
Chapter 5

Fourier Integrals and Applications
THE NEED FOR FOURIER INTEGRALS

In Chapter 2 we considered the theory and applications Involving the expansion of a
function f(x) of period 2L into, a Fourier series. One question which arises quite naturally
is: what happens in the case where L • oo? We shall find that in such case the Fourier
series becomes a Fourier integral. We shall discuss Fourier Integrals and their applications
in this chapter.

THE FOURIER INTEGRAL
Let us assume the following conditions on f(x):

1 1(x) and f',(x) are piecewise continuous in every finite interval.

2. fo If(x)I dx converges, i.e. 1(x) is absolutely integrable in

Then Fourier's integral theorem states that

1(x) = E {A(a) cos ax + B(a) sin x} da	 (1)

A(a) =	 cos5_1) ax dz
1

where	 (2)

B(a) = i ff(x) sinaxdx	
j

The result (1) holds if x is a point of continuity of 1(x). If x is a point of discontinuity,

we must replace 1(x) by 
f(x + 0) + f(x —0) in the case of Fourier series. Note that

the above conditions are sufficient but not necessary.

The similarity of (1) and (2) with corresponding results for Fourier series is apparent.
The right-hand side of (1) is sometimes called a Fourier integral expansion of 1(x).

EQUIVALENT FORMS OF FOURIER'S INTEGRAL THEOREM
Fourier's integral theorem can also be written in the forms

1(x) =	 5 
O ;;5	 1(u) cosa(x — u) dude	 (8)

7r aa—

=

1(x) = I	 ef0da5fu)eb0ddu	 (4)
--
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where it is understood that if f(x) is not continuous at x the left side must be replaced
by f(x+O)+

2
 f(Z—O)

These results can be simplified somewhat if 1(x) is either an odd or an even function,
and we have

1(x) = !f sin axda5f(tL) sin alhdu

AT) = 15 dos azda

FOURIER TRANSFORMS
From (4) it follows that if

F(a) =

then
	

Ax) =

if 1(x) is odd	 (5)

if f(x) is even	 (6)

(7)

(8)

The function F(a) is called the Fourier transform of 1(x) and is sometimes written
7(a) = 7(f(x)). The function 1(x) is the inverse Fourier transform of F(a) and is written
f(x) = 7(F(a)}.

Note: The constants 1 and 1/2T preceding the integral signs in (7) and (8) could be
replaced by any two constants whose product is 1/2irr. In this book, however, we shall keep
to the above choice.

FOURIER SINE AND COSINE TRANSFORMS

If f(x) is an odd function, then Fourier's integral theorem reduces to (5). If we let

F(a) = 5f(u) siñaudu	 (9)

then it follows from (5) that

1(x) =	
(JO)

We call F (a) the Fourier sine transform of 1(z), while 1(z) is the inverse Fourier sine trans-
form of F'3 (a).

Similarly, if 1(x) is an even function, Fourier's integral theorem reduces to (6). Thus
if we let

F(a) = 51(u) cos audu	 (U)

then it follows from (6) that

1(x) = !rcos	 (22)

We call F (a) the Fourier. cosine transform of /(x), while 1(z) is the inverse Fourier cosin
transform of F(-).	 I .

	 .	 .

I
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PARSEVAL'S IDENTITIES FOR FOURIER INTEGRALS
In Chapter 2, page 23, we arrived at Parseval's identity for Fourier series. An anal-

ogy exists for Fourier integrals.

If F(a) and G() are Fourier transforms of /(x) and g(x) respectively we can show that

	

g(x) dx = f F() ) do	 (13)

where the bar signifies the complex conjugate obtained on replacing i by —i. In particular,
if f(x) = g(x) and hence F(a) = G(a), then we have

f(x)'dx = kf__ I'(°)Ig do	 (14)

We can refer to (14), or to the more general (13), as Poir8evu2's identity for Fourier 'in-
tegrals.

Corresponding results can be written involving sine and cosine transforms. If F5(a)

and G (a) are the Fourier sine transforms of. 1(x) and g(x), respectively, then

	

5 f(x)g(x).dx = .fF's(a)Gs(a)da	 (15)

Similarly,. if F0 (a) and G(a) are the Fourier cosine transforms of 1(x) and g(x), respec-
tivalv than

	

5 f(x) g(x) dx = 5 F0 (a) G(a) do
	

(18)

In the special case where 1(x) = g(x), (15) and (16) become respectively

5
C 	

= 15(F(a))2d0	 (17)

(18)

THE CONVOLUTION THEOREM FOR FOURIER TRANSFORMS

The convolution of the functions f(x) and g(x) is defined by

19, = 5f(u)g(x—u)du	 (1,9)

An. important theorem, often referred to as the convolution theorem, states that the Fourier
transform of the convolution of 1(x) and g(x) is equal to the product of the Fourier trans-
forms of 1(x) and g(x). in symbols,

7(f 0 0 = 7{1}7{g }	 (20)

The convolution has other important properties. For example, we have for functions
/, g, and Ii:

f t g = g *f, f(g'h) = (f*g)*h, f'(g+h) = fg +f*h	 (21)

i.e., the convolution obeys the commutative, associative and distributive laws of algebra.

= _S(Fc(a)}2dO

APPLICATIONS OF FOURIER INTEGRALS AND TRANSFORMS
Fourier integrals and transforms can be used in solving a variety of boundary value

problems arising in science and engineering. See Problems 5.20-6.22.
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Solved Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

5.1. Show that (1) and (3), page 80, are equivalent forms of Fourier's integral theorem.

Let us start with the form

AX) = 3:oi:__ f(u)coaa(x—u)dnda	 (1)

which is proved later (see Problems 5,10-5.14). The result (1) can be written as

	

Ax) =	 f J'	 f(u)[cosax cases + sines sines] cia cia
-

or	 Az) =	
(A (a) cos ax + B(a) sines) cia	 (2)

where we let

.4(e) = if f(u) Cos aud'

(3)

8(e) = 1f fØ4 sin 
etcdu

C. -

Conversely, by substituting (3) into (2) we obtain (I). Thus the two forms are equivalent.

5.2. Show that (3) and (4), page 80, are equivalent.

We have from (3), page 80, and the fact that cos a(X - a) is an even function of a:

f(x) = fJ 5 f(u)coae(z'-u)duda	 (1)

Then, using the fact that sine(x - u) is an odd function of a, we have

0 = j—f 5 fØ4 sin e(x—u)duda
	

(2)

Multiplying (2) by i and adding to (1) we then have

	

f(s) 
=	

fOzflcosa(x-u) + i sin e(z-u)} dude

= 15__ s:
	

d, do

Similarly we can deduce that (3), page 80, follows from (4).

1 IxI<a
5.3. (a) Find the Fourier transform of /(z) 

= { o	 > a

(by Graph /(z) and its Fourier transform for a = 8.

(a) The Fourier transform of f(s) is
-	 a	 c—lass

F(e) = 5 f(u)r4.'d,t 
=	

(1)e-du

	

—	 —	 - Sines

	

-	 .	 -2—, a" O

	

to	 a

For ato, we obtain F(e)=2a.
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(b) The graphs of f(x) and F(a) for a = S are shown in Figs, 6-1 and 6-2 respectively.

	

5.4. (a) Use the result of Problem 5.3 to evaluate 	 Sill aft cog ax

(b) Deduce the value of 5 sinLEdu.

(a) From Fourier's integral theorem, If

F(a) = 5 f(u)rimhdu	 then 1(x) =

Than from Problem 5.3,
(I	 rica

j-52!MSeaxJa =	 1/2 ix i a 	(1)
10	 Ii>

The left side of (I) Is equal to

p
sin aa coo ax	 + jf sin aa sin ax da	 (2)

The integrand in the second integral of (2) is odd and so the Integral in zero. Then from
(I) and (2), we have

N
	= 	 r12 Jxja	 (3)

(.0	 ixI>a

(b) If 5r0 and a= I in the result of (a), we have

f 'do =ror! 4aLa	 jo
f
 a	 2

since the integrand Is even.

5.5. (a) Find the Fourier cosine transform of f(x) = e nlx, m > 0.
(b) Use the result in (a) to show that

cog PV dv =	 (p>0,p>o)
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(a) The Fourier cosine transform of f(z) = r" is by definition

F(a) = fe-.mc.cosau dw

= r"(—m cosatt + a alnau) -

in
— n.a+ag

(b) From (if), page 81, we have

f(s) = 1 5Fc(a) Cos axda
r

or = 	rncosaX cia
r -Q

f 
cosa

i.e.	 m2 + 02 
cia =

Replacing a by i,, x by p, and in by 0, we have

Jc
cospv dv =	 p>O. /3>0

.j2.f /32	 2/3

5.6. Solve the integral equation
11—a Oai

sin axdx =
	 o	 a>i0

i—a Oai
5f(x)sinazcix	

{ 0	 a>i

AX) = !jirc(a) sin axdU

2= —	 (i—a)slnazda
7 JO

— 2(z - sins)
-	 a2

If we write

Fs(a) =

then, by (10), page 81,

THE CONVOLUTION THEOREM
5.7. Prove theconvolution theorem on page 82.

We have by definition of the Fourier transform
0

	

-	 F(a) = 5f(u)r t du. ERa) = jg(v$'t"dv

Then fla) G(a) = f 5f(u)g(v)e_tt4)dtL dV (S)

Let u + v = a in the double integral (2) which we wish to transform from the variables (a, v) to
the variables (a, a). From advanced calculus we know that

dudv = ALU,v) dudx	 (3)
ON, Z)

(1)
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where the Jacobian of the tnnaforniatlon Is given by

an Ott

O(u,v) -	 8,. 8x

604 Z)	 -	 -6V av	 10 11
an

Thus (t) becomes

F(-) G(.)	 f 5 1(u)g(x—u)r"dudx-- --

= f r41 'X[f f(u)o(z—t4du]elm

= r{f_ Au) 9(x—t4du}'

	

=	 '{fg)

where / • p = E. 1(u) g(z - u) du is the convolution of / and p.

From this we have equivalently

/49 =

=

5.8. Show that fg=g'f.
Let z—u=v: Then

=	
/(u)g(x—it)du	 f/(z—v)g(v)du

= 5 g(v)f(x—v)dv = 94/

5.9. Solve the Integral equation

Y(X) = g(z) + 5 y(u)r(z - u) du
where g(x) and 7(x) are given.

Suppose that the Fourier transforms of y(x), g(x) and r(x) exist, and denote them by Y(a),
G(a) and 71(a) respectively. Then, taking the Fourier transform of both sides of the given integralequation, we have by the convolution theorem

	

1(a) = G(0) -+ 1(a) R(a)	 or	
Y(a) = I R(a)

Than	 WrY = -'{	
=	 f:

assuming this Integral exists.

5.10. Solve for y(x) the integral equation
y(u)du	 -	 I	 O<aCb
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We have
dx

___ =
	 -+b2 dx = 2 ____ =

on making use of Problem 6.6(b). Then, taking the Fourier transform of both aides of the integral
nanatlon. we find

+ b2}

i.e.	 y()!0—aa =	 or
	

Y(a) = a

1	 "	 (b - a)a
	Thus y(x)= j-f eiaXY(a) da =	 j	 cosax da	 bs-[r + (b-a)2]

PROOF OF THE FOURIER INTEGRAL THEOREM
5.11. Present a heuristic demonstration of Fourier's integral theorem by use of a limiting

form of Fourier series.

Let	 /(x) =	 + ii (an cos !fj + bn sin	!!j;) 	 (1)

where a= ilL 
/(u) cos	 du and b5 = 

, 5 f(u) sin	 du.

Then by substitution of these coefficients into (1) we find

1(x) 
= 1	 du +	 I 

fL	
ens (it - x) du	 (2)

If we assume that 5 f(u)t du converges, the first term on the right of (2) approaches zero as

L • u, while the remaining pan appears to approach

lint	
ni 

5/(u) cos t (._x) du	 (3)

This last step is not rigorous and makes the demonstration heuristic.

Calling A. = iriL, (3) can be written

/(x) = urn I A0F(n Aa)
Aa-,O nI

where we have written

F(a) = .! 5 Au) cos a(u_x)du

But the limit (4) Is equal to
r	 r

AX)	 j

	

F(.) d.	
-j in 3 f(w) coscy(u- x)du	 (6)

-	 C	 0	 -

which is Fourier's integral formula.

This demonstration merely provides a possible result To be rigorous, we start with the double
integral in (6) and examine the convergence. This method is considered in Problems 5.12-5.16.

	Slflal)	 (b)
Sinai)

5;12. Prove that: (a) urn	 dv = -	 hm	 dv = -
a-...'O	 V	 ti_,..j_L	 v	 2

•crL

(a) Let at.	 Then uimj Sins"
	 = timj	 -1dy = 5	 as--- dy =

, 

	can be shown by using Problem 5.40.	 -

(4)

(5)
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0 sin as L

f

	

(b) Let aV= —y. Then urn	 —dv = lini I --'1dp - r0e -L )	 a-..oJ	 LI	 - 2

5,18, Riemann's theorem states that if F(x) is piecewise continuous in (a, b), then
b

iirn5 F(x) sin axdx = 0

with a similar result for the cosine (see Problem 6.41). Use this to prove that

(a) 1im5f(x+v)81dv = j-f(x+0)

(b) limf(x+v) 51' 7dv = j-f(x---0)

where f(x) and 7(x) are assumed piecewise continuous [see condition 1. on page 80].
(a) Using Problem 6.12(a), It Is Been that a proof of the given result amounts to proving that

f
L	

- f(x+O)} bin !!dv =

This follows at once from Riemsnn's theorem, because F(v) = 1 + v) f(z + 
0) is piecewise

continuous In (0, L) since Urn F(v) etata and 1(z) is piecewise continuous.
v-O+

(6) A proof of this is analogous to that In part (a) if we make use of Problem 5,12(6).

a5.14. If 1(x) satisfies the additional condition that 5 !f()I dx converges, prove that
-	 -no	 -5171ev_	 sin at'(allm5 f(x+v) dv = f(x+O), (b) Jim J i(x+v) , dv = jI(x-0).

(a) We have
a	 CL	 .	 -

	

£ (x+v—dv	
F.

5321ev	

=	 f(x+ 5111ev	 + f	
sinav

(1)

Sin at)

dv

Sincu. = f4 f(z+o) !J!2 dV ± ff(x+

	

v	
L (2)

Subtracting,

fl' 
+

(8)
1.

= f (f(z+v) f(e+O)} sin_! dv + 51(x+v) SIlICtl)—dv	 ff(+o) '1' "s--

	

V	 V	 L	 V

Denoting the integrals In (8) bY 1,11,12 and I, respectively, we have 1 = 1 + 2 + 4 so that
VI	 I'll + 1121 + 141	 (4)

121	 r
8lnaV	 /. -

F. J	 I	 "JL  IA- ±)1'

	

ir	
I1 131	 II(z+0)1	

sinndv
1	 —i

	

F.	 V

Since £ If (a) dx and f PiTi.!?!dv both converge, we can choose L, so large that i /Il c/S.
I/si 9 '/3 Also, we can choose a so large that IN 9 c/S. Then from (4) we have	 a for aand L sufficiently large, so that the required result follows.

Now
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(b) This result follows by reasoning exactly analogous to that In pan (a).

5.15. Prove Fourier's integral formula if f(x) satisfies the conditions stated on page 80.

	1 L	 -	 f(r+0)+1(50)
We must prove that Urn

	

-f f. f(u)css(rt-*)dUda =	 2
I. .s	 0

since IN t09 - ) do, f_ du, which cotTfl3, Y the Weltr-

strass M test for integrals that f f(u) cos a(s - u) du convergej absolutely and uniforml y for 811 0.

We can show from this that the order of integration can be reversed to obtain

-I	 do)	 f(a) toe a(x-u)dU =	 I	 /(24d14 I	 coea(z - u)du
VJafl	 s-M	 JaO

! f	 1(14)
sin L(u-r)45

-	 14X

=

= !f f(r+ V) t dV + 2ff(x+V)frndt7

where we have let u = w+u.

Letting L -. , we see by Problem 5.14 that the given integral converges to /(x -4- 0) + /(x -
2

as required.

SOLUTIONS USII(G FOURIER INTEGRALS
5.16. A semi-infinite thin bar (x 9 0) whose surface is insulated has an initial temperature

equal to fix). A temperature of zero is suddenly applied to the end x = 0 and

maintained. (a) Set up the boundary value problem for the temperature u(x, t) at any

point x at time t. (b) Show that

u(x, t) = 1J J' f(D)r sin A-v sin Ax dx dv

(a) The boundary value problem is
2U	 a2U

Tt 
=

^—Xl	
x>0, t>0	 (1)

	

t4x, 0) = AX),	 .40, t) = 0,	 u(x,t)l -C M	 (2)

where the last condition is used since the temperature must be bounded for physical reasons.

(I,) A solution of (1) obtained by separation of variables is

.4r, t) = r.'t(A cos Ax + B sin Ax)

From the second of boundaq conditions (2) we find A = 0 so that

u(z 4 = Be-0.'t Bin AZ	 (3)

Now since there Is no restriction on A we can replace B In (B) by a function B(A) and still have
a solution. Furthermore we can Integrate over A from 0. to and still have a solution. Tbi
is the analog of the superposition theorem for discrete values of A used in connection with
Fourier series. We thus arrive at the possible solution

t4x, 4 = f B(A)e' sin Ax dx	 (4)
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From the first of boundary conditions (1) we find

AX) = 5R(t)sinxxA

which is an Integral equation for the determination of 8(X). From page 81, we see that ames
F(s) most be an odd function, we have

B(x) =	 f f(s) sln.Xx do 
=	

1(v) Mn A. dv

Using this In (4) we find

u(x, t) = !f 
5 

/(v)r.At sin Xv sinxx dX4v

5.17. Show that the result of Problem 5.16 can be written

i4x, t) =r'f(2wvQ + x) dw - £ r'°9
f(2wv'1 - z) the]

Since sin Xv sin Xx = 4[cos X(v - x) - cog X(v + z)], the result of Problem 5.16 can be
written

u(s, C) = !f 5 f(v)r't [cos x(v - x) - cos X(v + z)j dxdv
V °

= 15 f(v)[f r0't cosx(v—z) dx - f t e _.cx't cosx(v+x)dA]dv

From the Integral

5 e-°' cos fix dX =

(see Problem 4.9, page 72) we find

u(x,t) = _[f' f(v)e _co _r s /4xt

 
do - 5 f(v)e—(v+S/n do]

Letting (v - 5)12'Q = iv In the first integral and (v + r)f2'.Q = iv In the second Integral,
we find that

u(x,t) 
= e""f(2wVi+x)dw -

5.18. In case the initial temperature f(x) in Problem 5.16 is the constant ito, show that

2	 rz,sV
u(z,t) 

=
r"dw = ueerf(xJ2i)

where erf (x/2y2) Is the error function (see page 69).

If fix, t) = its, we obtain from Problem 5.17

i4z,t) = 1-0 4W - I fl'dw
V	 -xisV

U0	 2	 z/ZV
= -5	 e°'dw =	 r'°'dw =

V 

We can show that this actually is a solution of the corresponding boundary value problem (see
Problem 6.48).
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5.19. Find a bounded solution to Laplace's equation v2v = 0 for the half plane y> 0
(Fig. 5-3) if v takes on the value 1(x) on the x-axis.

The boundary value problem for the determina-
tion of v(x,y) is given by	 v

£	
=

v(x,O) = 1(x)	 I"(X v) C M

To solve this, let ii = XV in the partial differential
equation, where X depends only on x and F depends
only on it. Then, on separating the variables, we have 	 v(x, 0) = /(x)

IF,,

	

-v	
Fig. 5.3

Setting each side equal to —X2 we find

= 0, Y"—xY = 0

so that	 X = a ' cos Kr + b, Bin Xx,	 F = a2SAY +

Then the solution is
v(x, a) = ( cos Kr + 6, sIn )(a,eXV + be')

If X>0  the term in eMs i5 unbounded as y--;  so that to keep v(r, s') bounded we must hen
a2 = 0. This leads to the solution

v(x, y) = rXV(A COB KS + B sin )zJ

Since there is no restriction on K, we can replace A by .4(x), 8 by 8(X) and integrate over K to
obtain

	

v(x, v) =	 f ew(A(K) Co. Kr + 8(X) sin Xx) A	 (1)

The boundary condition v(, 0) = 1(r) yields

5 (A(x) cos Kr + B(x) sin Kxl dx = f(s)

Thus, from Fourier's integral theorem we find

.4(X) = 5 f(u) cosxu dü,	 8(x) = ! 5 /(u) sin Ku du

Putting these in (I) we have finally:

v(r, y) = 1 fl f	 o—kvf(u) coo X(u— x) dudx 	 (I)

5.20. Show that the solution to Problem 5.19 can be written in the form

1F yf(u) X)T duv(x,y) =
	Write the result (9) of Problem 6.19 as	 -

v(x, y) 
= 1 i:..

