { (e) } \quad z=a^{x} f(2 y-3 x), \quad \text { (b) } \quad z=f(2 x+y)+g(x-2 y)
$$

## NERAI, SOLTTTONS OF PARTIAL DIFEERENTAAL EQUATIONS

s. (a) Solve $\quad x \frac{\partial^{2} z}{\partial x} \frac{\partial y}{\partial y}+\frac{\partial z}{\partial y}=0$.
(b) Find the particular solution for which $\quad 2(x, 0)=x^{3}+\pi-\frac{68}{z}, \quad x(2, v)=3 y^{4}$.
139. Find general solutions of each of the following.
(a) $\frac{\partial^{2} \psi_{k}}{\partial x^{2}}={\frac{\partial^{2} u}{\partial y^{2}}}{ }^{\prime}$
(b) $\frac{\partial \dot{u}}{\partial z}+2 \frac{\partial u}{\partial y}=3 u$
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(c) $\frac{\partial^{2} x}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x} \partial y-3 \frac{\partial^{2} z}{\partial y^{2}}=0$
(8) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial z}+\frac{\partial^{2} z}{\partial y^{2}}=0$
1.40. Find general golutions of each of the following.
(c) $\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=x$
(c) $\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{3} \partial y}=4$
(b) $\frac{\partial^{2} y}{\partial x^{2}}=\frac{\dot{j}^{2} y}{\partial t^{2}}+12 t^{2}$
(d) $\frac{\partial^{2} z}{\partial x^{3}}-s \frac{\partial^{2} z}{\partial x} \frac{2 y}{\partial y} \frac{\partial^{2} z}{\partial y^{2}}=x \sin v$
141. Solve $\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=16$.

1A2. Show that a genesral solution of $\frac{\partial^{2} v}{\partial r^{2}}+\frac{2}{r} \frac{\partial v}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} v}{\partial t^{2}} \quad$ is $\quad v=\frac{F(r-a t)+G(r+c t)}{r}$.

## SEPARATION OF VARIABLES

1.43. Solve each of the following boundary value problemg by the method of aeparation of variablea.
(a) $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, \quad u(x, 0)=4 e^{-x}$
(b) $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}+u, \quad u(x, 0)=3 e^{-5 x}+2 e^{-a x}$
(0) $\frac{\partial u}{\partial t}=4 \frac{\partial \delta u}{\partial x^{2}}, \quad u(0, t)=0, \quad u(t, t)=0, \quad u(x, 0)=2 \sin 3 x-4 \sin b x$
(d) $\frac{\partial u}{\partial t}=\frac{\partial z_{x}}{\partial x^{2}}, \quad u_{x}(0, t)=0, \quad u(2, t)=0, \quad u(x, 0)=8 \cos \frac{3 \pi x}{1}-6 \cos \frac{9 \pi x}{4}$
(e) $\frac{\partial u}{\partial \iota}=8 \frac{\partial u}{\partial x}, \quad u(x, 0)=8 e^{-2 x}$
(f) $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}-2 u, \quad u(x, 0)=10 e^{-x}-6 e^{-4 x}$
(g) $\quad \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=0, \quad u(4, t)=0, \quad u(x, 0)=6 \sin \frac{\pi x}{2}+3 \sin +x$
t.44. Soive and give a physical interpretation to the boundary vaine problem

$$
\frac{z^{2} y}{\partial t^{2}}=4 \frac{\partial^{2} y}{\partial x^{2}}, \quad y(0, t)=y(5, t)=0, \quad v(x, 0)=0, \quad y_{t}(x, 0)=f(x) \quad(0<x<E, t>0)
$$

if
if (a) $f(x)=6 \sin \pi x$,
(b) $f(x)=3 \sin 2 \pi x-2 \sin 5 \pi x$.
145. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-2 u \quad$ if $u(0, t)=0, \quad u(3, t)=0, \quad u(x, 0)=2 \sin t x-\sin 4 x x$.
1.46. Suppose that in Problem 1.24 we have $\left.y(x, 0)=(4)^{\prime}\right)$, where $0<z<2$. Show how the problem can be solved if we know how to expand $f(x)$ in a serics of sines.
1.47. Suppose that in Problem 1.25 the boundary conditions are $u_{x}(0, t)=0 . u(3, t)=0, u(\infty, 0)=f(m)$. Show how the problem can be solved if we know how to expand $f(x)$ in a serien of conines Give a physical interpratation of this problem.

## Chapter 2

## Fourier Series and Applications

## THE NEED FOR FOURIER SERIES

In Problem 1.25, page 17, we saw that to obtain a solution to a particular boundary value problem we should need to know how to expand a function into a trigonometric series. In this chapter we shall investigate the theory of such series and shall use the theory to solve many boundary value problems.

Since each term of the trigonometric series considered in Problem 1.25 is periodic, it is clear that if we are to expand functions in such series, the functions should also be periodic. We therefore turn now to the consideration of periodic functions.

## PERIODIC FUNCTIONS

A function $f(x)$ is said to have a period $P$ or to be periodic with period $P$ if for all $x_{\text {, }}$ $f(x+P)=f(x)$, where $P$ is a positive constant. The least value of $P>0$ is called the least period or simply the period of $f(x)$.

## Example 1.

 sin $x$. However, 2 is the least period or the period of $\sin z$.

## Example 2.

The period of $\sin 3 \boldsymbol{x}$ or $\cos n x$, where $t$ is a positive integer, is $2 \pi / n$,

## Sxample 3.

The period of tan $x$ is $\pi$.
Example 4.
A. conatant has any positive number as a period.

Other eramples of periodic functions are shown in the graphs of Fig. 2-1.


Fig. 2-1

## PIECEWISE CONTINUOUS FUNCTIONS

A function $f(x)$ is said to be piecewise continuous in an interval if (i) the interval can be divided into a finite number of subintervals in each of which $f(x)$ is continuous and (ii) the limits of $f(x)$ as $x$ approaches the endpoints of each subinterval are finite. Another way of stating this is to say that a piecewise continuous function is one that has at most a finite number of finite discontinuities. An example of a piecewise continuous function is shown in Fig. 2-2. The functions of Fig. 2-1(a) and (c) are piecewise continuous. The function of Fig. 2-1(b) is continuous.


Fig. 2.2

The limit of $f(x)$ from the right or the right-hand limit of $f(x)$ is often denoted by $\lim f(x+c)=f(x+0)$, where $\gg 0$. Similarly, the limit of $f(x)$ from the left or the lefthand limit of $f(x)$ is denoted by $\lim _{\epsilon \rightarrow 0} f(x-\epsilon)=f(x-0)$, where $\epsilon>0$. The values $f(x+0)$ and $f(x-0)$ at the point $x$ in Fig. 2-2 are as indicated. The fact that $\epsilon \rightarrow 0$ and,$>0$ is sometimes indicated briefly by $\in \rightarrow 0+$. Thus, for example, $\lim _{e \rightarrow 0+} f(x+1)=f(x+0)$, $\lim _{x \rightarrow 0+} f(x-\theta)=f(x-0)$,

## DEFINITION OF FOURIER SERIES

Let $f(x)$ be defined in the interval ( $-L, L$ ) and determined outaide of this interval by $f(x+2 L)=f(x)$, i.e. assume that $f(x)$ has the period $2 L$. The Fourier series or Fourier expansion corresponding to $f(x)$ is defined to be

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n_{\pi} x}{L}+b_{n} \sin \frac{n_{\pi} x}{L}\right) \tag{1}
\end{equation*}
$$

where the Fourier coefficients $a_{n}$ and $b_{n}$ are

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x  \tag{2}\\
b_{\pi}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array} \quad n=0,1,2, \ldots\right.
$$

Motivation for this definition is supplied in Problem 2.4.
If $f(x)$ has the period $2 L$, the coefficients $a_{n}$ and $b_{n}$ can be determined equivalently from

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{L} \int_{e}^{c+2 L} f(x) \cos \frac{n \pi x}{L} d x  \tag{3}\\
b_{n}=\frac{1}{L} \int_{e}^{c+2 L} f(x) \sin \frac{n \pi x}{L} d x
\end{array} \quad n=0,1,2, \ldots\right.
$$

where $c$ is any real number. In the special case $c=-L$, ( $\mathcal{1}$ ) becomes (2). Note that the constant term in (I) is equal to $\frac{a_{0}}{2}=\frac{1}{2 L} \int_{-1}^{2} f(x) d x$, which is the mean of $f(x)$ over a period.

If $L=\pi$, the series (1) and the coefficients (2) or (3) are particularly simple. The function in this case has the period $2 \pi$.

It should be emphasized that the series (1) is only the series which corresponds to $f(x)$. We do not know whether this series converges or even, if it does converge, whether it con-
verges to $f(x)$. This problem of convergence was examined by Dirichlet, who developed conditions for convergence of Fourier series which we now consider.

## DIRICRLET CONDITIONS

Theorem 2-1: Suppose that
(i) $f(x)$ is defined and single-valued except possibly at a finite number of points in $(-L, L)$
(ii) $f(x)$ is periodic with period $2 L$
(iii) $f(x)$ and $f^{\prime}(x)$ are piecewise continuous in $(-L, L)$

Then the series (1) with coefficients (2) or (s) converges to
(a) $f(x)$ if $x$ is a point of continuity
(b) $\frac{f(x+0)+f(x-0)}{2}$ if $x$ is a point of discontinuity

For a proof see Problems 2.18-2.23.
According to this result we can write

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n_{\pi} x}{L}+b_{n} \sin \frac{n_{\pi} x}{L}\right) \tag{6}
\end{equation*}
$$

at any point of continuity $x$. However, if $x$ is a point of discontinuity, then the leff side is replaced by $\frac{1}{2}[f(x+0)+f(x-0)]$, so that the series converges to the mean value of $f(x+0)$ and $f(x-0)$.

The conditions (i), (ii) and (iii) imposed on $f(x)$ are sufficient but not necessary, i.e. if the conditions are satisfied the convergence is guaranteed. However, if they are not satisfied the series may ot may not converge. The conditions above are generally satisfed in cases which arise in science or engineering.

There-are at present no known necessary and sufficient conditions for convergence of Fourier series. It is of interest that continuity of $f(x)$ does not aione insure convergence of a Fourier series.

## ODD AND EVEN FUNCTIONS

A function $f(x)$ is called odd if $f(-x)=-f(x)$. Thus $x^{4}, x^{3}-3 x^{4}+2 x, \sin x, \tan 8 x$ are odd functions.

A function $f(x)$ is called even if $f(-x)=f(x)$. Thus $x^{4}, 2 x^{4}-4 x^{2}+5, \cos x, e^{x}+e^{-x}$ -re even functions.

The functions portrayed graphically in Fig. 2-1(a) and 2-1(b) are odd and even respec'vely, but that of Fig. 2-1 (c) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present. - the Fourier series corresponding to an even function, only cosine terms (and possibly a mstant, which we shall consider to be a cosine term) can be present.

## : ALF RANGE FOURIER SINE OR COSINE SERIES

A half-range Fourier sine or cosine series is a series in which only aine terms or only osine terms are present, respectively. When a half-range serles corresponding to a given
function is desired, the function is generally defined in the interval ( $0, L$ ) [which is half of the interval ( $-L, L$ ), thus accounting for the name half-range] and then the function is specified as odd or even, so that it is clearly defined in the other half of the interval, namely ( $-L, 0$ ). In such case, we have

## PARSEVAL'S IDENTITY states that

$$
\begin{equation*}
\frac{1}{L} \int_{-L}^{L}(f(x)\}^{2} d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{9}+b_{n}^{2}\right) \tag{6}
\end{equation*}
$$

if $a_{n}$ and $b_{n}$ are the Fourier coefficients corresponding to $f(x)$ and if $f(x)$ satisfies the Dirichlet conditions.

## UNIFORM CONVERGENCE

Suppose that we have an infinite series $\sum_{\mathrm{n}=1}^{\infty} u_{\mathrm{n}}(x)$. We define the $R$ th partial sum of the series to be the sum of the first $R$ terms of the-series, i.e.

$$
\begin{equation*}
S_{n}(x)=\sum_{n=1}^{\mathbb{R}} u_{n}(x) \tag{7}
\end{equation*}
$$

Now by definition the infinite series is said to converge to $f(x)$ in some interval if given any positive number $e$, there exists for each $x$ in the interval a positive number $N$ such that

$$
\begin{equation*}
\left|S_{R}(x)-f(x)\right|<\quad \text { whenever } R>N \tag{8}
\end{equation*}
$$

The number $N$ depends in general not only on a but also on $x$. We call $f(x)$ the sum of the series.

An important case occurs when $N$ depends on \& but not on the value of $x$ in the interval. In such case we say that the series converges uniformly or is uniformly convergent to $f(x)$.

Two very important properties of uniformly convergent series are summarized in the following two theorems.

Theorem 2.2: If each term of an infinite series is continuous in an interval ( $a, b$ ) and the series is uniformly convergent to the sum $f(x)$ in this interval, then

1. $f(x)$ is aiso continuous in the interval
2. the series can be integrated term by term, i.e.

$$
\begin{equation*}
\int_{a}^{b}\left\{\sum_{n=1}^{n} u_{n}(x)\right\} d x=\sum_{x=1}^{\infty} \int_{a}^{b} u_{n}(x) d x \tag{9}
\end{equation*}
$$

Theorem 2-3: If each term of an infinite series has a derivative and the series of derivatives is uniformly convergent, then the series can be differentiated term by term, i.e.

$$
\begin{equation*}
\frac{d}{d x} \sum_{n=1}^{\infty} u_{n}(x)=\sum_{n=1}^{\infty} \frac{d}{d x} u_{n}(x) \tag{10}
\end{equation*}
$$

There are various ways of proving the uniform convergence of a series. The most obvious way is to actually find the sum $S_{R}(x)$ in closed form and then apply the definition directly. A second and most powerful way is to use a theorem called the Weierstrass $M:$ test.

Theorem 2-4 (Weterstrass $M$ teat): If there exists a set of constants $M_{n}, n=1,2, \ldots$, such that for all $x$ in an interval $\left|u_{n}(x)\right| \leqslant M_{\mathrm{n}}$, and if furthermore $\sum_{i=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} u_{m}(x)$ converges uniformly in the interval. Incidently, the series is also absolutely convergent, i.e. $\sum_{n=1}^{\infty}\left|u_{n}(x)\right|$ converges, under these conditions.

## Example 5.

The series $\sum_{n=1}^{\infty} \frac{\operatorname{ein} n x}{n^{2}}$ converges uniformly in the interval $(-\pi, \pi)$ [or, in fact, in any interval], since a net of congtant $M_{n}=1 / n^{2}$ can be found auch that

$$
\left|\frac{\sin n x}{n^{2}}\right| \equiv \frac{1}{n^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges }
$$

## INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES

Integration and differentiation of Fourier series can be justified by using Theorems 2-2 and 2-3, which hold for series in general. It must be emphasized, however, that those theorems provide sufficient conditions and are not necessary. The following theorem for integration is especially useful.

Theorem 266: The Fourier seriea corresponding to $f(x)$ may be integrated term by term from $a$ to $x$, and the resulting series will converge uniformly to $\int_{a}^{x} f(u) d u$, provided that $f(x)$ is piecewise continuous in $-L \leqq x \leqq L$ and both $a$ and $x$. are in this interval.

## COMPLEX NOTATION FOR FOURIER SERIES

Using Euler's identities,

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta, \quad e^{-i t}=\cos \theta-i \sin \theta \tag{11}
\end{equation*}
$$

where $i$ is the imaginary unit such that $i^{2}=-1$, the Fourier series for $f(x)$ can be written in complex form as
where

$$
\begin{gather*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / L}  \tag{12}\\
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L} d x
\end{gather*}
$$

.

In writing the equality (12), we are supposing that the Dirichlet conditions are satisfied and further that $f(x)$ is continuous at $x$. If $f(x)$ is discontinuous at $x$, the left side of (12) should be replaced by $\frac{f(x+0)+f(x-0)}{2}$.

## DOUBLE FOURIER SERIES

The ides of a Fourier series expansion for a function of a single variable $x$ can be extended to the case of functions of two variables $x$ and $y$, i.e. $f(x, y)$. For example, we can expand $f(x, y)$ into a double Fourier sine series
where

$$
\begin{equation*}
f(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \sin \frac{m \pi x}{L_{2}} \sin \frac{n \pi y}{L_{2}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
B_{m i}=\frac{4}{\mathcal{L}_{1} L_{2}} \int_{0}^{L_{1}} \int_{0}^{L_{1}} f(x, y) \sin \frac{m_{\pi} x}{L_{1}} \sin \frac{n_{\pi} y}{L_{2}} d x d y \tag{15}
\end{equation*}
$$

Similar results can be obtained for cosine series or for series having both sines and cosines. These ideas can be generalized to triple Fourier series, etc.

## APPLICATIONS OF FOURIER SERIES

There are numerous applications of Fourier series to solutions of boundary value problems. For example:

1. Heat flow. See Problems 2.25-2.29.

2 Laplace's equation. See Problems 2.30, 2.31.
3. Vibrating systems. See Problems 2.32, 2.33.

## Solved Problems

## FOURIER SERIES

2.1. Graph each of the following functions.
(a) $f(x)=\left\{\begin{array}{rr}3 & 0<2<5 \\ -3 & -5<x<0\end{array}\right.$ Period $=10$


Fig. 2-9
Since the period is 10, that portion of the graph in $-5<x<5$ (indicated heavy in Fig. 2-3 above) is extended periodically outside this range (indicated dsabed). Note that $f(x)$ is not deflned at $x=0,5,-5,10,-10,15,-15$, etc. These values are the diecontinuities of $f(x)$.
(b) $f(x)=\left\{\begin{array}{cl}\sin x & 0 \leq x \leq \pi \\ 0 & \pi<x<2 \pi\end{array} \quad\right.$ Period $=2 \pi$


Fig. 2-4
Refer to Fig.' 2-4 above. Note that $f(x)$ is defined ior all' $x$ and is continuous everywhers.
(c) $f(x)=\left\{\begin{array}{ll}0 & 0 \leqq x<2 \\ 1 & 2 \leqq x<4 \\ 0 & 4 \leqq x<6\end{array} \quad\right.$ Period $=6$


Fig. 2-5
Refer to Fig. 2-5 above. Note that $f(x)$ is defined for all $x$ and is discontinuous at $z= \pm 2, \pm 4, \pm 8, \pm 10, \pm 14, \ldots$.
2.2. Prove $\int_{-L}^{L} \sin \frac{k_{\pi} x}{L} d x=\int_{-L}^{L} \cos \frac{k_{\pi} x}{L} d x=0 \quad$ if $\quad k=1,2,3, \ldots$.

$$
\begin{aligned}
& \int_{-L}^{L} \sin \frac{k_{\pi x}}{L} d x=-\left.\frac{L}{k x} \cos \frac{k \pi x}{L}\right|_{-!} ^{L}=-\frac{L}{k \pi} \cos k \pi+\frac{L}{k \pi} \cos (-k \pi)=0 \\
& \int_{-L}^{C} \cos \frac{k \pi x}{L} d x=\left.\frac{L}{k \pi} \sin \frac{k \pi x}{L}\right|_{-L} ^{L}=\frac{L}{k \pi} \sin k_{\pi}-\frac{L}{k \pi} \sin (-k \pi)=0
\end{aligned}
$$

2.3. Prove (a) $\int_{-L}^{L} \cos \frac{m_{\pi} x}{L} \cos \frac{n \pi x}{L} d x=\int_{-L}^{L} \sin \frac{m \pi x}{L} \sin \frac{n_{\pi} x}{L} d x= \begin{cases}0 & m \neq n \\ L & m=n\end{cases}$
(b) $\int_{-L}^{L} \sin \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x=0$
where $m$ and $n$ can assume any of the values $1,2,3, \ldots$,
(a) From Irigonometry:

$$
\cos A \cos B=\frac{1}{2}\{\cos (A-B)+\cos (A+B)\}, \quad \sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}
$$

Then, if $n \neq n$, we bave ly Problem 2.2;

$$
\int_{-L}^{L} \cos \frac{m \pi x}{L} \cos \frac{\pi r x}{L} d x=\frac{1}{2} \int_{-L}^{L} \cdot\left\{\cos \frac{(m-n)_{\pi x}}{L}+\cos \frac{(m+\pi) \pi x}{L}\right\} d x=0
$$

Similarly, if $m \neq A$,

$$
\int_{-L}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left\{\cos \frac{(m-n)_{\pi x}}{L}-\cos \frac{(m+n)^{2} \pi}{L}\right\} d x=0
$$

If $m=n$, we have

$$
\begin{aligned}
& \int_{-L}^{L} \cos \frac{n \pi \pi x}{L} \cos \frac{n \pi x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left(1+\cos \frac{n n_{F} x}{L}\right) d x=L \\
& \int_{-L}^{L} \sin \frac{m_{\pi} x}{L} \sin \frac{n \pi x x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left(1-\cos \frac{2 n_{\Gamma} x}{L}\right) d x=L
\end{aligned}
$$

Note that if $m=n=0$ these integrals are equal to $2 L$ and 0 respectively.
(b) We have $\sin A \cos B=\frac{1}{2}(\sin (A-B)+\sin (A+B)$. Then by Problem 2.2, if $m \neq n$,

$$
\int_{-L}^{L} \sin \frac{\operatorname{st\pi x}}{L} \cos \frac{n \pi x}{L} d x=\frac{1}{2} \int_{-L}^{L}\left\{\sin \frac{(m-n)_{\pi x}}{L}+\sin \frac{(m+n)^{2} x}{L}\right\} d x=0
$$

If $m=n$,

$$
\int_{-L}^{L} \sin \frac{\min \pi}{L} \cos \frac{n \pi x}{L} d x=\frac{1}{2} \int_{-L}^{L} \sin \frac{2 \pi \pi x}{L} d x=0
$$

The resuits of parts (a) and (b) remain valid when the limits of integration $-L, L$ are replaced by $c, c+2 L$ respectively.
2.4. If the series $A+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)$ converges uniformly to $f(x)$ in $(-L, L)$, show, that for $n=1,2,3, \ldots$,
(a) $a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n_{\pi} x}{L} d x$,
(b) $\quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x$,
(c) $A=\frac{a_{0}}{2}$.
(a) Muitiplying

$$
\begin{equation*}
f(x)=A+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \tag{1}
\end{equation*}
$$

by $\cos \frac{m_{0} x}{L}$ and integrating from $-L$ to $L$, using Problem 2.3, we have

$$
\begin{align*}
\int_{-L}^{L} f(x) \cos \frac{n \pi m}{L} d x= & A \int_{-L}^{L} \cos \frac{m \pi z}{L} d x \\
& +\sum_{n=1}^{\infty}\left\{\alpha_{n} \int_{-L}^{L} \cos \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x+b_{n} \int_{-L}^{L} \cos \frac{n \pi x}{L} \sin \frac{n \pi x}{L} d x\right\} \\
= & a_{m} L \text { if } m \neq 0 \tag{z}
\end{align*}
$$

Thus

$$
a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x \quad \text { if } m=1,2,3, \ldots
$$

(b) Multiplying (1) by $\sin \frac{m a x}{L}$ and integrating from $-L$ to $L$, using Problem 2.3, we have

$$
\begin{aligned}
\int_{-L}^{L} f(x) \sin \frac{n_{\pi} \pi x}{L} d x= & A \int_{-L}^{L} \sin \frac{m \pi x}{L} d x \\
& \left.+\sum_{n=1}^{\infty}\left\{a_{n} \int_{-L}^{L} \sin \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x+b_{n}\right\}_{-L}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x\right\} \\
= & b_{m}^{L}
\end{aligned}
$$

Thus

$$
b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x \quad \text { if } m=1,2,3, \ldots
$$

(c) Integration of (t) from $-L$, to $L$, using Problem 2.2, glves

$$
\int_{-L}^{1 .} f(x) d x=2 A L \quad \text { or } \quad A=\frac{1}{2 L} \int_{-L}^{2} f(x) d x
$$

Putting $m=0$ in the result of part (a), we find $a_{0}=\frac{1}{L} \int_{-L}^{L} f(z) d x$ and so $A=\frac{a_{0}}{2}$.
The above results aiso hold when the integration limits $-L . L$ are replaced by $e, c+2 L$.
Note that in all parts above, interchange of summation and intcgration is valid because the serles is csarmed to converge unifornily to $f(x)$ in $(-L, L)$. Even when this assumption ta not warranted, the coefficients $a_{m}$ and $b_{m}$ as obtained above are called Fourier coteficients corresponding to $f(x)$, and the corresponding sertes with these values of $a_{m}$ and $b_{m}$ is called the Fourier saries corresponding to $/(x)$. An importent problem in this case is to investigate conditions under which this series actuully converges to $f(x)$. Sufficient conditions for this convergence are the Dirichlet conditions establighed below in Problems 2.18-2.23.
2.5. (a) Find the Fourier coefficients corresponding to the function

$$
f(x)=\left\{\begin{array}{cc}
0 & -5<x<0 \\
3 & 0<x<5
\end{array} \text { Period }=10\right.
$$

(b) Write the correaponding Fourier series.
(c) How should $f(x)$ be defined at $x=-5, x=0$ and $x=5$ in order that the Fourier earles will converge to $f(x)$ for -5 § $x \leq 5$ ?
The graph of $f(x)$ in ghown in Fig. $x-6$ below.


