FUNDAMENTALS
OF NEURAL NETWORKS

7.1 INTRODUCTION

In 1956, the Rockefeller Foundation sponsored a conference at Dartmouth
College that had as its scope

The poiential use of computers and simulation in every aspect of learning and
any other feature of intelligence.

was at this conference that the term “artifizin! :*telii;, rce" cime inta
mmon use. Artificial intelligence can be broadly defined &

[

Computer processes that attempt to emulate the human thought processes that
are associated with activitics that require the use of intelligence.

Genperally, this definition included the fields of automatic learning, under-
standing natural language, vision-image recogaition, voice recognition, pame
playing, mathematical problem solving, rohotics, and expert systems. In
recenl years, some researchers have included neural networks and other
related technologies as constituents of artificial intelligefce, while others,
pointing to their origin in biological sciences, have sought to aveid this
association, In this text we accept neural netwarks as a legitimate field of
artificial intelligence. Furthermore, we include genetie algorithms, fuzzy logic
or fuzzy systems, wavelets, cellular automata, and chaotic Systems as being
within the gencral ficld of artificial intelligence.
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192 FUNDAMENTALS OF NEURAL NETWORKS
7.2 BIOLOGICAL BASIS OF NEURAL NETWORKS
The human brain is a very complex system capable of thinking, remembering,

and problem solving. There have been many attempts to emulate brain
functions with computer models, and although there have been some rather

spectacular ach’ vements coming from these efforts, all of the models devel-
oped to dats ;. into oblivion when compared with the complex functioning
of the hu- tin. ;

A neere e fundameital eellular unit of the brain's nervous system. It
is g simp! ising elem ot that receives and combines signals from other
neurons tici, o input paths called dendrites. If the combined input signal is
strong enougl, e neuron “fires,” producing an output signal along the axon

that connects to the dendrites of many other neurons. Figure 7.1 is a sketch
of & ncuron showing the various components. Each signal coming into a
neuron along a d odrite passes through a synapse or synaptic junction. This
junction is an infinitesimal gap in the dendrite that is filled with neurotrans-
mitter fluid that either accelerates or retards the flow of clectrical charges.
The fundamental actions of the neuron are chemical in nature, and this
neurotransmitter fluid produces electrical signals that go to the nucleus or
soma of the neuron. The adjustment of the impedance or conductance of the
synaptic gap is a critically important process. Indeed, these adjustments lead
to memory and learning., As the synaptic strengths of the neurons are
adjusted, the brain “leans™ and stores information,

Cell Body

" (Soma) Axon _ ===

—

Informaltion Flow
Dendrites

Figure 7.1 Sketch of a biolagical neuron showing compenents,
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When a person is born, the cerebral cortex portion of his or her brain
contains approximatcly 100 billion ncurons. The outputs of each of these
neurons are connected through their respective avans (output paths) to about
1000 other neurons, Each of these 1000 paths contains a synaptic junction by
which the flow of electrical charges can be controlled by a neurochemical
process. Hence, there are about 100 trillion synaptic junctions that are
capable of having influence on the behavior of the brain. It is readily
apparent that in our attempts to cmulate the processes of the human brain,
we cannot think of billions of neurons and trillions of synaptic junctions.
Indeed, the largest of our neural networks typically contain a few thousand
artificial neurons and less than a million artificial synaptic junctions.

The onc area in which artificial neural networks may have an advantage is
speed. When a person walks into a room, it typically takes another person
about half a second to recognize them. We are told that this recognition
process involves about 200-250 individual separaie operations within the
brain. As a benchmark for speed, this means that the human brain operates
at about 400-500 hertz (Hz). Modern digital computers typically operate at
clock speeds between 100 and 200 megahertz (MHz), which means that they
have a very large speed advantage over the brain. However, this advantage is
dramatically reduced because digital computers operate in a serial mode
whereas the brain operates in a parallel mode. However, neural network
chips have been developed in recent years that enable neural computers to
operale in a parallel mode.

The nomenclature in the neural network field is still not standardized.
You will find books and technical articles that refer to artificial neural
neiworks as connectionist systems and artificial neurons as processing clenients
(FLs), neurodes, nodes, or simply neurens. In this text we shall use the terms
neurons and neural nebworks, except in situations where an alternate designa-
tion would be more descriptive. Often we drop the adjective “artificial,”
because we deal only with artificial ncurons in this text.

7.3 ARTIFICIAL NEURONS

An artificial neuron is a model whose componenis have direct analogs to
components of an actual neuron. Figure 7.2 shows the schematic representa-
tion of an artificial neuron. The input signals are represented by
Yo, X X3y.00, &, These signals are coutinuous variables, not the discrete
electrical pulses that occur in the brain. Each of these inputs is modified by a
weight (sometimes called the synaptic sweizht) whose Fanction is analogous to
that of the synaptic junction in a biological neuron. These weights can be
cither positive or negative, corresponding to acceleration or inhibition of the
flow of electrical signals. This processing element consists of two parts, The
first part simply aggregates (sums) the vicighted inputs resulting in a quantity
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Figura 7.2 Schematic representation of an arfificial neuron.

I; the second part is effectively a nonlinear filter, usually called the activation
function,! through which the combined signal flows.

Figure 7.3 shows several possible activation functions. It may be a thresh-
old function as shown in Figure 7.3a that passes information (usually a +1
signal) only when the output [ of the first part of the artificial neuron
exceeds the threshold 7. It can be the signum function (sometimes called a
quantizer function) shown in Figure 735 that passes negative information
when the output is less than the threshold 7" and positive information when
the output is greater than the threshold 7. More commonly, the activation
function is a continuous function that varies gradually between two asymp-
totic values, typically 0 and 1, or —1 and +1, called the sigmoidal function.
The most widely used activation function is the logistic function, one of the
sigmoidal activation functions, which is shown in Figure 7.3c and is repre-
scnted by the equation

®(I) = (73-1)

1 e mt
where a is a coefficient that adjusts the abruptness of this function as it
changes between the two asymptotic values.

A more descriptive term for the activation function is “squashing function,”
which indicates that this function squashes or limits the values of the output

'A rather common name used in many books for the activation function is “transfer function.”
We will avoid the use of this term in the text to avoid confusian, because this term is commonly
used in engineering—to describe the input-output behavior of linear systems.
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Figure 7.3 Trarsfer functions for neurons: (@) Threshold activation function {when

T=0, this is called a binary activation function). (b) Signurmn octivation function
(somefimes called a quantizer*). (¢) Logistic activation functions for o = 0.5 1ond 2.
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of an artificial neuron to values between the two asymptotes. This limitation
is very useful in keeping the output of the processing elements within a
reasonable dynamic range. However, there are certain situations in which a
linear relation, sometimes only in the right half-plane, is used for the
activation function. It should be noted, however, that the use of a linear
activation function removes the nnnllm.amy from the artificial neuron.
Without nonlinearitics, a neural network cannot model nonlinear phenom-
ena.

7.4 ARTIFICIAL NEURAL NETWORKS
An artificial neural network can be defined as

A data processing system consisting of a large number of simple, highly
interconnected processing elements (artificial neurons) in an architecture
inspired by the structure of the cerebral cortex of the brain.

These processing elements are usually organized into a sequence of layers or
slabs with full or random connections between the layers. This arrangement
is shown in Figure 7.4, where the input layer is a buffer that presents data to
the network. This input layer is nof a neural computing layer because the
nodes have no input weights and no activation functions, (Some authors do
not count this layer in describing neural networks. We will count it, but we
will use different symbols for the nodes in this layer where there is a need to
distinguish between the different kinds of neurons.) The top layer is the
output layer which presents the output response to a given input. The other
layer (or layers) is called the intermediate or hidden layer because it usually

X Yq ¥r

Output K payer
Buffer

Middle
(Hiddern) ;‘Ff? Layer
Layer

Ouiput
Buffer ith Layer

xr Xpp X

Figura 7.4 Example of an neural netwaork architecture.
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has no connections to the outside world. Typically the input, hidden, and
output layers are designated the ith, jth, and kth layers, respectively.

Two general kinds of neural networks are in use: the feteroassociative
neural network in which the output vector is different than the input vector,
and the autoassociative neural network in which the output is identical to the
input. Unless otherwise indicated, all neural networks in this book are
heteroassociative.

A typical neural network is “fully connected,” which means that there is a
conncction between each of the neurons in any given layer with each of the
neurons in the next layer as shown in Figure 7.5. When there are no lateral
connections between neurons in a given layer and none back to previous
layers, the network is said to be a feedforward network. Neural networks with
feedback connections (i.e., networks with connections from one layer back to
a previous layer) are also useful and are discussed in the following chapters.
Lateral connections between ncurons in lhe same layer are also called
feedback connections. In ecertain cases, a neuron has fecdback from its

KB O Layer

S it
(Huliden) Layer

o
B T Layer

IJI s Xz

flgure 7.5 Simple feediorward neural network.
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output to its own input. In all cascs, these connections have weights that must
be trained.

Each of the connections between ncurons has an adjustable weight as
shown in Figure 7.5. This simple neural network is a fully connected,
fecdforward network with three neurons in the input layer, four in the
middle or hidden layer, and two in the output layer. The individual weights
are shown as solid dots on the connection and are designated by symbols
such as wy;. For instance, the symbol wy, indicates a weight on the connec-
tion between neurons 3 and 7,

Let us consicder the neural network of Figure 7.5, which has an input
vector X consisting of components x;, x,, and x; and an output vector Y
having components yg, and y,. When a signal x, is applied to neuron 1 in
the input layer, the output x, goes to each of the artificial neurons in the
middle or hidden layer, passing through weights w,,, w5, w,,, and Wig
The input signal x, and x, behave in a similar manner, sending signals
to neurons 4, 5, 6, and 7 through the appropriate weights, as shown in
Figure 7.3.

Now let us consider the behavior of neuron 4. [t has three inputs from the
three neurons in the input layer that have been modified by the connection
weights wyy, wyy, and wy,. The first part of this neuron simply sums up these
three weighted inputs. Then this summation is passed to the second part of
the neuron, which is a nonlinear function—typically a logistic curve between
0 and 1 as shown in Figure 7.3c. The output of this activation function or
squashing function is then seat to neurons § and 9 through weights wy and
wye. Neurons 5, 6, and 7 behave in a similar manner. Neurons 8 and 9 collect
the weighted inputs from neurons 4, 5, 6 and 7, sum them, and pass the sums
through the activation functions to produce yy and y,, the components of the
output vector Y.

Vector and Matrix Notation

It is convenient to utilize vector and matrix notation in dealing with the
inputs, outputs, and weights. Let us cut the neural network in Figure 7.5, just
above the hidden layer as shown in Figure 7.6. The outputs of neurons 4, §, 6,
and 7 arc shown to be the vector V,, which has components v, v;, 1, and U5
If we limit the activation functions to linear functions, the mathematical
relationships described in the previous section can be written in matrix form:
that is, the column vector V; is equal to the dot product of the weight matrix
W, and the input vector X,. This relationship is given by

Uy Wiy Wy Wy
: X
1
(3 Wis W W
5 15 5 3
== ol .1 (74'1)
Uy Wis Wi Wiy
‘.
i il
Uy Wix By Wiy

V=W, X, (7.4-2)

! i i
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Figura 7.6 Lower portion of neural network cut atzove the hidden layer,

In a similar manner using the upper half of the artificial nenral network
shown in Figure 7.7, it can be shown that the output vector Y, is equal to the
dot product of the weight matrix W, and the mput vector Vi This relation-
ship is given by

Y Wiy We We o g, s
U,
or
Y- “’:-1- ¥ (7.4-4)

By combining equations (7.1-1) and (7.4-3), it is apparent that the output
vector Y, is equal to the dot product of the two matrices and the input
veetor X,

lLJN It-’:a It':“

X
, ; : N X1
Yo _ W Wi W Wy Wis Wi Wy £ (745)
Ys Weop Wyg Wi wyy Wie Wy wy r‘
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l‘,’” “}37 1{'_1-_. .



200 FUNDAMENTALS OF NEURAL NETWORKS
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Figure 7.7 Upper portion of ngural netwaork cut above the hidden layer,

Since the two matrices can then be reduced Lo a single matrix, W, it [ollows
that the output vector Y is equal to the dot product of the combined matrix

and the input vector:

1

Y, =W Wyt X; = W - X, - (7.4-6)

The limitation of lincar activation functions means that the relationships
given in equations (7.4-1) through (7.4-6) are severely limited. Indeed, “this
indicates that a three-layer perceptron with linear activation functions in the
middle and output layers can be replaced with a two-layer network with a
linear activation function in the output layer. Nevertheless, this process has
introduced the concept of the weight matrices, which is very uscful in many
situations.

Naural Networks and Feedback

The feedforward neural network shown in Figure 7.5 operates in a simple
straightforward manner. When the vector X, is applied to the input layer, the
calculations for weighting inputs, as well as summing and filtering, are rapidly
carried out for each neuron as the process moves from the input to the
middle layer and on to the output layer. However, when there are feedback
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connections, either between neurons in the same layer or from one layer to
an carlicr layer, the process is much more complicated. In a neural network
where the mathematical operations are performed almost inslanlancously,
information reverberates around the network, across layers and within layers,
until some sort of convergence status is reached. When the mathematieal
operations are implemented serially, the process is more complicated. The
outputs for the feedforward connections are performed first, then the calcy-
lations for the feedback connections are performed, then the caleulations for
the feedforward connections are again performed using the results of the
previous calculations, and this process continues until equilibrium values are
reached. Under many circumstances, artificial neural networks with feedback
connections can be very useful. However, about 80% of the neural network
applications today utilize feedforward neural networks.

Neural Networks in Perspective

Neural networks have profound strengths and weaknesses, and these niust be
recognized if they are to be used properly. Although neural networks are
sometimes ealled neural computers, they are in fact not computers; bt
rather, they are basically memories that memorize results, just as the human
brain memorizes certain results. For instance, a Person memorizes the fact
that the product of four times six is twenty-four, and this fact is stored in the
person’s memory for life. On the other hand, the cheapest digital calenlator
actually calculates the product every time the numbers arc cntered,

Neural networks use memory-based storage of information in ways that
dre different and more flexible than simple storage in a look-up table, Iy the
neural network, as in the brain, the storage of information js distributed
throughout the network, Although this makes it hard 1o keep things scparate
that should be kept separate, it does give rise to the networks” ability to malke
generalizations that are so impartant to the practical applications of neurg]
networks, Furthermore, the loss of a few neurons (real or artificial) does not
materially affect the information stored,

Linear Associator Neural Network

The maost elementary neural network is a “lincar associator” that, along with

its learning rules, can be used to demonstrate the abilities und limitations of
veural networks. We start with the fundamental assumption that information

is stored by a paltern or a sct of activities of many neurons that is often

fepresented as a “state vector.” Icnce, the output of the network is the

result of the interaction of many neurons (sometimes called neural comput-

ing), not just the response of a single ncuron. As discussed earlicr, the

fundamental peuron sums the weighted inputs and then subjects this sum to

a nonlinear activation funection, typically a sigmoidal function, to keep the

oulput of the neuron within a reasonable range.
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The architecture of a linear associator is a set of input neurons that are
connected to a set of output neurons (i.e., a two-layer neural network). Any
particular output y; (one component of the output state vector Y) can be
computed from the activities of all the various inputs x; and the strengths of
the weights on the connections. Mathematically, the output from the sum-
ming unit is equal to the inner product (dot product) between the weight
matrix and the input vector. In the linear associator, the activation function is
a linear function. While this simplifies the network considerably, care must
be taken to ensure that the outputs do not exceed the range of the output
neuron.

In simple terms, the operation of a linear associator involves the input of a
pattern that then produces the output pattern that we want (i.e., the “right”
answer). For this to happen, we have to train the weights of the linear
associator to give the desired pattern. This can be accomplished by present-
ing the network with training vector pairs (inputs and desired outputs) and
utilizing an appropriate training rule. Any of the different training rules
discussed later can be used to perform this training. In theory, the initial
weights can have any values, but experience indicates that starting with small
randomized weights is advantageous.

Suppose that we have one set of neurons projecting to another set through
modifiable weights as shown in Figure 7.8. When the activation functions of
the neurons are linear, this network is a linear associator. What this means is

»i ¥2 W Yo

..... Input Layer i

Figure 7.8 Sketch of alinear associator.
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that after the neural network is trained, presentation of an input pattern to
the input layer will produce the desired (associated) output pattern. This is
represented mathematically by the following equation:

Yi=W-X, (7.4-7)

where W is the trained weight matrix, and X; and Y, are the ith input and
output vectors, respectively.

One of the unique and advantageous features of the linear assaciator is its
ability to store more than one relationship simultancously. This is discussed
and demonstrated in a later section. The problems with the linear associator
is that it is not very accurate, especially if too many items are stored in the
associator. Second, simple networks that use Hebbian learning® cannot com-
pute some functions that may be desired. This leads to the concept of
comparing the output with the desired output and using the difference
(error) as a basis for adjusting the weights, such as is the case in Widrow-Hoff
learning, In cffect, this procedure constitutes a form of “supervised” learning
that is discussed in the next chapter,

7.5 LEARNING AND RECALL

Neural networks perform two major functions: leaming and recall. Learning
is the process of adapting the connection weights in an artificial neural
network to produce the desired output vector in response to a stimulus vector
presented to the input buffer. Recall is the process of accepting an input
stimulus and produeing an output response in accordance with the network
weight structure, Recall occurs when a neural network globally processes the
stimulus presented at its input buffer and creates a response at the output
buffer. Recall is an integral part of the learning process since a desired
response to the network must be compared to the actual output to create an
error function.

The learning rules of ncural computation indicate how connection weights
are adjusted in response to a learning example, In supervised leaming, the
artificial neural network is trained to give the desired response to a spetific
input stimulus. In graded learning, the output is “graded” as good or bad on a
numerical scale, and the connection weights are adjusted in accordance with
the prade.

In unsupervised learning there is no specific response sought, but rather
the response is based on the networks ability to organize itself. Only the
input stimuli are applied to the input buffers of the network. The network
then organizes itself internally so that each hidden neuron responds strongly

to a diffcrent set of input stimuli. These sets of input stimuli represent

5
“Hebbian framing as well as other leaming paradigms are presented in Chapter 9.
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clusters in the input space (which often represent distinct real-world concepts
or features).

The vast majority of learning in engineering applications involves super-
vised leamning. In this case a stimulus is presented at the input buffer
representing the input vector, and another stimulus is presented at the
output buffer representing the desired response to the given input. This
desired response must be provided by a knowledgeable teacher. The differ-
ence between actual output and desired response constitutes an error, which
is used to adjust the connection weights. In other cases, the weights are
adjusted in accordance with criteria that are prescribed by the nature of the
learning process, as in competitive learning or in Hebbian learning.

There are a number of common supervised learning algorithms utilized
in neural networks. Perhaps the oldest is Hebbian learning, named after
Donald Hebb, who proposed a model for biological learning (Hebb, 1949)
where a connection weight is incremented if both the input and the desire
output are large. This type of learning comes from the biological world,
where a neural pathway is strengthened cach time it is used. “Delta rule”
learning takes place when the error (i.c., the difference between the desired
output response and the actual output response) is minimized, usually by a
least squares process. Competitive learning, on the other hand, occurs when
the artificial neurons compete among themselves, and only the one that
yields the largest response to a given input modifies its weight to become
more like the input. There is also random learning in which random incre-
mental changes are introduced into the weights, and then either retained or
dropped, depending upon whether the output is improved or not (bascd on
whatever criteria the user specifies).

In the recall process, a neural network accepts the signal presented at the
input buffer and then produces a response at the output buffer that is
determined by the “training” of the network. The simplest form of recall
occurs when there are no feedback connections from one layer to another or
within a layer (i.e., the signals flow from the input buffer to the output buffer
in a “feediorward” manner), In a feedforward nctwork the response is
produced in one cycle of calculations by the computer.

Supervised Learning

In order to demonstrate supervised learning, let us modify the neural
network shown in Figure 7.5, to include a desired output pattern, a compara-
tor, and a weight adjusting algorithm, This arrangement is shown in Figure
7.9, where the desired output is represented by the vector Z with components
zg and z,. The inputs to the comparator are the desired output pattern Z and
the actual output pattern Y. The error coming from the comparator—that is,
the difference between Y and Z—is then utilized in the weight-adjusting
algorithm to determine the amount of the adjustment to be made in the
weights in both layers,
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Figure 7.9 A neural network with supearvised learning.

In order to start the process, let us randomly adjust all the weights in the
neural network in Figure 7.9 to small random values, and then consider the
training pair X and Z with components x,,x,,x, and zy, z,, respectively.
When the vector X is applied to the neural network, it produces an output
vector Y, which is compared with the vector Z to produce the error. The
weight-adjusting algorithm then modifies the weights in the direction that
reduces this error. When the input vector X is again applied, it produces a
new Y, which is compared with Z, and the error is applied to the weight-
adjusting algorithm again to adjust the weights. This process is repeated over
and over until the error is reduced to some specified value or an irreducible
small quantity. At that point the output vector Y and the desired output
vector Z are substantially equivalent, and the neural network is said ta have
been trained to map input vector X into the desired output vector Z. This is
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the essence of supervised training. Of course, we must specify and explain
the mechanism by which the weights are adjusted before there is a complete
understanding of this process.

Example 7.1 Mapping the Alphabet to a Five-Bit Code. In order to under-
stand how a neural network training process works, let us consider the
arrangements shown in Figure 7.10. On the left we have a 7 X 5 matrix array
of inputs that are restricted to either 0 or 1, In the center we have a necural
network, with the input layer on the left having 35 input artificial neurons.
Each of these 35 neurons is connected to one of the inputs from the 7 < 5
matrix array. On the right we have a § X 1 matrix array of outputs, each of
them connected to onc of the neurons in the output layer of the neural
network in the center. The hidden layer in the neural network in this case
has 20 artificial neurons, a number that was chosen arbitrarily. The input
vector on the left, X, has 35 components (xy, %5, ..., x5) and the output
vector Y on the right has five components (¥1s ¥2: Y3 Vs ¥s) In cffect, we are
going to map the pattern contained in the 7 X 5 matrix on the left into a
pattern on the right contained by the § X 1 matrix. In a sense. this is a form
of data compression where the data contained in the 35-bjt matrix on the left
is mapped into the five-bit matrix on the right. The compression ratio in this
case is 7: 1,

Let us introduce a pattern to represent an uppercase letter A inthe 7 X 5
matrix on the left, where the shaded areas in Figure 7.10 represent 1s and
the unshaded areas represent 0s. Suppose we want to map this pattern into
the five-bit pattern in the matrix on the right, which is shown to be
(1,0,1,0,1). The artificial neural network has an input paltern representing
the A, and the desired autput pattern is represented by the five-bit matrix on
the right. To carry out this TP, we must acjust (he weights in both the
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Figure 7.10  Inpul-cutiut maopping of the letter A,
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connections between the input and hidden layers and the connection be-
tween the hidden and output layers.

If the ncural network is fully conneeted, we have 700 (35 X 2() connec-
tions with 700 weights between the input and hidden layers. In the connec-
tions between the hidden and output layers, we have another 100 (20 X )
weights, giving a total of 800 weights that must be adjusted. In effect, we can
think of this arrangement as having 800 degrees of freedem because of the
800 adjustable weights. It is very clear that we do not need 800 d:prees of
freedom to map a 35-bit input into a five-bit output. What this means is that
there are hundreds, if not thousands, of different combinations of these 800
weights that will permit this neural network to carry out this mapping.

In order to start the training for this mapping, all the weights in the neural
network are set to small random values, usually between —0.3 and +03
Then the training process is started. This involves applying the patiern {rom
the 33-bit matrix on the left to the input layer, multiplying these inputs by
700 connection weights between the input and hidden layer, and then
summing the 35 weighted inputs going into cach of the 20 neurons in the
hidden layer. These 20 sums then pass through the nonlinear activation
function to produce the 20 outputs that go to each of the five neurons in the
output layer, Each of these 20 outputs is multiplied by the appropriate
weights, summed by each output neuron and passed through the nonlinear
activation function to produce the five outputs. (Note that these outputs are
not Os and 1s, but rather numerical values between 0 and 1. Therefore, an
interpretation of the outputs is needed. For instance, an output greater than
0.9 could be considered as a 1; an output less than (1.1 could be considered as
a 0; and any value in between 0.1 and 0.9 could be considered as indetermi-
nate.) These outputs are then compared with the desired output shown in the
5 X 1 matrix on the right. The difference between the actual output of the
neural network and the desired output becomes the error vector that is then
used to adjust both layers of weights in such a way that the overall error is
reduced. Then the process is repeated over and over again until eventually,
every time an A is applied to the input, the desired output is produced by the
neural network within limits prescribed by some specific criteria. At this
point we say that the neural network is trained and is capable of mapping a
35-bit representation of A into a five-bit representation of the A.

Now let us consider the arrangement in Figure 7.11, where we have a
35-bit representation of a B as an input to the neural network and a five-bit
representation of the B as a desired output, which in this case is (0, 1,0, 1, 0).
If we use the neural network we have just trained for an A and apply the B at
the input matrix, we can continue the same procedure used before to
calculate the output of the neural network and compare it with the desired
outpul. Although there is a small probability that we might get the right
output initially, the most likely outcome is that the actual output and the
desired output will be quite different (i.c., some of the outputs will be wrong
and others will be between 0.1 and 0.9 and hence indeterminate). This
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Figure 7.11  Input-output mapping of the letler B.

produces another error signal that becomes the basis for adjusting the
weights further beyond the training provided for the A input. We continue
this training process until every time we apply B at the input matrix on the
left, we get the desired (0, 1,0, 1,0) output at the five-bit matrix at the right,
At this point we have trained the neural network to map a 35-bit representa-
tion of a B into a five-bit representation.

Now suppose we again apply an A to this neural network that has been
trained for an A and a B. Are we likely to get the desired output? Mayhe,
maybe not. If not, we can carry out additional training, until we achicve the
desired results. Then we can apply the B again, Will we get the desired
output? Maybe; maybe not. If not, we can carry out more training. This
process of going back and forth between the A and B can be continued until
cveiy time we apply an A to the input matrix we get the desired (1,0,1,0, 1)
output and every time we apply a B to the input matrix we also get the
desired (0,1,0,1,0) output. Now we have a network that is capable of
mapping both an A and a B into the [ive-bit representations we specified.

Now let us apply a C to the input matrix as shown in Figure 7.12 and
specify the desired output matrix as being a (1,0,0, 1,0). When we apply the
C, there is a high probability that we will not get the desired output that we
have chosen. So we start the training process again and continue it until
every lime that we apply a C to the left-hand matrix, we get the desired
(1,0,0,1,0) output. We now have a network that is capable’ of mapping the
35-bit representation of a C into the desired five-bit representation.

If we now apply the A to this trained network, will we get the desired
output? Maybe, maybe not. If not, we perform more training until we achieve
the desired result. Then we can apply a B. If we don't get the desired output,
we carry out additional training. Then we can apply a C. If we don’t get the
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desired output, we carry out more training. We repeat this process over and
over until every time we put in an A, 2 B, ar a C, we get the desired output.
At this point the neural network has been trained to map an A or Banda C
into the desired representation that we have chosen.

At this point we could continue the process with D, E, and F and work our
way through the alphabet. Since we have a five-bit binary output, the total
number of possible mappings is 2% or 32. Hence, we can represent the whale
alphabet plus six punctuation symbols. However, this is not a very efficient
process to go through the complete trdining process for one symbol before
starting the training process for another symbol. A more realistic and
appropriate way would be to choose the 32 training sets (i.c., an A and its
five-bit representation, a B and its five-bit representation, etc.) and, after
randomizing the weights, to apply all 32 training sets, one after the other
until we go all the way through the 32 letters and punctuation symbols once.
This set of 32 input and desired output pairs, known as an epoch, is applied
again and again until all 32 letters or symbols are mapped into the five-bit
codes we specified.

Overall error is a better determination of the status of the training than it
is of whether all the outputs are correct or 1 t. This is simply the summation
of all the errors between outputs of the neural network and the correspond-
ing desired outputs (0s and 1s) for all pairs in the epoch, Ideally, this overall
error should approach zero. If it does not, additional training should be
carried out. However, if there is any nois¢ in the inputs and /or outputs, an
overall error of zero is never attained. Indeed, it is possible to overtrain a
neural network until it fits the noise pattern rather than the underlying
relationship, O
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"Example 7.2 Data Compression and Expansion. Now let us consider the
arrangement shown in Figure 7.13. Here we have an input matrix that is a
five-bit representation of an A and an output that is a 35-bit representation
of the letter A. Is it possible to train a neural network to map a five-bit
Tepresentation into a 35-bit representation? Yes, it is. The process is exacily
the same as we went through in mapping the reverse arrangenient. [n this
case, we have data expansion instead of data compression.

We can even have an arrargement that combined the networks shown in
Figures 7.10 and 7.13—that is, a 35-bit representation that is compressed
into a five-bit representation of an A and then is expanded back out to a
35-bit representation of the lctter A as shown in Figure 7.14, Why would we
want such an arangement? Suppose we were sending information down a
narrow-band data channel. We could compress the data (in this case by a
factor of seven), send it down the channel, and then expand it back to the
criginal symbol. This process is used in many practical situations. O
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Figure 7.14  Compression and exponsion using neural netwrorks.
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Example 7.3 Distortion Correction. A variation of the compression-expan-
sion arrangement is shown in Figure 7.14, where the input to the ncural
network is exactly the same as the output, This arrangement is called an
autoassociative neural network, which simply means that the input and the
output are exactly the same. In this case, we randomly adjust the weights,
apply the 35-bi: representation of A as the input, apply the same 335-bit
representation of the A on the right as the desired output, and starl the
training the process that we have used in the previous examples until we can
consistently get an output that is equal to the desired output. Why would we
want to do this? Suppose, after training the network, instead of vsing the
35-bit representation of an A as the input to the trained ANN, we putin a
representation of a distorted A. The output of the neural network would be
an undistorted A, because this is the only output pattern the neural neiwork
is trained to produce.

Suppose we go further and train this autoassociative network to represcnt
all 26 letters of the alphabet plus the six puactuation symbols that we
discussed earlier. It would then be reasonable to expect that every time that
you applied a distorted symbol as the input, you would get the correct symbol
as the output. In general, this is true, but there are exceptions, Suppose we
put in a distorted B with the distortion in the lower right-hand side. This
network might produce a B as the output or it might produce an R. The
choice by the network would depend upon whether the distorted B input was
closer, in a least square sense, to the B or the R that was used in the training.
The same is true for other, similar combinations of letters—for example,
Q& O R&P, C& G, and perhaps others. O

7.6 FEATURES OF ARTIFICIAL NEURAL NETWORKS

What makes neural networks different from artificial intelligence or tradi-
tional computing? Generally, there are four features that arc associated with
artificial neural networks:

o They learn by example.

s They constitute a distributed, associative memory.
e They arc fault-tolerant,

» They are capable of pattern recognition.

Neural networks are not the only systems capable of leaming by example, but
this feature certainly is an important characteristic of neural networks.
Indeed, one of the most important characteristics of artificial neural net-
works is the ability to utilize examples taken from data and to organize the
information into a form that is useful. Typically, this form constitutes a model
that represents the relationship between the input and output variables. In
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essence, this is what we were doing with the mapping exercises that we went
through in the last section.

A neural network memory is both distributed and associative. By dis-
tributed, we mean that the information is spread among all of the weights
that have been adjusted in the training process. These connection weights are
the memory units of neural networks, and the values of the weights represent
the current state of the knowledge of the network. Hence, each individual
unit of knowledge is distributed across all the memory units in the network.
Furthermore, it shares these memory units with all other items of informa-
tion stored in the network.

The memory in a ncural network is also associative. This means that if the
trained network is presented with a partial input, the network will choose the
closest match in the memory to that input and generate an output that
corresponds to a {ull input. This is the process that was discussed with the
autoassociative network in Figure 7.15, where the presentation of partial
input vectors to the network resulted in their completion.

Neural networks are also fault-tolerant, since the information storage is
distributed over all the weights. For instance, in the example in Figure 7.10,
the information is distributed over 800 weights. Hence, the destruction or
misadjustment of onc or a few of these 800 weights does not significantly
influence the mapping process between the inputs and outputs. In general,
the amount of distortion is approximately equal to the fraction of the weights
that have been destroyed.

Furthermore, even when a large number of the weights are destroyed, the
performance of the neural network degrades gradually. While the perfor-
mance suffers, the system does not fail catastrophically becausc the informa-
tion is not contained in just one place but is, insizad, distributed throughout
the network. When neural networks are implemented in hardware, they are
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Figure 7.15  Inputoutput mopping in an cutoasseciative neural netwerk,
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very fault-tolerant, as contrasted to von Neumann-type computers where the
failures of a single component can, in theory, lead to catastrophic results. For
this reason, neural networks show great promise for use in environments
where robust, fault-tolerant pattern recognition is necessary in a real-time
mode, and the incoming data may be distorted or noisy. Such applications
might include: nuclear power plants, missile guidance systems, space probes,
or any system that is inaccessible for repair or where continuous performarnce
is eritical. .

Pattern rccognition requires the neural network to match large amounts of
input information simultancously and gencrate a categorical or generalized
output with a reasonable response to noisy or incomplete data, Neusal
networks are good pattern recognizers, even when the information compris-
ing the patterns is noisy, sparse, or incomplete. For a complex system with
many sensors and possible faull types, real-time response is a difficult
challenge to both humzn operators and expert systems. While the training
time for a neural network may be long, once it has been trained to recognize
the various conditions or states of a complex system, it only takes one cycle of
the neural network to detect or identify a specific condition or state,

Neural computing networks consist of interconnected units that zct on
data instantly in a massive parallel manner. Tndeed, when a neural network is
implemented in hardware, such computation occurs virtually instantancously.
Such a ncural computer provides an approach that is closer to human
perception and recognition than that of conventional computers, and 1t can
produce reasonable results with noisy or incomplete inputs,

7.7 HISTORICAL DEVELOPMENT OF NEURAL NETWORKS?

Artificial intelligence had its beginning at the Dartmouth Summer Research
Conference in 1956, which was organized by Marvin Minsky (learning ma-
chines), John McCarthy (symbolic languages), Nathaniel Rochester (ncural
systems), and Claude Shannon (information theory). This conference led to
the development of computer programs capable of making machines perform
human-like or intelligent tasks and to the development of machines that used
mechanisms modeled after studics of the brain to become “intelligent.” The
conference inspired Frank Rosenblatt to develop his concept of the percep-
tron, a generalization of the 1943 McCulloch—Pitts concept of the functioning
of the brain by adding learning. The McCulloch—Pitts abstract model of a

*The history of the development of neural networks has been well documented by a number of
books in the past few years: Caudill and Butler (1989, 1992), DARPA (1988), Hecht-Nielsen
(1989), Maren, Pap, and Harston (1960), Miller, Sutton, and Werbas (1590), Nelson and
Hlingsworth (1990), Pao (198920, Simpson (1990), Wasserman (1959, 1993), and White and Sofge
(1592). We will limit this review to descriptions of Rosenblatt’s Perceptron, Minsky and Papert’s
review entitled Perceptrons; and Widrow's ADALINE because all had a profound influence on
the development of neural networks,
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brain cell was based on the theory that the probability of a neuron firing
depended on the input signals and the voltage thresholds in the soma. It
introduced the idea of a step threshold, but it did not have the ability to
learn,

The first learning machine was actually built by Minsky and Dean in 1951
(before the Dartmouth conference) at the Massachusetts Institute of Tech-
nology. It had 40 processing elements, which, when described in neural
network terms, were neurons with synapses that adjusted their weights
according to their success in performing a specific task. Each neuron or
processing element required six vacuum tubes and a motor /clutch /control
system. The machine utilized Hebbian learning and was able to learn enough
that it could “run a maze.” It worked surprisingly well, considering the state
of clectronics and the understanding of the learning process at that time.

Rosenblalt’s Perceptron

After the Dartmouth conference, Frahk Rosenblatt of Cornell Aerolabora-
tory developed a computational model for the retina of the eye, called
the “perceptron.” The perceptron (see Figure 7.16) was inspired by the
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rigure 7.16  Diagram of the perceptron.
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MecCulloch=Pitts model and incorporated Hebbian learning, which he sum-
marized as follows:

When the synaptic input and the neuron output were both active, the strength
- of the connection is enhanced.

