
Chapter 1

Boundary Value Problems

MATHEMATICAL FORMULATION AND SOLUTION OF PHYSICAL PROBLEMS
In solving problems of science and engineering the following steps are generally taken.

I. Mathematical formulation. To achieve such formulation we usually adopt mathematical
models which serve to approximate the real objects under investigation.

Example 1.
To investigate the motion of the earth or other planet about the 5Ufl we can choose points as maths

matical models of the sun and earth. On the other hand, if we wish to investigate the motion of the
earth about its axis, the mathematical model cannot be a point but might be a sphere or even more accu-
rately an ellipsoid.

In the mathematical formulation we use known physical laws to set up equations
describing the problem. If the laws are unknown we may even be led to set up experi-
ments in order to discover them.

Example 2.
In describing the motion of a planet about the sun we use Newton's laws to arrive at a differential

equation involving the distance of the planet from the sun at any time.

2. Mathematical solution. Once a problem has been successfully formulated in terms of
equations, we need to solve them for the unknowns involved, subject to the various
conditions which are given or implied in the physical problem. One important con-
sideration is whether such solutions actually exist and, if they do exist, whether they
are unique.

In the attempt to find solutions, the need for new kinds of mathematical analysis -
leading to new mathematical problems -may arise.

Example 3.
J.B.5 Fourier, in attempting to solve a problem in heat flow which he had formulated in terms of

partial differential equations, was led to the mathematical problem of expansion of functions into series
involving sines and cosines. Such series, now called Fourier series, are of interest from the point of view
of mathematical theory and in physical applications, as we shall see in Chapter 2.

3. Physical interpretation. After a solution has been obtained, it is useful to interpret it
physically. Such interpretations may be of value in suggesting other kinds of problems,
which could lead to new knowledge of a mathematical or physical nature.
In this book we shall be mainly concerned with the mathematical formulation of physi-

cal problems in terms of partial differential equations and with the solution of such equations
by methods commonly called Fourier methods.
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DEFINITIONS PERTAINING TO PARTIAL DIFFERENTIAL EQUATIONS
A partial differential equation is an equation containing an unknown function of two

or more variables and its partial derivatives with respect to these variables.

The order of a partial differential equation is the order of the highest derivative
present.

Example 4.

= 2x — p is a partial differential equation of order two, or a second-order partial differential

equation. Here u Is the dependent variable while x and v are independent variables.

A solution of a partial differential equation is any function which satisfies the equation
Identically.

The general solution is a solution which contains a number of arbitrary independent
functions equal to the order of the equation.

A particular solution is one which can be obtained from the general solution by particu-
lar choice of the arbitrary functions.

Example 5.
As men by substitution, u =X

ty - + F(r) + G(v) is a solution of the partial differential equation
of Example 4, Because it contains two arbitrary independent functions 7(u) and G(y), it is the general
solution, If In particular 7(z) = 2 sin x, O(y) = Sy' — 6. we obtain the particular solution

tL = z2y - fuji2 + 2 sin x + 30-5

A singular solution is one which cannot be obtained from the general solution by par-
ticular choice of the arbitrary functions.

Example 6.

If u = a	
-	

, where is is a function of a and it, we see by substitution that both

a = xF(y) — [F()J2 and a = z2/4 are solutions. The first is the general solution involving one arbitrary
function fly). The second, which cannot be obtained from the general solution by any choice of F(y),
is a singular solution.

A boundary value problem involving it differential equation seeks all solutions
of the equation which satisfy conditions called boundary conditions. Theorems relating to
the existence and uniqueness of such solutions are called existence and uniqueness theorems.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS
The general linear partial differential equation of order two in two independent vari-

ables has the (cnn

= 0aX2 	ax ay	 ay2	 TX 
	 (1)Oy

where A, B.....G may depend on x and y but not on is. A second-order equation with
independent variables x and y which does not have the form (1) is called nonlinear.

If G = 0 identically the equation is called homogeneous, while if 0 " 0 it is called non-
'homogeneous. Generalizations to higher-order equations are easily made.

Because of the nature of the solutions of (1), the equation is often classified as elliptic,
hyperbolic, or parabolic according as B2_ 4AG is less than, greater than, or equal to zero,
respectively.
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SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1. Vibrating string equation at2

This equation is applicable to the small
transverse vibrations of a taut, flexible string,
such as a violin string, initially located on the
x-axis and set into motion (see Fig. 1-1). The
function y(x, t) is the displacement of any
point x of the string at time t. The constant
a' = ,'/,u, where r is the (constant) tension in
the string and p is the (constant) mass per
unit length of the string. It is assumed that
no external forces act on the string and that
it vibrates only due to its elasticity.

The equation can easily be generalized to
vibrations of a membrane or drumhead in two
oni,tinn is

Fig. 1-1

higher dimensions, as for example the
dimensions. In two dimensions, the

	

a2 z	 fa'z	 82z
=

2. Heat conduction equation	 = V¼

Here u(x, y, z, t) is the temperature at position (x, y, z) in a solid at time t. The con-
stant K, called the diffusivity , is equal to K/gM, where the thermal conductivity K, the
specific heat a and the density (mass per unit volume) p are assumed constant. We call
V'u the Laplacian of U; it is given in three-dimensional rectangular coordinates
(x,y,z) by

V2u - 
atu	 82U	 ô214

	

aX2 	 a Y2	 &Z2

3. Laplace's equation	 v2v = 0

This equation occurs in many fields. In the theory of heat conduction, for example,
v is the steady-state temperature, i.e. the temperature after a long time has elapsed,
whose equation is obtained by putting au/at = 0 in the heat conduction equation above.
In the theory of gravitation or electricity v represents the gravitational or electric
potential respectively. For this reason the equation is often called the potential equation.

The problem of solving V 2v = 0 inside a region 'k when v is some given function
on the boundary of ' is often called a Dirichiet problem.

4. Longitudinal vibrations of a beam	 = c2 
a2U

	at2	 ax, j 	-
This equation describes the motion of a beam Fig. 1-2, page 4).-v'hièh can vibrate

longitudinally (i.e. in the xdirection) the vibrations being assumed. small, The variable
u(x, t) is the longitudinal displacement from the equilibrium position of the cross âeetion
at x. The constant c2 = 'EIjL, where E is the modulus of elasticity (stress dijided
by strain) and depends on the properties of the beam, F, is the density (niass per- unit
volume).	 -

Note that this equation is the same as that for a vibrating string.
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5. Transverse vibrations of a beam 	 3 +V ^Ly
=

This equation describes the motion of a beam (initially located on the x-axis, see
Fig. 1-3) which is vibrating transversely (i.e. perpendicular to the z-direction) assuming
small vibrations. In this case y(x, t) is the transverse displacement or deflection at any
time t of any point x. The constant b2 =V/At,, where E is the modulus of elasticity,
I is the moment of inertia of any cross section about the x-axis, A is the area of cross
section and 1z is the mass per unit length. In ease an external transverse force F(x, t)

is applied, the right-hand side of the equation is replaced by b2P(z, t)/EI.

La a jjj7j is	 —ix

Fig. 1.2
	 Fig. 3-3

THE LAPLACIAN IN DIFFERENT COORDINATE SYSTEMS
The Laplacian V¼ often arises In partial differential equations of science and engi-

neering. Depending on the type of problem Involved, the choice of coordinate system may
be Important in obtaining solutions. For example, If the problem involves a cylinder, it
will often be convenient to use cylindrical coordinates; while if it involves a sphere, it will
be convenient to use apherical coordinates.

The Laplacian in cylindrical coordinates (p.#. a) (see Fig. 1-4) is given by

V2U = (2)

The transformation equations between rectangular and cylindrical coordinates are

Zp cos , y=p sin , ZZ
	 (8)

where pO, 0<21T, —o<z<oo.

The Laplacian in spherical coordinates (t, 8,) (see Fig. 1-5) is given by

P1j.14	 • 	 . . Fig. 14
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- I a / 2 0u\ -	 1	 a /	 au	 1	 8¼V 2u -	 or) + 019çsln9j) +
 7sin2980

The transformation equations between rectangular and spherical coordinates are

x = r sin 9 coo , y = r sin O sin , a = r coo 9	 (5)
where

METHODS OF SOLVING BOUNDARY VALUE PROBLEMS

There are many methods by which boundary value problems involving linear partial
differential equations can be solved. In this book we shall be concerned with two methods
which represent somewhat opposing points of view.

In the first method we seek to find the general solution of the partial differential equa-
tion and then particularize it to obtain the actual solution by using the boundary condi-
tions. In the second method we first find particular solutions of the partial differential
equation and then build up the actual solution by use of these particular solutions. Of the
two methods the second will be found to be of far greater applicability than the first.

1. General solutions. In this method we first find the general solution and then that par-
ticular solution which satisfies the boundary conditions. The following theorems are of
fundamental importance.

Theorem i-I (Superposition principle): If is2, 242, . . , u, are solutions of a linear ho-
mogeneous partial differential equation, then CtUi + CslLj +	 + Ci.tLs,

where ci, C2.....c are constants, is also a solution.

Theorem 1-2: The general solution of a linear nonhomogeneous partial differential equa-
tion is obtained by adding a particular solution of the nonhomogeneous
equation to the general solution of the homogeneous equation.

We can sometimes find general solutions by using the methods of ordinary differen-
tial equations. See Problems 1.15 and 1.16.

If A,R.....F in (1) are constants, then the general solution of the homogeneous
equation can be found by assuming that is = et, where a and b are constants to be
determined. See Problems 1.17-1.20.

2. Particular solutions by separation of variables. In this method, which Is simple but
powerful, it is assumed that a solution can be expressed as a product of unknown func-
tions each of which depends on only one of the independent variables. The success of
the method hinges on being able to write the resulting equation so that one side depends
on only one variable while the other side depends on the remaining variables—from
which it is concluded that each side must be a constant. By repetition of this, the un-
known functions can be determined. Superposition of these solutions can then be used
to find the actual solution. See Problems 1.21-1.25.
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Solved Problems

MATHEMATICAL FORMULATION OF PHYSICAL PROBLEMS
I.I. Derive the vibrating string equation on page 8.

Referring to Fig. 1-6, assume that As represents
an element of are of the string.Since the tension is 	 Al	 --

assumed constant, the net upward vertical force acting 	 - - - J
onaila given by	 Ax

	

rains, - reinS 1 	(1)

Since sins = tans, approximately, for small angles,
this force is

	

- ,,!!	 (S
8Wx+AX	 8xx

At_it'--1

X r+Ax

Fig. 1-6

nsing the fact that the slope is tans = . We use here the notation 	 and	 for theam	 am
partial derivatives of y with respect to w evaluated at x and x + Ax, respectively. By Newton's law
this net force is equal to the mass of the string (Js As) times the acceleration of As, which I. given by
Ev +. whet. .O as As 0. Thus we have approximately

am

ats
L2V

am-	
= &As)(+.)	 (8)at2

If the vibrations are small, than As = S approximately, so that (8) becomes on division by pAw:

-S
,.Sxs+az	 öxz =
	 (4)

Taking the limit as Ax 0 (In which case , -' 0 also), we have

=	 or =	 where arr/ax

pSx\Dx/	 eta	 ox2'	 P

is write the boundary conditions for a vibrating string of length L for which (a) the
ends x = 0 and x = L are fixed, (b) the initial shape is given by 1(x), (c) the initial
velocity distribution Is given by g(x), (ci) the displacement at any point z at time t
is bounded.

(a) If the string lsfixed at x =0 and x=L, than the displacement y(w,t) at T0 and sL
most be ran for all times t>0, i.e.

Vie, t) = 0, y(L,t) = 0	 t>O

(6) Since the string has an initial shape given by f(z), we must have

	

y(x,O) = f(x)	 O<x<L

(4 Since the Initial velocity of the string at any point x Is g(x), we must have

	

y1(z,O) = g(x)	 OCxCL

Note that yt(x. 0) is the same as Oy/Ot evaluated at t = 0.

(4) Sines y(x, t) is bounded, we can find a constant M independent of x and t such that

-	 Isi(x,t)l CM	 0<:<L. 9>0

12, Write boundary conditions for a vibrating string for which (a) the end z =0 is
moving so that its displacement is given in terms of time by G(t), (b) the end x = L
is not fixed but is free to move.
(a) The displacement at x = 0 is given by y(O, t). Thus we have

	

y(0, t) = G(t)	 t >0
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(6) If r is the tension, the transverse force acting at any point x is

7 
ay = ry(x, t)

Since the end x = L is free to move so that there is no force acting on It, the boundary
condition is given by

ry(L.,t)	 0	 or	 y1(t,t) = 0	 t>O

1.4. Suppose that in Problem 1.1 the tension in the string is variable, i.e. depends on the
particular point taken. Denoting this tension by r(x), show that the equation for the
vibrating string is or Oyl -

TX	 ax
-

In this case we write (2) of Problem 1.1 as

avI	r(r) --I	 - r(x) ay

	

8x Ixx	 ax'

so that the corresponding equation (4) is
ayr(X) Ly-

x+sr	 8r 1. -	 +

	

pSI	 at2	 £

Thus, taking the limit as Ax -ê 0 (in which case - 0), we obtain

ar,awl -
a zL T ax-i -

after multiplying by p.

1.5. Show that the heat flux across a plane in a conducting medium is given by

where it is the temperature, n is a normal in a direction perpendicular to the plane
and K is the thermal conductivity of the medium.

	Suppose we have two parallel planes I and 11 a dis-	 I	 if
tance In apart (Fig. 1-7), having temperatures u and
u + .Si, respectively. Then the heat flows from the plane
of higher temperature to the plane of lower temperature.

	

Also, the amount of heat per unit area per unit time, called 	 +
the heat flux, is directly proportional to the difference in
temperature An and inversely proportional to the distance
Mt. Thus we have An

	

Heat flux from I to H = —K	 (1) An

where K is the constant of proportionality, called the ther-
mal conductivity. The minus sign occurs in (1) since if
Au> 0 the heat flow actually takes place from 11th I. 	 Fig. I.?

By taking the limit of (1) as An and thus Au approaches zero, we have as required:

	

Heat flux across plane I = —K on—	 (2)
an

We sometimes call Lu the gradient of a which in vector form is Vu, so that (2) can be writtenan

	

Heat flux across plane I = — K Vu	 (8)

I.G. If the temperature at any point (z,j,,) of a solid at time t is u(x,y,z, t) and if K,o

and are respectively the thermal conductivity, specific heat and density of the solid,
all assumed constant, show that
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Tt	 Vie where x =X/,.1

Consider a small volume element of the solid V. as indicated in Fig. 1-8 and greatly enlarged
In Fig. 1-9. By Problem 1.5 the amount of heat per unit area per unit time entering the element
through face PQRS Is —K J , where	 indicates the derivative of a with respect to x evalu-ax
Med at the position a. Since the area of lace PQRS is a Ax, the total amount of heat entering
the element through face PQRS In time At is

-x aLAs

Similarly, the amount of heat leaving the element through face NWZT Is

Au Ax AtOr
where Lu	 indicates the derivative of a with respect to x evaluated at x + Ax.ax

The amount of heat which remains in the element is given by the amount entering minus the
amount leaving, which is, from (1) and (2),

KLu- K' 'LA1IASAt85Ix4-Sx	 OsIzJ

In a similar way we can show that the amounts of heat remaining in the element due to beat
transfer taking plate In the v- and s-directions are given by

KL. - x2!Lj 'LAnsAt0l uAv	 oil vj

and	 {x- K! j5}AZA1IAtas 1.+Ax

respectively.

The total amount of heat gained by the element is given by the sum of (3), (4) and (5). This
amount of heat serves to raise its temperature by the amount Au. Now, we knew that the heat
needed to raise the temperature of a mass m by Au is given by tnqAu, when e is the specific beat,
If the density of the solid 18 , the mass Is in = ,s Ax AV Thus the quantity of heat given by
the sum of (3), (4) and (5) Is equal to

	

ap Ax Aid As Au	 (6)

If we now equate the sum of (3), (4) and (5) to (6), and divide by A: Ay as At, we find

(1)

(2)

(3)

(4)

(5)

(c&!&J	 _K!l	 fx?j	 _K !±j	 out	 K&j 1

	

Ox x+a	 Ox zj. +	 ä flaw	 oil	 + 1Ic;I,
	Ax	 Ay	

+a. - Oz 
• J.AxL I 

In the limit as Ax, AV, As and At all approach zero the above equation becomes

	

++	 = 4
or, as K Is a constant,

	

78¼ flu 8¼\	 Ott=

This can be rewritten as
au
Tt=

where x =	 is called the diffusivity.

-	 Au
At

(7)

(8)

(9)
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Fig. l-8	 Fig. 1-9

1.7. Work Problem 1.6 by using vector methods.

Let V be an arbitrary volume lying within the solid, and let S denote its surface (see Fig. 1-8).
The total flux of heat across 5, or the quantity of heat leaving S per unit time, is

ff (—KVn) - adS

where n is an outward-drawn unit normal to S. Thus the quantity of heat entering S per unit time is

if (KVu) . ntiS = 555 V . (flu) dV	 (1)

by th . !iv,rL .... 5 . thcornnt, The heat contained in a volume V is given by

5Si o

or increase of heat is

a.ie ttV	 =	 cit	 dV	 (t)

Equatina- the right-hand sides of (1) and (2),

551 [c	 -- V-(KV .c)]dV - 0
at

anti since V is orhitrarv, the i ntegrand, assumed continuous, must he identically zero, so that

= VIKVtr)

or if K. an arc i instants,
- V - Vt,	 (3)lit	 -

1.8. Show that for stead y-state heat flow the heat conduction equation of Problem 1.6 or
1.7 reduces to Laplace's equation, v¼ = 0.

lii the cr5: of stvaiiy . stike heat flow the temperature a does not depend on time t, so that
r. 0.	 Thus the equation	 - V,. becomes V 2 u 	 0.

1.9. A thin bar of diffusivity w has its ends at x = 0 and x = L on the x-axis (see
Fig. 1-10;. Its lateral surface is insulated so that heat cannot enter or escape.
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(a) lithe initial temperature is 1(x) and the ends are kept at temperature zero, set up

the bóuñdary value problem. (Li) Work part (a) if the end x = L is insulated, (c) Work

part (a) if the end z = L radiates into the surrounding medium, which is assumed to

be at temperature to.
Thisis a problem in onc4ivnensiOfllzl heat con-

duction since the temperature can only depend on

	

the position r at any time t and can thus be de- 	 1
noted by t4z, t). The heat conduction equation is x=O	 x L
thus given by 

au	 Azu
=O<zCL, t>o	 (I)	 Fig.1-10

Tt	 2-2

(a) Since the ends are kept at temperature zero, we have

u(O,t) = 0, ,4L, t) = 0	 t>0	 (2)

Since the initial temperature is 1(r). we have

	

u(x,O) = f(s)	 OCxCL	 (8)

Also, from physical considerations the temperature must be bounded: hence

Iu(x,t)I CM	 O<x<L, t>O	 (4)

The problem of solving (I) subject to conditions (2), (3) and (4) is the required boundary
value problem. A problem exactly equivalent to that considered above is that of an infinite

slab of conducting material bounded by the planes x = 0 and x = L, where the planes are
kept at temperature zero and where the temperature distribution initially is f(s).

(b) If the end x = L is insulated instead of being at temperature zero, then we must find a
replacement for the condition u(L, t) = 0 in (2). To do this we note that if the end x = L

is insulated then the flux at r = L is zero. Thus we have

—K	 = 0	 or equivalently u(L, 0 = 0	 (5)

which is the required boundary condition.

(e) It Is known from physical laws of heat transfer that the heat flux of radiation from one object
at temperature U 3 to another object at temperature LI2 is given by a(U - Ui), where a is
a constant and the temperatures tJ and U2 are given in absolute or Kelvin temperature which
is the number of Celsius (centigrade) degrees plus 273. This law is often called Ste/an's

radiation law. From this we obtain the boundary condition

	

— Ku(t, ft = a(i4 - 4)	 where u = u(L, ft	 (8)

If U1 and its do not differ too greatly from each other, we can write

- 4 = (U1 - u)(u + rime + 1434 ± a4)

	

t'\	 1u3\2	 Ui

	

= (u - ;(o)rco[l—)	 tç—} +	 + ' 1Us	 UO
— 4n(t4 - u0)

since (n 3 1u5) 3, (2 1 /1(0) 2, (u,/u 0) are approximately equal to 1. Using this approximation, which is
often referred to as Newton's law of cooling, we can write (6) as

—Ku 1(L, ft = $( 4 - no)	 (7)
where /3 is a constant.