Fis. $2-6$
(a) Paricd $=2 L=10$ and $L=6$. Choose the interval $e$ to $e+2 L$ as -5 to 5 , so that $c=-5$. Then

$$
\begin{aligned}
a_{n} & =\frac{1}{L} \int_{c}^{c+i L} f(\infty) \cos \frac{n \pi x}{L} d x=\frac{1}{6} \int_{-5}^{5} f(x) \cos \frac{\pi \pi x}{5} d x \\
& =\frac{1}{E}\left\{\int_{-5}^{0}(0) \cos \frac{\pi \pi x}{5} d x+\int_{0}^{5}(8) \cos \frac{n \pi x}{5} d x\right\}=\frac{3}{5} \int_{0}^{5} \cos \frac{n \pi x}{5} d x \\
& =\left.\frac{s}{5}\left(\frac{5}{\pi \pi} \sin \frac{n \pi s}{5}\right)\right|_{0} ^{6}=0 \quad 4 f x+0
\end{aligned}
$$

$$
\text { If } \begin{aligned}
n=0, a_{n} & =a_{0}=\frac{8}{6} \int_{0} \cos \frac{0 \pi x}{5} d z=\frac{8}{8} \int_{0}^{5} d x=3 \\
b_{n} & =\frac{1}{5} \int_{4}^{\pi+2 L} f(x) \sin \frac{\pi \pi x}{L} d x=\frac{1}{6} \int_{-5}^{5} f(x) \sin \frac{n \pi x}{5} d x \\
& =\frac{1}{5}\left\{\int_{-b}^{0}(0) \sin \frac{n \pi x}{6} d x+\int_{0}^{5}(3) \sin \frac{n \pi x}{5} d x\right\}=\frac{3}{5} \int_{0}^{5} \sin \frac{n \pi x}{5} d x \\
& =\left.\frac{8}{5}\left(-\frac{5}{n \pi} \cos \frac{n \pi x}{5}\right)\right|_{0} ^{3}=\frac{8(1-\cos n \pi)}{n \pi}
\end{aligned}
$$

(b) The corramponding Fourier series is

$$
\begin{aligned}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi r x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) & =\frac{3}{2}+\sum_{n=1}^{\infty} \frac{3(1-\cos n \pi)}{\pi \pi} \sin \frac{\pi \pi x}{6} \\
& =\frac{8}{2}+\frac{\theta}{4}\left(\sin \frac{\pi x}{5}+\frac{1}{3} \sin \frac{g_{\pi} x}{5}+\frac{1}{5} \sin \frac{\xi_{\pi} x}{5}+\cdots\right)
\end{aligned}
$$

(a) Since $f(x)$ athisfles the Dirichlet conditions, we can say that the series converges to $f(x)$ at all pointe of continuity and to $\frac{f(x+0)+f(x-0)}{2}$ at points of discontinuity, At $x=-5,0$ and $B$, which are pointa of discontinuity, the series converges to $(3+0) / 2=9 / 2$, as seen from the graph. The marien will converge to $f(x)$ for $-5 \leq x \leqq 5$ if we redefine $f(x)$ wis follows:

$$
f(c)=\left\{\begin{array}{lr}
3 / 2 & x=-5 \\
0 & -5<x<0 \\
8 / 2 & x=0 \\
8 & 0<x<5 \\
3 / 2 & x=5
\end{array} \quad \text { Period }=10\right.
$$

26. Expend $f(x)=x^{5}, 0<x<2 \pi$, In a Fourier series if the period is $2_{\pi}$. The graph of $f(4)$ with period is is obown in Fig. 2-7.


Fig. 2-7
Period $=2 L=2 \pi$ and $L=\pi$. Choosing $0=0$, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{L} \int_{c}^{c+2 L} f(x) \cos \frac{n \pi z}{L} d x=\frac{1}{5} \int_{0}^{2 \pi} x^{2} \cos n x d x \\
& =\left.\frac{1}{\pi}\left\{\left(x^{2}\right)\left(\frac{\sin n x}{n}\right)-(2 x)\left(\frac{-\cos \pi x}{n^{2}}\right)+2\left(\frac{-\sin n x}{n^{3}}\right)\right\}\right|_{0} ^{2 *}=\frac{4}{n^{2}}, n+0
\end{aligned}
$$

$$
\text { If } n=0_{1} \quad a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} d x=\frac{B \pi^{2}}{3} .
$$

$$
b_{n}=\frac{1}{L} \int_{c}^{c+2 L} f(x) \sin \frac{n \pi x}{L} d x=\frac{1}{x} \int_{0}^{2 \pi} x^{2} \sin n x d x
$$

$$
=\frac{1}{\pi}\left\{\left(x^{2}\right)\left(-\frac{\cos n x}{n}\right)-(2 x)\left(-\frac{\sin n x}{x^{2}}\right)+(2)\left(\frac{\cos n x}{n^{2}}\right)\right\}_{0}^{2 \pi}=\frac{-4 \pi}{n}
$$

Then $f(x)=x^{2}=\frac{4 \pi^{2}}{3}+\sum_{n=1}^{\pi}\left(\frac{4}{n^{2}} \cos \pi x-\frac{4 v}{\pi} \sin \pi x\right)$ for $0<x<2 \pi$.
27. Using the results of Problem 2.6, prove that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.

At $x=0$ the Fourier series of Froblem 2.6 reduces to $\frac{4 \pi^{2}}{3}+\sum_{n=1}^{4} \frac{4}{\pi^{2}}$,
But by the Dirichiet conditions, the acries convergea at $x=0$ to $\frac{1}{2}\left(0+4 \pi^{2}\right)=2 \pi^{2}$.
Hence the desired reault,

## ODD AND EVEN FUNCTIONS. HALF-RANGE FOURIER SERIES

28. Classify each of the following functions according as they are even, odd, or neither even nor odd.
(a) $f(x)=\left\{\begin{array}{rr}2 & 0<x<3 \\ -2 & -B<x<0\end{array} \quad\right.$ Period $=6$

From Fig. $2-8$ below it is seen that $f(-x)=-f(x)$, so that the function is odd.


Fig. 2-8
(b) $f(x)=\left\{\begin{array}{cl}\cos x & 0<x<\pi \\ 0 & \pi<x<2 \pi\end{array} \quad\right.$ Period $=2 \pi$

From Fig. 2-4 below it is seen that the function is neither even nor odd.


Fig. 2-9
(c) $f(x)=x(10-x), \quad 0<x<10, \quad$ Period $=10$.

From Fig. 2-10 below the function is seen to be even.


Fis. 2-10
2.9. Show that an even function can have no sine terms in its Fourier expansion.

Method 1.
No aine terms appear if $b_{n}=0, n=1,2,3, \ldots$. To show this, jat us write

$$
\begin{equation*}
b_{x}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n x x}{L} d x=\frac{1}{L} \int_{-L}^{0} f(x) \sin \frac{n \pi x}{L} d x+\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \tag{d}
\end{equation*}
$$

If we make the transformation $x=-u$ in the first integral on the right of (1), we obtain

$$
\begin{align*}
\frac{1}{L} \int_{-L}^{0} f(x) \sin \frac{n \pi x}{L} d x & =\frac{1}{L} \int_{0}^{L} f(-u) \sin \left(-\frac{\pi \pi u}{L}\right) d u=-\frac{1}{L} \int_{0}^{L} f(-u) \sin \frac{n \pi u}{L} d u \\
& =-\frac{1}{L} \int_{0}^{L} f(u) \sin \frac{n \pi u}{L} d u=-\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \tag{e}
\end{align*}
$$

where we have used the fact that for an even function $f(\sim u)=f(u)$ and in the last step that the dummy variable of integration ta can be replaced by any other symbol, in particular $x$. Thus from (1), vaing (8), we have

$$
b_{n}=-\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x+\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x=0
$$

## Method 2.

Assuming convergence

Then

$$
\begin{aligned}
& e f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \\
& f(-x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\alpha_{n} \cos \frac{n \pi x}{L}-b_{n} \sin \frac{n \pi x}{L}\right)
\end{aligned}
$$

If $f(x)$ is even, $f(-x)=f(x)$. Hence

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n_{n x}}{L}\right)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n_{n} x}{L}-b_{n} \sin \frac{n_{\pi} x}{L}\right)
$$

and so

$$
\sum_{n=1}^{\infty} b_{n} \sin \frac{n_{\dot{E} x}}{L}=0, \quad \text { i.e. } \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

and no sine terms appear. This method, is weaker than Method 1 since converpence is agsumed.
In a similar manner we can show that an odd fonction has no cosine terms (or comatant term) in ite Fourier expanaion.
2.10. If $f(x)$ is even, show that (a) $a_{n}^{2}=\frac{2}{L} \int_{0}^{2} f(x) \cos \frac{\pi \pi x}{L} d x$, (b) $b_{n}=0$.
(a)

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{\pi \pi x}{L} d x=\frac{1}{L} \int_{-L}^{0} f(x) \cos \frac{n \pi x}{L} d x+\frac{1}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Letting $x={ }^{\prime}-u$,

$$
\frac{1}{L}, \int_{-\frac{1}{0}}^{0} f(x) \cos \frac{n \pi x}{L} d x=\frac{1}{L} \int_{0}^{L} f(-u) \cos \left(\frac{-\pi r a x}{L}\right) d u=\frac{1}{L} \int_{0}^{L} f(u) \cos \frac{n \pi u}{L} d u
$$

since by defintion of an even function $f(-u)=f(u)$. Then

$$
a_{n}=\frac{1}{L} \int_{0}^{L} f(x) \cos \frac{x \pi x}{L} d u+\frac{1}{L} \int_{0}^{L} f(x) \cos \frac{\pi x \pi}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{\pi x x}{L} d x
$$

(b) This follows by Method 1 of Problem 2.9.
2.11. Expand $f(x)=\sin x, 0<x<\pi$, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence we extend the deflaition of $f(x)$ so that it becomes even (dashed part of Fig. 2-11). With thin extension, $f(x)$ is defned in an interval of length $2 \pi$. Taking the period as $2 \pi$ wa heve $2 L=2_{r}$, so that $L=\pi$.


Fig. 2-11

By Problem 2.10, $\delta_{n}=0$ and

$$
\left.\begin{array}{rl}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos n x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}(\sin (x+n x)+\sin (x-\pi x)\} d x=\left.\frac{1}{\pi}\left\{-\frac{\cos (n+1) x}{n+1}+\frac{\cos (n-1) x}{n-1}\right\}\right|_{0} ^{\pi} \\
& =\frac{1}{\pi}\left\{\frac{1-\cos (n+1) \pi}{n+1}+\frac{\cos (n-1) \pi-1}{n-1}\right\}=\frac{1}{\pi}\left\{-\frac{1+\cos n \pi}{n+1}-\frac{1+\cos \pi x}{n-1}\right\} \\
& =\frac{-2(1+\cos \pi \pi)}{\pi\left(n^{2}-1\right)} \text { it } n \pi^{2} 1
\end{array}\right\}
$$

Thwn

$$
\begin{aligned}
f(s) & =\frac{2}{\pi}-\frac{2}{x} \sum_{n=2}^{\infty} \frac{(1+\cos \pi \pi t}{n^{2}-1} \cos n x \\
& =\frac{2}{\pi}-\frac{4}{x}\left(\frac{\cos 2 x}{2^{2}-1}+\frac{\cos 4 x}{4^{2}-1}+\frac{\cos 6 x}{6^{2}-1}+\cdots\right)
\end{aligned}
$$

2.12. Expand $f(x)=x, 0<\pi<2$, in a half-range (a) aine series, (b) cosine series.
(a) Extend the defnition of the given function to that of the odd function of period shown in Fig. 8-12 below. Thi is sometimes called the odd exteraion of $f(z)$. Then $2 L=4, L=2$.


Fig. 2-12
Thuy $a_{n}=0$ and

$$
\begin{aligned}
b_{\mu} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x=\frac{2}{2} \int_{0}^{2} x \sin \frac{\pi \pi x}{2} d x \\
& =\left.\left\{(x)\left(\frac{-2}{x \pi} \cos \frac{\pi r x}{2}\right)-(1)\left(\frac{-4}{n^{2} \pi^{2}} \sin \frac{\pi \pi x}{2}\right)\right\}\right|_{0} ^{2}=\frac{-4}{n \pi} \cos n \pi
\end{aligned}
$$

Thap

$$
\begin{aligned}
f(x) & =\sum_{\pi=1}^{\pi} \frac{-4}{n \pi} \cos n_{\pi} \sin \frac{n \pi x}{2} \\
& =\frac{4}{\pi}\left(\sin \frac{\pi x}{2}-\frac{1}{2} \sin \frac{2 \pi x}{2}+\frac{1}{3} \sin \frac{3 \pi x}{2}-\cdots\right)
\end{aligned}
$$

(b) Extend the definition of $f(x)$ to that of the even function of periad 4 shown in Fig, 2-13 below. Thle is the even entersion of $f(x)$, Then $2 L=4, L=2$.


Fig. 2-13
Thus $b_{n}=0$,

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x=\frac{2}{2} \int_{0}^{2} x \cos \frac{n \pi x}{2} d x \\
& =\left.\left\{(x)\left(\frac{2}{n \pi} \sin \frac{n \pi x}{2}\right)-(1)\left(\frac{-4}{n^{2} \Gamma^{2}} \cos \frac{n_{\pi} x}{2}\right)\right\}\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \psi^{2}}(\cos \pi-1) \quad \text { if } n=0
\end{aligned}
$$

$$
\text { If } n=0, \quad a_{0}=\int_{0}^{2} x d x=2
$$

Then

$$
\begin{aligned}
& f(x)=1+\sum_{\# 1} \frac{1}{n^{2} \gamma^{2}}(\cos n T-1) \cos \frac{\text { \#\#Fx }}{2} \\
& =1-\frac{g}{x^{2}}\left(\cos \frac{\pi E}{2}+\frac{i}{b^{2}} \cos \frac{\frac{3 x}{2}}{2}+\frac{1}{b^{2}} \cos \frac{8+x}{2}+\cdots\right)
\end{aligned}
$$

It should be noted that although both Beries of (b) and (b) represent $f(x)$ in the intaryal $0<x<2$, the wecond series converges move raptdly.

## PARSEVAL'S IDENTITY

213. Assuming that the Fourler saries correaponding to $f(x)$ converges uniformily to $f(x)$ in ( $-L, L$ ), prove Parseval's identity

$$
\frac{1}{L} \int_{-L}^{L}\{f(x)\}^{2} d x=\frac{a_{0}^{3}}{2}+\sum_{n=1}^{m}\left(a_{n}^{3}+b_{n}^{2}\right)
$$

where the integral is assumed to exist.


$$
\begin{align*}
\int_{-L}^{L}\{f(x)\}^{2} d x & =\frac{a_{0}}{2} \int_{-L}^{L} f(x) d x+\sum_{n=1}^{x}\left\{a_{n} \int_{-L}^{L} f(x) \cos \frac{\operatorname{nox} x}{L} d x+b_{n} \int_{-L}^{L} f(z) \sin \frac{\sin x}{L} d x\right\} \\
& =\frac{a^{\frac{1}{6}}}{2} L+L \sum_{n=1}^{\infty}\left\{a_{n}^{2}+b_{z}^{2}\right) \tag{1}
\end{align*}
$$

where we have used the resulta

$$
\begin{equation*}
\int_{-L}^{L} f(x) \cos \frac{n+x}{L} d x=L a_{n}, \quad \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x=L b_{n}, \quad \int_{-L}^{L} f(x) d x=L a_{0} \tag{事}
\end{equation*}
$$

obtained 1 rom the Fourjer coeficicenta.
The requirad resuit follows on dividing both sides of (i) by $L$. Parsoval's idontity in ralid under less rastrictive conditions than imposed here. In Chspter 8 we ahsh discuss the significance of Parseval'm dientity in connection with generalizstions of Fourior eeries known as orthomomal revies.
214. (a) Write Parseval's identity corresponding to the Fourier aeries of Problem 2.12(b).
(b) Determine from (a) the bum $S$ of the series $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots+\frac{1}{n^{4}}+\cdots$.
(a) Here $L=2 ; a_{9}=2 ; a_{n}=\frac{4}{\#^{2} \pi^{2}}(\cos n \pi-1), n \neq 0 ; b_{n}=0$.

Then Parceval's identity becomes

$$
\begin{aligned}
& \frac{1}{2} \int_{-2}^{2}\{(x)\}^{2} d x=\frac{1}{2} \int_{-\frac{t}{2}}^{2} x^{2} d x=\frac{(2)^{2}}{2}+\sum_{n=1}^{i} \frac{18}{n^{4} 0^{4}}(\cos \pi x-1)^{2} \\
& \text { or } \\
& \frac{8}{8}=2+\frac{64}{\pi^{2}}\left(\frac{1}{1^{4}}+\frac{1}{8^{4}}+\frac{1}{B^{4}}+\cdots\right) \text {, i.e. } \frac{1}{1^{4}}+\frac{1}{8^{4}}+\frac{1}{6^{4}}+\cdots=\frac{\frac{\pi}{4}^{46}}{96} . \\
& s=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{8^{4}}+\cdots=\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{6^{4}}+\cdots\right)+\left(\frac{1}{2^{4}}+\frac{1}{4^{4}}+\frac{1}{6^{4}}+\cdots\right) \\
& =\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{5}}+\cdots\right)+\frac{1}{2^{2}}\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{8^{4}}+\cdots\right) \\
& =\frac{\frac{5}{3}}{96}+\frac{S}{16}, \quad \text { from which } S=\frac{t^{4}}{90}
\end{aligned}
$$

(b)
2.15. Prove that for all positive integers $M$,

$$
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{H}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{1}{L} \int_{-2}^{L}\{f(x)\}^{2} d x
$$

where $a_{n}$ and $b_{n}$ are the Fourier coefficients corresponding to $f(x)$, and $f(x)$ is assumed piecewise continuous in ( $-L, L$ ).

Let

$$
\begin{equation*}
S_{y}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{M}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \tag{1}
\end{equation*}
$$

For $M=1,2,3, \ldots$ this is the aequence of partial sumb of the Fourier seriea corresponding to $f(x)$.
We have

$$
\begin{equation*}
\int_{-1}^{L}\left\{f(x)-S_{M}(x)\right\}^{2} d x \quad \geqq \cdot 0 \tag{2}
\end{equation*}
$$

mince the integrand ia non-negative. Expanding the integrand, we obtain

$$
\begin{equation*}
2 \int_{-L}^{L} f(x) S_{M}(x) d x-\int_{-L}^{L} S_{M}^{2}(x) d x \leqslant \int_{-L}^{L}[(x))^{2} d x \tag{v}
\end{equation*}
$$

Multiplying both sidea of $(1)$ by $2 /(x)$ and integrating from $-L$ to $L$, naing equations ( $\boldsymbol{2}$ ) of Problem 2.13, gives

$$
\begin{equation*}
2 \int_{-L}^{L} f(x) S_{M}(x) d x=2 L\left\{\frac{a_{0}^{L}}{2}+\sum_{n=1}^{M}\left(a_{n}^{g}+b_{n}^{2}\right)\right\} \tag{4}
\end{equation*}
$$

Alao, squaring ( 1 ) and integrating from $-L$ to $L$, using Problem 2.3, we find

$$
\begin{equation*}
\int_{-L}^{L} S_{M}^{2}(x) d x=L\left\{\frac{a_{0}^{2}}{2}+\sum_{D=1}^{M}\left(a_{E}^{2}+b_{n}^{2}\right)\right\} \tag{6}
\end{equation*}
$$

Substitution of (4) and (5) into (s) and dividing by $L$ yields the required reauit.
Taking the limit as $M \rightarrow \infty$, we obtsin Beasel's inequality

$$
\begin{equation*}
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leqq \frac{1}{L} \int_{-L}^{L}\{f(x)\}^{2} d x \tag{6}
\end{equation*}
$$

If the equality holds, we have Parseval'a identity (Problem 2.13).
We can think of $S_{y}(x)$ as representing an approximation to $f(x)$, while the left hand side of (8), divided by $2 L$, repreventa the mean square orror of the approximation. Parseval's identity indicates that as $M \rightarrow \infty$ the mean square error approaches zero, while Beasel'm inequality findicates the possibility that this mean square error does not approach zera.

The resulta are connected with the idea of completencas. If, for example, we were to leave out one or more terms in a Fourier series (cos $4 \pi x / L$, say), we could never get the mesan square orror to spproach zero, no matter how many terma we took. We shall return to these ideas from a generalized viewpoint in Chapter 3.

## INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES

2.16. ( $\alpha$ ) Find a Fourier series for $f(x)=x^{2}, 0<x<2$, by integrating the aeries of Problem 2.12(a). (b) Use (a) to evaluate the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$.
(a) From Problem 2.12(a),

$$
\begin{equation*}
x=\frac{4}{r}\left(\sin \frac{\pi x}{2}-\frac{1}{2} \sin \frac{2 \pi x}{2}+\frac{1}{8} \sin \frac{3 \pi x}{2}-\cdots\right) \tag{I}
\end{equation*}
$$

Integrating both sides from 0 to $x$ (applying Theorem 2-5, page 24) and multiplying by 2, we find

$$
\begin{equation*}
x^{2}=C-\frac{16}{5^{2}}\left(\cos \frac{\pi x}{2}-\frac{1}{2^{2}} \cos \frac{2 \pi x}{2}+\frac{1}{8^{2}} \cos \frac{5 \pi x}{2}-\cdots\right) \tag{8}
\end{equation*}
$$

where $\quad c=\frac{16}{\sigma^{2}}\left(1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots\right)$.
(b) To determine $C$ in another way, note that (2) represents the Fourier cosine series for $x^{2}$ in $0<x<2$. Then since $L=2$ in this case,

$$
c=\frac{a_{0}}{2}=\frac{1}{L_{2}} \int_{0}^{L} f(x) d x=\frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{4}{8}
$$

Then from the value of $C$ in (a), we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{9^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{16} \cdot \frac{4}{3}=\frac{\frac{\pi}{2}^{2}}{12}
$$

2.17. Show that term by term differentiation of the series in Problem $2.12(a)$ is not valid.

Term by term differentiation yields $2\left(\cos \frac{\nabla x}{2}-\cos \frac{2 \pi x}{2}+\cos \frac{3 \pi x}{2}-\cdots\right)$. Since the $n$th term of this series does not approach 0 , the series does not converge for any value of $x$.

## CONYERGENCE OF FOURIER SERIES

2.18. Prove that

$$
\begin{aligned}
& \text { (a) } \frac{1}{2}+\cos t+\cos 2 t+\cdots+\cos M t=\frac{\sin \left(M+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} \\
& \text { (b) } \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin \left(M+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t=\frac{1}{2}, \quad \frac{1}{\pi} \int_{-\pi}^{0} \frac{\sin \left(M+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t=\frac{1}{2} .
\end{aligned}
$$

(a) We.have $\cos n t \sin \frac{1}{2} t=\frac{f}{f}\left(\sin \left(n+\frac{1}{2}\right) t-\sin \left\{n-\frac{1}{d}\right\} t\right\}$. Then summing from $n=1$ to $M$,

$$
\begin{aligned}
\sin \frac{1}{2} t\{\cos t+\cos 2 t+\cdots+\cos M t)= & \left(\sin \frac{4}{2} t-\sin \frac{1}{2} t\right)+\left(\sin \frac{5}{2} t-\sin \frac{3}{2} t\right) \\
& +\cdots+\left[\sin \left(M+\frac{1}{2}\right) t-\sin \left(M-\frac{1}{2}\right) t\right] \\
= & \frac{1}{2}\left(\sin \left(M+\frac{1}{2}\right) t-\sin \frac{1}{2} t\right\}
\end{aligned}
$$

On dividiag by $\sin \frac{1}{2} t$ and adding $\frac{f}{3}$, the required result follows.
(b) Integrate the resuit in (a) from 0 to $\pi$ and $-\pi$ to 0 respectively. This gives the required results, since the integrals of all the cosine terms are zero.
2.19. Prove that $\lim _{n \rightarrow-\infty} \int_{-\pi}^{\pi} f(x) \sin n x d x=\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \cos n x d x=0$ if $f(x)$ is piecewise continuous. $n \rightarrow \pi$
This follows at once from Problem 2.15, since if the series $\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ is convergent,,$~$ $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow *} b_{n}=0$.

The result is sometimes called Riemann's theorem.
2.20. Prove that $\lim _{x \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin (M+y) x d x=0$ if $f(x)$ is piecewise continuous. We have

$$
\int_{-\pi}^{\pi} f(x) \sin \left(M+\frac{1}{2}\right) x d x=\int_{-\pi}^{\pi}\left\{f(x) \sin \frac{1}{2} x\right\} \cos M x d x+\int_{-\pi}^{\pi}\left\{f(x) \cos \frac{d}{8} x\right\} \sin M x d x
$$

Then the required result followa at once by using the result of Problem 2.19, with $f(x)$ replaced by $f(x) \sin \frac{1}{2} x$ and $f(x) \cos \frac{1}{2} x$. respectively, which are piecewtise continuous if $f(x)$ is.

