INGINGERIN LEFTERI H. TSOUKALAS ROBERT E. UHRIG

oproaches in

EUZZY and

eura

Foreword by Lotti A. Zadeh A Volume in the Wiley Series on Adaptive and Learning Systems for Signal Processing and Learning Systems for Signal Processing,

FUZZY AND NEURAL APPROACHES IN ENGINEERING

Adaptive and Learning Systems for Signal Processing, Communications, and Control

Editor: Simon Haykin

Werbos / THE ROOTS OF BACKPROPAGATION: From Ordered Derivatives to Neural Networks and Political Forecasting Krstić, Kanellakopoulos, and Kokotović / NONLINEAR AND ADAPTIVE CONTROL DESIGN

Nikias and Shao / SIGNAL PROCESSING WITH ALPHA-STABLE DISTRIBUTIONS AND APPLICATIONS

Diamantaras and Kung / PRINCIPAL COMPONENT NEURAL NETWORKS: Theory and Applications

Tao and Kokotović / ADAPTIVE CONTROL OF SYSTEMS WITH ACTUATOR AND SENSOR NONLINEARITIES

Tsoukalas and Uhrig / FUZZY AND NEURAL APPROACHES

Hrycej / NEUROCONTROL: Toward an Industrial Control Methodology

Beckerman / ADAPTIVE COOPERATIVE SYSTEMS

FUZZY AND NEURAL APPROACHES IN ENGINEERING

Lefteri H. Tsoukalas Purdue University

Robert E. Uhrig

The University of Tennessee

New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

This text is printed on acid-free paper.

Copyright © 1997 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department John Wiley & Sons, Inc., 605 Third Avenue 10158-00112

Ubrary of Congress Cataloging in Publication Data: Tsoukalas, Lefteri H. EL

Fuzzy and neural approaches in by gineering Robert E. Uhrig p. cm. "A Wiley-Interscience publication." Includes index-ISBN 0-471-16003-2 (cloth : alk. paper) 1. Neural networks (Computer science) 2. Fuzzy systems 3. Engineering-Data processing. I. Uhrig, Robert E., 1928-II. Title. QA76.87.T76 1996 620'.0028563-dc20

Printed in the United States of America

1098765432

96-14102

To Demetra and Paula

.

CONTENTS

FOREW	ORD	Xiii
PREFACE		
	ems	1
1.2 1.3 1.4 1.5 1.6	Introduction / 1 Neural Networks and Fuzzy Logic Systems / 2 The Progress in Soft Computing / 3 Intelligent Management of Large Complex Systems / 5 Structure of this Book / 7 Problems and Programs Available on the Internet / 8 ferences / 9	
I FUZZ	Y SYSTEMS: CONCEPTS AND FUNDAMENTALS	11
2 Fou	ndations of Fuzzy Approaches	13
- 2.2 2.3	From Crisp to Fuzzy Sets / 13 Fuzzy Sets / 15 Basic Terms and Operations / 17 Properties of Fuzzy Sets / 28	

VIII CONTENTS

	3 Fu	zzy Relations	49
	3. 3. 3. 3. R	 Introduction / 49 Fuzzy Relations / 52 Properties of Relations / 57 Basic Operations with Fuzzy Relations / 60 Composition of Fuzzy Relations / 65 eferences / 74 roblems / 75 	
4	4 Fuz	zy Numbers	77
	4.1 4.2 4.2 4.2 4.2 4.2 8	 Introduction / 77 Representing Fuzzy Numbers / 79 Addition / 84 Subtraction / 90 Multiplication / 95 Division / 99 Minimum and Maximum / 101 efferences / 102 oblems / 103 	
5	5.1 5.2 5.3	Fuzzy Linguistic Descriptions and Their Analytical Forms Fuzzy Linguistic Descriptions / 105 Linguistic Variables and Values / 113 Implication Relations / 120 Fuzzy Inference and Composition / 125	105
	5.5 Re	Fuzzy Algorithms / 136 ferences / 141 oblems / 142	
6	6.1 6.2 6.3 6.4 Ret	Introduction / 145 Fuzzy Linguistic Controllers / 151 Defuzzification Methods / 163 Issues Involved in Designing Fuzzy Controllers / 176 ferences / 185 blems / 187	145
			1
II FU	NEU NDA	RAL NETWORKS: CONCEPTS AND MENTALS	189
7	Func	amentals of Neural Networks	191
	7.1 7.2	Introduction / 191 Biological Basis of Neural Networks / 192	1999 (1997) 1999 (1997)