The perceptron was a pattern classification system that could identify both
abstract and geomietrical patterns, The first perceptron was primarily an
optical system that had a grid of 400 phbtocclls connected to associator units
in the input buffer, which collected electrical impulses from the photocells.
The photocells were randomly connected to the associators and received
optical stimuli. The output of the sensors were connected to a hard-wired
genctically predetermined set of processing elements (called demons) that
recognized particular types of patterns. The output of each demon was
connecled to a threshold logic unit which had no output until a certain level
and type of input was received. Then the output rose linearly with the input.
This concept was inspired by the observation that the neuron does not fire
until the balance of input activity exceeds some threshold, and that the firing
rate is increased in proportion to certain characteristics of the input. It was
quite robust and capable of some learning, it possessed a great deal of
plasticity (i.e., information could be retained after some of the cells had been
destroyed), and it was capable of making limited gencralizations. It could
properly categorize patterns despite noise in the input.

Rosenblatt studied both the two-layer and three-layer perceptrons. He was
able to prove that the two-layer perceptron could separate inpuls into two
classes only if the two classes were linearly separable. In some systems,
supervised learning was used in which the weights were adjusted in propor-
tion to the error between the desired and actual output. While his attempts
to extend the learning procedure to the three-layer perceptrons were encour-
aging, he could not find a mathematical basis for distributing credit (or
blame) for the output errors between the two layers of weights. Hence, there
was no mathematical basis for making corrections to the weighting functions.
Actually Amari had solved the credit assignment problem in 1967, but it went
unnaticed, because it was published in the Japanesc literature. Had Amari's
work been more widely known, it could have mitigated the impact of the
critical book entitled Perceptrons by Minsky and Papert discussed later in this
section.

The perceptron paradigm was designed to explain and model the pattern
recognition capabilities of the visual system. The perceptron was a feedfor-
ward nelwork without any feedback, without connections between neurons in
the same layer, and without any randomness about the operation of the
network. It was basically a three-layer network in which the input layer was a
buffer (fanout) layer that mapped a rectangular pixelized sensor pattern to a
linear array. The second layer, consisting of a set of feature detectors or
feature demons, was cither fully or randomly connected to the input layer.
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This layer used either linear or nonlinear threshold activation functions to
condition the outputs. The output layer contained “pattern recognizers” or
“perceptrons.” The weights of the inputs to the second layer were random-
ized and then fixed while the weights of the output layer were “trainable.”
The artificial neurons in the output or perceptron layer cach had an input
tied to a bias with a value of + 1. The activation functions on the neurons in
the output layer sometimes were “threshold-linear” functions in which the
output signal is zero until the sum of the weighted inputs becomes positive, at
which time the output increased to the weighted summation of the inputs. An
alternate activation function sometimes used was a threshold function in
which the output was zero if the weighted sum was zero or negative and
cqual to one if the weighted summation of the input was positive.

The basic learning algorithm procedure for training the perceptron is as
follows:

« If the output is correct, leave the weights unchanged.

o I the output should be 1 but is instead 0, increment the weights on the
active input lines (an active input line is defined as one that has a
positive input).

o If the output should be 0 but is instead 1, decrement the weights on the
active input lines.

The amount that the weights were changed depended upon the learning
scheme that has been chosen, The three basic types of learning used in the
perceptrons were as follows:

= A fixed increment or decrement.

« A variable amount of increment or decrement based upon the error
(defined as the difference between the weighted sum and the desired
ontput),

s /A combination of both a fixed increment and an increment proportional
1o the error.

To classify a wide variety of shapes, the number of feature neurons must
be quite large. By selective use of feédback, it is possible to radically reduce
the number of neurons required. Another scheme used with the pereeptron
involved (a) the segmentation of the image into smaller picces and (b) the
creation of neurons that were specific to particular areas.

Minsky and Papori's Percoptrons

In the mid-1960s, Marvin Minsky began studying the “limitations” of the
jperceptrons, because of concern that Rosenblatt was making claims that were
not being substantiated. (Fierce competition between Minsky and Rosenblatt
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is alleged to have extended back to the time when both were students ot the
Bronx High School of Science, which was probably the top technical high
school in the United States at that time.) He and Seymour Papert showed
that the two-layer perceptron was rather limited because it could enly work
problems with a linearly separable solution space. The exclusiveror (XOR)
problem was cited as an elementary system that the perceptron was unable to
solve. They emphasized the inability of the perceptron to assign credit for the
errors to the different layers of weights, After their book entitled Ferceptrons
was published in the late 1960s, virtually all support for rescarch in the
neural networks ficld was ended by the various U.S. funding agencics.

A quotation from Perceptrons is indicative of the nature of the criticism by
Minsky and Papert.

The perceptron has shown itself to be worthy of study despite (and even
because of!) its severe limitations. It has many features to attract attention: its
linearity; its intriguing learning thearem; its clear paradigmatic simplicity as a
kind of parallel computer. There is no reason to suppose that any of these
virtues carry over to the many layered version. Nevertheless, we consider it an
important rescarch problem to elucidate (or reject) our intuitive judgment that
the extension is sterile. Perhaps some power conversion theorem will be
discovered, or some profound reason for the failure to produce an interesting
‘learning theorem' for the multi-layered machine will be found,

The criticism in Perceptrons, while generally fair in the contexts of the state
of knowledge at that time, was absolutely wrong in one respect. The virtues
cited by Minsky and Papert for the two-layer network indeed did carry
over to the many-layered version, and in fact a three-layer perceptron was
capable of separating linearly inseparable variables, including the XOR
problem. Rosenblatt died in a boat accident shortly after publication of
Perceptrons, and unfortunately, the criticism of Minsky and Papert was never
properly refuted at that time.

Widrow’s Adaline

Adaline (adaptive linear element) is a neural network that adapts a syslem to
minimize the “error” signal using supervised learning. Tt acts as a filter to sort
input data patterns into two categories. Up until the last decade, it was
perhaps the most successful application of neural networks, because it is used
in virtually all high-speed modems and telephone switching systems to cancel
out the echo of a reflected signal in a transmission line or corridor. It was
invented by Bernard Widrow and M. E. (Ted) Hoff of Stanford University in
the carly 1960s. (Hoff is also generally credited with being the inventor of the
microprocessor as we know it today and was the founder of Intel Corpora-
tion.)

The basic design of the Adaline is shown in Figure 7.17. This arrangement
is substantially the same as that for the perceptron discussed earlicr, with the
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Figure 7.17 Dicgrom of an Adaline processing element.

expectation that the quantizer is a threshold type nonlinear function with + 1
anil 1 as the limiting values (i.e., if the summation of the weighted inputs is
Pusitive, the output of the system will be -+ 1; and if it is zero or negative, the
output witl be —1). The learning algorithm uses the difference between
the desired output and the ouiput of the summation (not the output of the
Hwimtizer) to produce the erior e function used to adjust the weights, In
Contrast, Rosenblatt used the difference between the actual output of the
System and the desired output as the error funciions to adjust the weights in
the perceptron.

Prioi to the beginning of (he training, all s 'ghts must be adjusted to
fandom values. With the Adaline, an input p. lern is presentcd to the
Processing elements' that filters it for a specific category. If the input matches
the cate ory, the processing element output is 11, and if it does not match
}Ilmc categury, the processing clement output is — 1. The learning rule is the

Delta Rule, also known as the “Widrow-Hoff Learning Rule,” which is, in
fact, a least mean squares minimization of error procedure and is discussed
exlensively in Section 8.2, It involves the adjustment of weights according to
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the error in the processing clement, compriing 2 “delta™ vector

e & ‘.'."

Aw, = e (7.7-1)

CXF
where 7 is the learning constant, € is the erii 2, X, is the ith input (=1, or
+1), and X is the input vector. This Widrow-+ il learning rule is discussed

in Section 8.2 of the next chapter.
The learning alporithm for Adaline involves 32 application «f the input
(which may be noisy) to the single process clement or nzuron. The

application of the desired output and a comp: i'.on of the errur, defined as
the difference between the weighted sum p./or to the quantizer and the
desired output, provides the input to the lear mndule. Then each weight

is adjusted so that the error is equally ' triouted among the weights
(including the weight for the bias). Equation (7.7 1) becomes
N € X, €2

Bwy= ———=— =
XE (N1

(7.7-2)

where (N + 1) is the number of inputs plus thc bias input and LAN + 1)
replaces the learning constant n. This means that the error is uniformly
assigned to the (N + 1) inputs.

Since all inputs are +1 or =1, this adds or subtracts a fixed amount to the
weight for each element input, depending on the sign. This process is
repeated over and over again for cach sct of inputs in the epoch, and the
cpochs are repeated until the error is reduced to the desired value. Since
both the desired output and actual inputs are binary, it is possible to have
complete agreement between the desired oulputs and the quantizer output
even though the error (the difference between the desired value and the
neuron output before the quantizer) has a substantial value. Further training
beyond the time when the quantizer output is cqual to the desired output is
performed because the minimization of the error makes the system more
tolerant of noise fluctuations in the input signals. This algorithm has been
shown to guarantee convergence, provided that a set of weights exist that will
minimize the error in a least squares sense.

Most of the time, the convergence of the learning process in the Adaline is
very fast. However, the nature of the initial randomization can have a major
effect on the speed of convergence. In a limited number of cases, conver-
gence will not occur at all. Some of the real-world problems dealing with the
Adaline occur where input patterns may not be perfect examples of the
categories they represent. For instance, suppose we consider separating
“circle” from “noncircle.” The pertinent question is, How perfect does the
circle have to be before it is considered a circle; or, alternately, How much
deviation from a perfect circle is necessary before a figure is considered as a
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noncircle? Another restriction associated with the Adaline, as it was origi-
nally conceived, is that it is capable of classifying only linearly scparable
patterns. Later versions involving multilayers of Adalines proved more pow-
erful and capable of separating input space even though the variables were
not linearly separable.

One of the major applications by Widrow of the Adaline is in adaptive
noise reduction. Every telephone has different transfer characteristics which
can change during a single transmission. The use of an adaptive network to
adjust the input signals spectrum so as to keep the signal-to-noise-ratio high
for the given statc of the line was one of the early applications, Other
applications of the Adaline by Widrow and his students at Stanford Univer-
sity include: (1) adaptive antenna arrays, (2) adaptive blood pressure regula-
tion, (3) adaptive filtering, (4) scismic signal pattern recognition, (5) weather
forecasting, (6) long-distance and satellite telephone adaptive echo cancella-
tion, (7) cancellation of correlated interference in acoustical and clectronic
instruments, (8) separation of a fetal heartbeat from its mother's heartbeat,
and (9) signal equalization in all high-speed modems in use today.

Widrow's Madaline

A Madaline (which is an acronym for “Many Adalines™ involves the use of
several Adalines as the middle layer of a three-layer neural network. The
input layer, as in the case of the perceptron, is an input buffer to ensure that
all inputs go to each of the Adalines, and the output layer is a single unit that
combines the outputs of all Adalines in a prescribed way. Sometimes this
output unit gives a +1 when the majority of the inputs are +1, and a =1
when they are not (i.¢., voting majority). Tn other cases, it will give a +1 only
when all of the output of all Adaline’sare +1 (an “AND”output). In another
situation, the output unit will give a +1 when any of the outputs of the
Adaline are +1 (an “OR” output),

Since Madaline has a binary output, it can only be used to discriminate
between two classes. Tt is possible of course to use many independent
Madalines to discriminate between more than two classes. One Madaline is
needed for each pair of classes added, Typically, the final classification is the
class that constitutes the most outputs. A typical Madaline network architec-
ture is shown in Figure 7.18. The Madaline combiner unit does not have a
bias input, and the weights on the input to the Madaline unit are fixed; that
is, they are adjusted initially to represent the importance of the specific
Adaline output. Here again the stability of: the Madaline relates to the
stability of individual Adalines, and convergence is seldom a problem.
Adaline elements in a Madaline network cvolve as detectors for a specific
input features. This is particularly useful when the Madaline is used in
control systems.
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Figure 7.18 Diagram of a Madaline network erchitecture.

7.8 SEPARATION OF NONLINEARLY SEPARABLE VARIABLES

The ablity of an Adaline to separate linearly separable variables can be
readily demopstrated with a processing element or neuron that invelves two
inputs (x and y) and two weights (w, and w ). The neuron shown in Figure
7.19a suias the two weighted inputs—that is,

I'=xw, +yw, (7.8-1)

The output z is equal to 1 if the sum is greater than the threshold value T,
and it is equal to 0 (or —1 in an Adaline) if the sum is less than or equal to
the threshold value. A special case occurs when the output is equal to the,
threshold T (ie., the case that divides the two regions). Equation (7.8-1)
becomes

xw, ¥y, =T (7.8-2)
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Figure 7.19 Separation of variables by @ neural network: (@) Processing element with
two inputs. (b) Division of x-y plane by a processing element.

which can be rearranged to

W, T
y = [——]x-f [-—} (7.8-3)
Yy Wy

This is the equation of a straight line where the slope is equal to [~w,/w,]
and the y intercept is [I/w ], which divides the plane into values that are
below the threshold and above the threshold as shown in Figure 7.19b.

This concept can be extended further with a three-layer network as shown
in Figure 7.20, where the first layer is a buffer with two inputs x and y; the
middle layer has two neurons fully connected to the buffer layer with weights
on each connection. The output layer is a single processing element whose
input weights are set at 0.5 and whose threshold is set at 0.75. This
configuration represents a logic “and” function, where both processing cle-
ments in the middle layer must produce a 1 to give a 1 in the output layer.
The two processing elements in the middle layer are threshold functions with
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Fligure 7.20 Three-layer network for separcting nonlinearly separablo variables,

thresholds 7, and 7. Hence, the outputs are cither 0 or 1, depending upon
whether the summation of the weighted inputs is less than or greater than
the threshold values. As in the previous paragraphs, each of these threshold
values cffectively allow the planc to be divided.

The equations for the cases where the outputs of the two middle layer
neurons are equal to the threshold values T and T, are

awyy toywy =Ty ¢ (7.8-4)
Iy Hoamgy = T (7.8-5)

which cun be rearranged into the elassical equation form for a straight line:

h’“ @ 711 8.6
g ‘*":;A l Wy 2
Wya 1
R e U o T
’ Wi ’ Wa (187)

[t is readily apparent that tlic use of two processing clements in the hidden
layer provides for a double division of the plane as shown in Fignre 7.21. The
loeation and orientation of these two lines are determined by six quantities,
namely, the values of the four weights and the two thresholds. Since only four
parameters are needed to define these two lines unambiguous!y, there is a
wide range of valucs of weighis and threshold values that will deline any two
pacticular lines,

Since the outputs of the two neurons in the middle layer are cither 0 or 1,
it is apparent that both outputs must be 1 if the output layer is to produce a
1. It is readily shown that this corresponds to coordinates x sod y being
located in only one particular “quadrant” produced by these two intersecting
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Y Layer 2 has a Value of | Only
' in the Shaded Region

xwp + ywp =T,

Xwp2 + ywy =T;

Figure 7.21  Division of x-y plane by two naurons.

lines. Hence, only one “quadrant” of this area will have a value of 1 while the
other three “quadrants” will have a value of 0.

The use of three hidden processing elements in the middle layer further
subdivides the plane with three lines, producing a triangular closed region.
Wiiting the equations for the outputs of the processing clements in the
middle layer of the neural networks shown in Figure 7.22 and setting them
cqual to the thresholds give the three dividing lines:

' Uy =xw 5 +ywy, =T, (7.8-8)
vy =xw, +yw,, =T, (7.8-9)
Us = Xwys + ywas = T (7.8-10)

where Ty, 7;, and 7§ are the thresholds. Again, these equations can be put in
the classical form for a straight line where the coefficient of the x terms are
the slopes of the three lines and the three constant terms involving thresholds
T;, T, and T are the y intercepts of the three straight lines:

w T

y= x4+ 2 (7.8-11)
Wi Wy
w T

pmme gy ¥ (7.8-12)
Way Waq
W T.

y=—— e — (7.8-13)
Was Wi

which are shown in Figure 7.23.
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flgure 7.22 Threadayer network with three rewrons in the hidden layver divides 1lie
plane with three lines,

_,_,_/'[__ S . 58 T
G

Figure 7.23 Plene separated by three lines to prc‘wide a closed fiangulor recion.
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Aand B

fa)

Y

(b}

Figure 7.24 Areos enclosed by use of many neurons: (@) Closed hiangular area with
re-enfrant area created by six lines Gix nodes In middle layer of Figure 7,22).
(b) Separate closed areas created by eight lines (eight nodes In middie layer of
Figura 7.22).

[t is readily apparcnt that the use of additional processing elements in the
hidden layer allows us to generate virtually any type of enclosed area desired,
ranging from an approximation of a circle to a convex polygon with re-
entrant regions as shown in Figure 7.2d4. Indeed, not all of the outputs of
the middle layer need to overlap, and hence it is possible to use such an
artificial neural network to enclose multiple regions as shown in Figure
7.24b.



PROBLEMS 227

REFERENCES

Caudill, M., and Butler, C., Naturally Intelligent Systems, MIT Press, Cambridge, MA,
1989,

Caudill, M., and Butler, C., Understanding Neural Networks: Computer Ejp.’wn_n'ons,
Vols. 1 and 2, MIT Press, Cambridge, MA, 1992,

DARPA (Defense Advanced Research Projects Agency), DARPA Neural Nenvork
Study, AFCEA International Press, Fairfax, VA, 1988,

Hebb, D., Organization of Behavior, John Wiley, New York, NY, 1949,

Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, MA, 1989,

Maren, A. 1, Harston, C. T, and Pap, R. M., Handbook of Neural Computing
Applications, Academic Press, New York, 1990,

Miller, W. T., Sutton, R. 8., and Werbos, P. J., Newral Networks for Control, MIT
Press, Cambridge, MA, 1990,

Nelson, M. M., and Hlingsworth, W. T., 4 Pracrical Guide o Neural Neiworks,
Addison-Wesley, Reading, MA, 1590,

Pao, Y. ., Aduptive Pattern Recognition and Newral Nerworks, Addisod-Wesley,
Reading, PA, 1989,

Simpson, P., Anificial Newral Systems, Perpamon, Elmsford, NY, 19590,

Wasserman, P. D., Neural Computing: Theory and Practice, Van Nosirand Reinhold,
New York, 1989.

Wasserman, P. D., Advanced Mcthods im Newral Compuring, Van Nostrand Reinlold,
New York, NY, 1993,

White, D. A, and Sofge, 1. A., Handback of fuellivent Control, Van Nostrand
Reinhold, New York, 1992,

PROBLEMS3

1. In the linear associator of igure 7.8, the input vector x is g {hree
component vector (0.3, - 0.7,0.2) and the output vector is a four CoInpo-
nent vector (=0.8,—~ 0.3,0.6,0.9). Calculate the weights.

2. Discuss the differences between Widrow’s Adaline and Madaline netorks
and Rosenblatt’s perceptron. How do they differ as far as error irpnt is
cancerned?

. The three-layer network of Figure 7.22 divides’the plane with three lines
forming a triangle. Calculate the weights that will pive a triangle with its
vertices at (x, y) coordinates (0, 0), (1, 3), and (3, 1).

. Design a three-layer network as shown in Figure 7.20 to sc-arnt - the
non-linearly separable varinbles for the “exclusive-nor” funetio havir - the
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following truth table:

Input x
) 0 1
0 1 0
Input.y
1 0 1

. The five-bit code for the letter Q is 01011. Develop a storage matrix W
and correct it so that chaotic oscillations will not occur. Show that this
storage matrix cin produce a correct memory state, even when an crro-
ncous code for ¢ is applied. Use the erroneous representation of 0 to be
01010. Show all steps involved.

. A weight matrix M is given by

1 2 3 2.
M=l-2 1 3 -1
30 oy B =

Draw a 2-layer neural network in which the given matrix represents the
weights,



BACKPROPAGATION
AND RELATED
TRAINING ALGORITHMS

8.1 BACKPROPAGATION TRAINING

Backpropagation is a systematic method for training multiple (thiee or
more)-layer artificial neural networks. The clucidation of this trainiing algo-
rithm in 1986 by Rumelhart, Hinton, and Williams (1986) was the I ;¥ step in
making ncural networks practical in many real-world situations. !lowever,
Rumelhart, Iinton, and Williams were not the first to develop tke backprop-
agation algorithm. It was developed independently by Parker (1082) in 1982
and earlier by Werbos (1974) in 1974 as part of his Ph.D. disseitation at
Harvard University. Nevertheless, the backpropapation algorithar v critical
to the advances in neural networks because of the limitations of the ane- and
two-layer networks discussed previously. Indeed, backpropagation played a
criticatly important role in the resurgence of the neural network field in the
mid-1980s. Today, it is estimated that 80% of all applications utilize this
backpropagation algorithm in one form or another. In spite of its limitatidns,
backpropagation has dramatically expanded the r.nge of probleirs 1+ which
neural network can be applied, perhaps because it 1 2 strong malhinatical
foundation.

Prior to the development of backpropagation, at smpts to vee pceptrons
with more than one layer of weights weré frustrated by what was called the

“weight assignment problem” [i.e, how do you ullocate the erri,- ut the
output layer between the two (or more) layers of weights whea 11, - is no
firm mathematical foundation for doing so?]. This problem . -1 the

neural network field for over two decades and was cited by Mis ky and

Papert as one of the criticisms of multilayer perceptrons. Ironjeall | s need

not have been the case, because Amari developed a method fu. o1~ zating
L

229
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X

Flgure 8.1 Diogram of a neuron.

weights in the 1960s that was not widely disseminated (Amari, 1972). Even
more ironic is the fact that Rosenblatt’s method of using a random distribu-
tion of the weight values in the middle neuron layer and adjusting only the
weights for the output neuron layer has bsen shown to provide adequate
training of the nctwork in most cases.

Let us consider a typical neuron as shown in Figure 8.1, with inputs x;
weights w;, a summation function in the left half of the neuron, and a
nonlinear activation function in the right half. The summation of the weighted
inputs designated by [/ is given by

F=xw, +xwy + o Fx,w, = )XW, (8.1-1)

nn
=]

The nonlinear activation function used is the typical sigmoidal function and is
given by

O(I) = =(1+eh)™ (8.1-2)

1
(1+e oy

This function is, in fact, the logistic function, one of several sigmoidal
functions which monotonically increase from a lower limit (0 or —1) to an
upper limit (+1) as I increases. A plot of a logistic function is shown in
Figure 8.2a, in which values vary between 0 and 1, with a value of 0.5 when [/
is zero, An examination of this figure shows that the derivative (slope) of the
curve asymplotically approaches zero as the input [ approaches minus
infinity and plus infinity, and it reaches a maximum value of «/4 when [
equals zero as shown in Figure 82b. Since this derivative function will be
utilized in backpropagation, let us reduce it to its most simple form, If we
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()

Figure 8.2 :,o) Logistic activation function (e == 2.7 £ Ga ) ind (D) ils first clerivative
(slope).

take a derivative of equation (8.1-2), we get
J(I)( 1)

=(~1)(1 + &) "¢l ~a)

ae (1 + E_“I}_?' 2 ““-"!‘pz(” (8.1-3)
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It we solve equation (8.1-2) for e/, substitute it into equation (8.1-3), and
simplify, we get

ad(r) L= @) L - , B .
ol = () = (=l - 2(D]O(1) = a1 - @)0

.(8.1-4)

where @(f) has been simplified to @ by dropping (1),

It is important to point out that multilayer networks have greater repre-
sentational power than single-layer networks only if nonlinearities are intro-
duced. The logistic function (also called the “squashing” function) provides
the needed nonlinearity. However, in the use of the backpropagation algo-
rithm, any nonlinear function can be used if it is cverywhere differentiable
and monotanically increasing with I, Sigmoidal functions, including logistic,
hyperbolic tangent, and arctangent functions, meet these requirements. The
arctangent function, denoted as tan ™!, has the form

®(1) = %tan"(afj (8.1-5)

where the factor 2/7 reduces the amplitude of the arclangent function so
that it is restricted to the range —1to +1. The constant e determincs the
rate at which the function changes between the limits of —1 and +1 and 1o
the slope of the function at the origin is 2a/ . It influences the shape the
arctangept function in the same way that e influences the logistic function in
Figure 8.2a. The arctangent function has the same sigmoidal shape as shown
in Figurc 8.3a. The derivative is

ad(r) 2{ o ] (8.1:6)

I w1t el

which would be used in place of equation (8.1-4) if the arctangent replaced
the logistic activation function.
The hyperbolic tangent function has the form

e«." y e-—u;‘
':D([) = tanh( CEI) = --—-——-__.eﬂr =y (81-?)
and its shape is shown in Figure 8.3b. Its derivative is
ad(I)
= a sech?(al) (8.1-8)

arf
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d’(!) = %arctan(a !)

Slope = 2a/n

fa)
al _ —al
rI’(;) —'—'Tﬂﬁh((i! _‘%jl
A eﬂ +e ¥
dofil= = o= :__.:-—'f:__:"‘
\ D
Slepe = e
——— ".'.__-F:.:f'—-— — — '}

(b)

Figure 8.3 Alfernale octivalion functions for bockpropogalion: (a) Arctangent.
(b) Hyperbolic tangent,

The slope of ®(1} at the origin is 4a, and it determines the rate at which the
function changes between the limits of 1 and + 1 in the sane general Wiy
that « influences the shape of the Jogistic [ ctivn i Figure 8.2a.

The use of a sigmoidal (squashing) function provides a form of “automatic
gain control”; that is, for small values of [ near zere, the slope of the
input-output curve is steep, producing a high jain, since all sigmoidal
activation functions have derivatives with bell shapes of the type shown in
Figure 82, As the magnitude of  becomes _teater in a positive or negative
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direction, the gain decreases. Hence, large signals can be accommodated
without saturation. This is shown in Figure §.2a.

82 WIDROW-HOFF DELTA LEARNING RULE

The Widrow-Hoff delta learning rule can be derived by considering the node
of Figure 8.4, where 7' is the target or desired value vector and [ is defined
by equation (8.1-1) as the dot product of the weight and input vectors and is
given by

n

I= Y wx (8.2-1)

f=1

For this derivation, no quantizer or other nonlinear activation function is
included, but the result presented here is equally valid when such nonlinear
elements are included.

From Figure 8.4, we sec the error function & as a function of all weights
w,, and we sce the squared error £° to be

g=(T-1) (8.2-2)

2= (T-1)7, (8.2-3)

X

xn

Figure 8.4 Neuron without aclivation funchion but with a target value I and
an eror £.
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The gradient of the square error vector is the partial derivatives with respect
to each of these ¢ weights:

de? al
= = AT =D == T -D)x, (8.2-4)

Y

Since this gradient involves only the ith weight component, the summation of
equation (8.2-1) disappcars.

For demonstration purposes, let us consider a neuron with only two
inputs, ¥, and x,. The square error is now given by

e =[T - wx, —w,x,]
= T% 4 wirl + wix} — 20w x, — 2Twyxy + 2w 0w, x,
=wilxf] + [ =2x(T ~ wor)] + [(7 - woxs)]
= wilx3] + wo[ 22T = wyx))] + (T - win )] (8.2:%)

The minimum square error occurs when the partial derivatives of square
error with respect to the weights w, and Wy are set cqual to zero:

de

v = =T = wr —wyrs ] =0 (8.2-61
oy o

" i

e

o = YT = k= i, e = 0 (B.2-7)
oWy

Since x; and ¥, cannot be zero, the (uantities in the brackets, which are
identical for both equations, must be zero. This gives

T=woey—wyx; =0 (5.2-8)

from which the location of the mininium in the wyand wy dimensions are

= W
i s T T (8.2-9)
xy
T - W, r
ey = ______;_._ (8.2-10)

Substitution of cither of these values into ciuation (8.2-5) gives the minimum

square error to be zero. Technically, this is correct, but in the real world the

minimum square crror is never ¢qual to zero because of nonlinearities, noise,
-



236 BACKPROPAGATION AND RELATED TRAINING ALGORITHMS

and imperfect data. The presence of noise with a sigmoidal activation
function will give a minimum square error that is not zero which we designate
as grﬁiu'

Examination of equation (8.2-5) shows that plots of &£* versus wy or w,
will be parabolic in shape. The parabolic curve of squared error £? versus w,
is shown in Figure 8.5 fortwo cases of minimum square error: zero and &2, .
For both cases, the minimum square error occurred at a value of w, given by
equation (8.2-9). An identical result can be obtained for squared error versus
Wy, where the minimum valuc occurs at the value of w, given by equation
(8.2-10). Hence, the minimum square error surface for the two dimensional
weight case is a paraboloid of revolution with the £? axis located at (w, w;).

A geometrical interpretation of the delta rule is that it involves a gradient
descent algorithm to minimize the square error. When the square error is
viewed in three dimensions (w,,w,, £?) the square ecrror surface is a
paraboloid of revolution with the weight vector descending toward the
minimum value along a gradient vector on the surface of the paraboloid. The
projection of this gradient vector on the w,—w, plane is the delta vector as
shown in Figure 8.6. The delta rule moves the weight vector along the
negative gradient of the curved surface toward the ideal weight vector

(T"' li'zIz)z

W =4__-f‘— X IZ

Xi

Figure 8.5 Minimization of square error during Widrow -Hoff training.
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position, Because it follows the gradient, it is called a gradient descent or
steepest descent algorithm. Since the gradient is the most efficient path 1o the
bottom of the curved surface, the delta rule is the most efficient way to
minimize the square error. There is, however, one caveat that must be added
here: This statement is true only if the weight vector is descending toward a
global minimum, If there are local minima, which are common with multidi-
mensional problems, other techniques must be used to ensure that a solution
(i.e., a weight configuration) is not trapped in one of these local minima,
The Widrow—Hoff delta training yule provides that the change in cach
weight vector component is proportional to the negative of its gradient:

¢a€2 g
Awy = —K— =K. 2(T = i)x;= 2Kex,

— ; (8.2-11)

where A is a constant of proportionality. The negative sign is introduced
because a mininiization process is invelved. It is common to tormalize the

(Lrror)?

A

Weightw
>

—— | Current
| e wht

"Ideal” Vector
Wi’fg}lf "Dezfﬂ'"
Fygfg;lf Wy Veecior
o Vector

Figure B.6 Geometric interpretation of delia rule,
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input vector component x, by dividing by XI>. Equation (8.2-11) now
becomes

8).‘,- T]&'.rr-
Aw, = [ZKIXF]!-}EI—:‘ = W (8‘2-12)

which agrees with equation (7.6-1) if we define the learning constant 7 to be
equal to the terms in the brackets:

n = 2KIX|? (8.2-13)

8.3 BACKPROPAGATION TRAINING FOR A MULTILAYER
NEURAL NETWORK!

Before discussing the details of the backpropagation process, let us consider
the benefits of the middle layer(s) in an artificial nevral network. A network
with only two layers (input and output) can only represent the input with
whatever representation already exists in the input data. Hence, if the data
are discontinuous or nonlinearly scparable, the innate representation s
inconsistent, and the mapping eannot be learned, Adding a third (middle)
layer to the artificial neural network allows it to develop its own internal
representation of this mapping. Having this rich and complex internal repre-
sentation capability allows the hierarchical network to learn any mapping,
not just linearly separable ones.

Some guidance to the number of neurons in the hidden layer is given by
Kolmogarov's thcorem as it is applied to artificial neural networks. In any
artificial neural network, the goal is to map any real vector of dimension m
into any other real vector of dimension #. Let us assume that the input
vectors are scaled to lie in the region from 0 to 1, but there are no constraints
on the output vector. Then, Kolmogorov’s thcorem tells us that a three-layer
neural network exists that can perform this mapping exactly (not an approxi-
mation) and that the input fayer will have m neurons, the output layer will
have n neurons, and the middle layer will have 2m + 1 neurons. Hence,
Kolmogorov's theorem guarantees that a three-layer artificial neural network
will solve all nonlinearly separable problems. What it does not say is that (1)
this network is the most efficicnt one for this mapping, (2) a smaller network
cannot also perform this mapping, or 3) a simpler network cannot perform
the mapping just as well. Unfoitunately, it does not provide enough detail to
find and build a network 14t cfficiently performs the mapping we want. Tt
does, however, guarantez thit a method of mapping does exist in the foim of
an artificial neural network (Poggio and Girosi, 1990).

1 . i - . . .

The analysis presented here is the classical approach in which the hidden and output layer
neurons have sigmoidal activation funclions. An alternate approach in which the output neiirons
have linear acti+atinn functions is presented in Section 8.7.
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Let us consider the three-layer network shown in Figure 8.7, where all
activation functions are logistic functions. It is important to note that back-
propagation can be applied to an artificial neural network with any number
of hidden layers (Werbos, 1994). The training objective is to adjust the
weights so that the application of a set of inputs produces the dosired
outputs. To accomplish this the network is usually trained with a lurce
number of input—output pairs, which we also call examples.

The training procedure is as follows:; -

1. Randomize the weights to small random values (both positive and
negative) to ensurc that the network is not saturated by large valuss of
weights. (If all weights start at equal values, and the desir-d perfor-
mance requires unequal weights, the network would not teain at all)

. Select a training pair from the training set.

a1

. Apply the input vector to network input.

By

. Calculate the network output.
5. Calculate the error, the difference between the network output and the
desired output.

0. Adjust the weights of the network in a way that minimizes this error.
(This adjustment process is discussed later in this scction.)

&
i Layer J Layer & Layer
Index h Index p Index g
L —=m I—=n I—F
m Nodes n Nodes r Nodes

_Figura 8.7 Skotch of multilaver neural network showing the symbols and indices usad
In deriving the backpropagation training algorithm
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7. Repeat steps 26 for each pair of input-output vectors in the training
set until the error for the entire system is acceptably low.

Training of an artificial neural network involves two passes. In the forward
pass the input signals propagate from the network input to the output. In the
reverse pass, the calculated error signals propagate backward through
the network, where they are used to adjust the weights. The calculation of
the output is carried out, layer by layer, in the forward direction. The oulput
of one layer is the input to the next layer. In the reverse pass, the weights of
the output neuron layer are adjusted first since the target value of each
output neuron is available to guide the adjustment of the associated weights,
using the delta nule. Next, we adjust the weights of the middle layers. The
problem is that the middle-layer neurons have no target values. Hence, the
training is more complicated, because the error must be propagated back
through the network, including the nonlinear functions, layer by layer.

Calculation of Weights for the Qutput-Layer Neurons

Let us consider the details of the backpropagation learning process for the
weights of the output layer. Figure 8.8 is a representation of a train of
neurons leading to the output layer designated by the subscript k with
neurons p and g, outputs B, (1) and @, (1), input weights Wy and w, o
and a target value 7,. The notation () in P, (1) will be dropped for
convenience. The output of the neuron in layer k is subtracted from its target
value and squared to produce the square error signal, which for a layer &

neuron is

&= gy = [T, — By (8.3-1)
since only one output error is involved. Hence

= el [T, - 0, ] (8.3-2)

The delta rule indicates that the change in a weight is proportional to the

g .

g »..__,.C >_._:‘_I;."'.rf“ Iog li'{ﬂ_;J_—wf"l Eq,k ' d!qj- _.g:‘.." omp le— Tg
i —_., k g

Figuro 8.8 Representation of a #rain 6f neurons for colct Hating the chonge of weight

for an output-layer cieon in backpropagetion.
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rate of change of the square error with respect to that weighi—that is,
AWpgx = L T (6.3-3)

where 7, , is constant of proportionality called learning rar=. To evaluste this
partial derivative, we use the chain rule of differentintion:

de? c?e;';! av,, ol

4
f?“'qu

= . (8.3-4)
dD, , Aoy IW,,y

Each of these terms are evuluated in turn, The partial derivative of equation
(8.3-2) with respect to &, , gives

c?.e:3
o s =T ] (8.3:5)
r 'Eq'.k
From cquation (8.1-4), we get
a®, :
6[”{ = frq)qk[l - fllq ,;] (8.3-6)

From Figure 8.7 we see that I, is the sum of the weighted inputs from the
middle layer —that is,

n
‘,? kT }:l Wag t(bp-f 2 f8-3'7)
s

Taking the partial derivative with respect to w,, , gives

al
og (8.3-8)
Ewpqlk

Since we are dealing with one weight, only one term of the summation of
equation (8.3-7) survives. Substituting equations (8.3-5), (8.3-6), and (8.3-8)
into equation (8.3-4) gives

del
&:Vp:-k - _ZQITQ = q’q.qu’q-k[l = ‘b‘!-"]tpp-f =

¢p.j (8‘3'9)

= apq.k
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where 8, is defined as

Byyk = 2a[Tq = dqu]tbqlk[l - IIJ,“,C]
ab
T (8.3-10)
Y al,,
Substituting equations (8.3-9) into equation (8.3-3) gives
A e 5,, ,® (8.3-11)
AW = Mg S . **p. -<l=
re TV o9 Opg.k T p g
“{Pl’f ‘-'("V + ‘1) = WJ‘JQAR(N) o 1?P.q‘pq_k‘r’p,_f (3-3‘12)

where N is the number of the iteration involved. An identical process is
performed for cach weight of the output layer to give the adjusted values of
the weights. The crror term 8, from equation (8.3-10) is used to adjust the
weights of the output layer neurons using equation (83-11) and (8.3-12). It is
useful to discuss why the derivative of the activation function is involved in
this process. In equation (8.3-10) we have calculated an error which must be
propagated back through the network. This error exists because the output
neurons generate the wrong outputs. The reasons are (1) their own incorrect
weights and (2) the middie-layer neurons generate the wrong output. To
assign this blame, we backpropagate the errers for each output-layer neuron,
using the same interconnections and weighis as the middle layer used to
transmit its outputs to the output layer.

