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As compleuty rises, precise statements lose meaning and ,ncanind
Statements lose precision.

Lotfi A. Zadch

1.1 INTRODUCTION

[lie term ''artificial intelligence- (Al), in its broadest sense, encompasses a
number of technologies that includes, but is not limited to, expert systems,
neural networks, genetic algorithms, fuzzy logic systems, cellular automata,
chaotic systems, and anticipatory systems. Interestingly, most of these tech-
nologies have their origins in biological or behavioral phenomena related to
humans or animals, and many of these technologies are simple analogs of
human and animal systems. Hybrid intelligent systems generally involve two,
three, or more of these individual Al technologies that are either used in
series or integrated in a way to produce advantageous results through
synergistic interactions. In this book we have placed emphasis on neural
networks and fuzzy systems; to a lesser extent, we have also placed emphasis
on genetic algorithms where needed for optimization and expert systems
where they are needed to supervise and implement the other three technolo-
gies. A major emphasis in this book will be on the integration of fuzzy and
neural systems in a synergistic way.

In data and/or information processing, the objective is generally to gain
an understanding of the phenomena involved and to evaluate relevant
parameters quantitatively. This is usually accomplished through "modeling"
of the systems, either experimentally or analytically (using mathematics and
physical principles). Most hybrid systems relate experimental data to systems
or models. Once we have a model of a system, we can carry out various
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procedures (e.g., sensitivity analysis, statisL	 a
better understanding of the system. Such
insight into the nature of the system hehavR that 'can be. used tc
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mathematical and physical models.
There are, however, many situations in which t
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very complex and often not well understood and fhih' 	 j^eipes
models are not poss i ble. Even more often, pliysical
pertinent quantities are very difficult and expensive. These I 1c liftics lead us
to explore the use of mural networks and fuzz y logic systems as a way of
obtaining models based on experimental nieaaurements.

1.2 NEURAL NETWORKS AND FUZZY LOGIC SYSTEMS

In the history of science and technology, new developments often come from
observations made from a different perspective. Interrelationships that we
take for granted today may not have been so obvious in earlier decades. For
instance, we regularly gain insight into the behavior of a dynamic system by
viewirie it as beinr in the " time domain" and/or the "frequency ctonmin.'
However, for the first four decades of the twentieth century, statisticians
dealt with autocorrelation and cross-correlation functions (in the time do-
main) while electrical engineers dealt with power- and cross-spectral densi-
ties (in the frequency domain) without either group realizing that these two
concepts were related to each other through Fourier transformations.

Both the statisticians and the electrical engineers have found that analysis
of the fluctuations in pioeess variables provides useful information about the
variables as well as the processes involved. These fluctuations, which result in
uncertainties in measured variables, often are caused by some sort of random
driving function (i.e., fluid turbulence, rotational unbalance, L . .L.). investiga-
tion, and the subsequent understanding of these uncertainties (fluctuations),
led to the development of the field of "random noise analysis" which
spawned such analytical specialties as vibration analysis, seismology, electro-
cardiography, oceanography, and so on.

Neural networks and fuzz), systems represent two distinct methodologies
that deal with uncertainty. Uncertainties that are important include both
those iii the model or description of the systems involved as well as those in
the variables. These uncertainties usually arise from system complexity (often
including nonhnearities; we think of complexity as a property of system
description—that is, related to the means of computation or language and
not merely a System's coniplicated nature). Neural networks approach the
modeling representation by using precise inputs and outputs which are used
to "train" a generic model which has sufficient degrees of freedom to
formulate a good approximation of the complex relationship bctween the
inputs and the outputs. In fuzzy systems, the reverse situation prevails. The
input and output variables are encoded in "fuzzy" representations, while
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their interrelationships take the forni of well-defined if/then rules. Zadch's
ingenious observation that the uncritical pursuit of precision may be not only
unnecessary but actually a source of error led him to the notion of a fuzzy
set.

Each of these approaches has its own advantages and disadvantages.
Neural networks can represent (i.e., model) complex nonlinear relationships,
and they are very good at classification of phenomena into preselected
categories used in the training process. On the other hand, the precision of
the outputs is sometimes limited because the variables are effectively treated
as analog variables (even when implemented on a digital computer), and
"minimization of least squares crrois" does not mean "zero error." Further-
more, the time required for proper training a neural network using one of the
variations of "backpropagation' training can be substantial (sometimes hours
or days). Perhaps the "Achilles heel" of neural networks is the need for
substantial data that are representative and cover the entire range over which
the different variables are expected to change.

Fuzzy logic systems address the imprecision of the input and output
variables directly by defining then with fuzzy numbers (and fuzzy sets) that
can he expressed in linguistic terms (e.g., cold, warm, and hot). Furthermore,
they allow far greater flexibility in formulating system descriptions at the
appropriate level of detail. Fuzziness has a lot to do with the parsimony and
hence the accuracy and efficiency of a description. This means that complex
process behavior can be described ingeneral terms without precisely defining
the complex (usually nonlinear) phenomena involved. Paraphrasing Occwn's
Razor, the philosophical principle holding that more parsimonious descrip-
tions are more representative of nature, may sa y that fuzzy descriptions
are more parsimonious and hence easier to formulate and modify, more
tractable, and perhaps more tolerant of change and even failure.

Neural network and fuzz' logic technologies are quite different, and each
has unique capabilities that are useful in information processing. Yet, they
often can be used to accomplish the same results in different ways. For
instance, they can speed the unraveling and specifying the mathematical
re lationships among the numerous variables in a complex dynamic process.
Both can be used to control nonlinear systems to a degree not possible with
conventional linear control systems. They perform mappings with some
degree of imprecision. However, their unique capabilities can also be com-
bined in a synergistic wa y. It is this combination of the two technologies (as
well as combinations with other Al technologies) with the goal of gaining the
advantages of both that is the focus of this book.

1.3 THE PROGRESS IN SOFT COMPUTING

Soft computing refers to computational tools whose distinguishing character-
istic is that they provide approximate solutions to approximately formulated
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problems (Arninzadch, 1994). Fuzzy logic, neural networks probabilistic
reasoning, expert systems, and genetic algorithms are some of the con-
stituents of soft computing, all having roots in the field of Artificial Intelli-
gence. Whereas the traditional view of computing considers any imprecision
and uncertainty undes i rable, in soft computing some tolerance for impreci-
sion and uncertainty is exploited in order to develop niore tractable and
robust models of systems, at a lower cost and greater economy of communi-
cation and computation.

Few of those who attended the historic 1956 Dartmouth Conference to
discuss "the potential us;; of computers and simulation in every aspect of
learning and any other feature of intellh;ence" could have envisioned the
evolution and growth of ftc embryonic artificial in tell irenee field air] the
impact it has had on our lives. It was there that the term ''artificial
intelligence" was coined, perhaps because of the emphasis on learnino and
simulation. The term 'cybernetics" was in vogue at that time with its
emphasis on potential control of both man and machines. Vacuum-tube-type
analog computers had reached a state of maturity that they (along with high
fidelity stereo sound systems) were being marketed as "Heathldt5," whdc the
digital ''supercomputer" of the time was an I IIM-650 with about 2000 words
of magnetic drum memory storage that operated at about 2 klli.

It was in this environment th,nt Frank Rosenblatt developed the Perception
by adding a learning capability to the McCulloch-Pitts model of the neuron,
Marvin Minsky built tile first 'learning machine" (using 40 processing de-
ments, each with six vacuum tubes and a motor/clutch/control system), and
Bernard Widrow (leVeloped the ''Adaline" (adaptive linear cleacenil that
even today is used in virtually every high-speed modern and tele1nlwj:e
switching system to cancel out the echo of reflected signals. Boolean algebra
was standard procedure, and John McCarthy and Jol, Neuman were
putting forth the relative merits of symbolic (LISP) and conventional com-
puter languages. Although there was little in the way of theoretical bases
providing an understanding of these systems, work proceeded on an experi-
mental basis that was guided primarily by the genius of the individuals
involved.

'loday, some 40 years later, the whole world has changed. The computing
capacity of that IBM-650 is now encapsulated in a "wristwatch" computer,
the Perceptron and Adalinc processing elements are instantiated in neural
network computing and processing methodologies, learning algorithms are
rout i nely processed on digital computers of all sizes, Boolean logic and
algebra are being replaced by ftm77y logic concepts, LISP is fading away
in favor of object-oriented computer languages for artificial intelligence
(e.g., C++), the analog computer has virtually disappeared, and the modern
personal computer most of us have on our desks may have more than a
gigabyte of memory, operate at a processing rate of 200 MHz or more, and
be part of a vast global network of computers capable of sharing on-line
information in numerical, textual, visual and audible forms.
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The educational, technological, economic, and social impact and signifi-
cance of the computer as a tool for computation and communication have
been continuously discussed and debated in the last few decades. In the
1970's Ralph Lapp, in an interesting book called The Logarithmic Century,
captured the evcr-changing and accelerating trend in the development of
technology and economics (Lapp, 1973). Yet, he did not foresee the magni-
tude of the impact of advanced computer technology, especially the role that
communications and information processing would have on society. Perhaps
our Japanese colleagues have a better grasp of the issues involved. In a hook
entitled The Next Century, llalberstam (1991) reported a conversation with a
retired high official of MITT (Ministry for International Trade and Industry)
who in 1987 said . . . the (Japanese) educational system is in danger
of. ..producing  young people who have the intellectual capacity of comput-
ers but who will he inferior to computers in what they can actually do. The
computers have caught up."

Of course, the road of technological change is by no means simple.
Eloquent critics such as Neil Postman in his evocative hook Teclinopoly
strongly point out the dangers of subordinating culture and society to an
uncritical faith in the machine (Postman, 1993). Indeed, computers cannot
magically solve our problems. In today's highly integrated world, however, a
diverse world population needs the multiplicity of opportunities provided by
the new communications and computer technologies, and soft computing is
promising to become a powerful means for obtaining quick, yet accurate and
acceptable, solutions to many problems. We, the engineers who work to
provide and apply these new soft computing tools, ardentl y hope that they
will be used for the benefit of mankind.

1.4 INTELLIGENT MANAGEMENT OF LARGE COMPLEX SYSTEMS

The real challenge to soft computing is the intelligent management of large
complex systems--that is, organizations operating on the scale of the global
economy and resting on an highly globalized information infrastructure. It is
perhaps the most important activity facing industrial, educational, military,
and governmental organizations throughout the world today. Management
decisions made today will reverberate throughout these organizations for
years to come. Management decisions made in the past have shaped these
organizations and have made them what they are today. In some eases, large
organizations have made the "right decisions" and have been spectacularly
successful. However, it is clear that the decisions of other large organizations
have not been wise. Multi-hundred million and billion dollar losses, followed
by layoffs, restructuring, mergers, and, all too often, bankruptcy are common
as these organizations pay the price for past mistakes. Why did these
o rganizations get into trouble or fail? What steps can be taken to ensure that
decisions today are better than those itt thç past? The answers to these
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questions are as varied as the nature of the organizations. Ty pical responses
given are as follows: incompetent management, too much attention to the
next quarterly earnings, lack of vision, fierce new competition, unfair regula-
toiv practiccs by governments, poor design, failure to keep up with th
antagonism between labor and management, inade q uate research an
oprnent, and so on. The list goes on and on. All of these ma y be
explanations in individual situations, but correcting these alleged prol
Will not guarantee that an organization wili he successful in meeting its
in the future. The successful strategies and methodologies of the 198f
not work in the next century.

Large complex systems, as a general class, arc often virtually out f
control; indeed they are often deemed to he uncontrollable because of th2ir
complexity. The reversal of this situation is absolutely essential in a soeie' H
which systems tend to grow without hound because of the perceived her
of "economy of scale." Indeed, organizatiocs tend to grow until they ret:
level of inefficiency that inhibits and impedes their growth. Only an orga.
tion with virtually unlimited resources or power (i.e., governmental orga.
tons) can continue to grow under these conditions. The finite resoure
the world and of individual nations, as well as the cmowino populatio:
aspires for improved living conditions, demand im proved efficiency.
absolutely essential for the benefit of mankind, as well as most r.
nations that tend to be dominated by large complex systems, that
systems be brought under intelligent control and management. The ti'
in digital computer technology (both hardware and software) during
decade, along with the associated development of soft cumpnring, ap
the first time in history, to provide a means of irnDlemcnting intelligent
control of complex systems which are so necessary in delivering the fruits of
industrial technolo' and commerce to global society.

The personal computers or workstations available on the desk of engineers
and managers today with its soft conwuw:g tools has the power of main-frame
computers just a few years ago. They provide the capability of keeping track
of what is going on in any organization (intelligence), they can provide the
tools to examine the data in excruciating detail (analysis), they can provide
models of the behavior of complex s ystems (synthesis) which then permits
predictions into the future, at least into the short-term future, and they can
provide recommendations for specific actions (intelligent management) that
can be communicated to those who have a need to act in a form that they cart
understand (intelligent communications). To the extent that an organization's
management is willing to utilize these tools correctl y , significant progress in
solving some of these problems by making the "right" decisions will follow.

Unfortunately, making the "right" decision under the circumstance at the
time the decision is made does not guarantee success. It ma y have been the
"right" decision at the time, but the consequences may be unpredictable
because of the time lag between decision and results in a changing environ-
ment. What is needed is a form of anticipatory control as discussed in
Chapter 15. In the absence of an ability to predict the future behavior of
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systems, many conservative organizations have elected a "minimum Step"step"
approach—that is, make a decision at the last possible moment that involves
the least amount of (financial or resource) commitment and produces results
at the earliest possible time. However, this can he a strategy for disaster if
the basis on which the decision is made is not valid. All too often, decisions
must be made in the absence of complete data, which gives rise to uncer-
tainty in the analysis and a higher probability of an erroneous decision. Even
such a "minimum Step" approach requires reliable intelligence, accurate analy-
sis, oalid synthesis, intelligent management, and intelligent communications,
because there is little margin for error, While a modern digital computer
cannot guarantee the availability of these five attributes, they simply would
not be available without the modern digital computers and soft computing.

Perhaps the single attribute that gives neurofuzzy systems an advantage in
addressing the problems of large complex systems is the ability to perform
what in mathematical terms would he called many-to-many mappings. Such
mappings are an inherent part of complex systems, because every single input
to a system can influence every single output; i.e., one significant input
change may generate significant changes in many outputs. Most approaches
to systems analysis can only deal with one-to-one or man-to-one nappings—
that is, with the special class of mathematical mappings that we call
functions, which have been the premier mathematical relation since the
Newtonian revolution of the Principia. It is now possible and desirable,
however, to effectively compute with more complex mathematical mappings
than functions—that is, with man y-to-many relations (see Section 5.1). 'l'his
gives us the hope and the expectation that large complex systems can bebe dealt
with in a flexible, reliable, and near-optimal manner.

We do not claim that neurofuzsy systems per se can bring about the
control of large complex systems. It is clear to us that the integration of many
technologies in a yet indiscernible manner is an essential step in the right
direction. Neurofuz2y systems represent an integration of fuzzy logic and
neural networks that have capabilities beyond either of these technologies
individually (Ilaykin, 1994; Karta]opoulos, 1996). When we further integrate
other technologies, perhaps some not yet discovered, in the decades ahead,
we can look forward to tools with sufficient power to tackle problems such as
intelligent control of large complex systems.

1.5 STRUCTURE OF THIS BOOK

This book is divided into four parts: Part I, entitled "Fuzzy Systems: Con-
cepts and Fundamentals," explores the fundamentals of fuzzy logic systems
and includes the following chapters:

Chapter 2. Foundations of Fuzzy Approaches

Chapter 3. Fuzzy Relations
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Chapter 4. Fuzzy Numbers
Chapter 5, Linguistic Descriptions and Their Analytical Forms

Chapter 6. Fuzzy Control

Part II, entitled "Neural Networks: Concepts and Fundamentals," explores
the fundamentals of neural networks and includes the folitving chapters:

Chapter 7. Fundamentals of Neural Networks
Chapter 8. Backpropagation and Related Training Algorithms

Chapter 9. Competitive, Associative., and Other Special Neural Neiworks

Chapter 10. Dynamic Systems and Neural Control

Chapter 11. Practical Aspects of Using Neural Networks

Part 111, entitled "Iitcgraed Neural—Fuzzy Teelinoioctv," explores the joint
use of neural networks and fuzzy logic systems. It includes the following
chapters:

Chapter 12. Fuzzy Methods in Neural Networks

Chapter 13. Neural Methods in Fuzzy Systems

Chapter 14. Selected hybrid Neurofuzzy Applications

Chapter 15. Dynamic Hybrid Neurnfui;:y Systems

Part IV, entitled 'Other Artificial Intelligence Systemns,' reviews other artifi-
cial intelligence systems that can he used with neural networks and luzzy
systems. It includes the following chapters:

Chapter 16. Expert Systems in Neurofuzzy Systems

Chapter 17. Genetic Algorithms

Chapter 18. Epilogue

1.6 Mi1LAB ct SUPPLEMENT

In this text, we have included problems for students at the end of most
chapters. Generally, these problems are pedagogical in nature and are
intended to be simple enough that they can he solved without the aid of
computer software. To supplement these exercises, we have enlisted our
colleague, Dr. J. Wesley Hines of the University of Tennessee, to prepare

a MATL4B C Supplement for Neural and Fuzzy Approaches in Engineering, a
paperback hook of approximately 150 pages published by John Wiley and
Sons, in which the Student Edition of M1VlLAB (The MathWorks Inc.,

MATLAB is copyrighted by MthWorks Inc., of Natick, MA.
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1995; Ilansclman, 1996) can he used for demonstrations and solving more
sophisticated problems. Of course, the Professional Version of MATLAB
can also be used if it is available.

This supplement was written using the MATLAB Notebook and
Microsoft WORD Version 6.0. The Notebook allows MATLAI3 commands
to he entered and evaluated while in the WORD environment, which allows
the document to both briefly explain the theoretical details and also show
MATLAB implementations. It also allows the user to experiment with
changing the MATLAB code fragments in order to gain a better under-
standing of their application.

This supplement contains numerous examples that demonstrate the practi-
cal implementation of relevant techniques using MATLAB. Although
MATLAB© toolboxes for Fuzzy Logic and Neural Networks are available,
they are not required to run the examples given. This supplement should be
considered to he a brief introduction to the MATLAB implementation of
neural and fuzzy systems, and we and the author strongly recommend the use
of Neural Networks and Fuzzy Logic Toolboxes for a more in-depth study of
these information-processing technologies. Many of the rn-files and examples
are extremely general and portable while other examples will have to be
altered significantly for use to solve specific problems.

The content of the MA7L4B © Supplement is coordinated with Fuz' and
NeuralApproaclws in Engineering SO that students can use it to enhance their
knowledge of fuzzy systems, neural networks, and neurofuzzv systems. In-
deed, it is expected that many instructors will choose to use both this book
and the ftL411-4R Supplement together in their classes. Practicing engineers
and scientists in industry who want to use this text to learn about neural,
fuzzy, and ncurofuzzy systems will find this supplement to be a valuable aid
in their self-study.
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1 he mathematical foundations of fuzzy kic rest in Jz:v set ti:t'Ot , which
can be thought of as a generalization of classical sec tilcoty. A faniliariy ''ith
the novel notions, notations, and operations of fuzzy sets is usfui in studying
fuzzy logic principles and appiicat:ons: acquiring it vi11 be our main goal in
this chapter.

Fuzziness is a property of language. Its main source is the imprecision
involved in defining and using symbols. Consider, for example, the set of
Chairs in a room. In set theory the set of chairs may be established by
pointing to every object in a room asking the question, Is it a chair? In
ciassicl se theory we arc allowccl to use only two answers: Yes or No. Let uc
code Yes as I and No as 0. Thus, our answers will he in the pair (0, 1). If the
answer is I, an clement belongs to a set; if the answer is 0, it does not. In the
end we collc1t all the objects whose label is 1 and obtain the Set of chairs in a

Suppose, hinveve i' that we ask the question It 'iicIi objects in a r on;
may function as a chair? Again we could point to every object and ask, Could
it Junction as a chair? The answer here too could artificially he restricted to
{0, 11. Yet, the set of objects in a room that may function as a chair may
include not only chairs but also desks, boxes, parts of the floor, and so on. It
is a set not uniquel y defined. It all depends on what we mean by the word
function. Words like function have many shades of meaning and can be used
in many different ways. Their meaning and use may vary with different
persons, circumstances, and purposes; it depends on the specifics of a
situation. We say therefore thai the set of objects that may Jhnetion as a chair
is a fuzzy set, in the sense that we ma y not have crisply defined criteria for

13
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deciding membership into the set. Objects such as desks, boxes, and part of
the floor may function as chairs, to it It should be noted, however,
that there is nothing fuzzy about the material objects themselves: Chairs,
boxes, and desks are what they arc. Fuzziness is a feature of their representa-
tion in a milieu of symbols and is generally a property of models, computa-
tional procedures, and language.

Let us now review some notions of classical set theory. Classical vets are
crisply defined collections of distinct elements (numbers, symbols, objects,
etc.), and for this reason we also call them crisp sets. The elements of all the
sets under consideration in a given situation belong to an invariable, constant
set, called the universal set or Universe or more often the umverse of
discourse.' The fact that elements of a set A either belong or do not belong
to a crisp set A can be formally indicated by the characteristic function of A,
defined as

. _fi iff XEA
X.4k) = \ o iff x A

where the symbols E and denote that x is and is not a member of A,
respectively, and iff is shorthand for "if and only if." The pair of numbers
(0. 1) is called the mluarion set. Another way of writing equation (2.1-1) is

x4 (x): X —s (0,1)	 (2.1-2)

The notation of equation (2.1-2) is read as follows: There erists fwtction
x.1 (x) mapping every element of the set X (our universe of discourse) to the set
{0, 1). It emphasizes that the characteristic function is a mechanism for
mapping the set X to the valuation set (0, 1). Important operations in crispSets such as union, intersection, and complenmentatjou are familiar to us from
elementary mathematics. They are usually represented through Venn dia-
grams but may also be expressed in terms of the characteristic function.

Fundamentally, sets are categories. Defining suitable categories and using
operations for manipulating them is a major task of modeling and computa-
tion. From image recognition to measurement and control, the notion ofcategory, or set, is essential in the definition of system variables, parameters,
their ranges, and their interactions. The constraint to have a dual degree of
membership to a set, an all-or-nothing, is a consequence of a desire to
abstract a system description away from the multitude of intricacies and
complexities that exist in reality and focus on factors of primary influence.
Nevertheless, given our modern-day computational technologies, it may be
unduly restrictive. This is particularly the case when it is desired to develop
computer models easily calibrated to the specifics of a system and endowed
with adaptive and self-organizing capabilities (Zadeh, 1973, 1988).

'The term u:Iie of dcourse is used in fuzZY logic; it comes from classical logic and describes
the complete set of individual elements able to be referred to or quantified.
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2.2 FUZZY SETS

As we saw in the previous section, in classical set theory there is a rather
strict sense of membership to a set; that is, an element either belongs or does
not belong to the set. In 1965 Lotfi A. Zadch introduced fuzzy sets, where a
more flexible sense of membership is possible (Zadch, 1965). In fuzzy sets
many degrees of membership are allowed. The degree of membership to a set
is indicated by a number between 0 and 1—that is, a number in the interval
0, 1]. The point of departure for fuzzy sets is simply generalizing the

valuation set from te pair of numbers (0, 1) to all numbers found in [0, 11. By
expanding the valuation set we alter the nature of the characteristic function,
now c. i membership function and denoted by /.L(x). We no longer have
crrsp sets but instead have fltzzy sets. Since the interval [0, 11 contains an
infinity of numbers, infinite degrees of membership are possible. Thus, in
view of equation (2.1-2) we say that a members/zip fwzct ion maps every element
of the universe of discourse X to the interval [0, 11, and we formally write this
mapping as

A(X): X	 [0, 1]

Equation (2.2-1) is a generalization of the mapping shown in equation (2.1-2).
Membership functions are a simple yet versatile mathematical tool for
indicating flexible membership to a set and, as we shall see, for modeling and
quantifying the meaning of symbols. A question often asked by people
beginning the study of fuzzy sets is, How are membership functions found?
Membership functions ma y represent an individual's (subjective) notion of a
vague class—for example, objects in a room functioning as chairs, tall people,
acceptable performance, small contribution to system stability, little improvement,
big benefit, and so on. In designing and operating controllers or automatic
decision-making tools, for example, modeling such notions is a very impor-
tant task. Membership functions may also be determined on the basis of
statistical data or through the aid of neural networks. In Part III of this book
we will look at the synergistic relation between neural networks and fuzzy
logic toward this end (Kosko, 1992). At this point we can simpl y say that
membership functions are primarily subjective in nature; this does not mean
that they are assigned arbitrarily, but rather on the basis of application-specific
criteria (Kaufmann 1975; Dubois and Prade, 1980; Zimmermann, 1985).

There are two commonly used ways of denoting fuzzy sets. If X is a
universe of discourse and x is a particular element of X, then a fuzz y set A
defined on X may be written as a collection of ordered pairs

A - {(x, i(x))},	 X E X	 (2.2-2)

where each pair (x, 4 (x)) is called a singleton and has x first, followed by itsmembership in A, ,1 (x). In crisp sets a singleton is simply the element x by



16	 FOUNDATIONS OF FURY APPROACHES

itself. In fuzzy sets a singleton is two things: x and p A (x). For example, the
set of small integers, A, defined (subjectively) over the universe of discourse
of positive integers may be given by the collection of singletons

A = {( 11.0)( 2 1.0),(3,075) (405) (5 03) (603) (701) (801))

Thus the fourth singleton from the left tells us that 4 belongs to A to a
degree of 0.5. A singleton is also written as aA (x)/x—that is, by putting
membership first, followed by the marker "/ " separating it from x. 2 Single-
tons whose membership to a fuzzy set is zero may he omitted. The support set
of a fuzzy set A is the set of its elements that have membership function
other than the trivial membership of zero.

An alternative notation, used more often than equation (2.2-2), explicitly
indicates a fuzzy as the union of all ,. A (x)/x singletons—that is,

A =	 a(x1)1x1	 (2.-3)

OK

The summation sign in equation (2.2-3) indicates the union of all singletons
(the union operation in set theory is like "addition'). Equation (2.2-3)
assumes that we have a discrete universe of discourse. In this alternative
notation the set of small integers above may he written as

A = A (1)/1 + ILA(2)/2 + /aA(3)/3 ± JLA( 4 ) /4 ±

+ PA( 6) 16 + /LA (7)17 +

= 1.0/1 + 1.0/2 + 0.75/3 + 0.5/4 + 0.3/5 - 0.3/6 ± 0.1/7 0.1/8

For a continuous universe of discourse, we write equation (2.2-3) as

A = f A (x)/x	 (2.2-4)

where the integral sign in equation (2.2-4) indicates the union of all JSA(X)/xsingletons. 3 Consider, for example, the fuzzy set small numbers defined
(subjectively) over the set of non-negative real numbers through a continuous

2 
should be noted that " /" does not indicate division"; it is merely a marker.

3 Notc that the integral sign is not the same as the integral sign of differential and integral
calculus. It is used here in the sense that the integral sign is used in set theory—that is, to
indicate the sum or union of individual singletons.
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L!'fltherShlj) function p , (x) given by

(2.2-5)

I

	

	 --
S

Using thc form of equation (2.2-4)tbe fmosy se I B is w ittcn as

	

B =	 (x)/x .

	

(2.2-6)

+ 5 Y
The membership function of fuzzy set B is shown in Figure 2.1. A graph like
this is called a 7w/eli din cram.

2.3 BASIC TERMS AND OPERATIONS

Many fuzzy set operations such as i.tcrs'Ction and union are defined through
the mm (A) and max (v) operators. .%1n and max are analogous to product
() and sum 0-)  in algebra (Dubois and Prade, 190; Kin and Folger, 19S:
Tcrano ct al., 1992). Let us take a look at how thc y are used.

Fuzzy sets	 SOfl'.CtifliCS cn!!ed f .-ssbsas. re6cctin tIt fact that the y are subseta of a

set—that is, the rwiccrse of dOcourac. Alhoiih the tel in Jo::, .cubset.c is factually coned, ie s; II

use the stand[c] tcl ni fz:.a set for cons etc nce.
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First, mm (A) and max (v) may be used to select the minimum and
maximum of two elements—for example, 2 A 3 = 2, or 2 V 3 = 3. We also
write min(2, 3) = 2, or max(2, 3) = 3. Formally, the minimum of two ele-
ments p and .t2 denoted either as min(.i 1 , A(p., p,), or 9, A /.L, is
defined as

	

-	 A,	 iff	 /.L1 :^ P-2	
(2.3-I)A ] A	 = min( /i], /2) 

= bL2	 1ff /.L1 > 1i2

where, the" "symbol means "by definition" and 1ff is shorthand for "if and
only if." Similarly the maximum of two elements g, and p., denoted as
max(p1 ,	 ) or g, v ji 21 is defined as

	

P-i	 iff	 9 1 ^t au.,
/.L 1 V L, = max( 1.,)	 1

i2	
jff	 JL1 < ).L	

(2.3-2)

Second, mm (A) and max (v) may operate on an entire set, selecting the
least element (called infirnum in mathematical analysis) or the greatest ele-
ment (called supremum) of the set. For example, A (0.01, 0.33, 0.44, 0.999) =
0.01 and V (0,01, 0.33, 0.44, 0.999) = 0.999. Formally we write this as

= AA = inf A	 (2.3-3)

and

,LL = VA = sup A	 (2.3-4)

where	 is an element of A—that is, E A.
In addition, min (A) and max (v) may be used as functions operating oil

single elements or on entire sets, for example, to find the smallest element
out of a list of elements GL, p..,.... . /L,,)—that is,

	

p. = A( A l, /2, ..'	 )	 (2.3-5)

which is the same as

p. = p I A p. 2 A	 A p.,,,	 (2.3-6)

We sometimes use a shorthand notation for equations (2.3-5) and (2.3-6) and
write them as

	

= k—i (uk)
	 (2.3-7)

This notation is analogous to finite product notation in algebra (or finite
summation when V is used). There is in fact a more general analogy between
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I llin and max and the operations of multiplication and addition. They both
have the same properties of associativity and distributivity, and thus in
equations that involve main and max we may employ them in the same manner
as mu!tip?icwion () and addition (4-). We will see an interestin g example of
these properties iii the composition of fazzy relations (Chapter 3), where we
treat composition its ,ltcitTLI iittdtip!zction with (A) and (V) in place of

prothtct (•) and sum (
Mm ( A) and ma (\')  can akcl Opel ate on it co!lction of sets is for

example itt

A = c(A,, il 2 .... . l)	 (2.3--)

svluch can be succinctly written as

	

A -=p1k)	 (2.3-9)

Usimt	 prmniaily nun ( .') and t:i.ax (v), a ti	 r ol utclul notiuns maui
operations involving fuzzy sets can be def

Empty Fuzzy Set

A fuzzy set A is called empty (denoted as A = 0 . ) if its membership function
is zero everywhere in its universe of discourse X- —that is,

/1	 0	 if ji 1 (x) = Ii, Vx E X	 (2.3-10)

witere V. c X'' is shorthand notation indicat inu 	 for mute elLnucnt x in

Normal Fuzzy Set

A fuzn , set is called ,morniid if there is at least one element x 5 in the universe
of discourse where its membership function equals one—that is,

I	 (2.3-il)

More than one clement in the universe of discourse can satisfy equation
(2.3-1 1 ).

I he operations can also lie defined in terms of T-,iorns (see Appendix)
It should be noted that the term noennal does flit ifer to the area under the curve of the

innertibenship function. It simply nicans what the definition sacs At Iust one point, maybe mire.
ncd., to ha\ full membership value.
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Equality of Fuzzy Sets

Two fuzzy sets are said to be equal if their membership functions are equal
everywhere in the universe of discourse—that is,

A	 B	 if /.LA (x) =	 (2.3-12)

Union of Two Fuzzy Sets

The union of two fuzzy sets A and B defined over the same universe of
discourse X is a new fuzzy set A U B also on X, with membership function
which is the madmum of the grades of membership of every x to A andB—that is,

(x)	 A(x) V p0 (x)	 (2.3-13)

The union of two fuzzy sets is related to the logical operation of disjunc-
tion (OR) in fuzzy logic. Equation (2.3-13) can be generalized to any number
Of fuzzy sets over the same universe of discourse.

Intersection of Fuzzy Sets

The intersection of two fuzzy sets A and B is a new fuzzy set A fl B with
membership function which is the minimum of the grades of every x in X tothe sets A and B, i.e.,

JA(X) A i.i11(x)	 (2.3-14)

The intersection of two fuzzy sets is related to conjunction (AND) in fuzzy
logic. The definition of intersection in (2.3-14) can be generalized to any
number of fuzzy sets over the same universe of discourse.

Complement of a Fuzzy Set

The complement of a fuzzy set A is a new fuzzy set, A, with membershipfunction

/IA(x)	 1 - ) A( x )	 (2.3-15)

Fuzzy set complementation is equivalent to negation (NOT) in fuzzy locic.

Product of Two Fuzzy Sets

The product of two fuzzy sets A and B defined on the same universe of
discourse X is a new fuzzy set, A B, with membership function that equals
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the algebraic product of the membership functions of A and !,

• r (x)	 (2.3-16)

Ihe proth:ct of two fuzzy sets can be generalized to any number of fuzzy sets
on the same universe of discourse.

MuIPplying a Fuzzy Set by a Crisp Number

We can multiply the membership function of a fuzz y SOt A by the crisp
number a to obtain a new fuzzy set called product a A. Its membership
function is

0 jç( .i)	 (2.3-17)

The operations of multiplication and raising a fuzzy set to a power that we
see next arc useful for modify ing the ineaninp of lingustie terms (Zadch,
1 9 '/ 5).

Power of a Fuzzy Set

We call fuzzy set A to a power a (positive real number) b y raisin-, its
membership function to Cc. The a power of A is it new fuzzy set, /1", with
membership function

[bL0(x)]	 (2.3-I8)

Raising a fuzzy set to the second power is usually taken to be equivalent to
linguistically changing it through the modifier VERY (Zadeb, 1953) (see
Chapter 5). Thus the square of the membership function of I?	 (sinail
ruanbers) in Figure 2.1 is taken to represent the fuzzy set B 2	 (VERy small
numbers).

Raising a fuzzy set to the second power is a particularly useful operation
and therefore has its own name. It is called concentration or CON. 'faking
the square root of a fuzzy set is called th!ation or DIL (an operation useful
for representing analytically the linguistic modifier MORE OR LESS).

Example 2.1 Union, Intersection, and Complement of Fuzzy Sets. Consider
the Zadeh diagram of fuzzy sets A and B shown in Figure 2.2a and defined
by membership functions

1+O.3(x-8)	
and	 +	 ) 3 (132.1-1)
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•1

0.8

0.6
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(a)

	

01	 I

	

0	 4	 8	 12	 16	 20

(b)

FIgure 2.2 Zadeh diagram for (a) fuzzy sets A and B and (b) their union inExample 2.1.

Fuzzy set A may be thought of as defining the set of numbers "about 8," andfuzzy set B may be thought of as defining "small ,iumbers." We take numbers
between 0 and 20 to be the universe of discourse and, would like to find the
union and intersection of A and B and the complement of B.