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS
1.10. Determine whether each of the following partial differential equations is linear or

nonlinear, state the order of each equation, and name the dependent and independent
variables.
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Ott
(a)	 - = 45

a'R	 3a2R
(5)	 = Il

02w
(c) Wr- = 

? 'St

(d) + 
020a2 —

82; 2 a—	 Ti+jI	 0 —

(e)
I8z2 + ()2 = 1

linear, order 2, dep. var. ti intl. var. it

linear, order 3, de p . var. R. md. var. x, !j

nonlinear, order 2, top. var. II", intl. var. r, 8,

linear, order 2, dep. var ,,,, intl. var. I, y,

nonlinear, order I, dep. var. z, md. var. a,

1.11. Classify each of the following equations as elliptic, hyperbolic or parabolic.

2j
(ft\ -i4_:f = 0
''	 Ox2'

u.j, A1, 80, C1; 112 -4ACrz_4C0 and the equation iselliptic.

(5) Ow=

= t, A = g, B = 0, C = 0; B2 '— 4AC = 0 and the equation Is parabolic.

_a22i
at2 —	 ax1

yt, uy, A=a2, 3r20, C=—i; 82 -4AC4a2 >0	 and the equation ishy-

	

perbolic.	 -

(d) 4+3-—i4+5"'2+4U = 2x 3y
W	 ax ay	 Oy-	 Ox	 a 

A = 1, B 3, C = 4; £2 - 4AC = -'7 C 0 and the equation is elliptic.

	

a¼
+
 0¼	 Ow

(e) xy+3y 2	 = 0
42DX2

A = x, B = 0. C = y; £ 2 - 4AC = —4xy. Hence, in the region xy > 0 the equation
is elliptic; in the region zy < 0 the equation is hyperbolic; if ry = 0, the equation
is parabolic.

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

1.12. Show that v(x, t) = et sin 2x is a solution to the boundary value problem

=	 u(0, t) = u(, t) = 0,	 u(x,0) = sin 2x

From u(x, 1) = e- ft sin 2x we have

u(0, t) = e- sinO = 0,	 n(r, t) = rSF sin 2, = 0,	 u(r,O) = e-0 sin2z = sin 2x

and the boundary conditions are satisfied.

Also	 = - Be 5 ' sin 2x,	 L = 26 "tt cos 2x, L2u-= _ 4rSt sin 2zbit
at	 ax	 &x-

Then substituting into the differential equation, we have
_8c" 81 sin 2x = 2(4c " sin 2x)

which is an identity.
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1.13. (a) Show that v = fly - 3x), where F is an arbitrary differentiable function, is a
general solution of the equation

av + 
3	 = 0av

ax	 Oy

(b) Find the particular solution which satisfies the condition v(O, y) = 4 sin y.

(a) Let y-3x u. Then vF(u) and

at, - avau -
—

r r - F'(u)(—S) = —31'(u)

	

=	 = b"(u)(l) = F'(u)av

Thus	 +S	 = 0ax	 ay

Since the equation is of order one, the solution v = F(u) = P(y —2z), which involves one
arbitrary function, is a general solution.

(7,) v(x, y) = fly - 3x). Then v(O, y) = F(y) = 4 sin y. But if F(y) = 4 sin j,, then v(x, y) =
- Sx) = 4 sin (y - Sx) is the required solution.

1.14. (a) Show that y(x, t) = F(2x + 5t) + G(2x - öt) is a general solution of
02	 02

A	 -
at2	

25
-	 ax2

(6) Find a particular solution satisfying the conditions

p(O. t) = y(-, t) = 0,	 ij(x, 0) = sin 2;	 y(x, 0) = 0

(a) Let 2x+5t = it, Zr — St = v. Then y = F(u)+G(v).

at	 + -	 = F'(u)(S) 4 G'(v)(-5) = &F"(u) - 6G'(v)
2F au 008v	

(1)

8t2
	at (5F"(u) - 5(1(v)) = 	-(v))	

- 8 
Ott - -r-

80 8 = 25P"(u) 'I- 25(1(v)
	

(t)= --
au at

By = 8P01	 aGav -
T	 r + r- r - F'(u)(2) + G'(02)2F'(u) + 2(1(v)

	
(3)

	

- A [2F'(t) + 2(1(v)]OF' Ox	 80' Ov
ax2	ax	 =	 au TZ

+ 2 j—	 = 4F"(u) + 4G"(v)
	

(4)

From (I) and (4), 4	 = 25!t4 and the equation Is satisfied. Since the equation is of

order 2 and the solution involves two arbitrary functions, it is a general solution,

(6) We have from y(x, t) = F(2x + St) + G(2x - ot),

y(x,O) = F(2z) + G(2x) = sin 2x	 (5)

y(x t) = at = &F'(Zx + 50 - 50'(2x - St)Also

so that

Differentiating (5),

From (6),

Then from (7), and (8),

Yt(x. 0) = 5F'(2x) -, 5G'(2x) = 0

2F"(2z) + 2G'(2z) = 2 cos Zr

b"(2x) = G'(2x)

F'(Zx) = G'(2x) =	 cos 2,

(6)

(7)

(8)
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from which	 F(2x)	 sin 2x + c,	 G(2z) = 4 sin 2r + c2

i.e.	 y(z, t) = 4 sin (2x + 5t) + j sin (2z —It) .+ c 1 + c2

Using y(0, t) = 0 or y(w,t) = 0, c 1 + c = 0 so that

y(x,t) = 4 sin (2x+Et) + 4 sin (2x-5t) = sin 2r coo St

which can be checked as the required solution.

METHODS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

1.15. (a) Solve the equation	 =
ax ay

(b) Find the particular solution for which z(x, 0) = x2, z(1, ji) = cos ji.

(a) Write the equation as = r 2y. Then integrating with respect to x, we find
Ty

az
-	 + F(y)-

where fly) is arbitrary.

Integrating (1) with respect to Y.

Z = 4z2 y2 + 5r(v) dy -l• G()

where 0(x) is arbitrary. The result (2) can be written

= z(r,y) = xy2 + H(y) + 0(r)

which has two arbitrary (independent) functions and is therefore a general solution.

(b) Since z(x, 0)	 x2, we have from (3)

	= 11(0) + 0(x)	 or	 0(r) = Z 2 - 11(0)

Thus	 2 = x3y2 + H(y) + r2 - 11(0)

Since z(1, y) = cos y, we have from (5)

	easy =JV 2 + 11(y) -f- 1 - 11(0)	 or	 H(y) = easy -	 - I + 11(0)

Using (6) in (5), we find the required solution

	

2 = 4r 3y2 +Cosy	 4y2+x21

= x2 .1.16. Solve	 t 
&3u 

+ ax
0 r Ott

	Write the equation as	 Lt i + 2it] = x 2 .	 Integrating with respect to x,
Tx

L" 
2 =

	

t+ 2u = ç+F(t)	 or	 j+1t4	 t

This is a linear equation having integrating factor cj(2	 = e2tAt =	 = t2.	 Then

'St± D2u) =	 ^ tP(t)

Integrating,	
=	

+ J tF(t) dt + 11(r) =	 + 0(t) + 11(r)

and this is the required general solution.

¼	 8¼ 	 2'2—u1.17. Find solutions of	 8 = 0.

(1)

(2)

(3)

(4)

(5)

S
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Assume a =	 Substituting in the given equation, we find

(a)+3ab+262)e t5' = 0	 or	 2 35 + 2b2 = o

Then (a + b)(a + 26) = 0 and a = —6, a = —26. If a = —6. ebZ + be = rb(v-1) is a solution
for any value of 6. If a = —26, e_24 ° = 5b(r-2z) is a solution for any value of b.

Since the equation is linear and homogeneous, sums of these solutions are solutions (Theorem
1-1). For example, 3e2(w—r) - 2e313 + bet(rx) is a solution (among many others), and one is
thus led to F(v - x) where F is arbitrary, which can be verified as a solution. Similarly, C(y — 2x),
where G is arbitrary, is a solution. The general solution found by addition is then given by

F(y — r) + G(y-2x)

au	 atz1.18. Find a general solution of (a) 2---+ 3— = 2u, (b) 4-
a¼ - 4 Fit

--+ 82uir = 0.OX2ax	 by

(a) Let U = ecr+bv. Then 2a + 36 = 2, a = 2 - 36	 and 5 U23/2lX + bii =
is a solution.	 2

Thus a = e'F(2y - 3x) is a general solution.

(6) Let a = 6az+bs Then 42 — 4a6 + 62 = U and 6	 2a,2a. From this u =	 and
so F(a'+2y) is a solution.

By analogy with repeated roots for ordinary differential equations we might be led to
believe xG(r + 2y) or yG(z + 2y) to be another solution, and that this is in fact true is easy
to verify. Thus a general solution is

a = F(x+2y) + rG(x+Zy)	 or	 a = Fix -l-2y) + yC(z+2y)

1.19. Solve	 a2u
+ 

a2u = 10e"4".

J2a	 a2u	 -	 -The homogeneous equation	 +	 = 0 has general solution a = Fix + iji) + G(g — ty)
by Problem 1.39(c). 	 a X 2 11

To find a particular solution of the given equation assume a = aet"t' where a is an unknown
constant. This is the method of undetermined coefficients as in ordinary differential equations.
We find a = 2. so that the required general solution is

Fix +iy) + G(x — iy) + 2e'"

1,20. Solve	 02-u - 82u
ax,	 bye =

The homogeneous equation has general solution

a = F(2x+y) + G(2x—y)

To find a particular solution, we would normally assume a = aeir+il as in Problem 1.19 but
this assumed solution is already included in F(2z + y); Hence we assume as in ordinary differential
equations that a = ax82X+iJ (or at = aye+W). Substituting, we find a =

Then a general solution is

a = F(2z+y) + G(2x—y) +

SEPARATION OF VARIABLES
1.21. Solve the boundary value problem

9u alt
= 4il' 

u(O,y)	 8r5
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by the method of separation of variables.
Let it = XY in the given equation, where X depends only on x and Y depends only on V.

Then	 X'y = 4XY'	 or X'141 = Y'/Y

when X' = dX/dx and Y' = dY/dy.

Since K depends only on x and Y depends only on y and since x and p are independent vari-
ables, each aide must be a constant, say c.

Then X' - 4cX = 0, Y' - cY = 0, whose solutions are K = 4 6tx, V = Rn.
A solution is thus given by

t4x,y) = KY = ABer<4r+.) =

From the boundary condition.
u(O,y) = Kn = 8c

which is possible if and only if K = 8 and c = -3. Then u(x, it) = 8e(a+V) = $6—lSz--Sy i

the required solution.

1.22. Solve Problem 121 if u(0, y) = 8r 30 + 4r5.
As before a solution is Kec(t+v), Then J(10c1(t+v) and K2e1(t+0 are solutions and by the

principle of superposition so also Is their sum: La a solution is

u(x, y) = K1 ec.(4r-i- fl + 2gcs(4x+v)
From the boundary condition,

u(O,y) = K16c,v -f R-26c.y =	 + 451

which is possible if and only if K5 = 8, K2 = 4, c1 = -3, c2 = --5.
Then u(x,y) = 8r3x4j,) + 4e- 514Z I- y ) = 8e-143s + 4g20x-5 is the required solution.

123. Solve	 2f, OCx <3, t >0, given that u(O,t) = u(3, t) =

	14; 0) = 5 sin 4,x - 3 sin 8,rx + 2 sin iOn,	 h4x, 01 < At

where the last condition states that ii is bounded for 0 Cx C 3, t> 0.
Let is = XT. Then XV' = X"T and X"/X = T'/2V. Each side must be a constant, which wecall -A2. (If we use +X2, the resulting solution obtained does not satisfy the boundedness condi-

tion for real values of A.) Then

K" + xX = 0,	 V' + 2x2T = 0
with solutions	 K = A 1 cos Ax + B1 sin Ax,	 V =

A solution of the partial differential equation is thus given by

u(x, t) = XT = cte'2X'1	 cos xx + B 1 sin Ar) = e s" (A cos Ax + B sin Ax)
Since t40, t) = 0, e2't(A) = 0 or A = 0. Then

u(x, t) = Br2A't sin Ax

Since u(3,t) =0, Br 2A't sinSx = 0. If B = 0, the solution is identically zero, so we must have
sin ax = 0 or SA = mit, A = mrr/3, where m = 0, ±1,, t2. ... .Thus a solution is

u(x, 5) = Br-""I9 sin

Also, by the principle of superposition,

•

	

u(x, t) = B,e-sn 1it cf sin 
m,rx 

+ B2r2.t/9 sin ,n21x
-.- +	 $in '—i---	 (1)

is a solution. By the last boundary condition,
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tfl 1rx	 flI2rX	 lfl3rX
+ Bu(z0) = B sin	 B, sin -- + B3 sin

= 5 Slfl4fl - 3 sin Bra + 2 sin lOrx

which is possible if and only if B 5 = 5. m1 = 12, B2 = —3, in2 = 24, B3 = 2, m3 = 30.

Substituting these in (1), the required solution is

u(z, t) = 6e—u 'r2l sin 4r, - Se — 128"l sin Sn + 2r200t' t sin iOn	 (!)

This boundary value problem has the following interpretation as a heat flow problem. A bar
whose surface is insulated (Fig. 1-11) has a length of 3 units and a diffusivity of 2 units. If its ends
are kept at temperature zero units and its initial temperature u(x, 0) = B sin drx — 3 sin Bra +

2 sin ion, find the temperature at position a at time t, i.e. find u(r. t).

.(0, 9)	00

Fig. 1-il

1.24. Solve ' -
= 16 V 0 <x <2, t> 0, subject to the conditions i40, t) = 0, y(2, t) = 0,

y(z, 0) = 6 sin ,rz - 3 sin 4,rx, p,(x, 0) = 0, ij(x, 01 C Al.

Let p = X7', where X depends only on a, 7' depends only on t. Then substitution in the

differential equation yields
XlT" = 16X"T or X'7X = T"116T

on separating the variables. Since each side must be a constant, any —xt, we have

X" + x2x = 0, 7" + 16x 2 T = 0
Solving these we find

X = a5 COS X + b, sin xr,	 7' = a2 COS 4xt + b 5 s in 4Xt

Thus a solution is
y(, 0 = (a cos Ax + b sin Xx)(a 2 cos 4At ± b 2 sin 4Xt)	 (1)

To find the constants it is simpler to proceed by using first those boundary conditions involving
two zeros, such as y(0, 0 = 0, y,(r, 0) = 0. From y( O , 0 = 0 we see from (1) that

a 1 (a2 cot 4Xt + b2 sill 	 = 0

so that to obtain a non zero solution (1) we must have a 5 = 0. Thus (1) becomes

y(z, 0 = ( b 1 sin Xz)(a2 cos 4xt + b2 sin 4Xt)	 (2)

Differentiation of (2) with respect to t yields

y,(z, t) = (6 sin Az)(-4Xa 2 sin 4At + 4Xb2 cos 4xt)

so that we have on putting t = 0 and using the condition y,(z, 0) = 0

y,(x, 0) = (b, sin Az)(4Xb 2) = 0	 (3)

In order to obtain a solution (2) which is not zero we see from (3) that we must have b 2 = 0.
Thus (2) becomes

y(r, 5) = B sin Xx cos 4Xt

on putting be = 0 and writing B = bloc.

From t42, 5) = 0 we now find
B sin 2X COS 4At = C

and we see that "e must have sin 2X = 0, i.e. 2X	 us, or >. = mr/2 where vs = 0, i, ±2.....
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Thus	 y(x, t) = B sin Mx—j--cos 2ntrt	 (4)

is a solution. Since this solution is bounded, the condition Iv(x, t)I < M is automatically satisfied.

In order to satisfy the last condition, y(x,O) = S sin ,rz —3 sin 4rx. we first use the principle
of superposition to obtain the solution

y(x, 0	
m1,rx

= Hi sin —j--- cos 2ni 1,t + B2 
sin ,n2rz

-.-- cos 2m2rt	 (5)

Then potting t = 0 we arrive at

y(x.0) = B, sin 
m1rx
---- + B2 sin 

m2rx
—1--

= G sin rz - 3 sin 4n

This is possible if and only if B 1 = 6, vs1 = 2, E = —3 1 in2 = 8. Thus the required solution
(5) is

y(x, t) = 6 sin ,rX cos 4vt - S sin 4rX cos lGrt 	 (6)

This boundary value problem can be interpreted physically in terms of the vibration, of a string.
The string has its ends fixed at x = 0 and x = 2 and is given an initial shape f(s) = 8 sin rX -
3 sin 4,rx. It is then released so that its initial velocity Is zero. Then (6) gives the displacement
of any point z of the string at any later time t.

1.25. Solve	 =	 0< x <3, t>O, given that u(O,t) = u(3, t) = 0, u(x,O)= 1(x),
at	 ^Zll

Iu(x, t)! cM.

This problem differs from Problem 1.23 only in the condition u(ar, 0) = f(x). In seeking to
satisfy this last condition we see that taking a finite number of terms, as in (1) of Problem 1.23,
will be insufficient for arbitrary f(z). Thus we are led to assume that infinitely many terms are
taken, i.e.

u(x, t)	 =	 sin
.1=1	 3

The condition u(x, 0) = f(x) then leads to

f(x) =	 B,,, sinr

or the problem of expansion of a function into a sine series. Such trigonometric expansions, or
Fourier series, will be considered in detail in the next chapter.

Supplementary Problems
MATHEMATICAL FORMULATION OF PHYSICAL PROBLEMS
1.26.

	

	 If a taut, horizontal string with fixed ends vibrates in a vertical plane under the influence of grav-
ity, show that Its equation Is

62_ li =
at2	ax2

where p is the acceleration due to gravity.

1.21. A thin bar located on the x-axis has its ends at x 0 and x = L. The initial temperature of the
bar is f(s), 0 C x C L. and the ends x = 0, x = L are maintained at constant temperatures V,. T2
respectively. Assuming the surrounding medium Is at temperature ?io and that Newton's law of
cooling applies, show that the partial differential equation for the temperature of the bar at an
point at any time is given by

au	 a2,,
at	 dZ2 - pc"—"0)

and write the corresponding boundary conditions.



	

BOUNDARY VALUE PROBLEMS	 [CHAP. 1

	B.	 Write the boundary conditions in Problem 1.27 if (a) the ends r = 0 and x = L are insulated.
(6) the ends x = 0 and x = L radiate into the surrounding medium according to Newton's law
of cooling.

29. The gravitational potential v at any point (z, y, z) outside of a mass 7., located at the point (A', 1', Z)

is defined as the mass in divided by the distance of the point (x, ,, z) from (X, Y. 3). Show that
v satisfies Laplace's equation V 2v = 0.

	

130.	 Extend the result of Problem 1.29 to a solid body.

1.31. A string has its ends fixed at x = 0 and x = L. It is displaced a distance It at its midpoint and
then released. Formulate a boundary value problem for the displacement y(z, t) of any point z
of the string at time t.

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

	1.32.	 Determine whether each of the following partial differential equations is linear or nonlinear, state
the order of each equation, and name the dependent and independent variables.

(a) = 0	 (a)	 (e)
ax2 	 azOy	 a	 ax	 cit'3	 Or	 as

aTiT	 a 2 T	 a	 02
(6) (x2+v oz.- =	 2t'2	 (d) th-

	133.	 Classify each of the following equations as elliptic, hyperbolic or parabolic.
- a20 -	 02u

0	 (e) (x 2 -1)-- -f 2xy —'- + ((a) 
ax	

j	 Ox 4y

au	 02,j	 -	 au	 au
ax ax ay

a— + 'J—(6)	 +	 =	 - Ox	 Ot'

0 2x	 a	 &2	 I)	 - 8 2a -
(°)	 z	 z 

= x+3y	 (I) (412—	 -0. M>0

(d)	 +2 2" 28252xy— + y
ax 	 ax ay	 0y2 

= 0

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 	 -

	1.31.	 Show that z(x,y) = 4e- 31 cos 3y is a solution to the boundary value problem
622	22 	

-3x^ 2
ax'	 =	 ,	 z(x,r/2) = 0,	 x(x,0) =
 at'2

	1.35.	 (a) Show that v(x, y) = xF(2x + y) is a general solution of 	 - 2x? = v.
(6) Find a particular solution satisfying v(1, y ) = y2.

Find a partial differential equation having general solution SL = F(r - 3y) + G(2x + y).

Find a partial differential equation having general solution

(a) z = enf(2y_3x)	 (b) x = f(2x+y) + g(x-2y)

NERAI, SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

.S. (a) Solve x -- + 02
 -- = 0.

ax ay dY

(6)	 Find the particular solution for which 	 z(x,0) = r -f z - !!,	 z(2, y) = 3y4.
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1.39.	 Find general solutions of each of the following.

