Chapter 5

Fourier Integrals and Applications

THE NEED FOR FOURIER INTEGRALS

In Chapler 2 we considered the theory snd applications involving the expansion of &
‘function f{z) of period 2L into.a Fourder series. One question which arises quite naturally
is: what happens in the case where L= =t We shall find that in such case the Fourier
series becomes g Fourier integral. We shall discuss Fourier integrals and their applications

in this chapter. -

THE FOURIER INTEGRAL :
Let us sssume the following conditions on f{x):
1 f(z) and f'{z) are piecewise continuous in svery finite interval.

- J:: [f(2)] dz converges, i.e. /(z) is absolutely integrable in (—o, =),
Then Fourier’s integral theorem states that
Hx) = J;‘ {A(a) cos ar + B(a)} sin az} do : ()]

Als) %J:: f(£) cos ax dx ]
where . ®
B(a) = % f- f(z) sinaz dz

The result (2) holda if # is a point of continuity of f(z). If x is a point of discontinuity,
we must replace f{x) by fx+0) -;f(a:-o) 88 in the case of Fourier series. Note that

the sbove conditiona are aufficient but not necessary.

The aimilarity of () and (#) with corresponding results for Fourier series is apparent.
The right-hand side of (2) is sometimes called a Fourier integral expansion of f(z).

EQUIVALENT FORMS OF FOURIER'S INTEGRAL THEOREM
Fourier's Integral theorem can also he written in the forma

fle) = % f:e f:_ f{u) coa oz -~ u) due da (6]
flz) = '21: f_‘: J: Flu) g2~ du da
) = -2}; J: o4 oy j: () e~ % du 4
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CHAY. 5] FOURIER INTEGRALS AND APPLICATIONS a

where it is understood that if F(z) ie not continuocus at z the left side must be replaced
by flx+0)+flz—0) ¢
2 . .

These results can be simplified somewhat if f(z) is either an odd or an even funetion,
and we have .

f{z) %J;' 8in ax do j:. fiu) sin oy du if f(z) is odd ‘ {8

f(2) %j:'mmdaff(g)msmdu Hfz)imeven _ (8)

FOURIER TRANSFORMS
From (4) it follows that if .

Fl@) = f_: foyemdy o

then Hz) = %f_'_ Fla) ¢ da @)

The funetion Fie) is called the Fourisr transform of f(x) and is ‘sometimes written
Fle) = F{f(z)}. The function f(x) is the inverse Fourier transform of F(a) and is written
f(2) = F {Fa)}. '

Note: The conatants 1 and 1/2= preceding the integral signs in (7) and (8) could be
replaced by any twe constants whose product i3 1/2», In thia book, however, we shall keep
to the above choice. :

FOURIER BINE AND COSINE TRANSFORMS
If f(z) ia an odd function, then Fourier's integral theorem reduces to (5). If we let

Fie) = j:"f(u) sif et dut - )

then it follows from (5) that
. 2" <
fey = 2 j; F, () 8inaz da {10)
We eall F,(«) the Fourier sine transform of f(z), while f(z) ia the inverse Fourier sine trans-
form of Fy(a). .

Similarly, if f(z) is-an even function, Fourier's integral theorem reduces to (6). Thus
it we let

Flg = J;" #{4) con s du | )
then it follows from (8) that )
t@ = 2 Foe)cosarde | 2

We call F_{x) the Fourier. cosine transform of f(z), while 1(z) is the inverse Fourier cosir

transform of F,(a) - .
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PARSEVAL’S IDENTITIES FOR FOURIER INTEGRALS
In Chapter 2, page 28, we arrived at Parseval'a identity for Fourier series. An ansl-
ogy exista for Fourier integrals. ' -

It F(a) and G{a) are Fourier transforms of f(z) and g{z) respectively we can show that
§ rmg@az = £ [ POTE e 49

where the bar gignifiea the complex conjugste cbizined on replecing ¢ by —i. In particuiar,
it f(2) = g{#) and henes F(c) = G(a), then we have

I rrde = o= f ¥l de (24

We can refer to (14), or to the more general (13), ns Parseval's identity for Fourier in-
-tegrals.

Corresponding results can be written .involving sine and cosine transforms. If Fy(a)
and G,{«) are the Fourier sine transforms of f{z) and g(z), respectively, then

[ 1oz = 2 P60 da 15
Similarly, if F (a) and G_{=) are the Fourier cosine transforms of f(x) and g(z), respec-
tively, then i o (* .
[(ers@dz = 2 Pl Gylede (10)
. L] . T/ 0
. In the apeeinl case where f{(z) = g(z), (15) and (18) become respectively
[Ctwrd = 2§ @y (n
fTvewds = 2f Py | (1)

THE CONVOLUTION THEOREM FOR FOURIER TRANSFORMS
The convolution of the functions f(z) and g{z) is defined by '

129 = § swote—wdu (19)

An.important theorem, often referred to as the convolution theorem, statea that the Fourier
tranaform of the convolution of f(x) and g(x) is equal to the product of the Fourier trans-
forms of f{z) and g(e}. In symbols,

Fifrey = FAFRN {£0)

The convolution has other important properties. For example, we have for functions
F 7, 8nd k:
fro = g%f, frg*h) = {f*g)*h, [ "(g+h) = fog+f*h (e1)

e, the convolution obeys the commutstive, associative and distributive laws of algebra.

APPLI(iATlONS OF FOURIER INTEGRALS AND TRANSFORMS

Fourier integrals and transforms can be used in aolving a variety of'boimdary value
probiems arising in science and engineering. See Preblems 5.20-5.22,
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i Solved Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

A

52,

Show that (1) and (8), page 80, are equivalent forms of Fourier's integral theorem.
Let us start with the form

l - L
Ay = < J‘ f Flw) cosalz —u) ditda ]
a=dyn—m
which is proved later {(see Problenia 5.10-5.14). The result {1} can be written as

f) = %f"ﬂ'f”_ f(1)[c0n az ot s + ain a2 sl aw] du da

or flry = f " , (At} conaz + Blo) sinaz) da ()

where wa lat

Ala)

%j-_.: Fli) com o di

RO B o
Bw = 2f " fu oim o de
Converaely, by substituting (3} into (2} we obtain (7). Thue the twa forms are equivalent.
Show that (8) end (4), page 80, are equivalent,
Wa have from {3), page 80, and the fact that ‘cos a{x — u) is an even function of a:
flay = EI;J-; _’:n ftu) cosalz — u) du da )
Then, using the fact that sin «(z —u) is ah edd function of &, we have
. f’_ J’_ ,,- #) oin olt ~ %) duder @)
Multiplying (2) by i and adding to (I} we then hava

fa) = %J: _’: fu)cos ale — ) + { sin oz — 1)] dwda

= %f:‘ f_: Huyokuts—w) dus de

Bimilarly we ean deduce that (f), page 30, follows from (4).

1 |#7|<a
¢ lx|>a’
(b) Graph f{z) and its Fourier tranaform for a = §.

{z) The Fourier transform of f(z) in

(a) Find the Fourier trangform of f(z) = {

Fla)

u e |
= I fiue—wmdy = fa (fja-tudy = Z—
- —a W |—a
'm- _h » .
= S=—0 = gtinee .,
ia &

For a =0, we ohtaln Fla) = Za.
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{b) Tha graphs of f{z) and Fi{a) for a = 3 are shown in Figs, 5-1 and £-2 rcapectively.

fis) Fla)

l -

l -

3

1

4] i .
R 1 1 ] ¥ li
-5 g =l 1 2 ) |

Fig.6-1 Fig.§-2

® ginaf cos ax da.
—- “a

54, {g) Use the result of Problem 6.8 to evaluate

{d) Deduce the value of J: s:i:u di.

(s} From Fourier's integral theorem, if

Fla) = f; fluyo—imdy  then Fla) = -El—f_: Fa)siar e

13

Then from Problem 6.3,

L 1 | <a
N ol _— —
L f_‘z_;_mau = {12 |l=a @
o 2] > a

Tka left sida of (7) is equal to

1(" sinancosez, . i(° 8in oo gingz ,
S & r L]

()

“The integrand in the second integral of {8) in odd aud 5o the integral is rore. Then from
() and {g), we have

. r ol <e
J‘_ ain aa:os oy = /2 |t =a 2
- o i >a

(0 It =0 and a=1 in the result of (a), we have

L] = =]
li.nadc = 5 or J" duadq =
0 a

—

¥
2
since the intagrand iz even,

65 (o) Find the Fourier cosine transform of f(z)=e~™, m> 0,
(b} Use the reanlt in (a) to show that

" coapy . S
\ ”,-—-—+ﬂ,du = o8 0>0,8>0)

H
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1 . . P ;

{(a) The Fourier cosine transform cf fm) = e=mz s by definition

Fela) J; o™ oop oy d

a~mu(—m cosatt + & min aup |°
m* o

(3} From (1), pagt B1, we have

fay = Echin)cmm!dn
wJy
| 2 £ mconax
or e :,(, el
® copax I
be. f e AL "
Replacing « by v, z by p, and m by 3, we have
-
f;‘;"-’};-,-du = 2—’%;—:&, p>0, 420
Q

56. Solve the integral equation

. d {l—a zas1
J; Hz) sinexdx = 0 e>1

H we write .
1—e ZaFl
4] >l

Fgla) = J;w,f(x]sinazdan = {

then, by (19}, page 8L,

1

7 2 J; Fala) 4in ot da
_oata
= 'J; {1—a) ginaz de

2lz — ain )
P

THE CONVOLUTION THEOREM
5.7. Prove the convolution theorem on page 82.
We have by definitlon of the Fourier transform

Fla) = J._n flure—tmmdr, Glm = f_ag{vls““dv ¥4

Then Fio) B{a) = J:- f Fu) glvie—latutel du dv ()

iet k+v=a in the double intagral {2} which we wish to transform frem the variables (u,v) to
the variables {u, z}. From pdvanced caleuius we know that

dudy = :—tj:—:)jduds ' ' @
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where the Jacobian of the transformation 1a given hy
du  du

““‘”='1u
01

SIS N
=) W av

du dx

| =

Thus (2) becomes

_f_: _f_: ) gle — w)o—%z dy dx

f; o ios [f_: fle) gz~ ) du] dr
= 7 {f_: £e) gtz — ) du}‘

= F{f g}
where f*g = f_ fw) giz~w)du s the eonvolution of J end g.

Fle) Gla}

From this we have equivalently

F*g F{F{a) G{a)}

]

= J‘_ : #azFa) Glo) da

Show that f*g=g™*f.

Let z—u=+v. Then

f*g ‘,:” Fou) ple = w) du J:j_f(s-u} o) di

%

]
Il

§ e s —vyav Y,

Solve the integral equation
wz) = glx) + j:d vlur{x —2)du

where g(z) end {z) are given.

Suppose that the Fourier transforms of w(z), g(z} and r{z) exist, and denote tham by ¥(a),
Gla) %nd B(a) vespeciively. Then, taking the Fourier transform of both sides of tha given integral
equation, we have by the convalution theorem

Yie) = Gila)-+ Y(a)Ria) ~or Yi) = -I-E{;){a}

= g Glal - 1r" G
Then wie) = ?1{1—»8{«)} = Er.f_-{l_:-;‘)w}ma,

aezuming this integral exista,

5.10. Solve for y(z) the integral equation

® u(u;du 1 _
j:- Z—ur+al - W+ h d<a<h
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We have

1 _ b oz _ cos o = T a-ba
¥ m} = ). 7 u% = 2f = re g 5°

on making use of Problem 6.5(b). Then, teking the Fourier tranaform of both sides of the integral

aquation, we find
FinF {'F-ITE:} = ¥ {:ri‘ﬂ}

Le Playle-m = Te-ta or Vie) = ‘Le-(braa
- e ] b

* - " B _ _ _
Thus plz) = -;;JL_ oY) da = %J; -z goaarda = bw[:i&- {:}i ~

PROOF OF THE FOURIER INTEGRAL THEOREM

5.11. Present a heuristic demonstration of Fourier’s integral theorem by use of a limiting
form of Fourier series.

Let He) = % + 2 (d,. sos B L + b, ain Lx) (1)
L
where a4, = %I_Lf(a}m%du and &, = %J’-—Lf(“) sin’%du.

Then by subatitution of these ceeficiants into (1) we find

flx) = ?.Lf Joy du + — f Fu) cos 2 T Tt — ) du (£)

If we aesume that J". [F{u}} dot converges, the firat texm on the right of (£} appronches rero sa
"L -+ w, while the mm.in;l:z part appears to approach
timt 3§ o Fwm ) du @
Thia lnat atep is not rigorous and makes the demenstration heuristic,
Calling Ae = #fL, (#) can be written

flzy = ABTG n§1 Ac Plr aa) 4
where we have written
Flgy = % J: J{t) cos atu— shdu . (5

But the limit (4} 1a equal to

fn " Floyda = ! j; " da f_: #4) 08 altt — #) dax @

which is Fourier's integral formula.

This demonstration merely provides a possible result. To be rigorous, we atart with the double
integral in (§) and examine the convergence. This method in considered in Problems 6.12-6.16,

. L = . 3
512, Provethat: () lim“[; Tl =z () lm§ Si‘;“” dv =

K
2" [- £k ] - 2
E gin ay * ol gin "" ain #
(a) Lot «v =14 Then  lim f dy = lim -—Edy = ll'Iui*.nr = -, &
. g=w 0 v a—wn ¥ 2

can be shown by using Problem 5.40.
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o . al
) et ar=-y. Then imf ey = um fTIHgy - 2

o=’ —L v e

Riemann's theorem states that if F(z) ia piecewise continucus in (e, b), then

h
lim F(z)singrds = ¢
a

AT =

with a similar result for the cosine (see Problem 6.41). Use this to prove that

(@) lim f: flz+v) “”;‘*"’dv = Zfz+0)

. . ’ sin v -
()] l’ﬂ .f-:. f(a+v)Tdu = zf(z 0)
where f(x) and f’(z) are assumed piecewise continuons [see condition 1. on page 80].
(@) Using Problem 5.12{a), ¥ iz zeen that a proof of ths given reault amounta to proving that
L
I [ ete — peropiity, - g

Thls follown at once from Riemenn's theorem, because Fy) = {x+ v) : Hz+0) I piecawise
contingoun in (0, L) wines 1i:;1+ Fio) exiuts and f(x) is plorewlse eontinucus.
[ 2VY
(%) A proof of this is analogous to that in part (@) if we make uss of Problem 5.12(5).

I f(z) satisfiea the sdditional condition that { _ |fiz)|de converges, prove that

- ' M .
8in qu . sin .«
() 11_12]: Fle+v) v dy = g—f(a:+0), (] ll_l.!.‘.l. J:- flx+1v) > dv = %f{z-—O}.
{«} We have

- . L ™
J: ﬂx+u)ﬂ:'fdv = J; {(z-!-v]ﬁhl_wdu + J; f{a+v)m~7—“du {1}

- : L "
1; fotoy ey, _ J: e+ o _j; fiz +0) “‘;‘“’du ®

Subtracting,

f, v +o - e 4 gyBine, )

L . ) .
= J: U(*+1’?-!(==+0})-’—m-;€‘3du + J:_ fz+ ) SR gy ): f(z+0)’i';""du

Denoting the integrala 5n (2) by 1, 1,, I, and £y respectively, we have 7= I, + 7,4 Iy 5o that

H & |5l + |5+ 14l )
Now TR j; [EROL . A %j: [iz+ v} du
Alzo Uy s Ift=+0}|| J: ® .s_iﬂfgau!

Al -
Sinee J; (F(x))d= and j: ﬂl-:'—‘"4’::!» Roth converge, we can thoosa £ 80 large thet |Ta| < o8,

th] = /8. Als, we can choose = 20 large that |I)| % /3. Then fr =
N 1 N om {4) we have [} S ¢ for a
and L guliiciently large, no that the required rasult follows.
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(8} This result follows by reasoning exactly anslogous to that in part (@)

§15. Prove Fourier's integral formula it f(z) satisfies the conditions stated on page 80.
We must prove that lim le f-- < fu) cona(e — ) duda = it dl)] ;' fz—0
L a=0vum—m

7

= -[" [ftwl ds, which converges, it follows by: the Waler-

Since IJW Jlu) comalp ~ w) du

L]
ntress M test for Integraln that J‘ flu) cos of@ —u) d4 convergez absolutely and uniformly for all a.
Wa can show frem this that the oxder of integration can be reversed to obtaln

Lt - - 1(
u_'daJ;__‘!(l)eua(x wae = 2f

L
y flu) du j;_nemdc—ujdu

16" fs), sinLix—a). .

L T Tow—x
-
= -1- f(=+1|‘ Mdﬂ
TFlym—u v

sin Ly
o

dv

_1 sin Lv 1(*
= :f_‘f(x+v}-—;—du + 1__]; He+v)

whero we hava let ¥ =@t

Letting L =+ =, we aes by Froblem 6.14 that the given integral convarges to fat o ; flz—0)
an required.

SOLUTIONS USING FOURIER INTEGRALS

5.16. A semi-infinite thin bar (z & 0) whose surface is insulated has an initial temperature
squal to f(z). A temperature of zero is suddenly epplied to the end z =0 and
maintained. (o) Set up the boundary value problem for the temperature u(z, t) at any
point  at timse ¢ (2) Show that

Wz ) = % f:_ J; " foye™" sin Av sin Az dA 0

{a) Tha boundery velue problem is

o
S 2>0, t>0 (2

wz0) = flz), u(0,3) =0, ulzt) <M 9
where the last condition ix used sifce the temperature must be bounded #or phyvical reasons.
{8 A sclution of (1) cbtained by separation of wariables is
uim ) = e=="t(A cosrx + B siniz)
From the second of bourdsry conditions (2) we find A =0 go that
ulz,f) = Be™" giniz )

Now sines there i no restrlction on X we can replace B in (8) by & funection B(x} and still have
a solotion. Furthermore we can integrate over A from 0 ic = and still have a solutten. This
is the analeg of the superposition theorem far diserete values of » used in connection with
Fourier aaries, We thus arrive at the poasible solution

wlz, 8} = j: Biaje==\'t pin az i )
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From the first olt boundary conditions (#) we find
for = [ A ansean

which ia an integral equation for the determination of B(a). From page 81, wo seo that sines
fz) mast be an odd function, we have

BN = %J:_f{x)uin.mdz = .E.J;';(o).inmau

Using this in (4) we find
wzp) = 2 fﬂ _[; ® f(w)e~% gin av sin Az dr do

Show that the result of Problem 5.16 can be written

uz,t) = %[_f“ = fewVit+ ) dw ~ f; = €7 fwy/et —3) dw]

ittsein“ Binivsiniz = }leosA(v—«] =~ coaAlv+=)], the result of Problem 518 cem he
written

uiz, &} %;J; J; Flw)e—™ [eon My — ) — cas Ale + 2]} drdy

= %J’: f{v)[j; o= son My —2) dr — J:'.-u'* mh{v-’o-:]dx]dv

From the integral
L]
f e congrdy = Ay L -8
(] 2V\a

(sec Problem 4.9, page 72} we find

1 b ) ©
e 8} 2\;;;[}; Floyo—to-tixt gy — J; Ho)a=tot )% het dﬂ]

Letting {(v—2x}/2Vei = w o tha first integral and {v+z)/2Vxt = w in the second integral,
we find that
_ 1 - . =
ul, ) = E[f v © fewvet +2) dw ~ Lgﬁc‘"'f@w\fx_t-a}dw]

]}

In case the initial temperature #() in Problem 5.16 is the constant s, sShow that

Vo
wrt) = %j"“ eFdw = ugerf (2/2)/ek)

where erf (z/2/i) Ia the error function (see page 69).
If Hx, &) = uy, we ohtoln from Problem 5.17

ulz, g = %[fw 1"_c"""".'.hr.r - fnv_a-u'dw]
s O e
_ g fanvE Puy pa2VRE
= Tamtlw = Jih e = sertavi)

w * = - .
P ; b';;: ;l;o;; thet this actoally is @ solutfon of the corresponding boundary value problem (see
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518

Find a bounded solution to Laplace’s equation ¥% =0 for the heif plane ¥ >0
(Fig. 6-8) if » takes on the value f(z} on the z-axia.

