Chapter 5

Fourier Integrals and Applications

THE NEED FOR FOURIER INTEGRAKS

In Chapter 2 we considered the theory and applications involving the expansion of a function $f(x)$ of period $2 L$ into a Fourier series. One question which arises quite naturally is: what happens in the case where $L \rightarrow \infty$? We shall find that in such case the Fourier series becomes a Fourier integral. We shall discuss Fourier integrals and their applications in this chapter.

THE FOURIER INTEGRAL

Let us essume the following conditions on $f(x)$:
$1 f(x)$ and $f^{\prime}(x)$ are piecewise continuous in avery finite interval.
2. $\int_{-\infty}^{\infty}|f(x)| d x$ converges, i.e. $f(x)$ is absolutely integrable in $(-\infty, \infty)$.

Then Fouribr's integral theorem states that
where

$$
\left.\begin{array}{rl}
f(x) & =\int_{0}^{\infty}\{A(a) \cos \alpha x+B(a) \sin \alpha x\} d \alpha \\
A(a) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos a x d x \\
B(a) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \alpha x d x \tag{2}
\end{array}\right\}
$$

The result (1) holds if x is a point of continulty of $f(x)$. If x is a point of discontinuity, we must replace $f(x)$ by $\frac{f(x+0)+f(x-0)}{2}$ as in the cass of Fourier series. Note that the above conditions are aufficient but not necessary.

The aimilarity of (1) and (8) with corresponding results for Fourier series is apparent. The right-hand side of (1) is sometimes called a Fourier integral eapansion of $f(x)$.

EQUIVALENT FORMS OF FOURIER'S INTEGRAL THEOREM

Fourier's integral theorem can also be written in the forms

$$
\begin{align*}
f(x) & =\frac{1}{\pi} \int_{a=0}^{\infty} \int_{u=-\infty}^{\infty} f(u) \cos \alpha(x-u) d u d \alpha \tag{s}\\
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) e^{[a f(x-u)} d u d u \\
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{l \alpha x} d \alpha \int_{-\infty}^{\infty} f(u) e^{-\tan } d u \tag{4}
\end{align*}
$$

where it is understood that if $f(x)$ is not continuous at z the left side must be replaced by $\frac{f(x+0)+f(x-0)}{2}$.

These resuits can be simplified somewhat if $\dot{f(x)}$ is either an odd or an even function, and we have

$$
\begin{array}{ll}
f(x)=\frac{2}{\pi} \int_{0}^{\pi} \sin \alpha x d \alpha \int_{0}^{\infty} f(u) \sin \alpha u d u & \text { if } f(x) \text { is odd } \\
f(x)=\frac{2}{\pi} \int_{0}^{\infty} \cos \alpha x d \alpha \int_{0}^{\infty} f(u) \cos \alpha u d u & \text { if } f(x) \text { is even } \tag{6}
\end{array}
$$

FOURIER TRANSFORMS

From (4) it follows that if
then

$$
\begin{align*}
& F(\alpha)=\int_{-\infty}^{\infty} f(u) e^{-i \alpha u x} d u \tag{7}\\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\alpha) e^{\operatorname{\omega os} x} d x \tag{8}
\end{align*}
$$

The function $F(a)$ is called the Fourisr transform of $f(x)$ and is sometimes written $F(\alpha)=F(f(x)\}$. The function $f(x)$ is the inverse Fourier transform of $F(a)$ and is written $f(x)=F^{-1}\{F(\alpha)\}$.

Note: The constants 1 and $1 / 2 \pi$ preceding the integral aigns in (7) and (8) could be replaced by any twe constants whose product is $1 / 2 \pi$. In this book, however, we shall keep to the above choice.

FOURIER SINE AND COSINE TRANSFORMS

If $f(x)$ is an odd function, then Fourier's integral theorem reduces to (5). If we let

$$
\begin{equation*}
F_{s}(a)=\int_{0}^{\infty} f(u) \sin \pi u d u \tag{9}
\end{equation*}
$$

then it follows from (5) that

$$
\begin{equation*}
f(x)=\frac{2}{\pi} \int_{0}^{\pi} F_{5}(\alpha) \sin \alpha x d x \tag{10}
\end{equation*}
$$

We call $F_{s}(a)$ the Fourier aine transform of $f(x)$, while $f(x)$ is the inverse Fourier sine transform of $\vec{F}_{s}(\alpha)$.

Similarly, if $f(x)$ is an even function, Fourier's integral theorem reduces to (6). Thus if we let

$$
\begin{equation*}
F_{c}(a)=\int_{0}^{n} f(u) \cos \alpha u d u \tag{11}
\end{equation*}
$$

then it follows from (e) that

$$
\begin{equation*}
f(x)=\frac{2}{\pi} \int_{0}^{\infty} F_{c}(\alpha) \cos \alpha x d a \tag{18}
\end{equation*}
$$

We call $F_{\mathrm{c}}(a)$ the Fourier cosine transform of $f(x)$, while $f(x)$ is the inverse Fouriet cosin trantform of $F_{c}(\alpha)$.

PARSEVAL'S IDENTITIES FOR FOURIER INTEGRALS

In Chapter 2, page 23, we arrived at Parseval's identity for Fourier series. An analogy exists for Fourier integrals.

If $F(a)$ and $G(a)$ are Fourier transforms of $f(x)$ and $g(x)$ respectively we can thow that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) g(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(a) \overline{G(\alpha)} d x \tag{1s}
\end{equation*}
$$

where the bar signifies the complex conjugate obtained on replacing i by $-i$. In particular, if $f(x)=g(x)$ and hence $F(a)=G(\alpha)$, then we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\alpha)|^{2} d x \tag{14}
\end{equation*}
$$

We can refer to (14), or to the more general (19), as Parsaval'a identity for Fourier integrals.

Corresponding results can be written involving sine and cosine transforms. If $F_{s}(\alpha)$ and $G_{g}(\alpha)$ are the Fourier sine transforms of $f(x)$ and $g(x)$, respectively, then

$$
\begin{equation*}
\int_{0}^{\infty} f(x) g(x) d x=\frac{2}{\pi} \int_{0}^{\infty} F_{s}(a) G_{g}(a) d a \tag{15}
\end{equation*}
$$

Similarly, if $F_{c}(a)$ and $G_{c}(\alpha)$ axe the Fourier cosine transforms of $f(x)$ and $g(x)$, respectively, then

$$
\begin{equation*}
\int_{0}^{\infty} f(x) g(x) d x=\frac{2}{\pi} \int_{0}^{\infty} F_{c}(\alpha) G_{\sigma}(\alpha) d x \tag{10}
\end{equation*}
$$

In the apecial case where $f(x)=g(x),(15)$ and (16) become respectively

$$
\begin{align*}
& \int_{0}^{\infty}\{f(x)\}^{2} d x=\frac{2}{\pi} \int_{0}^{\infty}\left\{\dot{F}_{s}(\alpha)\right\}^{x} d \alpha \tag{17}\\
& \int_{0}^{\infty}\{f(x)\}^{2} d x=\frac{2}{\pi} \int_{0}^{\infty}\left\{F_{c}(\alpha)\right\}^{2} d \alpha \tag{18}
\end{align*}
$$

THE CONVOLUTION THEOREM FOR FOURIER TRANSFORMS

The convolution of the functions $f(x)$ and $g(x)$ is defined by

$$
\begin{equation*}
f^{*} g=\int_{-\infty}^{\infty} f(u) \sigma(x-u) d u \tag{1.9}
\end{equation*}
$$

An important theorem, often referred to as the convolution theorem, states that the Fourier tranaform of the convolution of $f(x)$ and $g(x)$ is equal to the product of the Fourier tranaforms of $f(x)$ and $g(x)$. In symbols,

$$
\begin{equation*}
F\left(f^{0} g\right)=F\{f\} F(g\} \tag{80}
\end{equation*}
$$

The convolution has other important properties. For example, we have for functions f, g, and h :

$$
\begin{equation*}
f^{*} g=g^{*} f, \quad f^{*}\left(g^{*} h\right)=\left(f^{*} g\right)^{*} h, \quad f^{*}(g+h)=f^{*} g+f^{*} h \tag{21}
\end{equation*}
$$

i.e., the convolution obeys the commutative, associative and diatributive laws of algebra.

APFLICATIONS OF FOURIER INTEGRALS AND TRANSFORMS

Fourier integrals and transforms can be used in solving a varfety of boundary value problems arising in science and engineering. See Problems 5.20-5.22.

Solved Problems

THE FOURIER INTEGRAL. AND FOURIER TRANSFORMS

5.1. Show that (1) and (s), page 80, are equivalent forms of Fourier's integral theorem. Let us start with the form

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \int_{u=0}^{\infty} \int_{u=-\infty}^{\infty} f(u) \cos \alpha(z-u) d u d x \tag{1}
\end{equation*}
$$

which is proved later (nee Probiema 6.10-5.14). The result (d) can be written as
$0:$

$$
\begin{gather*}
f(x)=\frac{1}{\pi} \int_{a=a}^{\infty} \int_{a=-\infty}^{\infty} f(u)[\cos a x \cos \alpha u+\sin a x \sin \alpha t u d u d x \\
f(x)=\int_{a=0}^{\infty}(A(a) \cos \alpha x+B(\alpha) \sin a x) d a \tag{2}
\end{gather*}
$$

where we lat

$$
\left.\begin{array}{l}
A(a)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \pi x d t \\
B(a)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \alpha u d x t \tag{s}
\end{array}\right\}
$$

Convarsely, by substituting (s) into (s) We obtain (1). Thus the two forms are equiralent.
5.2. Show that (8) and (4), page 80 , are equivalent.

Wa have from (5), page 80, and the fact that $\cos \alpha(x-w)$ is an even function of a :

$$
\begin{equation*}
f(x)=\frac{1}{2 x} \int_{-\infty}^{\pi} \int_{-\infty}^{\infty} f(u) \cos \mathrm{c}(x-u) d u d a \tag{1}
\end{equation*}
$$

Then, using the fact that $\sin a(x-v)$ is an odd function of x_{f} we have

$$
\begin{equation*}
0=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \sin \alpha(x-u) d u d x \tag{2}
\end{equation*}
$$

Moltiplying (2) by i and adding to (1) we then have

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u)[\cos a(x-u)+i \sin a(x-u)] d u d a \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \theta^{\alpha \alpha(x-u)} d u d a
\end{aligned}
$$

Similerly we can deduce that (s), page 80 , follows from (4).
53. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1 & |x|<a \\ 0 & |x|>a\end{array}\right.$,
(b) Graph $f(x)$ and its Fourier tranaform for $a=3$.
(a) The Fourier transform of $/(z)$ is

$$
\begin{aligned}
& =\frac{\mathrm{e}^{\mathrm{tan}}-0^{-\mathrm{tax}}}{i a}=2 \frac{\operatorname{in} \alpha a}{\alpha}, \quad a \neq 0
\end{aligned}
$$

$$
\text { For } a \neq 0 \text {, we obtain } F(a)=2 a
$$

(b) The graphs of $f(x)$ and $F(a)$ for $a=3$ are shown in Figs, $5-1$ and $6-2$ respectively.

Fig. 5-1

Fig. 5-2
B.4. (a) Use the result of Problem 6.8 to evaluate $\int_{-\infty}^{\infty} \frac{\sin \alpha a \cos a x}{a} d a$.
(b) Deduce the value of $\int_{0}^{\infty} \frac{\sin u}{u} d u$.
(a) From Fourier's integral theorem, if

$$
F(\alpha)=\int_{-\infty}^{\infty} f(u)_{0}^{-t i n u} d u \quad \text { then } f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\alpha) d^{\operatorname{los} d a}
$$

Then from Problem E.s,

$$
\frac{1}{2 \sigma} \int_{-\infty}^{\infty} 2 \frac{\sin a a}{a} e_{e}^{\cos x} d a= \begin{cases}1 & |x|<a \tag{1}\\ 1 / 2 & |x|=a \\ 0 & |x|>a\end{cases}
$$

The left sida of (J) is equal to

$$
\begin{equation*}
\frac{1}{-} \int_{-\infty}^{\infty} \frac{\sin a \alpha \cos a x}{a} d a+\frac{i}{r} \int_{-\infty}^{\infty} \frac{\sin \alpha a \sin \alpha z}{a} d x \tag{l}
\end{equation*}
$$

The integrand in the second integral of (e) is odd and so the integral is zaro. Then from (1) and (2), we have

$$
\int_{-\infty}^{\pi} \frac{\sin a \pi \cos a x}{\alpha} d x= \begin{cases}\pi & |x|<a \tag{s}\\ \pi / 2 & |x|=a \\ 0 & |x|>a\end{cases}
$$

(b) If $x=0$ and $a=1$ in the restilt of (a), we have

$$
\int_{-\infty}^{\omega} \frac{\sin \alpha}{\alpha} d \alpha=r \quad \text { or } \quad \int_{0}^{\alpha} \frac{\sin \alpha}{a} d \alpha=\frac{y}{2}
$$

sinee the integramd is even.
55. (a) Find the Fourier cosine transform of $f(x)=e^{-m x}, m>0$.
(b) Use the reault in (a) to show that

$$
\int_{0}^{\infty} \frac{\cos p v}{v^{2}+\beta^{2}} d v=\frac{\pi}{2} \beta^{-e^{-p}} \quad(p>0, \beta>0)
$$

(a) The Fourier cosine transform of $f(x)=0^{-m x}$ is by deflsition

$$
\begin{aligned}
F_{C}(\alpha) & =\int_{0}^{\infty} 0^{-\max \cos a u d x} \\
& =\left.\frac{t^{-m u(-m \cos a x+\alpha \sin \alpha u)}}{m^{2}+a^{2}}\right|_{0} ^{\infty} \\
& =\frac{\pi}{m^{2}+a^{2}}
\end{aligned}
$$

(b) From (18), page 81, we have

$$
\begin{array}{ll}
f(x)=\frac{2}{\pi} \int_{0}^{\infty} F_{c}(\alpha) \cos a x d x \\
\text { or } \quad t^{-m x}=\frac{2}{\pi} \int_{0}^{\infty} \frac{m \cos a x}{m^{2}+\alpha^{2}} d \alpha \\
\text { i.e. } \quad \int_{0}^{\infty} \frac{\cos a x}{m^{2}+x^{2}} d \alpha=\frac{\pi}{2 m} c^{-m x}
\end{array}
$$

Reglacing a by v, π by p, and m by β, we have

$$
\int_{0}^{\infty} \frac{\cos \beta v}{v^{2}+\beta^{2}} d v \quad=\frac{\pi}{2 \beta},-p \beta, \quad p>0, \beta>0
$$

5.6. Solve the integral equation

$$
\int_{0}^{\infty} f(x) \sin a x d x=\left\{\begin{array}{cc}
1-a & 0 \leqq a \leqq 1 \\
0 & a>1
\end{array}\right.
$$

If we write

$$
F_{S}(a)=\int_{0}^{\infty} f(x) \sin \alpha x d x=\left\{\begin{array}{cr}
1-a & 0 \leq a \leq 1 \\
0 & a>1
\end{array}\right.
$$

then, by (10), page 81,

$$
\begin{aligned}
f(x) & =\frac{2}{x} \int_{0}^{\infty} F_{s}(\alpha) \sin \alpha x d \alpha \\
& =\frac{2}{x} \int_{0}^{1}(1-\alpha) \sin \alpha x d x \\
& =\frac{2(x-\sin x)}{\pi x^{2}}
\end{aligned}
$$

THE CONVOLUTION THEOREM

5.7. Prove the convolution theorem on page 82.

We have by definitlon of the Fourier transform

Then

$$
\begin{equation*}
F(\alpha)=\int_{-\infty}^{\infty} f(u) e^{-i s u t} d u, \quad G(\alpha)=\int_{-\infty}^{\infty} g(v) \varepsilon^{-\{+\infty} d v \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
F(\alpha) G(a)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) g(v) e^{-i a(u+0)} d u d v . \tag{2}
\end{equation*}
$$

Let $u+v=x$ in the double intagral (2) which we wish to transform from the variables (μ, v) to the variables (u, x). From advanced calculus we know that

$$
\begin{equation*}
d u d v=\frac{\partial(u, v)}{\partial(u, x)} d u d x \tag{s}
\end{equation*}
$$

Where the Jacobian of the fransformation In given by

$$
\frac{\partial(u, v)}{\partial(t i, x)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial u} & \frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial u} & \frac{\partial v}{\partial x}
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

Thus (2) becomes

$$
\begin{aligned}
F(a) G(a) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) g(x-u) e^{-k}(x) d u d x \\
& =\int_{-\infty}^{\infty} e^{-\{\alpha x}\left[\int_{-\infty}^{\infty} f(u) g(x-u) d u\right] d x \\
& =F\left\{\int_{-\infty}^{\infty} f(u) g(x-u) d u\right\} \\
& =F\left\{f^{*} g\right\}
\end{aligned}
$$

where $f^{*} f=\int_{-\infty}^{\infty} f(u) g(x-u)$ dut in the convolution of f and g.
From this we have equivalently

$$
\begin{aligned}
f^{*} g & =F^{-1\{F(a) G(a)\}} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \alpha \pm F(\alpha) G(a) d a}
\end{aligned}
$$

5.8. Show that $f^{*} g=g^{*} f$.

Let $z-u=v$: Then

$$
\begin{aligned}
f * g & =\int_{-\infty}^{\infty} f(u) d(x-x) d u=\int_{-\infty}^{\infty} f(x-v) \theta(v) d v \\
& =\int_{-\infty}^{\infty} f(v) f(x-v) d v=v^{*} f
\end{aligned}
$$

5.9. Solve the integral equation

$$
y(x)=g(x)+\int_{-\infty}^{\infty} u(u) r(x-u) d u
$$

where $g(x)$ and $r(x)$ are given.
Suppose that the Fourier tranaforms of $y(x), \boldsymbol{c}(x)$ and $r(x)$ exiat, and denote tham by $\boldsymbol{Y}(\alpha)$, $G(a)$ and $R(a)$ respectively. Then, tuking the Fourier transform of both aides of the given integral equation, we heve by the convolution theorem

$$
Y(\alpha)=G(a)+Y(a) R(c) \quad \text { or } \quad Y(a)=\frac{G(a)}{I-B(a)}
$$

Then

$$
v(x)=F^{-1}\left\{\frac{G(a)}{1-R(\alpha)}\right\}=\frac{1}{g_{r}} \int_{-\infty}^{\infty}\left\{\frac{G(\alpha)}{1-\frac{R(\alpha)}{R}}\right\} v^{\text {Lax }} d \alpha
$$

assuming this integral exista.
5.10. Solve for $y(x)$ the integral equation

$$
\int_{-=}^{\infty} \frac{v(u) d t}{(x-u)^{2}+a^{2}}=\frac{1}{x^{2}+b^{2}} \quad 0<a<b
$$

We have

$$
\mathcal{F}\left\{\frac{1}{x^{2}+b^{2}}\right\}=\int_{-\infty}^{\infty} \frac{e^{-1 a x}}{x^{2}+b^{2}} d x=2 \int_{0}^{\infty} \frac{\cos \alpha x}{x^{2}+b^{2}} d x=\frac{\pi}{b} b^{-b a} \therefore
$$

on making ase of Problem $6.5(b)$. Then, taking the Fourier tranaforio of both sidee of the integral equation, we find

$$
F(y) F\left\{\frac{1}{x^{2}+x^{2}}\right\}=F\left\{\frac{1}{x^{2}+b^{2}}\right\}
$$

1.e.

$$
Y(a) \frac{t}{a} e^{-a b}=\frac{\pi}{b} a^{-b a} \quad \text { or } \quad Y(a)=\frac{a}{b} e^{-(b-a) a}
$$

Thus $v(x)=\frac{1}{2 \pi} \int_{-\pi}^{a} \theta^{\alpha \cos } Y(a) d a=\frac{a}{b \pi} \int_{0}^{\infty} e^{-(b-a) a} \cos a x d a=\frac{(b-a) a}{b \pi\left(x^{b}+(b-a)^{2}\right]}$

PROOF OF THE FOURIER INTEGRAL TESOREM

6.11. Present a heuristic demonstration of Fourier's integral theorem by use of a limiting form of Fourier sexies.

$$
\begin{gather*}
\text { Let } \quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right) \\
\text { Where } a_{n}=\frac{1}{L} \int_{-L}^{L} f(u) \operatorname{con} \frac{n \pi x}{L} d u \quad \text { and } \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(u) \sin \frac{n_{n} \mu}{L} d u . \tag{I}
\end{gather*}
$$

Then by subatitution of these coefflcients into (1) we find

$$
\begin{equation*}
f(x)=\frac{1}{2 L} \int_{-L}^{L} f(x) d u+\frac{1}{L} \sum_{n=1}^{\infty} \int_{-L}^{L} f(x) \cos \frac{n x}{L}(u-x) d x \tag{f}
\end{equation*}
$$

If we easume that $\left.\int_{-\infty}^{\infty} \mid f(u)\right\} d x$ converges, the first term on the right of (f) approaches sero as $L \rightarrow \infty$, while the remaining part appears to approach

$$
\begin{equation*}
\lim _{L \rightarrow-} \frac{1}{L} \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} f(x) \cos \frac{n \pi}{L}(x-x) d u \tag{s}
\end{equation*}
$$

Thia last atep is not rigorous and makes the demonstration heuristic.
Calling $A_{a}=\pi / L$, (s) can be written

$$
\begin{equation*}
f(x)=\lim _{\Delta n \rightarrow 0} \sum_{n=1}^{\infty} a_{a c} F\left(\pi \Delta_{a}\right) \tag{4}
\end{equation*}
$$

where we have wrikten

$$
\begin{equation*}
E(a)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(t u) \cos a(u-x) d u \tag{5}
\end{equation*}
$$

But the lifat (4) is equal to

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} F(\alpha) d x=\frac{1}{\pi} \int_{0}^{\infty} d \alpha \int_{-\infty}^{\infty} f(u) \cos \sigma(u-x) d u \tag{8}
\end{equation*}
$$

which is Fourier's integral formula.
This demonstration merely provides a possible result. To be rigorous, we ntart with the double integral in (6) and examine the convergence. This method is considered in Problems E.12-6.15,

5:12. Prove that:

$$
\text { (a) } \quad \lim _{d \rightarrow+} \int_{0}^{L} \frac{\sin \alpha v}{v} d v=\frac{\pi}{2}, \quad \text { (b) } \quad \lim _{\alpha \rightarrow \infty} \int_{-L}^{0} \frac{\sin \alpha v}{v} d v=\frac{n}{2}
$$

(a) Lot $\alpha=y$. Then $\lim _{\alpha \rightarrow \infty} \int_{0}^{L} \frac{\sin a v}{v} d v=\lim _{\alpha \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \psi}{y} d v=\int_{0}^{\infty} \frac{\sin v}{y} d y=\frac{y}{2}$, as can be shown by using Problem $\mathbf{5 . 4 0}$.
(b) Let $a v=-y$. Then $\lim _{a \rightarrow \infty} \int_{-L}^{0} \frac{\sin \alpha v}{v} d v=\lim _{a \rightarrow \infty} \int_{0}^{a L} \frac{\sin y}{v} d y=\frac{\pi}{2}$.
5.18. Riemann's theorem states that if $F(x)$ is piecewise continuous in (α, b), then

$$
\lim _{a \rightarrow+\infty} \int_{a}^{b} F(x) \sin \alpha x d x=0
$$

with a similar result for the cosine (see Problem 6.41). Use this to prove that

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow \infty} \int_{0}^{L} f(x+v) \frac{\sin \alpha v}{v} d v=\frac{\pi}{2} f(x+0) \\
& \text { (b) } \lim _{v-\infty} \int_{-L}^{0} f(x+v) \frac{\sin \varepsilon v}{v} d v=\frac{\pi}{2} f(x-0)
\end{aligned}
$$

where $f(x)$ and $f^{\prime}(x)$ are assumed piecewise continuous [see condition 1. on page 80].
(a) Uaing Problem $5.12(a)$, it is seen that a proof of the given reault amounta to proving that

$$
\lim _{a \rightarrow \infty} \int_{0}^{2}(f(x+v)-f(x+0)\} \frac{\sin a v}{v} d v=0
$$

Thby follown at onee from Riemenn's theorem, becauce $F(v)=\frac{f(x+v)-f(x+0)}{v}$ la piecewise contingous in ($0, L$) since $\lim _{v \rightarrow 0+} F(v)$ exists and $f(x)$ is piccewlece continuous.
(b) A proof of thif is analogous to that in part (a) if we make une of Problem 5.12(b).
5.14. If $f(x)$ astisfies the additional condition that $\int_{-\infty}^{\infty}|f(x)| d x$ convergea, prove that
(a) $\lim _{\alpha \rightarrow \infty} \int_{0}^{\infty} f(x+v) \frac{\sin \alpha v}{v} d v=\frac{\pi}{2} f(x+0)$,
(b) $\lim _{\alpha \rightarrow 4} \int_{-\infty}^{0} f(x+v) \frac{\sin \alpha v}{v} d v=\frac{\pi}{2} f(x-0)$.
(a) We have

$$
\begin{align*}
& \int_{0}^{\infty} f(x+v) \frac{\sin \alpha v}{v} d v=\int_{0}^{L} f(x+v) \frac{\sin \alpha v}{v} d v+\int_{L}^{\infty} f(x+v) \frac{\sin \alpha v}{v} d v \tag{}\\
& \int_{0}^{\infty} f(x+0) \frac{\sin \alpha v}{v} d v=\int_{0}^{L} f(x+0) \frac{\sin \alpha v}{v} d v+\int_{L}^{\infty} f(x+0) \frac{\sin \alpha v}{v} d v \tag{e}
\end{align*}
$$

Subtracting,

$$
\begin{align*}
& \left.\int_{0}^{\infty} U(x+v)-f(x+0)\right\} \frac{\sin \alpha v}{v} d v \\
& \quad=\int_{0}^{L}\left(f(x+v)-f(x+0) \frac{\sin \alpha v}{v} d v+\int_{L}^{\infty} f(x+v) \frac{\sin \alpha v}{v} d v-\int_{L}^{\infty} f(x+0) \frac{\sin \alpha v}{v} d v\right. \tag{s}
\end{align*}
$$

Denoting the integrale in (s) by $I_{1} I_{1}, I_{2}$ and I_{a} respectively, we beve $I=I_{1}+I_{2}+I_{3}$, so that

$$
\begin{equation*}
|I| \leq\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{8}\right| \tag{4}
\end{equation*}
$$

Now

$$
\left.\left|I_{2}\right| \equiv \int_{L}^{\infty}\left|f(x+v) \frac{\sin \alpha v}{v}\right| d v \equiv \frac{1}{L} \int_{L}^{\infty} v(x+v) \right\rvert\, d v
$$

Also

$$
\left|f_{s}\right| \leq|f(x+0)|\left|\int_{L}^{\infty} \frac{\sin \alpha v}{v} d v\right|
$$

Since $\int_{0}^{\infty}|f(x)| d x$ and $\int_{0}^{\infty} \frac{\sin a v}{v} d v$ both converge, we can choose L so large that $\left|I_{2}\right| \leq e / 3$, $\left|I_{2}\right| \leq w / 8$. Alen, we can choose a so large that $\left|I_{1}\right| \leqslant e / 3$. Then from (4) we have $|I| \leq \in$ for α and L zufficiontly large, so that the required resule followa.
(b) This resule follow by reasoning exactiy analogous to that in part (a).
5.15. Prove Fourier's integral formula if $f(x)$ satisfies the conditions stated on page 80.

Since $\left|\int_{-\infty}^{\infty} f(x) \cos a(y-u) d u\right| \leq \int_{-\infty}^{\infty}|f(u)| d t s$ which convarres, it follows by the Weileratrasa M teat for integraln that $\int_{-\infty}^{\infty} f(\mu) \cos \alpha(\mu-q) d u$ convergeg abacititely and uniformly for all a. We can show from this that the order of integration can be roverged to obtalm

$$
\begin{aligned}
& \frac{1}{y} \int_{z=0}^{L} d u \int_{u=-\infty}^{\infty} f(\mu) \cos x(x-u) d u=\frac{1}{s} \int_{u=-\infty}^{\infty} f(u) d u \int_{a=0}^{L} \cos a(x-u) d x \\
& =\frac{1}{v} \int_{u=-\infty}^{\infty} f(u) \frac{\sin \frac{L(u-\theta)}{u-x} d u}{} d u \\
& =\frac{1}{\pi} \int_{v=-\infty}^{\infty} f(x+v) \frac{\sin \underline{L} v}{v} d v \\
& =\frac{1}{x} \int_{-\infty}^{\theta} f(x+v) \frac{\sin L v}{v} d v+\frac{1}{7} \int_{0}^{\infty} f(x+v) \frac{\sin L v}{v} d v
\end{aligned}
$$

Whero we huva let $k=n+v$.
Latting $L+\infty$, wee by Froblem 5.14 thit the given integral converges to $\frac{f(x+0)+f(x-0)}{2}$ an required.

SOLUTIONS USING FOURIER INTEGRALS

5.16. A semi-infinite thin bar ($x \geq 0$) whose surface is insulated has an initial temperature equal to $f(x)$. A temperature of zero is suddealy applied to the end $x=0$ and maintained. (a) Set up the boundary value problem for the temperature $u(x, t)$ at any point x at time t. (b) Show that

$$
u(x, t)=\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{*} f(v) e^{-\alpha^{2} t} \sin \lambda v \sin \lambda x d \lambda d v
$$

(a) Tha boundary value problern is

$$
\begin{gather*}
\frac{\partial x}{\partial t}=\alpha \frac{\partial^{2} \frac{p}{\partial z^{2}}}{t} \quad=0, t>0 \tag{1}\\
u(x, 0)=f(x\rangle, \quad x(0, t)=0, \quad|u(x, t)|<M \tag{2}
\end{gather*}
$$

Whare the last condition is used since the temperature must be bounded tor physical reasona.
(b) A solution of (1) obtained by eeparation of variables is

$$
u(x, i)=d^{-\pi \lambda^{\prime} c}(A \cos \lambda x+B \sin \lambda x)
$$

From the second of boundary conditions (2) we find $A=0$ so that

$$
\begin{equation*}
u(x, t)=B e^{-\pi \lambda^{\prime} t} \sin \lambda z \tag{s}
\end{equation*}
$$

Now aince there in no reatriction on λ we can replace B in (s) by a function $B(\lambda)$ and atill hase a molation. Furthermore we can integrate over λ from 0 . to ∞ and still have a solution. This is the amalog of the superposition theozem for diacrete values of λ used in connection with Fourier series. We thas arrive at the possible solution

$$
\begin{equation*}
u\left(x_{1} t\right)=\int_{0}^{\infty} B(\lambda) e^{-x \lambda^{4} t} \sin \lambda t d \lambda \tag{4}
\end{equation*}
$$

From the frat of boundary conditions (i) we find

$$
f(x)=\int_{0}^{m} B(\lambda) \sin \lambda x d \lambda
$$

which is an integral equation for the determination of $B(\lambda)$. From page 81, we see that aince $f(x)$ must be an odd function, we have

$$
B(\lambda)=\frac{2}{r} \int_{0}^{\infty} f(x) \sin \lambda x f d x=\frac{2}{\pi} \int_{0}^{\infty} f(v) \sin \lambda v d v
$$

Using this in (4) we find

$$
x(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} f(v) e^{-\alpha^{2} t} \sin x v \sin x a d x \dot{\psi}
$$

5.17. Show that the result of Problem 5.16 can be written

$$
u(x, t)=\frac{1}{\sqrt{\pi}}\left[\int_{-x / 2 \sqrt{\kappa t}}^{\omega} e^{-\omega^{\prime \prime}} f(2 w \sqrt{\kappa t}+x) d w-\int_{x / 1 \sqrt{\kappa t}}^{+\omega} e^{-w^{0}} f(2 w \sqrt{\kappa t}-x) d w\right]
$$

Since $\sin \lambda v \sin \lambda x=\frac{1}{y}[\cos \lambda(t-x)-\cos \lambda(v+x)]$, the reault of Problem 5.16 obn be written

$$
\begin{aligned}
u(x, t) & =\frac{1}{v} \int_{0}^{\infty} \int_{0}^{\infty} f(v) e^{-\alpha \lambda^{2} s}[\cos \lambda(v-z)-\cos \lambda(v+x)] d \lambda d v \\
& =\frac{1}{v} \int_{0}^{\infty} f(v)\left[\int_{0}^{\infty} e^{-\kappa \lambda^{2} t} \cos \lambda(v-z) d \lambda-\int_{0}^{\infty} e^{-\pi \lambda^{2} t} \cos \lambda(v+x) d \lambda\right] d v
\end{aligned}
$$

From the integral

$$
\int_{0}^{\infty} e^{-\alpha \lambda^{z}} \cos \beta \lambda d \lambda=\frac{1}{2} \sqrt{\frac{\pi}{a}}-\beta^{2} / \alpha \alpha
$$

(bee Problem 4.9, page 72) we find

Letting $(v-x) / 2 \sqrt{\kappa t}=w$ in the first integral anid $(v+z) / 2 \sqrt{\kappa t}=w$ in the second integral,
we find thet

$$
u(x, t)=\frac{1}{\sqrt{x}}\left[\int_{-x / 2 \sqrt{\kappa t}}^{\omega} e^{-v^{4}} f(2 w \sqrt{\kappa t}+x) d w-\int_{z / 2 \sqrt{\kappa t}}^{\infty} e^{-\omega^{4}} f(2 w \sqrt{\kappa t}-x) d s t\right]
$$

5.18. In case the initial temperatura $f(x)$ in Problem 5.16 is the constant u_{0}, show that

$$
u(x, t)=\frac{2 u_{0}}{\sqrt{\pi}} \int_{0}^{x / 2 \sqrt{\pi t}} e^{-w^{x}} d w=u_{0} \operatorname{erf}(x / 2 \sqrt{k t})
$$

where erf $(x / 2 \sqrt{\kappa t})$ is the error function (see page 69).
If $f(x, t)=w_{0}$, we obtain from Problema 5.17

$$
\begin{aligned}
& =\frac{u_{0}}{\sqrt{\pi}} \int_{-x / 2 \sqrt{k t}}^{x / 2 \sqrt{\pi t}} d-w^{t} d v=\frac{2 u_{0}}{\sqrt{\pi}} \int_{0}^{x / 2 \sqrt{\kappa t}} d v^{t} d v=u_{0} \operatorname{erf}(\omega / 2 \sqrt{\kappa t})
\end{aligned}
$$

We can ehow that this actually is a aolution of the corregponding boundary value problem (vee
Problem 8,48).
5.19. Find a bounded solution to Laplace's equation $\nabla^{2} v=0$ for the half plane $y>0$ (Fig. 5-B) if v takes on the value $f(x)$ on the x-axis.