When a weight between a middle-layer neuron and an output-layer
neuron is large and the output layer ncuron has a very large error, the
weights of the middle layer neurons may be assigned a very large error, even
if that neuron has a very small output and thus could not have contributed
much to the output crror. By applying the derivative of the squashing
function, this error is moderated, and only small to moderate changes are
made to the middle-layer weights because of the bell-shaped curve of the
derivative function shown in Figure 825,

Calculaiion of Weights for tho Hidden Layer Neurons

Since the hidden layers have 10 target vectors, the problem of adjusting thie
weights of the hidden layers stymied workers in this field for ycars until
backpropagation was put forth, Backpropagation trains hidden layers by
propagating the adjusted error back through the network, layer by layer,
adjusting the weight of each layer as it goes. The equations for the hidden
layer are the same as for the output layer except that the error term 8,

g hpj
must be gencrated without a target vector, We must compute §

ey for each
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neuron in the middle layer that includes contribttions from the  rors in
each neuran in the ovtput layer to which it is comectied. Let us co. “der a
single neuron in the Lidden layer just before the output layer, des. nated
with the subscript p (see Figure 8.8). In the forwurd pass, this vercon
propagates its output values to the g neurons in the output layer through the
interconnecting weights w,, . During training, these weights operai: in
reverse order, passing the value of §,,., from the output layer back to '
hidden layer. Lacli of these weights is mulliplied by the value of the nct. 1
through which it coanects in the output layer. The value of §,,; needed
the hidden-layer ncuron is produced by summing all such products.

The arrangement in Figure 8.9 shows the errors that are backpropapnied
to produce the change in wy ;. Since all error terms of the output layer are
involved, the partial derivative involves a summation over the r ontputs. The
procedure for calculating §,,; is substantially the same as caloitating 8, .
Lei us starl with the derivative of the square error with respect to the weight
for the middle layer that is to be adjusted. Then, in a manner gnalogous o

equation (8.3-3), the delta rule training gives

A de’ ; de“ (8.3-13)
BWpes = T ')’” L A oo
o - ‘3“!'?! P g1 gy
where the total mean square €2 is now defined by
E & [T =q ] (8.3-14)

g=1 q=1

since several output errors may be involved. The learning constant v, , is

g=1

Lk | o :@—— T
£}
. : : u'h,-.-_,f —’_[ fp_;

By 3
£,

M Layer S Layer kR Layer
Index h Fndex p Index ¢
I=m I=n l=r

m Nodes n Nodes r Nodes

Figure 8.9 Representation of a train of neurons for calculati ng the change of weight
for @ middle (hidden) layer neuran in backpropagation.
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usually, but not necessarily, equal to T ABAIN, we can evaluate the last
term of equation (8.3-13) using the chain rule of differentiation, which gives

dge’ f dey a®,, I, ab,; dl, @i
gt r?qu_k ‘Hq.k c?tpp_j r?fplf Wy, :

aw}m.j

Each of these terms is similar to those in equation (8.3-4) and are evaluated
in the same manner,

The first two terms are already given by equations (8.3-5) and (8.3-6),
which are

:5'6'4,2 .

— = ...2([‘1 - ‘1’,,-.0 = =28, (8.3-16)
L)

ad,

E—; = ‘e k(l ~4, ) (8.3-17)
q.

Taking the partial derivative of equation (8.3-7)

L Woga D, (8.3-18)
p=1
with respect to @, ; gives
o
Bk C. A o I 1
adm. . Wpa.k (5.2-19)
nJ
The summation over p disappenrs because only one connection is ins olved.
Changing subseripts on equaiions (8.3-6) to correspoind to the middle laver
gives
fa
o d
7 S
PN e 4} - ; 3
af - J[l } (.“i__a ]}
it
Changing sab-cripts en equation (8.3-7) and substitutine the fth-l wyor input

X, for the jth-layer input ;. gives

i~ = h‘-’l,".)‘xﬁ' ,, 1 ?1)
h=1
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Taking the partial derivative of equation (8.3-21) gives

al

e (5.3:22)
Wy, :
hp.j
Again, the summation over /i in equation (5.3-21) disappears because + 'y

one connection is involved. Su'stitution of equations (8.3-17) th-ough (}3’ } )
into equation (8.3-15), use of equation (8.3- 14) and the defirition of S,
equation (8.3-10) gives

2
aE 5

e ~2) _ L ) i
aw,ml -;;1 2) (T lI’ q;((l ,'.ﬂ]tp,l r[(]) (1 q, } v

c?’q'

F.a ,m,' L“‘p.; £ ﬂ‘r _-".'1 (83—23)
> g=1 i
If we define 8, as
ad
B nome B s (83-24)
e FARETEGR aF R
£
then equation (8.3-23) becomes
.2
o0& L4
= = ¥ 8, % 8.3-25
(:'Il'y'hpll. o vptth ( }

Since the change in weights as given in equation (8.3-13) is proportional to
the negative of the rate of change of the square crror with respect to that
weight, then, substitution of cquation (8.3-23) and (8.3-24) into equation
(8. 3 13} gives ‘

e r D .
AW; P= o=y = E 5 W A v
i hop lip pak pg k. iy
aw hipf g=1 ”'[n i
r
=y p%n L By (8.3-26)
g=1
and hence
L1
Wip i (N + 1) = wy, (N) + m, 0, 1 6y, (8.3-27)
q=1

If there are more than one middle layer of neurons, this process moves
through the network, layer by layer to the input, adjusting the weights as it
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goes. When finished, a new training input is applied and the process starts
the whole process again, It continues until an acceptable error is reached, Al
that point the network is trained.

Example 8.1 Updating Weights Through Backpropagation. A simple, fully
connected feedforward ncural network is shown in Figure 8.10, where bias
inputs of + 1 and adjustable weights w,, w,,, and w g have been added to
neurons C, D, and E, respectively. (See Section 8.4 for a discussion of bias.)
All ncurons have the same logistic activation function with @ = 1 and the
same learning constants with 7 = (0.5.

The desired output of ncuron £ is 0.1. The weights are randomized to the
values shown, and training is started. Then the backpropagation process of
learning is applicd in the backward direction and the process is carried
through one cyele, i.e., the change in each of the six weights and the new
values of the weights are caleulated.

For the weights between layers j and k, substitution of equation (8.3-9)
into equation (8.3-11) gives the changes to be

AWpgu = =t o[ =2a[T, - @, ,]®, ,[1 - @] D, ;]  (E8.1-1)

For the weights between layers i and J, substitution of equation (8.3-23) into

k hayer

-0.2

0.4 N
o)
N2 oA

yi

ar ¥ I‘ /.r :
A
l:ri) t -fayer

i 1‘.
&

I |
(121 0.7

Flgurs .10 Weigh! adjustison) (training) In a simple retiral natwork,
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equation (8.3-26) gives the changes to be

i
a”'.hpf = T]h_;; E - 2“(?:‘4 o (I]q l)(I)q.k(l - dr-,' 'c)“:pg' k{r‘pp;{! - t!jf.})'t.ll
g=1

(E8.1-2)

The subscripts h, p, g, and indices m, n, and r are defined in Figure 8.7.
Subseript 1 refers to the +1 bias terms..

First, caleulate the outputs of each neuron using the logistic function with
=1

I.=04%01+(-07) % (=-02) + 1% (—0.5) =001+ 014~ 050

— —0.32 D(i) = 0.42
1,=04%04+(-07)X02+1X(-02)=016-0.14-02

= —0.18 P(Ip) = 0.46
10 =042 X 0.2 +0.46 X (—035) + 1 X (—0.6) =0.08 - (.23 — 0.60

= —0.75 B(1p) = 0.32

Substitution of these values and other network parameters into equations
(E8.1-1) and (E8.2-2) gives

Awep = ~0.5 % (—2) X 1 % (0.10 — 0.32) x 0.32 x (1.00 — 0.32) x 0.42

= —0.020

Awyy = =05 % (—2) % 1 X (0.10 — 0.32) X 0.32 X (1.00 — 0.32) X 0.46
= —0.022

Aw,y = =0.5 X (=2) X 1% (0.10 — 0.32) % 0.32 X (1.00 — 0.32) X 1
= —0.048

Aw,e = —0.5 X (=2) X 1 X (0.10 — 0.32) x 0.32 X (1.00 — 0.32) x 0.20
X1xX042 X(1.00-042) x04
= —0.00093 = —0.001
—0.5 X (—2) X 1 X (0.10 ~ 0.32) X 0.32 X (1.00 — 0.32)
X(—0.50) X 1 X 0.46 % (1.00 — 0.46) X 0.4
0.00238 = 0.002
Awpe = —=0.5 X (=2) X 1 X (0.10 — 0.32) X 0.32 X (1.00 — 0.32) X 0.20
X 1 X042 x (1.00 — 0.42) X (=0.7) '
= 0.00163 = 0.002

Ay
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dwpp = —0.5 X (=2) X 1 X (0,10 — 0.32) X 0.32 X (1.00 — 0.32)
%(—0.50) % 1% 0.46 X (1.00 — 0.46) X — 0.7

-0.00142 = —0.001

Awie = =05 X (=2) X 1 X (0.10 — 0.32) X 0.32 X (1.00 — 0.32) X 0.20
X1X042(1.00 -042) x 1

-0.0023 = —0.002

=05 X (=2) X 1x (0.10 - 0.32) X 0.32 X (1.00 - 0.32)

X —(0.50) x 1 X 0.46(1.00 — 0.46) X 1

0.0039 = 0.006

il

Awip

i

Adding these changes to the original weights gives the new weights.

Wep = 0.200 = 0.020 = 0.180 .
Wpe = —0.500 = 0.022 = —0.522
wie = —0.600 — 0.048 = —(0.648
wye = 0,100 — 0.001 = 0.099

= (0.400 + 0.002 == 0.402
wWee = —0.200 + 0.002 = —0.198
wgp == 0.200 — 0.001 = 0.199

Wi = —1.500 - 0.002 = —0.502
Wi -t —0.200 + 0.006 = —0.194

[}

Wab

This process is repeated until all sample pairs in the epoch have been
utilized. After these weight changes have been calculated, the total square
error is then calenlated. If it is more than the specified amount, the learning
algoiithn is again applied to the network using another epoch of training
data. A Getter alternative is 1o continue the training process until monitoringe
of the tatal square error fur « test sef of data starts to increase, even though
the total « viare error for the training set continues to decrease, [

8.4 FACT 7S THAT INFINENCE EACKPROPAGATION TRAINING

Adding a bias (1 +1 input with a training weight, which can be cither
positive or nesative) to each neuron is usually desirable to offset the origin of
the activation function. This produces an effect cquivalent to adjusting the
threshold of thie neuron and ofien permils more rapid training. The weight
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of the bias is trainable just like any other weight except that ths inpul is
abvays +1.

Momanium

Another technique to reduce training time is the vse of momentura, becausa

it enhances the stability of the training process. Momentum is used to keep

the training process going in the same general direction analogous (o the way

that momentum of a moving object behaves. This involves adding @ term Lo

the weight adjustment that is proportional to the amount of the previous

weight change. In effect, the previous adjustment is “remembered” and used

to madify the next change in weights. Hence, equation (8.3-11) i becomes
('L f: -4 T e T - 13 9 -

AW, (N + 1) = = 0,08, 4T + 18w, 3 {N) (8.4-1)

where p is the momentum coefficient (typically about 0.9). This reiationship is

shown in Vigure 8.11. The new value of the weight then becomes equal to the

previous value of the weight plus the weight change of equation (8.2-11),

which includes the momentum term. Equation (8.2-12) now becomes

] £ 734 = Yk . T o A4

Wogil N + 1) = w, (N} + 8w, (N + 1) (8.4-2)

This process works well in many problems, but not so well in others. Another

way of viewing the purpose of momentum is to overceme the effects of local

A pgfN)

weight change
without momentum

N

g0 pgs Ppj
A Wpgi(N)

momenium termt

A “"pq,k (N‘i' 1)

welight change
with momentum

Figure B.11 Influence of momentum upon weaight change.
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minima. The use of the momentum term will often carry a weight change
process through one or more local minima and get it into a global minima,
This is perhaps its most important function.

There is a substantial number of advanced algorithms or other procedures
that have been proposed as means of speeding up the training of backpropa-
gation networks. Sejnowski and Rosenberg (1987) proposed a similar momen-
tum method that used exponential smoothing, However, the results were
mixed. In some cases it impraved the speed of the training, whereas in other
cascs it did not. Parker (1987) proposed a method called the “second-order”
backpropagation that uscd the second derivative to produce a more accurate
estimation of the correct weight change. The computational requirements
were greater and were generally viewed as not being cost effective compared
to other methods. It was, however, clear that higher-order (greater than 2)
backpropagation systems were not effective. Stornetta and Huberman (1987)
pointed out that the 0-1 range of sigmoidal function is not optimal for binary
mmputs. Since the magnitude of a weight adjustment is proportional to the
output level of the neuron from which it originates, a level of 0 results in no
modification. With binary inputs, half of the outputs {on the average) will be
zero, and weights do not train. The proposcd solution was to change the
input range of the ‘aclivation function from —1/2 to + 1/2 by adding a bias
of =1/2. They demonstrated that for binary functions this procedure re-
duces the training time by 30-50%. Today a more common method of
accomplishing this is to use the arctan or hyperbolic tangent activation
function,

Despite some spectacular results, it is clear that backpropagation is not a
panacea. The main problem is the long and sometimes uncertain training
time. Some artificial neural networks have been known to require days or
weeks of training, and in some cases the network simply will not train at all,
This may be the result of a poor choice of training cocfficients or perhaps the
initial random distribution of the weights. However, in most cases failure to
train is usually duc to local minima or network paralysis, where training
virtually ceases due to operation in the fat region of the sigmoid function.

Stability

The proof of convergence of backpropagation by Rumelhart, Hinton and
Williams (1986) used infinitesimal weight adjustments. This is impractical
because it requires infinite training time. I'n the real world, if the step size is
too small, the training is too slow; if the step size is too large, instability may
result. However, recent efforts that involve the use of large steps initially with
automatic reduction as the truining proceeds have been quite successful in
reducing training time.

Another issue is temporal instability. If a network is to learn the alphabet,
it is of no value to learn the letier B if it destroys the learning of letter A.
The network mst learn the entire training set without disrupting what is
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already learned. Rumclhart's convergence requires the network to process all
training examples before adjusting any weights. Furthermare, backpropaga-
tion may not be useful if the network faces a continuously changing environ-
ment where the inputs are continuously changing, because the process may
never converge. There are alternate networks discussed later thal arc useful
in such situations.

Adjusting « Coofiicient in Sigmoidal Term

Sometimes weights become very large in value and force the ncurons to
operate in a region where the sigmoidal function is very flat—that is, its
derivative is very small. Since the error sent back for training in backpropaga-
tion is proportional to the derivative of the sigmoid function, very little
training takes place. This network paralysis can sometimes by avoided by
reducing the training coefficicnt, which unfortunately results in extending the
training time.

A better method of coping with network paralysis if to adjust the c
cocfficient on the exponential term in the logistic term. By decreasing ¢, we
cffectively spread out the sigmoidal funetion over a wider range. Values of [/
that gave @(f) of 0.99 now gives smaller values, like 0.75 or perhaps 0.35,
depending upon the value of «. The training process is now operating in a
range where the derivative of the sigmoidal is much greater, and hence
training will proceed mueh faster.

For large negative values of 7, the logistic activation function squeezes the
(1) values close to zero, Use of hyperbolic tangent and arctangent activa-
tion functions spreads these values down into the range between 0 and —1,
thereby eliminating the network paralysis. The use of a trainable bias term as
an input to each neuron, which is standard practice in most commercial
neural network software, is also useful in avoiding network paralysis.

Dedling with Local Minima

Perhaps the major problem of backpropagation is local minima. Since back-
propagation employs a form of gradient descent, it is assumed that the error
surface slope is always negative and hence constantly adjusting weights
toward the minimum. However, error surfaces often involve complex, high-
dimensional space that is highly convoluted with hills, valleys, folds, and
gullies. Tt is very easy for the training process to get trapped in a local
minimum. One of the most practical solutions involves the introduction of a
shock—that is, changing all weights by specific or random amounts. If this
fails, then the most practical solution is to re-randomize the weights and start
the training over.

Another alternative is to utilize simulated annealing, a technique that is
used to search for global minima in a scarch surface in which states are
updated based on a statistical rule rather than deterministically. This update
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rule changes to become more deterministic as the search progresses. (Sinu-
lared annealing is discussed later in Chapter 9.) The procedure is to usc
backpropagation until the process seems to stall. Then simulated annealing is
used to continue training until the local minimum has been left behind. Then
the simulated annealing is stopped and the backpropagation training contin-
ues until a global minimum is reached. In most cases, only a few simulated
annealing cycles of this two-stage process are needed. If the mean square
crror of the outputs stalls in its descent, then the annealing process may have
to be used again. The final training step in this process is backpropagation to
minimize the overall error of the process.

Learning Constants

Choosing the correct learning constant n is imporiant in backpropagation
training. First, # cannot be negative because this would cause the change of
the weight vector to move away from the ideal weight vector position, Of
course, if i is equal to 0, then no learning takes place. Therefore, 1 must
always be positive. It can be shown both analytically and experimentally that
if  is greater than 2, then the network is unstable, and if 7 is greater than 1,
then the weight vector will overshoot the ideal position and oscillate, rather
than scttle into a solution. Hence, 1 should be in the range between 0 and 1.

If 9 is large (0.8 or thereabouts), then the weight vector will take relatively
large steps and will find the minimum faster. However, if the input data
patterns arc not highly compacted around the “ideal” example, this will cause
the network to jump wildly each time a new input pattern is presented, If the
value of 1 is small (0.2 or thereabouts), then the weight veetor will take small
steps toward the “ideal” position, and will not vary wildly if the input data
patierns are not very close to an “ideal” example. However, the network will
require a longer time to learn the patterns with many iterations of the data
neaded.

As a compromise, large values of 5 are used when the input data patterns
are close to the ideal whereas small values of n are used when they are not,
When the nature of the input data patterns are not known, then it is better to
use & moderate value of 7. As suggested carlier, an even better method is to
change the value of 5 as the network learns, beginning with a large value
initially and reduting it as the learning progresses. Then the leaning process
is not distracted by minor variations in the input data. It is important to
rementber that real data patterns are never perfect examples of a category,
and that the sepzrating hyperplanes cannot always separate all the input data
into a speci ic number of categorics.

Vaitations ol the Standard Backpropagalion Algorithm

In addition to such standard techniques are adding momentum, adjusting
learning rate, adjusiing the exponential decay constant in the sigmoidal
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function, and using other activation functions, there are a number of other
variations that are often uscful in many situations. Most of them modify the
standard backpropagation algorithm in one wuy or another.

Cumulative Update of Weights

Acvariation of backpropagation training (called “comulative backpropagation)
that seems to be helpful in speeding up training is the cumulative update of
weights. In this case, the individual weight changes for each weight are
accumulated for an epoch of training, summed, and then the cumulative
weights changes are made in the individual weights. This procedure signifi-
cantly reduces the amount of computation invalved, and there usually is no
noticeable effect on the final training of the network,

Fast Backpropagation

This variation of backpropagation introduced by Tarig Samad of T'oneywell
(Samad, 1988) involyes the following changes in standard backprop:,ation. A
multiple of the error at layer k is added to the k-layer activation value D, .
prior to doing the weight update for weights on connections between the §
and & layers. This can dramatically increase the speed of training, usually by
more than an order of magnitude. Furthermore, it has been showa in une
case to reach convergence when standard backpropagation training failed to
do so alter 10,000 iterations.

Ciickprop Training

Fahlman's quickprop training algorithm is one of the more effective 1 luo-
rithms i1 overcoming the step-size problem in backpropagation. The Js*/gw
values are computed as in stendard backpropagation (Fahkman, 1988). [Tow-
ever, a second-order method related to Newton's method is used to upgrade
the weights in place of simple gradient descent. Fahlman reports that
quickprop consistently outperforius backpropagztion, sometimes by a wide
margin.

Quickprop's weight update procedure depends on two upproximations: (1)
Small changes in one weight produce relatively little effect on the error
gradient observed at other weights, and {2) the error function with respect to
cach weight is locally quadratic. The slopes and weights for current and
previous iterations are used to define a parabola, The algorithia then goes 10
the minimum point of this parabola as the next weight. This [rocess contin-
ues going through all weights for en epoch. If the error is sufficiently small,
the training process is terminated; if nol, traiming coatinues for another
epoch.
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Use of Different Error Functions

The error function defined in equation (8.3-2) is proportional to the square
of the Euclidean distance between the desired output and the actual output
of the network for a particular input pattern. As an alternative, we can
substitute any other error function whose derivatives exist and can
be calculated as the output layer. Errors of third and fourth order have been
used to replace the traditional square error criterion. NeuralWorks® has
suggested cubic and quadratic errors of the forms

ta ¥ IT, - @] (8.4-3)

g=1

™
I

r
r

i 11~ 2 (549
g=1
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which have local errors, analogous to equation (8.3-10), of

L0,
By = — 3T, — @) = (8.4-5)
T, .
P =l 39 %ok 8.4-6
- b G-
Bouik 4( q 'M) M“ ( )

It is not clear whether the benefits of cubic and quadratic error functions
compensate for the additional complexity introduced.

Delta-Bar-Delta Networks

Most changes of the standard backpropagation algorithm involve one of two
methods: (1) Incorporate more analytical information to guide the search
such as second-order backpropagation, which has not proven particularly
successful, and (2) use heuristics (often intuition) that are reasonably accu-
rate. The delta-bar-delta algorithm is an attempt introduced by R. A. Jacobs
(Jacobs, 1988) to improve the speed of convergence using heuristics. Empiri-
cal evidence suggests that each dimension of the weight space may be quite
different in terms of the overall error surface. By using past values of the
gradient, heuristics can be used to imply the curvature of the local error
surface, from which intelligent steps can be taken in weight optimization.
Since parameters for one weight dimension may not be appropriate for all
weight dimensions, each neuron has its own learning rate which is adjusted
over time (i.e., reduced as the training progresses). This method has proven
to be effective in reducing the time required for training neural nctworks.

2Capyright held by NeuralWare Inc., Pittsburgh, PA.
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Extendad Delta-Bar-Delta

Minai and Willizms (1990) have extended the delta-bar-delta algorithm by (1)
adding a time-varying momentum term and (2) adding a time-varying learn-
ing rate. The rates of change in momentum and learning rate decrease
exponentially with weighted gradient components so that greater increascs
will be applied in arcas of small slope or curvature than in the arcas of high
curvature. To prevent wild jumps and oscillations in weight space, ceilings are
placed on the individual learning and momentum rates.

8.5 SENSITIVITY ANALYSIS IN A BACKPROPAGATION NEURAL NETWORK

Sensitivity analysis is an extremely useful tool in many practical applica(ions.
The introduction of a small perturbation in one of the input ncurons usually
produces perturbations in the outputs of all neurons conneeted, directly or
indirectly, to that input neuron (Guo and Uhrig, 1992; Hashem, 1992), The
ratio of the magnitude of the perturbation in the output of a specific cuiput
newvren to the perturbation in the input of a specific inpul node is defined as
the sensitivity. A perturbation of x, of the multilaver neuron network in
Figure 8.7 produces perturbations in all values of ¥,- Henee, the sensitivity

Uy 15 given by
._\_}' oy
‘=1 - £f
i = o (8.5-1)
Ax, 0xy
where the ritio of the A perturbations are repluced with paitial derivatives

(after taking the appropriate limit). Using the notation of Figure §.7, equa-
tion (8.5-1) becomes
Ol Tl T

o Xy ax " J !_," g *I’P

al, . o . Gl
B - Cide A o | (8.5-2)
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The first term is given by equation (8.3-6) to be
—4E < a®,  [1 -, ] (8.5-3)

The second term is found by taking the purtial derivative of eqration (8.3-7)
with respect o ®,.;, which gives

‘9}' n

aq.k N
T (8.5-4)
£ A
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The third term is given by equation (8.3-20) to be
—EE = ol {1 ~ @] (8.5-5)
2.

The fourth term is found by taking the partial derivative with respect to x, of
equation (8.3-21) to be

L= =]
W
[
e

—_ = 5 9-D
r}xh e (

Again, the summation disappears because only one input is involved. Subisti-
tuting these four terms into equation (8.5-2) gives

n
Yoo = & d]'?-*[] = Dy l-'l Wog iy 1 — (Dp-j]wﬁr--r‘ (8.5-7)
i

which beconles

n
i = uzti{M[l ol k] E Wpa ,\_(I’J,_;-[l — q’p.,r']“'hp.; (8.5-8)
F’"l

Experimental Evaluation of Sonsitivity Cosfficients

An experimental evaluation of sensitivity coefficients, sometimes called the
“dither” method, is pussiﬁlc after a neural network has been trained. It
involves the introduction of small perturbations of each input x,, one at a
time, of about 0.5% in both the positive and negative directions. The
resultant perturbations of each output y, in each direction for each input
perturbation is measured and averaged. The sensitivity coefficient is then
taken as

¥

[ e ——
g.h
A'rh

(8.5-9)

where the averages arc taken over the perturbations in the positive and
negative dirc fions. If there are h inputs and g outputs, then there are hy
sensitivity co.  zients that can be evaluated experimentally.
In general, . 2 usefulness of such measurements are limited. The principal
oblem is tha. the values are valid only for the particular location in
blem space represented by the values of the inputs and outputs before
‘are perturbed,
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8.6 AUTOASSOCIATIVE NEURAL NETWORKS

Although any layer in an neural network can have any number of neurons,
the most common backpropagation network starts with a large number of
neurons in the input layer and has relatively few neurons in the output layer.
The reason is that many problems involve a complex description of a
situation or condition as the input, and a limited number of classes or
conditions as the output. There is no rule prescribing the number in neurons
of a middle or hidden layer of a three-layer neural network. Kolinogorov's
theorem gives us a number of ncurons that guarantee the existenee of a
mapping function between the input and output, but as indicated eatlier, this
may not be the optimal or most appropriate number of neurons in any given
situation. As a rule of thumb, the number of neurons in the middle layer
should be less than the number of data sets in an epoch so that the neural
network docs not memorize the various input data sets; that is, a pasticular
neuron in the hidden layer becomes associated with a particular data set of
an epoch.

Autoassociative neural networks, in which the output is triained to be
identical to the input, have many unusual characteristics that can be ex-
ploited in many applications. Autoassociative neural networks as defined
here are feedforward, fully connected, mulilayer pereeptrons usually (but
not always) trained using backpropagation (Masters, 1993). The number of
neutans in the hidden layer(s) may be greater or smaller than tlie number in
the input and output, All neurons in the middle layer(s) must have nonlinear
sigmoidal (logistic, arctangent, or hyperbolic (angent) activation function, but
the output layer may have either a lincar or nonlinear activation function.
Kramer (1991, 1992) has investigated the special case where (he middle layer
has fewer neurons (which Kramer called a “bottlencck™ and reported
features that lend themselves to diagnostic and moriitoring as well as to the
identification of nonlinear principal components. This boftlencck layer pre-
vents a simple one-to-one of “straight through” mapping from developing
during the traininy of the notwork.,

Let us consider the autoassociative backpropagation network shown in
Figure 8.12, where there are 100 neurons in the input and oulput layers and
40 neurons in the hidden (bottleneck) layer, We start with the desired output
of the output layer being exactly equal to input to the input layer, and we
proceed with the training using backpropagation. The data for (he training
set must be choten so that individual input-output valucs cover the range
over which the network will have to accépt inputs in the future. Eventually,
within some tolcrable error, the input and output of the networl: are the
same. This indicates that the information contained in the input vector which
has 100 components is approximately equal to the information contained in
the output vector which also has 100 companents. Further sore, the informa-
tion in the input vector passes through the middle layer, where it is repre-
sented by a 40-component vector, This compression of the information into
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Figure B.12 Autoassociative neural netwark.

40 components is a very useful property for certain specific applications. In
effect, the 100-dimensional data sct has been reduced to a 40-dimensional
data set and then recxpanded to a 100-dimensional data set with the error
minimized in a least square sense, This means that the 100-dimensional input
must be reproduced at the output with only 40 independent variables
represented by the outputs of the neurons in the middle layer. In effect, least -
squares training induces the network to model correlations and redundancies
in the input data in order to reproduce the input data at the output with
minimal distortion under the dimensional restriction of the “bottlencck”
layer.

A quantity that is often of interest is the compressed representation of the
input variable consisting of 40 values in the hidden layer. The values from
this middle layer are often extracted and utilized as a compressed representa-
tion of the input information. Since we are now effectively dealing with a
two-layer ne! vork (the input layer and the middle layer, which is now an
output layer), he validity of this representation is dependent upon the nature

¢ the input uata. There is no “hidden” layer to capture the patterns of
itures of the input data and present it in an organized manner to the

'dle layer. The same situation exists with respect to the conversion of a
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d40-dimension representation of the data contained in the middle layer to a
100-dimension representation of the data contained in the output layer.
These situations can be overcome by putting in two “intermediate” layers,
one between the input and the bottleneck layer and another between the
middle layer and the output layer, to give a five-layer neural network. Such
an arrangement is shown in Figure 8.13. The sccond and fourth layers, cach
having 135 neurons, are effectively feature extraction layers. Kramer calls
them “mapping” and “demapping” layers, respectively. These layers have
more nodes than the input and output layers so that they are capuble of
representing nonlinear functions of arbitrary form. However, care must be
taken to avoid memorization by the neurons in these Iayers. With this
configuration, the signal now coming from the third (middlc) layer of this
five-layer neural network now is an appropriate 40-dimensional representa-
tion of the input data. In the case of this five-layer autoassociative neural
network, the sccond and fourth layers must have nonlinear activation fune-
tions, but the middle and output layers may have cither linear or nonlincar
activation functions. Kramer indicates that to capture linear functionality
clficiently, linear bypasses can be allowed from the input layer to the
bottlencek Tayer and from the bottlencck layer 1o the output layer, but not
seross the bottleneck layer,

The functioning of autoassociative neural networks should not be can-
fused with associative memory of the type illustrated in the last chapter,
where a neural network that was trained to recognize the letters of the
alphabict could recognize distorted versians of the letters, In elfect. the
distorted letter was closer (in a least squares sense) to the corresponding,
undistorted letter stored in the associitive memory. In contrast, the autnagso-
ciative neurnl network has no stored quantities and no discrete classes, and
its culpuls ave continuous variables.

Once the autoassociative neural network of Fignre 8.13 has been trained,
it can be split into two separate neural networks. The first consists of the
input, mapping, and bottleneck layers as shown in Figure 8.14u, in which the
input is separated into a reduced-dimensional representation of the input. If
all neurons in this autoassociative neural network had livea activiation
functions, the output of the middle layer would be the linear principal
components. With nonlinear activation functions, these COmponents repre-
sent nonlinear principle components of the input, and the numher of princi-
pal components obtained is equal to the number of neuraas iy the bottleneck
layer,

The second netwoik consists of the bottleneck, demapping, 20d oulput
laycts as shown in Figure 8.14b, in which'the reduced-dimensior. ! represen-
tation of the middle layer is expanded into a good representsion of the
original input signal. This separation can occur only after trainiz~ has taken
place; otherwise there are no target values available for the nen o s in the
middle layer.
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Figure 8.13 Fivelayer autoassociative neural network.

Use of an Autoassociate Neural Network for Filtering

The process described above is a form of “filtering” where the amount of
information lost is related inversely to the number of neurons in the “bot-
tleneck” layer. If the input is a time series taken from an fluctuating analog
signal with a sampling ratc of 100 samples per second, then the 100 input
components represents 1 sec of data. (Similarity, if the sampling rate is 5 or
1000 samples per second, the input data represents 20 or 0.1 sec of data,
respectively.) The training proceeds by using data sets consisting of successive
groups of 100 samples, shifted by one sample, which are eatered into the
neural network software or hardware as both the input and desired output.
Each successive group of 100 values consists of the next sample value and the
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preceding 99 sample values. The oldest sample is dropped. The neural
network then undergoes another training cycle, and then the data are shifted
again to include the next data point, and the training process proceeds. Care
must be taken to ensure that the range of variables to which the 100 inputs
and outputs are subjected during training covers the range of input data
expected in the future. When this training is complete, a time series can be
introduced into the neural network by introducing successive 100-sample
groups of data Lo the input layer. Because the bottienack forces the variable
to be represented by fewer dimensions, some information is lost. In this case,
it i5 the high-frequency information that is lost since more dimensions are
required to represent » high-frequency variable. In effect, the autoassociative
neural network behaves as a low-pass filter.

It is in this filtering application that the true nature of the autoassociative
network process is revealed. In effect, the high-fiequency components in the
s'gnai arc eliminated by the middle layer. The smaller tiie number of neurons
in the middle layer, the lower the cutoff frequency and the greater the
number of high-frequency components that are eliminated. Hence, it is very
clear that the input and output signals can never be identical, because
information has been filtered out of the input signal. The output can be only
a low-frequency approximation of the original input signal. As the number of
neurons in the hidden layer decreases, the cutoff frequency is reduced
further, thereby eliminating more of the higher-frequency components.

Usa of Autoassocialive Neural Networks in Systemwide Monitoring

Neural networks, in combination with other artificial intelligence technolo-
gics, offer means of interpreting data and measurements in ways that are not
othcrwise possible. The unique characteristics of three- and five-layer autoas-
sociative neural networks in which the outputs are trained to emulate the
inputs over an appropriate dynamic range have been explored and found to
be uscful in systemwide monitoring. Many (typically 10-20) variables of
complex systems (power plants, chemical or manufacturing processes, social
systems, ete.) that have some degree of correlation (typically > 0.3) with
cach other constitute the inputs. Hence, each output receives some informa-
tion from almost every input. During training to make each output equal to
the corresponding input, the interrelationships between all the input vari-
ables and each individual output are embedded in the connection weights of
the network. As a result, any specific output, even the corresponding output
shows only a small fraction of the input change over a reasonably large range.
This characteristic allows the autoassociative neural network to detect drift,
deterioration, or failure of a sensor by simply compuaring each input with the
corresponding output.