The membership function of the union of fuzzy sets A and B is the
maximum grade of membership of each element x of the universe of
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discourse to either A or B in accordance with equation (2.3-13). Figure 2.2b
shows the membership function of the union A U B. The interpretation of
A U B is "about 8 OR small number." Similarly the membership function of
the intersection of fuzzy sets A and B, shown in Figure 2.3a, represents the
new fuzzy set "about S AND small number." We observe that although the
union of A and B is a normal fuzzy set, the intersection shown in Figure
2.3a is not, because fuzzy set A fl B has no point in the universe of

(b)

Figure 2.3 Zodeh diagram for (a) the intersection of fuzzy sets A and B and (b) the
complement o 8 jr) Example 2.1.
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discourse with grade of membership equal to 1. The complement of fuzzy set
B is a new fuzzy set with membership function given by equation (2.3-15).
Figure 2.3b shows the membership function of the complement 13. The
complement B represents the logical negation (NOT) of B—that is, the set
"NOT small numbers." 0

Concentration

The concentration of a fuzzy set A defined over a universe of discourse, X,
is denoted as CON(A) and it is a new fuzzy set with membership function
given by

CON(A)(x)	 (A(x))2	 (2.3-19)

As we said in the previous paragraph, squaring or concentrating a fuzzy set is
equivalent to linguistically modifying it by the term VERY. Figure 2.4 shows
the concentration operation applied to the fuzzy set B = (small numbers).
The membership function of the new fuzzy set CON(B) = B 2 = ( VERYsmaII
numbers) is

MCON(B)(X) = (/B(X))2 =	 2

+ G3 1)

Dilation

The dilation of a fuzzy set A, denoted as DIL(A), produces a new fuzzy set
in X, with membership function defined as the square root of the member-
ship function of A—that is,

PDfL(A)(-)	 V"1k( X )	 ( 2.3-20)

Dilation (DIL) and concentration (CON) are operations with opposing ef-
fects. Concentrating a fuzzy set reduces its fuzziness while dilating it in-
creases its fuzziness. The dilation operation corresponds to linguistically
modifying the meaning of a fuzzy set by the term "MORE OR LESS." Figure
2.4 shows the dilation of B = (small numbers), resulting in a new fuzzy set
DIL(B) = B 112 = (MORE OR LESS small numbers).

7 iterc and throughout this book, the end of an example is indicated by the symbol 0.'
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0	 4	 12	 16	 20

Figure 2.4 Iho fuzzy sets VERY srncEi numbers and MORE 0? LESS smoT numbers
obtoned hy ccncontiaflng and J;tiog the fuzzy S  sirijy tlufllbCrS.

Contrast

In certain applications it is desi ruble to control the fu:ziness of a fuzi. y set A
by nlc)difyi ng the contrast helwee ii low and high grades of membership. Fm
instance, we may want to increase the membership function on that part of A

where membership values are higher than 0.5, and decrease it for values
lower than 0.5. We define the contrast intensifi cation of A as

tUJNT(4)(5)	 2[	 1 (x)] 2	.	 fat	 0 :!^	 (x)	
0.5 (2.3-21)

1 - 2{1 - p . (x)],	 for 0.5	 p(x)	 if)

Contrast intensification may be repeatedly applied to a fuzzy set. In the
extreme, when the maximum possible contrast is achieved we no longer have
a fuzzy set. We are hack to a crisp set. The opposite effect—that is, going
from a crisp set to fuzzy set—may he achieved through fuzzificat ion.

Fuzzyfication

Fuzzification is used to transform a crisp set into a fuzzy set or simply to
increase the fuzziness of a fuzzy set. For fuzzification \j use a fuzyfui'r
function F that controls the fuzziness of a set. F may he one or more simple
paramtcrs. For instance, consider the fuzzy set A that describes large
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numbers. We define it (subjectively) through the membership function

1
Picrge	 =	 —F	 (2.3-22)X )

1	
F.,

where x is any positive real number. The membership function in equation
(2.3-22) has two fuzzifying parameters: an exponential fuzzyfier, F, and a
denominational fuzzyfier, F,. Through them the fuzzy set A = { large numbers)
can be written as

A	

[1 +
 ( X.

 (2.3-23)

The membership function inside the brackets of equation (2.3-23) can be
adjusted when needed in order to better represent the meaning of the term
large numbers. Consider the case when we fix the value of denominational
fuzzifier as F, = 50 and vary the exponential fuzzyfier F. The result is a
family of fuzzy sets with decreasing fuzziness as Fr increases. Figure 2.5
shows membership functions that result from such a variation. Note that
when Fr becomes very large, the Set A appears almost like a cris p set. The
effect of varying the denominational fuzzyfier F2 while keeping the exponen-

(1--1-4. P50j

(F1-2, F250)

(F,1. F2=50)

I
0	 /0	 20	 30	 40	 50	 60	 70	 80	 90	 100

Figure 2.5 The effect of varying the exponential fuzzifier F1 while keeping the denomi-
national fuzzifier F2 constant in fuz.zifying the set A.
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Figure 2.6 1h .2 ntoct of varying the denominational fuzzifier F 2 	 hHe keeping the
experientol tu:ze,,:: F 1 constant in fuzzrIvng the set A.

tial fuzzyfler at i' 4 i shown in }'iure 2.6. Vaiyiii. 2 resuii.s primarily ill
translating the membership function left and right, and to a lesser extent it
affects the fuzziness of A. Such fuzzifiers are often used in fuzzy pattern -
recognition and image analysis in defining, for instance, the meaning of the.
words vertical, horizontal, and oblique lures (Pa! and Majuinder, 1956).

l :uiiificatiun may be used more systematically by associating it Jii:zvfier F
'zitli another function, ntuiely a fuzzy kernel, K(x), which is the frizzy set that
results horn the application of F to a singleton x. This is often done in
control applications where the input to an oh-line control or diagnostic
system conies from sensors and is therefore crisp, usually a real number. In
order to use it in fuzzy algorithms (sec Chapters 5 and 6), it is often necessary
to convert ii crisp number to a fuzzy set, it step known as Juezificatrcm As a
result of the application of K to a fuzzy set A, we have

F( A K) (x)/x	 (2.3-24)

where F(A; K) is a fuzzy set that results from changing the fuzziness of A in
accordance with K. The fuzzy kernel K(x) is simply a fuzzy set imposed on a
singleton. It functions as a "mask" that covers the singleton to produce a
fuzzy set. For example, suppose that we have the universe of discourse
X = 11, 2, 3, 4,5, 6, 7, 8. 9, JO) and a fuzzy kernel K(x) that centers a triarigu
mr fuzzy set around 5 given hv

K(S)	 0.33/3 ± 0.67/4 ± 1.015 ± 0,67/6 - 0.33/7 (2.3-25)

with all other elements of the universe of discourse having trivial' (zero)
membership. Now suppose that we have the value of 3, which may be a crisp
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measurement taken at a certain time. We write it as a singleton A given by

A = iA ( 3 )/3 = 1.0/3	 (2.3-26)

We fuzzify A using equation (2.3-24) as follows:

F(A; K) = f 4 (x) -

f[A3)	 K(3)(x)1/x

= 0.33/1 ± 0.67/2 + 1.0/3 + 0.67/4 + 0.33/5 (2.3-27)

which results in shifting the fuzzy kernel of (2.3-25) so that its peak is located
at the singleton 4 3'. In other words, the effect of equations (2.3-27) is to mask
the crisp value '3' by the fuzzy set K(S), shifting its peak from '5' to '3'.

2.4 PROPERTIES OF FUZZY SETS

Fuzzy set properties are useful in performing operations involving member-
ship functions. The properties we list here are valid for crisp and fuzzy sets as
well, but some of them are specific to fuzzy sets only; more detailed
treatment of properties may be found in Dubois and Prade (1980) and in KIir
and Folger (1988). Consider sets A, B, C defined over a common universe of
discourse X. We indicate the complement of a set by a bar over it. The
following properties are true:

Double Negation Law:	 (A) A	 (2.1-i)

A U  =A

A n  =A

A nB=BnA

A u  = B u 

(A U B) U C = A u (B U C)

(A n B) n C =A n (B n C)

A u (B nC) = ( A UB) n (A U C)

Afl(BUC)=(AflB)U(A nC)

An (A uB) =A

AU (A nB) =A

A—G B An B

A fl B = Au B

Idempotency:

Commutativity:

Associative Property:

Distributive Property:

Absorption:

Dc Morgan's Laws:

(2.4-2)

(2.4-3)

(2.4-4)

(2.4-5)

(2.4-6)

(2.4-7)
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In fuzzy sets all these properties can be expressed using the membership
function of the sets involved and the definitions of union, intersection, and

complement. For example, consider the associative property given by equa-

tions (2.4-4). In terms of membership functions the associative property is

written as

(A(x) V ILB(X)) V	 (x) = ILA(x) V (B(x) V	 (x))

( .4 (x) A	 (x)) A c(x)	 Ax) A (B(x) A 11c' X))

lanly, the distribu live properry, equations (2.4-5), in terms of membership

i	 ions is written as

	

p 4 (x) V A8 (x) A	 = ((x) V	 (x)) A (A(x) V

	

A A. (X) V	 (x)) = ( A(x) A	 (x)) V (p 4 (x) A

Dc Morgan's law, equation (2.4-7), is written as

V p8 (x) =	 A	 (x)

where the bar over the membership functions indicates that ''e take the

complement. Dc Morgans law says that the intersection of the eamplement
of two fuzzy Sets equals the complement of their union; in terms of member-
ship functions, this is the same as saying that the minimum of two member-
ship functions equals the complement of their maximum. The;,-- are also
some properties generally not valid for fuzzy sets (although val I in crisp
sets), such as the law of contradiction,

AflAø	 (2.4-8)

and the law of the excluded middle,

A U A X	 (2.4-9)

The law of the excluded middle in crisp sets states that the union of a set
with its complement results in the universe of discourse. This is gen.rally not
true in fuzzy sets. A property unique to fuzzy sets is

A n 0 = 0	 (2.4-10)

Equation (2.4-10) says that the intersection of a fuzzy set with the empty set
—that is, a set with a membership function equal to zero everywhee on the
universe of discourse—is also the empty set. In terms of membership
functions equation (2.4-10) is written as
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Also, the union of a fuzzy set A with the empty set, 0, is A itself; that is,
A U 0 = A or, equivalently, r 4 (x) V 0 = A(x). The intersection of a fuzzy
set A with the universe of discourse is the fuzzy, set A itself; that is,
A fl X = A or, equivalently, /L,(x) A 1 IIA(X). The union of a fuzzy set A
with the universe of discourse X is the universe of discourse; that is,
A U X = X, which, in terms of the membership function, is written as
jç1 (x) V 1	 1. The universe of discourse may he viewed us a fuzzy set whose
membership function equals i cveiywhcre; that is, I -rx (x)	 1 for all x in X.

2.5 THE EX1ENSION PRINCIPLE

While fuzzification oper lions such as the ones we saw in Section 2.3 are
useful for f11z7ifyi1.g individual sets or singletons, more general mathematical
expressions may also be fuzzified when the quantities they involve are
fuzzyfied. For example, the output of arithmetic operations when their
arguments are fuzzy sets becomes also a fuzzy quantity. The e.rtcnsion
principle is a mathematical tool for extending crisp mathematical notions and
operations to the milieu of fuzziness, It provides the thcoetical warranty that
fuzzifvin the plr1mc1L:rs , or aq-inv,:nts of a function resuls iO computahie
fuzzy sets. It is an important principle, and we will use it on several
occasions, particularly in conjunction with fuzzy relations (Chapter 3) and
fuzzy arithmetic (Chapter 4). We give here an informal heuristic description
of the extension pi inciplc; detailed formulations may be found in (Zadeh
(1975), and in Dubois and Prade (1980)

Suppose that we have a function f that maps elements x 1 , X , ....... 1. ,: of a
umveuso of discourse X to anothcr universe of discourse Y—that is,

y 1 =f(x)

y =f(x)

)"'Y,,

Now suppose that we have a fuzzy set A defined on x 1 . x 2 , .v ,.x (tile
input to the function f). A is gv a

= 1(x1)1x1 + AA( XI )/x,	 +(,)/x	 (2.5-2)
We then ak the question, If the input to our function f becomes fuzzy—for
exaniple, the set A of equation (2.5-2)----what happens to the output? Is th
output also fuzzy? In other words, is there 'an output fuzzy set 13 that can he
computed by inputting A to f. Well, 'the extension principle tells us that
there is indeed such an output fuzzy set B and that it is given by

B f( A)	 1,i ( x ) /f( x1) + ci ( ) /f( x 7 ) ± ... +	 ( x ) /f( x,,)

(2.5.3)
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where every single image of x 1 under f—that is, y = f(x,)—becomes fuzzy
to a degree iA(x ) . Recalling that functions are generally many-to-one
mappings, it is conceivable that several x's may map to the same y. Thus for
a certain V 0 we may have more than one x: Let us say that both x2 and x
in (2.5-1) are mapping to y 3 . Hence, we have to decide which of the two
membership values, . 1 (x) or we should take as the membership
value of y. The extension principle says that the maximum of the member-
ship values of these elements in the fuzzy set A ought to be chosen as the
grade of membership of y0 to the set B—that is,

= 4 (x 7 ) V 4 (x)	 (15-4)

If, on the other hand, no clement x in X is mapped to y 0 —that is, no
inverse image of y0 exists—then the membership value of the set B at Yü is
zero. Having accounted for these two special cases (man y x's inappng to the
same y and no inverse image for a certain y), we can compute the set
B—that is, the grades of membership of elements y in Y produced by the
mapping f(A)—using equation (2.5-3).

In a more general case where we have several variables, u, e.... . w, from
different universes of discourse U, V.... . TV and in different fuzzy sets
A, A z ,. .. , A,, defined on the product space U X V x x TV, the multi-
variable function, y = f(u, v.....w), may also be used to fuzzify the space Y
through the extension principle. In this case, the grade of membershi p of any
y equals the minimum of the membership values of ii, v,..., w in
A 1 , A ...... A,, respectively. The membershi p function of B is giver by

I(y) = IUXVx •.. >zY 
[ A 1( u ) A A.(°) A	 A u, ,(W)]/f(1, V

(2.5-5)

where there is also a max (v) operation implicit in the union operation [the
integral sign in equation (2.5-5) indicates a union (v) operation]. The max
operation is performed over all u, v, . . . , v such that y = f(u, v, . . . , w). This
is indicated by the union over the product space U x V)< •.. X W of all the
universes on which the m-tup]es u, v. ....w are defined under the integral
sign. If the inverse image does not exist, then the membership function is
simply zero.

In many engineering applications, the interpretation of numerical data
may not be precisely known. We consider this type of data to be fuzzy. Using
the extension principle, it is quite possible to adapt ordinary algorithns,
which are used with precise data, to the case where the data are fuzzy.
Example 2.2 is a mathematical illustration of the extension principle.

Example 2.2 Using the Extension Principle. As an illustration of how t e
extension principle may be used, consider the function f that maps poir. s
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from the x axis to y axis in the Cartesian plane according to the equation

r	 .2

	

Y =f(x) 
= 1

k/i -	 ( E2.2-1)

Figure )7: shows tie function y of cqution (E2.?-1). It is theLiilf of11 

'an llips.; Iocitoci w the center of the plane with major axis, a 2, and
minor axis (height), h = 1. The general equation of the ellipse shown in
Figuic 2.7(1 is

	

2	 '

	

x	 y-
+	 I	 (E2.2-2)

In our case with a = 2 and h = 1, equation (E2.2-2) becomes

	

+ y 2 = I	 (122.2-3)

Equation (E2.2-1) is one of the two solutions of equation (E2.2-3).

	

Now suppose that we define a fuzzy set A oil 	 as shown in Figure 2.7b:
We fuzzify the x's of equation (122.2-1) by specifying a grade of membership

for each x to fuzzy set A—that is, IL.t( x ) == - IxI and

	

= J	
[XI]/x	 (122.2-4)

where lxi is tue absolute value of x, and we limit the support of A between
—2 and -I 2 as indicated b y the limits wider the integration sign (union) of

equation (122.24).
1-lay ing the x values fuzzyfied by the fuzzy set A, we want to know the

effect of fuzzification on y. The extefl5jofl principle tells us that the fuzzinesc
of ,I will be extended to y as well. In other words, we will have a fuzzy set B
on Y de'+,ed by equations (2.5-3) or (2.5-5). To avoid the case where more
th:i e:e x will map to the same y, '. consider first the function J in the
first quadrant of the plane (where both x and y are positive). Later we will
look at the entire function. The fuzzy set, B, defined oil 	 is

B =f(A) = fn(Y)/Y	 (E2.2-5)

We need to find /.L 11 (y) in equation (122.2-5). In terms of the niembersiiip
function of .4 and according to the extension principle, equation (2.5-3), the



X

X

THE EXTENSION PRINCIPLE	 33

b=I

(a)
p1 x)

2(2x

I	 ;i(y)

(c)

y A,

(a)

Figure 2.7 Graphs for Example 2.2. (a) The function y, which is the upper part of the
ellipse shown. (b) The membership function of the set A. (c) The membership function
Of B. (d) Fuzzifying the interior of the ellipse.
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set B will be

B =f(A) fA( x )/f( x )	 (E2.2-6)

Of course we want to transform the x variable to y in equation (E2.2-6) since
the union (integration) is formed with respect to Y, the universe of discourse
for B. We use equation (E2.2-1) to solve for x:

x = 2Ii	 ( E2.2-7)

Then we substitute (E2.2-7) in (E2.2-6), noting that f(x) = y and that .ç(x)
is given by (E2.2-4). Thus we obtain the fuzzy set B:

B = f	 VF1 -- y. 2 /	 ( E2.2-)

Now if we consider negative values for x as well, we would have to take the
maximum of the membership value of A at (x) and (—x) in accordance with
equation (2.5-5). Due to the symmetry of the problem these values are
actually the same and therefore B is still as derived in (E2,2-8). The
membership function of B is,

if 	 =	 -	 ( [22-9)

as shown in Figure 2.7c. Figure 2.7d shows the geometric interpretation of
fuzzyfying the interior of the ellipse in accordance with the fuzzy sets A andB above. The result is a kind of fuzzy elliptic region, strongest near the x axis
and particularly at its x	 ±2 sides and weakest near the origin and the
y = ±1 sides. D

2.6 ALPHA-CUTS

With any fuzzy set A we can associate a collection of crisp sets known as
cr-cuts (alpha-cuts) or level sets of A. An a-cut is a crisp set consisting of
elements of A which belong to the fuzzy set at least to a degree a. As we
shall see in the next section, a-cuts offer a method for resolving any fuzzy set
in terms of constituent crisp sets (something analogous to resolving a vector
into its components). In Chapter 4 we will see that a-cuts are indispensable
in performing arithmetic operations with fuzzy sets that represent various
qualities of numerical data. It should be noted that a-cuts are crisp, notfuzzy, sets.8

tm Formally, a distinction is made between two t ypes of a-cuts, the strong and the weak a-cut
(Dubois and Prade, 1980). We use the weak a-cut, simply calling it o-cut.
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The a-cut of a fuzzy set A denoted as A is the crisp set comprised of all
the elements x of a universe of discourse X for which the membership
function of A is greater than or equal to a; that is,

{x E X	 i:: a)	 (2.6-1)

where a is a parameter in the range 0 < a	 1; the vertical bar 'r' in
equation (2.6-1) is shorthand for "such that."

Consider, for example, a fuzzy set A with trapezoidal membership func-
tion as shown in Figure 2.8, The 0.5-cut of A is simply the part of its support
where its membership function is greater than 0.5. In Figure 2.8 we can see
the 0.5-cut of A. Reflecting the fact that the a-cut is a crisp set, its
membership function appears like a characteristic function. As another
example consider the set A of small integers given by

A = 1.0/1 ± 1.0/2 + 0.75/3 ± 0.5/4 ± 0.315 ± 0.3/6 + 0.1/7 + 0.1/8

The 0.5-cut of A is simply the crisp set A 0 = ( 1, 2, 3, 4).
In the next section we will see that a-cuts provide a useful way both for

resolving a membership function in terms of constituent crisp sets as well as
for synthesizing a membership function out of crisp sets.

A fuzzy set can have an extensive support since its membership function
can be zero or nearly zero, or very small. In order to deal with situations
where small degrees of membership are not worthy of consideration, level

p,0(x)

(x)

0.3	 ............................. ............

- 0 

Otj
1	 0	 6	 8

	

Figure 2.8 A fuzzy set A end Ss 3.5-cuts. 	 X
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11(x)

0	
.

0	 20	 40	 60	 RU	 100

Figure 2.9 The 0.2-level fuzzy set of fuzzy set A.

fuzzy sets were introduced to exclude undesirable grades of membership
(Radecki, 1977). We define the level fuzzy sets of a fuzz y set A as fuzzy sets
A whose membership values are greater than a, where 0 < a < 1. Formally

{(x, P..,( .,:))Ix c A}	 (2.6-2)

where A. is the a-cut of A. Equation (2.6-2) indicates that for a given a we
have a level fuzzy set which is the part of A that has membership greater
than a. Let us consider, for example, a fuzzy set A whose membership
function is

	

1(x) 

= 1 + 0.01(x -
	 (2.6-3)

as shown in Figure 2.9 (dotted curve). Suppose that we are not interested in
the part of the support that has membership less than 0.2. We obtain the
0.2-level fuzzy set of A by chopping the part of the membership function
which is less than 0.2 as shown in the figure. Its membership function
is shown by the solid curve. It is the same as A (x) between x = 30 itnd
x = 70 and zero everywhere else. Level fuzzy sets should not be confused
with level sets, which is a synonym for a-cuts. Level fuzzy sets are indeed
fuzzy sets, whereas a-cuts are crisp sets. They provide a useful way of
considering fuzzy sets in the significant part of their support, and hence they
save on computing time and storage requirements.
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- 2.7 THE RESOLUTION PRINCIPLE

There are several ways of representing fuzzy sets, and we have already seen a
few of them. They all involve two things: identifying a suitable universe of
discourse and defining membership functions. One way to represent a fuzzy
set would be to list all the elements of the universe of discourse together with
the grade of membership of each element (omitting the possibly infinite
elements that have zero membership). Alternatively, we can just provide an
analytical representation of the membership function The resolution principle
offers another way of representing membership to a fuzzy set, namely
through its a-cuts. It asserts that the membership function of a fuzzy set A
can be expressed in terms of its a-cuts as follows:

=	 V {a(x)]	 (2.7-1)
0<a 1

where the maximum is taken over all a's. Equation (17-1) indicates that the
membership function of A is the union (notice the max operator) of all
a-cuts, after each one of them has been multiplied by a.

Consider, for example, the fuzzy set A with triangular membership
function shown in Figure 2.10, Several a-cuts of A, each multiplied by a, are
also shown. Knowing many a's and the a-cuts of A, N

ye can form their
products and put them together (in the sense of taking their union) to
approximate the function. For example, we multiply the 0.25-cut by 0.25 to
get the 0.25-cut pushed down to 0.25, and similarly we multiply the 0,5-cut by
0.5, the 0.75-cut by 0.75, and so on. When 'put together we have an
approximation of the membership function of A as shown in Figure 2.10.

p(x)

(x

Figure 2.10 Putting many a-cuts of A multiplied by a together approximates the
membership function of A.
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Thus, a large enough family of a-cuts provides another way of representing a
fuzzy set. Although we often know the membership function exactly, in some
applications only a-cuts are known and out of them we need to approximate
the membership function (see Chapter 4).

2.8 POSSIWLITY T}-CRY AND FUZZY PROBABILITIES

In the late 1970s Zajeh advanced a theoretical framework for information
and knowledczr analysis, called possibility, theory, emphasizing the quantifica-
tion of the semantic, context-dependent nature of symbols—that is, meaning
rather than measures of information. The theory of possibility is analogous,
and yet conceptually different from the theory of probability. Probability
is fundamentally a measure of the frequency of occurrence of an event.
Although there are several interpretations of probability (subjectivistic,

axiomatic, and frcquentistic), probabilities generally have a physical event
basis. They are tied to statistical experiments and are primarily useful for
quantifying how frequently a sample occurs in a population. Possibility
theory, on tine other hand, attempts to quantify ho','.' accurately ii saiii; Ic
resembles an ideal element of a population. The ideal clement is a prototypi-
cal class or a categor y of the population which we think of as a fuzzy set. In a
sense, possibility theory may be viewed as a generalization of the theoy of
probability with the consistency principle, which we will see later on, providing
a heuristic connection between the two. Possibility theory focuses more on
the imprecision intrinsic in language, whereas probability theory focuses more
on events that are uncertain in the sense of being random in natui e. In
natural language processing, automatic speech recognition, knowledge-based
diagnosis, image analysis, robotics, analysis of rare events, information re-
trieval, and related areas, major problems are encountered on quantifying
the meaning of events—that is, the efficacious a11(1 accurate interpretation of
their significance and consequence and not the extent of their occurrence.
Let us illustrate with a simple example.

In the field of reliability analysis, probabilistic methods have been the
basic instrument for quantifying equipment and human reliability as well.
Two very important concepts used are the failure rate and the error raid'.
Knowing the failure rate of a component amounts to knowing the duration of
time that the component may he trusted to operate safel y, and thus a
schedule for replacement and maintenance activities can be devised. It is not
unusual, however, that after a component is fixed or replaced, the entire
system breaks down, a problem particularly acute with electronic compo-
nents. Indeed, such general failures sometimes cause extremely negative
consequences, leading to catastrophic accidents. The problem here is that
failure rates are not sufficiently meaningful to account for the complex
interactions that a human being, such as a maintenance technician or an
operator, may have with a machine. In addition, the correct estimation of
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failure rate and error rate requires a large amount of data, which is onen not
practically possible to obtain. Is is obviously impractical to melt nuclear
reactors to collect failure rate data. Thus, in practice, the failure rate and
error rate arc estimated by experts based on their engineering judgment
(Onisawa, 1990); from this point of view, fuzzy possibilities and probabilities
(which we will examine momentarily) can be used to model such judgments in
a flexible and efficient way. Engineering judgment enters many areas of
systems and reliability analysis including estimating the effect of environmen-
tal factors, operator stress, dependence between functions or units, selection
of sequence of events, expressing the degree of uncertainty involved in the
formulation of safety criteria, assuming parameter ranges, and so on
(Shinohara, 1976). Alternatives to failure and error rates have been devel-
oped employing the notion of possibility measures, called failure and error
possibilities, and have been applied to the reliability analysis of nuclear power
plants, structural damage assessments, and earthquake engineering. Failure
possibilities and error possibilities are essentially fuzzy sets on the interval
[0, Ii that employ the notions we examine in this section.

Ov r the years, two views, or schools of thought, of the definition of
fuzzin .s have emerged. The first view, which we implicitly held in the
previves sections, has to do with categorizing or grouping the elements of a
universe of discourse into classes or sets whose boundaries of membership
are fuzzy. Thus when we defined the set of small numbers in Example 2.1 we
identified a category of numbers within the universe of all numbers, implic-
itly, what we dealt with in the example was the problem of imprecision. Our
main problem was to find the membership function that most appropriately
or accurately described the category of small numbers. The other view of
fuzziness has to do with the problem of uncertainty. 1-Icre our main concern is
to quantify the certainty of an assertion such as "a number x is a small
number," where x is an element of the universe of discourse X of numbers
(whose location on X is not known in advance) and is therefore called a
nonlocated element. Possibility theory was advanced in order to address this
type of problem. Possibility is more generally known as a fuzzy measure,
which is a function assigning a value between 0 and 1 to each crisp set of the
universe of discourse, signifying the degree of evidence or belief that a
particular element belongs to the set. Other types of fuzzy measure are belief
measures, plausibility in casures, necessity measures, and probability measures.
The theory of fuzzy measures was advanced in 1974 by Sugeno as part of his
Ph.D. dissertation at Tokyo University. Fuzzy measures subsume probability
measures as well as belief and plausibility measures used in what is known as
the Dempster—Shafer Theory of Evidence.

Let us now take a closer look at possibility. Possibility is a frtzzy measure,
which means that possibility is a function with a value between 0 and 1,
indicating the degree of evidence or belief that a certain clement x belongs
to a set (Zadeh, 1978; Dubois and Prade, 1988). A possibility of 0.3 for
erement x, for example, may indicate a 0.3 degree of evidence or belief that
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x belongs to a certain set. How this belief is distributed to elements other
that x is quantified through a possibility distribution. In possibility thcoty, the
concept of possibility disi,ibution is analogous to the notion of probability
distribution in probability theory. A possibility distribution is viewed as a fuzzy
restriction acting as an elastic constraint on the values that may be assigned
to a variable. What does this mean? Well, it is best to review the notion of a
variable, first. Let A he a crisp set defined on a universe X and let V be a
variable taking values on some element x of X, a situ,rtion flhistrated in
Figure 2.11. The crisp set .'l is what in the panlimec of prtil dr'1y we call an
event. Events are comprised out of one or more basic events. Thus, the
clement x may be thou'.ht of as a basic event. If x is within A and x occurs,
then we say that the event A lee, occurred as well. For example, in reliability
analysis, eruipmcnt failure and human erros are considercd to be events
whose occurrence is based on the occurrence of basic events known as
initiating events. To say that V takes its valves in A is to indicate that any
clement (basic event) of event A could possibly be a value of V and that any
clement outside of A, the complement of A, cannot he a value of V Thus,
the statement V takes its ia/ne in A can be viewed as inducing a possibility, 11
over X, associating with each vlae the pocibiliLy that . vdluc of T-.
This can he written as

fl('	 x) =	 x.(x)	 (2.1)

where	 = '' is an assignment symbol indicating that x is assigned to the

x

Figure 2.11 The statement about a variable
V. V take's its values in A," has a different
meaning when the set A is crisp (top) than
when the sot A is fuzzy (bottom).

x
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variable V, and ir(x) is the possibility distribution associated with V (or the
possibility distribution function of Fl). In equation (2.8-1), xA (x) is the charac-
teristic function of A (5cc Section 2.1). Mathematically, II is considered a
measure which is a special function mapping the universe to the interval
[0, 1]. Knowing that the values that V may take are members of A is the
same as knowing which values of the universe X are restricted to be values of
V and which are restricted not to he values of V. We indicated this in
equation (2.8-1) by using the characteristic function of the crisp set A. We
think of the crisp set A as a restriction on the values of the variable V. and in
view of the nonfuzzy nature of A this type of restriction is called a crisp
restriction.

Next, suppose that A is a fuzzy set and that its boundary no longer crisp
(i.e., does not sharply divide members from nonmembers) but is instead a
fuzzy boundary allowing an clement x to be a member of A to some degree.
As with any fuzzy set, A is uniquely identified by its membership function

In terms of events we think of A as a fuzz)' event, and we can
associate with each basic event x a membership function indicating its
membership to A. Let us again consider a variable V whose arguments are
elements of X. Now suppose that V is constrained to take values on X. The
fuzzy set A also restricts the possible values that the variable V may take, but
in a fuzzy manner—that is, to a degree. In such a case we consider the fuzzy
set A to act as a fuzzy restriction on the possible values of V. Generalizing
equation (2.8-1) to the fuzzy ease we say that the fuzzy Set A induces a
possibility H. The associated possibility distribution iu(x) on the values that
V may assume is defined to be equal to the membership function of
A, p 4 (x) and is written as

II(V : =x) =	 (x) =	 (2.8-2)

Thus, the possibility that V is assigned x—that is, V x, which is sometimes
indicated as "V is x'—is postulated to be equal to the membership function
of A evaluated at x—that is, ,aA(x). It is important to observe in equation
(2.8-2) that possibility distributions are fuzzy sets, while possibilities are just
numbers between 0 and 1. The possibility fl in (2.8.2) is a measure of the
compatibility of a given crisp value x that V may take with an a priori
defined set A. In this way, V becomes a variable associated with the
possibility distribution r(x) in much the same way as a random variable is
associated with the probability distribution.

What equation (2.8-2) indicates is that in certain situations, such as in the
definition of failure and error possibilities, it is of interest to interpret the
membership function )zA( X ) of a fuzzy set as a possibility distribution of a
variable V. In this sense the fuzzy set A is viewed as the set of more or less
possible values for V.

9 1n Chapter 5 the variable V will be generalized to a .fuzy zriabk, hich is a variable that takes
fuzzy sets as values.
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Given a possibiiity distribution 7r,W, the possibility that x may belong to
another crisp set B is defined as

[1(1/c B)	 V ir(x)	 (2.8-3)
xB

What equation (2.8-3) indicates is that the possibility of B is the possibility ofthe most possible elementaiy, event x of B. Generalizing this relationship it
can be shown (Dubois and Prade, 1988; Kandel, 1986) that the possibilit ymeasure of the union of two crisp sets B and C is the maximum of thepossibilities of B and C and can be written as

I1(B u C) = 11(B) V [1(C)	 (2.8-4)

Given a fuzzy set A and a possibility distribution function, irv(x), thepossibility of A, denoted as fl(A), is given by

11(A) 
=

A i,(x)}	 (2.S-

Consider  two fuzzy events A and B defined over the universe of discourseX. The possibility of A with respect to B is defined as

fl(AIB) = V [(x) A	 (2.8-6)

T he possibility measure of A with respet to B reflects the extent to whichA and B coincide or Overlap. Thus, possibility rna r be viewed as a measure ofcomparison of fuzzy sets.

Conditional possibilities have been defined in analogy with conditional
probabilities; an entire bov if h:oretjcal results has been achieved, known
generally as possibility theory. It is finding an increasing number of applica-
tions in the fields of knowledge representation and applied artificial intelli-
gence (Ragheb and Tsoukalas, 1988). A very comprehensive treatment ofpossibility may be found in the book entitled Possihiljp  Theory by Dubois and
Prade (1988). The theory of possibility has assumed particular significance in
the field of natural language processing due to the inherent fuzziness of
natural language. In the late 1970s Zadeh constructed a universal languagecalled PRUF, 

in which the translation of a proposition expressed in natural
language takes the form of a procedure for computing the possibility distribu-
tion of a set of fuzzy relations in a database. The procedure, then, may be
interpreted as a semantic computation transforming the meaning of a propo-
sition to a computed possibility distribution quantifying the information
conveyed by the proposition (Zadeh, 1983).

There are certain differences between probability and possibility measures
worth pointing out. Possibility measures are "softer" than probability rnea-
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sures, and the interpretation of probability and possibility is quite different.
Probability is used to quantify the frequency of occurrence of an event, while
possibility (along with fuzzy tools) is used to quantify the meaning of an
event. Consider the following example offered by Zadeh (1978). Suppose that
we have the proposition lions ate V eggs for breakfast," where V(1, 2,3,...). A possibility distribution and a probability distribution may beassociated with V as shown in the following table:

ihe possibility distribution is interpreted as the degree of ease with v hichHans can eat x eggs, while the probability distribution might have been
determined by obseiing Hans at breakfast for 100 days. Note that the
Probability distribution function p 1 (x) is given a frequemmtistic interpretation
and that it sums to '1', while the possibility distribution function C) isimputed with a situation or cot tcir-depenc/e,it interpretation and does not
have to Sum to '1'.