 1(u) [5 rAy cos K(u - x) 
d)11

 du	 (1)

Then by elementary integration we have

	

5 
e	 Cos x(u—.x)dx = it' + (u—z)Z

so that (1) becomes	 v(x,y) = 	p .t1g)I du	 (9)
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SOLUTIONS BY USE OF FOURIER TRANSFORMS
521. By taking the Fourier transform with respect to the variable x, show that

	

(a) r(7) = ia7(v), (b)	 = -a'7(v), (c)	 = j7(v)

(a) By definition we have on using integration by parts:

= ax

	

= ev	 + iaf vrlazdx
-

= cve-ô

	= 	 7(v)

when we suppose that v-. 0 as z -. ±

(b) Let v=aw/oa in part (a) than

7() = ia7(?) = () 2 7(w)

Than If we formally replace a' by ii we have

= (ia)2 7(v) = — 2 7(v)

provided that v-and - . O as 5-±•

In general we can show that
Ia'v\ = 04n 7(v)

a,,if v, • 0 as z t°.

(,) By definition

== *cve-	 = jT(v)

5.22. (a) Use Fourier transforms to solve the boundary value problem

On	 Ou
Tt

=	 u(x,O) = AX), u(x,t)I < Al

where - <x < w, t > 0. (ii) Give a physical interpretation.

(a) Taking the Fourier transform with respect to z of both sides of the given partial differential
equation and using resulta (6) and (c) of Problem 5.21, we have

7(u) = - cX2 7(u)	 (1)

Where we have written the total derivative since 7(u) depends only on t and not on x. Solving
the ordinary differential equation (I) for 7(u), we obtain

	

7(u)	 Cer mit	 (2)
or more explicitly

7{u(x. t)} = CrKO't	 (3)
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Putting t0 In (3) we an that

7{u(s, O)} = 7(1(s))	 C	 (4)

so that (2) becomet
7(u) = 7(f)r""	 (5)

We can now apply the convolution theorem. By Problem 4.9, page 72,

= ,	 (6)

Hence t4x, ft = f(s)	 g—CX'/4stt) = E. 4ie- LCx—w)/45t5 dw	 (1)

If we now change variables from to to z according to the transformation (x - w)/lst = z or
(w.— )12ci = r, (7) becomes

u(x, t) = _L 5' rt f(x - 2W.—t) ds	 (8)

(b) The problem is that of determining the temperature In a thin Infinite bar whose surface Is
Insulated and whose initial temperature 1. Ps).

5.23. An infinite string is given an initial displacement y(x, 0) = 1(z) and then released.
Determine its displacement at any later time t.

The boundary value problem 1.
= asax2	 (a

y(x, 0) = ; (x),	 yt(' 0) = 0,	 1AM, t)j C M	 (2)

where —CxCe, t>O.

Letting y = XT in (1) we find in the usual manner that a solution satisfying the second bound-
ary condition in (2) is given by

y x, ft = (A cos Ax + B sin Ax) cos xat

By assuming that A and B are functions of A and integrating from A = 0 to m we then Lrrive
at the possible solution

y(x, t) = 5 [A(A) cos Ar + B(K) sin Ax) toe Act dx	 (3)

Putting t = 0 in (8), we see from the first boundary condition in (2) that we must have

/(x) = 5 [A(A) cos; Az + 8(A) sin Ax) dx

Then it follows from (I) and (2), page 80, that

A(A) = f /(v) co, Au dv,	 8(A) = if 1(v) sin Au dv	 (4)

where we have changed the dummy variable from x to t'.

Substitution of (4) into (3) yields

v(x, ft!f. 5 I(v)[cos Ax con Xi' + sin Ax sin xi'] cos Ast du d?,

=	 f 5 1(v) cue A(z — v) cos Nat dvdx
V	 -

0.=	 ffIotco	 +at—u) + cos x(x—at—v))dvdx
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when In the last step we have used the trigonometric identity

con  coil = } [me (A+B) + con (A—R)]

with A = Nix —v) and B = xat.

By interchanging the order of Integration, the result can be written

	

y(r,t)	 15 £_	 cofl(x+at—v)dvdx

+ kuf/(v) con x(x—at—v)dvdx
	

(6)

But we know from Fourier's integral theorem [equation (8), page 801 that

i(s) =
	

f. E. I(v) con Nix —v)dvdx

Then, replacing x by x + at and x - at respectively, we see that (5) can be written

v(x,t) =	 (AX + at) + /(x—at))
	

(8)
which Is the required solution.

Supplementary Problems
THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

11/2
5.24. (a) Find the Fourier transform of /(x) 	

.rI < 1

j0	 1XI >

(6) Determine the limit of this transform as 1 -00+ and discuss the result.

11-.M. (a) Find the Fourier transform of fi 	 xS	 jxI<1
x) = L 	 H > I

- sinx'\	 x

	

(6) Evaluate 5 (	 ) coa 1 dx.

11 0x<1
526. If 1(x) = .	 find (a) the Fourier sine transform, (b) the Fourier cosine trans-10	 x1

form of Az). In each case obtain the graphs of f(s) and its transform.

5.27. (a) Find the Fourier elite transform of o, S t 0.

(6) Show that 5 zs2InrnxdX = je-m. in >0 by using the result in (a).

(c) Explain from the viewpoint of Fourier's integral theorem why the result in (6) does not hold
for m0.

5.28. Solve for y(x) the integral equation

f y(x) sin xt dx

and verify the solution by direct substitution.
12

,0tc1
1tC2

0 •	t2
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529. If F(a) is the Fourier transform of 1(z) show that it Is possible to find a constant c so that
F(x) = 1(r) = cc-".

PARSEVAL'S IDENTITY

520. Evaluate (a) C dx	
(b) f x2dx

(x3 + 1)2'	 (x' +	 by use of Parseval's identity.
[Hint. Use the Fourier sine and cosine transform g of c', x > 0.1

f a /1 —eosx\ 2521. Use Problem 6.26 to show that (a)	 ç	 )
	s ix	 j, (6) 5 !1T4dx = f.

522. Show that	 f (x coax — sin x)2
—dx.

533. Prove the results given by (a) equation (18), page 82; (6) equation (14), page 82.

534. Establish the results of equations (15), (16), (17) and (18) on page 82.

CONVOLUTION THEOREM

1	 Ixi535. Verify the convolution theorem for the functions /(x) = g(x) 
=	

Ci
 {	 lxi > I

5.36. Verify the convolution theorem for the functions 1(x) = g(x) =

537. Solve the integral equation 5 y(u) y(x - it) du =

538. Provethat f(,-l-h) = fg+fh.

5.39.	 Prove that f(g'h) =

PROOF OF FOURIER INTEGRAL THEOREM

	

5.40. By interchanging the order of integration in J	 3	 8" sin , dx dig, prove that
vaO xO

=

and thus complete the proof in Problem 6.12.

5.41. Let a be any real number. Is Fourier's integral theorem valid for f(x) = C'? Explain.

SOLUTIONS USING FOURIER INTEGRALS
5.42. An infinite thin bar ( — a C x C ") whose surface is insulated has an initial temperature given by

1"o kKa

= to Ha

Show that the temperature at any point x at any time t is

u0 r /xx—a
u(x,t) =	 -	

/
erf2	 \2v

+

cr

a\
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5.43. A s.mi.lndnite solid Is >0) has an Initial temperature given by /(w) = u 0rh'. If the plane face
(a = 0) Is Insulated show that the temperature at any point s at any time t Is

UO
u(x, t) =	 ________ •—er'f(l+sxbg)

Vt + 4sbt

5.44. Solve and physically interpret the following boundary value problem!

8¼	 82u =

*4x,O) =
r-t x<O

1 z>O	
Iu(z,v)I<M

646. Show that If U(0' 
0) = {: ::: 

In Problem 5.44, then

Uo

u(w,y) = 
t
-

Q 
 + —tan 1 -

2	 r

10	 x<-1

	

5.45. Work Problem 6.44 If u(a, 0) =
	 1 -1<x<1

N

647. The region bounded by z> 0, v > 0 has one edge z = 0 kept at potential zero and the other
edge it = o kept at potential f(s). (a) Show that the potential at any point (z, it) S. given by

v(s,y) =	 f vf(v)[(V_.X +, 2 - (v+	 +

(5) If f(x) = I, show that v(s,y) = !tan-lx.
V	 V

5.48. Verity that the result obtained in Problem 6.18 is actually a solution of the corresponding bSndary
value problem.

	

5.49. The lines y = 0 and y = a In the sy-plane (see Fig	 V

54) are kept at potentials C and fir) respectively.	 v(x, a)
Show that the potential at points (a, y) between these
lines ia given by	 o) =o
v(x,y)	

v(r. .

1 C	 C	 slnhxy= -	 u	 f(u) .	 cosx(u - x)dudx
V K 0 ./u=-..	 amh ?a	 Fig. 5.4

550. An infinite string coinciding with the a-axis is given an Initial shape 1(z) and an Initial velocity g(m).
Assuming that gravity is neglected, show that the displacement of any point x Of the string at
time tie given by

x+@t

lJ(r, I) =	 -[/(x + at) + f(x - at)] + Lf	 g(u) du

	

2	 2a

551. Work Problem 5.50 if gravity is taken Into account

632. A semi-infinite cantilever beam (a > 0) clamped at a = 0 is given an initial shape /(x) and released.
Find the resulting displacement at any later time t. 	 -



Chapter 6

Bessel Functions and Applications

BESSEL'S DIFFERENTIAL EQUATION
Bessel functions arise as solutions of the differential equation

x'ij" +xy' +(x2 —n9y = 0	 n90	 (1)

which is called Bessel's differential equation. The general solution of (1) Is given by

V = c1J(x)+caY,(at)	 (2)

The solution J (z), which has a finite limit as x approaches zero, is called a Resect function

of the first kind of order n. The solution Y. (z), which has no finite limit (i.e. is unbounded)
as z approaches zero, is called a Bessel function of the second kind of order n or a Neumann
function.

If the independent variable x in (1) Is changed to Ax, where 1. is a constant, the resulting
equation Is

zlj + xij' + (AAX2 _n9y = 0	 (3)

with general solution
Y = c1J(Az) + c,Y(Ax)	 (4)

The differential equation (1) or (3) is obtained, for example, from laplace's equation
V au = 0 expressed In cylindrical coordinates (p, 0, z). See Problem 6.1.

THE METHOD OF FROBENIUS
An important method for obtaining solutions of differential equations such as Bessel's

equation is known as the method of Frobenius. In this method we assume a solution of the
form

=	
(5)

where c = 0 for Ic < 0, so that (5) actually begins with the term involving co which is
assumed different from zero.

By substituting (5) into a given differential equation we can obtain an equation for. the
constant p (called an indiciai equation), as well as equations which can be used to determine
the constants Ok. The process Is illustrated in Problem 6.3.

BESSEL FUNCTIONS OF THE FIRST KIND
We define the Bessel function of the first kind of order n as

J(x) = 2r(n+1){1 - 2(2n+2) + 24(2+2)(2n+4) - 	 .}	
(5)

97
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or	 h(s)= ± 
(_j)Y(/?	

(7)
r.or!1tt+r+1)

where r(n+ 1) Is the gamma function (Chapter 4). If ii is a positive integer, r(n + 1) = iii,
r(1) = 1. For n = 0, (6) becomes

-222
	 56

Jo(x) = 2	 24

The series (6) or (7) converges for all s. Graphs of
Jo(s) and J(z) are shown in Fig. 6-1,

If it is half an odd integer, J(z) can be ex-
pressed in terms of sines and cosines. See Prob-
lems 6.6 and 6.9.

A function J-(x), n > 0, can be defined by re-
placing n by -n in (6) or (7). If it is an integer,
then we can show that (see Problem 6.5)

= (-1)"J,(z)	 (9)

If ti Is not an integer, h(s) and J-(x) are linearly independent, and for this case the
general solution of (1) is

y = AJ(x)+BJ-(x)	 n,60,1,2,8,...	 (10)

BESSEL FUNCTIONS OF THE SECOND KIND

We shall define the Bessel function of the second kind of order it as
- -	 1J,,(x) cos ttr -

SIflfl7r	
n,' 0,1,2,8,

=	 'I	 (11)
I Urn 4(x) cosiii - J-, (X)	 = 0, 1,2,3,H -n	 5Ifl7r

For the case where n = 0, 1,2,3,... we obtain the following series expansion for L(z):

Y4 x) = !(In(x/2)+y)y(x) - ! i112)

	

Ic!	 -'IT

	

	

(12)
k+n1 ± (-) (k) + (n + It))

7T k-'O	 k'(n+ It)!

where y = 0.5772156. . . is Euler's constant (page 68) and

(8)

't'(p) = 1 + 1 + - -f ...	 c'(0) = 0
(1$)

Graphs of the functions Yo(x) and Yi (x) are
shown in Fig. 6-2. Note that these functions, as
well as all the functions Y. where it> 0, are un-
bounded at z = 0.

If it is half an odd integer Y(x) can be ex- -
pressed in terms of trigonometric functions.
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C2(tuI) =	 E J,(x)t

The function
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GENERATING FUNCTION FOR J(x)

4

is called the generating function for Bessel functions of the first kind of integral order.
It is very useful in obtaining properties of these functions for integer values of n - proper-
ties which can then often be proved for all values of n.

RECURRENCE FORMULAS
The following results are valid 'for all values of n.

1. h+i(z) = 2n

2. J(x) =

3. xJ.(Z) = nJ(x)—xJ+i(z)

4. zJ(x) = xJ-,(X)—nJ.(x)

5. dx
	 = z"J-,(X)

6. dx
	 = xJft.I(x)

If ii is an integer these can be proved by using the generating function. Note that results
S. and 4. are respectively equivalent to 5. and 6.

The functions Y.(x) satisfy exactly the same formulas, where Y (z) replaces J.(z).

FUNCTIONS RELATED TO BESSEL FUNCTIONS
L Hankel functions of the first and second kinds are defined respectively by

H"(x) = h(x) + iY(x),	 H?'(x) = J, (x) - iY,.(z)	 (15)

L Modified Besse] functions. The modified Bessel function of the first kind of order it
is defined as

14x) = i"J(ix) = e'iit(I2J(jx)

If n Is an integer,
I._(x) = I,(x)

but If it is not an integer, I(x) and 1-(z) are linearly independent.

The modified Bessel function of the second kind of order n is defined as

IrrI- (x) —I(zyJ 	 0, 1, 2,3,
K (z) IL Mnnr J

=
I urn :r'-fr) - 4(x) i 	 = 0,1,2,3,2L..	 sinpw	 J

These functions satisfy the differential equation

z'y" + zy' -. (z2 +ny = 0

(18)

(17)

(18)

(19)
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and the general solution of this equation Is

= csl.(x) +ciK(x)	 (20)

or, if n,'0,1,2,8..... 	
= AI.(x) + Bi-(x)	 (21)

Graphs of the functions 10(x). 11(x), Ko(x), X i(x) are shown in Figs. 6-8 and 64.

& Her, Bet, Ker, Xii functions. The functions Her. (z) and Bois (x) are respectively the
real and Imaginary parts of J(i"z), where 	 = (/2I2)(—j + i), i.e.

•J(i"x) = Ber(z) + (Bei(x)	 (22)

The functions Kern (x) and ICe!. (x) are respectively the real and imaginary parts of
where jill = ew4 = (y'f/2)(1 +i), i.e.

C%t4htK(i l1lx) = Kern (x) + i KeL (z)	 (23)

The functions are useful in connection with the equation

x'y" + zy' - (ix' + n9y = 0	 (24)

which arises in electrical engineering and other fields. The general solution of this
equation IS	

y = 01J, (i"z) + csK (i 112th)	 (26)

If n = 0 we often denote Bern (s), EeL(s), liar1. (x), Reis (x) by Her (s), Eel (x), Ker (x),
Xe! (x), respectively. The graphs of these functions are shown in Figs. 6-5 and 64.

P4. 6-s	 FIg. 64
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EQUATIONS TRANSFORMABLE INTO BESSEL'S EQUATION
The equation

zy" + (2k + 1)xy' + (aix2r + fl)y = 0
	

(2$)

where k, a, r, fi are constants, has the general solution

V = x[daJ'.c,r(ax'/r) + c2Yc,r(ax'fr))
	

('7)
where c = --#'.  If a = 0 the equation is an Euler or Cauchy equation (see Problem
6.79) and has solution

Y =rk (c3X +c4_ 1.) 	 (28)

ASYMPTOTIC FORMULAS FOR BESSEL FUNCTIONS
For large values of x we have the following asymptotic formulas:

	

J, (z) — [1Cos(x 7, n,r\	
— - '1sln(x

dITX	 \	 4,)'	 Y(x)	
N'rx	 \4	

2)(29)

ZEROS OF BESSEL FUNCTIONS
We can show that if it Is any real number, .T,(x) = 0 has an infinite number of roots

which are all real. The difference between successive roots approaches ii as the roots
Increase in value. This can be seen from (29). We can also show that the roots of /(x) = 0
[the zeros of .1(x)] lie between those of J,-, (z) = 0 and J,+ t (x) = 0. Similar remarks
can be made for Y(x). For a table giving zeros of Besse] functions see Appendix E,
page 177.

ORTHOGONALITY OF BESSEL FUNCTIONS OF THE FIRST KIND
If A and !' are two different constants, we can show (see Problem 6.28) that

1	 ft	 ft

I	 T / \2	 - !Jtt(A)Jtt ( 1A) -

	

J Zun IAXunçpXj têX -
	 A2 -

while (see Problem 6.24)

xJ'(Ax) dx =	 [J?(x) + (i	 (31)

From (30) we can see that if A and M are any two different roots of the equation

	

RJ(x) + Sx.1(x) = 0
	

(32)

where R and S are constants, then

	

j:'X.!flAX)JflGSX) dx = o 	 (33)

which states that the functions /z- J(Ax) and J(x) are orthogonal In (0, 1). Note that
as special cases of (32) A and . can be any two different roots of J. (z) = G or of J. = 0.
We can also say that the functions J(Ax), J(z) are orthogonal with respect to the density
or weight function x.
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SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND

As in the case of Fourier series, we can show that if 1(x) and P(m) are piecewise con-
tinuous then at every point of continuity of f(x) in the interval of 0 < x C 1 there will exist
a Bessel series expansion having the form

fix) = A,J5 (A,x) + AeJ5(A2x) +	 • = A,,J.(A,x)	 (84)

where A,, A2, As, ... are the positive roots of (82) with R/5 9 0, S# 0 and

A, 
=
	

- n2	(A,) 5 xJ, (4z) 1(x) dx	 (38)

At any point of discontinuity the series on the right in (34) converges to 4[f(x + 0) + f(x - 0)1,
which can be used in place of the left side of (84).

Incase 5=0, so that A,,A2, ... are the roots of J.(x)=O,

2	 ("A, = J.2+1(4) j, xJ.(½re)f(x) dx	 (38)

If R = 0 and ii = 0, then the series (84) starts out with the constant term

-	 A1 = 25 xf(x)dx	 (37)

In this case the positive roots are those of J,x) = 0.

ORTHOGONALITY AND SERIES OF BESSEL. FUNCTIONS
OF THE SECOND KIND

The above results for Bessel functions of the first kind can be extended to Bessel func-
tions of the second kind. See Problems 6.82 and 6.33.

SOLUTIONS TO BOUNDARY VALUE PROBLEMS USING BESSEL FUNCTIONS
The expansion of functions Into Bessel series enables us to solve various boundary value

problems arising in science and engineering. See Problems 6.28, 6.29, 6.81, 6.34, 6.85.

Solved Problems

BESSEL'S DIFFERENTIAL EQUATION
&1. Show how Bessel's differential equation (8), page 97, is obtained from Laplace's

equation V/'u = 0 expressed in cylindrical coordinates (p.,, z).

Laplace's equation in cylindrical coordinates is given by

a2u	 lott	 181iz	 au
= 0	 (1)p2 002 	 agg

If we assume a solution of the fonn u -PøZ, where P is a function of p, * is * function of 0 and
S is a function of z, then (1) becomes

P"tZ + 414bz + Pt"2 + PZ" = 0	 (2)P
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where the primes denote derivatives with respect to the particular independent variable involved.
Dividing (3) by PtZ yields

	

F"	 i'..i±	 Z" -	 S

	

P	 P+p+p2ttZ

Equation (8) can be written as
P.,	 iF'	 it" -	 Zn

-	 (4)

Since the right aide depends only on x while the left side depends only on p and p, it follows that
each side Must be a constant, may —A2 , Thus we have

P's ipt

	

—+--+----- = — x2	 (5)
P P  pt

	

and	 Z" — X2Z = 0	 (6)

If we now multiply both sides of (5) by p2 it becomes

PP + p
'	 '

+	 =	 X2p2	 (7)

which can be written as

	

P'1	 F'	 4"= —	 (8)

Since the right side depends only on 0, while the left side depends only on p. It follows that each
side must be a constant, say p2. Thus we have

	

F"	 i

	

= At	 (9)

	and	 t"+pt = 0	 (10)

The equation (9) can be written as

	

p2P" + PP' + (X2p2 — p2)P -= 0	 (11)

which Is Bessel's differential equation (3) on page 97 with F instead of i, p Instead of a and it
Instead of n.