The boundary valie problem for the determina-
tion of v(x,y) is given by

e , B
wmrtg =0

vl 0 = flz), juie) < M

Ta solve this, let v = XY in the partisl differential
equition, where X depends only on x and ¥ dependa

only on . Then, on separating the varlables, we have vz, 0) = fx)
-1; = - % : Fig.5-8

Setting each slde equal to —F we find
Xt =0, ¥Y'=F =

8o that X = aycoarc + byainaz, Y = agetr + Bgeme

Then the solution is
viz,y) = (a; condx + b, alniwi(age?* + bge—2¥)

If »>49 the term in ©* is unbonnded 88 y = #; 30 that to keep +(z.p) bounded we must have
ap; =190. This leads to the sclution

wiw, ) = a—M[A conrx + B ain hz]
Since thare is ho restyiction on i, we ¢ad replace A by A(\), B by B()) nnd intagrste over i to
ohtain .
ole,y) = J; e~M[A{) cos iz + B() ainaz} dh )
The boundary condition v{z, 0) = f(r} yields
fn [A() coshz + Bl sinxe]dh =  fle)
Thus, from Fourier’s integral theorem we find
1" . 1"
AQ) = - Jﬁ_uf{u} cosiudu, B = = J‘_” Flu) ain hat dus

Putting these in {!] we have finally:

vz, = };J;_nj;__. e~ M f(u) cog Mu = z) du dn 2)

Show that the solution to Problem 5.19 can be written in the form

_ 17 ufw)
oz, ¥ = e P u—T die
Write the reault (2) of Problem 5,19 a2
. N '
3 = = Ay Mu—z)da d I
viz, 9) ’_[_“ Hw) [J; #=% 008 Mut = ) a:' ot (n
Then by elementary integration we have
" e - = el
J; 0= A% 008 Al — 2) d1 v‘+(u-—z}* @

8o that (7} becomes viz, v} = 'f + (,‘ z}n o
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SOLUTIONS BY USE OF FOURIER TRANSFURMS
521. By taking the Fourier transform with respect to the variable 2, show that

o F(3) = wFo. ® F(3%) = =Fe. @ FF) = FFO

{a) By definition we have on using intagration by parts:

(g) - [

= g-koy + fa o -lar dy
_—e -
= ia J.- wo—iar dg
—
= iz Flv)

where wa suppose that v— 0 as z - ==,
{8) Lat v = jw/oa in part (o) then

o S 7 S
f(ﬁ) = uy:'(.a?) (1a)d Fiw)

Then if we formaily replace w by v we have
r(%) = GePFE) = —atFl)
provided that v.and %}-0 B2 @ ==,

In genaral we can show that

i)
u.) = ()" Flv)
dv gn—ly
it Vega g 0 an oz o Ee,
{v) By definftion
wy o (T, - (.. _ @
f(ﬁ?) = ) __ g = a_:f_."’ rde = 5 FW)

822, (a) Use Fourier transforms to solve the boundary value problem
M ]
T Ko W0 = f@), [wzt) < M
where —= <2 < o, £>0. (b} Give s physical interpretation.

{®) Taking the Fourier transform with respect to x of both sides of the given partial differential
equation and using vesults (3} and (¢} of Problem 6.21, we have

d
E;T{ﬂ) = —xd? Flu) (1}
where we hava written the totel derivative since Fiu) dependa only on ¢ end not on . Solving
the ordinary differential equntion (1) for Fu), we cbtain
Flu) = Co=x™ ()

or more sxplicitly )
Flu(z, t)) = Ca—xa"t )
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523,

. . ]
Puitlng =0 In (&) we see that
Flulo. 00}

It

FlUen = C ' (4}

that (2} becom .
e -~ Flu} = F{fjo—=" 7]

We con now apply the convclution thecrem. By Problom 4.9, page 72,

et = F { \ ’ 3}!:3 . -u'nm} #
Heneo ufz, @ = flaj* L e J‘ “ fw) 4 ’ A o— tz=w) rixts dop n
’ L —- doxt

It we now change variublea from w to ¢ according to the transformation (3 —)%/dst = #* or
(7= W)/2Vet = z, {7} becomes

s(e,y = % j: o4 flg - 25V/eE) de ®

{8) Tha problem in that of determining the temperature In & thin infinite bar whose surface I
tnwuisted and whose initial temperators is fiz).

An infinite string is glven an initial displacewrent y{z,0) = f(z} and then releazed.
Datermine its displacement at any later time ¢.

The boundary value problem Is

& _ 8
?g. = 516_3 7))
¥, 00 = el wizm0) =0, jwed < M ()

wherg = <x <, ¢>10.

Letting ¢y = XT in (1) we find in the usual manner that e solution satisfying the second bound-
ary conditdon in (2} is given by

iz ) = (A ecoars + B #inrz) cos hat

By assuming that A and B are functiona of A and integrating from X =0 to » we then wnrrive
at the poseible aclution

piz,8) = J;c [A{X) comhz + B(x) ain rz] con xat di %
Putting t= 0 in (8}, we see from the first boundary eondiﬁon in {£) that we must have
fix) = J:‘ [A(x) conrz + B(h) sin Az) dA
Then it follows from (I} and (2), page 80, that
A = %f_:}'{u} comrods, BO} = L f_ : f(v} sin \v dv )

whera we have changed the durumy variable from z to ».
Sabetitution of (§) into (£) yields

iz, 8 % j: J:_ o fladfeoa re condv + sin hz gin Av] cos Aat du dA
= },TJ:‘ J:_: f{v} cos Mz — v} cos rat dv

= ;T_I:_[_:ﬂﬂ[mﬁ("fﬂ"ﬂ + cos iz — ot — v)] dvd
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where in the last step we have uzed the trigonometyic fdentity

cond conB = Licon(d+B) + con(d — )

with A =AMx—v) and B = jat.
By interchanging the order of integration, the result can ba written

w0 = g fwcmretat-navar
+ %J;‘ J:: Jv) com Az — at — v} dv d) (5)
But we now from Fourler's integval theorem [equation (3, page 80] that
flz) » %J;. J:: #iv) con Mz — v) dv da
'I'iwn, veplacing = by x4 of snd x — gt respectively, we see that (5} cen be written

W) = FlAe+ed + flz—at) @
which is tha required solution,

Supplementary Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

524,

§.28,

{1!’2- I <1

{¢) Find the Fourier transform of fiz} ¢ 2] >1°

-(b) Tretermine the limit of this tranaform as ¢+ 0+ and Jiscuss the result,

1-82  |of<1
(4) Find the Fourier transform of fiz) = {

) o = >1"
O Evanats [ (2o dina) 1y,
1 Dma<1 .
It fix} = {0 ezl fing (a) the Fourier sine izansform, () the Fourler cuzine trens-

form of f{x). In each case obtain the graphs of fi(z) and ita transform.

(e} Find the Fourler slne transform of e—5, z = ¢,

L] "
(&) Show that J; sﬁ;‘i”;’dx = g—rﬁ, m >0 by uaing the reoult in (a).

(¢} Explain from the viewpoint of Fourier's Integral theorem why the result in (&) does not held
for m=0. .

Solve for y(x) the integral equation

1 0s5ig]

J- giz) ainxt dr = 2 1212
L] t. Y .

| o' 123

and verify the solution by direct substitution.
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§2. If Fo) ia the Fonrier transform of #(z) shaw that it is possible to find a comstant s mo that
Fiz) = flz) = ce—F.

PAREEVAL'S 1DENTITY

Fl

. ;
530, Evaluaste (a) f (z* Ty iG] f tr"‘ +1)' by use of Parseval's ldentity.
[Hint. Use the Fourier sine and cosine transforms of ¢~2, 2 > 0.

) L] - 2
531 Use Problem 5.26 to show that {a) J’ A-coazly, = 2 j' ety _ oz
o x 2 {19 17‘2 2

= - 0 2
532.  Show that _f fmoose—singl ;o x|
] L] 15

533.  Prove the results given by (a) equation (1), page B2: (b) equation {14), page B2,

8.34.  Eatablish the results of equations (15), (16), (17} and {15} on page AZ.

CONVOLUTION THEOREM

1 =<1
53%  Verify the convolution theorem for the functiona Ax) = pglx) { ¢ |g{>1°

§38.  Verify the convolution theorem for the functions j{z) = g(z} = ==,

«
337.  Solve the integral equation f ydplz ~u) de = -\
-

838. Provethat f*(p+h) = frpy*h,

53%. Provethat f*{(p*hk) = (f*p*h

PROOF OF FOURIER INTEGRAL THEQREM
540, By interchanging the order of integration in J‘

.}
I ¢~V ainy de dy, prove that
¥=o V=g
L3
giny d -z
-£ y Y 2
and thus completa the proof in Peoblem 5.12.

541.  Let n be any rea! number. Is Fourier's integral theorem valid for f(z) = o—="7 Explain,

SOLUTIONS USING FOURIER INTEGRALS

842 An infinite thin bar {=w < z < =) whore surfase is insulated has an Initial temperature given by
¥ |t <o
0 lxze

Show that the temperature at any peint # at any time € is

uiz, f) = uo ert (:J——) eﬂ(:;‘—:-)]

HED
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5.4

.45,

5Ab.

5T,

540,

350

§.5L.

652,
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A sstai-infialte solld (= 0) has &n initiel temperature given by f{e) = sge~2e, 1f the plane faco
{2 =0) ia insulsted show that the temperature at any point # &t any time ¢ is

1ty
) = o e b tabt)
e, T+ a0t
Belve and phydeally interpret the following houndary value problem:
Su o, B
5 + m = 0 >0

~1 z<¢@

wix,0) = {1 S et ¥} < M

0 e<@ .
= 44
Show that if  w(e,0) {“‘ p>g Problem 6.44, then

ulw,y} = !;i + —-hl'l"'l:

0 <=1
Work Problem 544 it wis,0) = 1 ~1<e<l.
0 ®>1

The region bounded by x> 0, ¢ >0 has ons edge % =0 kept at potentldl zero and the other
edge v = 0 kept at potentlal f{z). (0) Show that the potential at eny point (z,u) 1a given by

1 1 '
e, ¥) = ;j; Bf(‘")[‘,,_;}n+_i.s - (v+i)i+'ﬂ]dr

) If fle} =1, showthat viz,y) = %tan—l.z_'

Verify that the reault abtained in Problem E.18 ix m-.tua!ly a salution of the corresponding boundary
vaits problam.

The lines ¥y =0 snd ¥ =n in the oy-plane (sze¢ Fig. ¥
5-4) sre kept st potentials 0 and f{z) respectively. . viz, 8} = Hz)
Show that the potentinl at pointa {x,y) between these / .
lines fa given by ' 1 S '{,.o)= 0
o(=,v) L DA >
1 ]
j;‘u J:=-.. H“)ainhl\ cosMu—z)du dr Fig.8-d

An infinits string coinelding with the z-axis is given an initial shepe f{z} end an initial velocity g{x).
Apsuming that gravity {s neglested, show that the displacement of any point ¢ of the string at
time t is glven by

x+ar
veh = Flfeten +fie—an) + o f otwn

Work Problem 5.60 il gravity is taken into acecunt.

A semti-infinite cantilever beam (z > 0) clamped at == 0 is given an Injtial shape f(z) and released.
Find the resulting dinpimant at any later time ¢,



Chapter 6

Bessel Functions and Applications

BESSEL’S DIFFERENTIAL EQUATION .
Besgel functions arise as polutions of the differontial equation

2y 4+ 2y + (st -nd)y = 0 nEl : £))
which is called Bessels differential eguation. The ge:nern.l solution of (1) Is given by
¥ = eufalz) + aa¥o () (®

The solution Ju{z), which has a finite limit as = approaches zero, is called a Beesel funotion
of the first kind of order n. Tho solution Y.(z), which has no finite limit {1.e. ia unbounded)
a4 z approaches zero, s called & Beasel function of the second find of order n or & Neumann
funetion,

I the independent variable z in (1} ia changed to Az, where A i8 & constant, the resulting
oquation is
oy + zy + (Mt —aly = O N

with general solution
¥ = efa(A®) + e:¥ulaa) {4

The differentis! equation (1) or {¢) is obtained, for example, from Laplace's equation
M = 0 expressed in cylindrical coordinates {p, ¢,¢). See Problem 6.1.

THE METHOD OF FROBENIUS

An important method for cbtaining solutions of differential equations such as Bessel's
equation is known as the method of Frobenius. In this method we assume a solution of the
form

¥ o= 2 arte (5

where ¢ =0 for k<0, no that (5) actually begins with the term involving ¢ which is
agssumed diferent from zero.

By substituting (5) into & given differential equation we can cbtain an equation for the
constant § (called an éndicial equation), as well a8 equations which can be used to determine
the constants ew. The process is fllustrated in Problem 6.8,

BESSEL FUNCTIONS OF THE FIRST KIND
Weo define the Bessel function of the firat kind of order # a8

1 &3 xt
N = ! - T T -} ()

97
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hod _._1 L xﬂ a3
or Mo = E AT il

=3

where I{n + 1) is the gamma function (Chapter 4). If n is & positive inleger, I(n+1) =n!,
{l)=1 For % =9, (6) becomes

2 - Eal
Jolz) = l‘—;g-l-'z—fa-g-—m'i'"' (8)

The series (6) or (7) converges for all 2. Graphs of
Jo(2) and Ji(z) are shown in Fig. 6-1.

If % 8 half an odd integer, Ja(x) can be ex-
pressed in terms of sines and cosines. See Prob.
lems 6.6 and 6.9. -

A function J-«(x}), n >0, can be defined by re-
placing # by ~n in (6) or (7). If = is an integer, ,
then we ¢an show that (see Problem 6.5) ~h

Joulz) = (~0a() O Fig. 6.1

If # is not an integer, J.(z) and J-.(x) are linearly independent, and for this crae the
general solution of (1) is

¥ = Al(3) + BV -(2) n¥0,1,%8,... (10)

BESSEL FUNCTIONS OF THE SECOND EIND
We shell define the Bessel funetion of the second kind of order » as

Ju(Z) cog iy — J-n(Z)

¥ (ﬂf}-- . Bi'ﬂ e n 0' 1; 2p 3, ‘e (11)
’ B JP(I) CO8 Pr — J—p (x} _
li-!-‘?.ﬂ ain P n= 0! 1; 2|3; e

For the case where n =0,1,2,8,... we obtain the following series expansion for Ya(z):

. 1|-| k_l ! }2 Fik—n
Te) = 2iner + e - 13 EE R 2
(2/2)2x+ (%)
| rEcre e
where y=0.5772156... is Euler's constant (page 68) and ..
= 1 S § - :
#p) = 1l+3 +§+ + 2 2(0) = 0 ;

(13) 14

Graphs of the functions Yi(z) and Yi:(z) are
shown in Fig. 6-2. Note that these functions, as
well as all the functmns ¥Y.{z) where n >0, are un- '
bounded at = =

If n is half an odd integer Y.(z) can be ex- .7/ "
pressed in terms of trigonometric functions. ' Fig.6-2
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GENERATING FUNCTION FOR Ju(r)

The function o -
8 = B g () {15)

s —w

is called the penerating fumction for Bessel functions of the first kind of integral order.
It is very usefu! in obtaining properties of these functions for integer values of # — proper-
ties which can then often be proved for all values of n.

RECURRENCE FORMULAS
The following results are valid for all values of n.

1. Junrfa) = ZI(z) ~ dra()
2. Jalz) = %[J.,_l{z) = Jass(z)}
. 2Ja(z) = tula(z) ~ 2Jess (2)
4. #J;(:C) = xJa—l (:L‘) - Mn(x)

5. L@ = aVam (@)
6. %[x-v.cxn = —2~%an()

If » ia an integer these can be proved by using the generating function. Note that results
8. and 4. are respectively equivalent to 5. and 6.

The functions ¥.(x) satisfy exactly the same formulas, where ¥.(z) replaces J.(z).

FUNCTIONS RELATED TO BESSEL FUNCTIONS
‘L. BHankel functions of the first and second kinds are defined reapectively by

H @ = Ju2) +iY.02), BD(@®) = Ju(z) — i¥al(2) (15)

2. Modifled Beasel functions. The modified Bessel funiction of the first kind of order n
is defined as

Iz) = =L (ix) = e, (ir) S (18
If n is an integer,
Io(2) = Ii(x) _ 7

but if » is not an integer, I,(z) and I-a(x} are linearly independent.
The modified Bengel function of the accond kind of order n is defined as

%[M] n=0,1,23,...

8in nr

[ mp{E) — !S
lif:E ”sinp: n=0,1,23,...

These functiona satisfy the differential equation
2y’ day - (@ +a)y = 0 : {19)
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and the general asolytion of thiaequation is
¥ = ala(z) 4 esKu(z) (20)
or, if 1 0,1,2,8,..., y = Alu(g) + Bl-y(z) €

Grapha of the functions Jo(z), Ii(z), Ke{z), Ki(x) are shown in Figs. 6-8 and 6-4.

¥

K=

Kolx)

] | * [
Fig. 82 Fig. 8-
3 Ber, Bel, Ker, Xel functlions. The functioria Ber. (%) and Bei. () are respectively the
_ real and Imaginary parts of J.(i%%2), where i"“‘=,_ Ao = (3/R)~1 +4), Le.
Ju(iV%) = Ber.(#) + 1 Bei.(2) £2)

‘The funetions Kers(z) and Kei.(x) are respectively the real and imaginary parts of
™MK, (§193), where (V8 = v = (/272)(1 +4), L.

oKL (V%) = Kern(z) + tKeiu(z) (29)

The functions are useful in connection with the equation
Yoy~ [ty = 0 (24)
which arises in electrical engineering end other flelds. The general solution of thia
#quation ia v = afu{t¥2) + coKa(i¥7) (£5)

If n =0 we often denote Ber. (¥), Bel. (z), Ker, (z), Kein (x) by Ber (z),Bei (z), Ker {x),
Kel (z), respectively. The graphs of these functions are shown in Fige, 6-5 and 6-8.

Her{x)

Pig. ¢4
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EQUATIONS TRANSFORMABLE INTO BESSEL'S EQUATION
The equetion

Ty + (2k+ Lzy + (a8 = 0 (260)
where &, «, 7, # are constants, has the genera! solution
¥ = z7Helur{a'fr) + s¥ s (a2l #7)

where « = Vi*— 8%, If a=0 the equation is an Euler or Cauchy equation (aeo Problem
6.79) and has solution

¥ = 2 Mesrt +ca™%) “ (28)

ASYMPTOTIC FORMULAS FOR BESSEL FUNCTIONS
For large values of ¢ we have the following ssymptotic formulas:

no = Ees(2-5-%), vuw ~ \[Zun(-3-%) o)

ZEROS OF BESSEL FUNCTIONS

We can show that if # is any resl number,” Ja(x) =0 has an inflnite number of roats
which are all real, The difference between successive roota approaches s as the roots
increase in value. This can he eeen from (#6). We can alac show that the roots of Ju(z) = 0
[the 2eros of Ja(x)) lie between those of Ju-1(z}=0 and Jasi (s} =0. Similar remarks
esn be made for Y.(x). For a table giving zeros of Bessel functions see Appendix E,
page 177.

ORTHOGONALITY OF BESSEL FUNCTIONS OF THE FIRST KIND
If A and ;s are two different constants, we can show (see Problem 6.28) that

pa (M) Ta(s) ~ Mala)a(r)

1
S, #0210 (02 o e (#0)
while (see Problem 6.24)
1 _ 1 ﬂl
j; zJA(x)dz = E[J;’(A] + (1-;,):2(«1)] (sn
From (30) we can see that if A and 4 are sny two different roots of the equation
RJa(x) + Safa{x) = 0 , (52)
where B and § are constants, then
i
_j; 2da(A2)dalu2) dz = O (23

wkich atates. that the functions & Ja{A%) and \/Z J.(ux) are orthogonal in h(ﬂ. 1), Nﬁte that
a3 special cases of ($2) A and 4 can be any two different roots of Ju{2) =0 or of Ji(z)=0.

We can also say that the functiona Ja(Az), In(n2) are orthogonal with respect to the denaity
or weight function 2.
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EFRIES OF BESSEL FUNCTIONS OF THE FIRST XIND

As In the case of Fourier series, we can show that if f{z) and F(z) are piecewise con-
tinuous then at every point of continuity of f(z) in the interval of 0 < 2 <1 there will exlst
8 Besael series expaneion having the form

fi5) = Ada(uz) + Ada(isz) + -+ = g A () @5
where A1, As, As, ... &¥e the positive roots of (92) with R/S=0, S+ 0 and

2A8 1 ;
b = TR, P ) da o

At any point of discontinuity the seriea on the right in ($4) converges to $[f(x + 0) + f(x — 0],
which can be used in place of the left side of (34).

In cage S =0, so that A5, A5, ... are the roots of -Jo{z) =0,

- 2 ! .
\ a4 = 52§ antsn s de (s0)
H R=0 and n =0, then the aeries ($4) atarts out with the conatant term
1
A = 2 J; 2 f(x) dz @)

In this ease the poaitive roota are those of J;(.::) =

ORTHOGONALITY AND SERIES OF BESREL. FUNCTIONS
OF THE SECOND XIND

The akove resulis for Bessel functions of the first kind can be extended to Beasel func-
tions of the aecond kind. See Problems 8.32 and 638, °
+ . ’

SOLUTIONS TO BOUNDARY VALUE PROBLEMS USING BESSEL FUNCTIONS

The expansion of functions into Bessel series enables us to solve various boundary value
broblems arising in science and engineering, - See Problemns 6.28, 6.29, 6.31, 6.34, 6.35.