The result can aloo be proved when the integration limits are $a$ and $b$ instead of $-z$ and $z$.
2.21. Assuming that $L=\pi$, i.e. that the Fourier series corresponding to $f(x)$ has period $2 L=2 \pi$, show that

$$
S_{m}(x)=\frac{a_{6}}{2}+\sum_{t=1}^{M}\left(a_{n} \cos \operatorname{six}+b_{n} \sin \pi x\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) \frac{\sin \left(M+\frac{1}{2}\right) t}{2 \sin \frac{1}{4} t} d t
$$

Uding the formulas for the Fourler coefleciente with $L=9$, we have

$$
a_{0} \cos n x+b_{m} \sin k x=\left(\frac{1}{T} \int_{-\pi}^{T} f(u) \cos n d x\right) \cos \pi x+\left(\frac{1}{T} \int_{-v}^{\pi} f(u) \sin \tan d u\right) \sin n z
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u)(\cos n u \cos n x+\dot{\sin n u \sin n x) d u} \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cos n(u-x) d u
\end{aligned}
$$

Alse,

$$
\frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d u
$$

Then

$$
\begin{aligned}
& S_{m}(\omega)=\frac{a_{0}}{2}+\sum_{n=1}^{x}\left(a_{n} \cos \pi x+b_{n} \sin n x\right) \\
& =\frac{1}{3 \pi} \int_{-\pi}^{\pi} f(u) d u+\frac{1}{\pi} \sum_{n=1}^{x} \int_{-\pi}^{n} f(u) \cos r(u-x) d u \\
& =\frac{1}{5} \int_{-\pi}^{N} f(u)\left\{\frac{1}{2}+\sum_{n}^{N} \cos n(u-x)\right\} d u \\
& =\frac{1}{y} \int_{-\pi}^{\pi} f(x) \frac{\min \left(M+\frac{1}{y}\right)(u-s)}{2 \min \frac{1}{2}(u-w)} d u
\end{aligned}
$$

mating Problem 2.18. Leting $t-\boldsymbol{z}=t$, we have

$$
S_{M}(t)-\frac{1}{\pi} \int_{-\pi-\pi}^{\infty-\infty} \dot{F}(t+x) \frac{\sin \left(M+\frac{1}{1}\right) t}{2 \sin \frac{1}{d} t} d t
$$

Bince the integrand has period $2_{\pi}$, we can replace the interval $-r-x, \pi-x$ by any other intervil of langth 2 r, in particalar $-\mathbb{T}$. Thus we obtain the required result.

## 282. Prove that

$$
\begin{aligned}
& \quad S_{\mu}(x)-\left(\frac{f(x+0)+f(x-0)}{2}\right)=\frac{1}{\pi} \int_{-\pi}^{0} \frac{f(t+x)-f(x-0)}{2 \sin \frac{1}{2} t} \operatorname{ain}\left(M+\frac{1}{1}\right) t d t \\
& \\
& \\
& \\
& \\
& \text { From Prohlem g.al. }
\end{aligned}
$$

$$
\begin{equation*}
\delta_{M}(s)=\frac{1}{\pi} \int_{-\pi}^{0} f(t+\pi) \frac{\sin \left(M+\frac{1}{1}\right) t}{2 \sin \frac{1}{2} t} d t+\frac{1}{\pi} \int_{0}^{\pi} f(t+x) \frac{\sin \left(M+\frac{1}{3}\right) t}{2 \sin \frac{1}{1} t} d t \tag{I}
\end{equation*}
$$

Multipifing the integrais of Problem $2.18(3)$ by $f(z-0)$ and $f(x+0)$ reapectivaly,

$$
\left\langle(x+0\rangle+\gamma(x-0)=\frac{1}{2} \int_{-=}^{0} f(z-0) \frac{\sin \left(M+\frac{1}{3}\right) t}{2 \sin \frac{1}{2} t} d t+\frac{1}{r} \int_{0}^{\pi} f(x+0) \frac{\sin \left(\mu+\frac{1}{4}\right) t}{2 \sin \frac{1}{3} t} d t\right.
$$

Subtracting (s) Irom (I) yield the required result.

2n. If $f(x)$ and $f^{\prime \prime}(x)$ are piecewise continuous in $(-\pi, \pi)$, prove that

$$
\lim _{x \rightarrow \infty} S_{x}(x\rangle=\frac{f(x+0)+f(x-0)}{2}
$$

The suaction $\frac{f(t+x)-f(x+0)}{2 \operatorname{din} \boldsymbol{i}^{2}}$ is piecewite continuous in $0<t \leqslant$ because $f(x)$ is plecewise continuous.

Aleo:

$$
\lim _{i \rightarrow 0+} \frac{f(t+a)-f(w+0)}{2 \sin \frac{1}{2}^{t}}=\lim _{t \rightarrow 0+} \frac{f(x+t)-f(x+0)}{t} \cdot \frac{t^{t}}{\ln ^{2} i^{t}}=\lim _{t \rightarrow 0 \rightarrow} \frac{f(c+t)-f(x+0)}{t}
$$

exiges, since by hypothesis $f^{\prime}(x)$ is piecewise continuous, so that the zight-hand derivative of $f(s)$ at each 2 exista.

Thus $\frac{f(t+x)-f(x+0)}{2 \sin \frac{1}{y} t}$ is piecewise continuous in $0 \leq t \leq u$.
Similarly, $\frac{f(t+x)-f(x-0)}{2 \sin \frac{1}{4} t}$ it piecewise continuous in $-\pi \leq t \leq 0$.
Then from Problens 2.20 and 2.22, we heve
$\lim _{x \rightarrow \infty}\left\{S_{M}(x)-\frac{f(x+0)+f(x-0)}{2}\right\}=0$ or $\lim _{M \rightarrow \infty} S_{M}(x)=\frac{f(x+0)+f(z-0)}{2}$

## DOUBLE FOURIER SERIES

2.24. Obtain formally the Fourier coefficients (15), page 24, for the double Fourfer sine series (14).

Suppose that $\quad f(x, v)=\sum_{m=1}^{n} \sum_{n=1}^{n} B_{m x} \sin \frac{m r a x}{L_{1}} \sin \frac{n r y}{L_{3}}$
We can write thite as
where

$$
\begin{align*}
f(x, y) & =\sum_{m=1}^{\infty} C_{m} \operatorname{ain} \frac{n+y}{L_{1}} \\
C_{m} & =\sum_{n=1}^{n} B_{m n} \operatorname{ain} \frac{n+y}{L_{2}} \tag{s}
\end{align*}
$$

Nor we can consider ( f ) as a Fourier series in which $\boldsymbol{v}$ is kept conatant so that the Fourier coefficients $C_{m}$ are given by

$$
\begin{equation*}
C_{m}=\frac{2}{L_{1}} \int_{0}^{L_{1}} f(x, v) \sin \frac{m \pi x}{L_{1}} d x \tag{4}
\end{equation*}
$$

On roting that $C_{m}$ is a function of $y$, wo ste that ( $s$ ) can be concidered an a Foortor mardea for which the coefficientg $B_{m n}$ are given by

$$
\begin{equation*}
B_{m n}=\frac{2}{L_{2}} \int_{0}^{L_{1}} C_{m} \sin \frac{n+v}{L_{9}} d y \tag{8}
\end{equation*}
$$

If we now nee (4) in (6), we bee that

$$
\begin{equation*}
B_{m n}=\frac{4}{L_{1} L_{2}} \int_{0}^{L_{1}} \int_{0}^{L_{2}} f(x, y) \sin \frac{m \pi x}{L_{1}} \sin \frac{n \pi y}{L_{9}} d x d y \tag{6}
\end{equation*}
$$

## APPLICATIONS TO HEAT CONDUCTION

225. Find the temperature of the bar in Problem 1.28, page 15, if the initial temperature is $25^{\circ} \mathrm{C}$.

This problem is fentical with Probiem 1.28, except that to tetiafy the initial condition $u(x, 0)=25$ it is necessary to superimpose an infinite numiber of ooiutione, t.e.- we munt raplace equation (1) of that problem by

$$
u(x, t)=\sum_{p=1}^{\infty} B_{m} e^{-9 m^{4} N^{2} / 1 / 9} \sin \frac{\frac{m+x}{8}}{8}
$$

Which for $t=0$ gielde

$$
25=\sum_{n=1}^{\infty} E_{m} \sin \frac{\operatorname{tin} \pi}{8} \quad, 0<\omega<8
$$

This amounts to expanding 25 in a Fourricr sina series. By the methods of this chaptar wa then And

$$
B_{m}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{m x x}{L} d x=\frac{2}{3} \int_{0}^{3} 25 \sin \frac{m m x t}{8} d x=\frac{50(1-\cos m r)}{m}
$$

The result can be written

$$
\begin{aligned}
u(x, c) & =\sum_{m=1}^{\infty} \frac{50(1-\cos m(\eta)}{m z} e^{-2 m^{3} x^{1} / 1 / 0} \sin \frac{m \pi x}{3} \\
& =\frac{100}{m}\left\{e^{\left.-2 m^{1} t / 1 \sin \frac{\pi x}{8}+\frac{1}{3} e^{-2 v^{2} t} \sin v x+\cdots\right\}}\right.
\end{aligned}
$$

which cen be varifed es the required solution.
This problam illuatraten the importance of Fourier series in solving boundary value problems.
2.26. Solve the boundary value problem

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=10, \quad u(3, t)=40, \quad u(x, 0)=25, \quad|u(x, t)|<M
$$

This is the same as Problem 1.25, page 16 , except that the ends of the bar are at temperatures $10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ instead of $0^{\circ} \mathrm{C}$. As far as the tolution goea, this makes quite a difference since we can no longer conclude that $A=0$ and $\lambda=m \pi / 3$ as in that problepa.

To aolve the present problem essume that $u(x, t)=v(x, t) \psi \psi(x)$ where $f(x)$ is to be auitably determined. In terms of $v(x, t)$ the boundary value problem becones

$$
\frac{\partial v}{\partial t}=2 \frac{\partial^{2} v}{\partial x^{2}}+2 \psi^{\prime \prime}(x), v(0, t)+\psi(0)=10, v(3, t)+v(3)=40, v(x, 0)+\psi(x)=26,|v(x, t)|<M
$$

This can be mixspHfled by choosing

$$
\psi^{\prime \prime}(x)=0, \quad \psi(0)=10, \quad \psi(3)=40
$$

from which we find $\psi(x)=10 x+10$, so that the resulting boundary value proolem is

$$
\frac{\partial v}{\partial t}=2 \frac{\partial^{2} v}{\partial x^{2}}, \quad v(0, t)=0, \quad v(9, t)=0, \quad v(x, 0)=15-10 x
$$

A: in Problem 1.88 we find from the firat three of these,

$$
v(x, t)=\sum_{m=1}^{\infty} B_{m} e^{-2 m^{2} z^{t} t / 9} \sin \frac{m_{r} x}{3}
$$

The latat condition fielde

$$
15-10 x=\sum_{m=1}^{\infty} B_{m} \sin \frac{m=x}{3}
$$

from which

$$
B_{\text {m }}=\frac{2}{3} \int_{0}^{8}(15-10 x) \sin \frac{\pi \pi x}{g} d x=\frac{30}{m \pi}(\cos m x-1)
$$

Since $u(x, t)=t(x, t)+\psi(x)$, we have finally

$$
u(x, t)=10 x+10+\sum_{m=1}^{\infty} \frac{80}{n_{r}}\left(\cos m_{r}-1\right) e^{-2 m^{2} r^{2} t / 0} \sin \frac{m \pi x}{8}
$$

an the required solution.
The term $10 z+10$ is the steady-diate tompercturs, i.e. the temperature after a long time hey elagsed.
2.27. A bar of length $L$ whoge entire surface is insulated including its ends at $z=0$ and $x=L$ has initial temperature $f(x)$. Determine the subsequent temperature of the bar.

In thís case, the boundary value problern ia

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} \mu_{u}}{\partial x^{2}}  \tag{1}\\
\left\{u(x, t) \mid<M, \quad u_{x}(0, t)=0, \quad u_{x}(L, t)=0, \quad u(x, 0)=f(x)\right.
\end{gather*}
$$

Letting $u=X T$ in (i) and separating the variables, we find

$$
X T^{\prime}=\kappa X^{\prime \prime} T \quad \text { or } \quad \frac{T^{\prime}}{\kappa T}=\frac{X^{\prime \prime}}{X}
$$

Setting each side equal to the constant $-\lambda^{2}$, wo find
so that

$$
T^{\prime}+\kappa \lambda^{2} T=0, \quad X^{\prime \prime}+\lambda^{2} X=0
$$

$$
X=a \cos \lambda x+b \sin \lambda x, \quad T=a e^{-\alpha \lambda^{2} t}
$$

A solution is thus given by

$$
u(x, t)=e^{-k \lambda^{*} t}\left(A \cos \lambda x+B_{\sin } \lambda x\right\rangle
$$

where $A=a c, B=b c$.

From $u_{x}(0, t)=0$ we have $B=0$ so that

$$
u(x, t)=A e^{-\pi \lambda^{2} t} \cos \lambda x
$$

Then from $u_{x}(L, t)=0$ we have

$$
\begin{array}{lll}
\sin \lambda L=0 & \text { or } \quad \lambda L=m r_{1} & m=0,1,2,3, \ldots \\
u(x, t)=A e^{-\mathrm{km}^{2} r^{2} t / L^{2} \cos \frac{m_{r} x}{L}} & m=0,1,2, \ldots
\end{array}
$$

To satisfy the last condition, $u(x, 0)=f(x)$, we use the superposition principle to obtain

$$
u(x, t)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} e^{-\kappa m^{2} w^{2} t / L^{p}} \cos \frac{m_{m} w z}{L}
$$

Then from $u(x, 0)=f(x)$ we see that

Thus, from Fourier seriea we find

$$
\begin{gathered}
A_{m}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{m \pi z}{L} d x \\
\text { and } \quad r(x, t)=\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{2}{L} \sum_{m=1}^{\infty}\left(e^{-\kappa m^{3} x^{7}\left(/ L^{2} \cos \frac{m \pi x}{L}\right) \int_{0}^{L} f(x) \cos \frac{m J x}{L} d x}\right.
\end{gathered}
$$

2.28. A circular plate of unit radius, whose faces are insulated, has half of its boundary kept at constant temperature $u_{1}$ and the other half at constant temperature $u_{2}$ (see Fig. 2-14). Find the steady-state temperature of the plate.

In polar coordinates ( $p, \phi$ ) the partial differential equation for steady-state heat flow is

$$
\frac{\partial^{2} u}{\partial p^{2}}+\frac{1}{p} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}=0
$$



Fig. 2-14

The boundary conditlona are

$$
u(1, \phi)= \begin{cases}u_{1} & 0<\phi<t  \tag{z}\\ u_{2} & \|<\phi<2 v\end{cases}
$$

$$
\begin{equation*}
|u(\rho, \phi)|<M, \text { Le, } u \text { is bounded in the region } \tag{s}
\end{equation*}
$$

Lat $m(0, \phi)=P \in$ where $P$ is a function of $p$ and $\phi$ in a function of $p$. Then ( 1 ) becomes

$$
P^{\prime \prime} \varphi+\frac{1}{\theta} P^{\prime} \Phi+\frac{1}{p^{2}} P \Phi^{\prime \prime}=0
$$

Dividing by $P \Phi$, multiplying by $\rho^{2}$ and rearranging terms,

$$
\frac{\rho^{2 P^{\prime \prime}}}{P}+\frac{p^{\prime} P^{\prime}}{P}=-\frac{中^{\prime \prime}}{\Phi}
$$

Setting esch aide equal to $\lambda^{2}$,

$$
\begin{equation*}
\phi^{\prime \prime}+\lambda^{1} \phi=0 \quad \rho^{2} P^{\prime \prime}+\rho^{\prime \prime}-\lambda^{2 P}=0 \tag{4}
\end{equation*}
$$

Tha first equation in (4) hem general solution

$$
\phi=A_{1} \cos \lambda_{\phi}+B_{1} \sin \lambda_{\phi}
$$

By letting $P=\rho^{k}$ in the second equation of (6). which is a Cauchy or Euter difforantiai equation, we find $k= \pm \lambda$; so that $p^{\lambda}$ and $p^{-\lambda}$ are solutiona, Thus we obtain the genersi solatlon

$$
\begin{equation*}
\boldsymbol{P}=A_{2 \rho^{\lambda}}+B_{2 f}{ }^{-\lambda} \tag{5}
\end{equation*}
$$

Since $u(\rho, \phi)$ must have period $3 \pi$ in $\phi$, we must have $\lambda=m=0,1,2,5, \ldots$.
Aleo, since $u$ must be bounded at $\rho=0$, we must have $B_{2}=0$. Thus

$$
u=P_{\phi}=A_{g} p^{m}\left(A_{1} \cos m_{\phi}+B_{1} \sin m \phi\right)=p^{m}\left(A \cos m \phi+B \sin m_{\phi}\right)
$$

By apperposition, a colution is
from which

$$
\begin{aligned}
& u(\rho, \phi)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} \rho^{m}\left(A_{m} \cos m_{\phi}+B_{m} \sin m_{\phi}\right) \\
& u(1, \phi)=\frac{A_{0}}{2}+\sum_{m=1}^{n}\left(A_{m} \cos m_{\phi}+B_{m} \sin m \phi\right)
\end{aligned}
$$

Then from the theory of Fourier berien,

$$
\begin{aligned}
A_{m} & =\frac{1}{T} \int_{0}^{2 \pi} u\left(i_{1} \phi\right) \cos m \phi d \phi \\
& =\frac{1}{\pi} \int_{0}^{\pi} u_{1} \cos m \phi d \phi+\frac{1}{\pi} \int_{\pi}^{2 \pi} u_{2} \cos m_{\phi} d_{\phi}=\left\{\begin{array}{cc}
0 & \text { if } m>0 \\
u_{1}+u_{z} & \text { if } m=0
\end{array}\right. \\
B_{m} & =\frac{1}{T} \int_{0}^{2 \pi} u(1, \phi) \sin \operatorname{tr} \phi d \phi \\
& \left.=\frac{1}{T} \int_{0}^{\pi} u_{1} \sin m_{\phi} d_{\phi}+\frac{1}{T} \int_{\pi}^{2 \pi} u_{2} \sin m \phi d_{\phi}=\frac{\left(u_{1}-u_{2}\right]}{m_{r}}(1-\cos m\rangle\right)
\end{aligned}
$$

Then:

$$
\begin{aligned}
& u(\rho, \phi)=\frac{u_{1}+u_{t}}{2}+\sum_{m=1}^{\infty} \frac{\left(u_{1}-u_{g}\right)\left(1-\cos n_{\pi}\right)}{m \pi} \rho_{m} \sin m \phi \\
& =\frac{u_{1}+u_{2}}{2}+\frac{2\left(u_{1}-u_{2}\right)}{5}\left(\rho \sin \phi+\frac{1}{\phi} \rho^{3} \sin 3_{\phi}+\frac{t}{6} \rho^{8} \sin \delta_{\phi}+\cdots\right) \\
& =\frac{u_{1}+u_{1}}{2}+\frac{u_{i}-u_{2}}{\tan ^{-2}}\left(\frac{2_{\rho} \sin \phi}{1-\rho^{2}}\right)
\end{aligned}
$$

on making une of Probiem 2.84.
2.29. A square plate with sides of unit length has its faces insulated and its sides kept at $0^{\circ} \mathrm{C}$. If the initial temparature is specified, determine the subsequent temperature at any point of the plate.

Choose a coordinate syatem as ahown in Fig. 2-15. Then the equation for the temperature $u(x, y, t)$ at any point $(x, y)$ at time $t$ is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \tag{1}
\end{equation*}
$$

The boundary conditions are given by

$$
\begin{gathered}
|u(x, y, x)|<M \\
u(0, y, t)=u(1, y, t)=u(x, 0, t)=u(x, t, t)=0 \\
u(x, v, 0)=f(x, y)
\end{gathered}
$$

whare $0<z<1,0<y<1, t>0$.


Fing 2-15

To aolve the houndary value problem let $t=X Y T$, where $X, Y, r$ are $\mathbf{I}$ unctione of $t, y, t$ rospectively. Then (1) becomes

$$
X Y T^{\prime}={ }_{k}\left(X^{\prime \prime} Y T+X Y^{\prime \prime} T\right)
$$

Dividing by $n X Y T$ yiolda

$$
\frac{T^{\prime}}{X^{\prime}}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{\bar{Y}}
$$

Since the left side is a function of $t$ alone, while the right side is a function of and $y$, we wee that each side must be a constant, say $-\mathrm{N}^{\text {I }}$ (which is needed for boundedness). Thus

$$
\begin{equation*}
T^{\prime \prime}+\times \lambda^{2} T=0 \quad \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda^{2} \tag{8}
\end{equation*}
$$

The second equation can be written as

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{F}-x^{2}
$$

and since the left side depends only on $x$ while the right side depends only on $y$ esch oldo must be a constant, say $-\mu^{2}$. Thus

$$
\begin{equation*}
X^{\prime \prime}+\mu^{4} X=0 \quad Y^{\prime \prime}+\left(\lambda^{2}-\mu^{2}\right) Y=0 \tag{t}
\end{equation*}
$$

Solutions to the two equations in (s) and the first equation in (i) are given by

$$
X=a_{1} \cos \mu x+b_{1} \sin \mu x, \quad Y=a_{2} \cos \sqrt{\lambda^{2}-\mu^{2}} v+b_{2} \sin \sqrt{\lambda^{2}-\mu^{2}} y, \quad T=a_{0} a^{-a n^{2}}
$$

It follows that a solution to $\{1\rangle$ is given by

$$
u(x, y, t)=\left(a_{1} \cos \mu x+b_{1} \sin \mu x\right)\left(a_{2} \cos \sqrt{\lambda^{2}-\mu^{2}} y+b_{3} \sin \sqrt{\lambda^{2}-\mu^{2}} y\right)\left(a_{8^{0}} \theta^{-\lambda \lambda^{2} t}\right)
$$

From the boundary condition $u(0, v, t)=0$ we see that $a_{2}=0$. From $u(x, 0, t)=0$ wee that $a_{3}=0$. Thus the solution satisfying these two conditions is

$$
u(x, v, t)=B c^{-k \lambda^{2} t} \sin \mu x \sin \sqrt{\lambda^{2}-\mu^{2}} y
$$

where we bave writien $B=b_{1} b_{2} a_{3}$.
From the boundary condition $u(1, y, t)=0$ we aee that $\mu=m_{r}, m=1,2,8, \ldots$. From $u(x, 1, t)=0$ we see that $\sqrt{\lambda^{2}-\mu^{2}}=n \pi, n=1,2,3, \ldots$, or $\lambda=\sqrt{\pi^{2}+n^{3}} \mathbf{y}$.

It follows that a solation antisfying all the conditions except $u(x, y, 0)=f(x, y)$ in given by

$$
u(x, y, \theta)=B e^{-k\left(\sin ^{5}+a^{\mathrm{D}}\right) v^{2} t} \sin \pi \pi x \sin \pi F y
$$

Now, by the superposition theorem we can arrive at the poasible solution

$$
\begin{equation*}
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m x^{6}}-k\left(m^{\theta}+n^{3} z^{t} \epsilon \sin m \nabla x \sin \eta r y\right. \tag{4}
\end{equation*}
$$

Letting $t=0$ and using the condition $u(x, y, 0)=f(x, y)$, we arrive at

$$
f(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{\mathrm{m} n} \sin m_{m x} \sin n=y
$$

As in Problem 2,24 we then find that

$$
\begin{equation*}
B_{m n}=4 \int_{0}^{2} \int_{0}^{1} f(x, y) \sin \pi \pi x \sin n r y d x d y \tag{5}
\end{equation*}
$$

Thus the formal solution to our problera is given by (4), where the $B_{m k}$ are determined from (a).

## LAPLACE'S EQUATION

2.30. Suppose that the square plate of Problem 2.29 has three sides kept at temperature zero, while the fourth side is kept at temperature $u_{1}$. Determine the steady-state temperature everywhere in the plate.

Choote the side having temperature $u_{1}$ to be the one where $y=1$, as shown in Fig. 2-16. Since we wish the steady-state temperature $t$, which does not depend on time $t$, the equation is ohtained from (1) of Problem 2.20 by setting $d u / \partial t=0$ : i.t. Laplace's equation in two dimensions:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{J}
\end{equation*}
$$

The boundery conditions are

$$
u(0, y)=u(1, y)=u(x, 0)=0, \quad u(x, 1)=u_{t}
$$

and $\quad \mid u(x, y)\}<M$.