6.2. Show that if we let Ap = x in equation (21) of Problem 6.1, then it becomes

x3p" + zy' + ( 22)p = 0

We have	
dP- dPdx - dP — 4

	

—	 -	 — Ar

where y(x), or briefly y, represents that function of x which P(p) becomes when p = xl)..

Similarly

	

d'PdfdP\	 dl gj\dx	 d( dy)
=	 =	 \dz)	 =	 =

Then equation (11) of Problem 6.1 which can be written

p2'&P + p	 + (A5p2_pP = 0
dP

dp2

becomes	 +	 + (x2 —p2)y = 0 -

	

or	 zZj" 4 zy' + (x2 —p2)y = 0
as required.
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62. Use the method of Frobenius to find series solutions of Bessel's differential equation
x2y" + xy' + (xt - nt)y = 0.

Assuming a solution of the form jt = 2 k X ° where Ic goes from - to and 0k = 0 for
k < 0, we have

(XI — n2)y = 2cax5*$+2 - 2n 2ci z	 =	 - InaCkxa.P

Xyl = 1(k+P)c.x

= 2 (Ic + p)Uc + p -

Then by addition,

2 [(k+ $)(k + fi — 1)C + (k+ fl)c,, + 0Pc2 - fltCkl&' fl = 0

and since the coefficients of the xk+0 must be zero, we find

- n2]Ck + Ck..2 = 0 (1)

Letting k = 0 in (2) we obtain, since c... = 0, the indicial equation (p 2 - n2)c0 = 0; or assuming
0. ' 0, $ = n5. Then there are two cases, given by $ = —w and $ = it. We shall consider
first the case p = n and obtain the second case by replacing n by —n.

Cue!: $n.

In this case (1) becomes
k(2n+k)ck + tk-2	 0	 (2)

Putting Ic = 1,2,8,4,... successively in (2), we have

0 1
00

= 01 02	 2(2n+2)' 
03 = 01 04 = 4(2n+4) = 2'4(2n+2)(2n +4)''

Thus the required series is

V = Crjz" + 02zn+Z + c4z4+4 +

-	 - 2(2n+ 2) + 2'4(2n+2)(2n+ 4)	
(3)

- 0,['	

x2

Cs2: $—n.

On replacing n by —n in Case 1, we find

X1	 X4

Y = csrn[1 - 2(22) ,+ 2'4(2— 2n) —2n) -	
(4)

Now if n = 0, both of these series are Identical If it = 1,2,... the second series falls to exist.
However, if it ,' 0,1,2, ... the two series can be shown to be linearly independent, and so for this
ease the general solution is

X2	 X4 -
V = CxI1 rl - 2(2n+2) + 24(2ft+ 2)(2n+4) -	 -

+ DrR[1 - 2(2-2w) + 2'4(2-2n)(4-2n)

The cases where it = 0,1,2,3, ... are treated later (see Problems 6.17 and 6.18).

The first series in (5), with suitable choice of multiplicative constant, provides the definition of
4(r) given by (6), page 97.

BESSEL FUNCTIONS OF THE FIRST KIND
6.4. Using the definition (6) of J.(x) given on page 97, show that if it ,' 0, 1,2,..., then

the general solution of Bessel's equation is it = AJ.(X) +BJ-(x).
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Note that the definition of J(Z) on page 97 agrees with the series of Case 1 in Problem 6.3,
apart from a constant factor depending only on n. It follows that the result (5) can be written
y = AJ(z) + BJ..,, (x) for the cases n # 0, 1, 2.....

6.5. (a) Prove that J-. , (x) = (-1)"J.(x) for n = 1,2,3
(b) Use (a) to explain why Ah(z) +EJ'-(x) is not the general solution of Bessel's

equation for integer values of ii.

(a) Replacing a by -n in (8) or the equivalent (7) on page 98, we have

J - 	 _______________- jto r!r(—n+r+1)

-	 (-1)(x/2)-" + 2' +
	 ((r/2)-n + 2'

- ,o rI r(-n+r+ 1)	 ,,. rlF(-n+t-4-1)
Now since r(-n + r + 1) is infinite for r = 0. 1 .... . it - I, the first sum on the right is zero.Letting r = it + k in the second sum, it becomes

(it + Ic) F(Ic + 1)	 - (-1)'	
(_1)k(x/2)1+2k = (-l)J,(z)

k0 r(m+k+1)kl

(6) From (a) it follows that for integer values of it, J_(x) and 4(x) are linearly dependent andso AJ(x) + BJ_,(x) cannot be & general solution of Bessel's equation. If 'z Is not an Integer,
then we can show that J.,,(x) and 4(x) are linearly independent, so that AJ5 (x) + BJ_,,(x) Isa general solution (see Problem 6.12).

6.6. Prove	 (a) /1/2(2) =	 sin x,	 (b) I-in(z) = 4eosz.

(a)	 I/2() =	 j hl)(x/2) 2 + Zr = (x/2)I/2	 (z/2)512	 __________	 (x/2)1/2________
ro r!Fir +3/2)	 - 1!l'(5/2) + 21r(7/2) -

(r/2) 1/2 (5/2)5/2	 (z/2)712
(112),F,(i/2)	 -	 + 1! (312)(112)j, 	 21 (5/2)(312)(1/2)'[i

(6)	 J..212(z)	 =

(z/2)112 ti x5 x4	 .} = (x/2)1/2 !!!L! = 42
'5i sin r(1/2hc(	 i6!	 (1/2)',/

j(—l)'(x/2)1/2 + 2r = (x/2)1/2 - (x/2)112 +
,o	 r!r(r+1/2)	 1'(1/2)	 1lr(3/2)	 2! r(5/2) -
(x/2)-112 I	 x2	 z4

	11ii	
=

6.7. Prove that for all n:

(a) L{cJ(x)) = zV_ i (z),	 (1)	 (x_"/, (x)} =

d(a)	 d 	 _(-1)Tx2fl+2r (x"4(x)} =d,
r'.O 2 +217! r(n+r+1)	 , 2'-1rlr(n+r)

=	 2	
(-1)'x(n-l) + 2r	

= x'J'.t_i Ix)r0 20 fl -i}+2t7 ! F[(n -1) +jiJ
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d+ r+1)4(6)	 —{x"J(x)} 
=	 iO 2 2 r! littdx

(_flrrn+2T I
=	

23''(r -1)! T('i +7+1)

== x
k0 2*+21k!F(fl+k+2)

6.8. Prove that for all n:

(a) .T(x) = [J-1(x)-J.+i(x)].	 (Li) /- 2 (x) +Jn(x) =

From Problem 6.7(a), xJ,(z) + nx" 1J. (x) = x"J,_ 1(x)

or	 xJ(x) + nJ_(x)	 xJ,...1(x)
	

(1)

From Problem '6.7(6), rJ(x) - nx 1J(x) = -z"J1(x)

or	 xJ,(x) - ,tJ(x) = -xJ1(x)
	

(9)

(a) Adding (1) and (2) and dividing by 2x gives

J(x) =	 5_i(x) -

(6) Subtracting (S) from (1) and dividing by x gives

	

J__,(x) + .1841(x)
	 2n

JT(sinx - x cosx
6.9. Show that	 (a) .1312 (x) = 

•, -	 )

(Li) J-3/2(x) = -
	 sin x+ cos x)

(a) From Problems 6.8(6) and 6.6 we have on letting n= 112,112,

4,(z) ! 1171 (x) - J_,, 2(x) = - 
('i(sinx - 	 sinx - r cosx\

(b) From Problems 6.8(6) and 6.6 we have on letting n--t,

J-3,2 (x) = - - fT/x sin x + cosx'
IV z

	

x	 )

6.10. Evaluate the integrals 	 (a) J' x"J,_ 1 (x) dx,	 (Li) .) J+t(x) dx.X.

From Problem 6.7,

(a)	 -{z"J(x)) = x"J,_ 1 (x). Then fxflJni (x)dx = x"J(x) + C.

(6) 5 (x)) =	 ,,(x). Then	 J..1(x) 
dx = -x"'J(x) + c.dx	 5



	

CHAP. é]	 BESSEL FUNÔTIONS AND APPLICATIONS	 107

	

6.11. Evaluate	 (a) 5 xJi(x) dx; (b) 5 tJ,(2,-) dx.

(a) Method 1. Integration by parts gives

f r4/i (r)dx = f'(x2)[x2Ji(x)dx]

x[x2j2(x)] - f [x2J2(x)][2xdx]

= x4J2(x) - 2fx3J2(r)dz

4.f x) - 2s313 (x) + a

Method 2. We have, using J1.(x) = —J(x) [Priblem 6.1(b)],

x4J(x) dx = 
-5 x

4J(z)dx = - {xo(x) - 5 4xV0 (x) dx5	 }
5 x310 (x) dx = 5 x[xJ0 (x) dx] = z2(xJ(x)) - 5 [xJ 1 (x)1[2x dx]

5 x2J1 (x)dx = -5 xJ(z)dx = _{x210 (x) - 5 2xJo(x)dx}

= —x2J0 (x) + 2z.T(x)

	

Then	 5 s4.F (x) dx = —x4J0 (z) + 4(x"J j (x) - 2(—x'J,,(r) + 2xJ 1 (x))] + a

= (6z—x9J0 (x) + (4x-16x)J1(x)

(b) fxsJs(x)dz =. 5x3[x-2J3(x)dxI

= x(—x_2J2(x)j - 5 [—x212(x)]6x4dx

=	 t1J2(x) + 5J'z2J2(x)dx

5 x2J3 (z)dx = 5
= x3E—r1J(xfl - 5 [—r'Ji (x)]3z 2 dx

= —x211 (x) + 35 zJ(x) dx

5 x/(z)dx = — fxJ(.)ds = _[xJo(x) - JJ0(x)dx]

= —x./0 (x) + fJa(x)d

	

Than	 5 x515(x) dx = —x3J2 (x) + 5 {_zvi (s) L + 3 [—xJo(x) + 5 4(x) dx]}

= —x3J2 (z) - 5x2.1 1 (z) - 15xJ(x) + 15

The integral 5 J0 (s)dx cannot be obtained in closed form. In general, 5 x'Jq(x)dx

can be obtained in closed form if p + q 0 • and p + q is odd, where p and q are integers.

If, however, p + q is even, the result can be obtained in terms of 5Jo(x)J.
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6.12. (a) Prove that J.'(x) J-(x) — JI,(x) 15(z) = 
2 sin fly	 -

(b) Discuss the significance of the result of (a) with regard to the linear dependence

of J(x) and .T_(x).

(a) Since .f,(x) and /..., (x), abbreviated 4, J_, respectively, satisfy Bessel's equation, we have

zJ,' + zJ + (xS - n2)4 = 0,	 + xJt5 + (2 — n2)J_ = 0

Multiply the first equation by J_,,, the second by J. and subtract. Then
fi	 'I

- J_JIJ + x[4J_ ,, - J_J,,J = 0

which can be written
- L,,J,J + (JJ_ — J.,,J,J = 0

or	 L	 - J - ,J 1} = ' 0

Integrating, we find	 —	 = clx	 (1)

To determine c use the series expansions for J. and J.., to obtain

— 2'r(n+1)	 ' - 2"r(n)	 -n — 2-"r(—n+1) -
- X" 1 —
- 2 fl-n)

and then substitute In (1), We find
1	 1	 —	 2	 - 2 sin n.

C - r(n)r(l—w) - r(n+1)r(—n) — r(n)r(l—n) -

using the result 1, page 68. This gives the required result

(b) The expression JJ_,, — IL,,,!0 in (a) Is the Wronsküzn of J. and J_,,. If it is an integer, we
see from (a) that the Wroaskian is zero, so that J. and J_,, are linearly dependent, as is also
clear from Problem 6.6(a). On the other hand, if it is not an integer, they are linearly inde-
pendent. since In such case the Wronakian differs from zero.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS.

6.13. Prove that B E
=	

J,,(x)t".

We have	 -

ef	
z/2t)k

= extfSrflrt = {i0 P'} {A kJ } =

-

vQ00

Let r - k it so that n varies from -e to e, Then the sum becomes

j	 (—i)"(x/2)"t2t"
= 	 j J. (-1)(x/2)""I =,=- k=O	 (n-Fk)!k!	 ,.	 kUn+k)!

6.14. Prove	 (a) cos (z sinG) = J0 (x) + 213 (x) cos 29 + 2J(x) cos 49 t

(b) sin (xsin9) = 2J1 (x) sinG + 2J3(x)sin30 + 2J5 (z)sin5O +

Let t = o in Problem 6.13. Then
•jxtetO—rtI) = 6lxsInO =	 J(x)eMO = 2J,,(r)[cosne + i smite)

= {J(x) + (J_(x) + I i (z)) cos 6 + [1_2(z) + 12 (x)) cos 20 +
+ j{[J1(x)—J._1(x)] sin  + fJ2(r).—.L2(s)] sin 2# 

= {J (x) + 2J1(x) cos2e + '} + i(2J 1 (x) sins + 2.7(r) sin Se +

when we have used Problem 6.6(a). Equating real and imaginary parts gives the required results.
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6.15. Prove J(x) = 1 E 
Cos (no - z sin 8) dO	 it = 0,1,2.....

Multiply the first and second results of Problem 6.14 by cos no and smite respectively and
integrate from 0 to tr using

10 D2#n	 ('17	 0 in#n
I cosm.eosnede = I	 ,	 I SifliflSlflMdD = I

T/2 mn	 .0	 1yI2 ns=n*0

Then if n is even or zero, we have
lpv	 1

J(x) = - J	coo (x sine) cosne do,	 0 = - 3 sin (z sine) sin n* de
, f r o

or on adding,

4(z)	 I (cos (x sine) cos no + sin (rein e) smite] do = - 3 cos (no - x sine) do
r

Similarly, if r. is odd, -
1"4(r) = -

	
ain(x sine) smite do,	 0 = - J cos (x sin 8) cos no de

17 fIT

and by adding,
4(r)	 - Jo cos(nt—zsine)dor 

Thus we have the required result whether it is even or odd, i.e. it = 0,1,2

6.16. Prove the result of Problem 6,8(b) for integer values of it by usitig the generating
function.

Differentiating both sides of the generating function with resiect to t, we have, omitting the
limits -- to	 for it,

j(t-f) 1 +
	

=

or	 (i+) 4(z)t =

i.e.1+ 1)J(r)en =

This can be written as

+	 4(r)t2 = 2nJ(x)t!1

	

or	 14(z)t" +	 4+2(z)t" =

i.e.	 [;n(x) +Ja+z(r)1tn =

Since coefficients of t" must be equal, we have

-4(r) + J,2(x) = (n+1)4(z)

from which the required result is obtained on replacing n by n — I.

BESSEL FUNCTIONS OF THE SECOND KIND

6.17. (a) Show that if n is not an integer, the general solution of Bessel's equation is

1! = Em(s) + F0?17 - J-5(x)]I	 Slnflw
where E and F are arbitrary constants.
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(1,) Explain how to use part (a) to obtain the general solution of Bessel's equation in
case it is an integer,

(a) Since J_, and J. are linearly independent, the general solution of Bessel's equation can be
written

Y = c1J,(x) + e2L,(x)

and the required result follows on replacing the arbitrary constants o, c 2 by 21, F, where

+

	

P cos ,tr	 -F,
= 21.	 ,	 4 =

	

SIT) flr	 slnnr

Note that we define the Bessel function of the second kind if it is not an ineger by

J5 (z) cos nr - J_,,(r)
Y(x) = sin flr

(6) The expression
J5(r) Cos nr -

sin itw

becomes an "indeterminate" of the form 0/0 for the case when it is an integer. This Is because
for an integer a we have cosflr = (-1)" and J_n(r) = (-1)"4(x) [see Problem 6,5]. This
"Indeterminate form" can be evaluated by using L,'Hospital's rule, i.e.

	

rJ,(x) Cos rn - J_(x)1 -	
fvp@)'osn -

kmT	 - urn
,. L	 sin pr	

ftsin

This motivates the definition (Ii) on page 98.

6.18. Use Problem 6.17 to obtain the general solution of Bessel's equation for it = 0.
In this ease we must evaluate

tim
flJ,(x) cos pr - J_,(rYl

	

I 	 I	 (1)
sinpir	 J

Using L'Hospital's rule (differentiating the numerator and denominator with respect to p), we find
for the limit in (1)

1

(04/oP) Cos pr - (oJ_/8p)1 - 1 flaJ,
lim	 rcospv	 .J	 ;Li -. ap 10

where the notation indicates that we are to take the partial derivaties of J,() and J-(z) with
respect to p and then put p = 0. Since 8J.,/a(-p) = -0J_18p, the required limit is also equal to

2 04
U Op pQ.

To obtain 84/Op we differentiate the series
-	 tO (-J),(,/2), 21

r0 r!r(p+r+1)

with respect to p and obtain

	

- r0 r! apl,r(p+r+1)
	 (2)

Now if we let	
(x/2)P-2r

r(p+r+t) = G, then In 	 = (p+2r)ln(r/2)-ln rip +r+1) so that differ-

entiation with respect to p gives

	

1 OG -	 - r'(p+r+l)

	

-6 Tp- In (x/2)	 j'(p+r+l)

Then for is = 0, we have

	

- (x/2)2 r	 r'fr+lfl
z' !,o - Pfr + nLm" 

(x/2) - 
F(r+ 1) J (3)
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Using (9) and (3), we have

2 aJ- 2	 _nix/2Tri (/2) - r(r + 1)
r Bp p	 - r r7=0 r!r(r+1) L 

X	
r(r+1)

= !(ln(x/2)+y)J(z)

when the last series is obtained on using the result 0. on page 69. This last series Is the series
for Y0 (x). We can in a similar manner obtain the series (11), page 98, for Y,, (a) where n is an
integer. The general solution if n is an integer is then given by , = c1J(x) + c2Y,(z),

'FUNCTIONS RELATED TO BESSEL FUNCTIONS

6.19. Prove that the recurrence formula for the modified Bessel function of the first kind
1,(z)is

i+,(x) = J— i(at) -	 In(X)

From Problem 6.8(6) we have

=	 J(x) - 4_(a)	 (2)

Replace x by is to obtain	
2in= ---J(iw) - 4..10z)	 (9)

Now by definition 15(x) = itJ(ix) oj 4(iz) = i"J(x), 5) that () becomes

i"'1 1(x) =	 !flinf(x) - i"-'I(x)

Dividing by i"' then gives the required result.

8.20. If n is not an integer, show that

(a)H2(x) = .J-(x) - r''J'(x)	
(b) k'23() =	 - J'-(x)

iSIfl flit

(a) By definition of H"(x) and Y(z) (see pages 99 and 98 respectively) we have

[4(x) COS Cr -

	

R"(z) = 4(x) + iY(x) = 4(x) +
	 sin nV

- J(x) sin nr + 14(a)cosnr - iJ...,(x)
sin nr

(cosnr
=	 L.	 siflflr

-	 - sinnr	 ]	
J_(x) -

i sin mr

(6) Since H 21(x) = 4(x) - iY,(x), we find on replacing i by —i in the result of pan (a),
J_.(x) - eInTJ(x)	 e"J(x) - J_(x),(x) =	 = _________

tSIflflr	 isInn5

-321. Show that (a) Bay (a) = 1. -	 + as22426182

a2 	a5(b) Bei(x) 
= - 22426  + 22426282102 -
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We have	 (ix)2 + (i 312x)4 - (132x)6	(i3'x)2
J0(i 812x) = 1 -	 28	 2242	 22428 + 22426382 -

- 1	
i¼2 i0 	 +

	

I,_	 zt	 jl2B

-	 22 + ii	
j°

 224362	 22426282 -

-	 j2
	 -2t- - ix	 _______

- 1 +	 -	 + 22426282 -

— ( Is 	 '\	 fx2_ x8 
+

- \l_i!i+22426288	 •1 
+ t\j	 j

and the required result follows on noting that .J0 (i' 2x) = Bar (x) + i Bel (x) and equating real and
imaginary parts. Note that the subscript zero has been emitted from Bor 0 (x) and Bei0 (a).