Upadhyaya and Eryurek (1992) have demonstrated the feasibility of such
an application using data from the EBR-2 (Experimental Breeder Reactor
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#2). A necessary prerequisite for such an application is that the various
inputs have some degree of corrclation. As indicated above, when all of the
inputs to &n autoassociative neural network are corrclated to some degree,
then cach output is dependent on all the inputs. Hence, the deterioration of
one input signal will have only a slight influence on the outputs. The change
in the channel that corresponds to that input would be larger than the
changes in the other channels, but significantly smaller than the change in
the input because of the influence of the correlation with the inputs from the
other channels,

In principle, all that is necessary is to detect a deteriorating sensor 01
instrumentation channel is to compare each input with the corresponding
output, calculate the difference, compare it to an allowable difference, and
trip an alarm when the difference exceeds the allowable difference. To avoid
false alarms, several small deviations beyond the limit may e required in a
specified time to trip an alarm, A single large deviation, of course, should trip
the alarm. In most practical applications, especially when noise is present, a
more sophisticated technique to detect crror, such as “sequence probability
ratio test,” (Wald, 1943) should be employed to minimize the number of
missed and false-positive alarms,

An alternative interpretation of the existence of differences between the
inputs and the corresponding outputs of the autoussociative neural network
might be that the input—output relationship of the system from which the
signals come may have changed due to system futlure or changes of some sort
in the system. All of the results reported in the experimental work discussed
in this section are based on the assumption thet the underlying system does
not change and that only the sensors and related instrumentation channels
are being validated. However, in the real woild, systems change with
time —semetimes slowly, sometimes rapidly—while still behaving normally.
Sometimes the changes arc anticipated; sometimes these chanpes come as a
surprise. If the changes oceur during the training period (or can be artificially
introduced), then the relationship between the variables for different condi-
tions ean be trained into an autoassociative neural network. This is the case
with power ascension from 45% to 100% of full power in the xperimental
Breeder Reactor-2 as shown in Example 8.2 (Upadhyaya and Eryurck, 1992).

Corocted Readings from Deferforaling of Failed Sansois

One of the unique advantages of using autoassociative neural networks is the
ability to obtain the correct reading for a sensor that has failed. Since the
specific sensor that has failed can be identified as discussed above, all that is
needed is to carry out an adjustment of the input to the input ncuron
representing that sensor foput to bring the outputs of the autoassociative
neural network back to their original values (in a minimization of least
squares differcnce sense). Multiple failures can also be hancled in the same
.
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way with a multidimensional search for the proper input values, provided
that the number of correct sensors is greater than the number of neurons in
the bottleneck layer.

Robust Autoassociative Neural Nehworks

To improve the behavior of the autoassociative neural network, a technique
involving the addition of uniform random noise up to 10% to each input, one
at a time, while retaining the noise-free values for the desired output, can be
employed. This techniqlie is analogous to adding noise to a neural network
input to avoid “memorization” and to speed training. Application of this
process to all input—-output pairs of neurons during training can produce a
very robust autoassociative neural network in which the outputs are virtually
immune to input change up to 10% of the range of the input (Wrest, 1996),

A critically important issue is how to deal with changing plant configura-
tions and conditions that are not trained into the autoassociative neural
network. Fortunately, such changes would be readily detected in most cases
by the comparison of outputs with inputs, Differences in more than one
input—output pair are almost invariably associated with changes in the system
rather than sensor failure, because simultancous failures of more than one
sensor are very rare, Clearly a change in configuration not trained into the
autoassociative neural network requires immediate additional training or
retraining. Another important issue that needs to be investigated is how the
retrained networks relate to the previously trained network. It may be
advantageous to retain all consecutive network configuration to have an
“audit trail” for the calibration and drift detection. For a slowly changing
condition; especially one that is cyclic in nature, is better to train over a
whole cycle when possible so that the influence of this quantity is included in
the trained network,

Example 8.2 Behavior of an Autoassociative Neural Network as a Plantwide
Monitoring System. This autoassociative technique of plant-wide monitoring
was applied to data from 18 signals (8 from the primary system and 10 from
the secondary system) from the EBR-2 during ascension in power, and
the results of thesc measurements for the primary system are shown in
Figure 8.15. Data were collected for the eight primary variables (defined in
Table 8.1) as EBR-2 increased in power output from 45% (run #1) to 100%
(run #150) of full power. All variables were normalized and scaled into the
interval 0.1-0.9. The autoassociative neural network was trained using data
collected during the power ascension. Some variables changed rather signifi-
cantly during the power ascension (between run #1 and run #150) while
others changed very little. (The lines connecting the points are used only to
indicate that these points belong to the same run.) In all cases, the values
predicted by the trained network were within about 0.5% of the measured
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value. However, when an error was deliberately introduced into variable #1
(as indicated with the point connected with “dashed” lines in Figure 8.15),
the corresponding value predicted by the trained network did not change
significantly. It is this characteristic behavior of autoassociative neural net-
works that allows monitoring of many variables to be carried out simultane-
ously by simply comparing network inputs and outputs. 0
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Figure 8.15 Comparison of cciual output with output pradictad by outoassooiative
riedral network at 4500 power ond 100% power, (Cashed lres ndicate aefect of un
enor deliberately introduced infa input signal #1.)
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systom monflerad by an auloasscclalive neural natwork

Variable Number-- Variable

0 -- Power Level (%)

1 - Core Exit Temperature (°F)

2 -- Control Rod Position (¢£7)

3-- Primary Pump Flow rate (%)

4-- High Pressure Plenum Sodium Tenip. ¢°F)
3-- Low Pressure Plenum Sodium Temp. (°F)
6-- ITHX Primary Outlet Sodiuin Temp. (¢[°)

7 --Core Upper Sodium Temp. )
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Infarential Measuremants Using Neural Networks

Inferential measurement, as the name implies, is the inferring of a measure-
ment value from its relationship, usually its physical correlation, with other
variables (Guha, 1992). Reasons for an inferential measurement are that the
quantity cannot be measured directly, measurements are difficult or expen-
sive, a sensor is failing or has failed, the measurement process itself is
decteriorating, or comparison of an inferred value with an actual value will
assist in the identification and diagnoses of problems. The mapping ability of
neural networks are ideal for such inferential measurements because they
can map plant characteristics to Lhe quantity whose measurement is to be
inferred. Typically, the neural network is a simple multilayer perceptron with
only a few (three to five) inputs and a single output. The number of ncurons
in the middle layer is usually not important as long as memorization and
overtraining are avoided. The inputs must have some degrees of correlation
with the quantity to be inferred, because using an input with no relation to
the output would only deteriorate the quality of the measurement.

Examples of where inferential measurements have been vsed advanta-
geously include the following examples:

1. Inferential measurements of nitrous oxide emissions from a gas-line
pumping station have been used to demonstrate compliance with regu-
latory requirements. This avoided the placement of a chemical analysis
unit at cach of many pumping stations that often are located at remote
sites as well as the need for technical personnel required to carry out
the measurements.

2. Inferential measurements of feedwater flow in a nuclear power plant
{an important quantity in the thermal power calibration) have been
carried out using a neural network to map four related inputs to the
flow. The neural network is trained using data pathered immediately
after the venturi flowmeter has been cleaned and calibrated. As the
venturi fouls due to water chemistry phenomena, a 1-2% difference
develops between the inferred (correct) value and the (incorrect) mea-
surement by the fouled flowmeter.

3. Infercntial measurements are also being used for sensor validation.
Again the process is onc of mapping several related inputs to a single
measured quantity. If the actual measurement deviates significantly
from the value predicted by the trained ncural network, then sensor
failure or deterioration may be involved.

8.7 AN ALTERNATE APPROACH TO NEURAL NETWORK TRAINING

In Section 8.3, the traditional approach to backpropagation training of a
neural network was examined. The neural network was a traditional three-
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layer network with the input layer as a buffer layer and the hidden and
output layers having nonlinear activation functions (a logistic function in this
case). Such a network has been shown by Kolmogorav (1963) to be capable of
mapping any arbitrary function into any other arbitrary function, ie,itis a
wniversal approximator. This holds true for neural networks with several
hidden layers, each having neurons with nonlinear activation functions. While
such configurations were shown to be sufficient for the arbilrary mappings of
a universal approximator, they were not shown 1o be necessary,

In the past few years, a simpler network configuration has been shown to
be equally effective in performing arbitrary mappings (Cybenko, 1989: Funa-
hashi, 1989; Hornik, 1989). This network has one or more hidden layers with
nonlinear activation functions, but the output layer has a linear activation
function. Because of these linear activation functions of the neurons in the
output (kth) layer, its output vector @ is proportional to the summation
veetor I, Since it is common practice to set the constant of proportionality
equal to unity (because this constant would simply scale the weights associ-
ated with the output layer), we now have @, cqual to I,, which in turn is
equal to the desired output vector T if we set the crror vector & eqguoal to
ZE50.

Such a configuration was explored extensively almost a decade apo by
Lapedes and Farber and found to be very useful, especially when the output
of the network were analog variables (Lapedes, 1988). This configuration is
proposed here as an alternative to conventional backpropagation training
that takes advantage of the linearity of the output of the output layer of
ncurons to speed up training. Generally, this procedure is implemented using
@ matiix type software program such as MATLAB® so that a sct of training
vector pairs (X, T), the corresponding layer summation and output vectors I,
I, th-, and @, and the error vector & are handled as matiices of vectors for
the z pairs of training samples.

Tet us apply the methodology and notation of Section 83 to such a
network with a single hidden layer, (It is cqually applicable 1o the last layer
weight matrix in ncural networks with more than one hidden layer.) The
Process starts in the same manner as cumulative backpropagation with the
randomization of the weights, the application of the input matrix X of the
training set (X, T) containing z patterns to the input layer, and the calcula-
tion of the output matrix of the hidden (J-th) layer D;. :

Let us assume as a starting point that the error matiix ¢ is zero. Now we
have the target matrix T cqual to the output @, which in tum is cqual to T,
because of the linear activation function. We now have a deterministic
input-output relationship for the output layer weight matrix W,. The middle
layer output matrix D; (which we have just calculated) is the input and T

'MATLAB is 3 regisicied trademazk owned by MathWorks Tnc, Naticl, MA,
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(which is obtained from the training set) is the output, both related by
T=9, =W, (8.7-1)

which can be solved for the weight matrix W, either exactly by matrix
inversion or approximately by regression. Because’ T and @, cither represent
or were calculated from experimental d: o, ®; usually cannot be inverted,
and regression is really the only practical method for solving for W,.

This regression calculation of W, is a first approximation of the weight
matrix W,. It is dependent on the weight matrix W, that was crcated by a
randomization process. The critical question then is whether a neural net-
work with such a combination of W, and W, can model adequately the
process from which the training data set was obtained. Masters (1993, p. 170)
has pointed out that

The essence of neural networks is that they activate hidden neurons based on
patterns in the input data, What we are really interested in is the weights that
connect the inputs to the hidden layer (and interconnect hidden layers if more
than one is used). Once these weights are determined, computation of the
weights that lead to the output layer is almost an afterthought,

This view is further enhanced by recent work of Lo (1996) that indicates that
the esscnce of the representation of the model of a system is contained in the
weights associated with the hidden layer(s) (whose neurons have nonlinear
activation functions), a view consistent with the concept of the hidden layer
being a “feature detection” layer as described in Chapter 7. Henee, we need
do more than create the hidden layer weights by a randomization process.
Indeed, randomization of weights is only a convenient starting condition that
avoids some training problems and is useful only when associated with a long
training process (e.g., backpropagation) that allows these randomized hidden
layer weights to be adjusted sufficiently that they represent adequately the
system model. Hence, we need to proceed with a medified form of backprop-
agation in which a regression method is used to solve for the weight matrix
W,. The weight matrix W, is then iteratively determined using backpropaga-
tion.

One reason that conventional backpropagation training is very slow to
converge is that the error terms are propagated back through the output
layer weights to the hidden layer to provide an error correction. When these
error terms are backpropagated through the non-optimal output layer weights,
the changes in the hidden layer weights are far from optimal. Hence, the use
of a regression method to provide a good first approximation of W,, albeit
based on randomized weights, greatly speeds up the training process.

Use of Regression fo Solve for the Weight Matrix W,

We can solve for the weight matrix W, in equation (8.7-1) using a least square
error regression method. Given the input matrix &, the output matrix
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I, and the weight matrix Wy, a standard regression cquation for cqua-
tion (8.7-1) is

D, = WD, (8.7-2)

which we can use to solve for the weight matrix using the general least
squares procedure

; R
W, = (d’J'I)J) @

48 (8.7-3)
In this solution, the mecan squared error is minimized with extremely high
precision. The weight values produced by this algorithm may contain very
large values (5 or 6 orders of magnitude) that result in very poor network
generalization. Instead of learning the general trend of the data, the network
has also learned the noise. The fit to the training data would be excellent, but
the generalization would be very poor, There are several methods by which
this least-squares operation may be carried out properly; the method sug-
ested as best by Masters (1993), “Singular Value Deccomposition,” is dis-
cussed below,

At this point, we have a ncural network whose state of training is much
better than the typical neural network after the first iteration of backpropa-
gation training. We now proceed with conventional backpropagation as
described in Section 9.3, modified to include the rcgression method for
calculating W,. This combination of a good starting state and an algorithin
for optimally calculating one layer of weights speeds up the training process
dramatically. Application of this methodelogy has sped up the training of
neural networks 40-fold (Uhrig, 1996), and resulted in networks with superior
generalization capabilities. After this initial pass through the nctwork, we
start again with the application of the input matrix X of the training set to the
buffer input layer and calculate our way through the network to produce the
hidden layer output matrix @,. Then we use the regression method to
calculate the changes in W, and conventional backpropagation to calculate
the change in W,. Then the weight matrices are updated, and the input matrix
X is applied to the input layer, starting a new cycle of this hybrid training
process. As the training proceeds, the features of model of the system under
slud;:: ;s embedded in the weight matrix W associated with the hidden
layer(s).

Singular Value Decomposition

The hidden layer output matrix &, is broken down into its singular value
composition given by

¢, = USV' (8.7-4)
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where

P, = z X n matrix of hidden layer outputs

U = z X n matrix of principle components
S = n X n diagonal matrix of single values
V = n X n matrix of right singular values (orthonormal matrix)

T =z X n matrix of target outputs

In this method, only the most relevant information is retained to compute the
weights. The least important information is discarded because it is most likely
to result from noise. The amount of noise that is removed from the solution
to the system is determined relative to the largest weight expected in the
network, This is achieved by altering the diagonal matrix of singular values
(S). Singular values in the matrix S that are less than a cutoff value (&), are
changed to zero in the inverse matrix. The weights are then caleulated by

W, =VSs-'u’T (8.7-5)

Cxperimental results show that keeping the magnitude of the welights within
+10 provides cxcellent network generalization with no lass of important
information.

Adaplation of Models to Changing Conditions

The concentration of the model information in the hidden layer weights
pointed out by Lo (1996) as described above also addresses one of the most
traublesome problems in using neural networks to model many real-world
situations, namcly, the nonstationary system with small but often continuous
changing of the operating conditions over time. Adapting the neural network
1aodel 1o changing operating conditions without the modcel. representation
suffering deterioration can be performed by adjusting the linear output layer
weights using the regression method (ie., singular value decomposition) as
described sbove. This updates effectively the neural network to actual plant
cenditions (iines, 1996).

There is, however, Tisk that using this method for continuous adaptation of
the peural network model may mask a continuously deteriorating condition
of the systein. Henee, it may be uscful to have duplicate neural network
models, one that is continually adjusted and one that is not adjusted. By
monitoring the difference between the outputs of these two models, it is
possible to acsass whether the changing conditions representation represents
deteriorating or normal behuvior,
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8.8 MODULAR NEURAL NETWORKS*

The modular neural network is another rather special extension of the
backpropagation network. It is comprised of (a) several independently oper-
afing expert networks competing to produce the correct response to individ-
ual input vectors and (b) a gating network mediating this competition.
Basically, the modular neural network consists of the input layer, a process-
ing “superlayer” comprising the expert networks and the gating network, and
the output layer. The input units are fully connected to the input units of
both the expert networks and the gating network, but there are no weights in
these connections. The expert nétwork output units are fully connected to
the modular neural network output units, with connections having weights
whose values correspond to the values produced in the output units of the
gating nctwork. The output units perform a summation of the weighted
incoming signals without applying any activation function to the result. A
topolopy of the modular neural network with two input units, threc expert
networks, and a single output unit is shown in Figure 8.16.

For the function approximation task the expert networks are typically
simple perceptrons (ie., often backpropagation networks with only two
layers) with their output neurons performing only a simple summation
without using an activation function. However, the expert networks can also
be the classical threc-layer backpropagation networks) or even another
modular neural network, thus creating a complex hierarchical structure), and
their output nodes may use nonlinear activation functions. The structure of
the expert networks has to be chosen in such a way that the task of concern
cannot be solved by a single expert network, because otherwise the modular
neural network would gradually degenerate during training into a network
with the structure of this expert network (i.e., all the input vectors would be
processed solely by one of the expert networks). In any case, all the expert
networks in the modular neural network have to have the same structure with
the same number of layers and identical processing units in them,

The gating network is a fully connected feedforward neural network,
having typically only two layers. There is onc output neuron in the gating
network for each expert network in the whole modular neural network
(hence, the weights in all connections between the output neurons of cach
expert network and the output neurons of the whole modular neural network
are identical). Similarly to the backpropagation network processing neurons,
the gating network output neurons sum the weighted signals received from
the input units and filter the result through an activation function. This
activation function, however, is the so-called “softmax” function which essen-

*Part of this section was extracted from a thesis “Modeling a Probabilistic Safety Assessment
Using Neural Networks" by Vaclav Hojny, a graduate student at the University of Tennessee,
185931695
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Figura 8.16 Topology of the medular neural network.

tially normalizes activations of output units and amplifies differences be-
tween them. The activation function for the softmax function as given in
Figure 8,17 is

Php = —r— (8.8-1)

Operating of the modular neural network consists of the following: division
of a complex task to be solved into several simpler subtasks, finding of
separated solutions for thesc subtasks, and combination of these subsolutions
into the desired solution of the original complex task. This approach is
sometimes referred to as a prineiple of “divide and conquer.” To achieve this,
the modular neural network utilizes a special combination of supervised and
unsupervised training based on maximization of the likelihood function,
which represents a product of the probabilitics of generating the correct
output vectors for individual input-output vector pairs. These probabilities
are typically modeled using a mixture model (i.e., a lincar combination) of
multivariate Gaussian distributions, which characterize conditional probabili-
ties of producing the correct output vectors by the individual expert networks
for a given input vector from the training set. To maximize the likelihood
function, its known parameters have to be optimized—that is, properly
adjusted during training. In this modular neural network, these parameters
represent (a) the weights in connections of the expert network processing
units and (b) the weights in connections of the expert network output units
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Figure 8.17  Output neuron of the modular neural nehwork gating netwaork

and the output units of the whole modular neural network. All these weights
are trained simultaneously starting from small arbitrary values. During the
training, the modular neural network is presented with individual input
vectors from the set of training samples to which individual expert netwarks
and gating networks respond with certain output vectors. .
The basic training of the expert networks is supervised and utilizes a
procedure very similar to that used by the backpropagation neural network.
The resulting update values of the weights for each cxpert network are,
however, modified by a probability that the particular expert network is
allowed to produce the particular modular neural network output vector. The
value of this probability is determined as a product of the distance (typically
Euclidean) between the output vector produced by the given expert network
and the target output vector multiplied by the value produced by the gating
network oulput corresponding to this expert network. Values of these prod-
ucts, determined for individual expert networks, are then processed through
the softmax function with the aim of amplifying the outcome of the competi-
tion of the expert networks. The resulting values of the products effectively
represent posterior probabilities that the particular expert networks are
allowed to produce the particular modular neural network output vector,
while the wvalues produced by the corresponding gating network outputs
represent prior probabilities of it. The training of the gatimg network is
essentially unsupervised and aimed at minimization of the differences be-
tween these prior and posterior possibilities. The training procedure for the
gating network is, in fact, the same one used in backpropagation networks.
The clements of the target output vector of the gating network are deter-
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mined by the posterior probabilities of the corresponding expert networks
(which are, to a great extent, independent on the modular neural network
target output vector). All the input—output vector pairs in the training set are
repeatedly presented to the modular neural network until its error decrcases
1o an acceptable level, or until the modual neural network reaches a steady
state when the values of its weights stop changing.

8.2 RECIRCULATION NEURAL NETWORKS

Another variation of the basic backpropagation nctwork is the recircula-
tion ncural network (RNN) introduced by Geoffrey Hinton and James
McClelland (1988) as a neurally plausible alternative to the autoassociative
backpropagation network. They considered backpropagation to be ncurally
implausible and hard to implement in hardware, because it requires that all
connections be used backwards, that these connections be symmetrical, and
that the units are different input—output functions for the forward and
backward passes. In a backpropagation nctwork, errors are passed backwards
through the same connections that are used in the forward pass, but they are
sealed by the derivative of the feed forward activation function. In a recircu-
lation neural network, data are processed through weights in only one
direction,

The recirculation neural network is a four-layer autoassociative type
network as shown in Figure 8.18, in which the input and output layers are
buffer layers with the same number of neurons. The other two layers are
called the “visible” and the “hidden” layers. In a recirculation neural net-
work, the visible and hidden layers are fully connected to each other in both
directions by separate links with separate sets of weights. The visible-to-hid-
den connections involve what is called the bottom-up weights, and the hidden-
to-visible connections contain the top-down weights. Each neuron in the
visible and hidden layers is connected to a bias element with a trainable
weight. -

The learning schedule involves two complete passes between the visible
and hidden layers. The learning is carricd out using only local
knowledge—that is, the state of the processing element and the input values
of the particular connection to be adapted. The purpose of the learning rule
is to construct in the hidden layer ‘an internal representation of the data
presented at the visible layer. Recirculation neural networks use unsuper-
vised learing, in the sense that no desired vector is required to be present at
the output layer. A bias term is used for all neurons in the hidden and visible
layers. The learning process proceeds in the following manner. Initially, all
weights, including the bias weights, are randomly set to small values. The
data are first presented at the visible layer (time 0), then filtered through the
bottom-up weights to the hidden layer (time 1), and then circulated back to
the visible layer through the top-down weights (time 2). Finally, the data are
passed for a second time (recirculated) to the hidden layer through the
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Figure B.18 Structure of a recirculation neural network.

bottom-up weights (time 3) and back to the visible layer through the topdown
weights (time 4) and on to the output buffer layer. If desired, there could be
a second output buffer layer connected to the hidden layer where the
compressed version of the output could be made available.

Learning occurs only after the second pass through the network. The
output of the visible layer at time 2 is the reconstruction of the original input
vector from the compressed vector in the hidden layer at time 1. The aim of
the learning is o minimize the crror between the original input and the
reconstructed vector at time 2 by adjusting the top-down weights, as well as
10 minimize the error between the compressed vectors at times 1 and 3 by
adjusting the bottom-up weights. All summations over the hidden layer (times
1 and 3) or visible layer (times 0 and 2) include the bias terms. During
training the output of the hidden layer at time 1 is the compressed version of
the input data. In Hinton and McClelland’s simulations, cumulative learning
is used—that is, changes in the weights are accumulated over an epoch—and
the actual weights are changed only at the end of an epoch.

The state of the visible layer at time 2 is the top-down response of the
network to the initial bottom-up stimulus. Hinton and McClelland used
sigmoid functions for the activation functions for both visible and hidden
layers, although their analysis assumes that the activation function for the
hidden layers is linear and that the activation function for the visible layer is
any smooth monotonic nonlinear function with bounded derivatives.

The recirculation neural network has full connectivity between the hidden
and visible layers in both directions. Learning for the top-down weights in the
connections from the jth hidden layer to the ith visible layer and bottom-up
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weights in the connections from the ith visible layer to the jth hidden layer
are given by

Aw, = e[ 90 =y (top down weight change) (8.9-1)

I 4
and

Aw,; = e:f.f’lyj” - y}”] (bottom up weight change)  (8.9-2)

where y* is the state of the ith visible neuron at time 0, y{® is the state of
the ith visible neuron after the activity has passed around the loop once, }-‘,‘”
is the state of the jth visible neuron at time 1 (first pass around the loop), )'f”
is the state of the jth neuron at time 3 (second pass around the loop), and
&§” and &7 are the errors after recirculation.

This learning process for the recirculation neural network approaches
gradient descent under certain specific conditions. The error at each process-
ing element in the visible layer between its state at time 0 and at time 2 is
referred to as the “reconstruction error.” The learning in the top-down
weights secks to reduce the reconstruction error. Hinton and McCleland
have shown that under certain conditions the learning in the bottom-up
weights also performs gradient descent learning in the reconstruction error.
For the visible-to-hidden connections, the changes are partially related to the
gradient descent. Early changes do not necessarily improve the state of the
system, but as learning progresses, these changes tend to agree with the
gradient descent and total agreement occurs after the hidden-to-visible
weights are approximately aligned with the visible-to-hidden weights.

Example 8.3 An Application of Recirculation Neural Networks®, One of the
applications of the recirculation neural network is to transform narrow peaks
in a Fourier transform of undamped vibration data of rotating machinery into
a pattern where the information in the peaks is spread over the entire
frequency range. An example of the influence of small changes in the
amplitude and the frequency for a single narrow peak is shown in the next
four figures. In Figure 8.19 we have a single peak at a specific frequency in
which the amplitude deereases for the series of six examples. When these six
peaks are subject to transformation by the use of the RNN, the results are
shown in Figure 8.20, wherc the individual values in the spectrum have been
connected. It is clear that the information contained in the single peak has
been spread throughout the frequency range and that the shape changes as
the amplitude is decreasing. However, this transformation is even more
drastic when there is a small shift in the frequency. In this case, small
changes in the frequency in the original spectrum in Figure 8.21 produces
drastic changes in the transformed spectrum shown in Figure 8.22. O

*Results presented in Figures 8.19 through 822 were produced by Dr. Israel E, Alguidingue,
when he was a graduate student at the University of Tenncssee, 1989-1993,
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8.10 FUNCTIONAL LINKS

In conventional backpropagation networks, weights are applied only to con-
necting links leading to neurons, The hidden layer in backpropagation
networks provides the ability to form complex rclationships between input
pattern elements. However, if the data pattern presented is in a form that
already has complex elements in the form of functional links, then the hidden
layer may not be nccessary. In functional link networks, developed by
Yoh-Han Pao (1989) connections (links) provide information to the network
by incorporating a representation of the relationships between the input and
output patterns. This involves adding inputs that are functions of the normal
inputs. While it is possible for backpropagation to learn complex relation-
ships (e.g., x%, xy,cos’(x),sin(x), etc.), functional link networks establish
these relationships directly. The difficulty is knowing which functions to uss.
Generally, this requires an understanding of the nature of the problem
involved. If the problem can be represented by a polynemial, then simple
power and cross terms (e.g., x2, xy, x?y?, etc.) may be appropiiate as addi-
tional inputs to the network. If a problem has cyclic terms for frequencies
that are important, then sine and cosine terms may be appropriate. Func-
tional link networks are feedforward networks that use standard backpropa-
gation training. Clearly, the output layer neurons must have nonlinear
activation functions if there are only two layers in the network.

There are two kinds of functional links. The first type is the outer product
(tensor) model where each component of the input is multiplied by the entire
input vector x(1 < i < n)or x,x;, where i < j < aand i < j. Representation
of the input space is enhanced, making it easier for the model to lexrn.

The sccond general type of functional link is functional expansion where
the input variables are individually acted upon by the appropriate functions
—that is, sin(x), cos(x), sin(2x), and so on. The functions selected may be a
subset of the orthonormal basic functions. The overall effect is to map the
input vector into a larger pattern space, enhancing the representation. Of
course, it is possible to combine the tensor and functional cxpansion types of
functional links.

Although functional links offer an attractive analytical alternative to the
general problem of specifying the architecture of a network, they have their
own limitations. The principal concern with functional links are the follow-
ing:

1. As the number of inputs incrcases, the number of connections (with
weights) increases.

There are indications that a smaller number of training examples
relative to the number of connections can influence the ability of the
network to generalize.



280 BACKPROPAGATION AND RELATED TRAINING ALGORITHMS

3. With fewer examples per connection, the model may learn to reproduce
the training set errors and not gencralize. This problem is especially
difficult' with noisy data.

8.11 CASCADE-CORRELATION NEURAL NETWORKS

Cascade-correlation is a supervised learning algorithm for neural networks
that adjusts the network architecture as well as the weights (Fahlman and
Lebiere, 1990). Cascade-correlation starts with a minimal network and adds
new hidden neurons one-by-one, creating a multilayer network in the learn-
ing process. Once a new hidden ncuron has been added to the network, its
input-side weights arc fixed, and it becomes a permanent part of the
network, helping to serve the function of hidden layers (i.e., feature detec-
tion). This architecture attempts to overcome the issues which cause back-
propagation to be so slow in training a neural network, Two specific Issues
that are addressed are (1) the step-size problem and (2) the moving target
problem.

The “step problem” ariscs in backpropagation because only infinitesimal
changes during the learning process (which implies an infinite training time)
can reasonably ensure that a global minimum can be reached. Large changes,
which would speed up the training process, tend to cause backpropagation to
teach local minima; and various methods, such as the use of momentum of
simulated annealing, must be used to reach a global minimum.

The “moving target problem” arises because each neuron in the interior of
the network is trying to evolve into a feature detector that will play some
useful role in the network’s overall computation, but its task is complicated
by the fact that it cannot communicate to other neurons to which it is
connected (both directly and indirectly), which are changing all the time. One
way of decreasing the moving target problem is to allow only a few of the
weights in the network to change at once. In a sense, this is reducing the
dimensionality of the training process.

There are two related primary features of the cascade-correlation training
process: (1) the cascade architecture in which hidden neurons with fixed
(nontrainable) inputs are added to the network one at a time and (2) the
learning algorithm which creates and installs the new hidden neurons. All
ncurons have bias inputs with trainable weights and nonlincar activation
functions which may' be any of the sigmoidal functions. All weights are
initially randomized between —1 and + 1.

The cascade-correlation neural network starts as a two-layer, fully con-
nected perceptron with adjustable weights on every connection which are
initially randomized. The direct input-output connections are trained using
the Widrow—Holff delta training rule (or any other training algorithm for two
layer networks such as Quickprop). Training is terminated when the weight
values approach an asymptotic value, based on a “patience” parameter set by
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the used. Then the overall error is measured, and a decision is made as to
vhether to continue training.

Training is continued by adding a single neuron to create a hidden layer.
It is connected to all input neurons through connections with fixed weights
and to all output neurons through trainable (randomized) weights. The fixed
input weighs of the ncw neuron arc set by a “pretraining” process before the
outputs are connected to the output layer. In this pretraining process, a
number of training scls are applied to this single neuron, and the input
weights are adjusted after cach pass to maximize the sum (over all outputs) of
the magnitude of the correlation between the neurons output and the
residual output error of the neuron,

Training proceeds the same as previously because the fixed input weights
allow the network to be treated as if it were a two-layer network, When the
training stops because the “patience” parameter is reached, the overall crror
is caleulated and a decision is again made whether to proceed. If so, another
single neuron is added, in the same manner as the first ncuron, fully
connected with fixed weights (set by the optimization pretraining process
described above) to the inputs, and fully connected with trainable (rando-
mized) weights Lo the output layer. However, the only connection between
the two added neurons is from the output of the first neuron to the input of
the second ncuron through a fixed weight. This means that we have effee-
tively added a second hidden layer with a single neuron.

The process of adding one neuron at a time continues until the user is
satisficd with the overall error of the network for the training data. The
multitude of single-neuron hidden layers presents a very powerful feature
detector, but it also leads to a large fanout of the input connections and a
very “deep” network. Fahlman and Lebiere (1990) indicate that strategies for
addressing these issues are being investigated,

8.12 RECURRENT NEURAL NETWORKS

The backpropagation neural networks previously discussed are strictly
“feedforward” networks in which there are no feedbacks from the output of
one layer to the inputs of the same layer or earlier layers of neurons.
However, such networks have no memory since the output at any instant is
dependent entirely on the inputs and the weights at that instant.

There are situations (e.g., when dynamic behavior is involved) where it is
advantageous to use feedback in neural networks. When the output of a
ncuron is fed back into a neuron in an carlier layer, the output of that
neuron is a function of both the inputs from the previous layer at time ¢ and
its own output that existed at an earlier time—that is, at time (¢ — A¢),
where At is the time for one cycle of calculation. Hence, such networks
exhibit characteristics similar to short-term memory, because the output of
the network depends on both current and prior inputs.
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Neural networks that contain such fecdback are called recurent newral
networks. Although virtually all neural networks that contain feedback could
be considered as recurrent networks, the discussion here will be limited to
those that use backpropagation for training (often called “recurrent back-
prop networks”). Let us consider the elementary feedforward network shown
in Figure 8.23a, where the input, middle, and output layers each have only
one neuron, and where neuron /i is a buffer neuron that instantaneously
send the input x to neuron p. When the input x(0) (x at time 0) is applied to
the input, the outputs of neurons p and ¢ at time (0), v(0), and y(0),
respectively, are

v(0) = {®[w;x(0)]} (8.12-1)
¥(0) = D{wy[v(0)]} = @{w,{®[w,x(0)]}) (8.12-2)

where & is the activation function operator (usually a sigmoidal function)
and (0) indicates the value at time 0,
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Figure 8.23 Simple neural networks without (a) and with (b) recurrent feedback.
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For nonrecurrent networks (no feedback), this relationship remai s valid
for times 1,2,3,...,n,..., /N, and so on. Hence above equation becomes

v(n) = {®[wyx(m)]) C(8.123)

y(n) = il'[t-.;,‘[v(u)]] = ﬁii{w},c{tfl[n':-J:;{n)”} (8.12-4)
I'o make this network recurrent, we add feedback from the output nevien to
the middle layer and from the middle neuron to the input layer throuuh the
recurrent neurons (which are buffer neurons) labeled R and the correspond-
ing weights wy; and w,, respectively, as shown in Figure 8.23b. The outpuls
to neurons p and g must exist before there can be any feedback. Ilence, as
the progess proceeds step by step, the feedback term of nevwrons p and ¢ will
not come into play until time 1. Hence, the equation (8.11-2) for y(1) is valid
for a reeurrent network for time 0, but the feedback terms must be added for

all subsequent times. The output of the network for neurons p and g at lime
1 are

e(1) = Pwy[a(1)] +w[0(0)]}
= @ x(1) + o, (@[ w,x(0)]}) (8.12-5)
¥(1) = @we(1) + wy,y(0))
= q:{u-).k{Qa{u-Ux(]) (@[ w2 (0)]))
+wi{ @ {wu [, x(0)]) }} (8.12-6)
For time 2, the outputs of neurons p and g are
= ®{[wx(2)] + [we(1)])
{[wx(2)] + wi{ @[ w,x(1)] + Ae[wx @]} (8.127)
{[war(@)] + [we(0)]}
‘b{ el @] + s @[wgx()] + w0, x(O)] 1))
i {rb{ w{ @[wr (D] + w {@[w,2(0)]})

+“'U{q){"‘ril(b[“'EJ"I{OJ]]}}}}} (B:12-8)
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For time 3, the outputs of neurons p and g are
o) = ¥{[ox)] + [w0)]
= ©{[w,x(3)] + w{o{[w,x@)] + wi{®[w,x(1)]
+wﬁ{«b[w,.,x{t})]]}}}} (8.12-9)
y(3) = of[wpe(3)] + [wi3(2)])

= cp{wfk{@{ w2 (3)] + w0 [w,x(2)] + wd @ [wy,x(1)]
e @I} + wi{e{felx2)]
@ x()] + (@], 2]} )
+w,‘j{q>{wj,({cp[w,.jx(1)] + (@[ wx(0)]))
+wl,_j.{ﬂ‘!{wjk{‘li[1»'“,{({]]]}}}}}}} (8.12-10)

Magnitude of Terms

Note that the equation (8.11-10) for y(3) has x(0), x(1), x(2), and x(3) as
inputs. An equation for y(4) would add x(4) to the list of inputs; y(5) would
add x(5), and so on. Furthermore, an ecxamination of the terms of the
cquation for y(3) indicates that the magnitudes of the carlier inputs decrease
when later inputs are added. This is seen more readily if we assume that the
activation function is linear —that is,

D{x) =x (R.12-11)
Then the equations for y(0), y(1), ¥(2), and y(3) become
¥(0) = wywy [x(0)] (8.12-12)
y(1) = wyw {[x(1)] + [ + wh,][.'c(ﬂ)} (8.12-13)
y(2) = wyuw{[x(2)] + [ + wi 1[x(1)]
[l wwy + wi ] [x(0)] (8.12-14)

y{3) = wfkwﬁ{[.r@)] + [wy + w,_.J][,r(Z)]
+ [wﬁ + wwy, + wff] [x(l)]

+ [wﬁ + “’ﬁ“"h‘ - w;-,-w,f,- s wﬁ_,-l [.r(O}]} (8.12-15)
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Since the weights are usually less than 1, the increasing power of the weights
for the earlier terms [w? for x(3), w? for x(2), w* for x(1), and w® for x(0)]
causes the coefficients to decrcase rapidly. When the sigmoidal (or any
nonlinear activation function) is used, the presence of multiple nonlincar
activation functions in the above cquations for y(0), y(1), ¥(2), and y(3), cach
with a maximum value of 1, reduces the carly terms much faster than for a
lincar activation function. As later inputs arc introduced, the influence of the
carlier terms become negligible. This reduced weighting of the earlicr terms
is analogous to the decrease of influcnce of carlicr values in a convolution
transformation,

The complexity introduced by feedback connections, even for the elemen-
tary system of Figure 8234, is rcadily apparent, For networks more compli-
cated than the elementary system in Figure 8.23b, the same principles are
applied, but the complexity grows even more rapidly. However, the increase
in complexity is often compensated for because the feedback almost always
drastically reduces the number of cycles needed to train a neural network
significantly. Feedback can often be used advantageously to speed up the
training of a ncural network and to avoid loeal minima. Indeed, it is
sometimes possible to train a neural network after feedback has been added,
whereas it may not have been previously possible to train it to the desired
level of error. However, capturing dynamic behavior in a model is the most
common justification for the use of feedback, and recurrent neural networks
(or neural networks with delayed inputs) are almost always used for dynamic
signals,
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PROBLEMS

1. The backpropagation training algorithm is developed in Section 8.3, using
the logistic function as the activation function where the derivative has the
convenient form piven in Equation 8.1-4. Derive the backpropagation
training algorithm for the case where the activation function is an arctan
function where the derivative is piven by LEquation 8.1-6.