The boundary value problem for the determination of $v(x, y)$ is given by

$$
\begin{gathered}
\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial z^{2}}{\partial y^{2}}=0 \\
v(x, 0\rangle=f(x), \quad|v(x, y)|<M
\end{gathered}
$$

To solve this, let $v=X Y$ in the partisl differential equastion, where X dejends only on x and Y dependa only on y. Then, on separating the variables, we have

$$
\frac{X^{\prime \prime}}{\bar{X}}=-\frac{Y^{\prime \prime}}{Y}
$$

Fig. 5-S

Setting each blde equal to $-\lambda^{2}$ we find

$$
X^{\prime \prime}+\lambda^{\Omega} X=0, \quad Y^{\prime \prime}-\lambda^{2} Y=0
$$

so that

$$
X=a_{1} \cos \lambda x+b_{1} \sin \lambda x, \quad Y=a_{g} e^{\lambda y}+b_{g} \theta^{-\lambda y}
$$

Then the solution is

$$
\nu(x, y)=\left(a_{1} \cos \lambda x+b_{1} \sin \lambda x\right)\left(a_{3} \alpha^{\lambda y}+b_{2} e^{-\lambda y}\right)
$$

If $\lambda>0$ the term in $e^{\lambda y}$ is unbounded as $y \rightarrow \infty$; so that to keep $v(x, y)$ bounded we must havo $a_{8}=0$. This leads to the solution

$$
v(x, y)=e^{-\lambda y}[A \cos \lambda x+B \sin \lambda x]
$$

Since there is no restriction on λ_{1} wesan replace A by $A(\lambda), B$ by $B(\lambda)$ and integrate over λ to obtain

$$
\begin{equation*}
v(x, v)=\int_{0}^{"} E^{-\lambda v}[A(\lambda) \cos \lambda x+B(\lambda) \sin \lambda x] d \lambda \tag{1}
\end{equation*}
$$

The boundary condition $v(x, 0)=f(x)$ yields

$$
\int_{0}^{\infty}[A(\lambda) \cos \lambda x+B(\lambda) \sin \lambda x] d \lambda=f(x)
$$

Thus, from Fourier'a integral theorem we find

$$
A(\lambda)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos \lambda u d u . \quad B(\lambda)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \lambda u d u
$$

Putting these in (l) we have finally:

$$
\begin{equation*}
v(x, y)=\frac{1}{z} \int_{\lambda=0}^{\infty} \int_{n=-\infty}^{*} e^{-\lambda x f(u) \cos \lambda(x-x) d u d \lambda} \tag{*}
\end{equation*}
$$

5.2. Show that the solution to Problem 5.19 can be written in the form

$$
v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(u)}{y^{2}+(u-x)^{2}} d u
$$

Write the reault (e) of Problem 5,19 as

$$
\begin{equation*}
v(x, y)=\frac{1}{x} \int_{-\infty}^{\infty} f(u)\left[\int_{0}^{\infty} \theta^{-\lambda y} \cos k(u-x) d \lambda\right] d t u \tag{I}
\end{equation*}
$$

Then by elementary integration we have
so that (1) becomes

$$
\begin{gather*}
\int_{0}^{\infty} e^{-\lambda y} \cos \lambda(u-x) d \lambda=\frac{y}{y^{2}+(u-x)^{2}} \tag{2}\\
v(x, v)=\frac{1}{v} \int_{-\infty}^{\infty} \frac{y f(u)}{y^{2}+(x-x)^{2}} d u \tag{t}
\end{gather*}
$$

SOLUTIONS BY USE OF FOURIER TRANBFORMS

5.21. By takiag the Fourier transform with respect to the variable x, show that
(a) $F\left(\frac{\partial v}{\partial x}\right)=i_{a} F(v)$
(b) $F\left(\frac{\partial^{9} v}{\partial x^{6}}\right)=-\alpha^{2 F}(v)$,
(c) $F\left(\frac{\partial v}{\partial t}\right)=\frac{\partial}{\partial t} F(v)$
(a) By dafnition wa have on using intagration by parta:

$$
\begin{aligned}
F\left(\frac{\partial v}{\partial x}\right) & =\int_{-\infty}^{\infty} \frac{\partial v}{\partial x} d-i \theta x d x \\
& =\left.e^{-i \omega x v}\right|_{-\infty} ^{\infty}+i e \int_{-\infty}^{\infty} v v_{0}^{-i \omega x} d x \\
& =i \alpha \int_{-\infty}^{\infty} v_{\theta-i \cos d \theta} \\
& =i_{\alpha} F(v)
\end{aligned}
$$

Whare we muppose that $u \rightarrow 0$ an $z \rightarrow \pm \infty$.
(b) Lot $v=$ jw/2a in part (a) then

$$
F\left(\frac{\partial{ }^{2} w}{\partial x^{2}}\right)=i a F\left(\frac{\partial w}{\partial x}\right)=(i a)^{2} F(w)
$$

Then if we formally repleee w. by v we have

$$
F\left(\frac{\partial \partial^{2} v}{\partial x^{2}}\right)=(i a)^{2} F(v)=-a^{2} F(v)
$$

provided that v and $\frac{\partial v}{\partial x} \rightarrow 0$ az $\rightarrow \pm \pm$.
In genaral we can show that

$$
\begin{aligned}
& F\left(\frac{\partial^{n} v}{\partial x^{n}}\right)=(i \alpha)^{n} F(v) \\
& \text { If } \quad v_{0} \frac{\partial v}{\partial x^{\prime}}, \ldots, \frac{\partial^{n-1} y}{\partial x^{-1-1}} \rightarrow 0 \quad \text { as } \quad z \rightarrow \pm \infty \text {. }
\end{aligned}
$$

(a) By defantion

$$
F\left(\frac{\partial v}{\partial t}\right)=\int_{-\infty}^{\infty} \frac{\partial v}{\partial t} e^{-t a x} d x=\frac{\partial}{\partial t} \int_{-\infty}^{\infty} v e-t a x d x=\frac{\partial}{\partial t} F(v)
$$

522. (a) Use Fourier transforms to solve the boundary value problem

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=f(x), \quad|u(x, t)|<M
$$

where $-\infty<x<\infty, t>0$. (b) Give a physical interpretation.
(a) Taking the Fourier transform with reapect to x of both sides of the given partial differential equation and using results (b) and (c) of Problem 5.21, we have

$$
\begin{equation*}
\frac{d}{d t} F(u)=-\kappa \lambda^{2} F(u) \tag{1}
\end{equation*}
$$

Where we have written the total derivative since $Y(\mu)$ dependa only on t and not on x. Solving the ordinary differential equation (d) for $F(u)$, we obtain

$$
\begin{equation*}
\mathscr{F}(u)=C_{e}-k x^{2} t \tag{x}
\end{equation*}
$$

or more expliettly

$$
\begin{equation*}
F\{\dot{u}\{x, t)\}=C_{a^{-k a}}{ }^{-k t} \tag{s}
\end{equation*}
$$

Putting $t=0 \ln (s)$ we see that

$$
\begin{equation*}
F\{u(x, 0)\}=F(f(x)\}=C \tag{4}
\end{equation*}
$$

so that (s) becomen

$$
\begin{equation*}
F\{u\}=F(f) e^{-x_{0} d t} \tag{5}
\end{equation*}
$$

We can now apply the convolution theorem. By Problem 4.9. pace 72,

$$
\begin{align*}
& e^{-k c^{2} t}=F\left\{\sqrt{\frac{1}{4 \pi x t}},-\left(s^{2} / 4 x t\right)\right\} \\
& \text { Hence } u(x, t)=f(x) * \sqrt{\frac{I}{4 \pi k t}} e^{-\left(x^{2} / 4 x t\right)}=\int_{-\infty}^{\infty} f(x) \sqrt{\frac{1}{4 \pi x t}} e^{-t(x-\infty)^{2} / 4 x t f} d x
\end{align*}
$$

 $(\pi-w) / 2 \sqrt{\kappa t}=z$, (7) becomes

$$
\begin{equation*}
x(x, t)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} s^{-\infty} f(a-2 x \sqrt{a t}) d z \tag{8}
\end{equation*}
$$

(b) The problem is that of determining the temperature in a thin infinite ber whose wuriace is mpolated and whose initial temperature fo $/(x)$.
5.23. An infinite string it given an initial displacennent $y(x, 0)=f(x)$ and then released. Datermine its displacement at any later time t.

The boundary yalue problem is

$$
\begin{gather*}
\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}\\
y(x, 0)=f(x), \quad y_{t}(x, 0)=0, \quad|y(x, t)|<M \tag{I}
\end{gather*}
$$

where $-\infty<\boldsymbol{z}<\infty, t>0$.
Letting $y=X T$ in (1) we find in the usual manner that a solution satisfying the second boandary condition in (x) is given by

$$
y(x, t)=(A \cos \lambda x+B \sin \lambda(x) \cos \lambda a t
$$

By assuraing that A and B are functions of λ and interrating from $\lambda=0$ to we then wrive at the possible sclution

$$
\begin{equation*}
y(x, t)=\int_{0}^{\infty}[A(\lambda) \cos \lambda x+B(\lambda) \sin \lambda x] \cos \lambda a t d \lambda \tag{s}
\end{equation*}
$$

Putting $t=0$ in (s), we see from the flrst boundary condition in (2) that we must have

$$
f(x)=\int_{0}^{\infty}[A(\lambda) \cos \lambda x+B(\lambda) \sin \lambda x] d \lambda
$$

Then it follows from (1) and (2), page 80, that

$$
\begin{equation*}
A(\lambda)=\frac{1}{7} \int_{-\infty}^{\infty} /(v) \cos \lambda v d v v_{y} \quad B(\lambda)=\frac{1}{5} \int_{-\infty}^{\infty} f(v) \sin \lambda v d v \tag{6}
\end{equation*}
$$

where we have chinged the dummy variable from \approx to 0 .
Sabstitution of (4) into (s) yields

$$
\begin{aligned}
v(x, t) & =\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v)[\cos \lambda x \cos \lambda v+\sin \lambda x \sin \lambda t] \cos \lambda \omega t d v d \lambda \\
& =\frac{1}{\pi} \int_{0}^{\pi} \int_{-\infty}^{\infty} f(v) \cos \dot{\lambda}(x-v) \cos \lambda a t d v d \lambda \\
& =\frac{1}{\lambda_{\pi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v)[\cos \lambda(x+a t-v)+\cos \lambda(x-a t-v)] d v d \lambda
\end{aligned}
$$

where in the last stap we have used the trigonomatric identity

$$
\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B\}]
$$

with $A=\lambda(x-v)$ and $B=\lambda a t$.
By interchenging the order of integration, the result can be written

$$
\begin{align*}
& y(x, t)=\frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) \cos \lambda(x+a t-v) d v d \lambda \\
&+\frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) \cos \lambda(x-a t-v) d v d x \tag{5}
\end{align*}
$$

But we know from Fourier's integral theorem [equation (j), pace 80] that

$$
f(z)=\frac{1}{\pi} \int_{0}^{*} \int_{-\infty}^{\infty} f(v) \cos \lambda(x-v) d v d x
$$

Then, replacing a by $x+$ at and x-at respactively, we see that (6) cen be written

$$
\begin{equation*}
y(x, t)=\frac{1}{\mathbf{Q}}[f(x+a t)+f(x-a t)] \tag{b}
\end{equation*}
$$

which is the required solution.

Supplementary Problems

THE FOUREER INTEGAAL AND FOURIER TEANGFORMS

524. (a) Find the Fourier traneform of $f(x)=\left\{\begin{array}{cc}1 / 2 & |x|<1 \\ 0 & |x|>1\end{array}\right.$.
(b) Determine the limit of this trannform as $\in \rightarrow 0+$ and siscuss the result.
525. (a) Find the Fourier tranaform of $f(x)=\left\{\begin{array}{cc}1-x^{2} & |x|<1 \\ 0 & |x|>1\end{array}\right.$.
(b) Evaloate $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{2}}\right) \cos \frac{x}{2} d x$.
5.26. If $f(x)=\left\{\begin{array}{rr}1 & 0 \leq \pi<1 \\ 0 & x \geq 1\end{array}\right.$ find (a) the Fourier bine tranoform, (b) the Fourler conine transform of $f(x)$. In each case obtain the graphs of $f(x)$ and ita transform.
5.2T. (a) Find the Fourier oine transform of $e^{-x}, z \geq 0$.
(b) Show that $\int_{0}^{\infty} \frac{x \sin m x}{x^{2}+1} d x=\frac{\pi}{2} e^{-m}, m>0$ by uaing the result in (a).
(c) Explain from the viewpoint of Fourier's integral theorem why the reault in (b) does not bold for $\boldsymbol{n}=0$.
5.28. Solve for $\mathbf{y}(\boldsymbol{x})$ the integral equation

$$
\int_{0}^{\infty} y(x) \sin x t d x=\left\{\begin{array}{lr}
1 & 0 \leq t<1 \\
2, & 3 \leq t<2 \\
0, & t \geq 2
\end{array}\right.
$$

and verify the solution by direct substitution.
5.2s. If $F(\alpha)$ is the Fourier transform of $f(x)$ show that it is possible to find a eonstant a so that $F(x)=f(x)=c c^{-x^{2}}$.

Parseval's ldentity

530. Evaluate (a) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$; (b) $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)^{4}}$ by use of Parseval's identity.
[Gint. Use the Fourier sine and cosine tranaforms of $e^{-x}, x>0$.]
5.31. Use Froblem 5.26 to show that (a) $\int_{0}^{\infty}\left(\frac{1-\cos x}{x}\right)^{2} d x=\frac{\pi}{2}, \quad$ (b) $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}$.
5.32. Show that $\int_{0}^{x} \frac{(x \cos x-\sin x)^{2}}{x^{6}} d x=\frac{\pi}{15}$.
5.33. Prove the results given by (a) equation (19), page 82; (b) equation (14), page 82.
5.34. Establish the results of equations (15), (16), (17) and (18) on page as.

CONVOLUTION THEOREM

5.35. Verify the convolution theorem for the functions $f(x)=g(x)=\left\{\begin{array}{ll}1 & |x|<1 \\ 0 & |x|>1\end{array}\right.$.

S36. Verify the convolution theorem for the functions $f(x)=g(x)=e^{-s^{2}}$.
5.37. Solve the integral equation $\int_{-x}^{x} y(u) y(x-u) d u=-x^{1}$.
538. Prove that $f *(g+h)=f * g+f * h$.
533. Prove that $f^{*}\left(g^{*} h\right)=\left(f^{*} g\right)^{*} h$.

PROOF OF FOURIER INTEGRAL THEOREM

5.40. By interchanging the order of integration in $\int_{y=0}^{\infty} \int_{z=0}^{\infty} e^{-x y} \sin y d x d y$, prove that

$$
\int_{0}^{x} \frac{\sin y}{y} d y=\frac{\pi}{2}
$$

and thas complete the proof in Problem 5.12.
5.41. Let n be any real number. Is Fourier's integral theorem valid for $f(x)=\boldsymbol{o}^{-z^{2}} \boldsymbol{q}$ Explain.

SOLUTIONS USING FOURIER INTEGRALS

5.12. An infinite thin bar $(-\infty<x<\infty)$ whose surface is insulated has an initial temperature given by

$$
f(x)=\left\{\begin{array}{cc}
u_{0} & |x|<a \\
0 & |x| \geq a
\end{array}\right.
$$

Show that the temperature at any point z at any time t is

$$
u(x, t)=\frac{u_{0}}{2}\left[\operatorname{ert}\left(\frac{x+a}{2 \sqrt{\kappa \bar{t}}}\right)-\operatorname{erf}\left(\frac{x-\alpha}{2 \sqrt{\kappa t}}\right)\right]
$$

6.A. A cemi-infinte solld $(x>0)$ hap an initelel temparature given by $f(x)=u_{0} 0^{-b x^{2}}$. If the plane face $(x=0)$ in inalated ghow that the temperatore at any point z at any time t is

$$
u(x, t)=\frac{u_{0}}{\sqrt{1+4 k b t}} \cdot-b_{2} /\left(1+\omega_{k b t}\right.
$$

B.4. Belve and phycieally faterprat the following boundary value problem:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\dot{\boldsymbol{j}} x^{2}}+\frac{\theta^{2} u}{\partial y^{2}}=0 \quad y>0 \\
& w(x, 0)=\left\{\begin{array}{rl}
-1 & z<0 \\
1 & z>0
\end{array} \quad|\mu(z, y)|<M\right.
\end{aligned}
$$

8.15. Show that if $w(a, 0)=\left\{\begin{array}{ll}0 & \infty<0 \\ u_{0} & \infty>0\end{array}\right.$ in Prablem 6.44, then

$$
u(\alpha, y)=\frac{u_{0}}{2}+\frac{u_{0}}{v} \tan ^{-1} \frac{z}{y}
$$

B.43. Work Problem B. 44 if $u(x, 0)=\left\{\begin{array}{rr}0 & x<-1 \\ 1 & -1<x<1 \\ 0 & x>1\end{array}\right.$.
6.17. The region bounded by $x>0, v>0$ has one edge $x=0$ kept at potental zero and the other edge $y=0$ kapt at potental $f(k)$. (a) Show that the potential at any point (x, v) la given by

$$
v(u, v)=\frac{1}{\tau} \int_{0}^{\infty} v f(v)\left[\frac{1}{(v-x)^{2}+y^{2}}-\frac{1}{(v+x)^{2}+y^{2}}\right] d x
$$

(b) If $f(x)=1$, chow that $v(x, y)=\frac{2}{\pi} \tan ^{-1} \frac{x}{y}$.
6.4. Verify that the resialt obtained in Problem 8.18 is actually a solution of the corrasponding boindary value problems.
5.49. The lines $y=0$ and $y=0$ in the oy-plane (ane Fig. 5-4) are kept at potentiala 0 and $f(x)$ respectively. Show that the potential at pointa (x, y) between thase lines fa given by

$$
\psi(x, y)
$$

$$
=\frac{1}{\pi} \int_{\lambda=0}^{\infty} \int_{u=-\infty}^{\infty} f(u) \frac{\sinh \lambda y}{\sinh \lambda a} \cos \lambda(u-x) d u d \lambda
$$

Fig. 5-4
5.50. An infinite atring coinclding with the x-axis is given an initial shape $f(x)$ and an initial velocity $p(x)$. Amouming that gravity ta neglected, show that the displacement of any point z of the atring at time t is efiven by

$$
y(x, t)=\frac{1}{2}[f(x+a t)+f(x-a x)]+\frac{1}{2 a} \int_{x-a t}^{x+a t} p(u) d u
$$

5.51. Work Problem 5.50 it gravity in taken into account.
6.52. A semi-infinite cantilever beam ($z>0$) clamped at $x=0$ is given an initial shape $/(x)$ and released. Find the resulting diaplacement at any later time t.

Chapter 6

Bessal Functions and Applications

BESSELS DIFFERENTIAL EQUATION

Bessel functions arise as solutions of the differential equation

$$
\begin{equation*}
x^{5} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \quad n \geq 0 \tag{1}
\end{equation*}
$$

which is called Bessels differential equation. The genaral solution of (1) is given by

$$
\begin{equation*}
y=c_{1} J_{n}(x)+c_{1} Y_{n}(x) \tag{l}
\end{equation*}
$$

The solution $J_{a}(x)$, which has a finite limit as x approsches zero, is called a Bessel function of the frast kind of ordern. The solution $Y_{n}(x)$, which has no finite limit (i.e. is unbounded) as x approuches zero, is called a Bessel function of the second heind of order n or a Neumann function.

If the independent variable x in (1) is changed to λx, where λ is a constant, the resulting equation is

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{9} x^{2}-x^{9}\right) y=0 \tag{s}
\end{equation*}
$$

with general solution

$$
\begin{equation*}
y=c_{1} J_{n}(\lambda x)+c_{3} Y_{n}(\lambda x) \tag{4}
\end{equation*}
$$

The differential equation (1) or (s) is obtained, for example, from Laplace's equation $\nabla^{\boldsymbol{u} u}=0$ expressed in cylindrical coordinates (ρ, ϕ, z). See Problem 6.1.

THE METHOD OF FROBENIUS

An important method for obtaining solutions of differential equations such as Beasel's equation is known as the method of Frobenirs. In this method we assume a solution of the form

$$
\begin{equation*}
y=\sum_{k=-\infty}^{\infty} c_{k} x^{k+\theta} \tag{5}
\end{equation*}
$$

where $c_{k}=0$ for $k<0$, so that (5) actually begins with the term involving c_{8} which is assumed different from zero.

By substituting (5) into a given differential equation we can obtain an equation for the constant β (called an indicial equation), as well as equations which can be used to determine the constants c_{k}. The process is illustrated in Problem 6.8.

BESSEL FUNCTIONS OF THE FIRST KIND

We define the Bessel function of the first kind of order n as

$$
\begin{equation*}
J_{n}(x)=\frac{x^{n}}{2^{n} \Gamma(n+1)}\left\{1-\frac{x^{2}}{2(2 n+2)}+\frac{24}{2 \cdot 4(2 n+2)(2 n+4)}-\cdots\right\} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{n}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}(x / 2)^{n+2 r}}{r!\Gamma(n+r+1)} \tag{7}
\end{equation*}
$$

where $\Gamma(n+1)$ is the gamma function (Chapter 4). If n is a positive integer, $\Gamma(n+1)=n!$. $r(1)=1$. For $n=0$, (6) becomes

$$
\begin{equation*}
J_{0}(x)=1-\frac{x^{2}}{2^{2}}+\frac{x^{2}}{2^{2} 4^{2}}-\frac{x^{6}}{2^{2} 4^{9} 6^{2}}+\cdots \tag{8}
\end{equation*}
$$

The series (6) or (7) converges for all x. Graphs of $J_{0}(x)$ and $J_{3}(x)$ are shown in Fig. 6-1.

If n is half an odd integer, $J_{n}(x)$ can be expressed in terms of sines and cosines. See Problems 6.6 and 6.9.

A function $J_{-n}(x), n>0$, can be defined by replacing n by $-n$ in (σ) or (7). If n is an integer, then we can show that (see Problem 6.5)

$$
\begin{equation*}
J_{-n}(x)=(-1)^{n} J_{n}(x) \tag{9}
\end{equation*}
$$

Fig. 6-1

If n is not an integer, $J_{n}(x)$ and $J_{-n}(x)$ are linearly independent, and for this case the general solution of (1) is

$$
\begin{equation*}
y=A J_{n}(x)+B J_{-n}(x) \quad n \neq 0,1,2,8, \ldots \tag{10}
\end{equation*}
$$

BESSEL FUNCTIONS OF THE SECOND KIND

- We shall define the Beasel function of the second kind of order n as

$$
Y_{n}(x)= \begin{cases}\frac{J_{n}(x) \cos n_{\pi}-J_{-n}(x)}{\sin n \pi} & n \neq 0,1,2,3, \ldots \tag{11}\\ \lim _{p \rightarrow n} \frac{J_{p}(x) \cos p_{\pi}-J_{-p}(x)}{\sin p_{\pi}} & n=0,1,2,3, \ldots\end{cases}
$$

For the case where $n=0,1,2,3, \ldots$ we obtain the following series expansion for $\boldsymbol{Y}_{n}(x)$:

$$
\begin{array}{r}
Y_{n}(x)=\frac{2}{\pi}\{\ln (x / 2)+\gamma\} J_{\pi}(x)-\frac{1}{\pi} \sum_{x=0}^{n-1} \frac{(n-k-1)!(x / 2)^{2 k-n}}{k!} \\
-\quad-\frac{1}{\pi} \sum_{k=0}^{\kappa}(-1)^{k}\{\Phi(k)+\Phi(n+k)\} \frac{(x / 2)^{2 k+n}}{k!(n+k)!} \tag{18}
\end{array}
$$

Where $\gamma=0.5772156 \ldots$ is Euler's constant (page 68) and

$$
\begin{equation*}
\Phi(p)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p}, \quad \Phi(0)=0 \tag{18}
\end{equation*}
$$

Graphs of the functions $Y_{0}(x)$ and $Y_{1}(x)$ are shown in Fig. 6-2. Note that these functions, as well as all the functions $Y_{n}(x)$ where $n>0$, are unbounded at $x=0$.

If n is half an odd integer $\boldsymbol{Y}_{n}(x)$ can be expressed in terms of trigonometric functions.

Fis. 6-2

GENERATING FUNCTION FOR $J_{n}(x)$

The function

$$
\begin{equation*}
e^{\frac{i}{2}\left(t-\frac{h}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} \tag{14}
\end{equation*}
$$

is called the generating function for Bessel functions of the first kind of integral order. It is very useful in obtaining properties of these functions for integer values of n-properties which can then often be proved for all values of n.

RECURRENCE FORMULAS

The following results are valid for all values of n.
1.

$$
J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x)
$$

2. $\quad J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]$
3. $\quad x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$
4. $\quad x J_{n}^{\prime}(x)=x J_{n-1}(x)-n J_{n}(x)$
5. $\quad \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$
6. $\quad \frac{d}{d x}\left[x-{ }_{n}(x)\right]=-x^{-N} J_{n+1}(x)$

If n is an integer these can be proved by using the generating function. Note that results 3. and 4. are reapectively equivalent to 5 . and 6 .

The functions $Y_{n}(x)$ satisfy exactiy the same formulas, where $Y_{n}(x)$ replaces $J_{*}(x)$.

FUNCTIONS RELATED TO BEGSEL FUNCTIONS

1. Hankel functions of the first and second kinds are defined respectively by

$$
\begin{equation*}
H_{n}^{(1)}(x)=J_{n}(x)+i Y_{n}(x), \quad H_{n}^{(9)}(x)=J_{n}(x)-i Y_{n}(x) \tag{15}
\end{equation*}
$$

2. Modifled Beagel functions. The madified Bessel furction of the first kind of order n js defined as

$$
\begin{equation*}
J_{n}(x)=i^{-n} J_{n}(i x)=e^{-n+1 / 2} J_{n}(i x) \tag{18}
\end{equation*}
$$

If n is an integer,

$$
\begin{equation*}
I_{-n}(x)=I_{n}(x) \tag{17}
\end{equation*}
$$

but if n is not an integer, $I_{\mathrm{s}}(x)$ and $I_{-a}(x)$ are linearly independent.
The modified Bessel function of the second kind of order n is defined as

$$
K_{n}(x)= \begin{cases}\frac{\pi}{2}\left[\frac{I_{-n}(x)-I_{n}(x)}{\sin n \pi}\right] & n+0,1,2,3, \ldots \tag{18}\\ \lim _{n \rightarrow \pi} \frac{\pi}{2}\left[\frac{I_{-p}(x)-I_{0}(x)}{\sin p_{r}}\right] & n=0,1,2,3, \ldots\end{cases}
$$

These functions satisfy the differential equstion

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+n^{2}\right) y=0 \tag{19}
\end{equation*}
$$

and the geaeral aolution of this equation is

$$
\begin{equation*}
v=c_{1} I_{n}(x)+c_{2} K_{4}(x) \tag{80}
\end{equation*}
$$

or, if $n \rightarrow 0,1,2 ; 8, \ldots$,

$$
\begin{equation*}
y=A I_{n}(a)+B I_{-n}(x) \tag{21}
\end{equation*}
$$

Graphs of the functions $I_{0}(x), I_{1}(x), K_{0}(x), K_{1}(x)$ are shown in FYgs. 6-B and 8-4.

Fic. © 4

FHg. ${ }^{6-4}$
3. Ber, Bel, Ker, Kel functions. The functions $\operatorname{Ber}_{n}(x)$ and $B e i_{n}(x)$ are respectively the real and Imaginary parts of $J_{n}\left(i^{1 / 2} x\right)$, where $i^{a / 2}=e^{s \pi / 4}=(\sqrt{2} / 2)(-1+i)$, i.e.

$$
\begin{equation*}
J_{n}\left(i^{1 / 4} x\right)=\operatorname{Ber}_{n}(x)+\operatorname{Bei_{n}}(x) \tag{28}
\end{equation*}
$$

The functions Kern (x) and Kein (x) are respectively the raal and imaginary parts of $\rho^{-\pi x^{2} / 4} K_{n}\left(\left(^{1 / 2} x\right)\right.$, where $i^{1 / 4}=e^{-1 / 4}=(\sqrt{2} / 2)(1+i)$, i.e.

$$
\begin{equation*}
\theta^{-n r(i x} K_{n}\left(i^{1 / 2} x\right)=\operatorname{Ker}_{n}(x)+i \operatorname{Kei}_{n}(x) \tag{28}
\end{equation*}
$$

The functions are useful in connection with the equation

$$
\begin{equation*}
x^{2} y^{\prime}+x y^{\prime}-\left(i x^{2}+n^{9}\right) y=0 \tag{84}
\end{equation*}
$$

which arises in electrical engineering end other flelds. The general solution of this equation is

$$
\begin{equation*}
y=c_{1} J_{n}\left({ }^{(1 / 2 / 2 x}\right)+c_{2} K_{n}\left(i^{1 / 2} \dot{x}\right) \tag{25}
\end{equation*}
$$

If $n=0$ we often denote $\operatorname{Ber}_{n}(x)$, $\operatorname{Bei}_{n}(x), \operatorname{Ker}_{n}(x), \operatorname{Kei}_{n}(x)$ by $\operatorname{Ber}(x), \operatorname{BeI}(x), \operatorname{Ker}(x)$, Kel (x), respectivaly. The graphs of these functions are shown in Figs, 6-5 and 6-8.

P4.6.5

Pig. $6-6$

EQUATIONS TRANSFORMABLE INTO BESSELSS EQUATION
The equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(2 k+1) x y^{\prime}+\left(\alpha^{2} x^{2 r}+\beta^{2}\right) y=0 \tag{28}
\end{equation*}
$$

where k, α, r, β are constants, has the general solution

$$
\begin{equation*}
y=x^{-k}\left[c_{1} J_{x / r}\left(\alpha x^{r} / r\right)+c_{\S} Y_{k / r}\left(\alpha x^{y} / r\right)\right] \tag{87}
\end{equation*}
$$

where $k=\sqrt{k^{n}-\beta^{2}}$. If $\alpha=0$ the equation is an Euier or Cauchy equation (aee Problem 6.79) and has solution

$$
\begin{equation*}
\dot{y}=x^{-n}\left(c_{3} x^{x}+c_{1} x^{-x}\right) \tag{28}
\end{equation*}
$$

ASYMPTOTIC FORMULAS FOR BESSEL FUNCTIONS

For large values of x we have the following asymptotic formulas:

$$
\begin{equation*}
J_{n}(x)-\sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}-\frac{n \pi}{2}\right), \quad Y_{n}(x) \sim \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi}{4}-\frac{n \pi}{2}\right) \tag{29}
\end{equation*}
$$

ZEROS OF BESSEL FUNCTIONS

We can show that if n is any real number, $J_{n}(x)=0$ has an infinite number of roats which are all real. The difference batween successive roots approaches a as the roots increase in value. This can be seen from (20). We can algo show that the roots of $J_{n}(2)=0$ [the zeros of $J_{n}(x)$] lie between those of $J_{n-1}(x)=0$ and $J_{n+1}(x)=0$. Similar remarks cen be made for $Y_{n}(x)$. For a table giving zeros of Bessel functions see Appendix E, page 177.

ORTHOGONALITY OF BESSEL FUNCTIONS OF TEE FIRST KIND

If λ and μ are two difierent constants, we can ghow (afe Problem 6.28) that

$$
\begin{equation*}
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=\frac{\mu J_{n}(\lambda) J_{n}^{\prime}(\mu)-\lambda J_{n}(\mu) J_{n}^{\prime}(\lambda)}{\lambda^{2}-\mu^{2}} \tag{80}
\end{equation*}
$$

while (see Problem 6.24)

$$
\begin{equation*}
\int_{0}^{1} x J_{n}^{2}(\lambda x) d x=\frac{1}{2}\left[J_{n}^{\prime 2}(\lambda)+\left(1-\frac{n^{2}}{\lambda^{3}}\right) J_{n}^{2}(\lambda)\right] \tag{s1}
\end{equation*}
$$

From (s0) we can see that if λ and μ are any two different roots of the equation

$$
\begin{equation*}
R V_{\mathrm{n}}(x)+S x J_{\mathrm{a}}^{\prime}(x)=0 \tag{5E}
\end{equation*}
$$

where R and S are constants, then

$$
\begin{equation*}
\int_{0}^{1} x J_{n}(\lambda x) d_{n}(\mu x) d x=0 \tag{8s}
\end{equation*}
$$

which states that the functions $\sqrt{x} J_{n}(\lambda x)$ and $\sqrt{x} J_{n}(\mu x)$ are orthogonal in (0,1). Note that as special cases of (92) λ and μ can be any two different roots of $J_{n}(x)=0$ or of $J_{n}^{\prime}(x)=0$. We can also say that the functions $J_{n}(\lambda x), J_{n}(\mu z)$ are orthogonal with respect to the density or weight function x.

SERIES OF BEGSEL FUNCTIONS OF THE FIRST KIND

As in the case of Fourier series, we can show that if $f(x)$ and $f^{\prime}(x)$ are piecewise continuous then at every point of continuity of $f(x)$ in the interval of $0<x<1$ there will exdat a Beasel series expansion having the form

$$
\begin{equation*}
f(x)=A_{3} J_{n}\left(\lambda_{1} x\right)+A_{2} J_{n}\left(\lambda_{2} x\right)+\cdots=\sum_{p=1}^{\infty} A_{w} J_{n}\left(\lambda_{p} x\right) \tag{84}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{8}, \ldots$ are the positive roots of (82) with $R / S \leq 0, S \neq 0$ and

$$
\begin{equation*}
A_{\nu}=\frac{2 \lambda_{p}^{z}}{\left(\lambda_{p}^{2}-n^{3}+R^{2} / S^{1}\right) V_{n}^{2}\left(\lambda_{p}\right)} \int_{0}^{1} x y_{n}\left(\lambda_{p} x\right) f(x) d x \tag{35}
\end{equation*}
$$

At any point of discontinuity the series on the right in (s4) converges to $\frac{1}{\frac{1}{2}}[f(x+0)+f(x-0)]$, which can be used in place of the left side of (34).

In case $S=0$, so thst $\lambda_{1}, \lambda_{2}, \ldots$ are the roots of $J_{a}(x)=0$,

$$
\begin{equation*}
A_{p}=\frac{2}{J_{n+1}^{2}\left(\lambda_{p}\right)} \int_{0}^{1} x J_{n}\left(\lambda_{p} x\right) f(x) d x \tag{se}
\end{equation*}
$$

If $R=0$ and $n=0$, then the geries (si) starts out with the congtant term

$$
A_{1}=2 \int_{0}^{1} x f(x) d x
$$

In this case the positive roots are those of $J_{n}^{\prime}(\underline{x})=0$.

ORTHOGONALITY AND SERIES OF BESSEL. FUNCTIONS OF TEE SECOND KIND

The above results for Bessel functions of the first kind can be extended to Bessel functions of the aecond kind. See Problems 6.32 and 6.38 .

SOLUTIONS TO BOUNDARY VALUE PROBLEMS USING BESSEL FUNCTIONS
The expansion of functions into Bessel series enables us to solve various boundary value problems arising in science and engineering. See Problems 6.28, 6.29, 6.31, 8.34, 6.85.

Solved Problems

GESSEL'S DIFFERENTIAL EQUATION

s.1. Show how Bessel's differential equation (s), page 97, is obtained from Laplace's equetion $\nabla^{2} t=0$ expressed in cylindrical coordinates (p, ϕ, z).

Laplace's equation in cylindrical coordinates is given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{a^{2} u}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

If we abaume a solvtion of the form $u=P \phi 2$, where P is a function of ρ, ϕ is a function of ϕ and Z it a function of z, then (i) becomes

$$
\begin{equation*}
P^{\prime \prime} \Phi Z+\frac{1}{p} P^{\prime} \phi Z+\frac{1}{\rho^{2}} P^{\prime} \Phi^{\prime} Z+P \Phi Z^{\prime \prime}=0 \tag{e}
\end{equation*}
$$

where the primes denote derivatives with reapect to the particular independent variable involved. Dividing (d) by P $P \mathbf{Z}$ yleids

$$
\begin{equation*}
\frac{P^{\prime \prime}}{P}+\frac{1}{\rho} \frac{P^{\prime}}{P}+\cdot \frac{1}{p^{\prime}} \frac{\phi^{\prime \prime}}{\phi}+\frac{Z^{\prime \prime}}{Z}=0 \tag{s}
\end{equation*}
$$

Equation (s) esn be written se

$$
\begin{equation*}
\frac{P^{\prime \prime}}{P}+\frac{1}{p} \frac{P^{\prime}}{P}+\frac{1}{\rho^{2}} \frac{\Psi^{\prime \prime}}{\phi}=-\frac{Z^{\prime \prime}}{Z} \tag{4}
\end{equation*}
$$

Since the right side depends onty on z while the left aide depends only on ρ snd p, it follows that each side must be a constant, say - λ^{2}. Thus we heve

$$
\begin{equation*}
\frac{P^{\prime \prime}}{P}+\frac{1}{\rho} \frac{P^{\prime}}{P}+\frac{1}{\rho^{2}} \cdot \frac{\phi^{\prime \prime}}{\phi}=-\lambda^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
Z^{\prime \prime}-\lambda E Z=0 \tag{6}
\end{equation*}
$$

If we now multiply both aides of (5) by ρ^{2} it becomes

$$
\begin{equation*}
\rho^{\frac{2}{2}} \frac{P^{\prime \prime}}{P}+\rho \frac{P^{\prime}}{P}+\frac{\Phi^{\prime \prime}}{\phi}=-\lambda^{2} \rho^{2} \tag{7}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\rho^{2} \frac{P^{\prime \prime}}{P}+\rho \frac{P^{\prime}}{P}+\lambda^{8} \rho^{8}=-\frac{\Phi^{\prime \prime}}{\Phi} \tag{8}
\end{equation*}
$$

Slace the right side depends only on ϕ, while the left side depends only on p, it follown that ench side must be a constart, say μ^{2}. Thus we have

$$
\begin{equation*}
\rho^{2} \frac{P^{\prime \prime}}{P}+\rho \frac{P^{\prime}}{P}+\lambda^{4} \beta^{3}=m^{3} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{\prime \prime}+\mu^{2} \phi=0 \tag{10}
\end{equation*}
$$

The equation (g) can be written as

$$
\begin{equation*}
\rho^{2} P^{\prime t}+\rho P^{\prime}+\left(\lambda^{4} \rho^{2}-\mu^{2}\right) P=0 \tag{11}
\end{equation*}
$$

which in Bessel'a differential eqiation (s) on pace 97 with P instead of y, β instead of a and μ inatead of 20.
6.2. Show that if we let $\lambda_{\rho}=x$ in equation (11) of Problem 6.1, then it becomes

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\mu^{2}\right) y=0
$$

We have

$$
\frac{d P}{d P}=\frac{d P}{d x} \frac{d x}{d x}=\frac{d P}{d x} \lambda=\lambda \frac{d y}{d x}
$$

where $y(x)$, or briefly y, rapresents that function of z which $P(\rho)$ becoraes when $\rho=x / \lambda$.
Similarly

$$
\frac{d^{2} P}{d \rho^{2}}=\frac{d}{d \rho}\left(\frac{d P}{d \rho}\right)=\frac{d}{d x}\left(\lambda \frac{d y}{d x}\right) \frac{d x}{d \rho}=\frac{d}{d x}\left(\lambda \frac{d y}{d x}\right) \lambda=\lambda^{2} \frac{d^{2} y}{d x^{2}}
$$

Then equation (1I) of Problem 6.1 which can be written
becomes

$$
\rho^{2} \frac{d^{2} P}{d^{2} \rho^{2}}+\rho \frac{d P}{d \rho}+\left(\lambda^{3} \rho^{2}-\mu^{2}\right) P=0
$$

or

$$
\begin{gathered}
\left(\frac{x}{\lambda}\right)^{2} x^{2} \frac{d^{2} y}{d x^{2}}+\left(\frac{x}{\lambda}\right) x \frac{d y}{d x}+\left(x^{2}-\mu^{2}\right) y=0 \\
x^{2} y^{\prime x}+x y^{\prime}+\left(x^{2}-\mu^{2}\right) y=0
\end{gathered}
$$

欮 required.
6.8. Use the method of Frobenius to find series solutions of Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$.