EQUATIONS TRANSFORMABLE INTO BESSEL'S EQUATION

6.22. Find the general solution of the equation zy" + y' + ay = 0.

The equation can be written as r2y" + xy' + axy = 0 and is a special case of equation (is).

page 101, where Sc = 0, a =	 r = 1/2, p = 0. Then the solution as given by (27), page 101, is

= c jJo(2V) + c2Y0(2)rZ)

ORTHOGONALITY OF BESSEL FUNCTIONS

6.23. Prove that SO'XJAJn	 cix =	 it

From (8) and (4), page 97, we see that it1 = J(Xx) and it3 = J(sx) are solutions of the

equations

	

x2tA' + xy + (X2x2 - n2)y 1 = 0,	 x2i4' ^ "j4 + (,u2 x2 - n2)y2 = 0

Multiplying the first equation by 12, the second by hi and subtracting, we find

"2(Y2Y1 - ita'2'1 + x(yzy - ijfl4] = (p2 - x2)x2y1y2

which on division by a can be written as

d
x(y2yi -vi4i + 1w2i4it3161 = (pZ_XZ)xyiye

ci
or	 - (x[y2i4 -	 = (2 - X)xy,y2

dx

Then by Integrating and omitting the constant of integration,

(p2 - X2) 5 xy 1 y2 dx = x[y2yj -

or, using y, = J(Xx), y = J(px) and dividing by p 2 - X2 " 0,

r[XJ(px)J(Xx) - pJ(Xx)J(pX)l5 xJ5 (Xx)Jfl (px)d	 =	 2-

xJ(p)J(X) -
Thus	 j xJ,1 (Xx) J,, (pa) dx =

0
which is equivalent to the required result.

6.24. Prove that 5xJ(Xx) cix =	 + (i -

Let . -. x in the result of Problem 6.23. Then, using L'Rospital's rule, we find

3	
Jfr)J(X) - J(X)J,(,$) -

j xJ,(Xx)dr = Urn
e

- XJ?(x - .J,(x)J(X) - V(x) JRX)
2X
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But since X2J,'() + XJ, () + (X2- n2 ) I, (x) = 0, we find on solving for J(x) and substituting,

=	 +

6.25. Prove that if A and 14 are any two different roots of the equation RJ,(x) + SxJ,(x) = 0,
where R and S are constants, then 	 -

5 x.Tn()Lx)Jn(,.x)dx = 0

I.e. i,/?iJ,(xce) and ./iJ(sx) are orthogonal in (0, 1).
Since N and z are roots of RJ(x) + SxJ(x) = 0, we have

	

RJ() + SN4(A = 0,	 RJ(,) + SJ() = 0	 (i)

Than since I? and S are not both zero we find from (I),

	

-	 = 0

and so from Problem 6.23 we have the required result

= 0

SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND

6.26. If f(x) =	 A,J'(A,,x), 0< z <1, where A,, p = 1,2,3.... . are the positive roots
of J(x)=0, show that

A, =	 2 2.
	 5 xJ(A,x)f(z)dx

a

Multiply the series for f(x) by xJ,.(Ax) and integrate term by term from 0 to 1. Then
•	 i'l	 a"

J
xJ,,(N,)/(x) dx =

	

	 A, J ZJC (X kx) J. 	 dx
0	 '"I	 0

=

=

where we have used Problems 624 and 6.25 together with the fact that .a(Ak) = 0. It follows that

Ak =

To obtain the required result from this, we note that from the recurrence formula 3, page 99,
which is equivalent to the formula 6 on that page, we have

= n4(x) - XJfl. , (Xx)

or since J(x,j = 0,	 400=

6.27. Expand. 1(z) = 1 in a series of the form

A,Jo(A,x)

for 0< x <1, if A,, p = 1.2,3.... . are the positive roots of Jo (x) = 0.
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From Problem 6.26 we have
2 fl	 2

= 	
xJ0Q.,x) dx 

= 4J()) 1 
v4(v) dl,

2	 ½ -	 2
= ?J(x) 

vJ1(v) 
e	 —

where we have made the substitution v = x,,s in the integr.l and used the result of Problem
6.10(a) with n = 1.

Thus we have the required series

/(x) =	 = pt )J1 (A) 
J0Qx)

which can be written
J0(X1x)+ JoQsx) + ... —
x 1J1 (x)	 x5J1 (x2)	 — 2

SOLUTIONS USING BESSEL FUNCTIONS OF THE FIRST KIND

628. A circular plate of unit radius (see Fig. 6-7) has its plane faces insulated. If the
initial temperature is F(p) and if the rim is kept at temperature zero, find the temper-
ature of the plate at any time.

Since the temperature is independent of q6, the boundary value problem for determining
u(p,t)ls

äu fa2u 1 au\
11 =^80 P T

V(1)

u(1, t) = 0,	 u(p, 0) = F(p),	 u(p, t)I < M

Let a = P(p) 7(t) PT in equation (I). Than

PT' = jp"r +
p

or dividing by eFT,

==
'T 

-
Y P 

from which
1' + arX2T = 0,	 P'! + P' + X'P = 0

p
These have general solutions

7 = 08-gX't	 P = A 1J0 (hp) + B1Y0(Ap)

Since uPD is bounded at p0, B4 O. Then

alp, t) = .4 exx'rJ0 (Xp)

when A = A1c1.

From the first boundary condition,
u(1,t) = Ar'tJ5 (X) = 0

from which 4(x) = 0 and x = x 1 , x, ... are the positive roots.

Thus a solution in

	

u(p,t) = .4C C4.t Jo(xp)	 spi = 1,2,3,...

By superposition, a solution is

tiC,, ti = I AoIO.'*tJ0(h_p)
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From the second boundary condition,

u(p,O) = F(p) =

	

	 a4mJo(Xmp)
m1

Then from Problem 6.26 with a = 0 we have

=	 !m)J:P(P)O(mP 
dp

and so
u(p, t) =	

{[ 22
	 5' pF(p) .10 (X,,,p) 4P] eJh.tJo(x,,.,p)r	 (2)

n1	 J(A,,,) 0	 j

which can be established as the required solution.
Note that this solution also gives the temperature of an 'infinitely long solid cylinder whose

convex surface is kept at temperature zero and whose initial temperature is P(p). -

8.29. A solid conducting cylinder of unit height
and radius and with diffusivity c is ini-
tially at temperature f(p, z) (see Fig. 6-8).
The entire surface Is suddenly lowered to
temperature zero and kept at this tem-
perature. Find the temperature at any
point of the cylinder at any subsequent
time.

Sines there is no -dependence, as is evident
from symmetry, the heat conduction equation is

On - fa¼ lan
-	 (1)

where ,. = u(p, z,t) The boundary conditions
are given by

u(p, z, 0) = f(p, z), 	 nIp, 0,	 = 0,	 u(p, 1, 0 = 0,

where 0 p C 1, 0 C z C 1, t> 0.

To solve this boundary value problem let U = EXT = P(p)Z(z)T(t) in (1) to obtain

pzr' = (rzr +	 + pz"r
p

Then dividing by ,cPZT we have
- P'+lP'+z"

cf - P	 pP	 Z

Since the left side dependa only on t while the right side depends onl y on p and z, each side must
be a constant, say —X 2. Thus

= 0

=	 (2)
P pP Z

The last equation can be written as

=
P pP	 Z

from which we see that each aide must be a constant, say —p 2 . From this we obtain the two
equations

pP"+P'+ppP = 0	 (4)
(5)

Fig. 6.8

u(1,z,t) = 0,	 (p,Z,0l C M	 (2)
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where we have written
2 = p s -	 (6)

The solutions of (3), (4) and (5) are given by

7' = c,r°", P = e2 10 (p) + c5Y0 (pp), 2 = NO'+ . 56"

Thus a solution to (1) is given by the product of these, i.e.

14p, z, t) = [016. KA1t] [cJ (,p) + c8Y0 (pp)j [c,ev1 + 050-n]

Now from the boundedness condition at p = 0 we must have c 3 = 0. Thus the solution becomes

'4,, e. t) = cPcX'tJ0 (pp)IAovt + Br'] 	 (7)

From the second boundary condition In (2) we see that

u(,. 0, t) = 6-.cX'tJ0()(4 + B) = 0

so that we most have A + B = 0 or B = —A. Then (7) becomes

eGG, z, t) 	 Aob0'tJ0(pp) [o' .

From the third condition we have

4(p,1,t) = Ar 1 ' tJo(pp)[#_e_ 51	0

which ean he satisfied only if 0' — e = 0 or

-	 = I = 'UN	 k=O,1,2,...

It follows that we must have 2, = 2kri or	

(8)p = kri	 k0,1,2,...

Using this In (7), it becomes	
u(p, s, t) = CrtJs(pp) sink, x

when C In a new constant

From the fourth condition in (2) we obtain

u(1/0 = Cr'J0 (js) sin krz = 0

which can, be satisfied only if Jo (g) = 0 so that

= r1 , r, ...	 (9)

where r1,, (sit = 1,2,...) Is the ,nth positive root of J 0 (s) = 0. Now from (6), (8) and (9) it follows
that

=	 I.' = f + k2r3

so that a solution satisfying all conditions in (2) but the first is given by

z, t) = Cc"- +k'r')tJ (r p) sin kn	 (10)

where 1 = 1, 2. 8.....m = 1, 2, 3, 	 Replacing C by C,,.,,, and summing over k and en we obtain
by the superposition principle the solution

u(p, z, t) =	 C,,.,,c". tk'r')tJ0(r,,) sin Ira	 (11)kl flLI

The first condition fri (2) now leads to

ftp, a) =	 I C ,,1J0(YmP) sin Ira
tl "=1

This can be written as

f(p,z) 
= 

kI {ji CicmJa(rrn)} sin krz = I 6k sin Ira
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..

where =
	 (12)

It follows from this that b are the Fourier coefficients obtained when f(p, z) Is expanded into a

Fourier sine series in z [we think of p as kept constant In this case]. Thus by the methods of

Chapter 2 we have

= ! 5 f(p, z) sin k" dx	 (IS)

We now must find Ck,,. from the expansion (12). Since b k Is a function of p, this is simply the

expansion of bk Into a Bessel series as in Problem 6.26, said we find

Ckm =	 fo pbj0 (r,.p) tIp	 (14)

This becomes on using (Is)

=4u 55pf(p,z)Jofrntp) sin krztIpd2
	 (16)

The required solution is thus given by (II) with the coefficients (15).

6.30. Work Problem 6.29 if f(p, z) = tie, a constant.

In this case we tnd from (15) of Problem 6.29

Ck,. =	 !!2._55pJ0(rmP) sinkrz tIp do

= _4!i-{S 1 PJe(YMP) dP}{5 sin Ic,rx dz}

-	 4u0 •fIt(rm) j'i_coskr
icr

- 4u0(l —coskr)
-	 kvr,.Jt(rs)

on using the same procedure as in Problem 6.27. The required solution Is thus

= !Uo	 cos Mr	 +k'r')tJo(rnp) sin Mn
5 tt ri-I

631. A drum consists of a stretched circular membrane of unit radius whose rim, repre-
sented by the circle of Fig. 6-7, is fixed. If the membrane is struck so that its initial
displacement is F(p, ) and is then released, find the displacement at any time.

The boundary value problem for the displacement x(p, 0, t) from the equilibrium or rest position
(the wy-plane) is

a2z 5f82z +18z+ 1 Os

	

TtV-. flp ;	 ii
z(1,#,t) = 0,	 *,#,O) = o; xt(p,#,O) = 0,	 z(p,,O) = F, (p,

Let x = P(p)t(o) T(t) = POT. Than

PeT" = a2(F"tT + 11"4.T +

	

P	 P2

Dividing by aPtT,	 r'	 P"	 I F'	 1 t'!
= '7+'79	 =
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and so	 T"+ ?i2a2T = 0	 (2)

F ,,	 iF'	 14" =	 (')

Multiplying (2) by p2, the variables can be separated to yield

4."
= -r =

so that	 -	 0" + ,4 = 0	 (8)

p2P" + .pP' 010-0)p = 0	 (4)
General solutions of (1), (3) and (4) are

7' = A 1 cosxat + B 1 min Nat	 (6)

= A2 cos , + B2 sin p0	 (6)

P = 434(Xp) + R 8Y(),p)	 (7)
A solution z(p, o. C) Is given by the product of these.

Since x must have period 2w in the variable 0, we must have p = en where en = 0,1,2,3.....
from (6).

Also, since z I. bounded at p = 0 we must take H = 0.

Furthermore, to satisfy z,(p, 0 ,O) = 0 we must choose Hi = 0.
Then a solution is

= J. 0,P) coo Nat (A cosmo + B sin no)
Since z(1, 0, C) = 0, 4,(A) 0 so that )t	 Xflk, k 1,2.3.....are the positive roots,
By superposition (summing over both m and k),	 -

	4o, 0, C) =	 Jm4flp) cos (A. kct)(A cozen. + B sin ,n)mO k1

= je{[ji i4mJm(xP)]conno

+ [
	 BI&.JITL CXA] sin tn.} CO5 A,,.,6t	 (8)

Putting t = 0, we have

z(p,&0) = F(,0) = ,
sG" 

costa. + D,,, slntn*)	 (9)

where	 Cm =	 Am*Jm0'_,jp)

(10)
= 2BmçJ(xmrcp)

But (9) is simply a Fourier series and we can determine C. and D. by the usual methods.We tad

	

if F(p,o)cosmsd#	 tn= 1,2,3,...C.

=
tnO

D.
p2w	 -

	= 	
.F(p,c)oirf4

T o	 tm0,1,2,3,..,
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From (10), using the results of Bessei series expansions, we have

IJm+ 2 OL,a)1 2 50	
XmkP)Cm 1PAmk =

•1 .-2w

r(Jm+ 1 (Kmk)1 2 e o

= {	

2	
j j 

pF(p,)J(Xp) costn# dp d#	 if m =1,2,3....

n2r

2 $ J pF(,Ø)Jo(okp)dp4 	 if m0
-	 vS	 0

8intc 
=	 2	

2 5 p4O	 4ngp) Dm
o

=	 2	 5 5 pF(P,) jm(XmpcP) slnm# 4dm	 if in =0,1,2....
r[ ,n+tQ'ma)l	 o o

Using these values of A.k and 8mk in (8) yields the required solution.

Note that the various modes of vibration of the drum are obtained by specifying particular
values of in and k. the frequencies of vibration are than given by

fmk =

Because these are not integer multiples of the lowest frequency, we would expect noise ather than
& musical tone.

SERIES USING BESSEL FUNCTIONS OF THE SECOND KIND

6.32. Let Uo(Amp) = Yo(Aa) Ja(A,np) — Jcp (Ama) Y0 (Amp) where Am, m = 1,2,3,..;, are the
positive roots of Yo(Aa)Jo(Ab) -. .fe(Aa) Y0 (xb) = 0. Show that

5 b
puo(Arnp)uo(Asp) dp = 0	 in ,'

The functions P. = u0(X,,,p) and P. = t¼(X,,p) satisfy the equations

pP', + V, + Xpl' = 0	 (1)

+ P ± x5p,, = 0	 -	 (2)

Multiplying (1) by Rn , (2) by F,,,, and subtracting, we And

p(P,,PPPç) +	 - mfl = (44)pP_P,,
which can be written

p(PnPFmP) + P,,P, -	 (X1)pPmP,,
dp

or	 [p(P,,P,, - mPi.)1 = 
(),2. _),2

Then by integrating both sides from a to I' we have

b	 b

	

- g,) 5 J'	 4	 p(P,,P,, -	 L	 a
p[X,,u0(X,,p) u(X,,,p) -

=0

on using the facts Ue(XmQ) 0, Uo(Xna) = 0, u0(Lb) = 0, u5(X,,b) = 0. Then since X # X. we
have	 Pb

J
pP,,,P5dp = 3 pu0(X_p)u,(X,.p)dp = 0

S	 a
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6.33. Show how to expand a function F(p) into a series of the form AmUo(Amp) where

the functjon s uo(X,np) are given in Problem 6.32. 	
17t1

Suppose that
F(p) =	 A,,,ti0(X_p)	 (1)

rn1

Then on multiplying both aides by pu 0(X,,p) and Integrating from a to b we find

J
pF(p) u0(\,,p) dp =	 A. J pu0p,p) u0(X,,p) 4

a 	 n—i	 a

Pb
= A5 3 p[u5(Xp)] 2 4

a

on making use of Problem 6.32.,

J pF(p) ud(X,,) 4i,
Thus	 A =

	 (8)

fp[oQ,..p)]' 4

Although these coefficients have been obtained formally, we can show that when these cot!.
ficients are used in the right side of (1) it does converge to F(p) at points of continuity,
assuming that F(p) and F'(p) are piecewise continuous, while at points of discontinuity It converges
to 4[P(p +0) + flp - 0)1.

624. A very long hollow cylinder of inner radius a and
outer radius b (whose cross section is indicated in
Fig. 6-9) is made of conducting material of dif-
fusivity K. If the inner and outer surfaces are kept
at temperature zero while the initial temperature
is a given function f(p), where p is the distance
from the axis, find the temperature at any point
at any later time t.

Since symmetry shows that there is no - or z-depen.
dence., the boundary value problem which we must solve for
u = tc(p, t) is

du 782u 1 au\
ape= 	 -+--)	 U)

	u(a, t) = 0, u(b, 5) = 0, t4p,O) = /(p), u(p, t)i C M	 (I)	 Fig. 6-9

By separation of variables we have as in Problem 6.28

u(p, 5) = r0't(a,Jo ( Xp) + b1Y0pfl

From u(a,t) = 0 and u(b,t) = 0 we find

a 1J0 (),a) + b 1 Y0 (Xa) = 0,	 a. 1J0 (X6) + b 1 10 (xb) = 0

These equations lead to the equation

Y0 (ha) .10 (xb) - .70 (ha) Y0 (xb) = 0

for determining x. The equation (5) has infinitely many positive roots X,, X5

From the first equation In (4) we find
—	 a1J0(Xa)

- — Y0(Xa)

so that (3) can be written

t4p, t) = ACK'1[Y0 (Xa) J0(Xp) - J0 (xa) Y5(Xp)	 (8)
where A is a constant.

(s)

(4)

(5)
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Using the fact that for X = X,,, (9) is a solution, together with the principle of superposition,

we obtain the solution

ti(o, t) =
,n1 

4m1_*41toOnsP)	 (7)

where	 u(X.p) = Yo(Xma)Jo%p) -- J0 (),,,a) Yo(X,T.p)	 (8)

From the condition u(p, 0) = /(p) we now obtain from (7)

AP)
= 	

Au,,(.,,.p)	 (9)

b

-	
4(p) u0(X,,,p) tip

Am -
p"e(mp)l' tip

Substitution of these coefficients into (7) gives the required solution.

Than

625. A simple pendulum initie.ily has a length of
to and makes an angle 8o with the vertical. It
Is then released from this position. If the
length I of the pendulum increases with time
according to 1 = Is + et where is a constant,
find the position of the pendulum at any time
assuming the oscillations to be small.

Let in be the man of the bob and a the angle
which the pendulum makes with the vertical at any
time I. The weight tag can be resolved into two com-
ponents, one tangential to the path and given by
tag sine and the other perpendicular to it and given
by tag cos S, as shown in Pig. 6-10. From mechanics
we know that

or

Torque about 0 =	 (Angular momentum about 0)
dt

(—mc sin .)l =	 (m1)
dt

where = ds/dt. This equation can be written as

£l+21o+gains = 0

or since I = 10+ct,
+ 2d + a = 0

Letting x = i + 4 In this equation It becomes

= 0

Multiplying by x and comparing with equations (25) and (27), page 101, we find that the solution is

a =+	 (a:

Since 6 = 10 at t=0 we have

(10)

(1)

(2)

(4)
60 =1 +• 
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To satisfy = 0 at t nO we must first obtain ; = d,/dt. We find

- do -	 [AJi(!ivza+.e) +- dt -	 2(Io + .t)312

+ _ii [a.r(!üv+ .) + BY;
to + 't

Now since 5 = a for t = 0 we find

o = - ) +

+	 AJ,	 +
• e L

or using (4)

+	 =	 (5)

	

.1	 2j

Solving for A or. d B from (4) and (5) we find

-

	

A =	 •o
J,yi-

(8)
(J2'/j)11 -

	

B =	 e

	

-	 (P

where the argument 2\Gi1. in J1 , 1, Y1 , Y has been omitted.

Now front Problem 6.58 with t = i we know that

11(x)Y(r) - Y 1(x)J(r) r
an that	 J,	 Y	 - Y1(!VE°) J, (!io) -

I	 I	 -	 -

jr

Thus (6) becomes
IT\/ IjO

A =	 ____
 __

-

2C

(7)= rv78(V 10) - _____

2 I 
M17:

Now from formula 3, page 99, with a = 1 and the corresponding formula involving Y. for a = 1,
we have from (7)-

	

fie0	 V)

	

A =	 (2
- __

2
(8)

rv'eo (4\

	

B =	 2 
12\	

J
Using these in (3) we thus find

rViOG
[.71(	

'g
v1(!3Lvi0 ^.) - y2(j) i1(!if)]	 (9)=
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Supplementary Problems

BESSEL FUNCTIONS OF THE FIRST KIND

636. (a) Show that J (x) =-
	 + V46 - 224W8 +	 and verify that the interval of conver-2 224

gence is —e C x < e•

(b) Show that J(x) = —.11(x).

(c) Show that-24-(x11 (x)] = xJ0(z).