Solved Problems

JESSEL'S DIFFERENTIAL EQUATION

3.1. Show how Bessel's differential equation (8), page 97, is obtained from Laplace's
equetion T = 0 expressed in cylindrical coordinates (p, ¢, 2).
Laplace's equation in cylindrical coordinates is given by
fu . 19w 1w . Bu .
3;;'!";:3;*",3#'['3‘2 = 0 {1

If we assume & solution of the form u = .Ps2, where .P ia a function of o, & iz & function of ¢ snd
Z is 8 function of z, then (f) becomes

PrOZ + Loz + 2P0"Z + Pz’ = 0 (#)
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6.2.

Ll

whare tha-prhnes denote derivatives with respect te the pirﬁcula:; independent variable invelved.
Dividing (2) by PeZ ylelds

Pro AP 1" g0 o

FroFtas tF = 0 . @
Equation (f) ean be written aa

Pll IP’ 1 " - z

FrIFtET T 7z “

Since the right side depends only on z while the left side depends only on p and g, it follows that
each side must be a constant, ssy —A%, Thua we have

Pn 1 Pv 1 Ln

- pP + p,@ = -\ B )]
and 24N =0 )
If wo now multiply both aides of (5) by p? 1t becomes
. wE o R v Y o e _ )
which can be written aa
ol e s = - ®

8ince the right side depends only on ¢, while the left side depends only on 4, it follows that esch
eide must ba & constant, say ;3. Thus we have

PFJ Pl
Pt e b Al = 4 {#)

and & plp = . (ra)
The equution (#) can be written ae
PP+ pP! 4 (N2 — P = 0 (n

which In Bessel’s differantial equation () on page 97 with FP instoad of ¥, p instead of 2 and 4
fnatead of n.

Show that if we let ip =2z in equation (21) of Problem 6.1, then it becomes

oy 42y (2 - =0
We have Q _ dPdx _ Ek _ dy
% ~ dd T &Y T *dx
where y(z), or briefly y, rapresents that function of = which P{s} becores when p = xfa.
Similarly I
E - 48 - O - Ha) - B
Then equation {1I) of Problem 6.1 which can be written
n’% + p% + (- P = 0
becomes (—) k’# + (‘)l—— + (@—plly = 0
or 2 ey + - = 0

&8 reguired.
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68. TUse the method of Frohenius t¢ find aeries apfutions of Besael’s differential equation
2y +ay + @ -y =0 '

Ascuming s sotution of the form y = = o,a%*€ where k goes from —= to = and ¢, =0 for
k<0, wo have

@ -nty = Boaktsil - Balgekts = Ee._ﬂk*‘ﬂ_.-zmtgk*ﬂ
ey = Ikt plegks

ety = Flk+pik+ B - Noyztp
Then by addition, '
Tik+NE+E—Ne, = (k+Pe, + ooy — nllattE = §
gnd sinee the cogfclents of the xk+# muat bs zero, we find
(tk+ 82 —nfle, + &4y = 0 (n
Latting & =0 In (1) we obtain, since o_3 = 0. the indicia! equation (§%— w%e, = 0; or assuming

apv 0, pt=n? Then there are two cases, given by g=-m and g=x We shall consider
first the case B 5= n and obtaln the second case by replacing » by —n.

Capa 1: g =a.

In this case (2} becomes
m this case (1) Mo+ ey + s = O ®

Putting k= 1,2,8 4,... successively in (S}r we have

— _ . T L.
=0 & =gppeay 450 4T ImI T TRt 4!

Thus the required garies is
¥ = @Vt et 4 oegandd oo

» = 4 & . "
Guft [1 T B+ 2} 2« 4Bn T+ B[220 + 4) {

I3

Case 2: f=-n
Om replacing # by —= in Case 1, we find
— zz 14 — . m
¥y = 6 ”[1 T EE—2n), T 4@ = ZANa —Em) :I )
Now if n =0, both of these eerles are |dentical. If = =1,2,... the second series falls ta exist.

However, it nv $,1,2, ... the two series ¢an be shown to be linearly independent, and so for this
cape the genersl aslution i

"

. 2 " -
v = C”“[“2(zu+z)+z-4(2n+2)(2n+4)'”"'J ;
x* z
+ o1~ g TR e~ 2
The casea where n#=0,1,2,3,... are trepted later (gee Problems 6.17 and 8.18).

The firat series in (5), with auitable choice ¢f multiplicative constant, provides the definilion of
Jalz) Eiven by (6), page B7%

BESSEL FUNCTIONS OF THE FIRST KIND

64. Using the definition (8) of Ja(x) given on page 97, show that if #»=0,1,2,..., then
the general aolution of Bessel’s equation ia g = AJx(2) + BJ-n(2).
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Note that the definition of J, () on |‘:mn'e 07 agrecn with the series of Cene 1 in Problem 8.3,

apart from & constant Iactor depending only on n.
¥ = AJy{#)+ BJ_. (s} for the crzes m=0,1,2, .. ..

It follows that the result (5} can be written

(e) Prove that J-a(z) = (-1)"J.(z) for n=1,2,8,....
(b} Use (a) to explain why AJ.(z)+ BJ_u(z) is not the general solution of Bessel's

equation for integer values of n.

{a} Replacing m by —n in (8} or the equivalent {#) on page 93, we have

= {(=1)"(x/B)—n+2r
50 rIM—n+r+ )

'S CLrar)on s

I lxd

i (=3)7(2/g)—n +3r

sup FICt=n4y4+ 1)

Now since P(~n+r+1) fs infinite for r = 0,1, ..

Letling »=n+ &k in the second aum, it becomes

- j"l)“+k‘3}2)“+n - ("'l)' i

Rgn (n+kITk+1)

iu—l)i!,,(z!ﬂi'ak =

w=g D(n+k+ k!

=N flr{-ﬂ+‘r+1) i
1 —1, the firat sum on the right is zero.

(1, ()

(b) From (¢) it follows that for integer values of #, J_p (2} and Jo(x) are linesrly dependent and

sa AJy(x) + BJ_{z) cannot be & general solution of Bessel’s equation.

If n ix not aa integer,

then we can show that J_, () and Jo(x) are Unearly independent, so thet AT t2) + BI_ iz} is

a general solution (ses Problem 6.12).

Prove {z) Jiz(x) = ‘[T%sinz, ® J-in(z) = J%cosx.

) = § ety Ry @I wepe
(a) figlz) = ,;, ¥IT{r + 5/2) ris/z) 1UTEZ © 210079
= WA Gy e
{V2we  1rQeNuave 20 (8721820072
= lmef 2 o {x/2)2 gin = 2.,
mzw;{l EIET } anvs = \ 750
_ o (—1)f(xf2)= /2 + or e/2)-12  (x/2pee (wryys
@) Yol = R 175 T/ T 1reR) o2t

"

il NP N
vz ETr i

Prove that for all n: .

} - ﬁ:

(@) ;f;{z*‘h(x}} = zMaifz),  (B) d%-{z--.r,.(x}] = —2, i (2).

) £ @) =

= 3

= —1jreZn+2r - =
T = =

d
dz & B2l M+ r + 1)

{—1)rain=13+2r

] _1 fxﬂll'!'sr—l
o BAE-L T+ 1)

r2e ST U PiR — 1) + 7 + 1]

=\"“Jll— H (3)
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8.8,

6.9.

4.10.

BEBSEL FUNCTIONS AND APPLICATIONS

d = {— 1)?:2?
% 2, T i+ r D

(5 £ tz=ndy(aN)

_ - (—1)rzn+ar-1
* 2 EAE I I TR T

|
]

= =)k Lt h 2k + 1
w=p B Ikir n+k+2)

-8

i

]
"

Prove that for all n:

w12

(@) Jiz) = -;—[.r.,-;(z)dm(x)]. (3 Juoa (@) + Jeni{z) = %J’a(z).

From Problem 6.7a), #°Jiix) +nan=7 {x) = 20J,_, (x)
or #li@) + ndals) = &daoi(@
From Problem "8.7(b), z"‘J,’,(:)—u:"'"'U..‘(x} = =z Ny, ()
or 20500) = ndy(®) = —zly,(2)
{a) Adding (1) and {£) and dividing by 2« gives - )

i) = G Uamrl®) = Jos(o)]

{b) Subtracting {(#) from (f) and dividing hy 2 gives
| Sa@) + dyustm) = 2 1)

Show that  (2) Jae(z) = %G’.m"z_:ﬂE)

{b) J-ssfz) = =~ %(M)

{6} Prom Problems 6.8(5) and 4.6 we have on létting » = 1/2,

[CHAP. 8

{2)

1ty

-'a'rs(ﬂ = i‘-’:ﬂ[”) - -’—J,ra{“) = \f'a-(i-irﬁ—coéz) = i(w)

E

(6) From Problems 8.8() and 6.8 we have on letting = = —4,

Jogpf®) = — 4 ‘;2,_('-! sin'zz+ oosz)

Evalusate the integrala (a) fa:‘*.],.-l{x) dz, {b) f J"_’fz'lf_zl de.
From Problem 6.7,

fa) d%{z"].ﬁ:]) = #&"dy-1{z). Then J'x“‘fn-lta:)dx = Mg (2) + e

{9 %(2"»},(:)} = —x=o2,_,(x). Then f!n.t;“ﬁidz = —z=nf (2) + ¢

x
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61l Evalvate () fz«.r,(z) dz, (%) _j':wa(z) de. ..
{a} Method 1. Integrstion by parta glvea
fanmis = f @lnwe

wlztiyol) = [ (@)iedo)

#h) — 2 [ @) ds
= x4 x) ~ Zzla(x) + ¢
Method 3. We have, uaing Jy(2) = —Jglz) [Problem B.3(8)],

f Ahndr = —f wihigydz = -{w.,(z) - fuwﬂ(z} dz}

J.::l.ra{z} s = .f el de] = Dl @) — f{xJ,izy}[zz dz)

- {zﬁ.ﬂ, (z) — f 2zt (z) dz}

—xtly(x) + 2aJ, (2}

f:eu.(z)dz = - f 2205 (w) dz

Then f et (=) de 4T {2} 4 Azt (x) ~ B{—alo(z) + 2xJ{x)}] + @

o= (859~ (=) + (da? - 182, {z)

! @ Jon@e = [ Speyedd
= Pz-tyia) - J‘[—w'*fg(:r)]ﬁz“dx

= —aMyx) + 6 f €2 {x) doe

I:’J,{:}n’.: = J‘xs{:".!g(:]]da

= o-z-U{z)] — f[—x".f,(z]]ﬁa:’ dz
= —zi) iz} + HI vSf (z) dx

- [:uJo(z) - J-Jn(x) dx:l

—zdy(x] + J‘J’n(z) dx

J‘ﬂl{z)dx = - Is.?&{w)dﬁ

Then f 2y (2) dz ~g3hylz) + 6 {-;u,m-a- 3[—3.:,(3) + f J.,(:)az]}

~ty (g} — Bty (z) — 1Bxlaix) + 15 J‘J'u(z)d:c

The integral f%‘ﬁ)dz cannot be obtained in closed form. In general, fx?.i’,(:c}dz
can be obtained in closed form if p+g & 0 and p+g is odd, where g and g are integers.
+ If, however, p+ ¢ is even, the vesuit can be obtained in terms of J-thz)dd.
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1] » ! 2 4
6.12. (z) Prove that Ja{x)J-olz} - Fool@) Talz) = s::; ttr

(b) Discuss the significance of the reanlt of {a) with regard to the linear dependence
of Ja{z) and J-a(z}
{c) Since J.(z) and J_,(z), abbreviated J,, J_u respectively, eatiafy Beasel’s equation, we have
)+ 20, F (B —and, = 0, we S adl (et =, = O
Multiply the first equation by J_,, the second by J, wnd subtract. Then
T ST O A (R o R e B

which can be written .
e ST =TI+ Fidam Iadd = 0

or B I - Il =0
Integrating, we find . JoI = I dy = el w

To determine ¢ use the series expaneions for J, and J.., to obtain

zn=1 z=n

o Jou = FFTCaFn

L . —
I = i) .

- ™ ..
ZRT(R+ 1) '
P SR
Jen = 35T
and then substitute in (I}, We find

2 _ Esinges

i 1
TmMD1—#%) Tk DHI(-n T ri—n P
using the vesult 1, page 68. This gives the reguired Tesult.

=

£

() The expression JoJ_.—J .7, in (g} is the Wronskian of 7, and J_,. If n ie 2n integer, wa
ses from {a) that the Wronekian is zere, so that J, and J_, are Yinearly dependent, ag in alno
claar from Problem 6.5(s). On the other hand, if # is not an integer, they are lincazly inde-
pendant, since in such cess the Wronakian differs from zero.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS
612 Provethat ' ¥ = I s

" L] N

We have . :
-y P - 177 R jote|  _ o e (LNt ke
cif 5] =  pTEg~zim = {rgn = }{'E‘ (“ﬂ;‘! L - '§° ,Ec{ } (:! )
Let ¥—k=n so thut v varies from —= to «. Then the sum becomes
- e e Ll 2] i hed o {=Dxaignt]| -
o e T L2 & et = (2 0

1t

6.14, Prove (@) cos{zaind) Jo(x) + 2T:(z) coa 28 + 2J(x) cosdd + - -
(8) sain(zaing) 27, (z) sin 8 + 2Ja(2) 8in 38 + 2Js(z) sinbld + - .-
Let t=a¥ in Problem 613. Then

H

g d = éi,,(:)e“" = iJ,(u)ieosM «+ 1 gin ne)
(ol®) + (=) + J3 ()] cos 8 + [J_g(z) + Fg(z)] cone + -+-}
+ (iR =T ()] aine + [Jg{a)—F g (=) sin2e + -+ -}
{(Folw) + 2Fp(x) con28 + o} + {2, () alne -+ 2Sy(z) sinBe + -~}
where we have used Problem 6,6{a). Equating real snd jmaginary parts gives the required resulta.

ci!(rw—-c'“l

il
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.
6.15. Prove Ju{z) = %fn cos{nf — z sind) df n=01%2 ...

6.16.

Multiply the Srst and second resnits of Problem 614 by cosm# and sinns respectively and
integrate from 0 to » using

:r 0 mwn T 0 mrn
J;cosmoeosmdﬂ = {dz men’ J;smwsinmda T e/t m=a®0

Then if # ia even or zero, we have
- . T
Jalx) = if cos(zsindjcosnede, O = -3; j; sin (£ ain ¢) sin x¢ de
]
or on adding,
1~ 1" .
Iz = 5 J- {coa(x gin 6) cosnt 4 ain (= ain ¢) sinne]de = pu J; cos(n8 — « nin #} de
a
Similarly, if % in odd,

o N 14
Tz} = i_fo gin(s sins) sinne de, 0 = %J;cos(zeino)cosm d»

and by adding, 1 0"
s = :f cos{ne — z sin #) de
]

Thua we have the required result whether n is even or odd, fe. #=0,1,8, ...

Prove the result of Problem 6.8(h) for integer values of n by usifg the generating
funetion.

Pifferentizting both zides of the generating function with respect to ¢, we have, omitting the
lHimits —= to = for m,

oAlr-1) 3(1 + -:E) = Sal,iz)rnt
or %(1 + %i) Sn@e = SaEe-
Le. E%(x + %,)Jntx}tn = S a3

Thiz can be written as.
IL0 @ + B2, = Bl et

or ngn(z:u + E%J,‘ﬂ(z)tﬂ = N+, &t

H

ie. 2[20@ + Frnatw |

Since coeflicients of ¢ must be equal, we have

T (R4 1)y (2

%J,,(x) + %.r,.ﬂm (n+ 1M, (z)

{rom which the required result is obtained on replacing # by n— 1.

BESSEL FUNCTIONS OF THE SECOND KIND

6.17,

(o) Show that if = is not an integer, the general solution of RBesael’s equation is

¥y = EI.(2) + F[J=(=) 00:;;: J_a(2)

where F and F' are arbitrary ccnatahta.
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{(b) Explain how to use part (¢) to obtain the general solution of Bessel's equation in
ca88 1 is an integer.

(@) Since J_, and J, are linearly independent, the general solution of Beasel’s oquation can he
written
y = ey (2) + o l0)
and the required reault follows on replacing the arbitrary constants ¢, ¢ by B, F, where

F so8 #r -

e = B e % = S

Note that we define the Hassel function of the second kind if » ie not an ineger by

Jo(z} eosne — J_ (=)
Yol = sin nr

(b) Tha expression
Joix) cosnr = J_ (2}
snnr
becomes an “indeterminate” of the form 0/0 for the case whan n i8 an integer. Thie is because
for an integer n we have cosnxr = (—1)% and J_,(z) ={=1)"J,{z) [see Problem 6.5]. This
“indeterminate form"” can be evaluated by using L'HOSPR&I’B rule, Le.

[J {(z) conpr — J_,{2]]

X Jo(x) con pr — J-,,Ix)]
fm
aern sin pr ,..... E

ap [sin r]

This motivates the definition (J1) on page 98.

6.8, Use Problem 6.17 to obtain the general solution of Bessel’s equation for 2= 10,
In this case we must evaluate

lim [Jp(w:' cog pr = J_,(z)]

gin pr 0

el

Using L'Hospital'a rule (difterentiating the numerator and denominatar with respect to p), we find
for the Umit in {1}

(8/,/2p) con pr = ra.r_,fap)] TR a.r_.,,j
220 7 03 fr T orlm T e e

where the notation indicates that we are to take the partial derivatives of Jy(») and J_,(z) with

respect to p sod then put p = 0. Since 4F_f3(—p) = —aJ_,/0p, the required limit is 880 equal to

¢ at,
7 3P |p=0
To obtain 2J,/8p we diffeventiate the series
S 0 VidC 1) o
i 2 FTptrrl)
with respect to p and obtain
aJ’r _ - 1_”1- a l-z;g)p+zr
' ,§o i ap|Tp+r+1) (€
f2Vp+3r
Now if we let I'((L-I-L-i-_l} G, then InG = (p+er)in(x/2)— InT{p+7r+1) so that differ.
entintion with respect to » glves
18@ _ r'ip+r+1}
Gop - PER - ToweeD
Then for p =0, we have
ey _ A=zlE _Iir+ 1)

W e r¢r+n["“”’2’ r 1) @
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Using () and (), we have
2 aJ, - 2 g [=Lraiow Mir+1)
¥ ?Fp pag  ® ,§., PN D ['“(.”’2’ - I‘('r-i-l)]
Cgfar o s
= %(111(95!'2} +rMem + ;[ﬁ—wi1+§)+§£@u+§+*}— "':’

whera the last series is obtained on using the result 8. on page 6.  This lant maries ix the geries
for ¥y{z). We can in a similar manner obtain the series {1£), page 28, for Y, (x) where 7 13 an
integer. The penersl solution if n is an integer is then given by y = ¢,J,(x) + &, Y, (2).

' FUNCTIONS RELATED TO BESSEL FUNCTIONS

6.19. Prove that ths recurrence formula for the modified Beassel function of the first kind
In(z) ia Lo

Lie) = Legs) - 2ig)
From Problem 8.8(5) we have

Jari 2} = %Jn{:} = Jp () {1
! Replace ¢ by % to obtaln Bin 3
Foiglix) = ——x-J.(l'w} “ Snayliz) n
Now by definition f{e) = (-7, (ix) of J, “i). = i,(2), so that (#:J becomes
e = -ERa ) — g

Dividing by {#+? then givee tha requized result,

6.20. If n is not an integer, show that

@ B = Loale) e ),

petdr, @™ (T) — Jop{%)
(B} Ha'(x) = i 9in nr

{a) By definition of H;'{z) and ¥, () (ses pages 6¢ and 98 respectively) we have
#)

al®) + Vole) = Sy + 4 (%) conng - J-_(.,]]

sin ne

Julz) ainne + o (2} cogne — o _ (=)
aln nr

[Falz) (costr — ialnna) ~ J__(2)
‘[ Bin R ]

. [Jn(x)"_m' - J_n{x) - .f_‘{x} - 3_|""J,‘($)
* T sinnr :I = T

() Since HYV(g) = Jn(2) =¥, (=), we find on replacing by —f In the resuit of part (a),

@ = I (2} — eirTd (2} - anv ] (z) — J_ ()

. —fsinnyr s uln ner

321 R AN L
Show that  (g) Ber(z_) 1—gg * PRTET

. - xs za zlﬂ
®) Bellz) = % - g + sompmre =
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‘We have : A sz -
2L - L (@332 ({338 (§32z) e
Jolé? 2} CH + T iier + oo it
= _ itz ifad {928 j12g0
- Bt Ra T B oeeR
=2 +.23 Zher 22470 + g
= C 2 ‘- 2 2 L.
- (1) + Faim )

and the required result follows on neting that Jy(i%%z) = Ber (x) + 1 Bei{x}) and equating real and
imaginary parts, Note that the aubgeript zere has beon omitted from Ber, (z) and Beiy ().