Possibility is all bound for probability: A high degree of possibilitydoes not imply a higher degree of probability. If, however, an event is not
possible, it is not also probable. This is referred to as the probability/possibil-ity consistency principle (Zadeh, 1978). This heuristic principle is useful for
drawing a distinction between the objectiui.viic use of probability measuresand the subjectivist use of possibility or fuzzy measures. When we attempt to
use the two to describe a similar thing, we can use the pos6ibiliry/j,ro1,ah//i,con.istcncy principle as a guide. Possibility measures are more flexible mea-
sures useful for epistemic (i.e., cognitive) or context-dependent descriptions.
III according to Zadeh a variable may be associated with both a
Possibility distribution and a probability distribution, with the weak connec-
tion between the two given by the consistency principle (Zadeh, 1973).

Tn the language of probability theory the set A in Figure 2.11 may be
viewed as a fizzy event Such a fuzzy event induces a distribution on the
values of a variable which Nve called the possibility distribution function and
defined in equation (2.8-2). We can also define the probability of a fizzy CrC/mtA. Suppose that a fuzzy event A is comprised of elementary events x, and
With each x we associate a basic probability p(x).

Zadch defined the probability of fuzzy eLenrA as the mathematical expecta-
tion (the first moment) of its membership function, that is,

1'	
f1i1(x)p(x)d

(A) -.	 (2.8-7)

tv
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where A is a fuzzy event on the universe X, x is an element of X, also called
an elementary event, and p(x) is a probability distribution (Zadeh, 1968).

When A is not a fuzzy event, equation (2.8-7) reduces back to the usual crisp
probability P(A). In equation (2.8-7) we assume that the probability measure
on the entire universe of discourse must equal unity- —that is, Jp(x) cLv	 1.

In addition, given equation (2.8-7) we call 	 a fuzzy mean as

FnA =	 JX/AA()P(x) (V	 (2.-9)

and -a fuz:y eOHO e as

= P( /1) fx	
m,)2p1(x)p(x)	 (2.8-9)

The prohahiliLy of a fuzzy event as defined in equation (2.8-7) has been an
extremely useful notion with wide application in the field of quantification
theory (Terano et al., 1992). Quantification methods are useful in analyzing
data involving human judgments which are not normally given numerical
expression, as well as i ll interpretin9 and understanding such data.

Example 2.3 Possibility Measures and l)istrihutions. Let us illustrate the
disti ncLion between possibility tneaswc or possibility and possihili!y distribu-

tion. We consider a possibiliiy distribution induced by the pwpositiun 'Vis a

small integer" where the possibility distribution is (subjectively) debncd as

7r(x) = 1.0/1 ± 1.0/2+ 0.75/3 -I- 0.5/4 + 0.3/5

+ 0.3/6 ± 0.1/7 + 0.1/8	 (132.3-1)

\Vc also consider the cri'p set /1	 (3, 4, 5} wi	 we can wi ite as

A	 ç(x)/x 1/3 + 1 11 4 ± 115	 ([2.3-2)
XE X

W7ia( is the possibility of A? The possibility measure 11(A) is found usii
equation (2.8-5); that is,

17(A) = V [(x) A 7Tv(X)1	 (132.3-3)
X

Using equations ([2.3-I) and (E2.3-2) in (132.3-3), we can obtain thepossib i l-

ity of A:

11(A)	 0.75 v 0.5 v 0.3 = 0.75	 (132.3-1)
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For another fuzzy set 13 = (in'gcrs that (t' nut small) given by

B 0.2/3 ± 0.3/4 + 0.6/5 + 0.8/6 + 1.0/7

usino equation (132.3-3), we could obtain that the possibility of B is

11(B)	 0.2 V 0.3 V 0.3 V 0.3 V 0.1 - 0.3 	 (112.3-5)

It should be noted in equations (112.3-4) and (12.3-5) that the possibility is
simply a number between () and 1, whereas the possibility distribution i ; a

fuzzy set---for example, equaticiu (E7.3-I).
Let us now consider a simple instance of how to generate the possibility

distribution itself. Ut C I/i - 1/2 + 0.813 4- 0.6/4 + 0.4/5 -1 0.2/6 b

a fuzzy set that represents snzcilnurnl'crs. Then the proposition ''V is a small
number" associates with V the possibility distribution, 7T ,..(X), taken in view of
equation (2.8-2) to be equal to the rnentbetship function of C— that is,

= 1/1 ± 1/2 ± 0.8/3 + 0.6/4 + 0.4/5 :fO'2/6 (E2.3-6)

i fl equation (112.3-6) a sinlcttn such	 0.6/4 indicates that tI
that x is 4, given that x is a small integer, is 0.6. [1
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PROBLEMS

I. What happens to the curves in Figure 2.5 if we set F2 = 40 and vary F1as in the figure?

2. In Figure 2.6, what is the significance of the intersection between the
= 0.5 line and the curves?

3. In Example 2.2, substitute y = sin x for equation (E2.21) and utilize the
extension principal in the same way as in the example. Choose an
appropriate range for x and assume any additional information needed
as in the example.

4. The fuzzy variable of Figure 19 is given by the equation 4 (x) =1/11 + 0.3(x - 50)2]. Show that the 0.2 level fuzzy set of fuzzy set A can
he represented by a-Cuts using the resolution principal.

S. The fuzzy sets A and B are given by

A 0.33/6 + 0.67/7 + 1.00/8 + 0.67/9 + 0.33/10
B = 0.20/3 -r 0.60/4 ± 1.0015 + 0.60/6 ± 0.20/7

(a) Write an expression for A V B.
(b) Write an expression for A A B.

6. Different fuzzy symbols are often used to mean similar things.
(a) Write all symbols or terms that have the same general meaning as

max M.
(b) Write all symbols or terms that-have the same general meaning as

mm (A).
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7. Given fuzzy set A, describing pressure p is hicher (hon 15 ,nl'ci, through

the incmbersiip fuoctiva:

/L x) = ----x > is,
i±(x - 15)

=0

	

and fuzzy set B,	 cribiag pressure p is approxi/ltuitc,". , cu. ! 1.	 7

	

with memhershp	 :ioi::

=

Find the membership function of the fuzzy set C, describing pressure p L.

higher than 15 m Pa and approximately equal to 17 ml 'a. Use at least fou r

different norms for interpreting AND (see Appendix) and . clrav all

met nbershi p fun':tions.

. Using th e data given i-i Problem 7, find the nlctiibcrSlilI) function of the

fuzzy set D, describing pressure p is Imi'Imcr ilmun 15 nPa or approXminoieev

equal to 17 mJ'a. Use at least four different norms for interpretinz OR

(see Appendix) and draw all mcnmhcrship functions.

9. Using the data given in Problem 7, find -the mcmberhip function of the
-. fuzzy set F, descril1ni pressure p is not higher than ,15 ,nl'a aiul arpro.vi-

mutely equal to 1-7 ,nl.a. Use four different norms for nitcrptctimm A -'VI.)

1 scc Appendix) and draw all membership functions.

10. Determine all ci-cuts for the foihowino fu77v sets, given that a = 0.0 7 (LI,

0.2.... 0.9, 1.0.

I. A = 0.1/3 - 0.2/4 + 0.315 -1- 0.4/6 H- 0,5/7 ± 0.6/8 ± (1.7/)
0.8/10 + 1.0 /11 4- OS/i7

II. B = f
Write a MATI All progra;u that takes a number o (t-cuts (ninirnun 1(0
and reconstructs the membership function.

11. l.ct A' = N x \, and the fuzzy sets:

jL4(x)
	 10(x 	 2)

( 
v) = 1 ±2 y2
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Let he mappings z = f(x, y), f: N x N -+ N he the following quadric
surfaces

	

1x2	 2

(a) ZVT+,XEA,)EB.

x2	 y2	 v-
(b) - + - -

9	 15	 8

(c) 2y2 ± 12z 2 =x

Sketch the surfaces and determine the image f(A X B) by the extension
principle, for each of the above.
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3.1 INTRODUCTION

in fuzzy approaches, relations possess the computational potency and
significance that functions possess in conventional approaches. Fuzz if/then
niles and their aggregations, known as fuzzy algorithms, both of central
importance in engineering applications, are fuzzy relations in linguistic cis-
guise. Fuzzy relations may be thoutlit of as fuzzy sets defined over high-
dimensional universes of discourse. As the name indicates, a relation implies
the presence of an association between elements of different sets. If the
degree of association is either 0 or 1, we have crisp relations, if the degree of
association is between 0 and 1, we have fuzzy relations; a number between 0
and 1 is taken to indicate partial absence or presence of association. in this
chapter we begin by reviewing crisp relations and various ways for represent -
in- them. Next, we look at fuzzy relations and properties used to classify
them, and finally we come to composition of Jiizrv relations, a very important
tool for approximate reasoning with applications in the fields of expert
systems, control, and diagnosis.

On what basis do we associate various elements in a relation? The
association may be due to a common property, a quality, a reference, a
condition, or a rule, satisfied b y pairs of elements (e.g., ohject, numbers,
words, variables, etc.). For example, the statements "is greater than" or "is a
component of" indicate an association between two elements. The order of
the elements is important. For instance, if the relation 'is a component of'
holds for the pair of elements (u-tube, steam -generutc'r)--that is, if the
statement ''u-tube is a component of stewn -generator" is true- the relation may
no longer be true when the elements are interchanged. The relation "steam

49
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generator is a component of u-tube" is not true. Thus, this is an important point
to observe: In relations, order is important!

A relation such as "is a component of" may also be expressed as an if/then
rule. We can say "if an object is a u-tube, then it is a component of a steam
generator." Any ambiguity as to what degree an object is known to be a u-tube
or a steam generator, or any ambiguity as to the degree of truth in such an
association, results in a fuzzy relation.

When two elements belong to a relation R, we refer to them as an ordered
pair denoted as (a, b) E R, or aRb, with clement a being distinguished as the
first clement and b as the second. With two elements in association, we have
binary relations. With three elements A,6 have tertiary relations, and when
elements are in association we have n-ary relations. An association of a
elements in an n-ary relation is called n-tuple. A relation is any set of
ordered n-tuples. The keyword here is "set." Relations are formed out of Sets
of elements, and they are sets themselves.

Crisp relations are defined over the Cartesian product or product space of
two or more sets. The Cartesian product  X Y of two sets X and Y is the set
of all ordered pairs (x, ') with x in X and y in Y. The product X x X is
often abbreviated as X 2 , the product X 2 x X as X 3 , and so on.

We saw that relations are sets where order is important. But relations may
also be thought of as mappings, with the process of association in mathemat-
ics being called a tnapping. Functions are mappings as well. Relations,
however, are a more general type of mapping. A function performs what is
called a many-to-one mapping; that is, many elements are associated with one
(and only one) element but not vice versa. For example, if the mapping is
done between x's and y's in the X x Y plane, we may have more than one x
mapped to the same y but not the other way around. Relations, however,
perform many-to-many mappings. Many x's can be associated with a single y
and vice versa. Many y's can also be associated with a single x. The
importance of this abstract-sounding distinction in terms of engineering and
computational applications cannot possibly be overstated, as we will see in
later chapters. But for the moment let us turn our attention to an example of
a crisp relation in order to see some of the ways that relations may be
represented.

Example 3.1 A Crisp Relation. Let us consider a dwisibthty relation, R, on
the set S = {1, 2, 3, 4; 6) defined by the statement "x divides )'." R d is a binar,'
relation because it involves two elements, x and y, drawn from the Cartesian
product of the set S with itself—that is, S X S. Furthermore, it is a crisp
relation since a number either divides another number or not (assuming
integer division only). It is easy to list all the pairs of the relation and to see
that the relation itself is a set, namely, the crisp set of all the pairs

R d = (0, 1), (1,2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6.),
(3, 3), (3, 6), (4, 4), (6, 6))	 (E3.1-1)
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Hur 3.1	 I:oJe'oc]:roH'r:,,
biIy reIation R de'iaed on the CarTesian
product S 	 Sof the sa S (1,2,3,6).

where the meaning of the elements inside the parentheses is "1 divides 1,"
and so on. The relation A can also he represented through a graph as
shown in Figure 3.1. The individual elements are represented by circles.
called the terriccs of the graph. If P 1 is true for two elements, we connect
them by an arrow, with the direction of the arrow indicating the order of the
cements in the relation. For example, given that 3 divides 6, there is an
arrow going from 3 to 6; and since 6 does not divide 3, there is no arrow
going from 6 to 3. Reflecting the fact that the order of elements or the
directions of the arrows is important, we call this a directed graph.

The binary, relation R, ma y also be represented by a table or a matrix.
Table 3.1 shows the tabular representation of P 3 . When a table entry is I, it
indicates that x (row entry) divides the corresponding v (column entry); for
example, in the tout tb mow and fourth column we simply have that the
element 4 divides itself. A 0 indicates the absence of such a relation. Should
the divisibilit y relation have been a fuzzy relation, the table entries would be
numbers between 0 and t as we will see later on.

Rd can also be represented by a matrix obtained from Table 3. 1 by
removing the column of i's on the side and the row of vs from the top;
that is,

	

1	 11	 1	 1

	

o	 I	 0	 1	 1

	

= 0	 0	 1	 (1	 1	 (l3.I-2)
o o 0 1 0

	

C)	 ()	 (.)	 0	 1
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Table 3.1 A tabular re presentation of the divisibility relation In
Example 3.1

Rd..

Thus we have seen five different ways for representing Rd:

1. Linguistically, throu g h the statement "x divides y"
2. By listing the set of all ordered pairs as in equation (E3.1-1)
3. As a directed graph (Figure 3.2)
4. As a table (Table 3.1)
5. As a niwrix, equation (E3.1-2)

It should be noted that the last two ways are generally convenient only for
binary relations. For tertiary relations, for example, we would need a three-
dimensional table or matrix (for n-ary relations n-dimensional tables and
matrices), and therefore tables and matrices may be conveniently used only
with binary relations. 0

3.2 FUZZY RELATIONS

In fuzzy relations we consider pairs of elements, and more generally n-tup/c's,that are related to a degree. Just as the question of whether some clement
belongs to a set may be considered a matter of degree, whether some
elements are associated may also be a matter of degree (Zadeh, 1971; Dubois
and Prade, 1980). For example, suppose we have a diagnosis problem
involving vibration data with a set of faults F = (f ..... f) associated to a
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set of symptoms S ,.,.,s,,,}. First we need to establish how symptoms
relate to faults—that is, establish a relation from F to S. One of these
symptoms, let's say c, may be "excessive vibration." Knowing whether a
machine vibrates depends on the interpretation of vibration data. If the
concept of "excessive vibration" has been crisply defined—that is, it can be
readily determined whether the machine vibrates and we can associate a
symptom s with a fault f---we have a crisp relation from F to S. In reality,
however, it may he rather difficult to crisply define such associations and
hence all faults F = (fi ... f) and all symptoms S = (s may he
associated to a degree, giving us a fuzzy relation from F to S. What is
important in such cases is to compute these degrees. Having established the
fuzzy relation from F to 5, we can subsequently use it to identify the highest
degrees of association given a SyllIptolli S So that it ma y he linked to faults

fk, f,, and so forth (Kaufmann, 1975).
Fuzzy relations are fuzzy sets defined on Cartesian products. Whereas the

fuzzy sets we encountered in the previous chapter were defined on a single
universe of discourse (e.g., X), fuzzy relations are defined on higher-dimen-
sional universes of discourse (c.g.. X X X or X x V X Z). A Cartesian
product for us is simply a higher-dimensional universe of diseouzse. Suppose
that we have a binary fuzzy jelation R defined on X x Y. As with any fuzzy
set, we can list all pairs of the relation explicitl y a we did in equation (2.2-2);
that is.

F = (((x. v), ILn(X, )))	 (3.21)

where every individual pair (x, y) belongs to the Cartesian product X >( V.
Alternatively, we can use the notation of equation (2.2-3) to form the union
of all ,i(x, y)/(x, y) singletons of X X V. For a discrete Cartesian product
we would have

F	 (x,, y . )/(x, y)	 (3.2-2)
(x.y,)E.VxY

while for a continuous Cartesian product we have

R = f	 p, (x, y)/(x, v)	 (3.2-3)

The same notation is used for any ti-wv fuzzy relation.
So much for the fuzzy set nature of fuzzy relations and notation. let us

now take a look at alteinative ways of representing them. One of them, which
is particularly useful for the composition of relations (see Section 3.5), is to
form a matrix of grades of membership in a manner analogous to (E3.1-2),
only now we have instead of O's and l's various numbers between 0 and 1.



ror

	

R(Xl,Yl)	 (Xi, Y:)

R =
	 ( x21yj)	 R(x,y2)	 (x,v)	

(3.2-4)

(x, y1)

Let us take a look at some special relations and their membership matrices.
The identity fuzzy relation, R 1 , is a special type of relation which has 1 in all
diagonal elements and 0 in all off-diagonal elements—that is,

10	 0•
01	 0

R 1 =	 .	 ( 3.2-5)

00	 1

Another special relation is the universe relation, R E , namely a relation with 1
everywhere in its membership matrix—that is,

11••-	 I
Ii	 1

RE 
=	 0	 (3.2-6

1	 1	 lj

The null relation, R 0 , has a membershi p matrix with 0 cverwhLre_that is.

00••	 0
00	 0

R 0 =	 .	 ( 3.2-7)

00	 0

The transpose of a membership matrix gives the membership matrix of the
inverse relation of R denoted by R 1 and defined by

I5R(Y, X )	 AR( X ,y)	 (3.2-8)

Thus the inverse of the relation represented by the matrix of equation (3.2-4)
has the membership matrix

	

R(x1,)'l)	 R(X21 yl) 	 y1)

	

R1 
= / R (XI ,Y2)	 /LR(X2,Y2)	 0..	 ii(x,,y2)	

(3.2-9)

	

lLR( x l,Y)	 R(x21 yfl) 	 000
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winch is the transpose of the matrix found by interchanging the rows of R to
prulree the columns of R and the columns of R have become the rows of
R-' (Klir and Folger, 1988; lerano et al., 1992). The inverse of an inverse
[elation is the original relation just as the inverse of the inverse of a matrix is
the original matrix—that is,

( R - ') - '	 R	 (3.2-10)

So far we defined fuzzy relations on crisp Cartesian products. However,
fuzzy relations can also be defined on fuzzy Cartesian products Mandel,
1986; Mir and Folger. 1988). Although fuzzy relations defined over fuzzy sets
are of interest, particularly in connection with decision making under uncer-
tainty, we will make no actual use of them in this book. Unless otherwise
indicated, fuzzy relations in this book are assumed to be defined over crisp
Cartesian products.

Example 3.2 Representing a Fuzz y Relation. Let its take two discrete sets
X x, .i,, .1 4 1 and I = (Y ' . , v -S . .y4 ) and define (subjectively) on then
Cartesian product the fuzzy relation R = 'x is similar to v,' shown b y the
directed graph of Figure 3.2. /? may be represented through the five different
ways we saw in Example 3.1 with regard to crisp i elanoims:

1. Linguistically, for example by the stateme [it 'x is similar to v"

2. By listing (or taking the union of) all fuzi. singletons

3. As a directed graph (Figure 3.2)

4. In tabular form

5. As a !flQtr

Let us represent the relation as a Jhzy set by taking the union of all
singletons—that is, all ordered pairs and their rnember.slnp values:

R = f	 /LR(x, y)/(.v, y)	 (E3.2-1)
x 'j

Using the data of Fi gure 3.2, equation (E3.2-1) gives

R = 1.01(x 1 .v 1 ) + 0.31(x 1 ,v2) ± 0.9/(x1, ) - 3) ± 0.0/(x 1 , y,)

0.3/(x,,v1) ± l.O/(x,,y,) 
-4- 0.S/(x 7 , y 3 ) .f 1.0/(x2, v4)

+ 0.9/(x 3 ,v 1 ) ± O.R 1/(x 31 y,) -- 1.010: 31 y 3) 	 0.8/(x, y4)

-- 0.0/(x 4 , v 1 ) I l.0/(x 41 y 2 ) + 0.8/(x 4 , y 3 ) -I 1.01(x4,y4)

(E3.2-2)
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Figure 3.2 The directed graph of the fiy relation R in Example 3.2.

The relation R may also be represented in tabular form as

R:

yl	 Y2	 Y 3	 y4

X1
	 0.3	 0.9	 0.0

0.3	 1.0	 0.8	 1.0

X3
	 0.9	 0.8	 1.0	 0.8

X,	 0.0	 1,0	 0.8	 1.0

Note that compared to Table 3.1, where we only used 0's and l's, in the
tabular representation of R we find grades of membership between 0 and 1.
Consider the pair (x 3 , y4 ). From the table of R we see that "X3 is similar to
y4 "is true to a 0.8 degree.
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In matrix form, R is given by

1.0	 0.3	 0.9	 0.0

1?	
0.3	 1.0	 0.8	 1.0	

(133.2-3)
0.9	 0.8	 1.0	 0.8
0.0	 1.0	 0.8	 1.0

The inverse of R, which we denote as R, is the transpose of the member-
ship matrix of equation (E3.2-3), given by

1.0	 0.3	 0.9	 0.0

R	
0.3	 1.0	 0.8	 1.0	 (r-3.2-4)
0.9	 0.8	 1.0	 0.8
0.0	 1.0	 0.8	 1.0

Of course the inverse fuzz y relation R 1 in this case has the same member-
Ship matrix due to the fact that R is a symmetric relation (see next section).

Li

3.3 PROPERTIES OF RELATIONS

Crisp and fuzzy relations alike are classified on the basis of the mathematical
properties they possess. We present here a brief introduction to the subject
of properties mostly for the sake of reference. We look first at properties of
crisp relations and then examine the properties of fuzzy relations. In fuzzy
relations, different properties call fo different requirements for the member-
ship function of a relation.

Let S be a Cartesian product (e.g., S = A' x Y, with x being an element
of A' and y being an clement of Y) and let 1? be a relation oil The
relation I? could have the following properties:

ReJlvxwe. We say that a relation 1? is reflexive if for any arbitrary clement
x in S we have that xkv is valid-that is, the pair (x, x) also belongs to
the relation R.

AntireJ7the. A relation R is antircJ7exive if there is no x in S for which
xRr is valid.

Symmetric. A relation R is symmetric	 if for all x and 	 in S. the following
is true: If xRy holds, then yRr is valid also.

Asymmetric. A relation R is a,ymmetric if there arc no elements x and y
in S such that both xl?',' and YRr are valid.

Antisyi,inieric. A relation I? is witi.symmetric if for all x and y in S when
xRy, is valid and yl?ic is also valid,	 then x	 y.
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Transitive. A relation R is called transitive if the following is true for allx, y, z in S: If XRY is valid and yRz is also valid, then xRz is valid aswell.
Connected. A relation R is connected when for all x, y in S the followin

is true: If x y, then either xRy is valid or yRx is valid.	
g

Left Unique. A relation R is called left unique when for all x, y , z in S thefollowing is true: If xRz is valid and yRz is also valid, then we can inferthat x = y.
Right Unique. A relation 1? is right unique when for all x, y, z in S thefollowing is true: If xRy and xRz hold true, then y = z.
Right Biunique. A relation R which is both left u1:7ue and right uia 1 :e iscalled biunique.

Relations are classified into different groups on the basis of these properties.
For example, an important type of crisp relation is the so-called equivalencerelation. An equivalence relation is a relation that is reflexive, symmetric, andtransitive (KJir and Folger, 1988). Equivalence relations are found in even'
corner of mathematics and are particularly useful in engineering fields such
as pattern recognition, measurement, and control. Other important relations
are the so-called order relations. For example, a relation R ordering if it is refleicive, transitive, aiiu wi )m//Cnc K is also connected,then it is called a total linear ordering. Order relations are very important in
fuzzy arithmetic (Kaufmann and Gupta, 1991).

The properties of fuzzy relations are described in terms of various require-
ments for their membership function. In a pioneering paper on the subject
Zadeh (1971) showed that most of the important properties of crisp relations
stated above are extended to fuzzy relations as well. Let a relation R be afuzzy relation on the Cartesian product S = X x X. Reflexivity, .sy,nmet,y,and transitivity are the three most important properties that help us properly
categorize fuzzy relations. R is a reflexive relation if for all x in A' we havethat

X) = 1 (3.3-1)

If for at least one x in X but not for all x's, equation (3.3-1) is not true the
relation R is called irrefle.xive. If equation (3.3-1) is not satisfied for any x,then R is called antireflexive.

A fuzzy relation R is symmetric if order is not important—that is, if we
can interchange x's and y's. In terms of the membership function of I?, this isequivalent to saying that

R(x,y) = IR(Y,X) (3.3-2)

If equation (3.3-2) is not satisfied for some pairs (x, y), then we say that 
R isantisymmetric • if it is not satisfied for all pairs (x, y), then we say that the

relation R is asymmetric
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A fuzzy relation R on the Cartesian product X x X is may-mm Oanstir'e

if for two pairs (x, y) and ( y , z) both in X x X we have

y ) ^	 [1<(x,z) A	 y)]	 (33-3)

where all the inrixirna with respect to z are taken for all the miinima inside
the brackets in equation (3.3-3). Transititirv can be defined for other opera-

tions such as product () instead of ti-tin (A) in equation (3.3-3); in such it

wc have what is called mar-product rransiticily. A relation that does not satisfy

equation (3.3-3) for all pairs is called nonrransitice, and if it fails to satisfy

(3.3-3) for all pairs, then it is called antitransitive.
A fuzzy relation that is reflexive and symmetric is called it or

tolerance relation. A fuzzy relation that is refirit.'e, smmnetric, a nd tranritite Is

called a similarity relation, which is the fuzzy generalization of the e/uIL:a-

knee property of crisp relations (7,adch, 1971). Similarity relations are very

important in fuzzy logii., and together with proximity relations they are

crucially important in the field of fuzzy diagnosis. A fz:c orderoaz is a fuzzy
transitive relation. If a fottv tclatian is reticxit :f', tranci'irr. ann (1,'i!jv1nn'!r/c,
then we call it it 	 pailial ordering. Fuzzy orderings and similarit y relations
may be resolved into nonfuzzy partial orderings, ill 	 manner analogous to
the way we used the resolution principle ill 	 2. Let us now look at an
example of a fuzzy similarity relation.

Example 3.3 A Similarity IHation. Consider a fuzzy relation R indicating
that two points oil X X Y plane are near the ot igin. This is it relation we
would expect to have a membership function equal to 1 exactly at the origin
and to have gradually diminishing membership as we move away front

origin. We can indicate the relation by it 	 such as "x is near the
origin with y' or analytically as a fuzzy set with an appropriately chosen
(subjectively) rnenibersltip function—lot example, 	 -

(x, y)	 C-	 +Y 2)	 (E3.3-1)

Ihus the relation R is the fuzz y Set

R =	 (L33-2)

which using cquatioa (1--'3.3-1) we can write as

p = f/ ( ry ) 	 (E33-3)

The membership function of R is shown in Figure 3.3. It can be shown that
P is a J czv 	 telation that is, it is reJlizricc. sin unetric, and tran.vitwe.
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x	 £	 22	 Ly
Figure 3.3 The membership function of the relation R indicating that an (x, y) point of
tne Cohesion plane, X x Y. is close so the origin (0.0).

Figure 3.3 also illustrates that fuzzy relations are fuzzy sets on high-dimen-
sional universes of discourse. In this case the universe of discourse is the x-v
plane—that is, the Cartesian product X X Y. 0

3.4 BASIC OPERATIONS WITH FUZZY RELATIONS

Fuzzy relations are fundamentally fuzzy sets defined over higher-dimensional
universes of discourse—that is, Cartesian products. All the fuzzy set opera-
tions we saw in Chapter 2, such as union, intersection, a-cuts, and so on, are
also applicable to fuzzy relations. Here we take a look at the union,
intersection, inclusion, a-cuts, and resolution as well as some operations
specific to relations such as projection and cylindrical extension (Dubois and
Prades, 1980 Zimmermann, 1985).

Suppose that we have two fuzzy relations R and R 2 . Their union is a new
relation

U R2 = f	 [n(x, y) V ji(, v)]/(x, v)	 (3.4-i)
Xx Y

where the membership function of R 1 U R 2 , as indicated in equation (3.4-1),
is

jx, y)	 R(x, y) V iR (x, y)	 (3.4-2)/. 

for every (x, y) pair of the Cartesian product.
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The intersection of fuzzy relations R 1 and R .. is a new fuzzy relation

whose membership function is the minimum of the membership functions of

R 1 and R, taken at every point (x, y) of the Cartesian product,

R 1 n R2 = f XxY 
[R1( x , Y) i•'	 (x,v)]/(x, y)	 (3.4-3)

where the membership function of R 1 fl R. is

	

R 1fl R,( x , Y)	 R' y) A AR:(X, y)	 (3.4-4)

We define the a-cut of a fuzzy relation in a manner similar to the way we
defined in Section 2.6 the a-cuts of one-dimensional fuzzy sets. The resolu-

:on principle applied to fuzzy relations offers us an alternative way of
rcprcsening the membership function of a fuzzy relation. It says that the
membership function of a fuzzy relation can be represented through its
a-outs. More specifically, the resolution principle asserts that the membership
function of a fuzzy relation R is expressed in terms of its cs-cuts i n a manner

- analogous to equation (2.7-1) as

	

=	 V [a fl (x,y)}	 (3.4-5)

where the maximum is taken over all a's and p. (x, y) is the -cut of the
membership function of the relation R at level a.

We say that a relation R 1 is included in R, if both are defined over the
same product space and we have everywhere

/. R( X ,Y) ^ILR,(X,)')	 (3.4-6)

Note that the union and intersection of fuzzy relations are meaningful in the
context of relations defined over the same Cartesian product. When the
product spaces of two relations are different, these operatiois have no
meaning and instead the important and useful operations become the various
composition operations which we examine later.

Example 3.4 Union and Intersection of Fuzzy Relations. Suppose that we
have the following two relations R 1 and R. described by the tab -les below:

R 1 ='xis larger titan y":

., 

X2 0.0	 0.8	 0.0	 0,0

X 3	0.1	 U.s	 1.0	 0.8
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R 2 =="y is much bigger than x":

Yl	 Y2	 Y3	 Y4

X 1	 0.4	 0.4	 0,2	 0.1

x 2	 0.5	 0.0	 1.0	 1.0

.v 3	 0.5	 0.1	 0.2	 0.6

The union of the two relations, R 1 U R,, is formed by taking the maximum
of the two grades of membership for the corresponding elements of the two
tables. The table of the new relation is as follows:

R 1 U R,:

YI	 ) 2	 Y 1	 Y

X 1	0.4	 0.4	 0.2	 0.8

2	 0.5	 0.8	 1.0	 1,0

X3	 0.5 

J 
0.8	 1.0	 0.8

For the intersection, R 1 fl R.,, we take the minimum of the two grades of
membership in each cell of the tables of the two relations, and the resulting
table is as follows:

R1 fl R,:

	

Y2	 y 3	 y4

X 1	 0.0	 0.0	 0.1	 0.1

X 2	 0.0	 0.0	 0.0	 0.0

X 3	 0.4	 0.1	 0.2	 0.6

Some caution is needed when we interpret the new relations produced by
union and intersection. For example, the union R 1 U R 2 can he interpreted as
a proposition of the form: "x is quite different than y." The intersection,
however, is not very meaningful, since x cannot be simultaneously larger than
y and y cannot be larger than x (Zimmermann, 1985). ri

In relations, when it is desired to go to a space of lower dimension we use
pfojjm. Starting with a fuzzy relation defined on a two-dimensional space.
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we can take the first and second projection and go to one-dimensional
universe of discourse, with each projection eliminating the first and second
dimension, respectively. The total projection takes us to a zero-dimensional
singleton, eliminating both dimensions. Projections arc also called mw-ginalfize . resnct ions. The inverse of projection—that is, going toward higher
dimensions—is called cylindrical e.vtcnsion (Zadeh, 1971).

Consider the fuzzy relation R defined over the Cartesian product X x Y— that is,

R	 f" , ^,.(x, y)l(x , ly)	 (3.4-7)

The first projection is a fuzzy s---t that results by eliminating the second set Ythe Cartesian product, X x Y, hence projecting the relation on the
uiverse of discourse of the first set X. We write the first projection as

R1	 (3.4-8)

The membership function of the first projection is defined as

V [(x,y)]	 (3.4-9)

To obtain /R(, equation (3.4-9) indicates that we take the maximum ofY) with respect to v. Similarly the second projection (projecting cri the
Y universe of discourse) is a fuzzy set:

R 2 = J:():)/y	 (34-10)

with membership function defined as

{ R(x. y)]	 (3.4-11)

where we take the maximum of cR (x, y ) with respect to x. The totalprojection of R simply identifies the peak point of the relation—that is, it
singleton (x 0 , Yo) where the membership function of the original relation
reaches its highest value.

RT =	 V "R ( X I, yo)/(x 0 , y)	 (3.4-12)

The Opposite of projection is called the cylindrical &tension. Through cylin-
drical extension we go from a fuzzy relation defined over a lower-dimensional
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space to a fuzzy relation on a higher-dimensional space. If a relation R is
defined on a subsequence of a product space X = X1 X X2 x X3 x x x,
call it Xi , x Xi2 x X 3 x x X., then the cylindrical extension of R,
denoted as CE(R), is defined as

	

CE(R)	 fXk)/(X 1 ,...,x)	 (3.4-13)
X 1 x xX

Lt us look at an example of projection and cylindrical extension.

Example 3.5 Projection and Cylindrical Extension. Consider the relation R
defined over the Cartesian product X x Y of the sets X = (x 1 , x 21 x 3 ) and
Y = (y i , Y2 ' Y31 y ' Y11 Y6} as shown in Table 3.2. The membership functions
for the first and second projection are indicated by the column to the right of
the table and the row below the table, respectively. The first projection is
what the relation would look like if seen from the direction of the arrow on
the left side of the table. Imagine that we look in the direction that the arrow
on the left indicates. We see in front of us three rows of the relation and
select the highest value in each row. As a result, we obtain the first
projection, namely,

RI	 E=	 = 1.01x 1 + 0.91x 2 + 1.01x 3 	(E3.5-1)
X

Equation (E3.5-1) indicates that the first projection of the binary fuzzy
relation R is simply a fuzzy set on a one-dimensional universe of discourse.

Table 3.2 Fuzzy relation and projections

8
PR, (x)

Yj Y2 Y3 Y4 Y5 Yó

	

0.1	 0.2	 0.4	 0.8	 1.0	 0.6	 1.0

	

=X2 
0.2	 0.4	 0.8	 0.9	 0.8	 0.6

	

0.5	 0.9	 1.0	 0.8	 0.4	 0.2	 LU

[0Tj0.9 Li_f	 1.0'' : 0.6
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The second projection is what the relation would look like if seen from the
direction of the arrow on top of the table.