Ascuming a solution of the form $y=\Sigma v_{\mathrm{k}} \boldsymbol{z}^{1+\theta}$ where k goes from $-\infty$ to and $c_{k}=0$ for $k<0$, we have

$$
\begin{aligned}
& x y^{\prime}=\mathbf{\Sigma}(k+\beta) c_{k} x^{k+\beta} \\
& x^{2} y^{\prime \prime}=\boldsymbol{\Sigma}(k+\beta)(k+\beta-1) \theta_{k} x^{k+\beta}
\end{aligned}
$$

Then by addition,

$$
\left.\mathbf{\Sigma}\left[(\mathbf{k}+\beta)(k+\beta-1) \theta_{k}+(k+\beta) c_{k}+o_{k-2}-n^{2} o_{k}\right]\right]^{k+\beta}=0
$$

and aince the coefliclenta of the $\boldsymbol{x}^{k+\beta}$ must be zero, we find

$$
\begin{equation*}
\left[(k+\beta)^{2}-n^{2}\right] e_{k}+e_{k-2}=0 \tag{I}
\end{equation*}
$$

Letting $k=0 \mathrm{in}(1)$ we obtain, since $c_{-1}=0$, the indicial equation ($\left.\beta^{2}-n^{2}\right) e_{0}=0$; or assuming $0_{0}+0_{1} \beta^{2}=n^{2}$. Then there are two caees, given by $\beta=-n$ and $\beta=n$. We shell consider first the case $\beta=n$ and obtain the second case by replacing n by $-n$.

Cave 1: $\beta=\pi$.
In this case (l) becomes

$$
\begin{equation*}
k(2 n+k) c_{k}+c_{k-2}=0 \tag{g}
\end{equation*}
$$

Putting $k=1,2,3,4, \ldots$ successively in (ℓ), we have

$$
c_{1}=0, \quad c_{3}=\frac{-c_{0}}{2(2 \pi+2)}, \quad c_{3}=0, \quad c_{4}=\frac{-c_{2}}{4(2 n+4)}=\frac{c_{0}}{2 \cdot 4(2 n+2)(2 n+4)}, \quad \ldots
$$

Thus the required sariss is

$$
\begin{align*}
y & =c_{0} x^{x}+c_{2} x^{4+2}+c_{4} x^{*+4}+\cdots \\
& =c_{0} x n\left[1-\frac{x^{2}}{2(2 x+2)}+\frac{x^{4}}{2+4(2 n+2)(2 x+4)}-\cdots\right] \tag{d}
\end{align*}
$$

Cese 2: $\quad \beta=-n$.
On replacing x by $-n$ in Case 1, we find

$$
\begin{equation*}
y=c_{0} x^{-n}\left[1-\frac{x^{2}}{2(2-2 n),}+\frac{x^{4}}{2 \cdot 4(2-2 n) / 4-2 n)}-\cdots\right] \tag{4}
\end{equation*}
$$

Now if $n=0$, both of these series are Identical. If $n=1,2, \ldots$ the second series falls to exist. However, if $n * 0,1,2, \ldots$ the two series can be shown to be linearly independent, and so for this case the general golution is

$$
\begin{align*}
v= & C x^{n}\left[1-\frac{x^{2}}{2(2 n+2)}+\frac{x^{4}}{2 \cdot 4(2 n+2)(2 x+4)}-\cdots\right] \\
& +D x^{-n}\left[1-\frac{x^{2}}{2(2-2 n)}+\frac{x^{4}}{2 \cdot 4(2-2 n)(4-2 n)}-\cdots\right] \tag{5}
\end{align*}
$$

The cases where $n=0,1,2,3, \ldots$ are treated later (see Problems 6.17 and 6.18).
The firat aeries in (5), with auitable choice of multiplicative constant, provides the definition of $J_{n}(x)$ given by (6), page 87 .

BESSEL FUNCTIONS OF THE FIRST KIND

6.4. Using the definition (6) of $J_{n}(x)$ given on page 97, show that if $n \neq 0,1,2, \ldots$, then the general molution of Bessel's equation is $y=A J_{x}(x)+B J_{-n}(x)$.

Note that the definition of $J_{n}(z)$ on page 97 agrees with the series of Case 1 in Problem 6.3, apart from a constant factor depending only on n. It follows that the result (5) can be written $y=A J_{n}(x)+B J_{-n}(x)$ for the casee $n \neq 0,1,2_{2} \ldots$.
6.5. (a) Prove that $J_{-n}(x)=(-1)^{\circ} J_{n}(x)$ for $n=1,2,3, \ldots$.
(b) Use (a) to explain why $A J_{n}(x)+B J_{-n}(x)$ is not the general solution of Bessel'a equation for integer values of n.
(a) Replacing n by $-n$ in $\{0$) or the equivalent (7) on page 98, we have

$$
\begin{aligned}
J_{-n}(x) & =\sum_{r=n}^{\infty} \frac{(-1) r(x / 2)-n+2 r}{r!\Gamma(-n+r+1)} \\
& =\sum_{r=0}^{n-1} \frac{(-1) r(x / 2)-n+2 r}{r!\Gamma(-n+r+1)}+\sum_{r=n} \frac{(-1) r(x / 2)-n+2 r}{r \mid \Gamma(-n+r+1)}
\end{aligned}
$$

Now since $\Gamma(-n+r+1)$ is infinite for $r=0,1, \ldots, n-1$, the firat sum on the right is zero. Letting $r=n+k$ in the seeond sum, it becomes

$$
\sum_{k=0}^{\infty} \frac{(-1)^{n+k}(x / 2)^{n+2 k}}{(n+k) 1 \Gamma(k+1)}=(-1) \cdot \sum_{k=0}^{-} \frac{(-1)^{k}(x / 2)^{n+3 k}}{\Gamma(n+k+i)^{n} k!}=(-1)^{w J_{n}(x)}
$$

(b) From (a) it gollows that for integer values of $n, J_{-n}(x)$ and $J_{n}(x)$ are linaarly dependent and so $A J_{n}(x)+B J_{-n}(x)$ cannot be a general solution of Beassel's equation. If n fin not an integer, then we can show that $J_{-n}(x)$ and $J_{n}(x)$ are linearly independent, so that $A J_{n}(x)+B J_{-n}(x)$ is a general solution (see Problem 6.12).
6.6. Prove
(a) $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$,
(b) $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
(a)
(b)

$$
\begin{aligned}
J_{1 / 2}(x) & =\sum_{\Gamma=0}^{\infty} \frac{(-1))^{(x / 2)^{1 / 2}+2 r}}{!\Gamma(r+3 / 2)}=\frac{(x / 2)^{1 / 2}}{\Gamma(3 / 2)}-\frac{(x / 2)^{5 / 2}}{1!\bar{\Gamma}(6 / 2)}+\frac{(x / 2)^{0 / 2}}{2!\Gamma!(7 / 2)} \cdots \\
& =\frac{(x / 2)^{1 / 2}}{(1 / 2) \sqrt{\pi}}-\frac{(x / 2)^{5 / 2}}{1!(3 / 2)(1 / 2) \sqrt{\pi}}+\frac{(x / 2)^{7 / 2}}{2!(3 / 2)(3 / 2)(1 / 2) \sqrt{\pi}}-\cdots \\
& =\frac{(x / 2)^{1 / 2}}{(1 / 2) \sqrt{\pi}}\left\{1-\frac{x^{2}}{3!}+\frac{x^{1}}{5!}-\cdots\right\}=\frac{(x / 2)^{1 / 2}}{(1 / 2) \sqrt{\pi}} \frac{\sin x}{x}=\sqrt{\frac{2}{\pi x}} \sin x
\end{aligned}
$$

$$
\begin{aligned}
J_{-1 / 2}(x) & =\sum_{r=0}^{\infty} \frac{(-1)^{+}(x / 2)-1 / 2+2 r}{r!\Gamma(r+1 / 2)}=\frac{(x / 2)^{1 / 2}}{\Gamma(1 / 2)}-\frac{(x / 2)^{1 / 2}}{1 \Gamma \Gamma(3 / 2)}+\frac{(x / 2)^{7 / 2}}{2!\Gamma(6 / 2)}-\cdots \\
& =\frac{(x / 2)^{-1 / 2}}{\sqrt{\pi}}\left\{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right\}=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

6.7. Prove that for all n :
(a) $\frac{d}{d x}\left\{z^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$,
(b) $\frac{d}{d x}\left\{x^{-n} J_{n}(x)\right\}=-x^{n} J_{n+1}(x)$.
(a)

$$
\begin{aligned}
\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\} & =\frac{d}{d x} \sum_{r=0}^{\infty} \frac{(-1) r x^{2 n+2 r}}{2^{n+2 r r!} \Gamma(n+r+1)}=\sum_{r=0}^{\infty} \frac{(-1) x^{2 n+2 r-1}}{2^{n+2 r-1 r!\Gamma(n+r)}} \\
& =x^{n} \sum_{r=0}^{\infty} \frac{(-1) r(n-1)+2 r}{\left.2^{(n-1)+2 r} r!\Gamma(n-1)+\bar{r}+1\right)}=x^{n} J_{n-1}(x)
\end{aligned}
$$

(b)

$$
\begin{align*}
\frac{d}{d x}\left\{x^{-x} J_{n}(x)\right\} & =\frac{d}{d x} \sum_{r=0}^{\infty} \frac{(-1) r x^{2 p}}{2^{n+2 r}!\Gamma^{\prime}(n+r+1)} \\
& =x^{-z} \sum_{r=1}^{\infty} \frac{(-1) r x^{n+2 r-1}}{2^{n+2 r-1}(r-1)!\Gamma(n+r+1)} \\
& =x^{-x} \sum_{k=0}^{\infty} \frac{(-1)^{k+1 x^{n}+2 k+1}}{2^{n+2 k+1 k!\Gamma(n+k+2)}}= \tag{x}
\end{align*}
$$

6.8. Prove that for all n :
(a)
$J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]$,
(b) $J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)$.

From Problem 6.7(a), $x^{n} ل_{n}^{\prime}(x)+n^{n x^{n-1}} J_{n}(x)=x^{n} J_{n-1}(x)$
or

$$
\begin{equation*}
x \cdot J_{n}^{\prime}(x)+n J_{n}(x)=x J_{n-1}(x) \tag{1}
\end{equation*}
$$

or

$$
x J_{n}^{\prime}(x)-n j_{n}(x)=-x J_{n+1}(x)
$$

(a) Adding (1) and (q) and dividing by $2 x$ gives -

$$
J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]
$$

(b) Subtracting ($\mathbf{(1)}$ from (1) and dividing by x gives

$$
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)
$$

6.9. Show that (a) $J_{s / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x-x \cos x}{x}\right)$
(b) $J_{-3 / 2}(x)=-\sqrt{\frac{2}{\pi x}}\left(\frac{x \sin x+\cos x}{x}\right)$
(a) From Probiems 6.8(b) and 6.6 we have on letting $n=1 / 2$,

$$
y_{d / 2}(x)=\frac{1}{x} J_{1 / 2}(x)-J_{-1 / 2}(x)=\sqrt{\frac{2}{v x}}\left(\frac{\sin z}{x}-\cos x\right)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x-x \cos x}{x}\right)
$$

(b) From Problems 6.8(b) and 6.6 we have on letting $n=-\frac{1}{2}$,

$$
J_{-\operatorname{s/2}}(x)=-\sqrt{\frac{2}{\pi x}}\left(\frac{x \sin x+\cos x}{x}\right)
$$

6.10. Evaluate the integrals
(a) $\int x^{n} J_{n-1}(x) d x$
(b) $\int \frac{J_{\mathrm{n}+1}(x)}{x^{n}} d x$.

From Problem 6.7,
(a) $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right)=x^{n} d_{n-1}(x)$. Then $\int x^{n} J_{n-1}(x) d x=x^{n} J_{n}(x)+e$.
(b) $\frac{d}{d x}\left\{x^{-n J_{n}}(x)\right\}=-x^{-n J_{n+1}}(x)$. Then $\int \frac{J_{n+1}(x)}{x^{n}} d x=-x-n J_{n}(x)+c$.
6.11. Evaluate
(a) $\int x^{4} J_{1}(x) d x$,
(b) $\int \dot{x}^{3} \sqrt{3}(x) d x$.
(a) Mothod 1. Integration by parts gives

$$
\begin{aligned}
\int x^{4} J_{1}(x) d z & =\int\left(x^{8}\right)\left[x^{2} J_{1}(x) d x\right] \\
& =x^{2}\left[x^{2} J_{2}(x)\right]-\int\left[x^{2} J_{2}(x)\right][2 x d x] \\
& =x^{4} J_{2}(x)-2 \int x^{3} J_{2}(x) d x \\
& \left.=x^{4} J_{1} \cdot x\right)-2 x^{3} J_{3}(x)+0
\end{aligned}
$$

Method 2. We have, uaing $J_{\mathrm{r}}(x)=-J_{0}^{\prime}(x)$ [Problem 6.7(b)],

$$
\left.\begin{array}{rl}
\int x^{4} J_{1}(x) d x & =-\int x^{4} J_{0}^{\prime}(x) d x
\end{array}\right) \begin{aligned}
\int x^{2} J_{0}(x) d x & \left.=\int x^{4} J_{0}(x)-\int 4 x^{2} J_{0}(x) d x\right\} \\
\int x^{2}\left[x J_{0}(x) d x\right] & \left.=x^{2}\left[x J_{1}(x)\right]-\int[x) d x=-\int x_{1}^{2}(x)\right][2 x d x] \\
& =-\left\{x_{0}^{2} J_{0}^{\prime}(x) d x=\int 2 x J_{0}^{\prime}(x) d x\right\} \\
& =-x^{2} J_{0}(x)+2 x J_{1}(x)
\end{aligned}
$$

Then
(b)

$$
\begin{aligned}
\int x^{3} J_{3}(x) d x & =\int x^{5}\left[x-2 J_{3}(x) d x\right] \\
& =x^{3}\left[-x^{-2 J_{2}}\{x)\right]-\int\left[-x^{-2} J_{2}(x)\right] 6 x^{4} d x \\
& =-x^{3} J_{2}(x)+5 \int x^{2} J_{2}(x) d x \\
\int x^{3} J_{2}(x) d x & =\int x^{3}\left[x^{\left.-1 J_{8}(x)\right] d x}\right. \\
& =x^{3}\left[-x^{-1} J_{2}(x)\right]-\int\left[-x^{-1} J_{1}(x)\right] 3 x^{2} d x \\
& =-x^{2} J_{1}(x)+3 \int x J_{1}(x) d x \\
\int x x_{1}(x) d x & =-\int x J_{0}^{\prime}(x) d x=-\left[x J_{0}(x)-\int J_{0}(x) d x\right] \\
& =-x J_{0}(x)+\int J_{0}(x) d x
\end{aligned}
$$

Than

$$
\begin{aligned}
\int x^{2} J_{3}(x) d x & =-x^{2} J_{2}(x)+5\left\{-x^{2} J_{1}(x)+3\left[-J_{0}(x)+\int J_{0}(x) d x\right]\right\} \\
& =-x^{4} J_{2}(x)-5 x^{2} J_{1}(x)-16 x J_{0}(x)+15 \int J_{0}(x) d x
\end{aligned}
$$

The integral $\int J_{0}(x) d x$ cannot be obtained in closed form. In general, $\int x^{p y} J_{Q}(x) d x$ can be obtained in closed form if $p+q \geqslant 0$ and $p+q$ is odd, where p and q are integers. - If, howrever, $p+4$ is oven, the result can be obtained in terms of $\int J_{0}(x) d \dot{x}$.
6.12. (a) Prove that $J_{\Delta}^{\prime}(x) J_{-a}(x)-J_{-n}^{\prime}(x) J_{n}(x)=\frac{2 \sin n \pi}{\pi \dot{x}}$.
(b) Discuss the significance of the reault of (a) with regard to the linear dependence of $J_{n}(x)$ and $J_{-n}(x)$.
(a) Since $J_{n}(x)$ and $J_{-n}(x)$, abbreviated $J_{n 1} J_{-n}$ respectively, satialy Beassel's equation, we have

$$
x^{2} J_{n}^{\prime \prime}+x J_{n}^{\prime}+\left(x^{2}-n^{2}\right) J_{n}=0, \quad n^{2} J_{-n}^{\prime \prime}+x J_{-n}^{\prime}+\left(a^{2}-n^{2}\right) J_{-n}=0
$$

Multiply the firat equation by J_{-n} the socoad by J_{n} and anbtract. Then

$$
z\left[J_{n}^{\prime \prime} J_{-n}-J_{-n}^{\prime \prime} J_{n}\right]+x\left[J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}\right]=0
$$

which can be written
or

$$
\begin{gather*}
x \frac{d}{d x}\left[J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}\right]+\left[J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}\right]=0 \\
\frac{d}{d x}\left\{x\left[J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}\right]\right\}=0 \\
J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}=c / x \tag{1}
\end{gather*}
$$

Integrating, we find
To determine c use the series expansions for J_{4} and J_{-n} to obtain

$$
\begin{gathered}
J_{n}=\frac{x^{n}}{2^{n} \Gamma(n+1)}-\cdots, \quad J_{n}^{\prime}=\frac{x^{n-1}}{2^{n} \Gamma(n)}-\cdots, \quad J_{-n}=\frac{x^{-n}}{2^{-n} \Gamma(-n+1)}-\cdots \\
J_{-n}^{\prime}=\frac{x^{-n-1}}{2^{-n} \Gamma(-n)}-\cdots
\end{gathered}
$$

and then substitute in (i). We find

$$
e=\frac{1}{\Gamma(n) \Gamma(1-n)}-\frac{1}{\Gamma(n+1) \Gamma(-n)}=\frac{2}{\Gamma(n) \Gamma(1-n)}=\frac{2 \sin n \pi}{\eta}
$$

using the result 1 , page 68 . This gives the required result.
(b) The expression $J_{n}^{\prime} J_{-n}-J_{-n}^{\prime} J_{n}$ in (a) is the Wronskian of J_{n} and J_{-n}. If n is an integer, we see trom (a) that the Wronkkian is zero, so that J_{n} and J_{-n} are tinearly dependent, as is almo clear from Problem 6. $6(a)$. On the other hand, if n is not an integer, they are linearly independent, since in euch case the Wronikian differs from zero.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS.

6.13. Prove that $e^{\frac{3}{2}\left(t-\frac{1}{2}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}$.

We have
$\varepsilon^{\frac{t}{2}\left(t-\frac{1}{t}\right)}=o^{x / 1 / 2_{e}-x / 2 t}=\left\{\sum_{r=0}^{m} \frac{(x t / 2)^{r}}{r!}\right\}\left\{\sum_{k=0}^{\infty} \frac{(-x / 2 t)^{k}}{k!}\right\}=\sum_{r=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1) k(x / 2)^{r+k t r-k}}{r!k!}$
Let $r-k=n$ so that n varies from $-\infty$ to ∞. Then the sum becomes

$$
\sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{n+2 k} k^{n}}{(n+k)!k!}=\sum_{n=-\infty}^{\infty}\left\{\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{n+2 k}}{k!(n+k)!}\right\}_{+}^{n}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}
$$

6.14. Prove
(a) $\cos (x \sin \theta)=J_{0}(x)+2 J_{2}(x) \cos 2 \theta+2 J_{1}(x) \cos 4 \theta+\cdots$
(b) $\sin (x \sin \theta)=2 J_{1}(x) \sin \theta+2 J_{1}(x) \sin 3 \theta+2 J_{5}(x) \sin 5 \theta+\cdots$

Let $t=a$ in Problem 6.13. Then

$$
\begin{aligned}
& =\left\{J_{9}(x)+\left[J_{-1}(x)+J_{1}(x)\right] \cos \theta+\left[J_{-2}(x)+J_{8}(x)\right] \cos 2 \rho+\cdots\right\} \\
& +i\left(\left[J_{1}(x)-J_{-1}(x)\right] \sin \theta+\left\{J_{8}(x)-J_{-2}(x)\right] \sin 2 \theta+\cdots\right) \\
& \rightleftharpoons\left\{J_{0}(x)+\varepsilon J_{2}(x) \cos 2 \theta+\cdots\right\}+i\left\{2 J_{1}(x) \text { sin } \varphi+2 J_{4}(x) \sin 8 \theta+\cdots\right\}
\end{aligned}
$$

where we have uned Problem 6.5(a). Equating real and imaginary parts given the required reaplta.
6.15. Prove $J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta \quad n=0,1,2, \ldots$.

Multiply the first and second resuits of Problem 6.14 by $\cos n \theta$ and $\sin n d$ respectively and integrate from 0 to π using

$$
\int_{0}^{\pi} \cos m \theta \cos n \theta d \theta=\left\{\begin{array}{cc}
0 & m * n \\
\pi / 2 & m=n
\end{array}, \quad \int_{0}^{\pi} \sin m \theta \sin n \theta d \theta=\left\{\begin{array}{cc}
0 & m \neq n \\
\pi / 2 & m=n \neq 0
\end{array}\right.\right.
$$

Then if n ig even or zero, we have

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) \cos \pi \theta d \theta, \quad 0=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \theta) \sin x \theta d \theta
$$

or on adding,

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi}[\cos (x \sin \theta) \cos n \theta+\sin (x \sin \theta) \sin n \theta] d \theta=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta
$$

Similarly, it π is odd,

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \theta) \sin n \theta d \theta, \quad 0=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) \cos n \theta d \theta
$$

and by edding.

$$
f_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n-x \sin \theta) d \theta
$$

Thus we have the requised result whether n is even or odd, i.e. $n=0,1,2, \ldots$.
6.16. Prove the result of Problem $6.8(b)$ for integer values of n by usitig the generating function.

Differentiating both sides of the generating function with respect to t, we have, omiting the limits $-\infty$ to ∞ for n_{1}
or

$$
\begin{aligned}
& e^{\frac{\pi}{2}\left(-\frac{1}{t}\right)} \frac{x}{2}\left(1+\frac{1}{t^{2}}\right)=\sum n J_{n}(x) t^{n-1} \\
& \frac{x}{2}\left(1+\frac{1}{t^{2}}\right) \sum J_{n}(x) t^{n}=\sum n J_{n}(x) t^{n-1} \\
& \sum \frac{x}{2}\left(1+\frac{1}{t^{2}}\right) J_{n}(x) t^{n}=\sum n J_{n}(x) t^{n-1}
\end{aligned}
$$

This can be written as.

$$
\mathbf{\Sigma} \frac{z}{2} J_{n}(x) t^{n}+\mathbf{\Sigma} \frac{z}{2} J_{n}(x) t^{n-2}=\mathbf{\sum} J_{n}(x) t^{n-1}
$$

or

$$
\Sigma \frac{x}{2} J_{n}(x) t^{n}+\mathbb{N} \frac{x}{2} J_{n+2}(x) t^{n}=\mathbf{X}(n+1) J_{n+1}(x) \ell^{n}
$$

i.e.

$$
\Sigma\left[\frac{x}{2} J_{n}(x)+\frac{x}{2} J_{n+2}(x)\right]{ }^{t n}=\sum(n+1) J_{n+1}(x) t^{*}
$$

Since coefficients of t^{n} muat be equal, we have

$$
\frac{x}{2} f_{n}(x)+\frac{x}{2} J_{n+2}(x)=(n+1) J_{n}(x)
$$

from which the required reault is obtained on replacing n by $n-1$.

BESSEL FUNCTIONS OF THE SECOND KIND

6.17. (a) Show that if n is not an integer, the general solution of Bessel's equation is

$$
y=E J_{n}(x)+F\left[\frac{J_{n}(x) \cos n_{\pi}-J_{-n}(x)}{\sin n_{\pi}}\right]
$$

where E and F are arbitrary constants.
(b) Explain how to use part (a) to obtain the general solution of Bessel's equation in case n is an integer.
(a) Since J_{-n} and J_{n} ere linearly independent, the general solation of Beasel's equation can be written

$$
y=c_{1} J_{n}(x)+c_{n} J_{-k}(x)
$$

and the required reault followa on replacing the arbitrary conatante c_{1}, c_{2} by E, F, where

$$
c_{1}=E+\frac{F \cos n \pi}{\sin n \pi}, \quad c_{2}=\frac{-F}{\sin n \pi}
$$

Note that we define the Bessel function of the zecond kind if n is not an ineger by

$$
Y_{\mathrm{n}}(x)=\frac{J_{n}(x) \cos n \mathrm{r}-J_{-\mathrm{s}}(x)}{\sin n \pi}
$$

(b) The expreseion

$$
\frac{J_{n}(x) \cos n x-J_{-n}(x)}{\ln n \pi}
$$

becomes an "indeterminate" of the form $0 / 0$ for the case when n is an integer. Thie is because for an integer n we have cos $n_{x}=(-1)^{n}$ and $J_{-n}(x)=(-1)^{n} J_{n}(x)$ [see Problem 6.5]. This "indeterminate form" can be evaluated by asing L'Hospital's rule, i.e.

$$
\lim _{p \rightarrow \mathrm{~N}}\left[\frac{J_{p}(x) \cos p_{T}-J_{-p}(x)}{\sin p t}\right]=\lim _{p \rightarrow+1} \frac{\frac{\partial}{\partial p}\left[J_{p}(x) \cos p \pi-J_{-p}(x)\right]}{\frac{\partial}{\partial p}[\sin p p]}
$$

This motivates the deflintion (II) on page 98.
6.18. Use Problem 6.17 to obtain the general solution of Bessel's equation for $n=0$.

In this case we must evaluate

$$
\begin{equation*}
\lim _{p \rightarrow 0}\left[\frac{J_{p}(x) \cos p_{\pi}-J_{-p}(x)}{\sin p_{\pi}}\right] \tag{I}
\end{equation*}
$$

Using L'Hospital's rule (differentiating the numerator and denominator with reapect to p), we find for the IImit in (1)

$$
\lim _{p \rightarrow 0}\left[\frac{\left(\partial J_{p} / \partial p\right) \cos p_{p}-\left(\partial J_{-p} / \partial p\right)}{\overline{\cos p q}}\right]=\frac{1}{x}\left[\frac{\partial J_{p}}{\partial p}-\frac{\partial J_{-p}}{\partial p}\right]_{p=0}
$$

where the notation indictea that we are to take the partial derivatives of $J_{p}(v)$ and $J_{-p}(x)$ with respect to p and then put $p=0$. Since $n J_{-p} f(-p)=-\mathrm{i} J_{-p} / 2 p$, the required limit is also equal to

$$
\left.\frac{2}{\pi} \frac{\partial J_{p}}{\partial p}\right|_{p=0}
$$

To oltain $\partial J_{\nu} / \partial p$ we differentiate the series

$$
J_{p}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}(x / 2)^{p+2 r}}{r!\Gamma(p+r+1)}
$$

with respect to p and obtain

$$
\begin{equation*}
\frac{\partial J_{p}}{\partial p}=\sum_{r=0}^{\infty} \frac{\{-1)^{r}}{r!} \frac{\partial}{\partial p}\left\{\frac{(x / 2)^{p}+2 r}{\Gamma(p+r+1)}\right\} \tag{2}
\end{equation*}
$$

Now if we let $\frac{(x / 2)^{p+2 y}}{\Gamma(p+r+1)}=G$, then $\ln G=(p+\varepsilon r) \ln (x / 2)-\ln \Gamma(p+r+1)$ so that differentintion with respect to p gives

$$
\frac{1}{G} \frac{\partial G}{\partial p}=\ln (x / 2)-\frac{r^{\prime}(p+r+1)}{r^{\prime}(p+r+1)}
$$

Then for $p=0$, we have

$$
\begin{equation*}
\left.\frac{\partial G}{\partial p}\right|_{p>0}=\frac{(x / 2)^{2}}{\Gamma(r+1)}\left[\ln (x / 2)-\frac{\Gamma^{\prime}(\tau+1)}{\Gamma(r+1)}\right] \tag{s}
\end{equation*}
$$

Using (z) and (s), we have

$$
\begin{aligned}
\left.\frac{2}{F} \frac{\partial J_{p}}{\partial p}\right|_{D=0} & =\frac{2}{\pi} \sum_{r=0}^{m} \frac{(-1) r(x / 2)^{2 r}}{\Gamma I \Gamma(r+1)}\left[\ln (x / 2)-\frac{\Gamma^{\prime}(r+1)}{\Gamma(r+1)}\right] \\
& =\frac{2}{\pi}(\ln (x / 2)+y) J_{0}(x)+\frac{2}{\pi}\left[\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2^{2} 4^{2}}\left(1+\frac{1}{2}\right)+\frac{x^{0}}{2^{2} 4^{2} \theta^{2}}\left(1+\frac{1}{1}+\frac{1}{8}\right)-\cdots\right]
\end{aligned}
$$

where the last reries is obtained on uging the result 6 , on page 69. This last series is the geries for $Y_{i}(x)$. We can in a similar manner obtain the series (12), page 98 , for $Y_{n}(x)$ whera n is an integer. The ceneral solution if n is an integer is then given by $y=c_{1} J_{n}(x)+c_{2} Y_{n}^{\prime}(x)$.

' FUNCTIONS RELLATED TO BESSEL FUNCTIONS

6.19. Prove thet the recurrence formula for the modified Bessel function of the first kind $I_{n}(x)$ is

$$
I_{n+1}(x)=I_{n-1}(x)-\frac{2 n}{x} I_{n}(x)
$$

From Probiem B.B(b) we hive

$$
\begin{equation*}
J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x) \tag{1}
\end{equation*}
$$

Replace a by ie to obtaln

$$
\begin{equation*}
J_{n+1}(i x)=-\frac{2 i n}{x} J_{n}(i x)-J_{n-1}(i x) \tag{s}
\end{equation*}
$$

Now by definition $f_{n}(x)=i-n J_{n}(i x)$ or $J_{n}(i x)=i n J_{n}(x)$, so that (x) becomes

$$
i n+1 J_{n+1}(x)=-\frac{2 i n}{x} i n j_{n}(x)-i n-1 I_{n}(x)
$$

Dividing by i^{n+1} then givee the required result.
6.20. If n is not an integer, show that
(a) $\quad H_{n}^{(1)}(x)=\frac{J_{-n}(x)-e^{-\ln +J_{n}}(x)}{i \sin n \pi}$,
(b) $\quad \dot{H}_{n}^{(2)}(x)=\frac{e^{\ln _{n} J_{n}(x)-J_{-n}(x)}}{i \sin n_{\pi}}$
(a) By definition of $H_{n}^{(1)}(a)$ and $Y_{n}(x)$ (seo pages 89 and 98 respectively) we have

$$
\begin{aligned}
B_{n}^{(1)}(x) & =J_{n}(x)+i Y_{n}(x)=J_{n}(x)+i\left[\frac{J_{n}(x) \cos n \pi-J_{-n}(x)}{\sin n \pi}\right] \\
& =\frac{J_{n}(x) \sin n \pi+i J_{n}(n) \cos n v-U_{-n}(x)}{\sin \tilde{n}_{\pi}} \\
& =i\left[\frac{J_{n}(x)(\cos n \pi-i \sin n \pi)-J_{-n}(x)}{\sin n \pi}\right] \\
& =i\left[\frac{J_{n}(x)-i n \pi-J_{-n}(x)}{\sin n \pi}\right]=\frac{J_{-n}(x)-\theta^{-i n} J_{n}(x)}{i \sin \pi \pi}
\end{aligned}
$$

(b) Sinct $H_{n}^{(1)}(x)=J_{n}(x)-i X_{n}(x)$, we find on replacing i by $-i$ in the result of part (a),

$$
H_{n}^{(2)}(x)=\frac{J_{-n}(x)-e^{\ln \pi J_{n}(x)}}{-i \sin n \pi}=\frac{e^{\ln \pi J_{n}(x)-J_{-n}(x)}}{i \sin \pi 7}
$$

321. Show that
(a) $\operatorname{Ber}(x)=1-\frac{x^{4}}{2^{2} 4^{2}}+\frac{x^{\mathrm{B}}}{2^{2} 4^{2} 6^{2} g^{2}}-\cdots$
(b) Bei $(x)=\frac{x^{2}}{2^{2}}-\frac{x^{9}}{2^{2} 4^{9} 6^{2}}+\frac{x^{10}}{2^{2} 4^{2} 6^{2} 8^{2} 10^{2}}-\cdots$

We have

$$
\begin{aligned}
& J_{0}\left(i^{1 / 2} x\right)=1-\frac{\left(i^{3} / 2 x\right)^{2}}{2^{2}}+\frac{\left(i^{3 / 2} x\right)^{4}}{2^{2} 4^{2}}-\frac{\left(i^{1 / 2} 2 x\right)^{\theta}}{2^{2} 4^{2} 6^{2}}+\frac{\left(i^{3 / 2} x\right)^{1}}{2^{2} 4^{4} \delta^{2} 8^{2}}-\cdots \\
& =1-\frac{i^{3} x^{2}}{2^{2}}+\frac{i^{9} x^{4}}{2^{2} 4^{2}}-\frac{i^{9} x^{8}}{2^{2} 4^{2} 8^{2}}+\frac{i^{12} x^{8}}{2^{2} 4^{2} 6^{3} 8^{2}}-\cdots \\
& =1+\frac{i x^{2}}{2^{2}}-\frac{x^{4}}{2^{2} 4^{2}}-\frac{i x^{n}}{2^{2} 4^{2} 6^{2}}+\frac{x^{8}}{2^{2} 4^{2} 6^{2} 8^{2}}-\cdots \\
& =\left(1-\frac{x^{4}}{2^{2} 4^{2}}+\frac{x^{8}}{2^{2} 4^{2} 6^{8} 8^{2}}-\cdots\right)+i\left(\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2^{2} 4^{256}}+\cdots\right)
\end{aligned}
$$

and the required resule follows on neting that $J_{0}\left(i^{3 / 2} z\right)=\operatorname{Ber}(x)+i$ Bei (x) and equating real and imaginary parts. Note that the aubecript zero has beon oriitted from $\mathbf{B e r}_{0}(x)$ and $\mathrm{Bei}_{\mathrm{g}}(x)$.

equations transformable into bessel's equation

6.22. Find the general solution of the equation $x y^{\prime}+y^{\prime}+a y=0$.

The equation can be written as $x^{2} v^{\prime \prime}+x y^{\prime}+a x y=0$ and is a epecial casa of equation (es), page 101, whexe $k=0, a=\sqrt{a}, r=1 / 2 . \beta=0$. Then the solution as given by (27), page 101, is

$$
y=c_{1} J_{0}(2 \sqrt{a x})+c_{2} Y_{0}(2 \sqrt{a x})
$$

ORTHOGONALITY OF BESSEL FUNCTIONS

6.29. Prove that $\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=\frac{\mu J_{n}(\lambda) J_{n}^{\prime}(\mu)-\lambda J_{n}(\mu) J_{n}^{\prime}(\lambda)}{\lambda^{2}-\mu^{2}}$ if $\lambda \neq \mu$.

From (s) and (4), page 97, we see that $\gamma_{1}=J_{n}(\lambda x)$ and $y_{1}=J_{n}(\mu x)$ are solutions of the . equations

$$
x^{2} y_{1}^{\prime \prime}+x y_{1}^{\prime}+\left(\lambda^{2} x^{2}-n^{2}\right) y_{1}=0 \quad x^{2} y_{2}^{\prime \prime}+x y_{2}^{\prime}+\left(x^{2} x^{2}-n^{2}\right) y_{2}=0
$$

Muldiplying the first equation by y_{2}, the second by y_{1} and subtracting. we find

$$
x^{2}\left[y_{2} y_{1}^{\prime \prime}-y_{1} y_{2}^{\prime \prime}\right]+x\left[y_{2} y_{1}^{\prime}-v_{1} y_{2}^{\prime}\right]=\left(\mu^{2}-\lambda^{2}\right) x^{2} y_{1} y_{2}
$$

which on division by x can be written as
or

$$
\begin{gathered}
x \frac{d}{d x}\left[y_{2} y_{1}^{\prime}-y_{1} y_{2}^{\prime}\right]+\left[z_{2} y_{1}^{\prime}-y_{1} y_{2}^{\prime}\right]=\left(\mu^{3}-\lambda^{2}\right) x y_{1} y_{2} \\
\frac{d}{d x}\left\{x\left[y_{2} y_{1}^{\prime}-y_{1} y_{2}^{\prime}\right]\right\}=\left(\mu^{2}-\lambda^{2}\right) x y_{1} y_{2}
\end{gathered}
$$

Then by integrating and omitting the constant of integration,

$$
\left(\mu z-\lambda^{2}\right) \int x y_{1} y_{2} d x=x\left[y_{2} v_{1}^{\prime}-y_{1} y_{2}^{\prime}\right]
$$

or, uging $y_{1}=J_{n}(\lambda x), y_{2}=J_{n}(\mu x)$ and dividing by $\mu^{2}-\lambda^{2}+0$,

$$
\begin{gathered}
\int x J_{n}(\lambda x) J_{n}(\mu x) d x=\frac{z\left[\lambda J_{n}(\mu x) J_{n}^{\prime}(\lambda x)-\mu J_{n}(\lambda x) J_{n}^{\prime}(\mu x)\right]}{\mu^{2}-\lambda^{2}} \\
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=\frac{N_{n}(\mu) J_{n}^{\prime}(\lambda)-\mu J_{n}(\lambda) J_{n}^{\prime}(\mu)}{\mu^{2}-\lambda^{2}}
\end{gathered}
$$

Thus
which is equivalent to the required result.
6.24. Prove that $\int_{0}^{1} x J_{n}^{2}(\lambda x) d x=\frac{1}{2}\left[J_{n}^{\prime 2}(\lambda)+\left(1-\frac{n^{2}}{\lambda^{2}}\right) J_{n}^{2}(\lambda)\right]$.