2. Derive the backpropagation training algorithm for the case where the
ncurons in the hidden layer have a logistic function for the activation
function and the neurons in the output layer have linear activation
functions. Compare the results with those obtained in Section 8.7 “hue
this arrangement of activation functions are used.

3. In the recurrent neural network of Section 8.12, the feedback of both
loops comes into action at time 1. If the feedback from the output neuron
does not come into action until llm{. 2, how will the Equations 8.11-3
through 8.11-15 change?

4. Discuss the results shown in Figures 8.19 through 8.22 for a recirculation
neural network and their implications.

5. In the operation of backpropagation, contrast how the changes of learning
constant, changes of momentum coefficient, and changes in the @ value in
the logistic function influence the time required to train a neural network.
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6. Derive the backpropagation training algorithm for the simple recurrent
ncural network shown in Figure 8.23b using the approach given in Section
8.3.

7. Discuss the role of the “bottleneck’ layer in a five-layer autoassociative
neural network with respect to the identification of principal components.
(Hint. see references by Kramer and McAvoy at the end of this chapter.)

8. Compare the reduced representation of an input vector in the hidden
layer of a recirculation neural network with the reduced representation of
in input vector in the middle layer of three- and five-layer autoassociative
neural networks.



COMPETITIVE, ASSOCIATIVE,
AND OTHER SPECIAL
NEURAL NETWORKS

9.1 HEBBIAN LEARNING

Donald Hebb (1949) introduced a nonmathematical statement of biological
learning in 1949. The Hebbian system was the first truly self-organizing
system developed. Even today, it is very prevalent throughout the ncural
network field because there are many paradigms based on Hebbian learning,
Hebb's law can be summarized as follows:

As A becomes more efficient at stimulating 8 during training, A sensitizes B
to its stimulus, and the weight on the connection from A to 5 increases during
training as B becomes sensitized to A,

One problem with Hebb’s law is that it is too vague. Questions such as the
following arise: How much should a weight increase? How active docs B
need to be for training to occur? Furthermore, there is no way for the
weights to-decrease. In theory, they can increase to infinity. Inhibitory
synapses are not allowed, whereas it is well known that real biological
systems clearly have inhibitory (negatively weighted) connections.

Corrections to Hebb’s law involve normalizing the weights to force them to
stay within limited bounds and forcing them to both increase and decrease to
retain the normalization. There are many variations of Hebbian learning that
arc utilized. One of these is the Neo-Hebbian learning put forward by Steven
Grossberg, who developed an explicit mathematical statement for the weight
change law of the form

wip =wig(l—a) + Bx,x, (9.1-1)

289
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where w, , is the weight on the synapse connecting neuron A with neuron B,
« is the “forgetting” term that accounts for the fact that biological systems
forget slowly with time, and B is a “learning” constant that accounts for
simultanecous firing of ncurons 4 and B. The right-hand term is called the
“Hebbian learning term” because it ties the learning rate to the product of
the neuron outputs. Hebbian learning is characterized by the product of two
neuron activities. Hence, anytime such a product appears in an equation,
Hebbian learning is involved. Generally, both a and g are in the range
between 0 and 1.
If we rearrange equation (9.1-1) and put it into the form

new

W — woud Aw dw
Al Al AR AR W1
X S Rk —awiy + Bxpx, (9.1-2)
! Pe

and consider only the terms involving wyp, it is clear that the forgetting term
involves a slow exponential decay with time constant «. Even so, neo-
Hebbian learning does not permit the weights to decrease when the neuron
outputs decrease.

To overcome this problem, Grossberg introduced differential Hebbian
lcarning. It has the same mathematical form as Hebbian learning of equation
(9.1-1) except that it uses the product of rates of change in the outputs for
the neurons A and B, as given

WIS = (] — a) + dxy ooy (9.1-3)
A ak drdt

L)

9.2 COHEN-GROSSBERG LEARNING

Pavlov's Experiments

Cohen—~Grossberg learning comes from an attempt to mathematically explain
the observations from psychological conditioning experiments carried out by
Pavlov. Let us consider the various types of conditioning. The first is
“observational conditioning,” which involves copying the actions of others
and is sometimes described as “monkey see, monkey do.” The second type of
conditioning is “operational conditioning,” which involves an action and a
response. It is described as “push button, get food.” The third type of
conditioning is “classical conditioning,” and it involves a stimulus and a
response. The experiments of Pavlov fall into the classical conditioning
category.

The psychological model used in the Cohen—Grossberg learning is Pavlo-
vian learning in which a dog is offered food at the same time a bell rings.
Eventually, the dog associates food with the bell ringing and salivates when
the bell rings even when no food is presented. This behavior is illustrated in
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Table 9.1 Stimull and corresponding responses In Paviov's experment

Stage Stimulus Response
L Unconditional Stimulug ==== Unconditioned Response
{Plate of Food) (Dog Salivates)
2, Unconditional Stimulus
Plate of Food
( ) Conditioned Response
plus ====>
(Dog Salivates)
Conditioned Stimulus
(Bell Rings)
3, Conditioned Stimulus ====> Conditioned Response
(Bell Rings) (Dog Salivates)

Example 9.1 to be Grossberg outstar learning. The three stages of Pavlovian
learning ure shown diagrammatically in Table 9.1,

Instars and Outstars

Next, we must develop the concept of “instars’ and “outstars” to explain
Pavlovian conditioning or learning. Every neuron receives hundreds or thou-
sands of inputs through its own synapses from the axon collaterals of other
neurons. Schematically, this can be represented as a “star” with radially
inward paths called the instar. Indeed, every artificial neuron in a neural
network is an instar.

Every neuron also sends out hundreds or thousands of collaterals which
branch off from the main axon and go to the synapses of other neurons. This
also can be represented by a “star” with radial outward paths. This configu-
ration is called an “outstar,” and again every neuron is effectively an outstar.
A geometrical interpretation of the instar and outstar configurations is shown
in Figure 9.1. The instar has many inputs and a single output whereas the
outstar has a single input and many outputs. The fanout of a neuron in the
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(a)

Figure 9.1 Graphical representations of an
“instar' (@) and an “outstar'(b). {b)

input layer of a neural network can be considered as an outstar, whereas a
neuron in the output layer can be considered as an instar.

Development of Cohen-Grossberg Learning Equations—
Instar Activity

Let us consider Pavlovian learning from the perspective of an instar. The
activity of the instar processing clement or neuron has a number of require-
ments:

1. The activity must grow when there is an external stimulus.
2. It must rapidly decrease if it is no longer stimulated from the outside.

3. It must respond to stimuli from other neurons in the network.

Let us consider the arrangement in Figure 9.2, in which an instar y; receives
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Ouistar

Iyt

yift-1) Instar

(1)

Figure 9.2 An instar y receives a signal from the outstar v through a waight wy. (T is
the threshold for the Incoming signal to node y, and = is the time required for the
signal 1o travel fram y, to y.)

signals y,(¢) from outstars y; through weights W, The activity of the instar
¥,(1) can be represented by a differential equation

d}.f("'} = e . g - s
=L S ey Bt_Elul.j)l(r) (9.2-1)

where y,(¢) is the activity of the ith neuron, I, is the external stimulus, W, Is
the weight between the ith and jth neurons, and 4 and B are constants.
The first term on the right-hand side of equation (9.2-1) allows the activity of
the instar to decrease exponentially with a time constant A when it is no
longer stimulated by I or inputs from other neurons. The second term I
corresponds to an external stimulus, and the third term represents the stimuli
from the n neurons in the network. We need to allow for signuls received at
neuron j that were actually generated in the neuron i at some previous time
7 ago and transmitted to neuron j, where 1 is the “average” transmission
time to from neuron i to neuron j. We also need to put a threshold (T) on
the intrancuron inputs so that random noise will not interferc with the
network’s operation. Hence, we can modify equation (9.2-1) as follows:

dy; (1)

= A 0 B w (- 1) - 1] (922)
¢ =1

where the superseript + means that only positive values are used.
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Instar's Learning Law

The two processes involved in instar's learning law are Hebbian leaming and
forgetting. We nced a process that will explicitly allow forgetting to
occur—that is, to allow the weight to slowly decay. Also, we need to put a”
threshold on the incoming activity term and to account for the transmission
time between neurons § and j. Hence, we can write the instar learning law,
which controls the adjustment of the weights betwnen neurons | and j in the
form given in Equation (9.1-2)

dwy; i
w‘diifr) = —Fw(t) + (}y‘,(.r)[y,.(r - 1) — T] (9.2-3)

where F is the forgetting time constant that should be much smaller (ie, a
slower decay rate) than the activity decay constant A4, and G is the gain or
learning constant. The value of F is never greater than about 0.01, and the
superseript + means that we should use only the positive values,

Equation (9.2-3) incorporates the “simple” Hebbian learning, and hence it
typically does not allow the weights to decrcase except for the very slow
decay process associated with the forgetting term. A more appropriate
Cohen—Grossberg lcarning law would be one in which the first derivative of
the activities with respect to time are substituted for the activities—that is,

d = —Fw, (1) + G

dw, (1) dy (r) [dv (t =7} T] g (9.2:4)

This is & version of the differential Hebbian learning given in equation
(9.1-3).

Grossberg Learning in Oulstars

The minimum number of artificial neurons that must be activated to cause
recall of a complex spatial pattern is only one, the hub of the outstar.
Repeatedly applying a stimulus on the hub neuron and simultaneously
putting a pattern stimuli on s neurons on the rim of the outstar (see Figure
9.1b), or to a grid of neurons (sec Figure 9.3), each connected to the hub
neuron, eventually will cause the weight pattern to reflect the input pattern
on the rim due to the Hebbian learning. The mathematical mode of spatial
learning in outstars describes the outcome of the standard psychological
experiments conducted by Pavlov.

Grossberg outstar learning is based on Hebbian learning; that is, if a
stimulus arrives at a receiving neuron at the time when it is active, then the
weight associated with that link will be increased. In outstar learning, the
weight increase depends on the product of the input and the output signals
to the grid necuron; that is, the grid neurons corresponding to bright spots in a
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nput 0 or }

Xy

i
1\, ! o ——
X3

~ )
X}

Flgure $.3 An “oulstar” leaming nehwork,

pattern will have large outputs at the time the stimulus arrives. Ience, the
weights will be increased. The grid neurons corresponding to medium spots
will have lower outputs, and the weights will change less. After a number of
cycles, bright spots will correspond to large weights while medium spots will
correspond te medium weights, How about the dark spots? They are a
problem. The use of nco-Hebbian learning adds a forgetting term. Hence,
weights subject to neo-Hebbian learning that do not increase will slowly
decrease,

Example 9.1 Grossberg Outstar Learning. This example illustrates “outstar
learning.” Consider the neural network shown in Figure 9.3 that has a single
outstar neuron and N instar neurons in the second layer. The input to the
outstar is a binary signal that switches alternatively between 0 or 1 with a
period A, The output is a vector Y having N components y,, y3, ¥,..., Yy
The desired output is a vector X having components xy, x,, x;,..., xy. The
weights wy, wp, wy,...,wy arc to be adjusted using the Hebbian learning
algorithm, - X

Initially, the weights are set to randomly small values, When a 1 (which is
considered a “high™) is applied to the outstar neuron at the same time the
vector X (whose components may be “high,” “low,” or any value in between)
is applied to the second layer, Hebbian learning requires that the weight on
the connections between two neurons increase in proportion to the product
of the magnitudes of the two weights. Hence, those weights on connections
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leading to neurons in the second layer with large values of X; increase
significantly since the outstar output is unity. The weights on the connections
to neurons with medium values of x, increase somewhat less. The weights on
the connections to neurons with low values of x; increase only slightly or do
not increase at all. This process occurs each time the outstar signal switches
to 1. The changes in weights become smaller as the weights increase and
eventually stop increasing. Now, the magnitudes of the weight vector compo-
nents w; mimic the magnitudes of the corresponding values of the input
vector components x,.

At this point, the desired output vector X can be removed. When the input
is 0, all the components y; of output vector Y are equal to 0. When the input
is 1, the components y; of the output vector Y are proportional to compo-
nents w; of the trained weight vector W; that is, the output vector Y mimics
the desired output vector X even though it is no longer applied. Hence,
except for a constant of proportionality, the output vector Y is the same as
the desired vector X. This means that all that is necessary to produce the
desired output at the second layer is to apply a 1 to the outstar.

If we return to the analogy with Pavlovian learning, the pattern X is
analogous to the food, the unconditioned stimulus; the input to the outstar is
analogous to ringing the bell, the conditioned stimulus; the stimulus of the
grid output is analogous to dog salivating when the food is presented initially,
the unconditioned response; and the output Y after the pattern X is elimi-
nated is analogous to the dog salivating after the food is eliminated, the
conditioned response. [

Driver Reinforcement Learning

Driver reinforcement learning is a variation of outstar learning that uses
differential Hebbian learning in which the weight increase depends on the
product of the change in the output signal of the receiving neuron and a
time-weighted sum of the changes of the inputs to that neuron over a period
of time. The weight used in weighing the sum of the changes is the weight of
the neuron at that time.

During training, we artificially cause grid neurons to display the image we
want the network to reproduce. Hence, grid neurons corresponding to bright
spots on the pattern have large outputs when the outstar stimulus is received,
and weights are increased with each repetition. Eventually, the outstar's
stimulus alone is sufficient to cause the neurons to produce the pattern
without the input. This process is the essence of driver reinforcement
learning.

9.3 ASSOCIATIVE MEMORIES

An associative memory is any memory system that stores information by
associating each data item with one or more other stored data items. The
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characteristics of associative memories arc such that they usually store
information in a distributed form. They arc content addressable memories;
that is, data arc accessed by its content, not by its address. They are robust
and can usually handle garbled or incomplete data inputs and can usually
operate with some failed clements. In many ways, they are very similar to
human memory.

Data are stored as patterns of activity in an associative memory. As a
result, associative memories are insensitive To minor differences in details.
‘This provides the robustness which allows garbled inputs to be still under-
stood, and minor errors or damage to the network do not cause loss of
functionality.

It is vseful to distinguish between heteroassociative and autoassociative
memories. In a heteroassociative memory nctwork, the input X and the
output Y arc different patterns; that is, the input and output are nat the
same. In the case of the autoassociative memory networks, the input and
the output patterns are the same. At first glance, this may seem like a trivial
system, but it is very useful. When the input to an autoassociative memory is
somewhat garbled (e.g., it is a distorted version of X), the network will
produce a “correct” version of X as the output.

While associative memorics do not have o involve neural networks, there
are several types of neural networks that constitute associative memories.
The most common types arc the crosshar asscciative memory and the
adaptive filter (e.g., the Adaline neural network can be used as an associative
memory). There are other architectures in neural networks that can be used
as associalive memories, but they are not common. Generally, associative
networks are important because they provide robust and efficient starage of
pattern data and are gencrally considered to be essential to any “intelligent”
systein,

Another classification of associative memories is that they are accretive or
interpolative. This indicates how they interpret data, Suppose we have an
associative memory that associates the color red with the numerical value 1,
the color blue with 2, and the color green with 3; that is, if we put the color
magenta into the associative network, an accretive associative network will
return the value of cither 1 or 2, depending upon whether the shade of
magenta is closer to red or blue. If the magenta corresponded to a valie of
1.6, then the accretive network would give an output of 2. On the other hand,
an interpolative associative memory would return the actual numerical value
(1.6 in this case).

Crossbar Structure

Crossbar networks have the structure of an carly twenticth-century telephone
exchange system from which they take their name. They typically have one or
two layers of artificial neurons, and each neuron or layer is fully intercon-
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nected with the other neurons or layers. Crossbar representations that are
commonly used are matrix representation, energy surface representation, and
a fecdback competition representation. The matrix representation is perhaps
the most common because the weights are stored as elements of a matrix.
The matrix weight representation discussed here is substantially the same as
those given in Figures 7.6 and 7.7, This representation is popular because
matrix mathematics and operations are well understood by most rescarchers.
They are also mathematically tractable, allowing simple explanations of
characteristics. If we consider the fully connected network shown in Figure
9.4, the input is a column vector X with components x,, x;, x5, and x, and
the output is a column vector Y with components y;, ¥, and y;; then we can
say that

Y=W-X (9.3-1)

where W is the weight matrix. If we expand the terms in equation (9.3-1), it
becomes

Xy
¥y Wi Wa Wy Wy =
X
Ya|= "2 Wa Wa We|-|. (9.3-2)
3
¥3 Wi Wun Wiy Wy
= ) Xy

X7

x2 x3 xg

Figure 9.4 Matrix representation of a neural netwaork.
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Bidirectional Associative Memory

Mathematically, a bidircctional associative memory (BAM) developed by
Koska (1988) is also a matrix; technically it is a crossbar network with
symmetric weights. Each neuron in each layer has one input from the outside
and inputs from each of the neurons in the other ficld of the neurons,

Suppose we construct a BAM to store three pattern pairs: [X,,Y,],
[X,,Y,], and [X;,Y;]. Since a BAM is bidirectional we can enter any X
and retrieve the corresponding Y, or we can enter any Y and retrieve the
corresponding X.

The process in a BAM is fundamentally different than the operation of
other types of neural networks. For instance, in the backpropagation network
discussed previously, the weights are trained to provide the desired
input-output mapping. In the casc of a BAM, the weight marix is not
trained; it is constructed using the input-output pairs. The proc ss involves
constructing a matrix for cach input-output pair and then coml ining them
into a master matrix. X; and Y, are treated as column vectors, an 'l then the
matrix is produced by taking the product of the X; vector and transpose of
the Y veetor, Y7, Let us consider the threc pairs shown below:

Xpp (#1101 =1-14)e(-1+1-1) ¥, (9.33)

X3t [—l+li=1=1+1=DealEl—-1- 1) Y, (9.34)

Bl (=l -F4+1-d=] &Q)em{~] =1 1y ¥y (9.3-5)
Weigh! Matrix Represenfalion Since Xy has 6 elements and ¥, has 3
elenienis, the marrix for cuch set of inpitts result in a6 X 3 mateix, Tt s
impuorisal to note that cach of the patterns is made up of +1 and —1 values,
whicli means that the components are bipolar, Il the patterns values are
binary (i.c., made up of | and 0 values), they should be converted to bipolar
form by substituting —1 for each 0 before they are used in a BAM. The
correlation matrices M, for equations (9.3-3), (9.3-1), and (9.3-5) are abtained
by crass product of X, and Y,—that s,

M, =X, XY (9.3-6)

The three correlatinon matsic s are

-

£f L o+1 1

-1 Bl =1 41

M, =X, XY = :i X[-1 +1 -1]= t} % +i
v S 1

=]l 1 =1 =

_-'rIJ -1 +1 =1

(9.3-7)
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= -1 +1 +1]
_ +1 +1 -1 =1
M,=X,XY] = :; X[+1 -1 -1]= :} ii ji
+1 g it S O
=l -1 +1 41|
(9.3-8)
(=17 +1 +1 —1]
= . +1 k1l =1
M;=X,XY] = f} x[-1 -1 -+1]= :1 _l_} _i-}
~ +1 +1 =1
+1 | -1 =1 +1]
(9.3-9)

Note that each valuc in the above matrices is a product of two quantities, one
component of X and one component of Y. This product x, *); is a classical
indication that Hebbian learning is involved.

In order to obtain an associative weight memory (called the master weight
matrix) capable of storing the three pairs in equations (9.3-3), (9.3-4), and
(9.3-5), we simply add the three correlation matrix equations (9.3-7), (9.3-8),
and (9.3-9). The result is

M=M +M, + M, (9.3-10)
—~1 #3 =1
+3 =1 =1
_|-1 =1 +3 07,
L +1 41 1 3
+3 -1 -1
=3 41 41

Matrices can be added only if they are the same size. Hence, this means that
all of the X, vector patterns must have the same number of components, and
all of the Y; vector patterns must have the same number of componcents,
However, the number of components in the X, pattern can be different from
the number of components in the Y, patterns (as is the case in this example).

In order to put in any X, and get back any Y, (or put in any Y, and get
back any X;), we have to take the product of the input vector and the matrix.
This is equivalent to taking the dot product of the vectors and the master
matrix. The result is

(9.3-12)
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and

Y, =M™ X, (9.3-13)

where the M's are 6 X 3 weight matrices, X; is a 6 X 1 column vector, and Y,
is-a 3 X 1 column vector, Note that we must use the transpose of the master
matrix to get Y,; that is,

-1 +3 -1 +1 +3 -3
Mi= |43 —1 =1 +1 =1 41 (9.3-14)
-1 =1 43 +1 =1 +1

Example 9.2 Using a Bidirectional Associative Memory. Let us use cqua-
tion (9.3-12) to obtain X, from Y;:

1 43 =1 -3 =]
+3 =1 =1 +5 +1
-1 =1 +3 -3 ~1 _
= e — = == = “,]
= lay g gt PI9E =1 =2l=f oy 3 | A8)
3 == = +5 +1
~3 41 41 -5 1

which is the correct pattern. The last step in equation (9.3-15) is accom-
plished through the use of the threshold rule; that is, the component is —1 if
the original value is < 0, and it is + 1 if the original value is > 0.

Operation of a BAM. The master matrix now has three pairs stored in it. 1f
any of the Xs or Ys arc introduced to this matrix in the proper way, the
corresponding response is given immediately. The problem comes when the
input is a distorted version of X (or Y) which we will call X* (or Y*) is
introduced, especially if X* has some similarity to more than one of the Xs.
The initial response obtained as the dot product of X* and M may not be any
of the Ys stored in the matrix, but may be some combination of two or more
of the Bs which we will call Y'. In turn, Y’ is sent back through the BAM to
give X' as the dot product of Y’ and M”. X" moves back across the BAM to
give Y” as the dot product of X" and M. ¥” then moves back across the BAM
to give X" as the product of Y” and M”. This process continues until an
equilibrium condition is attained when successive values of X/ and Y' do not
change.

The sequence of events are as follows:

1. An X input pattern is presented to the BAM,

2. The neurons in ficld X gencrate an activily pattern that is passed to
field Y through the weight matrix M

3. Field Y accepts input from field X and then generates a résponse back
to field X through the transpose weight matrix M7
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4. Field X accepts the return response from Y, and then it generates a
response back to field Y through the weight matrix M.

5. The activity bounces back and forth until a “resonance” is achieved,
which means that no further changes in the patterns occur (i.e., succes-
sive values of Xs and Ys are the same). At this point, the output Y is
one of the Y values stored in the master matrix, and it is the correct
response for the distorted X input.

In summary, we constructed a master matrix with three pairs of input
patterns [X,, Y,], [X,,Y,], and [X,, Y,]. We transposed this matrix (if neces-
sary, depending upon which half of the pair we used as input) and then
applied it to the input patterns. The result following thresholding was the
ather half of the pattern pair. This apparently arbitrary methodology always
generates a memory matrix from which we can recall the input patterns used
to produce it. Where are the patterns actoally stored in the BAM matrix?
They are not stored in any individual element of the weight matrix, because if
we were to change one of the three patterns and reconstruct the matrix, we
would get an entirely different weight matrix with virtually every element
changed. Changing an individual pattern doesn’t just change one row or one
column of the matrix; it changes every clement. We must therefore conclude
that the information is stored not in an individual elements but in the matrix
as a whole, and each pattern is distributed over the entire matrix,

Adding and Deleting Paitern Pairs to the Master Matriv, We can add another
pattern pair [X,,Y,] to our matrix by adding its matrix M, to get to the
memory maltrix M:

NewM = M, + M, + M, + M, (9.3-16)

Alternately, we can “forget” or crase a pattern pair by subtracting the matrix
for that pattern pair from the memory matrix. For instance, if we wanted to
remaove the pair [X,, Y,] from the memory, we could do it by subtracting the
matrix M, from the memory matrix:

NewM =M - M, (9.3-17)

This system has all the requisite features of a memory system. It can store
Into memory, it can recall from memory, it can write new information, and it
can erase old information. 3

Capacity and Efficiency of a Crossbar Network

The capacity of a crossbar network of size N X N neurons is theoretically
limited to approximately N patterns. In reality, the actual capacity of the
crossbar networks is more on the order of 10-15% of N. In the matrix
example cited earlier, 288 bits were needed (18 elements of 16 bits per
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element) to store three patterns of 9 (total) bits cacli, or 27 bits total. The
storage and recall operation required several major matrix operations (multi-
plication, transposition, ard addition). With current technology this is much
less efficient than simply storing the data conventionally.

Disadvantages of Crossbars

There are many disadvantages of crossbars that need to be considered. Thece
are as follows:

1. The Nwnber of Connections. A 100-node network has 100 x 104, or
10,000, total connections.

2. Binary-Only Input. To implement an analog problem, some s.itable
transformation must be used to convert analog quantities to binary
signals.

3. Capacity. The theoretical storage is low for the number of conngctions,
and the real storage capacity is even much lower,

4. Orthogonality. For best results, the stored data patterns should be as
orthogonal as possible to minimize the overlap.

5. Spurious Results. In energy surface representation, spurious minima or
“encrgy wells” that have nothing to do with the problem are sometimes
produced. These are the so-called “localized minima.”

There are, however, some mitigating circumstances. Near-orthogonality is
usually adequate because the capacity is so low. There are few spurious
minima because low capacity implies sparse coding (lots of zeros) in the data.
Finally, the efficiency could be dramatically improved when practical optical
systems become a reality,

Hopfield Networks

Dr. John Hopfield is the person perhaps most responsible for the rejuvena-
tion of the neural network ficld after publication of Perceptrons. His contri-
butions include work conceptualizing neural networks in terms of an encrey
model (based on spin glass physics). He showed that an encrgy function exists
for the network and that processing clements with bistable outputs are
guaranteed to converge to a stable local energy minimum. His presentation at
the National Academy of Science meeting in 1982 triggered the subsequent
large-scale interest in neural networks. A crossbar associative network is
called the Hopficld network in his honor (Hecht-Nielsen 1990),

A typical Hopfield network is shown in Figure 9.5. It has only one
computing layer, called the Hopficld layer, and the other two layers are the
input and output buffers. In contrast to the backpropagation network dis-
cussed carlier, the Hopfield network has feedback from cach neuron to each
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Figure 9.5 Hopfield network architecture,

of the other neurons, but not to ilsedf. The Hopfield layer of neurons
computes the weighted sum of the inputs, and it quantizes the output to 0 or
1. (This restriction was later relaxed.) The activation function used was a
sigmoid with a reactive (resistor-capacitor) delay. An examination of this
network shows that the weights are symmetrical; that is,

W= Wy (9.3-18)

The basic Hopfield learning rule is
Aw;; = (2x; — 1)(2.\')- =) (9.3-19)

where x; and x; have values of 0 and 1, X; is the current neuron, x; is the
input to the neuron, and w;; is the connection between the jth neuron and
the ith neuron. Furthermore, symmetry dictates that weight changes are
symmetrical; that is,

Awy = Awy; (9.3-20)

Examination of equation (9.3-19) shows that the learning is Hebbian; that is,
the change in weight is the product of two activities, and the change in weight
is proportional to this product. Since x; and x; can only have values of 0
and 1, then the (2x = 1) terms effectively convert the binary inputs and
outputs into bipolar inputs and outputs; that is, the 1 remains a 1 and the 0
becomes a —1. The connections are strengthened (i.e., made more excita-
tory) when the output of a neuron is the same as the input (i.e., both are 0 or
both ate 1). Connections are weakened (i.e., made more inhibitory) when the
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input differs from the output of the neuren (when one input or output is a 0
and the other is a 1). Hopficld has shown that for a large number of neurons
the upper bound for the memory capacity is 0.5 X (N/log N), where N is
the number of processing elements.

Energy Suriace Representalion

The key to the popularity of crossbar networks is that the “state” of the
network can be represented by an “energy surface” in which data storage
corresponds to “sculpting” energy minima in the energy surface, This view is
mathematically equivalent ta well-understood physical systems known as
“spin glasses.” Each encrgy well in the energy surface has a corresponding
arca within which all states will move to the bottom of that well or “basin of
attraction,”

A crossbar associative (Hopfield) memory operates by attracting the net-
work state to an energy minimum. If we consider the energy function of the
crosshar associative memory as a foam sheet with dents of different depths,
the bottoms of the dents are the energy minima, They correspond to the data
stored in the crossbar network. It is sometimes said that the network state is
falling down into the nearest encrgy well, which may or may not be the plobal
minimum,

Simulated Annealing

Simulated annealing is a process used in neural networks to reach a global
minimization of an error function. It is analogous to the annealing process in
metallurgy in which a metal is heated beyond a transition temperature,
allowing the preexisting structure to change physically (relieving residual
stresses, changing the metallographic structure, eliminating dislocations and
disruptions in the crystal lattice, cte,) due to thermal agitation. Then the
temperature is lowered slowly to room temperature, allowing the metal
structure to slowly go through a transformation and grow structures by which
it attempts to attain a global “minimum energy” configuration. In practice,
the annealing process does not take place suddenly, but instead the transition
starts almost simultaneously at many locations, creating many homogeneous
regions that are usually separated by dislocations. Hence, there is no guaran-
tee that the final energy level will be lower, but it usually is lower.

When a minimization process is trapped in a spurious local minimum, one
of the few ways to get out of this trap is to add noise to the function until it
litcrally escapes the minimum. This is cquivalent to raising the temperature
in the annealing process. When the high noise level has driven the function
away from the spurious local minimum, the noise level (temperature) can be
gradually lowered, allowing the function to gradually approach a global
minimum. The success of this process is dependent upon the temperature
used and the programmed cooling rate. If the global minimum is not reached,
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the process can be repeated as many times as necessarity using other
temperatures and cooling rate curves. The details of this process are dis-
cussed in detail in several references (Hecht-Nielsen, 1990; Korn, 1992; Aarts
and Korst, 1989),

It is common to combine simulated annealing with other minimization or
training processes. An example of this was discussed in Scction 8.4 of
Chapter 8, in which simulated anncaling was used after the backpropagation
training process had become stuck in a local minimum, After simulated
annealing has moved the process away from the local minimum, backpropa-
gation was resumed to complete the training of the neural network,

Stochastic Neural Networks

Stochastic neural networks use noise processes in their operation in an effort
to reach a global minimum of an error function. The process involved in
virtually all statistical networks is simulated annealing. Examples of statistical
neural networks are the Boltzmann machine and the Cauchy machine. The
Boltzmann machine is a discrete-time Hopfield net in which the processing
clement transfer function is modified to use the annealing process. The
Cauchy machine is similar to the Boltzmann machine, in which different
temperatures, cooling rate patterns, and procedures arc used. Both allow the
crror to increase under some conditions in order ta mave out of a local
minimum,

9.4 COMPETITIVE LEARNING: KOHONEN SELF-ORGAMIZING SYSTEMS

“Sclf-organization” refers to the ability of some networks to learn without
being given the corresponding outpul for an input pattern. Self-organizing
networks modify their connection strengths based only on the characteristics
of the input patterns. The Kohonen feature map, perhaps the simplest
sclf-organization system, consists of a single layer of neurons (called the
Kohonen layer) which are highly interconnected (lateral connections) within
the Kohonen layer as well as to the outside world through an input buffer
layer that is fully connected to the neurons in the Kohonen layer through
adjustable weights.

Lateral Inhibition

Kohanen networks utilize lateral inhibition (i.e., connections between neu-
rons within a layer) to provide (a) positive or ¢xcilatory connections. to
neurons in the immediate vicinity and (b) negative or inhibitory conncetions
to neurons that are further away. The strengths of the connections vary
inversely with distance between the neurons, that is, the strengths are
stronger when neurons are close, but they are weaker when the neurons are
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distant. The inputs from lower levels and outputs to higher levels (if any)
are the same as for other networks. Generally, there is no feedback from
higher to lower layers.

Lateral connections moderate competition between ncurons in the
Kohonen layer. When qan input pattern is presented to the Kohonen layer,
each neuron receives a complete copy of the input pattern modified by the
connecting weights, and the varying responses establish a competition that
flows over the intralayer connections. The purpose of the competition is to
determine which neuron has the strongest response to the input. Fach
neuron in the layer trics to enhance its output and the output of its
immediate neighbors and inhibit the output of the remaining neurons that
are further away. Lateral connections can cause oscillations in networks, but
the output eventually stabilizes with the output of the neuron, with the
strongest response being declared the winner and being transmitted o
the next layer if there is one. The activity of all other neurons is squashed,
as the network determines for itsclf which neuron has the greatest response
to the input pattern. The relative impact of a neuron’s interlayer inhibition is
also permitted to decrease with training. Initially, it starts fairly lazge and is
slowly reduced to include only the winner and possibly its immediate neigh-
bors. It has becn shown that similar systems exist in the brain with regard to
vision.

The complexity of intralayer connections makes lateral inhibition and
excitation hard to implement. An alternative which is much casier to imple-
ment is to use a “max’” function to determine the neuron with the greatest
response to the input and then assign this neuron a +1 value to the output
while assigning a zero to all other neurons in that layer. The winning neuron
represents the category to which the input pattern belongs. This is not a truz
implementation of lateral inhibition, but it gencrally gives the same result as
a true implementation, and it is far more efficient when implemented using
serial computers. An even simpler alternative is to merely compute the dot
product of cach of the weight vectors with the input and then select the
winner from this list,

In training, the Kohonen network classifies the input vector components
into groups that are similar. This is accomplished by adjusting the Kohonen
layer weights, so that similar inputs activate the same Kohonen neurons.
Preprocessing the input vectors is very helpful. This involves normalizing all
inputs before applying them to the network-—that is, divide each component
of the input vector by the vector's length:

[ Al
R - (9.4-1)
[x; b e ol +.\';,]

When building a Kohonen layer, two new things are required:

1. Weight vectors must be properly initialized. Generally, this means that
the weight veetors point in random directions,
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2. Weight vectors and input vectors must be normalized to a constant
fixed length, usvally “unity.” Such normalization can cause loss of
information in some situations, and there are methods of dealing with it
if it oceurs.

Let us assume that the weight vectars are randomly distributed and then
determine how close each neuron's weight vector is to the input vector. The
ncurons then compete for the privilege of learning, In essence, the neuron
with the largest dot product of the input vector and a weight component is
declared the winner. This neuron is the only neuron that will be allowed to
generate an output signal; all other neuron outputs will be sct to zero.
Furthermore, this neuron and its immediate neighbors are the only ones
permitted to learn in this presentation. Only the winner is permitted to have
an output (i.e., winner takes all).

Kohonen Learning Rule

Determining the winner is the key to training a Kohonen network. Only the
winner and its immediate neighbors modify the weights on their connections.
‘The remaining neurons experience no training. The training law used is

Aw, = gl = w] (9.4-2)
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Figure 9.6 Leaming in a Kohonen neural network.
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where 7 is the learning constant whose value may vary between 0 and 1, with
a typical value of about 0.2, and x; is the input along the ith connection. It
can be shown that this learning rule is a variation of the Woodrow-Hoif
learning rule. This is shown graphically in Figure 9.6 for the two-dimensional
case. Learning is illustrated for the case of an input x; and a weight ™,
The difference between these two unit vectors is a vector from the tip of w™
to the tip of x;. In Figure ‘9.6, this vector is broken into two parts (cords of
the unit circle) so that the w™™ will have a unit length. The vector from the
tip of w to wP*™ represents the change in the weight vector due to learning
and is equal to n(x, — w™).

