INTRODUCTION
TO HYBRID ARTIFICIAL
INTELLIGENCE SYSTEMS

As complexity rises, precise statements lose meaning and meaningful

statements lose precision.
Lotfi A. Zadeh

1.1 INTRODUCTION

The term “artificial intelligence” (Al), in its broadest sense, encompasscs a
number of technologies that includes, but is not limited to, cxpert systems,
neural networks, genetic algorithms, fuzzy logic systems, cellular automata,
chaotic systems, and anticipatory systems. Interestingly, most of these tech-
nologies have their origins in biological or behavioral phenomena related to
humans or animals, and many of these technologies are simple analogs of
human and animal systems. Hybrid intelligent systems generally involve two,
three, or more of these individual Al technologies that arc either used in
series or integrated in a way to produce advantageous results through
synergistic interactions. In this book we have placed emphasis on neural
networks and fuzzy systems; to a lesser extent, we have also placed emphasis
on genetic algorithms where needed for optimization and expert systems
where they are néeded to supervise and implement the other three technolo-
gies. A major emphasis in this book will be on the integration of fuzzy and
neural systems in a synergistic way. :

In data and/or information processing, the objective is generally to gain
an understanding of the phenomena involved and to evaluate relevant
parameters quantitatively. This is usually accomplished through “modeling”
of the systems, either experimentally or analytically (using mathematics and
physical principles). Most hybrid systems relate experimental data to systems
or models. Once we have a model of a system, we can carry out various
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procedures (e.g., scnsitivity analysis, stati LCEFh'cg;cssmn
better understanding of the system. Such e ta'lix deriveth
insight into the nature of the system behavic %!a'f
mathematical and physical models. ;
There are, however, many situations in which %nﬁnwﬂv’ 1
very complex and often not well understood and f’r pri\m'p s
models are not possible. Even more often, physical j :gmcn_ts 'oIﬂlu,
pertinent quantitics are very difficult and expensive. These dif R cad s

to explore the use of ncural networks and fuzzy logic systems as a way of
obtaining models based on experimental measurements.

1.2 NEURAL NETWORKS AND FUZZY LOGIC SYSTEMS

In the history of science and technology, new developments often come from
observations made from a different perspective. Interrelationships that we
take for granted today may not have been so obvious in earlier decades, For
instance, we regularly gain insight into the bchavior of a dynamic system by
viewing it as being in the “time domain” and/or the “frequency domain.”
However, for the first four decades of the twenticth century, statisticians
dealt with autocorrelation and cross-correlation functions (in the time do-
main) while electrical engineers dealt with power- and cross-spectral densi-
tics (in the frequency domain) without either group realizing that these two
concepts were related to each other through Fourier transformations.

Both the statisticians and the electrical engineers have found that analysis
of the fluctuations in process variables provides useful information about the
variables as well as the processes involved. These fluctuations, which result in
uncertainties in measured variables, often are caused by some sort of random
driving function (i.e., fluid turbulence, rotational unbalance, cic.). Investiga-
tion, and the subsequent understanding of these uncertainties (fluctuations),
led to the development of the field of “random noise analysis™ which
spawned such analytical specialties as vibration analysis, seismology, electro-
cardiography, oceanography, and so on.

Neural networks and fuzzy systems represent two distinct methodologies
that deal with uncerlainty. Uncertainties that are important include both
those in the model or description of the systems involved as well as those in
the variables. These uncertainties usually arise from system complexity (often
including nonlinearities; we think of complexity as a property of system
description—that is, related to the means of computation or language and
not merely a system’s complicated nature). Neural networks approach the
modeling representation by using precise inputs and outputs which are used
to “train” a gencric model which has sufficient degrees of freedom to
formulate a good approximation of the complex relationship between the
inputs and the outputs. In fuzzy systems, the reverse situation prevails. The
input and output variables are encoded in “fuzzy” representations, while
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their interrclationships take the form of well-defined if /then rules. Zadeh’s
ingenious observation that the uncritical pursuit of precision may be not only
unnecessary but actually a source of crror led him to the notion of a fuzzy
sct,

Each of these approaches has its own advantages and disadvantages.
Neural networks can represent (i.c., model) complex nonlinear relationships,
and they are very good at classification of phenomena into preselected
categories used in the training process, On the other hand, the precision of
the outputs is sometimes limited because the variables are effectively treated
as analog variables (even when implemented on a digital computer), and
“minimization of least squares errors” does not mean “zero error.” Further-
more, the time required for proper training a neural network using one of the
variations of “backpropagation” training can be substantial (sometimes hours
or days). Perhaps the “Achilles heel” of ncural networks is the need for
substantial data that arc representative and cover the entire range over which
the different variables are expected to change.

Fuzzy logic systems address the imprecision of the input and output
variables directly by defining then with fuzzy numbers (and fuzzy sets) that
can be expressed in linguistic terms (e.g., cold, warm, and fot). Furthermore,
they allow far greater flexibility in formulating system descriptions at the
appropriate level of detail. Fuzziness has a lot to do with the parsimony and
hence the accuracy and efficiency of a description. This means that complex
process behavior can be described in general terms without precisely defining
the complex (usually nonlinear) phenomena involved. Paraphrasing Occam's
Razor, the philosophical principle holding that more parsimonious descrip-
tions are more representative of nature, we may say that fuzzy descriptions
are more parsimonious and hence casier to formulate and modify, more
tractable, and perhaps more tolerant of change and even failure.

Neural network and fuzzy logic technologies are quite different, and each
has unique capabilities that are useful in information processing. Yet, they
often can be used to accomplish the same results in different ways. For
instance, they can speed the unraveling and specifying the mathematical
relationships among the numerous variables in a complex dynamic process.
Both can be used to control nonlinear systems to a degree not possible with
conventional linear control systems. They perform mappings with some
degree of imprecision, However, their unique capabilities can also be com-
bined in a synergistic way. It is this combination of the two technologies (as
well as combinations with other Al technologics) with the goal of gaining the
advantages of both that is the focus of this book. :

1.3 THE PROGRESS IN SOFT COMPUTING

Soft computing refers to computational tools whose distinguishing character-
istic is that they provide approximate solutions to approximately formulated
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problems (Aminzadeh, 1994). Fuzzy logic, neural networks, probabilistic
reasoning, expert systems, and genetic algorithms are some of the con-
stituents of soft computing, all having roots in the field of Artificial Intelli-
gence. Whereas the traditional view of computing considers any imprecision
and uncertainty undesirable, in soft computing some tolerance for impreci-
sion and uncertainty is cxploited in order to develop miore tractable and
robust models of systems, at a lower cost and greater economy of communi-
cation and computation,

Few of those who attended the historic 1956 Dartmouth Confercnee to
discuss “‘the potential use of computers and simulation in every aspect of
learning and any other feature of intelligence' could have envisioned the
evolution and growth of the embryonic artificial intelligence field and the
impact it has had on our lives. It was there that the term *“artificial
intclligence™ was coincd, perhaps because of the emphasis on learning and
simulation, The term “eybernetics” was in vogue at that time with its
emphasis on potential control of both man and machincs, Vacuum-tube-type
analog computers had rcached a state of maturity that they (along with high
fidelity stereo sound systems) were being marketed as “Heathkits,” while the
digital “supercomputer” of the time was an IBM-650 with about 2000 words
of magnetic drum memory storage that operated at about 2 kHz,

[t was in this environment that Frank Rosenblat developed the Perceptron
by adding a learning capability to the McCulloch-Pitts model of the neuron,
Marvin Minsky built the first “learning machine” (using 40 processing ele-
ments, cach with six vacuum tubes and a motor /clutch/control system), and
Bermard Widrow developed the “Adaline” (adaptive linear clement) that
even today is used in virtually every high-speed modem and telephone
switching system to cancel out the echo of reflected signals. Boolean algebra
was standard procedure, and John McCarthy and Johi: von Neuman were
putting forth the relative merits of symbolic (LISP) and conventional com-
puter languages. Although there was little in the way of theoretical bascs
providing an understanding of thesc systems, work proceeded on an experi-
mental basis that was guided primarily by the genius of the individuals
involved.

Today, some 40 years later, the whole world has changed. The computing
capacity of that IBM-650 is now encapsulated in a “wristwatch” computer,
the Perceptron and Adaline processing elements are instantiated in neural
network computing and processing methodologics, learning algorithms are
routinely processed on digital computers of all sizes, Boolean logic and
algebra are being replaced by furzzy logic concepts, LISP is fading away
in favor of object-oriented computer languages for artificial intelligence
(e.g., C++), the analog computer has virtually disappearcd, and the modern
personal computer most of us have on our desks may have more than a
gigabytc of memory, operate at a processing rate of 200 MHz or more, and
be part of a vast global network of computers capable of sharing on-line
information in numerical, textual, visual and audible forms.
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The educational, technological, economic, and social impact and signifi-
cance of the computer as a tool for computation and communication have
been continuously discussed and debated in the last few decades. In the
1970’s Ralph Lapp, in an interesting book called The Logarithmic Century,
captured the ever-changing and accelerating trend in the development of
technology and economics (Lapp, 1973). Yet, he did not foresee the magni-
tude of the impact of advanced computer technology, especially the role that
communications and information processing would have on society. Perhaps
our Japanese colleagues have a better grasp of the issues involved. In a book
entitled The Next Century, Halberstam (1991) reported a conversation with a
retired high official of MITI (Ministry for International Trade and Industry)
who in 1987 said ““...the (Japanese) cducational system is in danger
of ... producing young people who have the intellectual capacity of comput-
ers but who will be inferior to computers in what they can actually do. The
computers have caught up.”

Of course, the road of technological change is by no means simple.
Eloquent critics such as Neil Postman in his evocative book Technopoly
strongly point out the dangers of subordinating culture and society to an
uneritical faith in the machine (Postman, 1993). Indeed, computers cannot
magically solve our problems. In today’s highly integrated world, however, a
diverse world population needs the multiplicity of opportunities provided by
the new communications and computer technologies, and soft computing is
promising to become a powerful means for obtaining quick, yet accurate and
acceptable, solutions to many problems. We, the engineers who work to
provide and apply these new soft computing tools, ardently hope that they
will be used for the benefit of mankind.

1.4 INTELLIGENT MANAGEMENT OF LARGE COMPLEX SYSTEMS

The real challenge to soft computing is the intelligent management of large
complex systems-—that is, organizations operating on the scale of the global
cconomy and resting on an highly globalized information infrastructure. It is
perhaps the most important activity facing industrial, educational, mifitary,
and governmental organizations throughout the world today. Management
decisions made today will reverberate throughout these organizations for
years to come. Management decisions made in the past have shaped these
organizations and have made them what they are today. In some cases, large
organizations have made the “right decisions” and have been spectacularly
successful. However, it is clear that the decisions of other large organizations
have not been wise. Multi-hundred million and billion dollar losses, followed
by layoffs, restructuring, mergers, and, all too often, bankruptcy are common
as these organizations pay the price for past mistakes. Why did these
organizations get into trouble or fail? What steps can be taken to ensure that
decisions today are better than those in theg past? The answers to these
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questions are as varied as the nature of the organizations. Typical responses
given are as follows: incompetent management, too much attention to the
next quarterly earnings, lack of vision, fierce new competition, unfair regula-
tory practices by governments, poor design, failure to keep up with the *'=es,
antagonism between labor and management, inadequate research an
opment, and 50 on. The list goes on and on. All of these may be
explanations in individual situations, but correcting these alleged prot

will not guarantee that an organization will be successful in meeting its ¢

in the future, The successful strategies and methodologies of the 198C

not work in the next century.

Large complex systems, as a general class, are often virtually out of
control; indeed they are often deemed to be uncontrollable because of their
complexity. The reversal of this situation is absolutcly essential in a societ in
which systems tend to grow without bound because of the perceived ber
of “econemy of scale.” Indeed, organizations tend to grow until they reza
leve! of inefficiency that inhibits and impedes their growth. Oaly an orga:
tion with virtually unlimited resources or power (i.e., governmental orga:
tions) can continue to grow under these conditions. The finite resourc
the world and of individual nations, as well as the growing populatio:
aspires for improved living conditions, demand improved efficiency.
absolutely essential for the benefit of mankind, as well as most n
nations that tend to be dominated by large complex systems, that
systems be brought under intelligent control and management. The a¢' .
in digital computer technology (both hardware and software) during g3
decade, along with the associated development of soft computing, ap; T
the first time in history, to provide a means of implementing intelligent
control of complex systems which are so necessary in delivering the fruits of
industrial technology and commerce to global society.

The personal computers or workstations available on the desk of engincers
and managers today with its soft computing tools has the power of main-frame
computers just a few years ago. They provide the capability of keeping track
of what is going on in any organization (intelligence), they can provide the
tools to examine the data in excruciating detail (analysis), they can provide
models of the behavior of complex systems (synthesis) which then permits
predictions into the future, at least into the short-term future, and they can
provide recommendations for specific actions (intelligent management) that
can be communicated to those who have a need to act in a form that they can
understand (intelligent communications). To the extent that an organization’s
management is willing to utilize these tools correctly, significant progress in
solving some of these problems by making the “right” decisions will follow.

Unfortunately, making the “right” decision under the circumstance at the
time the decision is made does not guarantee success, It may have been the
“right” decision at the time, but the consequences may be unpredictable
because of the time lag between decision and results in a changing environ-
ment. What is needed is a form of anticipatory control as discussed in
Chapter 15. In the absence of an ability to predict the future behavior of
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systems, many conservative organizations have elected a “minimum step”
approach—that is, make a decision at the last possible moment that involves
the least amount of (financial or resource) commitment and produces results
at the earliest possible time. However, this can be a strategy for disaster if
the basis on which the decision is made is not valid. All too often, decisions
must be made in the absence of complete data, which gives rise to uncer-
tainty in the analysis and a highcr probability of an erroncous decision. Even
such a “minimum step” approach requires reliable intelligence, accurate analy-
sis, valid synthests, intelligent management, and intelligent communications,
because there is little margin for error. While a modem digital computer
cannot guarantee the availability of these five attributes, they simply would
not be available without the modern digital computers and soft computing.

Perhaps the single attribute that gives neurofuzzy systems an advantage in
addressing the problems of large complex systems is the ability to perform
what in mathematical terms would be called many-fo-many mappings. Such
mappings arc an inherent part of complex systems, because every single input
to a system can influence cvery single output; ie., one significant input
change may generate significant changes in many outputs. Most approaches
to systems analysis can only deal with one-to-one or many-to-one mappings—
that is, with the special class of mathematical mappings that we call
Junctions, which have been the premier mathematical relation since the
Newtonian revolution of the Principia. It is now possible and desirable,
however, to effectively compute with more complex mathematical mappings
than functions—that is, with many-to-many relations (see Section 5.1). This
gives us the hope and the expectation that large complex systems can be dealt
with in a flexible, reliable, and near-optimal manner.

We do not claim that neurofuzzy systems per se can bring about the
control of large complex systems. It is clear to us that the integration of many
technologies in a yet indiscernible manner is an essential step in the right
direction. Neurofuzzy systems represent an integration of fuzzy logic and
neural networks that have capabilities beyond either of these technologies
individually (Haykin, 1994; Kartalopoulos, 1996). When we further integrate
other technologies, perhaps some not yet discovered, in the decades ahead,
we can look forward to tools with sufficient power to tackle problems such as
intelligent control of large complex systems.

1.5 STRUCTURE OF THIS BOOK

This book is divided into four parts: Part I, entitled “Fuzzy Systems: Con-
cepts and Fundamentals,” explores the fundamentals of fuzzy logic systems
and includes the following chapters:

Chapter 2. Foundations of Fuzzy Approaches
Chapter 3. Fuzzy Relations .
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Chapter 4. Fuzzy Numbers
Chapter 5. Linguistic Descriptions and Their Analytical Forms
Chapter 6. Fuzzy Control

Part 11, entitled “Necural Networks: Concepts and Fundamentals,” explores
the fundamentals of neural networks and includes the following chapters:

Chapter 7. Fundamentals of Neural Networks

Chapter 8. Backpropagation and Related Training Algorithms

Chapter 9. Competitive, Associative, and Other Special Neural Networks
Chapter 10. Dynamic Systems and Neural Control

Chapter 11. Practical Aspects of Using Neural Networks

Part 111, entitled “Integrated Neural-Fuzzy Technology,” explores the joint
use of ncural networks and fuzey logic systems. It includes the following
chapters:

Chapter 12. Fuzzy Methods in Neural Networks
Chapter 13. Neural Methods in Fuzzy Systems
Chapter 14. Selected Hybrid Neurofuzzy Applications
Chapter 15. Dynamic Hybrid Neurofuzzy Systems

Part IV, entitled “Other Artificial Intelligence Systems,” reviews other artifi-
cial intelligence systems that can be used with neural nctworks and fuzzy
systems. It includes the following chapters:

Chapter 16. Expert Systems in Neurofuzzy Systems
Chapter 17. Genetic Algorithms
Chapter 18. Epilogue

1.6 MATLAB®' SUPPLEMENT

In this text, we have included problems for students at the end of most
chapters. Generally, these problems are pedagogical in naturec and arc
intended to be simple enough that they can be solved without the aid of
computer software. To supplement thesc exercises, we have enlisted our
colleague, Dr. J. Wesley Hines of the University of Tennessee, to prepare
a MATLAB® Supplement for Neural and Fuzzy Approaches in Engineering, a
paperback book of approximately 150 pages published by John Wiley and
Sons, in which the Student Edition of MATLAB® (The MathWorks Inc.,,

'MATLAE is copyrighted by MathWorks Inc,, of Natick, MA.
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1995; Hansclman, 1996) can be used for demonstrations and solving more
sophisticated problems. Of course, the Professional Version of MATLAB®
can also be used if it is available.

This supplement was written using the MATLAB® Notebook and
Microsoft WORD .Version 6.0. The Notebook allows MATLAB® commands
to be entered and evaluated while in the WORD cnvironment, which allows
the document to both briefly explain the theoretical details and also show
MATLAB® implementations. It also allows the user to experiment with
changing the MATLAB® code fragments in order to gain a better under-
standing of their application.

This supplement contains numerous examples that demonstrate the practi-
cal implementation of relevant techniques using MATLAB®. Although
MATLAB® toolboxes for Fuzzy Logic and Neural Networks are available,
they are not required to run the examples given. This supplement should be
considered to be a brief introduction to the MATLAB® implementation of
neural and fuzzy systems, and we and the author strongly recommend the use
of Neural Networks and Fuzzy Logic Toolboxes for a more in-depth study of
these information-processing technologies. Many of the m-files and examples
are extremely gencral and portable while other examples will have to be
altered significantly for use to solve specific problems.

The content of the MATLAB® Supplement is coordinated with Fuzzy and
Neural Approaches in Engineering so that students can use it to enhance their
knowledge of fuzzy systems, neural networks, and neurofuzzy systems. In-
deed, it is expected that many instructors will choose to use both this book
and the MATLAB® Supplement together in their classes. Practicing engincers
and scientists in industry who want to use this text to learn about neural,
fuzzy, and neurofuzzy systems will find this supplement to be a valuable aid
in their self-study.
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FOUNDATIONS OF
FUZZY APPROACHES

2.1 FRCM CRISP TO FUZZY GETS

The mathematical foundations of fuzzy logic rest in fuzzy set theory, which
can be thought of as a generalization of classical set theory. A familiarity with
the novel notions, notations, and operations of fuzzy sets is useful in stclying
fuzzy logic principles and applications; acquiring it will be our main goal in
this chapter.

Fuzziness is a property of language. Tts main source is the imprecision
involved in defining and using symbals. Consider, for example, the set of
chairs in a room. In set theory the set of chairs may be established by
pointing to every object in a room asking the question, Is it a chair? In
classical set theory we are allowed to use only two answers: Yes or No. Let us
code Yes as 1 and No as 0. Thus, our answers will be in the pair {0, 1). If the
answer is 1, an clement belongs to a set; if the answer is (, it does not. In the
end we collect all the objects whose label is 1 and obtain the set of chairs in a
room. Suppose, however, that we ask the question, Which objects in a room
may function as a chair? Again we could point to every object and ask, Could
it function as a chair? The answer here too could artificially be restricted to
{0,1}. Yet, the set of objects in a room that may function as a chair may
include not only chairs but also desks, boxes, parts of the floor, and so on. It
is a set not uniquely defined. It all depends on what we mean by the word
function. Words like function have many shades of meaning and can be used
in many different ways. Their meaning and use may vary with different
persons, circumstances, and purposes; it depends on the specifics of a
situation. We say therefore that the set of objects that may function as a chair
is & fuzzy set, in the sense that we may not have crisply defined criteria for

13
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deciding membership into the set. Objects such as desks, boxes, and part of
the floor may function as chairs, to a degree. It should be noted, however,
that_there is nothing fuzzy about the material objects themselves: Chairs,
boxes, and desks are what they are. Fuzziness is a feature of their representa-
tion in a milicu of symbols and is generally a property of models, computa-
tional procedures, and language.

Let us now review some notions of classical set theory. Classical sets are
crisply defined collections of distinct elements (numbers, symbols, objects,
etc.), and for this reason we also call them crisp sets. The elements of all the
sets under consideration in a given situation belong to an invariable, constant
sct, called the wuniversal set or universe or more often the universe of
discourse.! The fact that elements of a set A either belong or do not belong
to a crisp set 4 can be formally indicated by the characteristic function of A,
defined as

1 iff xeA4
xalx) = {0 iff xed ey
where the symbols € and & denote that x is and is not a member of A,
respectively, and iff is shorthand for “if and only if.” The pair of numbers
(0,1} is called the valuation set. Another way of writing equation (2.1-1) is

Xa(x): X = {0,1) (2.1-2)

The notation of equation (2.1-2) is read as follows: There exists a Sunetion
x4(x) mapping every element of the set X (our universe of discourse) to the set
{0,1}, It cmphasizes that the characteristic function is a mechanism for
mapping the set X to the valuation set {0, 1). Important operations in crisp
sets such as union, intersection, and complementation are familiar to us from
clementary mathematics. They are usually represented through Venn dia-
grams but may also be expressed in terms of the characteristic function.

Fundamentally, scts are categories, Defining suitable categories and using
operations for manipulating them is a major task of modeling and computa-
tion. From image recognition to measurement and control, the notion of
category, or set, is cssential in the definition of system variables, parameters,
their ranges, and their interactions. The constraint to have a dual degree of
membership to a set, an all-or-nothing, is a consequence of a desire to
abstract a system description away from the multitude of intricacies and
complexities that exist in reality and focus on factors of primary influence.
Nevertheless, given our modern-day computational technologics, it may be
unduly restrictive. This is particularly the case when it is desired to develop
computer models easily calibrated to the specifics of a system and endowed
with adaptive and self-organizing capabilities (Zadeh, 1973, 1988).

"The term universe of discourse is used in fuzzy logic; it comes from classical logic and describes
the complete set of individual elements able to be referred to or quantified.
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2.2 FUZZY SETS

As we saw in the previous section, in classical set theory there is a rather
strict sense of membership to a set; that is, an element either belongs or does
not belong to the set. In 1965 Lotfi A. Zadeh introduced fuzzy sets, where a
more flexible sense of membership is possible (Zadeh, 1963). In fuzzy sets
many degrees of membership are allowed. The degree of membership to a set
is indicated by a number between 0 and 1—that is, a number in the interval
[0,1]. The point of departure for fuzzy sets is simply generalizing the
valuation set from the pair of numbers {0, 1} to all numbers found in [0,1]. By
expanding the valuation set we alter the nature of the characteristic function,
now cz 1 membership function and denoted by #,4(x). We no longer have
crisp sets but instead have fuzzy sets. Since the interval [0,1] contains an
infinity of numbers, infinite degrees of membership are possible. Thus, in
view of equation (2.1-2) we say that membership function maps every element

of the universe of discourse X to the interval [0, 1], and we formally write this
mapping as

- () X = [0,1] (2:21)

Equation (2.2-1) is a generalization of the mapping shown in equation (2.1-2).
Membership functions are a simple yet versatile mathematical tool for
indicating flexible membership to a set and, as we shall see, for modeling and
quantifying the meaning of symbols. A question often asked by people
beginning the study of fuzzy sets is, How are membership functions found?
Membership functions may represent an individual’s (subjective) notion of a
vague class—for example, objects in a room functioning as chairs, tall people,
acceptable performance, small contribution to systern stability, little improvement,
big benefit, and so on. In designing and operating controllers or automatic
decision-making tools, for example, modeling such noticns is a very impor-
tant task. Membership functions may also be determined on the basis of
statistical data or through the aid of neural networks. In Part IIT of this book
we will look at the synergistic relation between neural networks and fuzzy
logic toward this end (Kosko, 1992). At this point we can simply say that
membership functions are primarily subjective in nature; this does not mean
that they are assigned arbitrarily, but rather on the basis of application-specific
criteria (Kaufmann, 1975: Dubois and Prade, 1980; Zimmermann, 1985).

There are two commonly used ways of denoting fuzzy sets. If X is a
universe of discourse and x is a particular element of X, then a fuzzy set 4
defined on X may be written as a collection of ordered pairs

A={(x,m(x))}, =xex (222)

where each pair (x, g,(x)) is called a singleton and has x first, followed by its
membership in A, u,(x). In crisp sets a singleton is simply the element x by
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itself. In fuzzy sets a singleton is two things: x and 14(x). For example, the
sct of small integers, A, defined (subjectively) over the universe of discourse
of positive integers may be given by the collection of singletons

A = {(1,1.0),(2,1.0),(3,0.75), (4,0.5), (5,0.3), (6,0.3), (7,0.1), (8,0.1))

Thus the fourth singleton from the left tells us that 4 belongs to 4 1o a
degree of 0.5. A singleton is also written as.u (x)/x—that is, by putting
membership first, followed by the marker “/” separating it from x.? Single-
tons whose membership to a fuzzy set is zero may be omitted. The support set
of a fuzzy set A is the set of its elements that have membership function
other than the trivial membership of zero.

An alternative notation, used more often than cquation (2.2-2), explicitly
indicates a fuzzy as the union of all p,(x)/x singletons—that is,

A= T px)/x (223)

xeX

The summation sign in equation (2.2-3) indicates the union of all singletons
(the union operation in set theory is like “addition™. Equation (2.2-3)
assumes that we have a discrete universe of discourse. In this alternative
notation the set of small integers above may be written as

A

Il

k(1) /1 + my(2)/2 + K4(3)/3 + py(4) /4 + mq(5)/5
+ .""A(é)/s + #A(7)/7 + Pu{B)/S
1.0/1 +1.0/2 + 0.75/3 + 0.5/4 + 0.3/5 + 03/6 +0.1/7+0.1/8

For a continuous universe of discourse, we write equation (2.2-3) as

A= [ ma(2) /2 (2.2-4)

where the integral sign in equation (2.2-4) indicates the wnion of all wmy(x)/x
singletons.” Consider, for example, the fuzzy set small numbers defined
(subjectively) over the set of non-negative real numbers through a continuous

*1t should be noted that *“/" does not indicate “division™ it is merely a marker.

*Note that the integral sign is not the same as the integral sign of differential and integral
calculus. It is used here in the sense that the integral sign is used in sct theory—that is, to
indicate the sum or wnion of individual singletons.
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J{x)

X
4 a4 & 2 14 20
Figure 2.1  Zadeh diogrom for tha fuzzy set 0= {srmiail nurnbzrsh,

riembership function p,(x) given by
1
FLB{"-) = e (22-.’))
1+ (3]
5
Using the form of equation (2.2-4) the furzy set B is writlen as
1
B[ pplx)fm=[ |—— /x (2.2-6)
x>0

x=l Ty
14(5)

The membership function of fuzzy sct B is shown in Figure 2.1.° A graph like
this is called a Zadeh diagram.

2.3 BASIC TERMS AND OPERATIONS

Many fuzzy set operations such as intersection and union are defined through
the min (A) and max (V) operators. Min and max are analogous to product
() and sum (+) in algebra (Dubois and Prade, 1980; Klir and Folger, 1988;
Terano et al., 1992). Let us take a look at how they are used.

*Fuzzy sets are sometimes called fuzzy subsets, reflecting the fact that they are subscts of a larger
set—that is, the wniverse of discowrse, Although the term fuzzy subsets is factually correet, we will
use the standard term fuzzy set for convenisnce.
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First, min (A) and max (V) may be used to select the minimum and
maximum of two elements—for example, 2 A3 =2, or 2V 3 = 3. We also
write min(2,3) = 2, or max(2, 3) = 3. Formally, the minimum of two ele-
ments p, and u, denoted either as min(u;, uy), Alpy, o), or py A g, is
defined as

JIS i SR TS

A py = min( u,, = .
oy i Hy (10 2) {#2 i opy > o,

(2.3-1)

where, the “ = ”symbol means “by definition” and iff is shorthand for “if and
only if.” Similarly the maximum of two elements w, and M., denoted as
max( gy, p15) or p, V ., is defined as :

my M op = o,

AV = max 3 1 = -
Hy 55 (#'1 i) {“1 iff Hy < iy

(2.3-2)

Second, min (A) and max (V) may operate on an entire set, selecting the
least element (called infimum in mathematical analysis) or the greatest ele-
ment (called supremum) of the set. For example, A (0.01,0.33, 0.44, 0.999) =
0.01 and Vv (0.01, 0.33,0.44, 0.999) = 0.999. Formally we write this as

p=AA=infAd (2.3-3)

and
u=VA=supA (2.3-4)

where & is an clement of A—thatis, u € A4.

In addition, min (A) and max (V) may be used as functions operating on
single elements or on entire scts, for example, to find the smallest element n
out of a list of elements (u;, p, ..., g,,)—that is,

= AR By s ) (2.3-5)

which is the same as

M=y A g A A (2.3-6)

We sometimes use a shorthand notation for equations (2.3-5) and (2.3-6) and
write them as

m

H = A (#k} (2.3-7)

k=1

This notation is analogous to finite produet notation in algebra (or finite
summation when V is used). There is in fact a more general analogy between
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min and max and the operations of multiplication and addition. They both
have the same properties of associativity and distributivity, and thus in
equations that involve min and max we may cmploy them in the same manner
as multiplication (-) and addition (+). We will see an interesting example of
these properties in the composition of fuzzy relations (Chapter 3), where we
treat composition as matrix multiplication with {A) and (V) in place of
product () and sum (+).

Min (A) and max (V) can also operate on a collection of sets as for
example in

A= A(AI‘AJ"“'AIM) (23_8)

which can be succinctly written as

(el

A= A(4) (2.39)

fewl

Using primarily min (A) and max (V), a number of uselul notions and
operations involving fuzzy sets can be defined.”

Empty Fuzzy Set
A fuzzy set A is called empty (denoted as A = @) if its membership function
is zero everywhere in its universe of discourse X—that s,

A=@  ifu(x)=0VreX (2.3-10)°

where “Vx = X™is shorthand notation indicating “for any clement x in X."

Normal Fuzzy Set

A fuzzy set is called normal if there is at least one element x; in the universe
of discourse where its membership function equals one—that is,

palxy) =1 (2.3-11)

More than one clement in the universe of discourse can satisfy equation
(2.3-11).6

*These operations can also be defined in terms of T-nomns (see Appendix).

“It should be noted that the term nonnal does not tefer to the area under the curve of the
membership function, It simply means what the definition says: At least one point, maybe more,
needs to have full membership value.
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Equality of Fuzzy Sets
Two fuzzy sets are said to be equal if their membership functions are equal
everywhere in the universe of discourse—that is,

A=B8B if wy(x) = uy(x) (2.3-12)

Union of Two Fuzzy Sets

The union of two fuzzy scts A and B defined over the same universe of
discourse X' is a new fuzzy set 4 U B also on X, with membership function

which is the maximum of the grades of membership of every x to 4 and
B—that is,

Maua(x) = py(x) V py(x) (2.3-13)

The union of two fuzzy sets is related to the logical operation of disjunc-
tion (ORY) in fuzzy logic. Equation (2.3-13) can be generalized to any number
of fuzzy sets over the same universe of discourse.

Intersection of Fuzzy Sets

The intersection of two fuzzy sets A and B is a new fuzzy set A N B with
membership function which is the minimum of the grades of every x in X to
the sets A and B, i.e.,

Banp(X) = uy(x) A py(x) (2.3-14)
The intersection of two fuzzy sets is related to conjunction (AND) in fuzzy

logic. The definition of intersection in (2.3-14) can be generalized to any
number of fuzzy sets over the same universe of discourse,

Complement of a Fuzzy Set

The complement of a fuzzy sct A is a new fuzzy set, A, with membership
function

ra(x) =1— p,(x) (2.3-15)
Fuzzy set complementation is equivalent to negation (NOT) in fuzzy logic.

Product of Two Fuzzy Sets

The product of two fuzzy sets A and B defined on the same universe of
discourse X is a new fuzzy set, A4 - B, with membership function that equals
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the algebraic product of the membership functions of A and 5,

gp(X) = pa(x) - pp(x) (2.3-16)

The product of two fuzzy scts can be generalized to any number of fuzzy sets
on the same universe of discourse.

Multiplying a Fuzzy Set by a Crisp Number

We can multiply the membership function of a fuzzy set A by the crisp
number a to obtain a new fuzzy set called product a - A. Its membership
function is

oalx) = @ jug(x) (2.3-17)

The operations of multiplication and raising a fuzzy sct to a power that we
see next are uscful for modifying the meaning of linguistic terms (Zadeh,

1975).

Power of a Fuzzy Set

We can raise fuzzy set A to a power « (positive rcal number) by raising its
membership function to «. The « power of A is a new fuzzy set, 47, with
membership function

pas(x) = [alx)]” (2.3-18)

Raising a fuzzy set to the second power is usually taken to be equivalent to
linguistically changing it through the modifier FERY (Zadeh, 1983) (see
Chapter 5). Thus the square of the membership function of B = {small
numbers) in Figure 2.1 is taken to represent the fuzzy set B2 = (VERY small
numbers).