Let $\mu \rightarrow \lambda$ in the result of Probiem 6.23. Then, using L'Hospital's rule, we find

$$
\begin{aligned}
\int_{0}^{1} x J_{n}^{2}(\lambda z) d x & =\lim _{\mu=n} \frac{\lambda J_{n}^{\prime}(\mu) J_{n}^{\prime}(\lambda)}{}-\frac{J_{n}(\lambda) J_{n}^{\prime}(\mu)-\mu J_{n}(\lambda) J_{n}^{\prime \prime}(\mu)}{2 \mu} \\
& =\frac{\lambda J_{n}^{\prime 2}(\lambda)-J_{n}(\lambda) J_{n}^{\prime}(\lambda)-\lambda J_{n}(\lambda) J_{n}^{\prime \prime}(\lambda)}{2 \lambda}
\end{aligned}
$$

But since $\lambda^{2} J_{n}^{\prime \prime}(\lambda)+\lambda J_{n}^{\prime}(\lambda)+\left(\lambda^{2}-n^{2}\right) J_{n}(\lambda)=0$, we find on solving for $J_{n}^{\prime \prime}(\lambda)$ and substituting,

$$
\int_{0}^{1} x J_{n}^{2}(\lambda x) d x=\frac{1}{2}\left[S_{n}^{\prime 2}(\lambda)+\left(1-\frac{n^{2}}{\lambda^{2}}\right) y_{n}^{2}(\lambda)\right]
$$

6.2\%. Prove that if λ and μ are any two different roots of the equation $R J_{n}(x)+S_{x} J_{n}^{\prime}(x)=0$, where R and S are constants, then

$$
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d z=0
$$

1.e. $\sqrt{x} J_{n}(\lambda x)$ and $\sqrt{x} d_{n}(\mu x)$ are orthogonal in $(0,1)$.

Since λ and μ are roots of $R J_{n}(x)+S \pi J_{n}^{\prime}(x)=0$, we have

$$
\begin{equation*}
R J_{n}(\lambda)+S \lambda_{n}^{\prime}(\lambda)=0, \quad R J_{n}(\mu)+S_{\mu} J_{n}^{\prime}(\mu)=0 \tag{I}
\end{equation*}
$$

Then since \boldsymbol{R} and \boldsymbol{S} are not both zero we find from (I),

$$
\mu J_{a}(\lambda) J_{n}^{\prime}(\mu)-\lambda J_{n}(\mu) J_{n}^{\prime}(\lambda)=0
$$

and to from Prohlem 6.2s we have the required result

$$
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=0
$$

SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND

6.26. If $f(x)=\sum_{p=1}^{\infty} A_{p} J_{n}\left(\lambda_{p} x\right), \quad 0<x<1$, where $\lambda_{p}, p=1,2,3, \ldots$, are the positive roots of $J_{n}(x)=0$, show that

$$
A_{p}=\frac{2}{J_{n+1}^{2}\left(\lambda_{p}\right)} \int_{0}^{1} x J_{n}\left(\lambda_{p} x\right) f(x) d x
$$

Moltiply the seried for $f(x)$ by $x J_{n}\left(\lambda_{k} x\right)$ and integrate term by term from 0 to 1 . Then

$$
\begin{aligned}
\int_{0}^{1} x J_{n}\left(\lambda_{k} x\right) f(x) d x & =\sum_{p=1}^{\infty} A_{n} \int_{0}^{1} x J_{n}\left(\lambda_{k} x\right) J_{n}\left(\lambda_{p} x\right) d x \\
& =A_{k} \int_{0}^{1} x J_{n}^{2}\left(\lambda_{k} x\right) d x \\
& =\frac{1}{2} A_{k} J_{n}^{\prime / 2}\left(\lambda_{k}\right)
\end{aligned}
$$

where we have used Problems 6.24 and 6.25 together with the fact that $\gamma_{n}\left(\lambda_{k}\right)=0$. It follows that

$$
A_{k}=\frac{2}{J_{n}^{\prime 2}\left(\lambda_{k}\right)} \int_{0}^{1} x J_{n}\left(\lambda_{k} x\right) f(x) d x
$$

To obtain the required result from thiz, we note that from the pecurrence formula 8 , page 99 , which is equivalent to the formula 3 on that page, we have

$$
\begin{gathered}
\lambda_{k} J_{n}^{\prime}\left(\lambda_{k}\right)=\pi J_{n}\left(\lambda_{k}\right)-\lambda_{k} J_{n+1}\left(\lambda_{k}\right) \\
J_{n}^{\prime}\left(\lambda_{k}\right)=-J_{n+1}\left(\lambda_{k}\right)
\end{gathered}
$$

or since $J_{7}\left(\lambda_{k}\right)=0$,
6.27. Expand. $f(x)=1$ in a geries of the form

$$
\sum_{p=1}^{\infty} A_{p} J_{0}\left(\lambda_{p} x\right)
$$

for $0<x<1$, if $\lambda_{p,} p=1,2,8, \ldots$ are the positive roots of $J_{0}(x)=0$.

From Problem 6.26 we have

$$
\begin{aligned}
A_{p} & =\frac{2}{J_{1}^{2}\left(\lambda_{p}\right)} \int_{0}^{1} x J_{0}\left(\lambda_{p} x\right) d x=\frac{2}{\frac{2}{\lambda_{p}^{J} J_{1}^{2}\left(\lambda_{p}\right)} \int_{0}^{\lambda_{p}} v J_{0}(v) d v} \\
& =\left.\frac{2}{\lambda_{p}^{2} J_{1}^{2}\left(\lambda_{p}\right)} v J_{1}(v)\right|_{0} ^{\nu_{p}}=\frac{2}{\lambda_{p} J_{1}\left(\lambda_{p}\right)}
\end{aligned}
$$

where we have made the substitution $v=\lambda_{p}$ if in the intersal and used the renult of Problem 8.10(a) with $\mathrm{n}=1$.

Thua we have the required series

$$
f(x)=1=\sum_{p=1}^{\infty} \frac{2}{\lambda_{p} J_{1}\left(\lambda_{p}\right)} J_{0}\left(\lambda_{p} x\right)
$$

which can be written

$$
\frac{J_{0}\left(\lambda_{1} x\right)}{\lambda_{1} J_{1}\left(\lambda_{1}\right)}+\frac{J_{0}\left(\lambda_{1} x\right)}{\lambda_{2} J_{1}\left(\lambda_{2}\right)}+\cdots=\frac{1}{2}
$$

SOLUTIONS USING BESSEL FUNCTIONS OF THE FIRST KIND

'6.28. A circular plate of unit radius (see Fig. 6-7) has its plane faces insulated. If the initial tempersture is $F(\rho)$ and if the rim is kept at temperature zero, find the temperature of the plate at any time.

Since the temperature is independent of ϕ, the boundary value problem for deternining $u(p, t)$ is

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\kappa\left(\frac{\partial^{2} u}{\partial p^{2}}+\frac{1}{\partial} \frac{\partial u}{\partial \phi}\right) \tag{1}\\
u(1, t)=0, \quad u(\rho, 0)=F(p), \quad|u(p, t)|<M
\end{gather*}
$$

Let $i=P(\rho) \boldsymbol{2}(4)=P r$ in equation (1). Then

$$
P T^{\prime}=\times\left(P^{\prime \prime} T+\frac{1}{P} P^{\prime} T\right)
$$

or dividing by $\boldsymbol{k} P T$,

$$
\frac{T^{\prime}}{\varepsilon T}=\frac{P^{\prime \prime}}{P}+\frac{1}{p} \frac{P^{\prime}}{P}=-\lambda^{2}
$$

1rom which

$$
T^{\prime}+\kappa \lambda^{2} P=0, \quad P^{\prime \prime}+\frac{1}{\beta} P^{\prime}+\lambda^{2} P=0
$$

These have general solutions

$$
T=c_{1} \varepsilon^{-k \lambda^{2} t}, \quad P=A_{1} J_{0}\left(\lambda_{p}\right)+B_{1} Y_{0}\left(\lambda_{p}\right)
$$

Fig.6-7

Since $u=P T$ is bounded at $p=0, B_{1}=0$. Then

$$
u(\rho, t)=A e^{-\kappa \lambda \lambda^{\top}\left(J_{0}\right.}\left(\lambda_{0}\right)
$$

where $A=A_{1} c_{1}$.
From the firat boundary condition,

$$
u(3, t)=A 0^{-\kappa A} t_{t} f_{0}(\lambda)=0
$$

from which $f_{0}(\lambda)=0$ and $\lambda=\lambda_{1}, \lambda_{2} \ldots$ are the positive roote.
Thus a solution ta

$$
u(\rho, t)=A e^{-x \lambda}\left(J_{0}\left(\lambda_{m} \rho\right) \quad m=1,2, a, \ldots\right.
$$

By superposition, a solution is

$$
u(p, t)=\sum_{m=1}^{\infty} A_{m i} 4^{-n \lambda_{m}^{A}} J_{0}\left(\lambda_{m} p\right)
$$

From the ageond boundary condition,

$$
u(\rho, 0)=F(\rho)=\sum_{m=1}^{\infty} A_{m} J_{0}\left(\lambda_{m \rho}\right)
$$

Then from Problem 6.26 with $n=0$ we have
and so

$$
\begin{gather*}
A_{m}=\frac{2}{J_{1}^{1}\left(\lambda_{m}\right)} \int_{0}^{t}{ }_{\rho} F^{\prime}(\rho) J_{0}\left(\lambda_{m} \rho\right) d_{\rho} \\
u(\rho, t)=\sum_{m=1}^{\infty}\left\{\left[\frac{2}{J_{1}^{2}\left(\lambda_{m}\right)} \int_{0}^{1} \rho F(\rho) J_{0}\left(\lambda_{m} \rho\right) d \rho\right]-k \lambda_{m}^{1} J_{0}\left(\lambda_{m p} \rho\right)\right\} \tag{l}
\end{gather*}
$$

which can be eatablinhed as the required solution.
Note thet this solution also glvea the temperature of an infinitely long solid cylinder whose convex surface is kept at temperature zero and whose initial temperature in $F(p)$.
6.29. A solid conducting cylinder of unit height and radius and with diffusivity κ is initially at temperature $f(\rho, z)$ (see Fig. 6-8). The entire surface is suddenly lowered to temperature zero and kept at this temperature. Find the temperature at any point of the cylinder at any subsequent time.

Since there ia no 中-dependence, as is evident from symmetry, the heat conduction equation if

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\kappa\left(\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\dot{\partial} \rho}+\frac{\partial^{2} u}{\partial z^{2}}\right) \tag{1}
\end{equation*}
$$

where $u=u(0, x, t)$, The boundary conditions are given by

Fig. 6-8

$$
\begin{equation*}
u(0, x, 0)=f(0,2), \quad \pm(\rho, 0, t)=0, \quad u(0,1, t)=0, \quad u(1, x, t)=0, \quad|u(\rho, x, t)|<M \tag{8}
\end{equation*}
$$

where $0 \leq p<1,0<x<1, i>0$.
To solve this boundary yalue problem let $U=F Z T=P(\rho) Z(a) T(t)$ in (t) to obtain

$$
P Z T^{\prime}=k\left(P^{\prime \prime} Z T+\frac{1}{p} P^{\prime} Z T+P Z^{\prime \prime} T\right)
$$

Then dividing by α PZT we have

$$
\frac{T^{\prime}}{\kappa^{\prime}}=\frac{P^{\prime \prime}}{P}+\frac{1}{\rho} \frac{P^{\prime}}{P}+\frac{Z^{\prime \prime}}{Z}
$$

Sines the left side depende only on t while the right side depends only on ρ and 2 , each side must be a constant, say - λ^{2}. Thus

$$
\begin{gather*}
T^{\prime}+\lambda \lambda^{2} T=0 \\
\frac{p^{\prime \prime}}{P}+\frac{1}{p} \frac{P^{\prime \prime}}{P}+\frac{Z^{\prime \prime}}{Z}=-\lambda^{2}
\end{gather*}
$$

The last equation can be written as

$$
\frac{P^{\prime \prime}}{P}+\frac{1}{p} \frac{P^{\prime}}{P}=-\lambda^{2}-\frac{Z^{\prime \prime}}{Z}
$$

from which we see that each side must be a constant, say $-\mu^{2}$. From thia we obtain the two equations

$$
\begin{gather*}
\rho P^{\prime \prime}+P^{\prime}+\mu^{2} \rho P=0 \tag{4}\\
Z^{\prime \prime}-\nabla^{2} Z=0 \tag{5}
\end{gather*}
$$

where we have written

$$
\begin{equation*}
y^{2}=\mu^{2}-\lambda^{2} \tag{6}
\end{equation*}
$$

The aolutions of (5), (4) and (5) are given by

$$
T=c_{1} 0^{-\alpha \lambda^{9} 1}, \quad P=c_{q} J_{0}(\mu \rho)+c_{8} Y_{0}(\mu \rho), \quad Z=e_{i} \theta^{\beta z}+c_{\beta^{\prime}}-v E
$$

Thus a solution to (I) is given by the product of these, i.e.

Now from the boundedness condition at $\rho=0$ we must have $\theta_{s}=0$. Thus the solution becomes

$$
\begin{equation*}
u(\rho, z, t)=0^{\left.-\pi \lambda \lambda_{t} J_{0}(\mu \rho)\left[A A^{v z}+B\right\rangle^{-v z}\right]} \tag{7}
\end{equation*}
$$

From the sacond boundary condition in (f) we see that

$$
u(\rho, 0, t)=-\times \alpha^{2} t J_{0}(\mu \rho)(A+B)=0
$$

$s 0$ that we muat have $A+B=0$ or $B=-A$. Then (7) becomes

$$
w(\rho, z, t)=A \theta^{-\alpha \lambda^{2} t y_{0}(A \rho)\left[\theta^{\nu z}-\theta^{-v}\right]}
$$

From the third condition wh have
which can he astifted only if $\epsilon^{v}-6^{-v}=0$ or

$$
0^{2 v}=1=0^{2 k \pi x} \quad k=0,1,2, \ldots
$$

It follows that we must have $2 \mathrm{~F}=2 \mathrm{kri}$ or

$$
\begin{equation*}
=k_{r r i} \quad k=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Using this in (7), it becomes

$$
u(\rho, t, t)=C \sigma^{-x \lambda^{l} t y_{0}(\mu \nu) \sin \lambda_{\alpha} \cdot \bar{x}}
$$

where C ig a new constant.
From the focrth condition in (s) we obtain

$$
u\left(1_{\nu}, x, t\right)=C_{*}^{-k x^{2} t} J_{0}(\mu) \sin k_{\pi z}=0
$$

which cen be antisfled only if $J_{0}(\mu)=0$ so that

$$
\begin{equation*}
\mu=r_{1}, r_{2}, \ldots \tag{9}
\end{equation*}
$$

Where $r_{m}\left(m=1,2, \ldots\right.$) is the mith positive root of $J_{0}(x)=0$. Now from (B), (8) and (9) it follows that

$$
\lambda^{2}=\mu^{2}-y^{2}=r^{2}+k^{2} r^{2}
$$

co thet a soiution satisfying all conditions in (z) but the first is given by

$$
\begin{equation*}
u(\rho, \pi, t)=C e^{-\alpha\left(r_{m}^{2}+k^{2} \tau^{2}\right) t} J_{0}\left(r_{m} \rho\right) \sin k \in \pi \tag{10}
\end{equation*}
$$

where $k=1,2,8, \ldots, m=1,2,3, \ldots$. Replacing i by $C_{k m}$ and bamming over k and m we obtain by the ouperposition principle the solution

$$
\begin{equation*}
u(\rho, z, t)=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} C_{k m} e^{-x\left(s_{m}^{k}+k^{3} \varepsilon^{2}\right) t} J_{0}\left(r_{m} \rho\right) \sin k_{t} t \tag{11}
\end{equation*}
$$

The firnt condition in (2) now lads to

$$
f(\rho, z)=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} C_{k m} J_{0}\left(r_{m} p\right) \sin k z z
$$

This can be written as
where

$$
\begin{equation*}
b_{k}=\sum_{m=1}^{\infty} C_{k m} J_{0}\left(y_{m} \mathrm{c}\right) \tag{18}
\end{equation*}
$$

It follows from this that b_{k} are the Faurier eveffleianta obrained when $f(0, s)$ is expanded into a Fourier sine obries in 2 [we think of ρ at kept constant in this case]. Thus by the metheds of Chapter 2 we have

$$
\begin{equation*}
b_{k}=\frac{2}{1} \int_{0}^{1} f(\rho, s) \operatorname{ain} k \pi z d z \tag{1s}
\end{equation*}
$$

We now mast find $C_{\text {rm }}$ from the expsnaion (18). Since b_{k} is a function of $p_{\text {, this }}$ is simply the oxpansion of b_{k} fato a Beasel series as in Problem 6.26, and we find

$$
\begin{equation*}
C_{k m}=\frac{2}{J_{1}^{2}\left(r_{m}\right)} \int_{0}^{1}{ }_{p} b_{k} y_{0}\left(r_{m \rho}\right) d \rho \tag{14}
\end{equation*}
$$

This becomes on uriag (1s)

$$
\begin{equation*}
C_{k m}=\frac{4 \psi}{J_{1}^{\prime}\left(r_{m}\right)} \int_{0}^{1} \int_{0}^{1} p f\left(\rho_{t} z\right) J_{0}\left(r_{n \rho}\right) \sin k y z d_{p} d z \tag{16}
\end{equation*}
$$

The required solution is thas given by (11) with the coefficients (15).
6.30. Work Problem 6.29 if $f(p, z)=H_{0}, a$ constant.

In this case we find from (15) of Problem 6.29

$$
\begin{aligned}
C_{k m} & =\frac{4 u_{0}}{J_{1}^{\prime}\left(r_{m}\right)} \int_{0}^{1} \int_{0}^{1} \rho J_{0}\left(r_{m \rho} \rho\right) \sin k \sigma z d \rho d z \\
& =\frac{4 u_{0}}{J_{1}^{j}\left(r_{m}\right)}\left\{\int_{0}^{1} p J_{0}\left(r_{m} \rho\right) d \rho\right\}\left\{\int_{0}^{1} \sin k \pi z d z\right\} \\
& =\frac{4 u_{0}}{J_{1}^{2}\left(r_{m}\right)}\left\{\frac{J_{1}\left(r_{m}\right)}{r_{m}}\right\}\left\{\frac{1-\cos k_{z}}{k_{\pi}}\right\} \\
& =\frac{4 u_{0}(1-\cos k \pi)}{k_{0} r_{m} J_{1}\left(r_{m}\right)}
\end{aligned}
$$

on using the same prosedura as in Problem 6.27. The required solution is thus

$$
u(\rho, z, t)=\frac{4 u_{0}}{\%} \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{1-\cos k_{m}}{k r_{m} J_{1}\left(r_{m}\right)} e^{-k\left(r_{n}^{2}+k^{4} s^{2}\right) t J_{0}\left(r_{m} \rho\right) \sin k \pi z}
$$

6.31. A drum consists of a stretched circular membrane of unit radius whose rim, represented by the circle of Fig. 6-7, is fixed. If the membrane is struck so that its initial displacement is $\bar{F}(\rho, \phi)$ and is then released, find the displacement at any time.

The boundary qalue problem for the displacement $z(\rho, \phi, t)$ from the equilibrium or rest position (the $x y-p l a n e$) is

$$
\begin{gathered}
\frac{\partial^{2} z}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} z}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial z}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial \partial_{z}}{\partial \phi^{2}}\right) \\
x(1, \phi, \theta)=0, \quad t(\rho, \phi, 0)=0_{1}^{i} \quad z_{t}[\rho, \phi, 0)=0, \quad z(\rho, \phi ; 0)=F(\rho, \phi)
\end{gathered}
$$

Let $\boldsymbol{x}=\boldsymbol{P}(\rho) \phi(\phi) T(t)=P \phi T$. Then.

$$
P \Phi T^{\prime \prime}=a^{2}\left(P^{\prime \prime} \Phi T+\frac{1}{\rho} P^{\prime} \Phi T+\frac{1}{\rho^{3}} P \phi^{\prime \prime} T\right)
$$

Dividing by $a^{2 P} 4 T$,

$$
\frac{T^{\prime \prime}}{\sigma^{\prime \prime} T}=\frac{P^{\prime \prime}}{P}+\frac{1}{\rho} \frac{P^{\prime}}{\tilde{P}}+\frac{1}{\rho^{2}} \frac{\Phi^{\prime \prime}}{\Phi}=-\lambda^{\emptyset}
$$

and so

$$
\begin{gather*}
T^{\prime \prime}+\lambda^{2} \ell^{2} T=0 \tag{1}\\
\frac{P^{\prime \prime}}{P}+\frac{1}{p} \frac{P^{\prime}}{P}+\frac{1}{\beta^{2}} \frac{\phi^{\prime \prime}}{\phi}=-\lambda^{2} \tag{t}
\end{gather*}
$$

Multiplying (8) by ρ^{2}, the qariables ean be sepurated to yiold

$$
\frac{\alpha^{2} P^{\prime \prime}}{P}+\frac{p^{P^{\prime}}}{P}+\lambda^{2} \alpha^{2}=-\frac{\phi^{\prime \prime}}{\phi}=\mu^{2}
$$

Bo that

$$
\begin{gather*}
\phi^{\prime \prime}+\mu^{2} \phi=0 \tag{s}\\
\rho^{2} P^{\prime \prime}+\rho^{\prime}+\left(\lambda^{2} \alpha^{2}-\mu^{2}\right) P=0 \tag{t}
\end{gather*}
$$

General solutions of (t), (s) and (4) are

$$
\begin{align*}
& T=A_{1} \cos \lambda a t+B_{1} \operatorname{ain} \lambda a t \tag{6}\\
& \phi=A_{2} \cos \mu \phi+B_{2} \operatorname{tin} \mu \phi \tag{6}\\
& \dot{P}=A_{8} J_{\mu}\left(\lambda_{\rho}\right)+B_{8} Y_{\mu}\left(\lambda_{\rho}\right) \tag{7}
\end{align*}
$$

A solution $x(\rho, \phi, t)$ is given by the product of these,
Since a must have period 2π in the variable ϕ, we mathave $\mu=$ m where $m=0,1,2,5, \ldots$. from (0).

Also, since z is bounded at $\rho=0$ we must take $B_{2}=0$.
Furthermare, to aetiafy $z_{i}(\rho, \phi, 0)=0$ we must choose $B_{1}=0$.
Then a solution is

$$
u(\rho, \phi, t)=J_{m}\left(\lambda_{\rho}\right) \cos \lambda a t(A \cos m \phi+B \sin m \phi)
$$

Since $z(1, \phi, t)=0, J_{m}(\lambda)=0$ so that $\lambda=\lambda_{m k}, k=1,2, S_{1} \ldots$, ure the positive roots.
By superposition (summing over both n and k).

$$
\begin{align*}
x\left(\rho_{s} \phi, t\right)= & \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} J_{m}\left(\lambda_{m k}\right) \cos \left(\lambda_{m k} \alpha t\right)\left(A_{m k} \cos m \phi+B_{m k} \sin m \phi\right) \\
= & \sum_{m=0}^{\infty}\left\{\left[\sum_{k=1}^{\infty} A_{m k} J_{m}\left(\lambda_{m k \rho}\right)\right] \cos m \phi\right. \\
& \left.+\left[\sum_{k=1}^{\infty} B_{m k} J_{m}\left(\lambda_{m k} \rho\right)\right] \sin m \phi\right\} \cos \lambda_{m k} a t \tag{8}
\end{align*}
$$

Pptting $t=0$, we have

$$
\begin{equation*}
x(\varphi, \phi, 0)=F(\rho, \phi)=\sum_{m=0}^{\infty}\left(C_{m} \cos \operatorname{mi} \phi+D_{m} \operatorname{ain} m \phi\right) \tag{8}
\end{equation*}
$$

whers

$$
\begin{align*}
& C_{m}=\sum_{k=1}^{\infty} A_{m k} J_{m}\left(\lambda_{m k} \rho\right) \\
& D_{m p}=\sum_{k=1}^{\infty} B_{m k} J_{m n}\left(\lambda_{m k j}\right) \tag{10}
\end{align*}
$$

But (0) is simply a Fourler meries and we can detarmine C_{m} and D_{m} by the ugual methods. Wo find

$$
\begin{aligned}
& C_{m}= \begin{cases}\frac{1}{\pi} \int_{0}^{2 \pi} F(\rho, \phi) \cos m \phi d \phi & \cdots=1,2, g_{1}, \ldots \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(\rho_{0} \phi\right) d \phi & , m=0\end{cases} \\
& D_{m}=\frac{1}{\pi} \int_{0}^{2 *} F(\rho, \phi) \text { вin } m \phi d \phi \quad \because \pi=0,1,2,5, \ldots
\end{aligned}
$$

From (to), using the resulte of Bessel aries exyansions, we have

$$
\begin{aligned}
A_{m k} & =\frac{2}{\left[J_{m+1}\left(\lambda_{m k}\right)\right]^{2}} \int_{0}^{1} \rho J_{m}\left(\lambda_{m k} \rho\right) C_{m} d \rho \\
& = \begin{cases}\frac{2}{\pi\left[J_{m+1}\left(\lambda_{m k}\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 \pi} \rho F(\rho, \phi) J_{m}\left(\lambda_{m k \rho} \rho\right) \cos m \phi d \rho d \phi \quad \text { if } m=1,2,2, \ldots \\
\frac{1}{\pi\left[J_{1}\left(\lambda_{0 k}\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 \pi} \rho F(\rho, \phi) J_{0}\left(\lambda_{0 k} \rho\right) d \rho d \phi \quad \text { it } m=0\end{cases} \\
B_{m k} & =\frac{2}{\left[J_{m+1}\left(\lambda_{m k}\right)\right]^{2}} \int_{0}^{1} \rho J_{m}\left(\lambda_{m k \rho)} D_{m} d_{\rho}\right. \\
& =\frac{2}{\pi\left[J_{m+1}\left(\lambda_{m k}\right)\right]^{2}} \int_{0}^{1} \int_{0}^{2 J F(\rho, \phi) J_{m}\left(\lambda_{m+k} \rho\right) \sin m \phi d \rho d \phi \quad \text { it } m=0,1,2, \ldots}
\end{aligned}
$$

Uaing these values of $A_{m k}$ and $B_{m k}$ in (8) yields the reguired solution.
Note that the various modes of vibration of the drum are obtainad by apecifying particular values of m and k. The frequencion of vibration are then given by

$$
f_{m k}=\frac{\lambda_{m k}}{2 \pi} a
$$

Becauas these are not integer maltiples of the lowest frequency, we would expect nolse pather than a musical tone.

SERIES USING BESSEL FUNCTIONS OF THE SECOND KIND

6.32. Let $u_{0}\left(\lambda_{m \rho}\right)=Y_{0}\left(\lambda_{m} a\right) J_{0}\left(\lambda_{m \rho}\right)-J_{0}\left(\lambda_{m} a\right) Y_{0}\left(\lambda_{m p}\right)$ where $\lambda_{m}, \quad m=1,2,3, \ldots$, are the positive roots of $Y_{0}(\lambda a) J_{0}(\lambda b)-J_{0}(\lambda a) Y_{0}(\lambda b)=0$. Show that

$$
\int_{0}^{b} \rho u_{0}\left(\lambda_{m p}\right) u_{0}\left(\lambda_{n} \rho\right) d \rho=0^{\cdot} m \neq n
$$

The functions $P_{m}=\mu_{0}\left(\lambda_{m} \rho\right)$ and $P_{n}=u_{0}\left(\lambda_{9} \rho\right)$ satisfy the equations

$$
\begin{align*}
& \rho P_{m}^{\prime \prime}+P_{m}^{\prime}+\lambda_{m}^{2} \rho P_{m}=0 \tag{i}\\
& p P_{n}^{\prime \prime}+P_{n}^{\prime}+\lambda_{n}^{z} p P_{n}=0 \tag{}
\end{align*}
$$

Multiplying (2) by P_{n}, ($\boldsymbol{2}$) by P_{m}, and aubtracting, we find

$$
\rho\left(P_{n} P_{m}^{\prime \prime}-P_{m} P_{n}^{\prime \prime}\right)+P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}=\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right)_{\rho} P_{m} P_{n}
$$

which can be written
or

$$
\begin{gathered}
\rho \frac{d}{d f}\left(P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right)+P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}=\left(\lambda_{m}^{2}-\lambda_{m}^{2}\right) \rho P_{m} P_{n} \\
\frac{d}{d_{\rho}}\left[\rho\left(P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right)\right]=\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right) p P_{m} P_{n}
\end{gathered}
$$

Then by integrating both sides from a to b we have

$$
\begin{aligned}
\left(\lambda_{n}^{g}-\lambda_{m}^{g}\right) \int_{a}^{b}{ }_{\rho} P_{m} P_{n} d \rho & =\left.\rho\left(P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right)\right|_{a} ^{b} \\
& =\left.\rho\left[\lambda_{m} u_{0}\left(\lambda_{n} \rho\right) u_{0}^{\prime}\left(\lambda_{m} \rho\right)-\lambda_{n} u_{0}\left(\lambda_{m} \rho\right) u_{0}^{\prime}\left(\lambda_{n} \rho\right)\right]\right|_{a} ^{b} \\
& =0
\end{aligned}
$$

on using the facts $u_{0}\left(\lambda_{m} a\right)=0, u_{0}\left(\lambda_{n} a\right)=0, u_{0}\left(\lambda_{m} b\right)=0, u_{0}\left(\lambda_{n} b\right)=0$. Then since $\lambda_{m} \neq \lambda_{n}$ we have

$$
\int_{a}^{b}{ }_{\rho} P_{m} P_{n} d d_{\rho}=\int_{a}^{b} \rho u_{0}\left(\lambda_{m} \rho\right) u_{0}\left(\lambda_{n} \rho\right) d \rho=0
$$

6.33. Show how to expand a function $F(\rho)$ into a series of the form $\sum_{m=1}^{\infty} A_{m} u_{0}\left(\lambda_{m \rho}\right)$ where the functions $u_{0}\left(\lambda_{m \rho}\right)$ are given in Problem 6.32.

Suppose that

$$
\begin{equation*}
F(\omega)=\sum_{m=1}^{\infty} A_{m} \nu_{0}\left(\lambda_{m p}\right) \tag{1}
\end{equation*}
$$

Then on multiplying bath sidea by $a u_{0}\left(\lambda_{m} \rho\right)$ and integrating from a to b we find

$$
\begin{aligned}
\int_{a}^{D} p F(\rho) u_{0}\left(\lambda_{n} \rho\right) d \rho & =\sum_{m=1}^{\infty} A_{m} \int_{a}^{b} p u_{0}\left(\lambda_{m} \rho\right) u_{0}\left(\lambda_{\pi} \rho\right) d_{f} \\
& =A_{n} \int_{a}^{0} p\left[u_{0}\left(\lambda_{m} \rho\right)\right]^{2} d p
\end{aligned}
$$

on making use of Problem 6.a2.

Thus

$$
\begin{equation*}
A_{n} \Rightarrow \frac{\int_{a}^{b} \rho F(\rho) u_{0}\left(\lambda_{n} \rho\right) d \rho}{\int_{0}^{b} \rho\left[u_{0}\left(\lambda_{n} \rho\right)\right]^{2} d \rho} \tag{B}
\end{equation*}
$$

Although these coefficienta have been obtained formaily, we can show that when thase coeftcients are used in the right side of (r) it does converge to $F(\rho)$ points of continuity, easumlny that $F(\rho)$ and $E^{\prime}(\rho)$ are piecewine continuous, while at points of discontinuity it converges to $\frac{1}{1}[F(p+0)+F(\rho-0)]$.

6,34. A very long hollow cylinder of inner radius a and outer radius b (whose cruss section is indicated in Fig. 6-9) is made of conducting material of diffusivity κ. If the inner and cuter surfaces are kept at temperature zero while the initial temperature is a given function $f(\rho)$, where ρ is the distance from the axis, find the temperature at any point at any later time t.

Since symmetry shows that there is no or or z-dependence, the boundary value problem which we must solve for $u=t(\rho, t)$ is

$$
\begin{array}{r}
\frac{\partial u}{\partial t}=x\left(\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}\right) \quad(t) \\
u(a, t)=0, u(\delta, t)=0, u(\rho, 0)=f(\rho),|u(\rho, t)|<M \\
\text { By separation of vaciables we have as in Problem } 6.28 \\
u(\rho, t)=e^{-\kappa \kappa^{2} c}\left[\alpha_{1} J_{0}\left(\lambda_{\rho}\right)+b_{1} Y_{0}(\lambda \rho t]\right. \tag{f}
\end{array}
$$

Fig.6-9

From $u(a, t)=0$ and $u(b, t)=0$ we find

$$
\begin{equation*}
a_{1} J_{0}(\lambda a)+b_{1} Y_{0}(\lambda a)=0, \quad a_{1} J_{0}(\lambda b)+b_{1} Y_{0}(\lambda b)=0 \tag{4}
\end{equation*}
$$

Thene equationg lead to the equation

$$
\begin{equation*}
Y_{0}(\lambda a) J_{0}(\lambda b)-J_{0}(\lambda a) Y_{0}(\lambda b)=0 \tag{5}
\end{equation*}
$$

for determining λ. The equation (5) has infinitely many pobitive roota $\lambda_{1}, \lambda_{2}, \ldots$.
From the first equation in (4) we find

$$
b_{1}=-\frac{\underline{q}_{1} J_{0}(\lambda a)}{Y_{0}(\lambda a)}
$$

so that (s) can be written

$$
\begin{equation*}
u\left(\rho_{5} t\right)=A \mathrm{a}^{-k \lambda^{2}\left(\left[Y_{0}(\lambda a) J_{0}\left(\lambda_{\rho}\right)-J_{0}(\lambda a) Y_{0}\left(\lambda_{\rho}\right)\right]\right.} \tag{6}
\end{equation*}
$$

where A is a constant.

Using the fact that for $\lambda=\lambda_{m}$ (6) is a nolution, together with the prinelple of auperposition, we obtain the solution

Fhere

$$
\begin{gather*}
u(\rho, t)=\sum_{m=1}^{\infty} A_{m} e^{-i \lambda_{m}^{2} t} u_{0}\left(\lambda_{m p} p\right) \tag{7}\\
u_{0}\left(\lambda_{m p} p\right)=Y_{0}\left(\lambda_{m a} a\right) J_{0}\left(\lambda_{m} p\right)-J_{0}\left(\lambda_{m} a\right) Y_{g}\left(\lambda_{p n} \rho\right)
\end{gather*}
$$

From the condition $u(\rho, 0)=f(\rho)$ we now obtain from (7)

Then

$$
\begin{align*}
f(\rho) & =\sum_{m=1}^{\infty} A_{m} u_{0}\left(\lambda_{m} \rho\right) \tag{9}\\
A_{m} & =\frac{\int_{a}^{b} p f(\rho) u_{0}\left(\lambda_{m \rho} \rho\right) d \rho}{\int_{n}^{b} \rho\left[u_{0}\left(\lambda_{m} p\right)\right]^{2} d \rho} \tag{10}
\end{align*}
$$

Substitution of these coefleienti finto (7) gives the required solution.
6.85. A simple pendulum initielly has a length of l_{0} and makes an angle θ_{0} with the vertical. It ts then released from this position. If the length l of the pendulum increases with time t according to $l=l_{0}+e t$ where a is a constant, find the position of the pendulum at any time assuming the oscillations to be small.