R 2 (Yj)1Yj = O.S/y i ± 0.91y ± 1.01v + 0.9/y 4 ± 0 -6/ys + 0.8/y6
Y

(E3.5-2)

The total projection is the single cell in the corner and represents the highest
grade of membership that the relation has, namel y, 1,

I ct us next take a look at the cylindrical extension of the second projec-
In a way the cylindrical extension is the opposite of projection. We

ct therefore to obtain a relation on X x Y somewhat shi1ar to the
o. inal relation R. I cquation (E3.5-2) indicates, the second projection is
d ed on the Y un erse of discourse. The generalization of this to the
X . Y two-dimensional space is given by the cylindrical extension. Using
equation (3.4-7) we obtain that the cylindrical extension of the second
Projection of the relation R 2 is simply the fuzzy set of the second projection
extended in one more dimension, namely,

CL-(R'):

X1 0.5 _
T9T 1-0 

0.9 1.0 0.6

X 3	 0.5	 0.9	 1.0	 0.9	 1.0

Note that although the cylindrical extension of the second prcjection R
results in a relation of higher dimensionality, it did not recover the original
relation R. Some information was lost through the operation of the cylindri-
cal extension. 0

.5 COMPOSITION OF FUZZY RELATIONS

Fuzzy relations defined on different Cartesian products can be combined
with each other in a number of different ways through composition. Composi-
tion may be thought of metaphorically as a bridge that allows us to connect
one product space to another, provided that there is a common boundary.
Figure 3.4 illustrates the notion. Given two fuzzy relations—one in X )< Yand another on Y x Z—we want to associate directly elements of X with
elements of Z. The set Y is the common boundary. Composition results in a



Flguro 3.4 The composition of two fuzzy relations is a now relation dicectiy associating
elements from X and Z.
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new relation shown at the bottom of Figure 3.4 that directly relates X to Z.
Our main task in composition is to compute the grades of membership of the
pairs (x, z) in the composed relation, namel y, .L(x, z) (not shown in Figure
3.4).

Composition is very important for inferencing procedures used in linguis-
tic descriptions of systems and is particularly useful in fuzzy controllers and
expert systems Mir and Folger, 1988). As we shall see in Chapters 5 and 6,
collections of fuzzy (f/then rules or Jb.:y algorithms are mathematically
equivalent to fuzzy relations, and the problem of inferciicing or (evaluating
them with specific inputs) is mathematically equivalent to composition. 'There
are several types of composition. By far the most common in engineering
applications is max—mmn composition. but we will also look at max-star,
max-product, and max-average. In general, different types of composition
result in different composed relations.

Max—Min Composition

The max—min composition of two fuzzy relations uses the familiar operators
of fuzzy sets, max (v) and mm (A) (see Section 2.3). Suppose that we have
two fuzzy relations R(x, y) and R( y , z) defined over the Cartesian products
X x Y and Y x Z, respectively. The max—min composition of R 1 and R. is a
new relation R 1 R., defined on X X Z as

R 1 o R2	 X V [(x, y) A g j, (Y' Z)]/(x, z)	 (3.5-1)

where the symbol "o "stands for max—min composition of relations I and
R2. When the Cartesian product X x Y is discrete, then the integral (union)
sign in (3.5-1) is replaced by summation. From equation (3.5-1) we see that
the grade of membership of each (x, z) pair in the new relation is

= V	 y) A /zR .(Y, z)]	 (3.5-2)

where the outer maximum is taken with respect to the elements y of the
common boundary. The operation on the right-hand side of equation (3.5-2)
is actually very similar to matrix multiplication, with max (v) being analo-
gous to summation (+) and mm (A) being analogous to multiplication (), as
we will see in the examples that follow. Interchanging min and max in (3.5-1)
is known as the mm—max composition. In this book, however, we will mostly
USC max—min composition and compositions where the final (outer) operand
is max (v), Max— min composition is used extensively in diagnostic and
control applications of fuzzy logic.
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Max—Star Composition

We can use multiplication, summation, or some other binary operation (*) in
place of rain (A) in equations (3.5-1) and (3.5-2) while still performing
maximization with respect to y. This type of composition of two fuzzy
relations is generally known as the ­max-star" or 'nza.x- * composition."1

Suppose that we have two fuzzy relations R 1 and R 2 defined over the
Cartesian products X>< Y and Y X Z, respectively. The max- composition
of R 1 and R, is the new relation

R2	 V [R( x , y) * R2(Y' z ) ] /( x, z ) 	(3.5-3)

We see from equation (3.5-3) that the membership function of the new
relation is

/L. R(x, z) 
= V 

[fL,s(x, y) * LR(Y, z)]	 (3.5-4)

When the Cartesian product is discrete the integral sign in equation (3.5-3) is
replaced by summation. Again as we shall see in the examples that follow this
is essentially a computational procedure very similar to matrix multiplication.
Two special cases of the max-star composition are the max-product (or
max-prod) and the lnax-average composition.

Max-Product Composition

In max-product composition we use product () in place of (*) in equations
(3.5-3) and (3.5-4). Thus the max-product composition of two relations R1
and I? is

R2	
/vxZ Y 

[ irR 1( x , y) LR2(y, z)]/(x, z)	 (3.5-5)

For discrete product spaces we use the summation sign in equation (3.5-5).
The membership function of the composed relation is given by

I.LR.R( x , z) = V [/L ( x , y) 'p.(y, z)]	 (3.5-6)

'The name "star" refers to the star symbol that stands for a number of operations such as
average and product.
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Max-Average Composition

In the max-average composition of fuzzy relations we use the arithmetic sum
(+) divided by 2 in place of (') in equations (3.5-3) and (3.5-4). Thus
the max-average composition of R 1 with R, is a new relation R 1 ( ± ) R,
given by

R 1 ( + I R,	
/VxZ Y [( /LR 1( X , y) + A,,( Y, z ) )1/( x, z) (3.5-7)

With membership function

IR,+)R,( X , z) = V [(	 ( x, y) +	 ( y ' z))J
	

(3.5-8)

Let us take a look at a few examples of composition.

Example .6 Max-Min Composition of Fuzzy Relations. Let's use max-mm
composition with the two relations shown in the upper part of Figure 3.4.
The membership matrices of the relations R on X X Y and R on Y x Z
are

R.(X1, y l)	 R.(x1, Y2)

1(x2, y 1)	 Y2)R 1 =
p. r? (x3, )'i)	 91"(X5, Y:)

ILR( x4, )')	 &( x 4 , y)

1.0	 0.3	 0.9	 0.0

0.3	 1.0	 0.8	 1.0

0.9	 0.8	 1.0	 0.8

0.0	 1.0	 0.8	 1,0

	

R.('1 'Y3)	 R,(xi,Y4)

	

i( x,, y)	 /.LR(X2, y4)

	

R ( X 3 ,Y)	 R1(X3,Y4)

	

/R 1 ( X 4,Y3)	 L(X4,y.)

(E3.6-1)

.41(y1, z1)

/R.(Y2, z1)

2(3' z1)

/.L R,( y4, z1)

	1.0	 1.0

	

1.0	 0.0

= 0.3 0.1

	

0.2	 0.3

	

IiR:U"l z2)	
':(Yi' z)

	

/LR(Y2Z2)	 )iR(Y,,Z3)

	

1.4R.(Y3, z2)	 i-R(Y3, z)

	

':(Y4' 2:)	 R:(Y4, z)

0.9

0.5

0.0

0.1

and

(E3.6-2)
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We want to compute the membership matrix of the max-min composition of
R 1 and R 2 . We can use equation (3.5-2) to obtain the membership function
of the composed relation. The operations in (3.5-2) arc similar to matrix
multiplication, with (v) being treated like summation (+) and (A) being
treated like multiplication (). With this in mind, instead of using

- (x, z) = V [i,(x, y) A	 z)]

we can use the matrix form ofof max-mm composition, namely,

	

1.0	 0.3	 0.90.0	 1.0	 1.0	 0.9

	

0.3	 1,0	 0.8	 1.0	 1.0	 0.0	 0.5

	

= 0.9 0.8	 1.0 0.8	 0.3	 0.1	 0.0	
(L363)

	

0.0	 1.0	 0.8	 1.0	 0.2	 0.3	 0.1

To evaluate equation (E3.6-3) we proceed, like in matrix multiplication, by
forming the pairs of minima of each element in the first row of membership
matrix R 1 with every element in the first column of membership matrix R2.
For example, to obtain the first clement, (x 1 , z 1 ), of the composition we
Perform the lollowing operations:

[1.0	 0.3	 0.9

0.2

= [1.0 A 1.0] V [0.3 A 1.0] v [0.9 r 0.3] v [0.0 A 0.2]
= 1,0 V 0.3 V 0.3 V 0.0

1.0

We repeat this procedure for all rows and colunins and the result is the
memhei ship maim ix of the composed relation R 1 ' R, given by

91.0	 1.0	 0, 

(E3.6-4)

1.0	 0,3	 0.5

The new relation is a fuzzy set over the Cartesian product X x Z which may
also he written as

R 1 ofl2 = 1.0/(x 1 , z 1 ) + 1.0/(x 1 , z 2 ) + 0.9/(x 1 , z3)

1.01(x,, z 1 ) + 0.3/(x, z) ± 0.51(x,, z)

+ 0.91(x 31 z 1 ) + 0.9/(x3 , z .,) + 0.9/(x 1 , z3)

+ 1.01(x 4 , z 1 ) -1 0.31(x 4 , z) .f 0.51(x 4 , z 3 ) (E3.6-5)

[1
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Example 3.7 Max-Mm, Max-Product, and Max-Average ComposLion of
Fuzzy Relations. Suppose we have the two relations R 1 and R2, shown
below, and we want to compute a new relation which is the max-mm
composition of the two, R = R 1 o R 2 . We will also find the mix-product and
max-average compositions. We perform max-min composition using the
tabular representation of the relations and the definition of max-composi-
tion given in equations (3.5-1) or (3.5-2). The relations to be composed are
described by the following membership tables:

Y	 Y4	 Y5

- VP
0.5	 0.0	 0.2	 1.0

XS]ft01	 O.40.3

Z1	 Z4

11
	 0.9	 0.0	 0.3	 0.4

V
	

0.2	 1,0	 0.8	 0.0

	

0.8	 0.0	 0.7	 1.0

	

0.4	 0.2	 0.3	 0.0

y5
	 0.0	 1.0 1 0.0	 0.8

To find the new relation R = R 1 R, we use equation (3.5-2), the definition
of max-min composition, namely,

	

Z) 

=	

[n.(x,y) A R(Y ' z)]	 (E3.7-1)

To use (E3.7-1) we proceed in the following manner. First, we fix x and
z—for example, x = x and z = z—and vary y. Next, we evaluate the
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following pairs of minima, using the numbers from the shaded cells in the
tables of the two relations:

,R( x I, y j ) A IkR2(Yl, z) = 0.1 A 0.9 = 0,1

/-LR( X l, y2 ) A 1LR1I:Y21 z 1 ) = 0.2 A 0.2 = 0.2

ik(x1,y3) A IR1(Y3,ZI) = 0.0 A 0.8 = 0.0	 (E3.7-2)

	

14R(X,Y4) A bLR(y41 z 1 )	 1.0 A 0.4 = 0.4

p. ( x , y ) A p.,(y5 1 z 1 ) = 0.7 A 0.0 = 0.0

We take the maximum of all these terms and obtain the value of the (x,, z
element of the relation, namely.

// 1 .R0C l, z l) = 0.1 V 0.2 V 0.0 V 0.4 = 0.4	 (E3.7-3)

This is the value in the shaded cell in the table of the composed jelation
shown below. In a similar manner, we determine the grades of membership
for all other pails and finally we have

R = R 1 oR,

Z.	 Z2	 Z3	 Z4

0.4	 0.7	 0.3	 0.7

X,	 0.3	 1.0	 0.5	 0.8

X 3	 0.8	 0.3	 0.7	 1.0

Let us now compose these two relations usin g max-product composition as
defined by e t.Iuation (3.5-6)----that is,

ItRRXX, z) 
= Y 

[/LR (x, )	 2' z)]	 (F3.7-4)

Again we fix x and z and vary y-for example, x = x 1 , z = z 1 , and y =
for i = 1,..., 5. We form and evaluate the products of the shaded cells in the
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relation tables-that is,

R 1('Yi) '1R:(Y1,zI) = 01 x 0.9 = 0.09

fR( X l,Y2) /.LR(y2,Zl) = 0.2 x 0.2 = 0.04

/, R (X 1 ,y 3 )	 m(Y3't) = 0.0 X 0.8 = 0.0	 (E3.7-5)

(x1'y4) 'R,(Y4''1) = 1.0 x 0.4	 0.4

R 1(' Y5)	 R.( yc , z) = 0.7 X 0.0	 0.0

Taking	 maximum of these terms, we obtain the grade of membership of
the (x i . ) pair in the composed relation, namely,

z 1 ) = 0.09 V 0.04 V 0.0 V 0,4 V 0.0	 (E3.7-6)

which coincidentally evaluates also to 1 1R I .R,(x I, z 1 ) = 0.4. This is the number
in the shaded cell of the table below. Similarly, we obtain the membership of
all other pairs and finally we get the membership table of the composition as

R 1 R2:

0.27	 1.0	 0.4	 0.8

x3	 0.80.3	 0.7	 1.0

For the max-average composition of the two relations, again we fi: x and z
and vary y in order to find the max with respect to y in equation (3.5-8) for
each (x, z) pair. Thus first we form and evaluate the sums of the shaded cells
as before:

± R,( y , z I)	 0.1 + 0.9	 1.0

ji.1(x,, y2) ± P-R 2(Y21 z 1 ) = 0.2 + 0.2 = 0.4

y ) +	 z) = 0.0 ± 0.8 = 0.8	 (E3.7-7)

/.L(x1, y ) -	 y4, z) = 1.0 ± 0.4 = 1.4

/ R (x 1 , y5 ) + LR(Y5, z) = 0.7 ± 0.0 = 0.0
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Thus, using equation (3.5-8), the grade of membership of the (x 1 ,	 p.ir is

z 1 ) ='[ l.0 V 0.4 V 0.8 V 1.4 V 0.0] S. 0.7 (E3,7-8)

This is the grade of rnem'zrshig of the shaded cell in the table shown h.1ow.
In a similar manner the nembership function for each pair is coni p ued, and
finall y we get the max-average coliipusition of the two rein tions in the table:

R 1 K -+.

	0, 11 	 0.75

	

0.6	 1.0	 0.65	 0.9

X3 EH.65t	 1.0

We observe from the tables of tnc composed relations that max—nun,
max-product, and max-average compositions of R 'nd 1?., may result in
differcni relations. Li
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PROBLEMS

1. A fuzzy "diagnostic relation" R for an automobile relates the system set
S to the fault set F. These Sets arc given below.

S = [.v 1 (]ow gas mileage), x2 (excessive vibration), 5 3 (loud noise).

x 4 (high collant temperature), x (steering in.!ability)I

F = [ y 1 (had spark plugs), v, (wheel imbalance), y 3 (bad muffler),

y . (thermostat stuck ::losed)]

Assume reasonable numerical values (C) - 1) for membersi ip values
relating members of sets S and F and use them. Give all five representa-
tions of this fuzzy diagnostic relationship R, in terms of x and v,.

2, Give the max-min composition, max-star composition, and the max-aver-
age composition of the relation fuzzy "diagnostic relation" of Problem 1.

3. Repeat Example 3.3 for a fuzzy relation R indicating that "x is near the
perimeter of a circle having a radius I with y".

4. In Example 3.4, give a table for [R 1 fl R2]	 [R 1 fl RJ

5. Find the first, second, and total projection as well as the cy indrical
extension of the fuzzy relation R given by Equation (E3.2-2).

6. Find the max-product and max-average composition of relations 	 and
R 2 given by Equations (E3.6-1) and (E3.6-2), respectively.

7. Find the max-min composition of relations R 1 and R given in Example
3,7.

S. a. Show that the max-min composition of fuzzy relations is OssociOtivc.
Illustrate with an example of your own.

b. Consider the max-mm composition and a relation R which is refteive.
Show that:

R o R = R.

9. Supp ose that we have th:oe reia:ons involved in max-mm compotion

PoQ =R
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When two of the components in the above equation are given and the
other is unknown we have a set of equations known as fuzzy relation

equations. Solve the following fuzzy relation equations:

	

[.9	 .6	 1

	

(a) 1 ° .8	 .8	 .5	 [.6	 .6	 .51

	

.6	 .4	 .6

	

.2	 .4	 .5	 .7
1	 .6	 .8	 .2	 .4	 .6	 .7'

All
	.1	 .	 .6	 .7	 .1	 .1	 .2	 .2

	

()	 .3	 0	 1

10. Cmsidcr two probability distributions that are independent and (IC-

sm bed by

= c	 d 1 and dl'(x 2 ) = x 2 e 2 cLt 2 , .j, x 2 ^ 0

how can we model the similarity of x 1 , x 2 through a fuzzy set and what

would be the probability of occurrence of such a set?



FUZZY NUMBERS

4.1 INTRODUCTION

Fuzzy numbers are fuzzy Sets Used in connection With a pp l ications where an
explicit representation of the anibi('uity and uncertainty futind in numerical
data is desirable. III intuitive sense, the y are fuzzy sets representing the
nleaning of statements such as "about 3" or '' near/v fire nnI a half.' III
words fuzzy numbers take into account the ''about," , "almost," and 'not
quite" qualities of numerical labels. Fuzzy Set operations such as union and
intersection, as well as the notions of a-cuts, i'solution, amid the extension
principle (Chapter 2), are all applicable to fuzz y numbers. III a set of
operations very similar to the familiar operations of an I h metic, addition,
subtraction, multiplication, and division can he defined for iiizy numbers as
well. In this chapter we look at such operations and examples of their use.
Fuzzy numbers have been successfully applied in expert systenis, fu7zv
regression, and fuzzy data analysis methodologies (Kaufm;mnn and (aupta,
1991; Terano ci al., 1992). Fuzzy numbers have also been used in connection
with fuzzy, equations, and alternative operations of fuzzy arithmetic have
been intrøduced for the purpose of reducing fuzziness in s uccessive coniputa-
tions (Sanchez. 1993).

lime universe of discourse on which fuzzy numbers are defined is the set of
real numbers and its subsets (e.g., integers or natural numbers), and their
membership functions ought to be normal and Conr'ea.. We recall from
Section 2.3 that a fuzzy set is called normal if there is at least One pomt in
the universe of discourse where the membership function reaches unity
[cluation (2.3-11)]. But what is a "convex" fuzzy set? 'Ihe intuitive meaning

77
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lu (x)

0	 2	 4	 6	 8

(a)

I

x
10

/1(x)

0.6

0.4

0.2

'	 x
106	 8

(b)
Figure 4. (a) Two fuzzy sets that cannot be used as fuzzy numbers. (b) A fuzzy set
I at may be used as fuzzy number.
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of co,rte.vitv 1 is that the membership function of a convex fuzz y set does not
go "up-and-down" more than once. Consider, for example, the fuzzy sets A
and B shown in Figure 4ia. I:UZZy set A is COflLe.v but not normal since
nowhere in the universe of discourse does its membership function reach
unity . Therefore it is not a fuzzy number. Fuzzy set B is normal hut not
conve_v since its membership function goes "up-and-down" twice, and hence it
is also not a fuzzy number. Oil other hand, consider the set C shown in
Figure 4.11). It is both normal and con ce_v and therefore may be considered a
fuzzy number. We will see in following sections that changing the shape of a
membership function results in a different number. 'Shape' is what fuzzy
numbers are all about, and fuzzy arithmetic may he thought of as a way of
computing with ''shapes" (areas) instead of ''points" (we consider crisp
numbers as 'points').

Fuzzy tiumbers ma y also he dcfttrecl ott a multidimensional universe it
discourse that is a Cartesian product. Such fuzzy numbers are used, for
example, in connection with scene analysis and robotics to define the mean-
i13 of a legion in space. or a domain oilthe x-y plane, and also to add,
subtract, arid multipl y regions (Pal arid Mojuorder. 1986). In this chapter,
however, we consider frizzy numbers defined on it one-dimensional
Universe of diceorirse Aver y comprehensive treatment of fuzzy numbers,
including multidimensional ones, ma y be found in the hook entitled
lion if)to Foe_vt' Arithmetic by Knufmanit and Gupta (1991).

4.2 REPRESENTING FUZZY NUMBERS

'We denote fuzzy numbers by boldfaced italics—for example, 3 or /1—or by
referring to their membership function. As we said earlier, fuzzy numbers are
fuzzy Sets used to represent the "aboru,' ''almo.rt" or ',meurb'" qualities of
numerical data. We observe, however, that there are many possihl meanings
to a statement such as ''about 3." Therefore, several different sets may be
used to represent "about 3.'' In the context of fuzzy arithmetic operations,
however, at airy given time we use only one meaning, chosen on the basis of
application-specific criteria and needs. Figure 4.2n shows a triangular niem-
hership function representing the fuzzy number 3. Another possible repre-
seritation is the hell-shaped membership function in Figure 421,. These are
two different 3's. It we start a computation using the triangular 3, we Cannot
halfway through switch to the hell-shaped 3. Note that oil instances the
shape of the membership function meets Our ,rortnr-il and coinov require-

Th n,i;Orr c con xiv o der 'c d through ic Ic tences to eomc ideal objects. A body ti ii
Luclideari space is called cnrr yov if the tine seOnenr Joining any two points of II lies ill -
Examples of convex bodes In three-dimensional space are the sphere, the ellipsoid, a cIinder, a
cube, and a cone.



-	 FUZZY NUMBERS

0
x

(a)

1(x)

0.8

0.6

0.4

0.2

x

3

3

(b)
FIgure 4.2 Two different fuzzy numbers: (a) triangular 3 and (b) bell-shaped 3.
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Table 4.1 Tabular rep re3ontaflon of  fuzzy number 3

_____ 0.4 J_0.7	 0.7 L..4	 0.; I oii -;;--i ;;-
a=1

a=0.9

a.7

a6 	 :	 • t	1:
a=0.5	 1

a-04	 1	 1	 1	 1	 ____

c.3	 1

cx-02	 I	 LLL	 1	 1

a=0. 1	 1	 1	 1	 1	 1	 1	 _____

merits. Another possible fuzzy iiumher 3 is shown in Table 4.1, where the
shaded cells, the l's, indicate the shape of the number. Here 3 is defined
over the universe of natural numbers shown at the botiom of the table. In the
leftmost column we list the values of a parameter, a, ranging between () and
1, used to parametrize the shape of the function (Kaufmann and Gupta,
1991). In fact, this is the same a we saw in connection with a-cuts (see
Section 2.6). The a-cuts of fuzzy numbers are very useful in fuzzy arithmetic
operations. Looking at Table 4.1 we see that the grade of membership of
crisp nurntaer 4 to the fuzzy number 3 is 0.7, and the grade of membership of
crisp 3 is 1.0. Although the fuzzy numbers shown in Figure 4.2 and Table 4.1
are all different, we designate them with the same symbol (i.e., 3) since they
all peak at crisp 3 (Zirnmerniann, 1985; Kandel, 1986).

Fuzzy numbers, like an y fuzzy set, may be represented by its a-cuts. We
saw in Chapter 2 that a membership function may he pa ranieteri7ed b y it

parameter a in it 	 similar to time tabular representation of number 3
shown in Table 4.1. The parameter a is a number between 0 and 1 (i.e.. in
the interval 10, 1]). Parameterizino the shape of a fuzzy number by a offers it
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a,p(x)	 A

a2

-	 (a,)
(a.)	 a2

1	 a2

(0)a.,
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cnt way for computing with fuzzy numbers because it essentially
's fuzzy arithmetic operations into operations of interval arithmetic.

It is cas n see what we are talking about by looking at Table 4,1. At each
level a we ave a horizontal "slice," or interval of the membership function,
which is its a-cut. For example, at a = 0.5, the a-cut is the interval from 2 to
4, and at a = 0.2 it is the interval from 1 to 6. The tabular representation
exemplifies the length of each a-cut; that is, it shows the number of cells and
thus the length of the membership function at level a.

Consider the fuzzy number A shown in Figure 4.3. The membership
function of A is parameterized by the parameter a. With each a we identify
an interval [ar, a]. As may he seen from the figure, we indicate by O0
the left endpoint of the interval ("left" is denoted by the subscript "1") and
by aY the right endpoint of the interval ("right" is denoted by the sub-
script "2"). Requiring that the membership function of a fuzzy number he
convex and normal is another way of saying that the intervals that comprise
the interval representation of A should be ncstcd into one another as we
move from the bottom of the membership function to the top Mir and
Folger, 1988; Terano et al., 1992). In other words, when a 1 < a2, as shown
in Figure 4.3, we have

Figure 4.3 Nested intervals (acuts) associated with a fuzzy number A.
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	where the symbol C denotes that the interval [a j',	 I is contained
within the interval [a', a'1J.

We can uniquely describe two fuzzy numbers A and B as two collection of
intervals i.e., [a', ac'°I and {h", b} respectively. We recall that the a-cuts
of A and B (Section 2.6) were defined as the crisp sets

A	 (x CA ( x) ^! a	 (4.2-2)

and

= (xJs 1 (x) ^i:	 (4.2-3)

The a-cuts in equations (4.2-2) and (4.2-3) are simply intervals on the tax is,
and hence for each a we have

A ,, = [ar', a("}
	

(4.2-4)

and

B, = [b'" ) , 6"}

Thus the luzzy numbers A and B can he described (using the resolution
principle--see Section 2.7) as collections of intervals, that is,

A 
=	

(IA 	 V a- [ay,aY'J

and

B =	 a -B =	 a' [/', b Y' ) ]	 (4.2-7)

To simplify matters, we will not use the rather awkward representation of the
two numbers given by equations (4.2-6) and (4.2-7) but will, instead, use
equations (4.2-4) and (4.2-5), which we call the cii'ot or Internal r4pres('ntution
of A and 13 with the understanding that the number is the collection of all
"slices," all a-cuts as n varies from 0 to 1).

Having two different ways of representing fuzzy numbers, through mein-
bcrslup functions and through a-cuts or internals, gives us the choice of
defining arithmetic operations either through the extension principle
(i.e., through a fuzzificatiori of arithmetic operations on crisp numbers) or,
equivalentl y, through the operations of interval arithmetic. This last approach
is often more practical and stiaightforward as we will see in several examples.

Let us 1TQ next to the definition of addition, subtraction, iiiultiplication, and
du'isioo with juzzy numbers. Although we will define operations for two
numbers A and B. they are generally true for more than two numbers. A
word of caution: Some of the properties of crisp numbers—for example,



84 FURY NUMBERS

(7 -- 3) X 3 = 7—ma' not be valid for arithmetic operations involving fuzzy
numbers. We will see that usually when fuzzy numbers are involved we have
that (7 3) X 3 may not equal 7.

4.3 ADDITION

When adding two fuzzy numbers A and B we seek to compute a new fuzzy
number C = A + B. The new number C is uniquely described when we
obtain its membership function, (z) 4,11(z), with z being the crisp
sum of x and y, the elements of the universe of discourse of A and B. The
addition of A and B may be defined in terms of addition of the a-cu' of the
two numbers as follows:

A + B	 [a" ) , aJ ± [b, b]	 (4.3-1)

where [a'j " > , at2"} is the collection of intervals representing the fuzzy number
A, and [by >, b] is the collection of intervals representing the fuzzy number
B. Intervals are added by adding their corresponding left and right endpoints,
and therefore equation (4.3-1) becomes

.4 + B = [a 0 ) +	 a"t ± b(' ) ]	 ( 4.3-2)

Equation (4.3-2) indicates that the new number is also a collection of
intervals with endpoints obtained from the endpoints of A and B.

Another way of defining fuzzy addition is through the extension principle
(Section 2.5). We give here a cursory description of how this is done; more
detailed treatments may be found in Dubois and Prade (1980) and in Tcrano
ct al. (1992). Suppose we want to add two crisp numbers x and y. The result
is another crisp number z = x + y. Now, if x and y are variables, obviously
their sum may be thought of as a funct:m of x and y; that is,

z(x,y)	 x -i-y	 (4,3-3)

Fuzzifying x and y--that is, defining fuzzy sets on x and y—results in a
fuzzificd function, z = f(x, y). We saw in Section 2.5 how we can use the
extension principle to obtain the fuzzy set C on z = f(x, y). Suppose that we
have two fuzzy numbers, A and B, defined over x and y (the universe of
discourse of real numbers). According to the extension principle, their sum is
a fuzzy set on z denoted as C, whose membership function is

AC( Z )	 V [ A (x) A ILB (Y)]	 (4.3-4)
z -x
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Equation (4.3-4) tells us that to compute the grade of membership of a
certain crisp number z to the fuzzy number C, we take the maximum of the
minima of the grades of membership of all pairs x and y which add up to z.
How equation (4.3-4) works will be seen in Example 4.2, where a rather
simple tabular way of carrying out the max—mm operations will he presented.

Example 4.1 Addition of Discrete Fuzzy Numbers. Let us compute the sum
C of two fuzzy numbers A = 3 and B 7 defined as

A =- 3 = 0.3/1 +0.7/2 + 1.0/3 + 0.7/4 + 0.3/5 + 0/6 (E4.1-1)

B = 7 = 0.2/5 ± 0.6/6 - 1.0/7 + 0.6/8 -I 0.2/9 ± 0/10 (F4.1-2)

and seen in Table 4.2. We compute C by adding the a-cuts of A, B in
accordance with equation (4.3-2). We see from Table 4.2 that when ci = 0.4,
for example, the 0.4-cuts of A and B are

A 0 . =	 a°] = [2,4]	 (E4.1-3)

andd

B04 = [ b°), b° 4 J = [ 6,8]	 (E4.1-4)

The intervals in equations (E4.1-3) and (E4.1-4) are shown as shaded "slices"
of cells in Table 4.2. According to equation (4.3-1) the 0.4-cut of C is the sum
of the two intervals given by (E4.1-3) and (E4.1-4)—that is,

COA- [ a 10.4)	 (04)1-	 1 , a 2 j + [ b u , b04)]

= [a °> ± b° t ,
(jJ4) 

I . b04)}

= [2 + 6,4 + 8]

= [8,12]	 (E4.1-5)

We can obtain the same result from Table 4.2 simply by adding the endpoints
of the shaded rows. We repeat this for each ci to compute the entire sum.
We start front the bottom of the table and go up in a row-by-row manner
identifying the corresponding intervals of the two numbers and adding them
up. The result is the number shown in Table 4.3. The 0.4-cut of C is
indicated as a shaded group of cells in the table. As seen from the table, the
new fuzzy number reaches unity at crisp number 10 (in the universe of
discourse shown at the bottom) and therefore we think of it as a fuzzy
number 10. Thus we see that the sum is 7 + 3 = 10, as would also he the
case with crisp numbers. 0
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Table 4.2 Fuzzy number5 3 and 7 In Example 4.

M MM
MENEEMEMEM

ENEEME
MMENIM NONE
MEMEMEMEME

ME NIOMEMMM
MMEEMENEEN

IMEEME ME
MMMMMIMEMMM
MMMMMMMMMM

3

NONE MENEM
ME NEENIMME110
MEN IMMIMMENE
MEMIMMMIMMMEN
MIMEMMIMMIMEMEM

ONE HMMIMMIMM
MEMMMMMMMIME
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Table 4.3 Sum of fuzzy numbers 3 and 7 In Example 4.1

aaIMuI _

MEMEMEMEMMMMMMMMM

MMENEEMEMMMMMEEME

MMMMEMEMEEMEMEEME

- MMMMMMMMMMMMMMM

 MMMMMMMMMMMMMMMM

Example 4.2 Addition of Fuzzy Numbers Through the Extension Principle.
In this example we compute the sum of the two numbers A and 1? of

Example 4.1 using the alternative definition of addition through the exten-
sion principle, namely, equation (43-4). At first glance, equation (4.3-4) looks
somewhat esoteric. We present here a rather simple technique for using it.
The Same technique may be used with other fuzzy arithmetic operations as
well (Kaufrnann and Gupta, 1991). Let's repeat equation (4.3-4) here:

V [ j. (x) A 

A convenient way to compute the sum according to equation (E4.2-1) is to
create a table as shown in Fable 4.4. We take the support of B and make as
ninny columns in the table as there are elements in the support; and similarly
we take the support of A and make as many rows in the table as there are
elements in the support of A. We recall that the support is the part of the
universe of discourse that has nonzero membership. A and B can be

10:
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TbIe 4.4 Adding fuzzy numbers through the extension principle

Support	 of B

yJ	 y= 2	 y=3	 y=4	 y=5	 y=O	 y=7	 y=8	 y=9	 y=lO

B

A

	0.0	 0.0	 0.0	 0.0	 0.2	 0,6	 1.0	 0.6	 0.2	 o,(

	

.z-1	 03	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3

	

0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.(
S	 x=2	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7

	

0.0	 0.0	 0.00.0	 0.2	 0.6	 1.0	 0.6	 0.2	 o.c
P	 x=3	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0

P	 0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.1
o	 x=4	 0.7	 10.7	 0.7	 1 07	 0.7	 0.7	 0.7	 10.7	 0.7	 0.7
r	 0.0	 0.0	 0.00.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.

	

X--5	 0.3	 1 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3

	

0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 o.
o	 x=ó	 0.0	 10.0	 0.0	 . 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0

f	 0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 o.c

	

X-- 	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 00
A	 0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.1

	

X=8	 0.0	 10.0	 0.0	 0.0	 0J	 0.0	 0.0	 0.0	 0.0	 0.0

	

0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.1

	

X--9	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0

	

0.0	 0.0	 0.0	 0.0	 0.2	 0.6	 1.0	 0.6	 0.2	 0.
x=lO	 0.0 -	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0

interchanged in terms or rows and columns, but for the moment let's make
columns from the support of A and make rows from the support of A. In
every cell of the table we put at the lower left corner the grade of member-
ship of x to A and put in the upper right corner the grade of membership of
y to B. Thus we have /LA(x) in the lower left corner and L(y) in the upper
right corner as shown in Table 4.4. Now, let's take another look in the
equation above. It calls for taking the maximum of pairs of singletons that
add up to a certain z. For example, suppose that have z = 9. There are three
different ways to get z = 9: adding y = 8 and x I, adding y = 7 and
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x 2, adding y = 6 and x = 3 and so on. Both elements for each addition
are found inside a cell. These are the shaded cells shown in Table 4.4.
Equation (E4.2-1) says that for z = 9 we need to take the maximum of the
minima of the three pairs of grades of membership inside the shaded cells.
First we find the minimum of the grades of membership inside each cell—that
is,

A B(8) = 0.3 A 0.6	 0.3

A .L(7)	 0.7 A 1.0 = 0.7

PA(3) A p ( ô ) = 1.0 A 0.6 = 0.6

P.,(4) A p.13 (5) = 0.7 A 0.2 = 0.2

A	 4) = 0.3 A 0 =0

A j.(3) = 0 A 0 = 0

/LA(S) A i(1) = 0 r 0 = U	 (E4.2-2)

Now if we look only at the shaded part of the table, we can replace the
contents of each cell with the minima found in equations (E4.2-2)—that is,

y = 8
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Next, we take the maximum of these numbers, which in this case is 0.7; this is
the maximum with respect to z = 9 in equation (E4.2-1). At this point we
have completed the entire operation on equation (E4.2-1) for z = 4—that is,

Al-B(9) = [ ( 0.3) v (0.7) v (0.6) v (0.2) v (0) v (0) v (0) v (0)]
= 0,7	 (E4.2-3)

This is the grade of membership of z 9 to the sum C = A + B. We repeat
this procedure for all other cells to obtain the membership function of C.
The result is

C = 015 + 0.2/6 + 0.3/7 +'0.6/8 + 0.7/9 + 1.0/10

± 0.7/I1 + 0.6/12 + 0.3/13 + 0.2/14 + 0/15

which is the same number as the one we found by the interval approach in
Example 4.1—that is, the number shown in Table 4.3.