EQUATIONS TRANSFORMABLE INTO BESSEL’'S EQUATION
622 Find the general solution of the equation zyt+y +ay =0

The equetion can be written as 22y 4oy’ tazy =0 snd iz a speciel ensa of equation {24),
page 101, whére k=0, a = Ve, r= 1/2. g = 0. Then the solution as given by (£7), page 101, is

v = ofol2VEE) + os¥o(2VEE)

ORTHOGONALITY OF BESSEL FUNCTIONS

628. Provethat | /u0a)nlun) do = wla) e (o) = ,TI LI I N,

From () and (4}, page 97, we ses thet 7y =Ja(x#) end oy = Jalu#) are solutions of the
equationa )
x!v;: + :ry{ + (\zf —niy; = 0, x’yé’ + xyi + (}!xz" wiy, = 0

Multiplying the first cquution by e the second by ¥, and subtracting, we find
Pyl =pii) T ey vl = @3 e
which on division by = can ‘be written aa

k4 %!ynvi — ] + vl — vl = W Menn
or j‘i’ {luyi —vapd) = G2 —Nan
Then by integrating and omitting the constant of integration,
. (u? — %) f sty de = olygbi— v

or, uging 1 = Jo(x3). vp = Jolo¥) and dividing by p¥—22¥ 0,
2[7 (a2} Ju (A2} — afn(AE) Julnz)]

J' wd, (M) T fuz) d=

il

“2 -
. ! ML) — aluN
Thus J; a0 S d = (s} (ﬂ: - ‘;‘: O T (o)

which is equivalent to the required result.

624 Provethat [ 0 = e + (1-35) ] |

Let u—Xx in the resulf of Probiem §.23. Then, using L'Hospitsl’s rule, we find

a0y — ) — I
J‘luﬁus}dx (A CLLL, nl’;?u-’ (a} — 6n (0 0 (0

0 Eeh

MR — Jan) a0 — A0 0 B)
Zx
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But'since X700 + M500 + (3= J,(0) = 0, we find on solving for J'() and substituting,

i ]
j; 2 0zydx = é[.r;’m + (1—{2)&(»]

625. Prove that if A and ; are eny two different roota of the equation RJ,(z) + Sada(z) =0,
where R and & are constants, then }

i e (Z)dalpx)dz = O
Le. VZJu(ax) and /& Ja(ux) are orthogonal in (0, 1).

Since A and 4 are roots of RJ,(x}+ S2/.(%) =0, we have
RI (N + S, (3 = 0,  RI () > Selale) = 0 . )
Then since B and 3 sre not both zars we find from (),
W Tafw) = W)l = 0
and so from Prohlem 6.'23 we have the reguired result

1
J wtasimds = o

SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND
625. If flr) = X Afa(to2), 0<x <1, whered, p=1,23,..., arethe positive roots
ad |

¥

of Ja(z) =0, show that
Ay = _[' (o) f(2) dat
? Jietlhg) oo

Multiply the series for fiz) by zJ/, (At} and integrate term by term from 0 to 1. Then

1 - 1
S vt e = F 4, f ot i) dunm as

1
= A f 2 (0n) de
]
= %A eI thee)
whefe we have used Problema 6.24 and 8.25 together with the fact that I {hy) = 0. It Follows that
4 o B 1
N~ j; 4, 0.2) /() oz

To cbtain the required result from this, we note that from the pecurrence formula 3, pege 99,
which is equivalent to the formula. 8 on that page, we have oo

Mfalhgd = af () —~ el (g}

or since J.(n) =0, Jalhe) = =150

627. Expand. f(z) =1 in a series of the form

,§l Apto (M)
for 0<z <1, if A, p=1.28,.. .» are the positive roots of Jo(z) = 0.
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From Problem 8.26 we have

1
A, = }?{Ef;)- J: alplrz) de = hﬂ] f vlyiv) dv
= -—-5*-—2 ufy{v) I = 2
R;JL(M) ! [ lu‘ﬂ

where we have made the substitution v =A,x in the integrsl and used the remult of Froblem
8.10{z} with = = 1.
Thua we have ths required series

= - ——Z
fa} = 1 = p§| Apdt (Ay) J505%)

which ean be written
Jo(re2) Jolhgt)
M) T Ay (hgd

-1

SOLUTIONS USING BESSEL FUNCTIONS OF THE FIRST KIND

(628 A circular plate of unit radius (see Fig. 6-7) has it plane faces insulated. If the
initial temperature is F{p) and if the rim is kept at temperature zero, find the temper-

aturs of the plate at any time.
Since the temperature i independent of 4, the boundary valus problem for determining
ufp, t) in
u e 1 5u

u{l.ty = 0, up0 = Fip), lept)] <M
‘Let u = P(p) Y6 = PP in equation (7). Then

P = x(P"T + %P‘T)
or dividing by «PT,
= T! Prf 1 Pf _ -
T FrIF S M

from which
™+ a2 = 0, PV +.1:p' + NP = 0
These have general solutions
T o= o=, P = A4,J,(0)+ B Yelp)
Sinee u = PT Isbounded at p =0, By =6 Then
wlp ) = Ae~ )

where A = A,c).
From the Arst boundary condition, _
ui, ) = Ae=hh0) =
from which Jy(A) =0 wnd X =}, A5 ... are the positive roots.

Thus a aplution ia
ulp ) = Arﬂ-'.i'o(a...p) m=1212,...

By superposition, a solution is

e, £} = E. A8~ SnE g (Ap)
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GI%'

From the socond boundary condition,
e, = Pl = Z Andol)

Then frem Problem 8.28 with s =0 we heve

1

_ 2 t
I w _fo 2F () Jy(np} i

_ = 2 1 . o 1
wort) = 2 {[mj: PP} Jq (Mo dp} ool | ®)
which zan be eatablishad a= the required solution.

and ao

Nots that this solution also glvea the temperature of an infinitely long wolid cylinder whose
convex surface is kept at temperaturc zero and whose initiel temperature in Filp).

A solid conducting cylinder of unit height
end radivs and with diffusivity « is ini-
tially at temperature f{p,?) (see Fig, 6-8),
The entire surface is suddznly lowered to
temperature zere and kept at this tem-
perature. TFind the temperature at any
point of the cylinder at any subsequent
time, ’

Since there ia na g-dependence, a3 is evident
from aymmetry, the heat conduetion equation ia

o [P 1w P

moo (Belped) o

where u = wip, z,t}, The boundary conditions

are given by Fig.6-3

g, 0 = flona), w0 = 0, ulnl it} = 0, =(l,z,t =0 |upud < M £33
where 0SS p<1, 0<szs<l, ¢>0,

-
To solve this boundary value problem let U = PET = Plp)Z(a) T(t) in (1) to obtain
PIT' = x(P”ZT + %P'zr ¥ P&""I’)

Then dividing by «P2T we have
O N ¥ SO
s S i
Qince the left side dependa only en ¢ while the right gida depends only on ¢ and 2, each wide must

be & constant, say —x2  Thus
T F T = 0

Pu 1 P'" zu _ .
Fr,pT7 = ™ @
The last equation ¢an be written as
PlE = £
T + p F b

from which we sea that each mide mmsat be a constant, say —g%. From this we ohtain the two
equations
pP'+ P 4 upP = 0 4

2" -2z = 0 )
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whera we have written
2 o= oyt (&)

The solutions of (#), (§) and (5} are given by
T = go ', P = eylup) T xYolup)y 2 = &7 + vpa¥
Thus & solution to (I) is given by the preduct of these, i.e
wlp, £, 8) = [0,6~ 2" (egds up) + caFo(wplfoge*t + 050~
Now from the boundedness condition st p=# we must have ¢, =0, Thus the selution becomes
ulp, 2,8} = o= (o) Aave -+ Bomv1] n

From the second boundary condition in (£) we aee that
wip 0,8} = oM (ulA+B) = 0
Ao that we must have A+ B =0 or B =—A, Then (7) becomes
wWor 2, 8) = A0~V (rp) [0 — 077]

From the third condition we have
ulp,1,8) = Aa=™J,(gp)[ov = 2~*] = 0
which cop, ¢ satiafied only if e*—s=r=0 or
el = 1 = gk k=10,1,8...
It folkyws that we must have 2r = 2koi or
r = kyi k=0,1,2, ... ®
Using this in {7), it becomes
ulp, 2, t} = cr"\”:o (FP” sin kex
where € io » new constant. I
From tbe fourth condition in (£) we obiain
w1, 2t) = Co™Jy(a) sinkez = 0
which can. be astisfled only if Jy(x) =0 »0 that
BTy .-, *)

where v, (m=1,8,...) is the mth positive root of J,(x) = 0. Now from (8), (8) and {$) it follows
that &

M= gt = el ol
so thut a solution zatisfying all conditions in (2) but the first i given by
wlp, 7. 8) = Co—<(h +E" It p tr o) win kaz (10)

where k=1,2,8 ..., m=1,%3,.... Replacing by Cpn and summing over k and # we obtain
by the superposition principle the solution

ulp,z, 8 = tE ___ICWG_“":-H‘"')‘J.J('“p] ain kvt (11

=1 m

The first condition in (2) now lcads to

X Ciuwdolrme) ein kez

1 mal

(Y.

s =

)

This cen be written ua

flazy = kgl {i C...J;;(rmp}} pinkre = él by sin krz

m=1
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¥ L
g [ AT ¥ e Wt

here =
N by = 'EI Cindolrme) 1)

It follows from this that by are the Faurier cvefficients obtained when f(p, ) ls exprnded into
Fourler sine saries in # [we think of p aa kept constant in this cnse], Thus by the metheds of
Chapter 2 we have

' 1
n = %j; Flo, £) ain kera de (29)

We now mast find Cy,, from the expsaafon (18). Since by is & function of p, this is simply the
expansion of by into & Besssl series ns in Problem 8.28, and we find

__2
Cim = }rr ,.]J; phydo(rme) do {14}
This becomen on weing (1N .
. Y L ;
Cim = 1(fn}-’; _j; pflp. 2) Jo(ra) oin fooz dp de (18)

The required solution 1s thus given by {11} with the eoeﬁei.enu {15).

6.30. Work Problem 8.29 if f{p,2) = te, 8 constant.
Tn this case we find from {15) of Problem §.29

& . 1 ) .
Cxm = ?i{i'l‘:-)-’; J: pJy (rmp) win kez dp dz |
‘“0 ' i . i
m{-': pdo{rmel dp]-{J; win krz dz}

dug [Jlrml] f1 ~ cos ke
Jg('rm) Fu W
'“41&0[1 ~ £08 kr)
klrf mJ [} ("u]
on using the same procedurs as in Problem 6.27. The required polution is thus
4“0 - w

Locoskr 2 intet
£ 'El = Frad il | Kot Jo (rmp) 8in Rz

wp, 2, t) =

83L. A drum consists of a stretched circular membrane of unit radius whose rim, repre-
sented by the circle of Fig. 6-7, ia fixed. If the membrane is atruck so that its initial
displacement is Fip, ¢) and is then released, find the displacement ab any time.

The boundary value problem for the dinplacement z(p, 3, t) fram the equilibrium or rest position

(the zy-plane) is
Pa L (0 10 10
® = N tietaw

(80 = 0, 23,0 =0 zipe0 =0 el = Fie
Let 2 = P} (@) T(t) = P&T. Than

PeT” = a'(?"-ﬂ" + %P"cﬂ' + %P&"r)

Dividing by a3P&T, o -

s B 1P 1R
W-P+pp+pl@_ ki
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and s ' TV b AT = 9 o)
YT A L .
Fr,Ftas N | . i
Muitiplying (£) by p¥% the variables can be ssparated to yield s i
P Ll Lo = Y
I N #
80 that ) g + ple = 0 in
PP 4 pP A+ 3= )P = ¢ (4)
General solutions of {1, (#) and {({) ere
T = A conrat + B einAat )
% = Ag 208 p¢ + Bgﬁﬂp¢ . (8}
P =

Agdu(ha) + ByY, (a0} 2
A solution x(s, ¢, €) I& given by the product of thems. ’

Since # muat have period 2r in the variable ¢, we must hsve s=m wﬂm m=491219....
from (4). R

Alea, since « in bounded at o =0 we must take By = 0.
Furtharmore, to mtisfy zip, 8,00 =0 we must choose By = 0.
Then a salution is
o, i} = Jn(rp) comnat (A copme + B sinma)
Since 2{1,¢,#8) =0, J, (A} = 0 sothat X = her £ =1,2,8,..., ure the pasitive Toota.
By superposition (summing over both m and &),

2 I (Amis) €08 (N a88H{A y coR g + B, sin me)

med k=1

Y Y -

zlp, &, t)

+ [’El By dm Ehmxpi] &in m} 208 )y at (9
Putting ¢=0, we have |
Z(ﬂn L) 0) = F(p, j) = n§0 {Cn eosw ..l. D“ aln m} (ﬂ}
where Cn = I Anlabaur)

- (10)
.Dm = kgl Bmklm Ehwkyj

w ):3:; (¢} in simply & Fourler nerics snd we can determine C,, and Dy By the usual methods.
]

1 or
5 Flp,p)coampds ©  m=1,2,9,...
Cﬂ = 1 r . Sy )
o Fo.0) 6 m=0
'1_ 14 T i K
D#t = : n‘F(p,¢} Biﬂ-m“ ’.:'m=ol1l215l"l
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From ({¢), using the n'mulh of Bessel geries expansions, we have

2 1
Ame = [Jmtmuﬂj; pImOomap}Cn dp

. L ate . k
ﬂ'i:m.,f{klkﬂs j; J; pFp, 3) I (Apep) cos Mg dp dop it m=1,%3,...

B 1 pn
,[J,gl;\una J: j; #F(p, #) Jo (Aoxo} dp do Hm=0

t
- 2 .
Bﬂk - JHH‘ 1““!1 J; P'rmnmh"] Dm dP

2 ! j‘” -
=y L j; A o, ) I (Apcp) sinmg dp dy i m=0,12...
Using these values of A,y and B, in (8) yields the required solution.

Note that the various modes of vibration of the drum are obtained by apecifying particular
values of m and k. The frequencies of vibration are then given by

= =
frn 2 ®

Becnuse thege are not {nteger multiples of the lowest frequency, we would expect nolee Tather than
a musical tone, '

SERIES USING BESSEL FUNCTIONS OF THE SECOND EKIND

632, Let tto{dmp) = Yo(hatt) Jo(Amp) —-Jn(:[...c) Yo{Amp) where Am, m=1,2,8,..., are the
positive roots of Yo(ra)Jo(ab) ~ Jo(Aa) Yo(Ab} = 0. Show that

b .
-’; pra[Anpic{Ap)dp = 0 mea
The functions Fp = uyiinpe) and P, = ugldap} satiafy the eguations
m + Pn + 2P, = D @)
pP’ 4+ Ph + 33P, = © R (®

Muttiplying (1) by Py, (8} by P,,. and subtracting, we find
P{PnP:l'"'PmP::] + Pnp:n - Pmp:l = {ﬂ-hfn)ﬂpm'pn
which can be written )
p%w,?;,-f',.p;) + PP = P P, = (Z— )PP,
or £ PP~ PaPY] = 0R=2PuPy

Then by integrating both sides from a to b we have

Py Py = Py P

]
=k L PP P, dp

b
a

b
= plhattgliap) tolhme} — Antig(hmp} iAo}
= 0 .

on uping the facts ugiaa) =0, wylha) =0, ugd¥) =90, u{r,0) = 0. Then since iy 7 r, we
have .

b [ ]
§ oPapats = [ ot vatrr dp = @
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.33, Show how to expand s function F{p) into a series of the form 3 Apus(Anp) where
the functions ue{Amp) 8Te given in Problem 6.32. m=d

Suppose that w
Fp) = “gi A ptig{hmp? {2

Then on multlplying both aides by puyfA.p) and integrating from a to b we find

b o -]
[t s = 3 Aa [ orthesiust) de
-]
I
on making uge of Problem 6.32..
b
S oFtohuir e 40

Thus A, (&)

)
f plug{hun)|* dp

Although these coefficients have been cbtainad formelly, we can show that when these coef-
ficients mre used in the right side of (F) it does converge to Fp) st points of continuity,
asauming that Flp) and F'{s) are piecewise continuous, while at points of discontinuity It converges
o §(Fp+0}+ Flp— 0.

6.34. A very long hollow cylinder of inner radius « and "
outer radius b {whose crusa section is indicated in
Fig. 6-9) is made of conducting material of dii-
fusivity x. If the inner and cuter surfaces are kept
at temperature zero while the initial temperature
is & given function f(p). where , is the distance
from the axis, find the temperature at any point
at any later time t,

"

Since symmetry shows that there is no ¢- or z-depen-
dence, the boundary value problem which we must solve for
=g, t) is

& = ‘(TT: + %%;—‘) W
wg, ) =0, wd, 1) =0, wp, 0 = fi) |ulp i< M 2} : Fig. 6-4
By sepuration of variables we have as in Problem 6.28
wlpf) = e Mjeydplhe) + bi¥ o0l )
From u(a,t) =0 and ulb, §) = 0 we find
afgira} + 8, ¥4(xa) = 0, aJalhd) + b Y00 = ¢ (£
Theke equationg lesd to the equation
Yolaa) Fy0\8) = Jo(na) Yo(ab) = 0 (5)

for determining x. The equation (5} has infinitely many positive roota A, g, ... .
From the first equation in {§) we find

_&doira)
Yolie)

bl =
50 that (§) can be written

ﬂ{,t} = A — kb Y, (ae)Jd -
where 4 iz & constant. 3 eT Yo (ha) o) — Jolha) ¥oel] ®
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Using the fact that for A = hy (7} is & solution, together with the prinelple of guporpogition,
wa obtain the solmtion

wlp,t) = ..E: Aum¢™ 2 t1g(Amp) g
whare ot = Yol Jolhup) — Joldma} ¥y (3
From the condition e, 0) = f{s} we now obtain from (%)
flor = I Anvoldas) )
b
J- 2Fip) vglhpe) dp )
Then 4, = = (10)

e
jﬂ' pltioMme)]? db

Subgtitution of these coeMeiants tuto (7) gives the required solution,

A simple pendulum initielly has a length of
I, and makes sn angle 6 with the vertical, It
ta then released from-this position. If the
length ! of the pendulum increases with time ¢
sccording to L =L+« where « is 2 constant,
find the poaition of the pendulum at any time
assuming the oscillations to be small,

Impaine,"‘\

Let 7 be the mass of the hob and ¢ the angle
which the pendilum maies with the vertical at .any
time t. The weight mg can be resolved into twe com-
ponents, one tangential to the path and given by mg cosd
my sin & and the other perpendicular to it end given . 4
by mg cosd, as shown in Fig. 610, From machanica
we know that Fig. 6-10

Torque about O = -gi(.&neulhr momentom about O}
or {(—mgaine = %{mﬁil i1}
where # = do/dt, This equation can be writien as
15+ 200 + gsing = ©
or minea =+,

g+ e} + 2ed + 52 = 0
Letting # = [+« in this equation it becomes
% & 0, -
’d:c‘*+2dz+¢29 = 9 : (£)

letiplyi:ns by z snd comparing with equations {26) and {27), page 101, we find that the solutior g

¢ = ﬁ AJ.(J":T\/E?-—.E) + BY,(—g-“ﬁ:m)] »

Since o =4y at ¢=0 wehave

b = -j_l:[ul(wf—l;) + Brx(z‘/f—l")] )
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To natinfy 6= 0 at ¢ =0 we must first obtaiu ¢ =de/dt. We find

i= g = T u,,,[u,(ﬁﬁ;ﬁ) + BP,(.ﬁﬂg—_H‘)]
N ﬁ*’:—,[u;(%%im) + ay;(ﬁm)]

Now pitice =0 for t=49 we find

0 = Sm,,.,[.‘l.r (ﬂ) + Br,(a‘ﬁ)]
(2 + ani (2]

AJ;(L"ﬂ“] + Byi(@ = 2L:-:_; ®

Solving for A ard B fram (4) and (5) we find

Vi Yi — i2Va)Y, \
L]

or uaing (4}

A ¥ [
lel hind Ypf:
g ()
B W2VE M, = Vi,
ALY =Y, ¢
where the srgument zm‘ indy, T, Y{_ hans been omitted.
Now from’' Problem 6.58 with #n =1 we know that
T Fi(@) - Yiz)Xz) = ;_2;
so that A 2"[7") r,(fﬂ) - ?lizm):; (zv’ﬁﬁ) - ot
L + wm
Thus (6} becomes
oo Dy () oVl (VR
= (Yo (vl
€ < 2 e
¥}

Now from formula §, page 99, with n =1 and the corresponding formula involving ¥, for a =1,

we have from (7)-
A = = 'JEOG Y, (g_'y_lﬂ '

5 = r\ffau Jg(z‘{;?")

&)

Using theee in ($) we thus find

S LB ) D) )]



CHAP. 6] BESSEL FUNCTIONS AND APPLICATIONS - 128

Supplementary Problems :
HESSEL FUNCTIONS OF THE FIRST KIND
= E_ 2, o g i .
635. {a) Bhow that Ji(x) = 7 2”.-‘?. Tals — HETE + and verify that the interval of conver.
genge Js —= < 2 < =, T

() Show that Ji(z} = —J,(a).