Raising a fuzzy sct to the second power is a particularly useful operation
and therefore has its own name. It is called concentration or CON. Taking
the square root of a fuzzy set is called dilation or DIL (an operation useful
for representing analytically the linguistic modifier MORE OR LESS),

Example 2.1 Union, Intersection, and Complement of Fuzzy Sets. Consider
the Zadeh diagram of fuzzy sets A and B shown in Figure 2.2a and defined
by membership functions

1
— = (E23-1)
1 &+ 'g)

ra(x) = 1503 —8) and  py(x) =
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_ i . 1
H(x) o S +G) M) = oa e
1

£ .

1 :

0.6

Figure 22 Zadeh diagram for (q) fuzzy sets A ond B and (b) their unien in
Example 2.1,

Fuzzy set 4 may be thought of as defining the set of numbers “abour 8,” and
fuzzy set B may be thought of as defining “small numbers.” We take numbers
between 0 and 20 to be the universe of discourse and, would like to find the
union and intersection of A and B and the complement of B.

The membership function of the union of fuzzy sets 4 and B is the
maximum grade of membership of each element x of the universe of
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discourse 1o either A4 or B in accordance with equation (2.3-13). Figure 2.26
shows the membership function of the union A U B. The interpretation of
AU B is “about 8 OR small number."” Similarly the membership functien of
the intersection of fuzzy sets A and B, shown in Figure 2.3a, represents the
new fuzzy set “about § AND small number.” We observe that although the
union of 4 and B is a normal fuzzy set, the intersection shown in Figure
2.3a is not, because fuzzy set A4 M B has no point in the universe of

(X

(7 o TRt e SRR
0.6
6.4

GE Y e ]

M)

20

(2)

Figure 2.3 Zadeh diagram for (@) the intersection of fuzzy sats A and 8 and (5) the
complement of B in Example 2.1.
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discourse with grade of membership equal to 1. The complement of fuzzy set
B is a new fuzzy set with membership function given by equation (2.3-15).
Figure 2.3b shows the membership function of the complement B. The
complement B represents the logical negation (NOT) of B—that is, the set
“NOT small numbers.” O

Concentration

The concentration of a fuzzy set A defined over a universe of discourse, X

1

is denoted as CON(A) and it is a new fuzzy set with membership function
given by

reonax) = (ma(x)) (2.3-19)

As we said in the previous paragraph, squaring or concentrating a fuzzy set is
equivalent to linguistically modifying it by the term WERY. Figure 2.4 shows
the concentration operation applied to the fuzzy set B = {small numbers).

The membership function of the new fuzzy set CON(B) = B? = (VERY small
numbers) is

1
seona(¥) = (ma(x)’ = ————
[1 Jr ]
Dilation

The dilation of a fuzzy set A4, denoted as DIL(A), produces a new fuzzy set
in X, with membership function defined as the square root of the member-
ship function of A—that is,

Hprreay(x) = Y ra(x) (2.3-20)

Dilation (DIL) and concentration (CON) are operations with opposing ef-
fects. Concentrating a fuzzy set reduces its fuzziness while dilating it in-
creases its fuzziness. The dilation operation corresponds to linguistically
modifying the meaning of a fuzzy sct by the term “MORE OR LESS.” Figure
2.4 shows the dilation of B = {small numbers), resulting in a new fuzzy sct
DIL(B) = B'* = (MORE OR LESS small numbers).

"Here and throughout this book, the end of an example is indicated by the symbol * 0"
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PIY, L N— - \ R ------
\k\ \ MORE OR LESS smail numbprs

(. 0 [ RO——

4 N \\\\m .
_ W‘ 1burs H"“*‘---‘._____p____
VERY small npimbers i

Il T R e———___-___Ss e

0 4 8 12 16 20

Figure 2.4 The fuzzy sefs VERY smafl numbers and MORE OR LESS small numbers
obtalned by concentrating and dilcting the furzy sat simall numbers,

Contrast Intensificalion

In certain applications it is desirable to control the fuzziness of a fuzzy set
by madifying the contrast between low and high grades of membership. For
instance, we may wanl to increase the membership function on that part of A
where membership values are higher than 0.5, and decrease it for values
lower than 0.5. We define the contrast intensification of A as

pawra ) = 2] ()] for 0<p,(x)=<05
(2.321)

, 2[5 i #.4(_;;}]2, for 0.5 < i (x) = 1.0

il

Hinried ,‘( "-)

Contrast intensification may be repeatedly applied to a fuzzy set. In the
extreme, when the maximum possible contrast is achieved we no longer have
a fuzzy set. We are back to a crisp sct. The opposite cffect—that is, going
from a crisp set to fuzzy set—may be achicved through fizzification.

Fuzzyfication

Fuzzification is used to transform a crisp set into a fuzzy sct or simply to
increase the fuzziness of a fuzzy set. For fuzzification we use a fuzzyfier
function I that controls the fuzziness of a set. F may be one or more simple
parameters. For instance, consider the fuzzy set A4 that describes large
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numbers. We define it (subjectively) through the membership function

1

W
it

where x is any positive real number. The membership function in equation
(2.3-22) has two fuzzifying parameters: an exponential fuzzyfier, F,, and a
denominational fuzzyfier, F,. Through them the fuzzy set A = {large numbers)
can be written as

Hiarge uunlbui('x) = {23"22}

Jx (2.3-23)

The membership function inside the brackets of equation (2.3-23) can be
adjusted when needed in order to better represent the meaning of the term
large numbers. Consider the case when we fix the value of denominational
fuzzifier as F, = 50 and vary the cxponential fuzzyfier F,. The result is a
family of fuzzy sets with decreasing fuzziness as F, increases. Figure 2.5
shows membership functions that result from such a variation. Note that
when' F, becomes very large, the set A appears almost like a crisp set. The
effect of varying the denominational fuzzyfier F, while keeping the exponen-

H(x)
(F =100, F3=50) (Fr=10, Fa=50)
(F)=4, Fa=50)
g
(Fy=2 Fa=50)
L —
== () = [ Fa=50)
..d'”;
i ,-”/f
e _._/
- 1 X
0 10 20 30 40 50 60 70 80 20 100

Figure 2.5 The effect of varying the exponential fuzzifier F; while keeping the denomi-
national fuzzifier £, constant in fuzzifying the set A.
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o i 20 30 40 50 62 70 80 o0 160

Figure 2.6 The effect of varying the denominational fuzzifier F; while keeping tha
exponential fuzzlier A constant in fuzzifying the set A.

tial fuzzyfier at #; = 4 15 shown in Figure 2.6, Varying 1Y, resulls primarily in
translating the membership function lefl and right, and 1o a lesser extent 1t
affects the fuzziness of A, Such fuzzifiers are often used in fuzzy pattern .
recognition and image analysis in defining, for instance, the meaning of the..
words wertical, horizontal, and oblique lines (Pal and Maj_umclcr, 1986).

Fuzzification may be used more systematically by associating a fizzyfier F
with another function, namely a fuzzy kernel, K(x), which is the fuzzy set that
results from the application of F to a singleton x. This is often done in
control applications where the input to an oh-line control or diagnostic
system comes from sensors and is therefore crisp, usually & real number. In
order to usc it in fuzzy algorithms (see Chapters 5 and 6), it is often necessary
to convert a crisp number to a fuzzy sct, a step known as fuzzification. As a
result of the application of K to a fuzzy set A, we have

F(AK) = [ 1) b2}/ (2.3:24)

where F(A; K)is a fuzzy set that results from changing the fuzziness of 4 in
accordance with K. The fuzzy kernel K(x) is simply a fuzzy sct imposed on a
singleton. It functions as a “mask” that covers the singleton to produce a-
fuzzy set. For example, suppose that we have the universe of discourse”™ '+
X=1(1,234:56 789 10} and a fuzzy kernel K(x) that centers a triangua*™ *
lar fuzzy sct around 5 given by g ST Lkhiié

K(5) = 0.33/3 + 0.67/4 + 1.0/5 + 0.67/6 -+ 033/7 (2.3-25)

with all other clements of the universe of discourse having trivial® (zero)
membership. Now suppose that we have the value of 3, which may be a crisp
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measurement taken at a certain time. We write it as a singleton A given by

A= p,u(3)/3=10/3 (2.3-26)
We fuzzify A using equation (2.3-24) as follows:

F(4:K) = [ () xn(x)/%

= fx[ 14 (3)  xey(X)] /%

=0.33/1 + 0.67/2 + 1.0/3 + 0.67/4 + 0.33/5 (2.3:27)

which results in shifting the fuzzy kernel of (2.3-25) so that its peak is located
at the singleton ‘3", In other words, the cffect of equations (2.3-27) is to mask
the crisp value ‘3’ by the fuzzy set K(5), shifting its peak from ‘5’ to “3".

2.4 PROPERTIES CF FUZZY SETS

Fuzzy set properties are useful in performing operations involving member-
ship functions. The properties we list here are valid for crisp and fuzzy sets as
well, but some of them are specific to fuzzy sets only; more detailed
treatment of properties may be found in Dubois and Prade (1980) and in Klir
and Folger (1988). Consider sets A, B, C defined over a common universe of
discourse X. We indicate the complement of a set by a bar over it. The
following properties are true:

Double Negation Law: (A)=A (2.4-1)
Idempot P (2.4-2)
empotency: A-
AnNA=A4
ANB=BNA
Commutativity: (2.4-3)
AUB=BUA

(AUBYUC=A4AU(BUC)

Associative Property: (2.4-4)
(AnBYNnC=An(BnC)
AU(BNC)=(AUB)YN(AUC)
Distributive Property: (2.4-5)
AN(BUC)=(AnB)u(4nC)
ANn(AUB)=A4
Absorption: (2.4-6)
Au(AnB)=A4
AUB=ANB
De Morgan’s Laws: i e (2.4-7)
ANB=AUB
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In fuzzy scts all these properties can be expressed using the membership
function of the sets involved and the definitions of union, intersection, and
complement. For example, consider the associative property given by equa-
tions (2.4-4). In tcrms of membership functions the associative property is
written as

(pa(x) V 15(x)) V pe(2) = pa(x) V (a(¥) ¥ pe(x))
(pa{x) A #p(x)) A pe(x) = pa(x) A (mp(x) A pelx))

s larly, the distnbutive propeny, cquations (2.4-5), in terms of membership
fu :ions is written as
palx) vV (-‘LB(I) A pe(x)) = (ma(x) V mp(x)) A (P’A(x) V pe(x))
pa(x) A (pp(x) Vv (X)) = (ma(x) A pp(x)) Vv (mu(x) A pel(x))

De Morgan’s law, equation (2.4-7), is written as

pa(x) V pp(x) = pr(x) A pp(x)

where the bar over the membership functions indicates that we take the
complement. De Morgan's law says that the intersection of the complement
of two fuzzy sets equals the complement of their union; in terms of member-
ship functions, this is the same as saying that the minimum of two member-
ship functions equals the complement of their maximum. Therz are also

some properties generally not valid for fuzzy sets (although vald in crisp
sets), such as the law of contradiction,

ANA+ D (2.4-8)
and the law of the excluded middle,
AuAd+X (2.4-9)

The law of the excluded middle in crisp sets states that the unior of a set
with its complement results in the universe of discourse. This is gencrally not
true in fuzzy sets. A property unique to fuzzy sets is

ANG=0 (2.4-10)

Equation (2.4-10) says that the intersection of a fuzzy set with the empty set
—that is, a set with a membership function equal to zero everywhere on the
universe of discourse—is also the empty set. In terms of membership
functions equation (2.4-10) is written as

pdx) A0=0
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Also, the union of a fuzzy set A with the empty set, &, is A itself; that is,
AU D = A or, equivalently, f,(x) V 0 = p_(x). The intersection of a fuzzy
sct A with the universe of discourse is the fuzzy set A itself; that is,
A NX = A or, equivalently, p,(x) A 1 = p,(x). The union of a fuzzy set A
with the universe of discourse X is the universe of discourse; that is,
AU X =X, which, in terms of the membership function, is written as
#(x) V 1 = 1. The universe of discourse may be viewed as a fuzzy set whose
membership function cquals 1 everywhere; that is, gy (x) = 1 for all x in X,

2.5 THE EXTENSION PRINCIPLE

While fuzzification operations such as the ones we saw in Section 2.3 are
useful for fuzzifyiug individual sets or singletons, more general mathe matical
expressions may also be fuzzified when the quantities they involve are
fuzzyfied. For example, the output of arithmetic operations when their
arguments are fuzzy sets becomes also a fuzzy quantity. The extension
principle is a mathematical tool for extending crisp mathematical notions and
operations to the milicu of fuzziness. It provides the theoretical warranty that
fuzzifying the paramecters or arguments of a function resulls in computable
fuzzy sets. It is an important principle, and we will use it on several
+ occasions, particularly in conjunction with fuzzy relations (Chapter 3) and
fuzzy arithmetic (Chapter 4). We give here an informal heuristic-description
of the extension principle; detailed formulations may be found in (Zadeh
(1975), and in Dubois and Prade (1980).

Suppose that we have a function: f that maps elements x,, x,,...,x, of

universe of discourse X to another universe of discourse Y—that is,

: ¥y =f{x;)
Y2 “f(-"z)

(2.51)
M =1

Now suppose that we have a fuzzy set A defined on X5 X5 Xpe e ok (EHE
. input to the function f). A is given by

A= () /5 + (X [+ o p(x)/ (252)

+ We then ask the question, If the input to our function f becomes fuzzy—for
cxample, the set 4 of equation (2.5-2)—what happens to the output? Is the
output also fuzzy? In other words, is there ‘an output fuzzy set B that can be
computed by inputting A to f. Well, the extension principle tells us that
there is indeed such an output fuzzy set B and that it is given by

B =f(A) = my(x)/f(x,) + A(X2) /(X)) + o py(x,) /F(x,)
(2.5-3)
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where every single image of x; under f—that is, y, = f(x,)—becomes fuzzy
to a degree u,(x,). Recalling that functions are generally many-fo-one
mappings, it is conceivable that several x’s may map to the same y. Thus for
a certain y, we may have more than one x: Let us say that both x, and X3
in (2.5-1) are mapping to y,. Hence, we have to decide which of the two
membership values, w,(x;) or w,(x};), we should take as the membership
value of y,. The extension principle says that the maximum of the member-
ship values of these elements in the fuzzy set 4 ought to be chosen as the
grade of membership of y, to the set B—that is,

sp( o) = ma(x2) V uy(xy3) (2.54)

If, on the other hand, no element x in X is mapped to Yyo—that is, no
inverse image of y, exists—then the membership value of the set 3 at Yo is
zero. Having accounted for these two special cases (many x’s mapping to the
same y and no inversc image for a certain y), we can compute the set
B—that is, the grades of membership of ¢lements y in ¥ produced by the
mapping f(A)—using equation (2.5-3).

In a more general case where we have several variables, u,v,...,w, from
different universes of discourse U,V,...,W and m different fuzzy sets
Ay, A,,..., 4, defined on the product space U X ¥ X -+ X W, the multi-
variable function, y = f(u, u,...,w), may also be used to fuzzify the space Y
through the extension principle. In this case, the grade of membership of any
y cquals the minimum of the membership values of w,vu,....w in
Ay Ay, .o, A, Tespectively. The membership function of B s giver by

pa(y) = f

UV o x)’I ,u,‘,,'(u) 2 'u‘d:(U) A #AM(W)]/f(H,U,_ coy W)

(2.5-5)

where there is also a2 max (V) operation implicit in the union operation [the
integral sign in equation (2.5-5) indicates a union (V) operation]. The max
operation is performed over all u, o, ... yw such that y = f(u,v,...,w). This
is indicated by the union over the product space U X V' X - x W of all the
universes on which the m-tuples w,u,..., w are defined under the integral
sign. If the inverse image does not exist, then the membership function is
simply zero.

In many engineering applications, the interpretation of numerical data
may not be precisely known. We consider this type of data to be fuzzy. Using
the extension principle, it is quite possible to adapt ordinary algorithims,
which are used with precise data, to the case where the data are fuzzy.
Example 2.2 is a mathematical illustration of the extension principle,

Example 2.2 Using the Extension Principle. As an illustration of how tre
extension principle may be used, consider the function f that maps poir.'s
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from the x axis to y axis in the Cartesian planc according to the equation

y=fla) =\ E 3:— (E2.2-1)

Figure 2.7a shows the function y of equation (E2.2-1). 1t is the upper half of
an ellipsc located ou the center of the plane with major axis, a = 2, and
minor axis (height), b= 1. The genecral equation of the ellipse shown in
Figure 2.7a is

3 2
a’

Vet

|

1w (E2.2:2)

1

o=

In our case with @ = 2 and b = 1, equation (E2.2-2) becomes

)‘-'2

Toayle (E2.23)

4

Equation (E2.2-1) is one of the two solutions of equation (E2.2-3).

Now suppose that we define a fuzzy set 4 on X as shown in Figure 2.7b;
We fuzzify the x's of equation (E2.2-1) b)' specifying a grade of membership
pu(x) for each x to fuzzy set A—that is, p,(x) = 3lx| and

. A= [$lxl] /2 (E2.2-4)

-2sr5d

where |x| is the absolute value of x, and we limit the support of A4 between
—2 and -2 as indicated by the limits under the integration sign (union) of
equation (E2.2-4).

Having the x values fuzzyfied by the fuzzy set A, we want to know the
effect of fuzzification on y. The extension principle u.ils us that the fuzziness
of A will be extended to y as well. In other words, we will have a fuzzy set B
on Y derived by equations (2.5-3) or (2.5-5). To avoid the case where more
than one x will map to the same y, we consider first the function [ in the
first quadrant of the plane (where both x and y are positive). Later we will
look at the entire function. The fuzzy set, B, defined on Y is

B=f(4)y= fy ps(¥) /¥ (E2.2-5)

We need to find pug(y) in equation (E2.2-5). In terms of the membership
function of A4 and according to the extension principle, equation (2.5-3), the
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(d)

Figure 2.7 Graphs for Example 2.2. (@) The function v, which is the upper part of the
ei‘llpse shown. (b) The membership function of the set A. () The membership function
of B. (d) Fuzzifying the interior of the ellipse.
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set B will be

B =(4) = [ m(x)/f(x) (E2.2-6)

Of course we want to transform the x variable to y in equation (E2.2-6) since
the union (integration) is formed with respect to Y, the universe of discourse
for B. We use equation (E2.2-1) to solve for x:

x=2y1—y* (E2.2-7)

Then we substitute (E2.2-7) in (E2.2-6), noting that f(x) =y and that y,(x)
is given by (E2.2-4). Thus we obtain the fuzzy set B:

B={ Ji-yify (E2.2-8)

VESTES 1
Now if we consider negative values for x as well, we would have to take the
maximum of the membership value of A4 at (x) and (—x) in accordance with
equation (2.5-5). Due to the symmetry of the problem these values are
actually the same and therefore B is still as derived in (E2.2-8). The
membership function of B js,

ma(y) = y1-y? (E2.2-9)

as shown in Figure 2.7c. Figure 2.7d shows the geometric interpretation of
fuzzyfying the interior of the ellipse in accordance with the fuzzy sets 4 and
B above. The result is a kind of fuzzy ¢lliptic region, strongest near the x axis
and particularly at its x = +2 sides and weakest near the origin and the
y = +1sides. O

2.6 ALPHA-CUTS

With any fuzzy set 4 we can associate a collection of crisp sets known as
a-cuts (alpha-cuts) or level sets of 4. An a-cut is a crisp set consisting of
elements of A4 which belong to the fuzzy set at least to a degree a. As we
shall see in the next section, a-cuts offer a method for resolving any fuzzy set
in terms of constituent crisp sets (something analogous to resolving a vector
into its components). In Chapter 4 we will see that a-cuts are indispensable
in performing arithmetic operations with fuzzy sets that represent various
qualities of numerical data. It should be noted that a-cuts are crisp, nor

fuzzy, sets.®

uFi.'.'rn'n.ally. a distinction is made between two types of a-cuts, the strong and the wegk a-cut
(Dubois and Prade, 1980). We use the weak a-cut, simply calling it e-cut.
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The a-cut of a fuzzy set 4 denoted as A, is the crisp set comprised of all
the elements x of a universe of discourse X for which the membership
function of A4 is greater than or equal to «; that is,

A, ={re X ulz) =e) (2.6-1)

where « is a parameter in the range 0 < @ < 1; the vertical bar “[” in
equation (2.6-1) is shorthand for “such that.”

Consider, for example, a fuzzy set A with trapezoidal membership func-
tion as shown in Figure 2.8. The 0.5-cut of A is simply the part of its support
where its membership function is greater than 0.5. In Figure 2.8 we can sce
the 0.5-cut of A. Reflecting the fact that the a-cut is a crisp set, its
membership function appears like a characteristic function. As another
example consider the set A of small integers given by

A=10/1+1.0/2+0.75/3 + 0.5/4 + 03/5 + 0.3/6 + 0.1/7 + 0.1/8

The 0.5-cut of A is simply the crisp set 4, = {1,2,3,4).

In the next scction we will see that a-cuts provide a useful way both for
resolving a membership function in terms of constituent crisp sets as well as
for synthesizing a membership function out of crisp scts.

A fuzzy set can have an extensive support since its membership function
can be zero or nearly zero, or very small. In order to deal with situations
where small degrees of membership are not worthy of consideration, leve!

Hags (x)
K (x)
y L
P , PR (S R 1 R
0.3 = : % i
0 ' | : \
a 7 4 6 8

& 1a
Figure 2.8 A fuzzy set A ond its 0.5-cuts. %
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Mfx)

i

60 &0 100
Figure 2.9 The 0.2-level fuzzy set of furzy sat A

fuzzy sets were introduced to exclude undesirable grades of membership
(Radecki, 1977). We define the level fuzzy scts of a fuzzy set A4 as fuzzy sets
A, whose membership values are greater than «, where 0 < a < 1. Farmally

'A‘, = {(x, py(x))xr e A,) (2.6-2)

where A, is the a-cut of A, Equation (2.6-2) indicates that for a given a we
have a level fuzzy set which is the part of A that has membership greater
than «. Let us consider, for example, a fuzzy set 4 whose membership
function is

1
1+ 0.01(x — 50)°

prax) = (2.6-3)

as shown in Figure 2.9 (dotted curve). Suppose that we are not interested in
the part of the support that has membership less than 0.2. We obtain the
0.2-level fuzzy set of A4 by chopping the part of the membership function
which is less than 0.2 as shown in the figure. Its membership function i, (%)
is shown by the solid curve. It is the same as p,(x) between x = 30 and
X =70 and zero everywhere else. Level fuzzy sets should not be confused
with level sets, which is a synonym for a-cuts. Level fuzzy sets are indeed
fuzzy sets, whereas a-cuts arc crisp sets. They provide a useful way of
considering fuzzy sets in the significant part of their support, and hence they
save on computing time and storage requirements,
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2.7 THE RESOLUTION PRINCIPLE

There are several ways of representing fuzzy sets, and we have already seen a
few of them. They all involve two things: identifying a suitable universe of
discourse and defining membership functions. One way to represent a fuzzy
set would be to list all the elements of the universe of discourse together with
the grade of membership of each element (omitting the possibly infinite
elements that have zero membership). Alternatively, we can just provide an
analytical representation of the membership function. The resolution principle
offers another way of representing membership to a fuzzy set, namely
through its a-cuts. It asscrts that the membership function of a fuzzy set A
can be expressed in terms of its a-cuts as follows:

kalx) =V [ap, (0)] (2.7-1)

U<zl

where the maximum is taken over all a’s. Equation (2.7-1) indicates that the
membership function of A4 is the union (notice the max operator) of all
a-cuts, after each one of them has been multiplicd by a.

Consider, for example, the fuzzy set A4 with triangular membership
function shown in Figure 2.10, Several a-cuts of A, each multiplied by a, are
also shown. Knowing many a's and the a-cuts of A4, we can form their
products and put them together (in the sense of taking their union) to
approximate the function, For example, we multiply the 0.25-cut by 0.25 to
get the 0.25-cut pushed down to 0.25, and similarly we multiply the 0.5-cut by
0.5, the 0.75-cut by 0.75, and so on. When put together we have an
approximation of the membership function of A4 as shown in Figure 2.10.

Hix)

T L s 0.75 pag.75(x)

B8 | et / 0.5 paq sx)
P 1| S —— / 0.25- papas(x)

o

e
F
X

Figure 2.10 Putting many a-cuts of A multiplied by @ together approximates the
membership function of A,
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Thus, a large enough family of a-cuts provides another way of representing a
fuzzy sct. Although we often know the membership function exactly, in some
applications only a-cuts are known and out of them we nced to approximate
the membership function (sce Chapter 4).

2.8 POSSIBILITY THEORY AND FUZZY PROBABILITIES

In the late 1970s Zadeh advanced a theoretical framework for information
and knowledge analysis, called possibility theory, emphasizing the quantifica-
tion of the semantic, context-dependent nature of symbols—that is, meaning
rather than measures of information. The theory of possibility is analogous,
and yet conceptually different from the theory of probability, Probability
is fundamentally a mecasure of the frequency of occurrence of an event.
Although there are several interpretations of probability (subjectivistic,
axiomatic, and frequentistic), probabilities gencrally have a physical event
basis. They are tied to statistical experiments and are primarily useful for
quantifying how frequently a sample occurs in a population. Possibility
theory, on the other hand, attempts to quantify how accurately a sample
resembles an ideal element of a population. The ideal element is a prototypi-
cal class or a category of the population which we think of as a fuzzy set. In a
sense, possibility theory may be viewed as a generalization of the theory of
probability with the consistency principle, which we will see later on, providing
a heuristic connection between the two. Possibility theory focuses more on
the imprecision intrinsic in language, whereas probability theory focuses more
on events that are wncertain in the sense of being random in nature. In
natural language processing, automatic speech recognition, knowledge-based
diagnosis, image analysis, robotics, analysis of rare events, information re-
trieval, and related areas, major problems are encountered on quantifying
the meaning of events—that is, the efficacious and accurate interpretation of
their significance and consequence and not the extent of their oceurrence.
Let us illustrate with a simple example.

In the field of reliability analysis, probabilistic methods have been the
basic instrument for quantifying equipment and human reliability as well.
Two very important concepts used are the failure rate and the error rate.
Knowing the failure rate of a component amounts to knowing the duration of
time that the component may be trusted to operate safely, and thus a
schedule for replacement and maintenance activities can be devised. It is not
unusual, however, that after a component is fixed or replaced, the entire
system breaks down, a problem particularly acute with clectronic compeo-
nents. Indeed, such general failures sometimes cause extremely negative
consequences, leading to catastrophic accidents, The problem here is that
failure rates are not sufficiently meaningful to account for the complex
interactions that a human being, such as a maintenance technician or an
operator, may have with a machine. In addition, the correct cstimation of
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failure rate and error rate requires a large amount of data, which 1s often not
practically possible to obtain. Is is obviously impractical to melt nuclear
reactors to collect failure rate data. Thus, in practice, the failure rate and
error rate arc estimated by experts bascd on their engineering judgment
(Onisawa, 1990); from this point of view, fuzzy possibilitics and probabilitics
(which we will examine momentarily) can be used 1o model such judgments in
a flexible and efficient way. Engineering judgment enters many areas of
systems and reliability analysis including estimating the effect of environmen-
tal factors, operator stress, dependence between functions or units, selcction
of sequence of events, expressing the degree of uncertainty involved in the
formulation of safety criteria, assuming parameter ranges, and so on
(Shinohara, 1976). Alternatives to failure and error rates have been devel-
oped employing the notion of possibility measures, called failure and error
possibilities, and have been applied to the reliability analysis of nuclear power
plants, structural damage asscssments, and earthquake engineering. Failure
possibilities and error possibilities are essentially fuzzy sets on the interval
[0, 1] that employ the notions we examine in this section.

Over the years, two views, or schools of thought, of the definition of
fuzzin ss have emerged. The first view, which we implicitly held in the
previvas sections, has to do with categorizing or grouping the elements of a
universe of discourse into classes or scts whose boundaries of membership
are fuzzy. Thus when we defined the set of small numbers in Example 2.1 we
identified a category of numbers within the universe of all numbers. Implic-
itly, what we dealt with in the example was the problem of imprecision. Our
main problem was to find the membership function that most appropriately
or accurately described the category of small numbers. The other view of
fuzziness has to do with the problem of uncertainty. Here our main concern is
to quantify the certainty of an assertion such as “a number x is a small
number,” where x is an element of the universe of discourse X of numbers
(whose location on X is not known in advance) and is therefore called a
nonlocated element. Possibility theory was advanced in order to address this
type of problem. Possibility is more generally known as a fuzzy measure,
which is a function assigning a value between 0 and 1 to cach crisp set of the
universe of discourse, signifying the degree of evidence or belief that a
particular element belongs to the set. Other types of fuzzy measurc are belief
measures, plausibility measures, necessity measures, and probability measures.
The theory of fuzzy measures was advanced in 1974 by Sugeno as part of his
Ph.D. dissertation at Tokyo University. Fuzzy measures subsume probability
measures as well as belief and plausibility measures used in what is known as
the Dempster—Shafer Theory of Evidence.

Let us now take a closer look at possibility. Possibility is a fuzzy measure,
which means that possibility is a function with a value between 0 and 3
indicating the degree of evidence or belief that a certain element x belongs
to a set (Zadeh, 1978; Dubois and Prade, 1988). A possibility of 0.3 for
element x, for example, may indicate a 0.3 degree of evidence or belief that
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x belongs to a certain set. How this belief is distributed to elements other
that x is quantified through a possibility distribution. In possibility theory, the
concept of possibility distribution is analogous to the notion of probability
distribution in probability theory. A possibility distribution is vicwed as a fuzzy
restriction acting as an elastic constraint on the values that may be assigned
to a variable. What does this mean? Well, it is best to review the notion of a
variable, first. Let A be a crisp set defined on a universe X and let ¥ be a
variable taking values on some element x of X, a situation illustrated in
Figure 2.11, The erisp set A is what in the parlance of probabiiity we call an
event, Evenls are comprised out of one or more basic events. Thus, the
clement x may be thought of as a basic event. If x is within A and x occurs,
then we say that the event A has occurred as well. For example, in reliability
analysis, equipment failure and human error are considered to be events
whose occurrence is based on the occurrence of basic events known as
initiating events. To say that V takes its values in A is to indicate that any
element (basic event) of event A could possibly be a value of ¥ and that any
element outside of A, the complement of A, cannot be a value of V. Thus,
the statement V takes its value in A can be viewed as inducing a possibility, 11
over X, associating with cach value & the possibility that x is a value of T2
This can be written as

& 1 if xwed
Vo= = . x) = ) = f 2.8
”( x) '1‘(1) X,I(‘) {U if red ( 81)
where “:= " is an assignment symbol indicating that x is assigned to the

Figure 2,11 The stalernent about a variable
V, "'V takes ifs values in A,'" has a different
meaning when the set A is crisp (fop) than %
when the set A is fuzzy (bottom).
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variable V, and #,(x) is the possibility distribution associated with V' (or the
possibility distribution function of I1). In equation (2.8-1), x,(x) is the charac-
teristic function of A (sce Section 2.1). Mathematically, I is considered a
measure which is a special function mapping the universe to the interval
[0,1). Knowing that the values that ¥ may take arc members of A is the
same as knowing which values of the universe X are restricted to be values of
V' and which are restricted not to be values of V. We indicated this in
cquation (2.8-1) by using the characteristic function of the crisp set 4. We
think of the crisp set A as a restriction on the values of the variable V, and in
view of the nonfuzzy nature of A this type of restriction is called a crisp
restriction.

Next, suppose that 4 Is a fuzzy set and that its boundary no longer crisp
(i.c., does not sharply divide members from nonmembers) but is instead a
fuzzy boundary zllowing an element x to be a member of A to some degree.
As with any fuzzy set, A is uniquely identificd by its membership function
w(x). In terms of events we think of A as a fuzzy event, and we can
associate with each basic event x a membership function indicating its
membership to A. Let us again consider a variable V whose arguments are
clements of X°. Now suppose that ¥ is constrained to take values on X. The
fuzzy set A also restricts the possible valucs that the variable  may take, but
in a fuzzy manner—that is, to a degree. In such a case we consider the fuzzy
set A to act as a fuzzy restriction on the possible valucs of V. Generalizing
cquation (2.8-1) to the fuzzy casc we say that the fuzzy set 4 induces a
possibility [1. The associated possibility distribution 7, (x) on the values that
V' may assume is defined to be egual to the membership function of
A, p,(x) and is written as

MV =2x) =, (x) = pa(x) (2.8:2)

Thus, the possibility that V is assigned x—that is, V' == x, which is sometimes
indicated as “V is x™—is postulated to be equal to the membership function
of A evaluated at x—that is, e (x). It is important to observe in equation
(2.8-2) that possibility distributions are fuzzy sets, while possibilities are just
numbers between 0 and 1. The possibility I in (2.8.2) is a measure of the
compatibility of a given crisp value x that V' may take with an a priori
defined set 4. In this way, V' becomes a variable associated with the
possibility distribution w,(x) in much the same way as a random variable is
associated with the probability distribution.

What equation (2.8-2) indicates is that in certain situations, such as in the
definition of failure and error possibilities, it is of interest to interpret the
membership function u,(x) of a fuzzy set as a possibility distribution of a
variable V. In this sense the fuzzy set A is viewed as the set of more or less
possible values for V.