4.4 SUBTRACTION

The difference C of two fuzzy numbers A, B may be defined either through
interval subtraction utilizing the a-cut representation of the two numbers or
through the extension principle. Using a-cuts we subtract them as follows

A - B[ay', a-,] - {by, bY]	 (4.4-1)

where [ar, ac,j is the collection of closed intervals representing A, and
[b0), b] is the collection of closed intervals representing B. Two intervals
are subtracted by subtracting their left and right endpoints, and thus equa-
tion (4.4-1) becomes

.4 - B = [ay - bY t ,	- b']	 (4.4-2)

The alternative way to define the difference of fuzzy numbers A and B is
through the extension principle—that is, by fuzzifying a function z = x - y.
Fuzzjficatjon means that we define fuzzy sets on the universes of discourse
where the crisp elements x and y are found. As a result, z gets fuzzified as
well; that is, there is a fuzzy set C over the universe of discourse of the z's,
which is the result of fuzzifying the function z = f(x, y) = x - y. The mem-
bership function of C = A - B can be computed from

9A-B(Z)	 V [(x) A B(Y)]	 (4.4-3)

Equation (4.4-3) gives, of course, the same number C obtained through
(4.4-2).
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Example 4.3 Subtracting Fuzzy Numbers as Intervals. Let us compute a
fuzzy number C = 7 - 3, where the fuzzy numbers 7 and 3 are as defined in
Table 4.2 (Example 4.1);

A = 3 = 0.3/I + 0.7/2 + 1.0/3 ± 0.7/4 + 0.3/5 + 0/6 (E4.3-1)

B = 7 = 0.2/5 + 0.6/6 + 1.0/7 + 0.6/8 + 0.2/9 + 0/10 (E4.3-2)

Subtracting the two numbers is the same as inteial subtraction at each a.
From Table 4.2 we see that when a = 0.3, for example, the 0.3-cuts of the
two numbers are

A	 = [ a (,() 
3 ac,°] = [1,5]	 (E4.3-3)

and

B3 , = [ iO3, b t } = [ 6,8]	 (L4.3-4)

The n-cut of (' at n - 0.3 is the difference of the a-cuts in by (E4.3-3) and
(E4.3-4)

C)	 b1 	 [a 1 3 , a''}

= [b03) - a 33 b 3) -

= [6— 5,8	 1]

= [17]	 '	 (L4.3-5)

shown as a 'slice" of shaded cells in Table 4.5. In a similar manner we
compute the a-cuts of C at the other levels of a and obtain the fuzzy
number

C = 0.2/0 + 0.3/1 ± 0.6/2 ± 0.7/3 -- 1.0/4

+ 0.7/5 + 0.6/6 + 0.3/7 . 0.2/8

which is also shown in Table 4.5. As may be seen from Table 4.5, C can be
considered a fuzzy 4. [1

Example 4.4 Subtracting Fuzz y Numbers with Continuous Membership
Functions. Consider the two triangular fuzzy numbers A and B shown in
Figure 4.4. We want to compute their difference—that is, find a fuzzy
number C = .4 - B. When continuous (or piecewise continuous) membership
functions are used, we subtract them by parameterizing their membership
functions by a and subtracting their a-cuts. The membership functions of
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Table 4.5 DIfference of fuzzy numbers 7 and 3 In Example 4.3

4.

I
I	

momI	
ENNISI	
MEMEI ..

I MEN MEE
 MENI	

MEI	
MEI

I ME EMME
I ME MMEMMEM
I	 MMMMMM

/tA(x)

a=O6',

	

/	 A	 A ................

Figure 4.4 SubtractIng two fuzzy numbers C A B.
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A, B are

fLA(x) = 0,
= X —7,

- — x + 9,

= 0,

x 7

7 x ^ 8

8 ^x c 9

x^9 (E4.4-1)

and

0,

= x - 4,	 4 x :5 5

= — x + 6,	 5 :5^x :,; 6

= 0,	 x ^: 6	 (E4.4-2)

Let us parameterize them by a. To simplify matters, consider the left and
right side of each membership function separately. There is one equation for
the left side and another for the right side of the membership function of A,

and likewise for B. Thus, we have a total of four equations to parameterize.
From equations (E4.4-1) we take the part that describes the left side of A,

(x) x - 7, and write it in terms of a. We note that the value of a is the
same as the value of the membership function at the left endpoint a" of an

a-cut, and	 is the value of x at that point. Thus we have for the left side

of A,

a =	 - 7	 a = a ± 7	 (b4.4-.)

where	 is the left endpoint of the "slice" of A at level a.

Similarly for the right side of A we paramete rize the right endpoint a

of each a-cut in terms of a as

(L4.4-4)

Using equations (E4.4-3) and (E4.4-4) the a-cut representation of A is

written as

	

A = [(a), dI	 [a ± 7, -a + 91	 (E4.4-5)

The membership function of the number B is parameterized in terms of a in

a similar fashion. We express the left endpoint b" t in terms of a by

ab4b+4	 (E4.4-6)
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The right endpoint by' is given as a function of	 by

a —hy'+6=b'= -a+6	 (E4.4-7)

From equations (E4.4-6) and (E4.4-7) the interval representation of B is

B = [by', bY] = [ a ± 4, - a + 6]	 (E4,4-8)

From the a-cut representations of A and B (equations (E4.4-5) and (E4.4-8)),
we find their difference by subtracting their corresponding intervals at each
Cr, that is,

C A - B = [ay' - by', aY - by']

= [(a + 7) - (—a + 6), (—a ± 9) - (a ± 4)]

= [2cr 4- 1, — 2cr + 5]	 (E4.4-9)

Therefore, C is

C = I y', cy'] = [2cr 4 1, — 2cr + 5]	 (E4.4-10)

We note that the left and right endpoints of C are functions of a. To express
the fuzzy number C in terms of a membership function, we derive equations
for the left and right side of C. The left endpoint cy' in equation (E4.4-10) is
equal to the value of x when the left-side membership function's value is cc.
Similarly, the right endpoint cy' is equal to the value of x when the
right-side membership function is a. Thus the equation of the left side is
obtained by setting cy' = x and recalling that a = /.c:(x), where	 (x) is
the left-side membership function for C. We have

x = 2(x) ± 1 => p(x) = (x - 1)	 (E4.4-11)

In a similar manner we obtain an equation for p(x), the right side of the
membership function of C, and solve it to obtain the membership function of
the right side—that is,

=0,

= (x - 1),

=

= 0,

X < I

1 ^x:!^3

3	 x:c:_5

x 5

(E4.4-12)

(E4.4-13)

X = —2j.(x) ± 5	 c(x) = —(x —5)

From equations (E4.4-11) and (E4.4-12) we obtain
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The number C described by equations (E4.4-11) is shown in Figure 4.4. Note
that C has its peak at crisp 3, and therefore it can be considered as a fuzzy
number 3 (as expected since, 8 - 5 = 3). 0

4.5 MULTIPLICATION

As in the case of addition and subtraction, fuzzy number multiplication may
be defined either as a-cut multiplication or through the extension principle.
Using the a-cut representation of two numbers A, B, their product is
defined as

4 B	 [aY', a	 [bt, bY']	 (4.5.1)

In general, the product of two intervals is a new interval whose left endpoint
is the product of the left endpoints of the two intervals and the right
endpoint is the product of the right endpoints of the two intervals. Thus,
equation (4.5-1) is

A B = [ a 11 .b	 ab"]	 (4.5-2)

Alternatively, we define the product of A and B through the extension
principle by fuzzifying the function z(x, y ) -= x - y . The extension principle
tells us that their product is a fuzzy set on :, denoted as A B, whose
membership function is

AB()	 V[4( x ) A B(Y)]	 (4.5-3)

Of course, equations (4.5-2) and (4.5-3) are equivalent in that they give us the
same number C A B

A special case of fuzzy multiplication is the product of fuzzy number by
crisp number. Let k be a crisp positive real number and A a fuzzy number
defined over the universe of discourse of positive real numbers also. We
define the product of k with A either as interval multiplication or through
the extension principle. Crisp number k may be viewed as an interval also,
a trivial interval whose left and right endpoints are the same—that is,
k = [k, k]. We use equations (4.5-1) and (4.5-2) to obtain the product of k
with A as

/c A	 [k, k] [ c4), aI
= [" ) ,ka c,]	 (&5-4)

Alternatively, we define the product of fuzzy number A with a crisp number
k, k -A, through the extension principle. It may be shown using equation
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(4.5-3) that the membership function of k A is

kA( x ) = 1L4()	 (4-5-5)

where equations (4.5-4) and (4.5-5) give the same result.

Example 4.5 Multiplication of Two Fuzzy Numbers. Consider the triangular
fuzzy numbers A = 8 and B = 2 defined over the positive real numbers as
shown in Figure 4.5 (since both numbers are defined over the same universe
of discourse we simply use x to indicate an element of the universe of
discourse, instead of x, y, etc.). We want to compute a fuzzy number C
which is the product of A and B—that is, C = A B. Let us do this through
a-cut multiplication —that is, by parameterizing their membership functions
and multiplying their a-cuts in the manner indicated by equation (4.5-2).

First, we write the analytical expressions for the membership functions of
A and B:

x<4

TX 	 4:!^x<8

= —x+3,	 8:!^x:!^12

= 0,	 x > 12	 (E4.5-1)

II	
1	 i-

0	 10	 20	 30	 40	 50	 60	 70	 80
X

Figure 4.5 The product C A - B of numbers A = 8 and B - 2 in Example 4.5.
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and

	

1.LB(X) = U,	 X	 0

=x,	 0x 2

=—x±,	 2 x 6

	

= 0	 x	 6	 (E4.5-2)

Next, we parameterize the membership functions in equations (E4.5-1) and
(E4.5-2) in terms a (a procedure of renaming the left and right side of the
membership functions and thus the endpoints of all intervals in terms of a).
Let us take the left and right side of each membership function separately
and rewrite it in terms of a. It should be noted that a given value of a is the
same as the value of the membership function at that level. From equation
(E4.5-1) we have that the left and right endpoints of A are

a	 - 1	 a' = 4( a + 1)	 (E4.5-3)

and

a -	 + 3	 a" = —4(a 3)	 (E4.5-4)

Using equations (E4.5-3) and (E4.5-4) we obtain A as

A	 [c4,acI	 [4(a ± 1), —4(a —3)] 	 (E4.5-5)

Similarly, we parameterize the membership function of B and write its left
and right endpoints at each a as

	

a = -b	 b = 2a	 (E4.5-6)

and

a = —b + bY = —4(a -	 (E4.5-7)

Thus, from equations (E4.5-6) and (E4.5-7) the interval representation of
B is

B= [bj',	 = [2a, —4(cx - 4)]	 (E4.5-S)

Having the endpoints of A and B in terms of a, we multiply the two
numbers using equation (4.5-2) and obtain

C=A B = [ a . b, aY . b,")]

= [4(a + 1) 2a, —4(a— 3) .(4(a - 4))]

= {8a 2 ± Sa, 16a 2 - 72a ± 721	 (E4.5-9)
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The interval representation of C is

C = [c, cYJ = [8cx 2 + 8a, 16cr 2 - 72  + 721	 (E4.5-10)

where the left and right endpoints in equation (E4.5-10) are functions for a.
We can obtain the membership function of C as well. Equation (E4.5-10)
provides us with left and right endpoints of each a-cut. The equation for the
left-side membership function .c(x) is obtained by setting = x and
recalling that a = 4(x). Thus, we obtain an equation involving L(x),
which is

8(	 (x)) + 8(x) - x = 0	 (E4.5-11)

Solving quadratic equation (E4.5-1 I) for )i:(x), we obtain two solutions and
accept only the value of /1(x) in [0, 11, ignoring the other one. The result is

x) = - +	 +-21 x	 (E4.5-12)

Similarly we obtain an equation for,a(x), the right side of the membership
function of C, and solve it, keeping the solution which is within [0. 1]. The
result is

= (4.5 -	 - 4(4.5 -	 (E4.5-13)

The membership function of C is

j.c(x) = 0,	 x:!^0

=—+h/i+x,	 0^x<16

= +(4.5 - f(4.5) 2 - 4(4.5 —x))	 16 :!^x :5 72

I	 x ^ 72 (E4.5-14)

as shown in Figure 4.5. It should be noted that C has its peak point at crisp
16 and therefore may be considered a fuzzy number 16. It should also be
noted that multiplying two fuzzy numbers results in a new number whose
shape has been considerably changed, no longer having a triangular member-
ship function with linear sides but in this case parabolic sides. Multiplication
in general has the effect of "fattening" the lower part of the membership
functions involved. 0
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4.6 DIVISION

We can find the quotient of two fuzzy numbers A and B either through
interval division or by the extension principle. In terms of their a-cut
representation, we write the quotient of the two numbers as

A	 B	 [a, aY1 -- [by, bY]	 (4.6_1)

In general, the quotient of two intervals i s a new i nterval given by

aY	 a°'
[a'1 ', a]	 [by:, bYI	 ,

Hence, provided that b( :?L C) and b° ^ 0, the quotient of A, B is

a	 uY
A B =(4.6-2)

Alternatively, we find the quotient of A and B through the extension
principle by fuzzifyng the function zU, y) = x - v, where x and y arc crisp
elements of the universe of discourse of A and B. The extension principle
tells us that A - B is a fuzzy set with membership function

A	 (')]	 (4.6-3)

The results obtained through equations (4.6-4) and (4.6-2) are of course the
same. Equation (4.6-3) may he used in the manner shown in Example 4.2. We
construct a table such as Table 4.4 and proceed as outlined in the example. A
word of caution: Fuzzy number division is not the reverse of multiplication;
that is, generally it is not true that (A ± B) x C = A.

Example 4.6 Division of Fuzzy Numbers. Consider the triangular fuzzy
numbers A = 8 and B = 2 used in Example 4.5. Let us find C = A - B
using interval division. The analytical expressions for the membership func-
tions of A and B are given in Example 4.5 [equations (E4.5-1) and (E4.5-2)},
and their parameterized interval representation is found in equations (E4.5-5)
and (E4.5-8), which for convenience we repeat here:

A = [a,a] = [4(a + 1), —4(a - 3)J	 (E4.6-1)

B = [by , bY	 - 4)]] = [2a, —4(cr	 (E4.6-2)
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Thus their quotient C = A	 B is obtained using equation (4.6-2):

a	 4'
C=A —B= b'b°

4(a + 1)	 —4(a - 3)

= [_4	 -	 2a	 J	
(E4.6-3)

( 

The a-cut representation of C is

(cr+1)	 2(a-3)
-	 C = [cy, cY'] = -	 3 , - -	 ( E4,6-4)

(a— i )	 a

where the left and right endpoints are functions of a. We may also express C
in terms of a membership function by deriving equations for the left and right
sides of the membership function as we did in Example 4.5. Equation
(E4.6-4) gives us the endpoints of the interval of each a-cut. The equation of
the left side is obtained by setting c	 = x and recalling that a =
where,	 (x) is the left side membership function for C. The result is

- 1
(x) = (E4.6-5)

Similarly we obtain an equation for p(x), the right side of the membership
function of C, and solve it to obtain

/I C( X) =( E4.6-6)

The quotient is shown in Figure 4.6, and the analytical description of the

p'x) B
	 A

0	 10	 20	 30	 40	 50	 60	 70	 80

Figure 4,6 The quotient C - A - B of the fuzzy numbers A 8 and B = 2 in Example
4.6.
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membership function of C is

x<0
4x-1

= -	 ,	 0<x<4x+1
6

=

	

	 4 x:!^72x±2
= 0,	 x	 72	 (E4.6-7)

It should be noted from equation (E4.6-7) that the quotient is a new fuzzy
number that no longer has a triangular shape with linear sides. As may be
seen from the figure, the fuzzy number C only asymptotically reaches zero
and hence we may consider the use of a level jhzzy set (Chapter 2) in order to
limit and exclude trivially small grades of membership—for example, less
than 0.2. 0

4.7 MINIMUM AND MAXIMUM

The minimum and maximum of two fuzz y numbers A, B result in findi.ig the
smallest and the biggest one, respectively, and may he defined either ftrough
their interval representation or by the extension principle. In interval arith-
rnetic the minimum of two intervals is a new interval whose left endpoint is
the minimum of the left endpoints of the original intervals and whose right
endpoint is the minimum of the right endpoints of the two intervals. Thus the
minimum of A, B is a new number, A A B, given by

A A B	 [ci, aY] A [b, b")]

=	 A b, aY A b ) J	 ( 4 7-1)

Alterna.ively, the minimum of two fuzzy numbers ma y be obtained through
I he extcron principle. The membership function of A A B is

L4(Z)	 V [A(X) J L()j	 (4.7-2)-. A)

In an analogous manner we define the maximum of two fuzzy numbers A
and B, recalling that in interval arithmetic the maximum of two intervals is a
new interval whose left endpoint is the maximum of the left endpoints of the
original intervals and whose right endpoint is the maximum of the right
endpoints of the two intervals. Thus the maximum A V B is given by

A V B	 [ar ) , aY ) ] V [by, b)]

=	 v	 a" \' b.) 1 	 (47-3)

Alternatjveh by the extension principle the membership function of the



02	 FUZZY NUMBERS

B	 A

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20
X

Flguro 4.7 The rninimurn and maximum of the two numbers A 8 and 8 2 used in
Example 4.6.

maximum of the two numbers A and B is

z)	 V [5(x) A AB(Y)1	 (4.7-4)

It should he noted that the maximum and minimum of two fuzzy numbers
are different than the maximum and minimum of membership functions used
in connection with the union and intersection of two fuzzy sets. Let us
illustrate this by finding the minimum of the numbers A = 8 and B = 2 used
in Examples 4.5 and 4.6 and redrawn in Figure 4.7. Equations (4.7-1) or
(4.7-2) do not give us the little wedge between A and B, which is the
intersection of A and B. They will simply give us the number B = 2 itself,
which is the smallest of the two fuzzy numbers. Similarly the largest of the
numbers is found by using the maximum operation of either equation (4.7-3)
or (4.7-4), which is simply the number A = 8, as shown in Figure 4.7. For
more intricately overlapping membership functions the maximum or mini-
mum may not simply be a number with the membership function of either A
or B, hut may have a totally new shape (Kaufmann and Gupta, 1991).
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PROBLEMS

1. The fuzzy numbers A and B are given by

A = 0.33/6 0.67/7 + 1.00/8 + 0.67/9 -- 0.33/10

B = 0.33/1 + 0.67/2 1.00/3 + 0.67/4 ± 0.33/5

Subtract B from A to give fuzzy number C. Draw a sketch of C.

2, Multiply fuzzy numbers A and B of Problem 1. Draw a sketch of C.

3. Divide fuzzy number A by fuzzy number B where the fuzzy numbers are
defined in Problem 1. Draw a sketch of C.

4. Modi' Example 4.2 to subtract the two fuzzy numbers using the extension
principle.

5. Consider the fuzzy numbers A and B described by the membership
functions:

	

= 0,	 x	 8,

	

1	 8
-	 S	 x:!^18,

	

10	 io

1	 32
= - —x ± -,	 IS <x < 32

14	 14	 - -

	

=0,	 x>32,

	

= 0,	 x g —3,

	

1	 1
—3x:!^6,

1	 4
=	 —X-r—,	 6:L^x::^24,

18	 3

	

= 0,	 x>24
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Compute:
(a) A (1)11,

(b) A (-) B,
(c) A (--) B.

. Repeat the computations in Problem 5 for the fuzzy numbers A and B
given below, and using C state and shuw the distrihutivity property (with
respect to addition and multiplication)

A = 0,6/1 + 0.8/2 ± 1.0/3 ± 0.6/4

B = 0.5/0 + 0.7/1 + 0.9/2 + 1.0/3 + 0.4/4

C = 0.7/1 + 0.8/2 + 1.013 - 0.3/4
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LINGUISTIC DESCRIPTIONS
AND THEIR ANALYTICAL

FORMS

5.1 FUZZY LINGUISTIC DESCRIPTIONS

Fuzzy linguistic descriptions (often called jzzy systeMs or simply linguistic

descriptions) are formal representations of systems made through fuzzy if/then

rules. They offer an alternative and often complementary language to con-
ventional (analytic) approaches to modeling systems (involving differential or
difference equations) Informal linguistic descriptions used by humans in
daily life as well as in the performance of skilled tasks, such as control of
industrial facilities, troubleshooting, aircraft landing, and so on, are usually
the starting point for the development of fuzzy linguistic descriptions. Al-
though fuzzy linguistic descriptions are formulated in a human-like language,
they have rigorous mathematical foundations involving fuzzy sets and rela-
tions (Zadeh, 1988). They encode knowledge about a system in statcmens of

the form

if (a set of conditions are satisfied)

then (a set of consequences can be inferred)

For example, in process control the desirable behavior of a system may be
formulated as a collection of rules combined by the connective ELSE such as

if error is ZERO AND Aerror is ZERO then Au is ZERO ELSE

if error is PS	 AND Aerror is ZERO then .0 is NS	 ELSE

if error is SMALL AND .error is NS	 then .0 is BIG

105
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W5 Ter.. I	 TAFAUJINAF8

• Fuzzy Sets
• Fuzzy Relations
• Implication Operators
• Composition

• Variables
• Propositions
• if/then  Rules
• Algorithms
• Inference

Figure 5.1 Fuzzy linguistic descriptions possess a linguistic form as well as a back-
ground analytical form involving fuzzy set operations.

where error and Aerror (change in error) are linguistic variables clescrihine,
the input to a controller and u is a linguistic variable describing the change
in output. A linguistic variable is a variable whose arguments are tizzv
numbers (and more generally words modeled by fuzzy sets), which we refer to
as fuzzy values. For example, in the rules above the fi:zy values of the
linguistic variable em?r are ZERO, I'S (positive small), and SMALL, the
values of enyr are ZERO and AS (negative small) and the values of AU are
ZERO, NS, and BIG.' A specific evaluation of a fuzzy variable—for exam-
ple, "error is ZERO'—is called fizzy proposition. Individual fuzzy proposi-
tions on either left- (LHS) or right-hand side (RHS) of a rule maybe
connected by connectives such as AND and OR— for example, "error is PS
AND Icrror is ZERO." 2 Individual if/then rules are connected with the
connective ELSE to form a fuzzy algorithm. Propositions and if/thert rules in
classical logic are supposed to he either true or false. In fuzzy logic they can
be true or false to a degree.

The convention we follow is to use lowercase italics for linguistic variables and capital italics for
fuzzy values, unless otherwise specified or implied by the context.
2 lliesc are also called a,z:eceth-nt (L115) and conscquenz (RIIS) propositions. We find alterna-
tive designations for the 1.115 and P.115 of a rule in different application areas. In proccs.s
conttol, for example, the if jars is often referred to as the situation side and the t)rc,t pa's is
often refei ted to as the fltt0ft side.
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Figure 5.1 shows schematically what is involved in linguistic descriptions.
In the front end we find linguistic fonns representing a system in a human-like
manner. In the background we have rigorously defined analytical forms
involving fuzzy set operations, relations, and composition procedures such as
the ones we saw in Chapters 2 and 3.

Despite the difference in appearance, linguistic and conventional (ana-
lytic) descriptions are in fact equivalent to each other. Both can be used to
describe the same system. However, the computational costs incurred using
one or the other may he significantl y different. Consider, for example, a
function y = f(s) shown in Figure 5.2, describing analytically a specific
relation between x's and y's.3 The same relation may be described by listing
all possible, or at least a sufficiently large number of (x, y) pairs or points of
f(x), indicating (for example), that when x = a the value of the function is
y = b 1 , when x = a the value of the function is v b, when x = ct the
value of the function is y = b,, and so on. Knowing a such points we may
alternatively represent y = f(s) by listing the pairs

(a, b1)

b:)

(a,, h,)

(a,,, b,)

Of course this representation is an acceptable approximation of the analytic
representation only when a becomes sufficiently large, with the precision of
the approximation being controlled by choosing an appropriate a. A point
(a,, b) can also be thought of as a crisp if/then rule of the form, "if x is a
Inca y is b.' Obvioualy, the p airs of (5.1-1) may be expressed linguisticall y as
crisp rules:

if	 x is a	 then Yisb,

i	 .v is a	 then y is b

if	 X is a, then Y is b,

if	 x is a, then v is b

we saw in Chapter 3, functions are a panicular kind of relation allowing one and onIN one
value of v for each x. This is also referred to as a loan)-to-one mapping.
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crisp point (a,, b)

a 1 	a,	 a1	 ax
Figure 5.2 The function y ((x) may be thought of as a collection of crisp points
(ci, b), and each point may also be articulated as a crisp if/ then rule.

Every representation has a cost. We can think of it as related to the number
of symbols used and the complexity of operations involved, but actually it
involves much more—for example, the cost of extracting the knowledge used,
its realization in a machine, the cost of updating and maintaining it, and so
on. When we use several crisp rules torepresent y = f(x) in the manner of
(5.1-2), we are obviously using a more costly representation in a computa-
tional sense. By comparison, the analytical description y = f(x) offers a more
economical way of describing the function. In this sense the analytical
description y = f(x) is said to he a more parsimonious description than
(5.1-2), in reference to the reduced cost of representation.

Intuitively we expect the crisp linguistic rendition of y = f(x) to become
more accurate with increasing number of rules. Having 1000 crisp rules for
f(x) is preferable to, say, 10 rules. However, the number of crisp if/then
rules needed to describe a function such as the one shown in Figure 5.2
actually depends on the specific nature of f(x) as well as our tolerance for
approximation error. Take, for instance, a linear function, a straight line
going through the origin. In this case, one crisp if/then rule may suffice since
an additional point on the x–y plane outside the origin uniquely identifies a
straight line. On the other hand, a very "noisy" function with many "spikes"
and slope changes will require considerably more rules. In practical terms,
however, an approximate description of y = f(x) may be acceptable, sonic-
times even preferable. We are often interested in associations such as if.v is
"about a," then y is "about he"; that is to say, we are interested not in a crisp
point of f(x) but in an area or neighborhood around it point. This is
illustrated in Figure 5.3, where instead of crisp point (a,, b,) we consider the
circled area around	 b) which may be thought of as an area-mm-point, an
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y'J	

crisp point (a1 , b1)

a1	 a,	 x

Figure 5.3 Building a linguistic description of the function y 	 f( x)

area obtained from a point. Such an arm-cuin-point may be de scribed by a
fuzzy if/their rule. Let us consider "about a i " to he a fuzzy number A, on the
universe of discourse of the x's and consider "about b,' to be a fuizy number
B on the universe of discourse of the y's. As we will see later on
5.2), we can define a linguistic variable x whose arguments are fuzzy
numbers on the x-axis, such as A 1 , and a linguistic variable y whose
arguments are fuzzy numbers on the y-axis, such as B1 . Hence the area-
corn-point "about (a,., b,)" cart he described by a fuzzy if/then rule of the
form

if xis A 1 then y is B, (513)

The analytical form of rule (5.1-3) is a fuzz y relation R,(x, y) called the
implication relation of the rule. I-low we obtain this implication relation is a
rather complicated issue which we will examine in more detail in Section 5.3.
For the moment we assume that each fuzzy if/then rule has an implication
relation.

The function y = f(x) may be approximated by collecting Several fuzzy
if/then rules—for example,

if	 x is A 1 then y is B 1 ELSE

if x is A, then y is B ELSE

if	
1.4)

.r is A, then) is B, ELSE	
(5

if	 x isA, then y is B,.
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where A 1 , A,_., A ...... A, are fuzzy numbers on the .t axis and
B 1 , B,,.. . , B, ... I B are fuzzy numbers on the y axis. The rules of (5.1-4)
are combined by the connective ELSE, which could be analytically modeled
as either intersection or union [and more generally as T norms or S norms
(see Appendix A)] depending on the implication relation of the individual
rules (we will have more on ELSE in Section 5.5). The Collection of if/then
rules in (5.1-4) is called a fizzy algorithm, and its analytical form is a relation
R,(x, y) between the x's and the y's, called the algorithmic relation. As may
be expected, the algorithmic relation depends on the implication relation of
constituent rules.

The transition from conventional descriptions, such as y = f(x), to linguis-
tic descriptions addresses the fact that functions are often mathematical
idealizations. In most real-world problems, we do not have a curve such as
the one shown in Figure 5.2 but rather something like the region shown in
Figure 5.4. For example, suppose that the function y = f(x) is viewed as a
control policy—that is, a prescription recommending a control action y—for
each stale x. In many applications, the control system changes with time
(time-ua,'ying) and in general manifests nonlinear and complex behaviors.
Hence, the control policy may actually be a more general relation R(x, y) as
shown in Figure 5.4. Figure 5.2 could in fact be an idealization of the
real-world control policy shown in Figure 5.4. We recall (sac also Chapter 3)
that a function is a special kind of relation that associates a unique y with
each x. A function performs what is called a many-to-one mapping; that is,
several values of x may have the same a1ue of y but not vice vorsa. Most
real-world applications, however, involve many-to-many mappings. Situations
like the one shown in Figure 5.4—that is, relations that are mum-to-many

Figure 5.4 Often a real-world "function" may actually be a more general reIacn.
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mappings—are far more common in complex engineering systems than usu-
ally. Sometimes conventional descriptions, being overly idealized models of
complex systems, may suffer from lack of robustness and exhibit undesirable
side effects.

Let us look again in Figure 5.3. We note that the transition from points to
area -cutn-points reduces the number of if/then rules needed to describe
y = f(x). For example, we could approximate f(x) with only 11 fuzzy if/then
rules (circled areas) as shown in Figure 5.3. The rules are overlapping as are
the various fuzzy numbers on the x and y axes. Yet, we no longer have a
function (a many-to-One mapping) but a more general relation R0 (x, y)
(a nia,ly-to-!flany mapping), and the obvious question is: How do we use
such a relation? In conventional descriptions we evaluate functions by
inputting a crisp value of x to f(x) and obtain a unique crisp value of y as
output. Something similar can he done with linguistic descriptions as well.
The process of evaluating a fuzzy linguistic description is called fuzzy.
infrrence. There arc two important problems in fuzzy inference. First, given a
fuzzy number /1' as input to a linguistic description, we want to obtain a
fuzzy number B' as its output; and, second, given B', we want to obtain A
(the inverse problem). The first problem is addressed with an inferencing
procedure called generalized modus ponens (GMP), and the second is ad-
dressed with another infercucing procedure called generalized mod us to/lens
(GMT). Both GMP and GMT have their origin in the field of logic and
approximate reasoning (Section 5.4), and analytically they involve composi-
tion of fuzzy relations (Chapter 3).

In GMI', when an if/then rule and its antececiciit are approximately
matched, a consequent may he inferred. For simplicity let its consider only a
generic rule of (5.1-4) having an implication relation R(x, v) GMP is
formally stated as

if x isA	 then y is 

x is A'	 ______	 (5.1-5)

y is B'

where A' is an input value matching the antecedent .4 to a degree (including
totally perfect and totally imperfect match). The implication relation of the
rule R(x, y) and the input A' above the line are considered known, whereas
what is below the line--in other words B'—is considered unknown. B' is
what we want to find. Analytically, GIMP (5.1-5) is performed by composing
A' with the implication relation Mx, y) as in the inax – min composition (see
Chapter 3)

B =A' o R(xy)	 (5.1-6)

We will see how this is done in detail in Section 5.4. For the moment let us
simply keep in mind that we can evaluate linguistic descriptions just as we
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an evaluate functions and that the procedure of evaluation involves compo-
sition of fuzzy relations. GMP is related to forward-chaining or data-driven
inference and is the main infercncing procedure in fuzzy control. When
A' = A and B' = B, GMP (5.1-5) reduces to an inferencing procedure of
classical logic known as modus ponens (depending on the implication rela-
tion).

In GMT a rule and its consequent are approximately matched and from
that we can obtain an antecedent. GMT is formdlly stated as

if xLvA then yisB

yisB'

xis A'

Again, everything above the line is known and we want to find out what is
below the line—that is, A'. The analytical problem involved in GMT is
addressed by composing the implication relation R(x, y) with fuzzy number
B' as

A' = R(x, y) sf3'	 (5.1-8)

GMT is closely related to backward-chaining or goal-driven inference, which
is the main form of inference used in diagnostic expert systems. When
A' = NOT A and B' = NOT B, GMT reduces to classical modus tollens
(depending on the implication relation used).

In general, fuzzy linguistic descriptions offer convenient tools for control-
ling the granularity of a description, 4 in the sense that they facilitate the
choice of appropriate precision levels—that is, levels that application-specific
considerations call for. In terms of our example, when we use fuzzy numbers
and fuzzy if/then rules to describe y = f(x), we have at our disposal a
mechanism for reducing the number of rules needed and, hence, for control-
ling the granularity of this particular description and the overall cost of
computation (Zadeh, 1979). In addition, the technology for computing with
if/then rules has already advanced to the point where fuzzy microprocessors,
called Jizzy chips, are widely available (Yamakawa, 1987; Isik, 1988; Hirota
and Ozawa, 1988; Hucrtas et al., 1992; Shimizu et al., 1992). Fuzzy chips
encoding knowledge in the form of linguistic descriptions can function as
"mounted devices"—that is, dedicated processors fine-tuned to the specifics
of a component and its environment, performing domain-specific computa-
tions. Such processors are already deployed in several control and robotics
applications with remarkable successes (Yamakawa, 1988; pin et al., 1992).
Of course, software is a commonly used medium for the implementation of
fuzzy algorithms on a variety of different computers. However, the advent of
fuzzy logic hardware and the development of fuzzy computers may have a

4 B granularity we roughly mean the coarseness of a description, the level of precision necessary
to effectively represent a given system.
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profound impact on the design and operation of engineering systems
(Yamakawa, 1988). Fuzzy linguistic descriptions are of growing importance in
many areas of engineering ranging from expert systems and artificial intelli-
gence applications to process control, pattern recognition, signal analysis,
reliability engineering, and machine learning (Ray and Majumdcr, 1988). The
basic ideas, however, are rather similar and rest on the mathematics of fuzzy
sets. Describing a system through a linguistic description, no matter for what
purpose, involves specifying in some way linguistic variables, if/then rules, and

evaluation procedures known as fuzzy inference.

5.2 LINGUISTIC VARIABLES AND VALUES

As we saw in the previous section, a linguistic variable is a variable whose
arguments are fuzzy numbers and more generally words represented by fuzzy
sets. For example, the ar g uments of the linguistic varLible temperature may be

LOW, MEDIUM, and hiGh. We call such arguments fuzzy values. Each and
cvcr , one of them is modeled by its own membership function. The fuzzy
values LOW, MEDiUM, and HIGH may be modeled as shown in Figure 5.5
or Figure 5.6. In Figure 5.5 we have three discrete fuzzy values, while in
Figure 5.6 we have three (piecewise) continuous membership functio1ls--

is 101 . (T), puzrj,.,(T), and	 r(T)—nrodeling the words LOW,

Figure 5.6 The linguistic variable tempera ture and a set of discrete fuzzy values
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sense—that is, as a numerical variable--its arguments are simply the crisp
numbers of a UOiVCF5C of discourse (e.g., natural numbers between 1C and
100CC). We may think of each number as a crisp category of temperature; in
this case we could have 100 different categories. For certain applications this
may be an acceptable catágorization of the values of temperature. For others
we may need 1000 categories, and still for others 3 categories may suffice.
Fuzzy values provide this kind of flexibility. They allow for adjustable
categories and explicitly acknowledge the ambiguous and application-depen-
dent nature of this or the other categorization.