(e} Show that d—dx[w.f.{x)] = xfy(z),

637. Evaluate @) Jyole) and (8 J_guix) In terms of mines and cosines.
838, Pind Jy(=) in terms of F4{z) snd J;(x}.
6. Provethat (o) JV() = FlVams®) = 2nle) + Joraie)]

B) TOG) = Flamsle] = 3a (o) + Bagy(0) = dys st

and genoralize these results,

1 -
640. Evaluate (a} Ian,(::) dx, {5 J; Wyl dx, (e} fx’].,(n:}dm.

Jilz) de.
Y]

6. Evauste @  averds o f

642, Evailuate f Jp(z) ain x dx,

643, Verify directly the vesult J (0} /_pla) = JLate) Tntn) = RRT gor (@) nl ana ) m=3

GENERATING FUNCTION AND MISCELLANEOUS RESULTS
6.48. Use the generating function to prove that Jo(z) = & Fa2iz) + J. (6)] for the case wheran ig an

integer.
645.  Use the gunerating function to work Problem 6.89 for the ¢ase where n is an Integer.

648,  Showthat () 1 = Jyfx)+ 2Jg{2) + &S la) + -+ -
) Jile) — Ja(m) + Jalz) ~ Sy + - --

!
83|
-]
&
8

647,  Show that -Z-Jl(z] = Jolx) — 2 (2} + W) — -,

2 L7
6.48. Show that Jy(z) = :f cos {z sin ¢) de.
T

e :
649, Showthat (o | Jitzcosn)de = l1—cosa

E

T 7
® j; Iofa sin o) conasing dp = 2L,
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sso. Sowthar  Jodt = 2 3 Vaui(el
" gmas gy (bx) da L
§51. Show that {3} J; L4 olbx 'm

. WFTH — a)n
o) j; el = S,

652. Show that J; Jylw)de = L

> —1

858, Prove that |[/.(z)| S 1 for all integers #. Ia the result true if n is not an integer?

BESSEL FUNCYIONS OF THE SECOND KIND
65 Show that (@ Teer(d = Ve = Faiyle) ) Fal) = §[Yausin) = Fouslll

655. Explain why the recurrence formulas for J, (z} on page 29 hold if J,{z) is replaced by Y, (=),
656, Provethat Yale) = ~¥,(x).

857, Evaluate (g} Yyel(®), (B Y_p5(=), (0) Faulx), {d) Y_gpls).
650 Provethat Ju®I Y@ ~ JADYal®) = .

s(ﬂ

059, Evaluate (o} faﬂ';{a:)dz L)) J.Y;(w)dx (ﬂf

640, Prove the resuit {17). page 98,

FUNCTIONS RELATED TO BESSEL FUNCTIONS

+_.’..'4_+._=‘_+..“

661, Show that Lis} = 1+ AgE

642 Showthit () Lie) = s + urted), () olle) = aly_y(o) — nia)

4D . :
€63, BGhow that e? = B I(c)tr iz the genersting function for I.(z).
-

o]
864, Bhow that Jylx) = -;J: cosh (z zin 0) d8.

$65. Showthet {g) sinhz = 2[L(x)+ Iz + -1
) eoshz = Iolz) + 2Ipte) +Jum) + ¢+ -}

6.66. Show that (@) Iylz) = 1#‘7_2:(mm—‘i“: ’) ) Tognl®) = 1‘%(;{31,;-2':}2)

66Y. (o} Show that K. (z) = Ke_(2) +—-K (x). (5) Explain why the functions K, (x] sstiafy the
same recurrence Iormulas ap I.{z).
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668. Give nsymptatic formulas for (a) H'"{z}, (B) Mo (x).

i

6&. Showthat (g) Ber (m) = 3 ST, (3""'2");.

Koo kI Tin+ Kk + 1} F
o w _ lwjEkin 3n + 2k
(%) Bei“(z)",z.,k'r(u+k+1)°n( 5 )
6.70, Show that '
Ker() = —(ne/2)+7Ber) + TBei) + 1= Eawp + Glasgegrp -

EQUATIONS TRANSFORMABLE INTOQ BESSEL'S EQUATION
671, Prove that (£7), page 101, is 8 solution of (26).

872, Solve 4ep’+ ¥ty =0
6§73, Solva (o) 2p" 4+ +zy =0, (B y" + 2y = 0
614, Solve y"+etry = 0. [Hint. Let 82 =l

875. (u) Show by direct substitation that y.= Jo(2VZ) fa & solution of xy” +u +y =0 and (&) write
the general zolution.

é7¢. (a) Show by direct substitution that ¥ = V#J,3(§2%%) ina selution of ¥’ +zy =0 and (B write
the general aclution. .

877. {4) Show that Dessel’s equation =iy +ax'+ {x—niy =0 can be transformed into

@ nd = 1/4 _
&= T (1 - T) w = 0
where ¥ = w/Vx (b} Discuss the case where » = *=1/2.

{3) Discuss the case where # is large and explain the connection with the ssymptotic formules
on page 101.

878, Solve 'xﬂy" — oy +aly = 0.

£79. Show that the equation (28) on page 101 has the selution {23) if a=0, [Hint Let y=2z" and
choose p appropriately, or make the tmnsi'omaticm = :e!]

ORTHOGONAL SERIES OF BESSEL FUNCTIONS °
888, Is the result of Problem 6.27, page 113, valid for ~1 S = =17 Justﬂy FOUY ANIWRT.

681. Show that j':.::u.z)dz = -’E[.r*(mu S ) = %J,(u) Jasgpa) + ¢

652,  Prove the results (34) and {35}, page 102,

8. Show th =g § 2D L
. ow that B = 2 AL ®
shera A, aTe the positive roota of Jo(a) = 0.
= Jiing®
. ' = i it -] < < 1
8. Show that » 2 ;_&:,l AW a:.

where A, ars the positive rosts of J,(3} = 0.
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6.45.

642,

450,
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= 208 =35 2y
= LI LA ) RS PP S
Show that ) 2, 1‘,‘, J; ™) x

where A, are the poaitive roots ot J‘; =10

= 203 - §) Jolit)
Show that o= 3 e Db

p=1 A%J| (M)

wherv ), ure the positive roots of Jo(a) = 0.

-1l

doloz) S MeO®
Show that Tim = (08— o) 4y 0y) 1e=<i

where ), are the positive roote of Jolh} = 0.

If fiz}) = ’él A Jo(hyx)  where JuiNi=0, p=1,28 ..., showthat
1 . w
[ etraras = 13 a0

Compare with Parseval's identity for Fourier gsries,

Usze Problema §.84 and .88 to show that

L
ad
=% Ny

where A, are the poaitive roots of Jy(a) = 0.

"N

Derive the vesults  (s) (25} on page 102, (b} (#6) on page 102, and (c) (27) on page 102,

SOLUTIONS USING BESSEL FUNCITIONS

691

892

6.93.

The temperature of a long sqlid cireular eylinder of unit radius in initially zero. At ¢ =40 the
surface fs given & constant temperature wy, which ja then maintained. Show that the temperature
of the cylinder is given by

= JF.(n .

where ks, 2= 1.2,2,..., are the positive roots of Jy(a) =0 aud » fa the diffusivity,

Show that it F(p) = u,y{l - p%), then the temperature of the plate of Problem 6.28 ls given by

_ T L) B0a)
ROt ¥ T R

A cylinder 0<,s<a 0<z<{ has the end z=0 at temperature “{z) while the other surfaces
are kept at temperature zoro. Show that the steady-state tempersture at any peint is given by

T (Anp) ginh A (=
1 JE0.,4) sinh Al

o) = 53 < AR

where Jo{h,a) =0, R=1,2,8,....

A tireular membrane of unit radius lies -in the y-plane with its center st the origin. Its edge
o= 1 isfixed in the ay-plane and it is set into vibration by displacing it an amount Hp} and then
Teleasing it. Show that the displacement in given by

R = F 1 ‘
2pt) = —093"%3—8—*'1! X o) Jo (ke do
i

w1

where A, wre the roots of Jy(A) = 0.
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8.95.

[ 1:%

§.0%.

6.1%0.

&.101.

6.0

&.108,

(z) Solve the boundary value problem
9% 1 au 1 #8u

AR - R A 1
whers 0 < p <], 0<p«<Zs, t>0, v ia bounded, and
wl,g,t) = 0, ulp,d0) = poosda, wpe0) = 0

{b) Give a phymical interpretation to the solution.

Belve and interpret the boundary value problem

H2) - @

given that gz, 0) = f(z), %,{(z,0) =0, #(L, ) = 0 end ¥z, t) io bounded for Oz Sl t> 4

{a} Work Problem 6.98 if the end z =0 is kept at temporature f{p, 9). {4} Determins the temper-
pture in the apecial case where fip, ¢) = p? cone.

(a) Work Problem 8.93 if there is radintion obeying Newion's law of cooling 2t the end 2= 0.

A chain of constant mems per unit length is suspended vertically O

from one end O as indicated in Fig. 811 12 the chain is displaced ¥
alightly at time ¢ =0 20 that its shape is given by f{x), 0 < =z < L,

and then released, show that the displacement of any point & et

time 't 18 given by

piz, ) = “i;l A,\Ju(n,."L;z)couﬂs

¥z, t)
where X, are the roots of Jy(23WELfz) =0 and 8
- 2 -
4, = mj: wdy () f{L~ Lov?) dv Fig. 8-11

Determine the frequencies of the normsl modes for the vibeating chain of Problem 6.89 and indicate
whether you wonld axpeet music or nolae from the vibeations,

A solid circular cylinder 0<p <@, 0<z<L han its bases kept at temperature zerc and the
conver gurface at comstant temperature u,. Show that the steady-state temporaturs at any point
of the cylinder ia

4u‘, o Iu[(21| = D)=p/L] sin [(8n = 1}zz/L]
=TT @n- 1)2g[{20 —~ Dina/l]

where 1, is the modified Bessel function of order zero.

ulp. 3} =

Supposs that the chein in Problem 6.99, which is initially at reat, ia given an initis] velocity dis-
tribution defined by Az}, 0 < £ < L. Show that the dlaplacement of any point » of the string at
any time t fa given by

Yind = él B..-fn(za. ain Ayt
where A, are the roots of Jo(2\WILig) = 0 and

B = - n,)-f 2o (Mt ML ~ L1913) dv

Work Problem 6.99 §f the chain iw given both an initisl shape © ihitial velocity distribution Aix).
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G104,

G100,
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The surtsca p =1 of an infinite cylinder is kept at temperature fiz). Show that the steadp-state
temperwture sverywhere in the cylinder is given by

_ 1" - J{v} cos Mw — £} {xp)
wlpz) = .;.J:=o -I:r“—'—n Tofh} di do

A string stretched between x =0 and a = L hes & variable density given by v = o+ «z where
oy and « are constants. The string i3 given an initial shape Fix} and then released.

{2) Show that if the tenpion - ia constant the boundary value problem is given by

Bty by
1'5;&' = (n°+c£)a—t§- <z, t>0

v = 0, wLit) =0 g = f@ wnE® =0 (Kool <M

(b} Show that the frequencies of the normal modes of vibration are given by f, = wy/2r where
the w, in = 1,2,38,...) are the positive roots of the equation,

Hinaleed ol = FypalBo}d e ypalaw)

. . 2o, '! 2o <+ L) g+ 4
in whick a = —8-:-‘ ";o', 8 = ,08' L =

MISCELLANEOQOUS PROELEMS

£108,

6.107.

6.108.

€109,

€.110.

€.111.

6.112.

A particle moves along the positive zenxis with a force of repulsion per unit masz equal to n
conetant of times the instantaneous distance from the origin, If the mass m increases with time
sccording te m = my + af, where my and « are constants, and if initielly the particle is located at
the origin and traveling with spesd v, ahow that the poaition x at cony time ¢t > 0 is given by

- i) - ()

Show thet if m e n

Jﬂl A J ¥ !
_f —-(”L—"p‘-’f’-da = o Ua(aire) - Ja( Jipa) + ¢

s o)
"'i ~dz by using a limiting procedure in the reault of Problem 6.107,

Deaduce the integyal f

- n(*l 1

Show that T = it >0

Explain how the Sturm-Liouville theory of Chspter 3 can be used to srrive st various resplts
involving Bessel functions cbiained in this chapter.

A cylinder of unit height and radius (see Flg, 6-8, page 115) haa itas top surface kept at tem-
perature 4y and the other gurfaces at temperature zere. Show that the ateady-state temperature gt
any point is given by

_ = {sinh 2g2)Jg (M)
wort) = 2 X R0

where A, ure the positive reote of Jp(A) = 0.

Work Problem 6.29 if the bese z = 1 is insulated.
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6.113.

6.114.

6.116.

6.116.

61113,

6118,

e.118.

£.120.

Work Preblem 6.20 if the convex surface is lnaulated.

Work Problem 6.28 if the bases z =10 and z=1 sare kept nt constant temperatures u, and up
respectively, {Hint. Let wulo,z, ) = vip, 2,4} +wls, 2} and choose wip, 21 appropriately, noting that
physically it representa the stesdy-atate solution.)

Show how Problem 6.20 can be solved if the radius of the cylinder iz o while the height is A,
Work Preblem .29 if the initial temperature is fig, ¢ =)

A membrane haes the form of the region bounded by
two concentric circles of radii o and b as shown in
Fig. 6-12.

{a} Show that the frequencles of the varlous modea
aof viiration are givern by

Amn r
.f me = -

2r Vi

whers 7 ja the tennlen per vnit length, x in the mass
per unit ares, and hy, sTe roots of the equation

T (@) ¥ o (D) = T (AW ¥ (hu} =

(b} Find the displacement at any time of any point Fig. 6-12
of the membrane if the membrane iy given Bn
irittal shape and then releaned,

A metsl conducting pipe of diffusivity « has inner radius g, outer radive & and height h. A co-
ordinate syatem is chosan s¢ that one of the bases Hes in the sp-plane and the axis of the pipe
is chosen to be the z-axis, If the initial tempersture of the pipe in f{p,2), c <p<h 0<C2< h,
while the surface is kept at temperature zero, find the temperature st sny point at any time.

Work Problem 6.118 {f the initia] tamperature is #{s, #.3).

Work Problem 8.118 if (a) the bases sre insulated, (b) the convex surfaces are insulated, (c] the
entire surface i inaulated.



Chapter 7

Legendre Functions and Applications

'LEGENDRE'S DIFFERENTIAL EQUATION
Legendre functions arise a3 solutions of the differential eguation
(1— sty — 2y +an+lly = 0 {1}
which ia called Legendre’s differential equation. The general solution of (1) in the ease
where #=0,1,2,8,... ia given by
¥ = ePale) + caQu(z) (®

where E(a:) ave polynomials called Legendre polynomials and Q.(z) are called Legendre
functions of the second kind. The Q.(%) are unbounded 8t 2 = =1,

The differential equation (1) is obtained, for example, from Laplace’s equation Yt =0
expressed in spherical coordinates {r,#,4), when it is mssumed that « is independent of ¢.
See Problem 7.1. '

LEGENDRE POLYNOMIALS
The Legendre polynomlials are defined by

o @n-DiEa-8--17]  an-1) . an—Dn-Adn-8) ..,
Palz) = i )l’c SEn—1)° T 2-4{2n-1)(2n—3)J" - } )

Ntl)te that P,(x) I3 a polynomial of degres n, The first few Legendre polynomisls are as
follows:

Poi) = 1 Pi(z) = %;w-m
Pa) = z Pu(z) = g(8Bz*—802% +3)
Paz) = 3(2*-1) Pu(s) = 3 (6825 — 702+ 162)

In all casens Pa(l) =1, Pa(—1) = (-1}~

The Legendre polynomials can aleo ke expressed by Rodrigue’s formuln:

Pu(s) = gy aea(a—1) )

180
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GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS

The function )
i .
—= = ¥ Pz
v1i—2st 4 it n=q (=) @

is called the generating function for Legendre polynomials and is useful in obtaining their
properties.

RECURRENCE FORMULAS

»
L Pait) = 2tlpe) - ~2oPim)

2. Plafx) ~ Pa-i(®) = (20+2)Paiz)

LEGENDRE FUNCTIONS OF THE SECOND KIND

If [#| <1, the Legendre functions of the secoml kind are given by the following, ac-
cording as n s even or odd reapectively:

Qu(z} = M{z _ !n—- ;)!{n.{._z} "

n!

+ (nhi)(n‘3;(!n+2j(n+4}x5_H'} 6)

—~1}{n+ /20—t — 1yeine
iy = U TR {1*——’%{”2?’1‘ =t

. n(n—z){ﬁglun-*_ﬂzx._...} *

For a > 1, the leading coefficients are taken ao that the recurrence formulas for P,(z) above
apply also Qa{z).

ORTHOGONALITY OF LEGENDRE POLYNOMIALS
The following resulis are fundamental:

f_: Palz)Pu(a)ds = 0  if men 8

_f_) (Pa(z)fde = _____2nz+ - )

Tha first shows that any two different Legendre polynomials are orthogonal in the interval
—1l<z<],
SERIES OF LEGENDRE POLYNOMIALS

If f(z} and f’(x) are piecewise continuous then at every point of continuity of fiz) in
the interval —1 < z <1 there will exist a Legendre series expansion having the form

fr) = APolz) + APi(z) + AsPa(x) + -+ = ?OAuPn(z) (10)
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- 1
where A = 2k2+1_[_‘f(z)Pu(a)dz (11)

At any point of diseontinuity the series on the right in(10) converges to }{f(z +0) + flx — 0)],
which can be uged to repluce the left side of (10).

ASSOCIATED LFGENDRE FUNCTIONS
The differential equation

a
(1—20y” - 2ay + [ﬂ{n+ 1) — i%:ly = 0 (19)

is called Legendre’s associated differential equation. If m =0 this reduces to Legendre's
equation (f).. Solutiona to (1£) sre called assoctated Legendre functions, We consider the
case where m and m are non-negative integers. In this case the gencral aolution of {(12) is

given by
¥ = aPT(E) + eQi(z) ' (19)

where PR(z) and Qr(2) are calied associnled Leg.;endfa Functions of the first and second kinds
reapectively. They are given in terms of the vrdinary Legendre functions by

Por) = (- g Pata) (24)
Fa) = Q-2 Qe (18)

" Note that if m>n, PN(z)=0. The functions Q7(z) sre unbounded for z == 1.

~ The differential equation (12) is obtained from Laplace’s equation Vi =0 expressed
in apherical coordinates (r,4,4). See Problem 7.21.

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTIONS

As in the case of Legendre polynomials, the Legendre functions Py(x) are orthogonal
in —1<z<l, ie.

f.l. Prz)Plz)dz = 0  nvk (18)
~ We also have .
| S rtepes = gt e an
Using these, we can expand a function f(x) in a series of the form
fla) = ‘E:DAkP:(Z) (18)

SOLUTIONS TO BOUNDARY VALUE PROBLEMS : i
USING LEGENDRE FUNCTIONS

Varicus boundary value problems cam be aolved by use of Legendre fumctions. See
Problems 7.18=7.20 and 7.28-7.30.



CHAP. 7) LEGENDRE FUNCTIONS AND APPLICATIONS 188

Solved Problems

LEGENDRE'S DIFFERENTIAL EQUATION

74. By letting » = R®, where E depends only on 7 and @ depends only on 8, in Laplace's
equation ¥ =0 expressed in spherical coordinates. show that X and @ aatisly the
equations ' :

g
T"'% + 21'%? + AR = 0 a%(sinﬂ%g) —~ A%(sind)e = ©

Laplace’s equation in spherical coordinaten is given by
18 au 18/,  du < B
= ;;(fg?.r ¥ rising as('““ ag) + 2 aint e EYE o )
See {4}, page 6. I w s independent of ¢, then the equation can be written

13 du 1 aef _ _duy
ﬁﬁ("z'a?) T Fsine ae(”” ) = ° @

Letting u = Re in this eguation, where it is supposed that B depends only on r while 8 depends
oniy on #, we have
e d dR R df . d8 " .
= _3("’1;7) t e a-'e('"“ 3) =0
Multiplying by +2, dividing by Ré and rearranging. we find
14f,dRy _ __1 & e
R dr(” df) ¥ TEune dsl\"M? ‘.gs)

Since one sida depends only on = while the cther depends only on 5, it followa that mh;sida must
be a constant, say —-x%. Then we have

1 d dB i
E z;(" W) = ™ @
1 [ a8

and Fems z(sin v ) = W “

which can be rewritten respectively aa

nfB B aur = 0 ®
and %(slnt%) — A{ginee = O "

as requirad,

72 Show that the solution for the R-equation in Problem 7.1 can be written aa
B

1‘#1.