'In Chapter 5 the variable ¥ will be generalized 10 a fuzzy variable, which is a variable that takes
fuzzy sets as values.
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Given a possibility distribution 7y(x), the possibility that x may belong to
another crisp set B is defined as

I(VcB)= V m(x) (2.8-3)

xEf

What equation (2.8-3) indicates is that the' possibility of B is the possibility of
the most possible clementary event x of B. Generalizing this rclationship, it
can be shown (Dubois and Prade, 1988; Kandel, 1986) that the possibility
measure of the union of two crisp sets B and C is the maximum of the
possibilities of B and C and can be written as

(B U C) = II(B) v 1(C) (2.8-4)

Given a fuzzy set A4 and a possibility distribution function, 7y (x), the
possibility of A4, denoted as [1(A4), is given by

I(4) = vx[u,gcx) A 7y (x)] (28-5)

Consider two fuzzy events 4 and B defined over the universe of discourse
X. The possibility of A with respect to B is defined as

I(4|B) = \/J’( [ a(x) A p(x)] (2.8-6)

The possibility measure of 4 with respect to B reflects the extent to which
4 and B coincide or overlap. Thus; possibility may be viewed as a measure of
comparison of fuzzy sets,

Conditional possibilities have been defined in analogy with conditiona|
probabilities; an entire body of theoretical results has been achieved, known
generally as possibility theory, 1t is finding an increasing number of applica-
tions in the fields of knowledge representation and applied artificial intellj-
gence (Ragheb and Tsoukalas, 1988). A Yery comprehensive treatment of
possibility may be found in the book entitled Possibility Theory by Dubois and
Prade (1988). The theory of possibility has assumed particular significance in
the field of natural language processing due to the inherent fuzziness of

called PRUF, in which the translation of a proposition expressed in natural
language takes the form of a procedure for computing the possibility distriby-
tion of a set of fuzzy relations in a database, The procedure, then, may be
interpreted as a semantic computation transforming the meaning of a propo-
sition to a computed possibility distribution quantifying the information
conveyed by the proposition (Zadeh, 1983).

There are certain differences between probability and possibility measures
worth pointing out. Possibility measures are “softer” than probability mea-
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sures, and the interpretation of probability and possibility is quite different.
Probability is used to quantify the frequency of occurrence of an event, while
possibility (along with fuzzy tools) is used to quantify the meaning of an
event. Consider the following example offered by Zadeh (1978). Suppose that
we have the proposition “Hans ate V eggs for breakfast,” where V =
{1,2,3,...). A possibility distribution and a probability distribution may be
associated with I, as shown in the following table:

[ x 1 2 3
7 (x) b I ]
pyx) 0.1 08 | 01

5 |6 7 T8 T9 ]
08 | 06 | 04 [ 02 | 01
| 0 o 0 0 0

]~ A

The possibility distribution is interpreted as the degree of ease with which
Hans can cat x eggs, while the probability distribution might have heen
determined by observing Hans at breakfast for 100 days. Note that the
probability distribution function p, (x) is given a frequentistic interpretation
and that it sums to ‘1’, while the possibility distribution function 7, (x) is
imputed with a sitwation or context-dependent interpretation and does not
have to sum to ‘1",

Possibility is an upper bound for probability: A high degree of possibility
does not imply a higher degree of probability. If, however, an event is not
possible, it is not also probable. This is referred to as the probability / possibil-
ity consistency principle (Zadeh, 1978). This heuristic principle is useful for
drawing a distinction between the objectivistic use of probability measurcs
and the subjectivist use of possibility or fuzzy measures. When we attempt to
use the two to describe a similar thing, we can use the possibility /probability
consistency principle as a guide. Possibility measures are more flexible mea-
sures useful for epistemic (i.c., cognitive) or context-dependent descriptions.
In general, according to Zadeh a variable may be associated with both a
possibility distribution and a probability distribution, with the weak connec-
tion between the two given by the consistency principle (Zadeh, 1978),

In the language of probability theory the set A in Figure 2.11 may be
viewed as a fuzzy event. Such a fuzzy event induces a distribution on the
values of a variable which we called the possibility distribution function and
defined in equation (2.8-2). We can also define the probability of a fuzzy event
A. Suppose that a fuzzy event A is comprised of clementary events x, and
with each x we associate a basic probability p(x).

Zadeh defined the probability of fuzzy event A as the mathematical expecta-
tion (the first moment) of its membership function, that is,

fxg,‘(.t)p(x) dx

[ p(x) ds

-

P(A) = (2.8-7)
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where A is a fuzzy event on the universe X, x is an element of X, also called

an elementary event, and p(x) is a probability distribution (Zadeh, 1968).

When A is not a fuzzy event, equation (2.8-7) reduces back to the usual crisp

probability P(A). In equation (2.8-7) we assume that the probability measure

on the entire universe of discourse must equal unity—that is, [, p(x) dx = 1,
In addition, given equation (2.8-7) we can define a fuzzy mean as

i
M= FCA) fA_X#.<(x)P{x) x (28-8)

and-a fuzzy variance as

1

ok = s Jx e a2 pCx) i (289)

The probability of a fuzzy event as defined in equation (2.8-7) has been an
extremely useful notion with wide application in the field of quantification
theory (Terano et al,, 1992). Quantification methods are useful in analyzing
data involving human judgments which are not pnormally piven numerical
expression, as well as in interpreting and understanding such dala.

Example 2.3 Possibility Measures and Distribulions. Let us illustrate the
distinction between possibility measure or possibility and possibility distribu-
tion. We consider a possibilily distribution induced by the proposition “Vis a
small integer* where the possibility distribution is (subjectively) defined as

myp(x) = 1.0/1 + 1.0/2 + 075/3 + 0.5/4 + 0.3/5
+03/6 +0.1/7+0.1/8 (F2.3-1)

We also consider the crisp sct A = {3, 4, 5) which we can write as

A=Y ulx)/x=1/3+1/4+1/5 (E2.3-2)
xeX

What is the possibility of A? The possibility measure 11{A) is found using
equation (2.8-5); that is,

ﬂ(A) =V [#A(x) A "TV(-")] (E2.3-3)

xeX

Using equations (E2.3-1) and (E2.3-2) in (E2.3-3), we can obtain the possibil-
ity of A:

[1(A) =075V 05V 03 =075 (E2.3-4)



REFERENCES 45

For another fuzzy set B = {integers that are nat small} given by
- B=02/3+03/4+0.6/5+08/6+1.0/7
“using equation (E2.3-3), we could obtain that the possibility of B is
[(B)=02v03v03v(03iviol=03 (E2.3-3)

It should be noted in equations (E2.3-4) and (I12.3-5) that the possibility is
simply a number between 0 and 1, whereas the possibility distribution is a
fuzzy set—for example, equation (E2.3-1).

Let us now cnnsidcr a simpIe instance of how to generate the possibility
distribution itsclf. T« 1/1 4 1/2+08/3 4+ 0.6/4 + 0.4/5 + 0.2/6 be
a fuzzy sct that r‘,pruqent» small numbers. Then the proposition “V is a small
number” associates with V the possibility distribution, 7,.(x), taken in view of
equation (2.8-2) to be equal to the membership function of C—that is,

we(2) = 171 + 1/2 + 08/3 + 0.6/4 + 0.4/5 + 0:3/6 (132.3-6)

In cyquation (E2.3-6) a singleton such a (L6/4 indicates that the possibiiity
that x is 4, given that x is a small integer, is 0.6. O
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PROBLEMS

1

What happens to the curves in Figure 2.5 if we set F, = 40 and vary F,
as in the figure?

2. In Figure 2.6, what is the significance of the intersection between the
#q = 0.5 line and the curves?

3. In Example 2.2, substitute y = sin x for equation (E2.2-1) and utilize the
extension principal in the same way as in the example. Choose an

appropriate range for x and assume any additional information needed
as in the example,

4. The fuzzy variable of Figure 2.9 is given by the equation pu,(x) =
1/{1 + 0.3(x — 50)*]. Show that the 0.2 level fuzzy set of fuzzy set A4 can
be represented by a-cuts using the resolution principal,

5. The fuzzy scts 4 and B are given by

A=033/6 +0.67/7 + 1.00/8 + 0.67/9 + 0.33 /10
B =0.20/3 +0.60/4 + 1.00/5 + 0.60,/6 + 0.20/7
(a) Write an expression for 4 V B.
(b) Write an expression for 4 A B.

6. Different fuzzy symbols are often used to mean similar things,

(a) Write all symbols or terms that have the same general meaning as
max (V).

(b) Write all symbols or terms that.have the same gencral meaning as
min (A),
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Given fuzzy set A, describing pressure p is higher than 15 mPa, through
the membership function: *

pilx)y=r————— x> 15,
A% 1+ (x—15)7°

=0 =15,

and fuzzy set B, describing pressure p is approximately equal to 17 mla,
with membership function:

o) B ==
phi) & = T

Find the membership function of the fuzzy set C, describing presswre p (s
higher than 15 mPa und approximately equal to 17 mPa. Use at least four
different norms for interpreting AND (see Appendix) and.draw all
membership functions.

. Using the data given in Problem 7, find the membership function of the

fuzzy sct D, describing pressure p is higher than 15 mPa or approximately
equal to 17 mPa. Use at least four different norms for interpreting OR
(see Appendix) and draw all membership functions.

. Using the data-given in Problem 7, find the membership function of the

o fuzzy set E, describing pressure p is nat higher than 15 mI'a and approxi-

10.

1l

matelyequal to 17.mPa. Use four different norms for interpreting AND
(see Appendix) and draw all membership functions.

Determine all a-cuts for the following fuzzy sets, given that e = 0.0, 0.1,

0.2,... 09, 1.0

I A=01/3+02/4403/5++04/6 +05/7 +0.6/8 + 0.7/9 +
0.8/10 + 1.0/11 + 08/12

1
I, B = 15T
8 f*[l +(x= 15}"l/x

Write a MATLAB program that takes a number of a-cuts (minimum 10)
and reconstructs the membership function. -

Let X = N > N, and the fuzzy sets:

1
X)) == =
2 1+ 10(x - 2)°

pa(y) = T+
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Let the mappings z = f(x,y), f: N X N — N be the following quadric
surfaces ’

IZ y2
(a) z= T+E’IEA’yEB
X2y 2
— ===
(b) 9 " 15 B8 .
(<) 2y + 1223 =2

Sketch the surfaces and determine the image f(4 X B) by the extension
principle, for each of the above.



FUZZY RELATIONS

3.1 INTRODUCTION

In fuzzy approaches, relations possess the computational potency and
significance that functions possess in conventional approaches. Fuzzy if /then
rules and their aggregations, known as fuzzy algorithms, both of central
importance in engincering applications, are fuzzy relations in linguistic dis-
guise. Fuzey relations may be thought of as fuzzy sets defined over high-
dimensional universes of discourse. As the name indicates, a relation implies
the presence of an association between elements of different sets. If the
degree of association is either 0 or 1, we have crisp relations. If the degree of
association is between 0 and 1, we have fuzzy relations; a number between 0
and 1 is taken to indicate partial absence or presence of association. In this
chapter we begin by reviewing crisp relations and various ways for represent-
ing them. Next, we look at fuzzy relations and properties used to classify
them, and finally we come to composition of fuzzy relations, a very important
toal for approximate reasoning with applications in the fields of expert
systems, control, and diagnosis.

On what basis do we associate various elements in a relation? The
association may be due to a common property, a quality, a reference, a
condition, or a rule, satisfied by pairs of elements (e.g., objects, numbers,
words, variables, etc.). For example, the statements “is greater than' or “is a
compenent of " indicate an association between two elements. The order of
the elements is important. For instance, if the relation “is a component of "
holds for the pair of clements (u-tube, steam-generator)—that is, if the
statement “wu-tube is a component of steam-generator” is true—the relation may
no longer be true when the elements are interchanged. The relation “steam

49
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generalor is a component of u-tube™ is not true. Thus, this is an important point
to observe: In relations, order is important!

A relation such as “is a component of " may also be expressed as an if /then
rule. We can say “if an object is a u-tube, then it is a component of a steam
generator.”” Any ambiguity as to what degrec an object is known to be a u-fube
or a steam generator, or any ambiguity as to the degree of truth in such an
association, results in a fuzzy relation. ,

When two elements belong to a relation R, we refer to them as an ordered
pair denoted as (a, b) € R, or aRb, with element a being distinguished as the
first element and b as the second. With two elements in association, we have
binary relations. With three elements wé have ferfiary relations, and when n
clements are in association we have n-ary relations. An association of n
clements in an n-ary relation is called n-tuple. A relation is any ser of
ordered n-tuples. The keyword here is “ser.” Relations are formed out of sets
of elements, and they are sets themselves.

Crisp relations are defined over the Cartesian product or product space of
two or more sets. The Cartesian product X X Y of two sets X and Y is the set
of all ordered pairs (x, y) with x in X and y in Y. The product X X X is
often abbreviated as X'?, the product X? X X as X°, and so on,

We saw that relations are sets where order is important. But relations may
also be thought of as mappings, with the process of association in mathemat-
ics being called a mapping. Functions are mappings as well, Relations,
however, are a more general type of mapping. A function performs what is
called a many-to-one mapping; that is, many elements are associated with one
(and only one) element but not vice versa. For example, if the mapping is
done between x’sand y’sin the X X ¥ plane, we may have more than one x
mapped to the same y but not the other way around. Relations, however,
perform many-to-many mappings. Many x’s can be associated with a single y
and vice versa. Many y’s can also be associated with a single x. The
importance of this abstract-sounding distinction in terms of engineering and
computational applications cannot possibly be overstated, as we will see in
later chapters. But for the moment let us turn our attention to an example of

a crisp relation in order to see some of the ways that relations may be
represented.

Example 3.1 A Crisp Relation. Let us consider a divisibility relation, R, on
the set § = (1, 2, 3, 4, 6) defined by the statement “x divides »." R, is a binary
relation because it involves two elements, x and y, drawn from the Cartesian
product of the set § with itsclf—that is, S X S. Furthermore, it is a crisp
relation since a number cither divides another number or not (assuming
integer division only). It is easy to list all the pairs of the relation and to see
that the relation itself is a set, namely, the crisp set of all the pairs

Ry =1{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4), (2,6),
(3,3),(3,6),(4,4),(6, 6) (E3.1-1)
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Figure 3.1 The drecled graph of the awisi-
bility relation Ry defined on the Cartesian

product §x Softheset §=1{1.2 3 4 &,

where the meaning of the elements inside the parentheses is “J divides 1,7
and so on. The relation R, can also be represented through a graph as
shown in Figure 3.1. The individual elements are represented by circles,
called the vertices of the graph. If R, is true for two elements, we connect
them by an arrow, with the direction of the arrow indicating the order of the
clements in the relation, For example, given that 3 divides 6, there is an
arrow poing from 3 to 6; and since 6 does not divide 3, there is no arrow
going from 6 to 3. Reflecting the fact that the order of elements or the
directions of the arrows is important, we call this a directed graph.

The binary relation R, may also be represented by a table or a matrix.
Table 3.1 shows the tabular representation of R,. When a table entry is 1, it
indicates that x (row entry) divides the corresponding y (column entry); for
example, in the fourth row and fourth column we simply have that the
clement 4 divides itself. A 0 indicates the absence of such a relation. Should
the divisibility relation have been a fuzzy relation, the table entries would be
numbers between 0 and 1 as we will see later on.

Ry can also be represented by a matrix obtained from Table 3.1 by
removing the column of x's on the side and the row of y’s from the top;
that is,

4 i @ 7
01 0 1 1

Ry=|0 0 1 0 1 (E3.1-2)
¢ D '8 1 0
0 0 0 0 1
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Table 3.1 A tabular representation of the divisibliity relation In

Example 3.1
R 45

¥yl 1 2 3 4 6
D §
4 1 1 1 1 1
2 0 1 0 1 1
3 0 0 1 0 1
4 0 0 0 1 0
6 0 0 0 0 1

Thus we have seen five different ways for representing R,

L. Linguistically, through the statement “x divides y"

2. By listing the ser of all ordered pairs as in equation (E3.1-1)
3. As a directed graph (Figure 3.2)

4. As a table (Table 3.1)

5. As a matrix, equation (E3.1-2)

It should be noted that the last two ways arc generally convenient only for
binary relations. For tertiary relations, for example, we would need a three-
dimensional table or matrix (for n-ary relations n-dimensional tables and
matrices), and therefore tables and matrices may be conveniently used only
with binary relations. O :

3.2 FUZZY RELATIONS

In fuzzy relations we consider pairs of elements, and more generally n-ruples,
that are related to a degree. Just as the question of whether some element
belongs to a set may be considered a matter of degree, whether some
clements are associated may also be a matter of degree (Zadeh, 1971; Dubois
and Prade, 1980). For example, suppose we have a diagnosis problem
involving vibration data with a set of faults F = {7,,. .,  f,) associated to a
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set of symptoms S = {s),..., 5, }. First we need to establish how symptoms
relate to faults—that is, establish a relation from F to §. One of these
symptoms, let's say s, may be “excessive vibration.” Knowing whether a
machine vibrates depends on the interpretation of vibration data. If the
concept of “excessive vibration™ has been crisply defined—that is, it can be
readily determined whether the machine vibrates and we can associate a
symptom s; with a fault f—we have a crisp relation from F to §. In reality,
however, it may be rather difficult to crisply define such associations and
hence all faults F = {f;,..., f.} and all symptoms § = {s,,...,s,} may be
associated to a degree, giving us a fuzzy relation from F to S. What is
important in such cases is to compute these degrees. Having established the
fuzzy relation from F to S, we can subsequently use it to identify the highest
degrees of association given a symptom s; so that it may be linked to faults
fir f;» and so forth (Kaufmann, 1975).

Fuzzy relations are fuzzy sets defined on Cartesian products. Whercas the
fuzzy sets we encountered in the previous chapter were defined on a single
universe of discaurse (e.g., X), fuzzy relations are defined on higher-dimen-
sional universes of discourse (e.g, X X X or X X Y X Z). A Cartesian
product for us is simply a higher-dimensional universe of discourse. Suppose
that we have a binary fuzzy relation R defined on X X Y. As with any fuzzy
set, we can list all pairs of the relation explicitly as we did in cquation (2.2-2);
that is,

R={((x,¥), ma(x,3))) (3.2-1)

where every individual pair (x, y) belongs to the Cartesian product X X Y,
Alternatively, we can use the notation of equation (2.2-3) to form the union
of all pglx, y)/(x, y) singletons of X X Y. For a discrete Cartesian product
we would have

= Z #R(I-!)’;)/(Ia‘}]) (3-2*zj

(x;, 7 )EXXY

while for a continuous Cartesian product we have

R= fan.a(x. »J(x,y) (3.2:3)

The same notation is used for any n-ary fuzzy relation.

So much for the fuzzy set nature of fuzzy relations and notation. Let us
now take a look at alternative ways of representing them. One of them, which
is particularly useful for the composition of relations (see Section 3.5), is to
form a matrix of grades of membership in a manner analogous to (E3.1-2),
only now we have instead of ('s and 1's various numbers between 0 and 1.
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form
Br(x:91)  pp(xn,y) Kr(X1, ¥)
R pr( X2, ¥1) NR(IF,JJ;_) o mp(Xg, Ya) (3.2:4)
MR(-T,,.-)’J ,U-R(X;,,,y:) e ru'R(xm’yn)

Let us take a look at some special relations and their membership matrices.
The identity fuzzy relation, R, is a special type of relation which has 1 in all
diagonal elements and 0 in all off-diagonal elements—that is,

1 0 0
0 1 0

R, = ;. (3.2-5)
00 1

Another special relation is the universe relation, Ry, namely a relation with 1
everywhere in its membership matrix—that is,

1 1 ol
1 1 1

RE = A s (32-6‘}
1 1

The null relation, R, has a membership matrix with 0 everywherc—that is,

0O 0 - 0
0 0 0

By x h (3.2-7)
00 0

The transpose of a membership matrix gives the membership matrix of the
inverse relation of R denoted by R~ and defined by
Kr-1(¥, x) = pa(x, y) (3.2-8)

Thus the inverse of the relation represented by the matrix of equation (3.2-4)
has the membership matrix

Pﬁ(*’h)’ﬁ) rr(xy,y,) - P‘R{’tm’yl)

- 'x!yl ou' xr}' s M Im,y
R I R EN o) |

uﬂ(xllyn) ,{.!.R(xz. yn) s #R(xm!—“,n)
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which is the transpose of the matrix found by interchanging the rows of R to
produce the columns of K71, and the columns of R have become the rows of
R~V (Klir and Folger, 1988; Terano ct al,, 1992). The inverse of an inverse
relation is the original relation just as the inverse of the inverse of a matrix is
the original matrix—that is,

(RN =R (3.2-10)

So far we defined fuzzy relations on crisp Cartesian products, However,
fuzzy relations can also be defined on fuzzy Cartesian products (Kandel,
1986; Klir and Folger, 1988). Although fuzzy relations defined over fuzzy sets
arc of interest, particularly in connection with decision making under uncer-
tainty, we will make no actual use of them in this book. Unless otherwise
indicated, fuzzy relations in this book are assumed to be defined over crisp
Cartesian products.

Example 3.2 Representing a Fuzzy Relation. Let us take two discrete sets
X = {a), 2y, 25, 25} and Y = {p,, ¥5, ¥5, ) and define (subjectively) on thei
Cartesian product the fuzzy relation R =%x is similar to y.” shown by the
directed graph of Figure 3.2. R may be represented through the five different
ways we saw in Example 3.1 with regard to crisp relations:

. Linguistically, for example by the statement “x is similar to y"”
By listing (or taking the union of) all fuzzy singletons

As a directed graph (Figure 3.2)

In tabufar form

As a matrix

woE W

Let us represent the relation as a fuzzy set by taking the union of all
singletons—that is, all ordered pairs and their membership values:

R = pr(X,¥)/(x,5) (E3.2-1)
AxY
Using the data of Figure 3.2, equation (E3.2-1) gives

R=10/{x;,y;) +03/(x;,¥3) + 0.9/(xy, ¥3) +0.0/(x;5 ys)
+0.3/(x5, 3) + 10/(x5, p,) + 08/(x,, ¥3) + 1.0/( x5, 34)
+0.9/(x5,y) +0.8/(x5,y2) +1.0/(x3,p;) + 9.8/({,, ¥s)

+ 0.0/ (x4, 9,) + 1.0/(xg, ;) + 0.8/(xy, y3) + 1.0/ (x4, 24)
(E3.2-2
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Figure 3.2 The directed graph of the fuzzy relation R in Example 3.2,

The relation R may also be represented in tabular form as

Ri

X1

X

Xy

Note that compared to Table 3.1, where we only used 0’s and 1's, in the
tabular representation of R we find grades of membership between 0 and 1.
Consider the pair (x;, y,). From the table of R we see that “x4 is similar to

¥4Is true-to a 0.8 degree.

» Ys ¥ Y
1.0 | 037 09 | 0.0
03 (10 o8 | 10
0.9 | 08 | 1.0 | 0.8
0.0 | 1.0 | 0.8 | 1.0
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In matrix form, R is given by

10 03 089 00
03 10 08 10
09 08 10 08
00 10 08 1.0

R= (E3.2-3)

The inverse of R, which we denote as R™!, is the transpose of the member-
ship matrix of equation (E3.2-3), given by

10 03 09 00
L_|03 10 08 10 o
K 09 08 10 08 (E3:2-4)

00 1.0 0.8 1.0

Of course the inverse fuzzy relation R™! in this case has the same member-
ship matrix due to the fact that R is a symmetric relation (see next section).
0

3.3 PROPERTIES OF RELATIONS

Crisp and fuzzy relations alike are classified on the basis of the mathematical
propertics they possess. We present here a brief introduction to the subject
of properties mostly for the sake of reference. We look first at properties of
crisp relations and then examine the properties of fuzzy relations. In fuzzy
relations, different properties call for different requirements for the member-
ship function of a relation.

Let § be a Cartesian product (c.g., S = & X Y, with x being an element
of X and y being an element of Y) and let R be a relation on §. The
relation R could have the following properties:

Reflexive, We say that a relation R is reflexive if for any arbitrary element
x in § we have that xRy is valid—that is, the pair (x, x) also belongs to
the relation R.

Antireflevive. A relation R is antireflexive if there is no x in § for which
xRy is valid.

Symmetric. A relation R is symmetric if for all x and y in §, the following
is true: If xRy holds, then yRy is valid also.

Asymmetric, A relation R is asymmetric if therc are no elements x and y
in S such that both xRy and yRx are valid,

Auntisymmetric. A relation R is antisymmetric if for all x and y in § when
xRy is valid and yRx is also valid, then x = y. '
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Transitive. A relation R is called transitive if the following is true for all
X, ¥,z in S§: If xRy is valid and YRz is also valid, then xRz is valid as
well.

Connected. A relation R is connected when for all x, y in § the following
is true: If x # y, then either xRy is valid or yRx is valid.

Left Unique. A relation R is called left unigue when for all x, Ysz1in § the
following is true: If xRz is valid and ¥Rz is also valid, then we can infer
that x =y,

Right Unigue. A relation R js right unigue when for all x,y,z in § the
following is true: If xRy and xRz hold true, then y = z,

Right Biunique. A relation R which is both left urigue and right unijue is
called biunigue.

Relations are classified into different groups on the basis of these properties.
For example, an important type of crisp relation is the so-called equivalence
relation. An equivalence relation is a relation that is reflexive, Symmetric, and
transitive (Klir and Folger, 1988). Equivalence relations are found in every
corner of mathematics and are particularly useful in engineering fields such
as pattern recognition, measurement, and control. Other important relations
are the so-called order relations. For example, a relation R is called L juippini
ordering if it is reflexive, iransitive, and anusymmeuric, 1t K is also connected,
then it is called a roral linear ordering. Order relations are Very important in
fuzzy arithmetic (Kaufmann and Gupta, 1991).

The properties of fuzzy relations are described in terms of various require-
ments for their membership function. In a pioncering paper on the subject,
Zadeh (1971) showed that most of the important properties of crisp relations
stated above are extended to fuzzy relations as well. Let a relation R be a
fuzzy relation on the Cartesian product § = X x X. Reflexivity, symmetry,
and transitivity are the three most important properties that help us properly

categorize fuzzy relations, R is a reflexive relation if for all ¥ in X we have
that

Ha(x, x) =1 (33-1)

If for at least one x in X but not for all x’s, equation (3.3-1) is not truc the
relation R is called irreflexive. If equation (3.3-1) is not satisfied for any x,
then R is called antireflexive,

A fuzzy relation R s Symmetric if order is not important—that is, if we
can interchange x’sand y’s. In terms of the membership function of R, this is
cquivalent to saying that

Pr(x,y) = wa(y, x) (3.3-2)

If equation (3.3-2) is not satisfied for some pairs (x, y), then we say that R is
antisymmetric; if it is not satisfied for all pairs (x, y), then we say that the
relation R is asymmetric.
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A fuzzy relation R on the Cartesian product X X X is max—min transitive
if for two pairs (x, y) and (y, z) both in X X X we have

ua(ey) 2 V [ el 2) A pa(2,)] (3.33)

F4

where all the maxima with respect to z arc taken for all the mimima inside
the brackets in equation (3.3-3). Transitivity can be defined for other opera-
tions such as product () instead of min (A ) in equation (3.3-3); in such a case
we have what is called max-product transitivity. A relation that docs not satisfy
equation (3.3-3) for all pairs is called nontransitive, and if it fails to satisfy
(3.3-3) for all pairs, then it is called antitransitive.

A fuzzy relation that is reflexive and symmetric is called a proximity or
tolerance relation. A fuzzy relation that is reflexive, syrnmetric, and transitive is
called a similarity relation, which is the fuzzy peneralization of the equiva-
lence property of crisp relations (Zadeh, 1971). Similarity relations are very
important in fuzzy logic, and together with proximity relations they are
crucially important in the field of fuzzy diagnosis. A fuzzy ordering 1s a fuzzy
transitive relation. If a fuzzy relation is reflexive, transitive, and antisymmetric,
then we call it a fuzzy pantial ordering. Fuzzy orderings and similarity relations
may be resolved into nonfuzzy partial orderings, in & manner analogous to
the way we used the resolution principle in Chapter 2. Let us now look at an
example of a [uzzy similarity relation.

Example 3.3 A Similarity Relation. Consider a fuzzy relation R indicating
that two points on the X X Y plane are near the origin. This is a relation we
would expect to have a membership function equal to 1 exactly at the origin
and to have gradually diminishing membership as we move away from the
origin, We can indicate the relation by a statement such as “x is near the

origin with y" or analytically as a fuzzy set with an appmprmtely chosen
(subjectively) membership function—for example,

palx, p) =@ (E3.3-1)
Thus the relation R is the fuzzy set

& [\,x,.“n(-"d‘l/(l-l‘) (E3.3-2)

which using equation (E£3.3-1) we can writc as
R= e~ Wby y E3.3-3
j:\-x\‘.- /{ = ) . ( )

The membership function of R is shown in Figure 3.3. It can be shown that
R is a fuzzy similarity relation; that is, it is reflevive, symmetric, and transitite,
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Figure 3.3 The membership function of the relation R indicating that an (x. y¥) point of
the Cartesian plane. X x Y, is close to the ongin (0,0).

Figure 3.3 also illustrates that fuzzy relations are fuzzy sets on high-dimen-
sional universes of discourse. In this case the universe of discourse is the x—y
plane—that is, the Cartesian product X X Y. O

3.4 BASIC OPERATIONS WITH FUZZY RELATIONS

Fuzzy relations are fundamentally fuzzy sets defined over higher-dimensional
universes of discourse—that is, Cartesian products. All the fuzzy set opera-
tions we saw in Chapter 2, such as wnion, intersection, a-cuts, and so on, arc
also applicable to fuzzy relations. Here we take a look at the wnion,
intersection, inclusion, a-cuts, and resolution as well as some operations
specific to relations such as projection and cylindrical extension (Dubois and
Prades, 1980; Zimmermann, 1985).

Suppose that we have two fuzzy relations R, and R,. Their union is a new
relation

RyURy = [ [ia(x2)V s, 9)][(x,5) (34-1)

where the membership function of R, U R,, as indicated in equation (3.4-1),
15

Br,u LX) = pg(x.¥) V pe(x,y) (3.4-2)

for every (x, y) pair of the Cartesian product.
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The intersection of fuzzy relations R, and R, is a new fuzzy relation
whose membership function is the minimum of the membership functions of
R, and R, taken at every point (x, y) of the Cartesian product,

RyORy = [ [ra(y) A pa(x )] [(x.5) (3.4-3)
XxY
where the membership function of R; N R, is
Han g% Y) = mr(X:Y) A up(X,¥) (3.4-4)

We define the a-cut of a fuzzy relation in a manner similar to the way we
defined in Section 2.6 the a-cuts of one-dimensional fuzzy sets. The resolu-
tion principle applied to fuzzy relations offers us an alternative way of
representing the membership function of a fuzzy relation. It says that the
membership function of a fuzzy relation can be represented through its
a-cuts. More specifically, the resolution principle asserts that the membership
function of a fuzzy rclation R is expressed in terms of its a-cuts In a manner
analogous to equation (2.7-1) as

palx) =V [« ks (x0)] (3.4-5)

where the maximum is taken over all a’sand u, (x,y) is the <ecut of the
membership function of the relation R at level a.

We say that a relation R, is included in R, if both arc defined over the
same product space and we have everywhere

Br(X,¥) < pg(x,¥) (3.4-6)

Note that the union and intersection of fuzzy rclations are meaningful in the
context of relations defined over the same Cartesian product. When the
product spaces of two relations are different, these operations have no
meaning and instead the important and useful operations become the various
composition operations which we examine later.

Example 3.4 Union and Intersection of Fuzzy Relations. Suppusc that we
have the following two relations R, and R, described by the tables below:

R, =“xis larger than y"";

g Ya Xa Ya
x| 00]00 01|08

x,| 00 | 0.8 (00|00

x3| 01| 08 | 10 | 08
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R, ="y is much bigger than x":
Yr Y2 Vs Ya
x,104 (04 02] 01

%] 05 |00 ] 10 | 10

x;| 0501|0206

The union of the two relations, R) U R, is formed by taking the maximum
of the two grades of membership for the corresponding elements of the two
tables. The table of the new relation is as follows:

R, UR,:
Y Yz Y3 Ya
x| 04|04 (02]08

x|05[08 |10 10

x| 0508|1008

For the intersection, R, N R,, we take the minimum of the two grades of
membership in cach cell of the tables of the two relations, and the resulting
table is as follows: i

RyNR;
¥ ¥ ¥3 ¥y
x| 00|00 |01 ] 01

x| 0000|0000

x3| 04 | 01|02 |06

Some caution is needed when we interpret the new relations produced by
union and intersection. For example, the union R, U R, can be interpreted as
a proposition of the form: “x is quite different than y.” The intersection,
however, is not very meaningful, since x cannot be simultancously larger than
y and y cannot be larger than x (Zimmermann, 1985), O

In relations, when it is desired to go to a space of lower dimension we use
projection. Starting with a fuzzy relation defined on a two-dimensional space,
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BASIC OPERATIONS WITH FUZZY RELATICNS &3

we can take the first and second projection and £O to one-dimensional
universe of discourse, with each projection eliminating the first and sccond
dimension, respectively. The toral projection takes us to a zero-dimensional
singleton, climinating both dimensions. Projections are also called marginal
fuzzy restrictions. The inverse of projection—that is, going toward higher
dimensions—is called cylindrical extension (Zadeh, 1971).