AL	 a2iiOIL	 au	 8ZL	 82u
(a)	 =	

(1)) _+21	 3u	 (c)	 =

02z 	 OZz	 822	 82z	 02z
(d) --2-f2-z-3=0	 (e) ---2------+	 = 0

Ox 2	8x Ott	 8y2	 Ox2	 ax ay	 Op2

1.40.	 Find general solutions of each of the following.

axOx	 84u 	 au = 4
Ox	 ay

(a) —+2— = x	 (c) -+2j-y

-O2ij -
	 +12t2	 (d) 32z 	822	 2822 = x 

sift hl at2	 aX2	 ax ay	 ay 2

O 4tz8¼	 0¼
1.41.	 Solve

x + 28x20y2 +	 = 16,

Otv 2 Ov	 1 a% .	 = F(r-ct) + G(r+ct)
142. Show that agencral solution of	 +-	 =	 is	 V

SEPARATION OF VARIABLES
1.43. Solve each of the following boundary value problems by the method of separation of variables.

(a) 3+2 LA = 0, u(x,0) = 4e_r
Ox	 &y

(b) = 2+ u,	 u(z,0) = 3e- 5-+2e	 -
Ox	 ay

Ou _,	 02
(c) - 4-.0

	

,	 u(O,t) = 0,	 air, t) = 0,	 ,4r, O) = 2 sin 3z -4 sin 6z

(d)-	 u1(0, t) = 0,	 u(2, 1) = 0.	 a4x.0) = S coa 3z'x- j-- 6	
9rx

at

Ot. - Ou
(e)	 - Sj-, u(x,0) = Sc"

au	 au 2u, u(x,O) = bct - 6r&

- u(0, t) = 0,	 u(4, t) = 0,	 u(x,0) = 6 sin	 + 3 sian

1.44. Solve and give a physical interpretation to the boundary value problem

=	 y(O,t) = y(5,0 = 0,	 ,(x,0) = 0, y 4 (x,0)	 1(x)	 (0<xC5! t>O)

If (a) /(x) = 5 sin xx, (b) 1(z) = 3 sin 2n-x - 2 sin Sn.

_ 0¼1.45. Solve -Ou -	 2ua Ifat	 J2	 (0,t)	 0, u(3, t) = 0, u(r,O) = 2 sin xx - sin 4,r.

1.46. Suppose that in Problem 1.24 we have y(x, 0) = /(x), where 0 C x C 2. Show how the problem
can be solved if we know how to expand 1(r) in a series of since.

1.47. Suppose that in Problem 1.25 the boundary conditions are u 1(0, t) = 0, t43, t) = 0, u(x, 0) = 1(x).
Show how the problem can be solved if we know how to expand f(s) In a series of cosines. Give
a physical interpretation of this problem.



Chapter 2

Fourier Series and Applications

THE NEED FOR FOURIER SERIES
In Problem 1.25, page 17, we saw that to obtain a solution to a particular boundary

value problem we should need to know how to expand a function into a trigonometric series.
In this chapter we shall investigate the theory of such series and shall use the theory to

solve many boundary value problems.
Since each term of the trigonometric series considered in Problem 1,25 is periodic, it

is clear that if we are to expand functions in such series, the functions should also be
periodic. We therefore turn now to the consideration of periodic functions.

PERIODIC FUNCTIONS

A function 1(x) is said to have a period P or to be periodic with period P if for all x,

f(x + P) = 1(z), where P is a positive constant. The least value of P> 0 is called the least

period or simply the period of 1(x).

Example 1.
The function $in x has periods Zr, 4r, Or .... . since sin (x + 2r), sin ( + 411), sin (a, ± 6r), . - - all equal

sins. However, Zr is the least period or the period of sin a,.

Example 2.
The period of sin 'is or cos na,, where it is a positive integer, is 2r/n.

Example 3.
The period of tan r is

Example 4.

A constant has any positive number as a period.

Other e':amples of periodic functions are shown in the graphs of Fig. 2-1.

I	 I

(o)	 (6)	 ic)

Fig. 2'l

20
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PIECEWISE CONTINUOUS FUNCTIONS 	 f(z)

A function f(s) is said to be piecewise con-	
I	 I

tinuous in an interval if (i) the interval can be	 I

divided into a finite number of subintervals in 	 I

each of which f(s) is continuous and (ii) the	 0)

limits of f(s) as x approaches the endpoints of	 I

each subinterval are finite. Another way of 	 -
stating this is to say that a piecewise continu	 f(x + 0)

ous function is one that has at most a finite
number of finite discontinuities. An example
of a piecewise continuous function is shown in	 I
Fig. 2-2. The functions of Fig. 2-1(a) and (c)	

I

are piecewise continuous. The function of Fig.
2-1(b) is continuous.	 Fig. 2-2

The limit of 1(x) from the right or the right-hand Limit of f(s) is often denoted by
Jim f(x + e) = f(x + 0), where (> 0. Similarly, the limit 011(x) from the Left or the left-

hand limit of f(s) is denoted by urn f(x - c ) = f(x - 0), where €> D. The values f(x + 0)

and f(x— 0) at the point .z in Fig. 2-2 are as indicated. The fact that c — 0 and a > 0
is sometimes indicated briefly by -' 0+. Thus, for example, lim f(x +.) = f(x + 0),
Jim f(x—) = f(x-0).

DEFINITION OF FOURIER SERIES
Let f(s) be defined in the interval (—L, L) and determined outside of this interval by

f(x + 2L) = f(s), i.e. assume that f(s) has the period 2L. The Fourier series or Fourier ex-
pansion corresponding to f(s) is defined to be

ao	 f	 nn	 - nrz\
T +	 a,,cos—y-- -I- b,sin—y---;	 (1)

	

-,=I "	 I

where the Fourier coefficients a and b are

	

rL	 n_s
a.= L

1 
j f(x ) cos -L—dX

	

-L	 n=0,1,2,...	 (2)

by, =

Motivation for this definition is supplied in Problem 2.4.

If f(s) has the period at, the coefficients a,, and b can be determined equivalently
from

	

1 rc 2L	 nrx
= Li	 f(x) Cos _zdx

	

n0,l,Z,...	 (3)

	

if, 21- 	nrx
by, 

= L 	 f(x)s in_t—dx

where e is any real number. in the special case c —L, (8) becomes (2). Note that the

constant term in (1) is equal to	 =	 E. f(s) dx, which is the mean of f(s) over a
-period.	 -' -

If 11 = ,r, the series (1) and the coefficients (2) or (8) are particularly simple. The
function in this case has the period 2,r.

It should be emphasized that the series (I) is only the series which corresponds to f(x).
We do not know whether this series converges or even, if it does converge, whether it con-
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verges to 1(x). This problem of convergence was examined by Dirthiet, who developed
conditions for convergence of Fourier series which we now consider.

DIRICULET CONDITIONS
Theorem 2-I: Suppose that

(i) 1(z) is defined and single-valued except possibly at a finite number of
points in (—L, L)

(ii) 1(x) is periodic with period 2L

(iii) 1(x) and f'(x) are piecewise continuous in (-41)

Then the series (1) with coefficients (2) or (3) converges to

(a) 1(x) if x is a point of continuity

(b) f(x+O)+f(x—.0)
2	 if .z is a point of discontinuity

For a proof see Problems 2.18-2.23.
According to this result we can write

1(x) 
= ao 

+ ! (
s in fl7rX'\

coscog -1-- + b-1-- 1 	 (4)

at any point of continuity x. However, if x is a point of discontinuity, then the left side is
replaced by ff(x + 0) + f(x - 0)], so that the series converges to the mean value of f(.T + 0)
and f(x -. 0).

The conditions (i), (ii) and (ill) imposed on 1(x) are sufficient but not necessary, i.e. if
the conditions are satisfied the convergence is guaranteed. However, if they are not satis-
fied the series may or may not converge. The conditions above are generally satisfied in
cases which arise in science or engineering.

There • are at present no known necessary and sufficient conditions for convergence of
Fourier series. It is of interest that continuity of 1(x) does not alone insure convergence
of a Fourier series.

ODD AND EVEN FUNCTIONS
A function 1(x) is called odd if f(—x) = —1(x).	 Thus x', x5 - 3x3 + 2x, sin x, tan Sx

are odd functions.
A function 1(x) is called even if f(—x) = f(x). Thus x4, 2x' - 4x2 + 5, coax, 9 + e'

ire even functions.

The functions portrayed graphically in Fig. 2-1(o) and 2-1(b) are odd and even respec-
vely, but that of Fig. 2-1(c) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present.
the Fourier series corresponding to an even function, only cosine terms (and possibly a

)nstant, which we shall consider to be a cosine term) can be present.

:ALF-RANGE FOURIER SINE OR COSINE SERIES

A half-range Fourier sine or cosine series is a series in which only sine taring or only
osine terms are present, respectively. When a half-range series corresponding to a given
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function is desired, the function is generally defined in the interval (0, L) (which is half of
the interval (—L, /4, thus accounting for the name half-range) and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval, namely
(—L, 0). In such case, we have

Ia = 0, b, 
= 

2
zf m n,x

f(x)s_z—dz

= 0, a 
= Li 

f(X) 
cosdx2	 nrx

for half-range sine series
(5)

for half-range cosine series

PARSE VAL'S IDENTITY states that
1'	 a2

	

LiT, (f(x))2dx = -f +	 (a +M)	 (6)

if a and bft are the Fourier coefficients corresponding to /(x) and if 1(x) satisfies the
Dirichlet conditions.

UNIFORM CONVERGENCE
Suppose that we have an infinite series E u(x). We define the Rth partial aiim of the

series to he the sum of the first R terms of the-series, i.e.

	

S(x) =	 u(x)	 (7)

Now by definition the infinite series is said to converge to 1(x) in some interval if given
any positive number e, there exists for each x in the interval a positive number N such that -

S5 (x) - f(x)I <	 whenever R > N	 (8)

The number N depends in general not only on but also on x. We call 1(x) the sum of
the series.

An important case occurs when N depends on but not on the value of x in the interval.
In such case we say that the series converges uniformly or is uniformly convergent to 1(x).

Two very important properties of uniformly convergent series are summarized in the
following two theorems.

Theorem 2-2: If each tez'rn of an infinite series is continuous in an interval (a. 1,) and the
series is uniformly convergent to the sum 1(x) in this interval, then

1. f(s) is also continuous in the interval
• 2. the series can be integrated term by term, i.e.

•	 J{,unx}dx 
=	 5b	

(9)

Theorem 2-3: If each term of an infinite series has a derivative and the series of deriva-
tives is uniformly convergent, then the series can be differentiated term by
term, i.e.

	

TX ^61	
=	 tun(x)	 (10)

There are various ways of proving the uniform convergence of a series. The most
obvious way is to actually find the sum SR(x) in closed form and then apply the definition
directly. A second and most powerful way is to use a theorem called the Weierstrass Mtest.
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Theorem 24 (Weieratrass M teat): If there exists a set of constants M, n = 1,2,-.

such that for all x in an interval Iu(x)I S M, and if furthermore

converges, then	 tz,.(x) converges uniformly in the interval. Incidently,

the series is also absolutely convergent, i.e.	 Iu(x)I converges, under these
conditions.

Example S.
The series	 converges uniformly In the Interval ( —r, r) [or, in fact, in any interval], since a

set of conitantu M = j/2 can be found such that

sinI E I 9 - and	
nl 

4converges

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
Integration and differentiation of Fourier series can be justified by using Theorems 2-2

and 2-3, which hold for series in general. It must be emphasized, however, that those
theorems provide sufficient conditions and are not necessary. The following theorem for
integration is especially useful.

Theorem 2$: The Fourier series corresponding to f(x) may be integrated term by term

from a to x, and the resulting series will converge uniformly to 51(u) tin,

provided that f(x) is piecewise continuous in —L !^i x L and both t and x
are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES

Using Euler's identities,

	

so = cos8 ± i sin G,	 e° = conS - isinO	 (11)

where i is the imaginary unit such that i = —1, the Fourier series for 1(x) can be written
in complex form as

	

/(x) =	 c, ginwrIL	 (12)

where	 C. =	 f(x)e_nma dx	 (13)

In writing the equality (IS), we are supposing that the Dirichlet conditions are satisfied
and further that 1(x) is continuous at x. If 1(x) is discontinuous at x, the left side of (12)

should be replaced by f(x + 0) + f(x - 0)

DOUBLE FOURIER SERIES

The idea of a Fourier series expansion for a function of a single variable x can be ex-
tended to the case of functions of two variables x and ij, i.e. f(x, y). For example, we can
expand f(x, y) into a double Fourier sine series

	

- 	 tflrX s i n-	 Bs i n—y--	 L 2
(14)m1 ,'l	 I	 2

sin - sin—
4	 Li f f(x,y) . nt,x sin

	
dxwhere	 Bin, = 111L2J	 T,_ 	dy	 -	 (15)
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Similar results can be obtained for cosine series or for series having both sines and cosines.
These ideas can be generalized to triple Fourier series, etc.

APPLICATIONS OF FOURIER SERIES
There are numerous applications of Fourier series to solutions of boundary value prob-

lems. For example:
1. Heat flow. See Problems 2.25-2.29.
2- Laplace's equation. See Problems 2.30, 2.31,
3. Vibrating systems. See Problems 2.82, 2.33.

Solved Problems

FOURIER SERIES
2,1. Graph each of the following functions.

(a) 1(x) = . 8	 0CzC5 Period = 10
—5<x<0

/(x)

Period -

x

	

5	 —20	 —23	 -30	 —5	 0 3	 3	 o	 15	 20	 25

Fig. 2-3

Since the period is 10, that portion of the graph in —B.0 z C 5 (indidated heavy in Fig.

2-3 above) is extended periodically outside this range (indicated dashed). Note that f(x) In not
defned at x = 0, 6. —5, 10, —10,15, —15, etc. These values are the discontinuities of f(x). -

1 sinx 0x,r
	(6) f(s) =	 Period = 2,

0	 ,r<x<2r

Period

S

Fig, 2.4

Refer to Fig.' 2-4 above. Note that f(s) is defined for all 'x and is continuous everywhere.
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10 0x<2
(c) 1(x) =	 2x<4 Period=6

110 4x<6

Pnkd

-- ---	
--- t	 —	 ---	 --

	

-12 -10	 -$	 -o	 '4	 -2	 1 0	 2

Fig. 2-5

Refer to Fig. 2-5 above. Note that 1(x) Is defined for all a and is discontinuous at
a = ±2,:t;4, ±8, ±10, ±14,.,,.

	

2.2. Prove 5 sin tdx =	 cos !CjEdx = 0	 if k= 1,2.3.....

L	 Lkx

	

.r	 I,	 krx	 L
=	 cos L_	 =	 çcoskr +	 cos(-kr) = U

I.

	

L - krx	 L, 	 I,

	

• cos—dr = —sm—	 = —sinkr - —sin(-kr) = 0

	

I.,	 icr	 L L	 icr	 icr

	

2.3, Prove (a) 3 	
mn	 dx =sin tnrz flrz	 0 m-$ n

Cos11L	 "a _r'sin_L—dx = jL m=n

	

(b) 3	
mlrz	 fl,TX

	

-'	 _z_c08_z_dx 0

where nt and it can assume any of the values 1.12,3.....
(a) From trigonometry:

cosA casE = Fcos (A -B) + Cos (A +B)), sin A sin  = (cos (A -B) — cos (A + B)}
Then, if rn n, we have by Problem 2.2:

1-

-, - - c	
L

	

IPLUX flfl	 1 

SLL,{
os 

(m- n)rx +
	 (m + n)rx} dx 

= 0

Similarly, if in v it,	 -
I,	inn ,trx	 1 

F	 (m-
L 
n)rx - (in + n)rx} dx = 0sin L sin

= 2 -	 L

If m = n, we have
rL	fltrX	 fl?Xd	 f (i + coskiE)az = LcosCos= - -

L

dx	
SL 

/	 2nrx\

	

mrx nra	
(1-

	

• i,,,, 
Sifl', 

sin - i'-	 = - - L 	
"ç'jdx = Li

Note that if in = n = 0 these integrals are equal to 2L and 0 respectively,
(b) We have sin A cos B = jisin (.4 - B) + sin (A + B)). Then by Problem 2,2, if in # it.

I.

	

mrx nra	 I 
f { (mn)rx	 (m-1-n)rx	f.sin_y	 -- cos_-dx =
	

- sin	 +aln	
L	

1dx = 0
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If m5,	 I-Li	 razz	 an	 it	 .
p s1n_..cos_z_ dx =	 p stn—2nn—dx = 0

The results of parts (a) and (6) remain valid when the limits of Integration —L, L are replaced

by c, e + 2L respectively.

2.4. If the series A +	 (a, cos fl,rZ	
.

-i- + Sl 
nrx\ converges uniformly to 1(x) in (—L, L),

n'I
show that for n= 1,2,3.....

fl,rX	 1 r	 fl,rZ
(a) a,, = --

 f r.
1(x) cos rai (b) b, = z J_. 1(x) sin

(a) Multiplying	 /(x) = A + nl \an Cos _L— + b_ sln -z
— 
)

(c) A =
as

(1)

by Cos 2	 and integrating from —t to I,, using Problem 2.3, we have

L
f(x) Cos	 dx = ACos mrsK L

i.I.
+	 Ian 5	 mrx sIirZ dx + 6,, j

	
mrs	 ir

Cos_L_ Cos _L_	 —L	
sin-1—as drj

n1	 —L
= a_f, if m#O	 (2)

Thusam = 15L 1(x) cost!±i'dx	 if vs = 1,2,3,...

(6) Multiplying (1) by sin mx and integrating from —L to L, using Problem 2.3, we have
I 	 razz	 ran

sin L  dx = A	 dx

+	 {n f sin mvx cosdz + bn f sin! sin	 dz}

= bL

I
Thus	 6,,	 5 1(x) sin ran—1— dx_ 1.

(a) Integration of (1) from —L to L, using Problem 2.2, gIve

f

I,
f(z)dz = 2AL	 or	 A

if vs = 1, 2,3,

= 21.5L

Putting vs = 0 in the result of part (a), we find a 0 = JILL 1(x) dx and so A =

The above results also hold when the integration limits —L. L are replaced by c, c + 2L.

Note that in all parts above, interchange of summation and integration Is valid because the
series Is assumed to converge uniformly to /(z) in (—L,L). Even when this assumption is not
warranted, the coefficients a,, and 6masobtained above are called Fourier coefficients corresponding
to /(x), and the corresponding series with these values of a,, and 6,,, is called the Fourier series
corresponding to /(r). An important problem in this case is to investigate conditions under which
this series actually converges to /(z). Sufficient conditions for this convergence are the Dir-ichiet
conditions established below in Problems 2.18-2.23.

2.5. (a) Find the Fourier coefficients corresponding to the function

1 0 —5<xcO
1(x) 

=	
Period = 10

1
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(b) Write the corresponding Fourier series.

(c) Row should 1(z) be defined at z = —5, x = 0 and z = 5 in order that the Fourier
series 	 converge to 1(x) for —5 x 5?
The graph of f(s) is shown in Fig. 2-6 below.

— Period —

I	 I I
15	 10	 5	 S	 to	 15

Fig. 24

(a) P4Mod=2L=10 and L6. Cheese the interval c to c+2L as -S to so that c-5.
Than +2L

S=	 f ,()cos—çdx =	 Jf(x)cos--dx

i{f= - - (0) cos-j—dx + 
f	

co5-dx} = 
355 coo	 dx_

== 0	 If n0o
Gknr	 5

Sc OnIfn=O, a = 50=1 coB_Tax ._f dx = S.

+a • 1'5
= -I	 f(s)b. 

=	

+ 
f(x ) ein -L-- ax	 sin 'Z-j-dz

{S0	
S	 - 355

o	 s= -	 _!.x+5 (3)sin
-	

-j —dx	 -	 sin -g--

3(1 - cosnr)
- 1(,_c05_Tjj0

(b) The corresponding Fourier Series Is

cr5	 _____
2	 \SI*COIL + b sin) =	 3(1 - cos 	 nsx

BIflf

36(' yr	 1. Sn	 1. Sn= v-f - 11 sin 1+ 1SIfly+g!ifl+

(a) Since f(s) satiates the Diricklet conditions, we can say that the series converges to f(s) at all

point, of continuity and to f(x + 0) + fix -0) at points of discontinuity. At z = -5, 0 and 5,

which an points of discontinuity, the series converges to (3 + 0)/2 = 8/2, as seen from the
graph. The .erles will converge to f(s) for -5 x S if we redefine f(x) as follows:

3/2
0

AX) =	 3/2	 x0	 Period = 10
3
8/2

2.6. Expand 1(x) = z3, 0 C x C 2n, In a Fourier series if the period is 2ir.
The graph of f(s) with period Zr I. shown in Fig. 2-7.
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/
/

/
/

,

f(s)

I	 /
/

/	 /
/

/
-	 2

0	 4,	 6.