229

7.3 Artificial Neurons / 193

- 7.4 Artificial Neural Networks / 196
- 7.5 Learning and Recall / 203
- 7.6 Features of Artificial Neural Networks / 211
- 7.7 Historical Development of Neural Networks / 213

7.8 Separation of Nonlinearly Separable Variables / 221

References / 227

Problems / 227

8 Backpropagation and Related Training Algorithms

- 8.1 Backpropagation Training / 229
- 8.2 Widrow-Hoff Delta Learning Rule / 234
- 8.3 Backpropagation Training for a Multilayer Neural Network / 238
- 8.4 Factors That Influence Backpropagation Training / 248
- 8.5 Sensitivity Analysis in a Backpropagation Neural Network / 255
- 8.6 Autoassociative Neural Networks / 257
- 8.7 An Alternate Approach to Neural Network Training / 266
- 8.8 Modular Neural Networks / 270
- 8.9 Recirculation Neural Networks / 274
- 8.10 Functional Links / 279
- 8.11 Cascade-Correlation Neural Networks / 280
- 8.12 Recurrent Neural Networks / 281
- References / 285

Problems / 287

9 Competitive, Associative, and Other Special Neural Networks

- 9.1 Hebbian Learning / 289
- 9.2 Cohen-Grossberg Learning / 290
- 9.3 Associative Memories / 296
- 9.4 Competitive Learning: Kohonen Self-Organizing Systems / 306
- 9.5 Counterpropagation Networks / 315
- 9.6 Probabilistic Neural Networks / 319
- 9.7 Radial Basis Function Network / 325
- 9.8 Generalized Regression Neural Network / 326
- 9.9 Adaptive Resonance Theory (ART-1) Neural Networks / 328

References / 331

Problems / 332

289

CONTENTS X

10) Dyn	amic Systems and Neural Control	333
	10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 Refe	Introduction / 333 Linear Systems Theory / 333 Adaptive Signal Processing / 341 Adaptive Processors and Neural Networks / 345 Neural Network Control / 353 System Identification / 363 Implementation of Neural Control Systems / 368 Applications of Neural Networks in Noise Analysis / 374 Time-Series Prediction / 380 rences / 382 lems / 383	
11	Prac	tical Aspects of Using Neural Networks	385
	11.1 11.2 11.3 11.4 11.5 11.6 11.7	Selection of Neural Networks for Solution to a Problem / 385 Design of the Neural Network / 386 Data Sources and Processing for Neural Networks / 395 Data Representation / 391	
III TEC	INTEC	GRATED NEURAL-FUZZY PLOGY	407
12	Fuzzy	Methods in Neural Networks	409
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 1 12.9 1 12.10 \$ Refere	Introduction / 409 From Crisp to Fuzzy Neurons / 410 Generalized Fuzzy Neuron and Networks / 414 Aggregation and Activation Functions in Fuzzy Neurons / 416 <i>AND</i> and <i>OR</i> Fuzzy Neurons / 418 Multilayer Fuzzy Neural Networks / 421 Learning and Adaptation in Fuzzy Neural Networks / 423 Fuzzy ARTMAP / 431 Fuzzy-Neural Hybrid Data Representation / 434 Survey of Engineering Applications / 437 nces / 440 ms / 442	
	Proble	ms / 442	