Consider the fuzzy relation R defined over the Cartesian product X X Y
—that is,

K= L’xrug(x,y)‘,}[r,y) (3.4-7)

The first projection is a fuzzy sct that results by eliminating the second set ¥
the Cartesian product, X X Y, hence projecting the relation on the
universe of discourse of the first set X. We write the first projection as

Rl = (x)/x 3.4-8
[ (). (3.4-8)
The membership function of the first projection is defined as

pp(x) =V [J'-‘-A'(f’)')] (3.4-9)
»

To obtain pgp(x), equation (3.4-9) indicates that we take the maximum of
#g(x, ¥) with respect to ¥. Similarly the second projection (projecting cn the
Y universe of discourse) is a fuzzy set:

RE = [ uas(0)}y (3.4-10)
with membership function defined as

kax(y) = V [ #a(x, )] (3.4-11)

where we take the maximum of ra(x, y) with respect to x. The rozal
projection of R simply identifies the peak point of the relation—that fs;
singleton (x,, y,) where the membership function of the original relation
reaches its highest value,

R' =V V pa(x0. ) [(xa) 9) (3.4-12)
x oy

The opposite of projection is called the cylindrical extension. Through cylin-
drical extension we go from a fuzzy relation defined over a lower-dimensional
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space to a fuzzy relation on a higher-dimensional space. If a relation R is
defined on a subsequence of a product space X = X, X X, X X; X =+ X X,
call it X; X X, X X;3 X * X X, then the cylindrical extension of R,
denoted as CE(R), is defined as

CE(R) = [ oo xi) [(rieam) - (34413)

Mo XM
Let us look at an example of projection and cylindrical extension.

Example 3.5 Projection and Cylindrical Extension. Consider the relation R
defined over the Cartesian product X X Y of the sets X = {x,, x,, x;} and
Y = {¥1, ¥2» ¥3. ¥s, ¥s. ¥} as shown in Table 3.2. The membership functions
for the first and second projection are indicated by the column to the right of
the table and the row below the table, respectively. The first projection is
what the relation would look like if seen from the direction of the arrow on
the left side of the table, Imagine that we look in the direction that the arrow
on the left indicates. We see in front of us three rows of the relation and
select the highest value in each row. As a result, we obtain the first
projection, namely,

R'= Y pa(x)/x;=1.0/x, +09/x; + 1.0/x, (E3.5-1)
X

Equation (E3.5-1) indicates that the first projection of the binary fuzzy
relation R is simply a fuzzy set on a one-dimensional universe of discourse.

Table 3.2 Fuzzy relation and projections

U

Pﬂn(x)

Yr Y2 Y3 JYg Ys Yo
X 0.1 0.2 |04 |og |1.0 |06

0.5 |09 1.0 |08 0.4 JO.2

13

T¢)

.‘IRI
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The second projection is what the relation would look like if scen from the
direction of the arrow on top of the table.

R“=Zumbﬂ/ﬁ=ﬂﬁﬁn+09Aa+lﬂﬂu+09hu+0ﬁA@+OBﬁn
¥

(E3.5-2)

The total projection is the single cell in the corner and represents the highest
grade of membership that the relation has, namely, 1,

Let us next take a look at the cylindrical extension of the second projec-
t In a way the cylindrical extension is the opposite of projection. We

:ct thercfore to obtain a relation on X X Y somewhat similar to the
o- inal relation R. At cquation (E3.5-2) indicates, the second projection is
dc ned on the Y uni erse of discourse. The generalization of this to the
X A Y two-dimensional space is given by the cylindrical extension. Using
cquation (3.4-7) we obtain that the cylindrical extension of the second
projection of the relation R? is simply the fuzzy set of the second projection
cxtended in one more dimension, namely,

CE(R?):
Y ¥ ¥3 Y ¥s Ys
X, 05 | 09 1.0 | 09 | 1.0 | 0.6

¥ [05)09 (1009 |10 ] 06

x3 |05]109 10|09 10] 06

Note that although the cylindrical extension of the second projection R*
results in a relation of higher dimensionality, it did not recover the original

relation R. Some information was lost through the operation of the cylindri-
cal extension. O

3.5 COMPOSITION OF FUZZY RELATIONS

Fuzzy relations defined on different Cartesian products can be combined
with each other in a number of different ways through composition. Composi-
tion may be thought of metaphorically as a bridge that allows us to connect
one product space to another, provided that there is a common boundary.
Figure 3.4 illustrates the notion. Given two fuzzy relations—one in X x ¥
and another on Y X Z—we want to associate directly elements of X with
elements of Z. The set Y is the common boundary. Composition results in a
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Figure 3.4 The composition of two fuzzy relations is a new relation directly associating
elements from X and 7.
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new relation shown at the bottom of Figure 3.4 that directly relates X to Z.
Our main task in composition is to compute the grades of membership of the
pairs (x, z) in the composed relation, namely, u(x, z) (not shown in Figure
34). ;

Composition is very important for inferencing procedures used in linguis-
tic descriptions of systems and is particularly uscful in fuzzy controllers and
expert systems (Klir and Folger, 1988). As we shall see in Chapters 5 and 6,
collections of fuzzy if/then rules or fuzzy algorithms arc mathematically
equivalent to fuzzy relations, and the problem of inferencing or (evaluating
them with specific inputs) is mathematically equivalent to composition. There
are several types of composition. By far the most common in engineering
applications is max—min composition, but we will also look at max-star,
max-product, and max-average. In general, different types of composition
result in different composed relations.

Max-Min Composition

The max-min composition of two fuzzy relations uses the familiar operators
of fuzzy sets, max (V) and min (A) (see Section 2.3). Suppose that we have
two fuzzy relations R,(x, y) and R,(y, z) defined over the Cartesian products
X XY and Y X Z, respectively. The max-min composition of R, and R,isa
new relation R, = R, defined on X X Z as

Ry*R, = fm \y/ [ Ba(x3) A ey, )] J(22)  (3.5-1)

where the symbol <" stands for max—min composition of relations £, and
R,. When the Cartesian product X X Y is discrete, then the integral (union)
sign in (3.5-1) is replaced by summation. From equation (3.5-1) we see that
the grade of membership of each (x, z) pair in the new relation is

g, p{% 2) = V [ #r (%, ¥) A pg(y,2)] (3.5-2)

where the outer maximum is taken with respect to the elements y of the
common boundary. The operation on the right-hand side of equation (3.5-2)
is actually very similar to matrix multiplication, with max (V) being analo-
gous 10 summation (+) and min (A) being analogous to multiplication (), as
we will see in the examples that follow, Interchanging min and max in (3.5-1)
is known as the min-max composition. In this book, however, we will mostly
use max—min composition and compositions where the final (outer) opcrand
is max (V). Max-min composition is used extensively in diagnostic and
control applications of fuzzy logic.
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Max-Star Composition

We can use multiplication, summation, or some other binary operation (*) in
place of min (A) in equations (3.5-1) and (3.5-2) while still performing
maximization with respect to y. This type of composition of two fuzzy
relations is generally known as the “‘max-star” or “max-» composition.”

Suppose that we have two fuzzy relations R, and R, defined over the
Cartesian products X X Y and Y X Z, respectively. The max-+ composition
of R, and R, is the new relation

Ryoky= [ V [afx9)* e (0, D] [(x2)  (3.53)

We see from equation (3.5-3) that the membership function of the new
relation is

B, . {X,2) = V [#R.(IJ)*#R:(}" Z)} (3.5-4)
v

When the Cartesian product is discrete the integral sign in equation (3.5-3) is
replaced by summation. Again as we shall see in the examples that follow this
is cssentially a computational procedure very similar to matrix multiplication.
Two special cases of the max-star composition are the max-product (or
max-prod) and the max-average composition.

Al

Max-Product Composition

In max-product composition we use product (-) in place of (#) in equations
(3.5-3) and (3.5-4). Thus the max-product composition of two relations R,
and R, is

R,R, = -l:t'xz \;_/ [#R,(-’-'».V) '#ﬁ,()’pz)]/(x-z) (3.5-5)

For discrete product spaces we use the summation sign in equation (3.5-5).
The membership function of the composed relation is given by

pror(%:2) = V [ #r(*:¥) - sy, 2)] (3:5-6)
y

"The name “star” refers to the star symbal that stands for a number of operations such as
average and product.
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Max-Average Composition

In the max-average composition of fuzzy rclations we use the arithmetic sum
(+) divided by 2 in place of (*) in equations (3.5-3) and (3.5-4). Thus
the max-average composition of R, with R, is a new relation R{+)R,
given by

R(+IR, = f; n V [%( F’-R,(""u}') + #Rz(}’--’))]/(x-z) (3.5-7)
XXZ

with membership function

J-LR1<+>R:(J-'= z) =Y [;{ F'R,(x»)’) i !‘-R;(}” 3))] (3.5-8)
B¢
Let us take a look at a few examples of composition.

Example 5.6 Max-Min Composition of Fuzzy Relations. Let’s use max—min
composition with the two relations shown in the upper part of Figure 3.4,
The membership matrices of the relations R, on X X Y and Roon¥YxZ
are

_P-R;(XUJ’:) Pa (X, ¥2) Hp (X, ¥s) Hp (X1, ¥s)
Me(%2, Y1) ma(X20¥2)  ma(%a, ¥s) Hr (X2, )

tr (X, ) tg (X3, ¥;) P X35 1) kg (X3, ¥s)
-#Rl(x-'.‘yl) Kr(Xes¥s) HaXas¥s) Balxs, ¥e)

[1.0 03 09 00

03 10 08 1.0

“l09 08 10 08 WAL
(00 10 08 10

and

Kr{¥i> 2) Hr (1 27) Mn;f}'lnfs)
R. = a2, 73) Br (Y2, 23) #a (Y2 73)
- “r( Y3 2,) tr (Y3, 23) I—f-x;(J'z- ;)

_#K;(y-i’zl) P'R:(}'::ZJ_) ;J-R:(y;, 23)

[10 10 09
1.0 00 05
103 01 o9 (E3.62)

02 03 01
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We want to compute the membership matrix of the max—min composition of
R, and R,. We can use equation (3.5-2) to obtain the membership function
of the composed relation. The operations in (3.5-2) are similar to matrix
multiplication, with (V) being treated like summation (+) and (A) being
treated like multiplication (-). With this in mind, instead of using

Bp.r (X, 2) = V IF'.RL(’:'.V) A g (Y, z)]
o

we can usc the matrix form of max-min composition, namely,

10 03 09 00 1.0 1.0 09
03 10 08 10| |10 00 05
09 08 10 08 03 01 00
0.0 10 08 1.0 02 03 01

Rt‘?R}_ = (E3.6-3J

To evaluate equation (E3.6-3) we proceed, like in matrix multiplication, by
forming the pairs of minima of each element in the first row of membership
matrix R; with every element in the first column of membership matrix R,.
For example, to obtain the first element, (x,, z,), of the composition we
perform the following operations:

1.0
1.0
0.3
0.2

=[10 A 1.0] v [0.3 A 1.0] v [0.9 A 0.3] V [0.0 A 0.2]

=10v03v03Vv00
=1.0

We repeat this procedure for all rows and columns and the result is the
membership matrix of the composed relation R, = R, given by

[10 03 09 00]-

1.0 10 09
116 B3 05 -
RieR:= 109 09 00 (E3.64)
10 03 05

The new relation is a fuzzy set over the Cartesian product X' X Z which may
also be written as

Ri= Ry =1.0/(x,,2)) +1.0/(x,,2,) +09/(x,23)
+1.0/(x;,2,) +03/(x,5,2,) +05/(x,, z;3)
+0.9/(x;3,2;) +09/(x3,2,) + 09/(x4, 25)

+ 1.0/(x5,2,) +03/(x4,2,) +05/(xy,2;) (E3.6-5)
a
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Example 3.7 Max-Min, Max-Product, and Max-Average Composition of
Fuzzy Relations. Supposc we have the two relations R, and R,, shown
below, and we want to compute a new relation which is the max-—min
composition of the wo, R = R, = R,. We will also find the max-product and
max-average compositions. We perform max-min composition using the
tabular represcntation of the relations and the definition of max—composi-
lion given in cquations (3.5-1) or (3.5-2). The relations to be composed are
described by the following membership tables:

Ry

Xy

Az

*3

To find the new relation R = R, = R, we use equation (3.5-2), the definition
of max—min composition, namely,

Bg g X, 2) = Vv [FR:(I-J’) A P-R;(Y-Z)] (E3.7-1)
¥

To use (E3.7-1) we proceed in the following manner. First, we fix x and
z—for example, x =x, and z =z —and vary y. Next, we evaluate the
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following pairs of minima, using the numbers from the shaded cells in the

tables of the two relations:

B (X0 91) A pr(¥1,2) =01 A09=0.1
Brl*1:¥2) A rpfys,2) =02A02=02
sp (X, ¥3) A pg(ys,2) =00A08=00
e (X0 ¥e) A ke (Y z) =1.0A04 =04

ra (%1 ¥s) A pglys,2,) =07 A00=00

(E3.7-2)

We take the maximum of all these terms and obtain the value of the (x,, z,)

element of the relation, namely,

PRl-R:(":I\z]} = UAl N 042 W 00 V‘04 res 0‘4

(E3.7-3)

This is the value in the shaded cell in the table of the composed relation
shown below. In a similar manner, we determine the grades of membership

for all other pairs and finally we have

R=R,*R;:
£y %y 2y
L % 0.7 | 03 | 07
x, 10 | 05 [ 08
x, | 0803|0710

-+ y " =
Let us now compose these two relations using max-product composition as

defined by equation (3.5-6)—that is,

" pgp (X 2) = V [#x,(xay) ‘F—n,()":z)]

(E3.7-4)

Again we fix x and z and vary y—for example, x =x,, z =2z, and y =y,
fori=1,...,5. We form and evaluate the produets of the shaded cells in the
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relation tables—that is,
pr (X1, ¥1) - e (¥, 2;) = 0.1 X 0.9 =0.09
B(X11¥2)  ig (Y2, 2) = 02X 02 =0.04
prl{*Y3)  #p(¥s 2)) = 00X 08 =00 (E3.7:5)
Br (%15 Ya) “Bp(Ye: ) =10X04 =04
Brl X1, ¥s) - me(ys, 2,) =07 X 0.0 = 0.0

Taking 1/:c maximum of these terms, we obtain the grade of membership of
the (xy, .) pair in the composed relation, namely,

Beox(X1,2;) = 0.09 V 0.04 V0.0V 0.4 v 0.0 (E3.7-6)

which coincidentally evaluates also to up g (xy, ;) = 0.4. This is the number
in the shaded cell of the table below. Similarly, we obtain the membership of
all other pairs and finally we get the membership table of the composition as

zy z,
03 | 056
04 | 0.8
x|08 03|07 10

For the max-average composition of the two relations, again we fix x and z
and vary y in order to find the max with respect to y in equation (3.5-8) for
cach (x, z) pair. Thus first we form and evaluate the sums of the shaded cells
as before:

a0 3) + i m) = 01 + 09 = 1.0
pr(F¥2) + ke(y2,2) =02+ 02 =04
#a{%1293) + da(y3r2,) = 0.0 + 0.8 = 0.8 (E3.7-7)
Br(X1,¥s) + pa¥e2) =10 + 04 = 1.4
Br(%1¥s) + pa(ys,2;) = 0.7 + 0.0 = 0.0
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Thus, using equation (3.5-8), the grade of membership of the (x,, z,) pair is
Bryoyr( X1 7)) =3[1.0V 04 V08V 1.4V 0.0] = 0.7 (E3.7-8)

This is the grade of membership of the shaded cell in the table shown helow,
In a similar manner the membership function for each pair is computed, and
finally we get the max-average composition of the twb relations in the table:

R +)R,:

<1 Zq ZJ Ly

— — — —

x, |67 085 | 0.65 | 0.75

X 06 | 14 0.65 | 0.9

x; | 09 | 065 1085 | 1.0

]

We observe from the tables of tnc composcd relations that max—min,
max-product, and max-average compositions of R, and R, may resull in
different relations. O
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PROBLEMS

1. A fuzzy “diagnostic rclation™ R, for an automobile relates the systcm set

3

=

Lh

§ to the fault set F. These scts are given below.

S = [x, (low gas mileage), x, (excessive vibration), x; (loud noisc),
x4 (high collant temperature), x; (steering instability)]
F = [y, (bad spark plugs), y, (wheel imbalance), ¥3 (bad muffler),

¥: (thermostat stuck closed)]

Assume reasonable numerical values (0 — 1) for members] ip values
relating members of sets § and F and use them. Give all five representa-
tions of this fuzzy diagnostic relationship R in terms of x, and ¥;-

- Give the max-min composition, max-star composition, and the max-aver-

age composition of the relation fuzzy “diagnostic relation” of Problem 1.

Repeat Example 3.3 for a fuzzy relation R indicating that “x is near the
perimeter of a circle having a radius 1 with y”.

In Example 3.4, give a table for [R, N R,] U [R, N R,

. Find the first, second, and total projection as well as the cy'indrical

extension of the fuzzy relation R given by Equation (E3.2-2),

6. Find the max-product and max-average composition of relations R, and

R, given by Equations (E3.6-1) and (E3.6-2), respectively.

- Find the max—min composition of relations R, and R, given in Example

3.

- a. Show that the max-min composition of fuzzy relations is associative.

[lustrate with an example of your own.

b. Consider the max-min composition and a relation R which is reflexive.,
Show that:

RsR=R.

Suppose that we have three relations involved in Mmax—min composition

PsQ =R
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10.

FUZZY RELATIONS 3

- T
t®

When two of the components in the above equation are given and the
other is unknown we have a set of equations known as fuzzy relation
equations. Solve the following fuzzy relation equations:

9 6 1

(@ P-| 8 8 S|=[6 6. .5]
|6 4 6
2 M 5 .

w rel 3 6 B :{2 4 6 7
I 4 & 3 1l 2 & 7
LU 3 # 1

Consider two probability distributions that are independent and de-
scr’bed by

dP(x,) = e ™ dx, and dP(x,;) = x,e7" 0 dxy, v, X3 2 0

How can we modec] the similarity of x,, x, through a fuzzy set and whal
would be the probability of oceurrence of such a set?



FUZZY NUMBERS

4.1 INTRODUCTION

Fuzzy numbers are fuzzy sets used in connection with applications where an
explicit representation of the ambiguity and uncertainty found in numerical
data is desirable. In an intuitive sense, they are fuzzy scts representing the
meaning of statements such as “abour 3" or “nearly five and q half' In other
words, fuzzy numbers take into account the “about,” “almost,” and “not
quite” qualitics of numerical labels. Fuzzy set operations such as wnion and
intersection, as well as the notions of a-cuts, resolution, and the extension
principle (Chapter 2), are all applicable to fuzzy numbers. In addition, a set of
operations very similar to the familiar operations of arithmetic, addition,
subtraction, multiplication, and division can be defined for fuzzy numbers as
well. In this chapter we look at such operations and examples of their use,
Fuzzy numbers have been successfully applied in expert systems, fuzzy
regression, and fuzzy data analysis methodologies (Kaufmann and Gupta,
1991; Terano et al,, 1992). Fuzzy numbers have also been used in connection
with fuzzy cquations, and alternative operations of fuzzy arithmetic have
been introduced for the purpose of reducing fuzziness in successive computa-
tions (Sanchez, 1993),

The universe of discourse on which fuzzy numbers are defined is the set of
real numbers and its subscts (c.g., integers or natural numbers), and their
membership functions ought to be normal and conver. We recall from
Section 2.3 that a fuzzy set is called normal if there is at least one point in
the universe of discourse where the membership function reaches unity
[equation (2.3-11)]. But what is a “convex” fuzzy set? The intuitive meaning

77
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Ufx)
1 . ! L
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0.8~ pu— ri S L
: B
0‘6-1- ......................... -
L e e B LU Rt LSSl TOSNITRRNPRE SRS, SIRPPRRRTRUPR SO, e
0.2 & \
Q0
0 2 1o
(a)
H(x)
: !.
convex dnd normal
1 e e S SIil e Wy e : n
0.6 L
0.4
0.2 : ’ L5 L
0 1 1 ] X
0 2 4 6 8 10

(b)

Figure 4.1 () Two fuzzy sets that cannot be used as fuzy numbers. (b) A fuzzy set
that may be used as fuzzy number.
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of convexity' is that the membership function of a convex fuzzy set does not
go “up-and-down” more than once. Consider, for example, the fuzzy sets A4
and B shown in Iigurc 4.1a, Fuzzy sct A is convex but not normal since
nowhere in the universe of discourse does its membership function reach
Linity. Therefore it is not a fuzzy number. Fuzzy sct B is normal but not
convex since its membership function goes “up-and-down’ twice, and hence it
is also not a fuzzy number. On the other hand, consider the set C shown in
Figure 4.1b. It is both normal and convex and therefore may be considered a
fuzzy number. We will see in following sections that changing the shape of a
membership function results in a different number. “Shape” is what fuzzy
numbers are all about, and fuzzy arithmetic may be thought of as a way of
computing with “shapes” (areas) instead of “points” (we consider erisp
numbers as “points’).

Fuzzy numbers may also be defined on a multidimensional universe of
discourse that is a Cartesian product. Such fuzzy numbers are uscd, for
example, in connection with scenc analysis and robotics to define the mean-
ing of a region in space, or a domain on the x-y plane, and also to add,
subtract, and multiply regions (Pal and Majumder, 1986). In this chapter,
however, we consider fuzzy numbers defined on a simple, one-dimensional
universe of discourse. A very comprehensive trecatment of fuzzy numbers,
including multidimensional ones, may be found in the book entitled Introduc-
tion to Fuzzy Arithmetic by Kaufmann and Gupta (1991).

4.2 REPRESENTING FUZZY NUMBERS
]

We denote fuzzy numbers by boldfaced italics—for example, 3 or A—aor by
referring to their membership function. As we said earlier, fuzzy numbers are
fuzzy sets used to represent the “about,” “almost,” or “nearly” qualitics of
numerical data. We observe, however, that there are many possibld meanings
to a statement such as “about 3.” Therefore, several different sets may be
used to represent “abour 3. In the context of fuzzy arithmetic operations,
however, at any given time we use only one meaning, chosen on the basis of
application-specific criteria and needs. Figure 4.2a shows a triangular mem-
bership function representing the fuzzy number 3. Another possible repre-
sentation is the bell-shaped membership function in Figure 4.2b, These are
two different 3's. If we start a computation using the triangular 3, we cannot
halfway through switch to the bell-shaped 3. Note that on both instances the
shape of the membership function meets our normmal and convex require-

"The notion of convexity is derived through references to geomelrical objects. A body 11 in
Euclidean space is called convex if the line segment joining any two poiats of € lies in Q.
Examples of convex bodics in three-dimensianal space are the sphere, the ellipsoid, a cylinder, a
cube, and a cone.
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Figure 4.2 Two different fuzzy numbers: (@) tiangular 3 end (b) bell-shaped 3.
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Table 4.1 Tabular representation of a fuzzy number 3

ﬂ 0.4 0.7 4 0.7 0.4 0.2 0.1 0 0 H

I

i
=0 || 1 ! I Ble B 1 1
g 1 8 1 g | 4 1 5 ] 8 > 1 3 | ¢

ments. Another possible fuzzy number 3 is shown in Table 4.1, where the
shaded cells, the 1's, indicate the shape of the number. Here 2 is defined
over the universe of natural numbers shown at the bottom of the table. In the
leftmost column we list the values of a parameter, e, ranging between ( and
1, used to parametrize the shape of the function (Kaufmann and Gupta,
1991). In fact, this is the same « we saw in conncction with a-cuts (see
Section 2.6). The a-culs of fuzzy numbers are very useful in fuzzy arithmetic
Operations. Looking at Table 4.1 we see that the grade of membership of
crisp number 4 to the fuzzy number 3 is 0.7, and the grade of membership of
crisp 3 is 1.0. Although the fuzzy numbers shown in Figure 4.2 and Table 4.1
are all different, we designate them with the same symbol (i.c., 3) since they
all peak at crisp 3 (Zimmermann, 1985; Kandel, 1986),

Fuzzy numbers, like any fuzzy set, may be represented by its a-cuts. We
saw in Chapter 2 that a membership function may be parameterized by a
parameter « in a manner similar to the tabular representation of number 3
shown in Table 4.1. The parameter @ is a number between 0 and 1 (i.e, in
the interval [0, 1]). Parameterizing the shape of a fuzzy number by « offers a
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ient way for computing with fuzzy numbers because it essentially
Lrag: 1s fuzzy arithmetic operations into operations of interval arithmetic.
It is easy to scc what we are talking about by looking at Table 4.1. At each
level & we nave a horizontal “slice,” or interval of the membership function,
which is its a-cut. For example, at « = 0.5, the a-cut is the interval from 2 to
4, and at a = 0.2 it is the interval from 1 to 6. The tabular representation
exemplifies the length of each a-cut; that is, it shows the number of cells and
thus the length of the membership function at level a.

Consider the fuzzy number A4 shown in Figure 4.3. The mecmbership
function of A4 is parameterized by the parameter a. With each « we identify
an interval [a{*’, a}*’]. As may be seen from the figure, we indicate by a{®’
the left endpoint of the interval (“left” is denoted by the subscript “1”) and
by %) the right endpoint of the interval (“right” is denoted by the sub-
script “2"). Requiring that the membership function of a fuzzy number be
convex and normal is another way of saying that the intervals that comprisc
the interval representation of 4 should be nested into one another as we
move from the bottom of the membership function to the top (Klir and
Folger, 1988; Terano et al,, 1992). In other words, when a, < a,, as shown
in Figure 4.3, we have

2, e9]  [afe?, ] 521

&, [4(x) A

]
az

M,u(x)
&
L T e e —
0 (0)
al (a,) (ay) a;m
ae a'®
1 a}“:]‘ aiﬂa) 2

Figure 4.3 Nested Infervals (a-cuts) associated with a fuzzy number A
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where the symbol C denotes that the interval [a{*?, a}*?] is contained

within the interval [a{*, a\*V]. _

We can uniquely describe two fuzzy numbers 4 and B as two collection of
intervals i.c., [a{"% a4*’] and [&{™, 65*’] respectively. We recall that the a-cuts
of A and B (Section 2.6) were defined as the crisp sets

A, = {xlp(x) = a} (4.2-2) -
and
B, = {xlpy(x) = a} (4.2-3)

The w-cuts in equations (4.2-2) and (4.2-3) are simply intervals on the x axis,
and hence for each & we have

A, = [a*, as®’] (4.2-4)

and

o
Il

[ f)"la ], }Jr:ﬂ J] (4_2-5)

Thus the fuzzy numbers 4 and B can be described (using the resolution
principle—sce Section 2.7) as collections of intervals, that is,

d= YV wa.= \ ﬂ-[a‘i"’.a"z‘”] (4.2-6)
D=asl Ogaxgl
and ;
B=V «B,= V a[b )] (4.27)
Ozas! O=<axl

To simplify matters, we will not use the rather awkward representation of the
two numbers given by equations (4.2-6) and (4.2-7) but will, instcad, use
equations (4.2-4) and (4.2-5), which we call the a-cut or interval representation
of A and B (with the understanding that the number is the collection of all
“slices,” all a-cuts as o varies from 0 to 1).

Having two different ways of representing fuzzy numbers, through mem-
bership functions and through a-cuts or intervals, gives us the choice of
defining arithmetic opcrations either through the extension principle
(i.e., through a fuzzification of arithmetic operations on crisp numbers) or,
cquivalently, through the operations of interval arithmetic, This last approach
is often more practical and straightforward as we will see in several examples.

Let us go next to the definition of addition, subtraction, multiplication, and
division with fuzzy numbers. Although we will define operations for two
numbers A and B, they are generally true for more than two numbers. A
word of caution: Some of the properties of crisp numbers—for example,
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(7 + 3) X 3 = 7—may not be valid for arithmetic operations involving fuzzy
numbers. We will sec that usually when fuzzy numbers are involved we have
that (7 = 3) X 3 may not equal 7.

4.3 ADDITION

When adding two fuzzy numbers A and B we seek to compute a new fuzzy
number C =4 + B. The new number C is uniquely described when we
obtain its membership function, () = ., ,(2), with z being the crisp
sum of x and y, the clements of the universe of discourse of A and B. The
addition of 4 and B may be defined in terms of addition of the a-cu's of the
two numbers as follows:

A+ B = [af),a] + b, b0 (431)

where [a{*), a4*’] is the collection of intervals representing the fuzzy number
A, and [b{™, b™)] is the collection of intervals representing the fuzzy number
B. Intervals are added by adding their corresponding left and right endpoints,
and therefore equation (4.3-1) becomes

A+ B =[a" +b{®, al® + p)] (4.3-2)

Equation (4.3-2) indicates that the new number is also a collection of
intervals with endpoints obtained from the endpoints of 4 and B.

Another way of defining fuzzy addition is through the extension principle
(Section 2.5). We give here a cursory description of how this is done; more
detailed treatments may be found in Dubois and Prade (1980) and in Terano
et al. (1992). Suppose we want to add two crisp numbers x and y. The result
is another crisp number z = x + y. Now, if x and y are variables, obviously
their sum may be thought of as a function of ¥ and y; that is,

zZ(x,y)=x+y (4.3-3)

Fuzzifying x and y—that is, defining fuzzy sets on x and y—results in a
fuzzified function, z = f(x, y). We saw in Scction 2.5 how we can use the
extension principle to obtain the fuzzy set € on z = f(x, y). Suppose that we
have two fuzzy numbers, 4 and B, defined over x and y (the universe of
discourse of real numbers). According to the extension principle, their sum is
a fuzzy set on z denoted as C, whose membership function is

pe(z) = V [wmx) A ka(y)] (4.3-4)

I=x+y
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Equation (4.3-4) tells us that to compute the grade of membership of a
certain crisp number z to the fuzzy number C, we take the maximum of the
minima of the grades of membership of all pairs x and y which add up to z.
How equation (4.3-4) works will be seen in Example 4.2, where a rather
simple tabular way of carrying out the max—min operations will be presented.