Fig. 2-16

To solve this boundary value problem let $u=X Y$ in (1) to obtain

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0 \quad \text { or } \quad \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}
$$

Seting each side equal to $-\lambda^{8}$ yields

$$
X^{\prime r}+\lambda^{2} X=0 \quad Y^{\prime \prime}-\lambda^{2} Y=0
$$

from which

$$
X=a_{1} \cos \lambda x+b_{1} \sin \lambda x \quad Y=a_{2} \cosh \lambda y+d_{2} \operatorname{sinb} \lambda y
$$

Then porsible solution is

$$
u(x, y)=\left(a_{1} \cos \lambda x+b_{1} \sin \lambda x\right)\left\langle a_{2} \cosh \lambda y+\delta_{2} \sinh \lambda y\right)
$$

From $u(0, y)=0$ we find $a_{1}=0$. From $u(x, 0)=0$ we find $a_{2}=0$. From $u(1, y)=0$ we find $\lambda=m$ m, $\quad \mathrm{m}=1,2, \mathrm{a}_{1} \ldots$. Thus a solution matisfying all these conditions is

$$
\mathfrak{u}(x, y)=B \sin +\pi x x \text { ainh } m \sigma y
$$

To satisfy the last condition, $u(x, 1)=u_{1}$, we must first use tha principle of euperposition to obtain the solution

$$
\begin{equation*}
u(x, y)=\sum_{m=1}^{\infty} B_{m} \sin m_{\pi} x \sinh m \nabla y \tag{e}
\end{equation*}
$$

Then from $u(x, 1)=u_{1}$ we must have

$$
u_{1}=\sum_{m=1}^{\infty}\left(B_{m} \sinh m_{r}\right) \sin m_{r} x
$$

Thus, using the theory of Fourier aeries,
from which

$$
\begin{align*}
& E_{m} \sinh m \pi=2 \int_{0}^{1} v_{1} \sin m \pi z=\frac{2 u_{1}(1-\cos m y)}{m_{1}} \\
& B_{m}=\frac{2 r_{1}\left(1-\cos m_{\pi}\right)}{m_{x} \sinh m_{\pi}} \tag{3}
\end{align*}
$$

From (i) and (s) we obtain

$$
u(x, v)=\frac{2 u_{2}}{r} \sum_{m=1}^{*} \frac{1-\cos m \pi}{m \sinh m \pi} \sin m \pi x \sinh m \pi y
$$

Note that this ig'a Dirichlet prablem, since we are solving Laplace's equation $\nabla^{2} u=0$ for $u$ inside a region $R$ when $u$ is specified on the boundary of $R$.
231. If the square plate of Froblem 2.29 has its sides kept at constant temperatures $u_{1}, u_{2}, u_{3}, u_{4}$, respectively, show how to determine the steady-state temperature.

The temperatures at which the sides are kept are indicated in Fig. 2-17. The fuct that most of these temperatures are nonzero makes for the same type of difficulty considered in Problem 2.26. To overcome this diffeulty we break the problem ap into four problems of the type of Problem 2.30, where three of the four sides have temperature zero. We can then show that the solution to the given problem is the sum of solutions to the problems indicated by Figs. 2-18 to 2-21 below.


Fig. 2-17


Fig. 2-18


Fig. $2-19$


Fig. 2.20


Fig. 2-21

The details are left to Problem 2.57 which provides a generalization to the case where the side temperatures may vary.

## APPLICATIONS TO VIBRATING STRINGS AND MEMBRANES

2.32. A string of length $L$ is stretched between points ( 0,0 ) and ( $L, 0$ ) on the $x$-axis. At time $t=0$ it has a shape given by $f(x)$, $0<x<L$, and it is released from rest. Find the displacement of the string at any later time.

The equation of the vibrating string is

$$
\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad 0<x<L, t>0
$$

where $v\left(x_{1} t\right)=$ displacement from $x$-axis at time $t$ (Fig. 2-22).


Fig. 2-22

Since the ands of the string are fixed at $x=0$ and $a=\mathbf{L}$,

$$
y(0, t)=y(L, t)=0 \quad t>0
$$

Sinee the latial shape of the string ls given by $/(x)$,

$$
y(x, 0)=f(x) \quad 0<x<L
$$

Since the intalal velocity of the string is zero,

$$
y_{x}(x, 0)=0 \quad 0<x<L
$$

To solve this boundary value problem, let $y=X T$ as usual.
Then $\quad X T^{\prime \prime}=a^{2} X^{\prime \prime} T$ or $T^{\prime \prime} / \alpha^{2} T=X^{\prime \prime} / X$
Calling the separation constant $-r^{2}$, we have

$$
\begin{array}{ll}
T^{\prime \prime}+\lambda^{2} a^{8} T=0 & X^{\prime \prime}+\lambda^{2} X=0 \\
\lambda a t+B_{1} \cos \lambda a t & X=A_{2} \sin \lambda x+B_{2} \cos \lambda x
\end{array}
$$

and
A solution is thus given by

$$
y(x, t)=X T=\left(A_{2} \sin \lambda x+B_{2} \cos \lambda x\right\}\left(A_{1} \sin \lambda a t+B_{1} \cos \lambda a t\right)
$$

From $y(0, t)=0, A_{3}=0$. Then

$$
v(x, t)=B_{2} \sin \lambda x\left(A_{i} \sin \lambda \omega t+B_{1} \cos \lambda a t\right)=\sin \lambda x(A \sin \lambda a t+B \cos \lambda a t)
$$

From $\quad(L, t)=0$, we have $\sin \lambda L(A \sin \lambda a t+B \cos \lambda a t)=0$, so that $\sin \lambda L=0$, $\lambda L=m z$ or $\lambda=m a / \lambda$, fince the eecond factor must not be equal to zero. Now,

$$
y_{1}(x, \theta)=\sin \lambda x(A \lambda a \cos \lambda a t-B \lambda a \sin \lambda a t)
$$

and $y_{1}(x, 0)=(\operatorname{ain} \lambda x)(A \lambda a)=0$, from which $A=0$. Thus

$$
v(x, t)=B \sin \frac{m_{\pi} \pi}{L} \cos \frac{m_{\pi} a t}{L}
$$

To matiofy the condition $z\left(x_{1} 0\right)=f(x)$, it will be necessary to muperpose solutions. This yields

Then

$$
\begin{aligned}
& v(x, \theta)=\sum_{m i 1}^{m} B_{m} \sin \frac{m p x}{L} \cos \frac{m \pi a t}{L} \\
& v(x, 0)=f(x)=\sum_{m i n}^{m} B_{m} \sin \frac{m \pi g}{L}
\end{aligned}
$$

and from the theory of Fourier series,

$$
B_{m}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{\pi \pi x}{L} d x
$$

The tinal result is

$$
y(x, t)=\sum_{m=1}^{\infty}\left(\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{m v x}{L} d x\right) \sin \frac{\pi f x}{L} \cos \frac{m \mathrm{rat}}{L}
$$

which can be verified as the alution.
The terma in this serles represent the natural or nomal modes of vibration. The freauency of the mith normal mode $f_{m}$ in obteined from the term involving $\cos \frac{m p a t}{L}$ and is given by

$$
\varepsilon_{t} f_{m}=\frac{\pi \nabla a}{L} \quad \text { or } \quad f_{m}=\frac{m a}{2 L}=\frac{m}{2 L} \sqrt{\frac{r}{\mu}}
$$

Since all the frequencies are integer multiples of the lowest frequency $f_{1}$, the vibrations of the string will yield a masical tone, as in the case of a violin or piano string. The frat thrae normal modes are fllustrated in Fig. 2-23. As time incrasken the thapes of these modea vary from curves shown solid to curves ahown dastrad and then back again, the time for a complete cycle being the


Fig. 2-20
period and the reciprocal of this period being the frequency. We call the mode (a) the fundamental mode or first harmonic, while (b) and (c) are called the gecond and third harmonic for first and second overtone), respectively.
233. A square drumhead or membrane has edges which are flxed and of unit length. If the drumhead is glven an initial transverse displacement and then released, determine the subsequent motion.

Assume a coordinate aystem as in Fig. 2-24 and auppone that the transverse displacement from the equilibriom position (i.e, the perpendicular distance from the $x y$-plane) ot ang point ( $x, y$ ) at, time $t$ is given by $z(x, y, t)$,

Then the equation for the transverge motion is

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right) \tag{I}
\end{equation*}
$$

where $\sigma^{2}=\pi / \mu$, the quantity $\%$ being the tension per unit length along any line drawn in the druahead, and $\mu$ is the mass por untt area.


Fig. 2-2A

Assuming the initial transverse displacement to be $f(x, y)$ and the initial velocity to be zero, we have the conditions

$$
\begin{gathered}
|x(x, y, t)|<M, \quad z(0, y, t)=x(1, y, t)=z(x, 0, t)=a(x, 1, t)=0, \\
z(x, y, 0)=f(x, y), \quad x_{i}(x, y, 0)=0
\end{gathered}
$$

where we have in addition expressed the condition for boundedress and the conditions that the eages do not move.

To solve the boundary value problem we let $z=X Y T$ in (j), where $X, Y, T$ are functions of $x, y$, and $t$ respectively. Then, proceeding as in Problem 2.29, we find

$$
\frac{T^{\prime \prime}}{a^{2} T}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}
$$

and we are led exactly as in Problem 2.29 to the equation

$$
T^{\prime \prime}+\lambda^{2} a^{2} T=0, \quad X^{\prime \prime}+\mu^{2} X=0, \quad Z^{\prime \prime}+\left(\lambda^{2}-\mu^{3}\right) Y=0
$$

Solutions of these equations are

$$
\begin{aligned}
& X=a_{1} \cos \mu x+b_{1} \sin \mu x, \quad Y=a_{2} \cos \sqrt{\lambda^{\overline{2}}-\mu^{2}} y+b_{2} \sin \sqrt{\lambda^{2}-\mu^{2}} y \\
& T=a_{3} \cos \lambda a t+b_{3} \sin \lambda a t
\end{aligned}
$$

A solution of (1) \& thius given by

$$
x(x, y, t)=\left(a_{1} \cos \mu x t+b_{1} \sin \mu x\right)\left(a_{2} \cos \sqrt{\lambda^{2}-\mu^{2}} y+b_{3} \sin \sqrt{\lambda^{3}-\mu^{2}} y\right)\left(a_{9} \cos \lambda a t+b_{3} \sin \lambda a t\right)
$$

From $z(0, y, t)=0$ we find $a_{3}=0$. From $z(x, 0, t)=0$ we find $a_{z}=0$. From $z_{1}(x, y, 0)=0$ we find $b_{3}=0$. Thus the solution antisiging these conditions (and the boundedness condition) is

$$
2(x, y, t)=B \sin \mu \sin \sqrt{\lambda^{2}-\mu^{2}} y \cos \lambda a t
$$

From $f(1, y, t)=0$ we see that $\mu=m \pi, m=1,2, a, \ldots$. From $g(x, 1, t)=0$ we see that $\sqrt{R^{2}-\mu^{2}}=n s, n=1,2, s, \ldots$, i.e. $\lambda=\sqrt{m^{2}+1 \cdot n^{2}} \pi$.

Thus a solution extisfying all conditions but $z(x, y, 0)=f(x, y)$ ig-given by

$$
z(x, y, c)=B \sin m \pi x \sin n \pi y \cos \sqrt{\pi^{2}+n^{2}} w a t
$$

By the auperposition theorem we can arrive at the possible solution

$$
\begin{equation*}
x(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \sin m \pi z \sin n \times y \cos \sqrt{m^{2}+n^{2}}-a t \tag{2}
\end{equation*}
$$

Then, letting $t=0$ and using $2(x, y, 0)=f(x, y)$, we arrive at

$$
f(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \sin m \pi x \sin 2 \mathrm{tr} y
$$

from which we are led as in Problem 2.24 to

$$
\begin{equation*}
B_{m n}=4 \int_{0}^{1} \int_{0}^{1} f(x, y) \sin m r x \sin n_{F} y d x d y \tag{s}
\end{equation*}
$$

Thus the formal solution to our problem is glyen by (q), where the coefficienta $B_{m m}$ are determined from (3).

In thia problem the natural mades have frequencies $f_{m n}$ given by $2 \pi f_{m n}=\sqrt{\pi_{n}^{2}+n^{2}} \boldsymbol{r a}$, i.e.

$$
\begin{equation*}
f_{m n}=\frac{1}{2} \sqrt{m^{2}+\pi^{2}} \sqrt{\frac{r}{\mu}} \tag{4}
\end{equation*}
$$

The lowest mode, $m=0, n=1$ or $m=1, n=0$, has frequeney $\frac{1}{1} \sqrt{\tau / \mu}$. The next higher one
 damental) frequency. Similarly, higher modes do not in general have frequencies which arc integer multiples of the fundamental frequency. In such case we do not get music.

## Supplementary Problems

## FOURIER SERISS

2s4. Grsph each of the following functions and find its corresponding Fourier beries, using properties of even and add functione wherever applleable.
(a) $f(x)=\left\{\begin{array}{rl}8 & 0<x<2 \\ -8 & 2<x<4\end{array}\right.$ Period 4
(b) $f(x)=\left\{\begin{array}{rr}-x & -4 \leqslant x \leqslant 0 \\ x & 0 \leq x \leq 4\end{array}\right.$ Period $B$
(e) $f(x)=4$ ix, $0<x<10$, Periad 10
(d) $f(x)=\left\{\begin{array}{ll}2 x & 0 \leq x \leq 3 \\ 0 & -3<x<0\end{array} \quad\right.$ Period 6
2.35. In each part of Problem 2.34, tell where the discontinuities of $f(x)$ are located and to what value the aeries converges at these discontinuities.
2.s6. Expand $\cdot f(x)=\left\{\begin{array}{ll}2-x & 0<x<4 \\ x-6 & 4<x<8\end{array}\right.$ in a Fourier series of period 8 .
2.37. (a) Expand $f(x)=\cos x, 0<x<=$, in a Fourier sine series.
(b) How should $f(x)$ be defined at $x=0$ and $x=\pi$ so that the series will converge to $f(x)$ for 0 こ $x \leq$ ?
2.38. (a) Expand in a Fourier series $f(x)=\cos x, 0<x<f$, if the period is and (b) compare with the result of Problem 2.37, explaining the similarities and differences if any:-
2.39. Expind $f(x)=\left\{\begin{array}{ll}x & 0<x<4 \\ B-x & 4<x<8\end{array}\right.$ in a series of (a) sines, (b) cosines.
2.40. Prove that for $0 \leq x \leq \pi$.
(a) $x(\pi-x)=\frac{\pi^{2}}{6}-\left(\frac{\cos 2 x}{1^{2}}+\frac{\cos 4 x}{2^{2}}+\frac{\cos 6 x}{3^{2}}+\cdots\right)$
(b) $x(\pi-x)=\frac{B}{\pi}\left(\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}} \div \cdots\right)$
2.41. Use Probiem 2.40 to show that
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(b) $\sum_{n=1}^{x} \frac{(-1)^{n-3}}{n^{2}}=\frac{\bar{m}^{2}}{12}$.
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n-1)^{3}}=\frac{y^{3}}{32}$.
2.42. Show that $\frac{1}{1^{3}}+\frac{1}{3^{3}}-\frac{1}{5^{3}}-\frac{1}{7^{3}}+\frac{1}{9^{3}}+\frac{1}{11^{3}}-\cdots=\frac{3 \pi^{3} \sqrt{2}}{128}$.

## INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES

2.43. (a) Show that for $\rightarrow<x<x$,

$$
x=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 9 x}{3}-\cdots\right)
$$

(b) By integrating the resule of $\{a\}$, show that for $-\bar{n} x \leq \pi$,

$$
x^{2}=\frac{\pi^{2}}{3}-4\left(\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{\overline{2^{2}}}+\frac{\cos 3 x}{3^{2}}-\cdots\right)
$$

(c) By integrating the result of (b), show that for $-\pi \leq x \leq \pi$,

$$
x(z-x)(x+2)=12\left(\frac{\sin x}{1^{3}}-\frac{\sin 2 x}{2^{3}}+\frac{\sin 3 x}{3^{3}}-\cdots\right)
$$

(d) Show that the series on the right in parts (b) and (c) converge uniformly to the functions on the left.
2.44. ( $\sigma$ ) Show that for $-=<x<\pi$,

$$
x \cos x=-\frac{1}{2} \sin x+2\left(\frac{2}{1+3} \sin 2 x-\frac{3}{2+4} \sin 3 x+\frac{4}{3+5} \sin 4 x-\cdots\right)
$$

(b) Use (a) to show that for $-\bar{x} x \leqq$,

$$
x \sin x=1-\frac{1}{2} \cos x-2\left(\frac{\cos 2 x}{1+3}-\frac{\cos 3 x}{2 \cdot 4}+\frac{\cos 4 x}{3 \cdot 5}-\cdots\right)
$$

2.45. By differentiating the result of Problem 2.10(b), prove that for $0 \leq x \geqq \mathrm{r}$,

$$
x=\frac{\pi}{2}-\frac{4}{7}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right)
$$

## PARSEVAL'S IDENTITY

2.46. By using Problem 2.40 and Parseval's identity, show that
(a) $\sum_{n=1}^{x} \frac{1}{n^{4}}=\frac{\pi^{4}}{20}$
(b) $\sum_{n=1}^{x} \frac{1}{n^{3}}=\cdot \frac{\pi^{3}}{945}$
247. Show that $\frac{1}{1^{2} \cdot 8^{2}}+\frac{1}{9^{2}+5^{2}}+\frac{1}{6^{2} \cdot 7^{2}}+\cdots=\frac{9^{2}-8}{16}$.
[Hint. Use Problem 2.11.]
848. Show that
(a) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}=\frac{5^{4}}{96}$,
(b) $\sum_{n=1}^{E} \frac{1}{(2 n-1)^{6}}=\frac{8^{0}}{960}$.
2.49. Show that $\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2}}+\frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2}}+\frac{1}{3^{2} \cdot 4^{2} \cdot 5^{2}}+\cdots=\frac{4 \pi^{2}-39}{16}$.

## SOLUTIONS USING FOIRIER BERIES

250. (a) Solve the boundary value problem

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{4} u}{\partial x^{2}} \quad u(0, t)=u(4, t)=0 \quad u(x, 0)=26 z
$$

where $0<2<4$, $t>0$.
(b) Interpret physically the houndary value problem in (a).
251. (a) Show that the solution of the boundary value problem

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad u_{x}(0, t)=u_{x}(\pi, t)=0 \quad u(x, 0)=f(x)
$$

Where $0<x<\pi, t>0$, is given by
(b) Interpret phyaically the boundary value problem in (a),
252. Find the steady-gtate temperature in a bar whose ends are located at $x=0$ and $z=10$, if these ends are kept at $150^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ reapectively,
258. A circular plate of unit radius, (gee F1g. 2-14, page 39) whose facas are insulated has ita boundary kept at temperature $120+60 \cos 2 \phi$. Find the ateady-state tempetature of the plate.
2.54. Show that $\quad \rho \sin \phi+\frac{1}{8} p^{2} \sin 3 \phi+\frac{1}{6} \rho^{5} \sin \delta \phi+\cdots=\frac{1}{2} \tan ^{-1}\left(\frac{2 p \sin \phi}{1-p^{2}}\right)$ and thus complete Probiem 2.28.
2.55. A string 2 ft long is atretched between two fixed points $x=0$ and $x=2$. If the diaplacemant of the string from the $x$-axis at $t=0$ is given by $f(x)=0.03 x(2-x)$ and if the initial velocity is zera, find the displesement at any later time.

256, A square plate of gide a has ons bide maintained at temperature $f(x)$ and the others at zero, as indicated in Fig. 2-85. Show that the ateady-atate temperature at any point of the plate ta gequen by

$$
u(x, y)=\sum_{x=1}^{\infty}\left[\frac{2}{a \sinh \left(k_{\nabla}\right)} \int_{0}^{a} f(x) \sin \frac{k_{\pi} x}{a} d x\right] \sin \frac{k_{\pi} z}{a} \sinh \frac{k_{\pi y}}{a}
$$

2.57. Work Problem 2.56 if the aldes are maintained at temperatures $f_{1}(x), g_{f}(y), f_{2}(x), \sigma_{2}(y)$, respectivaly. [Hine. Use the princlple of superponition and the result of Problen 2.56.].


His. $2-28$


Fig. 2-26
2.5s. An infinitely loing plate of whth a (indicated by the shaded region of Fig. 2-25) has its two parallel sides maintalned at temperature 0 and its other stde at constant temperature uo. (a) Show that the steady-statid temperature is glven by

$$
u(x, y)=\frac{4 u_{0}}{x}\left(\theta^{-r} \sin \frac{5 x}{a}+\frac{1}{8} \theta^{-8 y} \sin \frac{3 \pi x}{a}+\frac{1}{8} t-5 y \sin \frac{5 y x}{a}+\cdots\right)
$$

(b) Une Problern 2.54 to show that

$$
u(z, y)=\frac{2 u_{0}}{\pi} \tan ^{-1}\left[\frac{\sin (\pi x / a)}{\sinh y}\right]
$$

269. Solve Problem 1.26 if the string has its ends fixed at $x=0$ and $x=L$ and if its initial displacement and velocity are given by $f(x)$ and $g(x)$ respectively.
2.6). A square plate (Fig. 2-27) having sides of unit length has its edges fixed in the $x y$-plane and is get into tranavarge vibration.
(a) Show that the transverse displacement $z(x, y, t)$ of any point $(x, y)$ at time $t$ is given by

$$
\frac{\partial^{2} z}{\partial \partial^{2}}=a^{2}\left(\frac{\partial^{2} x}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)
$$

Where $a^{2}$ fo a constant.
(b) Show that if the plate is given an initial shape $f(x, y)$ and releaged with veloetty $g(x, 6)$, then the dioplacement is given by


Flg. 2-27

$$
z(x, y, t)=\sum_{n=1}^{\infty} \sum_{n=1}^{\infty}\left[A_{m \pi} \cos \lambda_{m n} a t+B_{m n} \sin \lambda_{\pi \pi R} a t\right] \sin m \pi x \sin n \pi y
$$

where

$$
A_{m n}=4 \int_{0}^{1} \int_{0}^{1} f(x, y) \sin \pi_{F} x \sin n_{F y} y d x d y
$$

$$
B_{m n}=\frac{4}{a \lambda_{m m}} \int_{0}^{1} \int_{0}^{1} \rho(x, y) \sin m v x \sin n_{\pi} y d x d y
$$

and $\lambda_{m n}=+\sqrt{m^{2}+n^{2}}$
261. Work Problem 2.00 for a rectangular plate of sides $b$ and $c$.
2.64 Prove that the reanalt for $\mu(x, t)$ obtained in Problem 2.25 actually satisfies the partial differential equation and the boondary conditions,
2.6k. Selve the boundary value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\alpha^{2} u \quad 0<x<L, t>0 \\
& u(0, t)=u_{1} \quad u(L, t)=u_{2} \quad u(x, 0)=0
\end{aligned}
$$

whera $a$ and $L$ are conatanta, and interpret phyaleally.
2.64. Work Problem 2.63 if $u(x, 0)=f(x)$.
2.65. Solve and interpret physically the boundary value problem

$$
\frac{\partial^{2} y}{\partial y^{2}}+\delta^{2} \frac{\partial^{4} y}{\partial x^{2}}=0
$$

where $y(0, t)=0, y(L, t)=0, y(x, 0)=f(x), y_{t}\left(x_{z} 0\right)=0, y_{x x}(0, t)=0, y_{x x}(L, t)=0, y(x, t)<M$.
2.66. Work Problem 2.66 if $y_{1}(x, 0)=g(x)$.
2.67. A plate is bounded by two concentric circles of rafius stand b, as khown in Fig. 2-28. The faces are insulated and the boumdaries are kept at temperatures $f(\rho)$ and $g(\theta)$ respactively. Show that the ateady-atate temperature at any point $(r, 8)$ is given by

$$
\begin{aligned}
& u(r, \theta)=A_{0}+B_{0} \ln r+\sum_{n=1}^{n}\left\{\left(A_{n^{\prime}} r^{n}+\frac{B_{n}}{r^{n}}\right) \cos n \theta\right. \\
&\left.+\left(C_{n} r^{n}+\frac{D_{n}}{r^{n}}\right) \sin n \theta\right\}
\end{aligned}
$$

where $A_{0}$ and $B_{0}$ are determined from

$$
\begin{aligned}
& A_{0}+B_{0} \ln \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta \\
& A_{0}+B_{0} \ln \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta
\end{aligned}
$$



Fig. 2-28
$A_{n}, B_{n}$ are determined from

$$
A_{n} \alpha^{n}+B_{n} a^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos \pi F d \theta, \quad A_{n} b^{n}+B_{n} b^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \cos \pi \theta d \theta
$$

and $C_{n}, D_{n}$ are determined from

$$
C_{n} a^{a}+D_{n} a^{-n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin \pi \theta d \theta_{1} \quad C_{n} b^{n}+D_{n} b \cdots a=\frac{1}{\pi} \int_{0}^{2 \pi} g(\theta) \sin \pi \theta d \theta
$$

268. Investigate the limiting cases of Problem 2.67 as (a) $a \rightarrow 0,(b) b \rightarrow *$, and give physical interpretations.
2.69. (a) Solve the boundary value problem

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}+\beta e^{-r x}
$$

where $u(0, t)=0, u(L, t)=0, u(x, 0)=f(z), \quad\{u(x, t)\}<M$, and (b) give a physical interpretation.
2.70. Work Problem 2.69 if $\beta e^{-v 2}$ is replaced by $x_{0} \sin a z$, where $u_{v}$ and $\alpha$ are constants.
2.71. Soive $\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}-g$ where $y(0, t)=0, y\left(L_{1} t\right)=0, \quad y\left(x_{1} 0\right)=f(x), \quad y_{0}\left(x_{1} 0\right)=0,|y(x, t)|<M$, and give a physical interpretation.
2.72. Find the steady-state temperature in a solid cabe of unit side (Fig. 2-29) if the fate in the $x y$-plane is kept at the prescrihed temperature $F(x, y)$, while all other faces ary kept at tomperature zero.
2.73. How would you solve Problem 2.72 if temperatures were prescribed on the other faces also?
274. How would yon solve Problem 2.72 if the initial temperature inside the cube was given and you wished to find the temperature inside the cube at any later time?
9.75. Generalize the result of Problem 2.72 to any rectangular parallelepiped.
2.76. A plate in the form of a sector of a circle of radius a has central angle $\beta$, as flown in Fig. 2-80. If the circular part is maintained at a temperature $f(\theta), 0<\theta<\beta$, while the hounding radil are maintained at temperature zero, find the steady-state temperature everywhere in the sector.