R = Ar +
where A= -gz{u +1).
The R-equation of Problem 7.1 is

2R
e - I
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This is an Euler or Gauchy equation and can be solved by letting R = +® and determiring p.
Alternatively, comparigon with (26) and (£8), page 101, for the case where z =, y=R. k=4,
={), A=) shows that the genaral solution is

R = r-usjap¥1ia = g y—vis-a¥)

or E = Ar=tz+Vla=2 4 pp-irs- 1437 ' (2)

Thia solution can be simplified {f we write
1 1
- 2 —
-3 + 5 ’ i A = u (2)

-1 %-—x2= -t -1 ®

o that

In such cuse {1) becomen B
R = A+ 35 (3}

Multiplying equations (#) end (8) topether leads to
A = ~=afn+1) (5

Show thst the @-equation (B) of Problem 7.1 becomes Legendre’s differential equation
(1), page 180, on making the transformation ¢ = cosé.
Using the value M = —n{n+ 1) from {§) of Problem 7.2 in the £-equation (6) of Preblem 7.1,
it becomes ( a9
B

g‘ Inad,) + afn+1)sinse = 0 ()]

Weo now let ¢ = cos¢ in thia equation. Then )
48 dP dg . d9

i 'Efda = —sme';e'
Thus nins%g- = -sm’ai—: = ((S—l)ﬁ—i

since aindp = 1 -cost¢ = 1 — 2, It follows that
4 e\ _ af . ,_]
s (Bin i da) - MI:“a B

= de[(e’ 1}“]‘1, = de[ﬂ 52}—-— sin s (2)
Uasing this iz ({) and canceling the faclor sln #, we obtain

0 8

I

LYy
df[{l £) d‘]-i- nin+ 1)@

Replscing @ by y and ¢ by #, and carrying out the indicated differentlation, yielda the required
Legendre equation
(A—a"y” = 2z¢' + nlm+l)y = ¢ )

Use the methed ¢f Frobeniua to find senes solutions of Legendre a differential equa-
tion (1-#09" ~ 2zp* + min+lly = 0, :

Assuming a solutlon of the form y'= X 0,.e%*% where the summatlon index k& goez from
—etywand o, =0 for k<0, ‘'we have
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T

nn+y = 2n.(n+1}c*x“3
~2zy = E-2(k+plozt?e
(1=2y" = Sik+pik+a~ Neah8-F — Z (k4 ik + 8~ Dok +h
= BE+8+D0+ 8+ Dottt — Z et p)E+ B NgatP
Then by eddition,

Zk+a+2Uk+ 84 Noyyq —~ (k+ B+ A~ 1o — Bkt Aoy + nlnt ezt = &
and gince the coeficient of 2%+ & mugt be zero, we find
B+ B+2k+ 84 Voesa + (Win-t 1)~k p+1)]5 = 0 )
Letting & = —2 we obtmin, since c_g =0, the indicial equation £(8 —1jg, =0 oY, sasuming
™0, g=0 or L.
Case 1: g=0.
In this case (1) becomes
R+2k+ Loy g + na+1) = kk+1)e, = 0 )

Putting 2 = ~1,0,1,2,8,... in succession, we find that ¢, is arbitrary while
#n+1 . 1eB—an+1) _[2+8 = nlz+1)]
o = —Lé-!-—-le,. oq = t ¢ e

81 i + 4! 2
end 8o we obtain

_ #Aln + 1) win—n+Vm+8 |

+ c;[# _ {ﬂ—igt!u+2)zs 4 (n—l:{n»sg(luuuuﬂa o5 — ] )

Since we have a solution with two srbitrary constants, we need not consider Case 2: g=1,

For an even integer m &0, the frst of the above series terminates and gives a polynomial
solutign. For an odd integer n > 0, the second eeries terminates and gives s polynomial aolution,
Thus for any integer n 0 the equation has polynomial sclutions, If n=0,1,2,53, for example,
we obtain from {J) the polynomisls

Cq. &Z, cpll ~ Bz?), & (3—2*:2-@)

which are, apart from a multiplicative eonstant, the Legendre polynomials P, {z). This multipli-
cative constant iz chosen so that P{1) = 1.

The series sclution in (#) whicth doas not terminate can bo phown to diverge for 2 = *1. This
second selution, which i3 unbounded for = = =1 or equivalenily for & = 0,r, is called a Legendre
function of the second kind and ja denoted by Q.(z). It follows that the general solutfon of
Legendre’s diferential equation can ba written as

o= e Pz} + e, (2)

In case » is not an integer both seriea solutions are unbounded for x = 1.

Show that a solution of Laplace’'s equation T2 =0 which is independent of ¢ is
given by

u = '(Air- + ;,‘3:-1)[.4:?.(&) + BaQuif)]

where § = coag,
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This result follows at once from Problems 7.1 throvgh 7.4 since « = 86 where
8, ‘

R = 1"“+,u+1

snd tha general solution of the 6-eqmation {Legendre’s equation) ia written in terms of two lingarly
independent solutions P, () and Qu{f) es
8 = AaPuld) + BeQuie)

The functions P, {f) and @, (f) sre the Legendre functions of the first and ascond kinds respectively.

LEGENDRE POLYNOMIALS
75. Derive formula (#), page 180, for the Lagendre polynomials.
From {£) of Problem 7.4 we gee that it k=n then ¢p,; =0 and thus 0,4, =0, o=

0,.... Thenletting ¥ = n—=2,n—4, ... waiind from (2} of Problem 7.4,
=1) - __(-n—ﬁ}{n-—&] . n{a—1)n—2Hn—8)
ez T ‘Tza- 1% e T Wn—-7 2 = Bedn-ijEn—3) >

This leadn to the polynomial sclutions

- 28 1) e -1n—SYn—-8) . ..
¥y = "[ 2(2n Bt iR :|

The Legendre polynomials P, (x) sre defined by chossing
(20— 1)(2n —8)-+ 81

n!

c“=

This cheice is made in order that F,(1} =1,

7.7. Derive Rodrigue’s formula P.{x) = 2—1,,?-;-,;—;; (#*—1)~

By Frobiem 7.8 the Legendre polynomiala are given by

= (En—NEn—9---0-1) . we-1) . R — I — DA~} iy o ..
Pal) = ol {’ e T TP T P v i }

Now integrating this » times from 0 to 2, we obtain

TR B {x... . }

which can he writien

_{2n—1){2n—8}.-
{Zn}En - )(En — 2)

w_

{w’-l]ﬂ or (g2 —q)m

2"11'

which proves that 1
Pn (I) = 2;”; w (z! 1)”

GENERATING FUNCTION

78, Provethat ———l ___ = 3 Pu(z)t.
Using the binominl theprem
Q4w = 1+ po 4 ?(92'1'1}”, + ﬂ?‘ls)!(?—fl", + -
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we huve
. 1

Vi—2xt+t?

= -t2z-)mv?

- 1 1-8 1435 yor
= 1+ gtz + -2.—4#{24:-—‘)2 + 2.4.8t3(2x s -+

gnd the coefficient of 0 in this gxpansion i3

10306 n =) 185 (=D
R 4-6-- @ - =g T e
f LrBegtneb = BamDpe

2eduf---2n—4 2!
which can be written as

1:8-6«-{Z2n—1) n{n—1)
= 1" " @iza-1

e g MR =D \{

2-4(2n — 1 —3)

-

iw, Pu{z). The required resolt thus follows.

RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

79, Provethat Paui() = 2"‘" lzpﬂ(x) P pi(2)

n+1

From the generating function of Problem 7.8 we have

1 - :
Vi—gsivd = 'go Py {ziin €}

Differentiating with respect to f,

-
x~t _
e e S R et
Maltiplying by 1 —22¢4 {2,

x—t ©
m = _§n (1 — 2zt + 2P (x)er=) )
Now ths left side of (€} can be written in terms of {{) and we have
'En (z— P {z)tr = iﬁ (1 = 22t + tHnP, (x)}in—1
ie. *
o L] - an =
3 st — I Bdar = 3 aPaet = F sePiar 4 F abyaet
n =0 el a=D w0

Equating the coeficients of ¢* on ench side, we find
2P () — P (&) = (R+1Pyy,(2) — InzPu(e) + (n— 1P {2}
which yields the required result.

7106, Giventhat Po(x) = 1, Pi{z) =2, find (2) Puz) and (&) Palz).

Uning the recurrence formuia of Problem 7.9, we have on letting n =1,
_ 3 1 3 1 1
Pz = ixP, {z] — ‘§Po(”} = Ex‘ -3 = 5(32’-— 1)
Similarly lotting » = 2,

Pe) = Sahie) - R = %z(---— § (627 — 82)
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LEGENDRE FUNCTIONS OF THE SECOND KIND

7.11.

T2

Ohtain the results (6) and (7), page 131, for the Legendre functions of the second kind
in the case where n is a non-negative integer.

The Legendre functions of the sacand Kind are tha series solutions of Legendre's cquationh which
do not terminate, From {#) uf Froblem 7.4 we see that {f » ie even the series which does not termi-
nate Is

B L3RS (u—-l)(n—ssﬂ'n+2)[n+4) 45 -

while if n is odd the series which does not tarminate s

- n(nztl)l‘ + ﬂ(n—zm‘:‘: AR g

1

These serice solutions, apart from multiplicative constants, provide deflnitions.for Legendre fune.
tions of the second kind and are given by (8) and (7) on page 131. The multiplicative conatants
are chosen so that the Legendre functions of the second kind will satiefy the asme recurrence for-
muias (page 131) as the Legendre polymomials.

Obtain the Iaegendfe functions of the second kind (a) Qo(z), (b) Qa(x), and (¢) Qz).

(¢} From (8), page 181, we have if n =10,
' 1+83:2+4 1:8:5:2v406

2
Qfz) = x+ gt + 5Tt & &+ -
. ot x3 27 _ 1 142
= z + 3 + 3 + 7 + = Bln(l—z)

where we have used the oxpanmion In(l+u} = u— /2 F oS —utfd 4 -+,
(8 From (7}, page 181, we have if n=1,
Qs = _{1 -, ACHOW L, a0 }

= 232, ., - o= fli g
= x{z+s+ + }—~1 = 21“(1_-——x -1

{#) The recurrence formulas for Q.(z) are identical with those of P {x). Then from Problem 7.9,

wj4

Quyyds) = E}_F—l—lfqn(z) - n_jll-_iq""i(’:}
Putling n =1, we have on using perts (z) and (8}, _
o = b o = (Eu((22)

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

713,

1
Prove that LlP,(:cJP.(x}dx =0 if men

Since Py, (x), Py(z) satisfy Legendre’s squation,
(1=29P, — BzPl + mim+ )P,
(- 2Py — 2zP; + nin+1)P,

(1]

Then multiplying the firat equation by P,, the second equation by P, and subtracting, we find
1= 2P Pa — PaPyl — %[P,,F:,; = PPyl = [min+ 1) —mim+ VPP,
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which can ba written

(- )& (P PL — PAPL — BIPuPL = PaPi] = [afn 1)~ mim+ )PP

or %{u- -E!,[PHP;‘ - Pmp:u = [:I!l:ﬂ.+ 1) —_ m{m+ l)anP“

Thus by integrating we have

prin 41~ mim+ 1) [ @ Pulids = Q- slPPR— PP = 0
-1 ~—1
Then eince m * %, n
_Pale) Py} de = 0
1
2
114, Provethat | (PRl = gy

From the genersting function -
—_———— = I P.lehr
=g .

we have on syuaring both sides,

1 - v = -

ey S A REL R
Then by integrating from —1 te 1 wa have
1 dz i = 1 .
—— — = L]
_f_l — = 23 {f-lf‘m(w]!‘.{z) dx} ™

Using the result of Problem 7.13 on the right side und performing the integration on the left aide,

1 a .
"il-l'ln -2+ 8) I-t = ngﬂ {.J‘—;[Pﬂ(ﬂ}’ﬁ} =

or -li In (-:'—f-_-%) = néa {J‘-‘: [Pat=)]® dﬂf} e

< 2 - !
b §:25 - Al morale

-

Equating coefficients of ¢, it follows that

[ iene = 52

SERIES OF LEGENDRE POLYNOMIALS

5 I fla) = joa.,p.(z), _1<z<1, ghowthat

2k

1
A *1 f_ Pu(2) f(z) dz

Multiplying the given series by Po(z) aad integrating from —1 to 1, wa have on using Preb-
lems 7.18 and 7.14,
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= 1
( Pawsmrse = Zaf ruernea

t 24
TS

H

Then as required, 1
4n = il  Pala) fix) dn

0<xe<]

1
7.16. Expand the function f(z) = { 0 —l<z<0

By Problem 7.16

in & series of the form iﬂtitﬁ(ﬁ)-

! 2k ° 2% +1 g0
A4, = %;1£1Pk{z}f(x)ﬁ = ;1‘[—:?,‘(::)(0}&:-1-—2—“‘: Py (=)(1) de
1
= B2 pties
. , .
Then 4, = %-’;P,(s}da: = -;- \ Mde = .%
3 ! M _ 8
4, = EJ;P;(x}dx =3 ozdz = 3

1 1o, -
Ay = %j; Pmdz = 2 f ¥l -

7 (" 7 (‘o8 ,
A, = EJ: Py(x)dz = E_]:_z"'"’ = -

ot Y35t ~ 3022 + 8
A, = EJ;P.(z)dx = -gj; B e = g

1! 11 1483z — T02% + 16z 11
Ag = -EJ; Psix)de = "2—"; -ﬁ———s-——dz = 32

ete. Thus
1
LFy(a) + B Pylo) ~ -

fa) = ghoim + 3py) - L

The getveral term for the coefficlenta in this meries can be obtmined by using the recurrence for-
muale £ on page 131 and the results of Problem 7.34. We find

1 1
4, = &“—g—lj; Pux)de = %J: (Phas® ~ Pi (@] de = 3 [Poey(0) = Poy, (0}

For n even A, = 0, while.for n odd we can use Problem 7.34(¢).

737, Expand f(z) = 2? in a aeries of the form EoAkPx(z].
k=

Method 1.
We must find 4,, k=10, 1,2,8 ..., such that

ApPolx) + A P (2} + AgPyl2) + APy} + -

AdD) + Ay(2) + A,(Bz_’g— 1) + Aa(w; ax) oo
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Since the left side is n polynomial of degree 2 we must have A3 =0, 4,50, Ay=0 ..., Thuy

A
2t = Au--2—2+)llz+%dgs:’

A 3
from which Ap-F =0 A =0 341
1 _z
Then 40=§, A, =D, 4,_5
&
Lo 2 = Lh + IR
Method 2.
Uaing the method of Problem 7.15 we aee that it
an
¢ = T AP
k=8

% 1
2 ;' I .[—1 2P\ (%) dat

Putting = 0,1, %,..., wefindasbefors Ag =}, 4; =0, 4;= § A, =0, 4, =0, .., %0 that

then Ay =

2 = %Pn(z) +§P,(z)

In genera] when we expand & polynomial in o series of Legendre polynomials, the series, whivh
terminates, can most easily be found by using Method 1.

SOLUTIONS USING LEGENDRE FUNCTIONS

7.18. Find the potentlal # (a) interfor to and (b) exterior to a hollow asphere of unit

radiua if half of its surface is charged to potential v and the other half to petential
ZETO.

Choose the sphere in the pesiten shown in Fig. 7-1.
Then ¢ is independent of ¢ and we ¢en uao the resulis
of Preblem 7.5, A solution i

B
sre) = (Alrﬂ + ;.‘-;)[Aw,,te) + B,q,®)

whers {=cose. Since v must be bounded st ¢ =0
and r, i §= *1, we must choose By = 0. Then

vir, e = (Ar"+;§-:)f'..{£) (n
The boundary conditions are

)
9 i£%<c<r je. -1<g<0

vo f0<e<T je 0<g<l
u(1,8) =

and v i3 bounded. Fig. 7-1

(e} Interior Potentlal, 0 = » < {.
Bince v i3 bounded at =0, chocse B =0 in (f). Then a solution ia
Arc Pl = Ar~P_(coz8)

By superposition, x -
v, = En A" Py(cong) = Eﬁ AP ()
n= n=
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When #=1, =
vl 8 = §QA..P,.¢£}

Then as in Praoblem 7.16,
' g 1
4, = BP0 = ("‘+ )”of P.ig) dt
-1

2
fram which
1. 3 _ 7 _ 11
An = Evo, A’I - Iﬂﬂa dﬂ = o: AS e -15"0- Ai - 0' AG - 5‘5”’1

¥,
Thua vir, §) = *ée[l + -g—rP;{cossJ — %v’i’,{cos 8 + -I%r’P, feos #) + ]

{b} Exterior Potential, 1 <+ < «,

Since v is bounded ag » —» =, chooge A =0 in {I). Then a solution ia

Pald) = —EePiicose)

,-n+].

By superpoaition, = &,
wr, 8} = E Y Fule
LT

When v =1, -
vL9)T = % BPal)

Then B, — A, of part {a) and so

I
or, ) = 2—:[1 + £Pitcoss) - LPycos o) + 55 Puleos o) + :|

Br

7.19. A uniform hemisphere (see Fig. 7-2) has

its convex surface kept at temperature up : L e

while its base is kept at temperature zero, M
Find the steady-state temperature inside. Ry

The boundary valee problem in this case is

Vi = @ Y
where - r
i uy  on the convex surfree

n

[CHAP. 7

@

&)

in 1  on the bage

l

The selution can be obhiained from the results of u=190

Problemy 7.18. T see this we note that the present
problem is equivalent to the problem of solving . .
Laplace’s equation inside a ephere of which Fig.7-¢

the top helf surface is kopt at tomperature #, znd the bottom half surtace is epi at temperature
—tg. By symmstry, the plane of separation will then automatically be at {emperature zero as

required in this problem.

We can then obtain the required solution by first subtracting v/2 from the solution in Problem

7.18 and then replacing 14/2 by wy.  The result is

ur, g} = ﬂu[gﬁ’.tcm 8} — %rﬂ’a{cos 8 + %r’l‘s{cos 8 + :l

The problem can atso, of cavrse, Le solved directly without use of the resvlts in Problem 7.8,
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720. (a) Find the gravitational potential at
any point on the axis of a thin uniform
ring of radius a. (b) Find the potential
of the ring in part (») at any peint in
3DAce,

(a)

(b}
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Chooae the ring to be in the zy-plans so A . ) L N
that the axls ia the z-axis as indicated in L \
Fig. 7-8. Then the potantiul at any point P :
on the z-axis is seen to be the mass of the T \ ﬂ!
ring divided by the distance Ved + 28 from e
soy point @ on the ring to the point F.
Letting o denote the maas per unit length L]

of the ring it follows that the potential at ¢
Pis

wp = Lty (n

VaAra
1z this caas we muat solve Laplace's equa- Fiz. 72
tion Vév =0 where v reduces to vp for 8-

points P on the s-axia, Now we know that because of the menner in which the ring hes been
located that v Is Independent of 3. We thus have es e solution to Laplace's equation

- Bl 2
v = (Alr“ + :;Tl) [Aﬁpn {EJ + BﬂQn(ﬂ]

where ¢ =cose. Bince v must be bounded st ¢ =0 and 7 e §= =1, we must chovas
By = 0. Then

BN
v = Arm + m)f’“‘ﬂ (2}
There are two cases to be considered, correxponding to the regions 0 S»<a apd r > o

Canel: 0Srca

In this case we must choose B =0 in {£) since otherwise the solution is unbpunded at
r=0Then v=AP, (2. By mperposition we are led to congider the relution

v o= = AFP.0 )
T ]

Now when # =0, ie. g=1, this must veduce to the potentia) on the z-axis, in which case
r=gz Then we must have

e = 3 A | )
m - n=> w

In order to obtmin A, we must expand the left side a3 a power series in z. We use the
binomial thearem to ebtain

irae

= ae(14+EY
Valra i o?

1/2Y* | 1-3/z\' _1-3-5/:\°
2##[1 - E(a) + 2.‘(3) - 2-4*&(;) -+ ...] 3]
Comparison of {4) and {4) leads to

soc i3
AG = fyq, Al = 0, AQ = -%:%, Ay =0, A = emo1

I

Using these in (1) we then find

2 - 4
v = 2n[l%(eou) - %(E) Pylcoss) + H(z) Pylcos8) — ] )
where 0 Er<a )
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Caspl2: ria

In this case we must choose A =0 In (2) slnce otharwiss tha polution becomes unbonnded
as r=+« Then vz BP (/r"+t and by superpositicn we wre Iad to consider the solutin

- B

v = _§,, meibald n
Ap In Cuse 1, this must reduce to the potentin) on the c-axis for ¢ =0 and r=1#5 i&
Swae - = B,
7 ] = agn rlat )]

Thus, to find B, we must expand the Jeft side in Inverss powers of t. Again we use the bino-
mial theorem to obtain

A -l
=l -5+ B3 -

Compariser: of (8) and () lends to

_,.:__(2)' 4] @)

1
By = eas, B, =0, By = —hm(:,!-cﬂ). By, =0, B = 2m(i-.—‘¢l),

Using these in (7) we then find

v

t . "
;(g) Pylcon®) + -;-—2(5) P lcosd) - ] {10)

v}hm r>a

ASSOCIATED LEGENDRE FUNCTIONS
7.21. Show how Legendre's asgociated differential equation (22), page 182, is obtained from

Laplace's equation’ % = 0 expressed in spherical coordinates (v, 4, ¢).