3

CONTENTS x1

13	Neural Methods in Fuzzy Systems	445
1	 13.1 Introducing the Synergism / 445 13.2 Fuzzy-Neural Hybrids / 447 13.3 Neural Networks for Determining Membership Functions / 450 13.4 Neural-Network-Driven Fuzzy Reasoning / 455 13.5 Learning and Adaptation in Fuzzy Systems via Neural Methods / 461 13.6 Adaptive Network-Based Fuzzy Inference Systems / 466 References / 468 Problems / 470 	
14	Selected Hybrid Neurofuzzy Applications	471
	 14.1 Introduction / 471 14.2 Neurofuzzy Interpolation / 472 14.3 General Neurofuzzy Methodological Developments / 474 14.4 Engineering Applications / 476 14.5 Diagnostics in Complex Systems / 477 14.6 Neurofuzzy Control Systems / 478 14.7 Neurofuzzy Control in Robotics / 481 14.8 Pattern Recognition and Image Enhancement / 482 14.9 Medical and Environmental Imaging Using Neurofuzzy Methodologies / 483 14.10 Transportation Control / 484 14.11 Adaptive Fuzzy Systems / 485 14.12 Inspection Using Neurofuzzy Methods / 486 14.13 Neurofuzzy Methods in Financial Engineering / 486 14.14 Commercial Neurofuzzy System Software / 487 References / 488 	
15	 Dynamic Hybrid Neurofuzzy Systems 15.1 Introduction / 493 15.2 Fuzzy-Neural Diagnosis for Vibration Monitoring / 495 15.3 Decision Fusion by Fuzzy Set Operations / 500 15.4 Hybrid Neurofuzzy Methodology for Virtual Measurements / 504 15.5 Neurofuzzy Approaches to Anticipatory Control / 510 References / 516 	493
15 /		-01
IV	OTHER ARTIFICIAL INTELLIGENCE SYSTEMS	521
16		523
	 16.1 Introduction / 523 16.2 Characteristics of Expert Systems / 524 	

xil CONTENTS

- 16.3 Components of an Expert System / 525
- 16.4 Knowledge Representation and Inference / 527
- 16.5 Uncertainty Management / 529
- 16.6 State of the Art of Expert Systems / 531
- 16.7 Use of Expert Systems / 532
- 16.8 Expert Systems Used with Neural Networks and Fuzzy Systems / 534
- 16.9 Potential Implementation Issues for Expert Systems / 535 References / 537

Problems / 538

17 Genetic Algorithms

539

- 17.1 Introduction / 539
- 17.2 Basic Concepts of Genetic Algorithms / 540
- 17.3 Binary and Real-Value Representations of Chromosomes / 542
- 17.4 Implementation of Genetic Algorithm Optimization / 544
- 17.5 Fitness Functions / 546
- 17.6 Application of Genetic Algorithms to Neural Networks / 552
- 17.7 Fuzzy Genetic Modeling / 554
- 17.8 Use of Genetic Algorithms in the Design of Neural Networks / 556

References / 557 Problems / 559

18 Epilogue

- 18.1 Introduction / 561
- 18.2 Is Artificial Intelligence Really Intelligent? / 562
- 18.3 The Role of Neurofuzzy Technology / 563
- 18.4 Last Thoughts / 564

References / 565

APPENDIX: 7 NORMS AND S NORMS

INDEX

561

575

567

FOREWORD

To say that *Fuzzy and Neural Approaches in Engineering* is an important work is an understatement. With skill, authority, and insight, Professors Tsoukalas and Uhrig share with us their expertise in a new field that holds much promise and offers a fertile ground for the development of unorthodox techniques and novel applications.

Basically, the book reflects the proliferation and wide-ranging impact of systems that achieve a high level of performance through the employment of the methodologies of fuzzy logic and neurocomputing, singly or in combination. Systems in which fuzzy logic and neurocomputing are used in combination have come to be known as neurofuzzy systems. Takagi and Hayashi in Japan were among the first to describe such systems in 1988. Today, neurofuzzy systems are growing rapidly in number, visibility, and importance.

Viewed in a broader perspective, neurofuzzy systems constitute a subclass of systems based on "soft computing." The essence of soft computing (SC) is that unlike the traditional, hard computing, it is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low-solution cost, and better rapport with reality. In the final analysis, the role model for soft computing is the human mind.

Soft computing is not a single methodology. Rather, it is a consortium. The principal members of the consortium at this juncture are fuzzy logic (FL), neurocomputing (NC), genetic computing (GC), and probabilistic reasoning (PR), with the latter subsuming evidential reasoning, belief networks, chaotic systems, management of uncertainty, and parts of machine-learning theory. Within SC, the main contribution of FL is a methodology for dealing with imprecision, approximate reasoning, rule-based systems, and computing with words; that of NC is system identification, learning, and adaptation; that of GC is systematized random research and optimization; and that of PR is decision analysis and management of uncertainty.