Fig. $\mathbf{2 - 2 9}$


Fig. $2-50$

## Chapter 3

## Orthogonal Functions

## DEFINITIONS INVOLVING ORTHOGONAL FUNCTIONS. ORTHONORMAL SETS

Many properties of Fourier series considered in Chapter 2 depended on such resulta as

$$
\begin{equation*}
\int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x=0, \quad \int_{0}^{L} \cos \frac{m_{\pi x}}{L} \cos \frac{n \pi x}{L} d x=0 \quad(m \neq n) \tag{1}
\end{equation*}
$$

In this chapter we shall seek to generalize some ideas of Chapter 2. To do this we first recall some elementary properties of vectors.

Two vectors $\mathbf{A}$ and $\mathbf{B}$ are called orthogonal (perpendicular) if $\mathbf{A} \cdot \mathbf{B}=0$ or $A_{1} B_{1}+$ $A_{2} B_{3}+A_{5} B_{3}=0$, where $\mathrm{A}=A_{5} \mathbf{i}+A_{2} \mathbf{j}+A_{3}$ and $\mathbf{B}=B_{1} \mathbf{i}+B_{2} \mathbf{j}+B_{8 k}$. Although not geometrically or physically obvious, these ideas can be generalized to include vectora with more than three components. In particular we can think of a function, say $A(x)$, as being a vector with an infinity of components (i.e. an infinite-dimensional vector), the value of each component being specified by substituting a particular value of $x$ taken from some interval $(a, b)$. It is natural in such case to define two functions, $A(x)$ and $B(x)$, as orthogonal in
$(a, b)$ if

$$
\begin{equation*}
\int_{a}^{b} A(x) B(x) d x=0 \tag{2}
\end{equation*}
$$

The left side of (2) is often called the scalar product of $A(x)$ and $B(x)$.
A vector $A$ is called a unit vector or normalized vector if its magnitude is unity, i.e. if $A \cdot A=A^{2}=1$. Extending the concept, we say that the function $A(x)$ is normal or normalized in $(a, b)$ if

$$
\begin{equation*}
\int_{a}^{b}(A(x)\}^{2} d x=1 \tag{s}
\end{equation*}
$$

From the above it is clear that we can consider a set of functions $\left\{\phi_{k}(x)\right\}, k=1,2,3, \ldots$, having the properties

$$
\begin{gather*}
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0 \quad m \neq n  \tag{4}\\
\int_{a}^{b}\left\{\phi_{m}(x)\right)^{2} d x=1 \quad m=1,2,3, \ldots \tag{5}
\end{gather*}
$$

Each member of the set is orthogonal to every other member of the set and is also normallzed. We call such a set of functions an orthonormal set in (a,b).

The equations (4) and (5) can be summarized by writing

$$
\begin{equation*}
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=\delta_{m n} \tag{6}
\end{equation*}
$$

where $\delta_{m n}$, called Kroneoker's symbol. is defined as 0 if $m+n$ and 1 if $m=n$.

## Example 1.

The set of functions

$$
\phi_{m}(x)=\sqrt{\frac{2}{x}} \sin m x \quad m=1,2,3, \ldots
$$

is an orthonormal set in the interval $0 \leqq x$ 各 $\pi$.

## ORTHOGONALITY WITH RESPECT TO A WEIGHT FUNCTION

If

$$
\begin{equation*}
\int_{a}^{b} \psi_{m}(x) \psi_{n}(x) w(x) d x=\delta_{m n} \tag{7}
\end{equation*}
$$

where $w(x)>0$, we often say that the set $\left\{\psi_{k}(x)\right\}$ is orthonormal with respect to the density function or weight function $w(x)$. In such case the set $\phi_{m}(x)=\sqrt{w(x)} \psi_{m}(x)$, $m=1,2,3, \ldots$, is an orthonormal set in ( $a, b$ ).

## EXPANSION OF FUNCTIONS IN ORTHONORMAL SERIES

Just as any vector $r$ in 3 dimensions can be expanded in a set of mutually orthogonal unit vectors $i, j, k$ in the form $r=c_{i} i+c_{2} j+c_{z} k$, so we consider the possibility of expanding a function $f(x)$ in a set of orthonormal functions, i.e.

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x) \quad a \leqq x \leqq b \tag{8}
\end{equation*}
$$

Such series, called orthonormal serics, are generalizations of Fourier series and are of great interest and utility both from theoretical and applied viewpoints.

Assuming that the series on the right of (8) converges to $f(x)$, we can formally multiply both sides by $\phi_{m}(x)$ and integrate both sides from $a$ to $b$ to obtain

$$
\begin{equation*}
c_{m}=\int_{a}^{b} f(x) \phi_{m}(x) d x \tag{9}
\end{equation*}
$$

which are called the generalized Fouriet coefficients. As in the case of Fourier series, an investigation should be made to determine whether the series on the right of (8) with coefficients (9) actually converges to $f(x)$. In practice, if $f(x)$ and $f^{\prime \prime}(x)$ are piecewise continuous in ( $a, b$ ), then the series on the right of ( 8 ) with coefficients given by (9) converges to $\frac{1}{2}[f(x+0)+f(x-0)]$ as in the case of Fourier series.

## APPROXIMATIONS IN THE LEAST-SQUARES SENSE

Let $f(x)$ and $f^{\prime}(x)$ be piecewise continuous in (a,b). Let $\phi_{m}(x), m=1,2, \ldots$ be orthonormal in (a,b). Suppose now that we consider the finite sum

$$
\begin{equation*}
S_{M}(x)=\sum_{n=1}^{M} \alpha_{n} \phi_{n}(x) \tag{10}
\end{equation*}
$$

as an approximation to $f(x)$, where $\alpha_{n}, n=1,2,3, \ldots$, are constants presently unknown. Then the mean square error of this approximation is given by

$$
\begin{equation*}
\text { Mean square error }=\frac{\int_{0}^{b}\left[f(x)-S_{\mathrm{m}}(x)\right]^{2} d x}{b-a} \tag{11}
\end{equation*}
$$

and the root mean square error $E_{\mathrm{rm}}$ is given by the square root of (11), i.e.

$$
\begin{equation*}
E_{\text {rnd }}=\sqrt{\frac{1}{b-a} \int_{a}^{b}\left[f(x)-S_{\mathrm{st}}(x)\right]^{2} d x} \tag{12}
\end{equation*}
$$

We now seek to determine the constants $a_{n}$.which will produce the least root mean square error. The result is supplied in the following theorem which is proved in Problem 3.5.

Theorem 3-1: The root mean square error (12) is least (i.e. a minimum) when the coefficients are equal to the generalized Fourier coefficients (9), i.e. when

$$
\begin{equation*}
\alpha_{\mathrm{n}}=c_{\mathrm{n}}=\int_{a}^{b} f(x) \phi_{n}(x) d x \tag{18}
\end{equation*}
$$

We often say that $S_{s}(x)$ with coefficients $c_{n}$ is an approximation to $f(x)$ in the leastsquares sense or a least-squares approximation to $f(x)$.

It is of interest to note that once we have worked out an approximation to $f(x)$ in the least-squares sense by using the coefficients $c_{n}$, we do not have to recompute these coefflcients if we wish to have a better approximation. This is sometimes referred to as the principle of finality.

## PARSEVAL'S IDENTITY FOR ORTHONORMAL SERIES. COMPLETENESS

For the case where $a_{n}=c_{n}$ we can show (ace Problem 3.5) that the root mean square error is given by

$$
\begin{equation*}
E_{\mathrm{rms}}=\frac{1}{\sqrt{b-a}}\left[\int_{a}^{b}[f(x)]^{2} d x-\sum_{n=1}^{M} c_{n}^{2}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

It is seen that $E_{\text {rme }}$ depends on $M$. As $M \rightarrow \infty$ we would expect that $E_{r n n} \rightarrow 0$, in which case we would have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{2} d x=\sum_{n=1}^{\infty} c_{n}^{2} \tag{15}
\end{equation*}
$$

Now, (15) could certainly not be true if, for example, we left out certain functions $\phi_{p}(x)$ in the series approximation, i.e. if the set of functions were incomplete. We are therefore led to define a set of functions $\phi_{n}(x)$ to be complete if and only if $E_{m m a} \rightarrow 0$ as $M \rightarrow \infty$, so that (15) is valid. We refer to (15) as Parseval's identity for orthonormal series of functions. In (6) of Chapter 2, page 23, we have obtained. Parseval's identity for the special case of Fourier series.

In the case where $E_{\text {rass }} \rightarrow 0$ as $M \rightarrow \infty$, i.e.

$$
\begin{equation*}
\lim _{a x \rightarrow \infty} \int_{a}^{b}\left[f(x)-S_{\infty}(x)\right]^{2} d x=0 \tag{16}
\end{equation*}
$$

we sometimes write

$$
\begin{equation*}
{\underset{M}{u} \rightarrow \infty}_{\text {l.m. }} S_{M}(x)=f(x) \tag{17}
\end{equation*}
$$

This is read the limit in mean of $S_{A}(x)$ as $M \rightarrow \infty$ equals $f(x)$ or $S_{\mathrm{s}}(x)$ converges in the mean to $f(x)$ as $M \rightarrow \infty$ and is equivalent to (16).

## STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS

A boundary value problem having the form

$$
\left.\begin{array}{c}
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+[q(x)+\lambda r(x)] y=0 \tag{18}
\end{array} \quad a \leqq x \leqq b\right\}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are given constants; $p(x), q(x), r(x)$ are given functions which we shall assume to be differentiable and $\lambda$ is an unspecified parameter independent of $x$, is called a Sturm-Liouville boundary value problem or Sturm-Liouvills system. Such syatems arise in practice on using the separation of variables method in solution of partial differential equations. In such case $\lambda$ is the "separation constant." See Problem 8.14.

A nontrivial solution of this system, i,e. one which is not identically zero, exists in general only for a particular set of values of the parameter $\lambda$. These values are called the characteristic values, or more often eigenvalues, of the system. The corresponding solutions are called characteristic functions or eigenfunctions of the aystem. In general to each eigenvalue there is one eigenfunction, although exceptions can occur.

If $p(x)$ and $q(x)$ are real, then the eigenvalues are real. Also, the eigenfunctions form an orthogonal set with respect to the weight function $r(x)$, which is generally taken as nonnegative, i.e. $r(x) \geqslant 0$. It follows that by suitable normalization the set of functions can be made an orthonormal set with respect to $r(x)$ in $a \leqq z \leq b$. See Problems 3.8-3.11.

## THE GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

Given a finite or infinite set of linearly independent functions $\psi_{1}(x), \psi_{2}(x), \psi_{3}(x), \ldots$ defined in an interval ( $a, b$ ) it is possible to generate from these functions a set of orthonormal functions in $(a, b)$. To do this we first consider a new set of functions obtained from the $\psi_{k}(x)$ and given by

$$
\begin{equation*}
c_{11} \psi_{1}(x)_{r} \quad c_{21} \psi_{2}(x)+c_{2 \pi} \psi_{2}(x), \quad c_{31} \psi_{1}(x)+c_{33} \psi_{2}(x)+c_{33} \psi_{3}(x), \quad \ldots \tag{19}
\end{equation*}
$$

where the $e$ 's are constants to be determined. We shall designate the functiong in (19) by $\phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \ldots$

We now choose the constants $c_{11}, c_{21}, c_{22}, \ldots$ so that the functions $\phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \ldots$ are mutually orthogonal and also normalized in ( $a, b$ ). The process, known as the GramSchmidt orthonormalizetion process, is illustrated in Problem 3.12.

An extension to the case where orthonormalization is with respect to a given weight function is essily made.

## APPLICATIONS TO BOUNDARY VALUE PRORLEMS

In the course of solving boundary value problems using separation of variables we often arrive at Sturm-Liouville differential equations (see Problem 3.15, for example). The parameter $\lambda$ in these equations is the separation constant, and the values of $\lambda$ which are obtained represent the real eigenvalues. The solution of the boundary value problem is then obtained in terms of the corresponding mutually orthogonal eigenfunctions.

For an illustration which does not involve Fourier series, see Problem 3.13. Other illustrations involving this general procedure will be given in later chapters.

## Solved Problems

## ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

3.1. (a) Show that the set of functions

$$
1, \quad \sin \frac{\pi x}{L}, \quad \cos \frac{\pi x}{L}, \quad \sin \frac{2 \pi x}{L}, \quad \cos \frac{2 \pi x}{L}, \quad \sin \frac{3 \pi x}{L}, \quad \cos \frac{3 \pi x}{L}, \quad \cdots
$$

form an orthogonal set in the interval $(-L, L)$.
(b) Determine the corresponding normalizing constants for the set in (a) so that the set is orthonormal in $(-L, L)$.
(a) This follows at ance from the results of Froblems 2.2 and 2.3, page 26.
(b) By Problem 2.3,

$$
\begin{aligned}
& \int_{-L}^{L} \sin ^{2} \frac{\operatorname{mix}_{\pi}}{L} d x=L_{r} \quad \int_{-2}^{1} \cos x^{2} \frac{\operatorname{m\pi x}}{L} d x=L \\
& \int_{-L}^{L}\left(\sqrt{\frac{1}{L}} \sin \frac{m \pi z}{L}\right)^{2} d z=1, \quad \int_{-L}^{L}\left(\sqrt{\frac{1}{L}} \cos \frac{m \pi x}{L}\right)^{2} d x=1 \\
& \int_{-1}^{L}(1)^{2} d x=2 L \text { or } \int_{-2}^{L}\left(\frac{1}{\sqrt{2 L}}\right)^{2} d x=1
\end{aligned}
$$

Then

Also,
Thus the required orthonormsl set is given by

$$
\frac{1}{\sqrt{2 L}}, \quad \frac{1}{\sqrt{L}} \sin \frac{\pi x}{L}, \quad \frac{1}{\sqrt{L}} \cos \frac{\pi x}{L}, \quad \frac{1}{\sqrt{L}} \sin \frac{2 \pi x}{L}, \quad \frac{1}{\sqrt{L}} \cos \frac{2 \pi x}{L}, \ldots
$$

3.2. Let $\left\{\phi_{\mathrm{n}}(x)\right\}$ be a set of functions which are mutually orthonormal in (a,b). Prove that if $\sum_{n=2}^{\infty} e_{n} \phi_{n}(x)$ converges uniformly to $f(x)$ in ( $a, b$ ), then

$$
c_{n}=\int_{a}^{b} f(x) \phi_{R}(x) d x
$$

Multiplying both gides of

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x) \tag{1}
\end{equation*}
$$

by $\phi_{n i}(x)$ and intcgrating from $a$ to $b$, we have

$$
\int_{a}^{b} f(x) \phi_{m i}(x) d x=\sum_{n=1}^{\infty / 2} c_{n} \int_{a}^{\infty} \phi_{m n}(x) \phi_{n}(x) d x
$$

Where the interchange of integration and summation is justified by tho fact that the serius converges uniformly to $f(x)$. Now since the functions $\left\{\phi_{n}(x)\right\}$ are mutasily orthonormal in $(a, b)$, we have

$$
\int_{0}^{b} \phi_{m}(x) \phi_{n}(x) d x= \begin{cases}0 & m \neq n \\ 1 & m=n\end{cases}
$$

so that (2) becomas

$$
\begin{equation*}
\int_{t}^{b} f(x) \phi_{m}(x) d x=c_{m} \tag{s}
\end{equation*}
$$

as reguired.
We call the coefficients $c_{m}$ given by (s) the generalized Fourior coefficiente corresponding to $f(x)$ even though nothing may be known about the convergence of the series in (1). As in the case of Fourier series, convergence of $\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)$ is then investigated uting the coefficients ( $s$ ). The conditions of convergence depend of course on the types of orthonormal functions used. In the remainder of this book we shall be concerned with many examples of orthonormal functiona and serles.

## LEAST-SQUARES APPROXIMATIONS. PARSEVAL'S IDENTITY AND COMPLETENESS

3.3. If $S_{m}(x)=\sum_{n=1}^{m} \alpha_{n} \phi_{n}(x)$, where $\phi_{n}(x), n=1,2, \ldots$, is orthonormal in (a,b), prove

$$
\int_{a}^{b}\left[f(x)-S_{M}(x)\right]^{2} d x=\int_{0}^{b}[f(x)]^{2} d x-2 \sum_{n=1}^{M} \alpha_{n} c_{n}+\sum_{n=1}^{M} a_{n}^{2}
$$

where $c_{a}=\int_{a}^{b} f(x) \phi_{n}(x) d x$ are the generalized Fourier coefficients corresponding
to $f(x)$.
We have

$$
f(x)-S_{M}(x)=f(x)-\sum_{n=1}^{M} \alpha_{4} \phi_{n}(x)
$$

By equaring we obtain

$$
\left[f(x)-S_{N}(x)\right]^{2}=[f(x))^{2}-2 \sum_{n=1}^{M} \alpha_{n} f(x) \phi_{n}(x)+\sum_{m=t}^{M} \sum_{n \geq 1}^{M} a_{m} \alpha_{n} \phi_{m}(\alpha) \phi_{n}(x)
$$

Integrating both aidea croma to $b$ uaing

$$
0_{n}=\int_{a}^{b} f(x) \phi_{n}(x) d x, \quad \int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x= \begin{cases}0 & m \not n \\ 1 & m=n\end{cases}
$$

we obtain

$$
\int_{a}^{b}\left[f(x)-S_{M}(x)\right]^{2} d x=\int_{a}^{b}\left[\left.f(x)\right|^{2} d x-2 \sum_{n=1}^{N} a_{n} c_{n}+\sum_{n=1}^{M} \alpha_{0}^{n}\right.
$$

We have assumed that $f(x)$ is such that all the above integrals exist.
3.4. Show that

$$
\int_{a}^{n}\left[f(x)-S_{M}(x)\right]^{2} d x=\int_{0}^{b}[f(x)]^{2} d x+\sum_{n=1}^{M}\left(\alpha_{n}-c_{n}\right)^{2}-\sum_{n=1}^{m} c_{n}^{2}
$$

This follows from Problem 3.3 by noting that

$$
\begin{aligned}
\int_{a}^{b}[f(x)]^{2} d x-2 \sum_{n=1}^{M} \alpha_{n} c_{n}+\sum_{n=1}^{M} a_{n}^{2} & =\int_{a}^{b}[f(x)]^{2} d x+\sum_{n=1}^{M}\left(\alpha_{n}^{a}-2 \alpha_{n} c_{n}\right) \\
& =\int_{a}^{b}[f(x)]^{2} d x+\sum_{n=1}^{N}\left[\left(\alpha_{n}-c_{n}\right)^{2}-c_{n}^{2}\right] \\
& =\int_{a}^{b}[f(x)]^{2} d x+\sum_{n=1}^{M}\left(\alpha_{n}-c_{n}\right)^{2}-\sum_{n=1}^{M} c_{n}^{a}
\end{aligned}
$$

35. (a) Prove Theorem 8.1, page 54: The root mean aquare error is a minimum when the coefficients $\alpha_{n}$ equal the Fourier coefficients $c_{n}$.
(b) What is the value of the root mean square error in this case?
(a) From Problern 8.4 we have

$$
\int_{a}^{b}\left[f(x)-S_{M}(x)\right]^{2} d x=\int_{a}^{b}[f(x)]^{2} d x+\sum_{n=2}^{N}\left(\alpha_{n}-c_{n}\right)^{2}-\sum_{n=1}^{M} c_{n}^{2}
$$

Now the root mean square error will be a minimum when the above is a minimum. However, it in cimar that the right-hand aide is a minimum when $\sum_{n=1}^{M}\left(\alpha_{n}-c_{n}\right)^{2}=0$, i.e. when $a_{n}=a_{n}$
for all $n$.
(b) From part (a) we see that the minimum value of the root mean square error is given by

$$
\begin{aligned}
E_{\text {rms }} & =\left[\frac{1}{b-a} \int_{a}^{b}\left[f(x)-S_{M}(x)\right]^{2} d x\right]^{1 / 7} \\
& =\frac{1}{\sqrt{b-a}}\left[\int_{0}^{b}[f(x)]^{2} d x-\sum_{n=1}^{\infty} e_{n}^{2}\right]^{1 / 2}
\end{aligned}
$$

3.6. Prove that if $c_{n}, n=1,2,8, \ldots$, denote the generalized Fourier coefficients corresponding to $f(x)$, then

$$
\sum_{n=1}^{\infty} o_{n}^{2} \leqq \int_{a}^{b}[f(x)]^{2} d x
$$

From Problem 3.6 we see that, since the root mean square error must be nonnegative,

$$
\begin{equation*}
\sum_{n=1}^{M} e_{n}^{2} \equiv \int_{a}^{b}[f(z)]^{2} d x \tag{1}
\end{equation*}
$$

Then, taking the limit as $M \rightarrow \infty$ and noting that the right side does not depend on $M$, it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} e_{n}^{2} \leqslant \int_{a}^{b}[f(x)]^{2} d x \tag{2}
\end{equation*}
$$

Thit inequality is often called Beasel's inequality.
As a consequence of (2) we see that if the right side of (s) exists, then the sarieg on the left must converge. In the apecial case where the equality holda in ( 2 ) we obtain Parseval's identity.
3.7. Show that $\lim _{n=\infty} \int_{0}^{b} f(x) \phi_{n}(x) d x=0$.

By defnition we have $c_{n}=\int_{a}^{b} f(x) \varphi_{n}(x) d x$. But aince $\sum_{n=1}^{\mathbf{\sum}} c_{n}^{2}$ converges by Problem 3.6, the $n$th term $\varepsilon_{n}^{2}$, and with it $c_{n}$, must approach zero as $n \rightarrow \infty$, which is the required result. Note that this ce日ult for the special case of Fourier series is Riemann's theorem (see Problem 2.19, page 35).

## STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS

3.8. (a) Verify that the system $y^{\prime \prime}+\lambda y=0, y(0)=0, z(1)=0$ is a Sturm-Liouville system. (b) Find the eigenvalues and eigenfunctions of the system. (c) Prove that the eigenfunctions are orthogonal in $(0,1)$. (d) Find the corresponding set of normalized eigenfunctions. (e) Expand $f(x)=1$ in a series of these orthonormal functions.
(a) The aystem is a special case of (18), page 54 , with $p(x)=1, q(x)=0, r(x)=1, a=0, b=1$, $\alpha_{1}=1, a_{2}=0, \beta_{1}=1, \beta_{2}=0$ and thus is a Sturm-Liouville system.
(b) The general soiution of $y^{\prime \prime}+\lambda y=0$ is $y=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x$. From the boundary condition $y(0)=0$ we have $A=0$, i.e. $y=B \sin \sqrt{\lambda} x$. From the boundary condition $y(1)=0$ we have $H \sin \sqrt{\lambda}=0$; since $B$ cannot be zero (otherwise the solution will be iden. tically zero, i.e. trivial), we must have $\sin \sqrt{\lambda}=0$. Then $\sqrt{\lambda}=m v, \lambda=\pi^{2} y^{2}$, where $m=1,2,3, \ldots$ are the required eigenvalues.