Example 4.1 Addition of Discrete Fuzzy Numbers. Let us compute the sum
C of two fuzzy numbers 4 = 3 and B = 7 defined as

A=3=03/1+07/2+1.0/3+0.7/4 +03/5+0/6 (Ed.1-1)
B=7=02/5+06/6+10/7+0.6/8 +02/9 + 0710 (E4.1-2)

and seen in Table 42. We compute C by adding the a-cuts of 4, B in
accordance with equation (4.3-2). We see from Table 4.2 that when « = 0.4,
for example, the 0.4-cuts of A4 and B are

Ao = [0, a94] = [2,4] (541:9)
and

By, = [609,b09] = [6,8] (E4.1-4)

The intervals in equations (E4.1-3) and (E4.1-4) are shown as shaded “slices”
of cells in Table 4.2. According to equation (4.3-1) the 0.4-cut of € is the sum
of the two intervals given by (E4.1-3) and (E4.1-4)—that is,

Coa = [ai®, aP 4] + [6'9, 9]
=4 [a{in.-'-) + btlu.-ul a{}n.a; 4 b‘l“'””]
=[2+6,4+8]
= [8,12] (E4.1-5)

We can obtain the same result from Table 4.2 simply by adding the endpoints
of the shaded rows. We repeat this for each « to compute the entire sum.
We start from the bottom of the table and go up in a row-by-row manner
identifying the corresponding intervals of the two numbers and adding them
up. The result is the number shown in Table 4.3, The 0.4.cut of C is
indicated as a shaded group of cells in the table. As seen from the table, the
new fuzzy number reaches unity at crisp number 10 (in the universe of
discourse shown at the bottom) and therefore we think of it as a fuzzy
number 10. Thus we see that the sum is 7 + 3 = 10, as would also be the
case with crisp numbers. O
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Table 4.2 Fuzzy numbers 3 and 7 in Example 4.1
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Table 4.3 Sum of luzzy numbers 3 and 7 In Example 4.1
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Example 4.2 Addition of Fuzzy Numbers Through the Extension Principle.
In this example we compute the sum of the two numbers 4 and B of
Example 4.1 using the alternative definition of addition through the exten-
sion principle, namely, equation (4.3-4). At first glance, equation (4.3-4) looks
somewhat esoteric. We present here a rather simple technique for using it.
The same technique may be used with other fuzzy anthmetic operations as
well (Kaufmann and Gupta, 1991). Let's repeat equation (4.3-4) here:

Besn(2) = ¥ {F‘-A(-"J A up(y)] (E4.2-1)

z=x+y

A convenient way to compute the sum according to equation (E4.2-1) is to
create a table as shown in Table 4.4. We take the supporr of B and make as
many columns in the table as there are elements in the support; and similarly
we take the support of A and make as many rows in the table as there arc
clements in the support of A. We recall that the support is the part of the
universe of discourse that has nonzero membership. 4 and B can be
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Table 4.4 Adding fuzzy numbers through the extension principle

o m s & Ua

S upp ort o f B

"
ta

y= ¥ )r:j =4 Jl:j y:ﬁ y=7 y=8 }':9 }r:fﬂ

Xe=l

x=3

x=4

=9

=10 ||0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interchanged in terms or rows and columns, but for the moment let’'s make
columns from the support of 4 and make rows from the support of A. In
every cell of the table we put at the lower left corner the grade of member-
ship of x to 4 and put in the upper right corner the grade of membership of
y to B, Thus we have u,(x) in the lower left corner and py(y) in the upper
right corner as shown in Table 4.4. Now, let’s take another look in the
equation above. It calls for taking the maximum of pairs of singletons that
add up to a certain z. For example, suppose that have z = 9. There arc three
different ways to get z=9: adding y =8 and x =1, adding y = 7 and
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x = 2, adding y = 6 and x = 3 and so on. Both clements for cach addition
are found inside a cell. These are the shaded cells shown in Table 4.4.
Equation (E4.2-1) says that for z = 9 we need to take the maximum of the
minima of the three pairs of grades of membership inside the shaded cells.
First we find the minimum of the grades of membership inside each cell—that
is,

1w, (1) A pp(8) =03 A 06=03

a(2) A pp(7) =07 A10=07

14(3) A pp(6) =1.0A 06 =0.6

() A pg(5) =07A02=02

1a(5) A pp(4) =03A0=0

1a(6) A pp(3) =0A0=0

1a(T) A pp(2) =0A0=0

1w (8) A pa(1) =0A0=0 (E4.2-2)

Now if we look only at the shaded part of the table, we can replace the
contents of each cell with the minima found in equations (E4.2-2)—that is,

y=28

0.3

0.7

0.6

0.2
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Next, we take the maximum of these numbers, which in this case is 0.7: this is
the maximum with respect to z = 9 in equation (E4.2-1). At this point we
have completed the entire operation on equation (E4.2-1) for z = 4—that is,

ra5(9) = [(0.3) v (0.7) Vv (0.6) v (0.2) Vv (0) v (0) V (0) v (0]
=07 (E4.2-3)

This is the grade of membership of z = 9 to the sum C = A4 + B. We repeat

this procedure for all other cells to obtain the membership function of C.
The result is

C=0/5+02/6+03/7+06/8 +0.7/9 + 1.0/10
+0.7/11 + 0.6/12 + 03/13 + 02/14 + 0/15

which is the same number as the one we found by the interval approach in
Example 4.1—that is, the number shown in Table 4.3. O

4.4 SUBTRACTION

The difference C of two fuzzy numbers A, B may be defined either through
interval subtraction utilizing the a-cut representation of the two numbers or
through the extension principle. Using a-cuts we subtract them as follows

A—-B=[a,aP] ~ [84, b4] (4.4-1)

where [a{*), a4®’] is the collection of closed intervals representing A, and
[6{*, b5%'] is the collection of closed intervals representing B. Two intervals
are subtracted by subtracting their left and right endpoints, and thus equa-
tion (4.4-1) becomes

A-B=[a" - b5, af — b{=] (4.4-2)

The alternative way to define the difference of fuzzy numbers 4 and B is
through the extension principle—that is, by fuzzifying a function z = x — .
Fuzzification means that we define fuzzy sets on the universes of discourse
where the crisp clements x and y are found. As a result, z gets fuzzified as
well; that is, there is a fuzzy set C over the universe of discourse of the a0
which is the result of fuzzifying the function z = f(x, y) = x — y. The mem-
bership function of C = 4 — B can be computed from

pa-s(z2) = V [FLA{I] A #B(J’)] (4.4-3)

Z=x—y

Equation (4.4-3) gives, of course, the same number € obtained through
(4.4-2),
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Example 4.3 Subtracting Fuzzy Numbers as Intervals. Let us compute a
fuzzy number C = 7 — 3, where the fuzzy numbers 7 and 3 are as defined in
Table 4.2 (Example 4.1):
A=3=03/1+07/2+1.0/3+07/4+03/5+0/6 (E43-1)
B=7=02/5+06/6+10/7+0.6/8+0.2/9+0/10 (E4.3-2)
Subtracting the two numbers is the same as interval subtraction at each «,

From Table 4.2 we see that when o = 0.3, for example, the 0.3-cuts of the
two numbers are

Agy = [aP®,aP¥] = [1,5] (E4.3:3)
and

Byy = [b0, 6] = [6,8] (E4.3-4)

The w-cut of C at @ = 0.3 is the difference of the a-cuts in by (E4.3-3) and
(E4.3-4)

Cus _ [brlo.s:’brzu.a}] - Iﬂ[f]':”r ﬂ{zu,:h]

0.3 0.3 0.3 (0.3
= [6 — a9, b6 - 03]

=[1,7] - (E4.3-5)
shown as a “slice” of shaded cells in Table 4.5. In a similar manner we
compute the a-cuts of € at the other levels of @ and obtain the fuzzy
number '

C=02/0+03/1+06/2+07/3 +1.0/4
+0.7/5 + 0.6/6 + 0.3/7 + 0.2/8

which is also shown in Table 4.5. As may be seen from Table 4.5, C can be
considered a fuzzy 4. O

Example 44 Subtracting Fuzzy Numbers with Continuous Membership
Functions. Consider the two triangular fuzzy numbers A and B shown in
Figure 4.4. We want to compute their difference—that is, find a fuzzy
number € = A4 — B. When continuous (or piecewise continuous) membership
functions are used, we subtract them by parameterizing their membership
functions by « and subtracting their a-cuts. The membership functions of



92

FUZZY NUMBERS

Table 4.5 Difference of fuzzy numbers 7 and 3in Example 4.3
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Figure 4.4 Subftracting two fuzzy numbers, C=A-8B
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A, B are
pdx) =0, x <7

=x—-7, 7£I$S

= —-x+9, 8<x=9

= ¥=08 (E4.4-1)
and
- pp(x) =0, x<4

=x—4, d=<x=<5

= —x+6, 55x<6

=0, xz 6 (E4.4-2)

Let us parameterize them by a. To simplify matters, consider the left and
right side of each membership function scparately. There is one equation for
the left side and another for the right side of the membership function of 4,
and likewise for B. Thus, we have a total of four equations to parameterize.
From cquations (E4.4-1) we take the part that describes the left side of A,
ph(x) = x — 7, and write it in terms of a. We note that the value of a is the
same as the value of the membership function at the left endpoint a{®’ of an

a-cut, and &} is the value of x at that point. Thus we have for the left side
of A,

a=a® -7 =a=a+7 (E4.4-3)

where a{® is the left endpoint of the “slice” of A at level a.

Similarly for the right side of A we parameterize the right endpoint a
of cach a-cut in terms of « as

a= -+ 9=>a=—a+9 (E4.4-4)

Using equations (E4.4-3) and (E4.4-4) the a-cut rcpresentation of A is
written as

A=[aa] =[a+7 —a+9] (E4.4-5)

The membership function of the number B is parameterized in terms of a in
a similar fashion. We express the left endpoint b{*) in terms of « by

a=b) —4=b"=a+4 (E4.4-6)
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The right endpoint b4*? is given as a function of a by
= —b‘z"’+6%bg“l= —a+ 6 (E4.4-7)
From equations (E4.4-6) and (E4.4-7) the interyal representation of B is
B = [b{®, bgﬂl’] =[a+ 4,I —a + 6] (E4.4-8)

From the a-cut representations of A and B (equations (E4.4-5) and (E4.4-8)),
we find their difference by subtracting their corresponding intervals at each
«, fhat is,

C=A-B=[a"—b", af - b~
=[(a+7) —(—a+6),(—a+9)—(a+4)]
=[2a+1, —2a +5] (E4.4-9)
Therefore, C is
C = [cf*,c§] = [2a+ 1, —~2a + 5] (E4.4-10)

We note that the left and right endpoints of C arc functions of a. To express
the fuzzy number C in terms of a membership function, we derive equations
for the left and right side of C. The left endpoint ¢{*’ in equation (E4.4-10) is
equal to the value of x when the left-side membership function’s value is c.
Similarly, the right endpoint ¢§*’ is equal to the value of x when the
right-side membership function is «. Thus the equation of the left side is
obtained by setting ¢{®’ = x* and recalling that a = pf(x), where pg(x) is
the left-side membership function for €. We have

x=2pk(x) + 1= p&(x)=3(x—1) (E4.4-11)
In a similar manner we obtain an equation for p2(x), the right side of the
membership function of €, and solve it to obtain the membership function of
the right side—that is,

= —2pR(x) +5=pf(x)=-%(x-59) (E4.4-12)

From equations (E4.4-11) and (E4.4-12) we obtain

pe(x) =0, ¥ &1
= 3(x—1), 1gx=<3
= =4{x—~8), BI=r=F

=0, ' x25 (E4.4-13)
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The number € described by equations (E4.4-11) is shown in Figurc 4.4. Note
that C has its peak at crisp 3, and therefore it can be considered as a fuzzy
number 3 (as expected since, 8 — 5§ = 3). O

4.5 MULTIPLICATION

As in the case of addition and subtraction, fuzzy number multiplication may
be defined either as a-cut multiplication or through the extension principle.
Using the a-cut representation of two numbers A4, B, their product is
defined as

AR [a&a)‘ ﬂ{:"}l i [g,(lai__ blzﬂ'il (4.5-1)

In general, the product of two intervals is a new interval whose left endpoint
is the product of the left endpoints of the two intervals and the right
endpoint is the product of the right endpoints of the two intervals. Thus,
equation (4.5-1) is

LY

Ao = [a(ln}' b, a{l‘”-b‘z“]‘] (4.5-2)

Alternatively, we define the product of 4 and B through the extension
principle by fuzzifying the function z(x,y) =x-y. The extension principle
tells us that their product is a fuzzy set on z, denoted as A4 -B, whose
membership function is

mee(2) = YV [dx) A pp(y)] (4.5-3)

2y

Of course, equations (4.5-2) and (4.5-3) arc equivalent in that they give us the
same number C = A+ B.

A special case of fuzzy multiplication is the product of fuzzy number by
crisp number. Let k be a crisp positive real number and A4 a fuzzy number
defined over the universe of discourse of positive real numbers also. We
define the product of k with A4 either as interval multiplication or through
the extension principle. Crisp number k¥ may be viewed as an interval also,
a trivial interval whose left and right endpoints are the same—that is,
k = [k, k). We use equations (4.5-1) and (4.5-2) to obtain the product of &

with A4 as
kA= [k k] [a,at"]
= [ka{®, ka$®] (4.5-4)

Alternatively, we define the product of fuzzy number 4 with a crisp number
k, k-A, through the extension principle. It may be shown using equation



96 FUZZY NUMBERS B

(4.5-3) that the membership function of & - A is

pi.a(x) = m(%] (4-5-5)

where equations (4.5-4) and (4.5-5) give the same result,

Example 4.5 Multiplication of Two Fuzzy Numbers. Consider the triangular
fuzzy numbers A = 8 and B = 2 defined over the positive real numbers as
shown in Figure 4.5 (since both numbers are defined over the same universe
of discourse we simply use x to indicate an element of the universe of
discourse, instead of x,y, etc.). We want to compute a fuzzy number C
which is the product of 4 and B—that is, C = 4 - B. Let us do this through
a-cut multiplication—that is, by parameterizing their membership functions
and multiplying their a-cuts in the manner indicated by equation (4.5-2),

First, we write the analytical expressions for the membership functions of
A and B:

w(x) =0, x<4
=-1, 4<x<8
=—tx+3, 8<x=<12
=0, =12 (E4.5-1)

Hx) R A

Figure 4.5 The product C= A-Bofnumbers A =8and B= 2in Example 4.5,
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and
ugp(x) =0, x=<0
=1z O<x=<?
=—ix+3, 2=<x<6
=0 x> 6 (E4.5-2)

Next, we parameterize the membership functions in equations (E4.5-1) and
(E4.5-2) in terms a (a procedure of renaming the left and right side of the
membership functions and thus the endpoints of all intervals in terms of ).
Let us take the left and right side of each membership function separately
and rewrite it in terms of «. It should be noted that a given value of « is the
same as the value of the membership function at that level. From equation
(E4.5-1) we have that the left and right endpoints of A are

a=1a" —1=a=4(a+1) (E4.5-3)
and
a= —gat" +3 = a{" = —4(a - 3) (E4.5-4)
Using equations (E4.5-3) and (E4.5-4) we obtain A4 as
A=[a*),a] = [4(a + 1), —4(a — 3)] (E4.5-5)

Similarly, we parameterize the membership function of B and write its left
and right endpoints at each a as

a=1b" = b = 24 (E4.5-6)
and

a= —gb{) + 3= b = —4(a-

R

) (E4.5-7)

Thus, from cquations (E4.5-6) and (E4.5-7) the interval representation of
B is

B =[5, 5] = [2a, —4(a - 3)] (E4.5-8)

Having the endpoints of 4 and B in terms of a, we multiply the two
numbers using equation (4.5-2) and obtain

C=A4-B=[a{" b{", al*  b{]
= [4(a+1) 20, —4(a—-3)- (—4(a - =)
= [8a’ + 8a,16a’ - 72a + 72] (E4.5-9)
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The interval representation of € is
C = [c{”, (] = [8a® + 8a,16a® — T2a + 72]  (E4.5-10)

where the left and right endpoints in equation (E4.5-10) are functions for a.
We can obtain the membership function of € as well. Equation (E4.5-10)
~ provides us with left and right endpoints of each a-cut. The equation for the
left-side membership function pé(x) is obtained by setting c{*’ = x and
recalling that a = pi(x). Thus, we obtain an equation involving pk(x),
which is

8( pk(x)) +8uk(x) —x=10 (E4.5-11)

Solving quadratic equation (E4.5-11) for p4(x), we obtain two solutions and
accept only the value of p&(x)in [0, 1], ignoring the other one. The result is

ta] e

Similarly we obtain an equation for ufi(x), the right side of the membership
function of C, and solve it, keeping the solution which is within [0, 1]. The
result is

pE(x) = 445 - (57 445 - fx))  (E4s13)
The membership function of C is

pe(x) =0, Fag

= —1 4+ 31+ 3x, 0<x<16

Has - (457 - 4(45 - ), 16sxs72
=0, x =72 (E45-14)

as shown in Figure 4.5, Tt should be noted that € has its peak point at crisp
16 and therefore may be considered a fuzzy number 6. It should also be
noted that multiplying two fuzzy numbers results in a new number whose
shape has been considerably changed, no longer having a triangular member-
ship function with linear sides but in this case parabolic sides. Multiplication
in general has the effect of “fattening” the lower part of the membership
functions involved, OO
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4.6 DIVISION
We can find the quotienr of two fuzzy numbers A4 and B either through

interval division or by the extemsion principle. In terms of their a-cut
representation, we write the quotient of the two numbers as

A+B=[a®a] =[5, b)) (i)

In general, the guotient of two intervals is a new intcrval given by

(@) fa) ta) pia) 5>
(x i = i Lo = o =
[”1 » 83 ] "‘[bl s by ]" pal* pla)

2 1

Hence, provided that bi*? % 0 and b{®’ # 0, the quotient of A, B is

ai®! a‘«“’}

A+B= v e
b5” b=

(4.62)

Alternatively, we find the guotient of 4 and B through the extension
principle by fuzzifying the function z{(x, y) =x + y, where x and y arc crisp
clements of the universe of discourse of 4 and B. The extension principle
tells us that 4 + B is a fuzzy set with membership function

ba-3(2) =V [walx) A () (4.6-3)

Z=x=y

The results obtained through equations (4.6-4) and (4.6-2) are of coursc the
same. Equation (4.6-3) may be used in the manner shown in Example 4.2. We
construct a table such as Table 4.4 and proceed as outlined in the example. A
word of caution: Fuzzy number division is not the reverse of multiplication;
that is, generally it is not true that (4 + B) X C = A.

Example 4.6 Division of Fuzzy Numbers. Consider the triangular fuzzy
numbers 4 =& and B = 2 used in Example 4.5. Let us find C=A4 + B
using interval division. The analytical expressions for the membership func-
tions of A and B are given in Example 4.5 [equations (E4.5-1) and (E4.5-2)],
and their parameterized interval representation is found in cquations (E4.5-5)
and (E4.5-8), which for convenience we repeat here:

A= [a,a] = [4(a + 1), —4(a - 3)] (E4.6-1)

B = [b®,b] = [2a, —4(a - })] (E4.6-2)
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Thus their quotient C = A + B is obtained using equation (4.6-2):

HE“) ntza]]

C=A+B=|—5, 5
by bl

A a+1) ~4(a—3)
= 3 E4.6-3
[(—4[&—%)) 2a ] ( )
The a-cut representation of € is
€= [ef, )] = [_ E“ E })) s o o 3)} (E4.6-4)
w—3 a

where the left and right endpoints are functions of «. We may also express €
in terms of @ membership function by deriving cquations for the left and right
sides of the membership function as we did in Example 4.5. Equation
(E4.6-4) gives us the endpoints of the interval of each a-cut, The equation of
the left side is obtained by setting ¢{* = x and recalling that a = pk(x),
where, pL(x) is the left side membership function for C. The result is

3.
2= 1

ph(x) = (E4.6-5)

X+ 1

Similarly we obtain an equation for u2(x), the right side of the membership
function of €, and solve it to obtain

6
£t 2
The quotient is shown in Figure 4.6, and the analytical description of the

pe(x) = (E4.6-6)

; T
40 50 60 70

X

Figure 4.6 The quotient C = A + B of the fuzzy numbers A = 8 and B = 2 in Example
4.6,

80
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o

membership function of C is

pe(x) =0, x=<0 o
de—-1 ""?
= = \ O<x=4
x+1
6
= : 4d=x=x72
x+ 2
=0, x=T72 (E4.6-7)

It should be noted from equation (E4.6-7) that the quotient is a new fuzzy
number that no longer has a triangular shape with linear sides. As may be
seen from the figure, the fuzzy number C only asymptotically reaches zero
and hence we may consider the use of a level fuzzy set (Chapter 2) in order to
limit and exclude trivially small grades of membership—for example, less
than 0.2. O

4.7 MINIMUM AND MAXIMUM

The minimum and maximum of two fuzzy numbers A4, B result in findiag the
smallest and the biggest one, respectively, and may be defined either through
their interval representation or by the extension principle. In interval arith-
metic the minimum of two intervals is a new interval whose left endpoint is
the minimum of the left endpoints of the original intervals and whose right
endpoint is the minimum of the right endpoints of the two intervals. Thus the
minimum of A4, B is a new number, 4 A B, given by

ANB=[af,a] A b, b42)]
= [al A b, b A 5] (47-1)

Alternatively, the minimum of two fuzzy numbers may be obtained through
the extension principle. The membership function of 4 A B is

rars(2) = V [ma(x) A pp(3)] (4.7-2)

T=x Ay

- In an analogous manner we define the maximum of two fuzzy numbers A4
and B, recalling that in interval arithmetic the maximum of two intervals is a
new interval whose left endpoint is the maximum of the left endpoints of the
original intervals and whose right endpoint is the maximum of the right
endpoints of the two intervals. Thus the maximum A4 V B is given by

4V B=[ai”,a] v [5(, b4)]
= [aiﬂl Vi bfiﬂ}‘ atza} Vi bgu)] (4?_3)

Alternatively, by the extension principle the membership function of the
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H(x)

Figure 4.7 The minimum and maoximum of the two numbers A = 8 and B = 2 used In
Example 4.6

maximum of the two numbers A4 and B is

Keyn(2) = \Y [.‘-f-ru(x} A P'-B[J")l (4.7-4)

I=xVy

It should be noted that the maximum and minimum of two fuzzy numbers
are different than the maximum and minimum of membership functions used
in connection with the wnion and intersection of two fuzzy sets. Let us
illustrate this by finding the minimum of the numbers 4 = 8 and B = 2 used
in Examples 4.5 and 4.6 and redrawn in Figure 4.7. Equations (4.7-1) or
(4.7-2) do not give us the little wedge between A and B, which is the
intersection of A and B. They will simply give us the number B = 2 itself,
which is the smallest of the two fuzzy numbers. Similarly the largest of the
numbers is found by using the maximum operation of either equation (4.7-3)
or (4.7-4), which is simply the number 4 = &, as shown in Figure 4.7, For
more intricately overlapping membership functions the maximum or mini-
mum may not simply be a number with the membership function of either A4
or B, but may have a totally new shape (Kaufmann and Gupta, 1991).
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PROBLEMS

1. The fuzzy numbers 4 and B are given by

A=033/6+0.67/7 + 1.00/8 + 0.67/9 + 0.33/10
B=033/1+067/2+1.00/3 + 0.67/4 + 0.33/5

Subtract B from A to give fuzzy number C. Draw a sketch of C.

=

Multiply fuzzy numbers 4 and B of Problem 1. Draw a sketch of C.

3. Divide fuzzy number A by fuzzy number B where the fuzzy numbers are
defined in Problem 1. Draw a sketch of C.

4. Modify Example 4.2 to subtract the two fuzzy numbers using the extension
principle.

5. Consider the fuzzy numbers 4 and B described by the membership
functions:

() =0, < 8,
1 8
= =—ﬁx—uﬁ, 8§ =x < 18,
1 32
=—1—4x+-1?, 18 = x < 32,
=0, > 32,
rg(x) =0, = —3,
1 1
=§x-—§, =Bz h.
1 4
=—-Ex+§, 6 <x <24,

=0, x> 24 =
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Compute:
(a) 4 (+) B,
(b) A (_') ‘B:
(c) 4(+) B.
6. Repeat the computations in Problem § for the fuzzy numbers A and B

given below, and using € state and show the distributivity property (with
respect to addition and multiplication) -

A=06/1+08/2+1.0/3 + 0.6/4

B=05/0+07/1+09/2+1.0/3 +0.4/4
C=0.7/1+08/2+1.0/3 +03/4
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LINGUISTIC DESCRIPTIONS
AND THEIR ANALYTICAL
FORMS

5.1 FUZZY LINGUISTIC DESCRIPTIONS

Fuzzy linguistic descriptions (often called fuzzy systems or simply linguistic
deseriptions) are formal representations of systems made through fuzzy if /then
rules. They offer an alternative and often complementary language to con-
ventional (analytic) approaches to modeling systems (involving differential or
difference cquations). Informal linguistic descriptions used by humans in
daily life as well as in the performance of skilled tasks, such as control of
industrial facilities, troubleshooting, aircraft landing, and so on, are usually
the starting point for the development of fuzzy linguistic descriptions. Al-
though fuzzy linguistic descriptions are formulated in a human-like language,
they have rigorous mathematical foundations involving fuzzy sets and rela-
tions (Zadeh, 1988). They encode knowledge about a system in statements of
the form

if (a set of conditions ar¢ satisfied )
then (a set of consequences can be inferred)

For example, in process control the desirable behavior of a system may be
formulated as a collection of rules combined by the connective ELSE such as

if emoris ZERO AND Aemor is ZERO then Auis ZERO ELSE
if erroris PS AND Aerror is ZERO then Au is NS ELSE

if ermoris SMALL AND Aerroris NS then Au is BIiG

105
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~ANALYTICAL FORM

» Fuzzy Sels
» Fuzzy Relations

s Implication Operators
Composition

Variables
= Propositions
e if/then Rules
= Algorithms

Inference

Figure 5.1 Fuzzy linguistic descriptions possess a linguistic form as well as a bock-
ground analytical form involving fuzzy set operations.

where error and Aerror (change in error) are linguistic variables deseribing
the input to a controller and Au is a linguistic variable describing the change
in output. A linguistic variable is a variable whose arguments are fuzzy
numbers (and more generally words modeled by fuzzy sets), which we refer to
as fuzzy values. For example, in the rules above the fuzzy wvalues of the
linguistic variable ewor are ZERQ, PS (positive small), and SMALL, the
values of Aerror are ZERQ and NS (negative small) and the values of Au are
ZERO, NS, and BIG." A specific evaluation of a fuzzy variable —for exam-
ple, “error is ZERO"—is called fuzzy proposition. Individual fuzzy proposi-
tions on cither left- (LHS) or right-hand side (RHS) of a rule maybe
connected by connectives such as AND and OR— for cxample, “error is PS
AND Aerror is ZERO.® Individual if/then rules are connccted with the
connective ELSE to form a fuzzy algorithm. Propositions and if /then rules in
classical logic are supposed to be either true or false. In fuzzy logic they can
be true or false to a degree.

'"The convention we follow is to use lowercase italics for linguistic variables and capital italics for
fuzey values, unless otherwise specified or implied by the cantext.

>These are also called antecedent (LHS) and consequent (RHS) propositions. We find alterna-
tive: designations for the LHS and RHS of a rule in different application areas. In process
control, for example, the if part is often refered to as the sitwation side and the then part s
often referred to as the action side.
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Figure 5.1 shows schematically what is involved in linguistic descriptions.

In the front end we find linguistic forms representing a system in a human-like
manner. In the background we have rigorously defined analytical forms
involving fuzzy sct operations, relations, and composition procedures such as
the ones we saw in Chapters 2 and 3. '

. Despite the difference in appearance, linguistic and conventional (ana-
Iytic) descriptions are in fact equivalent to each other. Both can be used to
describe the same system. However, the computational costs incurred using
one or the other may be significantly different. Consider, for example, a
function y = f(x) shown in Figure 5.2, describing analytically a specific
relation between x’s and y's* The same relation may be described by listing
all possible, or at least a sufficiently large number of, (x, y) pairs or points of
f(x), indicating (for example), that when x = @, the value of the function is
y = by, when x = a, the value of the function is y = b,, when x = q, the
value of the function is y = b, and so on. Knowing n such points we may
alternatively represent y = f(x) by listing the pairs

(ay,b;)

(a2, b,)

(ai‘br) (5‘1-1)

(a,,b,)

Of course this representation is an acceptable approximation of the analytic
representation only when n becomes sufficiently large, with the precision of
the approximation being controlled by choosing an appropriate n. A point
(a,, b,) can also be thought of as a crisp if/then rule of the form, “if x is a;
then y is b.” Obviously, the pairs of (5.1-1) may be expressed linguistically as

crisp rules:
if xisa, then yisb,
if =xisa, then yisb,

5.1-2
if xisa, then yisbh, ¢ )

if  xisa, then vish

n

3 - - : . 5 H .
As we saw in Chapter 3, funcrions are a particular kind of relation allowing one and only one
value of y for cach x. This is also referred to as a many-ta-one mapping.
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crisp paint (a;, b;)

PP PP e

H H -
-

ay as a; a, x

Figure 5.2 The function y = f(x) may be thought of as a collection of crisp points
(o, b). and each peint may dlso be articulated as a crisp if / then rule,

Every representation has a cost. We can think of it as related to the number
of symbols used and the complexity of operations involved, but actually it
involves much more—for example, the cost of extracting the knowledge used,
its realization in a machine, the cost of updating and maintaining it, and so
on. When we use several crisp rules to represent y = f(x) in the manner of
(5.1-2), we are obviously using a more costly representation in a computa-
tional sense. By comparison, the analytical description y = f(x) offers a more
cconomical way of describing the function. In this sense the analytical
description y = f(x) is said to be a more parsimonious description than
(5.1-2), in reference to the reduced cost of representation.

Intuitively we expect the crisp linguistic rendition of y = f(x) to become
more accurate with increasing number of rules. Having 1000 crisp rules for
f(x) is preferable to, say, 10 rules. However, the number of crisp if /then
rules needed to describe a function such as the one shown in Figure 5.2
actually depends on the specific nature of f(x) as well as our tolerance for
approximation error. Take, for instance, a linear function, a straight line
going through the origin. In this case, one crisp if /then rule may suffice since
an additional point on the x-y plane outside the origin uniquely identifies a
straight line. On the other hand, a very “noisy” function with many “spikes"”
and slope changes will require considerably more rules. In practical terms,
however, an approximate description of y = f(x) may be acceptable, some-
times even preferable. We are often interested in associations such as if x is
“about a;” then y is “about b,"; that is to say, we are interested not in a crisp
point of f(x) but in an area or neighborhood around a point. This is
illustrated in Figure 5.3, where instead of crisp point (a;, b;) we consider the
circled area around (a;, &) which may be thought of as an area-cum-point, an
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yA

crisp point (a;, b;)

<Y

a, ag a,

Figure 5.3 Building a linguistic dascription of the function y = f(x),

area ohtained from a point. Such an area-cum-point may be described by a
fuzzy if /then rule. Let us consider “about a;” to be a fuzzy number 4, on the
universe of discourse of the x’s and consider “about b, to be a fuzzy number
B, on the universe of discourse of the y's. As we will see later on (Section
5.2), we can define a linguistic variable x whose arguments are fuzzy
numbers on the x-axis, such as A, and a linguistic variable y whose
arguments are fuzzy numbers on the y-axis, such as B, Hence the area-
cum-point “about (a;, b,)" can be described by a fuzzy if/then rule of the
form |

if xisA, then yisB, (5.1-3)

The analytical form of rule (5.1-3) is a fuzzy relation R/(x,y) called the
implication relation of the rule. How we obtain this implication rclation is a
rather complicated issue which we will examine in more detail in S¢ction 5.3.
For the moment we assume that each fuzzy if/rhen rule has an implication
relation.

The function y = f(x) may be approximated by collecting several fuzzy
if /then rules—for example,

if xisA, then yisB, ELSE
if xisA, then yisB, ELSE

5.1-4
if xisA; then yisB, ELSE ( )

if xisA, then yisB,
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where A, A;,...,A4,..., 4, are fuzzy numbers on the x axis and
B\, B,,...,B,..., B, are fuzzy numbers on the y axis. The rules of (5.1-4)
are combined by the connective ELSE, which could be analytically modeled
as cither intersection or union [and more generally as T norms or S norms
(see Appendix A)] depending on the implication relation of the individual
rules (we will have more on ELSE in Section 5.5). The collection of if /then
rules in (5.1-4) is called a fuzzy algorithm, and its analytical form is a relation
R,(x, y) between the x’s and the y's, called the algorithmic relation, As may
be expected, the algorithmic relation depends on the implication relation of
constituent rules.

The transition from conventional descriptions, such as y = f(x), to linguis-
tic descriptions addresses the fact that functions are often mathematical
idealizations. In most real-world problems, we do not have a curve such as
the one shown in Figure 5.2 but rather something like the region shown in
Figure 5.4. For example, suppose that the function y = f(x) is viewed as a
control policy—that is, a prescription recommending a control action y—for
cach state x. In many applications, the control system changes with time
(time-varying) and in general manifests nonlinear and complex behaviors,
Hence, the control policy may actually be a more general relation R (x, y) as
shown in Figure 5.4. Figure 5.2 could in fact be an idealization of the
real-world control policy shown in Figure 5.4. We recall (see also Chapter 3)
that a function is a special kind of relation that associates a unique y with
each x. A function performs what is called a many-to-one mapping; that is,
several values of x may have the same value of y but not vice versa. Most
real-world applications, however, involve many-to-many mappings. Situations
like the one shown in Figure 5.4—that is, relations that are many-to-many

crisp point (a;, b;)

-
>=
aj; x

Figure 5.4 Often areal-world ‘*function’ may actually be a more general relation,
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mappings—are far more common in complex enginecering systems than usu-
ally. Sometimes conventional descriptions, being overly idealized models of
complex systems, may suffer from lack of robustness and exhibit undesirable
side effects.

* Let us look again in Figure 5.3. We note that the transition from paints to
area-cum-points reduces the number of if/then rules needed to describe
y = f(x). For example, we could approximate f(x) with only 11 fuzzy if/then
rules (circled areas) as shown in Figure 5.3. The rules are overlapping as are
the various fuzzy numbers on the x and y axes. Yel, we no longer have a
function (a many-to-one mapping) but a more gencral relation R (x,y)
(a many-to-many mapping), and the obvious question is: How do we use
such a relation? In conventional descriptions we evaluate functions by
inputting a crisp value of x to f(x) and obtain a unique crisp value of y as
output. Something similar can be done with linguistic descriptions as well.
The process of cvaluating a fuzzy linguistic description is called fuzzy
inference. There are two important problems in fuzzy inference. First, given a
fuzzy number .4’ as input to a linguistic description, we want to obtain a
fuzzy number B’ as its output; and, second, given B’, we want to obtain A’
(the inverse problem). The first problem is addressed with an inferencing
procedure called generalized modus ponens (GMP), and the second is ad-
dressed with another inferencing procedure called generalized modus tollens
(GMT). Both GMP and GMT have their origin in the field of logic and
approximate reasoning (Section 5.4), and analytically they involve composi-
tion of fuzzy relations (Chapler 3).

In GMP, when an if/then rule and its antecedent are approximately
matched, a consequent may be inferred. For simplicity let us consider only a
generic rule of (5.1-4) having an implication relation R(x, y). GMP is
formally stated as

if xisA then yisB

xisA’ (5.1-5)

vis B’

where A' is an input value matching the antecedent A to a degree (including
totally perfect and totally imperfect match). The implication relation of the
rule R(x, y) and the input A' above the line are considered known, whereas
what is below the line—in other words B'—is considered unknown. B' is
what we want to find. Analytically, GMP (5.1-5) is performed by composing
A’ with the implication relation R(x, y) as in the max-min composition (see
Chapter 3)

B' =A'<R(x,y) , (5.1-6)

We will see how this is done in detail in Section 5.4. For the moment let us
simply keep in mind that we can cvaluate linguistic descriptions just as we
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can evaluate functions and that the procedure of evaluation involves compo-
sition of fuzzy relations. GMP is related to forward-chaining or data-driven
inference and is the main inferencing procedure in fuzzy control. When
A'=A and B' = B, GMP (5.1-5) reduces to an inferencing procedure of
classical logic known as medus ponens (depending on the implication rela-
tion).

In GMT a rule and its consequent are approximately matched and from
that we can obtain an antecedent. GMT is formdlly stated as

if xisA then yisB

yis B’ (5.1-7)

xisA'
Again, everything above the line is known and we want to find out what is
below the line—that is, A’. The analytical problem involved in GMT is
addressed by composing the implication relation R(x, y) with fuzzy number
B’ as

A" =R(x,y) B’ (5.1-8)

GMT is closely related to backward-chaining or goal-driven inference, which
is the main form of inference used in diagnostic expert systems. When
A" = NOT A and B' = NOT B, GMT reduces to classical modus tollens
(depending on the implication relation used).