XIV FOREWORD

In the main, FL, NC, GC, and PR are synergistic and complementary rather than competitive. For this reason, it is frequently advantageous to use FL, NC, GC, and PR in combination rather than exclusively, leading to so-called "hybrid systems." Today, the most visible systems of this type are neurofuzzy systems. We are also beginning to see fuzzy-genetic, neurogenetic, and neurofuzzy-genetic systems. Such systems are likely to become ubiquitous in the not-so-distant future. Concomitantly, the realization that FL, NC, GC, and PR are complementary rather than competitive may put an end to inconclusive debates regarding the superiority of a particular member of the SC consortium over others.

Although Fuzzy and Neural Approaches in Engineering is concerned mainly with neurofuzzy systems, the authors address in the last chapters some of the basic aspects of genetic computing and present a succinct and up-to-date account of neurogenetic and fuzzygenetic systems. In this way, their treatise gains in generality and highlights the central role of soft computing in the conception, design, and deployment of intelligent systems.

The organization of the book reflects the basic structure of soft computing. The first six chapters are given over to the exposition of fuzzy logic and its applications. The next six chapters do the same for neurocomputing. The following five chapters present a highly informative and insightful exposition of ways in which fuzzy logic and neurocomputing can be used in combination. The value of these chapters is enhanced by the inclusion of many examples of real-world applications.

What is important to recognize—and what the authors stress—is that the synergism of fuzzy logic and neurocomputing is a two-way street. They do this by devoting a chapter to the discussion of fuzzy methods in neural networks, followed by a chapter on neural methods in fuzzy systems.

An observation which I would like to add is that in many, perhaps most, of the applications of fuzzy logic, the point of departure is a human solution. Thus, fuzzy logic—and, more specifically, the calculus of fuzzy *if/then* rules —is used as a quasi-programming language to express the human solution as a fuzzy rule-set or, more generally, as a fuzzy algorithm. In this sense, fuzzy logic solutions are for the most part descriptive rather than prescriptive.

A case in point is the problem of parking a car. In the fuzzy logic solution of this problem, the starting point is the human knowledge of how to park a car. The next step is to express this knowledge in the language of fuzzy *if/then* rules.

The descriptive approach may fail even though a human solution may exist. For example, one may be able to recognize a person by the way in which that person walks and yet be unable to articulate the fuzzy *if/then* rules that underlie the recognition. The problem of articulating—in the language of fuzzy *if/then* rules—what is subconscious or intuitive is a challenge that has not as yet been fully met.

Although there are many situations in which the problem of articulation remains to be solved, there are many more situations in which articulation is possible, either directly or through the use of rule induction techniques. These issues lie at the center of applications of fuzzy logic, including those applications in which fuzzy methods are used in neural networks.

Fuzzy and Neural Approaches in Engineering makes a major contribution to a better understanding of how fuzzy logic and neurocomputing can be applied, both singly and in combination, to the conception and design of a wide variety of systems. Professors Tsoukalas and Uhrig deserve our thanks and congratulations for producing a text that is informative, insightful, well-written, and forward-looking in both spirit and content.

LOTFI A. ZADEH

PREFACE

Soft computing is the name that is being put forth as an alternative to artificial intelligence for the plethora of advanced information processing · technologies that have emerged in the past decade. This new field is characterized by a certain tolerance for imprecision and ambiguity and it includes expert systems, neural networks, genetic algorithms, fuzzy logic, cellular automata, chaotic systems, wavelets, complexity theory, anticipatory systems, and others. Many of these technologies (e.g., neural networks) date back several decades, whereas some (e.g., cellular automata) are still in the early development stages. Neural networks and fuzzy systems individually have reached a degree of maturity where they are each being applied to real-world situations. Researchers often utilize these two technologies in series, using one as the preprocessor or postprocessor for the other. Examples include the use of fuzzy inputs and outputs for neural networks, the use of neural networks to quantify the shape of a fuzzy membership function, and the use of individual neural networks for many sensors mounted on a machine to give individual diagnoses which are then fused using a fuzzy methodology. Although the results clearly suggest that such use of these technologies is synergistic and beneficial, there are indications that even greater benefits may be possible by the integration into a neurofuzzy technology with such concepts as the "fuzzy neuron" and the use of fuzzy logic functions to aggregate weighted inputs of a neuron. It is our perception that neurofuzzy technology (e.g., a technology that combines the feature extraction and modeling capabilities of the neural network with the representation capabilities of fuzzy systems) is at the stage that neural networks and fuzzy logic were at a decade ago.