Fig. 2-7

Period =2&=2r and L=r. Choosing c0, we have

a.= -J	 f(x)c 5'ü = 15 xt cos nxdz
c	 °5L	 0

= ![('E) 
(2Z)(_c05z\ + 2 (_slnnx)}1 2' =	

11-0
 J	 0

cr
If n0, soj x2dx	

8,2

j rc+2L	 1 S
3,= z	 f(x) sindx = -	 x2 sin nr

, 0

=	 os	 n1 (2)	 cnz\	 ( sinx\ + (2)(
cosnx'\i., I"I

	 ( - c) - (2r)j—, r'j L = Is

Then 1(r) = x2 =±	 4	 .cosn--s,nnxj for 0<2<2,.
n

	

2.7. Using the results of Problem 2.6, prove that 	 + + +	 =

At x = 0 the Fourier series of Problem 2.6 reduces to f. +
But by the Dirichiet conditions, the series converges at x = 0 to j(O + 4,2) = W.

Hence the desired result.

ODD AND EVEN FUNCTIONS. HALF-RANGE FOURIER SERIES

2.8. Classify each of the following functions according as they are even, odd, or neither
even nor odd.	 f

1 2 O<z<3
(a) 1(x) = j_2 —Scx<O Period6

From Fig. 2-8 below it is seen that f(—x) = —f(4, so that the function is odd.

f(x)

St

2

—8	 -s	 I	 a	 S

I-I
Fig. 2-8
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1c'r
(b) 1(x)	

osx O<z<

= j
Period =2,r

From Fig. 2-9 below it is seen that the function Is neither even nor odd.

1

-27	 —	
'-F

	 \ r	 2.

Fig. 2-9

(c) f(x)=x(10—x), 0 <x <10, Period= 10.
From Pig. 2-10 below the function is seen to be even.

- —.-'
/

/
//

/F\ //\ /
-10	 -I	 S	 ID

PIg, 2-10

2.9. Show that an even function can have no sine terms in its Fourier expansion.

Method I.
No sine terms appear if 6,, = 0, n = 1,2,3.....To show this, let us write

6.

	

	 nflnfl
= ff f(s) sin_L_dx = LJTL 1(x) sin$Ldx ± 

-Jf fix) sin -1-dx	 (1)

If we make the transformation x = -u in the first integral on the right of (1), we obtain

1 0	 1. nra
(

LfL 1(x) sin 
nfl
t- dx 

=	 f(-u) sin--z-) du
= 	

JL f(—u) sin	 du

Tt— — 

j 
flu) sin 

'Ot,
_z._du = — 1(x) aln I,t

-1-
x 
dx (2)

where we have used the faàt that for an even function f(—u) = 1(u) and in the last step that the
dummy variable of integration u can be replaced by any other symbol, in particular x. Thus from
(1), using (2), we have

= -jj fir) sin nfl-y-dx +	 1(x) sin 'On1—dx = 0

Method 2.
Assuming convergence 	

+	
/	 nfl	 ,urxon

1(x) = - (a,, cos -
 - + bn sin

	

2	
-i-)

- /(—x) =Then	 " coa l -1

	

2	 ça. cos-tc - b sin-1--)

If f(s) is even, /(—r) = 1(x). Hence

00 + f 
/	 flfl	

= I + 1( R coo _! — ba sin!r)2	 ça.  cos -1- + b sin	 00
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nfl	 a0
and so	

,tl 
b 11 sin-1- = 0,	 i.e.	 f(x) =	 + ni a con-1-

and no sine terms appear. This method is weaker than Method 1 since convergence is assumed.

In a similar manner we can show that an odd function has no cosine terms (or constant term)

in its Fourier expansion.

2	 nfl

	

2.10. If f(z) a-) is even, show that (a)	 =	 1(x) cos ,-1—dx, (&) b = 0.

'in flrXdx1
(.)	 a,, = "Jt f(x) cos-r- dx =	 JL f(x cot-i- + 15" fix) coon"

Letting x = — it,

L	 (-nru'\	 1 L	 awnI •° MX
/(x) cos-z--	 =	

i'-u) cos	 dx 
=	

1(u) cog	 du

since by definition of an even function f(-u) = f(u). Then

-	 f(u) coautr1t	 an	 2	 nfl1. L5
	I.	 I.

	

da + f 
/(x)cos-1-dx =	 f f(z)

' 

(6) This follows by Method 1 of Problem 2.9.

2.11. Expand 1(x) = sin x. 0 C x C r, in a Fourier cosine series.
A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence

we extend the definition of f(s) so that it becomes even (dashed part of Fig. 2.11). With this
extension, 1(x) is defined in an interval of length 2,. Taking the period as 2w, we have 2L = 2,,

so that L =

	

-r	 -j	 r	 21"

Fig, 2-ti

By Problem 2.10, 6,, = 0 and

2 0"'	 flex z = J sins con dx

	

a.=	 J f(x)coa -y- d	
0

	

=	
c (sin(x+nx) + ain(r-nx))dx	

1{_cog (ut+1 + Cos (n-1)xtl'
7./a 	 *t+t	 it - i

- 1 Ii - cos (n+ 1)wcos(n-1)r - 	 = if 1 + cog
 n7 1 + eosnri

	

4+1	 +	
n - i	 n+1 — n-1

— -2(1 + cosnr)

	

-	 r(n2-1)	
f ntl -

	

For n1,	 a2 =- 5sinrcosxax =	 =o,

	

V o	 ,r 2
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2 2 j (1+cosn,)Then	 f(s)	 - -- ________
S	

*2_1 COSTIS

= I - 
if cos2x	 coeds	 cos 6x

\22_1

2.12. Expand 1(z) = x, 0 C x <2, in a half-range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in
Fig. 2-12 below, This is sometimes called the odd extension of f(s). Then 2L = 4, L =

	

,
	

/
/

-e	 -s	 /4	 a/

Fig. 2-12

Thus a,, = 0- and

	

b. 2 L	 2 2	
ltwX

= ii:. 1(:)sln-L-dx =	
x sin-j- cix

2
= (z) ::2 	

zwx	 _74 in

	

\	
(1)( 2 s -i—j3 j =

cos--) -
nr1\ COB ft

" '/

Then	 f(s) =	 — COStt,r Sinitwz—
,2 its

	4/. ,rz 	 i	 Sss

	

=	 - pin-7- + j sln-j- -

(b) Extend the definition of /(x) to that of the even function of period 4 shown in Fig. 2-13 below.
This Is the even extension of 1(x).' Then 2L = 4, L = 2.

'(I)

'\

/

-I	 -4	 2 2	 4	 5

Fig. 2-13

Thus b, = 0,
2

= ! (2
	

-7.

= 
E0 f(zcos-- 	2il0 xcos - j- dz

C' '2
=	 (x) ..a.	 7-4	 flrx\I I

{ (nw	 i) - (i)çacos - j--jJ

-4
= çi(cos nw - i)	 if n.'O

12s0, ae= J zdx=2.
0
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Then	 /(z) = 1 +	 _L(cosn,-1)cos 2

3-s8= 1 _j(c"M +ws-ç +jicoi+ ...)

It should be noted that although both series of (a) and (b) represent f(s) In the Interval
0 C x C 2, the second series converges more rapidly.

PARSE VAiL'S IDENTITY
2.13. Assuming that the Fourier series corresponding to 1(x) converges uniformly to 1(x)

in (—L, L), prove Parseval's identity

	

{f(x)}2dx =	 -
-2 +

-	 a-I

where the integral is assumed to exist.
•0 / "vsU f(s) =	 + (a cos-r\	

+ 6 sinjE). then multiplying by f(s) and integrating
nI

term by tenn from —t to L (which is justified since the series is uniformly convergent), we obtain

7W
y(x)	 dx + b, j f(s) sinj czs}ill	 fjff(x)dx+I{a,,5	

1.

{f(xfl2dx

all=	 .). + L(4+b)	 (2)

where we have used the results

1(x) cosT dx =	 .J_.	 einTdz = Lb.,	 f(x)ds = L40	(I)

obtained from the Fourier coefficients.
The required result follows on dividing both sides of (1) by L. Parseval's Identity it valid

under less restrictive conditions than Imposed here. In Chapter 8 we shall discuss the significance
of Parseval's identity In connection with generalizations of Fourier series known as orthononnal
eerie,.

2.14. (a) Write Parseval's identity corresponding to the Fourier series of Problem 2,12(b).
(b) Determine from (a) the sumS of the series F1+ 1i+ 1+	 + -!

(a) Han L-2;a0-2;aa' 
4
2r2-(cosnir—,n#Ob.,-0.	 -

Then Parseval', identity becomes

	

if U(x92dx 
=	

xldx = (2)2 +
	 !T(005Ir - 1)2

or 8	 2+84 1 + g.^+...). i.e.	 +++ ... = r464 	 14 34 541 ii.

(b) S = i + i + è +... =

1/1
14 34 64

0	 S

	

+	 from which
96	 16
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2.15. Prove that for all positive integers M,
If

	

+	 (a+b)	 Lf 
{f(x)}2dx

where an and b are the Fourier coefficients corresponding to 1(x), and 1(x) is assumed
piecewise continuous in (—L,L).

GO	
M /	 flrx	 nrx\

Let	 SIf(x)	 -r+	 iacos-t-+bns1nr)	 (1)
/

For M = 1,2,3,. -. this is the sequence of partial some of the Fauna series corresponding to Ax).

(2)We have

since the integrand is non-negative.

(1(x) - Sr,(x)}2dx a 0

Expanding the integrand, we obtain

nL	 L

	

2 j f(x)S,4x)d.x - 5 S(x)dx	 J (f(aD 2 dx 	 (8)
-L

Multiplying both sides of (1) by 21(x) and integrating from -L to L, using equations (2) of
Problem 2.13, gives

L	 (I

21 f(x)SMfr)dX = 2L4-+	 (4+b.)	 (4)
i*1	 J

Also, squaring (1) and integrating from -L to L, using Problem 2.3, we find

L	 2

S,(x) dx = L {-
	

(4 + b)}	 (5)

Substitution of (4) and (5) into (3) and dividing by Ti yields the required result

Taking the limit as M -. , we obtain Bessel's inequality

241	
{/(x)}2dx	 (6)

If the equality holds, we have Parseval's identity (Problem 2.13).

We can think of SM(x) as representing an approximation to 1(x), while the left band side of
(2), divided by 2L, represents the mean square ens, of the approximation. Paneval's Identity
indicates that as M -. o the mean square error approaches zero, while Bessel's inequality indicates
the possibility that this mean square error does not approach zero.

The results are connected with the idea of completeness. If, for example, we were to leave
out one or more terms in a Fourier series (cos tn/Ti, say), we could never get the mean square error
to approach zero, no matter how many terms we took. We shall return to these ideas from a gen-
eralized viewpoint in Chapter 3.

LTION OF FOURIER SERIES

2.16. (a) Find a Fourier series for f(x) = x2, 0 <x <2, by integrating the series of

Problem 2,12(a). (b) Use (a) to evaluate the series
(a) From Problem 2.12(a),

4/ . rz 1 2n +  	 snx = — I sin— - -sin— + -sin---- - ''' I 	(.1)
2	 2	 2	 3	 2

Integrating both sides from 0 to r (applying Theorem 2-5, page 24) and multiplying by 2,
we find

= C-/cos	 1	 2rx
2	 22	 2	 32 	

...)	
(2)

where c
72 (	 22 32 42

INTEGRATION AND
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(6) To determine C in another way, note that (2) represents the Fourier cosine series for X2 in

0 C x C 2. Then since L. = 2 in this case,

Lo	 i L
	 12	 4

C =	 =	
f(x)dx 

=	
x2dx =

Then from the value of C in (a), we have

(_1I-I - 1-1+1- 1 + ... - i.! -
n1	 '52	 -	 22	 32	 42	 16312

2.17. Show that term by term differentiation of the series in Problem 2.12(a) is not valid.

	Term by term differentiation yields 2(cos - cosq! + cos	 -	 ). Since the nth term

of this series does not approach 0, the series does not converge for any value of x.

CONVERGENCE OF FOURIER SERIES

2.18. Prove that (a)	 + cost + cos 2t + 	 + cos Mt -
	 (M + 4)t

- 2sint

(b) ! ç sin (M+W dt = A ! C sin (M+ Wdt =
irJ	 2 sin t	 2'	 ,rJ...,	 2sinjt	 2'

(a) We have cos nt sin it = *(sin in + )t --sin In - )t). Then summing from n = 1 to M,

sin .t{cos t + cos 2t+ -. + cos Mt) = (sint— sin it) + (sin %t— sin 10

+ '' + [sin (M+)t .- sin (M)t]

= j(sin(M +	 - sin t}

On dividing by sin it and adding J, the required result follows.

(b) Integrate the result In (a) from 0 to r and -r to 0 respectively. This gives the required
results, since the integrals of all the cosine terms are zero.

2.19. Prove that urn 5 1(x) sinnxdx = tim 5 1(x) cosnx dx = U if 1(x) is piecewise
continuous.	 '	 2

This follows at once from Problem 2.15, since if the series	 +	 (4 + 6) is convergent,
urn a, = urn 6,,	 0.	 2 ,,i

The result is sometimes called Riemann's theorem.

2.20. Prove that tim 5 f(x) sin (M + 4)x dx = 0 if 1(x) is piecewise continuous.

We have

	

pIT	 PT	 P

j
f(x) sin (M + )x dx 

= 
j {f(x) sin 4x} tea Mx dx + J r {f(z) cog 4x} sin Mx dx

	

TT	 -IT

Then the required result follows at once by using the result of Problem 2.19, with f(x) replaced by
1(x) sin Jx and f(x) cos jx, respectively, which are piecewise continuous if f(s) is.

The result can also be proved when the integration limits are a and 6 instead of -r and r.

2.21. Assuming that 1 =,, i.e. that the Fourier series corresponding to 1(z) has period
2L = 27, show that
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=	 +I(a..coanx+b.sinnx) =2 sin it
Using the formula for the Fourier coemelenta with L v, we have

e,,eo$isx + b_sthnx = (2 J" f(ucosnudu)cosnx +	 E. 1(u) sin nudu)slnnx

= ifr 
f(,4(cosnu coins + sin flu sin nc) du

V -v

= 
If. f(u) con n(u—s)du
V -v

Also,	 °o
= r1	 J/(u)du

as At

Then	 Sjj(e) = .- +	 (a,, corn nx + ii,, sines)

1C'	 1M(W
A-) 	 + -	 3 f(u)cosn(u—x)du

-.	 —V

= IfT f(u)ft + 2 Cos n(u_x)}du
V 

-w

sin (M + f)(u - z)
2 slnf(	 duu -

using Problem 9.1S. Letting u— m=t, we have
swe)1 C'-'	 sin(M+3)t

= -)	
f(t+s) 

2sinjt dt
V

Since the Integrand has period 2w, we can replace the Interval -. - z, w - z by any otherinterval of length 2.-, In particular -v r. Thus we obtain the required result.

Zfl Prove that
- (ffr+O)+f(x-_o)) = 

ifQ f(t+zf(x_o)fl(M+j)tdg2

	

-r	 2sln*t

!Srf(t+x)—f1x+o) sin (if+1)tdt

	

+ 	 2sin4t
From Problem 2.21,

0 sin M+f)t 
+ !f5(t+X) 

sin(M+f)t	
(I)dtSM(S) = If f(t+z) 2 slnft dt	

2 sin itV

Multiplying th e Integrals of Problem 218(b) b y /(w —0) and /(x + 0) respectIvely,

	

t(x+O)+I(x-0) 
=	 t	 0

uin(M+4)t 	'	 sln(M+3)t	
(a)2	 -'	

2 sink 
dt + 

-I f(r+Q) 
2 sin it

Subtracting (*) from (I) yields the required result

2.23. If 1(z) and fl(x) are piecewise continuous in ( —r, ,r), prove that

limsM(z)	 f(x+O)+f(z—O)
2

The function At 	- 1(5 + 0)
elluous.	 2 sin it	 is piecewise continuous in 0 C t . because f(s) Is piecewise

S

ft	 !.!L._LfL±511 = lint f(z+t)—/(x+0)	
=	 ffr+t)—f(w+o)tns+	 tsInft	 urn•-	 t
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exists, since by hypothesis f'(z) is piecewise continuous, so that the right-band derivative of fir) at
each z exists.

Thus 
fit ± z) - /(z + 0) is

2 sin it	
piecewise continuous in 0 Z t

Simi	
At + x) - f(x —0)	 piecewise continuous in —w	 o.larly, 2 sin it

Then from Problems 2.20 and 2.22, we have

lion I	 2SM(Z) - 
fix + 0) + f — 

M-.e L	
= 0 - or	 Ibm SM(x) 

= /fr+0) +f(r—O)
8

DOUBLE FOURIER SERIES
2.24. Obtain formally the Fourier coefficients (15), page 24, for the double Fourier sine

series (14).
Suppose that	 AX, Y) =	

B,g, uiu5 s ln ?t	 (1)

We can write this as
f(z,y) =	 C,,uin-y--	 (S)

a-I	 I

when	 Cm = 2 B,5 sin	 (3)

Now we can consider (t) as a Fourier series in which it is kept constant so that the Fourier
coefficients C. are given by

2	 Li
= ri f(x,y)sin—y--dz	 U)

iG	 I

On noting that C,5 is a function of y, we see that (3) can be considered as a Fourier series for
which the coefficients B 5 are given by

2 C"B,,, = 1ie	 elm cry-1— dy	 (5)

If we now use (4) In (5), we see that

Rn,, = L1L, f1 5 L2f(r,i,) sin	 sinj1 dxdy	 (C

APPLICATIONS TO HEAT CONDUCTION
2.25. Find the temperature of the bar In Problem 1.23, page 15, if the Initial temperature

is 25°C.
This problem is identical with Problem 1.23, except that to satisfy the Initial condition

nix, 0) 25 it is necessary to superimpose an infinite number of solutions. i.e.- we must replace
e4uaticn (I) of that problem by

u(z. t) =	 B.07M 0119 sin
ip=I	 S

which for t = 0 yield.
25 =	 B. sin	 0<r<3

m1

This amounts to expanding 26 in a Fourier sine series. By the methods of this chapter we then
find

= L
=. j25 sin	 dr =	 tcesMr)
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The result can be written

u(x, 0 =	
50(1. - coB mr)	 inv'3

is-I	 tar	 3

= 120 4 2W2UO sin	 + 1 e_ 2Tt Mn a ± -3	 3

which can be verified as the required solution.

This problem illustrates the importance of Fourier series in solving boundary value problems.

2.26. Solve the boundary value problem
au = 2&L, u(O,t) = 10, u(3, t) = 40, u(x,O) = 25, ju(x,t)I C Maxi

This is the same as Problem 1.23, page 15, except that the ends of the bar are at tempera-
tures 10°C and 40°C instead of 0°C. As for as the solution goes, this makes quite a difference
since we can no longer conclude that A = 0 and X = mv/a as in that problem. 	 -

To solve the present problem assume that u(x, t) = v(z, t) + #(x) where (z) is to be suitably
determined. In terms of vie, fl the boundary value problem becomes

av = 2	 + 2."(x), v(0, t) + (0) = 10, v(S, 0 + (S) = 40, v(x, 0) + () = 25, Mr. 01 C 31

This can be simplified by choosing

= 0,	 (0) = 10,	 (3) = 40

from which we find #(x) = lox -4- 10, to that the resulting boundary value problem is

8v 82v,
= 2j"j, v(O,t) = 0, v(3,t) = 0, v(x,O) = 15—lOx

As in Problem 1.28 we find from the first three of these,

v(r, t) = 2 80_2M*r't9in
n1	 3

The last condition yields
- ten15—lox = 2 B. sin9—

m1
from which

2f5
 

B. = -	 (15—lox) sin	 30
S x = — (cos ter —1)3 , 

Since e4x, 0 = v(x, t) + (x), we have finally

- 30t4x,t) = lOx + 10 +	 (Cos Mr - 1)C hit2't si mrxnj—rn1 tar
as the required solution.

The term lOx + 10 Is the steady-state temperature, i.e. the temperature after a long time has
elapsed.

2.27. A bar of length L whose entire surface is insulated including its ends at s = 0 and
X = L has initial temperature 1(x). Determine the subsequent temperature of the bar.

In this case, the boundary value problem is

au	 8¼
at	 -aZ2 (1)

Ii(x, t)l C M, u'(0, t ) = 0, Ur(t, t) = 0, u(x, 0) = 1(z)	 (2)
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Letting u = XT in (I) and separating the variables, we find

X"
XT . 5XT	 or	

T''T
	 X

Setting each side equal to the constant —X2, we find

= 0, X"+)X	 0

so that	 X = a cos xx + 6 sin Ks, 	 7' =

A solution is thus given by

u(r, U = C XA't (A cos Xx + B sin xx)

where A = ac, B = be.

From u(O, t) = 0 we have B = 0 so that

i4r, U = Ae_1X'4 cos xx

Then from u1(L, t) = 0 we have

sin XL = 0	 or	 XE, = tn,,

Thus	 u(x, 1) = ArI'T'U cos—
mrs1--	 in = 0,1,2,...