If we consider the collection of weights for a given ncuron as the
components of an p-dimensional weight vector W, and we consider the
corresponding inputs as the components of an m-dimensional input vector I,
then Kohonen learning merely moves the weight vector so that it is more
nearly aligned with the input vector. Since both input veetors and weight
veetors are generally normalized to a unit magnitude, each vectar points to a
position on the unit circle, The winning neuron is the one with the weight
vector closest to the input vector, Each training pass nudges the weight
vector closer to the input vector. The winner’s neighbors also adjust weights
using the same learning equation, and their weight vectors move closer to the
input vector. Training a Kohonen layer begins with a fairly large neighbor-
hood size that is slowly decreased as training procceds. The learning constant
also starts with a large value and decreases as training progresses.

Let us consider the unsupervised training process for three input vectors,
cach with eight components and hence eight weights (a small training sct
solely for illustrative purposes) at three different stages of training: initial
random weight distribution, partially trained weights, and fully trained
weights. These three conditions are shown in two dimensions in Figure 9.7.
Initially, the weight vectors are randomly scattered around the unit circle. As

W3

W7 wr
hid- wy
wg Xy X
"j 2'3
W
WS
Wy Wz wy
w2
P4 2
w3 w3 B
.
Randomized Weighes Partially Trained Weights Fully Trained Werghts

— Inprts
—— Heighis

Figure 9.7 Training of weightsin a Kohonen neural netwark,
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training procceds, the weight vectors move toward the nearest input. When
the system is fully trzined, the weights cluster around the three inputs so that
the centroids of the three Joeal weight clusters are on the three input vectors.

Training of a Kohononp Neural Network.

Let us consider a Kohonen neural network [sometimes called a sclf-organiz-
ing map (SOM)] with an input buffer layer (typically a linear array) and a
Kohonen layer (t}-‘pic:;lly a rectangular array or grid) that are fully connected.
An input vector is applicd to the buffer layer, and its component vectors are
transmitted to each neuron in the Kohonen layer through randomized
connecting weights. The peuron in the Kohonen layer with the strongest
response (let’s call it neuren q) is declared the winner and its value is set
equal to 1. Then the weights connecting all component vectors from the
buffer layer to the Winning neuron undergo training in accordance with the
process shown graphically in Figure 9.6, Neurons immediately adjacent Lo the
winner are also allowed 1o undergo training. Then a second input vector is
applied to the buffer layer, another neuron in the Kohonen layer is declared
the winner, its value iy, gpt equal to unity, and it and its neighbors are allowed
to undergo training. “I'hjg process continues until all the inputs in the epoch
of data have been applied (o the buffer input layer. In the training process,
the weights tend to clusier around the input vectors as indicated in Figure
9.7. Training stops whep g criterion relating the nearness of the weights in
the clusters to the releyyng input vectar is satisficd. Kohonen neural networks
train relatively rapidly compared to backpropagation neural networks, Often
a single cycle through an epoch of data, especially if the data set is large,
constitutes adequate iining.

It is important ta noje that just because the input vector sclected neuron q
as the most active in (| first eycle of training does not mean that it will
sclect neuron ¢ in the sccond or subsequent cycles of training, because the
weights on connections (o peuron g change during training and perhaps
training caused by adjicent neurons being winners in the first cycle, Further-
more, it is common for a particular Kohonen layer neuron to be the winner
for many inputs. During the training process, input vectors that have similar
characteristics move ing g cluster of neurons in a particular area of the
Kohonen layer, often 1o g single ncuron. Other input vectors that have
similar characteristics, which are different than those of the first cluster,
move toward another area of the Kohonen layer. There will be as many
clusters as there are I¥pes of inputs if an appropriate-sized rectangular array
size is chosen for the Kohonen layer. More clusters require larger rectangular
arrays of neurons and, )¢ larger the number of neurons in the Kohonen
layer, the longer the Uitining process.

A Kohonen network models the probability distribution function of the
input vectors used during training. Many weight vectors cluster in portions of
the hypersphere that liye relatively many inputs, and few weight vectors
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cluster in portions of the hypersphere that have ulam«el} few inputs, Koho-
nen networks perform this statistical modeling, even in cases where no
closed-form analytical expression can describe the distribution. The Kohonen
network can achieve this modeling spontancously, with no outside tutor.

¢ Kohonen networks work best when the nctworks are very large. The
smaller the network, the less accurate the statistical model will be. Kohonen
neural networks arc very fast, even while training. Activation of the network
is a single-pass, feedforward flow. Thus, Kohonen networks have the poten-
tial for real-time application learning. Koho.aen neural networks can literally
learn continuously. Henee, if the statistical distribution of the input data
changes over time, it can automatically adapt to those changes and continu-
ally model the current distribution of the input pattern. The statistical
modeling capabilitics of the Kohonen network are unmatched by any other
neural network.

The learning rate coefficient 7 is always less than 1, it usunlly starts at
about 0.7 and is gradually reduced during training. If only one input vector
were to be associated with each Kohonen neuron, the Kohonen layer could
be trained in one calculation per weight. The weights of a winning neuron
would be adjusted to the components of the training vector (with n < 1),
Usually, a training set has many input vectors that are similar, and the
network should be trained 1o activate the same Kohonen neuron for each of
them.

The weight vector must be sct before training begins. It is common
practice to randomize these weights to small valucs. For the Kohonen
network training, the randomized weights must be normalized. After training,
the weights must end up equal to the normalized input vectors, Pn.nrm“ul
ization to unit vectors will start weight vectors closer to their [inal states,
thereby shortening the training process.

The most desirable arrangement is to distribute the weight vectors accord-
ing to the density of the input vectors that must be scparated. This places
more weight vectors in the vicinity of the input vectors. Although this is
impractical to implement directly, there are several technigues that approxi-
mate this ideal arrangement (Masters, 1993),

Example 9.3 Valve Status Classification Using Kohonen Neural Networks.
Uhrig et al. (1994) have reported a method of ulilizing an accelerometer
spectrum to determine the status of check valves under full flow conditions.
The same data have also been applied to a Kohonen SOM 1o illustrate its
ability to classify check valves by type and condition. The procedure involved
acquiring an analog time record from an accelerator mounted on a check
valve, digitizing the time record, performing a fast Fourier transform of the
data to produce many spectra, and then introducing these spectra as input
vectors to a Kohonen SOM. Typically, four seconds of data, sampled at
25,000 samples per second and filtered throvzh a band pass filter with 50-
and 10,000-Hz cutoff frequencies, were fast Fourier transformed to produce
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390 spectra, each with 128 values. Hence the input buffer layer had 128
neurons. The size of the Kohonen rectangular array was varied, depending
upon the number, type, and condition of the valves that were being investi-
gated. In several cases, spectral measurements were taken on the same valve
when it was faulty or broken and again after it had been repaired. The results
of several runs are shown in Figure 9.8 through 9,10,

Figure 9.8 shows a plot of a Kohonen SOM for five 18-inch-diameter
valves, three of them (V63, V124, and V251) being identical single-disk swing
check valves and two of them (V148 and V150) being identical “duo-check”
valves that have two moving vanes, cach covering hall of the valve opening.
Clearly, the spectra for the swing check valves clustered in the lower

V148
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V51
V63

V148 and VIS0 are Fdentical 18-Inch “Duo-Check " Vakles
Ve3, V124, and V251 are ldentical 1 8-hich Swing Check Valves

Figure 9.8 SOM plot for 18-inch check values.
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V34, V64, and V65 are Identical 14-Inch Swing Check Valves
V034 is V34 Operating with a Loose Bolt in the Disk Structure
V065 is V65 Operating with a Broken Disk

Figure 9.9 SOM piot for 14-inch swing check values.
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Figure .10 SOM plot for similar 3-inch check valvas operating under nomal and
degraded condilicns.

right-hand neuron, whereas the spectra for the duo-check valves clustered'in
the upper left-hand neuron. Identical results were obtained for spectra from
accelerometer measurements on the upstream side near the hinge pin and on
the downstream side necar the backstop.

Figure 9.9 shows a plot of a Kohonen SOM for three ideatical 14-inch
swing check valves, two of them having measurements taken both in a
degraded or broken condition and after they were repaired. All the spectra
for the good valves clustered in the upper left-hand neuron, whereas the
spectra for the degraded and broken valves clustered in the two right-hand
neurons. Again, identical results were obtained from accelerometer measure-
ments taken on the upstream and downstream sides of the valve,

Figure 9.10 shows a plot of a Kohonen SOM for similar 3-inch and 4-inch
swing check valves that were tested in a test flow loop facility for both normal
and degraded conditions. Both valves were tested under normal conditions
twice and deliberately subjected to 30% degradation of the hinge pin (a less
serious problem), 30% degradation of the stud pin (a more serious problem),
and a stuck disk condition (a very serious problem). Spectra for the 3-inch
valve tended to cluster in the top rows of neurons, whereas spectra for the
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4-nch valve tended to cluster in the bottom rows of neurons. Spectra for
normal conditions (with one exception) clustered in the third column of
neurons, whereas spectra for degraded conditions (with one exception)
clustered in the leftmost or rightmost columns of ncurons. In all cases, the
spectra for the hinge pin (HP) degraded condition (a lesser problem) clus-
tered closer to the neurons for normal (good) conditions than the spectra for
the stud pin (SP) degraded conditions and the stuck disk conditions (both
more serious problems).

The choice in the size and arrangement of the Kohonen layers were
arrived at by trial and error, although similar results usually were found over
a range of sizes. One of the interesting aspects of this work is that there was
no way of controlling where the clustering occurred within the Kohonen
network. This is to be expected since self-organizing is involved here, which
means that the results are dependent only on the data that is introduced into
the Kohonen SOM. O

Learning Vector Quantization

A variation of the learning scheme and the addition of an output layer of
ncurons can make the Kohonen network into a classification network called
learning vector quantizer (LVQ). The modiflication involves changing the
training scheme from an unsupervised system to a supervised procedure, This
requircs a collection of training examples, each assigned to one of a set of
known categories or classes. The number of neurons in the output layer is
equal to the number of classes in the training data sct. The Kohonen layer
is trained first using a modified training procedure. LVQ training proceeds in
a manner similar to that of Kohonen feature map training. An input patlern
Is presented to the network, and the winning node is deternined by selecting
the neuron with weight vector closest to the input vector. This neuron
responds with its assigned category and is allowed to update its weights. The
Kohonen training law is modificd as shown here;

Aw, = q(x; = wi®) (il answer is correct) (9.4-3)
Aw, = —n(x; = wf™)  (if answer is not correct) (9.4-4)

That is, if the winning weight vector.(the one closest to the input vector) is
the correet category for the input pattern, the weight vector is nudged closer
to that input pattern. If, however, the winning vector is the wrong one, the
weight change repels the weight vector from the input pattern vector. This
should allow another weight vector to win the next time that input pattern, or
one similar to it, is presented to the network. LVQ systems, including some
more elaborate variations on the basic idca presented here, can achicve
performance that is nearly as good as an optimal Bayesian decision system.
The system is mathematically simple to implement and does not require
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knowledge of the probubilities involved (Haykin, 1994). Aficr the training is
complete, the activited neurons in the Kohonen layer for input vector:
associated with each class are connected directly to the output neuron for
that class. Kohonen layer neurons not activated by any input vectors are not
connected to the output layer,

2.5 COUNTERPROPAGATION NETWORKS

The counterpropagation network was developed by Robert Heeht-Niclsen in
1987 (Hecht-Nielsen, 1990) as an alternative to the back propagation net-
work. It can reduce training time by a factor of 100, but it is not as genzral in
its application. The counterpropagation network is a combination of two
networks, 4 self-organizing Kohonen network and a Grossherg outstar net-
work. This combination yields properties not available in either alone. In
many respects this network can function as a “look-up™ table that is capable
of gencralization. Tt has a supervised learning process, because the training
associates input veetors with the corresponding output vectors (which may be
binary or continuous). Once the notwork is trained, applying an input
produces the desired output, even with partially incomplete input. It is useful
for pattern recognition, pattern completion, and signal enhancement. The
counterpropagation network combines the categorization capability of the
Kohonen self-organizing network with the conditioning capabilities of
the outstar network.

Robert [echt-Nielsen, the inventor of counterpropagation, realized its
limitations, indicating that counterpropagation is obviously inferior to back-
propagation for most applications. Its advantages are its simplicity, the fact
that it forms a good statistical model of the input vector environment, its
ability to train rapidly, and its ability to save large amounts of computing
time. It can be useful for rapid prototyping of systems where great accuracy is
not required or a quick approximation is adequate. Furthermore, the ability
lo generate a function and its inverse is often useful.

Unidirectional Counterpropagation Network

Figure 9.11 shows the connection scheme of a unidirectional counterpropaga-
tion network. For clarity, only a few of the input neurons’ connections to the
middle layer are shown as well as only a few of the middle layers connections
to the output layer. At first glance, this appears to be very similar to a fully
connected backpropagation network, with connections between the input and
output layers that bypass the Kohonen middle layer, but it is very different.

Consider a mapping of pattern A of size n elements to pattern B of size m
clements. The objective is ta introduce the A pattern to the network and get
back to corresponding B pattern. The input layer receives both the A and B
patterns, and thus it must be of size m + n. The output layer must be able to
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Flgure .11 Unidirectional counterpropagation neural nefwork.

reproduce only the B patterns so it must be a size m. There is also a direct
connection between the B input and the output neurons. These connections
are shown in Figure 9.11. The size and geometry of the middle layer also has
to be determined.

The input layer is split into two subscctions, one which receives the
incoming A pattern and the other that receives the incoming B pattern. The
middle layer is a competitive layer in which only a single neuron generates an
output signal for each input. This output is normally sct to +1 as it is with
the Kohonen network. As a result, each neuron in the output layer merely
receives a single signal, @ + 1 representing the input patterns category, from

. the middle layer and an output from the B section of the input layer. The
conncetions between the middle layer and the output layer obey the neo-
Hebbian (outstar) learning law as demonstrated in Example 9.1, thereby
producing the B output pattern when thé A pattern is applicd to the input
layer.

The output layer’s main function is to associate the correct output pattern
for each category generated by the middle Kohonen layer, Because the
outstar uses a supervised learning procedurc corresponding to classical
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conditioning, the direct connections from the input luyer’s B subsection to
the output layer are used to provide each neuron with an “external” input or
unconditioned stimulus that defines the correct output for each of middle
layer’s categorics. The single +1 signal that arrives from the middle
(Kohonen) layer neurons acts as the condition stimulus during the training of
the output layer. Hence, the weight on the connection between the Kohonen
layer and an output neuron is trained using neo-Hebbian learning,

The opcration of a trained unidirectional counterpropagation network can
be summarized as follows: An input pattern is presented to the A subsection
of the input layer and is categorized by the middle (Kohonen) layer. The
output layer treats the category generated by the middle layer as an outstar
stimulus, because the output layer itself corresponds to the grid of an outstar
network. After training is completed, an input of a particular category
presented to the A input scction of the network canses the output liyer to
generate the correct output pattern for that category without any input from
the B input section.

Although the operation is simple, training the counterpropagation nct-
work is not simple, because this network involves two very diffcrent Ieaning
methods, Kehonen and outstar. Kohonen uses unsupervised training, whereas
oulstar requires superviscd training, Training such a hybrid netwaork normally
invalves a two-step procedure. In the counterpropagation network the middle
Kohonen layer and the cutput outstar layer are separately trajned. First the
Kohonen layer is trained on input patterns and develops a valid feature map
for the input data. Generally, the Kohonen layer is trained until it adequately
recognizes the input patterns and categorizes them into the correct number
of categories. During this training period the output layers and learning
constants are set to very low values (or even zero) because the output of the
network does not matter at this time, Once the middle layer is adequately
trained, the weights between the input and middle layer are frozen. The
learning constants for the middle layer arc set to zero (o ensure that no
further changes occur, because the middle layer has leamned the correct
category for each input. Now it is up to the outstar to reproduce the correct
output for cach category. The learning constants for the outstar layer are
increascd so that learning occurs and continues until the output layer is
appropriately trained. ’

Bidirectional Counterpropagational Network

The unidirectional counterpropagation network really has little advantage
over other networks and systems that perform a mapping function between
the input pattern and output pattern. The only advantages over backpropaga-
tion is that the middle layer does give a probability distribution mapping of
the input data and the training may be faster.

The bidirectional counterpropagation network is shown in Figure 9.12
with only a few of the connections. Both the A and B input laycr subsections
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Figure 9.12 Bidiraclional counterpropagation neural network,

connect to the Kohomen middle layer, and each also has a onc-to-one
connection to the corresponding subsection of the output layers. This effcc-
tively constitutes two counterpropagation networks, one to map A pattens to
B patterns and one to map B patterns to A patterns, operating with a single
Kohonen layer. A bidirectional network can accept either kind of pattern as
its input and respond with a corresponding pattern with the opposite type.
An A input yields a B pattern output, and a B input pattern yiclds an A
output pattern.

In bidirectional counterpropagation networks, the input and output layers
are the same size, both have A and B input sections with full connections to
the middle Kohonen layer, and the middle layer is fully connected to both
sections of the output layer. Each input neuron in each section has direct
connections to the corresponding output neuron. The middle layer receives
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input from all clements of the input layer and transmits its output to the
entire output layer, Training is the same two-step process as for the unidirec-
tional network, First the middle layer is trained using Kohonen learning to
categorize the inputs correctly. Then the output layer is trained to produce
the correct output for each category of input using outstar learning. The
major difference is that bidirectional network ean only learn one-to-one
mappings. If several A patterns generate the same B pattern, then when that
B pattern becomes an input, it cannot determine which A pattern to produce.
Hence, one-to-many or many-to-one mappings are not possible with a bi-
directional counterpropagation neural network.

Characleristics of Counterpropagation Neural Networks

Counterpropagation networks have the same disadvantages as do both the
Kohonen and the outstar networks. The problem cncountered most fre-
quency is getting a varicty of winners in the Kohonen layer so that the input
patterns are categorized correctly. It is not unusual to find that the Kohonen
layer has only @ few distinct clusters during the early part of the training
section, particularly if the weight vectors are randomly distributed through
r-dimensional space.

Counterpropagation networks tend to be larger than corresponding back-
propagation networks. If a certain number of mapping categories are to be
learned, the middle layer must have at least that number of neurans.
Training is usually faster il the number of neurons in the middle layer is
substantially larger than the number of mappings. However, the counterprop-
agation network can do inverse mappings. [t can provide “ungarbled”
versions of A and B when supplied with garbled versions. Very few networks
have a bidirectional ability; most require fwo networks to achieve the same
result. Furthermore, the self-organization of the features of the Kohonen
layer is lost, and the outputs must be supplied for supervised training,

9.6 PROBABILISTIC NEURAL NETWORKS

The probabilistic ncural network (PNN) developed by Donald Specht pro-
vides a general technique for solving pattern classification problems, In
mathematical terms, an input vector (called a feature vector) is used to
determine a category (e.g., the speetral energy values from a sensor system
can be represented as a feature vector), and the network classifiers are
trained by being shown data of known classifications. The PNN uses the
training data to develop distribution functions that are in turn used to
estimate the likelihood of a feature vector being within several given cate-
gories. [deally, this can be combined with a priori probability (relative
frequency) of each category to determine the most likely category for a given
feature vector.
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Bayesian Probability

The PNN is a neural network implementation of Bayesian classifiers. There-
fore, let us look at how Bayesian probability works. Bayes inversion formula
gives

P(Y|X) P(X)

PLXT) = =55

(9.6-1)

This equation indicates that for an event X with a certain known probability
P(X), the probability of event X given event Y has occurred [ P(X|Y)] can
be computed from the probability of Y occurring given that X has occurred
[P(Y|X)] and the overall probability that ¥ will occur at all [P(Y)]. The
relationship P(YIX) is called the a posteriori (the posterior) probability
indicating that the probability is known only before after the event X itsclf
has occurred.

The Bayesian formula also provides a method for categorizing patterns. In
this formulation, ¥ is interpreted as a possible category into which a pattern
might be placed and X is interpreted as the pattern itself. The decision
function can be associated with cach possible category (all values of ¥).
Bayesian decision theory tries to place a pattern in the category that has the
grealest value of its decision function. However, in real-world problems, we
rarely have known probabilities and must estimate or approximate such
Bayesian probabilities. A probabilistic neural network has this capability.
Bayesian classifiers require probability density functions that can be con-
structed using Parzen estimators which are used to obtain the probability
density function over the feature space for each category. This allows the
computation of the chance a given vector lits within a given category. Then,
combining this information with the relative frequency of each category, the
PNN selects the most likely category for a given feature vector. The PNN is a
simple network that categorizes by estimating the probability distribution
function. Like the Kohonen feature map, input data to the PNN is often
normalized to a standard value, usually one,

Structure of Probabilistic Neural Networks

The probabilistic neural network consists of four layers as shown in Figure
9.13. The first layer is the input layer, which is a “fanout” or buffer layer.
The second or pattern layer is fully connected to the input layer, with one
neuron for each pattern in the training set. Each of the neurons in the
pattern layer performs a weighted sum of its incoming signals from the input
layer and then applics a nonlinear activation function to give that neuron’s
output.

The third layer is the summation layer to which each pattern layer neuron
transmils its output to a single summation layer neuron. The weights on the



FROBABILISTIC NEURAL NETWORKS 321

Input Layer

Pattern Layer

Summation Layer

Output Layer

0;
Figure 9.13  Architecture of g PNN.

connections to the summation layer are fixed at 1.0 so that the summation
layer merely adds the outputs from the pattern layer neurons, which gener-
ates the networks category choice. There is one summation layer neuron per
calegory.

The nonlinear activation function used by pattern layer neutrons is not a
sigmoidal function but instead is an exponential function as shown in Figure
9.14. This activation function is given by

D) = exp[(L; ~ 1) /07 (9 6-2)

where [ is the weighted input to the ncuron and the o is the smoothing
parameter that determines how smooth the surface scparating categorics will
be. A reasonable range of values for o is 0.1 to 10. The reason for the
exponential activation function is that it is a simplification of the Parzan
estimator of a Bayesian surface. Using a Bayesian estimating function in the
pattern layer neurons allows the PNN to approximate Bayesian probabilitics
In categorizing patterns.
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The pattern layer has one neuron for each pattern in the training set. if
there are 20 patterns in the training set, 12 in category A, and 8 in cate-
gory B, then there are 20 neurons in the pattern layer. Each of these neurons
has a set of weighted connections between it and the input layer. Each
pattern layer neuron is assigned to one of the 20 training patterns, which
connects to the summation layer neuron that represents its patterns category.
Since in this case the summation layer has two neurons, the category A
neuron receives inputs only from the 12-pattern layer neurons that represent
category A, and the category B neuron reccives inputs only from the
eight-pattern layer neurons that represent categories B patterns. The weights
on the connections from the pattern layer to the summation layer are fixed at
unity.

Each neuron in the output layer received only two inputs, one from cach
of two summation units. One weight is fixed with a strength of unity; the
other weight has a variable strength equal to

wh= —[hg/h ]y /11 [na/ns] (9.6-3)

where h refers to a priori probability of patterns being in category A or B,
{ is the loss associated with identifying a pattern as being in one category
when it is in reality in the other category, and n is the number of A or B
patterns in the training set. The values for A, h,, n,, and n, are deter-
mined by the data pattern themselves, but the losses must be based on
knowledge of the application. In many real-world cases there is no difference
in loss if the catcgorization is wrong in one direction or the other. If so and if
the training samples are present at approximately the ratio of their overall
likelihood of occurrence, this weight reduces to unity.
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'The PNN is trained by setting the weights of one neuron in the pattern
layer to the magnitude of each training pattern’s elements. That neuron is
then connected to the summation unit corresponding to that pattern’s cale-
gory. With a single pass through the training set the network is traincd.

The Smoothing Parameter

A smoothing parameter which affects the generality of decision boundarics
can be modified without retraining. The PNN usually needs a reasonable
number of training samples for good generalization, but it can give pood
results with a small number of training samples. Since each training sample is
represented by a neuren in the pattern layer, this serial implementation of a
PNN will typically tuke longer in the recall mode than a backpropagation
model. Inputs need not be normalized, which in some cases may distort the
inputs space in an undesirable way, However, some implementations of PNN
do normalize inputs for convenience.

The smoothing parameter o varies between zero and infinity, but neither
limit provides an optimal scparation. A degree of averaging of neurest
neighbors provides better generalization where the degree of averaging is
dictated by the density of the training samples. Figure 9.15 shows the
smoothing parameter o as it varies between 0.1 and 1.0, For the lowest value
the estimated probability density function has five distinet neurons, whereas
for the largest variable there is a very severe flattening of the probability
density function between —3 and +3.

Advantages and Disadvantages of the PNN

The advantage of probabilistic ncural networks is that the shape of the
decision surface can be made as complex as necessary using the smoothing
parameter. The decision surface can approach Bayes optimal solutions, and
the neural network tolerates crroncous samples and works reasonably well
with sparse data, For time-varying statistics, old patterns can be overwritten
with new patterns,

The PNN operates in parallel without feedback, and training is almost
instantaneous. As soon as one paltern per category has been observed, the
network can begin to generalize. As new patterns are included, the decision
boundary becomes more complex and better defined, and the entire training
set must be stored. Testing (recalling) requires that the entire data set be
used. The amount of computation required for PNN to classify any unknown
pattern is proportional to the size of the training set. Unfortunately, the PNN
is not as general as other neural network algarithms.

One of the serious drawbacks of the PNN is that it cannot deal with
extremely large training sets. Since there must be one neuron in the pattern
layer for each example in the training set, the network memory requirements
can increase very rapidly with the size of training sets. In effect, the entire

-
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Figure 9.15 Influence of smoothing parameter ¢ on probability density function
f4(x), the output of the summation neurons in the PN,

training set is stored continually and retained during the classification of all
feature patterns. On the other hand, the PNN signal training technique
provides an extremely fast training time, particularly in comparison with an
iterative network such as the backpropagation network. Furthermore, the
network can deal with problems that have only a few samples of some of the
categories.
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9.7 RADIAL BASIS FUNCTION NETWORK

The radial basis function network (RBEFN) (NeuralWare, 1993; Hush and
Horne, 1993; Moody and Darken, 1989; Wasserman, 1993) always consists of
three layers: the input layer, the pattern (or hidden) layer, and the output
layer (i.c., the topology of the RBFN is thus identical to the backpropagation
neural network). It is a fully connected and feedforward network with all
connections between its processing units provided with weights. The individ-
ual pattern units compute their activation using a radial basis function;
typically the Gaussian kernel function as shown in Figure 9.16 is used where
o is the width of the radial function. The activations of pattern units
essentially characterize the distances of centers of radial basis functions of
the pattern units from a given input vector. The radial basis funetions thus
produce localized, bounded, and radially symmetric activations—that is,
activations rapidly decreasing with the distance from the function’s centers
(in contrast, the backpropagation network sigmoidal activation funciions
produce global and unbounded activations). Use of the radial basis activation
functions requires a careful choice of the number of the pattern units to be
used for a specific application, especially when a good gencralization is
needed; the areas of significant activation have to cover all the input space
while overlapping in just the right way. For function approximation applici-
tions, this means that the samples included in the training sct have to cvenly
represent all possible input vectors. The output units of the RBEN simply
sum the weighted activations of individual pattern units without using any
activation function. To speed up the training, the pattern layer neurons are
augmented with bias units which have their activation values fixed to one.
The training of the RBFN differs substantially from the training used for
the backpropagation network. It consists of two separate stages. During the
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first stage, parameters of the radial basis functions (i.e., their centers and
widths) for individual pattern units are set using the unsupervised training.
The centers of radial basis functions of the individual pattern units define
input vectors causing maximal activation of these units. Location of these
centers 1s the first step of the training and is conducted with the help of sume
clustering algorithm (typically, the %k-means algorithm is used). The clustering
algorithms usually operate iteratively, and the clustering process is finished
when locations of the centers for individual pattern units stabilize. The
resulting values of individual elements of the center vectors are then directly
used as values of the weights in connections between the input units and the
corresponding pattern units. The widths of radial basis functions of the
individual pattern units (denoted o in Figure 9.16) determine the radii of
the areas of the input space around the centers where activations of these
units are significant. Their determination is the next step of the training and
is performed using the “nearest-neighbor” heuristic.

In the sccond training stage, the weights in connections between the
pattern units and the output units are determined using the supervised
training based (as when training the backpropagation network) on minimiza-
tion of a sum of squared errors of RBFN output values over the set of
training input—output vector pairs. Before the training starts, these weights
are randomized to small arbitrary values. At that stage, the weights in
connections between the input units and the pattern units and the parame-
ters of the radial basis functions of the pattern units are already set as
determined in the first training stage and are not subject to any further
changes. During this training, the RBEN is presented with individual input
vectors from the set of training samples and responds with certain output
vectors. These output vectors are compared with the target output veclors
also given in the training set, and the individual weights are updated in a way
ensuring a decrease of the difference between the actual and target output
vectors (typically, the steepest descent optimization algorithm is used). The
individual input—output training pairs are presented to the RBFN repeatedly
until the error decreases to an acceptable level.

9.8 GENERALIZED REGRESSION NEURAL NETWORK

The generalized regression neural network (GRNN) (NeuralWare, 1993;
Wasserman, 1993; (Specht, 1991; Caudill, 1993) is a special extension of the
RBEN. It is a feedforward neural network based on nonlinear regression
theory consisting of four layers: the input layer, the pattern layer, the
summation layer, and the output layer (see Figure 9,17). It can approximate
any arbitrary mapping between input and output vectors. While the neurons
in the first three layers are fully connected, each output neuron is connected
only to some processing units in the summation layer. The function of the
input and pattern layers of the GRNN is exactly the same as it is in the
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Figure 9.17 Topology of the generalized regression neural network,

RBFN. The summation layer has two different types of processing units:
the summation units and a single division unit. The number of the summnia
tion units is always the same as the number of the GRNN output units; their
function is essentially the same as the funetion of the output units in the
RBFN. The division unit only sums the weighted activations of the pallern
units without using any activation functicn. Each of the GRNN output units
is connected only to its corresponding summation unit and to the division
unit; there arc no weights in these connections. The function of the output
units consists in a simple division of the signal coming from the summation
unit by the signal coming from the division unit. The summation :nd output
layers together basically perform a normalization of the output veetor, thus
making the GRNN much less sensitive to the proper choice of the number of
pattern units than the RBEN. The overlapping of radial basis fuonctions of
individual pattern units is not a problem for the GRNN; in fact, it turns out
o be an important parameter allowing the user to influence generalization
capabilities of the GRNN. In gencral, larger values of the width of radial
basis functions of the pattern units results in a smoother interpolation of the
output vectors values among the values corresponding to the centers of radial
basis functions of the individual pattern units,

The training of the GRNN is quite diffcrent from the training used for the
RBFN. It is completed after presentation of cach input-output veetor pair
from the training sct to the GRNN input layer only ouce; that is, both the
centers of the radial basis functions of the pattern units and the weights in
connections of the pattern units and the processing units in the summation
layer are assigned simultaneously. The training of the pattern units is
unsupervised, as in the case of the RBFN, but employs a special clustering
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algorithm which makes it unnecessary to define the number of pattern units
in advance. Instcad, it is the radius of the clusters that nceds to be specified
before the training starts. The first input vector in the training set becomes
the center of the radial basis function of the first pattern unit. The next input
vector is then compared with this center of the first pattern unit and is
assigned to the same pattern unit (cluster) if its distance from this center is
less than the prespecified radius; otherwise it becomes the center of the
radial basis function of the next pattern unit. In the same manner, all the
other input vectors are compared one-by-one with all the pattern units
already set, and the whole pattern layer is thus gradually built. During this
training, the determined values of individual elements of the center vectors
are directly assigned to the weights in connections between the inputl units
and the corresponding pattern units, Owing to the much lower sensitivity of
the GRNN to the overlapping of the radial basis functions of the pattern
units, the widths of radial basis functions of the individual pattern units need
not be set according to the resulting structure of the pattern layer. Instead,
their setting typically becomes the subject of experimentation as their values
determine generalization properties of the GRNN.

Simultaneously with building the pattern layer, the values of the weights in
connections between the neurons in the pattern layer and the summation
layer arc also set using the supervised training. The weights in connection
between each pattern unit and the individual summation units are directly
assigned with values identical to the elements of the output vector corre-
sponding in the training set to the input veclor which formed the center of
the radial basis function of that particular pattern unit. In case that some
additional input vectors in the training set are assigned to the same pattern
unit, values of the elements of their corresponding output vectors are simply
added to the previous values of these weights. At the same time, the weight
in the connection of each pattern unit and the division unit, which was
originally set to zero, is increased by one for each input vector from the
training sct which is assigned to this pattern unit.

9.9 ADAPTIVE RESONANCE THEORY (ART-1) NEURAL NETWORKS

Adaptive resonance neural networks are among the more complex neural
networks in use today. They are based on adaptive resonance theory (ART)
developed by Carpenter and Grossberg (1986). Three general types of ART
networks are used: (a) ART-1, which can handle only binary inputs and was
developed in 1986; (b} ART-2, which can handle gray-scale inputs and was
developed in 1987; and (c) ART-3, which can handle analog inputs better, is
more complex, and was developed in 1989 to overcome some limitations of
ART-2. We will discuss ART neural networks as a general system, because
the principles and characteristics of adaptive resonance in all three versions
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are the same. However, the implementation becomes increasingly compli-
cated for gray-scale and analog inputs,

General Operations of an ART Neural Network

ART neural networks arc two-layer neural networks fully connected with
inputs going to the bottom layer, from which they are transmitted through
adjustable weights to the top or storage layer, This is a bottom-up or “trial”
patiern that is presented to stored patterns of the upper storage layer. The
input pattern is modified during {ts transmission through the “bottom-up™
weights to the upper layer, where it tries to stimulate a response pattern in
the storage layer that contains several possible responses. Training takes
place after every pass of the pattern, up or down. Since the training rule does
not matter, it is common to use Hebbian learning for convenience. If this
“bottom-up™ pattern is selected, then “resonance” occurs, and the input s
put into the matching pattern category. If it is not selected, the resulting
activity in the “top-down" layer (called the “expectation” pattern or “first
guess” pattern) is usually different from the bottom-up pattern because ‘the
top-down pattern is presented through the top-down weights to the bottom
layer. Then the weights are adjusted, and the process is repeated. After a
number of trials, the process is stopped, and a new catcgory of pattern is
created in the storage layer. This ability of ART 1o create new categories
is its most important characteristic,

When a pattern fails to produce a match, a new pattern of nodes (from the
storage layer) is now free to attempt to reach resonance with the input layer’s
patiern, In effeet, when the trial patterns do not match, a reset subsystem
signals the storage layer that a particular guess was wrong. Then that guess s
“turned off,” allowing another pattern from storage to take its place. This
cycle repeats as many times as necessary. When resonance is reached and the
guess is deemed acceptable, the scarch automatically terminates. This is not
the only way a search can terminate; the system can terminate its search by
learning the unfamiliar pattern being presented. As each trial of the search
occurs, small weight changes occur in the weights of both the bottom-up and
top-down pathways, These weight changes mean that the next time the trial
pattern is passed up to the storage layer, a slightly different activity pattern’is
received, providing a mechanism for the storage layer to change its guess, If
the system cannot find a match and if the input pattern persists long enough,
the weights eventually are modified enough that an uncommitted node in the
storage layer learns to respond 1o the new pattern, These changes in weights
also explain why the storage layer's second or third guess may prove to be a
better choice than the original one. The small weight changes ensure that the
activity generated by the bottom-up pattern in the second pass is somewhat
different from the activity generated in the first pass. If the input is a slightly
noisy version of a stored pattern, it may require a few weight changes before
the truly best gucss can be matched.



330 COMPETITIVE, ASSOCIATIVE, AND OTHER SPECIAL NEURAL NETWORKS

Alternate View of Adaplive Resonance Operation.