In this case we must modlfy the results obtained in Problam 7.1 by ineluding the a-dapsndence.
Then letting % = Ro® in (I) of Probiem 7.1 we obtain

ad d diR Re d da Ra d% _
ﬂ:(" ,e.u..a.(“"'a)*,e‘"—unuz; =0 @

Multiplying by 4, dividing by Re4 and mmmug. we find
dR af .48\ 1w
“opine uma as ae & unds &

Since one side depends only on 7, while the other depends only on ¢ and ¢, it follown that eachk aide
must be & constant, say ~*%. Then we have

1 df . dR
ﬁﬁ(ﬂ-d':) = =2 (=)

1 d de 1 _
cond esinado(m’ ) d-ainlc?q?f = ¥ i

The equation (2} is identical with (8} in Problem 7.1, a0 that we luvu s solution according to
Problem 7.8

B,
R = Alr*-I-'“H @

where we usa 32 = —a(n+ 1),
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722,

If now we multiply equation (3) by sin? # and rearrange, it can be written as
%% S = H%-g%(m:F%) = at({n.+1)aind e
Since one side depends only on ¢ while the other side depends only on o en,ch _side must be a con-
stant, any —m3.  Then we have

lint;(ﬁnt%) + [ria+1einte —m3e = O ) 8

14

d¢,+m% = 0 A e ' ()

If we now make the tranaformation § = cos# in equation {5} we find as in Problem 7.3 that it carc
be written aa

flwélﬁ[(l—ﬁ)-& + Er D= —mde = 0

Dividing by 1 — 2 tha equation becomen

dte de mE - S
a-o%2 ~-2% + [ansn-;Zle = o ")

which is Legendre’s asscciated differentlal equation {f2) on pagas 132 if we nphée 8 by y and
§ by x.

The general solution of (7) ie shown in Problem 7.22 to be

o = PO+ FQ0 : 8

where § = ¢coas and
Pry = u-ew% P _ @
QW = (1*591""’ o Qa0 . (10)

We call PT{g) and Qui(f) amociated Legendre functions of the first and gecond kinds respectively.
The general solution of (6) ia '

¢ = Ascoamp + Bynin g {11}

¢ the funetion wir,2,¢) §» 10 be periodic of period Zv in ¢, we must have 1 equal to an integer,

which we take as poritive. For the cass m =10 the solution w(r ¢, o) la independant of ¢ and
reduces to that given in Problem T.B.

(2) Show that if m is & positive intager and «, Is any sclution of Legendre’s diffaren-
tial equation, them d™u./dx™ iz a solution of Legendre's agsociated differential
equation,

(b) Obtain the general solution of Legendre's associated equation.
{@) If Legendre's differentinl equation has the solution u, then we must have
(1— 2B — 22u} + nfn+1, = 0O
By differentisting this equution m times and Ietting »7 = dmu /dr™ we obtain

{l—x’}% - Hm+ I)#E'L + [nati)—mm+le® = 0

In this equatien wo now let #P = (1 -2y, Then it becomes
(1 — 223" — [g(m + Dx(l — 7%} + dpz{1 — )y’
+ {dfm+pzt + (4p2=2plat —2p 4+ {nin+ 1) —mm+ D]l —oB}y = 0
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1.23.

724

7.25,

(b)
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I we now choose p = —m/2, this eguation becomes sfter dividing by | ~a?

#

(1— 28y — 2zp' + [ﬂ(n+ ”’i{l—ﬁ]” = 0 o)
which ia Legendre’s associated differential equation. Since v = (1 —2%)~™%, it follows that
¥ = {1l —at)=/h3, or

= — nymiz T
¥ d== l_'" p £3)]

is a solution of (2).

Since the generel solution of Legendre’s equation is &,P,(r) + &Q,(x), we can show that the
peneral solution of Legendre's associated differential equakion ia

v = o FyiE) + Qu(2) .
anP, L i1 .
whera P = (A—=zmE-—=0, Quiz} = u"“”m'&:%' (%)

Obtain the associated Legendre funetions (a) Py(z), (b) P3(#), {0} P}(z). (@) Q;(x).

(o)

(b)

(s}

g |-
P = (- Py = u—wﬁmﬁ(i’-’-g—') = Bzl —ayut
Pl = (-en e = (1—:2}%(53?;—“‘) = 16z = 162
Pﬂ{a} = (l—xz}’*’gi-ail’,(z) = 0. Note that in genete) Priz) =0 if m>n

(@} Using Problem 7.12(e) we find

: -1, [t
Qi) = (L—a3p % Q) = {i— ,,2;1:2% {,@3’2_‘._1_ e (i.__.f__:.) - 3.2£}
= a-ape[ () ¢ 3222

Verify that Pj3(z) is a solution of Legendre’a associated equation (22), page 132, for
m=2 n=3 -

By Problem 7.98, Pi(x) = 152 — 1528,  Subetituting this in the equation

(1—aty” — tay' +'[3-4—1_‘,,]sr = 0

we find after simplifying,

(1 —2%)(—90z}) — 2x(16— 46z% + [12-—

i

and 50 P5{z) is a sclution.

Verify the result (18), page 132, for the functions Pi(x) and P3(2).

We have from Problam 7.23(5), P} (2) = Sz(l=—mi}i/2,  Also,

Plty = (1—::‘)‘”9%!’3(:) = (1*:2}3!2‘%(5“3—;;3—“) = L:‘—'(J—a!}m

b A

} - -
Then . J PPl dz = I-T-{l-a:ﬂidz = 0
. -1 -
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728. Verify the result (17), pege 132, for the function Pa(z).
Since Pj{z) = $2(1 ~xHVL, .
Vo g 12

I' [P2(z))3de = sflxm—zs)dx = '9[%’-%"1 = = 7
-1 -t —i
Now eccording to (17), page 132, the required result should be
2 _@+11 _ 3.8 _ 12
2 +1e-1)! 5 1l B

no that the verification is achieved.

7.27. Expand ve(1—2%) in a series of the form i A;i’?(z) where vo i3 a constant and
k=]

= 2.
We munt find A,, £=0,1,2,..., so that ’ '
' voll—2%) = AgPHE) + A P](®) + AyPHz) + -+ 163]
Method 1.
Since Plz) = (1—::!}%?.(:)
we bave

Fi@ = 0, Pz} =0, Pia) = u-uz}f..;',(wz— 1) = 30—at),

Pi(z) = (I-x’)d%(w; 8”) = 18z(l~=%, ...

Then {f} becomes
vyl —~28) = BA(l—xt + 15423 — 3% + <+

By compsring cocficlenta on. each sida we see that this san be satisfied if 34, = vy, 154y =0 and
Ay =0 for > 8 Thus we have

L1}
vl ~2¥ = £Pe) . (#)
30 that the required sxpanaion mnaisfa of only one term.

Method 2
]
It flz} = kEuAiP?(z), then on multiplying by Pz} and integrating from =1 to 1 we obtein

1 hd 1
[ rarrma = Zaf Prore s

Using (18) and {17), page 122, we saea that the right aide reduces to the single term

2 {n + m)!
g+l nempon

_ 1
s that 4, = EENOZHL (" o) PR da

If f{z) = vo{ll ~ 2% and m =2, then

(2n+ 1n—2)! (!

An mter  J,

vy{l — 2% P3{2) de

}T;lns thia we can show that Ay = uy/3, A, =0, A;=0, ... and zo we obtein the resuit (£) as in
ethod 1,
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7.29,
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Show that a solution to Laplace's equation V*v =0 in spherical coordinates is given
by

v = (Am + %)IA:P:‘(WS 8) + B:@T(cos 6)][4s cosmg + By tin 1)
This follows at once from Problema T.21 and 7,22 aince u = Rod where
B
B = Apr + ,Tln

B = AgPoicoss) + HaQl(cons)
¢ = Ajcosnp + Byrinmg

Suppose that the surface of the aphere of Problem 7.18 is kept st potential
vy 8in? 8 cos 2¢. Determine the potential (x) inside and (b} outside the surface.
{a} Interier Potential, 0 = r < 1,

"Sines ¥ in bounded at ¥ = 0 we must choose B, =0 in tha solution as given in Problem
7.28. Also since v Is bounded at ¢ =0 and 7, we must choose By =0. Then a bounded
solution s given by

vir, 8, ¢) = r*"PiicossiA coamg + B sin me)

Since m and n can be any non-negative integers we can replace 4 by 4,,,, £ by B, and then,
uning the superposition prineiple, sum over m and » to obtain the solution

or.0p) = éo éo P cos YA, cosntg + By, slnimg) (1

Now Tha boundwry potential is given by

vil, 8,4} = wvpnin!$cosle {2}
By eomparison of (£) with .
vt = F Peos 6)(Apy c0s mp + By minmg) ]

obtained from {f) with r =1 it is ceen that we must have B, =0 for all #t and An,, =0
for m » 2, Hence, {2} becomes

-
W) = 3 Az P2icos #) cos 2¢
ne
C;:mparisnn with (#) then shows that we muat have

v sinte = Eo AsaPleos )
-q
or using cosd = ¢
wil—g)

3, 4Pl

A!I:P:(E) + Am,P:(;) + Angm 4 oee- I

We have already obtained this expansion in Problem 7.27, from which we see that Ay = v/3,
while all other coefficientzs ere ze¢ro. It thus follows from (7) that

vir, 8¢ = %?-rﬁPi(m feos2p = wvyrtaintd conlyp 8

() Exterior Potential, + > 1.

Since ¥ must be bounded as r— % in this ¢ase and is albo bounded at 4 = 0 and r, we
choose A, =0, B, =0 in the solution of Problem 7.28, Thus & golution is

Pl{zon s
vir, 4,9) = %(g:—l (A coamgp + B uin ing)
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or by superposition .
.- wm P:‘
vres = 3 3 —-:;‘%)- (Aqn C0BMS + By, ninnmp} @

mwd k=l
Using the fact that v(1,#,¢4) = vosin?e coa2p we again ind m =2, Bn, =0 which leads to

equation (§) of part (a).” Aas before we then find Ay = /3, while all ather cocfficionts are

zero, leading to the required solution 2

or,0,0) = ggPricond)econls
R = %airﬁl cod 2 (]

It is easy to check that the above are the required solutions by diract substitution.

w40, Solve Problem 7.18 if the surface potential is f(6, ¢)-

As in Problem 7.29 we are led to the following solutions inside and cutside the sphere:

fnaide the spheze, 0 S+ <1

vy, 88 0= ..:‘E'u .i-;o v PMoon A, cos md + B, 8in me) n

Outside the aphere, > 1

a = bind . .
Paleost] ) o conms + By, sinme) )

vnee = X 3 =
For the case ¥ = 1 both of thes= lead to
fod = 3 5 PTicoshancormp + Bnn sinme)
This 1s equivalent to the axpansion
Fgs® = “im éﬁ PR Amn coamg + By, aintig) ®
where ¢ =coss. Let as writa this 8a
Fap = ECPD0 . )
where c, = éo (Amn €08 M + By, ginmg) 0]
As in Method 2 of Protlem 7.27 we find from {4)
G. = Gmplineml (%o 24 @

We also see from {5} that A, and Bn, are simply the Fourier coefficients obtained by expansion
of C, (which iz a function of ) in a Fourier serles. Using the methods of Fourier series it follows
that

1 o
Aw = &) Cado
air
Am;‘ = —:-J; C,,cosmdﬁ m=1L83, ...
Ir
By, = ij; Cn sinmg dp m=128... : .

Combining these results we sea that

_ addm-—m) ™
A = Tl _f_lJ; Fit.¢) PR d¢ de
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whilador m=1,2,3,... . e
2 —)!
(Zn + )(n —en _f_“f. F(t, 8) P"¢) con mg 45 dp

Aon = T
1 ptw
By = EFN=ml (TR 0220 s me de do

Using these results In (1) and (#) we obtain the required solutions.

Supplementary Problems

LEGENDRE FOLYNOMIALS
781,  Use Rodrigua’s formula (4}, page 180, to verify the fofmulnu Tor Py(w}, Py(2), ..., Py{2), on puge 150,

132 Obtain the formulas for Py{e) and Py(x) waing s recurrence formuls,

1 1 !
7.4, Evaluate (o) J: aPy(z) dz, (%) J‘—w. [Pyt de, (o) f_IPgtz)P. (%) d=.

3. Sbowthat (g} P, (1) = 1 () Pyy(0) = 0
@ R = @ = e L
for =128, ....

733, Use the generating function to prove that P, ., (x) — Pi_,(z) = (2n+ 1} P, (z).

136. Provethet (8) Payi(x)—vPr(x) = (A+1)}P,(x), (8 =Pz} = Pi_ (x) = =P,{z).

47, Show that En Ppltose) = %tac 7

b L

788. Show'that (o) Pylcose) = (8 cos & + 5 con 84).

f

(L +3conzs), (b) Pyloose) =

T8, Showthat Pi(s) = (42997~ 6055 + 31605 — 5),
740.  Show from the generating fumetion that {g) P, (1) =1, (b) P =1} = {—1)n,

o v kP
4. Show that 3 et 231524 = %ln(l-‘-z

PR -!-—:;), 1<z,

LEGENDRE FUNCTIONS OF THE SECOND KIND

742,  Prove that the series (¢) and () on poge 181 which are nonterminating are convergent for —1 <x <1
but divergent for r = =1,

743.  Find Qyix). )

T4i. Write the general aolution of () —zYy" — 2z’ + 2 = 0,
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Rl

SBERIES Dl" LEGENDRE POLYNOMIALS

145,

748

147,

Expand zt = 3x%+ z in 4 series of the form "j AkP,‘ ()

sx+1 O<zs1

Expsnd fix) = { 0 -iSz<o in a serice of the form .En A Py ix), writing the first four

nonzaro terms,

It fizy = ksﬂ APy (2,  obtain Parscyal's identity
0 - ’_

[ -
J_ e = 23 0
and {llustrais by using the function’of Prcblem 7.45.

-

S0LUTIONS USING LEGENDRE FUNCTIONS

140

7.48.

750,

(A3

152,

158,

154,

1.8,

Find the potential v (o) interfcr and {¥) exterior to & hollow sphere of unit radius with center at
the origin if the surface is charged to potential vo{l + 3 co5 ¢} where vy is constant.

Solve Problem T.48 if the sarface potential ia ¢, sin? s,

Fird the ateady-stats temperaturs within the repion bounded by two concentrie apherem of radfi
a and 24 if the tempevatures of the cuter and inner spheres are w4, and 0 respectively.

PFind the gravitational potential nt any point ovtside s solid uniform sphere of radius o of mass m.
Is there o sclution t1 Problem 7.51, if the point in inside the sphere? Explain.
Interpret Prablem 7.48 B & temperature problem.

Show that the potantial due to & uniform sphetical ahell of innar radius o and outd v vadius b is
given by

" Bral b2 — a?) r<ae
v = Sraf3r — 20~ rN3r a<r<b
dra(b® — al)/Jr r=b

A solid oniform cireolar dise of radiua ¢ and masas & is located in the zysplane with center at the
origin, Show that the gravitstiona] potential at any point of the plane is given by
Y

- - ’ F'y
v = 2?—[1 - -EP;(eoat] + %(E) Piicoan — ﬁ(ﬁ) P.lcon®)

1+3
‘ * m(r) Pylooss? — -+ l
if r<a and .

v = ”[1 —-() Pylcoss) + 4-5() P,(coss) — 1—72—:( ) Pylcont) + ]

it r>a.

ABSOCIATED LEGENDRE FUNCTIONS

734,

5%

Find (a) Ptz &) Pit), (o) Pl(x)

Find (2} Q}2) ) Q).
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758,

758,

T.60.

TAL

162

1.63.
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verify that the expressions for Pi(z) end Q,{m) are aolutions of the corresponding diﬂ'erentml
equation end thuas write the general solution, :

Verity formulae {i8} end (17), page 132, for the ense where @m=1, n=1, =2 (MHm=1]
=1, I=L

Obtein a genevating function for Pyi(#).

Use the genersting function to obtain results (28) and (27) on page 13E

-
Show how to expand f(z) in a cetien of the form uzo A FPR(z) end flustrete by using the cages

@ fx)=et, m=2 and (4} flo) =wil—r) m=1 Verify the corresponding Parzevel's iden-
tity in each cape.

Work Problem 7,18 if the potential on the surface iz vj nind # cog ¢ con 3.

MISCELLANEOUS PROBLEMS

784,

7.65.

T6E.

7487,

7.58.

T.69.

_ 1N (=En— 2kt -
Show that Pyl = o §,, J"““m GR-RI 2" "

where {#/2] in the Jargest integer = n/2.

Show that

Palzy = %fav(z,+ va2—1 conu)du

Use the result to find: P, (x) and Py(x).

Show that . 0 men
J a-mpimPi@ s = { ol

mtr1 ™°0F
Bhow that 2 3 —2min+1) n+0
.r a@n{l-gds = =1 n=0

. , .
() Show that _f (mP,(i)ds = 0 if m<n orif m—n is an odd positivs integer.

() Show that

! (r+2p)!P(p+4)
fmerma EEAITG F At P
for any non-negative integers » and p.
Show that u polution of the wave equation .
- 18v
Vo= §ie
depending an r, s: and f, but not on ¢, is given by
V = [Avdesrploriel + Bid ,_ya(ur/c)][As L, (con 8) + BaQ.(vos 8)] (A, conwt + By gin wi]
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7.8 Work Provlem 7.89 if there is also J-depandence.
17. A heat-conducting region is bounded by.two concentric spherea of radii o sod b (6 < b) which

Lave their surfaces maintained st conptant tamperatures #, and ty respectively. Pind the steady-
gtate teaperature at any point of the region.

772 Interpret Problem 7.1 as a temperatura problem.

793. Obtain w solution similar to that given in Problem 7.69 for the heat conduction equation

du

m «Viy

where u dependn on 1, 4, and ¢ but not om ¢,



~ Chapter 8

Hermite, Laguerre
and Other Orthagenal Polynomials

HERMITE'S DIFFERENTIAL EQUATION. HERMITE POLYNOMIALS

An important equation which arises in problems of physice is called Hermite's differen-
tial equation; it is given by

yw —2zy +2ny = 0 (1)

where #=0,1,2,3,... .

The equation (1) has polynomial solutions called Hermita polynomials given by Rodrigue’s
formule i
Hip) = (e gm(e™ (#)

The first few Hermite polynomials are
Hez) = 1, Hiz) = 2z, Hiz) = dx? -2, Hgx) = B2 —12¢ @

Note that H.(z) is & polynomial of degree =,

GENERATING FUNCTION FOR HERMITE POLYNOMIALS
The generating function for Hermite polynomials is given by
- Hﬂ
el!l.t-l’ - 2 _T;(!g:_}te

=0

4)

This result is useful in obtaining many properties of H=).

RECURRENCE FORMULAS FOR HERMITE POLYNOMIALS

We con show (see Problems 8.2 and 8.20) that the Hermite poiynomials satisfy the re-

currence formulas
Hoyoolz) = 2zHda) — 2nHo-a(x) (5)

Hi(g) = 2nfn-oz) {6)

Starting with He{x) =1, Hi(x)} = 2z, we can use (5) to ubtain higher-degree Hermite poly-
nomials, '

ORTHOGONALITY OF HERMITE POLYNOMIALS
We can show (see Problem 8.4) that

(" eHum Hiz)dz = 0 mn "

—

154
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so that the Hermite polynomials are mutually orthogonal with respect to the weight or

density function e=*

In the ease where m = n we can show (see Problem 8.4) that the left side of (¥) becomes
{ eomlinydz = 2mtye ‘ ()

" From this we can normalize the Hermite polynomials so as to obtain an orthonormal set.

SERIES OF HERMITE POLYNOMIALS

Using the orthogonality of the Hermite pnlynommls it ia possible to expand a function
in a series having the form

flz) = Aokho(a) + AiHN{z) + A=Ha(2) + - (%)

where An = 2"1;,!\/.? » e"’f{m) H,(x) dx (19}
See Problem 8.6.

In general puch series expansions are possible when f(x) and f'{z) are piecewise con-
tinuous.

LAGUERRE'S DIFFERENTIAL EQUATION. LAGUERRE POLYNOMIALS
Another differential equation of importance in physics Is Laguerre’s differential equation
given by
rp” +(l—x)y +ny = 0 {11}
where 2=0,1,28, ...

This equation has polynumial solutions called Laguerre polynomiaels given by

L.z} = fz”(:t"e 5 (12)
which is also referred to as Rodrigue's formula for the Laguerre polynomisla.
The first few Laguerre polynominls are )
Lig) = 1, Li(g) = L=g, Lafz) = 2 ~dz+2, La{z) = 6— 18z +922 <27 (13)

Note that L.#) is a polynomial of degree .

SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMI.ALS
In the following we list some properties of the Laguerre polynomials.

1. Generating function.

g—TtU1~1) = Ln(a:) .
= = nz:u L’ (14)
2. Recurrence formulas. _
Losifz) = {2+ 1= a}La(z) — n’Lﬂﬂ(x) {15)
La{z) = alnoa(x) + #le-1(2) = {1e

ZLo(x) = nLa(T) - n’L.«.(z) an
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3. Orthogonality.
f e~ *Lm{2) Lni@) &%
']

4. Series expansions.

If .ﬁz) = AOL'U(W) + AlLl(I} + ASLE.{x) + - .

then A, = (ﬂi—!}, j;ne—{f{m) Lu(x) dz

_ {0 if men
Ty i m=n

[CHAT. 8

(13)

(18)

{£0)

MISCELLANEOUS ORTHOGONAL POLYNOMIALS AND THEIR FROPERTIES
There are many other examples of orthogonal polynomizcls. Some of the more important

ones, bogether with their properties, are given in the following list.

1. Associated Laguerre polynomials Lx(z).
These ate polynomials defined by

L‘:(I) = ::ML,;@)
and satisfying the equation
zp”’ + (m+1l—-x)y + —-mly = 0
If m>n then Li(x)=

We have

fmxme—z{L': (#))de = _(nlh
v

{n—m)!

2. Chebyshev polynomials 7'x(x).
These are polynomials defined by

I grela(x} Lp(z)dx = O P v
3

(21)

(22}

(24)

(24)

To(z) = cos{mcos'z) = =z — (g)x“"(l—:c‘) + C:):c“‘*(l—z’}z R

and satisfying the differential equation

A —a)y” 2y’ + 0y =
where »n=0,1,2, ,,,,

A recurrence formula for Tw(z) iz given by
Tast{®) = 22Ta(z) ~ Tu-1(2)
and the generating function is

1—te _ o
Toem R - &,
We dlasa have
m F o Tn
-1 1 x?-

{Tn(2))? r w=0
.f_l = {.,,;z n=12...

(25}

(26)

{27)

(28)

(29)

(36)
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Solved Problems

HERMITE POLYNOMIALS

A1. Use the generating function for the Hermite polynomials to find {a.) Ho{z), (&) Hu(2),
(¢) Halz), (d) Hs(2). .
] i«

We have Hoio )
d alz)t" z H.
geed = 3RS = i) + Hyme By, Bty
Now gt = 1 4 ez 4 Q208 , Gao R

1+ 2t + (2A-18 + ("";5"):@ + o

Comparing the two series, we have

Hi® =1, Hz = 2=, His) = d*—2, Hyz) = 825 120

82. Provethat Halz) = 2nH.-i(a).
ﬂn

Differentinting ¢3¢ = gﬂ i with respect to «,
o H'(2)
gax—-  — ———
Lte - I\§° nl o
= 2H (z} n“)
1 =
ot '2,0 o o .20 )

Equating coefficients of I8 on hoth sides,

BHof2) _  Hw

oD T ap 07 Hd®) = EeHaa)
83. Provethat Hi(z) = (_l}nezl:_;“(s_,.).
4 We have P T ol ‘3' - {7 "
w=p T!
L _
Then pre (=) L“ Halx)

I

gzz.g% [e—[l-xll"k

=0 t=0

A% g
Bat at_.(e”‘ 3]

0

a0 O

nert O (-
W=z = (HApetgmles

84. Prove that jr e PHolz) Hojz) dz = { 0 matn

vV m=n
We have gt < _,_.LzT}t_“ g = i E_?_'Eﬂ_‘i_)""_"
n=0 L3 i i m
Multiplying these,
s © Hlx)H (zh™i
-tz o m "
- = _%, ..2., minl



158

HEERMITE, LAGUERRE AND OTEER ORTHOGORAL POLYNOMIALS [CHAP. 8

Multipiying by ¢—=* and Integrating from —« to =,

L - ‘ﬂ‘l -

-
j' e lzdntt¥ il g = o~V () H (z) dz
-

m=l axd minl Joo

Now the left side is equal to

,wJ- et gy = gnf e~ttdy = abyr = Vr 32 grenen
—_— -

m=a M I

By equating coefficionts the required result ollows.
The result

L eI (HH (o)dz = D m o u

can also ba proved hy using a method asimilar to that of Problem 7.13, page 188 {ace Problem 8.24).

Show that the Hermite polynomials satisfy the differential equation
Yy —2zy Yiny = 0
Frem () and (#), page 164, we have on eliminating £, ,(z):
H,,y(z) = fxH(z) — Hfx) @
Differentiating both sides we have
H ® = 2zH(x) + 2H,(2) — H,(%) @
But, from (), pag; 154, we have on replseing = by n +1:
Hopz) = 2n+ 1) H () (8}
Vsing {#) in (£) we then find on simplifying:
Hliz) — 2H ) + 2aH(x) = 0
which is the required remult.
We can also proesed as in Preblem 8.25.

(@) It fi2) = E‘:Akﬂk(&'ﬂ) show that 4, = E:;clT'ﬁI-u ¢ f(z) Hy(z) de.
(b Expand 2° in a series of Hermite polynomials.

-
@) It fix) = I:EU A Hy(xy then on multiplying both sides by ¢~ "Hy(x) and Integrating term
by tarm from —= io = (Resuming this to ba possible) we arrive at

‘_’“ o~ Pf{x) Hyfz) ds = i Ay J“ e~ S Hylz) Hfz) dz . (t]
- k=0 w

Rut from Problem §4
J'- PH () o) 4 0 kvn
- " =
L Tdm el e mlvE k=m

Thus {1) becomes -
J-_” e H {wyde = A2wm!vy

A, = 1 "
or e~ J-_‘r-"f(a:] H(z) dx @
which yields the required result on replacing n by k.
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() We must ind coeficients 4,, k= 1,23,..., such that
. . .
2 = 3B AH[) £
k=0
Methad I.
The expanaion (#) can be written .

28 = AgHolz) + A Hy#) + AgHy(2) + Aghiylz) + - - N {4)
or 2 = Ayl + A28 + A (422 —2) + Ag(Ba® = 122) + -+ (13]

Stnce H)(z) is a polynomial of degrés & we see that we must have 4, =0, A5 =0, Ay=0, ...
stherwise the left slde of (5) is a polynomial of degres 8 while tha right side would be a poly-
nomial of degrea greater than 3. Thus we have from (5)

o = (Ay—24, + (24, — 12A,)r + dd.x% -+ BAux?
Then equating mell"lciat;ta of Mke powers of £ on both sides we find
M3=l, “,20. 2&1—12A3=0, A0—2A==0

from which 3
Ade = 0, A1=‘4—I, A, =0, A, =

Lo L

Thus () becomes 3 1
2 = TR + g H)

which is the required expansion.

Cheek. a 1 - )
FHiE) + gHn = 30 + g@st— 1) = «
Method 2.
The ecoefficients 4, in (1) sre giver by

1 L]
4, = —i_ j' o~ () de
BT RV Jem =)
a5 cbtained in part (a) with f(z} = 29, _
Putting & =0,1,2,3,4,... &nd integrating we then find
Ay = 0, “11:%’- A, = O, A:‘%- A, = 0 4, =0,
and we are led to the same reault az in Method 1,

In general, for expansion of pelynomials the first of the above methode will be easler and
fuater.

87. (s) Write Parseval’s identity corresponding to the series expansion f(z) = i AxHr(Z).
. - [} k=my
(b) Verify the result of part {¢) for the case where f(z) =2°

-
(5) Wo can obtain Parseval's identity formally by first squaring both sides of flx} = 3 A H ()
to abtain k=i

e = F T MA@

.
Then multiplying by o= and integrating from —w to = we find

f e = 3 3 A,‘A’j. o~ H {0} Hylw) do
- K= pa0 -
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Making use of the results of Problem B.4 this can ba written as
- L
J- e~ {fiz))dn = V& "20 2xkt AT
— -
which in Perseval's identity for the Hermite polynomials.

(b} From Problem 8.8 it follows that if fz) = 2 then A4,=0, A, =4, A= 0, 4,=§ Ay=19,
Ag=0, .... Thus Parsevsl's jdentity becomes ]

f"a-#w}m = YF 20D + PEGH)

Now the right side reduces to 16v7/8, The left side in

J‘ m""ﬂd: 2r ,ﬁs-l.dx = J‘ “5."!3—“ au
—- o 0

N = PP Ve

]

H

where we have made the trapaformation z = Vi Thus Parseval's identity is verifiad.

LAGUERRE POLYNOMIALS

8.8

9.

Determine the Laguerre polynomials (@) Lo{z), (b) Li(z), (e) Lx(2), (&) L)
We bave L,(r)= s*%(:ﬁ"o"’}. Then
o) Zol#d = 1%

® L)

o*%(w'c“') = 1=z

s;‘d%(s‘c-ﬂ = 2 — dz + 2t

(&) Lyl®)

§ — 18z + 959 — &2

= (gt
W) L) = &tz

Prove that the Laguerre polynomiala L.(x) are orthogonal in (0, =) with respect to
the weight function ¢, ’

L l;'rom Laguerre’s differentia! equation wa have for any two Laguerre polynomisls Ln{z) and
‘{“ .
gLl + (l=x)Lp + ml, = 0

s+ (=), + nL, = 0
Multiplylng these equations by L, and L, respoctively and subirscting, we find
e[Lalin — Lala] + 1 =g)[Lalin =LpnL)] = n=mL,L,

or -&[L,L;.-LML:.} +1--=[L,.£§,.-—-L.,L‘,'.] - i’.‘___"_;_m"‘_i'

L

Multdplying by the integrating factor

1~2)ixds
G'f = glath s = gea

this can bhe written as
%iﬂ"[&ub'm ~L L} = (s-mp—<LL,
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8.10.

1.

so0 that by integrating from & to =, .
(w-m) f oL@ @ds = sedlelh~Lalil = O

Thus if m~<n, ©
j; e2L () Lf)de = 0

which provea the required result.

Provethat L.z} = (2n+1—2) La@) — 22 La-a{z).

The generating fonctlon for the Laguerre polynominls in
gmxt1-y 2 Lz}

- = 2w " @
Differentiating both sides with respect to | yields

e—IU~D)  geg——D = ﬂf«(’)tﬂ_l

A—2r ~  d-0F = = wl )
Multiplying both eides by (X — t)¢ and unsiag (?) on the left side we find

iu—n""” _j e, | i a- e

neeld

which can be writtan as

3 L), § L e, § o),

RO ‘ll! e—.

- é n(w) . 2 InL, () InLae) i nLa(ﬂ

] n!

I wre now equate coefficients of 5 on both sides of this equation we find

L) Lea® _ 2l _ (DL a(e)  2ala(o) | (= e (@)
n! (n—1)1 nt - {a+ 1) Yl (n=10YT

Maltiplying by »! snd eimplifying we then obtain, as required,
Lassla) = (2 +1-2) Ly(z) — atla_y()

Expand 27+ £® - 8z + 2 in a seriea of Laguerre polynomials, i.e, ﬁoA;L;{z).

We shall uso & method similar to Method 1 of Problem 8.6(b). Since we must sxpand s poly-
nomial of degree 3 we need only take terms wp to Ly(z). Thua

w42l — 3z + 2 = AgLya) + ALy (2} + Aglale) + AL,(2)
Using the resnlts of Problem B.8 this can be written
94+t — x4 2 = (Ag+ A, 24,484, — (4, + 44,1+ 184 )w + (A + 984 Ja? — Ayd
Then, equaticg like powers of = on both aldes we have ‘
Ag+ A +24,+ 64y = 2, A 44,184, =8, A +04, =1, —A; =1

Solving these we find
Aﬁ =T Al = =18, As = 14, Aa = —1

Then the required expunsion is
@+t -85+ 2 = TLy(x) = 19Ly(2) + 107 7z} — Lefe)
Weo can also work the probiem by using (19* and (20), page 156.
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MISCELLANEOUS ORTHOGONAL POLYNOMIALS

8.12.

8.13.

814,

8.15.

Obtain the associated Laguerre polynomials {(a) Li(2), (b) L(z), (¢) Li(x). (d) Li(x).

) Ly = %de} = %(2-4“@ = 2r — 4

& L) = ;,%L,(x) = 3%(2-—4m+95) =2

(& L=z = %:;La(x) = %ta-nsﬁszﬂ—aﬁ) = 18 — 6=
() Ly = %lez) = 0. Ingeneral Ly{zx) =0 if m>n.

Verify the result (24), page 1566, for m=1, n=2,

We must show that w
§, mettienras = BF -4

Now since L;{:} #= 2% =4 by Problem 8.12(a} we have

warrtzx—m dr
1]

L -] -
éf xle—sdy — lﬁfwzfoﬂdz + 1sf za—2dz
¢ ¢ L

= 4ri4) — 1608 + 161¢2)
= &3 — 162D + 18011
8

i

ke that the reanlt ia verified.

Verify the result (25), page 156, with m =2, n=2, p=3.
‘We must show that "
2p—sL¥2) Lix)dr = o0
j; 22— sLylx) Ly(x) d2 _
Since Li{x} =2 bi(z) = 18-~z by Problem 8.12(z) and (&) respectively the inteprsl is
J: ate-2(2)(18 ~ 6x)dz = 96 j; xe—rde - 12J; a%a-sdy

= 36I{8) — 127T(4)

. = 382l — 1283 = ¢
a8 Tequired,

Verify that Li{z) satisfies the differential equation (22), page 166, in the specisl case
m=2 nm=23

_Fgrom Pl;:!h'lem 8.12(c) we hava Lz(z) =18—8r. The differential equation (£9), page 156, with
rTerThE BBty = 0
Substituting ¥ = 18 —éz in this equation we have
cx0) + (326} + 18—~ 6x = O
which is an identity. - Thue L}(z) smtisfies the differentisl equation.



CHAP. §] HERMITE, LAGUERRE AND OTHER ORTHOGONAL POLYNOMIALS 183

8,16, Show that the Chebyshev polynomial Ta(z) is given by

Pofz) = 2 — (;)m“‘”(l—m“) + (:)z""{l—s:’}' - (:):c"““(l—z“)“ + oo

We have by definition
Tzl = econfnooan—la)

Let #=eot~ !z 6o that = = cosu. Then T,(2) = cosnu. Now by De Moivre’s theorem
{cozu + isinu)* = cosnu + isinnu

Thus cosau ia the real part of (cosu + {einu)r.  But this expansion is, by the binomial theorem,
{cosuy + G) {cosw)n—1({ sinu) + (:) {eozu)™— 2 sin w)* + (:)(ws wr—Higinw)® + ---
and the real part u_f ;hia is given by '
n n
coatu — (2)905""3& sin?u + (4)ms“"4u sinty — ---

Then sitice cozw = 2 and sinfu = 1 — 22, this becomes

xt — (n):"‘gll—:\'}) + (n)x“‘""{l—x’)" -
2 4

817. Find (a) Ta{z) and (b) Tsl2).

Using Problers 816 we find for n=2 and n = 3 respectively:

(g} Tofze) = o2 —-(i)x‘?tl-—x'-') 22 — {(1—z%) = 2x2 — 1

2\
2 -~ (2)3:‘(1 — 4%

) Tyi=) o — Jx(l=—e2) = 425 -~ 32

Another method.

Since Pylry=coa0 =1, T,(z) = cos{cos—ts) =z we huve from the recurrence formula (87).
page 158, on putting » =1 and = =2 regpectively,

Tolx) = 22T (2) — Tolx} = Bzl — 1
Tafe) = 2xTefe) — Tylx) = 2x(222—-1) — z = daf — o

B18. Verify that Ta{z) = cos{n cos 'z} satisfies the differential equation

(l—aty’' — 2y +n'y = 0
for the case n=3.

From Problem B.17(), Tif{x} =428 — 3z and the differentlel equation for n =3 is
(A—z¥y” —zy + 0y = 0
Then if y = dz1-- 8z the left side becomes
{3 — «)(24z) — z(12z% — 3} + B(423— Bz} = O
so that the differentinl equation reduces to nn identity.
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Supplementary Problems

HERMITE POLYNOMIALS
.19, Uge Rodrigue’s formula (2), page 154, to obtain the Hermite polynomiala Moz, iz}, Halz), Hyls)

£20. Use the generating function to obtain the recurrence formula {5) on page 154, and obtain
Hy(=), Hylx) given that Rolzy =1, Hy=z) = 2z,

821, Show directly that (a) J‘; e PHyx)Hy(z) dz = 0, (B) J._' e~ Hx)|2 dx = syr.

322,  Evaluate J' x2e=2H (z) dz.

- 2n}t
822, Show that Haa(0} = (——l'!:{!—} .
824. Pruve the reselt {7), page 154, by uaing a method eimilar to that in Problem 7.13, pages 138 and 189,

425.  Work Problem 8.5, page 158, by using {s) Rodrigue's formula, (3} the method of Frabenius.

836 (a) Expand f(z) = 2* — 32+ 2x in b series of the form E A H\(2), {b) Verify Parseval's identity
for the function in part (a).

827. IFind the weneral solution of Hermite's differential equation for the caces {8y n=10 and (B} n=1.

LAGUERRE POLYNOMIALS
B.25. Find Ldz) end show that it satisfies Laguerre’s equution (17), page 165, for n =

329, Use the generating function to cbtain the recurrence formula (28) on page 155,

830. Use formuls {15) to determine Lofe), Lylz) and Lg{z) if we define Lylx) =0 when #=-1 =&nd
Lz} =1 when n= 0.

831  Show that nLy-1(®) = #lg-y(a) = Ly(2).
932, Prove that f emHL s dz = (a1
]

£33. Prove the results (79} and (¥a), page 156.

934, Fupsnd Fz) = 2*— 9z7 + 2z in & series of the form éa ALy (2).
E2S.  Illustrate Parseval’s identity for Problem 8.4,

8.96. TFind the general solution of Laguerre’s differentinl equation for » = 0.

847. Obtain Laguerre’s differential equation (11}, page 155, from the generating function (74), page 165.

MISCELLANEOUS ORTHOGONAL POLYNOMIALS
558. Find (a) L}x). (b)) Li(x)-

840, Verify the reaulta (£4) and (24), page 166, for m =2, n =8

$.40. Verify that Li(z) satiafies the differentlal equation (#8), page 166, in the special case m = 2, n =4,
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341,

.42

843,

84d.

845,

846

8.417.

848,

Evaluate _j: wIe—2L{(x} da.

Show that a generating fumetion for the agsociated Laguerre polynomisls is given by

(_”mg—sﬂtl—n o L:.{#)
el S ek

Solve Chebyshev's differential equation (2£), page 156, for the ease where n = 0.
Find {a) T,#) and (&) Tz}

L -
Expand fizx) = z3+4a3—4x+2 in u series of Chebyshey polynomials kgn ATz

{a) Write Parseval’s identity corresponding to the expansion of f(x} In a series of Chebyshev poly-
nomigls and (&) verify the identity by using the function of FProblem 8.45.

Prove the rectitrences formula (27}, page 158.

Prove the results (29) and (40} on page 156.

MISCELLANEOUS PROBLEMS

8.49.

8.50.

856.

457,

{a) Find the gemeral solution of Hermite's differential equation. b} Write the general solution for
the cages where n =1 and n=2. [Hint: Let y= vi,(x) and determine v 50 that Hermite's
equation is aatisfed.)

In guantum mechanics the Schroedinger equation for a barmonic casillator i3 given by

g " Bvlm
e ¥l

(E—galp = 0

where B, m, A, « are conatants. Show that salutions of this equation are given by

¢ = C.Hyzlaye et
where 5 =0,1,2,3,... and

_ 4T _ A [
* = A Tortam B = (’”"3)27\,:»
The differential equation is & Sturm-Liouvidte diflerential equation whose eigenvalues and eigenfunc-
tions are given by E and ¢ respectively.

{a} Find the genera! solution of Lagmerre's differential equation. () Write the general selution
for the ceses n =1 and n=2. |[Hini: Let y = vl,{z). See also Problem 8.48)]

Prove the resulits [18) un page 156 by using the generating funetion,

{n) Show that Laguerre's sssociated differentinl equation (22}, page 156, is obtained by differenti-

niing Leguerre's equation (111 e times with respect to x, and thus (b} show thet m sclution ia
dnl fdz=,

Prove the results (25} and (£4) on page §56.

{e} Find the general solution of Chebyshev's differential equation, (b} Write the general selution for
the cases n=1 and n=2 [Hine Let y=vT.(x)]

Discuas the theory of (o) Hermite polynomials, {9) Laguerre polymomials, (¢} nesnciated Laguerre
polynomials, and {d} Chebyshav polynomials from the viewpoint of Sturm-Liouville theory.

Driscusa the relutionship between the expension of a function in Fourier aeries and in Chebyshev
palynemials,