Primary Values

The words which function as the initial values of a linguistic variable are
called priinar values. They are the principal categorization of a universe of
discourse—for example, the values LOW, MEDIUM, and 11/Gil shown in
Figures 5.5 and 5.6. To model them we often use functions whose shape is
adjusted through a finite set of parameters. For example, the function

/.L(X) =	 ( 5.2-1)
1 + a(x - c)

has parameters a, b, and c which may be used to adjust the overall form of
t(x). Parameter a adjusts the width of the membership function, b deter-

mines the extent of fuzziness, and c describes the location of the "peak" of
the membership function. This is the point in the universe of discourse where
p(x) =1. Consider the primary values of temperature, SMALL, MEDIUM,
and LARGE shown in Figure 5.7. Their membership functions are of the
form of Equation (5.2-1) with a = 0,0005, b = 3, and c = 20, 50, and 80.

0	 10	 20	 30	 40	 30	 60	 70	 80	 90 100
7-

Figure 5.7 Adjustable membership functions for modeling primor/ vaueS
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respectively—that is,

/1 SMI LL( T) = --1 + 0.0005(IT — 20J)
1

1
MEDJUM(T) 

=	
(5.2-2)

 1 + 0,0005 (17' -

0.0U05(JT	 O)

In ininy control appications, continuous membership functions such as t1e
trapezoid al/triangidar functions of Figure 5.6 arc used. Fuzzy vW6 defiitcd
through trapczoidal/tringular memhershp functions have adjusnbe pa-
rameters as well, the "corners" of the function—that is, the points
where the nionot .aiciy changes. We recall their use in Chapter 4 in
connection with fuzzy n : mbcrs. In foizy irithnietic, however, we rcauircd
T hat fuzzy sets be minilL ed—that is, that tbcrc be at least one point of the
univesc of discourse where the membership function reaches unit y, v.nereas
.n fuzzy linguistic descriptions this requirement is relaxed. Fuzav	 lus ought
to he convex. just .. 8izzy numbers, but not necessarily norm,il.

Pritna y values Can also ho ieodelcd through S-shaped	 d f1-s1wpcd
functions nncd by thoir gcne a 1 hrni (Znu,ter nano, 1985;	 tidci, 1986).
sompai arH	 '	 . ...... .......................c asted to
various appiict'-- Z - 	 s .n:rc'	 tern a H y nftc I number ,
as iii ki case of w, .n-eh. 1 and triangular ne:nbcjsl;i funcY. . S-:hyped
fanc' h::;n: e dcfiu.:. H eii three iai a:ncico; a, /3, and -/ as i!]ov.-s:

for x:!^a

x - a2

	

S(x; ,g3, y )	 2 l —_ -- .--t
	

for

(x-

	

x;i,i, 7 )	 1 — ( - . -----	 for	 :2^xr7

a, /, y ) = 1	 for x ^!: y

I •-

x is a:.y rCsi rure:sr a:.d a, , md 7 me rpprepnac!y checn
r.-n.r,icters. or 000uno y of SiOC at x = j3, the t.vo in(cixals ( P -. a) and
( / - ) must br. .duJ.
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A FT-shaped function may be thought of as two S-shaped functions put
together "back-to-back" and can he expressed as

(	 y-6
fl(x; 6,y) = Sx;	

' 2 '
	 for x	 y

(5.2-4)

fl(x; 8,7) = 1 - S x; y,----, y + 8)	 for x ^ y

The parameter 6 in []-shaped functions is called the bandwidth. It is the
distance between the crossover (inflection) points—that is, the points where
the function equals 0.5. The parameter y is the point where the [I-shaped
function reaches unity. Fuzzy values modeled by S-shaped and 11-shaped
functions are more often encountered in software than in hardware realiza-
tions of fuzzy linguistic descriptions. Triangular/trapezoidal membership
functions are the preferred shapes for fuzzy values used in hardware realiza-
tions,

Compound Values

Using the connectives AND and OR and a collection of linguistic modifiers
such as NOT. VERY, MORE OR LESS, RATHER, and so on, we can
generate compound values from primary values. Modifiers and connectives
arc modeled by fuzzy set operations as well. For example, AND and OR are
modeled by the fuzzy set operations of intersectmon and union, respectively,
while NOT is modeled by complementation. More generally they are modeled
by 7' and S norms (see Appendix A). Through linguistic modifiers we may
easily construct a larger, potentially infinite set of values from a relatively
small and finite set of primary values. Some modifiers are also called
linguistic hedges due to the property of semantically constraining (hedging) the
general meaning of a word by operating on the fuzzy set that represents it
(Zacich, 1983).

The connective OR generates a compound value with membership func-
tion equal to the max (V ) of the membership functions of other values.
Consider the values A and B defined over the same universe of discourse
X as

A = fL 1 (x)/x,	 B

The compound value "A OR B' is defined as

A OR B / [	 (x) V in(x)J/r	 (5.25)
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The connective AND uses the mill operator (A) to generate the membership
function of the compound value out of the membership functions of two (or
more) other values. The compound valuo constructed through the connective
AND is defined as

AAND B / [(x) A b(x)J/x	 (5.2-6)

The AND connective has to be used with caution when generating com-
pound valucs because it may lead to nonsensical words such as in the
proposition " temperature is (HIGH AND LOW)." As shown in Figure 5.a,
this compound value has zero membership function and may he thought of as
meaningless. The connec:ive AND can produce correct compound values
when used with the complement of primary values as, for cxarnp!e, in the
proposition "tempmthire is ((NOT LOW) AND (NOT HIGH))," whose
membership function can he seen in Figure 5.85.

The membership function of a compound value produced by negating
another value is the cmplemcnt of the membership function of tie original
value—that is,

.VOTA	 f[i -- ,;(x)]/r	 (5,2-7)

TI:e sem.i' Ci t'c zncW er IC(i are Uirly sIraiuh1fc,wird, :nd it 'y SC.
usci	 crj '::	 :ieCtiou i s ISCu in :n:tural :naCe --or

1vcry Ii :Tc inoi 'icc i associaoc \vi1 a CO	 pandn	 'u v set
opcntion	 :.':.	 .'oc :snp f;'.iu'.	 ic	 . 1 i—IS scn	 of	 ice
associaticC	 !ic PLUS	 .1 fi.IjNLIS r oufcrs in '1 !Ac 5.1 off: c a	 C9llCf
dogrec of	 run an.J'ati.n ftan da 1:e c	 ntratic'u GUI and

wc rayi in	 ' :er 2. ModitHrs ru y Sc
coinc..ced	 ,. es n	 iS. r tofoc:n ir;er cC1,:p'a' r:l values. Sunc, fey
cx,;n-ic, th,	 'c -tj I \:: :1 titO p:imin, vThCs S! iLL aA L/fC;. We
fu::i c :npcnr.d vabcs s... is ('7RYSf./I.L)r,d (AOTJ'L'RY.TL)Sy
Icr C)i/ me	 SHf.L by /L...Y ni ','OT. We can o c'n in
ni:lnnr oilai:L	 ,.te cca1o..rj \'aiu.s--f:.r xavp!c. C =
S.f/ L) 'i.') ((. F !d'T), U	 I:n "muons Si inhle 5.1
C S' ISo fc!:.:. - u	 n.J :riun

i t cLc ) -=	 -. t'.,L X) ] A [1 —	 (.2-8)
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NOT LOW	 NOT HIGH
pM

t	 HIGH

LOW

X X:
0	 20	 40	 60	 80	 100

T (PC)
(a)

(NO] LOU) AND (NOT HIGH)
10--

0.S-

06

0.4-

0.2 .

0	 20	 40	 60	 80	 100

()	
T (°c)

Figure 5.8 The semantics at compound terms generated by AND ought to be

carefully examined. In (a) the compound term LOW AND HIGH has trivial membership

funcLon, while in (b) the compound term (NOT LOW) AND (NOT HIGH) is well defined.

It should be noted that compound fuzzy values may not be arbitrarily
generated. We need to examine their semantics—that is, their mcaning in
the context of a specific application. An interesting quantitative guide to the
semantics of compound values is provided by their membership function.
When the new membership function becomes uniformly 1 or 0 we may have a
semantically suspect compound value.
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TbIo 5.1 ltc	 on e "iuIilc m'd	 into fuuy sot opetatons
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/iJ JvT(A)( x ) [see Equation (2.3-21)1

1. /i/(.) jtlt

Mii U A

1—p(x),

L1L' ERA	 .	 x

............................ -

.31'L:cAT!O r.:: :o:

F7y if/theps rules are condition ,,,[ statements that describe the dependence
of one (or nioc) 1ini:tic vtriable on another. As we alrody alluded o

the uderlyln! ana1ytca! form of an if/then rule is a fuzzy relatiert
d the iutplica!ion li'icut. There are ovcr 40 different forms of implca-
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tion relations reported in the literature (Lee, 1990a, b). Implication relations
are obtained through different fuzzy implication operators 4. Information
from the left- (LHS) and right-hand side (RI-ES) of a rule is inputted to q6,
and it outputs an implication relation. The choice of implication operator is a
rather significant step in the overall development of a fuzzy linguistic descrip-
tion. It reflects application-specific criteria, as well as logical and intuitive
considerations focusing on the interpretation of the connectives AND, OR,
and ELSE. An extensive discussion of different implication relations may be
found in Mizutaoto (1988), Lee (1990a, b), and Ruan and Kerre (1993). We
will examine here the nlost common implication Operators used in engineer-
ing applications, particularly in fuzzy control (Chapter 6). Our focus will he
on the implication relation of a simple if/then rule and on how to obtain it
from LI IS and RIIS membership functions.

Let us consider a generic if/then rule involving two linguistic variables,
one on each side of the rule--for example,

if x is 	 then y is B	 (5.3-1)

where linguistic variables x and v take the values A and 13, respectivel y . The
underlying analytical form of rule (5.3-1) is the implication rclWion

R(x, ))	 f	 ( x, v)/( x, v)	 (5.3-2)

where ,rc(x, y) is the membership function of the implication relation, the
thing we want to obtain. When the linguistic variables in (5.3-1) are defined
over discrete universes of discourse, an implication relation is written as

R(x,. 1.1 ) =	 y1)/(x y)	 (5.3-3)
(r)

There are several options for obtaining the membership function of the
implication relation. We explore them through the implication operator
notion. For the rule of (5.3-1) an implication operator takes as input the
membership functions of the antecedent and consequent parts, namely,
z,1 (x) and ,u,1 (y), and takes as outputs c(x, y), namely

(x, y) =	 [ A( x),	 ( y )]	 (5.3-4)

Implication ocratois can also he expressed through 2 and S norms (Sec Appendix). It should
be noted that the term implication' is somewhat of a misnomer (since urictly speaLing iherc is
no logical implication in a mule); nonetheless it is widely used in the literature.
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\\'c distinguish the following implication operators:

Zadeh Max-Mm lmpon Operator

The Zadeh max-min implication operhtor (Zadch, 1973) is

m[ JiA( X ) , j8(Y)1	 ( A (x) A 1,(y)) V (1 - i,4(x)) (5.3-5)

Thus the membership function of the implication relation (5.3-2) is

.r(x, )')	 (A(x) A B(Y)) V (1 --

Mamdani Min Implication Operator

The i!amdwu tnin implication operator is a simplified version of Zadch
max-rain proposed by Mamdani in the 1970s in onnee:ion v:ih fuzzy contrcl
(Mamdani, 1977) and is defined as

cE ILA(x), /( y )]	
p(x) A p(v)	 (5.3-6)

Larsen Product Implication Operator
The Larsen pmthct implication opei ator uses arithmetic prc11ct (lrsca,
1O) and is defi:ed is

p4(x) -p3(y)

Arbric I	 ciic. 1 Operolor
The ar-.;I:nu'ic imp1ica2011 cpertui	 :i:n ;u:iv:	 l:c (Zadeh,
1)i5) and is Jefh-L.;i

[ P., ( x ), 11 .,j( y )}	 1 A (1 - /j, (x)+ ILa(Y))	 (3.36)

I. .)c:c-an l:L:icaon Oporator

iho Boolean implication operator is based on clas 	 c;;cat Ioe and has been
used in control and decisicn-na.in 2ppiicat:ons. 1 ;S 	 as

[ .i( x )	 () 1 	 0 - 'r.(x)) V	 ( y )	 ( 5.3-9)

Thc ,nncd Product lr) r ; icaiion Opr clor
he 1encied product fi.zzy implication operator has been used in fuzzy

cmt-a rtd is defined as

[ 4(x), 1 1 3( y )}	 0 V (p() +	 ( y) - 1)	 (5.3-10)
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The Drastic Product Implication Operator

The drastic product implication operator has also been used in the field of
control. As the name implies, it involves a more drastic (crisp) decision as to
the form of the implication relation and is defined as

( x),	 ILLD ( Y) = I

dp[ 4A (x), An ( y )]	 ia(Y),	 .r(x) = 1	 (5.3-11)
0,	 < 1, a(Y) < 1

The Standard Sequence Implication Operator

The standard Sequence implicaton operator has crisp logic features. It is
defined as

j p1(x), a(Y)] 	 /.L1(X)

0,	 (x)>
(5.3-12)

Gougon Implication Operator

The Gow,'en implication operator considers the fuzzy implication relation to
he strong, reachin g unity, if the membership function of the antecedent
bL 1 (x) is smaller than the membership function of the consequent 3(x).
Otherwise, the greater /L(X) becomes, relative to /(y) the more the
membership function of the implication relation iL(x, y) comes to resemble
that of the consequent. The Gougen implication relation is in a way a morc
tempered version of the standard sequence operator. It is formall y defined as

/- A (x) :5;

Lj(y)	

>	
(5.3-13)

Gödolian Implication Operator
The Göde!ian implication operator is defined as

(x), 3(y)1
1,	 1(x) ^ La(y)	

(5.3-14)g[ A	
fLa(y),	 1(x) >

These fuzzy implication operators are listed in Table 5.2. They are frequently
encountered in engineering applications particularly in fuzzy control (Chapter
6). One interesting issue arises in connection with whether or not sonic of
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Toblo 5.2 Somo fuzzy tmplicaflon opero1or

0,,1 , Zadeh Max-Alin

.kIamdani ui/u

Larsen Product

Arith'netic

EEIII.IIIi
uu1 dC(	 ic!

ç, Drastic iiOc!Ct

IMP UCA nON OPERATOR

ø[PAC) PB(Y)1

(;i(x) A JI B (y)) v (1

1 A( 1-1A(X)+11-1(y)

(1-	 (x)) v it, (y)

0v(00± 3 (y) -1)

J L A (x),	 if p(y) 1

/1 8 (X ) ,	 if i4(y)	 1

I	 0,	 if i')<1,p,(y)<l

, Standc4rdSrquc;iCc	 1 , if RAC) ^ iy)

0, If !(X)>!1(Y)

q', Goi:n	 1,	 if /'A(x) </t())

f	 (x)> jt (y)

,

i(y), if	 (x)>p(y)
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these operators satisfy classical modiLs poncns and modus to/lens. Another
issue has to do with the manner that they satisfy certain intuitive criteria
about inferencing such as, for example, the expectation that evaluating 'ifs is
A then y is B" by "x is VERYA" ought to result in "y is VERY B." A good
discussion of these issues is found in Mizumoto (1988) and Lee (1990a, b).

5.4 FUZZY INFERENCE AND COMPOSITION

Fuzzy inference refers to computational procedures used for evaluating fuzzy
linguistic descriptions. There are two important infercncing procedures:
geneiahizcd modus ponens (GMP) and generalized modus tohi:ns (GM].). For
simplicity let us consider a linguistic desci iption involving only a simple
if/then rule with known implication rc]atioo R(x, y) and a fuzzy value A'
approxi:nnicly matching the antecedent of the rule. GMP allows as to
ce:npute (infer) the consequent X. It is formally staled as

if xis,I then yisB

(5.4.1)

y is /3'

hero eve;ything ale',	 the line is anai t:eally kcv,n, and \viial 	 51 5
nialyticnliy unknown. 3upp0se, icr cxanp'e, that
!c17[.era(urt' is lilGil 1i:ca J1u/nelJtv is ZLBO.'' Given that
JFRY III CK,'' C3 P rllce':s u to evaluate the r'.'lc and 
Iron; dity. '1 he inferred value B' is computed throu,l i the uo:ap:.ri ' .	 A'
with the implication rela:on R(x, y). Lt us lo .i: at	 h	 hr°'i
anaiytrcally in (5.4-1). We know the implication clath:a J .v, y)	 . .
'if v is A then y is B" (ohtai!ted by using one of the c::;tc rt. :,
5.2) and the meinbcrslif 1j function of A'. To cceap;ite ti)(; ....' ...
function of B' in (5.4-1), we use niax--ini:i compoouion c 
R(x, y)—that is,

B'	 A' c i(.r,>)	 (:.4-2)

In terms of mcmizc)-ship functions, ceundon (' 1-2) is ('dcc Char' r.c

\/ [jz(x)	 :')I	 (-3)

where s 4 .(x) is the membership function 'of A', ,'i.Cv, y) ir fhe i-".ro or chip
fu;-.ctit,n of the implication relation, and ,'i,.(,) he ncnhorship function of
B'. We recall from Chapter 3 t h at 11113-r.i:i ic; rcaith ii ( ) is ;ii.r logrns to
matrix multiplication with ma-< (V ) and . hi (A ) '. piae. of : md
niuitip!icafion ( X ).
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In GMT a rule and a fuzzy value approximately matching its consequent
are given and it is desired to infer the antecedent—that is,

if x is A then y is B

yisB'	 (5.4-4)

x is A'

In G3vIT we know R(x, y) and the consequent B'. To compute the member-
ship function of A' in (3.4-2), we can use max – min composition of R(x, y)

with fuzzy set 13'—that is,

A' = R(x, y) o B'	 (5.4.5)

In terms of membership functions, equation (5.4-5) is (see Chapter 3)

1A( X) = V [s(x, v) A	 y)]	 (5.4.6)
y

Of course, other compositions may he used in place of max–mm. For
example, using max-product composition the membership function of B' in
(5.4-2) is given by

lL,(y) 
=	

E 1A . ( X ) I1. ( X , y)]	 (547)

where we take the maximum with respect to x of all the products of the pairs
inside the brackets (sec Example 5.2). In general max-* composition may be
used to infer the membership function of B':

=
[.(x)	 (x, y)]

Using composition of relations to infer consequcnts—that is, to draw conclu-
sions on the basis of imprecise premises—is known as the compositional rule

of inference, since logical inferencing such as GMP is performed analytically
through composition. As shown in Figure 5.9, GMP works in a manner
analogous to evaluating a function and GMT is analogous to finding the
inverse (Pappis and Sugcno, 1985). When a fuzzy value A' is given as input to
a linguistic description (single rule or fuzzy algorithm) we can obtain B'
through GMP; conversely, if we know B' we can obtain A' through GMT.
Generally, we have several overlapping rules, and more than one may
contribute a nontrivial B' (or A'). The union or intersection (depending on
the implication operator used as we will see in the next section) of all
contributions is the output of the linguistic description for a given A' (or B').
Often the fuzzy values used are not symmetric or of the same form, and
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>

F;gura 5.7 Gt. end CMI ore procedures for evaluciir.g iuzzy Iinqistic dorcrpions.

we -lay not have circular arce-c:r, -oowr.v ; in Figire 5.3 iut inrr ad
hare the more general shapes shown in Figure 5.9. Of coursc in order to use
composition we must hove avoilablc irnn!icao. 'n and	 gorit!r'oic ri	 c.

Logical operations cito:'- Ill,1 1 WIP or Ci.iF nary also ho	 r:rrocd
rnalytic:dly through composita. --for example, b :,' cnrnbinin two	 more
rulrs in a .sy//ogrsr.i (Zimmermar.n, lOSS). Consider fl-,s folowirig rd....a

if s' is A 1/0.72 

2	 11ron a :;

from which \'e can infrr another rile: 	 5/ .v is A ti:crr 7 is C'' t
.oi!ogsn1. Each rule Li (5.4-9) is analytically desc:0.bcd by a f'u'.sy re t :Ji' n, tha
first by 1? 1 , y) arid the second by 1(v, z). 1-'oi these relzio, ......' may
infer-a new relation R 1 -, a) for the ijle "J' .: s A : 1:erz a Ia
nlax-'rnin compositiuri of R 1(x, y) and R(y,	 '-.bat is, 11 1 :(_r, ..)
R 1(, y) ° ' 2Y, z). An.sin, rlax - 'm:o, r. x-poduot, o	 ax * cornpooi,i ri may
also be used to obtain A(x, a).

Exampha 51	 5 7 p	 ,j	 5	 In 'nis ex nple v.a usc
GM? o Ls'aluac a linguistic d arpion cc ne*..' of a sincc na!•a "ifx is A
ticn y is B" with LI-IS miii RI IS a-.: mbeshia fonc: . is iL.( o) an	 fr2(%'), as
shc'.s in Figures 5.1O3 arid 5.lO. The i:opbcctfo1 relation of tire rne is
modeled tI-rough Mamrr.rri mi I inrplicati-; i o'crac -. Fi'iz'j numbar A'
(a singleton) sho •rrn in Figure 5.10c is	 I put to	 rAe. F Im Figaro 5,10
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.0
0	 1, 2 	 3	 4

(a)

(b)

2.0

PA() ,'

(c)

Figure 510 (o) The membership function of the antecedent A. (b) The fuzzy voue A

of the consequent. (c) A fuzzy A that approximately matches the antecedent In

Example 51.

10 

p(7)= 1.0

Ita(6)06/

I(9)=0.33

p
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We havç

1)

(x ) /x
No

15/2 + 1.0/3 + 0./4	
(uS 1-i)

10

B >j
i.0

	

= 0.33/5 + 0.67/6 + 1.0/7 + 017/3 + 033/9 	 (5.1-2)
1

	A'	 i.(x)/. = 1.0/4
U	 (iS.1-3)

All 1rth'	 are defined over the	 .c ei-er	 ef Jce.i	 :. cf

	

cocrs f;:. 0 io 10; and, as is eu	 'eD	 2rH)	 :irc

le	 ; e.eldIie the	 't	 ...:	 1
r:l:;1 R.V: , 	 h i .a !ytic'i!y ' • "l	 ;	 :

	

S \i;:r:j	 u.	 .	 ......-•	 ..	
.

	

.atie-1 r/tL	 :	 1

1" the an

.•

1•

(..	 //.	 .

, ) + 0.. / (	 •.	 .

	

r	 ,	
,,,..	 ••	 I	 ..	

'•I	 ..........•

	

:- . ;/(4 , 7)	
,/( •.),+0..Y,y:

n	 .:c	 .	 rnc:-	 c I '.	 '	 . , 7z%-rclr:i,	 -s'si	 I;	 •,,,., •f•,	 .r:.	 1 icl	 j	 ..	 r ":-c ("	 .:	 .	 c 	 ofcf •.H	 i'.HS ,,,I: •• .......,	 •.	 -	 ,	 .. -sat rf Oa f - 01010,	 I	 '(j:.t s	 .
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Table 5.3 The fuzzy Implication relation In Example 5.1

II
III	 MM	 MI M MM M MMI	 M	 MI
rn

space shown in Table 5.3. The nontrivial part of the relation is found in the
shaded cells of Table 5.3.

To find B' we compose A' with R(x, )-1 ) in accordance with equation
(5.4-2). It is sufficient to consider the nonzero part of the relation—that is,
the shaded part of Table 5.3. We use matrix notation and remind ourselves
(see Chapter 3) that max–min composition () is analogous to matrix multi-
plication with max (v) and mm (A) in place of addition (+) and multiplica-
tion (x), respectively. From Equation (5.4-2) we have

B'(y,) = /1' (Xi ) R(x 1 , y)

0.33
=[o C)	 i]	 0.33

0.33

0.50 0.50 0.50 0.33
0.67	 1.00 0.66 0.33	 (E5.1-6)
0.50 0.50 0.50 0.33

where the column vector for A' ranges from x 2 to x = 4 (sec Figure 5.10)
which is the same as the row range of the implication matrix. The columns of
the implication matrix range from y 5 to y= 9 (see Table 5.3). From
equation (5.4-3) the membership function of the first element of the corise-
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qucnt—that is, at y = 5—is computed as follows:

fLfi.(3) = V [0 A 0.33,0 A 0.33,1 A 0.33]

= V 
[0, 0,0.33]

== (1.33

Similarly we compute the rest of B'. Thc result is

B' = 0.3315 . 0.50/6 1- 0.0/7 + 0.5/8 -f 0.33/9

(Ell-7)

(ES. 1-8)

as shown in Figure 5.11. It should be noted in Figure 5.11 that the member-
ship function of B' is essentially rho mncrnhcrshio fencton of 13 clipped at a
height equal to the degrçc that A' natchc l (see Figure 5.10c). This value
is cat!ed tim dec;'cc of fu lfillment (J)OF) of the rue. It is a measorc of the
degiec of similarity betwcc n the iiut A' and the ::ntccedcnt of Cie rule A.
In the arcscnt case ye h'vc that

DO == 0.5	 (E5.1-9)

Clfpirg the mc ibirship funeiic:i of tho cc ccec'it by DOF is a feature of
/i, tla. MainrJtni r-,)in inp3ic-tion cpoi :.!r. \Vh.	 we use	 to 'cdcI
lIe inulica;ic,i reh'tion in':cN'cd iii O14 'c cct si'ci a clipping t 	 sforrna-
tion of the con:c;nejit. TIe	 'et a is J:oa in ' ...... l in Fhturc 5.12. We
shall encL'nnicr	 in i:i clayet	 .i.:- i 3a !fn .. :h control IPplicniicns
of fncstic dcec, iptocs. \	 i. n:ad	 c!fttin ilcpends on

cc:: me4tic..i).	 Jsnc' ,ti 1 e:: 	.-'-:i--o .. 'mr	 i,	 -,tcclei the imphcnt.on
rd:.tici	 cn	 o	 s'.	 :rr-.	 .nrc-; of the MIS 	 a 1,11c

.1'

If

.--	 y

(7	 .().c5

Fl y nn '.i Ib	 B' ::'cc I	 .n..l:	 Jn'ja.c Cc-crplc.n of
EYUm'c 5.1.
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XD	 x	 y

Figure 5.12 When the Momdani min implication operator I5 used to model an implica-
tion relation, GMP clips the membership function of the consequent by the DOE of the
rule.

Example 5.2 GMP with Larsen Product Implication. In this example we
evaluate a fuzzy if/then rule, whose implication relation is modeled by the
Larsen product fuzzy implication operator tJ (see Table 5.2) using GIMP.
The antecedent and consequent variables of rule if x is A then y is B are
shown in Figures 5.13a and 5.13h. The membership function of the input
value A' is shown in Figure 5.13c. From Figure 5.14 we have

A =

= 0.33/( - 1) + 0.67/0 + 1.0/1 1 0.75/2 -F 0.5/3 + 0.25/4 (E5.2.1)

B =
i--5

= 0.501( —4) ± 1.0/( —3) + 0.67/( 2) f 0.33/( —1) 	 (E5.2-2)

A' 
=

(x)/x = 1.0/3	 (E5.2-3)

Using equations (5.4-2) and (5.4-3) for GMP we can compute the member-
ship function of value B'. First, however, we have to obtain the membership
function of the implication relation,	 y), using the Larsen product fuzzy
implication operator	 (see Table 5.2). The implication relation has the
membership function

^Z( X il
 y1) = 'p[ /IA( XI), B()] = A(x,) - i( y )	 (E5.2-4)

and plugging in numbers from equations (E5.2-1) to (E5.2-3) we obtain the
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/x)
A

1.0	 14(J)I.O

-. Ji(2)0.75
-

- - - -

p(4)=0.25

.5	 -4	 -3	 -2	 -i	 1	 2	 3	 4	 5	 -

(a)

/
-

(s-)

P.(3) 1.0
-	 - - - -	

- 0	

-	 -

- -

---5
5%

(ç
F'c.ro 513 (c:)- .-	 vcu A c he	 :-::- .	 f:'zy vo -j B ol Thecon	 (a) r-	 0-	 ,-::	 -	 .:	 • (L	 cc-do t flExam::.2 52.
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Wv

10

PB (-3) =0.50
/.LB'(2)=0.333

PB(-I) = OI i7

f	 1	
o	 '1	 '2	 3	 j

Figure 5.14 The fuzzy set B' produced by evaluating the linguistic description in
Example 5.2.

implication relation

R(x,y)
(x, ),i

= 0.167/( –1 ,- 4) + 0.333/( –1,– 3) + 0.222/( –1,– 2)

• 0.111/( –1,– 1) + 0.333/(0, - 4) + 0.667/(0,- 3)

• 0.445/(0,– 2) + 0.222/(0,– 1) + 0.500/(1,– 4)

• L000/(1,– 3) + 0.667/(1,– 2) + 0.333/(1,– 1)

• 0.375/(2,– 4) + 0.750/(2,– 3) ± 0.500/(2,– 2)

• 0.250/(2,– 1) + 0.250/(3,– 4) ± 0.500/(3,– 3)

• 0.333/(3,– 2) + 0.167/(3,– 1) ± 0.125/(4,– 4)

• 0.250/(4,– 3) + 0.167/(4,– 2) ± 0.083/(4,– 1)

(E5.2-5)

The implication relation of (E5.2-5) can also be seen as the shaded part of
Table 5.4, where we use a similarly scaled discrete universe of discourse for
both antecedent and consequent variables, namely, integers from –5 to +5.
Thus, the implication relation is taking values on an 11 X 11 Cartesian
product space as shown.

We find B' through GMP — that is, max-min composition of A' with
R(x,, y). Again we need only consider the nonzero part of the relation—that
is, the shaded part of Table 5.4. We use matrix notation and remind
ourselves (see Chapter 3) that max–min composition is analogous to matrix
multiplication with the max (v) and mm (A) in the role of addition (-I-) and
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Table 5.	 trnpHcafo rr!or1 In Exomple 5.2

xi

P

5 .	°	 °	 0

 L°	 Joo	 Joo
-1

o	 i(1	 . '3 '.1G7 r	 222 (
I	 .

I	 i	 0) I () I	 'H 1)

2	 lO	 J()1

	

0	 jO

!o.i: . , Lfl)	 C.j

tJ 1 ICi] (.<).	 ii: \

0...H	 0..:2.

1.333

	

'i	
'I	 I	 I	

0	 0	 U
0.335	 0.167
0. (	 0.3

(.L .2.6)

the

	H 	 ..,
.	 ,.	 .	 .	 ................,

	 ,.,

' , ii;i) o	 rtrix

/() p...)	 1/(--I) (T5:-7)
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xc.,	 X
	 y

Figure 515 When GMP is used to evaluate a rule whose implication relation is
modeled by the Larsen product. the membership function of the consequent is scaled
by the DOE

membership function of B scaled (multiplied) by the degree that A' matches
the membership function of A at x = 5—that is, the DOF of the rule by A'.
Scaling the membership function of the consequent by DOF is a feature
of the Larsen product fuzzy implication operator Pp. Schematically this
property of , is shown in Figure 5.15. Other fuzzy implication operators
(Table 5.2) result in different shape transformations of the consequent.

5.5 FUZZY ALGORITHMS

A fizzy algorithm is a procedure for performing a task formulated as a
collection of fuzzy if/then rules. The rules are defined over the same product
space and are connected by the connective ELSE which may be interpreted
either as union or intersection depending on the implication operator used
for the individual rules.' Consider for example the algorithm

	

if	 x is A 1 then y is B 1 ELSE

	

if	 xis A., then y is B., ELSE
(5.5-1)

	

if	 x is A 	 then y is B,,

We recall that analytically each rule in (5.5-1) is represented by an implica-
tion relation R(x, y) and that the form of R(x, y) depends on the implication
operator used (see Table 5.2). Table 5.5 lists the most common interpretation

7ELSE can also be inteipreted as arit/unetic sum and product (as well as other T and S norms),
which we do not use in this book.
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Table 5.5 InterpretatIon at ELSE under various ImplIcatIons

IMPLICATION	 INTERPRETATION OF ELSE

0. , ZadehMax-Min	 AND (A)

Ø, MamdaniMin	 OR (v)

Larsen Product	 OR (v)

Arithmetic	 AND (A)

, Boolean	 AND (A) -

bp' Bounded Product	 OR (v)

Drastic Product 	 OR (v)

Ø, Standard Sequence	 AND (A)

Gougen	 AND (A)

Godelian	 AND (A)

of the connective ELSE for the implication operators shown in Table 5.2 (in
the next chapter we will see more on this). The relation of the entire
collection of rules (5.5-1) is called the algorithmic relation

R(x, y) = J	 (x, y)/(x, y)	 (5.5-2)
(x,y)

and is either the union (V) or the intersection (,,\) of the implication relations
of the individual rules. A fuzzy algorithm is a linguistic description evaluated
analytically using composition operations Just as we did in the case of
single-rule linguistic descriptions. Given a new fuzzy value A' we evaluate
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(5.5-1) through GMP formally stated as

if	 x is A 1 then y is B1 ELSE

if	 x is A 2 then y is B2 ELSE

if	 x is A,, then y is B,,	
(5.5-3)

x is A'

y is B'

The output value B' in (5.5-3) is computed by max–min composition (and
more generally max-*) of A' and R(x, y)—that is,

	

13 =A'°R,,(x,v)	 (5.5-4)

The membership function of B' is

	

= V [IIA.(X) A L(X, y)]	 (5.5-5)

Then inverse problem is solved through GMT, stated as

if	 x is A, then y is B 1 ELSE

if	 xisA-, their yisll2 ELSE

(5.5-6)
if	 x is A,, then y is B,,

y is B'

xis A'

The membership function of A' in (5.5-4) can be computed by max–mm
composition (and more generally max- * ) of R,,, y) and B'—that is,

	

A' =R,,(x,y)oB'	 (5.5-7)

with the membership function of A' given by

	

Y[ A,, (X, y) A	 y)]	 (5.5-8)

In the elementary fuzzy algorithm of (5.5-1) there is only one variable in the
antecedent side of each implication and one on the consequent side. Geiier-
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ally, we are interested in linguistic descriptions that may have more than one
variable in either side, which we refer to as multivariate fuzzy algorithms. The
interpretations of the connective ELSE are the same as for the elementary
algorithm of (5.5-1). Consider an if/then rule of the form

if x 1 isA AND x, is ,I 	 1LVD	 AND x,, isA,, then y is B

(5.5-9)

where x 1,...,x,,, are antecedent linguistic variables with A ...... A,fi their
respective fuzzy values and y is the consequent linguistic variable with B its
fuzzy value. The connective AND in the LHS of rule (5.5-9) can be analyti-
cally modeled either as min or as arithmetic product. In such cases we can
combine the propositions in the LIIS either through mm (A) or through
product () and use an appropriate implication operator 0 (Table 5.2) to
obtain the membership function of implication relation of (5.5-9). Thus we
have

(x 1 . x2 ,...,x , y) 
=	 [	

1 (x 1 ) A .4 (x 2 ) A	 A A(x,fl),

(5.5-10)

In case AND is analytically modeled as product, the implication relation has
membership function

X 2 1 ..	 x, y) =	 [ .4(l) .	 ( x 2 ) .....A(Xrn),

where is an appropriate implication operator from Table 5.1 n a similar
manner the connective OR can be interpreted as max ( v ) or as urn (±) or
other S norms (see Appendix A)).