Let m be the mass of the bob and a the angle which the pendulum maikes with the verticul at any time t. The weight $m g$ can be resolved into two componenta, one tangantial to the path and given by $m y$ gin ${ }^{\circ}$ and the other perpendicular to it and given by $m g \cos ^{2}$, as thown in Fig. 6-10. From mechanites we know that

Fig. 6-10
or

$$
\begin{align*}
& \text { Torque about } O=\frac{d}{d t}(\text { Angular momentam about } O) \\
& \qquad(-m g \sin \theta) t=\frac{d}{d t}\left(m i^{2} \theta\right) \tag{1}
\end{align*}
$$

where $=d \theta / d t$. This equation can be written as

$$
1 \ddot{\theta}+2 i \theta+g \sin \theta=0
$$

or aince $l=l_{0}+\alpha$,

$$
\left(l_{0}+\varepsilon \ddot{\theta} \ddot{\theta}+2 \pi \dot{d}+g \theta=0\right.
$$

Letting $z=L_{0}+$ et in this equation it becomes

$$
\begin{equation*}
x \frac{d^{2} \theta}{d x^{2}}+2 \frac{d x}{d x}+\frac{\theta}{t^{2}} \theta=0 \tag{2}
\end{equation*}
$$

wultiplying by 2 and compering with equations (20) and (e7), page 101, we find that the solution is

$$
\begin{equation*}
\theta=\frac{1}{\sqrt{L_{0}+\varepsilon t}}\left[A J_{1}\left(\frac{2 \sqrt{q}}{t} \sqrt{l_{0}+\pi t}\right)+B Y_{1}\left(\frac{2 \sqrt{g}}{2} \sqrt{b_{0}+\varepsilon t}\right)\right] \tag{s}
\end{equation*}
$$

Since $\theta=a_{0}$ at $t=0$ we have

$$
\begin{equation*}
\theta_{0}=\frac{1}{\sqrt{l_{0}}}\left[A J_{1}\left(\frac{2 \sqrt{0 I_{0}}}{0}\right)+B r_{1}\left(\frac{2 \sqrt{0 L_{0}}}{}\right)\right] \tag{4}
\end{equation*}
$$

To natisfy $\dot{i}=0$ at $t=0$ we must first obtain $\dot{i}=d o / d t$. We find

$$
\begin{aligned}
& i=\frac{d t}{d t}=-\frac{e}{2\left(\frac{l}{\left.L_{0}+\varepsilon t\right)^{3 / 2}}\right.}\left[A J_{1}\left(\frac{2 \sqrt{\rho}}{t} \sqrt{l_{0}+\pi t}\right)+B Y_{1}\left(\frac{2 \sqrt{l}}{\varepsilon} \sqrt{l_{0}+\pi t}\right)\right] \\
& +\frac{\sqrt{g}}{l_{0}+\pi}\left[A J_{1}^{\prime}\left(\frac{2 \sqrt{g}}{2} \sqrt{l_{0}+\Omega l}\right)+B Y_{1}^{\prime}\left(\frac{2 \sqrt{g}}{-} \sqrt{l_{0}+\pi}\right)\right]
\end{aligned}
$$

Now aince : $=0$ for $t=0$ we find

$$
\begin{aligned}
& 0=-\frac{e}{2 \delta_{0}^{1 / 2}}\left[A J_{1}\left(\frac{2 \sqrt{\sigma L_{0}}}{e}\right)+B Y_{1}\left(\frac{2 \sqrt{\sigma J_{0}}}{e}\right)\right] \\
& +\frac{\sqrt{g}}{l_{0}}\left[A J_{3}^{\prime}\left(\frac{2 \sqrt{g L_{0}}}{r}\right)+B Y_{1}^{\prime}\left(\frac{2 \sqrt{g L_{0}}}{\cdot}\right)\right]
\end{aligned}
$$

or uaing (4)

$$
\begin{equation*}
A J_{1}\left(\frac{2 \sqrt{g l_{0}}}{e}\right)+B Y_{1}^{\prime}\left(\frac{2 \sqrt{g l_{l}}}{g}\right)=\frac{\theta \theta_{0}}{2 \sqrt{g}} \tag{5}
\end{equation*}
$$

Solving for A and B from (4) and (6) we find

$$
\begin{align*}
& A=\frac{\sqrt{t_{0}} Y_{1}^{\prime}-(\pi / 2 \sqrt{D}) Y_{1}}{J_{1} Y_{1}^{\prime}-Y_{1} J_{1}^{\prime}} \theta_{0} \\
& B=\frac{(/ / 2 \sqrt{g})_{1}-\sqrt{t_{0} J_{1}^{\prime}}}{J_{1} Y_{1}^{\prime}-Y_{1} J_{1}^{\prime}} \theta_{0} \tag{}
\end{align*}
$$

where the argument $2 \sqrt{g l_{0}} / *$ in $J_{1}, J_{1}^{\prime}, X_{1}, Y_{1}^{\prime}$ has bcen omitted.
Now from' Problem 6.58 with $n=1$ we know that

$$
\begin{gathered}
J_{1}(x) Y_{1}^{\prime}(x)-Y_{1}(x) J_{1}^{\prime}(x)=\frac{2}{\pi x} \\
J_{1}\left(\frac{2 \sqrt{g l_{0}}}{4}\right) Y_{1}^{\prime}\left(\frac{2 \sqrt{g \bar{l}_{0}}}{g}\right)-Y_{1}\left(\frac{2 \sqrt{g I_{0}}}{a}\right) J_{1}^{\prime}\left(\frac{2 \sqrt{g l_{0}}}{\square}\right)=\frac{2}{\pi \sqrt{g \bar{I}_{0}}}
\end{gathered}
$$

so that
Thus (6) becomes

$$
\begin{align*}
& A=\frac{\pi \sqrt{g} l_{0} \theta_{0}}{\varepsilon} Y_{1}^{\prime}\left(\frac{2 \sqrt{\rho l_{0}}}{e}\right)-\frac{\pi \sqrt{l_{0} c_{0}}}{2} X_{1}\left(\frac{2 \sqrt{g l_{0}}}{e}\right) \\
& B=\frac{\pi \sqrt{l_{0} \theta_{0}}}{2} J_{1}\left(\frac{2 \sqrt{\rho l_{0}}}{2}\right)-\frac{\pi \sqrt{g} l_{0} \rho_{0}}{} J_{1}^{\prime}\left(\frac{2 \sqrt{\rho l_{0}}}{2}\right) \tag{y}
\end{align*}
$$

Now from formula y, pago 99, with $n=1$ and the corresponding formula involving Y_{n} for $n=1$,
we have from (η).

$$
\begin{align*}
& A=-\frac{\pi \sqrt{l_{0}} \theta_{0}}{2} Y_{2}\left(\frac{2 \sqrt{\rho l_{0}}}{2}\right) \\
& B=\frac{\pi \sqrt{l_{0} \theta_{0}}}{2} J_{2}\left(\frac{2 \sqrt{0 l_{0}}}{2}\right) \tag{8}
\end{align*}
$$

Using these in (s) we thos find

$$
\begin{equation*}
=\frac{\pi \sqrt{l_{0} e_{0}}}{2 \sqrt{l_{0}+\varepsilon t}}\left[J_{2}\left(\frac{2 \sqrt{\sigma l_{0}}}{\epsilon}\right) Y_{1}\left(\frac{2 \sqrt{g}}{\varepsilon} \sqrt{l_{0}+\epsilon t}\right)-Y_{2}\left(\frac{2 \sqrt{g l_{0}}}{\varepsilon}\right) J_{1}\left(\frac{2 \sqrt{g}}{4} \sqrt{l_{0}+\tau t}\right)\right] \tag{9}
\end{equation*}
$$

Supplementary Problems

HESSEL FUNCTIONS OF THE FIRST KIND

6.36. (a) Show that $f_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{24}}+\frac{z^{5}}{2^{2} 4^{26}}-\frac{x^{7}}{2^{24^{2} d^{288}}}+\cdots$ and verify that the interval of convergence is $-\infty<x<\infty$.
(b) Show that $J_{6}^{\prime}(x)=-J_{1}(x)$.
(c) Show that $\frac{d}{d x}\left[x J_{1}(x)\right]=x J_{0}(x)$.
6.37. Evaluate (a) $J_{3 / 2}(x)$ and (b) $J_{-5 / 2}(x)$ in terms of aines and cosines.
688. Find $J_{9}(x)$ in terms of $J_{0}(x)$ snd $J_{1}(x)$.
6.39. Prove that
(a) $J_{n}^{\prime \prime}(x)=\frac{1}{4}\left[J_{n-2}(x)-2 J_{n}(x)+J_{n+2}(x)\right]$
(b) $J_{n}^{\prime \prime \prime}(x)=\frac{1}{8}\left[J_{n-9}(x)-3 J_{n-1}(x)+8 J_{n+1}(x)-J_{n+a}(x)\right]$
and genaralize these results.
6.00. Evaluate
(a) $\int x^{3} J_{2}(x) d x$,
(b) $\int_{0}^{1} x^{3} \mathcal{D}_{0}(x) d x$,
(c) $\int x^{2} J_{0}(x) d x$.
6.41. Evaluate
(a) $\int J_{1}(\sqrt[3]{x}) d x$
(b) $\int \frac{J_{2}(x)}{x^{2}} d x$.
6.42. Evaiuate $\int J_{0}(x) \sin x d x$.
6.43. Verify directly the result $J_{n}^{\prime}(x) J_{-n}(x)-J_{-n}^{\prime}(z) J_{n}(x)=\frac{2 \sin n=}{x x}$ for (a) $n=\frac{1}{2}$ and (b) $n=\frac{3}{2}$.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS

6.44. Use the generating function to prove that $J_{n}^{\prime}(x)=\frac{\lambda}{2}\left[J_{n-1}(x)+J_{n+1}(x)\right]$ for the case where n is an Integer.
6.45. Use the generating function to work Problem 6.39 for the case where n is an integer.
6.46. Show that
(a) $1=J_{0}(x)+2 J_{2}(x)+2 J_{4}(x)+\cdots$
(b) $J_{1}(x)-J_{3}(x)+J_{3}(x)-J_{7}(x)+\cdots=\frac{1}{2} \operatorname{ain} x$
6.47. Show that $\frac{x}{4} J_{1}(x)=J_{2}(x)-2 J_{1}(x)+3 J_{6}(x)-\cdots$.
6.48. Shaw that $J_{0}(x)=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (x \sin \theta) d \theta$.
6.49. Show that
(a) $\int_{0}^{\pi / 2} J_{1}(x \cos \theta) d \theta=\frac{1-\cos x}{x}$
(b) $\int_{0}^{\pi / 2} J_{0}(x \sin \theta) \cos \theta \sin \theta d \theta=\frac{J_{1}(x)}{\infty}$.
6.50. Show that $\int_{0}^{x} J_{0}(t) d t=2 \sum_{k=0}^{\sum_{0}} J_{2 x+1}(x)$.
6.51. Show that
(a) $\int_{0}^{\infty} e^{-a x J_{0}(b x) d x=\frac{1}{\sqrt{a^{2}+b^{2}}}=.}$
(b) $\int_{0}^{\infty}-a x J_{n}(b x) d x=\frac{\left(\sqrt{a^{2}+b^{2}}-a\right) n}{\sqrt{a^{2}+b^{2}}}, n>-1$
652. Show that $\int_{0}^{\mu} J_{0}(x) d x=1$.
6.5. Prove that $\left|\rho_{n}(x)\right| \leq 1$ for all integers n. Is the result truce if n is not an integer:

BESSEL FUNCTIONS OF THE SECOND KIND

4.54. Show that
(a) $Y_{n+1}(x)=\frac{2 n}{x} Y_{n}(x)-Y_{n-1}(x)$,
(b) $\quad Y_{n}^{\prime}(x)=\frac{1}{2}\left[Y_{n-1}(x)-Y_{n+1}^{\prime}(x)\right]$.
645. Explain why the recurrence formulas for $J_{n}(x)$ on paze 99 hold if $J_{n}(x)$ is replaced by $Y_{n}(x)$.
6.56. Prove that $Y_{0}^{\prime}(\alpha)=-Y_{1}(x)$.
*57. Evaluate
(o) $\boldsymbol{Y}_{3 / 2}(x)$,
(d) $Y_{-8 / 2}(x)$.
6.58. Prove that $J_{n}(x) Y_{n}^{\prime}(x)-J_{n}^{\prime}(x) Y_{n}(x)=\frac{2}{v x}$.
0.59. Evaluste
(a) $\int x^{3} \mathbf{Y}_{2}(x) d x$,
(b) $\int y_{z}(x) d x$,
(c) $\int \frac{Y_{8}(x)}{x^{3}} d x$.
6.50. Prove the resuit (21): page 98.

FUNCTHONS RELATED TO BESSEL FUNCTIONS

6.61. Show that $I_{0}(x)=1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{224^{3}}+\frac{x^{6}}{244^{2} 6^{3}}+\cdots$.
6.62. Show that
(a) $I_{n}^{\prime}(x)=\frac{1}{\frac{1}{2}}\left\{I_{n-1}(x)+I_{n+1}(x)\right\}$,
(b) $\quad x I_{n}^{\prime}(x)=x I_{n-1}(x)-\boldsymbol{n} I_{n}(x)$.
6.5s. Show that $e^{\frac{3}{2}\left(t+\frac{1}{2}\right)}=\sum_{-\infty}^{\infty} I_{n}(\alpha) t n$ ia the generating function for $I_{n}(x)$.
6.64. Siow that $l_{0}(x)=\frac{z}{\pi} \int_{0}^{\pi / 2} \cosh (x \sin \theta) d \theta$.
6.65. Show that (a) $\sinh x=2\left[I_{1}(x)+I_{8}(x)+\cdots\right]$
(b) $\operatorname{cogh} x=I_{0}(x)+2\left(I_{0}(x)+I_{4}(x)+\cdots\right]$.
6.66. Show that
(a) $t_{3 / 2}(x)=\sqrt{\frac{2}{x x}}\left(\cosh x-\frac{\sinh x}{x}\right)$.
(b) $I_{-9 / 2}(x)=\sqrt{\frac{2}{T x}}\left(\sinh x-\frac{\cosh x}{x}\right)$
6.67. (a) Show that $K_{n+1}(x)=K_{n}(x)+\frac{2 \pi}{x} K_{n}(x)$. (b) Explain why the function: $K_{\mathrm{a}}(x)$ setisfy the
amme recorrence fornulau as $I_{n}(x)$. anme recarrence formulay as $I_{n}(x)$.
6.68. Give asymptatic formulas for
(a) $H_{n}^{(1)}\{z\}$,
(b) $\boldsymbol{H}_{n}^{(3)}(x)$.
6.69. Show thet
(a) $\operatorname{Ber}_{n}(x)=\sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+n}}{k!\Gamma(n+k+1)} \cos \left(\frac{3 n+2 k}{4}\right) \pi$.
(b) $\operatorname{Bei}_{n}(z)=\sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+n}}{k!\Gamma^{\prime}(n+k+1)} \sin \left(\frac{3 n+2 k}{4}\right)=$
6.70. Show that

$$
\begin{aligned}
& \text { Show that } \\
& \operatorname{Ker}(z)=-\{\ln (x / 2)+\gamma\} \operatorname{Ber}(x)+\frac{\pi}{4} \operatorname{Bei}(x)+1-\frac{(x / 2)^{4}}{2!^{2}}\left(1+\frac{1}{2}\right)+\frac{(x / 2)^{3}}{4!^{2}}\left(1+\frac{1}{3}+\frac{1}{4}+\frac{i}{i}\right)-\cdots
\end{aligned}
$$

EQUATIONS TRANSFORMABLE INTO BESSEL'S EQUATION

6.71. Prove that (97), page 101, is a solution of (96).
6.72. Solve $4 x y^{\prime \prime}+4 y^{\prime}+y=0$.
6.73. Solve (a) $x y^{\prime \prime}+2 y^{\prime}+x y=0$, (b) $y^{\prime \prime}+x^{2} y=0$.
6.74. Solve $y^{\prime \prime}+e^{2 x} y=0$. [Hint. Let $a^{x}=u$].
6.75. (a) Show by direct substitation that $y=J_{0}(2 \sqrt{x})$ is a solution of $x y^{\prime \prime}+y^{\prime}+y=0$ and (b) write the general solution.
6.76. (a) Show by direct aubstitution that $y=\sqrt{x} J_{1 / 3}\left(\frac{1}{3} x^{3 / 2}\right)$ in a solution of $y^{\prime \prime}+x y=0$ and (b) write the general solution.
6.77. (a) Show that Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\eta^{2}\right) y=0$ can be transformed into

$$
\frac{d^{2} u}{d x^{2}}+\left(1-\frac{\pi^{2}-1 / 4}{x^{2}}\right) x=0
$$

Where $v=w / \sqrt{x}$. (b) Discuss the case where $n= \pm 1 / 2$.
(b) Discrss the case where is large and explain the connection with the asymptotic formulas on page 101.
6.78. Solve $x^{2} y^{\prime}-x y^{\prime}+x^{2} y=0$.
6.79. Show that the equation (26) on page 101 has the solution (28) if $a=0$. \{Hint. Lat $y=x^{0}$ and choose p appropriately, or make the transformation $z=e^{t}$.,

ORTHOGONAL GERIES OF BESSEL FUNCTIONS

6.96. Is the result of Problem 6.27, page 113, valid for $-1 \leq x \leq 1$? Justify jour angwer.
6.81. Show that $\int x J_{n}^{2}(\lambda x) d x=\frac{x^{2}}{2}\left[J_{n}^{2}(\lambda x)+J_{n+1}^{2}(\lambda x)\right]-\frac{n x}{\lambda} J_{n}(\lambda x) J_{x+1}(\lambda x)+c$
f.52. Prove the resulto (s4) and (s5), pace 102.
6.8s. Show that

$$
\frac{1-x^{2}}{8}=\sum_{p=1}^{\infty} \frac{J_{0}\left(\lambda_{p} x\right)}{\lambda_{p}^{3} J_{1}\left(\lambda_{p}\right)} \quad-1<x<1
$$

where λ_{p} are the positive roots of $J_{0}(\lambda)=0$.

6SA. Show that

$$
x=2 \sum_{p=1}^{x} \frac{J_{1}\left(\lambda_{p} x\right)}{\lambda J_{2}\left(\lambda_{D}\right)} \quad-1<x<1
$$

where λ_{p} ara the positive roots of $J_{1}(\lambda)=0$.
685. Show that

$$
x^{3}=\sum_{p=1}^{m} \frac{2\left(8-\lambda_{p}^{*}\right) J_{1}\left(\lambda_{p} x\right)}{\lambda_{p}^{i} J_{1}^{\prime}\left(\lambda_{p}\right)} \quad-1<\pi<1
$$

where λ_{p} are the positive roots of $j_{1}^{\prime}(\lambda)=0$.
686. Show that

$$
x^{2}=\sum_{p=1}^{\infty} \frac{2\left(\lambda_{p}^{g}-4\right) J_{0}\left(\lambda_{p} x\right)}{\lambda_{p}^{g} J_{1}\left(\lambda_{p}\right)} \quad-1<z<1
$$

where λ_{D} are the positive roots of $J_{0}(\lambda)=0$.
6.87. Show that

$$
\frac{J_{0}(a x)}{2 J_{0}(a)}=\sum_{p=1}^{\infty} \frac{\lambda_{p} J_{0}\left(\lambda_{p} x\right)}{\left(\lambda_{p}^{2}-\alpha^{2}\right) J_{1}\left(\lambda_{p}\right)} \quad-1<x<1
$$

where λ_{p} are the positive roots of $J_{0}(\lambda)=0$.
6.RE. If $f(x)=\sum_{p=1}^{\infty} A_{p} J_{0}\left(\lambda_{p} x\right)$ where $J_{0}\left(\lambda_{p}\right)=0, p=1,2,3, \ldots$, show that

$$
\int_{0}^{1} v\left(\left.f(x)\right|^{2} d x=\frac{1}{2} \sum_{p=1}^{\infty} A_{p}^{2} J_{1}^{2}\left(\lambda_{p}\right)\right.
$$

Compere with Pargeval's identity for Fourier earies.
6.g9. Use Problems 6.84 and 6.88 to hhow that

$$
\sum_{p=1}^{\infty} \frac{1}{\lambda_{p}^{2}}=\frac{1}{4}
$$

where λ_{p} are the positive roots of $J_{0}(\lambda)=0$.
6.90. Derive the requiti (a) (s5) on page 102, (b) (56) on page 102 , and (c) (s7) on page 102 ,

gOLUTIONS USENG BESSEL FUNCTIONS

6.91. The temperature of a long solid circular cylinder of unit radius in initially zero. At $t=0$ the surface is given a constant tempersture w_{0} which is then maintained. Show that the temperature of the cylinder is given by

$$
u(\rho, t)=u_{0}\left\{1-2 \sum_{n=1}^{\infty} \frac{J_{0}\left(\lambda_{n} \rho\right)}{\lambda_{n} J_{1}\left(\lambda_{n}\right)}-\alpha^{\alpha}\{i\}\right.
$$

where $\lambda_{B} n=1,2,3, \ldots$ are the positive roots of $J_{0}(\lambda)=0$ and x is the diffugvity.
6.92. Show that if $F^{\prime}(\rho)=u_{0}\left(1-\cdot \rho^{2}\right)$, then the temperature of the plate of Problem 6.28 ds civen by

$$
u(\rho, t)=4 u_{0} \sum_{n=1}^{\infty} \frac{J_{0}\left(\lambda_{n} p\right) J_{2}\left(\lambda_{n}\right)}{\lambda_{i}^{Z} J_{1}^{2}\left(\lambda_{n}\right)} \cdot \alpha \lambda_{n}^{2} t
$$

6.93. A cyftader $0<\rho<a, 0<z<1$ has the end $z=0$ at temperature f (p) whlle the other surfaces are kept at temperature zero. Show that the steady-ptate temperature at any point in given by

$$
u(p, z)=\frac{2}{a^{2}} \sum_{n=1}^{\infty} \frac{J_{0}\left(\lambda_{n} \rho\right) \sinh \lambda_{n}(l-z)}{J_{1}^{2}\left(\lambda_{n} a\right) \sinh \lambda_{n} l} \int_{0}^{a} \rho f(\rho) J_{0}\left(\lambda_{n} \rho\right) d_{\rho}
$$

where $J_{0}\left(i_{n} a\right)=0, n=1,2,8, \ldots$.
6ix4. A circular membrane of unit radiun lies in the $x y$-plane with its center at the origin. Its edge $\rho=1$ is fixed in the ay-plane and it is set into vibration by diaplacing it an amount $/(\rho)$ and then releaging it. Show that the displacement is given by

$$
z(\rho, t)=2 \sum_{N=1}^{\infty} \frac{J_{0}\left(\lambda_{n} \rho\right) \cos \lambda_{n} t}{J_{1}^{t}\left(\lambda_{n}\right)} \int_{0}^{1} \rho f(\rho) J_{0}\left(\lambda_{n} \rho\right) d \rho
$$

where λ_{n} are the roots of $J_{0}(\lambda)=0$.
6.95. (a) Solve the boundary value problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \rho^{3}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}
$$

where $0<\rho<1,0<\rho<2 x, t>0$, u ia bounded, and

$$
u(1, \phi, t)=0, \quad u(\rho, \phi, 0)=\rho \cos 3 \phi, \quad u_{1}(\rho, \phi, 0)=0
$$

(b) Give a physical interpretation to the solution.
696. Solve and interprot the boundary value problern

$$
\frac{\partial}{\partial x}\left(x \frac{\partial y}{\partial x}\right)=\frac{\partial^{2} y}{\partial t^{2}}
$$

given that $y(x, 0)=f(x), y_{i}(x, 0)=0, y(1, t)=0$ and $\gamma(x, t)$ is bounded for $0 \leqq x \leq 1, t>0$.
693. (a) Work Problem 6.98 if the and $z=0$ jo kept at temporature $f(\rho, \phi)$. (b) Determine the temperature in the apecial case where $f(\rho, \phi)=\rho^{2}$ cos ϕ.
6.88. (a) Work Problen 6.98 if there is radintion obeying Newtan'a law of cooling at the end $\varepsilon=0$.
6.04. A chain of constant masi por unit length is suepended vertically from one end 0 as indicated in Fig. 6w11. It the chain fo diaplaced ulightly at time $t=0$ a that its ahape in given by $f(x), 0<x<L$, and then releabed, show that the diaplacement of any point x at time t la given by

$$
y(x, t)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(2 \lambda_{n} \sqrt{\frac{L-z}{g}}\right) \cos \lambda_{n}
$$

where λ_{2} are the roots of $J_{0}(2 \lambda \sqrt{L / g})=0$ and

$$
A_{n}=\frac{2}{J_{1}^{2}\left(\lambda_{n}\right)} \int_{0}^{1} v J_{0}\left(\lambda_{n} v\right) f\left(L-\frac{1}{g} v^{2}\right) d v
$$

Fig. 6-11
6.100. Determine the frequencies of the normal modes for the vibeating chain of Problem 6.99 and indicste whether gou would axpect music or nolge from the vibrations.
6.101. A solid cincular cylinder $0<p<\alpha, 0<z<L$ has its bases kapt at temperature zere and the conver surfece at constant temperature u_{0}. Show that the steady-state temperature at any point of the cylinder is

$$
\cdot u(\rho, x)=\frac{4 u_{0}}{v} \sum_{n=1}^{m} \frac{T_{0}\left[(2 n-1)_{\pi \rho} / L\right] \sin [(2 n-1) \pi z / L]}{\left.(2 n-1) L_{0}(2 n-1)_{\pi a} / L\right]}
$$

where I_{0} is the modified Beasel function of order zero.
6.102. Suppose that the choin in Problem 6.99, which is initially at rest, is given an initial velocity distribution defined by $M(x), 0<x<L$. Show that the diaplacement of any point af of the string at any time t is given by

$$
y\left(x_{s} t\right)=\sum_{n=1}^{\infty} B_{n} f_{0}\left(2 \lambda_{n} \sqrt{\frac{L-g}{g}}\right) \operatorname{ain} \lambda_{n} t
$$

Where λ_{n} are the roote of $J_{0}(2 \lambda \sqrt{L / g})=0$ and

$$
E_{n}=\frac{2}{\lambda_{n} J_{1}^{2}\left(\Lambda_{n}\right)} \int_{0}^{1} v J_{0}\left(\lambda_{n} v\right) h\left(L-\frac{1}{0} \sigma v^{2}\right) d v
$$

5.104. The aurtace $p=1$ of an infinite cylinder is kept at temperatare $f(s)$. Show that the steady-state temperature everywhere in the cylinder is given by

$$
u(p, z)=\frac{1}{t} \int_{\lambda=0}^{\infty} \int_{v=-0}^{\infty} \frac{f(v) \cos \lambda(v-v) I_{0}\left(\lambda_{\rho}\right)}{I_{0}(\lambda)} d \lambda d v
$$

6.16. A atring atretched between $x=0$ and $x=2$ has a variable density given by $\sigma=\sigma_{0}+$ eax where x_{0} and -are constanta. The string is given an initial shape $f(x)$ and then released.
(c) Show that if the tension \boldsymbol{T} is constant the boundary value problem is given by

$$
\begin{gathered}
\tau \frac{\partial^{2} y}{\partial x^{2}}=\left(\sigma_{\theta}+\varepsilon x\right) \frac{\partial i^{2} y}{\partial t^{2}} \quad 0<z<L, t>0 \\
v(0, t)=0, \quad y(L, t)=0, \quad y(z, 0)=f(x), \quad y_{t}(x, 0)=0, \quad|y(x, t)|<M
\end{gathered}
$$

(b) Show that the frequencies of the normsl modes of vibration are given by $f_{n}=\omega_{N} / \mathbf{2}_{\pi}$ where the $\omega_{n}(x=1,2,3, \ldots)$ are the positive roots of the equation.
in which

$$
\begin{gathered}
J_{1 / s}(\alpha \omega) J_{-1 / s}\left(\beta_{\omega}\right)=J_{1 / 8}\left(\rho_{\omega \omega}\right) J_{-1 / s}(\alpha \omega) \\
a=\frac{2 \sigma_{0}}{8 q} \sqrt{\frac{\sigma_{0}}{r}} \quad \beta=\frac{2\left(\sigma_{0}+\alpha L\right)}{3_{r}} \sqrt{\frac{\omega_{0}+\alpha_{1}}{r}}
\end{gathered}
$$

MISCELDANEOUS PROBLEMS

6.106. A particle moves along the poaitive x-axis with a force of repulsion per unit mass equal to a constant a^{2} times the instanthaeous distance from the origin. If the mass m facreasea with time sccording to $m=m_{0}+s t$, where m_{0} end r are constants, and if initially the particle is located at the origin and traveling with speed v_{0}, show that the poaition x at any time $t>0$ fa given by

$$
x=\frac{m_{0} v_{0}}{t}\left\{K_{0}\left(\frac{\alpha m_{0}}{c}\right) I_{0}\left(\frac{\alpha m_{0}}{t}+\alpha t\right)-I_{0}\left(\frac{\alpha m_{0}}{c}\right) K_{0}\left(\frac{\alpha m_{0}}{t}+a t\right)\right\}
$$

6.107. Show that if $m \neq n$

$$
\int \frac{J_{m}(\lambda x) J_{n}(\lambda x)}{x} d x=\frac{\lambda x}{m^{2}-n^{2}}\left\{J_{m}^{\prime}\{\lambda x) J_{n}(\lambda x)-J_{m}(\lambda x) J_{n}^{\prime}(\lambda x)\right\}+c
$$

6.108. Deduce the integral $\int \frac{\boldsymbol{J}_{m}^{8}(\lambda x)}{x}-d x$ by using a limiting procedure in the result of Problem 6.107.
6.109. Show that

$$
\int_{0}^{\infty} \frac{J_{n}(x)}{x^{n-2}} d x=\frac{1}{2^{n-1} \Gamma(n)} \quad n>0
$$

6.110. Explain how the Sturm-Liouville theory of Chapter 3 can be used to arrive at various regults involving Besael functions obtained in this chepter.
6.111. A cylinder of unit height and radius (bee Fig, 6-8, page 115) has its top surface kept at temperature u_{0} and the other surfaces at temperature zere. Show thst the ateady-atate temperature at eny point is given by

$$
u(p, x)=2 u_{0} \sum_{n=1}^{\infty} \frac{\left(\sinh \lambda_{n} z\right) J_{0}\left(\lambda_{n} \rho\right)}{\left(\lambda_{n} \sinh \lambda_{n}\right) J_{1}\left(\lambda_{n}\right)}
$$

where λ_{n} sre the poaitive roote of $J_{0}(\lambda)=0$.
6.112. Work Problem 6.29 it the base $z=1$ is insulated.
6.113. Work Problem 6.29 if the convex surface is insmlated.
6.114. Work Problem 6.29 if the bases $z=0$ and $z=1$ are kept at constant temperatures u_{1} and u_{2} respectively. [h^{\prime} int. Let $\quad(\rho, z, t)=v(\rho, z, i)+w(\rho, z)$ and choose w($\left.\rho, z\right)$ appropriately, noting that physically it represents the stesdy-akate Bolution.)
6.[15. Show how Problem 6.29 can be golved if the radius of the cylinder is a while the height is h.
6.116. Work Froblem 6.29 if the initial temperature is $f(\rho, \phi, z)$.
6.117. A membrane hae the form of the reginn bounded by two concentric circles of radii a and b as shown in Fig. 6-12.
(a) Show that the froguencies of the various modea of vibration are given by

$$
f_{\mathrm{mn}}=\frac{\lambda_{m n}}{2 \pi} \sqrt{\frac{\pi}{\mu}}
$$

where r is the tanaion per unit length, μ is the mass per unit area, and $\lambda_{m n}$ are roots of the equation

$$
J_{m}\left(\lambda_{m} a\right) Y_{m}(\lambda b)-J_{m}(\lambda b) Y_{m}(\lambda a)=0
$$

(b) Find the displacement at any time of any point

Fig. 6-12 of the membrane if the membrane fogiven an initial shape and then released.
6.1t8. A metal conducting pipe of diffusivity n has inner radius a, outer radice b and height h. A coordinate system is chosen 80 that one of the bases lies in the sy-plane and the sxis of the pipe is chosen to be the z-axis. If the initial temperature of the pipe is $f(p, z), c<p<b, 0<z<h$, while the surface is kept at temperature zero, find the temperature at any point at any time.
6.119. Work Problem 6.118 if the initial temperature is $f(0, \phi, z)$.
6.120. Work Problem 6.118 if (a) the bates are insulated, (b) the convex serfaces are insulated, (c) the entire surface is insulated.

Chapter 7

Legendre Functions and Applications

LEGENDRE'S DIFFERENTIAL EQUATION

Legendre functions arise as solutions of the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \tag{1}
\end{equation*}
$$

which is called Legendre's differential equation. The general solution of (1) in the case where $n=0,1,2,3, \ldots$ is given by

$$
\begin{equation*}
y=c_{1} P_{n}(x)+c_{3} Q_{n}(x) \tag{2}
\end{equation*}
$$

where $P_{n}(x)$ are polynomials called Legendre polynomials and $Q_{s}(x)$ are called Legendre functions of the second kind. The $Q_{n}(x)$ are unbounded at $x= \pm 1$.

The differential equation (1) is obtained, for example, from Inplace's equation $\nabla^{2} u=0$ expressed in spherical coordinates ($r, 8, \phi$), when it is assumed that u is independent of ϕ. See Problem 7.1.

LEGENDRE POLYNOMIALS

The Legendre polynomials are defined by

$$
\begin{equation*}
P_{n}(x)=\frac{(2 n-1)(2 n-3) \cdots 1}{n!}\left\{x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-8)}{2 \cdot 4(2 n-1)(2 n-3)} x^{n-4}-\cdots\right\} \tag{s}
\end{equation*}
$$

Note that $\boldsymbol{P}_{\mathbf{n}}(x)$ is a polynomial of degree n. The first few Legendre polynozisls are as follows:

$$
\begin{array}{ll}
P_{0}(x)=1 & P_{5}(x)=\frac{1}{2}\left(5 x^{8}-3 x\right) \\
P_{1}(x)=x & P_{4}(x)=\frac{1}{8}\left(35 x^{4}-80 x^{2}+3\right) \\
P_{3}(x)=\frac{1}{2}\left(3 x^{8}-1\right) & P_{s}(x)=\frac{1}{8}\left(68 x^{5}-70 x^{8}+15 x\right)
\end{array}
$$

In all cases $P_{n}(1)=1, P_{n}(-1)=(-1)^{n}$.
The Legendre polynomials can aloo be expressed.by Rodrigue's formula:

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{4}
\end{equation*}
$$

generating function for Legendre polynomials

The function

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{N} P_{n}(x) t^{n} \tag{5}
\end{equation*}
$$

is called the generating function for Legendre polynomials and is useful in obtaining their properties.

RECURRENCE FORMUIAS

1. $\quad P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{\pi-1}(x)$
2. $P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)=(2 n+2) P_{n}(x)$

LEGENDRE FUNCTIONS OF THE SECOND KIND

If $|x|<1$, the Legendre functions of the second kind are given by the following, according as n is even or odd respectively:

$$
\begin{align*}
& Q_{n}(x)=\frac{(-1)^{n / 2} 2^{x}[(n / 2)!]^{2}}{n!}\left\{x-\frac{(n-1)(n+2)}{3!} x^{3}\right. \\
& \left.+\frac{(n-1)(n-3)(n+2)(n+4)}{5!} x^{5}-\cdots\right\} \tag{6}\\
& Q_{n}(x)=\frac{(-1)^{(n+1) / 22^{n-t}}\{[(n-1) / 2]!]^{2}}{1 \cdot \cdot 3 \cdot 5 \cdot n \cdot n}\left\{1-\frac{n(n+1)}{2!} x^{2}\right. \\
& \left.+\frac{n(n-2)}{} \frac{(n+1)(n+B)}{4!} x^{+}-\cdots\right\} \tag{7}
\end{align*}
$$

For $n>1$, the leading coefficients are taken so that the recurrence formulas for $P_{n}(x)$ above apply also $Q_{n}(x)$.

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

The following regults are fundamental:

$$
\begin{align*}
& \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad \text { if } m+n \tag{8}\\
& \int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1} \tag{9}
\end{align*}
$$

The first shows that any two different Legendre polynomials are orthogonal in the interval $-1<x<1$.

SERTES OF LEGENDRE POLYNOMIALS

If $f(x)$ and $f^{\prime}(x)$ are piecewise continuous then at every point of continuity of $f(x)$ in the interval $-1<x<1$ there will exist a Legendre series expansion having the form

$$
\begin{equation*}
f(x)=A_{0} P_{0}(x)+A_{1} P_{1}(x)+A_{2} P_{2}(x)+\cdots \Rightarrow \sum_{k=0}^{\infty} A_{k} P_{k}(x) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) d x \tag{11}
\end{equation*}
$$

At any point of discontinuity the eeries on the right in'(10) converges to $\frac{1}{2}[f(x+0)+f(x-0)]$, which can be used to repluce the left side of (10).

ASSOCIATED LFGENDRE FUNCTIONS

The differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left[n(n+1)-\frac{m^{2}}{1-x^{2}}\right] y=0 \tag{12}
\end{equation*}
$$

is called Legenare's associated differential equation. If $m=0$ this reduces to Legendre's equation (1). Solutions to (12) are called associated Legendre functions. We consider the case where m and n are non-negative integers. In this case the general golution of (12) is given by

$$
\begin{equation*}
y=c_{1} P_{n}^{n}(x)+c_{2} Q_{n}^{m}(x) \tag{18}
\end{equation*}
$$

where $P_{n}^{\prime \prime \prime}(x)$ and $Q_{n}^{m}(x)$ are called associated Legendre functions of the first and second hinds respectively. They are given in terms of the crdinary Legendre functions by

$$
\begin{align*}
& P_{n}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{n}(x) \tag{14}\\
& Q_{n}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} Q_{n}(x) \tag{15}
\end{align*}
$$

Note that if $m>n, P_{n}^{m}(x)=0$. The functions $Q_{n}^{n \prime}(x)$ are unbounded for $x= \pm 1$.
The differential equation (12) is obtained from Laplace's equation $\nabla^{2} u=0$ expressed in apherical coordinates (r, θ, ϕ). See Problem 7.21.