The eigenfunctions belonging to the eigenvahes $\lambda=m^{2} z^{2}$ can be designated by $B_{m}$ sin mixix, $m=1,2,3 \ldots$. Note that we exclude the value $m=0$ or $\lambda=0$ as an eigenvalue, since the corresponding eigenfunction is zero.
(c) The eigenfunctions are orthogonal since

$$
\begin{aligned}
\int_{0}^{1}\left(B_{m} \sin m \pi x\right)\left(B_{n} \sin n \pi x\right) d z & =B_{m} B_{n} \int_{0}^{1} \sin m \pi x \sin n \pi x d x \\
& =\frac{B_{m} B_{n}}{2} \int_{0}^{1}[\cos (m-n) \pi x-\cos (m+n) \pi x] d x \\
& =\left.\frac{B_{m} B_{n}}{2}\left[\frac{\sin (m-n) \pi x}{(m-n) \pi}-\frac{\sin (m+n)_{\pi} x}{(m+\pi) \pi}\right]\right|_{0} ^{1}=0, \quad m \rightarrow \pi
\end{aligned}
$$

(d) The eigenfunctions will be orthonormal if

$$
\int_{0}^{1}\left(B_{m} \sin m \pi x\right)^{2} d x=1
$$

i.e. if $B_{m}^{2} \int_{0}^{1} \sin ^{2} m_{F} x d x=\frac{B_{m}^{2}}{2} \int_{0}^{1}\left(1-\cos 2 m_{r} x\right) d x=\frac{B_{m 1}^{2}}{2}=1$, or $B_{m}=\sqrt{2}$, taking the positive square root. Thus the set $\sqrt{2} \sin m s x, m=1,2, \ldots$, is an orthonormal bet.
(c) We must find constants $e_{1}, c_{2}, \ldots$ such that

$$
f(x)=\sum_{m=1}^{\infty} e_{m} \phi_{m}(x)
$$

where $f(x)=1, \phi_{m}(x)=\sqrt{2} \sin m \pi x$. By the methods of Fourier series,

$$
c_{m}=\int_{0}^{1} f(x) \phi_{m}(x) d x=\sqrt{2} \int_{0}^{1} \sin m \pi x d x=\frac{\sqrt{2}(1-\cos m \pi)}{m_{m}}
$$

Then the required series [Foarlex serites] is, assuming $0<x<1$,

$$
1=\sum_{m=1}^{\infty} \frac{2(1-\cos m \sigma)}{m \pi} \sin m r x
$$

3.9. Show that the eigenvalues of a Sturm-Liouville system are real.

We have

$$
\begin{gather*}
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right] \quad[q(x)+\lambda y(x)] y=0  \tag{1}\\
a_{1} y(a)+a_{2} y^{\prime}(a)=0, \quad \beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0 \tag{I}
\end{gather*}
$$

Then assuming $p(x), \phi(x), r(x), \alpha_{t}, \alpha_{24}, \beta_{2}, \beta_{2}$ are real, while $\lambda$ and $y$ may be complex, we have on taking the complex conjugate (represented by using a bar, as in $\dot{y}, \bar{\lambda}$ ):

$$
\begin{gather*}
\frac{d}{d x}\left[p(x) \frac{d \hat{y}}{d x}\right]+[q(x)+\bar{\lambda} r(x)] \hat{y}=0  \tag{s}\\
a_{1} f(a)+\alpha_{2} \dot{y}^{\prime}(a)=0, \quad \beta_{1} \bar{v}(b)+\beta_{2} \dot{y}^{\prime}(b)=0 \tag{i}
\end{gather*}
$$

befiliplying equation (t) by $\hat{\boldsymbol{p}}$, (s) by $y$ and subtracting, we find after simplifying,

$$
\frac{d}{d x}\left[p(x)\left(y y^{\prime}-\tilde{y} y^{\prime}\right)\right]=(\lambda-\tilde{\lambda}) r(x) y \dot{y}
$$

Then integrating from $a$ to $b$, we have

$$
\begin{equation*}
(\lambda-\bar{\lambda}) \int_{a}^{b} r(x)|y|^{2} d x=\left.p(x)\left(y \hat{y}^{\prime}-\bar{y} y\right)\right|_{a} ^{b}=0 \tag{5}
\end{equation*}
$$

on using the conditions ( 2 ) and (4). Since $r(x) \geq 0$ and is not identically zero in ( $a, b$ ), the integral on the left of (5) is positive and so $\lambda-\bar{\lambda}=0$ or $\lambda=\bar{\lambda}$, so that $\lambda$ is real.
3.10. Show that the eigenfunctions'belonging to two different eigenvalues are orthogonal with respect to $r(x)$ in $(a, b)$.

If $y_{1}$ and $y_{2}$ are eigenfunctions belonging to the eigenvalues $\lambda_{1}$ and $\lambda_{2}$ respectively,

$$
\begin{gather*}
\frac{d}{d x}\left[p(x) \frac{d y_{1}}{d x}\right]+\left\{q(x)+\lambda_{1} r(x)\right] y_{1}=0  \tag{J}\\
\alpha_{1} y_{1}(a)+\alpha_{1} y_{1}^{\prime}(a)=0, \quad \beta_{1} y_{1}(b)+\beta_{3} y_{1}^{\prime}(b)=0  \tag{2}\\
\frac{d}{d x}\left[p(x) \frac{d y_{2}}{d x}\right]+\left\{q(x)+\lambda_{2}(x)\right\} y_{2}=0  \tag{s}\\
\alpha_{1} y_{2}(d)+a_{2} y_{2}^{\prime}(a)=0, \quad \beta_{1} y_{1}(b)+\beta_{2} y_{2}^{\prime}(b)=0 \tag{4}
\end{gather*}
$$

Than multiplying ( 1 ) by $y_{s}$, ( $\$$ ) by $y_{t}$ and aubtracting, we find as in Problem 2.9 ,

$$
\frac{d}{d x}\left[p(x)\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)\right]=\left\{\lambda_{1}-\lambda_{2}\right) r(x) y_{1} y_{2}
$$

Integrating from at to $b$, we have on using ( 2 ) and (4),

$$
\left(\lambda_{1}-\lambda_{2}\right) \int_{a}^{D} r(x) y_{1} y_{2} d x=\left.p(x)\left(y_{1} y_{2}^{\prime}-y_{2} y_{2}^{\prime}\right)\right|_{a} ^{b}=0
$$

and ange $\lambda_{1} \neq \lambda_{2}$ we have the required result

$$
\int_{a}^{b} r(x) y_{1} y_{1} d x=0
$$

3.11. Given the Sturm-Liouville system $y^{\prime \prime}+\lambda y=0, y(0)=0, y^{\prime}(L)+\beta y(L)=0$, where $\beta$ and $L$ are given constants. Find ( $a$ ) the eigenvalues and (b) the normalized eigenfunctions of the system. (c) Expand $f(x), 0<x<L$, in a series of these nommalized eigenfunctions.
(c) The general solution of $y^{\prime \prime}+\lambda y=0$ is

$$
v=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda}
$$

Then trom the condition $y(0)=0$ we find $A=0$, so that

$$
y=E \sin \sqrt{\lambda} x
$$

The condition $v^{\prime}(L)+\beta y(L)=0$ givet

$$
\begin{equation*}
B \sqrt{\lambda} \cos \sqrt{\lambda} L+A B \sin \sqrt{\lambda} L=0 \text { or } \tan \sqrt{\lambda} L=-\frac{\sqrt{\lambda}}{A} \tag{I}
\end{equation*}
$$

Which is the equation for determining the eigonvalues $\lambda$. Thia equation cannot be solved exactly; however wo can obtain approximate valuea graphically. To do thit we let $v=\sqrt{\lambda} L$ so that the equation becomes

$$
\begin{equation*}
\tan v=-\frac{v}{\Delta L} \tag{a}
\end{equation*}
$$

The ralaes of $v$, and from these the values of $\lambda$, can be obtained from the intersection points $v_{1}, v_{8}, v_{3}, \ldots$ of the graphs of $w=\tan v$ and $w=-v / \beta L$, se indicsted in Fig. 3-1. In constriction of these we have arsumed thet $\beta$ and $L$ are positive. We alse note that we need only find the positive roots of (2).


Fig. 3-1
(b) Thy elgenfunctions are given by

$$
\begin{equation*}
\phi_{n}(x)=B_{n} \sin \sqrt{\lambda_{n} x} \tag{8}
\end{equation*}
$$

where $\lambda_{n}, n=1,2,3, \ldots$, represent the eigenvalues obtained in part (a). To normalize these we require

$$
\int_{0}^{L} B_{n}^{2} \sin ^{2} \sqrt{h_{n}} x d x=1
$$

1.e.

$$
\frac{B_{n}^{2}}{2} \int_{0}^{2}\left(1-\cos 2 \sqrt{\lambda_{n}} x\right) d x=1
$$

$$
\begin{equation*}
B_{n}^{2}=\frac{4 \sqrt{\lambda_{n}}}{2 \sqrt{\lambda_{n}} L-\sin 2 \sqrt{\lambda_{n}} L} \tag{4}
\end{equation*}
$$

Thus a set of normalized eigenfunetions ts given by

$$
\begin{equation*}
\phi_{n}(x)=\sqrt{\frac{4 \sqrt{\lambda_{n}}}{2 \sqrt{\lambda_{n} L} L-\sin 2 \sqrt{\lambda_{n}} L}} \sin \sqrt{\lambda_{n} x} \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

(c) $\mathrm{If}^{-} f(z)=\sum_{n=1}^{\infty} o_{n} o_{n}(x)$, then

Thus the required expansion is that with coefficients given by ( 6 ). The expanaion for $f(x)$ can equivalently be written as

$$
f(x)=\sum_{n=1}^{\infty} \frac{4 \sqrt{\lambda_{n}}}{2 \sqrt{\lambda_{n}} L-\sin 2 \sqrt{\lambda_{n} L}}\left\{\int_{0}^{L} f(x) \sin \sqrt{\lambda_{n}} x d x\right\} \sin \sqrt{\lambda_{n}} x
$$

## GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

3.12. Generate a set of polynomisls orthonormal in the interval $(-1,1)$ from the sequence $1, x, x^{2}, x^{3}, \ldots$.

According to the Gram-Schmidt process we consider the functions

$$
\phi_{1}(x)=e_{11}, \quad \phi_{2}(x)=o_{11}+c_{22} x, \quad \phi_{3}(x)=c_{31}+c_{32} x+c_{33} x^{2}, \quad \ldots
$$

Since $\phi_{2}(x)$ must be orthogonel to $\phi_{1}(x)$ in $(-1,1)$, we have

$$
\int_{-1}^{1}\left(\sigma_{11}\right)\left(c_{21}+d_{22} x\right) d x=0 \quad \text { i.e. } \quad c_{11}\left(2 e_{21}\right)=0
$$

from whleh $\sigma_{91}=0$, becatise $e_{f 1} \rightarrow 0$. Thus we have

$$
\phi_{1}(z)=c_{11} \quad \phi_{2}(x)=c_{92} x
$$

In order that $\phi_{1}(x)$ and $\phi_{2}(x)$ be pormalized in $(-1,1)$ we must have

$$
\int_{-1}^{1}\left(c_{11}\right)^{2} d x=1 \quad \int_{-1}^{1}\left(c_{22} x\right)^{2} d x=1
$$

from which

$$
c_{11}= \pm \sqrt{\frac{1}{2}} \quad c_{22}= \pm \sqrt{\frac{3}{2}}
$$

Since $\phi_{3}(x)$ mast be orthogonal to $\phi_{1}(x)$ and $\phi_{2}(x)$ in $(-1,1)$, we have

$$
\int_{-1}^{1}\left(c_{11}\right)\left(c_{31}+c_{32} x+c_{33} x^{2}\right) d x=0, \quad \int_{-1}^{1}\left(c_{22} x\right)\left(c_{31}+c_{32} x+c_{33} x^{2}\right\} d x=0
$$

from which

Thus

$$
2 c_{31}+f_{8} c_{33}=0 \quad \text { or } \quad o_{33}=-3 c_{31} \quad o_{32}=0
$$

$$
\phi_{3}(x)=c_{31}\left(I-3 x^{2}\right)
$$

In order that $\phi_{9}(x)$ be normalized in $(-1,1)$ we must have

$$
\int_{-1}^{1}\left[c_{31}\left(1-8 x^{2}\right)\right]^{2} d x=1 \quad \text { whence } \quad c_{31}= \pm \frac{1}{2} \sqrt{\frac{5}{2}}
$$

The orthonormal functions thus far are given by

$$
\phi_{1}(x)= \pm \sqrt{\frac{1}{2}}, \quad \phi_{2}(x)= \pm \sqrt{\frac{8}{2}} x_{1} \quad \phi_{3}(x)= \pm \sqrt{\frac{5}{2}}\left(\frac{3 x^{2}-1}{2}\right)
$$

By continuing the process (see Problem 3.29) we find

$$
\phi_{4}(x)= \pm \sqrt{\frac{7}{2}}\left(\frac{5 x^{3}-9 x}{2}\right), \quad \phi_{3}(x)= \pm \sqrt{\frac{9}{2}}\left(\frac{35 x^{4}-30 x^{2}+3}{8}\right), \quad \ldots
$$

From these we obtain the Legendre polynomiale

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x_{1} \quad P_{2}(x)=\frac{3 x^{2}-1}{2}, \quad P_{3}(x)=\frac{5 x^{3}-3 x}{2}, \\
\quad P_{4}(x)=\frac{85 x^{4}-30 x^{2}+3}{8}, \quad \cdots
\end{gathered}
$$

The polynomials are such that $P_{\pi}(1)=1, n=0,1,2,8, \ldots$. We shall investigato Legendre polynomiale and applications in Chapter 7.

## APPLICATIONS TO BOUNDARY YALUE PROBLEMS

3.13. A thin conducting bar whose ends are at $x=0$ and $x=L$ has the end $x=0$ at temperature zero, while at the end $x=L$ radiation takes place into a medium of temperature zero. Assuming that the surface is insulated and that the initial temperature is $f(x), 0<x<L$, find the temperature at any point $x$ of the bar at any time $t$.

The heat conduction equation for the temperature in a bar whose surface is insulated is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\pi \frac{\partial^{2} u}{\partial x^{2}} \tag{I}
\end{equation*}
$$

Absuming Newton's law of cooling applies at the end $x=L$, we obtain the condition
or

$$
\begin{align*}
-K_{u_{\mathrm{r}}}(L, t) & =h[\mathfrak{u}(L, t)-0] \\
u_{z}(L, t) & =-\operatorname{Au}(L, t) \tag{2}
\end{align*}
$$

where $\beta=K / h, K$ being the thermal conductivity and $h$ a constant of proportionality. The remaining boundary conditions are given by

$$
u(0, t)=0, \quad u(x, 0)=f(x), \quad|u(x, t)|<M
$$

To solve this boundary value problem we let $u=X T$ in (1) to obtain the solution

$$
u=e^{-k \lambda t}(A \cos \lambda x+\beta \sin \lambda x)
$$

From $u(0, t)=0$ we find $A=0$, so that

$$
u(x, t)=B e^{-\kappa x^{\prime} t} \sin \lambda x
$$

The boundary condition (2) yields

$$
\begin{equation*}
\tan \lambda L=-\frac{\lambda}{\beta} \tag{s}
\end{equation*}
$$

This equation is exactly the same as (I) on page 60 with $\lambda$ replaced by $\lambda^{2}$. Donoting the ath positive root of $(s)$ by $\lambda_{\mathrm{B}}, n=1,2,3, \ldots$, we see that solutions are

$$
u(x, t)=B_{n^{e}} e^{-x \lambda_{n} k_{t} t} \sin \lambda_{n} x
$$

Using the principle of auperposition we then arrive at a solution

$$
u(x, t)=\sum_{i=1}^{\infty} B_{n} e^{-k k_{E}^{\lambda} t} \sin \lambda_{n} x
$$

The last boundary condition, $u(x, 0)=f(x)$, now leads to

$$
f(x)=\sum_{n=1}^{ \pm} B_{n} \sin \lambda_{n} x
$$

We can find $B_{m}$ by multiplying both sides by $\sin \lambda_{m} x$ and then integrating, uoing the fact that

$$
\int_{0}^{L} \sin \lambda_{m} x \sin \lambda_{n} x d x=0 \quad m+n
$$

However the result is already available to us from ( 6 ) of Problem $\mathbf{3 . 1 1}$ if wa replace $\lambda_{n}$ by $\lambda_{n}$. Thas the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4 \lambda_{n} e^{-\alpha \lambda \frac{d}{2} t} \sin \lambda_{n} x}{2 \lambda_{n} L-\sin 2 \lambda_{n} L}\left\{\int_{0}^{L} f(x) \sin \lambda_{n} x d x\right\}
$$

3.14. (a) Show that separation of variables in the boundary value problem

$$
\begin{aligned}
& g(x) \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[K(x) \frac{\partial u}{\partial x}\right]+h(x) u \quad 0<x<L, t>0 \\
& u(0, t)=0, \quad u(L, t)=0, \quad u(x, 0)=f(x), \quad|u(x, t)|<M
\end{aligned}
$$

leads to a Sturm-Liouville system. (b) Give a physical interpretation of the equation in (a). (c) How would you proceed to solve the boundary value problem in (a)?
(a) Letting $u=X T$ in the given equation, we find

$$
g(x) X T^{\prime}=r \frac{d}{d x}\left[K(x) \frac{d X}{d x}\right]+h(x) X T
$$

Then dividing by $g(x) X T$ ylelds

$$
\frac{T^{\prime}}{T}=\frac{1}{g(x) X} \frac{d}{d x}\left[K(x) \frac{d X}{d x}\right]+h(x)
$$

Setting each side equal to $-\lambda$, we find

$$
\begin{equation*}
T^{\prime}+\lambda T=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d x}\left[K(x) \frac{d X}{d x}\right]+[h(x)+\lambda \rho(x)] X=0 \tag{2}
\end{equation*}
$$

Also, from the conditions $u(0, t)=0$ and $u(L, t)=0$ we are led to the conditiona

$$
\begin{equation*}
x(0)=0 \quad x(L)=0 \tag{s}
\end{equation*}
$$

The reguired Sturm-Liouville system is given by (9) and (3). Note that the Sturm-Liouville differential equation (z) corresponds to that of (18), page 64 , if we choose $y=X, p(x)=X(x)$, $q(x)=h(x), r(x)=\rho(x)$.
(b) By comparison with the derivation of the heat conduction equation on page a we nee that $u(x, t)$ can be interpreted as the temparature at any point $x$ at time $t$. In such case $\mathscr{K}(x)$ is the (nonconstant) thermal conductivity and $\rho(z)$ is the speelfic heat multiplied by the denality. The term $h(x)$ can represent the fact that a Newton's law of cooling type radiation into a medium of tomperature zero is taking place at the surface of the bar, with a proportionality factor that depends on position.
(c) From equation (2) subject to boundary conditions ( $t$ ) we can find elger values $\lambda_{n}$ and normalized eigenfunctions $X_{n}(x)$, where $n=1,2,3, \ldots$ Equation (1) gives $T=c e^{-\lambda t}$. Thus a solution obtained by superposition is

$$
u(x, b)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} t} X_{n}(z)
$$

From the boundary condition $u(x, 0)=f(x)$ we have

$$
f(x)=\sum_{x=1}^{\infty} a_{n} X_{n}(x)
$$

which leada to

$$
a_{n}=\int_{0}^{L} f(x) X_{n}(x) d x
$$

Thus we obtain the solution

$$
u(x, t)=\sum_{n=1}^{u}\left\{\int_{0}^{L} f(x) X_{n}(x) d x\right\} e^{-\lambda_{0}\left(X_{n}(x)\right.}
$$

## Supplementary Problems

## ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

3.15. Given the functions $a_{0}, a_{1}+a_{2} x_{1} a_{3}+a_{4} x+a_{5} x^{2}$ where $a_{01} \ldots, a_{s}$ are conatents. Determine the constants so that these functions are mutually orthonormal in the interval ( 0,1 ),
8.16. Generalize Problem 3.16 to arbltrary finite intervals.
3.17. (a) Show that the functions $1,1-x, 2-4 x+x^{2}$ are mutuelly orthogonal in ( $0, \infty$ ) with reapect to the density function $e^{-x}$. (b) Obtain a mutually orthonormal set.
3.18. Give a vector interpretation to function which are orthunormal with respect to a density or weight function.
3.19. (a) Show that-the functions $\cos \left(n \cos ^{-1} x\right), n=0,1,2,8, \ldots$, are mutually orthogonal in $(-1,1)$ with respect to the weight function $\left(1-x^{2}\right)^{-1 / 2}$. (b) Obtain a mutually orthonormal set of these functions.
3.20. Show how to expand $f(x)$ into a series $\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)$, where $\phi_{n}(x)$ are mutually orthonormal in ( $a, b$ ) with respect to the weight function $w(x)$.
3.2i. (a) Expend $f(x)$ into a series having the form $\sum_{n=0}^{\infty} e_{n} \phi_{n}(x)$, where $\rho_{n}(x)$ are the mutually orthonormal functions of Problem 3.19. (b)' Discuss the relationship of the series in (a) to Fourier series.

## APPHOXIMATIONS IN THE LEAST-SQUARES SENSE. PARSEVAL'S IDENTITY AND COMPLETENESS

3.22. Let r be any three-dimensional vector. Show that

$$
\text { (a) }(r \cdot i)^{2}+(r \cdot j)^{2} \leq r^{2} \quad \text { (0) } \quad(r \cdot j)^{2}+(r \cdot j)^{2}+(r \cdot k)^{2}=r^{2}
$$

where $r^{2}=\mathbf{r r r}$ and discuss these with reference to Bessel's inequality and Parseval's identity. Compare with Problem 3.6.
3.23. Suppose that one term in any orthonormsl series (such as a Fourier series) is omitted. (a) Can we expand an arbitrary function $f(x)$ in the series? (b) Can Parseval's identity be satiafied? (c) Can Deasel's inequality be satiafied? Juatify your answers.
324. (a) Find $c_{3}, c_{2}, c_{3}$ such that $\int_{-\pi}^{\pi}\left[x-\left.\left(c_{1} \sin x+c_{2} \sin 2 x+c_{3} \sin 3 x\right)\right|^{2} d x\right.$ is a minimum.
(b) What is the mean bquare error and root mean aquare error in approximating $x$ by $e_{i} \sin x+$ $c_{2} \sin 2 x+c_{3} \sin 3 x$, where $c_{1}, c_{2}, c_{3}$ are the values obtained in (a)?
(c) Suppose that it is desired to approximate $x$ by $a_{1} \sin x+a_{2} \sin 2 x+a_{y} \sin 8 x+a_{4}$ ain $4 x$ in the least-squares sense in the interval $(-\pi, \pi)$. Are the values $a_{1}, a_{1}, a_{3}$ the same as $c_{1}, c_{30}, c_{3}$ of part (a)? Explain and diseuss the signiflcance of this.
3.25. Verify that Bessel's inequality holds in Problem 3.24.
3.26. Discuss the relationship of Problem 3.24 with the expansion of $f(x)=x$ in a Fourier series in the interval ( $-\pi, \pi$ ).
3.27. Prove that the set of orthonormal functions $\phi_{n}(z), n=1,2,3, \ldots$ cannot be complete in ( $a, b$ ) if there exists some function $f(x)$ different from zero which is orthogonal to all members of the set, i.a. if

$$
\int_{a}^{b} f(x) \phi_{n}(x) d x=0 \quad n=1,2,3, \ldots
$$

3.23. Is the converse of Problem 3.21 true? Explain.

## GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

829. Verify that a continuation of the process in Problem 3.12 produces the indicated renults for $\phi_{4}(x)$ and $s_{5}(r)$.
3.30. Given the set of functions $1, x, x^{2}, x^{3}, \ldots$, obtaln from these a set of functions which are mutually orthonormal in $(-1,1)$ with respect to the weight function $x$.
3.31. Work Problem 3.30 if the interval $\left[s(0, x)\right.$ and the weight function is $e^{-x}$. The polynomials thus obtained are Lagzerre polynomials.
3.32. Is it passible to use the Gram-Schmidt process to obtain from $x, 1-x, 3+2 x$ wet of functiona orthonormal in ( 0,1 )? Explain.

## STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS

3.33. (a) Verify that the system $y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, v(1)=0$ is a Sturm-Liouville Bystam.
(b) Find the eigenvalues and eigenfunctions of the aystem.
(c) Prove that the eigenfunctiona are orthogonal and determine the correaponding orthonormal functions.
3.34. Work Problem 3.33, if the boundary conditions are (a) $y^{(0)}=0, y^{\prime}(1)=0$; (b) $v^{\prime}(0)=0, v^{\prime}(1)=0$.
3.35. Show that in Problem 3.11 we have

$$
B_{n}^{2}=\frac{2\left(\lambda_{n}+\beta^{2}\right)}{L \lambda_{n}+L \beta^{2}+\beta}
$$

3.36. Show that any equation having the form $a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+\left[a_{3}(x)+\lambda a_{3}(x)\right] y=0$ cen be written in Sturm-Liouville form as
with $\quad p(x)={ }_{0} f\left(a_{1} / \Omega_{0}\right) d x ; \quad q(z)=\frac{a_{2}}{a_{0}} p(x) . \quad r(x)=\frac{a_{3}}{s_{0}} p(x)$
3.37. Discuss Problem 3.13 if the boundary conditions are replaced by $u_{r}(0, t)=h_{i} u(0, t), \quad{ }_{1}(L, t)=$ $h_{2} x(L, t)$.
3.38. (a) Bhow that separation of variables in the houndary velue problem

$$
\begin{gathered}
g(x) \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial}{\partial x}\left[r(x) \frac{\partial y}{\partial x}\right]+h(\pi) y \\
y(0, t)=0, \quad y(L, t)=0, \quad y(x, 0)=f(x), \quad y_{1}(x, 0)=0, \quad|y(x, 0)|<M
\end{gathered}
$$

lands to a Sturn-Liouville syatom. (b) Give a physical interpretation of the equations in (a). (c) How would you solve the boundary value problem?
8.s9. Discuss Problem 8.38 if the boundary conditions $y(0, t)=0, y(L, t)=0$ are replaced by $v_{\mathbf{a}}(0, t)=$ $h_{1} y(0, t), V_{x}(L, t)=h_{y} y(L, t)$, respectively.