Less frequently we encounter multivariate fl zzv implications involving in
nested fuzzy implications, each having one antecedent variable, of the form

if x 1 isA 1 then (ifx 2 isA, then	 (ifx is A, thcny is B) ... ) ( 5.5-12)

The membership function of a multivariate fuzzy implication of equation
(5.5-12) is obtained through repeated application of an implication operator
(see Table 5.2), once for each nested if/f/zen rule:

,..,,x,,, y) 
=	 [	

4(x1),	
[	 .4:(2)' ....[

(5.5-13)

When we have several rules of the form of (5.5-9) or (5.5-12) the overall
algorithmic relation depends upon the implication operator used and the
related interpretation of the connective ELSE.
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Let s consider a fuzzy algorithm consisting of n multivariate fuzzy

implic	 ns of the form shown in (5.5-9). We have rn variables x i ,... , x,, on

the a	 dent side of the jth if/then rule taking values A 11 ,..., A,,1

(j = 1	 n) and only one consequent linguistic variable y, taking values

B L , B	 B,,. Our fuzzy algorithm is the collection of rules

if

	

	 IL AND x 2 is A 21 AND •. AND x i ,,, is A,,, 1 then y is B ELSE

L2 AND x2 isA 22 AND AND x,., IsA,,, 2 then yisB 2 ELSE

if	 ii,, AND x2 isA 2,, AND	 AND Xm isA,,,,, theny is B,,

(5.5-14)

The f	 y algorithm of (5.5-14) is analytically described by an algorithmic
relatio of the form

R a (X i , X 2, ... XmY)

= f/s(x1, X 2 1 ... I X ",
y)/(x 1 , x	 m,, .... . x	 y) (5.5-15)

(x 1 ,x 2 .....x,,,,y)

and when discrete fuzzy sets are used we obtain

R,,,( x 11 , x,,-, ...,x,,, 1 , y)

=	 ,,(xl,x21,...,.t,,,L,Yj)/(Xl,x2i.... . Xm,,yj)

...............	 yi)

(5.5-16)

The membership function in (5.5-15) or (5.5-16) can be obtained from the
implication relation of the individual rules and appropriate interpretation of
the connectives AND and ELSE. Once the algorithmic relation is known,
GMP may be used to obtain an output B' given inputs A'1 , A'2 ,.. ., A',,,—

that is,

if	 x j is A 11 AND x 2 is A 2 , AND AND x 1 ,,, is A., then y is B1 ELSE

if	 x 1 is A,, AND x 2 is A,, AND ' AND x,,, is A m2 then y is B2 ELSE

if	 x1 is A I,, AND x 2 is A 2,, AND	 AND x,,, is A,,,,, then y is B,,

x 1 is A'1	x2 is A'2	 5,,, is A,,,

y is B'

(5.5-17)
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Let A'1 be a new input to (5.5-17). The membership fonction of B is
given by max-min Composition of the fuzzy set A'1 = A'(x 1 ) and

R(x a...... x,,,, s )-- that is,

B(v) =A'1 R(x 1 ,x ,...,x,,y)	 (5.5-is)

When in iriFuts are offered to the aloorithin aid the comcctvc AND in t:e
LI-IS of each rule is interpreted as nun, GMP vill gi;'c i: out--:t vol::c

 ^	 11:

B'(y)	 A -,"(x')R,(x1, .
J I

with membership function

(5.5-11.))

= V V '-• V [L	
i.c(a)) r. p.	 ,a,,..,x,..,	 (5.5-20)

Other comnposhicni mv he used as well, such as the max-product or, more
generall y max- , to obtain the membership function of the new consequent
B (see Chapter 3).
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PROBLEMS

1. 11e i-1.a.da;ti min implication operator given by Equation (5.3-6) is
alleged to be a simplification of the Z.adeh max-nun implication operator
given by Equatin (5.3-5). Explain what simplifications were made and
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discuss how these influence implication opera tios in fiy per.:e
such as control. Illustrate your discussion with sctchcs.

2. A linguistic description is comprised of a single rule

if x is A then v is B

where A and B are the fuzzy numbers

A = 0.33/6 -1 . 0.67/7 F 1.00/8 ± 0.67/9 ± 033/10

B = 0.3:/i + 0.67/2 + 1.0013 + 0.67/4 ± 0.33/5

The implication relation of the rule is modeled through the l.a'.se n
product implication operator. If a fuzz y number .i A is a preniisc, use
generalized modus ponens to infer a fuzzy number y = B' as the conse-
quent. A' is defined by

A'	 0.515 + 1.00/6 -F- 05/7

3. Using the data given in Problem 2, Manidani mirl implication oper;uor,
and generalized modus poncns, evaluate the rule.

4. Using the data given in Problem 2, arithmetic implication operator, and
generalized modus ponens, evaluate the rule.

5. Using the data given in Problem 2, Boolean implication operator, and
generalized modus ponens, evaluate the rule.

6. Using the data given in I'rohteni 2, hounded product implication opera-
tor, and generalized modus ponens, evaluate the rule.

7. Using the data given in Problem 2, Zadeh max-mm implication operator
and generalized mnodus ponens, evaluate the rule.

8. Given the rule and fuzzy values for A and B as well as the B' that you
found in Problem 2, use generalized modus tollens to infer an A.

9. What happens if you repeat Problem 8, having used bounded product
implication operator to model the rule?

10. Which of the fuzzy implication operators given in Table 5.2 redLice 10

classical modus ponens under max-min composition? Examine each
operator and show an example of what happens using the data found in
Example 5.1.

11. This problem requires an investigation on your part of the concept of
fuzzy functions. Generall y, a fuzzy function can he understood as a
mapping between fuzzy sets and the extension principle can serve as a
tool for generalizing ordinarv mappings. Depending on where fuzziness
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occurs one gets different types of fuzzy functions. The problem is this:
Set up a fuzzy function that will take as input ambient temperatures and
will produce as output energy demand to a power plant. There are no
unique solutions, but rather, different approiches to formulating the
solution. State clearly, what could he fuzzy in this problem; what assulflp_
tions you need to make; what crisp function, if any, you start with. Also,
give the functional form and test it. Does it make sense? Could you get
higher energy demand for lower temperatures from your model?

12. Given the assumptions made in Problem 11, fi d a fuzzy algorithm that
describes the same general relation as the fuzzy function you developed
in Problem 11.
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FUZZY CONTROL
•r,

6.1 INTRODUCTION

Fuzzy control primarily refers to the control of processes through fuzzy
linguistic descriptions. Since 1974, when F. H. Mamdani and S. Assilian
(Mamdani, 1974) demonstrated that fuzzy f/then rules could regulate a
model stcarn cnginc, it great number of fuzzy control applications have been
successfully deployed. The list is very long and growing and includes cement
kilns, subway trains, unmanned helicopters, autonomous mobile robots,
process heat exchangers, and blast furnaces (Manidani, 1977; Oslcrgaard,
1982; Yasunobu and Miyarnoto, 1985; King and Karonis, 1988).' In the 1970s
and eai lv 1980s most applications were minicomputer-based, often found in
the process industry in areas where automatic control was rather difficult to
realize and hence left in the hands of human operators. More recently, with
the advent of fuzzy microprocessors, a growing number of fuzzy control
applications have emerged in consumer electronics and home appliances
such as hand-held cameras, vacuum cleaners, air conditioners, and washing
machines (Ilirota, 1993; Yamnakawa, 1989; Schwartz, 1992: Terano et al.,
1992).

In this chapter we begin by reviewing conventional process control in
order to establish the relevant context and proceed to fuzz y control, a subject
we view primarily as an application of fuzzy linguistic descriptions (Chapter
5). Of course, the appropriate choice of controller in engineering applications

There are a number of excellent books available on fuzzy control. The interested reader may
want to consult, for example, Ijrj,iimkov cm al., 1993; I'edrycz, 1993; Harris ci at., 1993; Ya gcr and
Fmlcv, 1994: and Wang, 1991.
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is made not as much by a commitment to a particular methodology or
technology as by careful examination of the needs and features of a given
application. In fact, some of the most successful applications of fuzzy control
have been in conjunction with conventional controllers such as the propor-
noonl integral dcrhatice (PID) controller (Lee, 1990a, h). In fuzzy control we
are concerned with two broad questions: how can we implement a control
strategy as a fuzzy linguistic description? and What are the crucial factors
involved in fuzzy algorithmic synthesis and analysis? Although fuzzy linguistic
descriptions are a subject of wider interest than the replacement or enhance-
ment of PID controllers, their application to control serves to illustrate some
of the basic ideas we encountered in earlier chapters.

Consider the simple process system shown in Figure 6.1. Here, a tank is
filled with liquid flowing from a pipe at the top (inlet flow). Liquid leaves the
tank through a pipe at the bottom (outlet flow). The upper pipe is fitted with
control valve A, used to adjust inlet flow, and the bottom pipe with valve B
is assumed to remain at a preset position. A controller maintains the liquid in
the tank at the desired level. By process here we mean the tank, the liquid,
the pipes, and the valves. The term process control system refers to the

Fir", ,	61A process sy:tom with levi	 -DI through control valve A.
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process plus the controller and any required com[onents for ilueieurc::ent
and actuation.

The purpose of any process control system is to regulate some dcantic
iyariablc or uariables of the process. In the liquid level process control system
shown in Figure 6.1, the dynamic variable is the liquid level L, a prc:css
parameter that depends on other parameters and thus suffers changes f.
many different inputs. We select one of these other par:: ters to he c ir
controlling parwncter—in this case control valve A, the ad	 ient of which
leads to control of flow rate, QA Liquid level depends	 low rates via
control valve A and valve B. ambient temperature 7 (n shown), liquid
temperature 7 (also not Sho\vfl), and the physical condition of valves A
and B. This dependence may he described by a process relation of the form

L =f(Q.1,Q0,T,,T,)	 (6.1-J)

where Q1 i tie flow rate through control valve .1, Q is the flow mte
through valve B, T is the ambient temperature, and T is the ltqoid
temperature. In many cases the relationship of equation (60-I) is not
analytically knovo and actually may not be a function (a many-fri-one
mapping) but instead a more general relation (a flhi2m?_V-tO-flUiml) fliap/flFig) as
we discussed in Chapter 5.

The input to the controller is usually not L itself but instead the error e
between a measured indication of L, denoted as y, and a selpoin: or
reference value r representing the desired value of the dynamic variable. The
controller's output or tnwuptdated variable is denoted by u and is a signal
representing action to be taken when the measured value of the dynamic
variable y deviates from reference r. Thus, the output of the contrhler ii
serves as input to the process. The error e = r - y is actually smoothed and
scaled before input to the controller. Smoothing is performed in sampled
systems in order to avoid the instantaneous changes during sampling that
misled the general direction of change for the variable. Such a smoothing
function may he defined recursively as (C o ) — 0.9e0 - ± Ole,, where e0 is
the error value at time t = k. Scaling is required in order to transform
instrument values to a predetermined interval or transform them to a range
of numbers that correspond to natural magnitudes.

The most common controller in the process industr y is the i'J'D controller,
where the control relation associated with equation (6.1-1) takes the form

u(t) = K j e(t)	 KKI f e(t) d: + K p K1)
(1e(t)
 + 14(0) (6.1-2)

where K	 is the controller gain representing a proportionality constant
between error and controller output (dimensionless), K 1 is the reset constant
relating the rate to the error in units of [%/( - see)], K T, is the rate
constant (or derijuthe gain constant) in units of [(c - se019'cJ. and ti(0) is
the controller output at t = 0 (when a deviation from setpoint starts).
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The first term in equation (6.1-2) is called the proportional (cmi and if it
was the only term in the equation it would represent a mode of control where
the output of the controller u(t) is changed in proportion to the error
which is the percent deviation from the setpoint. The second term is called
the integral term and represents a mode of control where the present
controller output depends oil 	 history of errors from when observations
started at t = ft The amount of corrective action due to integral mode is
directly proportional to the length of time that the error has existed. The
reset constant K1 expresses the scaling between error and controller output.
A large value of K1 means that a small error produces a large rate of change
of it and vice versa. If this teim alone was used in equation (6.1-2), in
addition to the constant n(0), then we would have a mode of control called
integral mode. The third term in equation (6.1-2) repiesents the derivative
mode of control. This mode provides that the controller output depends IJH

the rate of change of error. Derivative mode tends to minimize oscillation of
Elie system and prevent overshooting. Since derivative control is based solely
art the rate of change of error, the controlled variable can stabilize at a value
different from r, a condition termed "offset." In pure derivative mode the
output depends upon the rate at which the error is changed and not oil
value of the error. Integral control is used to address situations when
permanent offset or slow returns to desired values cannot he tolerated. The
combination of these three modes is called proportional i.';tegral derivative Or
(PID) control. PIf) is a powerful composite mode of control that has been
used for virtually any linear process condition.

The process of adjusting the coefficients of each mode of control in
equation (6.1-2) is called runin. 'There are several methods for determining
the optimum value of these gains such as frequency response methods and the
Ziegler-Nichols method (Johnson, 1977). Fuzzy and neural approaches with
adaptive chat acteristics have also been used for P11) tuning and more
generally for emulating and enhancing PIT) controltcrs (Matia et al., 1992;
Maeda and Murakai, 1993; Shourcshi and Ralmnui, 1JU2; lie ct al., 1993).

Example 6.1 P1 D Level Control. Consider the process control system shown
in Figure 6.1. Suppose that we control the liquid level in the tank by adjusting
control valve A (mi t flow) through a ND controller. The output of the
eoittroller u(t) is has '1 en the error e(t)—that is, the difference between a
:cfercncc value r and ide i ensured value of level Y. The output of the
controller is given by cqua: T i (6.1 -2) as

dc(t)
u(t) = K1,e(:)	 :. 1 Kj J 	 e(t) dt	 K j,KD -	 + u(0) (E6.1-1)

:.ith the following values fur the various gains and initial controller output:
- 1.3, K1 = O.[%/(% - rain)], KD = 1.9[(% - rnin)/%], and u(0) =

50%.
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Figure 6,2 Error ntrociu.ed to the PIt) level corroIler of Example 6 1.

Suppose that the error shosn in Figure 6.2 is introduced to the system at
= 2 mm. Such an error may he due to any change in process parameters—for

example, an unforeseen change in the position of valve B—since valve B is
not under control. The equation of error as function of time is

c(t) = 1.251 -- 2.5
	

(L6 .1 -2)

Using equation (E6.1-2) in equation (E6.1-1) the output of the controller
after t = 2 is given by

0(t) = —1.3{1.251	 2.51	 1.3(0.5 min l)ft [1.25t - 2.SJdt

d
	1.3(1.9 min)--{1.25: - 2.51 + 50	 (E6.1-3)

elf

The first term in equation (6.1-3) represents the proportional mode of the
controller, the second term the integral mode, and the third term the
derirathe mode. Let us call them u(t), 0 1 (t), and u(t), respectively. Figure
6.3 shows the response due to each mode and the total response of the
controller 0(1), which is the sum of the three terms plus the initial output of
the controller, in this case 505L Looking at Figure 6.3 we note that at the
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FiOure 6.3 Proportionc, ir.orcl, derivative, and total response of the P0 level con-
froor in Ecrnpo 6.1.

end of the 10-min incrvaI the controller sends a signal to control valve 4,which is hout 10% of its full scale. This does not necessarily mean that the
valve itsrlf a!lows at that iiH: 10% of full flow to the tanh. Different vavs
have diffc nt ch r3ctcrjcr j 	 0. en nonlinear. The relation hctwce 0 a
namic var: :ble and its l:anr. ced equivalent, altlrrrh desired to he lint-ur
for many :sucr, is	 ri always actually na1incar. As an example,
suppose th. control valve A is all valve. In such valves a
given perc,, t change in the v' 'c's stem Position (which is what actually the
controller r introls) produces ri equivalent change in flow, hence the name
equalperce:fçe. Generally this type of valve does not shut off flow corn-

letely in is limit of stern travel. Let Q denote the flow rate through the
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valve (in rn 3 /sec), Q I, i, the minimum flow when the stern of tha valve is at
the lowest limit of its travel, and Q,, the flow rate when the valve is fully

open. 'the ratio I? (Q ; /Q) is called the rangL'abi!ity of the valve; it is a
paramctcr specific to a given valve. The actual flow at any given time varies

tionlincarly with rangeability and is often given by an exponential, expression

of the form

Q	 Q u. I? I /"""	 (E6.1-4)

where u/U 1,,. is the ratio of the actual to the maximum conrcii signal sent to
the actuator (actually the valve stein position at any given time divided by the
maximum position of valve stem). Suppose that control valve A has range-

ability R = 30. Thus when the control signal is i0 	 of full range--that is,
= 0.1— the how rate according to equation (E6.1-4) becomes

Q =	 (30)	 = I 0 10	 E0. 1-5)

We can see fern equation (L : 6.1-5) that at the end of the I 1 -mm interval the
controller output is 10 of its niaximuin value even tLouih the flow through
control valve /1 is 1.4 times the minirnuni flow through the valve. Actuators
ill have such nonlinear characteristics, and furthermore their charac-
teristics change due to aging or other environmental factors. Some of the
difficulties in the field utilization of control algorithms, such as the P11) level
controller here, arise from the collective impact of such ciianues. Their extent
and nature may not he fully known when the controller is designed, tested,

rse of time the control engineer has to makeand initially deployed. In the cou 
various judgments about the overall performance of the process control
system and, in collaboration with operations' and maintenance personnel,
intervene to retunc gains, repair or replace equipment, revise procedures for
operation, and so on. An objective of linguistic control is to make this entire
process somewhat easier. It may therefore he seen as irony in the choice of
words, but indeed a benefit of Jiizzv control is introducing even more cltzriv
to the development, evaluation, and maintenance of control s ystems, E

6,2 FUZZY LINGUISTIC CONTROLLERS

'l'he core of a fuzzy controller is a linguistic description prescribing appropri-
ate action for agiven state. As we saw in Chapter 5, fuzzy linguistic
descriptions involve associations of fuzzy variables and procedures for infer-
cneing. Whereas in a conventional P11) controller what is modeled is the
physical system or process being controlled, in fuzzy controllers the aim is to
incorporate expert human knowledge in the control algoritlun. In this sense,
a fu7zy controller may he viewed as a real-time expert system—that is, a
model of the thinking processes an expert might go through in the course of
manipulattn g the process.
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Input	 Lingo/sue	 Output
Inter/a e	 Description	 Ii ter/ace

refe-reirce qerror
ZZ
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FUZZY CONTROLLER

FIgure 6.4 Block diagram of fuzzy process control system.

The basic structure of a fuzzy controller is outlined in Figure 6.4. The fact
that measuring devices give crisp rneasurenlents and that actuators require
crisp inputs calls for two addhional considerations when linguistic descrip-
tions are employed for control pulposes: flzziJ'ing the input of the controllerarid defuzz(5ing its output. Fuzzijicat ion can he achieved through a fuzzifierkernel as we saw in Section 2.3, and de6iziJication can he achieved through
special procedures that select a crisp value representative of the fuzzy output
(see Section 6.3). Many controllers, however, use directly crisp inputs. Figure
6.4 shows that in addition to a set of if/then rules,' a fuzzy controller has iLlSuipw inteijce aid an ourp inteiface h iulling fuzzificatirsu and dcfuzzifica
tion as well as \ arious signal manipulations such as nornlali:wi(,, tz, scaling,3110011;ing, and quantization. Scaling maps the range of values of the con-
trolled variables into predefined univcrses of discourse, and qualltizat]on
procedures assist in the mapping when discrete membership functions are
used (Lrkin, 1985; Ffstathiou, 1987; Yager and Filcv, 1994).

Fuz.y controllers operate in diccretc time intervals. The rules are evalu-
ated at cçular intervals in the same way as in conventional digital control,
with sevej ii rules being executed together (in parallel) within the same time
interval. Ihis pardleL feature makes it possible to develop highly dispersed
fuz aLo ithms as we will see later on. We use the oibscript k to indicate aspecific eoiuen in Lime--that is, when t . The choice o samplinginterval dncnds on Ilic process being controlled and is usually elcctecl sothat at	 several ignificart control actions are made during d c process
settling ti!.n2 (King and Mamdanj, 1977).

Let us look at typical i-spot or left-hand side (1.1-IS) and Output Orngl:r-/zarld side (RI IS) fuz	 vas inhles used in the knowledge Ne.e of tiiz.'y
2
Thc set 01 f/:'en OLICS is also referred to as tile controller's kiiLvlcdgc 1
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controllers. Many fuzzy controllers use error, change of error, and cur; of

errors in the LHS, 3 based on measured process variables and setpoi:;t values,
and any process variable that can be manipulated directl y in the RI IS.

Input Variablos

The most common LUS variable in lazzy control is the error, or C. IL ts
usually defined on the universe of discourse of crisp error e, which is tilc
deviation of some measured variable y from a setpoirit or rcfere:.ce r. At any
time t = k crisp error is defined as

e(k)	 r -- v(k)	 (62-1)

The chanr',e in error, L\e or terror, between two successive time steps is al-n
commonly used as an LI-IS variable. It is defined on the universe of diseoure
of crisp changes in error. At time r = k the crisp change in error is the
difference between present error and error in the previous time step t =
k -- 1, namely,

Ac(k)	 e(k) - c(k -- 1)	 (6.2-2)

Fuzzy variables can also be defined for the rate of change in error Ye(k)
e(k) -- e(k - 1), and so on. The sum of errors P(k) may he used as an

L1-IS fuzzy variable also. It takes into account the integrated effect of all past
errors and is defined as

k
ë(k)	 >c1	(6.2-3)

i—i

In some cases, actual state variables may be used (instead of error, etc.)
depending on the availability of parameter and structure estimation knowl-
edge. It is even possible to use variables not directly measurable, such as
performance or reliability, provided that they can be estimated in a tinicly and
reliable manner (Tsoukalas, 1991).

Output Variables

RI-IS variables may he any directly manipulated variable. An RI-IS fuzzy
variable u can he defined on the universe of discourse of a crisp manipu-
lated variable. Actually the change in output A u is more often used as the
RI IS variable. A it indicates the extent of change of the control variable u at
time i = k—that is, the change in action. Hence, if the defuzzified output at

3 Usmg these variables, one c:ui write iflthen rules emulating PID modes of control.
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time k is \z4(k), the overall crisp output of the controller will he

u(k) =	 - 1) i	 u(k)	 (6.2-4)

Using Au is preferable, since it requires a smaller number of data points in
the output universe of discourse in order for the controller to operate with
reasonable accuracy,

if/ then Rules and Inference

Often but not always, I.HS and RHS variables are scaled to the same
universe of discourse and possess fuzzy values that have the same form.
Scaling to a common universe of discourse with a common set of values for
all variables may offer considerable savings in memory and speed as far as
the computer implementation of a fuzzy algorithm is concerned. In addition,
it may be helpful in analyzing the behavior of the controller itself, as we will
see later in this chapter. With the advent of fu?zy microprocessors and fuzzy
dcveloprncct shells, it is no lon ger necessary for a user to (to scaling because
it is done by the system automatically. Nonetheless, scaling helps to simplify
al gorithmic development and investigate factors involved in synthesis and
analysis. As an example, consider the fuzzy values for the variables error,A m-or, and u shown in Figure 6.5 in connection with a fuzzy controller that
emulates the dci ivativc mode of a conventional controller (Sugeno, 1955;

It

Universe of Discou,'s
F1' " 6.5 Ccmrnc,n fu7Zy \'OJC5 for L,e error, A error, and A ij vcroU ! , scared to thesc.e	 of dcourse,
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Mizumoto, 19850. The common fuzzy values are as follows:

NB si nei,'arive big, 	 PS	 positive Sr, In

Nit! negative iediva,	 Pit! Positivet ediwn

NS	 neçatil '€' small,	 PB Pos itive big

ZE zero

All variables share the same universe ief discourse ranini. beheen —5 and
+ 6 as shown in Figure 6.5. In computer implementations, fuzzy v'.ilues are
usually quantized and stored in memory in the form of a 1ook-u table as
shown in Table 6.1. In this case the fuzzy values are stored in a 7 x 13 table,
with every row in the table representing a quantized fuzzy value. The fuzzy
algorithm of a controller that emulates a derivative nude is comprised of the
fy I lowing if/them rules:

II: i/error is Nfl AND A error is ZE tlo, it is P11 ELSE

R.	 i/error is Af ,1AD Semsor is ZE ihica A! is J'di ELSE

A3. if error is NS ANI) A error is ZE then A if is PS	 ELSE

i/error is ZE AND A error is ZE the,: Au is ZE ELSE

IL: if error is PSAND Aerror is ZE then Au is NS ELSE

R6: i/error is PMAND A error is ZE then Au is Nit! ELSE

A7: i/error is P/I AND A error is ZE then At is Nil ELSE

if error is ZL AND A error is NB then A ii is PB ELSE

A9: if error is ZEAA'f) Aerror is Nit! then Au is P/if ELSE

Ii
	

i/error is ZE AND A error is AS then Au is I'S	 ELSE

i/error is ZEAND Aerror is PS then Au is A'S ELSE

A, if error is YE AND Aeiror&s PMthnen Au is Nit! ELSE

R1., if error is ZEANI) Aerror is P/I the,: Au is NB

When two LI-is and one RI-IS variables are used as in (6.2-5), the algorithm
can be visualized in the form of a table as shown in Table 6.2. Such an
arrangement is Sometimes called it "fuzzy associative memory (FAM) matrix."
Blank items in the table indicate that there is no rule Present for the
particular combination of LI IS variables. Obviously for algoritlinis with more
than two LHS variables a tabular representation requires additional dimen-
sions.
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Table 6.1 Table of fuzzy values

T	 E T T TET T T T
\'fl	 /	 067 0.33	 0	 0	 0 1 0	 0	 0	 0	 0	 0	 0

VA 	 0.33 0.67	 1	 0.67 0.33	 0	 0	 0	 0	 0	 0	 0	 0

\S	 0	 0	 0.33	 0.67	 1	 0.67 033	 0	 0	 0	 0	 0	 0

'E	 0	 0	 0	 0	 0.33	 0.67	 1	 0.67 0.33	 0	 0	 0	 0

S	 0	 0	 0	 0	 0	 0	 0.33 0.67	 1	 0.67 0.33	 0	 0

k'	 0	 0	 0	 0	 0	 0	 0	 0	 0.33	 0.67	 1	 0.67 0.33

)73	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.33 0.67	 1= = = = = = = = - -= = = - ==

Table 6.2 A fuzzy cgorlthm In tabular form

Lterror NB	 AM	 rs

eeror

N13

,\ I

NS

ZE

PS

PM

PB

ZE	 PS	 PM	 J'B

P13

I '.tf

ZE	 NS	 A2I	 NB

XS

NM

'lB

Fuzzy c.onLri .lgorithms ar. vahaed LS1I]g çe?erali2.fd inoilus poi:ens
(GMP). We rec I from Chapter 5 that GMP is a data-driven inferencing
procedureh at a:ialytically involves the composition of fuzzy relations, usu-
ally max-mm ccnnosition. We also saw that nlax-nliri composition under a
given ilnp]ication operator affects the RHS in a specific manner—for exam-
ple, by clipping (when Mthn(lani mm, 0, is used) or scaling (when Larsen
product, I, is used). In general, GMP can be thought of as a transformation
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of the RI-IS by a degree commensurate with the degree of fulfillment (])OF)
of the rule and in a manner dictated by the implication operator chosen (see
Examples 5.1 and 5.2). In this chapter, instead of explicitly using composition
operations, we will mostly focus on such transformations as is often done, for
the sake of convenience, in many fuzzy control applications. As far as the
entire algorithm is concerned, the connective ELSE is analytically modeled
-is either OR ( V ) or AND (A), again depending on the implication Operator
used for the individual if/then rules. For example, when the Mamdanj ruin
implication is used, the connective ELSE is interpreted as OR (see Table
5.5).

Fuzzy controller inputs are usually crisp numbers. Fuzzy inputs may also
be considered in the case of uncertain or noisy measurements and crisp
numbers may he fuzzified (see Section 2.3). Consider the situation shown in
Figure 6.6 involving rules R 3 , R.r, and R 0 of (6.2-5). When at time t = k
Crisp error e ' and crisp change in error e' as shown in Figure 6.6 are given
to these rules we say that the rules have 'fired," provided that their DOE is
not zero. For example, in rule R the crisp error e ' shown has a 0.8 degree of
membership to VS while the crisp change in error e' has a 0.6  degree of
membership to ZE. Thu, the degree of fulfillment of rule R 3 at this
part cohn time is

DOF	 .,(e') A iz(e) = 0.8 A 0.6 = 0.6	 (6.2-6)

Provided that \VC interpreted the [.1 IS connective AND as ruin ( A ) [a
cumnion altcrnaiive is product ( )], the RI IS value P.Y will H transformed in
accordance with DOF in equation (6.2-6). The nature of the transformation
dcends on the implic inn used as we saw in Chapter 5. \Vheii Maurdani
Mill is used the transfonnation amounts to clipping PS at the height of DOF-
as shown in Figure 6.6. Thus 1? 3 contributes (\u), the shaded part of the
RHS value, to the total fuzzy output. Similaily rules R, arid R 1 have
degrees of fulfillment

DOF4 = it ( c' ) A p . (e')	 0.4 A 0.6 = 0.-i	 (6.2-7)

1)0F 11 	 ILzz(C') Ai. j5(e ' ) = 0.4 A 1.0 = 0.4	 (6.2-8)

and the y contribute jazr-.(.u) and jz, 8 . ( u), shown as shaded parts of the
RI-IS values in Figi. rc 6.6. The rest of the rules of algoritlun (62-5) do not
fire, that is, they contribute a zero output. The total fuzzy oulpw. is the union
Of the thre' outputs since "c interpret the connective ELS'' 7 n (6.2-5) as
OR (v)—tht is,	 -

I.LOLT( u) --- /ipç,(u) V	 (	 t) V p,. 5 .(Au)	 (6.2-9)

tto LT ( A ll) is shown at the lower part of Figure 6.6. At this point	 need to
defuzzify p ,u, (u) and obtain a crisp value	 representative oL ' !.) LT (\u)
to be used as input to the process. In the next section 	 look at
different methods for dcfuzzification.
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[A.r
p(Ae)	 p(i.u)

"Z	 PS

T /
,Wc)	 J(L) ?E

R4	

-

J1(c)

e

cri SL
	

(U
	

rcpc/1ancj,z error att=k p(A)

I_A	 JU:z>' output at t=k

riSpo(Uputatt=k]

Figure 6.6 Evaluation of three control rules at time f - k using Mamdani min implica-
tion and min Interpretation of AND (DOE).
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If Larsen product is used as the fuzzy implication Operator for the
individual rules of (6.2-5), the membership function of the RI IS value is
scaled by the degree of fulfillment of each rule as shown in Figure 6.7 (see
Example 5.2). Since the connective ELSE i's as OR ( V ) whenLThSCH Product implication is used (sec 'Fable 5.5), the total output A t

Qt,.r(!L)is also the milan of the three individual outputs. Out of that we need to
select a replesentative crisp value as input to the process. We note in Figure
6.7 that looks quite different from the total fuzzy output obtained
using Maindani min shown in Figure 6.6. Other fuzzy implication Operators(Sec Table 5.2) would produce different transformations in the shape of the
RHS fuzzy value and, hence, a different ii,5(Xt).

Interpretations of A.AID other than miii (A) may be used in the -LVf)connective found in the LI-IS of the rules, hence obtaining different degrees
Of fulfillment. Arithmetic product has been used (particularly in conjunction
with max-product implication) and more generally T-oorins (Zimmermann,
I 955; Fuller and Zimnlerinann, 1992 ). Using arithmetic product the degree
of fulfillment for the rules of (6.2-5) that fire would he evaluated in the
manner shown in Figure 6.8. The degree of fulfillment for R, R, and R 1are

DOF3 =Y vs( e' ) . /L,r((')	 0.8 0.6 = 0.18

1)O1 = /zE (e') 'It/J(.Se')	 0.1 o. 6 - 0.24

DLF11 .=	 ZE( C ) 'JJ.c(.\e')	 tJ.-I 1.0	 0.4

Comparing equatians (6.2-10) with cqa:'tai:s (6.2)-(6.2-S) we • c	 thatgenerally the two different interpretations of AND Jea:I to diiferc ' ; resultsunder the same fuzzy implication operators as we c;i aba see by C c ingI"igumes 6.7 and 6.8.
After we defuzzi,'oui- (A"' ) by one of time methods discusecl jr, t mc next

Section, we obtain a crisp value which in the case of the aig rithm of
(6.2-5) would be an integer between -6 and ± 6. Values greater ''a the
extremes of the universe of discourse are set to the extreme va]t . s , in thiscase -6 or	 6. This . aluc is then niulmiphed by ;.s scabnn factar Iii 	 maps itinto time appropriate range of the ;n;&nipmiiat• 1 ; varial:lc be(i'e	 sing it toactuate a device (I.arEn, .1985).

Since so much of actual process coati ol kn'.'1ede has h isioricnfly been
Obtained through P11) controllers, it is oftei c r,n.'ellicrt to eriuh1tc various
modes and coml'nations of the PIT) controller by fuzzy roles. Thus a fuzzy
Controller emulating it conventional PT) niede of control rontm-  cr would

'Sec th	 A lfar a	 I	 mci Tn.;c ..ro) iSir co-; rna,--'-i'd S
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ZE

ZE

-6
e.

risp error

/t(&) ZE!	 p(rii)

I(Ae)	

DOF4 =0-4

 DOFII =0.4
..

-A ..............

Ae

...

 in errT=k

' —t

/'oLrr (au)

-6	 1 0	 6

risp output

Figure 6.7 Evaluation of thrco contoI ru'es of t ime I k Lusng Larsen product
implication and min DOF.
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consist of rules having the form

if e is A AN!) Ac is B then it is C	 (6.2-11)

where e is the error and Ac is the change in error. A l'J-like fuzzy controller
would have rules of the form

if e is A AND Ac is B then Au is C	 (6.2-12)

while a I'-like controller would have rules

if eisA then it is 	 (6.2-13)

The ru1. form of a PID-like fuzzy controller is

if C isA jli's'L) Ac is B AND HvC then ii is D (6.2-14)

where ë is the sum of errors.
Althou gh we have formulated fuzzy algorithms in terms of rules involving

fuzzy values on their RIIS (such rules are referred to as Mamdani na/es),
there are advantages to consider crisp or special shape membership functions
as well. Several fuzzy controllers use rules where the output variable is given
in terms of a functional relation of the inputs. This is known as the Sneno or
I'SK 5 form of fuzzy rules. Such rules arc typically written as

if x 1 is A,AND x, is A, ... then It = f( . 1,...,x ,) (6.2-15)

where f is a fUnction of the inputs x When fCi ....... .,) is a
constant, rules of the form (6.1-15) constitute a zero-order Stiçeiiu controller.
When f(x, . . , x,) is a first-order polynomial we have what is called a
first-order Sugeno controller. For example, we may describe a P1 controller of
(6.2-12) by rules of the form

if e is LARGE AND Ac is MEDIUM then u = 2e + Me (6,2-16)

An interesting application of Sugeno rules is when a PID controller is put
directly in the RITS of (6.2-15). The result is a fuzzy 'supervisor" changing
the parameters of a PID controller [sec Tzafestas and Papa nikolopoulos
(1990)]. Sugeno fuzzy models are well suited for modeling nonlinear systems
by interpolating multiple linear models and are also well suited to rnathemat-
ical analysis and lend themselves to adaptive techniques, whereas Mamdani
rules are more intuitive and better suited to human. [See Jang and Sun (1995)
and Jung and Gulley (1995) for a review of different controllers.]