To satisfy the last condition, t4x, 0) = f(s), we use the superposition principle to obtain

A0
u(z, U =+	 Arne_mIvst/LI COSM70

2mrnl 	 11

Then from u(x, 0) = f(s) we see that

f(x) — 
2 +
	 A—t'r';/t' cos mrs

,nI

Thus, from Fourier series we find

2JL	
m,x

	

An =	 f(z)cos—.L--dx

- 1 (L	 2 j	 1 —)
(e 

,crn'r'gii)and	 74(X, t) - L10 
f(s)ds + z	 -	 coa-	 f(s) cos !!!! six

2.28. A circular plate of unit radius, whose faces are
insulated, has half of its boundary kept at constant
temperature it and the other half at constant tem-
perature U, (see Fig. 2-14). Find the steady-state
temperature of the plate.

In polar coordinates (p,) the partial differential equa-
tion for steady-state heat flow is

	

asu+1ou+18zt4—	 1
p3p	 p' a02 —
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The boundary conditions an
u 0<0<,

	

u(1,) =
	 rC0<2,	

(2)

'4p. .)I < M. Le, it Is bounded In the region 	 (8)

Let u(P,ø) = P+ where P is a function of p and 4. is a function oft. Then (1) becomes

P',, + 1 P'4' + 1Pt" = 0

	

P	 pS

Dividing by Pt, multiplying by p2 and rearranging terms,

=
P	 P	 4.

Setting each side equal to X 2 ,	 -

= 0	 p2P"+ pp, —XP = 0	 (4)
The first equation in (4) has general solution

4. = AicosX0+B1sin)0
By letting P = Pk In the second equation of (4), which is a Cauchy or Sitter differential equation,
we find k ±x; so that pX and p are solutions. Thus we obtain the general solution

	

= "2P' + B,,-'	 (5)
Since u(p,) most have period Zr in 0, we must have X = m = 0, 1,2,3,.,,.
Also, since a must be bounded at p = 0, we must have B = 0. Thus

Is = Pt = 4p-(A4, cosm + R sin mØ) = p"qA cos mm + B ainm)

By superposition, a solution is

u(p,) =+	
pm(4,,, cos nip + 8 sin nip)

from which	 u(1, p) =	 + 
ni 

(A_ cos nip + B. sin.np)

Than from the theory of Fourier series,

A. = if u(i,p)cosmpdpTO

	

- 1	 'f'	 1 0	 if m>0
-	

u,cosnipdp+ —	 u2cosnpdp = ju
j +142 if m0	r 	 r

1 2w

B.

S

	

= -	 u(l.p) sin mpdp
•0

i(it
r	 .

	

= -	 u,sinmpdp + —j it2 sinni.pdp = ctQ(1 
—coam,)

Then:	 u(p,p) 
= ii i + Ut 

+ j 
(Ui'ui)U_.cosmr)

2	 mr
pm sin tnpn1 

- (p sin p + *p 2 sin 30 + b5 sin 50 + ...)

	

-	 2

= !i±_!+uItt2 I2p sin p\
2 r

on making use of Problem 244.
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229. A square plate with sides of unit length has its 	 V
faces insulated and its sides kept at 0°C. If the
initial temperature is specified, determine the sub-
sequent temperature at any point of the plate.

	Choose a coordinate system as shown in Pig. 2-15. 	 °c (IM
Then the equation for the temperature u(, it, t) at any	 (011)
point (x,y) at time C is	 'I

ft =	 (1)	 0°C	 0°C

The boundary conditions are given by	 _______	 -	 z

Iu(x, y, t)I < M	 (010)	 0°C	 (110)

u(Q,y,t) = i41,y,t) = u(z,O.t) = t4x,1,t) = 0

u(x,y,0) =

where O<x<1, 0<p<1, t>O. 	 Flg.2-I5

To solve the boundary value problem let it = XYT, where X. Y, F are functions of a, y, t re-

sptztively. Then (1) becomes
xn' = .(x"YT+xr'fl

Dividing by NXYT yields
2" - x" 1"

+

Since the left side is a function of t alone, while the right side is a function of s and it, we see
that each aide must be a constant, say —2 (which is needed for boundedneu). Thus

K" 1"= 0	 = —

The second equation can be written as

	

X11	 Y"

	

x	 V

and since the left side depends only on x while the right side depend, only on y each side must
be a constant, say — is'	 Thus

	

X11 +p2X = 0	 Y"+(X2p2)Y = 0	 (3)

Solutions to the two equations in (3) and the first equation in (5) are given by

I = a 1 cospx + b j sintsr, Y = a2 c05 Vh2 _0g + b2 sin v5¼8_ p2 y,	 F =

It follows that a solution to (I) is given by

u(r, , C) = (a, cos pZ + 6, sin px)(a2 cos	 tj + b 2 sin 2 y)(a3C0'1)

From the boundary condition u(0, i, 0 = 0 we see that a, = 0. From u(x, 0, 1) = 0 we see that
a2 0. Thus the solution satisfying these two conditions is

u(r, y, C) = Be— KAtt sin p5 sin Vi	 ii

when we have written B = b,b,a5 .	 -

From the boundary condition u(1, yt) = 0 we see that p = inr, vs = 1,2,8.... . From

u(x,1,t)=0 we see that Vp2 nr, n1,2,3.....or X\/2+n1r.

It follows that a solution satisfying all the conditions except u(x, y, 0) = f(s, it) is given by

	

u(x,y,t) = Be	 '+a')T'I sin mrs sinnnj
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Now, by the superposition theorem we can arrive at the possible solution

u(x,y, t) =	 Baa0(m'+I%i)ISt sin mrx sin nsfmCI .*1

Letting t = 0 and using the condition z4x, y,O) = f(x, v), we arrive at

fix, y) =	 8m sin m,x sin nsy
n1 n=I

As In Problem 2,24 we then find that

Den = 45 ,ff(x. y) sin tan sin nrp dx dy

Thus the formal solution to our problem Is given by (4), where the B,,,,, are determined from (6).

(4)

(5)

LAPLACE'S EQUATION
2.30. Suppose that the square plate of Problem 2.29 has

three sides kept at temperature zero, while the
fourth side is kept at temperature itt. Determine
the steady-state temperature everywhere in the
plate.

Choose the side having temperature it, to be the one
where i = 1, as shown in Pig, 2-16. Since we wish the
steady-state temperature it, which does not depend on time t,
the equation is obtained from (1) of Problem 2.29 by setting

- 3u/Ot = 0; i.e. Laplace's equation in two dimensions:

82,. 8¼ -
Ox +2	 ày2 - 

0	 (1)

The boundary conditions are

u(O, ji) = u(1, y ) = t4x, 0) = 0, t4x, I) =
and u(x, u) C M.

Y

	0,1) 	
•._. (1,1)

	

°	
.	 0

- •:._4
	(0 1 0)	 0	 (1,0)

Fig. 2.16

To solve this boundary value problem let it = XY in (1) to obtain

-r'y +xy" = 0 or	 In,
-xl- -

Setting each side equal to — xz yields

= 0 r-y = 0
from which

X = a cosXx ± b1 sin),,	 Y = a2 cosh Ay + he sinb)Ly
Then a possible solution is

t4x, y) = (a 1 eqs Xx + b sin ?x)(a, cosh ?ji + b2 sinh Ày)
From W, Y) = 0 we find a 5 = 0. From u(x,0) = 0 we find a2 = 0. From u(1, y) = 0 we find

	

A =	 in	 1,2,3.....Thus s solution satisfying all these conditions is

t4x,y) = B sininrx einhmry

To satisfy the last condition, t4x, I) = it,, we must first use the principle of superposition to obtainthe solution

u(x, y) =	 B. sin inrx sinh 'niry	 (2)
Then from u(x. 1) = U1 we must have

	

4	

Ul = a1 
(8 sinh fir) sin s-x



(3)B.- 
2i.(1 - cos mu)

-	 mu sinh mu
from which

S
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Thus, using the theory of Fourier series,

B. sinhmr = 2f! u, sin m,rx 
= 2u 1 (1 - cosm.r)

0	 mu

From (S) and (3) we obtain
2u1 ' 1—cosmu	 -

u(x, V) =	 2	 sin mt-u s,nh merymsmhm,r

Note that this isa Djrichkt problem, since we are solving Laplace's equation V¼ = 0 for it
inside a region 9 when it is specified on the boundary of 'it.

2.31. If the square plate of Problem 2.29 has its sides
kept at constant temperatures rq, us, us, 244, respec-
tively, show how to determine the steady-state tem-
perature.

The temperatures at which the sides are kept are mdi-
eated in Fig. 2-17. The fact that most of these tempera-
tures are nonzero makes for the same type of difficulty
considered in Problem 2.26. To overcome this difficulty we
break the problem up into four problems of Cie type of
Problem 2.30, where three of the four sides have tempera.
ture zero. We can then show that the solution to the given
problem is the sum of solutions to the problems indicated
by Figs. 2-18 to 2-21. below.

(0M1(1

U, sm

(0,0)	 U8	 (110)

Fig. 2-17

Ui

1

0	 0

0

Fig. 2-18

oL :	
f2

Fig. 2-19

0

utj- ; ^̂0 O 	 U,

U2

Pig. 2-26 Fig: 2-21

The details are left to Problem 2.57 which provides a generalization to the case where the side
temperatures may vary.

APPLICATIONS TO VIBRATING STRINGS AND MEMBRANES
2.32. A string of length L is stretched between

points (0,0) and (L, 0) on the x-axis. At
time t = 0 it has a shape given by 1(x),
0 c x <L, and it is released from rest.
Find the displacement of the string at any
later time.

The equation of the vibrating string is

=aly	 0CZ<L, t>0

where y(x, t) = displacement from x-axis at time
(Fig. 2-22).	 Fig. 2-22
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Since the ends of the string are fixed at x = 0 and r = 14

y(O,t) = y(L,t) = 0	 t)'O

Since the Initial shape of the string Is given by /(r),

	

y(r,O) = f(x)	 0<2<L

Since the initial velocity of the string S zero,

	

vax.0) = 0	 0<x<L.

To solve this boundary value problem, let y = XT as usual.

Then	 XT" = a2X"2' or	 T"/atT =

Calling the separation constant ,_)2 we have

r+'cfl = 0 x"+XX = 0

and	 T	 A, su,Xat + B, cos Nat	 K = A 2 sin kx + B5 coo Xz

A solution Is thus given by

1,(. t) = Xl? = (A 2 sin Xx + B2 coo x)(A l sin Nat + B 1 cos Act)

From y(O, 5) = 0, As = 0. then

y(x. 0 = 02 sin ArM, sin Nat + B 1 cos Xat = sin Ax(A sin AsS + B cos Xat)

From .j(L, t) = 0, we have sin L(A sin Act + B cos Act) = 0, so that sin AL = 0, AL = m, or

A = mo-IL, since the second factor must not be equal to zero. Now,

y,(r, 0 = sin ArM Xc cos Act - BAa sin Act)

and y,(x, 0) = (sin Ax)(AAa) = 0, from which A = 0. Thus

mrz	 ntrat
= Bsin - cos -'

To satisfy the condition y(z,O) = f(x), it will be necessary to superpose solutions. This yields

	

-	 mrz ,nrat
,j(x,t) -

y	 In"
Than (r,O) = f(x)

In-I

and from the theory of Fourier series,
Inn

lint = # 5f(z) sin -1-- dx

The final result is

	

f 2	 'no-s	 , mo-s	 lazeS
v(, 5) =	 'y J0 

J(z) sm-1 dx) sin -r- cos —j—

which can be verified as the solution.

The terms in this series represent the natural or nonnaI modes of vibration. The frequency of

the mth normal mode f is obtained from the term Involving coo1? 
and is given by

	

mo-a	 ma	 In (V
	2r/ = -y- or	 =2L	 2L

Since all the frequencies are integer multiples of the lowest frequency f, the vibrations of the
string will yield a musical tone, as in the can of a violin or piano string. The first three normal
modes are illustrated in Fig. 2-23. As time increases the shapes of these modes vary from curves
shown solid to curves shown dashed and then back again, the time for a complete cycle being the



Fig. 2-U
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(ti)	 (6)	 (c)

Fig. 2-23

period and the reciprocal of this period being the frequency. We call the mode (a) the fundamental

mode or first harmonic, while (6) and (a) are called the second and third harmonic (or first and
second overtone), respectively.

2.33. A square drumhead or membrane has edges which
are fixed and of unit length. If the drumhead is
given an initial transverse displacement and then
released, determine the subsequent motion.

Assume a coordinate system as in Fig. 2-24 and sup-
pose that the transverse displacement from the equilibrium
position (i.e. the perpendicular distanec from the xy-plane)
of any point (z,y) at time tin given by z(x,y, t).

Then the equation for the transverse motion is

82 - 2/ 8z 82z\

TV--	 (1)

where a = r/p, the quantity r being the tension per unit
length along any line drawn in the drumhead, and M is the
mass per unit area.

Assuming the initial transverse displacement to be f(x,y) and the initial velocity to be zero,
we have the conditions

Is(x,y,t)I < M,	 z(O,y,t) = z(1,y,t) = :(x,O,t) = z(x,1,t) = 0,

z(x,y,O) = f(x,y), zt (x, y,O) = 0

where we have in addition expressed the condition for boundedness and the conditions that the edges
do not move.

To solve the boundary value problem we let z = XYT in (1), where X, Y, T are functions of
z, v, and t respectively. Then, proceeding as in Problem 2.29, we find

- x" y"
a2T - X + y

and we are led exactly as in Problem 2.29 to the equation

T"+x 2a2T = 0, X"+pVC = 0, Y 11 +(x2 — p2)Y = 0

Solutions of these equations are

X = a1 cos pm + b ,inpx, Y = a, COS '2_ p2y + 6 2 512' V7772v

2' = a3 COS Xat ± b5 sin xat

A solution of (4) Is thus given by

z(x, y, t) = (a1 cos pa + b sin pz)(a, con	 p2 y + b3 sin Vx2 -- p2  y)(a cos Xat + b 3 sin Xat)
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From go, y, t) = 0 we find a 1 = 0. From &, 0, 0 = 0 we find a 2 = 0. From z,(x V, 0 ) =0

we find 6 3 = 0. Thus the solution satisfying these conditions (and the bounded ness condition) is

z(x, y, t) = B sin yz sin f3i72 jg COB hot

From z(1, y, 0 = 0 we see that p = my, vs = 1,2,3,... From z(x,1,t) = 0 we see that

= as, n = 1,2,3.....i.e. X = Vh2+nhr.

Thus a solution satisfying all conditions but 2(5, it, 0) = f(x, y) is-given by

z(x, y, 0 = B sin mrs sin 'try cos V 1 n2 rat

By the superposition theorem we can arrive at the possible solution

2(5, y, t) =	 B,,, sin mrs sin 'try cos V'ii + n2 rat	 (2)
m2 n1

Then, letting t = 0 and using 2(5, Y, 0) = fix, it), we arrive at

	

/(x, it) = 2	 B' sin mrs sin 'try
,n=1 n1

from which we are led as in Problem 2.24 to

RBr. = 4 
0

	

f(x, y) sin inn sin 'try dx dy	 (3)
.,0 JO

Thus the formal solution to our problem is gi'sn by (2), where the coefficients 2,, are determined
from (3).

In this problem the natural modes have frequencies 1,,,,, given by 2rI, = .,,/ Lrn2 ra., i.e.

inn = 4Vm —+.2 41	 (4)

The lowest mode, in = 0, n = 1 or in = 1, ii = 0, has frequency vcL The next higher one

has in = 1, ii = 1 with frequency 3VTh, which is not an integer multiple of the lowest (i.e. fun-
damental) frequency. Similarly, higher modes do not in general have frequencies which are
integer multiples of the fundamental frequency. In such case we do not get music.

Supplementary Problems

FOURIER SERIES

	

2.34.	 Graph each of the following functions and find its corresponding Fourier series, using properties
of even and odd functions wherever applicable.

1 8 0<x<2	 1—x —4x0
(a) f(s) 

=	
2CzC4 Feriod4	 (6) /	

=	
Period 

	

2x	 0x3
(c) f(z) = 4z, 0<x<10,	 Period 10	 (d) f(s) 

=	
Period 

	

225.	 In each part of Problem 2.34, tell where the discontinuities of f(s) are located and to what value
the series converges at these discontinuities.

12- s 0<x<4

	

2.36.	 k2xpand f(s)	
IX-6 4 < < 8	

in a Fourier series of period S.
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	2.31.	 (a) Expand f(x) = cos x, 0< x C w, in a Fourier sine series,

(h) flow should f(x) be defined at x = 0 and r =	 so that the series will convergd to f(x) for
C 1 x

	

2.38.	 (a) Expand in a Fourier series f(x) = cos r, 0 cx c,, if the period is , and (b) compare with
the result of Problem 2.37, explaining the similarities and differences if any:

z0<xC4

	

2.39.	 Expend 1(') =
	 -	 4 < x C 8	

in a series of (a) sines, (6) cosines.

	

2.40.	 Prove that for 0 x

(a) X(	 X) = r
2 	( cos 2x + cos 4r + Cos 6z+ ...)

(6) x(	 x) = B (sin x sin Sr sin 5x
13	 33	 5-3

r—

	2,41.	 Use Problem 2,40 to show that

6
6'	 ni	 n2	 — 12'	 5(2n'1)3

2A2, Show that=

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES

	

2.43.	 (a) Show that for — r Cx Cr,
fain x	 sin 2r	 sin Sr

x =

(6) By integrating the result of ( a ), show that for —r	 x

2
2	 (coax	

cos 2x	 coaSs
x = 3i—

(c) By integrating the result of (6), show that for —r x

(sinx	 sin2z	 sin3z
r(r—x)(r± a) =	 +	 -

(d) Show that the series on the right in parts (6) and (a) converge uniformly to the functions on
the left.

	

2.44.	 (a) Show that for —; C a C

	x Cos x = —sinx + 2(jAa sin 2x - 2-4 sin 	
+ 4.g sin 4x -

(6) Use (a) to show that for —r a 7,

a sin r -!Cos 	
- fcos2x	 cos 3x	 cos4x

1= 1 — 

	

2.45.	 By differentiating the result of Problem 2.40(6), prove that for 0 	 a

4/' cos x	 cos 2x	 cos 5x
2	 12	 32	 52

a =

PARSEVAL'S IDENTITY

	

2.46.	 By using Problem 2.40 and Parseval's identity, show that

1	 v4	 1	 •r6
(a)	 -=	 (6)

n4	 90	 946
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2.47. Show that	 + 1 + 1 + 
  - 16

r-8	 (Hint. Use Problem 2.11.)

	

12.32	 $2,62	 52-72

(b)248. Show that (a) 	 (2n-1)4 = ii'	 •=i (2n— l) - 960

4r2-39  

	

1	 _____  2.49. Show that	 + 2.32.42 + 32.42.52 +	 =	 16

SOLUTIONS USING FOURIER SERIES
2.50. (a) Solve the boundary value problem

au	 a2u

	

=	 ,40,t) = u(4. t) = 0	 u(x,O) = 25=
at

where 0 < x C 4, 9>0.

(b) Interpret physically the boundary value problem in (a).

2.51. (a) Show that the solution of the boundary value problem
as -
Tt — SX2	 U.M. t) = a1(r, t) = 0	 u(x, 0) = 1(z)

where 0<rCo', t>0, is given by

u(z,t) =	 f(r) dx + mtl 	 Cos MX 51(x) cos mx dx

(tO Interpret physically the boundary value problem in (a).

2.52. Find the steady-state temperature in a bar whose ends are located at x = 0 and x = 10, If these
ends are kept at 150°C and 100°C respectively.

2.53. A circular plate of unit radlus.(see Pig. 2-14, page 39) whose faces are insulated has its boundary
kept at temperature 120 + 60 cos 2#. Find the steady-state temperature of the plate.

2.54. Show that 	 p sin  + }p3 sin a + 1p5 sin s +	 =	 tan—' 2,

and thus complete Problem 2.28.

2.55. A string 2 ft long is stretched between two fixed points x = 0 and x = 2. If the displacement
of the string from the x-axis at t = 0 is given by f(x) = 0.03 x(2 - x) and if the initial velocity
is zero, find the displacement at any later time.

2.56. A square plate of side a hO one side maintained at temperature 1(x) and the others at zero, as
indicated In Fig. 2-25. Show that the steady-state temperature at any point of the plate is
given by

-r	 2	 (	 Mnrx 1.krz	 kry
i4x, 

it) = kt La sinh (J) Jo 1(x) si - dxj sin - sinh -

217. Work Problem 2.56 If the sides are maintained at temperatures f,(z),g1(y),Mx),g2(y), respectively.
[Hint. Use the principle of superposition and the result of Problem 2.66.]
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LbS. An infinitely long plate of width a (indicated by the shaded region of Fig. 2-26) has its two
parallel aides maintained at temperature 0 and its other side at constant temperature ,i. (a) Show
that the steady-state temperature is given by

4u0/' 	 sin 	 1 	 Sr-a 	 le-3v . 5n

	

t4x,y) = —i • 3m - + -r 3'sin — +	 sln--- +
a	 3	 a	 5

(5) Use Problem 2.54 to show that
2u,	 -	 sin (mt/a)u(z,y) = —tan ljL amIty

M. Save Problem 1.26 if the string has its ends fixed at z = 0 and a = J and if its initial displace-
ment and velocity are given b y f(r) and 9(x) respectively.