6.37.	 Evaluate a) 412 (x) and (6) J_ 515 (x) in terms of sines and cosines.

6.38.	 Find J(x) in terms of 4(x) and j()

639.	 Prove that	 (a) J'(x) = i [.F_(x) - 24(x) + 4+2(1t))

(6) J"(x) = j [Jn._s(x) - 3J_ 1 (r) + 84 41 (x) -

and generalize these results. 	 -

6.40. Evaluate (a) f x3-T2(x) dx, (6) 5 x8J5 (x) dx, (a) 5 x24() dx.

641. Evaluate (a) 5 4( ¼ dx, (6) 5 dx.

642. Evaluate 5 .10 (x) sin x dx.

643. Verify directly the result .T,(x) I(z) - J(x) 4(x) = 2 ama, for (a) %=! 	 (6) n =

GENERATING FUNCTION AND MISCELLANEOUS RESULTS

6.44. Use the generating function to prove that J(x) = [J... j (x) + 4.i()1 for the case where 'its an
Integer.

6.45. Use the generating function to work Problem 6.89 for the ease where a is an Integer.

GAS. Show that (a) 1 = 4(x) + 2J2 (x) + J4 (x) +
(6) Ji(x)-4(rs)+Js(x)—J,(x)+	 = minx

6.47.	 Show that 5 J1 (x) = J(x) - 2.14 (x) + 34(x) - ... .

2	 T/2
648. Show that J0(x) = -J 	 cos (x sine) de.

6.49. Show that (a)cos a) do = 1 - :055

(6)
 5

x/s	 J (z)Jo(x sin e) Cos e sin ods = -.
0	 5
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6.50. Show that	 = 2 
Et'O	

14),	 -

6.51. Show that (a) frO2Jo(bx)dX =
	 1 -

o
"a

_____	 ,t> —1(6) J r°J(bx) dx = (
2 —+ b2  - a)"

o	 Va2 +62

6.52. Show that 5 4(x) dx = 1.E
M. Prove that J,(x)I S 1 for all integers it. Is the result true if a is not an Integer?

BESSEL FUNCTIONS OF THE SECOND KIND

6.54. Show that (a) Y(x) = ?Y(x) - Y.— I (x). (b) Y(x) = [Y.—I(x) - Y, + W].

645. Explain why the recurrence formulas for J(x) on page 99 bold if 4(x) is replaced by Y(x).

636. Prove that fl(x) =

UT.	 Evaluate (a) Y112 (z), (b) Y_ 112 (x), (c) Y8/2(r), (d) Y_512(x).

638. Prove that 4(x) Y(x) - .F(x) Y(x) =

6.59. Evaluate (a) f x°12(x) dx, (b) 5 Y(x) dx, (c)5 —j—
Y,(x)dx.

6.60.	 Prove the result (11), page 98.

FUNCTIONS RELATED TO BESSEL FUNCTIONS

6.61. Show that 4(x) =	
x2 0	 Xe

6.82.	 Show that (a) J(z) = 4{lg.. i(x) + i(e)), (b) eZ(m) = x15_,(x) - n1(x).

6.63. Show that e2 + f) =	 f,(x)t" Is the generating function for i(x).

6.64. Show that 10(x) 
= -J

2	 cash (x sine) us.
'0

6.65.	 Show that (a) elnh a = 2[1 1 (x) + 4(z) + . --1

(6) cool, a = I(2) + 2[15(x) + 14(x) +

6.66. Show that (a) 1512(x) =	 i(coah - sit,hx)	
(6) 1_312(x) = .sfi(alnh -cosh z)

6.67. (a) Show that K+,(x) = K,_,(x) + J!K(x). (6) Explain why the functions K(x) satisfy the
same recurrence formulae as 4(z).
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	6.68.	 Give asymptotic formulas for (a) H 0(x), (6) H23(x).

	6.69.	 Show that (a) Be,, (x) =	
(2)2k + 5	 (an + Jr.

(6) Bel, (x) =	
(x/2)2"'	 f3n + 2k'\

kSOk!1'(tk+"	 4	 J''

6.70. Show that
(x/2)4	 (xI2)

Key (s) = —(In (x/2) + } Benz) + Bel ir) + 1 - -jjj--( l + ) 4. ... --( 1 +*+* + *) -

EQUATIONS TRANSFORMABLE INTO BESSEL'S EQUATION

	

6.71.	 Prove that (27), page 101, is a solution of (26).

6.72. Solve 4xj," + 4y' + v = 0.

	

6.73.	 Solve (a) zy" + 2y' + sy = 0, (6) p' + r2y = 0.

	

6.74.	 Solve p" + e29i = 0.	 [Hint. Let 0 = it].

	6.75.	 (a) Show by direct substitution that y.= J5 (2') Is a solution of zy" + p + p = 0 and (b) write

the general solution.

	

6.76.	 (a) Show by direct substitution that p = /J1 ,3 ( x3 '2) is a solution of p' + zy = 0 and (&) write

the general solution,

6.77. (a) Show that Bessel's equation x 2y" + xp' + (x2 - n2)y = 0 can be transformed into

d2u	 / 2_jf4'\
52 ) u =

where p = u/Vi (6) Discuss the case where n

(6) Discuss the case when x is large and explain the connection with the asymptotic formulas
on page 101.

6.76. Sélve x2y" - xj,' + x2y = 0.

6.79. Show that the equation (26) on page 101 has the solution (28) if a = 0. [Hint. Let p = r" and

choose p appropriately, or make the transformation x = e44

ORTHOGONAL SERIES OF BESSEL FUNCTIONS
6.80. Is the result of Problem 6.27, page 113, valid for —i 	 1? Justify your anawer.

6.81. Showthat	 5 xJ(xx)cLr = ç [J (xx) + j2 + (XX)j -	 JXx)J, +1 (Xx) + c

8.82.	 Prove the results (54) and (55), page 102.

6.8$. Show that	 =	 —1 C x C 1
8

where X. are the positive roots of 10 (x) = 0.

J,()
x 16.84. Show that	 x = 2	

xz	
—1 C C

xJ2(x,)

where X, are the positive roots of .12 (X) = 0.
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6.85. Show that 	 =	
2(8—X)J,O,x)	 —1< rC 1

when x,, are the positive roots of I;(),) = 0.

6.86. Show that	 52 =	
2(4-4)J0(Xz)	

—1< xci
i'=i

where X, are the positive roots of 13 (x) = 0.

J0 (az)	 XJ0(Xx)
6.87. Show that 	 = —

 
i<z<i2J0(a)	 .	 - 2) J, (X,,)

where A, are the positive roots of J0 (x) = 0.

Sit	 If f(s) =	 AJ0(),z) where 10 (A,) = 0, p 1,2,8.....show that
P=1

S

j z(f(x))	 =

Compare with Parseval's identity for Fourier series.

6.89. Use Problems 6.84 and 6.88 to show that

1
4

where X are the positive roots of 1 0 (x) = 0.

6.90.	 Derive the results	 (a) ($5) on page 102, (b) ($6) on page 102, and (c) (37) on page 102.

SOLUTIONS USING BESSEL FUNCTIONS
6.91.	 The temperature of a long slid circular cylinder of unit radius is initially zero. At t = 0 the

surface is given a constant temperature U) which is then maintained. Show that the temperature
of the cylinder is given by

	

vip, 0 = u '[1 - 2	
)4J1(A,,)ny

where A, it = 1,2,3,,.., are the positive roots of 4(A) = 0 and K Is the diffusivity.

6.92. Show that If 1(p)	 -. p2), then the temperature of the plate of Problem 6.28 is given by

- 4(A11p) Js(k.A)	 su(p, 0 = 4t40	
AJ(A,)

6.93. A cylinder 0 C p C a, 0 C z I has the end z = 0 at temperature '(p) while the other surfaces
are kept at temperature zero. Show that the steady-state temperature at any point is given by

	

2	 J5.,,p) sinhx,,Q-4 a
u(p,z) = -	 2	 -	 f pfJo(A,p)dp

J1 (Aa)sinhA,j	 0
where J0 (A_a)n.0, n=l,2,S.....

6.34. A circular membrane of unit radius lies in the n-plane with its center at the origin. Its edge
p = 1 is fixed in the wy-plane and it is set into vibration by displacing it an amount /( p) and then
releasing it Show that the displacement is given by

	

-	 Jo(A,.p)cosAt ("z(p, t)	 2	 p/(p) J0 (A,.p) tip
n—I	 J2	•

,(h5)	 'Jo

where X. re the roots of J0 () = 0.
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6.96. (a) Solve the boundary value problem

022L -
at3 - a	 pap	 0 aø'

where 0< p< 1, 0< <2,, t >0, u in bounded, and

u(1,*,t) = 0,	 u(p,,0) = p0053*,	 u(p,#,0) = 0

(b) Give a physical Interpretation to the solution.

6.96. Solve and interpret the boundary value problem

=
ax\ OzJ	 at2

given that y(z, 0) = f(x), y1(x, 0) = 0, y(1, 0 = 0 and i(x, t) is bounded for 0 z 9 1, t > 0.

617. (a) Work Problem 6.93 if the end z = 0 Is kept at temperature f(p, ). (6) Determine the temper-
ature in the special can where f(p,) = p2 COB 0.

6.98. (a) Work Problem 6.93 if there is radiation obeying Newton's law of cooling at the end a = 0.

6.99. A Chain of constant mass per unit length is suspended vertically
from one end 0 as indicated in Pig. 6-11. If the chain Is displaced
slightly at time t = 0 so that its shape is given by 1(x), 0 C x C L,
and then released, show that the displacement of any point x at
time  Is given by

y(x,t) =	 AnJa(2?n,J&_Zi)coshttt
tt=1	 U

where X, are the roots of 10 (2Xv171) = 0 and

A. =vJ0 (X,u)f(Lfgv 2)dv

6.100. Determine the frequencies of the normal modes for the vibrating chain of Problem 6.99 and Indicate
whether you would expect music or noise from the vibrations.

VOL A solid circular cylinder 0 < p C a, 0 <z C L has Its bases kept at temperature zero and the
convex surface at constant temperature u0. Show that the steady-state temperature at any point
of the cylinder is

4u0	 - rp/L] sin [(2n— Unit]—
a(p,z) -	 (2,, - 1)1 0 2n - flrafL]

where 10 is the modified Besse] function of order zero.

6.102. Suppose that the chain in Problem 6.99, which is initially at rest, is given an initial velocity dis-
tribution defined by Me), 0 C x C L. Show that the displaèement of any point z of the string at
any time t is given by

v(z. t) =	 BnJo(2n[=) sin x,,t

where x, are the roots of J0(2XVZ7) = 0 and

B. = X1,J('ç,) j 
vJ0 (X.,v)h(L - ivy2) do

6.10. Work Problarn 6.99 if the chain in given both an Initial shape ' 	 initial velocity distribution h(z).
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6.104. The surface p = 1 of an infinite cylinder is kept at temperature f(s). Show that the steady-state
temperature everywhere in the cylinder is given by

1	 re	 f(v) cos x(v - z)10(xp) dX do
fu(p,z) 

= - 0 .3 --

6.1St A string stretched between x = 0 and x = L has a variable density given by u = , + a when
vo and . are constants. The string is given an initial shape f(z) and than released.

(a) Show that if the tension r is constant the boundary value problem is given by

82
Tfl =	 Ott	

O<xCL,t>O

y(O, t) = 0, y(L, a) = 0, y(r, 0) = /(z), y,(x, 0) = 0, Iw(r, 01 C M

(b) Show that the frequencies of the normal modes of vibration are given by f, = w,/2r where
the a in = 1,2,3,..,) are the positive roots of the equation.

J; 15 (ara) J...115($w) = J,, 5 (ftw) J_,,5(aw)

200 1i	 2(o+4) 100+.L
in which	 a = 'I,	 =	 iiBevy	 3e	 V

MISCELLANEOUS PROBLEMS
640€. A particle moves along the positive x-axis with a force of repulsion per unit mass equal to a

constant at times the instantaneous distance from the origin. If the mass at increases with time
according to m = 1n + it, where at0 and c are constants, and if initially the particle is located at
the origin and traveling with speed t', show that the position x at tny time t > 0 is given by

=	 -

6107. Show that if m -An

jr Jm(Xx)Jn(Xx) dx- 	
Xx {J(Xx)J(xx) - J(xx)Jxx)} -I- eX-

4 (Xx)
6108. Deduce the integral 5 --dx by using a limiting procedure in the result of Problem 6-107.

4(x)	 j
6.109. Show that 	 5	 j-dx = 2"-' r(n)

6.110. Explain how the Sturm-Liouville theory of Chapter 3 can be used to arrive at various results
involving Bessel functions obtained in this chapter.

6.111. A cylinder of unit height and radius (see Fig. 6-8, page 115) has its top surface kept at tem-
perature is0 and the other surfaces at temperature zero. Show that the steady-state temperature at
any point is given by

)	
(Binh Xz)J0p)

tUp,x	 -- 2 Uo	
(x,.

(nh)J1(xJ

where X. are the positive roots of .1(h) = 0.

6112. Work Problem 6.29 if the bass z = 1 is insulated.
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6.113. Work Problem 6.29 If the convex surface is Insulated.

6,114. Work Problem 6.29 if the bases z = 0 and z = 1 are kept at constant temperatures u, and u2
respectively. (Hint. Let u(p, z, 0 = v(p, z, t) + to(p, z) and choose w(p, z) appropriately, noting that
physically it represents the steady-state solution.]

6.115. Show how Problem 6.29 can be solved if the radius of the cylinder is a while the height is h.

6.116. Work Problem 6.29 if the initial temperature is f(p, 0, z).

6.117. A membrane has the form of the region bounded by
two concentric circles of radii a and b as shown in
Fig. 6-12.

(a) Show that the frequencies of the various modes
of vibration are given by

- Xmnr;

when tie the tension per unit length, p Is the mass
per unit area, and X are roots of the equation

JQn41)Ym() -	 = 0

(b) Find the displacement at any time of any point 	 Fig. 6.12
of the membrane if the membrane Is given an
iritial shape and then released.

6.118. A metal conducting pipe of diffusivity x has inner radius a, outer radios 6 and height 4. A co-
ordinate system is chosen so that one of the bases lies in the sy-plane and the axis of the pipe
is chosen to be the 2-axis. If the Initial temperature of the pipe is /(p, z), c < p C 6, 0 C £ C Is,

while the surface is kept at temperature zero, find the temperature at any point at any time.

6.119. Work Problem 6.119 If the Initial temperature is /( p, 0,2).

6.120. Work Problem BilE if (a) the bases are insulated, (b) the convex surfaces are insulated, (c) the
entire surface is insulated.



Chapter

tegendre Functions and Applications

LEGENDRE'S DIFFERENTIAL EQUATION
Legendre functions arise as solutions of the differential equation

(1—x)f' —2xy' +n(n+1)y = 0

which is called Legendre's differential equation. The general solution of (1) in the case
where n = 0,1,2,8,... is given by

= 0 1P(x) + c2Q(x) (2)

where P (x) are polynomials called Legendre polynomials and Q(z) are called Legendre
functions of the second kind. The Q(x) are unbounded at x = *1,

The differential equation (1) is obtained, for example, from laplace's equation V tu = 0
expressed in spherical coordinates (r, 9, ), when it is assumed that u is independent of is.
See Problem 7.1.

LEGENDRE POLYNOMIALS

The Legendre polynomials are defined by

(2n-1)(2n-8)•	 n(n-1) 
_2 + n(n-1)(n-2Xn--8)_4 - . . .} (3)P(x) = fX. - 

2(2n-1)	 2'4(2n'-1)(2n-3)

Note that J', (x) is a polynomial of degree n, The first few Legendre polynomials are as
follows:

PO(Z) = 1
	

Pa(z) = 1 (6z8_8z)

P, (X) = x
	

P4(x) = (35z4_3022+3)

Ps(x) = i(3xt_1)
	

P5(z) = (63z5_70z8+15z)

In all cases P,.(1) = 1, P1(-1) = (-1)".

The Legendre polynomials can also be expressed-by Rodrigue's formula:

P,,(x) = -L d"	
(4)

7

(1)

130
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GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS
The function

1	 -
VF.-2xt+t2 -

is called the generating function for Legendre polynomials and is useful in obtaining their
properties.

RECURRENCE FORMULAS

1. P+i(x) = 2n+1 zP,(z) - n

2. P#.#i(x) - P,-,(x) = (2n+2)P(ir)

LEGENDRE FUNCTIONS OF THE SECOND KIND
If IxI C 1, the Legendre functions of the second kind are given by the following, ac-

cording as n is even or odd respectively:

= (_1)2 Th [(nI2) !]	 - (n - (n + 2)

	

Q(x)	 ii!	
I	

3!

+ (n_1)(n-3)(n+2)(n+4)5	 (6)

- (-1)(.+ 1)1 22-- 	 1)/2]!)2	 n(n+ 1) 
2Q(x) -	 1•3•5 ...n	 2!

+ n(n-2Xn+1)(n+3)	
- . ..} (7)4!

For it> 1, the leading coefficients are taken so that the recurrence formulas for P(x) above
apply also Q(x).

ORTHOGONALITY OF LEGENDRE POLYNOMIALS
The following results are fundamental:

5_Pn(x)Pn(x)dx = 0	 if in#n	 (8)

= 2n±1
	 (9)

The first shows that any two different Legendre polynomials are orthogonal in the interval
—1< x C 1.

SERIES OF LEGENDRE POLYNOMIALS

If 1(z) and fl(x) are piecewise continuous then at every point of continuity of 1(x) in
the interval —1 C x C 1 there will exist a Legendre series expansion having the form

f(x) = A0P0(z) + A 1P1 (x) + A1P2(x) +	 j AJ'p(x)	 (10)

	

-	 kO

131

(5)



2k+1 r'
=	 2 Jf(x)P(X)dXwhere

(11)
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At any point of discontinuity the series on the right in"(lO) converges to [f(x +0) + f(x -0)),
which can be used to replace the left side of (10).

ASSOCIATED IJGENDRE FUNCTIONS
The differential equation a

	

(1-x2)y" - 2xu' ± [n(n+1) - 1-	 = o	 (12)

is called Legendre's associated differential equation. If ,n = 0 this reduces to Legendre's

equation (1).. Solutions to (12) are called associated Legendre functions. We consider the

case where in and n are non-negative integers. In this case the general solution of (12) is

given by

	

y = c 1fl(x) + cgQ(x)	 (13)

where fl(x) and Q.7(z) are called associated Legendre functions of the first and second kinds
respectively. They are given in terms of the ordinary Legendre functions by

P'(x) = (1- z2)' 12	 P..(z)	 (14)

4m
Q(z) = (1- x9m/2 dz- _.._

Note that if in > it, P'(z) = 0. The functions Q(x) are unbounded for x = ± 1.

The differential equation (12) is obtained from Laplace's equation V'it = 0 expressed
in spherical coordinates (r, °,#)• See Problem 7.21.

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTIONS
As in the case of Legendre polynomials, the Legendre functions K(z) are orthogonal

in -1<zCl, i.e.

(15)

(16)

	

= 0	 n,'k

We also have
I	 2	 (n+tn)!

= 2n+1(n-m)! (17)

Using these, we can expand a function 1(x) in a series of the form

1(z) = ZAicfl'(x)
	 (18)

SOLUTIONS TO BOUNDARY XALUE PROBLEMS
USING LEGENDRE FUNCTIONS

Various boundary value problems can be solved by use of Legendre functions, See
Problems 7.18-7.20 and 728-7.80.
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Solved Problems

LEGENDRE'S DIFFERENTIAL EQUATION

7.1. By letting u = Re, where R depends only on r and e depends only on 6, in Laplace's

equation V = 0 expressed in spherical coordinates, show that R and 0 satisfy the

equations
d2R dR	 df. de\

	

e 3;Z7 + 2r-- + xR = 0	 wcs1no7) - 
A2 (sin O)e = 0

Laplace's equation in spherical coordinates is given by

iof ou'\	 1	 of	 au\	 1	 otu
+ rt sin eie\,5thüJ + Øsin2e	 = 0	 (1)

See (4), page 5. If it Is independent of 0, then the equation can be written

	

1 of eu\	 1	 o(.1. ou\
+ ,'2sine	 Q 	 = 0	 (2)

Letting u = Be in this equation, where it is supposed that S depends onl y on r while S depends

only on 9, we have

	

eaf aR '\	 1?	 a,'.	 dS'\
.'i	 +	 'rylne j) = 0

Multiplying by r, dividing by Be and rearranging. we find

	

iii,' dR'\ -	 1	 d	 do

	

-	 e sine a;k
f 

sIn

Since one side depends only on r while the other depends only on 6, it follows that each side must
be a constant, say — K2. Then we have

	

'k	 ) =	 (3)

	

1	 dl, de\
and	 -;i;i.;I,srn•'2) = X.	 (4)

which can be rewritten respectively as

r2	 + 2r3 + x2R	 0	 (5)

as
and	 \sia.') - x(s1n#)G = 0	 (5)do

as required.

1.2. Show that the solution for the R.equation in Problem 7.1 can be written as

It =
where A2 = —n(n+1).