5Aftcr the Takagi, Sugeno, and Kong who first proposed it in 1985; also referred to as the Sug'no
fuzzy model.
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An alternative to either Sugeno or Manidani rules is to consider rules
whose conscquenls employ fliOnotonical membership functions. This form ofrules is known as the 7Likar otofuzzv model (Tsukamoto, 1979). In I'sukanioto
rules the inferred output of each rule is  crisp value equal to the rule's
degree of fhljullmeixt, with the overall output being taken as the weighted
avcrage of all outputs (a crisp value).

Fuzzy algorithms such as (6.2-5) are inherently parallel in the sense thatindividual if/then rules are fired independent of each other, with a specific
input being processed by several rules each contributing to a collective result,
namely, -( u). Actual process systems, however, may have many inputsand outputs, and hence they are referred o as
(MIMO) systems. The question then arises of how relevant are the rather
simple if/then rules we have seen thus far, such as the algorithm of (6.2-5). to
the control of such systems and what happens to parallelism at a higher levelof system complexity.

Generally the control strategies of complicated process systems may beorganized in such a manner that relatively simple if/then rules are used
(Terano, 1992; Yager, 1994). This is achieved by partitioning the knowledge
base of the controller into rule clusters. In each cluster there are if/the,,i ides that may have several LIIS variables but only one RI IS variable.Suppose that we have p input variables x,, x .......and r manipulatedvariables n ,, 11 ^ ..... xi,. The algorithmic devclopnicnt generally proceeds
from sonic general and maybe complicated (f/then r ules that form thea priori knowledge prescribing whit has to be done under ;.j set of hypotheti-
cal situations. Often, but not always, it is possible to reduce these initial rules
to simpler rules with one control variable in the RI IS,	 ules that have thesame M IS variable axe collected together to form a rule cluster. In the cadwe have One cluster of rules whose RI-IS is used to manipulate variable n
another for variable a 2 , and so on. Thus, a complicated process controlsstcni may he decomposed into a number of .'nany- thp:it-sjng/oxitj,ijt con-trollers. Such i Lllc clusters may be executed in dependently, hence maintain-
log the overall parallel characteristics of fuzz y systeics. Of course, moreelaborate architectures can he devised that may include nu'rarules. The
developers of fuizy control algorithms exercise considerable creativity insetting up special variables and rules for the interaction of these clusters. In
jrnciplc, however, rule clusters can be nor]intcx active, in whit b case they can
be executed in parellel, achievi,u' consic rabc speed an: ounlputat6 'a:ilefficiency.

6.3 DEFUZIFICAT1ON METHODS

i\ter the input to the controller has been processed by the control algorithm
the result is a fuzzy output tL0i( i €). Selecting a crisp number u representa -tive of ouT(u ) is a process known as def zzication. Over the years several
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defuzzification techniques have been suggested (Terano et al., 1992; Pcdrycz,
1993; Yager and Filcv, 1994). The choice of defuzzification method may have
a significtnt impact on the speed and accuracy of a fuzzy controller.' The
most frequently used ones are the c ntroid or center of arc.r (COA), the center
of sums (COS), and mean of maxima (MOM).

Cordar A r ea (COA) Dofuzzification

In COA defuzzification 7 the crisp value u is taken to be the geometrical
center of the output fuzzy value j.sQ (u), where L0u( u ) is feimecl by taking
the union of all the contributions of rules whose DOF > O. The center is the
point which splits the area under the POUT(") curve in two equal parts. Let
us assume we have a discretized universe of discourse. The defuzzified
output is defined as

U
E1u1 OUT(uD	

(6.3-I)EN=	
I

-i bOUTtI

where the summation (integration) is carried over (discrete) values of the
universe of discourse u i sampled at N points. COA is a well known and often
used defuzzification method. Some potential drawbacks of COA are that it
favors "central" values in the universe of discourse and that, due to its
complexity, it may lead to rather slow inference c ycles. COA defuzzificatiun
takes into account the area of the resultant membership function ,uocrr( u) as
a whole. If the areas of two or more contributing rules overlap, equation
(6.3-1) does not take into account the overlapping area only once [since we
take the union to form 1100(u), the resultant membership function].

When c)UT( u ) = 0 we simply set the crisp output to a pre-agreed value
(in order to avoid dividing by zero), typically u = 0. The crisp output value
may also he computed in terms of the DOF of each contributing rule as

E"lDOFk 1k=

	

	 (6.3-2)
IDOFk 11k

where B is the contribution due to the firing of rule k,9 Mk is the moment
of B, and DOF5 is the degree of Jhlfillment of the kth rule (k = 1.... . n).

6 Certain defuzzification methods may introduce nonlinearities and discontinuities in the control
hypersurface [see Jager (1995)1.
'Also known as center of graviry defuzzification, a name more appropriate for multidimensional
fuzzy output.
8 For convenience we use the control signal u as the output variable. The control signal change

u or any other output variable may be used as well.
9 The subscript k is used to indicate the kth rule and should not be confused with the letter k

used earlier to indicate the I	 k time step.
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We recall that the moment of B is the product of Bk. and the distance of its
center of gravity from the .r axis (the moment about zero).

Center of Sums (COS) Defuzzificatjon

To address the problems associated with COA and take into account the
over]apping areas of multiple rules more than once, a variant of COA called
center of SUMS (COS) is used. As shown in Figure 6.9, COS builds the
resultant membership function by taking the sum (not just the union) of
output from each contributing rule. Hence overlapping areas arc counted
more tliaii oiice. COS is actually the most commonly used defuzzific;ition
method. It can be implemented easily and leads to rather fast inference
cycles. ft is given by

0* =

	

O(j)	

(6.3-3)

vhcre o(u) is the membership fuuction (at point u,	 tire univcrsc of
discoum Sc) resulting ['10111 the tiring of the k th rule.

Mean of Maxima (MOM) Dofuzzifjcafjon

One simole way to defuzzifv the output is to take the crisp value wihi the
highest dcLtrcc of membership in /IQLJT( u ) . Ofte ntimnes, however, there may
he more than one element in the universe of discoursa having the maximum
vrlee, as ma y be seen in the /zorr(u) of Figure 6.6. In such cases we can
randomiy select one of them or, even better, take the mean value of the
maxima. Suppose that we have M such maxima in a discrete universe of
discourse. 'l be crisp output can he obtained by

(6.3.4)

where u	 is the tnth element in tire uni e 	 of dkcourse vire the
meniherhi;r Limmetion of LoT'T( u ) is at the rn	 .nirn value, and M is the
total number of such elements.

MOM deuLzifjcatjrm is faster than COA, :ind furthermore it allows the
controller to reach values near the e(?gcs of the universe of discourse. A
dmsadvantuc of this method, however, is that it does not consider the overall
shape of the f1177y outpUt /LQ[;T(11). On the other hand, with COA the
extreme v.mltmes of the universe of discourse cannot he reached for example,
near +6 in Figure 6.5. Both methods have been used ill control applications;
several variants of them exist, such as the indmed center of gravi' method,
where a threshold lcvel is used to eliminate elements with degrees of
membership lower than a threshold in the' computation of
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Figure 6.9 Three different defuzzification methods: center of area (COA, center of
sums (COS). and mean of maxima (MOM).

(Pediycz, 1993). It is also possible to employ defuzzification methods in an
adaptive manner (Yager and Filcv, 1993, 1994).

Example 6,2 A Simple Fuzzy Controller for Level Control. Consider the
process system shown in Figure 6.1 (and controlled by a PID controller in
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priseci of the following rules:

R1: if error is NB then output is VII	 ELSE

R2: if error is NS then output is HIGH ELSE

A 3 . if error is Z then output is MED ELSE	 (E6.2-1)

R 4 : iferrorisPS then outputisLOW ELSE

'P ç if error is PB then output is VL

We USC Mamdani min for fuzzy implication and hence interpret the connec-

tive ELSE in (E6.2-1) as OR (see Table 5.5). Suppose that at time t = 0 mm

the output of our controller was at 50% of its full range and 2 min later we
introduce the error shown in Figure 6.2. What would be the output according
to the algorithm of (E6.2-1)? Let us look at what happens at 1 3 mm. From
Figure 6.2 we see that the input to the algorithm at this time is a crisp error

= 1.25%, which belongs to the Z value of error to a degree of 0.87 and to

PS to a degree of 0.12. The degree of membership to other fuzzy values is
zero, as call seen in Figure 6,10, Thus, rules R 3 and R4 of algorithm

(E6.2-1) will fire, since they are the only rules involving the Z and PS values.

The situation is shown in Figure 6.11, where we see a schematic (geometrical)
rendition of the evaluation of the control algorithm under GMP at time t =

3 mm. The degree of fulfillment of R 3 is DOF3 = 0.87 and for R 4 we have

DOF4 = 0.12. All other rules have DOF 0,0. Using Mamdani min implica-
tion the result of evaluating rules R 3 and R 4 under GMP is to clip the RIIS

values of rules R 3 and R 4 —that is, MED and LOW--at ,u L or . ( u ) 0.87

and jz .0(u) 0.12, respectively. In other words, MED is clipped at 0.12.

Out of all rules, only R 3 and R 4 contribute at t = 3 mm, and their

contributions are L o;v . (u) and /.L 5f o . ( u) as shown in Figure 6.11. Since we

interpret the connective ELSE as OR, the total fuzzy output of the entire

algorithm at t	 3 min is the union of these two values—that is,

Iüu T ( u) = iL zow'( u) V IL .f CL)' ( u)	 (E6.2-2)

fi r r() is shown in the lower part of Figure 6.11. We use the COA
defuzzificationthat is, equation (6.3-2)—to defuzzify ,iQ[,T(u). The result

is u = 47%. If MOM is used, the average value of the maximum values of
is at the middle of the plateau of 10(u)— that is, at about 50%.

Hence, the two methods give somewhat different results. In MOM the
contribution of 14 01y(u) is totally ignored since only the values where

PoUT(U) is at a maximuni are taken into account. The above procedure is
repeated in subsequent time steps. The defuzzified output of the controller
using COA is shown in Figure 6.12. Comparing with the three different
modes of Pit) control shown in Figure 6.3, we see that our fuzzy controller
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calcuatjon at f 3 min in Excinple 6 2.

behaves like a proporti, , nal CO1( rOilcr, since the form (not the niafljtu() of
the output is srnilar to u 0G'). Li

Example 6.3 A I o-Tnpnt  Fuzzy Controlici' for Level CcoiroI. Consider the
process system shown in Figuin 6.1, addressed by a PIT) controller in
Example 6.1 and a simple fuz:y controller in Example 6.2. Let us now
develop a fuzzy controller with two LHS and one RHS variables. We useerror and change in error, .sen'or, in the LI-IS of the ruics and use output inth	 IIS. The fuzzy values of ti1CC variables .rc sho-,v 0 in Figure 6,13. AerTorc

	

	 the direction of change in error; that f, Incrcasing is described by the
'e. P (posifioc), dccrea.;ng is 'Jescnbed by N (neçatiie), and
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change is described by ZE (zero). We use Maindani inin implication and
COA defuzzification. The fuzzy algorithm is:

R1: If error is NB AND terror is N then output is HIGH ELSE

R,: if error is NB AND A error isZEthen output is VII 	 ELSE

R: i, 11 error is NB AND A error is P then output is VTI 	 ELSE

iJeiors NS AND A error is Nthen output is 111011 ELSE

R5: if error is NS AND A error is ZE then output is h[JGI-I ELSE

l: if error is NS AND A, error is]' then output is MED ELSE

R7: if error is Z AND Aerror is N then Output is MED ELSE

if error is Z AND terror is ZE then output is MED ELSE

R,: if error is Z AND A, e1Tor is  then output is MED	 ELSE

R1 if error is PS AND xerror is N Men output is ME]) ELSE

RI I if error is PS AND \eiTor is ZE then output is LOW ELSE

R1. if error is PS AND A error is P then output is OW E1SE

R
	

if error is P13 AND Lcrror is N then output is LOW ELSE

R11. if error is PB AND error is ZE then output is f'L 	 ELSE

R1
	 if error is PB AND terror is I' then output is VI-

(L6,3-1)

We recall that with Mamdani min the connective ELSE in (E6.3-1) is
interpreted as OR and therefore the total fuzzy output will he the union of
individual rule contributions (see Table 5.5). It is customary in the control
literature to refer to the fuzzy relations (E6.3-1) as control surfaces (or
hyperstufaces). Figure 6.14 is a graphical representation of the control surface
indicating hypersurface dependence on the rules. In Figure 6.140, no rules
exist in our algorithm; hence the control hypersurface is a flat plane at u = 0.
If the control algorithm in (E6.3-1) was comprised only of the two rules R1
and R2 (the rest did not exist), then the control hypersurfacc would look like
What is shown in Figure 6.14b. If only the first eight rules of the algorithm
are present, the control hypersurface looks like Figure 6.14c, while if the first
13 rules are present, the control h ypersurface would look like Figure 6.14d.
Finally, if all 15 rules are present, the control hypersurface looks like
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Figure 6. Ide. Plottingthe control hypersui :ce helps to visnalizthe nti: ncr
in which a fuzzy controiller covers the control space. Unfortnatc1v it is not
convenei1t to use when more than three s'ariablcs arc prescar.

At t	 2 min we introduce the error shown in Figure .2 (sin ens inExall-lilli n 6.1 and 6.). Figure 6.15 shows a schematic repr c:r:ato;i
fuzzy inlerence or geio'm/izcrf modus polices (GMP) at I	 S irOn. Ckpinputs e	 3.75% and \	 = 1.25% are presented to the algo: Ohm (L(.]-1)
at this lime. Cusp error & 	 3.75% belons to fuzzy value Z to decrc - of
0.75 and to fuzzy V,11tie PS to a degree of 0.4. Similam ly, crisp c ar g e- j n	 rrr

= 1.25% belongs to fuzzy value Z] to a degree of 0.6 and r fuzzy vane
P to a (lerec of (1.4. 1-Ience the only rules that will have J)(: 'rctcj tian
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(c)

Figuro 6.13 Fuzzy values for (a) error. (b) A error, and (c) output fuzzy variables used

in Examplo 6.3.
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(c,)

• Figure 614 (a) The Control hypersur face when there are no rules prosnt. (b) with
rules R and R2 only, (c) with rules P 1 through P5 . ( a) v.•th rules P 1 thugh and
(e) with C11 15 rules
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zero in (E6.3-1)--that is, the rules th't firc---vil! be R 5 , I? 9 , R11,

Using the ruin form of DOF (i.e., the miii (A) interpretation of AVM, cach
rule contributes the shaded part of the RIIS value shown in Figure 6.14. We
recall that GMP with Mamdani min implication clips the RI-IS at the he
of DOF, as shown in Figure 6.15. Rule P 8 contributes MEL)', P 9 contribuL

MET)", P 0 contributes LOW', and R 1 contributes LOW". The fu7ey

output /.L 0 , 1 (u) is the union (max) of those four contrinuticins (hadcJ pa),

that is,

?L o,:( u) = l5fF.i) •( u) V LtrirD- ((I) V	 eo; (u) v	 (a) (1 5.3 ::)

0 ,(n) is shown at the tower part of Fi:urc 6.15. Using COJ\ defuz;'ificatin,
we obtain the crisp output u = 38. The procedure is repeated for other
ti:nc steps. The crisp output of the controller for the duration of the prol 'hun

is shown in Fieurc 6.16. Comparing with Figure 6.13, v;c see that introdui're

100

	

UU)	 Th%

20

	

o •	 1

0	 2	 4	 6	 8	 10

[mm]

Figure 6.16 Detuzzifiod output of fuzzy controller with two inputs (error and A error)
under rcirnp input.
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one more variable, namely the change in error icrror, makes a significant
difference ii] the control action. To obtain a desired response by our
controller, we can now modify the shape and position of constituent member-
ship functions or the rules, the implications used, and so on. A number of
factors contribute to different Outputs, such as the knowledge encoded in
(E6.3-1), the fuzzy values used, the interpretation of AND (affecting DOl-'),
the implication operator, and the defuzzificatjor i method used. The role and
significance of these factors will be examined in the next section. [1

6.4 ISSUES INVOLVED IN DESIGNING FUZZY CONTROLLERS

Although there are automatic ways of identifying the rules and membership
functions involved in a fuzzy controller,t° ill many ways the development of a
good fuzzy controller reflects the maturity of knowledge about a Process. The
choice of fuzzy variables and values and the rules themselves are intimately
related to the knowledge a developer has about the entire process control
ssstem. The knowledge can be extracted by interviewing skilLd operators or
analyzing records of system responses to prototypes of input sequences
( D ubois and Prade, 1980; Bernard, 1988). In addition, important decisions
need to be made about the algorithm itself, such as what kind of implication
to use, the appro 1 H y' :f:zefffcatioji method, and implcmentation.rclated
issues sech ac lww to store the fuzzy relation of the algorithm, how to
quantize membership functions, and so on. A difficult issue in fuzzy control
arises in connection with determining the stability characteristics of the
system. Stability itself ceo he thought of as a fuzzy variable and can be
included in a description, witil various degrees of stability (not just stable orunstable) being considered. Generally though, stability questions are hard to
answer exclusively within fuzzy linguistic descriptions (Kiszka et A,, 1985;
Jianqin and Laijiu, 1993).

Once en algorithm been developed, its quality can be assessed by
cxemining the shape ofThe fuzzy output. Consider the situation shown in
Idgure 6.17 (King and Ma(lanj, 190). Here we have three different general
shapes for the membcrshj) function of the fuzzy output at some particular
tie step. They reveal thi cc different instances of algorithmic qualit y. Ins

m
ti.ition .4, a well-peaked fuzzy output indicates presence of strong firing

rules. In shuation B, the Oit'aut points to two different and o ppositearce; ofthe un jve of discouree, and hence we identify the presence of clime
crn itradicta.y rules or g ''es of rules, at the 'me time suggesting en output
t;ward --3 and toward ±3. An algorithm that points its output in opposite
diicct 05 at the same time needs some further refinement to remove this
kind of contradiction In situation C we have the presence of an unsatisfac
tory set of rules since there is no representative output. In genetal, low

°Often refer(I	 ,,s St' ic;ur' and J'a.'nine:er id,nUficaj',
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)JIU)
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O P	 I.
. 6	 4	 -2	 0	 2	 4	 6

Figuro 6.17 1h-e diteront coss c. fuy ou (it indicriilvo of algorithrn: quay
(A) don;;.onf rule. (B) controa;c-tory ru:es. arid (C) no so;stoctocy rule.

Plateaus bk.- what is shown in situation C indicate that the knowledge
encoded iii the algorithm is incomplete and that additional rules are needed-

Let us now turn our attention to the various factors involved in the
development of a fuzzy algorithm other than the quality of the encoded
knowledge. Fuzzy algorithms are linguistic descriptions of the desirable
behavior of a system. As such they have an analytical form involving fuzzy
variables, relations, implication operators, and inferencing procedures. In
order to examine the factors involved in algorithmic synthesis and analysis,
let us look at the general analytical description of a fuzzy algorithm. Suppose
that we have a control algorithm with linguistic form:

if	 .v is A	 ANI.) ,- is B	 then u ii C 1 ELSE

if	 x is A ANT)	 is B, then n is C-, ELSE

if x is A AND y is B1 then u is C1 ELSE

if	 .v is A A ND y is B,, then u is C,

At time t k, crisp inputs x and y'
 

are given to ulgorithnT (6.4-1), and
through GMP (see Chapters 3 and 5) we determine the output membership
function. Analytically the operation of inferring a fuzz y output at any given
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time step may he written as

/(1(1)	 (noF,(k). A,u))

V (DoF,()

V (nOF(k) C(U))

V (DoJ:(k)(1))	 (6.4-2)

for implication operators where the uon;icctive ElSE is interpreted asUn/Oil (see Table 5.5). For implication operators interpreted as intersection we
change (v) ii) equation (6.4-2) to (A). Equation (6.4-2) tells us that the
Collective output of the controller depends on aggregating the outputs of
individual rules with the output of each rule depending, in turn, on the
degree of fulfillment plus the consequent membership function of the rule.

The degree of fulfillment of the jth rule DOFJ in (6.4-2) depends on theinterpretation of the connective AND (generally thought of as a T norm (SecAppendix)). If AND is analytically described as mm (A), the degree offulfillment at tilneslep k is

(6.4-3)

hre x' and y' are the nu-:tired input values at a given time 1- 11
lyticaily described as proct (), the iui is

DOLj(k)	 (y')	 (6.4-4)

It should be noted that l DOE is a function of time as dnt input
alue'; activate the rides to different degrees at different times. Equation

(6.4-2) gives the fuzzy output (before defuzzification) of the ceutroller in a
general form and helps us to identify choices the developer needs to make
such as the appropriate fuzzy implication op'rator /, and the asaci-:,in terpretation of the connective ELSE, the form of DOE, and the deIuzzifm-
Cation method.

In the design of f y s ystems it is important to adequately cover the state
space of the pi nb!c.'. Generally the development of a rule set that is both
complete. and Curreci • one of the roost difficult problems in fuzzy control.
Aithmough various ap: .-oachcs have been suggested for learning a control
algorithm on-line and adapting it to changing process conditions (Graham
and Newell, 1988; C)z, 1993), this is still a rather heuristic process, and a
5JOod understanding of the various factors influencing the Output of the
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controller is very helpful in its development and ca]uatian. Generall y , which
rules and to what extent ill contribute toward ni output at any given time
depends primarily oil form of the degree of Jhlfiulment (mill . or product),
the defuzziJica!ion method, and the inp1wwion operator.

Let us consider the jth rule of (6.4-1) where triangular membersh72
fLinctions are used as Shown in Figure 6.18. We assume m i n (A) form f.
DOE as in equation (6.4-3). We also assume common quantized universe
discourse fr all variables, of the type shown in Table 6.1. In Figure 6.1.S we
see the paiL of the Cartesian product of LHS variables covered by the jth
rule. The x X y plane is the state space of our system. The state spa,:,,
covered by the Jth rule is a square of six units edge, centered at (x 1 , ))
shown in the figure. At time t	 k, crisp inputs Ct', y') are given to the rule.
Let us first see what happens when the point (x', y') is located within the
innermost square centered at (x,., v, ) that has an edge of 2 units as shown in
Fgurc 6.18. In such a case the degree of fulfillment DOF, of the jth rule \vkl

he the same regardless of the exact location of point Cv', v') so lon g as it
remains v ithin this particular square, since we have that

	

+ 1) A	 ± 1) = 0.67 A 0.67	 0.67

	

t ( x.) A	 - 1) = 0.67 A 0.67	 0.67

	

A	 + 1) = 0.67 A 0.67	 0.67

	

1) A	 - I)	 067 A 0.67	 0.67

i 44 xj e - 1) A c() = 0.67 A 0.67 = 0.67

1L 1 (x1 . - 1) A fc(%. + 1) == 0.67 A 0.67 . 0.67

Thus the 1)OF is 0.67 everywhere within this inncrrn.st square. Sinul,cr
considerations lead us to the conclusion that if the point W, ' ) falls with in a
square of edge 4, the DOF is 0.33 everywhere, whereas if it tails outside, the
1 )OF is 0. TIlius the distribution of the DOFs of a rule centered at (x1 , v1 .) is
as shown in Table 6.3.

When at time t = k the crisp inputs Cv', y') are given to the controller, the
DOF of individual rules depends linearly oil distance between the input
and the Center (or peak) of the rule (x,, yr.). Obviously the number of rules
that will influence and contribute to the collective fu7zy output at any given
time are only those within a distance d from input (x', y') (see Figure 6.18).
Thus in a control algorithm, only the part of state space a distance d from a
crisp input needs to be considered for rules that may be "fired." The rest
have DOE 0. The distance d is taken to be half of the support of a fuzzy
value (considering the support to he where the membership function is not
trivial). As shown in Figure 6.18, the edge of a square with (xj x 1 ) at its
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-	 067	 0.67
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0.67	 Aj

(c. )c)

IITI
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Figure 6.18 Rogion of influence of a rule in state space.

Table 63 Distribution of DOFs around rule center
(rule with min DOF)

.i±
	
0:

10	 0.3	 0.33	 0.33	 0133	 0.33	 0

*	 *
0	 0,33	 ';.ó,	 07,: .:: 0.67i0.33	 0

O	 0.33	 0.o7	 I) . 067 033	 0

O	 .1 3 I 0.67	 7	 0.62 10.33	 0

O	 0.33	 0.33	 0.33	 0,33	 0.33	 0

IJL
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center is 2d. We assumed of course that the tvo fizzy values Al and B1 have
supports of the same length. When the support sets do not have the same
length, then instead of a square we have a paraLelograrn and the distance of
(x', y') froni (x1 . 1 x1 ) will vary directionally as we move in different locatic's
of state space.

The number of rules contributing to the fuzz y output depends also on the
defuzzification method. \Vhen MOM is used, only the rules that are vcy
close to the input (x', y) contribute maximum values to the output and
therefore they are the only ones that need to be taken into account. We
recall that with MOM, only the maximum values of ihe various contributions
to the fuzzy Output are used; and hence, only rules with high DOF and
therefore small distance from (x', y') will influence the output. When CO/s
is used, all the rules within a distance d from (x', v') need to be tnkn into
account. Of course their contribution is in proportion to their distance from
the input. Those which are the closest have the highest degree of fulfiliractit
an] therefore contribute more than those far away. Nonetheless, all ruics
within a distance d from (x', y') need to be taken into account.

On the other hand, if product is used in the DOF--that is. [lOP1 =
ILA (x k ) I(h)— the diitrihution of the flOP for input values in the vicinity
of the jth rule would be as shown in Table 6.4. We see that DOF is varying
With distance from (x1 , ) in a nonlinear manner. Again, if CO/s defuzzifi-
cation is used, all the rules within a distance d need to he taken into account.
When MOM is used, the rule peaking at (x.. v0 ) will have less influence
than the earlier situation when the degree of fulfillment was defined through
mm. In the present case, it will influence the rule in a directional manlier.
For this reason with product DOF, CO/s (lefuzzification is more appropriate.
Sometimes we may have very low DOFs, and therefore a cutoff number
ought to be used to limit the number of rules that need to he considered.
Thus we may choose DOFJ a and ignore rules below whose flOP is less
than a.

When continuous instead of discrete fuzzy values are used, their member-
ship functions can he defined by various functions such as S-shaped and
fl-shaped functions (see Sections 2.6.3, 2.6.4, and 2.6.5). Similar considera-
tions hold for such cases as for discretized membership functions. \Vitlt
MOM, tremendous accuracy is not required since only the relative size of the
membership values influences the final result and not the precise magnitude.
Thus in order to take advantage of the fact that we have more precise
membership values With continuous membership functions, it is best to utilize
the COA (or COS) method of defuzzification.

We turn our attention now to the influence of the shape of membership
functions describing the antecedent and consequent fuzzy values. The sup-
port of the fuzzy values of the antecedents (e.g., 2d) determines the area of
influence of every rule and hence plays a crucial role in the calculation of the
control value. Generally the shape of the membership functions of J.IJS
values has a substantial impact on the computation of the control action at
any given time since it affects the DOF of each rule. Obviously the shape of
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Table 6.4 Distribution of DOFs around rule center
(rule with product DOF)

o	 o	 0	 0	 0	 0	 0

o	 0.09	 021	 0.33	 0.21	 0.09	 0

0	 0.21	 0.49	 0.67	 0.49	 021	 0

0	 033	 07	 0' 0.33	 0

0	 0.21	 0A9	 0.67	 0.4	 0.21	 0

0	 0.09	 0.2	 033	 0.21	 0.09	 0

0	 00	 0	 0	 0	 0

the RHS membership function affects directly the contribution of the rule to
the overall fuzzy output.

When MOM is used, Ihe cict shape of the LIiS membership functions
•.s not play a major role p1ovidcd that it is in the general shape of a 'hill,

and symmetric with respect to a normal point." MOM clef uzzification effec-
(h'c ly d; aguishcs the rules with the highest priority (highest DOF) that
is, the rues closest to the input (x', y'). Thus with MOM, the DOF suggests
the diStace from (x', y ') and therefore the absolute values of the member-
sbi funions are not crucial, just their magnitude in relation to the
mambcrshp functions of other rules. Similarly the exact shape of RHS
mcmbch. functions does not phy a crucial rote in the calculation of the
crisp oundt. When the support is not symmetric, the peaks in the member-
ship functioa of the antecedents move relative to the support set and thus
offer different DOF for the same inputs to the controller and different
nnnsyrnrnetric shapes of "hil1s''

When COA ujefuizjfjcatjon is used, the exact shape of the membership
functions a antecedent as well as consequent plays an important role, even
when sya1 r:1stric membership functions are used. This happens because COA
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defuzzification takes into tm-u ol toe area tnt	 'he cur' Of the total fu 7y.-

output at any given time. This area is iufluen - hreclly the shape of the
consequent membership function,, of the cc,l outing iu , and inchrcctly
through the DOF (the shape of the conseqileot . .lemoersliip ilICtjOflS of the
contributing rules). The above-mentioned info nec on the risp controller
output is emphasized (accentuated) even more if nons yinmetric meniherhip
functions are used, as well as if different membership f'netions ace used for
the different variables.

1.ct us now examine the influence of fuzzy implication operator th on the
computations of the controller output at a time t = k. We consider a
hypothetical case where only one rule exists in the vicinit of (.t ', v'); that is,
only one rule fires. Suppose that we use Marndani min implication operator
' and fuzzy sets defined throuc,'h symmetric triangular functions of the furni
shown in Table 6.1 (also Figure 6.5). Figure 6.19 (top) shows what happens to
the RI-IS value for different degrees of fulfillment of a rule. The consrqtient
membership function remains the same for DOF = 1 and is gradually clipped,
finally becoming zero when 1)01 = 0. The clefuzzified output is the
with either COA or MOM methods. The situation is similar svhicn Lars--a
pi uduct implication operator , is used as can be Seelt in Firurc 6.1S.

On the other hand, if the Boolean implication operaor ç5 0 is use I.
plateau" is created that grows. as DOF is getting smaller, until it covers tke

entire universe of discourse when DOF = 0. While this is exactly the oppo-
site of what happens when the Mamdani min implication operator is used, it
is counterbalanced by interpreting ELSE as intersection (mm) when a
number of rules are connected in order to compute tile total fuzzy output of
the controller. in fact, this is the reason for using nun for the connective
ELSE with this implication operator (see 'fable 5.5). it should he noted from
Figure 6.19 that COA and MOM clefuzzification may give different crisp
Outputs when Boolean implication is used.

If the arihmetic implication operator th, is used, a ''plateau' is also
formed as it happens with Boolean implication. The peak of the function is
clipped as with Mamdani nun implication. When DOF = 0, the "plateau"
covers the entire universe of discourse. Again it should be noted that CoA
and MOM defuzzification ma y give different crisp outputs.

As can be seen in Figure 0.19, when Manidani mm and Larsen product
implications are used, both COA and MOM defuzzification methods give
similar results. In Boolean and arithmetic implications, on the other hand,
the two defuzzification methods will give rather different results due to the
developing plateaus. When plateaus appear, MOM defuzzification is better
because COA considers the peak of the rule together with the developing
plateau, and hence it shifts the final crisp output away front the location that
is suggested by the peak of the rule. This is undesirable since "plateaus" rho
not contain useful information. They can be interpreted as. a fuzzy value
"zwknoien." In Figure 6.19 we note that when DOF = 0, Mamdani min and
Larsen product implications give ''nothing" as the output of the controller.
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On the other hand, using te Bo ..i.ari	 at	 in.	 :oits produces
unknown as output. In all cases we can	 to	 p zero.

In addition, with Manidani min and Larsen i.zadrct it, Pc etioris we may
effectively use either method of dcfuzziiicaioi ice tie fuzzy output
contains contributions from all (or many) rules. C rt.rally, if a rule or several
rules are an equal distance away from the point (x', y'), we lta: the same
results with either defuzzification metPod. With Be sPan nod arithmetic
implications we do not need to use COA dcfuzzific ttion (which is actually
computationally more clenianding) since in rnaiiy cases the total fu7zy output
does not effectively represent the contribution of the individual rules (due to
the "plateau" or "flattening" effect). In general, it is preferable (hut not
required) to use MOM in conjunction with Boolean and arithmetic impli:a-
tions.
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PROBLEMS

A fuzzy control system used inputs of error e and change in error . e to
control an output variable it. Their fuzzy mcn*critip functions have the
fit lowing clia i'acte r is tics:

V,iriatic	 Range	 Deeri;;tL-ro	 -hcrdrip feerrio

e Error (%)	 -20 to	 t) N (neg.sti'.e) Stragi.t 9c Item 1 at - Ui to  at L
Z (zero)	 Straight line from 0 at 20% to t at 0% and

another straight line from 1 at 0% to  at +
P (positive)	 Straight line from 0 at 0% to t at + 20%

Se Cl:.n	 in	 10 it - tO Al (ne gative) Straight tine from 1 at -- 10 17c/mm too it
10%/rein

error (%/ntra)	 P (n-im:ve)	 Strai ght tine from I) at - 10%/rein to 1 at
^ 10%/mitt

ii Outpet (%)	 -25 to + 25 N (negative) Straight litre from I at -15% to 0 at 0%
L (zero)	 Straight tine from 0 at - 25% to 1 at 0% and

another .tarmtfit 1::.e from I at 0% to 0 st -
-'' t p:	 )	 Sr iaigttt itrie from 0 at 0% to I at + 25%

	

The fuzzy algorithm is given below. Determbte the output a fore'	 - I hhir

and \e' = -- 2/rnin using the Matodatti thifl implication operator and
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max— win composition (as well as win interpretation for AND in the
degree of fulfillment). Use the Center of area method to defuzify the
answer. (Sketch the various membership functions involved and show how
you Obtained your solution.)

FUZZY ALGORITHM

R1 if e is N AND A  is N then it P ELSE

1? 2 'f e is N AND A, e is P tiie,i it is P ELSE

R 3 ifeisz AND A eisjV then uisZ ELSE

I? 3 if e is Z Ae is I' then it is Z ELSE

R 5 if  is I AND A, e is N tlie,i it N ELSE

i	 if e is I' AN!) A, e is 	 then a iv A7

2. Repeat Problem I using the Larsep product implication, rnaxn'in C(1iJ(-
sition, and product for the degree of fulfillment.

3. In Problem 1, the error starts at a value of I- L% at time 0 and decreases
at a rate of 2%/rnin for 4 minutes. Determine the Output it 	 times

= 0, 1, 2, 3, and 4.

4. Analyze the fuzzy controller given in Probleimi 1 using the eritem ia given in
Section. 4. Are there contradictions within the rule set? Is there a domni-
riant rule'? Are the rules covering the state Space in a satisfactory manner?

. U . ing MA FLAB, draw the control hypersui'Cace for the fuzzy controller
given ii Problem 1. Simulate the controller for the range of all possible
inputs nd answer the questions posed in Problem 4.

c;. Siimw',ht il' different interpretations for ELSE could he for the fuzzy
cuutrollcr of 'roblcm I and the implication operators given in Tahle 5.2.
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