In general, fuzzy linguistic descriptions. offer convenient tools for control-
ling the granuwlarity of a description,” in the sense that they facilitatc the
choice of appropriate precision levels—that is, levels that application-specific
considerations call for. In terms of our example, when we use fuzzy numbers
and fuzzy if/then rules to desecribe y = f(x), we have at our disposal a
mechanism for reducing the number of rules needed and, hence, for control-
ling the granwlarity of this particular description and the overall cost of
computation (Zadeh, 1979). In addition, the technology for computing with
if /then rules has already advanced to the point where fuzzy microprocessors,
called fuzzy chips, are widely available (Yamakawa, 1987; Isik, 1988; Hirota
and Ozawa, 1988; Huertas et al, 1992; Shimizu et al, 1992). Fuzzy chips
encoding knowledge in the form of linguistic descriptions can function as
“mounted devices™—that is, dedicated processors fine-tuned to the specifics
of a component and its environment, performing domain-specific computa-
tions. Such processors are already deployed in several control and robotics
applications with remarkable successes (Yamakawa, 1988; Pin et al., 1992).
Of course, software is a commonly used medium for the implementation of
fuzzy algorithms on a variety of different computers. However, the advent of
fuzzy logic hardware and the development of fuzzy computers may have a

' By granularity we roughly mean the coarseness of a description, the level of precision necessary
to effectively represent a given system.
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profound impact on the design and operation of enginecring systems
(Yamakawa, 1988). Fuzzy linguistic descriptions are of growing importance in
many areas of engineering ranging from expert systems and artificial intelli-
gence applications to process control, pattern recognition, signal analysis,
reliability engineering, and machine learning (Ray and Majumder, 1988). The
basic ideas, however, are rather similar and rest on the mathematics of fuzzy
sets. Describing a system through a linguistic description, no matter for what
purpose, involves specifying in some way linguistic variables, if /then rules, and
evaluation procedures known as fuzzy inference.

5.2 LINGUISTIC VARIABLES AND VALUES

As we saw in the previous section, a linguistic variable is a variable whose
arguments are fuzzy numbers and morc generally words represented by fuzzy
sets. For example, the arguments of the linguistic variable temperature may be
LOW, MEDIUM, and HIGH. We call such arguments fuzzy values. Each and
every one of them is modeled by its own membership function. The fuzzy
values LOW, MEDIUM, and HIGH may be modeled as shown in Figure 5.5
or Figure 5.6, In Figure 5.5 we have three discrete fuzzy values, while in
Figure 5.6 we have three (piecewise) continuous membership functions—
row(T) pyepon(T) and gy (T)—modeling the words LOW,

Furezy
VariaBLe

emperiiure

Fuzzy VaLues

Mesmpersrap
Ustvirse oF
Drscourse I I 1 = I —
0 128 35 37.5 50 625 75 875 1o T(°C

Figure 5.5 The linguistic variable temperoture and a set of discrete fuzzy values
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Figure 5.6 Membarship funictions w(T) used for describing the primory values, LOW
MEDIUM, and HIGH, of ihe inguistic variabie temperature,

MEDIUM, and G, respectively, Any crisp value of tem serature
c.g, 60°C) has a unigue degree of menibership to each fuzzy value of
temiperature. In Vigure 5.6, for example, ciisp temperature 60°C is LOW ta a
degree zero, MEDIU) toa degree 0“5, and IO toa degree 033,
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sense—that is, as a numerical variable—its arguments are simply the crisp
numbers of a universe of discourse (e.g., natural numbers between 1°C and
100°C). We may think of each number as a crisp category of temperature; in
this case we could have 100 different categories. For certain applications this
may be an acceptable catégorization of the values of temperature. For others
we may need 1000 categories, and still for others 3 categories may suffice.
Fuzzy values provide this kind of flexibility. They allow for adjustable
categories and explicitly acknowledge the ambiguous and application-depen-
dent nature of this or the other categorization.

Primary Values

The words which function as the initial values of a linguistic variable are
called primary values. They are the principal categorization of a universc of
discourse—for example, the values LOW, MEDIUM, and HIGH shown in
Figures 5.5 and 5.6. To model them we often use functions whose shape is
adjusted through a finite set of parameters. For example, the function

un

(

pu(x) = 2-1)

I 4+alx— C)b

has parameters a, b, and ¢ which may be used to adjust the overall form of
pe(x). Parameter a adjusts the width of the membership function, b deter-
mines the extent of fuzziness, and ¢ describes the location of the “peak”™ of
the membership function. This is the point in the universe of discourse where
wlx) ="1. Consider the primary values of temperature, SMALL, MEDIUM,
and LARGE shown in Figure 5.7, Their membership functions are of the
form of Equation (5.2-1) with a = 00005, & = 3, and ¢ = 20, 50, and 80,

HD) SMALL MEDIUA LARGE

AN

0.9
02 : : b
= i
T I LD ] B 1
0 o 20 30 40 S0 6 70 & - %0 100
]

Figure 5.7 Adjustable membership functions for modeling primary values
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respectively—that is,

1
1 + 0.0005(|T - 20[)°

Pspar(T) =

1
1+ 0.0005(|7 - 50()°

yepn(T) = (5.2-2)

1
1+ 0.0005(]7 - 80[)°

Mrarce(T) =

In many control applications, continuous membership functions such as the
trapezoidal /triangular functions of Figure 5.6 are used. Fuzzy valucs defined
through trapezoidal /triangular membership functions have adjustable pa-
rameters as well, iisively the “corners” of the function—that is, the peints
where the monotonicily changes. We recall their use in Chapter 4 in
connection with fuzzy numbers. In fuzzy arithmetic, however, we required
that fuzzy sets be normalized—that is, that there be at least one point of the
universe of discourse where the membership function reaches unity, whereas
in fuzzy linguistic descriptions this requirement is rclaxed. Fuzzy values ought
to be convex, just o fuzzy numbers, but not neecessarily normal.

Primary values can also be modeled through S-shaped w:d Il-shaped
functions named by their general form (Zimmer nann, 1985; Kandel, 1986).
S-shaped and TT-shrro! emmtirn Conadiiern siey BC acUsted to suit
various application ~~2ds merely Ly sltering a limited number £ parameters
as in the case of traprzeilal end triangular membership functic. s, S-uhaped
functicas are definzd tuouph three parameters «, B, and ¥ as {llows:

S(x; s B7)=0 forx <

r— 2
S(.r;:r,fi,y) =2(“————] fore<sx< g
y—a

(5.2-3)

S b
S(xya, 3,y)=1-12 -—-—] forf<sx=<vy
Y=

S(x;a,8,7) =1 forxzy
whare x is any real number and a, B, and y arc eppropriately chosen

Peramcters. For continuity of slope at x = B, the two intervels (3 — &) and
(y = B8) must be equal.
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A T-shaped function may be thought of as two S-shaped functions put
together “back-to-back” and can be expressed as

y— &
H{x;6.7}=5(x;'y-—5,7.?) forxs y
(5.2-4)
v+ 5
ﬂ(x;§,7)=1—.5(x;y,-—"2—--,}'+ 5) forx =y

The parameier & in Il-shaped functions is called the bandwidth. It is the
distance between the crossover (inflection) points—that is, the points where
the function equals 0.5, The parameter y is the point where the [l-shaped
function reaches unity. Fuzzy values modeled by S-shaped and I1-shaped
functions are more often encountered in software than in hardware realiza-
tions of fuzzy linguistic descriptions. Triangular/trapezoidal membership
functions are the preferred shapes for fuzzy values used in hardware realiza-
tions.

Compound Values

Using the connectives AND and OR and a collection of linguistic modifiers
such as NOT, VERY, MORE OR LESS, RATHER, and so on, we can
generate compound values from primary values. Modifiers and connectives
arec modeled by fuzzy set cperations as well. For example, AND and OR are
modeled by the fuzzy set operations of intersection and union, respectively,
while NOT is modeled by complementation. More generally they are modeled
by T" and § norms (see Appendix A). Through linguistic modifiers we may
casily construct a larger, potentially infinite set of values from a relatively
small and finite set of primary values. Some modifiers are also called
linguistic hedges due to the property of semantically constraining (hedging) the
gencral meaning of a word by operating on the fuzzy set that represents it
(Zadeh, 1983).

The connective OR generates a compound value with membership func-
tion equal to the max (V) of the membership functions of other values.
Consider the values 4 and B defined over the same universe of discourse
X as

A= [Xp,,(x)/,r, B = ""VHH(I)/X

The compound value “.4 OR B" is defined as

AORB = [ [1(x) V ua(2)]/x (5.2:5)
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The connective AND uses the min operator (A) to generate the membership
function of the compound value out of the membership functions of two (or
more) other values. The compound value constructed through the connective
AND is defined as

AANDB = L[ud(,r) A pg(x)] fx (5.2-6)

The AND connective has to be used with caution when generating com-
pound values because it may lead to nonsensical words such as in the
proposition “temperature is (HIGH AND LOW).” As shown in Figure 5.3a,
this compound value has zero membership function and may be thought of as
meaningless. The connective AND can produce correct compound values
when used with the complement of primary values as, for example, in the
proposition “temperature is ((NOT LOW) AND (NOT HIGH)),” whosc
membership function can be seen in Figure 5.8b.

The membership function of a compound value produced by negating
anothe’ value is the complement of the membership function of the criginal
value—that is,

NOTA = fx[l = ()] [ (5.2-7)

The semantics of the modiiier NUT are faitly straightforward, and it miay be
used very much s negation is used in naturzl lawguage--for example,
“temperature s (NOT HIGH ).

Every liv juistic modifier is associated with a corresponding fozay set
operation invelving membership functions. Table 5.1 lists some of these
association”, "he PLUS and MINUS modifiers in Tuble 5.1 offer a smaller
degree of ceniretion and dilation than do the concentration CON and
dilation L. operaiions which we saw in ( firpter 2. Modificrs may be
connected i series in order to form ferger compound values. Suppose, for
exampie, th:  we start with the primmy velues SMALL and JARCE, We
form componnd values such as (VERY SAALL) and (NOT VERY SMALL) by
logically mu'' '+ SMALL by VERY and NOT. We can go 01 in this
manner obinin. g more compound vaives—{or cxample, C = ((NQT VERY
SMALL) AND (NOT I ARCE)). Using e operarions in Table 5.1 we model
C by the following imembership funciion:

#ex) = [1 = mfuarn(x)] A (1 = pranee(x)] (5.2-8)
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Figure 5.8 The semantics of compound terms generated by AND ought to be
corefully examined. In () the compound term LOW AND HIGH hos triviol membership
function, whila In (b) the compound term (NOT LOW) AND (NOT HIGH) is well defined.

It should be noted that compound fuzzy values may not be arbitrarily
generated. We need to examine their semantics—that is, their meaning in
the context of a specific application. An interesting quantitative guide to the
semantics of compound values is provided by their membership function.
When the new membership function becomes uniformly 1 or 0 we may have a
semantically suspect compound value. -
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5.3 IMPLICATION RiLATIQNS

Fuzzy if fthen rules are conditionzl statements that describe the dependence
of cue (or more) lingu'stic verizble on another. As we already alluded ‘o
=etiier, the uaderlying analytical form of an if/then rule is a fuzzy relation
cuiled the implication relation. There are over 40 different forms of implica-



IMPLICATION RELATIONS 121

tion relations reported in the literature (Lee, 1990a, b). Implication relations
are obtained through different fuzzy implication operators ¢. Information
from the left- (LHS) and right-hand side (RHS) of a rule is inputted to ¢,
and it outputs an implication relation. The choice of implication operator is a
rather significant step in the overall development of a fuzzy linguistic descrip-
tion. It reflects application-specific criteria, as well as logical and intuitive
considerations focusing on the interpretation of the connectives AND, OR,
and ELSE. An extensive discussion of different implication relations may be
found in Mizumaoto (1988), Lee (1990a,b), and Ruan and Kerre (1993).5 We
will examine here the most common implication operators used in engineer-
ing applications, particularly in fuzzy control (Chapter 6). Our focus will be
on the implication relation of a simple if /rhen rulc and on how to obtain it
from LHS and RHS membership functions.

Let us consider a generic if/then rule involving two linguistic variables,
one on cach side of the rule—for example,

if xisA then yisB (5.3-1)

where linguistic variables x and y take the values A and B, respectively. The
underlying analytical form of rule (5.3-1) is the implication relation

R(xy) = [ wx)f(xy) (532)

where p(x, y) is the membership function of the implication relation, the
thing we want to obtain. When the linguistic variables in (5.3-1) are defined
over discrete universes of discourse, an implication relation is written as

R(xpy) = L w(xny)[(x03) (5.3-3)

(i p)

There are several options for obtaining the membership function of the
implication relation. We explore them through the implication operator
notion. For the rule of (5.3-1) an implication operator ¢ takes as input the
membership functions of the antecedent and consequent parts, namely,
p,(x) and pg(y), and takes as outputs u(x, y), namely

n(x,y) = ¢ (X)), ra( )] (5.3-4)

"lmpli:.’man operators can also be expressed through T and S norms (see Appendix). Tt should
be noted that the term “implication” is somewhat of a misnomer (since strictly speaking there is
no logical implication in a rule); nonetheless it is widely used in the literature.



122 UNGUISTIC DESCRIPTIONS AND THEIR ANALYTICAL FORMS

We distinguish the following implication operators:

Zadeh Max-Min Impilicaiion Operator
The Zadeh max—-min implication operator (Zadeh, 1973) is
Gl 142, a(P)] = (24(2) A 1 (9)) V (1 = p4(x)) (5.3-5)

Thus the membership function of the implication relation (5.3-2) is

m(x,¥) = (ra(x) A pg(y)) V(1 = p,(x))

Mamdani Min Implication Operator

The Mamdani min implication operator is a simplified version of Zadch
max-min proposed by Mamdani in the 1970s in conncction with fuzzy control
(Mamdani, 1977) and is defined as

e 1a(x)s (9] = ma(%) A B(y) (5.3-6)

Larsen Product Implication Operaior

The Larsen product implication operator uses arithmetic product (Larsen,
18:0) and is defized as

‘f’gl ma(x), Pu(.}’)} = pa(x) - pa(y) (5.3-7)

Arithroetic implicaiic. Opsralor

The ariihmeiic implication operator is based in multivalucd logic (Zadeh,
15973) and is defined o5

Gul malx)s pma(¥)] = 1A (1= py(x) + 22(¥)) (5.3-8)

i aciean Implication Opsrater

The Boolean implication operator is based on clausical logic and has been
used in control and decision-making applications. It is defined as

CAl !-'-.1(**:’:; ta(¥)] = (1 = 1£(x)) V 15 (») (3.3-9)

1176 Poundad Product implication Operetor

1he bounded product fuzzy implication operator has been used in fuzzy
contrel and is defined as

bapl 1a(X) 12(2)] = 0V (uy(x) + pp(y) = 1) (5.3-10)
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The Drastic Product Implication Operator

The drastic product implication operator has also been used in the field of
control. As the name implies, it involves a more drastic (crisp) decision as to
the form of the implication relation and is defined as

. rta(x),  pg(y) =1
bapl 24(x) s 20 (3)] = {1 (¥)s (%) =1 (5.3-11)
0, Ba(x) <1, up(y) <1

The Standard Sequence Implication Oparator

The standard sequence implication operator has crisp logic features. It is
defined as

1, alx y
Bl m) g = {7 ) < al)

5317
s (X)) > pp(y) A

Gougen Implication Operator

The Gougen implication opcrator considers the fuzzy implication relation to
be strong, reaching unity, if the membership function of the antecedent
p4(x) is smaller than the membership function of the consequent i,(x).
Otherwise, the greater u,(x) becomes, relative to uu(y), the more the
membership function of the implication relation u(x, y) comes to resemble
that of the consequent. The Gougen implication relation is in a way a more
tempered version of the standard sequence operator. It is formally defined as

1, JU'A(x) < pp(y)
da[ ma(x)s pp(¥)] = { #aly) (5.3-13)

mr Ha(x) > pa(y)

Godaslian Implication Operator

The: Gédelian implication operator is defined as

1, ra(x) < pp(y)

rj;s[p_,‘(x).#s(}')] o we(y),  wa(x) > pa(y)

(5.3-14)

~These fuzzy implication operators are listed in Table 5.2. They are frequently
encountered in enginecring applications particularly in fuzzy control (Chapter
6). One interesting issue arises in connection with whether or not some of
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Table 5.2 Some fuzzy Implicalion operalors

NAVE

JMPLICATION OPERATOR

olu, (x), t5(¥)]1=

¢, Zadeh Max-Min

(L, () A 1, OV (= 1, (X))

¢., Mamdani min

L) Ap; ()

¢,. Larsen Product

M) pp(y)

¢,, Arithmetic

LA =, () + ()

¢,, Doclzan
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Oy, Drastic Irodict

@, Standard Sequence

e S .8 s 88 i 1
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if ﬂs()"):l
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15 (x),
M, (x),
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these operators satisfy classical modus ponens and modus tollens. Another
issue has to do with the manner that they satisfy certain intuitive criteria
about inferencing such as, for example, the expectation that evaluating “if x is
A then y is B" by “x is VERY A” ought to result in “y is VERY B.” A good
discussion of these issues is found in Mizumoto (1988) and Lee (1990a, b).

5.4 FUZLY INFERENCE AND COMPOSITION

Fuzzy inference refers to computational procedures used for cvaluating fuzzy
linguistic descriptions. There are two important inferencing procedures:
generalized modus ponens (GMP) and generalized modus tollzns (GMT). For
simplicity let us consider a linguistic description involving only a simple
if/then rule with known implication relation R(x,y) and a fuzzy value A’
approximalely matching the antecedent of the rule. GMP allows us fo
compute (infer) the consequent B, It is formally stated as

if xisA then yisB

xig A (5.4-1)
yisB’
where everything above the line is analytically known, and what §7 == w iy
analytically unknown, Suppose, for example, that we have (h. .

iemperafure s HIGH then humidity is ZERO. Given that “mipe. .

VERY HIGH,” GMP allows v to evaluate the rule and infiir a @ we for
luniidity. The inferred value B’ is computed through the compestio » nf A4/
with the implication relation R(x,y). Let us look at -t is - oed

analytically in (5.4-1). We kuow the implication relation £z, y) cf . L
“if xis A then y is B” (obtained by using one of the cperators she v Tuble
5.2) and the membership function of A'. To compule the ni . enhip
function of B* in (5.4-1), we use max—mia comporition of ey toi .o wilh

R(x, y)—that is,
B'=A"sR(x,y) (5.4-2)

In terms of membership functions, equation (5 1-2) i (see Chepter )

#a(¥) = V [ma(x) A p(2,9)] (54-3)

: = v
where p(x) is the membership funetion of A4, j2(x, y) is the merhership
function of the implication relation, and ;.03 the membership function of
B'. We recall from Chapter 3 that max-min con caition (o) is aliclogous to
matrix multiplication with max (V) and .1in (A) i place of eddition (+) and
multiplication (X),
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In GMT a rule and a fuzzy value approximately matching its consequent
are given and it is desired to infer the antecedent—that is,

if xisA then yisB

yisB’ (5.4-4)

xis A

In GMT we know R(x, y) and the consequent B'. To compute the member-
ship function of A’ in (5.4-2), we can use max-min composition of R(x,y)
with fuzzy set B'—that is,

A’ = R(x,y)* B’ (5.4-5)

In terms of membership functions, equation (5.4-5) is (see Chapter 3)

mae(x) = V [,u{x,_v) A Pn'(}’)] (5.4-6)
y

Of course, other compositions may be used in place of max-min. For

example, using max-product composition the membership function of B’ in
(5.4-2) is given by

-“-R’(y) = V [J-"-,{'{-r) '.u-ﬂ(x- ,V}] (547)

where we take the maximum with respect to x of all the products of the pairs
inside the brackets (see Example 5.2). In general max-+ composition may be
used to infer the membership function of B":

pa(¥) =V [ra(x) * ma(x, )] " (54-8)

Using composition of relations to infer consequents—that is, to draw conclu-
sions on the basis of imprecise premises—is known as the compositional rule
of inference, since logical inferencing such as GMP is performed analytically
through composition. As shown in Figure 5.9, GMP works in a manner
analogous to evaluating a function and GMT is analogous to finding the
inverse (Pappis and Sugeno, 1985). When a fuzzy value A' is given as input to
a linguistic description (single rule or fuzzy algorithm) we can obtain B’
through GMP; conversely, if we know B’ we can obtain A" through GMT.
Generally, we have several overlapping rules, and more than one may
contribute a nontrivial B’ (or A"). The union or intersection (depending on
the implication operator used as we will see in the next section) of all
contributions is the output of the linguistic description for a given A’ (or B'),
Often the fuzzy values used are not symmetric or of the same form, and
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YA if/then Rule

Fuzzy Algorithm Rx(x,y)

GMT
_— e

b >

Figure 5.7 GMP ond EMT ore procedures for evaluating fuzzy linguistic descriptions.

hence we may not have circular aree-cron-points as in Figure 5.3 but instead
have the more general shapes shown in Figure 5.9. Of course in order to use
composition we must have available implication and algorithmic relations.

Logical operations other than GMP or GMT may also be perfrmed
analytically through compositic »—for example, by combining txo ~+ more
rulzs in a syllogism (Zimmermann, 1985). Consider the following rul.:

if xis A thenyis B
- | (5:49)
if yis thenzis C
from which we can infer another rile: “Ifxis A then z is C" vl v J.‘r:';
syllogism. Each rule ia (5.4-9) is analytically described by a fuzzy relztion, the

first by R\(x, y) and the second by R,(y, z). Iram these relaticns +o ma 1y
infer-a new relation Ry,(x, z) for the mle “if x is A len 7 i3 *'.""u.-.mg
max-—min composition of Ry(x,y) and Ry, —hat is, R,.(s ) =
R\(x, y)}o R,y(y, z). Again, max-—-min, m ax-product, 0; 'ax-+ compositicn may
also be used to obtain R,,(x, 2).

Examgle 5.1 GMP and Mamdrai Min Ir'*" ol
GMP (0 evaluate a linguistic description co npr of a singls nile “ifx is

theny is B"with LHS and RHS i ~mb..-:.‘m fonet® a5 p(x) and ,L.g(\): as
shewn in Figures 5102 and 5.100, The m*ol.cato.. relation of the rule is
modeled through Mamdani min 1n'1~_.m'1 M umwzc Fu=zy numbsr A'
(a singleton) shown in Figure 5.10¢ is the Tipet to e rele. F om Figure 5.10

ru. In this enmp"\" -|sc

-
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Figure 510 (&) The membership function of the antecedent A. (b) The fuzzy voiue B

of the consequent. (c) A fuzzy A' that opproximately matches the antecedant in
Example 5.1.
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we have

10

E HA(IJ)/J'—!
i-0

KN
I

=05/2 +1.0/3 + 0.5/4 (E5.1-1)
10
B = E -ua(}’.'J/)'r
i=0

I

0-33/5 +0.67/6 + 1.0/7 + 0.67/8 + 0.33/9 (E5.1-2)

A

I

10
2 (%) /%; = 1.0/4 (1i5.1-3)
| .

All variabl>s arc defined aver the came universe of discourse, 13 set of

integers froiz 0 1o 10; and, as is cutta: aary, zero mambership of- orons are
aitted,
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Table 5.3 The fuzry Implication relationin Example 5.1

{ yJW ol 1l 2| 3| 4] s| s 7| g| o 1
xj .
o llo lo lo 1o Jo lo o lo Jo Jo fo
o lo lo o lo fo Jo fo Jo o lo
2 lo lo lo lo lo o33 -,0.5@ 0.5 los |033fo
s 1o lo lo lo lo lo3sloesi|io |osrlo3slo
+ 1o lo lo lo lo lo3sles[os |os{033]0
ls o lo fo lo lo lo lo [o lo fo Jo
s llo lo o lo lo lo o lo Jo fo o
7 0 0 0 (1] 0 1] 0 0 0 0 0
s o lo 1o lo lo lo lo fo o fo }Jo
o llo 1o lo lo lo lo o lo fo Jo o
0 flo_lo lo lo fo lo fo jo Jo lo 1o

spacc shown in Table 5.3. The nontrivial part of the rclation is found in the
shaded cells of Table 5.3.

To find B’ we compose A’ with R(x;, y;) in accordance with equation
(5.4-2). It is sufficient to consider the nonzero part of the relation—that is,
the shaded part of Table 5.3. We use matrix notation and remind ourselves
(see Chapter 3) that max-min composition () is analogous to matrix multi-
plication with max (V) and min (A) in place of addition (+) and multiplica-
tion (x), respectively, From Equation (5.4-2) we have

B'(}',) = A"(x;)° R(x;, }';)

0.33 050 050 050 033
=[0 0o 1]e{033 0.67 100 066 033 (ES.1-6)
033 050 050 050 033

- &

\
where the column vector for A’ ranges from x = 2 to x = 4 (see Figure 5.10)
which is the same as the row range of the implication matrix. The columns of
the implication matrix range from y =5 10 y= 9 (see Table 5.3). From
equation (5.4-3) the membership function of the first element of the conse-
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quent—that is, at ¥ = 5—is computed as follows:

#a'(s)

I

V[0A0.33,0A033,1 A033]

V [0,0,0.33]
X
=033 (ES.1-7)
Similarly we compute the rest of B, The result is
B'=033/5+050/6 +0.50/7 + 0.5/8 + 0.33/9  (E5.1-8)

as shown in Figure 5.11. It should be noted in Figere 5.11 that the member-
ship function of B’ is essentially the membesship function of B clipped at a
height equal to the degree that A’ matches A (see Figure 5.10c). This value
is called the degree of filillent (DOF) of the rule. It is a measure of the
degree of similarity between the input 4’ and the antecedent of the rule A.
In the present case we have that

DOF = 0.5 (E5.1-9)

Clipping the membership funetion of the couscquent by DO is a featurc of
¢, the Mamdani min implication operator. Whe:cver we use ¢h. to model
the implication relation invelved in GMP wa get such a elipping tiansforma-
tion of the consequent, The sitvatiom is shown in fragral in Fipure 5.12. We

shall encounter clipping in Chapter 6 whea d ag wilh control applications
of linguistic deserip Feep it mind that olipping depends on

(et to be co fused with max-rmin
st aueretors 1o model the implication

suape traa o astions ol the RHS of a sule

the Mamdani o
compositica). Us
relation leads to did

everzatzd under GME. O
Mg 0.8 #oAT)=03  pp(0)=05
;r_;-gf;.—..?._.'_-?r, P ! "\,\ Jis (9)=0.33
|
P S, A B T
| | I | | i | | -
! 4 3 4 s § ] & ' e 0

i

Figuro 531 The fuzzy sob 8 roduced by evalualig tha irguisic description of
Exarnpia 5.1,

y
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H(y
4

=
X

Xa

Figure 5.12 When the Mamdani min implication operator is used to mode! an implica-
tion relation, GMP clips the membership function of the consequeant by the DOF of the
rule,

Example 5.2 GMP with Larsen Product Implication. In this example we
evaluate a fuzzy if/then rule, whose implication relation is modeled by the
Larsen product fuzzy implication operator ¢, (see Table 5.2) using GMP.
The antecedent and consequent variables of rule if x is A then y is B are
shown in Figures 5.13a and 5.13b. The membership function of the input
value A" is shown in Figure 5.13c. From Figure 5.14 we have

A

Y malx) /5

i==—5

0.33/(-1) +0.67/0 +1.0/1 + 0.75/2 + 0.5/3 + 0.25/4 (E5.2-1)

5
B= 3 us(y)/v

fos-s
= 050/(—4) + 1.0/(—3) +0.67/(—-2) +0.33/(~1) (E5.2-2)
5
Al = E p—,i('ti)/xi = 1.0/3 (E5.2-3)
j= =5

Using equations (5.4-2) and (5.4-3) for GMP we can compute the member-
ship function of value B'. First, however, we have to obtain the membership
function of the implication relation, u(x, y), using the Larsen product fuzzy
implication operator ¢, (see Table 5.2). The implication relation has the
membership function

r(x;, y) = ¢p[ ra(x), #n(.",‘)] = py(x;) - mp(y;)  (ES5.2-4)

and plugging in numbers from equations (E5.2-1) to (E5.2-3) we obtain the
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A
10 Hal)=1.0
e TN o (2)=0.75
La(0)=0.67 -1 -
. Ty Hal3)=0.5
- s
Ha(-1)=0.33 ‘l ‘~I‘mr4)=o.2s
.51 -4[ _J'I -zl -ff i 1 2 i 4 5 X
(a)
by
1
Hp(-3})=1.0 12
Eialatinill - R e e T
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Lg(-4)=0.50 - b
- Y
o “‘& Hp(-1j=0 33
’/ '\"

e e T e e T
J -2 ; (] 1 4 5y
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Figure 513 (&) The fuzzy value A of the ante ede:
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-

i G
| I | | -
-4 -3 -2
Figure 5.14 The fuzzy set B’ produced
Example 5.2.