2.6L A square plate (Fig. 2-27) having sides of unit length has
its edges fixed in the zy-plane and is set Into transverse
vibration.
(a) Show that the transverse displacement a(x, y, 0 of any

point (a, y) at time t is given by
822-	 2/82x	 alg
iii -

where a2 is a constant.
(b) Show that if the plate Is given an initial shape /(x, y)

and released with velocity 9(z, y), then the displacement
Is given by	 Fig. 2.27

x(z,,J, 0 =	 [Ann cos, X.,at + Em,. sin X,,,,afl sin sin sin nr-y
ani 51

'1 at
where	 = 4 J J f(z,y) sin sin sin nr-y dx dy

0 0

4 p5

=	 Jo is g(a
', V) sin Inn sin nnj dx dy

and A,,,,. = rVm2 —T-11

2.61. Work Problem 2.60 for a rectangular plate of aides S and c.

2,62. Prove that the result for u(x, t) obtained in Problem 2.25 actually satisfies the partial differential
euatlon and the boundary conditions.

2.63. Solve the boundary value problem
au = .?i±

at	 az
_a5u	 OCact, t>0

t40, t) = u1, i4L,t) = u,	 ,4a,0) = 0
when a and L are constants, and interpret physically.
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2.61.	 Work Problem 2.63 if t4x, 0) = 1(r).

2.65.	 Solve and interpret physically the boundary value problem

= 08t2	 Ox4

where y(0, t) = 0, y(L, C) = 0, v(x,O) = fix), Vt(X, 0) = 0, Vrz(0, C) = 0, y11(L, C) = 0, 1j(z. t) -C Al.

2.66.	 Work Problem 2.65 if v,(x, 0) = g(x).

2.67. A plate is bounded by two concentric circles of radius
a and b, as shown in Fig, 2.28. The faces are insulated
and the boundaries are kept at temperatures f(s) and 9(6)
respectively. Show that the steady-state temperature at
any point (r, s) is given by

u(r,o) = A 0 + B9 lnr +{(Anrut+2?) Cos no

/
4, (C,,r"+—1 sin nor"j

where A 5 and B are determined from

+ Bo Ina 
=2v 

f(o) do

+ 85 In 	
=	

g(e)do

A, B. are determined from

A 5a". + Bna—n=if f(s) cos no do,

and C,, D, are determined from

C,cr + Dc = ? f21r 
1(o) sin no do,

2.68.	 Investigate the limiting cases of Problem 2.67 as (a) a -. 0, (6) 6 - ', and give physical inter-
pretations,

2.69.	 (a) Solve the boundary value problem
da	 62U

= C + flea	 -

where u(0, C) = 0, u(L, C) = 0, nix, 0) = fix), u(x, 0! C Al, and (6) give a physical interpretation.

2.70,	 Work Problem 2.69 if flo — ' is replaced by no sin ox, where u 0 and a are constants.

2.71.	 Solve	 = aeçK2_ g where y(0, t) = 0, y(L,t) = 0 y(x,0) = f(x), y(x,0) 0, y(x,t)I CM,
and give a physical interpretation.

r2a-	 ,LO doA,6" + L?6	 - -	 g(o) coslr .10

2'y
C,,fr' + D86" = -	 c(s) sin no do

2.72.	 Find the steady-state temperature in a solid cube of unit side (Fig. 2-29) if the face in the ry-plane
is kept at the prescribed temperature F(x, ej), white all other faces are kept at temperature zero.
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2.73. How would you solve Problem 2.72 if temperatures were prescribed on the other faces also?

2.71. how would you solve Problem 2.72 if the initial temperature inside the cube was given and you
wished to find the temperature inside the cube at any later time?

2.75.	 Generalize the result of Problem 2.72 to any rectangular parallelepiped.

226. A plate In the form of a sector of a circle of radius a has central angle ft, as shown in Fig. 2-80.

If the circular part Is maintained at a temperature 1(e), 0 < 8 C p, while the bounding radii are
maintained at temperature zero, find the steady-state temperature everywhere in the sector.

- -a

Fig. 2-30

A- 16616



Chapter 3

Orthogonal Functions

DEFINITIONS INVOLVING ORTHOGONAL FUNCTIONS.
ORTHONORMAL SETS

Many properties of Fourier series considered in Chapter 2 depended on such results as

£ L sin 1Esin!dx =, = 0 (in (1)

In this chapter we shall seek to generalize some ideas of Chapter 2. To do this we first
recall some elementary properties of vectors.

Two vectors A and B are called orthogonal (perpendicular) if A'S = 0 or A181 +A 282 + A)Bs = 0, where A = A l i + A2j + A 3k and B = Ei + B2j + Bak. Although not geo-
metrically or physically obvious, these ideas can be generalized to include vectors with
more than three components. In particular we can think of a function, say A(x), as being a
vector with an infinity of components (i.e. an infinite-dimensional vector), the value of each
component being specified by substituting a particular value of x taken from some interval
(a, b). It is natural in such case to deñne two functions, A(x) and U(z), as orthogonal in(a,b)if

	

5 b
A(z) B(r) dz = 0	 (2)

The left side of (2) is often called the scalar product of A(x) and 8(x).
A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e.if A' A = A2 = 1. Extending the concept, we say that the function A(x) is normal ornormalized in (a, b) if

5 b

(A(X)) 2 dx = 1	 (3)

From the above it is clear that we can considers set of functions (#k(x)), k = 1,2,3.....having the properties

I = 0	 m#n	 (4)

5 m(4)2C	 = 1	 m=1,2,3,...	 (5)

Each member of the set is orthogonal to every other member of the set and is also normal-
ized. We call such a set of functions an orthonorntal set in (a, b).

The equations (4) and (5) can be summarized by writing

5 •,,(x)(x)dx 
=	 mTl	 (6)

where 8m, called Kronecfcey'g symbol, is defined as 0 if in # it and 1 if m = n.

52
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Example I.
The set of functions

= ijisinmr	 ,n = 1,2,3,...

is an orthonormal set in the interval 0 S . x if.

ORTHOGONALITY WITH RESPECT TO A WEIGHT FUNCTION

If 	 5

&
n(X) r(x) w(x) dx = 8m,i	 (7)

where w(x) 0, we often say that the set {#k(x)) is orthonormal with respect to the

density function or weight function w(x). In such case the set #()

in = 1,2,3,.,., is an orthonormal set in (a, ).

EXPANSION OF FUNCTIONS IN ORTHONORMAL SERIES
Just as any vector r in 3 dimensions can be expanded in a set of mutually orthogonal

unit vectors 1, j, k in the form r = c1i ± c2j + e3k, so we consider the possibility of expanding
a function /(x) in a set of orthonormal functions, i.e.

AX ) = Ic*(x)	 axb	 (8)

Such series, called orthonorrnat series, are generalizations of Fourier series and are of
great interest and utility both from theoretical and applied viewpoints.

Assuming that the series on the right of (8) converges to f(x), we can formally multiply
both sides by ,,(x) and integrate both sides from a to b to obtain

Cm =	
1(x) ,(x) dx	 (9)

which are called the generalized Fourier coeffi cients. As in the case of Fourier series, an
investigation should be made to determine whether the series on the right of (8) with co-
efficients (9) actually converges to f(x). In practice, if 1(x) and f'(x) are piecewise continu-
ous in (a, b), then the series on the right of (8) with coefficients given by (9) converges to
Mf(x + 0) + f(x - 0)1 as in the case of Fourier series.

APPROXIMATIONS IN THE LEAST-SQUARES SENSE

Let 1(x) and f'(x) be piecewise continuous in (a, b). Let 	 in = 1,2.....be ortho-
normal in (a, b). Suppose now that we consider the finite sum

	

S,(x) = I aflft(X)	 (10)

as an approximation to f(x.), where ,, n = 1,2,3.....are constants presently unknown.
Then the mean square errbr of this approximation is given by

5
b
 [1(x) - S,(x)] 2 dx

Mean square error =	 - a	
(11)

and the root mean square error Erm, is given by the square root of (Ii), i.e.

Ems =
	

5b 

[1(x) - SM(xfl2 dx	 (22)
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We now seek to determine the constants a, which will produce the least root mean
square error. The result is supplied in the following theorem which is proved in Prob-
IemB.5.

Theorem 3-1: The root mean square error (12) is least (i.e. a minimum) when the co-
efficients are equal to the generalized Fourier coefficients (9), i.e. when

a, = c, =
	

f(x) 4,(x) dx	 (13)

We often say that SM(x) with coefficients c, is an approximation to f(x) in the least.
squaressense or a least-squares approximation to 1(x).

It is of interest to note that once we have worked out an approximation to 1(x) in the
least-squares sense by using the coefficients c,, we do not have to recompute these coeffi-
cients if we wish to have a better approximation. This is sometimes referred to as the
principle of finality.

PARSE VAL'S IDENTITY FOR ORTEONORMAL SERIES. COMPLETENESS
For the case where a, = c, we can show (see Problem 3.5) that the root mean square

error is given by
,.	 11/2=	 [5 [1(4] 2 dx -	 I	 (14)niJ

It is seen that Ems depends on M. As M -' we would expect that Er,.,, -* 0, in which case
we would have

5 [f(z)] 2dx =	 C.2 (15)

Now, (15) could certainly not be true if, for example, we left out certain functions •,(x)
in the series approximation, i.e. if the set of functions were incomplete. We are therefore
led to define a set of functions 4,(x) to be complete if and only if E1 -. 0 as M -• , so
that (15) is valid. We refer to (15) as Parsevat's identity for o.rthonormat series of func-
tions. In (6) of Chapter 2, page 23, we have obtained Parseval's identity for the special
case of Fourier series.

In the case where Er,,, -O as M -> cc, i.e.

121.. 5b [f(x) — S(x)} 2 dx = 0	 (16)

we sometimes write
1A.m. S,f(X) = 1(x)	 (17)

This is read the limit in mean of Sjx) as ftl- cc equals f(x) or S35(x) converges in the mean to
1(x) as M-	 and is equivalent to (16).

STIJRM-LIOU-WLLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS
A boundary value 'problem having the form

[p(x)fl + [q(x) ± Ar(x))y = 0	 a zg x b
(18)

.,y(a) + .,y(a)	 0,	 f1,y(b) + fl 2y'(b) = 0	 J
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where a, a2, fl, /12 are given constants-, p(z), q(z), 7(z) are given functions which we shall
assume to be differentiable and A is an unspecified parameter independent of x, is called a
Sturm-Liouville boundary value problem or Sturm-Liouville system. Such systems arise
in practice on using the separation of variables method in solution of partial differential
equations. In such case A is the "separation constant." See Problem 8.14.

A nontrivial solution of this system, i.e. one which is not identically zero, exists in
general only for a particular set of values of the parameter A. These values are called
the characteristic values, or more often eigenvaiues, of the system. The corresponding solu-
tions are called characteristic functions or eigen functions of the system. In general to each
eigenvalue there is one eigenfunction, although exceptions can occur.

If p(x) and q(x) are real, then the eigenvalues are real. Also, the elgenfunctions form
an orthogonal set with respect to the weight function r(z), which is generally taken as non-
negative, i.e. r(x) 0. It follows that by suitable normalization the set of functions can
be made an orthonormal set with respect to r(z) in a x 5 b. See Problems 3.84.11.

THE GRAM-SCHMIDT ORTUONORMALIZATION PROCESS

Given a finite or infinite set of linearly independent functions * 1(x), p2(x), #3(x), . - . de-
fined in an interval (a, b) it is possible to generate from these functions a set of orthonormal
functions in (a, b). To do this we first consider a new set of functions obtained from the
k(x) and given by

c 11 p 1(4 c21 '1 (x) + c22 02(4 c31 01(x) + c2  02W + c,3 #3(z),

where the c's are constants to be determined. We shall designate the functions In (19) by
1(x), 02(z), 3(x).....

We now choose the constants c 1 , c21 , c5.... . so. that the functions 0402('401(4(z), -
are mutually orthogonal and also normalized in (a, b). The process, known as the Gram-
Schmidt orthonormaflzation process, is illustrated in Problem 3.12.

An extension to the case where orthonormalization is with respect to a given weight
function is easily made.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS
In the course of solving boundary value problems using separation of variables we often

arrive at Sturm-Liouville differential equations (see Problem 8.25, for example). The
parameter A in these equations is the separation constant, and the values of A which are
obtained represent the real eigenvalues. The solution of the boundary value problem is then
obtained in terms of the corresponding mutually orthogonal eigenfunctions.

For an illustration which does not involve Fourier series, see Problem 3.13. Other illus-
trations involving this general procedure will be given in later chapters.
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Solved Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES
3,1. (a) Show that the set of functions

	

xx	 2,rx	 2,x	 3,rX

	

1, 5Ifl1, COST,	 "Ti7'	 sin -1 
COS-1',

form an orthogonal set in the interval (—L, L).

(6) Determine the corresponding normalizing constants for the Bet in (a) so that the
set is orthononnal in (—L, L).

(a) This follows at once from the results of Problems 2.2 and 2.8, page 26.

(6) By Problem 2.3.

	

£sin2dx = L,	 £Ls2!!tj;Edx = L

then	 1,	 f (.jcos ! ) 2 dz = 1

Also,	 £1 (1)2d x -= 2L	 or	
f . ( L.)2 dx = 1

Thus the required orthonormal set is given by

1	 1	 yr	 1	 rx	 1 .2,rx	 1	 2rx

	

7
ZZ.	 CO5,	 5Ifl, 7COfl.

3.2. Let ((x)) be a set of functions which are mutually orthonormal in (a, b). Prove

that if	 ç (x) converges uniformly to 1(x) in (a, b), then
n1

-	 ç = 
fb 

f(x)4,jx)dx

Multiplying both sides of

	

f(x) =	 cø(x)	 (1)

by #,,(z) and Integrating from t to & we have
b

3
 fix) m(X) dx =	 on 

j	
@) (x) dx	 -	 (2)

a	 -	 n"L	 a

where the interchange of integration and summation is justified by the fact that the series converges
uniformly to f(x). - Now since the functions ((x)) are mutually orthonormal in (a, 6), we have

= { ::
so that (2) becomes

5 
b 
f(x) #m(x) dx = C. (8)

as required.
We call the coefficients c given by (3) the generalized Fourier coefficients corresponding to

1(x) even though nothing may be known about the convergence of the series in (i). As in the ease

of Fourier series, convergence of 	 c,, Ø5(x) is then investigated using the coefficients (3). the
fl=1

conditions of convergence depend of course on the types of orthonormal functions used. In the
remainder of this book we shall be concerned with many examples of orthonornial functions and
series.
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LEAST-SQUARES APPROXIMATIONS. PARSEVAL'S IDENTITY
AND COMPLETENESS

	

3.3. If S,,,(z) =	 a,,$jx), where #,,('), n = 1,2.....is orthonornial in (a, b), prove
that

5 6

	

	 6	 31	 31

Ff(x)—S31()j-dx = 5 [/(x)] 2 dx. - 21 a,,e +

'
where c,, 

= 5 1(x) #,,(x) dx are the generalized Fourier coefficients corresponding
to f(x).

	We have	 Pr

AX) - S,4z) = 1(x) -	 a

By squaring we obtain
31	 M 31

ff(x) - Sg(x)]2 = [f(x )1 2 	 2	 a, f(r) *,,(x) + On a, *m(x) *4x)m1 nI

Integrating both sides from a to b using

0, = 5 f(x) *(x)	 ,,(x) dx 
= { ::

we obtain	 6	 31	 31

[f(x)—S,,(z)j2dx = 3 (f(x)2dx - 2	 ac, +f
We have assimed that /(x) is such that all the above integrals exist.

3.4. Show that
56	

- SM(x)] 2 dx	 56[1(x)]2 dx + 0.)Z -

31

jj

[f(x)] 2 dx +	 (a2a,,c,,)
a	 n=l

(/(x)p dx + I [(a,, -	 - 41a	 "=2

6	 M	 31

j
[f(x)dx +	 (a,—,) -	 4a	 t1	 us'

This follows from Problem 3.3 by noting that
rb	 31	 313 [f(x) 2 dx - 2	 ac,, +	 4 =a	 ,1	 sal

S

3.5. (a) Prove Theorem 3.1, page 54: The root mean square error is a minimum when
the coefficients a, equal the Fourier coefficients c,.

(b) What is the value of the root mean square error in this case?

(a) From Problem 3.4 we have

(fa,c

b	 31	 31

[1(x)S,,(z)]2dx =
	 [/(x)}dx + J - I C,2

3 a	 '=1

Now the root mean square error will be a minimum when the above is a minimum. However, it
31

is clear that the right-hand side is a minimum when	 (a, - C,)2 = 0, i.e. when a, =
for all a
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(6) From part (a) we see that the minimum value of the root mean square error Is given by

= [1 f (1(z) - Sj4xfl2 dx]

1	 r,' o	 1/2I) (/(r)) 2 dz --	
= vrL	 wax

3.6. Prove that if c,, n = 1,2,3 .....denote the generalized Fourier coefficients corre-
sponding to 1(x), then

5 [f(x)]2dx

From Problem 3.5 we see that, since the root mean square error must be nonnegative,
Al

J (/(x)] 2 ds	 (1)nl	 0

Then, taking the limit as .31 -, and noting that the right side does not depend on M, it follows that

C2 9 5 (f(x)] 2 dx	 (2)

This inequality is often called Bessel's inequality.
As a consequence of (2) we see that if the right side of (2) exists, then the series on the left

must converge, in the special case where the equality holds In (2) we obtain Parseval's Identity.

3.7. Show that lim 5 1(x) #(x) dx = o.

By definition we have c = 5 1(x) (x) dz. But since ni c converges by Problem 3.6, the

nth tcnn c, and with it 5r' must approach zero as it -, e, which is the required result. Note that
this result for the special case of Fourier series is Riemanit's theorem (see Problem 2.19, page 35).

STURM-LIOUVILLE SYSTEMS. ETOENVALUES AND LIGENFUNCTIONS

3.8. (a) Verify that the system y" + Ày = 0, y(0) = 0, y(1) = 0 is a Sturm-Liouville sys-
tem. (b) Find the eigenvalues and eigenfunctions of the system. (c) Prove that the
eigenfunctions are orthogonal in (0, 1). (d) Find the corresponding set of normalized
eigenfunetions. (e) Expand f(x) = 1 in a series of these orthononnal functions.

(a) The system is a special ease of (18), page 54, with p(z) = 1, q(x) = 0, r(x) = 1, a = 0, 6 = 1,
= 1, °t = 0, /i = 1, /2 = 0 and thus is a Sturm-L.iouville system.

(b) The general solution of y" -I- Ày = 0 is jj = .4 cos v'5 z + B sin V5 z. From the boundary
condition y(0) = 0 we have .4 = 0, i.e. r = B sin VTx. From the boundary condition
V(l) = 0 we have B sin rX = 0; since B cannot be zero (otherwise the solution will be iden-
tically zero, i.e. trivial), we must have sin '/K = 0. Then VT = no,, X = m2r 2, where
in = 1,2,3, . . . are the required eigenvalues.

The eigenf unctions belonging to the cigenvalues K = m2r can be designated by Be, sin nirx,

m = 1, 2,3. . . . . Note that we exclude the value in 0 or K = 0 as an eigenvalue, since the
corresponding eigenfunction is zero.

(c) The eigenfunctions are orthogonal since
C'

I (B,, sin nwx)(B,, sin nm) dx = BB,,	 sin mrx sin 'nix dx
./0	 ./0

limBs= ---5 [cos (no - n)rz - cos (in + n)rxj dx

BnBn rh (no - n)rx	 sin (no + n),rxl
-	 I	 O,nv*n

2 L (in — n),	 (tn+n)r j
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(d) The eigenfunctions will be orthonormal if

f(5,, sinin,x)2 dx = 1

i.e. if H, 
fl 	 dx =	 J(1 - Cos 2mrx)dx =	 = 1, or B. = %/Z taking the

positive square root. Thus the set V' sinmrr, m = 1,2.....is an orthonormal set.

(e) We must find constants C ' , CC.... such that

	

f(s) =	 C,,(x)
'fl-I

where f(s) = 1, Ø,,(x) = Visinmos. By the methods of Fourier series,

	

Cm = 5 'f(.) 0,4,) dx = ,,ii f ' ain mo-s	
f(1 - costa,)

mo

Then the required series (Fourier series] is, assuming 0 C a C 1,

2(1 - cos me')	1 =	 sin ruts

3,9. Show that the elgenvalues of a Sturm-Liouville system are real.