## applications to boundary value problems

3.40. (a) Solve the boundary walue problem

$$
\begin{array}{cl}
\frac{\partial u}{\partial t}=x \frac{\partial^{2} u}{\partial x^{2}} & 0<z<L, t>0 \\
u(0, t)=0, \quad u_{x}(L, t)=0, & u(x, 0)=f(x), \quad[u(x, t)!<M
\end{array}
$$

and (b) interpret physically.
9.41. (a) Solve the boundary value groblem

$$
\frac{\theta^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

$$
y(0, t)=0, \quad y_{x}(L, t)=0, \quad y(x, 0)=f(x), \quad y_{i}(x, 0)=0, \quad|y(x, t)|<M
$$

and (b) interpret physically,
3.42. (a) Solve the boundary value problem

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial t^{2}}+b^{2} \frac{\partial^{4} y}{\partial x^{4}}=0 \quad 0<x<L, \quad t>0 \\
y(0, t)=0, \quad y_{x}(0, t)=0, \quad y(L, t)=0, \quad y_{z}(L, t)=0, \quad y(x, 0)=f(x), \quad|y(x, t)|<M
\end{gathered}
$$

and (5) interpret physically.
3.43. Show that the solution of the boundary value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u t}{\partial z^{2}} \quad 0<x<l, t>0 \\
u_{x}(0, t)=h u(0, t), \quad u_{x}(h, t)=-h t u(l, t), \quad u(x, 0)=f(x)
\end{gathered}
$$

where $k, h$ and $l$ are constants, is

$$
u(x, t)=\sum_{n^{=1}}^{\infty} e^{-\alpha \lambda_{n}^{1} t} \frac{\lambda_{n} \cos \lambda_{n} x+h \sin \lambda_{n} x}{\left(\lambda_{n}^{2}+h^{2}\right) l+2 h} \int_{0}^{t} f(x)\left(\lambda_{n} \cos \lambda_{n} x+h \sin \lambda_{n} x\right) d z
$$

where $\lambda_{n}$ are solutions of the equation $\tan \lambda t=\frac{2 h \lambda}{\lambda^{2}-h^{2}}$. Give a physical Interpretation,

## Chapter 4

## Gamma, Beta and Other Special Functions

## SPECIAL FUNETIONS

In the process of obtaining solutions to boundary value problems we often arrive at special functions. In this chapter we shall survey some special functions that will be employed in later chapters. If desired, the student may akip this chapter, returning to it should the need arise.

## THE GAMMA FUNCTION

The gamma function, denoted by $\Gamma(n)$, is defined by

$$
\begin{equation*}
I(n)=\int_{0}^{x} x^{n-1} e^{-x} d x \tag{1}
\end{equation*}
$$

which is convergent for $n>0$.
A recurrence formula for the gamma function is

$$
\begin{equation*}
\Gamma(n+1)=n \Gamma(n) \tag{2}
\end{equation*}
$$

where $\Gamma(1)=1$ (see Problem 4.1). From ( $\ell$ ), $\Gamma(n)$ can be determined for all $n>0$ when the values for $1 \leqslant n<2$ (or any other interval of unit length) are known (see table on page 68). In particular if $n$ is a positive integer, then

$$
\begin{equation*}
\Gamma(n+1)=n!\quad n=1,2,3, \ldots \tag{8}
\end{equation*}
$$

For this resson $\Gamma(n)$ is sometimes called the factorial function.
Examples.

$$
\Gamma(2)=1!=1, \quad \Gamma(6)=8!=120, \quad \frac{\Gamma(5)}{\Gamma(3)}=\frac{4!}{2!}=12
$$

It can be shown (Problem 4.4) that

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{4}
\end{equation*}
$$

The recurrence relation (2) is a difference equation which has (1) as a solution. By taking ( 1 ) as the definition of $\Gamma(n)$ for $n>0$, we can generalize the gamma function to $n<0$ by use of (2) in the form

$$
\begin{equation*}
\Gamma(n)=\frac{\Gamma(n+1)}{n} \tag{5}
\end{equation*}
$$

See Problem 4.7, for example. The process is called analytic continuation.

TABLE OF VALUES AND GRAPH OF THE GAMMA FUNCTION

| $n$ | $\mathrm{r}(n)$ |
| :---: | :---: |
| 1.00 | 1.0000 |
| 1.10 | 0.9614 |
| 1.80 | 0.9182 |
| 1.80 | 0.8975 |
| 1.40 | 0.8875 |
| 1.50 | 0.8862 |
| 1.60 | 0.8955 |
| 1.70 | 0.8086 |
| 1.80 | 0.8814 |
| 1.80 | 0.8618 |
| 2.00 | 1.0000 |

Fit. 4-1


## ASYMPTOTIC FORMULA FOR $\mathrm{r}(n)$

If $n$ is large, the computational difficulties inherent in a direct calculation of $\Gamma(n)$ are apparent. A useful result in such case is supplied by the relation

$$
\begin{equation*}
\Gamma(n+1)=\sqrt{2 \pi n} n^{\pi} e^{-n} e^{\theta / 11(n+1)} \quad 0<\theta<1 \tag{6}
\end{equation*}
$$

For moat practical purposes the last factor, which is very close to 1 for large $n$, can be omitted. If $n$ is an integer, we can write

$$
\begin{equation*}
n!\sim \sqrt{2 \pi n} n^{n} e^{-\pi} \tag{7}
\end{equation*}
$$

where $\sim$ means "is approximately equal to for large $\pi^{*}$. This is sometimes called Stirling's faotorial approsimation (or ceymptotic formula) for $n$ !.

## MISCELLANEOUS RESULTS INYOLVING THE GAMMA FUNCTION

1. 

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin x_{t r}}
$$

In particular if $x=\frac{1}{b}, \quad \mathrm{I}\left(\frac{1}{\mathrm{k}}\right)=\sqrt{\mathrm{x}}$ as in (4).
2.

$$
2^{2 x-1} \Gamma(x) \Gamma\left(x+\frac{1}{8}\right)=\sqrt{\pi} \Gamma(2 x)
$$

This is called the duplication formula for the gamma function.
3. $\quad \Gamma(x) \Gamma\left(x+\frac{1}{m}\right) \Gamma\left(x+\frac{2}{m}\right) \cdots \Gamma\left(x+\frac{m-1}{m}\right)=m^{(1 / 2)-m x}(2 \pi)^{(m-1 / 2 / 2} \Gamma(m x)$

The duplication formula is a special case of this with $m=2$.
4.

$$
\Gamma(x+1) \sim \sqrt{2 \pi x} x^{x} e^{-x}\left\{1+\frac{1}{12 x}+\frac{1}{288 x^{2}}-\frac{189}{61,840 x^{5}}+\cdots\right\}
$$

This is called Stirling's asymptotic series for the gamms function. The geries in braces is an asymptotic series as defined on page 70.
5.

$$
I^{v}(1)=\int_{0}^{\infty} e^{-x} \ln x d x=-\gamma
$$

where $\gamma$ is Euler's constant and is defined as

$$
\lim _{y \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{M}-\ln M\right)=0.5772158 \ldots
$$

6. 

$$
\frac{\Gamma^{\prime}(p+1)}{\Gamma(p+1)}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p}-\gamma
$$

## THE BETA FUNCTION

The beta function, denoted by $\mathrm{B}(m, n)$, is defined by

$$
\begin{equation*}
\mathrm{B}(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x \tag{8}
\end{equation*}
$$

Which is convergent for $m>0, n>0$.
The beta function is connected with the gamma function according to the relation

$$
\begin{equation*}
B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \tag{9}
\end{equation*}
$$

See Problem 4.12. Using (4) we can define $B(m, n)$ for $m<0, n<0$.
Many integrals can be avaluated in terms of beta or gamma functions. Two usaful results are

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{1}{y} \mathrm{~B}(m, n)=\frac{\Gamma(m) \Gamma(n)}{2 \Gamma(m+n)} \tag{10}
\end{equation*}
$$

valid for $m>0$ and $n>0$ (see Problems 4.11 and 4.14) and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1}}{1+x} d x=\Gamma(p) \Gamma(1-p)=\frac{\pi}{\sin p_{\pi}} \quad 0<p<1 \tag{11}
\end{equation*}
$$

See Problem 4.18.

## OTHER SPECIAL FUNCTIONS

Many other special functions are of importance in science and engineering. Some of these are given in the following list. Others will be considered in later chapters.

1. Error function.

$$
\begin{aligned}
& \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d u=1-\frac{2}{\sqrt{\pi}} \int_{x}^{x} e^{-u^{0}} d u \\
& \operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{x} e^{-u^{2}} d u=1-\operatorname{erf}(x)
\end{aligned}
$$

2. Complementary error function.
3. Exponential integral. $E i(x)=\int_{x}^{\pi} \frac{e^{-x}}{u} d u$
4. Sine integral.

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin u}{u} d u=\frac{\pi}{2}-\int_{x}^{x} \frac{\sin u}{u} d u
$$

5. Cosine integral.

$$
C i(x)=\int_{x}^{x} \frac{\cos u}{u} d u
$$

6. Fresnel sine integral. $S(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{x} \sin u^{2} d u=1-\sqrt{\frac{2}{\pi}} \int_{z}^{\infty} \sin u^{2} d u$
7. Fresnel cosine integral. $C(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{x} \cos u^{2} \dot{d} u=1-\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} \cos u^{2} d u$

## ASYMPTOTIC SERIES OR EXPANSIONS

Consider the series

$$
\begin{align*}
& S(x)=a_{0}+\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\cdots+\frac{a_{n}}{x^{n}}+\cdots  \tag{12}\\
& S_{a}(x)=a_{0}+\frac{a_{1}}{x}+\frac{a_{z}}{x^{2}}+\cdots+\frac{a_{n}}{x^{n}} \tag{13}
\end{align*}
$$

and suppose that
are the partial sums of the series.
If $\boldsymbol{R}_{n}(x)=f(x)-S_{n}(x)$, where $f(x)$ is given, is such that for every $n$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{n}\left|R_{n}(x)\right|=0 \tag{14}
\end{equation*}
$$

then $S(x)$ is called an asymptotic series or expansion of $f(x)$ and we denote this by writing $f(x) \sim S(x)$.

In practice the series (12) diverges. However, by taking the sum of successive terms of the series, stopping just before the terms begin to increase, we may obtain a useful approximation for $f(x)$. The approximation becomes better the larger the value of $x$.

Various operations with asymptotic series are permissible. For example, asymptotic series may be multiplied together or integrated term by term to yield another asymptotic series.

## Solved Problems

## THE GAMMA FUNCTION

4.1. Prove: (a) $\mathrm{I}(n+1)=n \Gamma(n), n>0 ; \quad$ (b) $I(n+1)=n!, n=1,2,8, \ldots$.
(a) $\Gamma(n+1)=\int_{0}^{4} x^{x} e^{-x} d x=\lim _{M \rightarrow \infty} \int_{0}^{M} x^{n} e^{-x} d x$

$$
\begin{aligned}
& =\lim _{M \rightarrow \infty}\left\{\left.\left(x^{x}\right)\left(-\varepsilon^{-x}\right)\right|_{0} ^{M}-\int_{0}^{N}\left(-e^{-x}\right)\left(x x^{n-1}\right) d x\right\} \\
& =\lim _{N \rightarrow \infty}\left\{-M^{n} e^{-x}+n \int_{0}^{M} x^{n-1} e^{-x} d x\right\}=n \Gamma(n) \quad \text { if } n>0
\end{aligned}
$$

(b) $I(1)=\int_{0}^{\infty} e^{-x} d x=\lim _{M \rightarrow \infty} \int_{0}^{M} e^{-x} d x=\lim _{N \rightarrow \infty}\left(1-e^{-k}\right)=1$

$$
\begin{aligned}
& \text { Put } N=1,2,3, \ldots \text { in } \Gamma(n+1)=n \Gamma(n) . \quad \text { Then } \\
& r(2)=1 \Gamma(1)=1, \quad \Gamma^{\prime}(3)=2 \Gamma(2)=2 \cdot 1=2!, \quad \Gamma(4)=3 \Gamma(3)=3 \cdot 2!=3!
\end{aligned}
$$

In general, $\Gamma(x+1)=\pi$ ! if $n$ is a positive integer.
1.2. Evaluate
(a) $\frac{\Gamma(6)}{2 \Gamma(3)}$,
(b) $\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{d}{( }\right)}$,
(c) $\frac{\Gamma(3) \Gamma(2.5)}{\Gamma(5.5)}$,
(d) $\frac{6 \Gamma\left(\frac{1}{2}\right)}{5 \Gamma\left(\frac{2}{3}\right)}$.
(a) $\frac{r(6)}{2 \Gamma(3)}=\frac{5!}{2 \cdot 2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 2}=80$
(b) $\frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{\frac{9}{2} \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{\frac{9}{3} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{3}{4}$
(c) $\frac{\mathrm{r}(3) \Gamma(2.5)}{\Gamma(5.5)}=\frac{2!(1.5)(0.5) \Gamma(0.5)}{(4.5)(3.5)(2.5)(1.5)(0.5) \Gamma(0.5)}=\frac{16}{315}$

4.3. Evaluate (a) $\int_{0}^{\infty} x^{3} e^{-x} d x$, (b) $\int_{0}^{\infty} x^{4} e^{-2 x} d x$.
(a) $\int_{0}^{\infty} z^{2} e^{-2} d z=r(4)=3!=6$
(b). Let $2 x=y$. Then the integral becomes

$$
\int_{0}^{\infty}\left(\frac{y}{2}\right)^{6}=-x \frac{d y}{2}=\frac{1}{2^{7}} \int_{0}^{\infty} y^{\infty} e^{-x} d y=\frac{\Gamma(7)}{2^{7}}=\frac{6!}{2^{7}}=\frac{45}{8}
$$

4.4. Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

$$
\begin{aligned}
\text { We heve } r\left(\frac{1}{2}\right) & =\int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=2 \int_{0}^{\infty} e^{-x^{1}} d u \text {, on letting } x=u^{2} \text {. It follows that } \\
\left\{r\left(\frac{1}{2}\right)\right\}^{2} & =\left\{2 \int_{0}^{\infty} e^{-u^{4}} d u\right\}\left\{2 \int_{0}^{\infty} e^{-v^{n}} d v\right\}=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(u^{k}+v^{1}\right)} d x d v
\end{aligned}
$$

Changing to polar coordinatea ( $\rho, \phi$ ), where $u=\rho \cos \phi, p=\rho \sin \phi$, the last integral becomes

$$
4 \int_{0=0}^{\pi / 2} \int_{\rho=0}^{\infty} e^{-\rho^{*}} \rho d \rho d \phi=4 \int_{\phi=0}^{\pi / 2}-\left.\frac{1}{e^{-\rho^{2}}}\right|_{\rho=0} ^{\infty} d \phi=\pi
$$

and $\quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
4.5. Evaluate (a) $\int_{0}^{\infty} \sqrt{y} e^{-y^{3}} d y$, (b) $\int_{0}^{\infty} s^{-4 x^{2}} d x$, (c) $\int_{0}^{1} \frac{d x}{\sqrt{-\ln x}}$.
(a) Letting $y^{s}=x$, the integral becomes

$$
\int_{0}^{\infty} \sqrt{x^{1 / 2}} e^{-z} \cdot \frac{1}{8} x^{-2 / 2} d x=\frac{1}{8} \int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=\frac{1}{1} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{7}}{3}
$$

 becomes

$$
\int_{0}^{4} e^{-x} d\left(\frac{x^{1 / 2}}{\sqrt{4 \ln 3}}\right)=\frac{1}{2 \sqrt{\ln 3}} \int_{0}^{x} x^{-1 / 2} \theta^{-x} d x=\frac{r\left(\frac{1}{2}\right)}{2 \sqrt{4 \ln 3}}=\frac{\sqrt{\pi}}{4 \sqrt{\ln 3}}
$$

(c) Let $-\ln x=4$, Then $x=e^{-11}$. When $z=1, u=0$; when $x=0, u=m$. The integral becomes

$$
\int_{0}^{x} \frac{a^{-0}}{\sqrt{x}} d u=\int_{0}^{\infty} u^{-t / 2} \theta^{-v} d u=\Gamma\left(\frac{3}{y}\right)=\sqrt{x}
$$

4.6. Evaluate $\int_{0}^{\infty} x^{m} e^{-a x^{n}} d x$, where $m, n, a$ are positive constants.

Letting $a x^{n}=y$, the integral becomes

$$
\int_{0}^{\infty}\left\{\left(\frac{y}{a}\right)^{1 / n}\right\}^{m} d^{-y}\left\{\left(\frac{y}{a}\right)^{1 / n}\right\}=\frac{1}{\pi d^{(m+1) / n}} \int_{0}^{\infty} y^{(m+1) / n-1}-v d y=\frac{1}{n x^{(m+1) / n}} \Gamma\left(\frac{m+1}{n}\right)
$$

4.7. Evaluat
(a) $\Gamma(-1 / 2)$,
(b) $\Gamma(-6 / 2)$

We wee the generalization to negative values deanned by $\Gamma(n) \doteq \frac{\Gamma(n+1)}{n}$.
(a) Letting $n=-\frac{1}{2}, \quad r(-1 / 2)=\frac{r(1 / 2)}{-1 / 2}=-2 \sqrt{\pi}$.
(b) Letting $n=-9 / 2, \quad \Gamma(-3 / 2)=\frac{\Gamma(-1 / 2)}{-3 / 2}=\frac{-2 \sqrt{\pi}}{-3 / 2}=\frac{4 \sqrt{x}}{8}$, uslag (a).

Then $\quad \Gamma(-5 / 2)=\frac{\Gamma(-3 / 2)}{-5 / 2}=-\frac{8}{15} \sqrt{5}$.
48. Prove that $\int_{0}^{1} x^{m}(\ln x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$, where $n$ is a positive integer and $m>-1$.

Letting $\dot{z}=0^{-y}$, the integral becomes $(-1)^{n} \int_{0}^{m} y^{n} e^{-(m+1) y} d y$. If $(m+1) y=u$, this last Integrel becomes

$$
(-1)^{=} \int_{0}^{\infty} \frac{u^{n}}{(m+1)^{n}}-\frac{d u}{m+1}=\frac{(-1)^{n}}{(m+1)^{n+1}} \int_{0}^{\infty} u^{n} e^{-v} d u=\frac{(-1)^{n}}{(m+1)^{n+1}} \Gamma(n+1)=\frac{(-1)^{n} n!}{(m+1)^{n+1}}
$$

4.9. Prove that $\int_{0}^{\infty} e^{-\alpha \lambda^{\prime}} \cos \beta \lambda d \lambda=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-g^{1} / 4 \alpha}$.

Lat $\quad t=f(\alpha, \beta)=\int_{0}^{\infty}-\alpha \lambda^{4} \cos \beta \lambda d \lambda$. Then

$$
\begin{align*}
\frac{\partial I}{\partial \beta}= & \int_{0}^{\infty}\left(-\lambda B^{-\alpha \lambda^{k}}\right) \sin \beta \lambda d \lambda \\
= & \left.\frac{e^{-\alpha \lambda^{2}}}{2 \alpha} \sin \beta \lambda\right|_{0} ^{\infty}-\frac{\beta}{2 \alpha} \int_{0}^{\alpha} e^{-\alpha \lambda^{3} \cos \beta \lambda d \lambda=-\frac{\beta}{2 \alpha} I} \\
& \frac{1}{I} \frac{\partial I}{\partial \beta}=-\frac{\beta}{2 \alpha} \quad \text { or } \quad \frac{\partial}{\partial \beta} \ln I=-\frac{\beta}{2 \alpha} \tag{1}
\end{align*}
$$

Thuy

$$
\begin{gather*}
\ln I=-\frac{\beta^{2}}{4 \alpha}+c_{1} \\
I=I(a, \beta)=C e^{-\beta^{x} / 4 a} \tag{2}
\end{gather*}
$$

But $C=S(a, 0)=\int_{0}^{\infty} e^{-\alpha \lambda^{2}} d \lambda=\frac{1}{2 \sqrt{a}} \int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=\frac{r\left(\frac{d}{2}\right)}{2 \sqrt{a}}=\frac{1}{2} \sqrt{\frac{\pi}{a}}$, on letting $x=a \lambda^{2}$.
Thus, as required,

$$
y=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-A^{2} / 40}
$$

410. A particle is attracted toward a fixed point $O$ with a force inversely proportional to its instantaneous distance from 0 . If the particle is released from rest, find the time for it to reach 0 .

At time $t=0$ let the particle be located on the $x$-axis at $x=a>0$ and lat $O$ be the origin. Then by Newton's inw

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=-\frac{k}{x} \tag{j}
\end{equation*}
$$

whate $m$ in the mass of the particle and $k>0$ is a constant of proportionality.
Let $\frac{d x}{d t}=v$, the velocity of the particle. Then $\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d u}{d x}$ and ( $($ ) hecomen

$$
\pi v \frac{d v}{d x}=\frac{k}{x} \quad \text { or } \quad \frac{m v^{s}}{2}=-k \ln x+c
$$

upon integrating. Since $t=0$ at $x=a$, we find $c=k \ln a$. Then

$$
\begin{equation*}
\frac{\pi\left(v^{v}\right.}{2}=k \ln \frac{a}{w} \quad \text { or } \quad v=\frac{d x}{d!}=-\sqrt{\frac{2 k}{m}} \sqrt{\ln \frac{a}{x}} \tag{3}
\end{equation*}
$$

where the negative sign in chosen since $a$ is decreasing as $i$ incresses. We thus flad that the time $T$ taken for the particle to go from $x=a$ to $x=0$ is glven by

$$
\begin{equation*}
T=\sqrt{\frac{m}{2 k}} \int_{0}^{a} \frac{d z}{\sqrt{\ln a / x}} \tag{4}
\end{equation*}
$$

Letting In $a / x=u$ or $x=a \theta^{-t}$, this becomes

$$
T=a \sqrt{\frac{m}{2 k}} \int_{0}^{\pi} u^{-1 / 2} \varepsilon^{-a} d u=a \sqrt{\frac{m}{2 k}} \mathrm{r}\left(\frac{h}{1}\right)=a \sqrt{\frac{\pi m}{2 k}}
$$

## THE BETA FUNCTION

4.11. Prove that
(a) $\mathbf{B}(m, n)=\mathbf{B}(n, m)$,
(b) $\mathrm{B}(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 \pi-1} \theta \cos ^{2 n-1} \theta d \theta$.
(a) Using the tranaformation $x=1-y$, we bave

$$
\begin{aligned}
B(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x & =\int_{0}^{1}\left(1-y^{m-1} y^{n-1} d y\right. \\
& =\int_{0}^{1} y^{n-1}(1-y)^{m-1} d y=B(n, \pi n)
\end{aligned}
$$

(b) Using the transformation $y=\sin ^{2} \theta$, we have

$$
\begin{aligned}
B(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x & =\int_{0}^{\pi / 2}\left(\sin ^{2} \theta\right)^{n-1}\left(\cos ^{2} \theta\right)^{n-1} 2 \sin \theta \cos \theta d t \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta
\end{aligned}
$$

4.12. Prove that $B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \quad \pi, n>0$.

Letting $z=x^{2}$, we have $\Gamma(m)=\int_{0}^{\infty} x^{m-1} d^{-x} d z=2 \int_{0}^{+\pi} x^{1 m-1} e^{-x^{2}} d x$.
Sinilarly, $\quad I(n)=2 \int_{0}^{\infty} y^{\beta n-1} \theta^{-y^{2}} d y$. Then

$$
\begin{aligned}
\Gamma(m) \Gamma(n) & =4\left(\int_{0}^{\infty} x^{2 m-1} e^{-x^{1}} d x\right)\left(\int_{0}^{\infty} y^{3 n-1} e^{-y^{t}} d y\right) \\
& =4 \int_{0}^{\infty} \int_{0}^{\infty} x^{2 m-1} y^{2 n-1} e^{-\left(x^{t}+y^{4}\right)} d x d y
\end{aligned}
$$

Transforming to polar coordinatee, $x=\rho \cos \phi, y=\rho \sin \phi$,

$$
\begin{aligned}
& r(m) P(n)=4 \int_{\phi=0}^{\pi / 2} \int_{D=0}^{\infty} \rho^{2(m+n) \cdots 1}-\rho^{2} \cos 2 m-1 \phi \sin ^{2 A-1} \phi d_{\rho} d_{\phi} \\
& =4\left(\int_{\rho=0}^{\infty} p^{2(m+n)-1} \theta^{-\rho^{2}} d p\right)\left(\int_{\varphi=0}^{\pi / 2} \cos ^{2 m-1} \phi \sin ^{2 n-1} \phi d_{\phi}\right) \\
& =2 \Gamma(m+n) \int_{0}^{\pi / 2} \cos ^{2 m-1} \phi \sin ^{2 n-1} \phi d_{\phi}=\Gamma(m+n) B(m, m) \\
& =\Gamma(m+r) \mathbf{B}(m, n)
\end{aligned}
$$

uging the respits of Problem 4.11. Hence the required result follows.
The above argmont can be made rigorous by using a umiting procedure.
4.13. Evaluate
(a) $\int_{0}^{1} x^{4}(1-x)^{3} d x$,
(b) $\int_{0}^{2} \frac{x^{2} d x}{\sqrt{2-x}}$,
(c) $\int_{0}^{a} y^{4} \sqrt{a^{2}-y^{2}} d y$.
(a) $\int_{0}^{1} x^{-1}(1-x)^{3} d x=B(5,4)=\frac{\Gamma(5) \Gamma(4)}{I^{\prime}(9)}=\frac{4!3!}{8!}=\frac{1}{280}$
(b) Letting $x=2 v$, the integral becomes

$$
4 \sqrt{2} \int_{0}^{1} \frac{v^{2}}{\sqrt{1-v}} d v=4 \sqrt{2} \int_{0}^{+1} v^{2}(1-v)^{-1 / 2} d v=4 \sqrt{2} B\left(3, \frac{1}{2}\right)=\frac{4 \sqrt{2} \Gamma(3) \Gamma(1 / 2)}{\Gamma^{\prime}(7 / 2)}=\frac{6 d \sqrt{2}}{15}
$$

(c) Letting $y^{2}=a^{2} x$ or $y=a \sqrt{x}$ the integral becomes

$$
\frac{a^{6}}{2} \int_{0}^{1} x^{9 / 2(3-x)^{1 / 2} d x=\frac{a^{\theta}}{2} B(5 / 2,9 / 2)=\frac{a^{6} \Gamma(5 / 2) \Gamma(3 / 2)}{2 \Gamma(4)}=\frac{\pi a^{0}}{32}}
$$

4.14. Show that $\int_{0}^{\pi / 2} \sin ^{2 n-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{\Gamma(m) \Gamma(n)}{2 \Gamma(m+n)} \quad m, n>0$.