-1

implication relation

R(x;, y) =

{X;.}'_,]

Il

o 1 ;3 k] 4

by evaluating the linguistic description in

E (g, yj)/(‘til}])

0.167/(—1,— 4) +0.333/(~1,— 3) + 0.222/(—1,- 2)

+0.111/(~1,— 1) + 0.333/(0,— 4) + 0.667/(0,— 3)

+0.445/(0,~ 2) + 0.222/(0,~ 1) + 0.500/(1,~ 4)

+ 1.000/(1,~ 3) + 0.667/(1,~ 2) + 0.333/(1,— 1)

+0.375/(2,— 4) + 0.750/(2,- 3) + 0.500/(2,~ 2)

+0.250/(2,— 1) + 0.250/(3,~ 4) + 0.500/(3,- 3)

+0.333/(3,— 2) +0.167/(3,— 1) + 0.125/(4,— 4)

+0.250/(4,— 3) + 0.167/(4,— 2) + 0.083/(4,— 1)

(E5.2-5)

The implication relation of (E5.2-5) can also be scen as the shaded part of
Table 5.4, where we use a similarly scaled discrete universe of discourse for
both antecedent and consequent variables, namely, integers from —5 to +3.
Thus, the implication relation is taking values on an 11 X 11 Cartesian

product space as shown.
We find B' through GMP—that

is, max—min composition of A' with

R(x;, y;). Again we need only consider the nonzero part of the relation—that
is, the shaded part of Table 5.4. We use matrix notation and remind
ourselves (see Chapter 3) that max—min composition is analogous to matrix
multiplication with the max (V) and min (A) in the role of addition (+) and

3

i
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Table 5.4 Implication rolation In Exarnple 5.2

3| -2

by
Ly
LN
LY.

multiplcation (<) This e Ve

1020 10
D 10687 n333] 0

304351 023910
Y . I __i
‘-!'. JI_,I- .'_;_:' {:]-Jl 0
0 0157 603 l 0
l :
o s la

- - | 4 1
s =i § 0 § 1.0 4
- v ]
v
L] y L
¥
y =4
)2 -,
i !
. . - =
bl 1 G R ¥ it b g L

e e —|

0
0
(
{)
0
0
0
0
0
0
o}

33 0222 @311
D607 0444 0222
LOOY 0.667 0,333
WIS 0508 0.250
Q30 0333 0.167

dJizt o 0167 0.083

(£3.2-6)

e '\l‘.‘._':.?':]'_;‘) finetinn of

dimeasion (which is the
enbinnmns) of the matrix
5.4, The result is the

i T3 essenifaily
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Hly
4

Haly)

e
x

Xy
Figure 5.15 When GMP Is used to evaluate a rule whose implication relation is
modeled by the Larsen product, the membership functicn of the consequent is scaled
by the DOF.

membership function of B scaled (multiplied) by the degree that A" matches
the membership function of 4 at x = 5—that is, the DOF of the rule by 4

Scaling the membership function of the consequent by DOF is a feature
of the Larsen pruduu fuzzy implication operator ¢,. Schematically this
property of ¢, is shown in Figure 5.15. Other fuzzy implication operators
(Table 5.2) result in different shape transformations of the consequent. 0O

55 FUZZY ALGORITHMS

A fuzzy algorithm is a procedure for performing a task formulated as a

. collection of fuzzy if /then rules. The rules are defined over the same product
space and are connected by the connective ELSE which may be interpreted
either as wnion or intersection depending on the implication operator used
for the individual rules.” Consider for example the algorithm

if xisA, then yisB, ELSE
if xisA, then yisB, ELSE
(5.5-1)

if xisA, then yisB,

We recall that analytically each rule in (5.5-1) is represented by an implica-
tion relation R(x, y) and that the form of R(x, y) depends on the implication
operator used (sce Table 5.2). Table 5.5 lists the most common interpretation

TELSE can also be interpreted as arthmetic sum and product (as well as other T and § norms),
which we do not use in this book.
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Table 5.5 Inlemretation of ELSE under various Implications

= - =
IMPLICATION INTERPRETATION OF ELSE
0,, Zadeh Max-Min AND (A)
¢., Mamdani Min OR (V)
¢,, Larsen Product OR (V)
¢,, Arithmetic AND (A)
¢,, Boolean AND (A)
¢,,, Bounded Product OR (V)
@, Drastic Product OR (V)
¢., Standard Sequence AND (A)
¢,. Gougen AND (A)
¢, Godelian AND (A)

of the connective ELSE for the implication operators shown in Table 5.2 (in
the next chapter we will see more on this). The relation of the entire
collection of rules (5.5-1) is called the algorithmic relation

R(x,y) = [ walx3)(x.3) (5:52)

and is either the union () or the infersection (A ) of the implication relations
of the individual rules. A fuzzy algorithm is a linguistic description evaluated
analytically using composition operations just as we did in the case of
single-rule linguistic descriptions. Given a new fuzzy value A’ we evaluate
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(5.5-1) through GMP formally stated as
if xisA, then yis B, ELSE
if =xisA, then yis B, ELSE
5.5-3
if xis A, then yis B, ( )
xis A’

yis B’

The output value B’ in (5.5-3) is computed by max-min composition (and
more generally max-+) of A’ and R, (x, y)—that is,

B'=A=R,(x,y) (5.5-4)
The membership function of B' is

wp(¥) = V [ a(x) A pa(x:9)] (5.5-5)

Then inverse problem is solved through GMT, stated as
if xisA, then yisB, ELSE
if »xisA, then yisB, ELSE
if xisA, then yisB, (355}
yisB'

xis A'

The membership function of A’ in (5.5-4) can be computed by max-min
composition (and more generally max-*) of R,(x, y) and B'—that is,

A'=R,(x,y)° B’ (557)
with the membership function of A’ given by

rae(2) = V [#a(2,9) A pa(3)] (5.5-8)

In the elementary fuzzy algorithm of (5.5-1) there is only one variable in the
antecedent side of each implication and one on the consequent side. Gener-
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ally, we are interested in linguistic descriptions that may have more than one
variable in either side, which we refer to as multivariate fuzzy algorithms. The
interpretations of the connective ELSE are the same as for the elementary
algorithm of (5.5-1). Consider an if /then rule of the form

if x,isA, AND x,isA, AND -~ AND x,isA, then yisB
(5.5-9)

where x,,...,x, are antecedent linguistic variables with Ayyiee A, their
respective fuzzy values and y is the consequent linguistic variable with B its
fuzzy value. The connective AND in the LHS of rule (5.5-9) can be analyti-
cally modeled cither as min or as arithmetic product. In such cases we can
combine the propositions in the LHS either through min (A) or through
product (-) and use an appropriate implication operator ¢ (Table 5.2) to
obtain the membership function of implication relation of (5.5-9). Thus we
have

Xy, X, x,, ) = d’[ M (X)) A “A;(x:) A A ey (X)) #3(."}]
(5.5-10)
In case AND is analytically modeled as product, the implication relation has
membership funetion
P—(Iln-rzl vy Ay }’) s r,b[ p’,‘i,(":l} g ,u__,:().':) TR .I“'Am(’rm)’ ﬁ"ﬁ'(}.}]
(5.5-11)
where ¢ is an appropriate implication operator from Table 5.2 Tn a similar
manner the connective OR can be interpreted as max (V) or as :um (+) or
other § norms (see Appendix A)).
Less frequently we encounter multivariate fuzzy implications involving m
nested fuzzy implications, each having one antecedent variable, of the form

if xyisA, then (ifx, is A, then - (ifx,, isA, thenyisB)--) (55-12)

The membership function of a multivariate fuzzy implication of equation
(5.5-12) is obtained through repeated application of an implication operator
(sec Table 5.2), once for each nested if /then rule:

RO ey X, ) = 6] maf20)) O a(22)- s & 1y (20), el
(5.5-13)

When we have several rules of the form of (5.5-9) or (5.5-12) the overall
algorithmic relation depends upon the implication operator used and the
related interpretation of the connective ELSE.
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Let s consider a fuzzy algorithm consisting of n multivariate fuzzy
implic: ns of the form shown in (5.5-9). We have m variables x,,..., x, on
the a: -odent side of the jth if/then rule taking values A;..., A,;

(=1 'n) and only one consequent linguistic variable y, taking values
B, B, . B,. Our fuzzy algorithm is the collection of rules
if u AND xpisAy AND - AND x,, i5A,, thenyisB, ELSE

if :-_‘-T#-l?. AND xjisAz AND - AND x,isA.; thenyisB, B3R

i 1,, AND xjisA,, AND -+ AND x, isA,, thenyisB,
(5.5-14)

The f vy algorithm of (5.5-14) is analytically described by an algorithmic
relatio . of the form

B (R Bywerva s ¥)
= gl Xasvvos Zpgs V) (Bia Basco sen Bn ¥)  (5:5-13)

and when discrete fuzzy sets are used we obtain
R (xp55 Xpi0 00 Xpnis J’;)

= Z J“‘a(xli'xﬂ""‘xml"yj)/('xl.ll’tlf""'xmi’yJ)

CXgie Tagrsnss Xt I3

(5.5-16)

The membership function in (5.5-15) or (5.5-16) can be obtained from the
implication relation of the individual rules and appropriate interpretation of
the connectives AND and ELSE. Once the algorithmic relation is known,
GMP may be used to obtain an output B’ given inputs Y e
that is,

if x,isAy AND x,isAy AND - AND x,,isA,, thenyisB, ELSE

if  x isAj AND xyisAy AND - AND X, isAn, thenyisB, ELSE

if x isA,, AND x;isA;, AND - AND x isA,, thenyisB,

m

x, is A} X, is Ay X, is A,

yis B’
(5.5-17)
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Let A, be a new input to (5.5-17). The membership function of B' is
given by max-min composition of the fuzzy set A| = A'(x;) and
Rty Xapseay Xy Yi— that is,

B'(}’) :AI]n‘qa('tlvle'-w-rmiy) {5.5'18)

When m inputs arc offered to the algorithm and the connective AND in the
LHS of each rule is interpreted as min, GMP will give an output value

B'(y) = ( A A’(x‘.)) S R (X4 Xgseres Xps ¥) (5.5-19)

i1

with membership function

m
par(y) =V V = V ( A m-(x,-)) A (2 2y 2 y) | (5:5:20)
X,  Xa X j=1

Other compositions may be used as well, such as the max-product or, mere
generally max-#, to obtain the membership function of the new consequent
B' (sce Chapter 3).
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PROBLEMS

1. The Mamdani min implication operator given by Equation (5.3-6) is
alleged to be a simplification of the Zadeh max—min implication operator
given by Equation (5.3-5). Explain what simplifications were made and
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discuss how these influence implication operations in fuzzy operations
such as control. 1llustrate your discussion with sketches.

. A linguistic description is comprised of a single rule

if xisA thenyis B

where A and B are the fuzzy numbers

A=033/6+0.67/7+100/8+0.67/9+0.33/10
B=03./1+067/2+100/3+0.67/4+033/5
The implication relation of the rule is modeled through the Larsen
product implication operator. If a fuzzy number x = A" is a premiss, use

generalized modus ponens to infer a fuzzy number y = B’ as the conse-
quent. A" is defined by

A= 0575+ 1.00/6 + 0577

. Using the data given in Problem 2, Mamdani min implication operator,

and generalized modus ponens, evaluate the rule.

. Using the data given in Problem 2, arithmetic implication operator, and

generalized modus ponens, evaluate the rule,

. Using the data given in Problem 2, Boolean implication operator, and

gencralized modus ponens, evaluate the rule. .

. Using the data given in Problem 2, bounded product implication opera-

tor, and generalized modus ponens, evaluate the rule.

. Using the data given in Problem 2, Zadeh max-min implication operator

and generalized modus ponens, evaluate the rule.

. Given the rule and fuzzy values for A and B as well as the B’ that you

found in Problem 2, use generalized modus tollens to infer an A"

. What happens if you repeat Problem 8, having used bounded product

implication operator to model the rule?

Which of the fuzzy implication operators given in Table 5.2 reduce to
classical modus ponens under max-min composition? Examine each
operator and show an example of what happens using the data found in
Example 5.1,

This problem requires an investigation on your part of the concept of
fuzzy functions. Generally, a fuzzy function can be understood as a
mapping between fuzzy sets and the extension principle can serve as a
tool for generalizing ordinary mappings. Depending on where fuzziness
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occurs one gets different types of fuzzy functions, The problem is this;
Set up a fuzzy function that will take as input ambient temperatures and
will produce as output energy demand to a power plant. There are no
unique solutions, but rather, different approaches to formulating the
solution. State clearly, what could be fuzzy in this problem: what assump-
tions you need to make; what crisp function, if any, you start with. Also,
give the functional form and test it. Does it make sense? Could you get
higher encrgy demand for lower temperatures from your mode]?

Given the assumptions made in Problem 11, find a fuzzy algorithm that
describes the same general relation as the fuzzy function you developed
in Problem 11.
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6.1 INTRODUCTION

Fuzzy control primarily refers to the control of processcs through fuzzy
linguistic descriptions. Since 1974, when E. H. Mamdani and S, Assilian
(Mamdani, 1974) demonstrated that fuzzy if/then rules could regulate a
model steam engine, a great number of fuzzy control applications have been
successfully deployed. The list is very long and growing and ineludes cement
kilns, subway trains, wnmanned helicopters, autonomous mobile robots,
process heat exchangers, and blast furnaces (Mamdani, 1977; Ostergaard,
1982; Yasunobu and Miyamoto, 1985; King and Karonis, 1988)." In the 1970s
and early 1980s most applications were minicomputer-based, often found in
the process industry in areas where automatic control was rather difficult to
realize and hence left in the hands of human operators. More recently, with
the advent of fuzzy microprocessors, a growing number of fuzzy control
applications have emerged in consumer electronics and home appliances
such as hand-held cameras, vacuum cleaners, air conditioners, and washing
machines (Hirota, 1993; Yamakawa, 1989; Schwartz, 1992; Terano et al,,
1992),

In this chapter we begin by reviewing conventional process control in
order to establish the relevant context and proceed to fuzzy control, a subject
we view primarily as an application of fuzzy linguistic descriptions (Chapter
5). Of course, the appropriate choice of controller in engineering applications

"There are a number of excellent books available on fuzzy control. The interested reader may
want to consult, for example, Driankov et al., 1993; Pedrycz, 1993; Harris et al., 1993; Yager and
Filev, 1994, and Wang, 1994,
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is made not as much by a commitment to a particular methodology or
technology as by careful examination of the needs and features of a given
application. In fact, some of the most successful applications of fuzzy control
have been in conjunction with conventional controllers such as the propor-
tional integral derivative (PID) controller (Lee, 1990a, b). In fuzzy control we
are concerned with two broad questions: How can we implement a control
strategy as a fuzzy linguistic description? and What are the crucial factors
involved in fuzzy algorithmic synthesis and analysis? Although fuzzy linguistic
descriptions are a subject of wider interest than the replacement or enhance-
ment of PID controllers, their application to control serves to illustrate some
of the basic ideas we encountered in earlier chapters.

Consider the simple process system shown in Figure 6.1. Here, a tank is
filled with liquid flowing from a pipe at the top (inlet flow). Liquid leaves the
tank through a pipe at the bottom (outlet flow). The upper pipe is fitted with
control valve A, used to adjust inlet flow, and the bottom pipe with valve B
is assumed to remain at a preset position. A controller maintains the liquid in
the tank at the desired level. By process here we mean the tank, the liquid,
the pipes, and the valves. The term process control system refers'to the

= Serpoint

Control Valve A  #15,

R R .

Level Measur mens

Figuis 6.1 A process system with lewve ol through control valve A.
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process plus the controller and any required components for measurement
and actuation.

The purpose of any process control system is to regulate some dynamic
variable or variables of the process. In the liquid level process control system
shown in Figure 6.1, the dynamic variable is the liquid level L, a process
parameter that depends on other parameters and thus sulfers changes ficm
many different inputs. We select one of these other pararieters to be var
controlling parameter—in this case control valve A, the adi  1ent of which
leads to control of flow rate, Q,. Liquid level depends +  low rates via
control valve A4 and valve B, ambient temperature T, (n.  shown), liquid
temperature 1; (also not shown), and the physical condition of valves A
and B. This dependence may be described by a process relation of the form

L=f(04,Qp7T,T)) (6.1-1)

where @, is the flow rate through control valve A, @y is the flow rate
through valve B, T, is the ambient temperature, and 7; is the liguid
temperature. In many cases the relationship of equation (6.1-1) is not
analytically known and actually may not be a function (a rany-to-one
mapping) but instead a more general relation (a many-to-many mapping) as
we discussed in Chapter 5,

The input to the controller is usually not L itself but instead the crror ¢
between a measured indication of L, denoted as y, and a setpaint or
reference value r representing the desired value of the dynamic variable. The
controller’s output or manipulated variable is denoted by u and is a signal
represcnting action to be taken when the measured value of the dynamic
variable y deviates from reference r. Thus, the output of the contrpller u
serves as input to the process. The error e = r — y 15 actually smoothed and
scaled before input to the controller. Smoothing is performed in sampled
systems in order to avoid the instantancous changes during sampling that
misled the general direction of change for the variable. Such a smoothing
function may be defined recursively as (e,) = 0.9¢, _, + 0.1e,, where ¢, is
the error value at time ¢ = k. Scaling is required in order to transform
instrument values to a predetermined interval or transform them to a range
of numbers that correspond to natural magnitudes.

The most common controller in the process industry is the PID controller,
where the control relation associated with equation (6.1-1) takes the form

de(¢
u(t) = Kpe(t) + K, K[ e(r)dr + K,.K{,-—‘%l +u(0) (6.1-2)
=0

where K, is the controller gain representing a proportionality constant
between error and controller output (dimensionless), K, is the reset constant
relating the rate to the error in units of [% /(% — sec)], Ky is the rate
constant (or derivative gain constant) in units of [(% — sec)/%], and (0} is
the controller output at ¢ = 0 (when a deviation from setpoint starts).
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The first term in equation (6.1-2) is called the proportional term, and if it
was the only term in the equation it would represent a mode of contral where
the output of the controller u(t) is changed in proportion to the error e(r),
which is the percent deviation from the setpoint. The second term is called
the integral term and represents a mode of control where the present
controller output depends on the history of errors from when observations
started at ¢ = 0. The amount of corrective action due to integral mode is
dircctly proportional to the length of time that the error has existed. The
reset constant K, expresses the scaling between error and controller output.
A large value of K; means that a small error produces a large rate of change
of u and vice versa. If this term alone was used in equation (6.1-2), in
addition to the constant «(0), then we would have a mode of control called
integral mode. The third term in cquation (6.1-2) represents the derivative
mode of control. This mode provides that the controller output depends on
the rate of change of error. Derivative mode tends to minimize oscillation of
the system and prevent overshooting. Since derivative control is based solely
on the rate of change of error, the controlled variable can stabilize at a value
different from r, a condition termed “offset.” In pure derivative mode the
output depends upon the rate at which the error is changed and not on the
value of the error. Integral control is used to address situations when
permanent offset or slow returns to desired values cannot be tolerated. The
combination of these three modes is called proportional integral derivative or
(PID) control. PID is a powerful composite mode of control that has been
used for virtually any linear process condition.

The process of adjusting the coefficients of cach mode of control in
equation (6.1-2) is called funing. There are several methods for determining
the optimum value of these gains such as frequency response methods and the
Ziegler—Nichols method (Johnson, 1977). Fuzzy and neural approaches with
adaptive characteristics have also been used for PID tuning and more
generally for emulating and enhancing PID controllers (Matia et al., 1992;
Maeda and Murakami, 1992; Shoureshi and Rahmani, 1992; He ct al,, 1993).

Example 6,1 PID Level Control. Consider the process control system shown
in Figure 6.1. Suppose that we control the liquid level in the tank by adjusting
control valve A (inlct flow) through a PID controller. The output of the
controller u(t) is based on the error_e(t)—that is, the difference between a
reference value 7 and the measured value of level y. The output of the
controller is given by equatisn (6.1-2) as

de(r) B e
o + u(0) (E6.1-1)

u(t) = Kpe(t) +J.',,K;fr‘ ey dt+ KKy

vith the following values for the various gains and initial controller output:
Kp=—13, K; = 0.5[%/(% — min)), Kp = 1.9[(% — min) /%), and u(0) =
50%.
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Figure &2 Erorintroduced to the PID level controller of Examplz 4.1,

Suppose that the error shown in Figure 6.2 is introduced to the system at
t = 2min. Such an error may be due to any change in process parameters— for
example, an unforeseen change in the position of valve B—since valve B is
not under control. The equation of error as function of time is

e(t) = 1.25t — 2.5 (E6.1-2)

Using equation (E6.1-2) in equation (E6.1-1) the output of the controller
after 1 = 2 is given by

u(t) = —1.3[1.25¢ - 2.5] - 1.3(0.5 min—l)f [1.25¢ — 2.5] dt
=2
d
~ 13(1.9 min) —[1.25/ — 2.5] + 50% (E6.1-3)
¢

The first term in equation (6.1-3) represents the proportional mode of the
controller, the second term the integral mode, and the third term the
derivative mode. Let us call them up(t), ¢,(¢), and u,(t), respectively. Figure
6.3 shows the response duc to each mode and the total response of the
controller w(t), which is the sum of the three terms plus the initial output of
the controller, in this case 50%. Looking at Figure 6.3 we note that at the

15 i i T T *"J‘

i



150 FUZIY CONTROL

100 i : 4
i
T rer— B
5 607 o .
3
32 w0 —_—
2 i
£ b
40
20 7
0 i I
0 2 4 6 8 10
t [min]

Figure 6.3 FProporicncl, intacral, dervative, and total response of lhe PID level con-
ticller in Example 6.1.

end of the 10-min interval the controller sends a signal to control valve A,
which is ubout 10% of jts full scale, This does not necessarily mean that the
valve itself allows zt that time 10% of full flow to the tank. Different valves
have diffc ent cheracteristics, often nonlinear. The relation between a dy-
“namic varizble and its transdiced equivalent, although desired to be linear
for many trausducers, is aln, st always actually nonlinear. As an example,
suppose thzi control valve 4 is an equalipercentage valve. In such valves a’
given perceiit change in the valve's stem position (which is what actually the
controller cuntrols) produces an equivalent change in flow, hence the name
equal-percentage. Generally this type of valve does not shut off flow com-
pletely in its limit of stem travel. Let Q denote the flow rate through the
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valve (in m*/sec), Qs the minimum flow when the stem of the valve is at
the lowest limit of its travel, and Q,,, the flow rate when the valve is fully
open. The ratio R = (Qpu/Qyy) is called the rangeability of the valve; it is a
parameter specific to a given valve. The actual flow at any given time varies
donlinearly with rangeability and is often given by an exponential, expression
of the form

Q = Quul.R:"{““"“ (Eﬁl-d)

where u /u,,,, is the ratio of the actual to the maximum control signal sent to
the actuator (actually the valve stem position at any given time divided by the
maximum position of valve stem). Suppose that control valve A has range-
ability R = 30. Thus when the control signal is 10% of full range—that is,
(1 /u,,) = 0.1—the flow rate according to equation (E6.1-4) becomes

Q = (-}::IJ:I(3{})11 : - ]'4Qn1in (liﬁl's)
We can sec from cquation (E6.1-5) that at the end of the 10-min interval the
controller output is 109 of its maximum value cven though the flow through
control valve A4 is 1.4 times the minimum flow through the valve. Actuators
in general have such nonlinear characteristics, and furthermore their charac-
teristics change due to aging or other environmental factors. Some of the
difficulties in the ficld utilization of control algorithms, such as the PID level
controller here, arise from the collective impact of such changes, Their extent
and nature may not be fully known when the controller is designed, tested,
and initially deployed. In the course of time the control engincer has to make
various judgments about the overall performance of the process control
system and, in collaboration with operations:and maintenance personnel,
intervene to retune gains, repair or replace equipment, revise procedures for
operation, and so on. An objective of linguistic control is to make this entire
process somewhat easier. It may therefore be scen as irony in the choice of
words, but indeed a benefit of fuzzy control is introducing even more clanity
to the development, evaluation, and maintenance of control systems. O

6,2 FUZZY LINGUISTIC CONTROLLERS

The core of a fuzzy controller is a linguistic description prescribing appropri-
ate action for a given state. As we saw in Chapter 5, fuzzy linguistic
descriptions involve associations of fuzzy variables and procedures for infer-
encing. Whercas in a conventional PID controller what is modeled is the
physical system or process being controlled, in fuzzy controllers the aim is to
incorporate expert human knowledge in the control algorithm. In this sense,
a fuzzy controller may be viewed as a real-time expert systém—that is, a
model of the thinking processes an expert might go through in the course of
manipulating the process.
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Figure 6.4 Block diogram of fuzzy process control system,

The basic structure of a fuzzy controller is outlined in Figure 6.4. The fact
that measuring devices give crisp measurements and that actuators require
crisp inputs calls for two additional considerations when linguistic deserip-
tions are employed for control purposes: fuzzifying the input of the controller
and defuzzifying its output. Fuzzification can be achieved through a fuzzifier
kernel as we saw in Section 2.3, and defuzzification can be achieved through
special procedures that select a crisp value representative of the fuzzy output
(see Section 6.3), Many controllers, however, use directly crisp inputs, Figure
6.4 shows that in addition to a set of if /then rules,? a fuzzy controller has an
input interface and an output interface handling fuzzification and defuzzifica-
tion as well as various signal manipulations such as normalization, scaling,
smoothing, and quantization, Scaling maps the range of values of the con-
trolled variables into predefined universes of discourse, and quantization
procedures assist in the mapping when discrete membership functions are
used (Larkin, 1985; Efstathiou, 1987; Yager and Filev, 1994),

Fuzzy controllers operate in discrete time intervals. The rules are evalu-
ated at regular intervals in the same way as in conventional digital control,
with several rules being executed together (in parallel) within the same time
interval. This parallel feature makes it possible to develop highly dispersed
fuzzy algorithms as we will see later on. We use the subscript & to indicate a
specific moment in (ime~—that is, when ¢ =1,. The choice of sampling
interval depends on the process being controlled and is usually selected so
that at least several significant control actions are made during thie process
settling tirre (King and Mamdani, 1977). ’

Let us look at typical input or left-hand side (LHS) and oulput or
right-hand side (RS) fuzzy variables used in the knowledge base of fuzzy

2 ; :
The set of if /then rules is also referred to as the controller's knowledge base.,
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controllers. Many fuzzy controllers use error, change of error, and suri of
errors in the LHS,? based on measured process variables and setpoint values,
and any process variable that can be manipulated directly in the RIIS.

Input Variables

The most common LHS variable in fuzzy control is the emor, or ¢ L is
usually defined on the universe of discourse of crisp error ¢, which is the
deviation of some measured variable y from a setpoint or reference r. At any
time r = k crisp error is defined as

e(kYy =r—y(k) (6.2-1)

The change in error, Ae or Aerror, between two successive time steps is also
commonly used as an LHS variable. It is defined on the universe of discourse
of crisp changes in crror. At time t =k the crisp change in crror is the
difference between present error and error in the previous time step ¢ =
k — 1, namely,

Ae(k) = e(k) — e(k — 1) (6.2:2)

Fuzzy variables can also be defined for the rate of change in error A’e(k) =
Ae(k) — Ae(k — 1), and so on. The swm of errors (k) may be used as an
LHS fuzzy variable also. It takes into account the integrated effect of all past
errors and is defined as

k
#k)=Te (6:23)

P=1

In some cases, actua! state variables may be used (instead of error, etc.)
depending on the availability of parameter and structure estimation knowl-
edge. It is even possible to use variables not directly measurable, such as
performance or reliability, provided that they can be estimated in a timely and
reliable manner (Tsoukalas, 1991).

Output Variables

RHS variables may be any directly manipulated variable. An RHS fuzzy
variable 1 can be defined on the universe of discourse of a crisp manipu-
lated variable. Actually the change in output Aw is more often used as the
RHS variable. Aw indicates the extent of change of the control variable u at
time t = k—that is, the change in action. Hence, if the defuzzified output at

T : a :
Using these variables, one can write if /then rules emulating PID modes of contral.
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time & is Aw*(k), the overall crisp output of the controller will be
u(k) = u(k - 1) + Aw*(k) (6.2-4)

Using Au is preferable, since it requires a smaller number of data points in
the output universe of discourse in order for the controller to operate with
reasonable accuracy.

if / then Rules and Inference

Often, but not always, LHS and RHS variables are scaled to the same
universe of discourse and possess fuzzy values that have the same form,
Scaling to a common universe of discourse with a common set of values for
all variables may offer considerable savings in memory and speed as far as
the computer implementation of a fuzzy algorithm is concerned. In addition,
it may be helpful in analyzing the behavior of the controller itself, as we will
see later in this chapter. With the advent of fuzzy microprocessors and fuzzy
development shells, it is no longer necessary for a user to do scaling because
it is done by the system automatically. Nonetheless, scaling helps to simplify
algorithmic development and investigate factors involved in synthesis and
analysis. As an example, consider the fuzzy values for the variables eror,
Aerror, and Au shown in Figure 6.5 in connection with a fuzzy controller that
emulates the derivative mode of a conventional contraller (Sugeno, 1985;

M
1 {8 NM

.5-_5-4-3-2-!0!234’56
Universe of Discourse

Ficrre 6.5 Comman fuzzy values for Ihe error, Aerrer, and Au variables, scaled fo the
scine universe of discourse,
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Mizumoto, 1988). The common fuzzy values are as follows:

NB = negative big, PS = positive small
NM = negative medium, PM = positive medium
NS = negative small, PB = positive big

ZE = zero

All variables share the same universe of discourse ranging between —6 and
+6 as shown in Figure 6.5. In computer implementations, fuzzy values are
usually quantized and stored in memory in the form of a look-up table as
shown in Table 6.1. In this case the fuzzy values are stored in a 7 X 13 table,
with every row in the table representing a quantized fuzzy value, The fuzzy
algorithm of a controller that emulates a derivative mode is comprised of the
following if /then rules:

Ry iferoris NBAND Aerror is ZE then Auis PB ELSE
R,: iferroris NMAND Aeroris ZE then Auis PM ELSE
Ry: iferroris NS AND Aerror is ZE then Au is PS  ELSE
Ryt iferroris ZE AND Aerroris ZE then Auis ZE  ELSE
Rs:  iferroris PS AND Aerror is ZE then Auis NS  ELSE
Rg:  iferroris PMAND Aerror is ZE then Awis NM  ELSE
Ry ifermoris PBAND Aerror is ZE then Au is NB  ELSE (6.2-5)
Ry iferroris ZE AND Aerror is NB then Auis PB ELSE
Rg:  iferroris ZE AND Aerroris NM then Au is PM  ELSE
Ryt iferroris ZE AND Aerroris NS then Awis PS  ELSE
Ry: ifemoris ZE AND Aerroris PS then Awis NS ELSE
Rzt iferroris ZE AND Aeror is PM then Auis NM ELSE
Ry iferroris ZE AND Aerror is PR then Au is NB

When two LHS and one RHS variables are used as in (6.2-5), the algorithn
can be visualized in the form of a table as shown in Table 6.2. Such an
arrangement is sometimes called a “fuzzy associative memory (FAM) matrix.”
Blank items in the table indicate that there is no rule present for the
particular combination of LIS variables, Obviously for algorithms with more
than two LHS variables a tabular representation requires additional dimen-
sions.
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Table 6.1 Table of fuzzy values

belob el gl ol aloalitolslelels
VB 1 0471 033 0 a 0 0 0 0 i) i i) 0
NAS 0.33 | 0.647 I 0.67 | 0.33 0 0 0 a (/] a a0 0
VS 0 0 0.33 | 0.67 ! 0.67 1 033 0 0 0 o 0 0
7E 0 0 0 0 0.33 | 0.67 1 0.67 | 0.33 0 a 0 ]
iP5 a 0 0 0 o 0 0.33 | 0.67 ! 0.67 | 0.33 ] a
LPAL 0 0 0 0 7} o 0 | 0 |033] 067 1 0.67 | 0.33
7L} [ ] ] [/] /] ) [ 0 0 @ 0.33 | 0.67 1

Table 6.2 A fuzzy cigorithm In tabular form

Aerror NB NM NS ZE PS PM PB
error

NB

NAM

NS

Va0

PS

PAM

PR

Fuzzy control algorithms are evalvated using generalized modus ponens
(GMP), We recall from Chapter 5 that GMP is a data-driven inferencing
procedure that analytically invelves the composition of fuzzy relations, usu-
ally max-min composition. We also saw that max—min composition under a
given implication operator affects the RHS in a specific manner—for exam-

ple, by clipping (when Mamdani min, ¢

(4]

is used) or scaling (when Larsen

product, &, is used). In general, GMP can be thought of as a transformation
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of the RHS by a degree commensurate with the degree of fulfillment (DOF)
of the rule and in a manner dictated by the implication operatar chosen (see
Examples 5.1 and 5.2). In this chapter, instead of explicitly using composition
operations, we will mostly focus on such transforinations as is often done, for
the sake of convenience, in many fuzzy control applicatians. As far as the
entire algorithm is concerned, the connective ELSE is analytically modeled
as either OR (V) or AND (A), again depending on the implication operator
used for the individual if/then rules. For example, when the Mamdani min
implication is used, the connective ELSE is interpreted as OR (sce Table
5.3).

Fuzzy controller inputs are usually crisp numbers. Fuzzy inputs may also
be considered in the case of uncertain or noisy measurements and crisp
numbers may be fuzzified (sce Scction 2.3). Consider the situation shown in
Figure 6.6 involving rules R;, Ry, and R,, of (6.2-5). When at time ¢ = &
crisp error ¢" and crisp change in error Ae’ as shown in Figure 6.6 are given
to these rules we say that the rules have “fired,” provided that their DOF is
not zero. For example, in rule R, the crisp error e’ shown has a 0.8 degree of
membership to N§ while the crisp change in error Ae'” has a 0.6 degree of
membership to ZE. Thus the degree of fulfillment of rule R; at this
particular time is

DOF; = s, i(e') A pye(Ae’) =08 A 0.6 =06 (6.2-6)

Provided that we interpreted the LHS connective AND as min (A) [a
common alternative is product (+)], the RIS value PS will be transformed in
accordance with DOV, in equation (6.2-6). The nature of the transformation
depends on the implication vsed as we saw in Chapter 5. When Mamdani
min is used the transformation amounts to clipping £5 at the height of DOF,
as shown in Figure 6.6. Thus R, contributes g, (Auw), the shaded part of the
RHS value, to the total fuzzy oulput. Similarly rules R, and R, have
degrees of fulfillment

DOF, = (') A ppe(Ae’) = 0.4 A 0.6 = 0.4 (6.2-7)
DOF,, = py.(e') A pps(Ae’) =04 A 1.0 = 0.4 (6.2-8)

and they contribute g, (Au) and pys(Aw), shown as shaded parts of the
RHS values in Figure 6.6. The rest of the rules of algoritlun (6.2-5) do not
fire, that is, they contribute a zero output. The total fuzzy output is the wnion
of the three outputs since we interpret the connective ELSE in (6.2-5) as
OR (v)—that is,

Rour(At) = pps(Au) V ppp(Au) V pys(Au) (6.2-9)

toyr(Au) is shown at the lower part of Figure 6.6. At this point v nced to
defuzzify gy (Au)and obtain a crisp value Auf representative of y . (Au)
1o be used as input to the process. In the next section we =il look at
different methods for defuzzification.

»
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If Larsen product is used as the fuzzy implication operator for the
individual rules of (6.2-5), the membership function of the RHS value js
scaled by the degree of fulfillment of cach rule as shown in Figure 6.7 (sce
Example 5.2). Since the connective FLSE is interpreted as OR (V) when
Larsen product implication is used (see Table 5.5), the total output Mour(Au)
is also the wunion of the three individual outputs. Out of that we need to
sclect a representative crisp value as input to the process. We note in Figure
6.7 that pg,,(Au) looks quite different from the total fuzzy output obtained
using Mamdani min shown in Figure 6.6. Other fuzzy implication operators
(see Table 5.2) would produce different transformations in the shape of the
RHS fuzzy value and, hence, a different topr(An).

[nterpretations of AND other than min (A) may be used in the AND
connective found in the LHS of the rules, hence obtaining different degrees
of fulfillment. Arithmetic product has been used (particularly in conjunction
with max-product implication) and more generally T-norms (Zimmermann,
1985; Fuller and Zimmermann, 1992)4 Using arithmetic product the degree
of fulfillment for the rules of (6.2-5) that fire would be evaluated in the
manner shown in Figure 6.8, The degree of fulfillment for R, Ry, and R,,

dare

DOF; = pys(e’) - pyp(Ae’) = 0.8 0.6 = 0.4

DOY, = pzp(e’) * pps(Ae’) = 0.4-0.6 - 0.24

DOF), = pyp(e') * pps(de’) = 04-1.0 - 0.4 (6.2-10)

Comparing equations (6.2-10) with cquations (6.2-6)-(6.2-8) we <ce that
generally the two different interpretations of AND lead to diiferent results
under the same fuzzy implication operators as we can also see by comparing
Ligures 6.7 and 6.8,

After we defuzzify juy,,, (Au) by one of the methods discussed in the next
section, we obtain a crisp value Auj, which in the case of the algorithm of
(6.2-5) would be an integer between —6 and +6, Values greater than the
extremes of the universe of discourse are set to the extreme values, in this
case —6 or +6. This value is then multiplied by a scaling factor that maps it
into the appropriate range of the manipulsted variable before using it to
actuate a device (Larkin, 1985).

Since so much of actual process contiol knowledge has historically been
obtained through PID controllers, it is often convenient to emulate various
modes and combinations of the PID controller by fuzzy rules. Thus a fuzzy
controller emulating a conventional PI) mode of control controller would

4 i : . 5 .
See the Appendix for an introduction to T nerns and their ce-norms, called § norme.
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consist of rules having the form
if eisA AND AeisB thenuwisC (6.2-11)

where e is the error and Ae is the change in error. A PI-like fuzzy controller
would have rules of the form v

if eisA AND AeisB then duisC (6.2-12) -
while a P-like controller would have rules
if eisA then uisC (6.2-13)
The rule form of a PID-like fuzzy controller is
if eisA AND AeisB AND eisC then uisD (6.2-14)

where € is the sum of errors.