There are other hybrid combinations of the different elements of soft computing that are also synergistic. Perhaps next in importance is the combination of genetic algorithms with neural networks and/or fuzzy systems. The ability to carry out near-global optimization on any problem for which an objective function can be defined is an incredibly powerful tool that can enhance the capabilities of any technology. The examples cited in this

xvIII PREFACE

text only hint at the value of integrating genetic algorithms with other soft computing technologies. It is reasonable to expect that optimization of every step in a complex operation could significantly reduce computing time and improve results.

Expert systems offer a framework in which integration of the various soft computing technologies can be carried out. The ability to bring classical logic to bear on the integration process and to seek data and information from whatever sources are available offers the type of environment that could lead to a more flexible, user- and system-adaptive automation. Even more important is the use of fuzzy rules in expert systems so that interactions in complex systems can be represented.

In preparing the manuscript for this book, we were faced with the classical trade-off of breadth versus depth of coverage. We chose to cover the fundamentals of fuzzy systems and neural networks, and to a lesser extent genetic algorithms, in detail while using descriptive material to give perspective to the role of the various technologies involved. The material was originally intended for first-year graduate students, but additional information was included so that it would also be useful for a senior-level course and to practicing engineers. It is our hope that all of these groups will find this text to be useful and that the readers will be motivated to utilize this material in their work.

Many people contributed to the preparation of this manuscript, including many graduate students who used this material in draft form in class. Although it is not possible to acknowledge all of those who contributed, special recognition is due to individuals who read the manuscript in detail and offered constructive comments. Included in this special group, in alphabetical order, are Israel Alguindigue, R. C. Berkan, Mario Fontana, Wesley Hines, Vaclav Hojny, Andreas Ikonomopoulos, and Trent Powers. Graduate students whose research was described in this text are acknowledged by footnotes in the text. Earlier drafts of the manuscript have been used in short courses and seminars in the United States, Europe, and Japan. We are particularly grateful to Professors M. Kitamura and R. Kozma of Tohoku University in Japan, Dr. T. Washio of the Mitsubishi Research Institute, Professors S. Panas and J. Theoharis of Aristotle University in Greece, Professor Elias N. Houstis of Purdue University and Drs. Y. Shinohara, J. Shimazaki, K. Suzuki, K. Hayashi, S. Shinobu, H. Usui, Y. Fujii, K. Watanabe, Y. T. Suzudo, N. Ishikawa, and K. Nabeshima and Ms. S. Tobita (researchers and staff of the Control & AI Laboratory of JAERI in Japan). Their constructive criticism, suggestions, and intellectual support provided much of the inspiration and energy for completing this work. Special thanks are also due to the faculty and staff of the School of Nuclear Engineering at Purdue University and the Department of Nuclear Engineering at the University of Tennessee for their support. Two special individuals merit our gratitude for introducing us to the fields of fuzzy logic and neural networks, Professor M. Ragheb of the University of Illinois and Maureen Caudill of NeuWorld Services. The word editing and word processing of the manuscript were undertaken by Murray Browne and Lynnetta Holbrook, respectively.

Special thanks are due to Professor S. Haykin, the editor of this series.

We would like to express our appreciation to the John Wiley staff, in particular to George Telecki, who encouraged us to proceed with the book, and to Angioline Loredo, who supervised its production.

Finally, we express our gratitude to our wives, Demetra K. Evangelou and Paula M. Uhrig, whose love, understanding, and patience made it possible for us to write this book.

Lefteri H. Tsoukalas Robert E. Uhrig

Purdue University The University of Tennessee