We have	 -[px	 ] (q(.) + Xr(x)]y = 0	 (1)dx

	

- 1y(u) + a20a) = 0,	 Ply(b) + 92y'(b) = 0	 (2)

Then assuming p(s) q(x), r(x), a 1 , a, p 11 /2 are real, while X and y may be complex, we have on
taking the complex conjugate (represented by using a bar, as in ü. X):	 -

	

^ fq(z) + 5r(x)1U = 0	 (3)

	

7x-	 dX

a19(a) + a291a) = 0,	 fl,z(b) ± fli7(b) = 0	 (4)

Multiplying equation (2) by 9, (3) by y and subtracting, we find after simplifying,

	

d	 .,	 -
-j-- (p(x)(wv, - WY)] = (X - X)r(x)yy

Then integrating from a to b, we have

	

6	 6
(X —1) 5 r(x) I y t 2 dx = p(x)(y9' 9w') L = °	 (5)

on using the conditions (2) and (4). Since 7(5) 0 and is not identically zero in (a, 6), the Integral
on the left of (5) is positive and so X - = 0 or X= T,  so that X is real,

3.10. Show that the eigenfunctions'belongjng to two different eigenvalues are orthogonal
with respect to r(x) in (a, b).

If y, and y are eigenfunctions belonging to the eigenvalues X 1 and X2 respectively,

	

+ Nix) + X,r(z)]y 1 = 0	 (1)

.,V, (a) + a2y(a) = 0,	 /3,y1(b) + p 2y(b) = 0	 (2)

d	 dy2

7 [pz	
] 

+ (q(z) + X2r(x)]y2 = 0	 (3)

n 1112(a) + a214(a) = 0,	 Pivth) + fl2 y(6) = 0	 (4)
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Then multiplying (1) by y, (S) by Vt and subtracting, we find as in Problem 3.9,

[p(x)(Vg4 — s#gi4)) =

Integrating from a to ii, we have an using (2) and (fl,

p5	 5
(k1 —A2)) r(z)y 1y2 	 = p(x)(yg4—y514) a = 0

and since A, 0 A2 we have the required result

r(x)y,y2 dx = 0

3.11. Given the Stunn-Liouville system ji" + A = 0, y(0) = 0, y'(L) + j3y(L) = 0, where p
and L are given constants. Find (a) the eigenvalues and (b) the normalized eigen-
functions of the system. (c) Expand 1(x), 0 C x <L, in a series of these normalized
elgenfunctions.
(a) The general solution of v" + Ay = 0 Is

v = A cos r+E sin 3
Then from the condition y(0) = 0 we find A = 0, so that

V = B sin Vx
The condition y'(L) + ,371(L) 0 gives

	

BVcosvfl+pBainL = 0 or tan \/-x =	 (1)

which Is the equation for determining the sigenvalues A. This equation cannot be solved exactly;
however we can obtain approximate values graphically. To do this we let v = 'TXL so that

the equation becomes
tan  =TL(2)

The values of is, and from these the values of A, can be obtained from the intersection points
v,,v2,v5,... of the graphs of so = tan is and w = —v/pL, as indicated in Fig. 8.1. In con-
struction of these we have assumed that fi and L are positive. We also note that we need only
find the positive roots of (1).

Fig. 34
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(b) The eigenfunctjona are given by

	

,(x) = BsinVz	 (8)

where X,,, n = 1,2,3.... . represent the eigenvaiues obtained in part (a). To normalize these
we require

Bsin2'J5xdx = I

I.
i.e.	 _iif (1— cos2Vx)dx = 12

4V
or	 82. 

=( 4)
2vc L - sin 2vL

Thus a set of normalized eigenfunctions is given by

=	 _______________ 
515 \IX	 n = 1,2,...	 (5)

2vç L -
in

(a) If - 1(x) =	 a,, *,(x), then

:	 f'f(m) ,,(x) do 
= 	

sin	 x do	 (6)
C	 2VL - Mn2,JL °

Thus the required expansion is that with coefficients given by (6). The expansion for 1(x) can
equivalently be written as

4vgA =	
12/5 L - sin2V L	

f(s) sin Vçx dx} sinv'cx	 (7)
n	 t o

GRAM-SCHMWT ORTHONORMALIZA'noN PROCESS

3.12. Generate a set of polynomials orthonormal in the interval (-1, 1) from the sequence..........
According to the Gram-Schmidt process we consider the functions

= o,, *2(x) = C21 + CMX, *3(x) = c31 + 032x + cx2,

Since t(x) must be orthogonal to 0 1(x) in (-1,1), we have

5 (c11)(c21 + ox) do = 0	 i.e. c(2c) = 0

from which ell = 0, because c11 ,' 0. Thus we have

= ell	 02(x) = c225

In order that *,() and *2(x) be normalized in (-1,1) we must have

5 I	 I

l 
(c1)2 do =	 51 (ex) 2 do = 1

from which	 -

	

cli = tvi	 Css =

Since Ø(x) must be orthogonal to # 1(x) and *2(x) in (-1,1), we have
pt

	

J
(c1 )(c31 + c325 + c53r 2) do = 0,	 J (c22x)(c31 + c32x + 033z2) do = 0-1	 -I

from which
2c + jell = 0	 or	 033 = —3o,, co,= 0

Thus	 03(x) = c,fl - 3x2)
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In order that p2(x) be normalized in (-1,1) we must have

.1 Ica i (1 - Sz] 2 dx = 1	 whence	 631 = ±

The orthonormal functions thus far are given by

l( - 1)
-	 p1(x) = ± t,fj1	 2(r) = ± .,J4x. 03(z) = ± sj2

By continuing the process (see Problem 3.29) we find

5S -
=	 2 )'	

5(x) = 
±. Jj(35xI - 30x2 + 3),

B

From these we obtain the Lege,ndrc polynomitla

P0 (x) = 1, P(x) = x, P2(x) 
= 3x— 1 P. 	

= 5z3 - 3x
2'

350-300+3
$

The polynomials are such that P(1) = 1, n = 0,1,2,3.....We shall investigate Legendre poly-
nomials and applications in Chapter 7.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

3.13. A thin conducting bar whose ends are at x = 0 and z = L has the end x = 0 at
temperature zero, while at the end x = L radiation takes place into a medium of
temperature zero. Assuming that the surface is Insulated and that the initial tem-
perature is 1(x), 0 C x <L, find the temperature at any point x of the bar at any
time t.	 -

The beat conduction equation for the temperature in a bar whose surface Is insulated is

-. (1)

Assuming Newton's law of cooling applies at the end z L, we obtain the condition

—Ku1(L, 0 = h[u(L, 0 — Of

or	 u(L, t) = —u(L, t)	 (2:

where p = K/h, K being the thermal conductivity and It a constant of proportionality. The re
maining boundary conditions are given by

u(0, ft = 0, c4x, 0) = 1(r),	 u(z, t)I C M

To solve this boundary value problem we let a = XT in (1) to obtain the solution

From (0, t) = 0 we find .4 = 0, so that

u(r, 0 = Br1't sin xx

= • sA5t (A cos Ax + sin xr)

The boundary condition (2) yields
tan XL = -	 (3)

This equation is exactly the same as (I) on page 60 with K replaced by K2. Denoting the nth posi

tive root of (3) by K 5 , it = 1,2,3.....we see that solutions are
u(x, 0 = 85r.t4t sin >55

Using the principle of superposition we then arrive at a solution

u(z, t) =	 B,,c sktr sin K,r
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The last boundary condition, u(x, 0) = f(s), now leads to

B. sin x,,s
'-I

We can find B. by multiplying both sides by am X MX and then integrating, using the fact that

L	
= 0	 tn,"n

1 
However the result is already available to us from (6) of Problem 3.11 if we replace X. by X. Thus

the solution is
4X,,e 4t sin X,.x (

101 t) =	 2Xt - sin 2XL	
f(s) sin X,r dx

3.14. (a) Show that separation of variables in the boundary value problem

au - ± rK(X) !!fl + h(x)u	 O<x<L, t>Og(x) 
at	 axL	 axJ

u(O, t) = 0, u(L, t) = 0, u(x, 0) = 1(z), 1i4z. t)I < M

leads to a Sturm-Liouville system. (b) Give a physical interpretation of the equa-

tion in (a). (c) How would you proceed to solve the boundary value problem in (a)?

(a) Letting it = XT in the given equation, we find

g(x)XT' + h(x)XT

Then dividing by p(x)XT yields

r_dr dXl
V - g(r)X — [K(x)J + h(s)

Setting each side equal to —X, we find
r+xr = 0	 (1)

dr fl
—I K(s)—

d 
I + (h(s)-I- xg(s)]X = 0	 (t)

dxL	 dzj

Also, from the conditions t40, t) = 0 and u(L, t) = 0 we are led to the conditions

X(0) = 0	 X(L) = 0	 (3)

The required Sturm-Liouville system is given by (2) and (3). Note that the Sturm-Liouville
differential equation (2) corresponds to that of (18), page 54, If we choose v = K, p(x) = K(s),
q(z) = h(s), 7(5) =

(b) By comparison with the derivation of the heat conduction equation on page 9 we see that
u(s, ft can be interpreted as the temperature at any point r at time 6. In such case K() is
the (nonconstant) thermal conductivity and 9(5) is the specific heat multiplied by the density.
The term h(x)u can represent the fact that a Newton's law of cooling type radiation into a
medium of temperature zero Is taking place at the surface of the bar, with a proportionality
factor that depends on position.

It) From equation (2) subject to boundary conditions (8) we can find eiget values X,, and normalized
eigenfunctions Xa(x), where n = 1,2,3.....Equation (1) gives V = crxt. Thus a solution
obtained by superposition Is

	

u(r, C) =	 c,e_A,tX,(s)
n1

From the boundary condition u(x, 0) = f(s) we have

f(s) =

i(s) = i çX,(s)
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which leads to I.

a,, = 5' f(x)X,,(x)dx

Thus we obtain the solution

u(x, 0	
{ftI(x) 

Xn(x) dx} cA.rX,,(r)

Supplementary Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

3.15. Given the functions a5, a t + 4 2x, a3 + a4x + a5x2 where as,	 as are constants. Determine the con-
stants so that these functions are mutually orthonurmal in the interval (0, 1).

3.16. Generalize Problem 3.16 to arbitrar y finite intervals.

3.17. (a) Show that the functions 1, 1 - x, 2— 4x + x 2 are mutually orthogonal In (0, ') with respect to
the density function r. (6) Obtain a mutually orthonormal set,

3.18.

	

	 Give a vector interpretation to functions which are orthonormal with respect to a density or
weight function.

3.19. (a) Show that-the functions cos in cos' z), it = 0,1,2,3.....are mutually orthogonal In (-1,1)
with respect to the weight function (1 - x2) - 112 . ( 6) Obtain a mutually orthonormal set of these
functions.

3.20.	 Show how to expand f(x) into a series	 c, ,,(x), where	 (x) are mutuall y orthonormal in (a, 6)
n I

with respect to the weight function w(x).

3.21.	 (a) Expand f(z) into a series having the form	 o,, ,,(z), where p,(r) are the mutually ortho-
n0

normal functions of Problem 3.19. (6) Discuss the relationship of the series in (a) to Fourier series.

APPROXIMATIONS IN THE LEAST-SQUARES SENSE. PARSEVAL'S IDENTITY
AND COMPLETENESS
312. Let r be any three-dimensional vector. Show that

(a)	 (r'i)2 +(r'fl2 15 r2	(6)	 (r'i)2+(r)2+(rk)	 =

where r2 = r • r and discuss these with reference to Bessel's inequality and Parseval's identity.
Compare with Problem 3.6.

3.23. Suppose that one term in any orthonormal series (such as a Fourier series) is omitted. (a) Can
we expand an arbitrary function f(x) in the series? (6) Can Parseval's identity he satisfied? (c) Can
Bessel's inequality be satisfied? Justify your answers.

3.24. (a) Find c, c, 0 such that fl [a - (c sin x + it2 sin 2x ± o sin 3x)j 2 dx is a minimum.

(6) What is the mean square error and root mean square error in approximating a by 0 sin a +

0 sin 2x + e s sin ax, where Cj, o, c3 are the values obtained in (a)?
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(c) Suppose that it is desired to approximate a by a t sin z + as sin 2z + as sin 3z + a sin 4x in the
least-squares sense in the interval (—r,,). Are the values a 1 , 02, a the same as C, 05 , a3 of
part (a)? Explain and discuss the significance of this.

	3.25.	 Verify that Bessel's inequality holds in Problem 3.24.

	

3.26.	 Discuss the relationship of Problem 3.24 with the expansion of f(x) = a in a Fourier series in the
interval (— i, r).

	

3.27.	 Prove that the set of orthonormal functions 	 (x), a = 1,2,3. .... cannot be complete in (a, b) if
there exists some function /(2) different from zero which is orthogonal to all members of the set, i.e. if

f/(x)çs,,(x)dx = 0

	

3.28.	 Is the converse of Problem 3.27 true? Explain,

GRAM.SCHMIDT ORTHONORMALIZATION PROCESS
329. Verify that a continuatien of the process in Problem 3.12 produces the indicated results for 04(5)

and c5a(x).

	

3.30.	 Given the set of functions 1,x,z2,z 3.....obtain from these a set of functions which are mutually
orthonormal in (-'1, 1) with respect to the weight function X.

	3.31.	 Work Problem 3.30 if the Interval is (0, ) and the weight function 'is c. The polynomials thus
obtained are Lagucrrs polynomials.

322. Is it possible to use the Gram-Schmidt process to obtain from z, 1 - a, 3 + 2z a set of functions
orthonormal in (0,1)? Explain,

STURM.LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS
3,33. (a) Verify that the system y,, Xy = 0, 21(0) = 0, ti(l) = 0 is a Sturm.Liouvllle system.

(b) Find the cigenvalues and eigenfunctions of the system.

(c) Prove that the eigenfunctions are orthogonal and determine the corresponding orthonormal
functions.

324. Work Problem 3.33, if the boundary conditions are (a) y(0) = 0, 21(1) = 0; (b) v'(0) = 0, 21(1) = 0.

3.25. Show that in Problem 3.11 we have
-	 2(x +
-

3.36. Show that any equation having the form a3(z)y" + a1 (r)y' + (a4x) + Xa 3(x)]y	 0 can be written
in Sturn,.Liouville form as

J- [ p(x)] + tq(z) ± Xr(z)jy = 0

with	 p(r) = 5 (o t#aO dZU3	q(x) = —t(x),	 ,'(x) =
a0

3.37.

	

	 Discuss Problem 3.13 if the boundary conditions are replaced by u(0, C) = h0(O, C), u 1(L, O

h2 u(L, C).
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3.38	 (a) Show that separation of variables in the boundary value problem

= f[rx)g] + h(z)y

y(O, t) = 0, y(L, t) = 0, y(x, 0)	 /(z), y 1(x, 0) = 0, Iu(z, t)I C M

leads to a Sturm.Liouville system. (6) Give a physical Interpretation of the equations In (a).

(e) How would you solve the boundary value problem?

3.39. Discuss Problem 3.38 if the boundary conditions v(0. t) = 0, y(L, 4) = 0 are replaced by IIx(O, 4) =

h 1y(0, t), y(L, 4) = k1y(L, 4), respectively.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

3.40. (a) Solve the boundary value problem

Ott	 oZ,z
- = x— 	 Ocs<L, 4>0
at	 Ox2

u(0, 4) = 0, u1(L, 4) = 0, u(x, 0) = 1(x), iu(x, t)l < 31

and (6) interpret physically.

3.41. (a) Solve the boundary value problem
02y

042 -a2 6X2

i(O, 0 = 0, ji(z, 4) = 0, y(x, 0) = f(x), y1 (x, 0) = 0, Iv(x, )I < 3W

and (b) interpret physically.

3.42. (a) Solve the boundary value problem

= 0	 OCx<L, t>o
atz 	 8X4

	y(O, 4) = 0, y 2(O, 4) = 0, y(L, 4) = 0, y(L, 4) = 0, y(z, 0) = fix),	 y(Z. 01 C 3W

and (6) interpret physically.

3.43. Show that the solution of the boundary value problem

!i	 02u

at	 91	 0<z<1, 4>0

u1(O, 4) = 4,40, 4), 	 uji, 4) = —hu(1, 4),	 14x, 0) = f(s)

where x, 4 and I are constants, is

u(x, 4) =	
)flcos X.x+ Ii sin X,,z 51

(X + M)Z + 2k	
e f(x)(X, me A.45 + 4 sin A,z) dx

where x,, are solutions of the equation tan hi = 
XC — 

42' Give a physical interpretation.



Chapter 4

Gamma, Beta and
Other Special Functions

SPECIAL FUNCTIONS
In the process of obtaining solutions to boundary value problems we often arrive at

special functions. In this chapter we shall survey some special functions that will be em-
ployed in later chapters. If desired, the student may skip this chapter, returning to it
should the need arise.

THE GAMMA FUNCTION
The gamma function, denoted by r(n), is defined by

r(n) = 5 x 1 er dx	 (1)

which is convergent for n> 0.

A recurrence formula for the gamma function is

	

r(n+1) = nr(n)
	

(2)

where r(1) = 1 (see Problem 4.1). From (2), r(n) can be determined for all n> 0 when
the values for 1 ii <2 (or any other interval of unit length) are known (see table on page
68). In particular if ii is a positive integer, then

r(n+1) = n!	 n = 1,2,3, ...	 (3)

For this reason r(n) is sometimes called the factorial function.

Examples.	 r(2) = 1! = 1, r(6) = 6! = 120,	 =	 = 12

It can be shown (Problem 4.4) that

(4)

The recurrence relation (2) is a difference equation which has (1) as a solution. By
taking (1) as the definition of F(n) for n > 0, we can generalize the gamma function to
n < 0 by use of (2) In the form

	

r(n) = r(n.l-1)	
(5)

See Problem 4.7, for example. The process is called analytic continuation.

67



1.00
1.10
1.20
1.80
1.40
1.50
1.60
iSO
1.50
1.90
2.00

Fit 4-1

N")
1.0000
0.9514
0.9182
0.8916
0.8873
0.8862
0.8935
0.9086
0.9814
0.9818
1.0000

68
	

GAMMA, BETA AND OTHER SPECIAL FUNCTIONS 	 [CHAP. 4

TABLE OF VALUES AND GRAPH OF THE GAMMA FUNCTION

1.

ASYMPTOTIC FORMULA FOR F(n)

If is Is large, the computational difficulties inherent In a direct calculation of r(n) are
apparent. A useful result in such case is supplied by the relation

	

r(n + 1) = % 1 nn e n e 2(fi+1)	 0<0<1	 (8)
For most practical purposes the last factor, which is very close to I for large n, can be
omitted. If is Is an integer, we can write

	

— %/inne	 (7)
where — means "is approximately equal to for large it". This is sometimes called Stirling's
factorial approximation (or asymptotic formula) for n!.

MISCELLANEOUS RESULTS INVOLVING THE GAMMA FUNCTION

r(x)r(1—x) =	 'V

Sifl Xtt

In particular if x = j, r({) = 	 as in (4).

2. 2k-' r(x) r(z -I-i) =	 r(2x)
This Is called the duplication formula for the gamma function.

S.	 r(x) r(x + I) r(x + )' . .r(x + m - 1) = m" 12 ' (2,r)(m._I2 r(mx)
In  In	 In

The duplication formula is a special case of this with m = 2.

4. r(x+1) - 

This is called Stirling's asymptotic series for the gamma function. The series in
braces is an asymptotic series as defined on page 70.

5. 1-(1) = Srx lnzdx = —y

where y is Euler's constant and is defined as

= 0.5772156...
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6.
	 r'(p+l) - 

I'(p+l) -

THE BETA FUNCTION
The beta function, denoted by B(m,n), is defined by

B(m,n) = 5 x'(1–x)"'dx	 (8)

which is convergent for m> 0, ii> 0.

The beta function Is connected with the gamma function according to the relation

B(m,n) 
=

(9)

See Problem 4.12, Using (4) we can define B(m,n) for m C 0, n <0.

Many integrals can be evaluated in terms of beta or gamma functions. Two useful
results are

F/2	 r(m) r(m)
-	 sln2"'' 9 cos2 ' 0 dO = *B(m, is) = 2r(in+n)

valid for in> 0 and n> 0 (see Problems 4.11 and 4.14) andI x'-'
—dx = r(p)r(1–p) =0<2<1o 1+x	 Blflfl,r

See Problem 4.18.

OTHER SPECIAL FUNCTIONS

Many other special functions are of importance in science and engineering. Some of
these are given in the following list. Others will be considered in later chapters.