This follows at once from Problems 4.11 and 4.12.
4.15. Evaluate (a) $\int_{0}^{\pi / 2} \sin ^{\theta} \theta d \theta, \quad(b) \int_{0}^{\pi / 2} \sin ^{4} \theta \cos ^{6} \theta d \theta, \quad$ (c) $\int_{0}^{\pi} \cos ^{4} \theta d \theta$.
(a) Let $2 m-1=6,2 n-1=0$, i.e. $m=7 / 2, n=1 / 2$, in Problem 4.14.

Then the required integral has the value $\frac{\Gamma(7 / 2) \Gamma(1 / 2)}{2 \Gamma(1)}=\frac{5 \text { r }}{32}$.
(b) Letting $\overline{2} m-1=4,2 q-1=5$, the required integral has the value $\frac{\Gamma(5 / 2) \Gamma(8)}{2 \Gamma(11 / 2)}=\frac{8}{815}$.
(c) $\int_{0}^{\pi} \cos ^{4} g d \theta=2 \int_{0}^{\pi / 2} \cos ^{4} \theta d s$. Thus, letting $2 m-1=0,2 n-1=4$ in Problem 4.14, the value is $\frac{2 \Gamma(1 / 2) \Gamma(5 / 2)}{2 \Gamma(3)}=\frac{8 \pi}{8}$.
4.16. Prove $\int_{0}^{\pi / 2} \sin ^{p} \theta d \theta=\int_{0}^{\pi / 2} \cos ^{p} \theta d \theta=(a) \frac{1 \cdot 3 \cdot 5 \cdots(p-1)}{2 \cdot 4 \cdot 6 \cdots p} \frac{\pi}{2}$ if $p$ is an even positive integer, $(b) \frac{2 \cdot 4 \cdot 6 \cdots(p-1)}{1 \cdot 3 \cdot 5 \cdot \cdots p}$ if $p$ is an odd positive integer.

From Problem 4.14 with $2 n-1=p, 8 n-1=0$, we have

$$
\int_{0}^{\pi / 2} \sin ^{\mathrm{D}} \theta d \theta=\frac{\Gamma\left[\frac{1}{2}(p+1)\right] \Gamma\left(\frac{1}{3}\right)}{2 \Gamma\left\{\frac{1}{2}(p+2)\right]}
$$

(a) If $p=2 r$, the integral equals

$$
\begin{aligned}
\frac{\Gamma\left(r+\frac{1}{1}\right) \Gamma\left(\frac{1}{2}\right)}{2 \Gamma(r+1)} & =\frac{\left(r-\frac{1}{2}\right)\left(r-\frac{8}{2}\right) \cdots \cdots \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \cdot \Gamma\left(\frac{1}{2}\right)}{2 r(r-1) \cdot \cdots 1} \\
& =\frac{(2 r-1)(2 \tau-3) \cdots 1}{2 r(2 r-2) \cdots 2} \frac{\pi}{2}=\frac{1 \cdot 3 \cdot 5 \cdots(2 r-1)}{2 \cdot 4 \cdot 6 \cdots 2 r} \frac{\pi}{2}
\end{aligned}
$$

(b) If $p=2 r+1$, the integral equals

$$
\frac{\Gamma(r+1) \Gamma\left(\frac{1}{1}\right)}{2 \Gamma\left(r+\frac{8}{9}\right)}=\frac{r(r-1) \cdot \cdots 1 \cdot \sqrt{\pi}}{2\left(r+\frac{1}{1}\right)\left(r-\frac{1}{2}\right) \cdots \cdot \frac{1}{2} \sqrt{\pi}}=\frac{2 \cdot 4 \cdot 6 \cdots 2 r}{1 \cdot 8 \cdot 5 \cdots(2 r+1)}
$$

In both cases $\int_{0}^{\pi / 2} \sin ^{\rho} \theta d \theta=\int_{0}^{\pi / 2} \cos ^{p} \theta d \theta$, ge seen by letting $\theta=\frac{\pi}{2}-\phi$.
4.17. Evaluate
(a) $\int_{0}^{\pi / 2} \cos ^{\mathrm{a}} \theta d \theta$,
(b) $\int_{0}^{\pi / 2} \sin ^{3} \theta \cos ^{2} \theta d \theta$
(c) $\int_{0}^{2 \pi} \sin ^{s} \theta d \theta$
(a) From Problem 4.16 the integral equals $\frac{1 \cdot 9 \cdot 5}{2 \cdot 4 \cdot 6} \frac{\pi}{2}=\frac{5 \pi}{32}$ [eompare Probicm 4.15(a)],
(b) The integral equals

$$
\int_{0}^{+/ 2} \sin ^{5} \theta\left(1-\sin ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta-\int_{0}^{\pi / 2} \sin ^{8} \theta d \theta=\frac{2}{1 \cdot 3}-\frac{2 \cdot 4}{1 \cdot 3 \cdot 5}=\frac{2}{15}
$$

The method of Problem $4.15(b)$ can also be used.
(c) The given integral equals $4 \int_{0}^{\pi / 2} \sin ^{8} \theta d \theta=4\left(\frac{1 \cdot 8 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8} \frac{\pi}{2}\right)=\frac{35 \pi}{64}$.
4.18. Given $\int_{0}^{\infty} \frac{x^{p+1}}{1+x} d x=\frac{\pi}{\sin p_{\pi}}$, show that $\mathrm{r}(p) \mathrm{r}(1-p)=\frac{\pi}{\sin p \pi}$ where $0<p<1$.

Letting $\frac{x}{1+x}=y$ or $x=\frac{y}{i-y}$, the given integral becomes

$$
\int_{0}^{1} z^{p-1}(1-y)-\mathrm{D} d y=\mathrm{B}(p, 1-p)=\mathrm{I}^{( }(p) \Gamma(1-p)
$$

and the result follows.
4.19. Evaluate $\int_{0}^{\infty} \frac{d y}{1+y^{4}}$.

Let $y^{+}=z$.
4.18 with $p=\frac{1}{6}$. Then the integral becomes $\frac{1}{4} \int_{0}^{\infty} \frac{x^{-3 / 4}}{1+x} d x=\frac{\pi}{4 \sin (\pi / 4)}=\frac{\pi \sqrt{2}}{4}$ by Problem
The result can also be obtained by letting $y^{2}=\tan \theta$.
4.20. Show that $\int_{0}^{2} x \sqrt[3]{8-x^{3}} d x=\frac{16 \pi}{9 \sqrt{3}}$.

Letting $x^{3}=8 y$ or $x=2 y^{2 / 3}$, the integral becomes

$$
\begin{aligned}
& \int_{0}^{1} 2 y^{1 / 3} \cdot \sqrt[3]{8(1-y)} \cdot \frac{2}{8} y^{-2 / 5} d y=\frac{8}{3} \int_{0}^{1} y^{-3 / 3}(1-y)^{1 / 3} d y=\frac{8}{3} B\left(\frac{1}{3}, \frac{5}{y}\right) \\
& =\frac{8}{3} \frac{\Gamma\left(\frac{3}{8}\right) \Gamma\left(\frac{f}{8}\right)}{\Gamma(2)}=\frac{8}{9} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{f}{3}\right)=\frac{8}{9} \cdot \frac{\pi}{\sin \pi / 3}=\frac{1 f i \pi}{9 \sqrt{3}}
\end{aligned}
$$

4.21. Prove the duplication formula; $\quad 2^{2 p-1} \mathrm{r}(p) \Gamma\left(p+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 p)$,

Let $I=\int_{0}^{\pi / 2} \sin ^{2 \rho} x d x, \quad J=\int_{0}^{\pi / 2} \sin ^{2 \rho} 2 x d x$.
Then $\quad l=\frac{1}{2} \mathrm{~B}\left(p+\frac{1}{2}, \frac{1}{2}\right)=\frac{\Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}}{2 \Gamma(p+1)}$
Letting $2 x=u$, we find

But

$$
\begin{gathered}
J=\frac{1}{2} \int_{0}^{\pi} \sin ^{2 p} u d u=\int_{0}^{\pi / 2} \sin ^{2 p} u d u=1 \\
J=\int_{0}^{\pi / 2}(2 \sin x \cos x)^{2 p} d x=2^{2 p} \int_{0}^{\pi / 2} \sin ^{2 p x} \cos ^{2 p} x d x \\
= \\
=2^{2 p-1} \mathrm{~B}\left(p+\frac{1}{2}, p+\frac{1}{2}\right)=\frac{2^{2 x-1}\left\{\mathrm{Y}\left(p+\frac{1}{2}\right)\right\}^{2}}{\Gamma(2 p+1\}}
\end{gathered}
$$

Then since $t=\boldsymbol{J}$,

$$
\frac{\Gamma\left(p+\frac{1}{v}\right) \sqrt{p}}{2 p \Gamma(p)}=\frac{2^{2 p-1}\left\{\Gamma\left(p+\frac{1}{8}\right)\right\}^{2}}{2 p \Gamma(2 p\rangle}
$$

and the required result followa.
4.22. Prove that $\int_{0}^{\infty} \frac{\cos x}{x^{p}} d x=\frac{\pi}{2 \Gamma(p) \cos (0 \pi / 2)}, \quad 0<p<1$.

We have $\frac{1}{x^{D}}=\frac{1}{\Gamma(p)} \int_{0}^{\infty} u^{p-1} e^{-x \#} d u . \quad$ Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos x}{x^{p}} d x=\frac{1}{\Gamma(p)} \int_{0}^{\infty} \int_{0}^{\infty} u^{p-1} e^{-x u} \cos x d u d x=\frac{1}{\Gamma(p)} \int_{0}^{\infty} \frac{u^{p}}{1+u^{2}} d u \tag{I}
\end{equation*}
$$

where we have reversed the order of integration and used the fact that

$$
\begin{equation*}
\int_{0}^{\infty}-x \cos z d x=\frac{4}{u^{2}+1} \tag{L}
\end{equation*}
$$

Leteting $w^{2}=y$ in the last integral in ( 1 ), we have by Problem 4.18

$$
\begin{equation*}
\int_{0}^{\infty} \frac{u^{p}}{1+u^{2}} d u=\frac{1}{2} \int_{0}^{\infty} \frac{v^{(p-1) / 2}}{1+v} d v=\frac{\pi}{2 \pi \sin (p+1) \pi / 2}=\frac{v}{2 \cos p \pi / 2} \tag{s}
\end{equation*}
$$

Substitation of (f) in (n) yields the required result.

## STFRLING'S FORMULA

4.2\%. Show that for large $n, n!=\sqrt{2 \pi n} n^{n} e^{-n}$ approximately.

We have

$$
\begin{equation*}
\Gamma(n+1)=\int_{0}^{\infty} x^{n} 0^{-2} d x=\int_{0}^{\infty} e^{n \ln x-x} d x \tag{1}
\end{equation*}
$$

The function $x \ln x-\infty$ has a reistive maximum for $x=n$, as is easily shown by elementary calculus. This leads us to the aubstitution $\boldsymbol{z}=\boldsymbol{n}+\boldsymbol{y}$. Then (1) becomet

$$
\begin{align*}
\Gamma(x+1) & =e^{-n} \int_{-n}^{\infty} e^{n \ln (y+y)-y} d y=e^{-n} \int_{-n}^{\infty-\infty} e^{n \ln n+n \ln (1+y / n)-y} d y \\
& =n^{n} e^{-n} \int_{-n}^{\infty} e^{n \ln (1+y / n)-y} d y
\end{align*}
$$

Up to now the analysis is rigorous. The formal procedures which follow can be mpde rigorous by suitable limiting processes, but the prooss become involved and wo shall omit them.

In (9) use the reault

$$
\begin{equation*}
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{8}-\cdots \tag{s}
\end{equation*}
$$

with $x=y / n$. Then on letting $y=\sqrt{n} v_{1}$ we find

$$
\begin{equation*}
\Gamma(n+1)=n^{n} \cdot e^{-n} \int_{-n}^{\infty} e^{-v^{2} / 2 n+v^{0} / 2 n^{2}-\cdots} d y=n^{n} e^{-n} \sqrt{n} \int_{-\sqrt{n}}^{n} e^{-v^{2} / 2+v^{1} / a \sqrt{n}-\cdots} d v \tag{4}
\end{equation*}
$$

When $n$ is large a close approximation is

$$
\begin{equation*}
r(n+1)=n^{n} e^{-n} \sqrt{n} \int_{-\infty}^{\infty} e^{-v^{t} ; 2} d v=\sqrt{2 \pi n} n^{n} e^{-n} \tag{5}
\end{equation*}
$$

It is of inkerest that from ( 6 ) we can obtain the entire asymptotic series for the gamma function (regule 4. on page 68). See Problem 4.86.

## SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

4．24．（a）Prove that if $x>0, p>0$ ，then

$$
l_{p}=\int_{x}^{\infty} \frac{e^{-u}}{u^{p}} d u=S_{n}(x)+R_{n}(x)
$$

where

$$
\begin{aligned}
& S_{n}(x)=e^{-x}\left\{\frac{1}{x^{p}}-\frac{p}{x^{p+1}}+\frac{p(p+1)}{x^{p+2}}-\cdots+(-1)^{n} \frac{p(p+1) \cdots(p+n)}{x^{p+n}}\right\} \\
& R_{n}(x)=(-1)^{n+1} p(p+1) \cdots(p+n) \int_{z}^{\infty} \frac{e^{-u}}{u^{p+n+1}} d u
\end{aligned}
$$

（b）Prove that $\lim _{x \rightarrow \infty} x^{n}\left|\int_{x}^{\infty} \frac{e^{-n}}{u^{p}} d u-S_{n}(x)\right|=\lim _{x \rightarrow \infty} x^{n}\left|R_{n}(x)\right|=0$ ．
（c）Explain the significance of the results in（b）．
（a）Integrating by parts，we have

$$
I_{p}=\int_{x}^{\infty} \frac{e^{-1}}{u^{p}} d v=\frac{e^{-x}}{x^{p}}-p \int_{x}^{\infty} \frac{e^{-x}}{u^{p+1}} d u=\frac{e^{-1}}{x^{p}}-p I_{\rho+1} .
$$

Similarly $\quad I_{p+1}=\frac{\mathbf{o}^{-x}}{\mathbf{p}^{p+1}}-(p+1) I_{p+2}$ so that

$$
I_{p}=\frac{e^{-x}}{x^{p}}-p\left\{\frac{e^{-x}}{x^{p+1}}-(p+1) I_{p+2}\right\}=\frac{e^{-z}}{x^{p}}-\frac{p e^{-x}}{x^{p+1}}+p(p+1) I_{p+2}
$$

By continuing in this manner the requitred result follows．
（b）

$$
\begin{aligned}
& \left|R_{n}(x)\right|=p(p+1) \cdots(p+n) \int_{n}^{\infty} \frac{e^{-u}}{u^{p+n+1}} d \text { 倍 壬 } p(p+1\} \cdots(p+n) \int_{z}^{x} \frac{e^{-u}}{x^{p+n+1}} d u \\
& \leqslant \frac{p(p+1) \cdots(p+n)}{\underset{\sim}{n} p+n+1} \\
& \text { since } \int_{2}^{*} e^{-u} d u \leq \int_{0}^{*} e^{-u} d u=1 \text {. Thus } \\
& \lim _{x \rightarrow \infty} x^{n^{\prime}} R_{n}(x) \left\lvert\,=\lim _{x \rightarrow \infty} \frac{p(p+1) \cdots(p+n)}{x^{p+1}}=0\right.
\end{aligned}
$$

（c）Because of the rosults in（b），we can say that

$$
\begin{equation*}
\int_{x}^{*} \frac{e^{-u}}{u^{p}} d u-e^{-x}\left\{\frac{1}{x^{p}}-\frac{p}{x^{p+1}}+\frac{p(p+1)}{x^{p+2}}-\cdots\right\} \tag{1}
\end{equation*}
$$

i．e．the series on the right is the asymptotic expansion of the function on the left．

4．25．Show that

$$
\begin{aligned}
\operatorname{erf}(x) & \sim 1-\frac{e^{-x t}}{\sqrt{\pi}}\left(\frac{1}{x}-\frac{1}{2 x^{9}}+\frac{1+3}{2^{2} x^{5}}-\frac{1 \cdot 3 \cdot 5}{2^{3} x^{2}}+\cdots\right) \\
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d v=\frac{1}{\sqrt{\pi}} \int_{0}^{x t} x^{-1 / 2} e^{-x} d x \\
& =1-\frac{1}{\sqrt{\pi}} \int_{x^{2}}^{x} x^{-1 / 2} e^{-x} d u
\end{aligned}
$$

Now from the resuit（ 1 ）of Problem 4.24 we have，on letting $p=1 / 2$ and replacing $x$ by $x^{2}$ ，

$$
\int_{x^{t}}^{\infty} t^{-1 / 2 e^{-u} d u} \sim a^{-x^{1}}\left(\frac{1}{x}-\frac{1}{2 x^{3}}+\frac{1+3}{2^{2} x^{5}}-\frac{1 \cdot 3 \cdot 5}{2^{3} x^{7}}+\cdots\right)
$$

which gives the required result．

## Supplementary Problems

THE GAMMA FUNCTION
4.26. Evaluate
(a) $\frac{\mathrm{I}^{1}(7)}{2 \mathrm{E}^{(4)} \mathrm{I}^{(3)}}$,
(b) $\frac{I(3) \Gamma(3 / 2)}{f^{\prime}(2 / 2)}$,
(c) $r(1 / 2) r(3 / 2) r(5 / 2)$.
4.27. Evaluate
(a) $\int_{0}^{\infty} x^{4} e^{-x} d x$,
(b) $\int_{0}^{\pi} x^{6} a^{-x 5} d x$,
(c) $\int_{0}^{x} x^{2} e^{-2 x^{2}} d x$.
428. Finá
(a) $\int_{0}^{x} e^{-x^{3}} d x$,
(b) $\int_{0}^{x} \sqrt[4]{x} \theta^{-\sqrt{x}} d x$,
(c) $\int_{0}^{\infty} y^{3} e^{-2 b^{2}} d y$.
4.29. Show that $\int_{0}^{x} \frac{\theta^{-s t}}{\sqrt{t}} d t=\sqrt{\frac{\pi}{4}}, s>0$.
4.30. Prove that
(a) $\quad Y(n)=\int_{0}^{1}\left(\ln \frac{1}{x}\right)^{n-1} d x, \quad n>0$
(b) $\quad \int_{0}^{1} x^{p}\left(\ln \frac{1}{x}\right)^{q} d x=\frac{[(q+1)}{(p+1)^{q+1}}, \quad p>-1, q>-1$
431. Evaluate
(a) $\int_{0}^{1}(\ln x)^{4} d x$,
(b) $\int_{0}^{1}(x \ln x)^{3} d x$,
(c) $\int_{0}^{1} \sqrt[3]{\ln (1 / x)} d x$.
4.82. Evaluate
(a) $\Gamma(-7 / 2)$,
(b) $\mathrm{r}(-1 / 3)$.
433. Prove that $\lim _{x \rightarrow-m}|\Gamma(x)|=\propto$ where $m=0,1,2,3, \ldots$
4.34. Prove that if $m$ is \& positive integer, $\quad J\left(-m+\frac{1}{2}\right)=\frac{(-1)^{m} 2^{m} \sqrt{\pi}}{1 \cdot 3 \cdot 5 \cdot 1 \cdot(2 m-1)}$
4.35. Prove that $r^{\prime}(1)=\int_{0}^{*} e^{-x} \ln x d x$ is a negative number. (It is equal to $-y$, where $\gamma=0.577215 \ldots$ is called Eudar'e constant.)
4.86. Oblain the miscellaneous result 4. on page 68 from the result (4) of Problem 4.23.
[Hine: Expand $e^{\left(v^{3} / 3 \sqrt{n}\right)} \ldots$ in a power series and replace the lower limit of the integral by $-\infty$.]

## THE beta function

4.37. Evaluate
(a) $\mathrm{B}(3,5)$,
(b) $\mathbf{B}(3 / 2,2)$,
(c) $\mathrm{B}(1 / 3,2 / 3)$.
4.38. Find
(a) $\int_{0}^{1} x^{2}(1-x)^{3} d x$,
(b) $\int_{0}^{1} \sqrt{(1-x) / x} d x$,
(c) $\int_{0}^{2}\left(4-x^{2}\right)^{3 / 2} d x$.
4.59. Evaluate
(a) $\int_{0}^{4} u^{3 / 2}(4-r)^{5 / 2} d u$,
(b) $\int_{0}^{3} \frac{d x}{\sqrt{3 x-x^{2}}}$.
4.40. Prove that $\int_{0}^{a} \frac{d y}{\sqrt{a^{4}-y^{4}}}=\frac{\{r(1 / 4)\} \in}{4 a \sqrt{2 \pi}}$.
4.41. Evaluate
(a) $\int_{0}^{\pi / 3} \sin ^{4} \theta \cos ^{4} \theta d \theta$, (b) $\int_{0}^{\underline{\theta} \pi} \cos ^{6} \theta d \theta$.
4.42. Evaluatc
(a) $\int_{0}^{\pi} \sin ^{5} \theta d \theta_{1}$
(b) $\int_{0}^{\pi / 2} \cos ^{5} \theta \sin ^{2} \theta d \theta$.
4.48. Prove that " (a) $\cdot \int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=\pi / \sqrt{2} ; \quad$ (b) $\int_{0}^{7 / 2} \tan \theta d \theta=\frac{\pi}{2} \sec \frac{p r}{2}, \quad 0<p<1$.
4.4 Prove that (a) $\int_{0}^{\infty} \frac{x d x}{1+x^{6}}=\frac{\pi}{8 \sqrt{8}}$,
(b) $\int_{0}^{\infty} \frac{t^{2} d y}{1+y^{4}}=\frac{x}{2 \sqrt{2}}$.
44. Prove that $\int_{-\infty}^{\infty} \frac{e^{2 x}}{a d^{3 x}+b} d x=\frac{2}{8 \sqrt{3} a^{2 / 3} b^{1 / 3}}$, where $a, b>0$.

gPECLAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS
447. Show that $\operatorname{exf}(x)=\frac{2}{\sqrt{7}}\left(x-\frac{x^{3}}{3 \cdot 1!}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}+\cdots\right)$.
4.88. Obtain the asymptotic expansion $\quad \operatorname{Zi}(x) \sim \frac{e^{-3}}{2}\left(1-\frac{11}{x}+\frac{21}{x^{2}}-\frac{81}{x^{3}}+\cdots\right)$.
4.49. Show that
(a) $S i(-x)=-S i(x\rangle$,
(b) $S i(\infty)=\pi / 2$.
450. Obtain the agymptotic expansions

$$
\begin{aligned}
& S i(x) \sim \frac{\pi}{2}-\frac{\sin x}{x}\left(\frac{1}{x}-\frac{3!}{x^{3}}+\frac{5!}{x^{3}}-\cdots\right)-\frac{\cos x}{x}\left(1-\frac{2!}{x^{2}}+\frac{4!}{x^{4}}-\cdots\right) \\
& C i(x) \sim \frac{\cos x}{x}\left(\frac{1}{x}-\frac{3!}{x^{4}}+\frac{5!}{x^{5}}-\cdots\right)-\frac{\sin x}{x}\left(i-\frac{2!}{x^{2}}+\frac{4!}{x^{4}}-\cdots\right)
\end{aligned}
$$

4.51. Show that $\int_{0}^{\infty} \frac{\operatorname{tin} x}{x^{0}} d x=\frac{\pi}{2 \Gamma(p) \operatorname{ain}(p \pi / 2)}, 0<p<1$.
452. Show that $\int_{0}^{\infty} \operatorname{Bin} x^{4} \cdot d x=\int_{0}^{\infty} \cos x^{x} d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}$.
458. Prove that $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=0$