The basic mode of operation in adaptive resonance is hypothesis testing. An
input pattern is passed to the upper storage layer which attempts to recog-
nize it by making a guess about the category to which the input layer belongs.
It is then sent in the form of a top-down pattern to the lower layer. The
result is then compared to the original pattern. If the guess is correet (or
close enough), the two patterns reinforce each other and all is well. If the
guess is incorrect, the upper layer tries again. Eventually, either the pattern is
placed into an existing category or it is learncd as the first example of a new
category. Thus the upper layer forms a hypothesis of the correct category for
each input pattern, which is tested by sending it back down to the lower
layer. If a good match is made, the hypothesis is validated, However, a bad
match results in a new hypothesis. If the pattern excited in the input layer
nodes by the top down input is a close match to the pattern excited in the
input layer by the external input, then the system is said to be in adaptive
resonance, because cach layer’s activity mutually reinforces and strengthens
the other layer’s activity. It is adaptive because both sets of weights on the
interconnections between the layers are continually modified to strengthen
the recognition of the input patlern while the patterns resonate. Complexitics
must be added to carry out all the comparisons and decisions. The implemen-
tation of the acccptance/rejection process and storage of patterns are
straightforward but complex and based on logical operations.

Vigilance

ART-1 also has the property of wigilance by which the accuracy with which
the network guesses the correct match can be varied. By setting a new value
for vigilance, the user can control whether the network deals with small
differences or concerns itself only with global features, A low resct threshold
implics high vigilance and close attention to detail. A high threshold implies
low vigilance and a more global view of the pattern in the matching process.
By controlling the vigilance, the user can differentiate “insignificant noise”
and a “significant new pattern.” Hence, the coarseness of the categories into
which the system sorts patterns can be chosen. High vigilance forces the
system to separate patterns into a large number of fine categories, while low
vigilance causes the same sct of patterns to be lumped into a small number of
coarsc categories.

Properties of ART-1

ART-1 possesses several of the characteristics needed in a system capable of
autonomous learning. The more important characteristics are listed below:

1. It learns constantly but learns only significant information and does not
have to be told what information is significant.
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New knowledge does not destroy information already learned.

Tt rapidly recalls an input pattern it has already learned.

It functions as an autonomous associate memory,

. It can (with a change in the vigilance parameter) learn more detail if
that becomes necessary.

6. It recognizes its associative categories as needed,

7. Theoretically, it can even be made to have an unrestricted storage
capacity by moving away from single-node patterns in the storage layer.

8. However, it can handle only binary patterns,

9. Its ability to create new categories is its most important attribute.

'—h:'—'-f..dN
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PROBLEMS

L

=

Construct a bidirectional associative memory (BAM) that will map the
gray code (see Table 17.1) for the ten digits (1, 2, 3, 4, 5, 6, 7, 8, 9, and 0)
into the corresponding 4-bit binary code. Introduce a distorted (one bit
wrong) gray scale representation for 7 and see if you get the correct binary
code (0111). If so, why; if not, why not?

- A Kohonen network has inputs at 45° and 170° on the unit circle as shown

in Figures 9.6 and 9.7. Randomized weights are located at 270° and 90°.
Use a learning constant of 0.5. Calculate the new positions of the weight
vectors afler one upgrade cycle.

Discuss the relative benefits and modes of operation for probabilistic
neural network, radial basis function network, and the generalized regres-
sion neural network. Give examples wherc each can be used advanta-
geously.

- The Kohonen network part of the counter propagation neural network

uses Hebbian lezrning. Derive the equation for the training algorithm for
this network if backpropagation is used.



DYNAMIC SYSTEMS
AND NEURAL CONTROL
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10.1 INTRODUCTION

The ability of an artificial neural network to model a system or phenomenon
allows it to be used in a varicty of ways. Even clementary linear neural
systems with a single neuron such as the Adaline (adaptive linear neuron)
network introduced by Widrow have proven to be extremely useful, Indeed,
much of what is called “adaptive linear systems theory” is dircctly applicable
to arlificial neural networks. The ability of neurdl networks to develop
nonlinear models of a system offers an additional advantage that can be
useful in many cases. In this chapter, we will explore the use of both simple
and complex artificial neural networks to accomplish a variety of dynamic
tasks, including control of complex systems.

10.2  LINEAR SYSTEMS THEORY

Linear systems theory s # well-developed field that is extremely important to
the processing of data and the application of technologies such as neural
networks to practical problems. When combined with random noise theory,
the resultant technology becomes a powerful tool for investigating complex
systems. It is assumed that the reader is generally familiar with the concepts
of both linear systems theory and random noise theory. For those who want a
review, there are a number of textbooks, including one written by one of the
authors (Uhrig, 1970), that can provide the necessary background. Only the
concepts needed for a gencral understanding of the applications will be
presented here,

333
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i Physical YOt)  Input x(t) and Output y(9)

X(w) S Y(w)  Fourier Transform of x(t) and y(1)
guc(l) h(t) &y (1) Autocorrelation Function of x(1) and y(1)
Geel @ ) H(w) Gyy(w) Power Speciral Density of x(1) and y(1)

h(t) Impulse Response Function
H (w) System Response Function

Figure 10.1 Simple physical system with Input and output,

Autocorrelation and Power Spectial Density Relationships

Let us consider a physical system with an input x(r), an output y{r), an
imipulse response function A(t), and a system responsc function H(w), as
shown in Figure 10.1. H(w) is a camplex quantity with both amplitude and
phase (or real and imaginary components).” The system response function is
the Fourier transformation of the impulse response function; that is,

H{ w) = j;h(r)e"r'-"dr (10.2-1)

where 7 is the variable of integration. The output y(¢) of the physical system
in the time domain is the convolution of the input x(1) and the impulse
response function hi(r):

¥(1) = f:;h(;\]x(! L (10.2-2)

where A is the dummy variable of integration. The corresponding relation-
ship in the frequency domain is

Y(©) = H(w)X(w) (10.2-3)

'Thc_ term system response function as used here is the classical meaning of the term; it is the
“ouner transformation of the impulse response function of the physical system, Tt is sometimes
erroncously called rransfer function, which is the Laplace transformation of the impulse response
ﬁmct!nn, The use of the term “transfer function” in neural networks to mean the activation
function ©of & nonlincar fillering element on the output of & neuron is an unfortunate situation
that sometimes occurs when two fields are merged,
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b
wheru/i’( ®) and X(w) are Fourier transformations of the output y(¢) and
input x(r), respectively; that is,

Xw) = fﬂ x(r)e™*"dr (10.2-4)

Y(w)= [ y(r)eiodr (10.2-5)

For a time stationary process (i.c., a process whose characteristics remain
constant with time), the autocorrelation function g, (7} of the fluctvating
variable input x(¢) is defined by
T | I
g,.(r) = lim [l/2?'}f x()x(t+ 7)dt = Elx(t)x(t + )] (10.2-6)
T _r
and the corresponding power speciral density G, (w) is given by the Fouile!

transformation of g_ () to be

Gulo)= [ gulr)el*rdr (10.2-7)

Relationships identical to cquations (10.2-6) and (10.2-7) also apply to the
output variable y(r).

The relationship between the autocorrelation functions and the power
speetral densities of the input and output variables and the physical system
characteristics has been shown to be (Uhrig, 1970)

g, () = f:f;h(A)h( E)g.(r— E+ A)dEA  (10.2:8)
G,,(w) = H*()H(@)G, (@) =|H(w)'G () (10.2-9)

where H*(w) is the conjugate value of H(w) (ie., the sign of the imaginary
part of f(w) is reversed). Note that G, (@) and G (e) are real quantities,
and hence only the amplitude or modulus of the system response function
[H(w)| is involved in this relationship. The phase angle of the system
response function is not involved.

For the special case where the input x(¢) is a white noise—that is, the
power spectral density G(w) is a constant K over all frequencies, and the
autocorrelation function is a Dirac delta function, 2wK8(t)—equations
(10.2-8) and (10.2-9) become

8 (7) = 20K [ [  h(A)R(£)8(r~ £+ A) dgdA (102-10)

G, (0) =K|H(w)|’ (10.2-11)
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While equation (10.2-11} is simple and casily implemented, equation (10.2-17)
is complex. However, if we have a simple first-order “lag™” system with an
cxponential impulse response function of the form

o (7) = Ae=" (10.2-12)

a situation that often occurs in practical sitvations, then equation (10.2-10)
can be reduced to

8,,(7) = [mA’K/a]e " = K'e~*" (10.2-13)

where K’ is a constant of proportionality and e« is a decay constant. Similar
simplifications are possible for other impulse response functions that are
more complex than equation (10.2-12),

The autocorrelation relationship of equation (10.2-8) has been developed
into a more useful form (Lee, 1960) by introducing the concept of the
autocorrelation function of the impulse response function g, (+) which is
defined as in equation (10.2-6) to be

gu(r) = [1/2T] lim [T (yhe + vy = E(h()Re + 7] (10.2-14)
- _T'
' Equation (10.2-8) then becomes

8yy(7) = J:gm.(f)s.l('r —t)di (10.2-15)

Cross-Correlation and Cross-Spaectral Density Relationships

In a manner similar to equation (10.2-6), the cross-correlation function 2,,(1)
between two variables x(¢) and y(¢) is defined by

g0, (1) = %giﬂ fjr.t(.r)y{r 4 1) de = E[x(0)y(t + 7)] (10.2-16)

and the corresponding cross-spectral density G,,(w) is given by the Fourier
transformation of g, (r) .

Gy(w) = f_ig.‘,('r)c*"”'dr (10.2-17)

Note that the cross-spectral density G, (w) is a complex quantity with
amplitude and phase, whereas the power spectral density G, (w) is a real
quantity with magnitude only.
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The time- and frequency-domain input--output relationships for the
cross-correlation functions and cross-spectral ‘ensities, when applied to the
physical system of Figure 10.1, are

£a(7) = [ B(N)gu (e — A) dA (10.2-15)
(}:‘\'(m) o }I.t}'( OJ}‘C;_U(M) (]“.2'19)

For the special case where the input variable a(r) is white noise, thess
relationships become

é’.r,»(f) = 2w Kh(7) (10.2:20)
(m) = KH, (&) (10.2-21)

where K is a constant of proportionality equal to the power spectral density
of the “white noise.”

Influence of Noise on Measurements

The relationships of equations (10.2-8), (10.2-9), (10.2-18), and (10.2-19) are
valid as long as the signals are uncorrupted with noise or other extraneous
signals. When noise is present, these equations can be modified to include
the influence of the noise (which is dependent upon where the noise is
introduced), but it is necessary to know the characteristics of the noise to
obtain meaningful measurements. Sometimes, the noise is an approximation
of “white” noise (i.c., the power spectral density is constant over the fre-
quency range of interest), and this fact may allow the input-output relation-
ships derived here, modified for the noise inputs, to be used advantageously.

For instance, let us consider the arrangement shown in Figure 10.2, which
consists of a physical system with an ioput x(1) and an instrumentation
system with an input that is the sum of the output of the physical system and
external or detector noise as its inpul. Application of equation (10.2-9) gives

G:z( w) = I ‘!fl( m) I.[Gy)-( ﬁ)) -t G:m( m)]
=l (@) [[|H(@) G (w) + G, (0)]  (10.222)
If the instrumentation system has a flat response beyond the range of interest

and the detector noise G,, is “white” (i.c., the power spectral dt,mn) of the
noise is constant), then Lqull(m (10.2-22) becomes

G..(w) = K[| H(0) (G, (@) + K] (10.2:23)
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Noise
Input
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Nfw)

Physical
System Sistem . Instrumentation
Input Svstem Ouiput
h(t) >
x(t) Hiw) Hfw) z(1)
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Gy (0) Cryf @) Gl i

Figure 10.2 Simple physical system having a detection system with a nolse Input.

where K, and K, are constants. For the special case where the input x(¢) is
“white”and G, (w) is constant, equation (10.2-23) can be rearranged to give

|H()|® = K,G..(w) +K, (10.2-24)

The presence of K, and K, in equations (10.2-23) and (10.2-24) is due to the
detection noise. If K, and K, are large compared to K, and KX,, respec-
tively, then the presence of the noise may seriously deteriorate the quality of
the measurement and the ability to evaluate the system response function
and the parameters of the system being studied.

Cross-spectral density measurements offer a means of overcoming some of
these problems under certain circumstances. Consider the case of the system
in Figure 10.2 with two inputs: x(¢) that goes through both the physical
system and the instrumentation system, and n(z) that goes only through the
instrumentation has been analyzed (Uhrig, 1970). The result is

Gou(0) = H(w)G, (@) + H(0)G,\(w) (10.2-25)

If the noise n(r) is completely uncorrelated with the input x{z), which is
almost always the case, then G, () is zcro, and equation (10.2-25) reduces
to

G, (@) = H( )Gy (@) (10.2-26)
which is identical to equation (10.2-9) for the noiseless case. This demon-

strates the ability of cross-spectral density measurements 1o eliminate the
influence of noise in many practical cases. Equation (10.2-26) can be further
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reduced for a white noise input to
G,.(w) = EFl(w) - (10.2-27)

That is, the amplitude of the transfer [unction |H(w) is proporiional to the
amplitude of the cross-spectral density between the input and the output,
and the phase angle of the system response [unction G(w) is cqual to the
phase angle of the cross-spectral density.

Coherance Funclion as an Index of the Quality of Meoasursinent

As indicated above, the presence of the constants K, and & in equations
(10.2-23) und (10.2-24) can seriously degrade the measurement. We can got
an index of the influence of the presence of noisc on measurcments by
defining the coherence function ¥ @) to be the ratio of |1()]” as deter-
mined by the power spectral density method cquation (10.2-9) to [H{w)* as
determined by the cross-spectral density method cequation (10.2-19), Since
equation (10.2-19) gives a result that is independent of the influence of noise
whereas the validity of equation (10.2-9) deteriorates as the noise increascs,
this ratio is a valid reflection of the adverse influence of noisc. Henee

G (w = G (w
?2(‘”):_' -‘J“( )l/l Jt[ )]

- IG’J{—‘-L-’ ) (10.2-28)

Gy (@)/Co(w) G, (0)G,.(w)

For the case of no input noise, the coherence function is unity. As the noise
increases, the quality of the measurement using equation (10.2-9) deterio-
rates, and the cohercnce as given by cquation (10.2-28) decreases. It is
intuitive and readily demonstrated that the cohercnce function is always less
than or equal to unity; that is,

Y (w) =<1 (10.2-29)

Correlation and Spoctral Measurements Using Pseudorandorm
Binary Variables

In modeling a dynamic system with an artificial neural network, one signal
from the system is the input and another is the desired output. Generally, the
fluctuations of the input is adequate to ensure training of the network over
the desired dynamic range. However, it is sometimes nccessary to introduce a
small perturbation of the input to make surc that the input signal contains
the desired frequency content. Generally this perturbation is either a multi-
ple-frequency signal (sum of sinusoidal signals with frequencies spread evenly
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on a logarithmic or a lincar scale) or a random signal that approximales a
“white” noise over the frequency range of interest.

One signal that is particularly useful and easy to implement is the
“pseudorandom  binary maximum-length shift register sequence” signal
(Uhrig, 1970). It is a binary signal that instantaneously shifts between 0 and 1
(or between — 1 and + 1), with the shifts occurring at integral numbers of the
time interval A, It is easily produced with software or a hardware shift
register. It is a periodic signal that has (a) a narrow triangular spike as an
autocorrelation function and (b) a power spectral density whose discrete
values have an envelope of the general form of sin(x)/x. The period of the
signal (NA) can be controlled easily by (a) the number of shifts N in onc
period of a shift register generating the signal and (b) the time interval A. By
increasing N and decreasing A while keeping the period NA constant, the
autocorrelation function of the signal becomes narrower, maore nearly approx-
imating a Dirac & function, and the frequency range over which the power
spectral dcnsity envelope sin(x)/x remains almost constant increases. Under
these conditions, we approach the characteristics of a “white noise,” and
cquations (10.2-20) and (10.2-21) apply. Then, the cross-correlation function
between the pseudorandom input signal and the output gives a quantity
proportional to the impulse function, and the cross-spectral density between
the pseudorandom signal and the output gives a quantity propartional to the
system response function. Since all other noise sources are uncorrelated with
the pseudorandom input, they have no influence on these measurcments.
Indeed, two psendorandom signals of different le ngths (ie., generated with
shift registers having different time intervals and number of shifts per cycle)
are independent of each other, and the cross-correlation functions with
system signals are also independent of each other. Hence pseudorandom
signals can be introduced at different locations in the system in arder 1o
model system response characteristics of individual components of the sys-
tem. The power of eross-correlation and cross-spectral density measurements
becomes apparent when it is realized that multiple sources of such “white”
noise (that are, in fact, deterministic periodic variables) are independent of
cach other and can be injected into a system without unduly influencing the
behavior of the system or the other measurements taking place.

The fact that the pseuderandom signal is periodic usually simplifies the
processing of the data to obtain the cross-correlation and cross-spectral
density. Furthermore, the shift register configuration for gencrating the
pseudorandom signal can be impleménted in software, and its output can be
introduced directly into the input of an artificial neural network or mixed
with other input signals in any desired manner. There are several variations
of this pseudorandom signal and the associated shift register systems (Uhrig,
1970). A three-level pseudorandom signal that deals separately with the
linear and nonlinear portions of the system response function has also been
demonstrated (Gyftopoulos and Hooker, 1964).
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10.3 ADAPTIVE SIGNAL PROCESSING

Much of the early work in the artificial neural network ficld was carried out
by Bernard Widrow and his associates at Stanford University within the
framework of  “adaptive lincar systems and adaptive signal processing”
(Widrow and Hoff, 1960). Virmally all of the applications developed in this
work can advantageously utilize an artificial neural network with its non-
lincar capability in the place of the “adaptive linear combincr.” Indeed,
Widrow’s Adaline is an adaptive lincar combiner that utilizes a bipolar
output element as its nonlinear output device in order to accomplish its
tasks.?

Adaptive Linear Cornbiner

The adaptive linear combiner, a nonrecursive adaptive filter, is fundamantz]
tn adaptive signal processing, and it is an integral part of an artificial nzural
nciwork. It is used, in one form or another, in most adaptive filters anid
cantrol systems, It is the most important element in “learning” systems. It is
esseatially o time-varying, nonrecursive digital filter that is implemenied in
muny forms, and its behavior and its means of adaptation are well under-
stood and readily analyzed,

Multiple-Input Adaptive Linoar Combiner

The general form of an adaptive linear combiner is shown in Figure 103, The
kth input is a vector X, with components Xy, X, ...y X,y .., Xy that is,

Xg = [xoexie = Xap = 2] (10.3-1)

where the superseript T indicates the transposed vector (i.c., it is a column
vector),

A weight vector W, with a constituent set of adjustable weights
Wik Wiks Wags - - - Wy, and a summing unit produces a single output 1,. Most
systems also include a bias with an amplitude x, cqual to unity and an
adjustable weight w,. The configuration shown in Figure 10.3, known as a
“multiple input adaptive linear combiner,” accepts all of the components of
the vector X, simultancously and produces a single output. Then the weights
are adjusted, the next input vector is applied, another output is produced, the
weights are adjusted again, and so on. This is the form of the classical
implementation of almost all neural networks used today.

“There is nothing inherent in the definition of neural networks that requires that the output of
the neurons be nonlinear. However, as pointed out in Chapters 7 and 8, the use of lincar
activation functions in the hidden layers significantly limits the usefulness and eapabilities of a
neural network.
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Bias = +1{
.\’gj T
Xy
X
J.'w‘ —_—
XN -
Inputs Adjustable
Weizhts

Figure 10.3 Mulliple-Input adaptive linear combiner.

Single-lnput Adaptive Transvarse Filter

Aan alternate form of the adaptive lincar combiner (which is equally applica-
ble to artificial neural networks in general) is shown in Figure 10.4, in which
the input is applied sequentially to the input layer through a seriecs of time
delays, moving down the input layer until it reaches the end. The lines
between each pair of delay units are tapped, and the signals (in addition to
being sent to the next delay unit) are sent through adjustable weights to a

Figure 10.4 Single-Input adoptive transverse filter.
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summing node. Such a system has historically been called a “tapped delay
line,” which is quite descriptive of the process when implemented in analog
hardware. In a digital computer, the process is implemented by manipulating
sequential values of a sampled time series from a file. If a bias is used, it is
applied directly to the summing junction through an adjustable weight.
However, it is not normally required for single-input systems if the mean
value has been removed from the time-varying input signal. The length of the
time delay (designated z~' from the “z" transform as used in digital control
theory) is normally equal to the sampling interval, or some multiple of it,
used in digitizing the input analog variable. The length of the input signal
presented to the summing junction is the product of the number of delays in
a cycle and the length of the time delay. For instance, a network having 100
input neurons (and 99 time delays) and a sampling rate of 1000 samples per
second (z~' = 0.001 sec) has an input signal that spans (100 x 0.001) or
0.1 sec. These parameters are related to the frequency content of the signal
as well as the characteristic time constant of the system modeled in the
artificial neural network. Such a system is known as a “single-input adaptive
transversal filter.” Its input vector is given by

Xe = [*20y o Zeew ]T :4.3-2)

Input-Output Relationships

The output for the multiple-input adaptive lincar combiner of Figure 10.3 is

N
L= X WaXn (10.3-3)
n=0

while the output for the single-input adaptive transversal filter of Figure 10.4
is

N
Bpm Wiy (10.3-4)

n=0
For both types of systems, we have a weight vector
; T
W, = [wouwiy = Wae] (10.3-5)

With the definitions of equations (10.3-1), (10.3-2), and (10.3-5), we can
express the outputs of both types of systems with a single relationship:

L=XiW =WX, (10.3-6)
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Desired Response and Error

Although the adaptive linear combiner can be used in both open- and
closed-loop adaptive systems, the primary interest here is in closed-loop
operation. Hence, the weight vector adjustment depends primarily on the
output and its deviation from the desired output. The weight vector W, is
adjusted or optimized so as to minimize the difference between the actual
output /, and the desired (or target) output T,—that is, to minimize the
square error defined by

et == LT (10.3-7)

The arrangement for dealing with this error and target output for the
single-input adaptive transversal filter is shown in Figure 10.5. The minimiza-
tion of square error follows the procedure described in Section 8.2 and the
Widrow—Hoff Delta learning rule (1985).

Linear Control Theory

Linear control theory is well documented in the literature and is taught in
most undergraduate engineering curricula. The proportional-integral-dif-
ferential (PID) type of control, the most common linear control system, is
discussed briefly in Section 6.1 and Example 6.1 in Chapter 6 (“Fuzzy
Control”) and in Section 10.5 (“Neural Network Control”), We will presume
that the reader has a basic understanding of the PID control system and such
concepts as stability, feedback, gain, and so on. Adaptive control and model-
reference adaptive control will be explained briefly in the section of this
chapter where it is introduced.

*k Tk | T2
2l =4
Input =
Targe:
Ouitput
Tk
Iy +
E, [
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Flgure 10.5 Single-input adaptive transversal filter with target output.
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The use of a single-input adaptive transverse filter {shown in Figure 10.5)
to model a physical system whose characteristics are not known gives the
impulse response function. After the weights have been adjusted to minimize
the least squares error between the desired output and the actual output, the
values of the weights sequentially from left to right give the values of the
impulse response function at the corresponding time. Of course, since
the number of weights is finite and an impulsc response function Alt) as
defined in Section 10.1 extends to infinity, these weights are only an approxi-
mation of h(t). As a result, the single-input adaptive transfer filter is often
called a “finite impulsc response” (FIR) system.

10.4 ADAPTIVE PROCESSORS AND NEURAL NETWORKS

The term “adaptive ncural networks™ refers to a neural network that adapts
its weights to accomplish a mapping of the input to the desired output. Most
neural networks that employ supervised learning belong to this category.
Icast squares adaptation algorithms are the basic learning systems for both
adaptive signal processing systems and adaptive neural networks, Least
squares minimization was discussed in Chapter 8 in conjunction with the
Widrow=Ioff delta learning rule used in backpropagation training.

Linear Versus Nonlinear Systems

)

Although certain types of adaptive systems called “lincar adaptive systems
can become linear when their adjustments are held constant after adaptation,
most adaptive systems, by their very nature, have time-varying parameters
and are nonlinear. Their characteristics depend on the input and the struc-
ture of the adaptive process, Adaptive systems are adjustable and depend on
finite-time average signal characteristics rather than on instantancous values
of signals or instantancous valucs of the internal system states. The adjust-
ment of adaptive systems are made with the goal of optimizing specific
performance measures. Hence, we can take advantage of the neural network’s
ability to utilize the nonlinear activation function to deal with nonlinearities
in the modeling process.

Applications of Adaptive Neural Networks

Widrow and Stearns (1985) have discussed a wide varicty of applications of
the adaptive signal processing systems. We shall discuss many of these
applications in the context of a neural network used to perform the same
task. Although some adaptive systems operate in the open-loop mode, we
shall deal primarily with closed-loop operation, a mode that provides
“performance monitoring.” Closed-loop operation, as we normally encounter
it, involves measurement of the input and output signals of a system, utili-
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Figure 10.6 Adoptive processor and its components.

zation of a performance index (which can be as simple as a comparison of
two values), and automatic adjustment of one or more input parameters of
the system. These steps can be sequential discrete operations, but more
commonly, all steps take place concurrently (at least in analog systems).
Figure 10.6 shows the basic elements of a closed-loop adaptation system
that in subsequent discussions in this section will be called an “adaptive
processor.” The performance calculator can be simple [i.e., the calculation of
error or square error as in equation (10.3-7)] or sophisticated (ie., the
calculation of an energy or cost function using many quantities). The adapta-
tion algorithm typically is minimization of least squares error, but it can
utilize any optimization process desired. Clearly, a backpropagation neural
network can be considered to be an adaptive processor.

In this chapter, the adaptive processor will be implemented as a neural
network. This could be viewed as somewhat of a restriction because the type
of neural network often determines the type of performance monitoring. For
instance, use of a backpropagation neural network inherently involves mini-
mization of least squares error and gradient descent optimization. However,
training of neural networks can involve any type of optimization that can be
used anywhere. Closed-loop operation can be used in situations where
characteristic parameters of the physical system being operated are poorly
known or are changing with time. Closed-loop adaptive operation can also
compensate for some degree of deterioration of components in the physical
system. Hence, performance monitoring can result in a more robust and /or a
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more reliable system. However, the closed-loop adaptation process is not
without difficultics. In some cases, the performance indices to be optimized
have more than one minimum that, under some circumstances, can result in
the adaptation reaching a “false optimum.” Feedback can also lead to
instabilities that could degrade the performance or endanger the operation of
the physical systems. Even “limit cycle” instabilities (where the cffect of
instabilities is self-limiting due to saturation) can cause serious difficultics.
Feedback systems with adaptation based on performance monitoring are
subject to the same stability criteria that apply to other fecdback control
systems. Nevertheless, performance monitoring with adaptation of the physi-
cal system is widely used in complex systems that are difficult to analyze or
model analytically,

Conlfigurations of Adaptlive Neural Notwork Systerns

Four basic conligurations for adaptive systems (Widrow and Stcarns, 1985)
are as follows:

1. System identification or modeling (used in adaptive control)
2. Inverse modeling (used in equalization and deconvolution)
3. Adaptive interference canceling

4. Adaptive prediction

Each of these systems uses a single adaptive processor or neural network in
different configurations to carry out the adapting task in order to ace mplish
its desired function listed above, Fach of these simple systems is subject to
the limitations and problems of adaptive systems discussed above. Neverthe-
less, each system has been extremely successful and is capable of performing
its specific task with a minimum of difficulty.

System ldentification or Modeling

used is system identification or modeling. This involves placing the neural
network in parallel with the physical system, applying the system input to the
input of the network, using the system output as the desired output for the
neural network, and training the neural network until the crror between
the system output and the nctwork output reaches an acceptable level. This
configuration is shown in Figure 10.7a. The single-input adaptive transversal
filter discussed in Section 10.3 is uvsually implemented by introducing a
sampled time-varying signal (a time series) into the input of a neural network
where the sampled input values advance laterally along the input layer. (Note
that this is not a form of lateral feedback between neurons in the input layer,
but instead it is simply a means of introducing the appropriate input values to
the network to represent a time serics or sampled variable.) At the same
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Figure 10.7 Configurations of adaptive modeling systems: (@) Simple modeling sys-
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time, the corresponding sampled output value advances as the desired output
for the single output neuron at the same rate. For multiple input—-output
systems, individual inputs and desired outputs may be assigned to certain
parts of the input and output layers, respectively. Generally, it is necessary to
specially design an artificial neural network for multiple-
input, multiple-output modeling. One common arrangement is to use individ-
ual neural networks for each input and then use another neural network to
combine the individual outputs.

After the network is trained, it is expected that the relationship of its input
and output is the same as for the input and output of the physical system
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being modeled. This will be truc if the variables have been trained over the
appropriate dynamic range for the particular application. For instance, if a
neural network is expected to respond over a specific dynamic range (e.g.,
from 0.1 to 10 Hz), the input signals to the neural network during the
training should cover this dynamic range. Therefore, a neural network
trained over the above range should not be expected to give proper results
for input signals below 0.1 Hz or above 10 Hz. Furthermore, if a periodic
signal (other than a single-frequency harmonic) is used in the training, the
length of the cycle should be longer than the settling time of the physical
system (the time required for the impulse responsc to approach zero) to
casure proper modeling.

Sometimes it is necessary to introduce a time delay A (which has no
relation to the sampling time interval z7!') into the configuration in order to
model the finite time that is required for a signal to move through a physical
process. Indeed, the length of this delay can be a parameter that is adjusted
to minimize the residual error in the neural network model. It is often
necessary to introduce a noise source into the configuration if such a noise
source is inherent in the processes itself. For instance, noise sometimes ariscs
from a random process internal to the physical system (e.g., the measurement
of the intensity of a radiation source involves individual events of absorptions
or collisions, which are unrelated to the source emissions) and should be
included in the model, Even the detection process itself may be an indepen-
dent source of noise that must be included in any realistic modeling of the
process and its measuring system. Figure 10.7b shows a modeling configura-
tion with both a time delay and a noisc source.

Inverse Modeling

In a sense, inverse modeling is the same modeling discussed above with the
input and desired output signals reversed. (From the standpoint of a neural
network, it really does not make any difference where the input and desired
output signals originate.) Inverse models are very important in control
systems where they are often put in series with the controller or the process.
Figure 10.8a gives the configuration normally used for inverse modeling, As
in direct modeling, the time for a signal to propagate through a physical
system should be included in the modeling process in order to reduce the
mean square error to a minimum. Noise sources, if they exist in the actual
system, should also be included in the neural network model. Figure 10.8b
shows the inverse modeling configuration with a time delay A and a noise
. source.

An inverse model will have frequency response characteristics that are
opposite to those of the original system: If the amplitude of the frequency
response function at a particular frequency is decreasing in the system, it will
be increasing in the inverse model. As a result, the product of the amplitudes
of a model and its inverse model is equal to unity when the system and
inverse model are connected in series. .
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Figure 10.8  Configurations of adoptive inverse modeling systems: (o) Inverse modal-
ing systern, (B) Inverse modeling systemn with delay A and input noise,

This feature is often used in practical applications to negate the degrading
influence of an instrumentation system. For instance, if the frequency re-
sponse function H(w) of the instrumentation system in Figure 10.2 falls off
and significantly influences the measurement (we had previously assumed
that its frequency response was constant over the frequency range of interest),
then we can introduce an inverse model of this instrumentation system in
serics with the instrumentation to negate this adverse influence.
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Equalization and Deconvolution

In communications, telephone and radio channels are dispersive; that is,
high-frequency signals travel faster and are attenuated more rapidly than
low-frequency signals. In dispersive channels, an inverse adaptive filter can
be placed at the receiving end to “equalize” the channel—that is, provide a
frequency and phase response in the receiver that is the inverse or reciprocal
of that of the channel itself. In effect, it “deconvolves” the dissipative
influence of the channel characteristic and restores the original signal charac-
teristics. It avoids destructive interference that would virtually destroy the
ability of communications channels to transmit information. High-speed
transmission of digital signals, which is particularly susceptible to this prob-
lem, would not be possible without equalization and deconvolution.

The physical arrangement used for equalization and deconvolution is the
same as the one used for inverse modeling in Figure 10.8b. The neural
network attempts to recover a delayed version of the signal which may have
been altered by the slowing varying system characteristics and which contains
noise. The delay is to allow for the propagation time through the system and
the neural network. In effect, this systenr attempts to deconvolve (undo) the
effects of the communications channel. It also has applications in control
SE’S[CIHS‘

Interference Canceling

Another very useful application of the adaptive processor is interference
canceling. One of the most obvious applications is to cancel out 60-Hz
interference from ordinary a.c. electrical power supplies. In this case, the
interference frequency is known (60 Hz) and constant, and cancellation is
relatively easy. The challenge is to cancel noise when the nature of the
interference is unknown and changing. The advantage of noise cancellation
as compared to noise filtering is that noise cancellation does not attenuate
the signal and hence gives a much higher signal-to-noise ratio under virtually
all conditions.

One of the most successful applications of this technology has been the
cancellation of background noise from voice communication in small aircraft.
The system used is shown in Figure 10.9, where the desired signal § (e.g.,
voice) is corrupted with background noise N (e.g, aircraft cngine noise)
when the microphone picks up both signals. The secret to success is to find a
source of background noise N’ that does not contain the desired signal S but
is reasonably correlated with the interference noise N (i.e., a second micro-
phone located away from the speaker’s mouth). In this case, the adaptive
processor is configured to produce an output Y that closely resembles N
which is then subtracted from the speaker’s microphone output so that the
overall oytput 8’ closely resembles the original input signal S.

Another application of interference cancellation is the separation of the
weak heartbeat of a fetus from the strong heartbeat of the mother. A
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microphonic sensor is attached near the fetus and picks up the heartbeat of
both the mother and the fetus, thus providing the S + N signal. Another
microphonic sensor is attached to the mother far from the fetus, where only
her heartbeat is picked up, thus providing the N’ signal. The system of
Figure 10.9 then adapts to produce the fetal heartbeat signal §'.

Prediction

Another configuration of the adaptive processor is to predict the future of a
signal from its behavior in the past, Figure 10.10 shows the system configura-
tion uscd. The inpul signal S(¢) is delayed by an amount A before it is
presented to the neural network. Then the neural network is adjusted so that

Predicted Cutput
at time (t+ A)

y S Slave Neural S =
Network S(t+A)
Tnput S(1t) :
af time t
>~ L >
|
| /
7 Sty
A 5 Neural Network 2
/

Figure 10.10 Configuration of prediction system.
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the error between the delayed input and the undelayed signal is minimized.
In effect, the neural network has been trained to produce an output signal
S(¢) from an earlier input signal S(r — A). What is nceded for prediction is a
neural network that uses an input S{¢) and produces a future value S(r + A).
This can be accomplished by using a “slave” neural network which has the
same structure as the original neural network and whose weights arc updated
in real time to be identical to the weights in the original ncural network.
Such an arrangement is shown in Figure 10,10, where the “slave” neural
network has an input signal $(r) and an cutput S(t + A).

10.5 NEURAL NETWORK CONTROL

The field of control theory and systems is treated cxhaustively in liter: '
thousands of books and publications. The purpose of this treatment is “o
introduce only those concepts that are important and useful in dealing with
neural network control systems. Control, by definition, is vn taten to
achieve a desired result or goal. For instance, the temp

modern homes is controlled by a simple, but effective, on—uv ¢ .l
vated by a thermostat that turns the furnace on when the temperature falls
below a specified temperature and turns it off when room reaches « slightly
higher (typically 2-3° higher) temperature. The room tem: ire is com-
pared with the desired temperature (the setpoint), and the u. .crence consti-
tutes an error signal that activates a simple control system to turn the furnace
on and off.

Werbos (1992) has divided neural control into five categories: (1) super-
vised control, (2) inverse control, (3) adaptive control, (4) backpropagation
through time, and (5) adaptive critic methods. Each of these methods will be
discussed briefly here, and some of them will be covered in more depth in
later sections.