Although we have formulated fuzzy algorithms in terms of rules involving
fuzzy values on their RHS (such rules are referred to as Mamdani rules),
there are advantages to consider crisp or special shape membership functions
as well. Several fuzzy controllers use rules where the output variable is given
in terms of a functional relation of the inputs, This is known as the Sugeno or
TSK? form of fuzzy rules. Such rules are typically written as

if xyisA;, AND x,isA,...then u=f(x....,. x,) (6.2-15)
where f is a function of the inputs xy,...,x,. When f(x;,...,x,)is a
constant, rules of the form (6.1-15) constitute a zero-order Sugeno controller,
When f{x,,...,x,) is a first-order polynomial we have what is called a
first-order Sugeno controller. For example, we may deseribe a Pl controller of
(6.2-12) by rules of the form

if eis LARGE AND Aeis MEDIUM thenu = 2¢ + 3Ae (6.2-16)

An interesting application of Sugeno rules is when a PID controller is put
directly in the RHS of (6.2-15). The result is a fuzzy “supervisor” changing
the parameters of a PID controller [see Tzafestas and Papanikolopoulos
(1990)]. Sugeno fuzzy models are well suited for modeling nonlinear systems
by interpolating multiple linear models and are also well suited to mathemat-
ical analysis and lend themselves to adaptive techniques, whercas Mamdani
rules are more intuitive and better suited to human. [See Jang and Sun (1995)
and Jang and Gulley (1995) for a review of different controllers.]

‘After the Takagi, Sugeno, and Kang who first proposed it in 1985; also referred to as the Sugeno
fruzzy model.
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An alternative to cither Sugeno or Mamdani rules js to consider rules
whose consequents employ monotonical membership functions. This form of
rules is known as the Tsukamoto fuzzy model (Tsukamoto, 1979). In Tsukamoto
rules the inferred output of each rule is a crisp value equal to the rule’s
degree of fulfillment, with the overall output being taken as the weighted
average of all outputs (a crisp value).

Fuzzy algorithms such as (6.2-5) are inhe rently parallel in the sense that
individual if/then rules are fired independent of cach other, with a specific
input being processed by several rules cach contributing (o a collective result,
namely, g, (Au). Actual process systems, however, may have many inputs
and outputs, and hence they arc referred (o as many-inpurt-many-oudput
(MIMO) systems. The question then arises of how relevant are the rather
simple if /then rules we have seen thus far, such as the algorithm of (6.2-3), 1o
the control of such systems and what happens to parallelism at a higher level
of system complexity.

Generally the control strategies of complicated process systems may be
organized in such a manner that relatively simple if/then rules are used
(Terano, 1992: Yager, 1994). This is achieved by partitioning the knowledge
base of the controller inta rule clusters, In cach cluster there are if /then
rules that may have several LHS variables but only one RHS variable.
Suppose that we have p input variables XpXa,...,%, and r manipulated
variables wu;, u,,...,u,. The algorithmic development gencrally proceeds
from some general and maybe complicated if/then rules that form the
a priori knowledge preseribing what has to be done under a set of hypotheti-
cal situations. Often, but not always, it is possible to reduce these initial rules
to simpler rules with one control variable in the RHS. Rules that have the
same RHS variable are collected together to form a rule cluster. In the end
we have one cluster of rules whose RHS is used to manipulate variable «,,
another for variable u,, and so on. Thus, a complicated process control
system may be decomposed into a number of many-input-single-output con-
trollers. Such rule clusters may be executed independently, hence maintain-
ing the overall parallel characteristics of fuzzy systems. Of course, more
claborate architectures can be devised that may include metarules. The
developers of fuzzy control algorithms exercise considerable creativity in
sciting up special variables and rules for the interaction of these clusters. In
principle, hawever, rule clusters can be noninteractive, in which case they can
be executed in parallel, achieving considerable speed and computational
efficiency.

6.3 DEFUZZIFICATION METHODS

After the input to the controller has been processed by the control algorithm
the result is a fuzzy output ko). Sclecting a crisp number 1 representa-
tive of pgy () is a process known as defuzzification. Over the years several

»
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defuzzification techniques have been suggested (Terano et al.,, 1992; Pedrycz,
1993; Yager and Filev, 1994): The choice of defuzzification method may have
a significant impact on the speed and accuracy of a fuzzy controller.® The
most frequently used ones are the centroid or center of area (COA), the center
of sums (COS), and mean of maxima (MOM).

Centar ¢ Area (COA) Defuzzification

In GOA defuzzification” the crisp value u* is taken to be the geometrical
center of the output fuzzy value pgyp(10), where pgpr(u) is formed by taking
the union of all the contributions of rules whose DOF > 0.* The center is the
peint which splits the area under the gy, () curve in two equal parts. Let
us assume we have a discretized universe of discourse. The defuzzified
output is defined as

B T u; pour ()

3
Zf\:-t Koyt (u:) el

where the summation (integration) is carried over (discrete) values of the
universe of discourse u,; sampled at N points. COA is a well known and often
used defuzzification method. Some potential drawbacks of COA are that it
favors “central” values in the universe of discourse and that, due to its
complexity, it may lead to rather slow inference cycles, COA defuzzification
takes into account the area of the resultant membership function pgp(u) as
a whole. If the areas of two or more contributing rules overlap, equation
(6.3-1) does not take into account the overlapping area only once [since we
take the union to form g7 (1), the resultant membership function).

When popr() = 0 we simply set the crisp output to a pre-agreed value
(in order to avoid dividing by zero), typically u* = 0. The crisp output value
may also be computed in terms of the DOF of each contributing rule as

- k-1 DOF, - M,
Zi.1DOF; - B,

u*

(6.3-2)

where B} is the contribution due to the firing of rule k,° M, is the moment
of B, and DOF, is the degree of fulfillment of the kth rule (k = 1,...,n).

fCertain defuzzification methods may introduce nonlinearities and discontinuitics in the control
hypersurface [see Jager (1993)].

"also known as center of gravity defuzzification, a name more appropriate for multidimensional
fuzzy output.

¥ For convenience we use the control signal u as the output variable. The control signal change
Au or any other output variable may be used as well.

*The subscript k is used to indicate the kth rule and should not be confused with the letter &
used earlier to indicate the ¢ = k time step.
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We recall that the moment of B} is the product of B} and the distance of its
center of gravity from the g axis (the moment about zero),

Center of Sums (COS) Defuzzification

To address the problems associated with COA and take into account the
overlapping areas of multiple rules more than once, a variant of COA called
center of sums (COS) is used. As shown in Figure 6.9, COS builds the
resultant membership function by taking the sum (not just the union) of
output from cach contributing rule. Hence overlapping areas are counted
more than once. COS is actually the most commonly used defuzzification
method. It can be implemented easily and leads to rather fast inference
cycles. Tt is given by

-

Z:“ijff.-Eﬂ_] g (14;)
w = R

B mp(uy)

(6.3-3)

where w,.() is the membership function (at point 1; of the universe of
discourse) resulting from the firing of the kth rule.

Mean of Maxima (MOM) Defuzzification

One simple way to defuzzify the output is to take the crisp value with the
highest degree of membership in (). Oftentimes, however, there may
be more than one element in the universe of discourse having the maximum
value, as may be seen in the w,,,(u) of Figure 6.6. In such cases we can
randomly select one of them er, even better, take the mean value of the
maxima. Suppose that we have M such maxima in a discrete universe of
discourse. The crisp output can be obtained by

* I’i[] If(l" )
e 3 2 (6.3-4
m=1 M

where w,, is the mith clement in the universe of discourse where the
membership function of p,,,(4) is 4t the me. aum value, and M is the
total number of such elements.

MOM defuzzification is faster than COA, and furthermore it allows the
controller to reach values near the edges of the universe of discourse. A
disadvantage of this method, however, is that it does not consider the overall
shape of the fuzzy output u,, (). On the other hand, with COA the
extreme values of the universe of discourse cannot be reached—for example,
near 6 in Figure 6.5, Both methods have been used in control applications;
several variants of them exist, such as the indexed center of gravity method,
where a threshold level is used to climinate elements with degrees of
membership lower than a threshold in the computation of pg,.(Au)
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Figure 6.9 Three different defuzzification methods: center of area (COA, center of
surms (COS), and mean of maxima (MOM),

(Pedrycz, 1993). It is also possible to employ defuzzification methods in an
adaptive manner (Yager and Filev, 1993, 1994).

Example 6.2 A Simple Fuzzy Controller for Level Control. Consider the
process system shown in Figure 6.1 (and controlled by a PID controller in
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prised of the following rules:

R,: iferroris NB then outputis VH ELSE
R,: iferroris NS then output is HIGH ELSE
Ry ifemorisZ then output is MED ELSE (E6.2-1)
R,: iferroris PS then output is LOW ELSE

Ry iferroris PB then output is VL

We use Mamdani min for fuzzy implication and hence interpret the connec-
tive ELSE in (E6.2-1) as OR (see Table 5.5). Suppose that at time £ = 0 min
the output of our controller was at 50% of its full range and 2 min later we
introduce the error shown in Figure 6.2, What would be the output according
to the algorithm of (E6.2-1)? Let us look at what happens at 1 = 3 min. From
Figure 6.2 we see that the input to the algorithm at this time is a crisp error
e, = 1.25%, which belongs to the Z value of error to a degree of 0,87 and to
PS to a degree of 0.12. The degree of membership to other fuzzy values is
zero, as can be seen in Figure 6.10, Thus, rules R, and R, of algorithm
(E6.2-1) will fire, since they are the only rules involving the Z and PS values.
The situation is shown in Figure 6.11, where we see a schematic (geometrical)
rendition of the evaluation of the control algorithm under GMP at time ¢ =
3 min. The degree of fulfillment of R, is DOF, = 0.87 and for R, we¢ have
DOF, = 0.12. All other rules have DOF = 0.0. Using Mamdani min implica-
tion the result of evaluating rules Ry and R, under GMP is to clip the RIS
values of rules R, and R,—that is, MED and LOW—at u, gy(u) =087
and gy ep(u) = 0.12, respectively. In other words, MED is clipped at 0.12.
Out of all rules, only R; and R, contribute at r= 3 min, and their
contributions are gy op (1) and gy, (1) as shown in Figure 6.11. Since we
interpret the connective ELSE as OR, the total fuzzy output of the entire
algorithm at ¢ = 3 min is the union of these two values—that is,

ropr(u) = Prow (1) v F‘,\mn‘(“) (E6.2-2)

poy () is shown in the lower part of Figure 6.11. We use the COA
defuzzification—that is, equation (6.3-2)—to defuzzify toprlu). The result .
is ut = 47%. If MOM is used, the average value of the maximum values of
poyr(w) is at the middle of the platcau of Wyep(w)—that is, at about 50%.
Hence, the two methods give somewhat different results. In MOM the
contribution of g ow () is totally ignored since only the values where
Wopr(u) is at a maximum are taken into account. The above procedure is
repeated in subsequent time steps. The defuzzified output of the controller
using COA is shown in Figure 6.12. Comparing with the three different
modes of PID control shown in Figure 6.3, we see that our fuzzy controller
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behaves like a proportional contraller, since the form (not the magnitude) of
the output is similar to u,(t). O

Example 6.3 A Two-Tuput Yuzzy Controller for Level Control, Consider the
process systermn shown in Figure 6.1, addressed by a PID controller in
Example 6.1 and a simple fuzzy controller in Example 6.2. Let us now
develop a fuzzy controller with two LHS and one RHS variables. We use
error and change in error, Aerror, in the LHS of the rules and use output in
the RS, The fuzzy values of these variables are shown in Figure 6.13. Aemror
e the direction of change in error; that i, increasing is described by the
£

f e P (positive), decreasing is described by N (negative), and no
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change is described by ZE (zero). We use Mamdani min implication and
COA defuzzification. The fuzzy algorithm is:
R:  iferroris NB AND Aerror is N then owtput is HIGH ELSE
R,: iferroris NB AND Aerroris ZE then owtputis VH ~ ELSE
R;:  iferroris NB AND Aerroris P then output is VH ELSE
-Ry: iferroris NS AND Aerror is N then output is HIGH  ELSE
Rs:  iferroris NS AND Aerror is ZE then owtput is HIGH ELSE
Ry iferroris NS AND Aerror is P then output is MED  ELSE
Ry iferroris £  AND Aerroris N then owtput is MED  ELSE
Ry iferroris Z  AND Aerror is ZE then owput is MED  ELSE
Ry:  iferraris Z  AND Aerror is P then ouiput is MED  ELSE
Ry iferroris PS AND Aerror is N then owtput is MED  ELSE
Ry iferroris PS AND Aerror is ZE then owtput is LOW  ELSE
Ry, iferroris PS AND Aerroris P then output is LOW  ELSE
R,y iferroris PB AND Aeroris N then output is LOW  ELSE
Ry;t iferroris PB AND Aerroris ZE then output is VL ELSE
Rys: iferroris PB AND Aerroris P then output is VL
(E6.3-1)

We recall that with Mamdani min the connective ELSE in (E6.3-1) is
interpreted as OR and therefore the total fuzzy output will be the union of
individual rule contributions (see Table 5.3). It is customary in the control
literature to refer to the fuzzy relations (E6.3-1) as control surfaces (or
hypersurfaces). Figure 6.14 is a graphical representation of the control surface
indicating hypersurface dependence on the rules. In Figure 6.144, no rules
exist in our algorithm; hence the control hypersurface is a flat planc at « = 0.
If the control algorithm in (E6.3-1) was comprised only of the two rules R,
and R, (the rest did not exist), then the control hypersurface would look like
what is shown in Figure 6.14b. If only the first eight rules of the algorithm
are present, the control hypersurface looks like Figure 6.14 ¢, while if the first
13 rules are present, the control hypersurface would look like Figure 6.144.
Finally, if all 15 rules are present, the control hypersurface looks like
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Figuro 6,12 Defuzified outout of fuzzy level contraller with one input ond crie o,

Figure 6.14e. Plotting the control hypersurface helps to visualize the manner
in which a fuzzy controller covers the control space. Unfortunately it is not
convenient (0 use when more than three variables are present,

At 1 =2 min we introduce the error shown in Figure 6.2 (same as in
Examples 6.1 and 6.2). Figure 6.15 shows a schematic representation of the
fuzzy inference or gencralized modus ponens (GMP) at ¢ =35 min, Crisp
inputs e" = 3.75% and Ae’ = 1.25% are presented to the algorithm (126.2-1)
at this time. Crisp error e’ = 3.75% belongs to fuzzy value Z to degre: of
0.75 and to fuzzy value PS to a degree of 0.4. Similarly, crisp chanpe-in-error
Ae’ = 1.25% belongs to fuzzy value ZE to a degree of 0.6 and o fuzzy vahie
P to a degree of 0.4. Hence the only rules that will have DOT greater than
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Figure 6.13 Fuzzy values for (@) error, (b) Aerror, and () output fuzzy variables used
in Example 6.3.
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Figure 6.15  Evaluating the fuzzy algorithm of EBxample 6.3 ot time = 5 min,
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zero in (E6.3-1)—that is, the rules that fire—will be Ry, Ry, Ry, and Ry,
Using the min form of DOF (.., the min (A) interpretation of AN13), each
rule contributes the shaded part of the RHS value shown in Figure 6.14. We
recall that GMP with Mamdani min implication clips the RHS at the height
of DOF, as shown in Figure 6.15. Rule R; contributes MED', R, contribulcs
MED”, R,, contributes LOW', and R,, contributes LOW". The fuzzy
output g,,,(u) is the union (max) of these four contributions (shaded parts),
that is,

Bou(tt) = pypn(u) v yep- (0 V Logn () V pygn-(8) (E6.3-2)
t...(1) is shown at the lower part of Figure 6.15. Using COA deluzzification,
we obtain the crisp output u* = 38%. The procedure is repeated for other

time steps. The crisp output of the controller for the duration of the problem
is shown in Figure 6.16. Comparing with Figure 6.13, we see that introducing

- 1 I | 1
109

B -

b g e —— E -
]
&
i = &
=
==
=
EQ
——

207

t [min]

Figute 6,16 Defuzzified output of fuzzy controller with two inputs Cerror and Aerror)
under ramp input.
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onc more variable, namely the change in crror Aerror, makes a significant
difference in the control action. To obtain a desired response by our
controller, we can now modify the shape and position of constituent member-
ship functions or the rules, the implications used, and so on. A number of
factors contribute to different outputs, such as the knowledge encoded in
(E6.3-1), the fuzzy values used, the interpretation of AND (affecting DOF),
the implication operator, and the defuzzification method uscd. The role and
significance of these factors will be examined in the next section. 0O

6.4 ISSUES INVOLVED IN DESIGNING FUZZY CONTROLLERS

Although there are automatic ways of identifying the rules and membership
functions involved in a fuzzy controller,® iy many ways the development of a
good fuzzy controller refleets the maturity of knowledge about a process. The
choice of fuzzy variables and values and the rules themselves are intimately
related to the knowledge a developer has about the entire process control
system. The knowledge can be extracted by interviewing skilled operators or
analyzing records of system responses to prototypes of input sequences
(Dubois and Prade, 1980 Bernard, 1988). In addition, important decisions
need to be made about the algorithm itself, such as what kind of implication
to use, the appropriate defuzzification method, and implementation-related
Issues such as how to store the fuzzy relation of the algorithm, how to
quantize membership functions, and so on. A difficult issue in fuzzy control
arises in connection with determining the stability characteristics of the
system. Stability itself can be thought of as a fuzzy variable and can be
included in a description, with various degrees of stability (not just stable or
unstable) being considered. Generally though, stability questions are hard to
answer exclusively within fuzzy linguistic descriptions (Kiszka et al, 1985;
Jiangin and Laijiu, 1993).

Once an algorithm has been developed, its quality can be assessed by
exumining the shape of the fuzzy output. Consider the situation shown in
Figure 6.17 (King and Mamdani, 1977). Here we have three different gencral
shapes for the membership function of the fuzzy output at some particular
time step. They reveal thiee different instances of algorithmic quality. In
situation A4, a well-peaked fuzzy output indicates presence of strong firing
rules. In situation B, the output points to two different and opposite areas of
the universe of discourse, and hence we {dentify the presence of some
contradictory rules or groups of rules, at the same time suggesting an output
toward —3 and toward +3. An algorithm that points its output in opposite
dircctions at the same time needs some further refinement to remove this
kind of contradiction. In sitvation € we have the presence of an unsatisfuc-
tory set of rules since there is no representative output. In general, low

Often referced 0 as structure and parameter identification.
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Figure 6.17 Tnree different coses of fumy outpuf Indicative of olgorithmic quality:
(A) dorninont e, (B} coniradictory rules, and (C) na satisfactory rule.

plateaus like what is shown in situation € indicate that the knowledge
encoded in the algorithm is incomplete and that additional rules are needed.

Let us now turn our atlention to the various factors involved in the
development of a fuzzy algorithm other than the quality of the encoded
knowledge. Fuzzy algorithms are linguistic descriptions of the desirable
behavior of a system. As such they have an analylical form involving fuzzy
variables, relations, implication operators, and inferencing procedures. In
order to examine the factors involved in algorithmic synthesis and analysis,
let us look at the general analytical description of a fuzzy algorithm. Suppose
that we have a control algorithm with linguistic form:

if xisA, AND yisB, thenuisC;, ELSE

if «xisd, AND yisB, thenuisC, ELSE

: : . . (6.4-1)
if xisA; AND yisB; thenuisC, ELSE

if xisA, AND yisB, thenuisC,

At time ¢ =k, crisp inputs x' and y' are given to algorithm (6.4-1), and
through GMP (see Chapters 3 and 5) we determine the output membership
function. Analytically the operation of inferring a fuzzy output at any given
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time stcp may be written as
#e-(u) = (DOFy(k), #e (1))
v ¢(DOF,(k), He (1))

v &(DOE (), ue(u))

Vv ¢(DOF,(k), Ko (1)) (6.4-2)

for implication operators ¢ where the connective ELSE is interpreted as
unton (see Table 5.5). For implication operators interpreted as intersection we
change (V) in equation (6.4-2) to (A). Equation (6.4-2) tells us that the
collective output of the controller depends on aggregating the outputs of
individual rules with the output of each rule depending, in turn, on the
degree of fulfillment plus the consequent membership function of the rule.

The degree of fulfillment of the jth rule DOF,; in (6.4-2) depends on the
interpretation of the connective AND (generally thought of as a T norm (see
Appendix)). If AND is analytically described as min (A), the degree of
Suldfillmenr at timestep k is

il N | (6.4-3)

where x' and y' are the mea<ured input values at a given time k. 1{ 4N ..
Iytically described as prodicct (), the DO is

DOG(K) = pa (%) - uy(y') (6.4-4)

It should be noted that the DOF is a function of time as different input
valucs activate the rules to different degrees at different times. Equation
(6.4-2) gives the fuzzy output (before defuzzification) of the controller in a
seneral form and helps us to identify choices the developer needs to make
such as the appropriate fuzzy implication operator ¢ and the associated
interpretation of the connective ELSE, the form of DOF, and the defuzzifi-
cation method. -

In the design of fi y systems it is important to adequately cover the state
space of the problem. Generally the development of a rule set that is both
complete, and correct is one of the most difficult problems in fuzzy control.
Although various apicoaches have been suggested for learning a control
algorithm on-line and adapting it to changing process conditions (Graham
and Newell, 1988; Cox, 1993), this is still a rather heuristic process, and a
200d understanding of the various factors influencing the output of the
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controller is very helpful in its development and cvaluation. Generally, which
rules and to what extent will contribute toward an output at any given time
depends primarily on the form of the degree of fulfillment (min or product),
the defuzzification method, and the implication operator.

Let us consider the jth rule of (6.4-1) where triangular membership
functions are used as shown in Figure 6.18. We assume min (A) form fir
DOF as in equation (6.4-3). We also assyme common guantized universe of
discourse for all variables, of the type shown in Table 6.1. In Figure 6.18 we
sce the part of the Cartesian product of LHS variables covered by the jih
rule. The x Xy plane is the sfate space of our system. The state space
covered by the jth rule is a square of six units edge, centered at (xg, y,.)
shown in the figure. At time f = k, crisp inputs (x', y*) are given to the mlc_
Let us first see what happens when the point (x’, y") is located within the
innermost square centered at (x;,, y;.) that has an edge of 2 units as shown in
Figure 6.18. In such a case the degree of fulfillment DOF, of the jth rule will
ba the same regardless of the exact location of point (', y') so long as it
remains within this particular square, since we have that

r“’ri(I) DA wg Vie + 1) = 0.67 A 0.67 = 0.67

r

Ralxe) A pg(¥ie = 1) = 0.67 A 0.67 = 0.67

i

i

(¥
(

o (X) A ka(¥, + 1) = 0.67 A 0.67 = 0.67
iy (6.4-5)

wa (%o = 1) A g (v, — 1) = 0.67 A 0.67 = 0.67

!

palXe = 1) A pp(5) = 0.67 A 0.67 = 0.67

(e = 1) A pyp(y, + 1) = 0.67 A 0.67 = 0.67

Thus the DOF is 0.67 everywhere within this inoermost square. Similar
considerations lead us to the conclusion that if the point (x’, y*) falls within a
square of edge 4, the DOF is 0.33 everywhere, whereas if it falls outside, the
DOF is 0. Thus the distribution of the DOFs of a rule centered at (x,, y,.) is
as shown in Table 6.3,

When at time t = k the crisp inputs (x, y') are given to the controller, the
DOF of individual rules depends linearly on the distance between the input
and the center (or peak) of the rule (x;,, y,.). Obviously the number of rules
that will influence and contribute to thx. collective fuzzy output at any given
time are only those within a distance o from input (x', y') (sec Figure 6.18).
Thus in a control algorithm, only the part of state space a distance d from a
crisp input needs to be considered for rules that may be “fired.” The rest
have DOF = 0. The distance d is taken to be half of the support of a fuzzy
value (considering the support to be where the membership function is not
trivial). As shown in Figure 6.18, the edge of a square with (x;, x,.) at its

jer
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center is 2d. We assumed of course that the two fizzy values A; and B, have
supports of the same length. When the support sets do not have the same
length, then instead of a square we have a paralizlogram and the distance of
(x', y') from (x,,, x;.) will vary directionally as we move in ditferent locatio~s
of state space.

The number of rules contributing to the fuzzy output depends also on the
defuzzification method. When MOM is used, only the rules that are very
close to the input (x', y') contribute maximum values to the output and
therefore they are the only ones that need to be taken into account. We
recall that with MOM, only the maximum values of the various contributions
to the fuzzy output are used; and hence, only rules with high DOF and
therefore small distance from (x', y*) will influence the output. When COA
is used, all the rules within a distance d from (x', y) need to be taken into
account. Of course their contribution is in proportion to their distance from
the imput. Those which are the closest have the highest degree of fulfillment
and therefore contribute more than those far away, Nonetheless, all rulcs
within a distance d from (x', y’) need to be taken into account.

On the other hand, if product is used in the DOF—that is, IJ'()F.l =
#aLx,) gy, )—the distribution of the DOF for input values in the vicinity
of the jth rule would be as shown in Table 6.4, We sce that DOF is varying
with distance from (x;,, y,,) in a nonlinear manner, Again, if COA defuzzifi-
cation is used, all the rules within a distance o need to be taken into account.
When MOM is used, the rule peaking at (x, y;,) will have less influence
than the earlier situation when the degree of fulfillment was defined through
min. In the present case, it will influence the rule in a directional manner.
For this reason with product DOF, COA defuzzification is more appropriate,
Sometimes we may have very low DOFs, and therefore a cutoff number
ought to be used to limit the number of rules that need to be considered.
Thus we may choose DOF, = « and ignore rules below whose DOF is less
than .

When continuous instead of discrete fuzzy values are used, their member-
ship functions can be defined by various functions such as S-shaped and
[l-shaped functions (see Sections 2.6.3, 2.6.4, and 2.6.5). Similar considera-
tions hold for such cases as for discretized membership functions. With
MOM, tremendous accuracy is not required since only the relative size of the
membership values influences the final result and not the precise magnitude.
Thus in order to take advantage of the fact that we have more precise
membership values with continuous membership functions, it is best to utilize
the COA (or COS) method of defuzzification.

We turn our attention now to the influence of the shape of membership
functions describing the antecedent and consequent fuzzy values. The sup-
port of the fuzzy values of the antecedents (e.g., 2d) determines the area of
influence of every rule and hence plays a crucial role in the caleulation of the
control value. Generally the shape of the membership functions of LHS
values has a substantial impact on the computation of the control action at
any given time since it affects the DOF of each rule. Obviously the shape of
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Table 6.4 Dislribufion of DOFs around rule cenler
(rule with product DOF)

0 0 0 0 0 0 o
0 0
0 0
0 0
0 0
0 0
o 0 0 0 0 0 o

the RHS membership function affects directly the contribution of the rule to
the overall fuzzy output,

When MOM is used, the exact shape of the LHS membership functions
does not play a major role provided that it is in the general shape of a “hill,
and symmetric with respect to a normal point.” MOM defuzzification effec-
tively di:tinguishes the rules with the highest priority (highest DOF) that
is, the rules closest to the input (x', y"). Thus with MOM, the DOF suggests
the distance from (x’, y') and therefore the absolute values of the member-
ship functions are not crucial, just their magnilude in relation to the
membership functions of other rules. Similarly the exact shape of RHS
membership functions does not play a crucial role in the calculation of the
crisp output. When the support is not symmetrie, the peaks in the member-
ship function of the antecedents move relative to the support set and thus
offer differcnt DOF for the same inputs to the controller and different
nonsymmetric shapes of “hills.”

“When COA defuzzification is used, the exact shape of the membership
functions of antecedent as well as consequent plays an important role, even
when symimetric membership functions are used. This happens because COA
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defuzzification takes into account the area vned =~ the cunv+ of the total fuzzy
output at any given time. This area is influence  lirectly 7 the shape of the
consequent membership functions of the contriouting rul s, and indirectly
through the DOF (the shape of the consequent snembership functions of the
contributing rules). The above-mentioned influ nce on the crisp controller
output is emphasized (accentuated) even more if nonsymmelric membership
functions are used, as well as if different membership {unctions are used for
the different variables.

Let us now cxamine the influence of fuzzy implication operitor ¢ on the
computations of the controller output at a time =k We consider a
hypothetical casc where only one rule exists in the vicinity of (x', y'); that is,
only one rule fires. Suppose that we use Mamdani min implication operator
¢, and fuzzy sets defined through symmetric triangular functions of the form
shown in Table 6.1 (also Figure 6.5). Figure 6.19 (top) shows what happens to
the RHS value for different degrees of fulfillment of a rule. The consequent
membership function remains the same for DOT = 1 and is gradually clipped,
finally becoming zero when DOF = 0. The dcfuzzified output is the same
with ¢ither COA or MOM methods. The situation is similar when Larsen
product implication operator ¢, is used as can be scen in Figure 6.18.

On the other hand, if the Boolean implication operator ¢, is used, a
“plateau” is ereated that grows, as DOF is getting smaller, until it covers the
entire universe of discourse when DOF = 0. While this is exactly the oppo-
site of what happens when the Mamdani min implication operator is used, it
is counterbalanced by interpreting ELSE as intersection (min) when a
number of rules are connected in order to compute the total fuzzy output of
the controller. In fact, this is the reason for using min for the connective
ELSE with this implication operator (sce Table 5.5). It should be noted from
Figure 6.19 that COA and MOM defuzzification may give different crisp
outputs when Boolean implication is used.

If the arithmetic implication operator ¢, is used, a “plateau” is also
formed as it happens with Boolean implication. The peak of the function is
clipped as with Mamdani min implication. When DOF = 0, the “plateau”
covers the entirc universe of discourse. Again it should be noted that COA
and MOM defuzzification may give different crisp outputs.

As can be seen in Figure 6.19, when Mamdani min and Larsen product
implications are used, both COA and MOM defuzzification methods give
similar results. In Boolean and arithmetic implications, on the other hand,
the two defuzzification methods will give rather different results due to the
developing plateaus. When plateaus appear, MOM defuzzification is better
because COA considers the peak of the rule together with the developing
plateau, and hence it shifts the final crisp output away from the location that
is suggested by the peak of the rule, This is undesirable since “plateaus” do
not contain useful information. They can be interpreted as.a fuzzy value
“unknown.” In Figure 6.19 we note that when DOF = 0, Mamdani min and
Larsen product implications give “nothing” as the output of the controller.



184 FUZZY CONTROL

DOF=1 DOF=06&7 DOF=031 DOF=0

L

T &

COA MOM =0

|
o e e

COA MM COAm WO COA=NGM COL MOM =

COAmlON

Figuro 6.19 Influence on output of varous Imglications under different degrees of
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On the other hand, using the Booican and ari | uetic im) Veations produces
unknown as output, In all cases we can s=t the « put to  :p zero.

In addition, with Mamdani min and Larsen pcoduct in. lications we may
effectively use cither method of defurzification since the total fuzzy output
contains contributions from all (or many} rules. Gonerally, if a rule or several
rules are an equal distance away from the point (x°, y), we have the same
results with either defuzzification methiod. With Beolecan and arithmetic
implications we do not need to use COA defuzzification (which is actually
computationally more demanding) since in many cases the total fuzzy output
does not effectively represent the contribution of the individual rules (due to
the “plateau” or “flattening” effect). Tn general, it is preferable (but not
required) to use MOM in conjunction with Boolean and arithmetic impli~a-
tions,
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PROBLEMS

1. A fuzzy control system used inputs of error ¢ and change in error Ae to
control an output variable «. Their fuzzy membership functions have the
following characteristics:

Variable Range Description of membership function
¢ Errar (%) -20t0 +20 N (negative) Straight line from 1 at — 20% to 0 at 0% '
Z ero) Straight line from 0 at —20%% to | at 0% and

another straight line from | at 09 to 0 at +20%
P (positive)  Straight line from 0at 0% to 1 at +20% *

de Changein —10to +10 ¥ (negative) Straight line from 1 at — 10% /min ta 0 at
+ 109 /min
error (¢ /min} P (positive)  Straight line from 0 at = 10% /min to 1 at
+10% /min
#OQuiput (%2)  —2510 +25 N d{nepative) Straight line from 1 at — 259 to 0 at 0%
: Z (zero) Straight line from 0 at —25% to 1 at 0%% and

another straight line from 1 at 09 to 0 at +~25%
P (positive)  Straight line from 0 at 0% to L at +25%

The fuzzy algorithm is given below. Determine the output i fore' = +16%
and Ae' = —2% /min using the Mamdani min implication operator and

-
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=

th

6.

max-min composition (as well as min interpretation for AND in the
degree of fulfillment). Use the Center of area method to defuzzify the
answer. (Sketch the various membership functions involved and show how
you obtained your solution.)

FUZZY ALGORITHM
R, ifeisN AND AeisN thenuisP ELSE
R, ifeisN AND AeisP thenuisP ELSE
Ry ifeisZ AND AeisN thenuisZ ELSE
Ry ifeisZ AND AeisP thenuisZ ELSE
Rs ifeisP AND AeisN thenuisN ELSE
Ry ifeis P AND AeisP thenuis N

Repeat Problem 1 using the Larsen product implication, max—min compo-
sition, and product for the degree of fulfillment,

. In Problem 1, the error starts at a value of +16% at time 0 and decreases
L]

at a rate of 29 /min for 4 minutes. Determine the output u at times
t=10,1,2 3, and 4.

- Analyze the fuzzy controller given in Problem 1 using the criteria given in

Section 4. Are there contradictions within the rule set? Is there a domi-
naut rule? Are the rules covering the state space in a satisfactory manner?

« Using MATLAB, draw the control hypersurface for the fuzzy controller

given in Problem 1. Simulate the controller for the range of all possible
nputs nd answer the questions posed in Problem 4.

Show what the different interpretations for ELSE could be for the fuzzy
coatroller of Prablem 1 and the implication operators given in Table 5.2,
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