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTIONS

As in the case of Legendre polynomials, the Legendre functions $P_{n}^{\prime \prime \prime}(x)$ are orthogonal in $-1<x<1$, i.e.

$$
\begin{equation*}
\int_{-1}^{1} P_{n}^{m}(x) P_{k}^{m}(x) d x=0 \quad n+k \tag{18}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\int_{-1}^{1}\left[P_{n}^{m}(x)\right]^{2} d x=\frac{2}{2 \pi+1} \frac{(n+m)!}{(n-m)!} \tag{17}
\end{equation*}
$$

Using these, we can expand a function $f(x)$ in a series of the form

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} A_{k} P_{k}^{m}(x) \tag{18}
\end{equation*}
$$

SOLUTIONS TO BOUNDARY VALUE PROBLEMS USING LEGENDRE FUNCTIONS

Various boundary value problems can be solved by use of Legendre functions. See Problems 7.18-7.20 and 7.28-7.80.

Solved Problems

LEGENDRE'S DIFFERENTIAL EQUATION

7.1. By letting $u=R \Theta$, where R depends only on τ and Θ depends only on θ, in Laplace's equation $\nabla^{2} u=0$ expressed in spherical coordinates. show that R and satisify the equations

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\lambda^{2} R=0 \quad \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)-\lambda^{2}(\sin \theta) \theta=0
$$

Laplace's equation in spherical coordinaten is given by

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial \alpha^{2}}{\partial \phi^{2}}=0 \tag{1}
\end{equation*}
$$

See (4), page δ. If u is independent of ϕ, then the equation can be written

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)=0 \tag{l}
\end{equation*}
$$

Letting $u=R \in$ in this equation, where it is supposed that R depends only on r while e depends onis on \%, we have

$$
\frac{\theta}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{R}{r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)=0
$$

Multiplying by 4^{2}, dividiag by Re and rearranging: we find

$$
\frac{1}{R} \frac{d}{d r}\left(\boldsymbol{r}^{2} \frac{d R}{d r}\right)=-\frac{1}{\theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)
$$

Since one side depends only on r while the other depenas only on θ, It followa that each side muat be a constant, esay $-\lambda^{2}$. Then we have
and

$$
\begin{gather*}
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-\lambda^{2} \\
\frac{1}{\theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)=\lambda^{2}
\end{gather*}
$$

Wheh can be rewritten respectively as
and

$$
\begin{align*}
& r^{2} \frac{d^{2} R}{d v^{2}}+2 r \frac{d R}{d r}+\lambda^{2} R=0 \tag{5}\\
& \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)-\lambda^{2}(\sin \theta) \theta=0 \tag{6}
\end{align*}
$$

as required.
7.2. Show that the solution for the Requation in Problem 7.1 can be written as

$$
R=A r^{n}+\frac{B}{r^{n+1}}
$$

where $\lambda^{2}=-n(n+1)$.
The R-equation of Problem 7.1 is

$$
r^{4} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\lambda^{2} R=0
$$

This is an Euler or Cauchy equation and can be solved by letting $R=r \boldsymbol{p}$ and determining p. Alternatively, comparison with (26) and (28), page 101, for the case where $z=r, y=\boldsymbol{R}, \boldsymbol{k}=\frac{1}{2}$, $a=f, \beta=\lambda$ shows that the general solution is

07

$$
\begin{gather*}
R=r^{-1 / 2}\left[A r^{\sqrt{1 / 4-\lambda^{2}}}+B r^{\left.-\sqrt{1 / 4-\lambda^{2}}\right]}\right. \\
K=A r^{-1 / 2+\sqrt{1 / 4-\lambda^{2}}}+B r^{-1 / 8-\sqrt{1 / 4-\lambda^{5}}} \tag{1}
\end{gather*}
$$

This solution can be simplifed if we write

$$
\begin{equation*}
-\frac{1}{2}+\sqrt{\frac{1}{4}-\lambda^{2}}=n \tag{2}
\end{equation*}
$$

no that

$$
\begin{equation*}
-\frac{1}{2}-\sqrt{\frac{1}{4}-x^{2}}=-n-1 \tag{s}
\end{equation*}
$$

In such ctiee (1) becomes

$$
\begin{equation*}
R=A r^{n}+\frac{B}{r^{n+1}} \tag{4}
\end{equation*}
$$

Multiplying equations (2) and (s) together leads to

$$
x^{2}=-n(n+1)
$$

7.3. Show that the Θ-equation (B) of Problem 7.1 becomes Legendre's differential equation (1), page 130, on making the transformation $\varepsilon=\cos \beta$.

Uoing the value $\lambda^{2}=-n(n+1)$ from (5) of Problem 7.2 in the eqequation (6) of Problem 7.1, it becomes

$$
\begin{equation*}
\frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+n(n+1)(\sin \theta) \theta=0 \tag{t}
\end{equation*}
$$

We now let $\xi=$ cos in this equation. Then

Thus

$$
\begin{aligned}
\frac{d \theta}{d \theta} & =\frac{d \theta}{d \xi} \frac{d \xi}{d \theta}=-\sin \theta \frac{d \theta}{d \xi} \\
\operatorname{tin} \theta \frac{d \theta}{d \theta} & =-\sin ^{2} \theta \frac{d \theta}{d \xi}=\left(\varepsilon^{z}-1\right) \frac{d \theta}{d \xi}
\end{aligned}
$$

since $\operatorname{ain}^{2} \theta=1-\cos ^{2} \theta=1-\epsilon^{2}$. It follows that

$$
\begin{align*}
\frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right) & =\frac{d}{d \theta}\left[\left(\xi^{2}-1\right) \frac{d \theta}{d \xi}\right] \\
& =\frac{d}{d \xi}\left[\left(\xi^{\xi}-1\right) \frac{d \theta}{d \xi}\right] \frac{d \xi}{d \theta}=\frac{d}{d \xi}\left[\left(1-\xi^{2}\right) \frac{d \theta}{d \xi}\right] \sin \theta \tag{8}
\end{align*}
$$

Uaing this in (1) and canceling the factor sin p, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left[\left(1-\xi^{2}\right) \frac{d \theta}{d t}\right]+n(n+1) \theta=0 \tag{s}
\end{equation*}
$$

Replacing θ by y and z by x, and carrying out the indicated differentiation, yielda the required Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(3+1) y=0 \tag{4}
\end{equation*}
$$

7A. Une the method of Frobenius to find series solutions of Legendre's differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$.

Amazing a solution of the form $y^{\prime}=\sum \sigma_{k} \alpha^{x+a}$ where the summation inder k goes from $-\infty$ to wand $c_{k} \neq 0$ for $k<0$, we have

$$
\begin{aligned}
n(n+1) y & =\sum r(n+1) c_{k} x^{k+\beta} \\
-2 x y^{\prime} & =\sum-2(k+\beta) c_{k} z^{k+\beta} \\
\left(1-x^{2}\right) y^{\prime \prime} & =\sum(k+\beta)(k+\beta-1) c_{k} x^{k+\beta-2}-\sum(k+\beta)(k+\beta-1) c_{k} x^{k+\beta} \\
& =\sum(k+\beta+2)(k+\beta+1) c_{k+2} x^{k+\beta}-\sum(k+\beta)(k+\beta-1) c_{k} x^{k+\beta}
\end{aligned}
$$

Then by addition,

$$
\sum\left[(k+\beta+2)(k+\beta+1) c_{k+2}-(k+\beta)(k+\beta-1) c_{k}-2(k+\beta) c_{k}+n(n+1) c_{k}\right) x^{k+\beta}=0
$$

and eince the coefficient of x^{k+s} must be zero, we find

$$
\begin{equation*}
\left.(k+\beta+2)(k+\beta+1) c_{k+1}+\left(n i_{n}+1\right)-(k+\beta)(k+\beta+1)\right] \dot{c}_{k}=0 \tag{1}
\end{equation*}
$$

Letting $k=-2$ we obtain, since $c_{-2}=0$, the indicial equation $\dot{\beta}(\beta-1) c_{0}=0$ or, ausuming $0_{0}+0, \beta=0$ Or 1 .

Cane 1: $\quad A=0$.
In this casc (1) becomes

$$
(k+2)(k+1) c_{k+2}+[n(n+1)-k(k+1)] c_{k} \rightleftharpoons 0
$$

Putting $k=-1,0,1,2,3, \ldots$ in succession, we find that e_{1} is arbitrary while

$$
o_{2}=-\frac{n(n+1)}{2!} c_{0}, \quad c_{9}=\frac{1 \cdot 2-n(n+1)}{31} c_{1}, \quad c_{4}=\frac{[2 \cdot 3-n(x+1)]}{4!} c_{2}, \quad \cdots
$$

and so we obtain

$$
\begin{align*}
y= & o_{0}\left[1-\frac{n(n+1)}{2!} x^{2}+\frac{n(n-2)(n+1)(n+5)}{4!} x^{4}-\cdots\right] \\
& +c_{1}\left[x-\frac{(n-1)(n+2)}{3!} z^{3}+\frac{(n-1)(n-3)(n+2)(n+4)}{5!} x^{5}-\cdots\right] \tag{s}
\end{align*}
$$

Since we have a solution with two arbitrary constants, we teed not consider Gage 2: $\beta=1$.
For an even integer $n \geq 0$, the first of the above series terminates and gives a polynomial aolution. For an odd integer $n>0$, the second beries terminates and gives a polynomial solution. Thus for any integer $n \geq 0$ the equation has polynomial solutions. If $n=0,1,2,3$, for example, we obtain from (s) the polynomials

$$
c_{0}, \quad c_{1} x, \quad c_{0}\left(1-8 x^{2}\right), \quad c_{1}\left(\frac{3 x-6 x^{0}}{2}\right)
$$

which are, apart from a moltiplicative constant, the Legendre polynomials $\boldsymbol{P}_{\mathrm{n}}(x)$. This multiplicattve constant is chosen so that $\boldsymbol{P}_{\boldsymbol{n}}(1)=1$.

The series sclution in (s) which does not terminate can be ghown to diverge for $x= \pm 1$. This second solution, which ts unbounded for $x= \pm 1$ or equivalenily for $\theta=0$, x, is cniled a Legendrs function of the second dind and is denoted by $Q_{n}(x)$. It follows that the general solution of Legendre's differential equation can be written as

$$
y=c_{t} P_{n}(x)+c_{2} Q_{n}(x)
$$

In cafe \boldsymbol{n} is not an integer both series solutions are unbounded for $\boldsymbol{x}= \pm \mathbf{1}$.
7.5. Show that a solution of Laplace's equation $\nabla^{2} u=0$ which is independent of ϕ is given by

$$
u=\left(A_{1} r^{n}+\frac{B_{1}}{r^{n+1}}\right)\left[A_{2} P_{n}(\xi)+B_{2} Q_{n}(\xi)\right]
$$

where $\&=\cos \theta$.

This reault follown at once from Problems 7.1 through 7.4 wince $u=R \in$ where

$$
R=A_{1} r^{k}+\frac{B_{1}}{r^{n+1}}
$$

and the general solution of the 0-equation (Legendrg's equstion) is written in terms of two linearly independent solutions $P_{n}(t)$ and $Q_{n}(\xi)$ es

$$
\theta=A_{2} P_{n}(\xi)+B_{q} Q_{n}(\xi)
$$

The functions $P_{n}(t)$ and $Q_{n}(b)$ are the Legendre functions of the first and ascond kinds respectively.

LEGENDRE POLYNOMIALS

7.6. Derive formula (*), page 130, for the Legendre polynomigls.

From ($\left(\right.$) of Problem 7.4 we aee that if $k=n$ then $\theta_{n+2}=0$ and thns $o_{n+4}=0, o_{n+0}=$ $0, \ldots$ Then letting $k=n-2, k-4, \ldots$ we find from (2) of Problem 7.4,

$$
c_{n-2}=-\frac{n(n-1)}{2(2 n-1)} c_{n} \quad c_{n \cdots 4}=-\frac{(n-2)(n-3)}{4(2 n-8)} c_{n-3}=\frac{n(n-1)(n-2)(n-8)}{2 \cdot 4(2 n-1)(2 n-3)} c_{n}
$$

This leads to the polynomial solutions

$$
y=a_{n}\left[x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-s}+\frac{n(n-1)(n-2)(n-8)}{2 \cdot 4(2 n-1)(2 n-3)} z^{n-4}-\cdots\right]
$$

The Legendre polynomitals $P_{R}(x)$ are defined by choosing

$$
c_{n}=\frac{(2 n-1)(2 n-3)-\cdots 3 \cdot 1}{n!}
$$

This choice is made in order that $P_{n}(1) \neq 1$.
7.7. Derive Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.

By Problem 7.8 the Legendre polynomiala are given by ,

$$
P_{n}(x)=\frac{(2 n-1)(2 n-3) \cdots g \cdot 1}{n!}\left\{x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(x-1)(n-2)(n-3)}{2 \cdot 4(2 n-1)(2 n-3)} x^{n-1}-\cdots\right\}
$$

Now integrating this n times from 0 to x, we obtain

$$
\frac{(2 n-1)(2 n-8) \cdots 9 \cdot 1}{(2 n)!}\left\{x^{2 n}-n x^{2 n-2}+\frac{n(n-1)}{2!} a^{2 n-4}-\cdots\right\}
$$

which can be written

$$
\frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{(2 n)(2 n-1)(2 n-2) \cdots \cdot 2+1}\left(x^{8}-1\right)^{n} \quad \text { or } \quad \frac{1}{2^{n} n!}\left(x^{2}-1\right)^{n}
$$

which proves that

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{m}-1\right)^{n}
$$

GENERATING FUNCTION

7.8. Prove that $\frac{1}{\sqrt{1-2 a t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}$.

Uaing the binomial theorem

$$
\left.(1+v) p=1+p v+\frac{p(p-1)}{2!}\right)^{2}+\frac{p(p-1)(p-2)}{S!} v^{n}+\cdots
$$

we have

$$
\begin{aligned}
\frac{1}{\sqrt{1-2 x t+t^{2}}} & =[1-t(2 x-t)]^{-1 / 2} \\
& \therefore 1+\frac{1}{2} t(2 x-t)+\frac{1 \cdot 3}{2 \cdot 4} t^{2}(2 x-t)^{2}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} t^{2}(2 x-t)^{3}+\cdots
\end{aligned}
$$

and the cofficient of t^{n} in this expansion is

$$
\begin{aligned}
\frac{1 \cdot 3 \cdot 6 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n}(2 x)^{n} & -\frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2 \cdot 4: 6 \cdots(2 n-2)} \cdot \frac{(n-1)}{1!}(2 x)^{n-2} \\
& +\frac{1 \cdot 3 \cdot 5 \cdots 2 n-8}{2 \cdot 4 \cdot 6 \cdots 2 n-4} \cdot \frac{(n-2)(n-3)}{2!}(2 x)^{n-1}-\cdots
\end{aligned}
$$

which can be written as

$$
\frac{1 \cdot 8 \cdot 5 \cdots(2 n-1)}{n}\left\{x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4(2 n-1)(2 n-8)} x^{n-4}-\cdots\right\}
$$

i.v. $P_{n}(x)$. The required resalt thus follows.

RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

7.9. Prove that $P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x)$.

From the generating function of Problem 7.8 we have

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \tag{i}
\end{equation*}
$$

Differentiating with respect to t.

$$
\frac{z-t}{\left(1-2 x t+t^{2}\right)^{n}}=\sum_{n=0}^{\infty} n P_{n}(x) t^{n-t}
$$

Maltiplying by $1-2 x t+t^{2}$.

$$
\frac{x-t}{\sqrt{1-2 x t+t^{2}}}=\sum_{x=0}^{\infty}\left(1-2 x t+t^{2}\right) n P_{n}(x) t^{n-1}
$$

Now the laft aide of (2) can be written in terms of (1) and we hava

$$
\sum_{n=0}^{\infty}(x-t) P_{n}\{x) t^{n}=\sum_{n=0}^{\infty}\left(1-2 x t+t^{2}\right) n^{2} P_{n}(x) t^{n-1}
$$

i.e.

$$
\sum_{n=0}^{\infty} x P_{n}(x) t^{n}-\sum_{n=0}^{\infty} P_{n}(x) t^{n+1}=\sum_{n=0}^{\infty} n P_{n}(x) t^{n-1}-\sum_{n=0}^{\infty} 2 n x P_{n}(x) t^{n}+\sum_{n=0}^{\infty} n P_{n}(x) t^{+11}
$$

Equating the coefficients of $t^{\prime \prime}$ on each side, we find

$$
{ }_{x} P_{n}(x)-P_{n-1}(x)=(n+1) P_{n-1}(x)-2 n x P_{n}(x)+(n-1) P_{n-1}(x)
$$

which yields the required result.
7.10. Given that $P_{0}(x)=1, \quad P_{1}(x)=x, \quad$ find $\quad(a) \quad P_{2}(x)$ and (b) $P_{3}(x)$.

Using the recurrence formula of Problem 7.9, we have on letting $n=1$,

$$
P_{2}(x)=\frac{3}{2} x P_{1}(x)-\frac{1}{2} P_{0}(x)=\frac{3}{2} x^{2}-\frac{1}{2}=\frac{1}{2}\left(3 x^{2}-1\right)
$$

Similarly latting $\pi=2$

$$
P_{3}(x)=\frac{5}{3} x P_{2}(x)-\frac{2}{3} P_{1}(x)=\frac{3}{3} x\left(\frac{3 x^{2}-1}{2}\right)-\frac{2}{3} x=\frac{1}{2}\left(5 x^{3}-8 x\right)
$$

LEGENDRE FUNCTIONS OF THE SECOND KIND

7.11. Ohtain the results (6) and (7), page 131, for the Legendre functions of the second kiad in the case where n is a non-negative integer.

The Legendre functions of the second kind are the series solutions of Legendre's cquation which do not terminate. From (s) of Froblem 7.4 we see that if \boldsymbol{y} is even the series which does not termipate is

$$
x-\frac{(n-1)(n+2)}{3!} x^{8}+\frac{(n-1)(n-3)(n+2)(n+4)}{6!} x^{5}-\cdots
$$

while if n is odd the series which does not tarminate is

$$
1-\frac{k(n+1)}{2!} x^{2}+\frac{n(n-2)(n+1)(n+3)}{4!} x^{4}-\cdots
$$

Thewe series solutions, apart from multiplicative constants, provide defnitions.for Legendre funetions of the gecond kind and are given by (8) and (7) on gage 131. The multiplieative comatants are chosen so that the Legendire functions of the second kind will satisfy the same recurrence formular (page 181) as the Legendre polynomials.
7.12. Obtain the Legendre functions of the second kind (a) $Q_{0}(x)$, (b) $Q_{1}(x)$, and (c) $Q_{Q}(x)$.
(a) From (6), page 181, we have if $n=0$,

$$
\begin{aligned}
Q_{0}(x) & =x+\frac{2}{8!} x^{3}+\frac{1 \cdot 8 \cdot 2 \cdot 4}{5!} x^{3}+\frac{1 \cdot 3 \cdot 5 \cdot 2 \cdot 4 \cdot 6}{6!} x^{7}+\cdots \\
& =x+\frac{x^{3}}{3}+\frac{x^{5}}{6}+\frac{x^{7}}{7}+\cdots=\frac{1}{\frac{2}{2}} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

Where we have used the expsnaion $\ln (1+u)=u-u^{2} / 2+u^{3} / 5-t^{1 / 4}+\cdots$.
(b) From (7), page 181, we have if $n=1$,

$$
\begin{aligned}
Q_{1}(x) & =-\left\{1-\frac{(1)(2)}{2!} x^{2}+\frac{(1)(-1)(2)(4)}{41}-\frac{(1)(-1)(-9)(2)(4)(6)}{6!} x^{8}+\cdots\right\} \\
& =x\left\{x+\frac{x^{3}}{3}+\frac{x^{3}}{6}+\cdots\right\}-1=\frac{x}{2} \ln \left(\frac{1+x}{1-x}\right)-1
\end{aligned}
$$

(c) The recurrenca formulas for $Q_{\mathrm{x}}(x)$ are identical with thase of $P_{\mathrm{n}}(x)$. Then from Problem 7.9,

$$
Q_{n+1}(x)=\frac{2 n+1}{n+1} \not Q_{n}(x)-\frac{n}{n+1} Q_{n-1}(x)
$$

Putting $n=1$, we have on using perts (a) and (b),

$$
Q_{2}(x)=\frac{8}{2} x Q_{1}(x)-\frac{1}{2} Q_{0}(x)=\left(\frac{3 x^{2}-1}{1}\right) \ln \left(\frac{1+x}{1-x}\right)-\frac{3 x}{2}
$$

ORTHOGONALITY OF LEGENDRE POLYNOMLALS

7.13. Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad$ if $m \neq n$.

Since $P_{m}(x), P_{n}(\pi)$ satiofy Legendre's equation,

$$
\begin{aligned}
& \left(1-x^{2}\right) P_{m}^{\prime \prime}-2 x P_{m}^{\prime}+m(m+1) P_{m}=0 \\
& \left(1-x^{2}\right) P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+n(n+1) P_{n}=0
\end{aligned}
$$

Then multiplying the firat equation by P_{n}, the second equation by P_{m} and aubtracting, we find

$$
\left(1-x^{n}\right)\left[P_{n} P_{m}^{\prime \prime}-P_{m} P_{m}^{\prime \prime}!-2 x\left[P_{n} P_{\prime^{\prime}}^{\prime}-P_{m} P_{n}^{\prime}\right]=[n(n+1)-m(m+1)] P_{m} P_{n}\right.
$$

which can be written

$$
\begin{gathered}
\left(1-x^{2}\right) \frac{d}{d x}\left\{P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right]-2 x\left[P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right]=[n(n+1)-m(m+1)\} P_{m} P_{n} \\
\frac{d}{d x}\left\{\left(1-x^{2}\right)\left[P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right\}\right\}=\left[n(n+1)-m(m+1) \mid P_{n} P_{n}\right.
\end{gathered}
$$

or
Thus by integrating we have

$$
[n(n+1)-m(m+1)] \int_{-1}^{l} P_{m}(x) P_{n}(x) d x=\left.\left(1-x^{2}\right)\left[P_{n} P_{m}^{\prime}-P_{m} P_{n}^{\prime}\right]\right|_{-1} ^{1}=0
$$

Then siace $m \neq n$,

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0
$$

7.14. Prove that $\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1}$.

From the generating function

$$
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

wo have on squaring both gidef,

$$
\frac{1}{1-2 t x+4^{2}}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{m}(x) P_{n}(x) t^{m+n}
$$

Then by integrating from -1 to 1 we have

$$
\int_{-1}^{1} \frac{d x}{1-2 t x} \mp t^{2}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left\{\int_{-1}^{1} P_{m}(x) P_{n}(x) d x\right\} t^{m+n}
$$

Using the result of Problem 7.18 on tine right side and performing the integration on the left side,

$$
\begin{aligned}
-\left.\frac{1}{2!} \ln \left(1-2 t x+t^{2}\right)\right|_{-1} ^{1} & =\sum_{n=0}^{\infty}\left\{\int_{-1}^{1}\left[P_{n}(x)\right]^{n} d x\right\} t^{2 n} \\
\frac{1}{i} \ln \left(\frac{1+t}{1-t}\right)= & \sum_{n=0}^{\infty}\left\{\int_{-1}^{t}\left[P_{n}(x)\right]^{2} d x\right\}^{20}
\end{aligned}
$$

0

1, \&

$$
\sum_{n=0}^{\infty} \frac{2 t^{2 n}}{2 n+1}=\sum_{n=0}^{\infty}\left\{\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x\right\} t^{2 n}
$$

Equating coefficients of $t=$, it followa that

$$
\int_{-1}^{1}\left[P_{n}(x)\right]^{9} d x=\frac{2}{2 n+1}
$$

SERTES OF LEGENDRE POLYNOMIALS
7.15. If $f(x)=\sum_{k=0}^{\infty} A_{k} P_{k}(x),-1<x<1$, show that

$$
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} P_{k}(x) f(x) d x
$$

Multiplying the given ceries by $P_{m}(x)$ and integrating from -1 to 1 , we have on using Preblems 7.18 and 7.14 ,

$$
\begin{aligned}
\int_{-1}^{1} P_{m}(x) f(x) d x & =\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{m}(x) P_{k}(x) d x \\
& =A_{m} \int_{-1}^{1}\left[P_{m}(x)\right]^{1} d x=\frac{2 A_{m}}{2 m+1}
\end{aligned}
$$

Then as required

$$
A_{m}=\frac{2 m+1}{2} \int_{-1}^{1} P_{m}(x) f(x) d x
$$

7.16. Expand the function $f(x)=\left\{\begin{array}{ll}1 & 0<x<1 \\ 0 & -1<x<0\end{array}\right.$ in a series of the form $\sum_{k=0}^{\infty} A_{k} P_{k}(x)$.

By Problam 7.16

$$
\begin{aligned}
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} P_{k}(x) f(x) d x & =\frac{2 k+1}{2} \int_{-2}^{0} P_{k}(x)(0) d x+\frac{2 k+1}{2} \int_{0}^{1} P_{k}(x)(1) d x \\
& =\frac{2 k+1}{2} \int_{0}^{1} P_{k}(x) d x
\end{aligned}
$$

Then

$$
\begin{aligned}
& A_{0}=\frac{1}{2} \int_{0}^{1} P_{0}(x) d x=\frac{1}{2} \int_{0}^{1}(1) d x=\frac{1}{2} \\
& A_{1}=\frac{8}{2} \int_{0}^{1} P_{1}(x) d x=\frac{3}{2} \int_{0}^{1} x d x=\frac{8}{4} \\
& A_{1}=\frac{5}{2} \int_{0}^{1} P_{2}(x) d x=\frac{5}{2} \int_{0}^{1} \frac{3 x^{2}-1}{2} d x=0 \\
& A_{3}=\frac{7}{2} \int_{0}^{1} P_{5}(x) d x=\frac{7}{2} \int_{0}^{1} \frac{5 x^{5}-3 x}{2} d x=-\frac{7}{16} \\
& A_{4}=\frac{6}{2} \int_{0}^{1} P_{4}(x) d x=\frac{9}{2} \int_{0}^{1} \frac{35 x^{4}-30 x^{2}+9}{8} d x=0 \\
& A_{5}=\frac{11}{2} \int_{0}^{1} P_{5}(x) d x=\frac{11}{2} \int_{0}^{1} \frac{63 x^{8}-70 x^{3}+15 x}{8} d x=\frac{11}{32}
\end{aligned}
$$

etc. Thus

$$
f(x)=\frac{1}{2} P_{0}(x)+\frac{3}{4} P_{1}(x)-\frac{7}{16} P_{3}(x)+\frac{11}{82} P_{5}(x)-\cdots
$$

The general term for the coeftclents in this eeries can be obtained by waing the recorrence formuia 2 on pagy 181 and the ragults of Problem 7.34. We find

$$
A_{n}=\frac{2 n+1}{2} \int_{0}^{1} P_{n}(x) d x=\frac{1}{2} \int_{0}^{1}\left[P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)\right] d x=\frac{1}{2}\left[P_{n-1}(0)-P_{n+1}(0)\right]
$$

For neven $A_{n}=0$, while for n odd we can use Problem 7.a4(c).
7.17. Expand $f(x)=x^{2}$ in a series of the form $\sum_{k=0}^{\infty} A_{k} P_{k}(x)$.

Method 1.
We must find $A_{k}, k=0,1,2,8_{1} \ldots$, such that

$$
\begin{aligned}
x^{2} & =A_{0} P_{P}(x)+A_{1} P_{1}(x)+A_{2} P_{2}(x)+A_{3} P_{3}(x)+\cdots \\
& =A_{0}(1)+A_{1}(x)+A_{2}\left(\frac{3 x^{3}-1}{2}\right)+A_{3}\left(\frac{5 x^{3}-8 x}{2}\right)+\cdots
\end{aligned}
$$

Since the left side is a polynomial of degree 2 we must have $A_{3}=0, A_{4}=0, A_{5}=0, \ldots$. Thus
from which

$$
\begin{gathered}
z^{2}=A_{0}-\frac{A_{2}}{2}+A_{1} x+\frac{8}{2} A_{2} x^{2} \\
A_{0}-\frac{A_{2}}{2}=0, \quad A_{1}=0, \quad \frac{3}{2} A_{2}=1 \\
A_{0}=\frac{1}{3}, \quad A_{1}=0, \quad A_{2}=\frac{2}{3} \\
x^{2}=\frac{1}{3} P_{0}(x)+\frac{2}{3} P_{2}(x) .
\end{gathered}
$$

Method 2.
Using the method of Problem 7.15 we aee that it
then

$$
\begin{gathered}
x^{2}=\sum_{k=0}^{\infty} A_{k} P_{k}(x) \\
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} x^{2} P_{k}(x) d x
\end{gathered}
$$

Putting $k=0,1,2, \ldots$, we find as before $A_{0}=\frac{1}{d}, A_{1}=0, A_{2}=\frac{2}{4}, A_{3}=0, A_{4}=0, \ldots$ so that

$$
x^{2}=\frac{1}{3} P_{0}(z)+\frac{2}{3} P_{8}(x)
$$

In general when we expand a polynomial in a series of Legendre polynomials, the series, which terminatee, can most eaxily be found by usiar Method 1.

SOLUTIONS USING LEGENDRE FUNCTIONS

7.18. Find the potential v (a) interior to and (b) exterior to a hollow sphere of unit radius if half of its surface is charged to potential v_{0} and the other half to potential zero.

Choose the sphere in the position shown in Fig. 7-1. Then via independent of ϕ and we cen uas the resalts of Problem 7.5. A solution is

$$
v(\tau, \theta)=\left(A_{1} r^{n}+\frac{B_{1}}{r^{n+1}}\right)\left[A_{2} P_{n}(\xi)+B_{2} Q_{n}(\theta)\right]
$$

Where $\{=\cos \theta$. Since v must be bounded at $\theta=0$ and r, i.e. $;= \pm 1$, we must choose $B_{y}=0$. Then

$$
\begin{equation*}
v(r, v)=\left(A r^{n}+\frac{B}{r^{n+1}}\right) P_{n}(\xi) \tag{i}
\end{equation*}
$$

The boundary conditions are

$$
v(1, \theta)=\left\{\begin{array}{lllr}
v_{n} & \text { if } 0<0<\frac{\pi}{2} & \text { i.e. } & 0<\xi<1 \\
0 & \text { if } \frac{\pi}{2}<0<\pi & \text { i.e. } & -1<\xi<0
\end{array}\right.
$$

and v is bounded.

Fig. 7-1
(a) Interior Potential, $0 \leq y<1$.

Since v is bounded at $r=0$, choose $B=0$ is (1). Then a solution is

$$
A r^{n} P_{n}(\phi)=A r \pi P_{n}(\cos \theta)
$$

Hy superposition,

$$
v(r, \theta)=\sum_{n=0}^{\infty} A_{n} \eta n P_{n}(\cos \theta)=\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(\xi)
$$

When $r=1$,

$$
v(1, \theta)=\sum_{n=0}^{\infty} A_{n} P_{n}(\xi)
$$

Then as in Prablem 7.16,

$$
A_{n}=\frac{2 n+1}{2} \int_{-1}^{1} v(1, \theta) P_{n}(\xi) d \xi=\left(\frac{2 n+1}{2}\right) v_{0} \int_{0}^{1} P_{n}(\xi) d \xi
$$

from which

$$
\begin{align*}
& \quad A_{0}=\frac{1}{2} v_{0}, \quad A_{1}=\frac{3}{4} v_{0}, \quad A_{2}=0, \quad A_{3}=-\frac{7}{16} v_{0} \quad A_{4}=0 . \quad A_{8}=\frac{11}{32} v_{0} \\
& \text { Thus } \quad v(r, \theta)=\frac{v_{0}}{2}\left[1+\frac{3}{2} r P_{5}(\cos \theta)-\frac{7}{8}, r_{3}(\cos \theta)+\frac{11}{16} r P_{5}(\cos \theta)+\cdots\right]
\end{align*}
$$

(b) Exterior Potential, $1<r<\infty$.

Since v is bounded as $r \rightarrow \infty$, choose $A=0$ in (1). Then a solution is

$$
\frac{B}{r^{n+1}} P_{n}(\theta)=\frac{B}{r^{n+1}} P_{n}(\cos \theta)
$$

By superposition,

$$
v(r, \theta)=\sum_{n=0}^{m} \frac{B_{n}}{r^{*}+1} f_{n}(\theta)
$$

When $r=1$,

$$
v(1, \theta)^{n}=\sum_{n=0}^{\infty} B_{n} P_{n}(\xi)
$$

Then $B_{n}=A_{n}$ of part (a) and so

$$
\begin{equation*}
v(r, \theta)=\frac{v_{0}}{2 r}\left[1+\frac{3}{2 r} P_{1}(\cos \theta)-\frac{7}{8 r^{3}} P_{9}(\cos \theta)+\frac{11}{16 r^{5}} P_{5}(\cos \theta)+\cdots\right] \tag{s}
\end{equation*}
$$

7.19. A whiform hemigphare (aee Fig. 7-2) has Its convex surface kept at temperature u_{0} while its hase is kept at temperature zero. Find the steady-state temperature inside.

The boundary valee problem in thia case is

$$
\nabla^{2} z_{u}=0
$$

where

$$
\begin{array}{ll}
u=u_{0} & \text { on the convex surface } \\
u=0 & \text { on the base }
\end{array}
$$

The solution can be obtained from the results of Problem 7.18. To see thia we note that the present problem is equivalent to the problem of solving Laplace's equation inside a sphere of which

Fig. 7-2 the top half suriace is kopt at tomperature ${ }^{\prime} \mathrm{n}_{\mathrm{n}}$ and the bottom half surface is leepi at temperature $\boldsymbol{r i n}_{0}$. By symmetry, the plane of separation will then automatically be at temperature zero as required in this problem.

Wc can then obtain the required solution by first subtracting $v_{0} / 2$ from the solution in Problem 7.18 and then replacing $v_{0} / 2$ by w_{0}. The result is

$$
k(r, \theta)=u_{0}\left[\frac{\frac{\pi}{2}}{2} r P_{1}(\cos \theta)-\frac{7}{8} r^{3} P_{s}(\cos \theta)+\frac{11}{16} \tau^{3} P_{s}(\cos \theta)+\cdots\right]
$$

The problem can also, of course. ha solved directly without use of the results in Problem 7.18 .
7.20. (a) Find the gravitational potential at any point on the axis of a thin uniform ring of radius a. (b) Find the potential of the ring in part (a) at any point in space.
(a) Choose the ring to be in the $x y$-plana so that the axis la the z-axis as indicated in Fif. 7-8. Then the potentiul at any point P on the z-axis is seen to be the mass of the ring divided by the distence $\sqrt{a^{2}+z^{2}}$ from any point Q on the ring to the polnt P. Jetting a denote the masa per unit longth of the ring it follows that the potential at P is

$$
\begin{equation*}
y_{p}=\frac{2 \pi \omega_{\sigma}}{\sqrt{a^{2}+x^{2}}} \tag{1}
\end{equation*}
$$

Fig. 7-3
(b) In this case we mugt rolve Laplace's equa. tion $\nabla y^{2}=0$ where v reduces to v_{p} for points P on the a-axia. Now we knaw that because of the manner in which the ring has been loceted that v is Independent of ϕ. We thus have as a solution to Laplace's equation

$$
v=\left(A_{1} r^{\pi}+\frac{B_{1}}{r^{n+1}}\right)\left[A_{2} P_{n}(\xi)+B_{2} Q_{n}(\xi)\right]
$$

where $t=\cos$. Since v must be bounded at $\theta=0$ and g_{*} i.e. $\xi= \pm 1$, we must choose $B_{2}=0$. Then

$$
\begin{equation*}
v=\left(A r^{n}+\frac{B}{r^{n+1}}\right) P_{n}(\xi) \tag{I}
\end{equation*}
$$

There are two ceases to be considered, corresponding to the regions $0 \leq r<a$ and $r>a$.

Cate 1: $0 \leq 1 \leq a$.
In this case we must choose $B=0$ in (2) since otherwise the solution is unbounded at $r=0$. Then $v=A m P_{n}(\xi)$. By auperposition we are led to consider the solution

$$
\eta=\sum_{n=0}^{\infty} A_{n} \tau^{n} P_{n}(\xi)
$$

Now when $i=0$, i.e. $z=1$, this must reduce to the potentiaj on the $z-a x i s$, in which case $r=2$. Then we must have

$$
\begin{equation*}
\frac{2 \pi \sigma_{0}}{\sqrt{c^{2}+z^{2}}}=\sum_{n=0}^{\infty} A_{n^{2 n}} \tag{4}
\end{equation*}
$$

In order to obtain A_{n} we must expand the left side as a power series in z. We uge the minomial theorem to obtain

$$
\begin{align*}
\frac{A_{r a t}}{\sqrt{a^{2}+\pi^{2}}} & =2 \pi\left(1+\frac{z^{2}}{a^{2}}\right)^{-1 / 2} \\
& =2 \pi\left[1-\frac{1}{2}\left(\frac{z}{a}\right)^{2}+\frac{1 \cdot 3}{2 \cdot 4}\left(\frac{z}{a}\right)^{4}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\left(\frac{z}{a}\right)^{6}+\cdots\right] \tag{5}
\end{align*}
$$

Comparison of (6) and (5) leeds to

$$
A_{0}=2 \pi 0_{4} \quad A_{1}=0, \quad A_{2}=-\frac{2 \pi \sigma}{8 \sigma^{2}}, \quad A_{3}=0, \quad A_{4}=\frac{2 \pi \sigma \cdot 1 \cdot 3}{\sigma^{4} \cdot 2 \cdot 4},
$$

Using these in (s) we then find

$$
\begin{equation*}
v=2 \pi \phi\left[P_{0}(\cos \theta)-\frac{1}{2}\left(\frac{r}{d}\right)^{2} P_{2}(\cos \theta)+\frac{1 \cdot 3}{2 \cdot 4}\left(\frac{r}{a}\right)^{4} P_{4}(\cos \theta)-\cdots\right] \tag{6}
\end{equation*}
$$

where $0 \leqq r<a$.