1. Errorfunctjon,	 erf(x) = çj'e_u1du = 1 —	 5r"du

2. Complementary	 erfc(x) =	 n'du = 1 — erf(x)
error function.

3. Exponential integral. 	 Ei(x)	 = 5 _ciu

4. Sine integral.	 Si(x)	 = 5 sin ifu = 1!. -	 UdU

(10)

(ii)

- I_c' 
COS udu-

•14

=I sin-u2 du = 1 - ..i ('sinu2du
IT_Jo	 \f.,rJz

=  
o

\J!fXcosu2du = 1
	

cos u2du

5. Cosine integral. 	 Ci(x)

6. Fresnel sine integral.	 S(x)

7. Fresnel cosine integral. C(x)
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ASYMPTOTIC SERIES OR EXPANSIONS
Consider the series

S(x) =	 ... ++ ...	 (12)

L'	 at
and suppose that	 S(x) = ao + - + -j +	 + -	 (73)

x	 xX.

are the partial sums of the series.

If R,(x) = 1(r) - S(z), where 1(z) is given, is such that for every n

ijmzn lL(x)I = 0 (14)

then S(x) is called an asymptotic series or expansion of 1(x) and we denote this by writing
1(x) - S(x).

In practice the series (12) diverges. However, by taking the sum of successive terms
of the series, stopping just before the terms begin to increase, we may obtain a useful
approximation for 1(x). The approximation becomes better the larger the value of x.

Various operations with asymptotic series are permissible. For example, asymptotic
series may be multiplied together or integrated term by term to yield another asymptotic
series,

Solved Problems

THE GAMMA FUNCTION
4.1. Prove: (a) r(n± 1) = nr(n), n> 0; (b) i'(n + 1) = n!, it = 1,2,8

c"
(a) F(n+1) = I z"cdx = urn J x" e'dz

	

JO	 m- 0

	

= jim	 -LW (—eT)(iirl)dz}

CM

= lint _MtrM + It 
J X" C' dz}. = nr(n)	 if ,t >0

Mt	 j

(b) r(1) = J r'dx = lint-... 0J r'dr = urn (1_r- M ) = 1
0	 M 	 M-

Put n = 1,2,3, ... in r(n+1) = nr(n). Then

r(2) = 1r(1) = 1, 1'(3) = 21'(2) = 2'1 = 2!, r(4) = SF(S) = 3'2! = 3!

In general, r(n + 1) = n! if it is a positive integer.

116)F()	 r(3)r(2.5)	 6r()
L2.	 Evaluate (a) 211.3)'	 r()' (c)	 r(5.5) '	 5111)

	

F(S) = 5!	 - 5'432 = so
(a) 2113)	 22! -	 2'2

(b)
- * F() = *-F()	 =	 a

	

r(4) - F(4)	 114)	 4

	

r(3) r(2.5) -	 2 (1.5)(O.&) r(O.5)	 - 16
(e)	 I'(5,5)	 - (4.5)(3.&)(2.5)(1.5)(0,5) r(0.5) -
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6r() - 6()()F(*) - 4
(ci) 1191) -	 5F()	 -

•0

4.3. Evaluate (a) fxa r r dx. (b) 5 x°edx.
./0

(a) 5 x
3 r'dx = r(4) = 3! = 6

(b) Let 2x = y. Then the integral becomes

=	 =	 =	 - 45
2	 2'	 2'	 2'B

4.4. Prove that r() =

We have E(j) = f x1I2 r2 dx = 25 rU'du, on letting x = u2 . It follows that

= {25etst du}{255_o'dv} = 45 5 c-'' dud,,

Changing to polar coordinates (p,). where u = p cos, v = p sin, the last integral become,
f /2 Ce

4J ) 
rPpdpd	

4J	 4e	 4 =
60 ocO	 • o=0	 p0

and so r(4) =

	

4.5. Evaluate (a) 5' yIr v'dy, (b) fr°'dz.	 5 dx
0

(a) Letting y = x, the integral becomes

5 yciie_z.1x2/3dz = * f z1Se-2dx = * r(*) --3

(6) 5 r4' dx = 5(ensf_4t2)dz = 5e 4 "13 dz. Let (4 In S)z = x and the integral
0	 0	 0

becomes

C	 / x' 12 \ C,.
o	 J x-IISe-Xdx =	 114) =
3 

ed
0	 2V4 GS	 4

(e) Let -in=u, Then xe-tI. When x1, u0; when grO, u. The integral
becomes

5 !_d = I v7l/86-du = r(3) =

4.6. Evaluate C x' e'dx, where vu, n, a are positive constants.0
Letting ax' = y, the integral becomes

r{&) } 
r.dj(-Lj . =	 '	 ..

S/n a	 1' \I/s)
W.	 y(n+	 rv dy = ,WC m +fl/s t , /

4.7. Evaluate (a) f(-112), (b) r(-5/2).
We use the generali atlon to negative values defined by F(n) =
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rfl/2) -
(a) Letting a = —1, r(-1/2) = -1/2 -

(b) Letting n = -8/2. fl-SIt) -
	 -	 -

- -8/2 - -3/2 -	 • using (a).

- r(-312) = - I V,.Then r(-6/2) -  -512	 15

	

I	 (-1)'n!	 -1.-
, where it is a positive integer and in>4.8. Prove that j r (In x)" dx = +

	

o	 (m1)
(--	Letting i = e", the integral becomes (-1)"	 yne't+DVdy. If (m+ 1)y = u, this last

Integral becomes

	

_________	 (-1)" 
r(n+ 

1) - (-1)5n!

	

(-1)' •	
du	 (-1)" 

fun o du = 
(in + n+1	 - (in + 1)"'= (m+1)'' o

	

4.9. Prove that	 Jrx'coo pA dA =

Let I = 1(., fl) = f e'coaPx dx. Then

- f (-xr") sin fix dxop -
I'.

= -

	

sin OX -	 o e-aX'cospx A =

	

2a	 0 2a	 2a

Thus	
18! - A	 In[ = ... A	 (1)or -
18/i -	 OR	 2a

Integration with respect to p yields
In! = -- + C1

or	 I = 1(a, 8) = Cr""	 (2)

But C = 1(.. 0) = f	 = __J x-112c'dx 
= 4) = 1 17-, on letting r = aX2.

Thus, as required,

	

I =	 -Ca

4.10. A particle is attracted toward a fixed point 0 with a force inversely proportional to
its instantaneous distance from 0. if the particle is released from rest, find the time
for It to math 0.

At time S = 0 let the particle be located on the x-axia at z = a > 0 and let 0 be the origin
Then by Newton's law	 d2x	 k

dt2 = _;	
(i)

where in is the mass of the particle and k > 0 is a constant of proportionality.

dx	 .	 . 	 Then 	 dv	 dvdx	 dv
Let	 = v, the velocity of the particle.	 Then	 =	 = v	 and (1)

becomes

	

dv	 k	 mi.2

	

-	 or	 2 
- klnx+c	 (2)

upon integrating. Since v0 at xa, we find e=klna. Then

=	 or	 v =	 =In	 X
(a)
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where the negative sign is chosen since x Is decreasing as t Increases. We thus find that the time
T taken for the particle togofrom ra to x0 Is given by

T- f(' dx

-

	

Via

 In a/s = U or x = ge-u, this becomes
in

T = a t[ ,f uiflsudu = a.t,JjF() =

THE BETA FUNCTION
r IV!

4.11. Prove that (a) 11(m, n) = B(n, vi), (b) B(m, n) = 2 J	 sin2"' 9 coa2" 1 o do.
S

(a) Using the transformation x = 1 - y, we have

B(m,n) = f" 	 (1 — x)"' cix =
"I

I (1_v)mrdv

Al
I yn_I (l_v)m_l dv = B(n.m)

(6) Using the transformation z = sin 2 9, we have
.1Tf2

	B(m,n) = j x"' (1— x)51 dx = J	 (sin2 g)fltI (ces2 *).-1 2 sine con di0	 0

.. t/2

=	
sin2"' 9 cos 2"- t o do

0

4.12. Prove that B(m,n) = r(n) rot) nt,n> o.r(m+n)

Letting x = x2, we have r(m) = 5'	 a-t cia = aJ' 52"-! e' dx.

p
Similarly, r(n) = 2J y-j -? 11.	 Then

0

r(m) F(s) = 4(5' 52SlL e' dx)(J "v21 r"

= 4 5' 5' x2m_1y2n_2e(x*+Y*)dxdv

Transforming to polar coordinates, x = p coS 0, , = p sin 0,

C,,'2r(m)r(n) = 4)	 p2cn+n)le_Icoszm_Iin2n_1.d,,d.
oe p-O

\ f .'wf2
= 4(5'	 2(n+s)-1 rP'dp J	 cos2	 sin2-'p

S=0

r/ 2
= 2F(in+n)f cos2n-l psIn2 - I Ø4 	F(m+n)B(n,m)

= F(m+,)B(m,n)

using the results of Problem 4.11. Hence the required result follows.

The above argument can be made rigorous by using a limiting procedure.



74	 GAMMA, BETA AND OTHER SPECIAL FUNCTIONS	 [CHAP. 4

C '
4.13. Eva	 3 Evaluate (a)	r(1—x)3dx, (b) S 2 

x2dx	
(c) 5 y4vaiL2dv.

	

0	 0

(a)	 x4(1 - x)3 dx 
= B(5,4) = 1'(5) F(4 = 413!	 1

1(9)	 8!	 280

(6) Letting x = 2v, the integral becomes
4\/iI'(3)r(1/2) - 641

	

4aJ
' 	v2(1_vyh/2dt = 4&B(3,4) =—dv = 4v2

	

vTZi 	 o	 ThTh7/2)	 - 15

(o) Letting y' = a2x or y = cry5, the integral becomes

	

as	 as	 o6F(5/2)F(3/2) - ra6

	2 	
dx =	 =	 21(4)	 - ii

4.14. Show that	 5 

ir/S 

sin 2m- 6 cos'' Ode 
= r(m) r(n)

2 r(nt +n) m,n-'O.

This follows at once from Problems 4.11 and 4.12.

ir/S	 p11/S

4.15. Evaluate (a) 5 sin' 8 do, (b) 3 sin  e Cos
s
9 49, (c) 5eos4 9 49.

(a) Let 2tn-1 = 6, 2n — 1 = 0, i.e. in 712, it 1/2, in Problem 4.14.

-

	

Then the required integral has the value r(7/2) 1'(1/2)
	 5,

21(4)	 - 32
-

(b) Letting 2m — I = 4, 2n - 1	
r(6/2) r(3)	 B

	

6, the required integral has the value 2 r(1112)	 315'

(c) cog4 e de = 2 J 	 cos4 $ de.	 Thus, letting 2m - 1 = 0, 2n - 1 = 4 in Problem 414, the
./0	 0

value is 2r(1/2)r(5/2)	 Sir

	

2113)	 7'

nir/S	 1'3'5''(p-1) 71

	

2•4'6	
If p is an even posi-4.16. Prove J sin" 0 40 = 3 cos" 9 do = (a)

2 . 4-6 . -	 1 j p is an odd positive integer.

	

tive integer, (b)	 1	 ' 'p
From Problem 4.14 with 2m - 1 = p. 2n - 1 = 0, we have

F[4(p+1))r(4)5' sin" ede =

(a) If p = 2r, the integral equals

r(r+I'(4) - (r-4)(r—)"'4r(4)'r(k)
2r(r+1)	 '	 2r(r-1)'"l

- (2r-1)(2r-3)'''lr - 1'3'5'''(2r-1)
-	 2r(2r-2)- '2	 i -	 2'4' 6' 2i-	 2

(6) If p = Zr + 1, the integral equals

r(r+1)l'(4) -	 r(r-1'''l'v'	 -	 2'4'6'"2r

	

2r(r+f) - 2(r+)fr — H Jr.- 	 - 1'3-5'''(2r+1)

ri/a
	In both cases	 sln'6d$ 

=j	
cos'vde, aaseenbyletting 9 =	 - #.

0
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"/2	 raw
4.17. Evaluate (a) I	 CUSS edo, (b) f sin3 9 cos2 e do, (c)	 I sins o du.

0	 "0	 ..10

'(a) From Problem 4.16 the integral equals 1 3'5,
2'4 • 6 

= 5,,.
 j [compare Problem 4.15(s)].

(b) The integral equals
,.v/2J 3in3 o(1_8in2 6)d6 =	 sin3pdo— 5 sins odo = 2	 2'4 - 2

o	 .10	 o	 1'31'35 - 15

The method of Problem 4.15(b). can also be used.
.17/2

(c) The given integral equals 4	 Sin8O do = 4Jo	
(1.3.6.7 \ -

2 . 4 . 6 . 82) -

418. Given (' .—dx =	 show that r(p) r(1—p) = .7' where 0< Pci.1±x	 SIflfl'r'	 s in pr

Letting	 = y or x =	 the given integral becomes

5 	 E(p,1—p)

and the result follows.

4.19. Evaluate	 f	 dij
so 1±ij

Let 0 = x. Then the integral becomes 	 1—dx =	 '7-3/4

	

^ x	 4 sin (/4) 
=	 by Problem

4.18 with p =
The result can also be obtained by letting y 2 = tan e.

4.20. Show that ,) xI8 x dx 
= 16

9V
Letting x3 By or x = 2y 1 /3, the integral becomes

520/3. '-8(1— y) = 1 5 r'U —y)"dy =

- 8r()r(fr)- 
8r(+)r(%)2)	

- 8	 Ir	 - 16,
- 3 r(	 9	 9sinr/3 --

4.21. Prove the duplication formula: 220 r(p) r(p + f) = .cr(2p).
IT/S	 .7/2

Let I =	 sin'°x dx, J =	 sin2'2x dx.
0	 0

Then I = tB(p+*.& = 2r(p+1)

Letting 2z = u, we find

j = ! f sin2'u du 
= 5 sin2Pu dat = J2

'/2
But	 I 

= 5 (2 sin z cos x)2Pdx = 22Pj	 sin'Pxcos'Pzdx
0

225 {r(p + 4)}2

= 22171B(p+1.p+*) =	 U(2p+1)
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Then since I
=

	2p r(p)	 2p F(2p)

and the required result follows.

4.22. Prove that S2!.

	

dx = 2i'(p)cos(pv/2)'	
0<2< 1..

We have 1 -	
S-'	 Then- 1'(p)

'Lv
( E!ii

	

	 J 3' uPS' rX14 cooxdudx	 (I)r(p)

when we have reversed the order of integration and used the fact that

1	 coax dz =	 (2)u2+1

Letting u2 = v in the last integral In (1), we have by Problem 4.18

C up	1 (tj,(p_fl#2
s j---,du 

=	 i+v dv =
 ! sin (p+I)r12	 2 cos piri2

Substitution of ($) in (I) yield, the required result.

STIRLING'S FORMULA

428. Show that foi large ti, n! = i/rn"e approximately.

We have

	

rQs+1) 
= 5' x'r'dx = 3'	 (1)

	

•0	 0

The function n in x - x has a relative maximum for a = ii, as is easily shown by elementary
calculus. This leads us to the substitution z = n+ v• Then (1) becomes

	

r(n+ 1) = c-" In 	 i'_: 
0alnn + nln(i+iifn) V dy	 (2)

= nmc_nf eful(1bi0) 5dy

Up to now the analysis is rigorous. The formal procedures which follow can be made rigorous
by suitable limiting processes, but the proofs become involved and we shall omit them.

In (2) use the result

ln(1+x) = x - ç + ç - ...	 (s)

with x = yin. Then on letting v = VWv, we find

	

r(n +1) = ,te" f_0_I/2n +	 -	 = n" e" VT g"/2 + T)315'i -	 dv	 (4)

When a is large a close approximation is

•0

I'(n+i) = nm e- o vcf r"2 dv = vinr'	 (5)

It is of Interest that from (4) we can obtain the entire asymptotic series for the gamma func-
tion (result 4. on page 68). See Problem 4.36.
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SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

4.24. (a) Prove that if x > 0, p > 0, then

1, 
= 5 --du = S.(x) ± R(x)

where

S(x) =

L(x) =

ruXL_ + p(p±1) - ... 
+ (-1)'

xP+i	 X2	 I
f_(1) t1 p(p+1) •.(p+n)	

e-u

F'S

(b)Prove that jim Xe J —du - S(x) = urn x'9R.(x) = 0.
V

(c) Explain the significance of the results in (b).

(a) Integrating by parts, we have

= 5 	 du =
It'	 to'"

c-a
Similarly	 =	 TT	 P + l)1p.2 so that

eX	 I e_r - — p(p+ l)I, 2

	

I, = T_Ptn_0fhP+	 +
2} = -- xp+I

By continuing in this manner the required result follows.

(b) I R(r)) = p(p+ 11 . -. (p +n)J	
c	 du	 Pip +l) 	 (p ± n) (

^ p ip ±.). (p+n)
-

since feu' du	 5 c- du = 1.	 Thus

urn xTiR,jx)l	 urn P(P + 1) ( + n) 
=

(c) Because of the results in (b) we can say that

f— 
du

Jr	 xptI	 xP+2
	 (1)

i.e. the series on the right is the asymptotic expansion of the function on the left.

4.25. Show that

	

erf(x) - 1 -	 1	 1 3 l 35
23x +

We have	 crC (r) = f 
e' dv =	 r112c—" dt

1 - _L r,,2 e--du

Now from the result (1) of Problem 4.24 we have, on letting p = 1/2 and replacing x by x2,

ru-nu	 o'1 1 l3 1315
23z7

which gives the required result.
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Supplementary Problems

THE GAMMA FUNCTION
1(7)	 1(3)113/2),	 (a) r(1/2) 113/2) 1'(5/2).4.26.	 Evaluate	 (a) 21'(4) t'(a) •
	 (6) 

1.27,	 Evaluate (a) 5' x4 c' dx, (6) 5 x6 0 -3.r dx	 (a) 5 x2c 2t' dx.
o	 0	 'Vt

4,28.	 Find (a) I	
• 0

dx, (6)	 ,Ta &dx, (a)	 dy.
.15	 '-Jo 

429. Show that	
8-st

J —dt 
=	

8>0.
VT

I( j\n-I
	In- 	 dx n>04.30. Prove that (a) 11n) = 5

F(q 4 1)
(6)= (p+ j)q+l' P> -1,	 > - 1XV

,,	 xJ

4,31.	 Evaluate (a)	 (In x)4 dx, (6) f (z In x)3 dx, (a) f	 In (liz) dx.f'--' 0 	 '-0	 • 0

4.32. Evaluate (a) r(-712), (6) fl-i/a).

4,33.	 Prove that	 lim !r(x)l	 where m = 0,1,2,3,...

4.34.	 Prove that If ta is a positive integer, J(-ni + 	 = 1-3-5 '(2m -1)

4.35.	 Prove that l"(l) = 5 e- In x dx is  negative number. (It is equal to -y, where y=0.577215...

is called Euler's coaiatant.)

4.36.	 Obtain the miscellaneous result 4. on page 68 from the result (4) of Problem 4.23.

(Hint: Expand	 -	 In a power series and replace the lower limit of the integral by —.o4

THE BETA FUNCTION

437.	 Evaluate	 (a) B(3, 5),	 (6) 11(3/2,2),	 (a) E(1/a, 2/3).

I	 ,-'l
4.38.	 Find (a)	 x(1 - x) dx, (6) 3 Vu

_________
- x)/x dx, (a) J (4 - x2)312 dx.

'0	 o	 0

4.39.	 Evaluate (a) 5 u312 (4 - u)S/1 dic, (6) 5'	
dx

4.40. Prove that 5 	 =
' V — ø 	 4.427—,

4.41.	 Evaluate	 (a) 3	 'ino coo4 o do,	 (6) j	 cos° e do.
0	 .0

4.42.	 Evaluate (a) 5 sins ode, (6) 5'	 co'5 e sin2 ode.
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rTIS
4.48.

	

Prove that (a) . J 	 .1 tane do = r//i; (b)	
12

 
tanPO da = f see f.	 0< p <1.

f444. Prove that (a)	 'doj—ç-- =	
(5) ( ..tt =

F5 1+0	 2'i

Cc 2w___
dx	 where a,b>0.=445. Prove that	

6u

J ae + 5	 3jg3I85I13

E446. Prove that	
(+ 1)1

2rdx = -. [Hint: Differentiate with respect to S In Problem 4.46.1

SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

4.47. Show that efl (x) = 2- /

	

Z3	 E5	 X7

4.4$. Obtain the asymptotic expansion Ei(x) - f_!ui ....0 2! 8!
o

4.49. Show that (a) Si(—x) = —81(x), (6) Si(-) = r/2.

4.50. Obtain the asymptotic expansions

sin x/i 8! 5!	 \	 4!
-	 x

cosxfi	 8! 5!	 )	 ama1	 21 4!Ci(z) - —ç---—i — ... -	 XT—.(i

431. Show that • O<p<1.

	

j0 a'	 2 r(p) sin (pr12)

Ut Show that	 sin x2 do = f cos x2 = h/i
433. Prove that 111a ft	 e

Va!