The R.equation of Problem 7.1 is

	

rs-fl—
	 dR

= 0
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This is an Euler or Cauchy equation and can be solved by letting R = rP and determining p.
Alternatively, comparison with (26) and (ES), page 101, for the case where z = r, i = R, Ic =
o = % p = A shows that the general solution is

R = r-1f2[Ar&4'+ilrT

or	 ft = 4y1/2 + V114 k + 8r 112 Vi	 (1)

This solution can be simplified if we write

-1 +%JA 2 = fl	 (2)

so that

(3)

In such case (1) becomes
R = Ar+.jrj	 (4)

Multiplying equations (2) and (8) together leads to

-n(n+i)	 (5)

7.3. Show that the s-equation (6) of Problem 7.1 becomes Legendre's differential equation
(1), page 130, on making the transformation j = cog 0.

Using the value A 2 = -n(n+ i) from (6) of Problem 7.2 in the 0-equation (6) of Problem 7.1,
It becomes

do*(sin e	 + ,fln + i)(sin 0)0 = 0	 (1)

We now let j = coae in this equation. Then

	

do SI dE	 . do
=	 =	 Slfl6

de

doThus	 sin e do = -sin g e	 = (*2_i)4die
do

since aln 2 e = i - cos2 e = 1 - 2, It follows that

i (sin e de\ -
	

ao
we	 -a;) - a.	

l

del- d[( ideid - a

	

- -	 - )-j	 - j[(i_s)wj eine	 (2)

Using this in (2) and canceling the factor sine, we obtain

+ n(n+i)O = o	 (3

Replacing 0 by y and i by a, and carrying out the indicated differentiation, yields the required
Legendre equation

- 2zy' + n(n+ Ui# = 0	 (4)

7.4. Use the method of Frobenius to find series solutions of Legendre's differential equa-
tion (1 — 	- 2xy' + n(n + 1)y = 0.

Assuming a solution of the form y'= I akxk+S where the summation Index k goes from
-e to-and caO for k<o, "have
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n(n+1)y =

=

(1—x2)y" =

=	 (k+0-1-2)(k+/3+1)Ck+,X"m,	 (k+fl)(k+fl-1)ck&'5

Then by addition,

[(k++2)(k+$+1)ca+2 - (k+PR/C+flC k - 2(m+rnck + n(n+1)cpjx" 0 = 0

	and since the coefficient of	 must be zero, we find

(k+$+2)(k+fi + I)CK+2 + [n(n+1)-- (lc±p)(k+j3+ ')] k = 0	 (1)

Letting k = —2 we obtain, since c_2 = 0, the indicial equatiân $(/3 - 1)c0 0 or, assuming

a' 0, $=0 on.

Cue 1: 30.

In this can (1) becomes

(k+2)(k+1)c+2 + [n(n+1)—k(k+1)]ck = 0	 (2)

Putting Ic = —1,0,1,2,3,... in succession, we find that c 1 is arbitrary while

n(n+1)	 1'2—n(n+1)	 [2'3—*(n+1)]

2!	
s=	 Cl,	 t	 4!

and so we obtain

=	
- n(n+ 1) Z2 + n(n-2)(n+l)(n+3)	 -

	+ 	 x - (n—l)(n+2) + (n_1)(n_3)(n+2xn+4)s - ...]
	

(3)

Since we have a solution with two arbitrary constants, we need not consider Case 2: /3 = 1.

For an even integer n 0, the first of the above series terminates and gives a polynomial
solution. For an odd integer ii> 0, the second series terminates and gives a polynomial solution.
Thus for any integer n 0 the equation has polynomial solutions. If n = 0,1,2,3, for example,
we obtain from (3) the polynomials

/c0 ,	 c 1r,	 40(1 - Br2),	 C, ax - 6x'
l\ 	2

which are, apart from a multiplicative constant, the Legendre polynomials P,(x). This multipli-
cative constant is chosen so that P,(1) = 1.

The series solution in (3) which does not terminate can be shown to diverge for x = ±1. This
second solution, which is unbounded for x = ti or equivalently for a = 0, r, is called a Legendre

function of the second kind and is denoted by Q,(r). It follows that the general solution of
Legendre's differential equation can be written as

= e1 P,,(r) + °2Q()

In case a Is not an integer both series solutions are unbounded for x = ±1.

7.5. Show that a solution of Laplace's equation v¼ = 0 which is independent of 0 is
given by

U —_(A1r+-1)[AaP5(+BzQo)]
where E = cos 9.
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This result follows at once from Problems 7.1 through 7.4 since a = 84 when
B'

8 =

and the general solution of the 0-equation (L.egendro's equation) is written In terms of two linearly
independent solutions Pa (j) a4Id Q,) as

0 = A2P.(0 + 2Q5{i)

The functions P,,(L) and Q() are the Legendre function, of the first and second kinds respectively.

LEGENDRE POLYNOMIALS
7.6. Derive formula (8), page 180, for the Legendre polynomials.

From (t) of Problem 'IA we see that if k = n then 0n+2 = 0 and thus 014 = O 7%+5 =

0,	 Then letting k = n —2, vi - 4, ... we find from (2) of Problem 7.4,

-	 nftt- 1)	 -	 (n-2)(n-3)	 n(n-1)(n--2)(n-8)
4(2n-3)	 5-2 - 24(2n-1)(2n-3) Cfl•

This leads to the polynomial solutions

______
(2n-1) 

n(n— 1)	
+ 2•4(2n— 1)(2n—S)-	 2 

The Legendre polynomials P,, (s) are defined by choosing

C, 
= (

2n-1)(2n-3)"3'l

This choice is made In order that P(1) = 1.

I d"
7.7. Derive Rodrigue's formula P5(x) = ç-i	 (z2

By Problem 7.6 the Legendre polynomials are given by

P5 (x)
(2n—j)(2n—s)...3.1{zn - 

n(n—I) 

= _____________-	
+  nix — fl(n-2)(n-3)_4 -

2 - 4(2n - 1)(2n - 3)

Now integrating this a times from 0 to x, we obtain

(2n—l)(2n-3) 3 1 
(2n)!	

{xs. - J'a3fl2	
n — i)+	 2!

which can be written
(2n-1)(2n-3)"3'l

	

(2n)(2n - lX2n — 2)" '2 • 1 (r2 -' 1)	 or	 ,-j(x' -

which proves that
P5 (x) =

GENERATING FUNCTION

7.8. Prove that	 1	 =	 P,(x)P.
y1-2zt+t	 '..Q.

Using the binomial theorem

(i+v)P = 1 + pv +	 + p(p-1)(p-2) +
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we have
_______ = [1—t(2x—t)]'2

/Txt+t2

1 + t(2x— t) + 11-3-t2 (2x_ 1)2 + •• 2r — 1) 4

and the coefficient of V' in this expansion is

1'35"(2'!2J1(2X)n.. I.3.5.(2!.S!?.flL)(zZ)m_2

	

2'46	 2n	 2' 4.6...(2fl-2)	 11

+ 13'5 2n-6 (n_2)(n_S)(2r)fl_. -

	

2 . 46"2,t-4	 2!

which can be written as

	

nI	 2(2n-1)	 24(2n I)(2n-3) x
	

-I.8.5...(2n—l){xn -
 (n— 1) xtr S +

i.e. P,(z). The required result thus follows.

RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

2n+1	 fl

	

7.9. Prove that P+2(x) =	 xP5(z) -

From the generating function of Problem 7.8 we have

1	 -

	

V12zt+L2 =
s=0 P,,(x)V'	 (1)

Differentiating with respect to t,
x - I	 = 2

	(-2xt + t2)12	 n=o

Multiplying by 1 - 2x1 + 12,
x — t

	

'./i 2z1+ j2 =	
(1— 2z1 + t2)nP	 (I)(x)t"' 

Now the left side of (2) can be wr
itten in terms of (I) and we have

	

(z - t)P(z)t" =	 2 (1. - 2z1+ t)nP(r)V'_1
	n0	 n0

i.e.

	

zP5(z)t' - 2 P(z)t + ' = 2 nPn(r)t1 -
	

2nxP5(z)t" +
no 

Equating the coefficients of I" on each side, we find

zP(x) - P_ 1 (z) = (n+ 1)P 4 1 (z) - 2nzP(x) + (a— 1)P5_1(x)

which yields the required result.

1.10. Given that P0 (x) = 1, P i (z) = x, find (a) Pa(s) and (b) Pa(s).

Using the recurrence formula of Problem 7.9, we have on letting ii = 1,

3	 1	 3	 1	 1

	

P2 (z) =	 zP, (z) - P(z) =	 -	 =	 (3z2 —1)

Similarly letting n = 2,

- 5

	

/3x2—i\	 2

	

P3(z) =	 xP(z) - P2 (M)- 5X\ 2	
z =	 (Bz3-3x)
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LEGENDRE FUNCTIONS OF THE SECOND KIND
7.11. Obtain the results (6) and (7), page 131, for the Legendre functions of the second kind

In the case where it is a non-negative integer.

The Legendre functions of the second kind are the series solutions of Legendres equation which
do not terminate. From (8) of Problem 7.4 we we that If n is even the series which does not termi-
nate is

+ (n-1)(n-3)(n+2)(n+4)
- 5!

while if n is odd the series which does not terminate is

1 - n(n+l),	 n(n-2Rn+1)(n+3) 4 -
2!	 4!

These series solutions, apart from multiplicative constants, provide definitions, for Legendre func-
tions of the second kind and are given by (6) and (7) on page 131. The multiplicative constants
are chosen so that the Legendre functions of the second kind will satisfy the same recurrence for-
mulas (page 131) as the Legendre polynomials.

7.12. Obtain the Legendre functions of the second kind (a) Q0(x), (b) Q,(x), and (c) Qz(z).

(a) From (6), page 131, we have If n = 0,

	

Q0(r) = x + j z3 +	 61z' +	 +

	

Xe Xe
	 !in /1+s,= x++-+-y+	

=

when we have used the expansion In (1 ± u) = u - u2/2 + 0/3 - 014 +

(6) From (7) page 131, we have If n = 1,

	

Q 1 (x) = - {1 - (1)(2)	 +Z4- (1—i)(--3)(2)(46) x, + . .

r=	
+ ++	

- 1 = lnj—) - 1

(c) The recurrence formula, for Q. (x)are identical with those of P. (z). Thin from Problem 1.9,
- 2n+1
-- n + I çQ,,(z) - --j Q,(x)

Putting n = 1, we have on using parts (a) and (6),

Q5(x) = f xQ i (z) - 4 Q0(z) = (aXe_1) In (1±a) - Sr
4	 l—x	 i-

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

7.13. Provethat f ' Pm(x)Ps(z)ü = 0 if ,n"n.

Since F,, (r), En(S) satisfy Legendre'a equation,

(1 -	 - 2xF + ,n(M + 1)P_ =0

(1 - z2)Pj - 2zP, + n(n + 1)1',

-

Then multiplying the first equation by F,,, the second equation by P. and subtracting, we find

(1 — Xe)IE.P, - P.P.'] - 2x[P,,P4, - F,,P,] = (n(n + 1) - mftn + 1)3rP,,
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which can be written

(1- x)	 - P,1'J - 2x[P5P, -	 [n(n ^ 1)- m(m + 1)PP

or	 j-{(1 - xEPPh. - Pmi';;fl = [n(n + 1) - tn(nt + 1)1PP

Thus by Integrating we have

[n(n+ 1)- ,n(in+ 1)) 5P(x) P(x) dx = (1- x2)[P5 P - PnP]	 = 0

Then since m O n,	 1

S
r,,(x) P5 (x) dx = 0

-1

.,1	 2
7.14. Prove that	 [P,(x)]2 dx =4,-I

From the generating function
1 -- =

v'1-2tx+t

we have on squaring both sides,

1	 =	 I1-2tx+t2	 -o .-o

Then by integrating from -1 to 1 we have

f t dx	 1 'I I 4j, f Pm(x)Pa(z)dx}t"+"
_ 

1-2tx-4-t2 = ,*OO	 -1

Using the result of Problem 7.13 on the right side and performing the Integration on the left side,

	(1- 2tx+ t2)	
=	

1f [P.t (x)l s dx} t2n

I. -'I	1 (1 + C" -	 1j [Pn(x)]sdx} V.Or 	 In)j—j	 -	 I. -1

	20"	
-	 {f:11P5x15dx} t21t

2uti.e.	 o±1 - •°

Equating coefficients of fl", it follows that

f_[P,(s)12dx = 2n+1

SERIES OF LEGENDRE POLYNOMIALS

7.15. If f(s) = ± A.P,(x), —1 <x C 1, show that

A. = 
2k-I- 's:1 Pt(s) f(s) dx

Multiplying the given series by Pm(s) and integrating from -1 to 1, we have on using Prob-
lems 7.18 and 7.14,
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.1J P.jx)/&4dx =k 
o 

A,
—1	 .-'

= Am f [P(w)]2dz
2Am

—1	 = 2m+1

Then as required,
Am — 2m + ifl 

P' (') /(') dx2	 _,

Ij 0<x<1
7.16. Expand the function f(z) 

= j 
0 —1< < in a series of the form ZAkPkxi.

By Problem 7.15

2k+1SI	
= 2k+j "°	 2k+1 C'

=	 2	 Pk(x)f(x)	 2 J Fk(x)(0)dx +	 2 J Pft(x)(1)dx
1

— 2k+1
—	 2 5 Pft(x)dx

Than	 A. =Pe(z)dx = 15	 = 1
0

A l = If P,(x)dx = 5xdz =

SA, = f I 

P,{x)dx = 
5	 2 dx = 0

5x3 — 3x	 7A, = jfPa(x)dx = ii' 
2 

dx =

A,	 5 P4 (z)dx = I f' 3504— 80x' + 3
dx = 0$

"I	
1iJl63Ø_7o5x	

— 114 5 =	 f P,(x)dz =	 _________
Jo .	 -i °	 dx	 32

etc. Thus
Az) = jPe(z) + P,(x) — T

6 
	 + jPs(x) —

The general term for the coefficients in this series can be obtained by using the recurrence for-
mula 2 on page 131 and the results of Problem 7.34. We find

= 
2n+ I£'"' 

dx = 5 [F'+ 1 (x) — PL_1(x)] dx =	 [P.,(0) —

?or ,a even 4 = 0, while for * odd we can use Problem 7.34(c).

7.17. Expand 1(x) = x2 in a series of the form	 APk(x).

Method 1.

We must find 4k. Ac = 0,1,2,8.....such that

= A 5 P0 (x) + A,P 1 (z) + A,P,(z) + A 3 P5 (x) +

/ 3x - i	 /55 — ax= A0(1) + 4 1(x) + Ad 2 ) + Azç_y) +....
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Since the left side is a polynomial of degree 2 we must have As = 0, A 4 = 0, A 5 = 0.....Thu5

= A0__j+Aix+ 22 
AZZ2

from which	 = 0,	 = 0, !A2 = 1

Then	 Ao=j. A1=0,

i.e.
z 2

=	 P(x) + 2p2(x)

Method 2.
Using the method of Problem 7.15 we see that if

=	 .4P(r)

then	 A 
= 2k+ if 

x2Pk(x)dx

Putting k=O,1,2.....wefind as before A 0 = 4, A 1 =0,	 A3 =0, A4 =01 ... so that

= Po (M)+

In general when we expand a polynomial in a series of Legendre polynomials, the series, which
terminates, can most easily be found by using Method 1. 	 -

SOLUTIONS USING LEGENDRE FUNCTIONS
7.18. Find the potential ii (a) interior to and (b) exterior to a hollow sphere of unit

radius if half of its surface is charged to potential Va and the other half to potential
zero.

Choose the sphere in the position shown in Fig. 7.1.
Then v Is independent of 0 and we can use the results
of Problem 7.5. A solution is

v(r, e) = (Air- +—L c')[AsPQ) +

where = cos i. Since v must be bounded at 9 = 0
and r, i.e. = ±1, we must choose B5 0. Then

v(r, 9) = (Am -f.	(1)

The boundary conditions are

12o ifO<o< 2 i.e.	 oCcl
v(1,$) -=

tO if 72 < 0 < ,  i.e. —1<<0

and v is bounded.

(a) Interior Potential, 0 N r < 1.

Since v is bounded at r = 0, choose B = 0 in (.1). Then a solution is

Ar"PU) = Ar"P(cos a)

By superposition,
v(r, a) =	 A,,r'P5 (cos a) =

	
AnrPn(J)
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When t1,
= I A,P.J()

Then as in Problem 7.15,	 -

A. 1 	
nl

2n + 1 ( vfl, o)P5 (c) d =	 P(Ø d(
-	 2	 _,	 ( 2

from which

11
A1vo. A

1 =1i, A 2 0, 4s — jgvo. A 4 0, 4 5 =5jioa

Thus	 v(T,&) =	 + {TP1 (coz8) - jra fs (cosd) 4 jr'P5 (cose) +	
-]	

(2)

(5) Exterior Potential, 1 Cr C a

Since v 15 bounded as r -. w, choose A = 0 In (1). Then a solution is

B	 B=	 -'jP(cos e)

By superposition,
v(r,O) =

When r = 1,
= i B,PI)

n0

Then B5 = A. of part (a) and so

ti(r,e) = Lo [i + j-Pi (Cos s) - $j Ps (Cos s) + jhPs(Cos e) +	 (3)

7.19. A uniform hemisphere (see Fig. 7-2) has
its convex surface kept at temperature us
while its base is kept at temperature zero.
Find the steady-state temperature inside.

The boundary value problem in this case is

= 0
where

U = uo on the convex surface

it = 0 on the base

The solution can be obtained from the results of
Problem 7.18. To see this we now that the present
problem is equivalent to the problem of solving	

F. 7 2Laplace's equation inside a sphere of which	 Fig. -
the top half surface is kept at temperature 'i, and the bottom half surface is kept at temperature
—a 0. By symmetry, the plane of separation will then autnniaticalty be at temperature zero as
required in this problem.

We can then obtain the required solution by first subtracting v0/2 from the solution in Problem
7.18 and then replacing i3O/2 by u5. The result is

u(r, a) = uo[rvi (cos a) - j.raPa(cos 0) -i- 1r5Pscos 6) +

The problem can also, of course, be solved dlfcct4 without use of the results in Problem 7.18.
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7.20. (a) Find the gravitational potential at 	 .....P.. ., •

	

any point oA the axis of a thin uniform	 •. - C,'44;. -A r

	

ring of radius a. (b) Find the potential 	 'it p
of the ring in part (a) at any point in
space.

(r , a, #)(a) Choose the ring to be in the xy-plane so
that the axis is the z-axis as Indicated in
Pig, 7-8. Then the potential at any point P

Yon the z-axis is seen to be the mass of the
ring divided by the distance 1a2 +z5 from
any point Q on the ring to the point P.
Letting a denote the mass per unit length
of the ring it follows that the potential at
P is 

2ra,
VP = ______	 (1)

o z2

(b) in this case we must solve Laplace's equa-

	

tion V%= 0 where v reduces to v, for 	 Fig. 7-3

points P on the a-axle. Now we know that because of the manner in which the ring has been
located that v is independent of •. We thus have as a solution to Laplace's equation

-	 v(Alr	
1

= +

where = con. Since v must be bounded at a = 0 and r, i.e. = ±1, we must choose
B5 = 0. Then

v = (Are + i-yP,,(V	 (S)

There are two cases to be considered, corresponding to the regions 0 r < a and P > a.

Cad: 0r<a.

In this case we must choose B=O  in (2) since otherwise the solution is unbounded at
= 0. Then v = Ar'P(c). By superposition we are led to consider the solution

V = Ar"Pa) (3)

Now when a = 0, i.e. j = 1, this must reduce to the potential on the z-axis, in which case
r = a. Then we must have

2,rao
A,,z"	 (4)

	Va 2 +z2	 "=0

In order to obtain A we must expand the !eft side as a power series in a. We use the
binomial theorem to obtain

2rae	 I	 22\=I/2
____ = 2,raii+

Va2 +zZ	a2

= 2rc11 -
	

+	 - ____	 + .--]	
()

Comparison of (4) and (5) leads to

A 0 =2rq, A,0, A 2 q, A3=0,

Using these in (3) we then find

Ii = 2rc[Po(coae) - e(z) 2 P5(cose) +	 .e) 4P4(cos8) -	 .]
where 0rCa.
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Can2: r>a.

In this case we must choose A = 0 In (2) since otherwise the solution becomes unbounded
n r -. . Than v = Ri', ()/r +I and by superposition we are led to consider the solution

I, =	 QS+IPSU)	 (7)

As In Case 1, this must reduce to the potential on the x-axis for 0 =0  and r = s, i.e.

2vcw	 j ,
_____ -
	 (8)

Thus, to find B, we must expand the left side In Inverse powers of s. Again we use the Mao-
misl theorem to obtain

2nq	 - 2ra/ a'"\

	

-	 =	
-	 +	 - ____	 +z	 (is

Comparison of (8) and (9) leads to

B0 = 2r.2., B = 0, Be = _2rae(a). Be 	 0, B4 = 2n.(4a4). ...

Using these In (7) we then find

2rau r	 -	
+ F_eYP4(cos.)