Cese 2: $r>a$
In thia case we must choose $A=0 \ln (2)$ aince otherwise the polution becomes unbounded an $r \rightarrow \infty$. Then $v=B P_{n}(\epsilon)^{n+1}$ and by anperpoastion we wie lod to conelder the eolation

$$
\begin{equation*}
v=\sum_{n=0}^{\dot{B}} \frac{B_{n}}{r^{n+1}} P_{n}(\xi) \tag{n}
\end{equation*}
$$

As in Cace 1, thil must reduce to the potential on the r-axis for $0=0$ and $r=s$, i.e.

$$
\begin{equation*}
\frac{2 \pi a s}{\sqrt{a^{2}+x^{2}}}=\sum_{n=0}^{\infty} \frac{B_{n}}{\sin ^{n+1}} \tag{8}
\end{equation*}
$$

Thus, to find B_{n} we must expand the left aide in Inversa powers of a. Again we use the btromial theorem to obtain

$$
\begin{align*}
& \frac{2 \tau \sigma \sigma}{\sqrt{A^{2}+z^{2}}}=\frac{2 \pi \alpha o}{z}\left(1+\frac{\alpha^{2}}{s^{2}}\right)^{-1 / x} \\
& =\frac{2 r a g}{2}\left[1-\frac{1}{2}\left(\frac{a}{a}\right)^{2}+\frac{1 \cdot 8}{2 \cdot 4}\left(\frac{a}{2}\right)^{4}-\frac{1 \cdot 8 \cdot 5}{8 \cdot 4 \cdot 0}\left(\frac{a}{g}\right)^{4}+\cdots\right] \tag{9}
\end{align*}
$$

Compariton of (g) and (g) leada' to

$$
B_{0}=2 r a s, \quad B_{2}=0, \quad B_{9}=-2 \pi a c\left(\frac{1}{2} a^{3}\right), \quad B_{4}=0, \quad B_{4}=2 r a c\left(\frac{1 \cdot 8}{2 \cdot d^{4}} a^{4}\right), \quad \ldots
$$

Uuing these in (7) we then find

$$
\begin{equation*}
v=\frac{2 \pi a \theta}{r}\left[P_{0}(\cos \theta)-\frac{1}{2}\left(\frac{a}{r}\right)^{2} P_{2}(\cos \theta)+\frac{1 \cdot 8}{2 \cdot 4}\left(\frac{d}{r}\right)^{4} P_{1}(\cos \theta)-\cdots\right] \tag{10}
\end{equation*}
$$

where $r>a$

ASSOCXATED LRGENDRE FUNCTIONS

7.21. Show how Legendre's associated differential equation (12), page 182, is obtained from Laplace's equation $\nabla^{\text {i }} u=0$ expressed in apherical coordinetes (r, θ, ϕ).

In this case we must modily the resuita obtained in Problem 7.1 by including the o-dependence. Then leting $u=R \theta \phi$ in (1) of Probiem 7.1 we obtain

$$
\begin{equation*}
\frac{\theta \phi}{r^{2}} \cdot \frac{d}{d r}\left(\mu^{2} \frac{d R}{d r}\right)+\frac{R \phi}{r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\frac{R \theta}{\sigma^{2} \sin ^{2} \theta} \frac{d^{2} \theta}{d \phi^{2}}=0 \tag{1}
\end{equation*}
$$

Multiplying by r^{2}, dividing by $R \theta \neq$ and rearranging, we find

$$
\frac{1}{R} \frac{d}{d r}\left(\alpha \frac{d R}{d r}\right)=-\frac{1}{\theta \sin \theta} \frac{d}{d p}\left(\sin \theta \frac{d \theta}{d \theta}\right)-\frac{1}{\Phi \operatorname{tin}^{2} \theta} \frac{d^{2} \phi}{d \rho}
$$

Since one side depende only on r_{1} while the other dependa only on and ϕ, it followe that eack alde must be a contuat, any - λ^{z}. Then we have
and

$$
\begin{gather*}
\frac{1}{R} \frac{d}{d r}\left(\pi \frac{d R}{d r}\right)=-\lambda^{2} \tag{e}\\
\frac{1}{\theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\frac{1}{\phi \sin ^{2} \theta} \frac{d^{2} \phi}{d \phi^{2}}=\lambda^{2} \tag{s}
\end{gather*}
$$

The equation (\mathbf{l}) is identical with (s) in Problem 7.1, so that we hava we molution according to Problem 7.2

$$
\begin{equation*}
R=A_{1} m+\frac{B_{1}}{r^{m+z}} \tag{4}
\end{equation*}
$$

where we une $\lambda^{2}=-n(n+1)$.

If now we multiply equation (5) by $\sin ^{2} \theta$ and rearrange, it can be written as

$$
\frac{1}{\phi} \frac{d^{2} \phi}{d \phi^{3}}=-\frac{\sin \theta}{\theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \phi}\right)-n(n+1) \sin ^{2} \theta
$$

Since one side depends only on ϕ while the other stde depends onis on epch side must be a constant, any $-m^{2}$. Then we have

$$
\begin{gather*}
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\left[\pi(n+1) \sin ^{2} \theta-m^{2}\right] \theta=0 \tag{5}\\
\frac{d^{2} \Phi}{d \phi_{\phi}^{2}}+m^{2} \phi=0 \tag{d}
\end{gather*}
$$

If we now make the tranaformation $\xi=\cos$ in equation (5) we find as in Problem 7.3 that it car be written as

$$
\left(1-\xi^{2}\right) \frac{d^{2}}{d \xi}\left[\left(1-\xi^{2}\right) \frac{d \theta}{d \xi}\right]+\left[n(x+1)\left(1-\xi^{2}\right)-m^{2}\right\} \theta=0
$$

Dividing by 1-f the equation becomes

$$
\begin{equation*}
\left(1-t^{2}\right) \frac{d^{2} \theta}{d t^{2}}-2 \epsilon \frac{d \theta}{d \xi}+\left[n(n+1)-\frac{m^{2}}{1-t^{2}}\right] \theta=0 \tag{7}
\end{equation*}
$$

Which is Legendre's agnoclated differential equation (if) on page $1 a 2$ if we replace θ by y and ! by \boldsymbol{x}.

The creneral solution of (7) is showa in Problem 7,22 to be

$$
\begin{equation*}
\theta=A_{2} P_{n}^{m}(\xi)+B_{2} G_{n}^{m}(\theta) \tag{8}
\end{equation*}
$$

where $\ddagger=$ enit and

$$
\begin{align*}
& P_{n}^{m}(\xi)=\left(1-\xi^{2}\right)^{m / 2} \frac{d^{m}}{d \xi^{m+1}} P_{n}(\xi) \tag{9}\\
& Q_{n}^{m}(\xi)=\left(1-\xi^{2}\right)^{m / z} \frac{d^{m \hbar}}{d \xi^{m}} Q_{n}(\xi) \tag{10}
\end{align*}
$$

We call $P_{n}^{m i}(\xi)$ and $Q_{n}^{m}(f)$ ascociated Legendre functions of the firat and accond kinds respectively.
The general solution of (6) is

$$
\begin{equation*}
\phi=A_{8} \cos m_{\phi}+B_{3} \sin m \phi \tag{11}
\end{equation*}
$$

If the function $u(r, s, \phi)$ in to be periodic of period 2π in ϕ, we must have m equal to an integer, which we take as positive. For the case $w=0$ the solution $u(r, \phi, \phi)$ in independent of ϕ and reduces to that given in Problem 7.B.
729. (a) Show that if m is a poaitive integer and ψ_{n} is any solution of Legendre's differen tial equation, then $d^{3 \prime \prime} u_{N} / d x^{m}$ is 8 solution of Legendre's associated differential equation.
(b) Obtain the general solution of Legendre's associated equation.
(a) If Legendre's differential equation has the solution w_{n} then we must have

$$
\left(1-n^{2}\right) u_{n}^{\prime \prime}-2 x u_{n}^{\prime}+r(n+1) u_{n}=0
$$

By diferentiating thin equation m times and letting $v_{n}^{m}=d^{m} u_{n} / d x^{m}$ we obtain

$$
\left\{1-z^{2}\right\} \frac{d^{2} v_{n}}{d n^{2}}-2(m+1) \approx \frac{d v_{n}^{m}}{d x}+[n(n+1)-m(m+1)] v_{n}^{m}=0
$$

In this equation we now let $v_{n}^{m}=\left(1-\#^{2}\right)^{n} y$. Then it becomes

$$
\begin{aligned}
\left(1-x^{2}\right)^{2} y^{\prime \prime}- & {\left[2(m+1) x\left(1-x^{2}\right)+4 p x\left(1-\alpha^{2}\right)\right] y^{\prime} } \\
& +\left\{4(n+1) p x^{2}+\left(4 p^{2}-2 p\right) x^{2}-2 p+[n(n+1)-m(n+1)]\left(1-x^{2}\right)\right\} y=0
\end{aligned}
$$

If we now choose $p=-m / 2$, this equation becomes after dividing by $1-x^{2}$

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime}-2 x y^{\prime}+\left[n(n+1)-\frac{m^{2}}{1-x^{2}}\right] y=0 \tag{I}
\end{equation*}
$$

which is Legendre's asocciated differential equation. Since $v_{\mathrm{n}}^{\mathrm{m}}=\left(1-x^{2}\right)^{-m / 2} y$, it followif that $y=\left(1-x^{2}\right)^{m / 8} v_{n}^{m}$, or

$$
\begin{equation*}
y=\left\{1-x^{*}\right)^{m / x} \frac{d^{m} u_{n}}{d x^{m}} \tag{l}
\end{equation*}
$$

is a solution of (1).
(b) Since the general solution of Legendre's equation is $e_{1} P_{n}(t)+\epsilon_{2} Q_{n}(x)$, we can ahow that the generil molution of Legendre's associated differential equation ia

$$
\begin{gather*}
y=c_{1} P_{n}^{m}(x)+o_{g} Q_{n}^{m}(x) \tag{s}\\
\text { Where } \quad P_{n}^{m}(c)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m} P_{n}}{d x^{m}}, \quad Q_{n}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m} Q_{n}}{d x^{m}}
\end{gather*}
$$

7.23. Obtain the associated Legendre functions (a) $P_{2}^{1}(x)$, (b) $P_{3}^{9}(x)$, (c) $P_{2}^{3}(x)$, (d) $Q_{2}^{1}(x)$,
(a) $P_{2}^{1}(x)=\left(1-x^{2)^{1 / 2}} \frac{d}{d x} P_{f}(x)=\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x}\left(\frac{g x^{2}-1}{2}\right)=82\left(1-x^{2}\right)^{1 / 2}\right.$
(b) $P_{3}^{g}(x)=\left(1-x^{2}\right)^{2 / 2} \frac{d^{2}}{d x^{2}} P_{3}(x)=\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}\left(\frac{6 x^{9}-8 x}{2}\right)=15 x-15 x^{3}$
(b) $P_{2}^{s}(x)=\left(1-x^{2}\right)^{3 / 2} \frac{d^{a}}{d x^{3}} P_{2}(x)=0$. Note that in general $P_{n}^{m}(x)=0$ if $m>n$.
(d) Uaing Problem-7.12(c) we find

$$
\begin{aligned}
Q_{2}(x) & =\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x} Q_{2}(x)=\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x}\left\{\frac{8 x^{2}-1}{d} \ln \left(\frac{1+x}{1-x}\right)-\frac{3 x}{2}\right\} \\
& =\left(1-x^{2}\right)^{1 / 2}\left[\frac{9 x}{2} \ln \left(\frac{1+x}{1-x}\right)+\frac{3 x^{2}-2}{1-x^{2}}\right]
\end{aligned}
$$

7.24. Verify that $P_{3}^{y}(x)$ is a solution of Legendre'a associated equation (22), page 182, for $m=2, n=8$.

By Problem 7.23, $P_{3}^{2}(x)=15 x-15 x^{3}$, Subetituting this in the equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left[3.4-\frac{4}{1-x^{2}}\right] y=0
$$

we find after simplifying,

$$
\left(1-x^{2}\right)(-90 x)-2 x\left(15-46 x^{2}\right)+\left[12-\frac{4}{1-x^{2}}\right]\left[16 x-15 x^{3}\right]=0
$$

and so $P_{5}^{2}(x)$ is a alyution.
7.25. Verify the result (16), page 132, for the functions $P_{2}^{1}(x)$ and $P_{8}^{\prime}(x)$.

We bave from Problem 7.23(a), $P_{\frac{1}{2}(x)}^{2}=3 \pi\left(1-\pi^{2}\right)^{1 / 2}$, Also,

$$
\begin{aligned}
P_{3}^{1}(x)= & \left(1-x^{2}\right)^{3 / 2} \frac{d}{d x} P_{3}(x)=\left(1-x^{2} y^{3 / 2} \frac{d}{d x}\left(\frac{5 x^{3}-3 x}{2}\right)=\frac{16 x^{2}}{2}\left(1-x^{2}\right)^{3 / 2}\right. \\
& \int_{-1}^{1} P_{2}^{1}(x) P_{3}^{1}(x) d x=\int_{-1}^{1} \frac{45 x^{3}}{2}\left(1-x^{2}\right)^{2} d x=0
\end{aligned}
$$

Then
726. Verify the result (17), page 132, for the function $P_{z}^{1}(x)$.

Since $P_{2}^{\mathrm{t}}(x)=\$ x\left(1-x^{2}\right)^{1 / 2}$,

$$
\int_{-1}^{1}\left[P_{2}^{\prime}(x)\right]^{3} d x=9 \int_{-1}^{1} x^{2}\left(1-x^{2}\right) d x=\left.9\left[\frac{x^{3}}{3}-\frac{x^{3}}{5}\right]\right|_{-3} ^{3}=\frac{36}{15}=\frac{12}{6}
$$

Now eccording to (17), page 182, the required reault should be

$$
\frac{2}{2(2)+1} \frac{(2+1)!}{(2-1)!}=\frac{2}{5} \cdot \frac{3!}{11}=\frac{12}{5}
$$

no that the verification is achieved.
7.27. Expand $v_{0}\left(1-x^{2}\right)$ in a series of the form $\sum_{k=0}^{\infty} A_{k} P_{k}^{m}(x)$ where v_{0} is a constant and
$m=2$.

We must find $A_{k r} k=0,1,2, \ldots$, so that

$$
\begin{equation*}
\tau_{0}\left(1-x^{2}\right)=A_{0} P_{0}^{2}(x)+A_{1} p_{1}^{2}(x)+A_{2} P_{8}^{2}(x)+\cdots \tag{1}
\end{equation*}
$$

Method 1.

Since $\quad P_{k}^{2}(x)=\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P_{k}(x)$
we have

$$
\begin{gathered}
P_{0}^{2}(x)=0, \quad P_{1}^{2}(x)=0, \quad P_{2}^{2}(x)=\left(1-x^{2}\right) \frac{d^{8}}{d x^{2}}\left(\frac{3 x^{2}-1}{2}\right)=3\left(1-x^{8}\right), \\
P_{0}^{8}(x)=\left(1-x^{2}\right) \frac{d^{1}}{d x^{2}}\left(\frac{6 x^{3}-8 x}{2}\right)=1 B x\left(1-x^{2}\right), \quad \cdots
\end{gathered}
$$

Than (1) becomes

$$
v_{\mathrm{y}}\left(1-z^{2}\right)=3 A_{\mathrm{g}}\left(1-x^{2}\right)+15 A_{y^{2}} x\left(1-x^{2}\right)+\cdots
$$

By comparing coefficients on. each sida we see that this can be satisfied if $3 A_{2}=y_{0}, 15 A_{3}=0$ and $A_{k}=0$ for $t \gg 3$. Thum we have

$$
\begin{equation*}
v_{0}\left(1-x^{2}\right)=\frac{v_{0}}{3} P_{2}^{z}(x) \tag{}
\end{equation*}
$$

so that the requined expanaion considet of only one term.

Method 2

If $f(x)=\sum_{k=0}^{0} A_{k} P_{k}^{m}(x)$, then on multiplying by $P_{n}^{m}(x)$ and integrating from -1 to 1 we obtain

$$
\int_{-1}^{1} f(x) P_{n}^{m}(x) d x=\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{n}^{m}(x) P_{k}^{m}(x) d x
$$

Using (16) and (17), page 132, we see that the right side reduces to the single term
so that

$$
\begin{gathered}
\frac{2}{2 n+1} \frac{(n+m)!}{(n-m)!} A_{n} \\
A_{n}=\frac{(2 n+1)(n-m)!}{2(n+m)!} \int_{-1}^{1} f(x) P_{n}^{n(n)}(x) d x
\end{gathered}
$$

If $f(x)=v_{0}\left(1-x^{2}\right)$ and $m=2$, then

$$
A_{n}=\frac{(2 n+1)(n-2)!}{2(n+2)!} \int_{-1}^{1} t_{0}\left(1-x^{2}\right) P_{n}^{2}(x) d x
$$

Using this we can show that $A_{3}=v_{0} / 3, A_{4}=0, A_{5}=0, \ldots$ and so we obtain the rasult ((8) as in Method 1.
7.28. Show that a solution to Laplace's equation $\nabla^{2} v=0$ in apherical coordinates is given by

$$
v=\left(A_{1} r^{n}+\frac{B_{1}}{r^{n+3}}\right)\left[A_{2} P_{n}^{m}(\cos \theta)+B_{2} Q_{2}^{m}(\cos \theta)\right]\left[A_{3} \cos m \phi+B_{5} \sin m \phi\right]
$$

This followe at once from Problema 7.21 and 7.22 aince $u=R \theta \phi$ where

$$
\begin{aligned}
R & =A_{2^{2}}+\frac{B_{1}}{r^{n+1}} \\
\theta & =A_{2} P_{n}^{n}(\cos \theta)+B_{i} Q_{n}^{m}(\cos \theta) \\
\phi & =A_{\mathrm{a}} \cos m \dot{m}+B_{\mathrm{a}} \sin m \phi
\end{aligned}
$$

7.29. Suppose that the surface of the sphere of Problem 7.18 is kept at potential $v_{\phi} \sin ^{2} \theta \cos 2_{\phi}$. Determine the potential (a) inside and (b) outside the surface.
(a) Interior Potential, $0 \leq r<1$.

Since v is bounded at $r=0$ we must choose $B_{1}=0$ in the solution as given in Problem 7.28. Alsa since v is bounded at $:=0$ and π, we must choose $B_{5}=0$. Then a bounded solution is given by

$$
v(r, \phi, \phi)=, n P_{n}^{m \prime \prime}(\cos \theta)(A \cos m \phi+B \sin m \phi)
$$

Since m and n can be any non-negative integers we can replace A by $A_{m n} B$ by $B_{m n}$ and then, uising the superposition principle, aum over m and n to obtain the solution

$$
\begin{equation*}
v(r, \theta, \phi)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} r \eta_{n}^{\infty}(\cos \theta)\left(A_{m n} \cos m \phi+B_{m n} \sin m \phi\right) \tag{i}
\end{equation*}
$$

Now the boundary potential is given by

$$
\begin{equation*}
v(1, \theta, \phi)=v_{0} \sin ^{2} \theta \cos 2 \phi \tag{t}
\end{equation*}
$$

By comparison of ((2) with

$$
\begin{equation*}
v\left(1, f_{,}, \phi\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{n}^{\pi}(\cos \theta)\left(A_{m n} \cos m \varphi+B_{m n} \sin m()\right. \tag{3}
\end{equation*}
$$

obtained from (f) with $r=1$ it is been that we must have $B_{m n}=0$ for all m and $A_{m n}=0$ for $m \neq 2$. Hence, (s) becomea

$$
v(1, \theta, \phi)=\sum_{n=0}^{\infty} A_{2 \pi} P_{n}^{2}(\cos \theta) \cos 2 \phi
$$

Comparizon with (2) then shows that we muat have

$$
v_{0} \sin ^{2} \theta=\sum_{n=0}^{n} A_{2 n} P_{n}^{2}(\cos \theta)
$$

or using cos $\theta=t$

$$
\begin{align*}
v_{0}\left(1-\xi^{2}\right) & =\sum_{n=0}^{\infty} A_{2 n} P_{n}^{2}(\xi) \\
& =A_{20} P_{0}^{2}(\xi)+A_{21} P_{1}^{2}(t)+A_{29} P_{8}^{2}(\xi)+\cdots \tag{4}
\end{align*}
$$

We have already obtained this expansion in Problem 7.27 , from which we see that $A_{23}=v_{0} / 9$, while all other coefficients are xero. It thus follows from (1) that

$$
\begin{equation*}
v(r, s, \phi)=\frac{v_{\phi}}{3} r^{2} P_{s}^{2}(\cos \theta) \cos 2 \phi=v_{0} t^{2} \sin ^{2} \theta \cos 2 \phi \tag{5}
\end{equation*}
$$

(b) Exterior Potential, $r>1$.

Since v must be bounded as $r \rightarrow \infty$ in this case and is albo bounded at $=0$ and x, we choose $A_{1}=0, B_{2}=0$ in the solution of Problem 7.28. Thus a solution is

$$
v(r, \Delta, \phi)=\frac{P_{n}^{m}(\cos \theta)}{n^{n+1}}\left(A \cos m \phi+B \sin n_{\phi}\right)
$$

or by auparposition

$$
\begin{equation*}
v\left(r_{2} \theta, \phi\right)=\sum_{m=0}^{\infty} \sum_{m=0}^{\infty} \frac{P_{n}^{m}(\cos \dot{\theta})}{r^{n}+1}\left(A_{m n} \cos m \phi+B_{m n} \sin m \phi\right) \tag{B}
\end{equation*}
$$

Using the lact that $v(1, \phi, \phi)=v_{0} \sin ^{2} \phi$ cos 2ϕ we again find $m=2, B_{m n}=0$ which leads to equation (4) of part (a). $\because \mathrm{A}$ before we then find $A_{q z}=v_{0} / 3$, while all other coeflefonta are sero, leading to the required molution

$$
\begin{align*}
p(x, \phi, \phi) & =\frac{\psi_{0}}{3 \sigma^{9}} P_{2}^{2}(\cos \theta) \cos 2 \phi \\
, & =\frac{\psi_{0}}{4^{9}} \operatorname{tn}^{2} \theta \cos 2 \phi \tag{7}
\end{align*}
$$

It is enay to check that the abore are the required solntione by diract mubatitution.
7.30. Solve Problem 7,18 if the surface potential is $f(\theta, \phi)$.

As in Problem 7.29 we are led to the following solutions inalde and cutaide the aphere: raside the where, $0 \leq r<1$

$$
\begin{equation*}
v(r, s, \phi)=\sum_{m=0}^{\infty} \sum_{m=0}^{\infty} r^{1} P_{n}^{m}(\cos d)\left(A_{m n} \cos m \phi+B_{m K} \sin m \phi\right) \tag{1}
\end{equation*}
$$

Ontaide the aphere, $r>1$

$$
\begin{equation*}
v(r, \theta, \phi)=\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{P_{n}^{m}(\cos \theta)}{m^{m+1}}\left(A_{m n} \cos m \phi+B_{m n} \sin m \phi\right) \tag{8}
\end{equation*}
$$

For the case $y=1$ both of these lead to

$$
f(\theta, \phi)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{n}^{m}(\cos \theta)\left(A_{m n} \cos m \phi+B_{m n} \sin m \phi\right)
$$

This is equivalent to the expansion

$$
\begin{equation*}
F(\xi, \phi)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{n}^{m}(\xi)\left(A_{m x} \cos m \phi+B_{m n} \sin \pi \hbar \phi\right) \tag{s}
\end{equation*}
$$

where $\xi=\cos \theta$. Let us write this os
where

$$
\begin{gather*}
F(\xi, \phi)=\sum_{n=0}^{\infty} C_{n} P_{n}^{m}(\xi) \tag{4}\\
C_{n}=\sum_{m=0}^{\infty}\left(A_{m \pi} \cos m \phi+B_{m *} \min m \phi\right) \tag{s}
\end{gather*}
$$

As in Method 2 of Problem 7.27 we find from (4)

$$
\begin{equation*}
C_{n}=\frac{(2 n+1)(n-m)!}{2(n+m) 1} \int_{-1}^{1} F(\xi, \phi) P_{n}^{m}(\xi) d \xi \tag{t}
\end{equation*}
$$

We algo see from (5) that $A_{m n}$ and $B_{m n}$ are simply the Fourter coefficients obtained by axpansion of C_{n} (which is a function of ϕ) in a Fourier seties. Using the methode of Fourier sories it 2ollows that

$$
\begin{aligned}
& A_{0 \pi}=\frac{1}{2 \pi} \int_{0}^{2 \pi} C_{n} d_{\phi} \\
& A_{\min }=\frac{1}{\pi} \int_{0}^{2 \pi} C_{n} \cos m \phi d \phi \quad m=1,2,8, \ldots \\
& B_{m n}=\frac{1}{7} \int_{0}^{2 \tau} C_{n} \sin m \phi d \phi \quad m=1,2,8, \ldots
\end{aligned}
$$

Combining these resulto we see that

$$
A_{0 n}=\frac{(2 n+1)(n-m)!}{4 \pi(n+m)!} \int_{-1}^{1} \int_{0}^{2 \pi} F(\xi, \phi) P_{n}^{7 n}(\xi) d \xi d \phi
$$

while for $m=1,2,5, \ldots$

$$
\begin{aligned}
& A_{\operatorname{man}}=\frac{(2 n+1)(n-m)!}{2 r(n+m)!} \int_{-1}^{1} \int_{0}^{2 \pi} F(\xi, \phi) P_{n}^{m}(\xi) \operatorname{ces} m \phi d \xi d \phi \\
& B_{m n}=\frac{(2 n+1)(n-\phi n)!}{2 r(n+m n)!} \int_{-1}^{1} \int_{0}^{2 \#} F(\xi, \phi) P_{n}^{m}(\xi) \sin m \phi d \xi d \phi
\end{aligned}
$$

Using these resulta in (I) and (ℓ) we obtain the required solutions.

Supplementary Pxoblems

LEGENDRE POLYNOMLALS

7.51. Ues Rodriguq'a tormula (4), page 180 , to verify the formulat for $P_{0}(f), P_{1}(x), \ldots, P_{B}(x)$, on page 180.

9st. Obtain the formulas for $P_{8}(d)$ and $P_{5}(x)$ using a recurrence formula,
7.s. Eyaluate
(a) $\int_{0}^{1} a P_{5}(x) d x$,
(b) $\int_{-1}^{1}\left[P_{2}(x)\right]^{2} d x$,
(e) $\int_{-1}^{1} P_{8}(x) P_{1}(x) d x$.
7.84. Show that
(c) $P_{n}(1)=1$
(e) $P_{2 m-1}(0)=0$
(b) $P_{n}(-1)=(-1)^{n}$
(d) $P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 2 \cdot 6 \cdot \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 n)}$
for $n=1,2,8, \ldots$
335. Use the generating function to prove that $P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)=(2 n+1) P_{n}(x)$.
7.36. Prove that
(a) $P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x)$,
(b) $x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x)$.
787. Show thet $\sum_{n=0}^{\infty} P_{n}(\cos \theta)=\frac{1}{2} \operatorname{cac} \frac{s}{2}$.
7.38. Show that
(a) $P_{8}(\cos \theta)=\frac{1}{4}(\mathrm{t}+3 \cos 2 \theta)$,
(b) $P_{8}(\cos \theta)=\frac{1}{8}(3 \cos \theta+5 \cos \theta \theta)$.
7.59. Show that $P_{7}(x)=\frac{1}{16}\left(429 x^{7}-698 x^{3}+316 x^{3}-35 x\right)$.
7.40. Show from the cenerating function that $\left(\right.$ (a) $P_{n}(1)=1, \quad$ (b) $P_{n}(-1)=(-1)^{\mathrm{n}}$.

T:1; Show that $\sum_{k=1}^{\infty} \frac{x^{k} P_{k-1}(x)}{k}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right), \quad-1<x<1$,

LEGENDRE FUNCTIONS OF THE SECOND KIND

7.42. Prove that the aeries (θ) and ($\%$) on page 181 which are nenterminating are convergent for $-1<x<1$ but divergent for $x= \pm 1$.
748. Find $Q_{3}(m)$.
7.4. Write the general solution of (1- $-x^{2} 1 y^{\prime \prime}-2 x y^{\prime}+2 y=0$.

series of Legendre polynomials

SERIES OF LEGENDRE POLYNOLIALS
i.A6. Expand $f(x)=\left\{\begin{array}{cc}2 x+1 & 0<z \operatorname{si} 1 \\ 0 & -i \leq x<0\end{array}\right.$ in a series of the form $\sum_{k=0}^{\infty} A_{k} P_{k}(x)$, writing the first fout nonzero terms.
147. $11 f(x)=\sum_{k=0}^{\infty} A_{k} P_{k}(x)$, obtain P araepal's identity

$$
\int_{-1}^{1}[f(x))^{2} d x=2 \cdot \sum_{k=0}^{\infty} \frac{A_{k}^{x}}{2 k+1}
$$

and illugtrete by asing the function' of Problem 7.45.

gOLUTIONS USIING LEGENDRE FUNCTIONS

74a. Find the potential v (a) Intericr and (b) exterior to a hollow sphere of unit radius with center at tio origin if the aurface is charged to potential $v_{0}(1+3 \cos \theta)$ where v_{0} is constanto
7.49. Solve Problem 7.48 if the surface potential is $v_{0} \sin ^{2} \theta$.
730. Find the stedy-stato temperatury within the region bounded by two concentric spheres of radii a and $2 a$ if the temporatures of the outer and inner spheres are x_{0} and 0 respectively.
751. Find the gravitational potential at any point outside a molid oniform sphere of radius a of mass on.
752. Is there a alution to Problem 7.51, if the point in inside the sphere? Explain.
758. Interpret Problem 7.48 an A temperature problem.
7.54. Show that the potential due to a uniform spherical ahell of inner radrus a and outcic radius b is given by

$$
\dot{v}=\left\{\begin{array}{lr}
2 \pi \sigma\left(b^{2}-a^{2}\right) & r<a \\
2 \pi \sigma\left(3 b^{2} r-2 a^{3}-r^{3}\right) / 3 r & a<r<b \\
4 \pi \sigma\left(b^{2}-a^{2}\right) / 3 r & r>b
\end{array}\right.
$$

755. A solid uniform circular dise of radius a and mass ${ }^{1 f}$ is located in the my-plane with center at the origin. Show that the gravitational potential at any point of the plane is given by

$$
\begin{aligned}
v=\frac{2 M}{a}\left[1-\frac{r}{a} P_{1}(\cos \theta)+\frac{1}{2}\left(\frac{r}{a}\right)^{2} P_{2}(\cos \theta)\right. & -\frac{1}{2 \cdot 4}\left(\frac{r}{a}\right)^{4} P_{4}(\cos \theta) \\
& \left.+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6}\left(\frac{r}{a}\right)^{6} P_{8}(\cos \theta)-\cdots\right]
\end{aligned}
$$

if $t<\pi$ and

$$
\text { if } r>a
$$

$$
v=\frac{M}{r}\left[1-\frac{1}{4}\left(\frac{a}{r}\right)^{2} P_{2}(\cos t)+\frac{1-3}{1 \cdot 6}\left(\frac{a}{r}\right)^{4} P_{4}(\cos \theta)-\frac{1 \cdot 3 \cdot 5}{4+6 \cdot 8}\left(\frac{a}{r}\right)^{6} P_{6}(\cos \theta)+\cdots\right]
$$

AESOCLATED LEGENDAE FUNCHIONE

758. Find
(a) $P_{1}^{2}(x)$,
(b) $P_{4}^{2}(x)$,
(c) $P_{4}^{8}(x)$.
759. Find
(a) $Q_{1}^{1}(x)$,
(b) $Q_{1}^{2}(x)$.

75s. Verify that the expressions for $P_{g}^{1}(x)$ and $Q_{\mathrm{g}}^{1}(x)$ are aolutions of the corresponding differential equation and thus write the general solution.
759. Verify formulas (18) and (17), page 192, for the cane where (a) $m=1, n=1, l=2$, (b) $m=1$, $n=1, l=1$.
7.60. Obtain a generating function for $\mathcal{P}_{n}^{m}(x)$.
762. Use the genersiting function to obtain resulte (18) and (17) on page 132.
7.62. Show how to expand $f(x)$ in a series of the form $\sum_{k=9}^{\infty} A_{k} P_{k}^{m}(x)$ and Huatrate by ubing the casee (a) $f(x)=a^{2}, m=2$ and (b) $f(x)=w(1-x), m=1$. Verify the corresponding Parseval's identity in each cabe.
7.63. Woris Problem 7.18 if the potential on the surface is v_{0} gins ${ }^{8}$ cola coe 3_{ϕ}.

Miscellaneous problems

7.64. Show that

$$
P_{n}(x)=\frac{1}{2^{n}} \sum_{i=0}^{(n / 4)} \frac{(-2) k(2 n-2 k)!}{k!(n-k) \mid(n-2 k)!} x^{n-2 m}
$$

where $[n / 2]$ is the jargest integer $\leq n / 2$.
7.65. Sbow that

$$
P_{n}(x)=\frac{1}{v} \int_{0}^{v}\left(x+\sqrt{x^{2}-1} \cos u\right)^{\pi} d u
$$

Use the rebult to find $\cdot P_{2}(x)$ and $P_{9}(x)$.
7.66. Show that

$$
\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) P_{n}^{\prime}(x) d x=\left\{\begin{array}{cc}
0 & m \neq n \\
\frac{2 n(n+1)}{2 n+1} & m=n
\end{array}\right.
$$

7.67. Show that

$$
\int_{-1}^{1} P_{n}(x) \ln (1-x) d x= \begin{cases}-2 / \pi(n+1) & n \neq 0 \\ 2(\ln 2-1) & n=0\end{cases}
$$

7.63. (a) Show thai $\int_{-1}^{1} x^{n P_{n}(\dot{x})} d x=0$ if $m<n$ or if $m-n$ is an odd positive integer.
(b) Show that

$$
\int_{-1}^{1} x^{n+2 p} P_{n}(x) d x=\frac{(n+2 p)!\Gamma\left(p+\frac{1}{4}\right)}{2^{n}(2 p)!\Gamma\left(p+n+\frac{1}{y}\right)}
$$

for any non-negative integers n and p.
7.69. Show that a molution of the wave equation

$$
\nabla \nabla^{2} V=\frac{1}{\sigma^{2}} \frac{\partial^{2} V}{\partial t^{2}}
$$

depending on r, \dot{s}, and t, but not on φ, is giteen by

$$
V=\left[A_{1} J_{n+1 / 2}(\omega / / e]+B_{1} J_{-n-1 / 2}(\omega r / \theta)\right]\left[A_{2} P_{n}(\cos \theta)+B_{2} Q_{-}(\cos \theta)\right]\left[A_{2} \cos \Delta t+B_{3} \sin \omega t\right]
$$

7.74. Work Proplem 7.69 if there is also ϕ-dependence.
7.71. A heat-conducting region is bounded by. two concentric apherea of radil a and b ($a<b$) wheh have thair anciuces maintaned at conntant tamperatare u_{1} and u_{2} respectively. Find the ctendyotate tempertare at any point of the region.
7.72. Interprat Problem T.1月 as a temparature problem
758. Obtain a colution aimiler to that given in Problem 7.69 for the hent conduetion equation

$$
\frac{\partial u}{\partial t}=r \nabla t_{u}
$$

where u depends on r, d, and t but not on ϕ.

Chapter 8

Hermite, Laguerre and Other Orthagonal Polynomials

HERMITE'S DIFFERENTIAL EQUATION. HERMITE POLYNOMIALS

An important equation which arises in problems of phyaica is called Hermite's differential equation; it is given by

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 \tag{1}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$.
The equation (1) has polynomial solutions called Hermite polynomials given by Rodrigue's formula

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{1}} \frac{d^{n}}{d x^{n}}\left(e^{-x x^{x}}\right) \tag{2}
\end{equation*}
$$

The first few Hermite polynomials are

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2, \quad H_{3}(x)=8 x^{3}-12 x
$$

Note that $H_{n}(x)$ is a polynomial of degree n.

generating function for hermite polynomials

The generating function for Hermite polynomials is given by

$$
\begin{equation*}
e^{2 L x-r^{2}}=\sum_{\mathrm{N}=0}^{\infty} \frac{H_{n}(x)}{n!} t^{n} \tag{4}
\end{equation*}
$$

This result is useful in obtaining many properties of $H_{n}(x)$.

RECURRENCE FORMULAS FOR HERMITE POLYNOMIALS

We can show (gee Problems 8.2 and 8.20) that the Hermite polynomials satisfy the recurrence formulas

$$
\begin{gather*}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \tag{5}\\
H_{n}^{\prime}(x)=2 n H_{n-1}(x) \tag{6}
\end{gather*}
$$

Starting with $H_{0}(x)=1, H_{1}(x)=2 x$, we can use (5) to whtain higher-degree Hermite polynomials.

ORTHOGONALITY OF HERMITE POLYNOMIALS

We can show (see Problem 8.4) that

$$
\int_{-\infty}^{\infty} e^{-x^{2} H_{m}(x) H_{\pi}(x) d x=0 \quad m \neq n}
$$

so that the Hermite polynomials are mutually orthogonal with respect to the weight or density function $e^{-x t}$.

In the case where $m=n$ we can show (see Problem 8.4) that the left side of (\%) becomes

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{4}} H_{n}^{2}(x) d x=2 \ln !\sqrt{\pi} \tag{8}
\end{equation*}
$$

From this we can normalize the Hermite polynomials so as to obtain an orthonormal set.

SEHIES OF HERMITE POLYNOMIALS

Using the orthogonality of the Hermite polynomials it is possible to expand a function in a series having the form

$$
\begin{equation*}
f(x)=A_{0} H_{0}(x)+A_{1} H_{1}(x)+A_{2} H_{2}(x)+\cdots \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\frac{1}{2^{n} n!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2} f(x) H_{n}(x) d x} \tag{10}
\end{equation*}
$$

See Problem 8.6.
In general such series expansions are possible when $f(x)$ and $f^{\prime}(x)$ are piecewise continuous.

LAGUERRE'S DIFFERENTIAL EQUATION. LAGUERRE POLYNOMIALS

Another differential equation of importance in physics is Laguerre's differential equation given by

$$
\begin{equation*}
x y^{\prime \prime}+(1-x) y^{\prime}+n y=0 \tag{11}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$.
This equation has polynumial solutions called Laguprre polynomials given by

$$
\begin{equation*}
L_{n}(x)=e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right) \tag{12}
\end{equation*}
$$

which is also referred to as Rodrigue's formula for the Laguerre polynomials.
The first few Laguerre polynomials are

$$
\begin{equation*}
L_{0}(x)=1, \quad L_{1}(x)=1-x, \quad L_{2}(x)=x^{2}-4 x+2, \quad L_{3}(x)=6-18 x+9 x^{2}-x^{3} \tag{18}
\end{equation*}
$$

Note that $L_{\mathbf{n}}(x)$ is a polynomial of degree n.

SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMIALS
In the following we list some properties of the Laguerre polynomials.

1. Generating function.

$$
\begin{equation*}
\frac{e^{-x /(1 \sim n}}{1-t}=\sum_{n=0}^{\infty} \frac{L_{n}(x)}{n!} t^{n} \tag{14}
\end{equation*}
$$

2 Recurrence formulas.

$$
\begin{gather*}
L_{n+1}(x)=(2 n+1-x) L_{n}(x)-n^{2} L_{n-1}(x) \tag{15}\\
L_{n}^{\prime}(x)-n L_{n-1}^{\prime}(x)+n L_{n-1}(x)=0 \tag{16}\\
x L_{n}^{\prime}(x)=n L_{n}(x)-n^{9} L_{n-1}(x) \tag{17}
\end{gather*}
$$

3. Orthogonality.

$$
\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) d x=\left\{\begin{array}{cl}
0 & \text { if } m \neq n \tag{18}\\
(n!)^{2} & \text { if } m=n
\end{array}\right.
$$

4. Series expansions.

$$
\begin{equation*}
\text { If } \quad f(x)=A_{0} L_{0}(x)+A_{1} L_{1}(x)+A_{2} L_{2}(x)+\cdots \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
A_{n}=\frac{1}{(n!)^{2}} \int_{0}^{\infty} e^{-x} f(x) L_{n}(x) d x \tag{20}
\end{equation*}
$$

MISCELLANEOUS ORTHOGONAL POLYNOMIALS AND THEIR PRORERTIES

There are many other examples of orthogonal polynomials. Some of the more important ones, together with their properties, are given in the following list.

1. Associated Laguerre polynomials $L_{n}^{m}(x)$.

These are polynomials defined by

$$
\begin{equation*}
L_{n}^{m}(x)=\frac{d^{m}}{d x^{m}} L_{n}(x) \tag{E1}
\end{equation*}
$$

and satisfying the equation

$$
\begin{equation*}
x y^{\prime \prime}+(m+1-x) y^{\prime}+(n-m) y=0 \tag{22}
\end{equation*}
$$

If $m>n$ then $L_{n}^{m}(x)=0$.
We have

$$
\begin{align*}
\int_{0}^{\infty} x^{m} e^{-x} L_{n}^{m}(x) L_{p}^{m}(x) d x & =0 \quad p \tag{28}\\
\int_{0}^{\infty} x^{m} e^{-x}\left\{L_{n}^{m}(x)\right\}^{2} d x & =\frac{(n!\}^{3}}{(n-m)!} \tag{24}
\end{align*}
$$

2. Chebyshev polynomials $T_{n}(x)$.

These are polynomials defined by

$$
\begin{equation*}
T_{n}(x)=\cos \left(n \cos ^{-1} x\right)=x^{n} \cdots\binom{n}{2} x^{n-2}\left(1-x^{2}\right)+\binom{n}{4} x^{n-4}\left(1-x^{2}\right)^{2}-\cdots \tag{25}
\end{equation*}
$$

and satisfying the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 \tag{26}
\end{equation*}
$$

where $n=0,1,2, \ldots$.
A recurrence formula for $T_{n}(x)$ is given by

$$
\begin{equation*}
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \tag{27}
\end{equation*}
$$

and the generating function is

$$
\begin{equation*}
\frac{1-t x}{1-2 t x+t^{2}}=\sum_{n=0}^{\infty} T_{n}(x) t^{n} \tag{28}
\end{equation*}
$$

We ailso have

$$
\begin{gather*}
\int_{-1}^{1} \frac{T_{\mathrm{m}}(x) T_{\mathrm{n}}(x)}{\sqrt{1-x^{2}}} d x=0 \quad m \neq n \tag{29}\\
\int_{-1}^{1} \frac{\left[T_{\mathrm{n}}(x)\right\}^{2}}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{cl}
\pi & n=0 \\
\pi / 2 & n=1,2, \ldots
\end{array}\right. \tag{80}
\end{gather*}
$$

Solved Problems

HERMITE POLYNOMIALS

8.1. Use the generating function for the Hermite polynomials to find (a) $H_{0}(x)$, (b) $H_{1}(x)$, (c) $H_{2}(x)$, (d) $H_{3}(x)$.

We have

$$
\theta^{2 t x-2}=\sum_{n=0}^{\infty} \frac{H_{n}(x) t^{n}}{n!}=H_{0}(x)+H_{1}(x) t+\frac{H_{2}(x)}{2!} t^{2}+\frac{H_{2}(x)}{31} t^{4}+\cdots
$$

Now

$$
\begin{aligned}
e^{2 t z-t^{4}} & =1+\left(2 t x-t^{2}\right)+\frac{\left(2 t x-t^{2}\right)^{8}}{2!}+\frac{\left(2 t x-t^{2}\right)^{2}}{3!}+\cdots \\
& =1+(2 x) t+\left(2 x^{2}-1\right) t^{2}+\left(\frac{4 x^{3}-6 x}{3}\right) t^{3}+\cdots
\end{aligned}
$$

Comparing the two series, we have

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 y^{2}-2, \quad H_{3}(x)=8 x^{8}-12 x
$$

82. Prove that $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$.

Differentiating $e^{2 t z-t^{*}}=\sum_{*=0}^{\infty} \frac{H_{n}(x)}{n!}$ tn with respect to x,
or

$$
\begin{gathered}
2 t e^{g x-n^{n}}=\sum_{n=0}^{\infty} \frac{H_{n}^{\prime}(x)}{n!} t^{n} \\
\sum_{n=0}^{+} \frac{2 H_{n}(x)}{n!} t^{n+1}=\sum_{n=0}^{+} \frac{H_{n}^{\prime}(x)}{n!} t^{n}
\end{gathered}
$$

Equating coefficients of t^{n} on both sides,

$$
\frac{2 H_{n-1}(x)}{(n-1)!}=\frac{H_{n}^{\prime}(x)}{n!} \text { or } \quad H_{n}^{\prime}(x)=2 n H_{n-1}(x)
$$

8.3. Prove that $H_{n}(x)=(-1)^{n} e^{x z} \frac{d^{n}}{d x^{n}}\left(e^{-x^{n}}\right)$.

* We have

$$
e^{2: x-t^{*}}=e^{z^{*}-(t-x)^{2}}=\sum_{n=0}^{\infty} \frac{H_{n}(x)}{n!} t^{n}
$$

Then

$$
\left.\frac{\partial^{n}}{\partial x^{n}}\left(e^{\operatorname{sex}-2^{2}}\right)\right|_{t=0}=H_{n}(x)
$$

Bat

$$
\begin{aligned}
\left.\frac{\partial^{n}}{\partial t^{2}}\left(e^{2 t x-n^{n}}\right)\right|_{t=0} & =e^{\left.x^{2} \frac{\partial^{n}}{\partial t^{n}}\left[e^{-(t-x)^{n}}\right]\right|_{t=0}} \\
& =\left.e^{x^{2}} \frac{\partial^{n}}{\partial(-x)^{n}}\left[6^{-(t-s)^{n}}\right]\right|_{t=0}=(-1)^{n} e^{x^{1}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{n}}\right)
\end{aligned}
$$

84. Prove that $\int_{-\infty}^{\infty} e^{ - \pm 2} H_{m}(x) H_{n}(x) d x=\left\{\begin{array}{cc}0 & m \neq n \\ 2 \sim n!\sqrt{\pi} & m=n\end{array}\right.$

We have

$$
e^{2 x-t^{t}}=\sum_{n=0}^{\infty} \frac{H_{n}(z) t^{n}}{n!}, \quad e^{2 n x-t^{2}} \quad=\sum_{n=0}^{\infty} \frac{\left.H_{m}(x)\right)^{m}}{m!}
$$

Multiplying these,

Multiplying by $d^{-s^{t}}$ and Integrating from $-\infty$ to ∞,

$$
\int_{-\infty}^{\infty} e^{-\left[(x+0+t)^{2}-20 t\right]} d x=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\theta^{m} d^{n}}{m!n!} \int_{-\infty}^{\infty} e^{-x^{1} H_{m}(x) H_{n}(x) d x}
$$

Now the left side is equal to

By equating coefficients the required result follows.
The result

$$
\int_{-\infty}^{\infty} e^{-x^{4} H_{m}(x) H_{n}(x) d x}=0 \quad m+n
$$

can also be proved by using a method airailar to that of Problem 7.13, page 188 (gee Problem 8.24).
8.5. Show that the Hermite polynomials satisfy the differential equation

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

From (5) and (0), page 154, we have on eliminating $H_{n-1}(x)$;

$$
\begin{equation*}
H_{n+1}(x)=2 x H_{n}(x)-H_{n}^{\prime}(x) \tag{1}
\end{equation*}
$$

Difterenteting both sides we have

$$
H_{n+1}^{\prime}(x)=2 x H_{n}^{\prime}(x)+2 H_{n}(x)-H_{n}^{\prime \prime}(x)
$$

Eut from (6), page 154, we have on replacing n by $n+1$:

$$
\begin{equation*}
H_{n+1}^{\prime}(x)=2(n+1) H_{n}(x) \tag{s}
\end{equation*}
$$

Uaing (S) in (e) we then find on simplifying:

$$
H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}(x)+2 \pi H_{n}(x)=0
$$

which is the required reault.
We can aleo proceed as in Problem 8.25.
8.6. (c) If $f(x)=\sum_{k=0}^{\infty} A_{k} H_{k}(x)$ show that $A_{k}=\frac{1}{2^{k} k!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{0} f(x)} H_{k}(x) d x$.
(b) Expand x^{5} in a series of Hermite polynomials.
(a) If $f(x)=\sum_{k=0}^{\infty} A_{k} H_{k}(x)$ then on multiplying both sides by $a^{-\pi} x^{-4} H_{n}(x)$ and iategrating term by term from $-\infty$ to ∞ (assuming this to be possible) we arrive at

Gut from Problem 8.4

Thus (1) becomes
or

$$
\begin{align*}
& \int_{-\infty}^{\infty} e^{-x} f(x) H_{n}(x) d x=A_{n} 2 n_{n}!\sqrt{7} \\
& A_{n}=\frac{1}{2 n_{x}!\sqrt{x}} \int_{-\infty}^{\infty} e^{-x} f(x) H_{n}(x) d x \tag{e}
\end{align*}
$$

which yialds the required renult on replacing n by k.
(b) We must find coeflicients $A_{k}, k=1,2,3_{1} \ldots$, such that

$$
\begin{equation*}
x^{3}=\sum_{k=0}^{\infty} A_{k} H_{k}(x) \tag{}
\end{equation*}
$$

Methad 1.
The expanaion (s) can be writtion

$$
\begin{gather*}
x^{3}=A_{0} H_{0}(x)+A_{1} H_{1}(x)+A_{2} H_{2}(x)+A_{3} H_{0}(x)+\cdots \tag{4}\\
x^{2}=A_{0}(1)+A_{1}(2 x)+A_{1}\left(4 x^{2}-2\right)+A_{8}\left(B_{1} x^{3}-12 x\right)+\cdots \tag{5}
\end{gather*}
$$

or
Since $H_{k}(x)$ is a polynomial of degree k we see that we must have $A_{4}=0, A_{5}=0, A_{6}=0, \ldots$; ctherwise the left alde of (5) is a polynomial of degree 8 while the right slde would be a polynemial of degree greater than 3 . Thus we have from (5)

$$
x^{s}=\left(A_{0}-2 A_{2}\right)+\left(2 A_{1}-12 A_{9}\right) x+4 A_{2} x^{2}+8 A_{3} x^{2}
$$

Then equating coefficients of tike powers of z on both gides we find

$$
8 A_{3}=1, \quad 4 A_{2}=0, \quad 2 A_{1}-12 A_{\mathrm{z}}=0, \quad A_{0}-2 A_{2}=0
$$

from which

$$
A_{0}=0, \quad A_{1}=\frac{3}{4}, \quad A_{2}=0, \quad A_{2}=\frac{1}{8}
$$

Thas (s) becomes

$$
x^{s}=\frac{3}{4} H_{1}(x)+\frac{1}{8} H_{3}(x)
$$

which is the required exparaion.
Cheek.

$$
\frac{8}{4} H_{1}(x)+\frac{1}{8} H_{3}(x)=\frac{3}{4}(2 x)+\frac{1}{8}\left(8 x^{4}-12 x\right)=x^{4}
$$

Method 2.

The coefflicienta A_{k} in (t) are given by

$$
A_{k}=\frac{1}{2 k k 1 \sqrt{\pi}} \int_{-\infty}^{\infty} \theta^{-x x^{2} 2 H_{k}(x) d x}
$$

as obtained in part (a) with $f(x)=x^{3}$.
Putting $k=0,1,2,3,4, \ldots$ and integrating we then find

$$
A_{0}=0, \quad A_{1}=\frac{3}{4}, \quad A_{2}=0_{1} \quad A_{3}=\frac{1}{8}, \quad A_{4}=0, \quad A_{6}=0, \quad \ldots
$$

and we are led to the game result as in Method 1.
In general, for expansion of polynomials the first of the above methode will be easier and fater.
8.7. (a) Write Parseval's identity corresponding to the series expansion $f(x)=\sum_{k=0}^{\infty} A_{k} \mathcal{H}_{k}(x)$.
(b) Verify the result of part (a) for the case where $f(x)=x^{3}$.
(a) We can obtain Parseval's identity formally by first squaring both sides of $f(x)=\sum_{k=0}^{\infty} A_{k} H_{k}(x)$ to obtain

$$
\{\dot{f(x)}\}^{2}=\sum_{k=0}^{\infty} \sum_{p=0}^{\infty} A_{z} A_{p} H_{k}(x) H_{p}(x)
$$

Then multiplying by e^{-5} and integrating from $-\infty$ to ∞ we find

Making ase of the results of Problem B. 4 this can be written as

$$
\int_{-\infty}^{\infty} e^{-x^{2}}\{f(x)\}^{2} d x=\sqrt{\pi} \sum_{k=0}^{\infty} 2^{k} d t A_{k}^{y}
$$

which in Pergeval's identity for the Hermite polynomials.
(b) From Problem 8.6 it follown that if $f(x)=x^{2}$ then $A_{0}=0, A_{1}=\frac{\text { 昗 }}{}, A_{2}=0, A_{2}=\frac{1}{\text { b }}, A_{4}=2$, $A_{8}=0, \ldots$ Thus Parseval's identity becomes

$$
\int_{-\infty}^{\infty}-x^{2}\left\{x^{2}\right\}^{2} d x=\sqrt{\pi}\left[2(11)\left(\frac{8}{1}\right)^{2}+2^{2}(81)\left(\frac{1}{8}\right)^{2}\right]
$$

Now the right aide reduces to $16 \sqrt{\pi} / 8$, The left side fir

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \operatorname{peg}^{6}-x^{0} d x=2 \int_{0}^{\infty} x^{0} e^{-\varepsilon^{4}} d x=\int_{0}^{\infty} u^{5 / q_{\varepsilon}-u} d u \\
& =\Gamma\left(\frac{7}{y}\right)=\left(\frac{\pi}{8}\right)\left(\frac{t}{2}\right)\left(\frac{1}{3}\right) \sqrt{4} \\
& =\frac{15}{8} \sqrt{\pi}
\end{aligned}
$$

where we have made the tranaformation $x=\sqrt{u}$. Thus Parseval's identity is verified.

LAGUERRE POLYNOMIALS

8.8. Determine the Laguerre polynomials (a) $L_{0}(x),(b) L_{1}(x)$, (c) $L_{-1}(x),(d) L_{s}(x)$.

We bave $L_{n}(x)=\sigma^{n} \frac{d^{n}}{d x^{n}}\left(x^{n} \varepsilon^{-x}\right)$. Then
(a) $L_{0}(z)=1$
(b) $L_{1}(x)=\sigma^{2} \frac{d}{d x}\left(x^{-x}\right)=1-x$
(c) $L_{x}(x)=\sigma \frac{d^{2}}{d x^{1}}\left(x^{2} \sigma^{-x}\right)=2-4 x+x^{2}$
(d) $L_{8}(x)=\frac{d^{4}}{d x^{2}}\left(x^{y_{6}}-x\right)=6-18 x+9 x^{2}-x^{4}$
8.8. Prove that the Laguerre polynomials $L_{n}(x)$ are orthogonal in ($0, \infty$) with respect to the weight function e^{-x}.

From Laguerre'u differential equation wa have for any two Laguerre polynomiala $\mathcal{L}_{\boldsymbol{m}}(m)$ and $\mathrm{L}_{\boldsymbol{n}}(x)$,

$$
\begin{gathered}
x L_{m}^{\prime \prime}+(1-x) L_{m}^{\prime}+m L_{m}=0 \\
\pi L_{n}^{\prime \prime}+(1-x) L_{n}^{\prime}+n L_{n}=0
\end{gathered}
$$

Multiplying these equations by L_{n} and L_{m} respectively and aubtrecting, we find
or

$$
\begin{aligned}
& x\left[L_{n} L_{m}^{\prime \prime}-L_{m} L_{m}^{\prime \prime}\right]+(1-x)\left[L_{n} L_{m}^{\prime}-L_{m}^{\prime} L_{n}^{\prime}\right]=(n-m) L_{m} L_{n} \\
& \frac{d}{d m}\left[L_{n} L_{m}^{\prime}-L_{m} L_{m}^{\prime}\right]+\frac{1-x}{m}\left[L_{n} L_{m}^{\prime}-L_{m} L_{n}^{\prime}\right]=\frac{(n-m) L_{m} L_{n}}{x}
\end{aligned}
$$

Muituplying by the integrating fector

$$
\int(1-x) / x d x=e^{\ln x^{2} x}=\pi e^{-x}
$$

this can be written as

$$
\frac{d}{d x}\left\{\left(\omega \theta^{-x}\left[L_{m} L_{m}^{\prime}-L_{m} L_{m}^{\prime}\right]\right\}=(n-m) e^{-s L_{m} L_{n}}\right.
$$

so that by integrating from 0 to ∞,

Thus is $m+n$ n

$$
\int_{0}^{\infty} e^{-x L_{n k}(x) L_{n}(x) d x=0}
$$

which proves the required result.
8.10. Prove that $L_{s+1}(x)=(2 n+1-x) L_{n}(x)-n^{ \pm} L_{n-1}(x)$.

The generating fonction for the Laguerre polynomisis is

$$
\begin{equation*}
\frac{e^{-x t(1-t)}}{1-t}=\sum_{n=0}^{\infty} \frac{L_{n}(a)}{n!} t n \tag{1}
\end{equation*}
$$

Differentiating both sides with reapect to i yideld

$$
\begin{equation*}
\frac{e^{-x t /(1-t)}}{(1-t)^{2}}-\frac{x 0^{-x+1 /(1-t)}}{(1-t)^{2}}=\sum_{n=0}^{\infty} \frac{n L_{n}(x)}{n!} t^{n-1} \tag{l}
\end{equation*}
$$

Maltiplying both sides by $(1-t){ }^{2}$ and using (t) on the left side we find

$$
\sum_{n=0}^{ \pm}(1-t) \frac{L_{0}(x)}{n!} t^{n}-\sum_{n=0}^{\infty} \frac{x L_{n}(x)}{n!} t n=\sum_{n=0}^{\infty}(1-t)^{n L_{n}(x)} t^{n!} t-1
$$

which can be written as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{L_{n}(x)}{n 1} t^{n}-\sum_{n=0}^{\infty} \frac{L_{n}(x)}{n!} t^{n+1}-\sum_{n=0}^{\infty} \frac{z L_{n}(x)}{n!} t^{n} \\
& \quad=\sum_{n=0}^{\infty} \frac{n L_{n}(x)}{n!} t^{n-1}-\sum_{n=0}^{\infty} \frac{2 n L_{n}(x)}{n!} t^{n}+\sum_{n=0}^{\infty} \frac{n L_{n}(x)}{n!} t^{n+1}
\end{aligned}
$$

If we now equate coefficients of tin on both sides of this equation we find

$$
\frac{L_{n}(x)}{n!}-\frac{L_{n-1}(x)}{(n-1)!}-\frac{x L_{n}(x)}{n!}=\frac{(n+1) L_{n+1}(x)}{(n+1)!}-\frac{2 n L_{n}(x)}{n!}+\frac{(n-1) L_{n-1}(x)}{(n-1)!}
$$

Moltiplying by nl and aimplifying we then obtain, as required,

$$
L_{n+1}(x)=(2 n+1-x) L_{n}(x)-n^{2} L_{n-1}(x)
$$

8.11. Expand $z^{2}+x^{2}-3 x+2$ in a series of laguerre polynomials, i.e,

$$
\sum_{k=0}^{\infty} A_{k} L_{k}(x) .
$$

We ahall use a method stmilar to Kethod 1 of Problem 8.6(b). Since we nust expand a polynomial of degree 3 we need only take terms ap to $L_{3}(x)$. Thus

$$
x^{3}+x^{2}-3 x+2=A_{0} L_{0}(x)+A_{1} L_{1}(x)+A_{2} L_{2}(x)+A_{2} L_{3}(x)
$$

Using the results of Problem B. 8 thin can be written

$$
z^{9}+z^{2}-9 x+2=\left(A_{0}+A_{1}+2 A_{2}+6 A_{5}\right)-\left(A_{1}+4 A_{2}+18 A_{3}\right) x+\left(A_{3}+9 A_{0}\right) x^{2}-A_{8} x^{2}
$$

Then, equating like powers of x on both atdes we bave

$$
A_{0}+A_{1}+2 A_{2}+6 A_{3}=2, \quad A_{1}+4 A_{2}+18 A_{3}=3_{2} \quad A_{2}+9 A_{2}=1, \quad-A_{2}=1
$$

Solving these we find

$$
A_{0}=7, \quad A_{1}=-19, \quad A_{2}=10, \quad A_{3}=-1
$$

Then the required expunsion is

$$
x^{8}+x^{2}-3 x+2=7 L_{0}(x)-10 L_{1}(x)+10 I(x)-L_{3}(x)
$$

We can aloo work the probsem by usting (19) and (zo), page 156.

MISCELLANEOUS ORTHOGONAL POLYNOMIALS

8.12. Obtain the associated Laguerre polynomials (a) $L_{2}^{\frac{1}{2}(x), ~(b) ~} L_{x}^{\frac{1}{2}}(x)$, (c) $L_{8}^{f}(x),(d) L_{j}^{4}(x)$.
(a) $L_{2}^{1}(x)=\frac{d}{d x} L_{2}(x)=\frac{d}{d x}\left(2-4 x+x^{2}\right)=2 x-4$
(b) $L_{2}^{2}(x)=\frac{d^{2}}{d z^{2}} L_{2}(x)=\frac{d^{2}}{d x^{2}}\left(2-4 x+x^{2}\right)=2$
(c) $L_{s}^{2}(x)=\frac{d^{2}}{d x^{2}} L_{3}(x)=\frac{d^{2}}{d x^{2}}\left(6-18 x+9 x^{2}-x^{3}\right)=18-6 x$
(d) $L_{s}^{t}(x)=\frac{d^{d}}{d x^{t}} L_{s}(x)=0$. In general $L_{n}^{\text {ma }}(x)=0$ if $m>n$.
8.19. Verify the result (24), page 156 , for $m=1, n=2$.

We must show that

$$
\int_{0}^{+\infty} x e^{-x}\left\{L_{2}^{1}(x)\right\}^{2} d v=\frac{(2!\}^{3}}{1!}=\mathrm{B}
$$

Now since $L_{2}^{1}(x)=2 x-4$ by Problem $8.12(a)$ we have

$$
\begin{aligned}
\int_{0}^{\infty} x \theta^{-x}(2 x-4)^{2} d z & =4 \int_{0}^{\infty} x^{3}-x d x-16 \int_{0}^{\infty} x^{2} e^{-x} d y+16 \int_{0}^{\infty} x e^{-z} d z \\
& =4 \Gamma(4)-16 \Gamma(8)+16 \Gamma^{\prime}(2) \\
& =4(3!)-16(2!)+18(1!) \\
& =8
\end{aligned}
$$

so that the reault is verified.
8.14. Verify the reault (2S), page 156 , with $m=2, n=2, p=3$.

We mast show that

$$
\int_{0}^{\infty} x^{2} z_{-x} L_{9}^{2}(x) L_{3}^{2}(x) d x=0
$$

Since $L_{s}^{2}(z)=2, L_{3}^{2}(x)=18-6 x$ by Problem 8.12(a) and (b) respectively the integral ia

$$
\begin{aligned}
\int_{0}^{\infty} x^{2} b^{-x}(2)(18-6 x) d x & =36 \int_{0}^{\infty} x^{2} e^{-x} d x-12 \int_{0}^{\infty} x^{8} 8-x d x \\
& =36 \Gamma^{\prime}(8)-12 \Gamma(4) \\
& =36(2!)-12(3!)=0
\end{aligned}
$$

as required.
8.15. Verify that $L_{s}^{2}(x)$ satisfies the differential equation (22), page 156 , in the special case $m=2, n=3$.

From Problem $8.12(c)$ we have $L_{a}^{\mathrm{y}}(x)=18-8 x$. The differential equation (28), page 156, with
$2, n=8$ is $m=2, n=8$ is

$$
x y^{\prime \prime}+(8-x) y^{\prime}+y=0
$$

Substituting $y=18-6 x$ in this equation we have

$$
x(0)+(3-x)(-6)+18-6 x=0
$$

which is an identity. Thus $L_{s}^{2}(x)$ natinfies the diferential equation.
8.16. Show that the Chebysher polynomial $T_{n}(x)$ is given by

$$
T_{n}(x)=x^{n}-\binom{n}{2} x^{n-2}\left(1-x^{2}\right)+\binom{n}{4} x^{n-1}\left(1-x^{2}\right)^{2}-\binom{n}{6} x^{n-8}\left(1-x^{2}\right)^{3}+\cdots
$$

We have by definition

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right)
$$

Let $u=\cos ^{-1} x$ ba that $x=\cos u$. Then $T_{n}(x)=\cos n u$. Now by De Moivre's theorem

$$
(\cos u+i \sin u)^{n}=\cos n u+i \sin n u
$$

Thus $\cos n u$ is the real part of $(\cos u+i \sin u)^{n}$. Sut this expansion is, by the binomial theorem,

$$
(\cos u)^{n}+\binom{n}{1}(\cos u)^{n-1}(i \sin u)+\binom{n}{2}(\cos u)^{n-2}(i \sin u)^{2}+\binom{n}{3}(\cos u)^{n-3}(i \sin u)^{3}+\cdots
$$

and the real part of this is given by

$$
\cos ^{n} u-\binom{n}{2} \cos ^{n-2} u \sin ^{2} u+\binom{n}{4} \cos ^{n-4} u \sin ^{4} u-\cdots
$$

Then since $\cos u=z$ and $\sin ^{2} u=1-x^{2}$, this becomes

$$
x^{n}-\binom{n}{2}^{n-2\left(1-x^{2}\right)}+\binom{n}{4}^{n-4}\left(1-x^{2}\right)^{2}-\cdots
$$

8.17. Find (a) $T_{2}(x)$ and (b) $T_{9}(x)$.

Using Problem 8.16 we find for $\boldsymbol{n}=2$ and $\boldsymbol{n}=\mathbf{3}$ respectively:
(a) $T_{2}(x)=x^{2}-\binom{2}{2} x^{0\left(1-x^{2}\right)}=x^{2}-\left(1-x^{2}\right)=2 x^{2}-1$
(b) $T_{3}(x)=x^{3}-\binom{3}{2} x^{1}\left(1-x^{7}\right)=x^{3}-3 x\left(1-x^{2}\right)=4 x^{3}-3 x$

Another method

Since $T_{0}(x)=\cos 0=1, \quad T_{1}(x)=\cos \left(\cos ^{-1} x\right)=x$ we have from the recurrence formula (87), page 156, on putting $n=1$ and $n=2$ respectively,

$$
\begin{gathered}
T_{2}(x)=2 x T_{1}(x)-T_{0}(x)=2 x^{4}-1 \\
T_{3}(x)=2 \times T_{2}(x)-T_{1}(x)=2 x\left(2 x^{2}-1\right)-x=4 x^{8}-9 x
\end{gathered}
$$

818. Verify that $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$ satisfies the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

for the case $n=3$.
From Problem 8.17(6), $T_{3}(x)=4 x^{3}-3 x$ and the differentiel equation for $n=3$ is

$$
\left(1-x^{2} y y^{\prime \prime}-x y^{\prime}+9 y=0\right.
$$

Then if $y=4 x^{4}-9 x$ the left side becomes

$$
\left(1-x^{2}\right)(24 x)-x\left(12 x^{8}-3\right)+9\left(4 x^{3}-3 x\right)=0
$$

so that the differential equation reduces to an identity.

Supplementary Problems

HERMITE POLYNOMIALS

8.19. Use Rodrigue's formula (2), page 154, to obtain the Hermite polynomials $H_{0}(x), H_{1}(x), H_{2}(x), H_{3}(x)$,
8.20. Use the generating function to obtain the recurrence formula (5) on page 154 , and obtain $H_{2}(x), H_{8}(x)$ given that $H_{0}(z)=1, H_{1}(x)=2 x$.
8.21. Show directly that
(d) $\int_{-\infty}^{\infty} e^{-x} H_{2}(x) H_{s}(x) d x=0$,
(b) $\int_{-\infty}^{*} e^{-x t}\left[H_{2}(x)\right]^{2} d x=8 \sqrt{\pi}$.
8.22. Evaluate $\int_{-\infty}^{x} x^{2} e^{-x^{2}} H_{n}(x) d x$.
8.23. Show that $H_{2 n}(0)=\frac{(-1)^{n}\{2 n\}!}{x!}$.
8.24. Pruve the result (7). page 254, by using a method similar to that in Problem 7.18, pages 188 and 189.
8.25. Work Probleon 8.5, page 158, by using (a) Rodrigue's formula, (b) the method of Frobenius.
8.26. (a) Expand $f(x)=x^{3}-8 x^{2}+2 x$ in a series of the form $\sum_{k=0}^{\infty} A_{k} H_{k}(b)$. (b) Verify Pargeval'a identity for the function in part (a).
887. Find the general solution of Hermite's differential equation for the cases (a) $n=0$ and (b) $n=1$.

LAGUERRE POLYNOMIALS

B.2s. Find $L_{q}(x)$ and show that it satisfiea Laguerre's equation (iv), page 155 , for $n=4$.
8.29. Use the generating function to obtain the recurrence formela (16) on page $\mathbf{1 5 5}$.
8.30. Use formule (15) to determine $L_{q}(x), L_{8}(x)$ and $L_{s}(x)$ if we define $L_{n}(x)=0$ when $n=-1$ and $L_{n}(x)=1$ when $n=0$.
881. Show that $\pi L_{m-1}(x)=m L_{n-1}^{\prime}(x)-L_{n}^{\prime}(x)$.
8.32. Prove that $\int_{0}^{\infty}-x\left\{L_{0}(x)\right\}^{y} d x=(n!)^{2}$.
8.33. Prove the results (19) and (20), page 156.
8.s4. Expand $f(x)=x^{3}-9 x^{2}+2 x$ in a series of the form $\sum_{k=0}^{\infty} A_{k} L_{k}(x)$.
8.85. Illustrate Parseval's identity for Problam 8.84.
8.36. Find the general solution of Laguerre's diffecental equation for $\mathfrak{n}=0$.
8.97. Obtain Laguerre's differential equation (11), page 155, from the generating function (14), page 165.

MISCELLANEOUS ORTHOGONAL POLYNOMIALS

8.58. Find (a) $L_{6}^{3}(x)$, (b) $L_{6}^{3}(x)$.
889. Verify the retulta (25) and (24), page 156, for $m=2, n=3$.
8.40. Verify that $L_{4}(x)$ satisfies the diferentlal equation (is), pare 166, in the special case $m=2, n=4$.
8.41. Evaluate $\int_{0}^{\infty} x^{2} e^{-s} L_{4}^{2}(x) d x$.
8.42. Show that a generating function for the associated Laguerre polynomishs is given by

$$
\frac{(-t)^{m_{\mathcal{E}}-x t /(2-t)}}{(1-t)^{m+t}}=\sum_{k=m}^{\infty} \frac{\sum_{k}^{m}(x)}{k!} t^{k}
$$

8.43. Solve Chebyshev's differential equation (z6), page 156 , for the case where $n=0$.
8.44. Find (a) $T_{4}(z)$ and (b) $T_{5}(x)$.
845. Expand $f(x)=x^{3}+x^{2}-4 x+2$ in a series of Chebyshev polynonials $\sum_{k=0}^{\infty} A_{k} T_{k}(x)$.
8.46. (a) Write Parseval's identity corresponding to the expansion of $f(x)$ in a series of Chebyshev polynomials and (b) verify the identity by uging the function of Problem 8.45.
8.47. Prove the recurrence formula (27). page 156.
8.48. Prove the results (29) and (SO) on page 156.

MISCELLANEOUS PROBLEMS

8.49. (a) Find the general solution of Hermite's differential equation. (b) Write the general solution for the cages where $n=1$ and $n=2$. [Hint: Let $y=v H_{n}(x)$ and determine v so that Hermite's equation is astisfied.]
8.50. In quantum mechanics the Schroedinger equation for a barmonic oseillator is given by

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{8 x^{2} m}{h^{2}}\left(E-\frac{1}{2} \kappa x^{2}\right) \psi=0
$$

where E, m, h_{1} * are constanta. Show that salutions of this equation are given by

$$
\psi=C_{n} H_{n}(x / a) c^{-x^{2} / \Delta a^{x}}
$$

where $n=0,1,2,3, \ldots$ and

$$
a=\sqrt[4]{\frac{h^{2}}{26 \pi^{2} m}} \quad E=\left(m+\frac{1}{2}\right) \frac{h}{2 \pi} \sqrt{\frac{5}{m}}
$$

The differential equation is a Sturm-Liouville differential equation whose eigenvalues and eigenfunctions are given by E and ψ respectively.
8.51. (a) Find the general solution of Laguerre's differential equation. (b) Write the general solution for the cases $n=1$ and $n=2$. |Hint: Let $y=v L_{n}(x)$. See also Problem 8.49.]
8.52. Prove the results (18) un page 156 by using the generating function.
8.53. (a) Show that Laguerre's associated differential equation (2z), page 156, is obtained by differentiating Laguerre's equation (IA) be times with respect to x_{r} and thus (b) show that a golution is $\operatorname{dim} \mathrm{L}_{\mathrm{n}} / d x^{m}$.
8.54. Prove the results (98) and (24) on page 156 .
855. (a) Find the general solution of Chebyshev's differential equation, (b) Write the general sulution for the cases $n=1$ and $n=2$. [Hint: Let $y=v T_{n}(x)$.]
8.56. Discuss the theory of (c) Hermite polynomials. (b) Laguerre polynomials, (c) associated Laguerre polynomials, and (d) Chebyshev polynomials from the riewpoint of Sturm-Liouville theory.
8.57. Discuss the relationship between the expansion of a function in Fourier series and in Chebjshev polynomisls.