1)	
'T'LY0055)	 2\rJ

where t> a.

ASSOCIATED LEGENDRE FUNCTIONS
1.21. Show how Legendre's associated differential equation (12), page 132, is obtained from

Laplace's equation' V 2tt = 0 expressed In spherical coordinates (r,8,4,).

In this can we must modify the results obtained in Problem 7.1 by including the 04ependence.
Than letting u = Re. in (1) of Problem 7.1 we obtain

seal dR\	 B, dl	 de\	 Re d2.
,3d14'dr) + S sin s 5in9 ) +	 = 0	 (1)

Multiplying by 0, dividing by Roo and rearranging, we find

id/' dR\ -	 t d(	 dO'\	 1 42$
R	 - — o-;i;-.1'do) - ____

Since one Bide depends only on r, while the other depends only on I and 0, It follows that each side
must be a constant, say —X e. Then we have

= .

	

I dl. de\	 1 42+	and	 (jt\51flG4) + • sint e ;r =	 (3)

The equation (2) is identical with (2) In Problem 7.1, so that we have as solution according to
Problem 7.2

R =	 (4)

where we use X2 = —n(n+ 1).

(10)
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If now we multiply equation (3) by sin 3 e and rearrange, It can be written as

ldtt 	sine dl.	 dO	
n(n.+1)stn2e

\= — —j-- 	 sznO) - 

Since one side depends only on 0 while the other side depends only on 6 each side must be a con-
stant, say —m2. Then we have

sin e( sin ef) + [n(n+1)sin2 e — m2]$ = 0	 (5)
do	

= 0	 (6)

If we now make the transformation = cots in equation (5) we find as in Problem 7.2 that it can
be written as

(1_f2)f[(i— 12)
41

 + [n(n+1)(1 _2) - m9$ = 0

Dividing by 1 - 2 the equation becomes

(' - 12)9 --247 + [not+u—j-7!%]e = 0	 (7)

which is Legendre's associated differential equation (if) on page 132 If we replace 6 by y and
by

The general solution of (7) is shown In Problem 7.22 to be

	

e = A2P'(c) + R2Q7(0	 (8)

where j = cost and
P.	 d- = (1 - 2)m/2 4R PU)	 (9)

	= (1— 2)m/2 S.	 (go)

We call ?() and Q'(j) associa ted Legnzdre function, of the first and accond kinds respectively.

The general solution of (6) Is

	

4' = A, cos m. + 85 sinm	 (11)

U the function t4r, 8. t) Is to be periodic of period 2, In 0, we must have sit equal to an integer,
which we take as positive. For the ease en = 0 the solution ,4r, e,) Is independent of 0 and
reduces to that given in Problem 7.5.

IS (a) Show that if in is a positive integer and it,, is any solution of Legendre's differen-
tial equation, then d"u,.Jdx'" is a solution of Legendre's associated differential
equation.

(b) Obtain the general solution of Legendre's associated equation.

(a) If Legendre's differential equation has the solution it, then we must have

(l — xt)C - 2z,4 + n(n+l)u = 0

By differentiating this equation in times and letting v' = dThtz,,/drtlt we obtain

dv"
(l — x1)-f. - 2(m+T)x- .- + [n(n+l) - m(m+l)]v' = 0dx

In this equation we now let v = (1	 2)9.,,r. Than it becomes

(1— zl)2i/' - (2(m + l)x(l - x2) + 4pz(1 -

1- {4(sn+1)pz5 + (4Ø-2p)x5 —Zy + [n(n+1) - tn(m+ 1)](1—r2))y = 0



• (1 - z2)3'2 d( Bx' -
2

= IL 45 xs (1 - x)2

 16̂X2	 X2)312-
- 2

= 0

fl(s)	 (1_x2)8I2P3(x) =
dx

Then
	 J P(g)fl(x) dx
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If we now choose p = —m/2, this equation becomes after dividing by 1.-
(1— z 2)y" - 2zy' + [n(n+ 1) — F = 0	 (1)

which is Legendre's associated differential equation. Since v = (1 - x2) 15y, it follows that
= (1 - x2)m 2V t, or	 du

y = (J_xY1/E 	(2)

is a solution of (I).

(b) Since the general solution of Legendre's equation Is c1P (x) + o2Q,(x), we can show that the
general solution of Legendre's associated differential equation is

Y = e2 fl(x) + 02Q'(x)	 (3)

d"P
where	 P'(s) = (1 - x2)"2 —s , 	Q'(x) = (1—% cix

7.23. Obtain the associated Legendre functions (a) P(x), (b) P:(z), (c) P:(x), (d) Q(x).

(a) P(x) = (1— xt) 1/Z LPI(x) = (1 - x2)1/2L(32 1) = Sx(1 -

(6) P(x) = (1 — x2)213hP3(x) = (1— x)j(_; ax) = Thx - j53

(c) fl(x) = (1— x2)312 2P2 (x) = 0.	 Note that in general P(x) = 0 if m > n.

(	 Using Problem 7.12(c) we find

Q(x) = (1X2)112 d Q2 (x) = (1— 2)l/2 g_ {8x2 —1 In (_±_!)	 3x}
T,ax	 4	 1—s	 T

= (1 - xe112 [% In (i.±_!)	 3x2 - P.
+ 1—x2

724. Verify that fl(x) is a solution of Legendre's associated equation (12), page 182, for
tm=2, n=3.

By Problem 7.23, P(x) = l5x - 15x. Substituting this in the equation

(1 —x2)y" - 2xy' +	 = 0

we find after simplifying,

(1 - x2)(-90z) - Zx(15 - 45x2) + [12 - 1 x2] (lGx - 15x9 = 0

and so fl(s) is a solution.

7.25. Verify the result (16), page 182, for the functions I(x) and P(x).

We have from Problem 7.23(a), fl(s) = Sx(t— x 112 , Also,
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726. Verify the result (17), page 132, for the function P(s).

Since P'(x) = Sx(1 - x2)112 ,	 -

Now according to (17), page 132, the required result should be

2	 (2+1)1 - 2 , 9! - 12
2(2)+1 (2-1)!	 5 ii -	 5

so that the verification is achieved,

7.27. Expand ve(l - zt) in a series of the form	 AK(z) where to is a constant and
rn2.	 k0

We must find A, k 0,1,2.....so that

VG(l - xS) = A0 P02 (x) + A 1 P(x) + A2P(x) + .. .	 (1)

Method 1.

Since	 P(x) = (1_x2)5Pk(x)

we have	 d f3z - I
4(x) = 0, P(z) = 0, fl(x) = (1—x)j	 2 ) = 3(1—xt),

d	 \
Pa	

/'5x - 3x
(s) = (1— 52)aç 2	

) = 16x(1 -

Then (1) becomes
v0(1 - xZ) = 3A 2(1 - x2) + 15A 3z(1 - x2) +

87 comparing coefficients on- each side we see that this can be satisfied if 3A2 = v , 15A3 = 0 and
A,,0 for c)3. Thus wehave

v0(1 - x2) =.	 (2)

so that the required expansion consists of only one term.

Method 2.

If /(s) =	 Akfl(x), then on multiplying by P'(z) and integrating from —1 to 1 we obtain

f f(x)fl(x) dx =	 Afr 5c(x)Pr(x) dx

Using (16) and (17), page 132, we see that the right side reduces to the single term

2 (n+rn)!A
2n+1 (n—m)!

so that	 A,, 
= (2n+1)(n—rn)! f'/(x)P:(x.) dx

If f(x)= v0(1 — x and rn = 2, then

A,, =

f l(2a+1)(n-2)!	 i

2(n+2)!	 - 
v5(1x)P(x) dx

=	 x2(l - x2) dx =	
86	 12

Using this we can show that As = vdS , A 4 = 0, As = 0, ... and so we obtain the result (1) as in
Method 1.
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7.28. Show that a solution to Laplace's equation V tv = 0 in spherical coordinates is given
by

= (Air +

	

	 [A2fl(c03 9) + B2 Q?(cos 9)] [A5 cos	 + 83 sin n)

This follows at once from Problems 7.21 and 7.22 sInce a = Ret where

R = A1r+-1

8 = A 2 P,'(cose) + B2Q(coe)

• = A 3 cos m#+B, sin m#

7.29. Suppose that the surface of the sphere of Problem 7.18 is kept at potential
ye sins 9 cos 2#. Determine the potential (a) inside and (6) outside the surface.

(a) Interior Potential, 0 r < 1.

Since is is bounded at r = 0 we stunt choose B, = 0 In the solution as given in Problem
1.28. Also since V Is bounded at 8 = 0 and r, we must choose B1 = 0. Then a bounded
solution is given by

v(r, e,) = r"P,,(cos ,)(A Co. '# + B sin m)

Since in and n can be any non-negative integers we can replace A by A,,, B by B,,,, and then,
using the superposition principle, sum over in and it to obtain the solution

v(r, 8, ) =	 v'P'(cos i)(A,,,, to. no +Rm, sin ,mø) 	 (1)
me n0

Now the boundary potential is given by

v(1, 8, ) = vsin2 ocos2o	 (1)

By comparison of (2) with

=	 j P,,n(cose)(A_, cosin + B,,,,, sintn)	 (8)
-	 mO w0

obtained from (2) with r =I it is seen that we must have B,,,, = 0 for all in and A,,,,, = 0
for in 91 2. Hence, (3) becomes

= 	
A fl(cos9) cos 2

Comparison with (2) then shows that we must have

v5 sln2 e =	 A2,,fl(coso)
n'O

or using cosG =

=
5

= A 25 P(E) + A 23 P?(() + A23 P(E) + ...	 (4)

We have already obtained this expansion in Problem 7.27, from which we see that A22 v,/3,
while all other coefficients are zero. It thus follows from (1) that

2vo
v(r,o,*) = 1r2P2 (eoss) coo 20 = v 5r2 sin2 a coo 2o	 (6)

(b) Exterior Potential, r> 1.

Since is must be bounded as r- e in this ease and is also bounded at = 0 and r, we
choose A, = 0, B = 0 in the solution of Problem 7.28. Thus a solution is

P.'(cose)
v(r,8,#) =	 ,,,' (.4 cosm + B sin rn)
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or by superposition	 I-

v(r,e,Ø) =	
P'(cosl)4	 + 8mn  sin tfl4)	 (8)

m'OItO	 ytI

Using the fact that i(1, 0, ) = V0 sin2 • cos 24 we again find in = 2, 8,,, = 0 which leads to
equation (4) of part (a). As before we then find A = v018, while all other coefficients are
zero, leading to the required solution

u(r, t. 0) = j4P( coa 0) coB 2

V5= .sjn2 0 coo 24	 (7)

It is may to check that the above are the required solutions by direct substitUtion.

7.30. Solve Problem 7.18 if the surface potential is /(8, ).
As in Problem 7.29 we are led to the following solutions inside and outside the sphere:

Inside the sphere, 0 r < 1

tØ', 8, ) =

	

	 r"P?(cos o)(A,, cos 'n + B,,, sin ,n4)	 (1)
m=o .1=0

Outside the sphere, r> 1
P(cos 4)

v(ra,4) = 2	 (A,,coitm4 + 8mn sinm#)	 (1)
- M-0 0- 0

For the case r = 1 both of these lead to

= 2 2 fl(cose)(A_cosftt#+B_551flm+)
m'O ,,=O

This Is equivalent S the expansion

= 2 2 P(t)(Amn cci $114 + B,, slnsn)	 (3)
"G n0

whore = cost Let us write this as

= 2 CC P?)	 (4)
s=0

4.

where	 C,, =	 (A,,n cosm4 + B,,,,, sin m)	 (5)
rn_b

As in Method 2 of Problem 7.27 we find from (4)
(2n+1)(n—tfl)! ftC,, --	 2(nl-tn)l	 F(,p)PNOd	 (8)

We also see from (5) that A,,,,, and B.. are simply the Fourier coefficients obtained by expansion
of C. (which is a function of ) in a Fourier series. Using the methods of Fourier series it follows
that 2t_1

-	 5 C,,d

_1A 	 - - J C,, 
COS

insd*
To

2T1
= -5 C,, sin m#d#	 m = 1,2,3,...

r

Combining these results we see that
- (2n+lRfl—ift)! f' "

A0,, - -	 n+m)l j_ j 
F(C.#)P'(bd(dO
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while for in = 1,2,3,...
i	 at- (2n+lXn—m)!

Ann -	 2r(n+m)! 5_if r(.)flw cc.m di 4

- (2n+1)(n—m)I	 I	 St
-	 2r(n + in)! f_, J F((,0) P'() sin m d( 4

Using these results in (i) and (2) we obtain the required solutions.

Supplementary Problems

LEGENDRE POLYNOMIALS

7.31.	 Use Rodrigus's formula (4), pige 180, to verity the formulas for P0 (x), P1(x).... . P5(x), on page 130.

7.32, Obtain the formula. for P4 (s) and P5 (x) using a recurrence formula,

7.33. Evaluate (a) f xP5 (z) dx, (b) 5 (P, (.)12 dx, (c) 5 F2 (x) P4 (x) dx.

734. Show that	 (a) P,(1) = 1	 (c) Pa,--,(0) = 0

(6) P(-1)	 (-1)"	 df P2 (0) = ( fln	 -6 .  '(2n -
24'6''(2n)

for n.=1,2,3.....

725. Use the generating function to prove that P. + I (z) - P,_ 1 (z) = (2n+ 1) P,

7.36.	 Prove that (a) P 1 (x) - xP,(x) = (n + 1) P,,(x), (b) xPh(x) - P,_ 1 (x) = nP(x).

Si	 a737. Show that	 P(cos a) _- 1c.c.

7.38.	 Shothat (a) P2 (cos 8) = ( I + 8 con 2e), (6) P5 kos a) = (3 cos a + 5 cog 3.).

7.39. Show that P, (x) = (429r7 - 693x5 + 315x3 - 35x).

7.40. ShoW from the generating function that (a) P(i) = 1, (6) P11(-1)

7.41. Show that	
zkPk_I.(x) 

=
	

In (4-. —1 C x C 1,

LEGENDRE FUNCTIONS OF THE SECOND KIND

7.42. Prove that the series (6) and (7) on page 131 which are nonterminating are convergent for — 1 Cx < 1but divergent for x =

7.43.	 Find Q, (x).

7.44. Write the general solution of (1 - z2)y" - 2xy' + 2ii = 0.
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SERIES OF LEGENDRE POLYNOMIALS
745. Expand x4 - 3x1 + x in a series of the form	 AkPk (s)

r+1 OCz1	 '3

7.46. Expand f(s) = jin a series of the form	 .4*Pk(x). writing the first four0 —szCO
nonzero terms

W. If f(s) 
=	

AaP, (p), obtain PanevaL's identity

I	 -
= 2e2k+1

and illustrate by using the function of Problem 7.45.

SOLUTIONS USING LEGENDRE FUNCTIONS
7.48. Find the potential v (a) intoner and (6) exterior to a hollow sphere of unit radius with center at

the origin if the surface I. charged to potential v 0(1 + S con a) where v 0 is constant

7.49. Solve Problem 7.48 if the surface potential is v0 sins C.

730. PITA the steady-state temperature within the region bounded by two concentric spheres of radii
a and 2a If the temperatures of the outer and inner spheres are no and 0 respectively.

7.51. Find the gravitational potential at any point outside a solid uniform sphere of radius a of miss in.

732. Is there a solution t, Problem 7.61, if the point is inside the sphere! Explain.

733. Interpret Problem 7.48 as a temperature problem.

7.54. Show that the potential due to a uniform spherical shell of inner radius a and out* t- radius 6 is
given by

1 2ru(62_a2)	 7<0

	

I)	 =	 . 2ro(36r20r3)13r a <7<6

	

4ra(b9 —a)/3r	 7

715. A solid uniform circular disc of radius a and mass M is located in the sy-pinrie with center at the
origin. Show that the gravitational potential at any point of the plane is given by

v =-1P1(eosg) + () 2r2 (coa.) -

+ 2.4.Se)13.fr0593	 ...]if rca and

=	 - 
1(a)	

131a\4	 135fa\'

	

-	 cost) + --6y-) P, (Cosa)- 4.6.S,;) P, (Cost) +
if r > a.

ASSOCIATED LEGENDRE FUNCTIONS
7.56. Find (a) fl(.), (6) fl(s), (c) fl(s).

7.57.	 Find (a) Q11 (a), (6) Q (a).
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7.58.	 Verify that the expressions for P'(x) and Q() are solutions of the corresponding differential
equation and thus write the general solution.

739. Verify formulas (16) and (17), page 132 for the case where (a) tn --'I,  a = 1, I = 2, (6) in = 1,

n1,	 1.

7.60. Obtaih a generating function for - p .,
m,tx).

741. Use the generating function to obtain results (18) and (17) on page 182.

7.62. Show how to expand f(x) in a series of the form AkPr(Z) and illustrate by using the cases

(a) f(s) = a, m= 2 and (6) f(s) = x(1 - z), vs = 1. Verify the corresponding Parseval's iden-
tity in each case.

7.63. Work Problem 1.18 if the potential on the surface is a 0 sine 8 coo e coo S.

MISCELLANEOUS PROBLEMS	
(_1)k(2n_2k)I 542m1.64. Show that	 P(w) =	 k!(n—k)l(e-2k)l

where fn/21 is the largest Integer	 ti/2.

7.65. Show that	 1 "P(x) = 
-j 

(x+icoau)'du
'0

Use the result to find—P3(o) and P5(x).

7.68. Show that

7.67. Show that

{. 5	
a

J
(1 x2)P,',,(x)P,(x) dx	 =	 2n(n + 1)-t	 mn2n + 1

f

I-21n(n+ 1) it 0 0

1 
Pn(x)ln(1x)dx = 12(1n2-1) n0

	

7.64. (a) Show that f xmP(x) dx	 0 if in < it or if in - n is an odd positive integer.

(1') Show that

	

C'	 (n+2pflF(p+4)
I x"' 2P P (x)dx = 2"(2p)!F(p+n+4)

for any non-negative integers it and p.

7.69. Show that a solution of the wave equation

v 21, = If!
Cs at2

depending on r, e, and t, but not on 0, is given by

V = [o4 1 J,. + 512 (e/c) + 8,1...,, - 113 (i3r/c)][A 2P(cos 6) + B5 Q(cos 0))[A coo wt + Bs sin wt



CHAP. 71	 LEGENDRE FUNCTIONS AND APPLICATIONS 	 168

7.110. Work ProDlem 7.69 if there is also 0-dependence.

7.71. A heat-conducting region is bounded by. two concentric spheres of radii s and b (a < b) which
have their surfaces maintained at constant temperatures it 1 and us respectively. Find the steady-
state temperature at any point of the region.

7.7L Interpret Problem 7.18 as a temperature problem.

7.7$. Obtain a solution similar to that given in Problem 7.69 for the heat condu glion equation

ft. =
where it depends on r, f, and t but not on 0.



Chapter 8

Hermit., Laguerre
and Other Orthogonal Polynomials

HERMITE'S DIFFERENTIAL EQUATION. HERMITE POLYNOMIALS
An important equation which arises in problems of physics is called Hermite's differen-

tial equation; it is given by	
y11 -2xy'+2ny = 0	 (1)

where n=O,1,213.....

The equation (1) has polynomial solutions called Hermits polynomials given by Rodrigues

formula	
H,1(x) = (_ l)nea(efl2)	 (2)

The first few Hermits polynomials are

Ho(x) = 1, H i(x) = 2x, Hz(x) = 4x2 - 2, H3(x) = 8x3 - 12x	 (8)

Note that H(x) is a polynomial of degree n.

GENERATING FUNCTION FOR HERMITE POLYNOMIALS
The generating function for Hermite polynomials is given by

tq
=

(4)

This result is useful in obtaining many properties of H(x).

RECURRENCE FORMULAS FOR HERMITE POLYNOMIALS
We can show (see Problems 8.2 and 8.20) that the I{ermite polynomials satisfy the re-

currence formulas	
E.i(x) = 2xH(x) - 2nH- i (x)	 (5)

	

H,(x) = 2nH-,(x)	 (6)

Starting with Ho(x) = 1, H,(x) = 2x, we can use (5) to ubtain higher-degree Hermits poly-
nomials.

ORTHOGONALITY OF HERMITE POLYNOMIALS
We can show (see Problem 8.4) that

	

r'H,(x) H(x) dx = 0	 m Y- n	 (7)
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= 5 e'f(x) H(x) dx
2"n!\1	 -cwhere (10)
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so that the Hermits polynomials are mutually orthogonal with respect to the weight or
density function e".

In the case where m = n we can show (see Problem 8.4) that the left side of (7) becomes

S:e_xhHx)dx = 2"n!/
	

(8)

From this we can normalize the Hermits polynomials so as to obtain an orthonormal set.

SERIES OF HERMITE POLYNOMIALS

Using the orthogonality of the Hermite polynomials it is possible to expand a function
in a series having the form

Ax) = AoHo(x) + .4 1 111 (x) + A 2H2(x) ±
	 (9)

See Problem 8.6.

In general such series expansions are possible when f(x) and f'(x) are piecewise con-
tinuous.	 -

LAGIJERRE'S DIFFERENTIAL EQUATION. LAGIJERRE POLYNOMIALS

Another differential equation of importance in physics is Laguerre's differential equation

given by
xy"+(I—x)y'+ nil = 0
	 (LI)

where n= 0,1,2,3.....

This equation has polynomial solutions called Lague;rre polynomials given by

L(x) =	 dx"
	 (12)

which is also referred to as Rodrigue's formula for the Laguerre polynomials.

	

The first few Laguerre polynomials are	 -

Lo(x) = 1, L,(x) = 1—x, L2(x) = x2 -4x+2, L3(x) = 6-18x+9x2 - x3 (18)

Note that L(x) is a polynomial of degree n.

SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMIALS

In the following we list some propertie of the Laguerre polynomials.

1. Generating function.

	

e -rt/(1 -t)	 -	 L,,(x) tn
1—t -

2. Recurrence formulas.
L+j(x) = (2n + 1— x)L(x) - n2L-i(x)

fn(x) - nfh-i(x) +nL- i(x) = 0

= nL(x) - n2L,-,(x)

(14)

(15)

(16)

(17)



0	 jfm,'n
5e_rLm(x)L(x) dx =	 (I)2 if vi = n0

3. Orthogonality.
(18)
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4. Series expansions.

If	 f(x) = A 0L0(x) + A,L,(x) + A2L2(x) + '	 (19)

then	 = ç-1ji J' r'f(x) L(x) dx	 (20)

MISCELLANEOUS ORTHOGONAL POLYNOMIALS AND THEIR PROPERTIES

There are many other examples of orthogonal polynomials. Some of the more important
ones, together with their properties, are given in the following list.

1. Associated Laguerre polynomials L(x).
These are polynomials defined by

L1 '(x) =	 —L(x)	 (21)

and satisfying the equation

Zy" + (m+l — x)ii' * (n—m)y = 0
	

(22)

If m > n then L(x)=0.

We have	

J' xrL'(x)L(x)dx = 0
	

(28)

5xme_x(L(x))2dx =	 (24)

2. Chebysher polynomials T.(x).
These are polynomials defined by

T,(x) = cos(ncor'x) = x' - In^X"-2(l-X2) + ()x1t_4u_x92 -

(25)
and satisfying the differential equation

(1—x2)y"—xy'+n2y = 0
where n = 0,1,2, ....

A recurrence formula for T(x) is given by

T1(x) = 2xT(x)—T-.j(x)

and the generating function is

1—tx	 - VT 'xt"1-2tx±-t2 -	 n'

We also have

dx = 0	 m','n

dx =
(T,frH2	

,f 
,r n=O
f2 n=i,2,...

(26)

(27)

(28)

(29)

(30)
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Solved Problems

HERMITE POLYNOMIALS
8.1. Use the generating function for the Hermits polynomials to find (a) Ho(x), (b) H1(x),

(c) Hs(x), (d) H3(x).

We have
021-0H,(z)t"	 H2(x)	 H (z)

=	 itt	
= 110(x) + 11 1(x)t +	 0 +	 0 +

Now	 622r—t = 1 + (2tx - t2) + (Ztx— t2)2 + (2tx— fz)a +

= 1 + (2r)t + (2x2_1)t2 + (4xs-6x) +

Comparing the two series, we have

110(x) = 1, H 1(x) = 2x, H2(x) = 4T2 - 2, H3(z) = 8x' - 12x

8.2. Prove that H(x) = 2nH—i(x).

	Differentiating e2t.. ' =	
Ff,(x)
 t" with respect to x,ill

22tx— t	 =

or2H,,(r) +
	 =	

H,(x)

Equating coefficients of t" on both Bides.

2R,_1(x)H,(x)
or	 H(x) =

	

(n 1)!	 -	 itt

8.3- Prove that H(x) = (- 1)"e2' a—

We have	 e2_ -	
= I H,(z)

Then	 .i_(e2tX_)I	 = H(x)

But

	

or	 It=0

.±: (62t1 — t') I	 =
to	

[e>' I
lt=o

a"
=	 1$ a(—z)' [o—(1z)']

'=0
=	 (_1)1ez4__ci "__ (cx')

dx'

1

	

8.4. Prove that	 0	 tnfl
F. HmHi4z)dz 

= 12'n!V tn=n

	We have	 6
= no it! = ,o	 tat

Multiplying these,	
Hm(r) H(x)rt'61iz— tt2n	 =	

mini
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Multiplying by i" and Integrating from - to e,
-	 ±!!1f r"H (x)H,,(x) dxj e-L+.+fls-2fl1	 = I I its! n! .,

Now the left side is equal to

5ast	 dx =	 " 5 e" d,= e2stJ =	 j 2"s"t"'
mO ml

By equating coefficients the required result follows.

The result

= 0

can also be proved by using a method similar to that of Problem 7.13, page 138 (see Problem 8.24).

8.5. Show that the Hermits polynomials satisfy the differential equation
1/" - 2xy' + 2np = 0

From (5) and (5), page 164, we have on eliminating E...1(x):

11 + 1(x) = 2rHjx) - H(x)	 (1)

Differentiating both sides we have

H 1(x) = 2xH(x) + 2H(x) - H'(x)	 (5)

But from (5), page 164, we have on replacing it by it + 1:

114+ 1 (x) = 2(n+1)H,,(z)	 (3)

Using (3) In (2) we then find on simplifying:

H(x) - 2xH(z) + 2nH(x) = 0

which Is the required result.

We can also proceed as In Problem 8.25-

8.6. (a) If 1(x) = ± AaHk(x) show that A5 =	
1	 S e--If(x) 14(x) dz.

50	 2k!%&

(b) Expand x3 in a series of Hermite polynomials.

(a) If f(s) = I A&14(x) then on multiplying both sides by ofl014(x) and integrating term

by term from —e to e (assuming this to be possible) we arrive at

5
et1(x) H(x) dx =A	 c'JII(x) 11,(x) dx	 (I)

But from Problem 8.4

	

fells H,(r)dx =
	 :::

Thus (1) becomes	 -5 e'J(x)H4x) dx = A2"n!

1	 -
or	 A. -- 2'l v- 5 -Of(x) H,,(x) dm	 (2)

which yields the required result on replacing it by k.
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(1.) We must find coefficients Ak, k = 1,2,3......such that

= 2AkJ4(z)	 (s)

Method 1.
The expansion ($) can be written

S = .4 5H0(z) + A 1IJ1(x) + A2112(x) + A 5H3(x) +	 (4)

or	 S = A 0(1) -I- A 5(2x) + A(4x2 —2) + 4 a( 0 - 12w) +	 (5)

Since H(x) is a polynomial of degree Ic we see that we must have 4 4 = 0, A = 0, A 6 = 0,
otherwise the left side of (5) Is a polynomial of degree S while the right side would be a poly-
nomial of degree greater than 3. Thus we have from (5)

S = (A0 -242) + (24i-12Aaz + 4A2x2 + 8A3x5

Then equating coefficients of like powers of x on both sides we find

8A5 = 1, 4A = 0, 2A, — 12A = 0, 40 -242 = 0

from which	 31

	

A,	 AsA2 0. Aa=

Thus (s) becomes	 .	
=	 + E2(x)

which is the required expansion.

Chat.
+ H3(r) = 1(2w) + ft(8z 3 — 12w) = S

Method 2.

The coefficients A IC in (1) are given by

= 2k!V
as obtained in part (a) with f(s) = S.

Putting Ic = 0,1,2,3,4,... and integrating we then find

A. 	 A, =
4  42 = 0, A,	 44=0, A 5 =0,

and we are led to the same result as in Method 1.
In general, for expansion of polynomials the first of the above methods will be easier and

faster.

8.7. (a) Write Parseval's identity corresponding to the series expansion 1(z) = ± AkII.(z).
I k0

() Verify the result of part (a) for the case where 1(x) =

(a) We can obtain Parseval's identity formally by first squaring both sides of 1(x) = S AICHIC(X)
to obtain	 .

{f(x)}	 =	 A,A/f(r) K(x)
k0 p(l

Than multiplying by e	 and integrating from —ao to we and

	

F.c"{J(x)Pdx =	 AICAPJ
—e	 k0 Pee



160	 HERMITE, LAGUERRE AND OTHER ORTUOGONAIL. POLYNOMIALS 	 [CHAP. S

Making an of the results of Problem 5.4 this can be written as

=

which Is Parseval's Identity for the Rormite polynomials.

(b) From Problem 8.6 It follows that if 1(z) = # then A0 = 0, A 1 = , A = 0, 4, = , A4 = 0,

A 5= 0,	 Thus Parseval's identity becomes

E. 
r'(x)dx = V[2(l!)(V' +

Now the right side reduces to 16ft18. The left side is

5
s-xse. = 2fzee-xdx = JulIle_tdu

= r() =

where we have made the transformation x = vii. Thus Parseval's identity is verified,

LAGUERRE POLYNOMIALS
U. Determine the Laguerre polynomials (a) Lo(x), (b) Li(z), (c) L2(x), (4) La(x).

We have L0(x) = e(x"e). Than

(a) Lo(m) = 1

(I,) L1(x) = oxf.(irx) = 1 - z

(e) I(x) =	 (xtrX) = 2 - 4z + z2

(6) L(x) = s(xe) = 6 - iSs + 9x -

U. Prove that the Laguerre polynomials L5(x) are orthogonal in (0, cc) with respect to
the weight function fl.

Front Laguerre's differential equation we have for any two Laguerre polynomials L.(e) and

zL4 + (1—x)L, + mL = 0

= 0

Multiplying these equation, by L and L respectively and subtracting, we find

z[LL - L.JILZ) + (1 — s)[LL —Ii,Lj = (a - m)LL5

or -[L5L,, - L,L',,] + !-z.! [L514, -	
(a - tn)LL5

Multiplying by the Integrating factor
5U —s)Ixdx

S	 = cI5Zt = z8

this can be written as
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so that by Integrating from 0 to

(n_m)feL..(s)Ln(c)dx = xo_sitntt_iu,jl: =

Thus if m#n, f rL,,,(x) L(x) dx = 0

which proves the required result.

8.10. Prove that L5+ (z) = (2it + 1 - z) L5(x) - n2 L5-,(x).

The generating function for the Laguerre polynomials is

i – C	 - 	
—;-1-!

Differentiating both sides with respect to I yields
g-fl/Ct-t)	 -xl(l() -	 - nLjx) -

	(1–t)2 - (1–t)5 	-

Multiplying both sides by (1– 1)2 and using (1) on the left side we find

(1– t) --Y Vt -	
x,(z)	

= 2 (1–al

which can be written as
jIeJx),, -
	

L(x),,1 -

ft=0 nIn0 a!	 ,=o fl!

=	 aL.t(x),,	 j 2nL,,(x)1, +
a.	 ,,	 a.	 •	 a!

If we now equate coefficients of t" on both sides of this equation we find

L4x)- L_ 1(x) - xL(a) = In + 1)L (x) - 2nL5(r) + (a -
a!	 (n–i)!	 a!	 (n+1)I	 n.j	 (n1)t

Multiplying by nI and simplifying we then obtain, as required,

L ,(x) = (2n + 1– r) L5(z) - n2L1(x)

8.11. Expand z3 + xt - Sx + 2 in a series of Laguerre polynomials, i.e, 	 AtLk(X).

We shall use a method similar to Method 1 of Problem 8.6(6). Since we must expand a poly-
nomial of degree S we need only take terms up to L3(X) . Thus

0 + x2 - Sr + 2 = A5 &0(x) + A 1L1(x) + A 5L2(x) + A5L3(z)

Using the results of Problem 8.8 this can be written

= (A 0 +A,+2A2 +6A)_(A,+442 +18A)B+ (As +GAs)ø–AI

Then, equating like powers of r on both sides we have

4 0 +A 1 +2A2 +6A 3 = 2, A 1 +4A 2 +18A 3 = 8, A2 +9A 5 = 1, –A 3 = 1

Solving these we find
An = 7, A 1 = –19, A 2 = 10, A = –1

Then the required expansion is

aS + xS - Sr + 2 = 7L5(x) - 19L 1(z) + ior (x) - L5(x)

We can also work the probiem by using (19' and (to), page 156.

(1)

(2)
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MISCELLANEOUS ORTHOGONAL POLYNOMIALS

8.12. Obtain the associated Laguerre polynomials (a) L(x), (b) L(x), (c) 12(x), (d) Li(x).

(a) (4(x) = fLa(x) = f(2_4x+x2) = 2x -4

(6) L2
&2(x) = a—, L2(X) = -2-j(2---4x+x2) = 2

45
(c) L(x) = a-jfJs(x) = &.i(6_lSx+OxS-zs) = 18 - 6x

(d) 14(x) =	 L3(x) = 0.	 in general e(z) = O if m > it.

8.13. Verify the result (24), page 156, for m = 1, n = 2,

We must show that	 (21)5
I xe {Li(x)P dx = —i-- = s

Jo	 1.

Now since L (z) = 2x -4 by Problem 8.12(a) we have

dx =
f" 

x3cdx - iej xZemtdx + 16
 

5. 	 xctdx

=	 4r(4) - 161'(3) -4- 16i'(2)

=	 4(3!) - 16(2!) + 16(1!)

= 8

so that the result is verified.

8.14. Verify the result (23), page 156, with m = 2, ii = 2, p = 3.

We must show that	 so
2g —xL) L(x) dx = 0

J•0 

Since L(x) = 2, 4(x) = 18- fix by Problem 8-12(a) and (b) respectively the integral is

5 xSrx(2)(18._6x)dx = 36f xScxdz - i2fxse-xdx

= 86 1(3) - 121(4)

= 36(2!) - 12(3!) = 0
as required.

8.15. Verify that 12(z) satisfies the differential equation (22), page 156, in the special case
in=2, n3.

From Problem 8.12(c) we have 4(x) = 18— Ox. The differential equation (22), page 166, with
m= 2,2, ,t 3 is

= 0

Substituting 1) = 18- fix in this equation we have

x(0)+(3-x)(-6)+18- 6x = 0

which is an identity. Thus 14(x) satisfies the differential equation.
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8.16. Show that the Chebyshev polynomial T(z) is given by

T,(x) =	 - (;) xn_ 2(1 - x + ( )zT'4(1 -	 - ( )ZR_5(1 - x2 )1 +

We have by definition
2'3(z) = eos(ncos1r)

Let it = COB_ i it so that it = COB U. Then T5 (it) = COB flu. Now by De Moivre's theorem

(cosu + i sinu)" = COSTLIS + i sin filL

Thus COsnU is the real part of (cost' + j sinu)'. But this expansion is, by the binomial theorem,

(cost')" + ()(coau)n.1(i sin it) + ()(cosurt_ 2(i ainu)2 + ()(cosu)n_3(i sin it)1 +

and the real part of this is given by

ces" u -	 5jfl2j +	 -

Then since cos u = it and sin2 u = 1 - it 5 , this becomes

-	 - +	 - -

8.17. Find (a) T2(x) and (b) Ts (x).

Using Problem 8.16 we find for it = 2 and it = 3 respectively:

(a) T3 (x) = 02 _)xO(l_z2) = it2 - (1—a2) = 2x2 - I

(5) T3 (x) = a' -	 - it2) = a3 - 3x(1 - a2) = 40 - ax

Another method.

Since T0 (x) = cos 0 = 1, T3 (a) = cos (cos' a) = a we have from the recurrence formula (27),
page 156, on putting n = 1 and n = 2 respectively,

T2 (x) = 2xT 1 (x) - T0 (x) = 2x2 - 1

T3 (x) = 2xT2 (a) - T, (z) = 2x(2x2 -1) - a = 4x3 - Sit

8.18. Verify that T, (x) = cos (n cor'z) satisfies the differential equation

(1—x9y"—xy'+n21j = 0
for the case it = S.	 -

From Problem 8.17(5), 7' 3 (x) = 43— 3x and the differential equation for n = 3 is

(1—x2)ij'— ry' + 9y = 0

Then if y = 4x3 - 3r the left side becomes

(1 - x2)(24x) - x(120 - 3) + 9(4x' - 3x) = 0

so that the differential equation reduces to an identity.
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Supplementary Problems

HERMITE POLYNOMIALS

	

8.19.	 Use Rodrigue's formula (2), page 164, to obtain the Hermits polynomials 110(z), H 1(z), H2(r), Hair).

8.20. Use the generating function to obtain the recurrence formula (5) on page 154, and obtain

11 2(r), 115(x) given that Ho(x) = 1, H(x) = 2z.

8.21. Show directly that (a) f e_'H2(z)H3(x) dx = 0, (5) f e (112(x)] dx = sv;.

8.22. Evaluate 5 x'eH,,(x) dx.

813. Show that H(0) = 
(-1)'(2n)I

8.24. Prove the result (7). page 164, by using a method similar to that in Problem 7.13, pages 138 and 139.

8.25. Work Problem 8.5, page 158, by u sing (a) Rodrigue's formula, (5) the method of Frobenius.

826. (a) Expand /(x) = Z3 - 8x2 + 2x in a series of the form Y AH.(z). (5) Verify Parseval's identity
for the function in part (a).

8.27. Find the general solution of Hermite's differential equation for the cases (a) it = 0 and (5) it = 1.

LAGUERRE POLYNOMIALS

8.28. Find L4(x) and show that it satisfies Laguerro's equation (11), page 165, for n = 4.

829. Use the generating function to obtain the recurrence formula (16) on page 155.

8.30. Use formula (15) to determine L2(x), L5(x) and L4(x) if we define L,5(x) = 0 when is = —1 and
= 1 when it = 0.

821. Show that ,tL_ 1 (x) = ,zL,_ 1(x) - 14(r).

822. Prove that 5 eX(L(x))Sdx = (n!)2.

823. Prove the results (19) and (20), page 166.

8.34. Expand 7(x) = x8 - 3x' + 2x in a series of the form 1 AL,(x).

825. Illustrate Parseval'e identity for Problem 8.84.

8.36. Find the general solution of Laguerre's differential equation for a = 0.

8.37. Obtain Laguerre's differential equation (11), page 166, from the generating function (14), page 155.

MISCELLANEOUS ORTHOGONAL POLYNOMIALS

	

828.	 Find (a) L(x), (5) L(x).

8.39. Verify the results (Si) and (24), page 156, for in = 2, a = S.

5.40. Verify that 14(x) satisfies the differential equation (it), page 166, in the special case in = 2, n = 4.
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8.41. Evaluate 5 zeL(z)dz.

8.42. Show that a generating function for the associated Laguerre polynomials is given by

1-I)

t)	
L7'(x)

(l_mtL	 = k'nn

8.43. Solve Chebyahev's differential equation (26), page 156, for the case where n = 0.

	

8.44.	 Find (a) T4 (x)	 and	 (5) T5(x).

6.45. Expand /(x) = x5 + x2 - 4x + 2 in a series of Chebyshev polynomials k5 
AT,(x).

8.46. (a) Write Parseval's identity corresponding to the expansion of f(s) in a series of Chebyshev poly-
nomials and (5) verify the identity by using the function of Problem 8.45.

	

8.47.	 Prove the recurrence formula (27), page 156.

	

8.48.	 Prove the results (29) and (JO) on page 156,

MISCELLANEOUS PROBLEMS
8.49. (a) Find the general solution of Hermite's differential equation. (5) Write the general solution for

the cases where it = 1 and it = 2. [flint: Let y = vH(z) and determine t so that Hermite's

equation is satisfied.]

830. In quantum mechanics the Schroedingcr equation for a harmonic oscillator is given by

dx2 + h2	
X2).p = 0

where E, in, if, ,c are constants. Show that solutions of this equation are given by

= CH(x/a)r xt/4a3

where it = o, 1,2,3, ... and
h

a = •( .	 S =
V lbn2,ctn	 2r in

The differential equation is a Sturm.Liouville differential equation whose eigenvalues and eigenfunc-
tions are given by F and 0 respectively.

	

8.51.	 (a) Find the general solution of Lagierre's differential equation. (5) Write the general solution
for the cases ii 1 and it = 2 . (Hint: Let p = vL(z). See also Problem 8.49.1

	

$32.	 Prove the results (18) on page 156 by using the generating function.

	

8.53.	 (a) Show that Laguerre's associated differential equation (22), page 156, is obtained by differenti-
ating Laguerre's equation (11) vi. times with respect to x, and thus (5) show that a solution is
dtaLJdz".

	834.	 Prove the results (2$) and (24) on page 156.

	

8.55.	 (a) Find the general solution of Chebyshcv's differential equation, (6) Write the general solution for
the cases it = 1 and it = 2. [Hint: Let w = vT(x).]

	

856.	 Discuss the theory of (a) Hermits polynomials. (6) Laguerre polynomials, (a) associated Laguerre
polynomials, and (ci) Chebyshev polynomials from the viewpoint of Sturm.Liouville theory.

8.57. Discuss the relationship between the expansion of a function in Fourier series and in Chebyshev
polynomials.