There are many neural-network-based approaches to control problems,
but most of them consist in using neural networks for two basic processes
that are duplicated and combined as appropriate, along with time lags, to

“ achieve the specific objective of the control system. These two basic processes
are system or process modeling (system identification) and some means of
control (often based on an inverse model of the system or process). A simple
open-loop control system with a single input and output is shown in Figure
10.11a. Neural control systems are sometimes used to complement PID
control systems by adaptively tuning the paramecters of the controller to
match the changing system characteristics. “Black box" identification and
model-based controller optimization are commonly.used in current neural
control systems. For simplicity, single input—output systems are discussed
here. However, multiple input-output systems are treated in the same
manner; indeed, most neural control systems are multivariable systems.
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Figure 10.11  Simple open-loop (@) and closed-loop {b) control systems. x(#) and y(1)
are systemn input and output, respectively, and éx(1) is the change in x(f).

For systems that are linear or can be linearized over the required range of
operation, conventional linear control theory is adequate for most applica-
tions. However, most complex systems are nonlinear and require either a very
sophisticated mathematical treatment or a simulation. Since the needed
parameters for mathematical modeling and simulation models of most com-
plex nonlinear systems are usually not available, an experimental determina-
tion of the system characteristics often becomes necessary.

More challenging is the mathematical derivation of an inverse model from
a system response function (i.e., taking the inverse Fourier transformation if
indeed it actually exists). Even for relatively simple linear systems, such an
inverse operation can be quite difficult and sometimes impossible. For
nonlinear systems, it is almost always impossible, thereby requiring approxi-
mations and simplifications or, more commonly, modeling of the system or
process and its inverse configuration based on experimental data. This is
where neural networks become very useful. Data from tests carried out on
the system can be used to train a necural network to emulate the system
behavior, thercby providing a neural network model, of the system or
process. Because of the unique characteristics of neural networks, it is usually
possible to reverse the input and output data provided to another neural
network and train an inverse model of the system or process. When con-
nected as shown in Figure 10.11a, these two neural networks become an
open-loop control system.
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Regulatory Canirol

Repulatory or elosed-loop control is the mast common control method; this is
the essence of the room temperature control discussed earlicr, where the
control action is based on an error signal representing the difference between
the desired temperature and the actual room temperature, (See Tigure
10.12.) Indeed, error feedback is the essence of the training process in most
supervised neural networks. For closed-loop control systems, the configura-
tion of Figure 10.11a is often reversed so that the feedback signal is the input
to the actual system or process model, which is often compared to a desired
input x(t). In this case, x(r) is the input for the comparatar and 8x(r) to be
the input to the actual system or process model as shown in Figure 10,115,

More common is the PID controller, a second-order control system where
the feedback is a weighted sum of three quantities: The deviation of the
output variable from its desired value (i.e., the error), the current derivative
of the error, and the integral of the error over some time period are fed back
in an effort to control the output in the face of fluctuating paramecters
and/or eonditions. This arrangement is shown in Figure 10.13, In recent
years, multiple input-output and multiple process systems have become
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Figure 10.12  Closed loop control system for a home heating systom,
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Figure 10.13  The PID controlier stiucture, The symbol @ Is the Instontaneous error,
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nereasingly prevalent, but virtually all of them arc sccond-order linear
b, C©ms,

Contre™ rs also use control closed-loop operation through adjustment of
paramete =g, the “tuning” of the gains of the three feedback components
of a PID itrol system). Autotuning (on-line adjusting the parameters of
loop controllers, or adjusting their “setpoints” for optimal performance) is
a form of adaptive contrcl. The usc of a feedforward controller to provide
a steady-state process input signal provides foster response and enables a
feedback controller to reject noise and improves disturbance hardling. Tere
again, these contro! systems fall within the linear systems domain.

The assumption of lincarity is common, but it does not represent many
real-world systems and processes, Most nonlinear systems are lincarized over
a limited range of operation. In many cases, the assumption of lincarity is
reasonable and produces good results, especially when a small range of
adjustment is involved. Indecd, neural control is often used to complement
linear control systems, Nevertheless, neural networks with their inherent
ability to model nonlinear behavior show advantages that are important in
many cases, particularly with complex systems.

doth the system identification and control portions of neural control can
be viewed as nonlinear optimization processes; they seck to find neural
network parameters (i.e., the weight matrix) for which some cost function is
minimized, The type of cost function differentiates the different types of
neural control concepts discussed below,

‘ample 10.1 Multi T/O System. An example of a multiple-input/
aultiple-output, open-loop inverse control system is a neural network to
« 'atrol the gas-tungsten arc welding process developed by Mid-South Engi-
i =ring :nd Vanderbilt University for the National Acronautics and Space
A iministration (Andersen et al,, 1991), This approach is necessary because
("= comy ity of the physics of the are, the molten pool, and the surround-
it hea cted zone were virtually impossible to model using first princi-
ples. 16 «ck of reliable, general, and yet computationally fast physical
models of such a multivariable system makes the design of a real-time
canventional controller a difficult task. Relationships between the various
process inputs and outputs arc nonlinear and not well-defined, and the
process variables are coupled (i.e,, a change in any given input parameter
affects more than one output parameter). The arc welding process is con-
trolled by a number of parameters, and the objectives of the welding process
are specified in terms of the parameters shown in Figure 10.14.

An inverse open-loop system is used here because of the difficulty of
providing feedback for closed-loop control purposes since the outputs of the
welding process zre very difficult to measure in real time. The weld must cool
before physical measurements can be made. However, such output parame-
ters as welding bead width and bead penetration can be measured off-line for
purposes of modeling a ncural network model from which they can be
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inferred on-line. The input parameters that are controlled (e.g., current,
voltage, travel speed, ete.) can be measured on-line. Table 10,1 gives data
obtained from test welds conducted over the expected dynamie range of
operation for NASA (Andersen et al, 1991). The boldface data were used for
testing the validity of the peural network given in Figure 10.15 after the rest
of the data was used for training with the backpropagation algorithm. When

Table 10.1  Dato used lo traln and lest backpropageation networks for weld modeling

and equipment parameler sslection

Weld# | Workpicce | Travel Speed | Are Current A Bead Width | Beel I‘fchr:c'f.ff-i
Thicl-nizcss [in/min]) [A] Lengthfin] lin] [in.]
[irt
1 0.123 6.0 80 0.100 0.11% 0034 F
2 0,175 6.0 100 0.100 0.163 0.051 |
3 0115 6.0 120 0.700 0.213 0087
! 0,123 6.0 140 0.100 0.258 0% ]
5 (0.125 4.0 100 0.100 0.216 0.071 |
6 0.123 5.0 100 0.100 0.18T1 0.063
i 0.125 0 100 0.100 0.153 ~0.043
3 0.123 6.0 100 0.090 0.161 0.063 7|
g 0.125 6.0 1000 0.080 0.161 0.075
10 0.135 6.0 100 0.070 0.137 0.083
11 0.250 6.0 i) 0.100 0.110 0.028
12 0,250 6.0 100 0.100 0.143 0.047
13 0.250 6.0 120 0.100 0181 0.063
v 14 0.250 6.0 140 0100 0.2035 0.075
15 0.350 4.0 100 0. 100 0.157 0.071
16 0.250 5.0 100 0.700 0.130 0.059
17 0.250 1.0 100 0.100 0.134 0.043
13 0.250 6.0 100 0.090 0.143 0.051
19 0,250 6.0 100 0.080 | 0,142 0.055
20 0.250 6.0 100 0.070 0.74%7 0050 ]
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Figure 10.15 The neural network used for weld madaling.

the test data (not used in training) were introduced into the neural network,
the predicted bead width and depth of penetration agreed with the actual
neasurcments to within about +5%. This trained neural network now
constituies a (direct) model of the welding process.

The data in Table 10.1 were also used to train an inverse model of the

clding jrocess to provide a control neural network for parameler selection
for the -~ 'der. This inverse model has the desired weld parameters as inputs
and the control parameters for the welder as outputs. It can provide the
welder controls with the information needed to produce a proper weld with
the desired dimensions.

To simulate the performances of such a welding process, the direct and
inverse neural network models were coupled together as shown in Figure
10.16 to form a cascade model of the control system (parameter selector)
with the welding process, This arrangement is substantially the same as the
open-loop control configuration shown in Figure 10.11a. A comparison of the
outputs of the two neural network models with the data in Table 10.1 showed
the errors of the inverse model output (first ncural network) and the process
model output (second neural network) to be about 10% and 2%, respectively.
The reason for the low error in the process model output is that the errors in
ncural networks (which cffectively are the inverse of each other) when
trained on the same data tend to cancel cach other out. [
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nehworks.

Neural Adaplive Control

Linear adaptive control has been a standard topic in control theory for at
least three decades, and there appears to be little advantage of using ncural
networks in this domain except as a basis for departure into nonlinear neural
adaptive control, Narendra ct al. utilized neural networks to carry out linear
adaptive control as a basis for later work in nonlinear control (Narendra and
Parthasarathy, 1990). The goal of adaptive control is to maintain optimal
performance as measured by some index of performance (c.p., cfficicncy,
minimum emissions, ete.) under changing plant parameters or operating
conditions. Often, the index of performance and optimization algorithms are
included in a reference model. The difference (error) between the actual
output of the system and the desired output as provided by the optimal
reference model serves as the basis for adjusting parameters to improve
performance. Because of the impertant role adaptive control plays in rcal-
world situations, it is discusscd extensively in the next section.

Supervised Conlrol

Supervised control involves using a neural network to mimic the behavior of
a conventional (i.e., PID) controller or even the behavior of a human Leing
controlling a process or system. The neural network receives the same input
and (desired) output as the PID or human controller, and training (typically
backpropagation) proceeds in the conventional manner. When training is
completed over the appropriate range of variables, the trained neural net-
work replaces the PID or human controller. The major concein here is that
the performance of the neural network control system c¢an be no better than
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the PID or human controller. Even so, PID and human control have often
proven to be remarkably effective. It is a well-known fact that a human
being’s ability 1o recognize almost imperceptible trends and behavior has
resulted in adequate performance for many systems and that the PID
controller has been the “workhorse” of the control industry for over half a
century. More importantly, supervised control provides a staLrting point from
which more sophisticated control systems can be used to improve peifor-
mance of a system,

Inverse Control

Inverse modeling as discussed in the previous section can readily be adapted
to neural control. Inverse modeling involves training a neural network
arranged in accordance with the configuration shown in Figure 10.8b over
the appropriate range of variables. Such systems are typically used in an
open-loop mode as shown in Figure 10.114. The operator simply provides an
input equal to the output that is desired.

The major concern is that the inverse configuration actually exists and is
physically realizable. For instance, il several different inputs produce the
same output, then the inverse function does not exist. Another example is a
system model where the gain goes to zero under some conditions. Then the
inverse model would need infinite gain.

Backpropagation Through Time

In backpropagation through time (BTT), the user specifies a model of the
external environment as well as an index ol performance (utility function) to
be maximized. Backpropagation is used to predict the derivative of this index
of performance, summed over all future times with respect to current actions.
These derivatives are then used to adapt the artificial neural network that
provides the output actions. This approach is used because the designer can
select any index of performance to be optimized, and the method accounts
precisely for the impact of present actions on future valucs of the index of
performance. BTT is basically equivalent to the calculus of variations as used
in control theory. The only essential difference is that BTT includes a way of
calculating the derivatives of the utility function. Its disadvantages are that it
requires a model of the external environment which should be noise-free and
exact and that it requires calculations backwards through time, which is not
consistent with real-time learning. However, real-time learning has been
implemented by dividing experience into distinet “experiments” and updating
weights after each experiment is analyzed (Werbos, 1992).

Adaptive Crilics Method of Neural Control

The adaptive critics method of neural control is a form of reinforcement
control in which an index of performance to be optimized is supplied by the
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Figure 10.17  Adaplive critic reinforcement learning control systerm,

user. The long-term optimization problem is solved by using an additional
artificial neural network (called the critic network) that evaluates the progress
that the system is making and provides input to the reinforcement learning
controller. This arrangement, shown in Figure 10.17, is particularly uscful for
situations where the model of the physical system is vaguc and ill-defined
(e.g., the overall performance of a plant as measured by its total emissions to
the atmosphere is such a system).

Example 10.2 Monitoring and Improving Heat Rate of a Power Plant. In
the past few yeacs, several systems for monitoring the heat rate (proportional
to the reciprocal of efficiency) of power plants have become available.
Generally, these systems are bascd on a first-principles model involving mass
flow and energy balance equations applied to the many subsystems of a
power plant. Typically, the model involves assumptions of idealized condi-
tions, linearizations, and use of experimental correlation coefficients that are
valid over limited ranges. The alternative proposed here is to take advantage
of a neural network’s ability to model nonlinearities and nonideal conditions
inherent in any complex system. The thesis here is that a neural network
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model is more realistic under “real-world” conditions and that any subse-
quent analysis (c.g, optimization) is more effective than similar analyses
performed on first-principles models. Because of the sensitivity of cost
savings to heat rate, even a small improvement in heat rate can have a large
financial impact (e.g., an improvement of only 0.1% in efficiency in a
1000-MWe power plant can result in about $500,000 per year additional
revenue at current prices).

Guo and Uhrig (1992) carried out the modeling of the thermodynamics of
TV Al Sequoyah Nuclear Power Plant, Unit 1, using data taken weekly over
about a year. Because of the complexity of the plant, use of ordinary
multilayer perceptron networks trained using backpropagation was not ade-
quate as indicated by the fact that the training error was large and the
network output was not equal to the desired output used in ecither the
training or testing sets. Rather, it was necessary to utilize a hybrid network
(N-Net 210) developed by Pao (1989) in which a Kohonen neural network is
used to cluster the data and then the backpropagation neural network is
trained to a very small system error using the centroids of the clustered data
as the inputs and the corresponding heat rates as desired outputs for
training. When the original data (not the centroids) were presented to the
trained network, the average error was about 0.06%.

Sensitivity Analysis. The sensitivity analysis procedure discussed in Section
8.3 was applied to the trained network. This process gave sensitivity coeffi-
cients that were ranked in order based on absolute value, since the sign only
indicates the direction that heat rate moved in response to a positive change
in the input perturbation. The three most important variables for heat rate
based on this sensitivity analysis were (1) unexpected power deviations, (2)
measured condenser backpressure, and (3) condenser circulating water inlet
lemperature.

Item 3 is a function of the environment and cannot be controlled. Item 2
can be controlled only to the extent that it does not go below the saturation
temperature for the condenser circulating water. Item 1 is a calculated value
that cannot be controlled. At this point, it appears that little has been gained
from the modeling and sensitivity analysis since the three most important
inputs to the network model, as far as heat rate is concerned, cannot be
controlled. However, a second modeling sensitivity and analysis can be
performed to determine which inputs are important to any of these three
“most important” variables, This was done for item 1, unexpected power
deviations,

This second modeling was carricd out by using the same hybrid neural
network to cluster the data and predict a new output, item 1, unexpected
power deviations. Again a sensitivity analysis was performed indicating that
the three most important variables, as far as unexpected power deviations is
concerned, are (1) total unaccounted electrical losses, (2) condenser thermal
losses, and (3) auxiliary steam loads. This tells us that uncxpected power
deviations, and hence the plant efficicncy, can be improved by reducing
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cleetrical losses, condenser thermal losses, and auxiliary steam loads. Each of
these items can be investigated individually.

A further study of the original sensitivity analysis shows that the threc
variables that have the least influence on efficiency are (1) feedwater flow,
(2) reactor power (within limits), and (3) impulse pressure at the turbine
inlet. Since one's intuition would indicate that all three of these items might
be important, this sensitive analysis has directed the plant personnel away
from these items and toward those items listed in the previous paragraph that
are imporlant,

Iterative Procedure for Improving Plant Perforntance. Since plant conditions
are always changing, keeping the plant at peak efficiency can be carried out
using the following iterative process: (1) Train a neural network model of the
plant using on-line data, (2) carry out a sensitivity analysis (or other analysis)
to determine which twa or three variables are the most important to heat
rate, (3) adjust one or more of these variables in the direction indicated by
the sensitivity analysis, and (4) wait for the plant to reach thermodynamic
cquilibrium. This four-step process could be carried out every few minutes
with the interval being determined by the time necessary to reach thermody-
namic equilibrium. This procedure ensures that the plant is always moving
toward peak efficiency for the configuration and operating conditions that
exist at the time of the analysis. If the plant condition changes (e.iz., one train
of feedwater heaters is taken out of service for maintenance) or the operating
conditions change (e.g., the plant load changes or the condenser water
temperature changes due to environmental conditions), it is still possible to
move toward a maore efficient (but different) configuration under the existing
circumstances. O

10.6 SYSTEM IDENTIFICATION

Sceuring knowledge of the dynamics of a process being controlled is the first
step in control. Sometimes a priori knowledge about the process is available
in the form of a parameterized model where the parameters can be estimated
from process input—output data. First-principlés models are typically nonlin-
car, which typically must be linearized; they are usually valid only over a
limited range of performance. Often these process models are relatively
simple; for example, several second-order systems with lags are often ade-
quate to represent a chemical process. In systems for where first-principles
models are not available, the modeling procedure (nonparametric identifica-
tion) discussed below (sometimes called “black box” modeling) is useful.

Nonparametric Idenfification

Nonparametric identification develops “black box™ medels of the input—out-
put relationship as discussed in Section 10.3. Neural network nonparametric
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process models can be seen as a nonlinear extension of the system identifica-
tion problem (Tsung, 1991). For instance, the adaptive transverse filter shown
earlier in Figure 10.4, when implemented by a neural network, becomes a
Jinite impulse response (FIR) network, which is a non parametric identification
system, The network is provided with an input vector of weighted past
samples of the variable as a means of modeling dynamic phenomena. The
number of samples must be sufficient to provide an interval of time long
enough that no input signal prior to x,_, will have any significant effeet on
the response at time k.

Parametric Identification

Parametric identification identifics structural features and parameter values
for models of real-world physical systems. This includes identification of the

_ Fully Connected

"‘f Neural Network -

Figure 10,18 Dynamic neural network with time-delayed direct inputs.
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model structure (i.e., the form of linear or nonlinear differential or difference
equations as well as parameter estimation where the model structure is
known). Neural networks trained through supervised learning can be used for
both structure identification and parameter estimation. As structure identi-
fiers, they can be trained to sclect elements of a model structure from a
predetermined set. Structure identification with neural networks requires
that the space of likely model structures be known in advance. Neural
network parameter estimators, however, generate parameter values for a
given structure or set of structures (Piovoso et al., 1991; Foslien et al,, 1992).
Neural network structure identifiers and parameter estimators are both
trained off-line with a generalized simulation system. In structure identifica-
tion, for example, the network output is a vector of structural features and
nctwork weights that are optimized to minimize the sum square error
between the actual feature and its computer representation.

Fully Connected
- Neural Network

n
L]

B
L]

Figure 10.19 Dynarmic neural network with time-delayed recurrent inputs
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Models of Dynamic Systems

Since most dynamical systems have temporal behavior, time-delayed versions
of the input and/or the output signal are needed to properly model the
system. Figure 10.18 shows a neural network with time-delayed versions of
the input signal. When a dynamic System’s current output usually depends on
its previous outputs, recurrent connection with time-delayed versions of the
output fed back to the inputs as shown in Figure 10.19 are needed. If the
output of the system is not independent of previous inputs, then a time-
delayed versions of both the input and output as shown in Figure 10.20 are
needed.

In system identification, the neural network is connected in parallel with
the system being modeled. Again, dynamic systems require time-delayed
direct and recurrent inputs of the type shown in Figures 10.18 to 10.20.

Xk

=
Ficr - 10.20 Dynamilc neural network with time-delayed direct and recurrent inputs.

e b
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Figure 10.21 shows the nonrecurrent parallel identification model with time-
delayed direct inputs. Figure 10.22 shows the recurrent parallel identification
model with time-delayed recurrent (feedback) neurons as inputs. Unfortu-
nately, a recurrent network can become unstable due to the feedback loop
between its output and inpul, and there is no guarantee that the output will
converge to a stable configuration. This can be solved by feeding back the
signal from the system, not the neural network model output, in the recur-
rent series—parallel identification model shown in Figure 10.23. Finally, when
there is need for both the input and output to be delayed, the general
series—parallel identification model shown in Figure 10.24 is used.

Physical

= System

_Fully . . -
- Connected

=] ‘Neural P
Network N

Figure 10.21 Nonrecurent parallel identification madel with fime-delayed direct in-
puts,
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g

Figurz 10.22 Recurrent paraliel identification modsl with fime-delayed recurrent out-
puts fiorn the neural network.

10.7 IMPLEMENTATION OF NEURAL CONTROL SYSTEMS

The status of neural control is well-defined in two recent books based on
symposia: Neural Networks for Control (Miller et al,, 1990) and Handbook of
Intelligent Control—Neural, Fuzzy, and Adaptive Approaches (White and Sofge,
1992). Particularly valuable contributions in the neural control field include
Narendra and Parthasarathy (1990); Narcndra (1992), Werbos (1990),
Swiniarski (1990), Nguyen and Widrow (1990), Tsund (1991), and Dong and
“feAvoy (1994). Samad (1993) has explored neural network-based approaches
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Figure 10.23 Recurent seres-paralel identification madel with fime-delayed recur-
rent outputs from tha physical system.

to solving control problems, and some of his concepts are incorporated into
this chapter.

Inverse Modeling

Inverse modeling develops models that predict corresponding process inputs
from process outputs. Inverse models are typically developed with steady-state
data and used for supervisory control as feedforward controllers. The appro-
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Figure 10.24 General seres-paraliel identification model with time-delayed direct
inputs and time-delayed re current cutputs from the physical system.,

priate steady-state control signal for some setpoint can be determined imme-
diately without the delay associated with the incremental error-correcting
operztion of feedback cortrol. Neural network inverse models ean eapture 4
characteiistic source of nonlinearity in many, industrial processes (e.g., the
variation of process gain with the operating point), Training is readily
accomplished since the existing controller output is available.

There are two problems associated with inverse modeling. Many processes
have transport delays that imply that any change in the input to a process will
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only affect the process response after a “dead time.” With the introduction of
a transport delay into the inverse modeling process and some experimenta-
tion with the length of delay, this problem can be overcome in some cases.
The second problem is that mapping from steady-state process output to
steady-state process input may be one-to-many. Experience indicates that
least-mean-squares averaging behavior of many inverse network function
approximation models will in such cases lead to control actions that will likely
not be effective.

Controller Autotuning

Controller autotuning estimates appropriate values for controller parameters
such as PID gains as shown in Figure 10.13. Although there are many
traditional methods vsed to determine these gain constants, neural networks
offer a convenient way of dealing with the nonlincarities involved. A non-
parametric neural network process model, once trained, can simulate the
closed-loop process and serve as the process simulation, An optimization
algorithm can then be used to adjust PID gains, in simulation, until some
prespecified cost function or evaluation criterion is minimized. The disadvan-
tage of this approach is the computational complexity, since an iterative
algorithm is required and each iteration involves a closed-loop simulation
using the neural network process model. However, since the algorithm is not
being used for closed-loop control, real-time response is not required.

An alternative is to use a neural network as an autotuner in which the
output of the neural network is the PID gains. In training the neural
network, the three output gains are compared to precomputed optimal PID
gains for a set of training examples. An advantage of this approach is that the
network can be trained in simulation (i.e., training on actual process data is
not necessary) (Swiniarski, 1990; Ruano et al., 1992).

Adaptive Control Systems

The control of a physical system is usually accomplished by a controller that
takes information from the outside world and, in the case of a closed-loop
system (a system with feedback), from the physical system itself, An industrial
drying oven is an example of a system with a closed-loop control system
where the difference between the oven temperature and the setpoint is the
error signal that provides a basis for changing the power to the oven. If
everything remains constant, such a closed-loop system can produce a very
uniform product. On the other hand, if the electrical voltage varies from 210
to 250 volts and /or the thermal capacity of the products moving through the
oven changes, the end product may not be very uniform. In other situations,
some sort of unforeseen (usually nonlinear) temperature dependence may
exist or develop with the aging of equipment. Adjustment is needed to take
into account the unforeseen variations in the physical system being controlled
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that take place, based on quality of the product produced. A system capable
of adapting to unforeseen changes is an adaptive system. The adaptive
processor shown in Figure 10.6 is itself a form of adaptive system. It has a
performance calculator capable of providing a quality index based on the
input, output, and any other variables available. It has an algorithm by which
adjustments can be made, and it has a means of making those adjustments.
As utilized in the applications described above, it operates as an autonomous
unit to make the desired adjustments. Its functions can also be integrated
into a more sophisticated control system to carry out adaptive control of a
complex physical system.

The most logical approach to using adaptive control is to place an adaptive
controller ahead of the physical system and utilize feedback and other inputs
to evaluate the performance. One problem with this “direct adaptive” ap-
proach is that the system needs operating data to establish a basis for
adaption. Suddenly introducing such a control system without adequate
historical data to reach a near normal set of conditions could be disruptive.
One approach is to use a conventional PID controller and connect the
adaptive system in parallel until it learns to match the behavior of the PID
system. A similar approach is to manually control the hysical system with
feedback through human observation while the adaptive controller accumu-
lates the historical information neceded to perform its tasks of performance
evaluation.

Adaptive Model Control

In adaptive model control, an external model of the physical system that is
not part of the control system is obtained using system identification as
discussed in Section 10.5, Then the model is used to determine control imputs
to the plant, which will produce the desired system outputs. (Manual control
¢an also be used as a model in this approach.) When we apply these same
control inputs to the actual physical system, the system output closely
matches the desired output. While this appears to be open-loop contral, the
loop is actually closed through the adaptive process.

Adaptive Inverse Model Control

In adaptive inverse control, the unknown physical system can be madc to
track an input command signal when it is applied to a controller whose
System response function approximates the inverse of its system response
function. (All the following arrangements can be implemented using artificial
neural networks as the adaptive inverse models.) This adaptive inverse model
becomes the controller whose output is the input to the physical system. Its
weight adjustment is slaved to a second adaptive inverse model of the type
shown in Figure 10.8b, that is used to minimize the error between the plant
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Figure 10.25 Adaptive inverse model contral systemn.

output and the input setpoint. This arrangement is shown in Figure 10.25. An
input perturbation or noise is deliberately introduced to ensure that the
adaptive process occurs continuously. The introduction of the pscudorandom
binary-type noise discussed in Section 10.4 can accomplish this task while at
the same time offering the opportunity for cross-correlation and Cross-spec-
tral density measurements that could be useful either in the control process,
in the identification of process parameters, or the reference model discussed
in the next section,

Model Reference Adaptive Control

The configuration of Figure 10.25 can be modified to implement model
reference adaptive control. In this concept, a physical system is adapted in
such a way that its overall input-output response characteristics best match a
reference model response. In this case, the reference model replaces the
modeling delay. As a result, the unknown physical system and the adaptive
inverse model will be matched to the reference model rather than that of a
simple delay, '

In some applications, the reference model is a perfarmance model; that is,
the performance (efficiency, emissions, ctc.) of the system is matched with
that of the model rather than matching input-output behavior, The resultant
system is usually more complicated than matching input-output response as
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described above, and it is usually implemented as a form of reinforcement
learning as described in the next section.

Reinforcement Learning

Reinforcement learning addresses the problem of improving performance as
evaluated by any index of performance the user chooses. The basis for this
approach is that desired control signals exist that lead to optimization, but
the learning system is not told what they are because there is no system
knowledgeable enough to identify them. In reinforcement, the object is to
determine desired changes in the controller output that will increase the
index of performance, which is not necessarily defined in terms of the desired
oulputs of the system.

Reinforcement learning involves two issues: (1) how to construct a critic
network capable of evaluating physical system performance consistent with
the chosen index of performance and (2) how to alter the controller outputs
to improve performance as measured by the critic network. These issues are
discussed extensively by Barto (1990). Clearly, there is not one unique
approich to these issues. Some approaches attempt to introduce knowledge
Known about the system to bias the learning process in a favorable direction.
Others rely on statistical considerations. For instance, a class of reinforce-
ment-learning algorithms known as stochastic learning automata probabilisti-
cally sclect actions from a finite set of possible actions and update action
probabilities on the basis of evaluative feedback. It is also possible to
combine stochastic learning automata with parameter estimation by mapping
Patlern inputs to action probabilities. As these parameters are adjusted
under the influence of evaluative feedback, action probabilities are adjusted
to increase the expected cvaluation of the index of performance, Research is
continuing in these areas.

Reinforcement learning is a very general approach to learning that can be
applied when the knowledge required to apply supervised learning is not
available, If sufficient information is available, reinforcement learning can
readily handle a specific problem. However, it is usually better to use other
mcthads discussed earlier in this section, because they are more direct and
their unde tlying analytical basis is usually well understood.

10.8  APPLICATICNS OF NEURAL NETWORKS IN NOISE ANALYSIS

The integrated use of neural network and noise analysis technologies offers
advantages not available by the use of either technology alone. The applica-
tion of neural network technology to noise analysis offers an opportunity to
expand the scope of problems where noise analysis can be used productively.
The two-sensor technique, in which the related responses of two sensors on a
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system whose characteristics are unknown responding to an unknown driving
source, is used to illustrate such integration.

In the last three decades, vibration analysis has become a separately
identificd field of noise analysis that is used as a means of detecting faults in
dynamic systems, estimating parameters for models of complex systems, and
detecting and identifying loose parts in fluid flow systems. Commercial
instruments that quantitatively evaluate the power spectra of signals from
accelerometers mounted on rotating machinery and interpret the results
automatically (based on a model of the system being tested) are readily
available. In other cases, spectra must be interpreted by experts because of
the complexity of the system and the complex vibration spectra it produces.
In these cases, neural networks with their ability to learn characteristics
associated with different types and sources of vibration can enhance our
ability to interpret the measurcments.

Two-Sensor Technique

A specific cxample will serve to illustrate the symbiotic relationship between
vibration analysis and neural networks. The technique described here in-
volves training a neural network to model the internal behavior of a compo-
nent or system using vibration data taken from two sensors (accelerometers)
located at different positions or mounted in different directions on the
component or system. The power spectral density (PSD) (typically 128 values)
of a sampled time series (typically 100,000 samples which produces 390
spectra) from one accelerometer is used as the input to the neural nemwork,
and the PSD of the sampled time series from the other accelerometer taken
at the same time is the desired output of the neural network. The network is
trained using the 390 pairs of spectra when the component or system is
known to be operating properly. The trained neural network is then put into
a monitoring mode to predict the output (second) sensor PSD from the input
{first) sensor PSD, and a comparison is made between the predicted and
actual output signal PSDs using the method described in Figure 10.26. The
mean square difference A was used as an index of whether operation was
normal or deteriorated. Significant deviations indicate that the interrelation-
ship between the input and output signals has been modified due to a change
(failure) in the component or system. The usefulness of this methodology has
been demonstrated in the monitoring of the operability of check valves
(Ikonomopoulos et al, 1992; Uhrig, 1993) and a pump-motor bearing
(Loskiewicz-Buczak et al., 1992). These applications are described in Exam-
ples 10.3 and 10.4 later in this chapter.

Noise Analysis Considerations

In almost every situation, both sensors measure output vibrations induced by
a driving function (e.g., imbalance in a rotating system or turbulence of the
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Figure 10.26 Schernatic representation of the check-valve testing procedurs. A = 0 if
the tested valve is in good condition, 4 > 0 if the tested valve has some degradation.
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Figure 10.27 Block dicgrom of o one-signakinput-two-output system.

water as it flows through a pipe or valve) (Uhrig, 1995). This arrangement can
be represented in the frequency domain as shown in Figure 10.27, where the
PSD of the driving turbulence function is represented by G, (w), the PSDs
of the resultant vibration are represented by the output PSDs of the ac-
celerometers Gyy(@) and Gpy(w), a, and «, are coupling coeificients for the
attenuated vibration transmitted between the two sensors, and H(w) and
Hy(w) are the system response functions relating the driving turbulence to
the resultant outputs of the two accelerometers. Application of the
input—output relationships for PSDs (Uhrig, 1970) as given in equation
(10.2-9),

Gi(w) =|H(@)['G (@), wherei=1orz  (10.8-1)
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when applied to the system of Figure 10.27, gives the relationship between
G, (®) and G, (w); after mathematically eliminating G, (w), this becomes

[1+ oy (@) [ Hy( 0) [
—[1 3 “z|Hz(‘”)|1]|H1( ‘“)]2

Let us postulate a simple model of this phenomena in which these system
responsce functions H(w) are assumed to be underdamped, second-order
systems (i.e., each system response function has a single peak which may be
located at any frequency). The frequency response functions and their square
moduli can be represented by

Gylw) =G (w) (10.8-2)

K, )
Hw) = {1 = 72“’2] i (10.8-3)
. K
|H ()| = (10.8-4)
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where A, represents damping constants and 7, represents time constants
associated with the natural frequencies of the systems. Substitution of equa-
tion (10.8-4) into equation (10.8-2) gives

K31 - ()] + (Mol + K]

Kﬁ[[l o (T:cu)zlz + [l + a:Kfl

Gy(o) = Gy(e) (10.8-5)

We can obtain the general shape of the curve by considering very high and
very low frequencies. For very high frequencies, the term in braces in
e¢quation (10.8-5) approaches a constant value of [Kir}/K¥%i]. For very
low frequencies, the term in the braces approach a constant value of
(K3l + a,K})/K1 + a,K?2)). For mid-range frequencies, the term in the
braces is greater than for high or low frequencies, In both H ,(w) and H,(w),
the amplitudes of their peaks and the frequencies at which the peaks occur
arc dependent upon A; and 7;, respectively. Hence the peak value of the term
in braces and its location are dependent on the values of A, and 7,

For a more complex model in which the system response functions H,(w)
and H,(w) have several peaks, many second-order systems having m and n
peaks designated by subscripts § and k, respectively, can be superimposed.
Equation (10.8-3) now becomes

] n Kf 1- { ‘m): £ } [/\]J-m:lz + &“Kll
Gyp(w) :Gu{‘”)lz 2 ’k“ - ]1 5 '2 |
l"' k=1 Kffl[l =] (".‘-&“’)‘] + [Aw] + “uﬁul

(10.8-6)
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Again, the values of terms in the braces, which represent the square modulus
of the overall system response function for the interior behavior of a complex
system, approach constant, but diffcrent, values for very low and high
frequencies, and there are many peaks over the intermediate frequencics for
both H(w) and H,(w).

This model is consistent with the experimentally measured spectra G,,(w)
and G(w), indicating that the multipcaked representation of the averall
system response function of the interior behavior is consistent with the neural
network model used in the two-sensor neural network technique for fault
identification. Furthermore, this model gives insight into the phenomena
modeled by the neural network.

Alternately, the accelerometers can be near each other but mounted so
that they measure acceleration in different (usually perpendicular) directions.
Under perfect balance conditions for both forces and moments (a rare
condition), spectra in different directions at one position would be exactly the
same. In almost all real-world conditions, the spectra from sensors located in
perpendicular directions are different. Furthermore, the relative shapes of
the two spectra change as the systems change or deteriorate,

The diagnosis of faults usually involves measurement and analysis of small
fluctuating signals that represent the dynamic behavior of a system or
component. Usually this fluctuation is the output signal of an accelerometer
measuring vibration or acoustics, but it can be the small random-like fluctua-
tions of a steady-state variable (pressure, temperature, cte.). The objectives
of such diagnostic work are to identify the existence of abnormalities/
deviations and interpreting the results of the monitoring in an intelligent way
to identify the fault so that noise specialists and experts are not required for
interpretation. While relatively little attention to date has been given to
automating these procedures, it is clear that such automation is possible and
necessary when this technology is implemented in actual plants and complex
industrial /scientific systems. Furthermore, the neural networks can be imple-
mented in microchips to give almost instantancous outputs.

Typically, measured variables from components or systems are analog
variables that must be sampled and normalized to expected peak values
before they can be utilized. All the normal precautions associated with
digitizing analog data must be exercised to avoid the adverse effects of
aliasing and nonstationarity. Often, data must be processed to put them into
an aceeptable form (e.g, a fast Fourier transformation of the time series to
produce a spectrum). In most cases, comparison of predicted results (based
on the output(s) of neural network models developed from data taken when
the system was working properly) or patterns (learned by ncural network
models from data presented to it along with actval results or patterns
involved) is utilized for fault detection.

Example 10.3  Check-Valve Monitoring. Although there are many possible
failure mechanisms for check valves, the most common problems associated
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with check-valve failures are due to flow induced system disturbances or
system piping vibrations. These vibrations and disturbances induce measur-
able accelerations that produce check-valve component wear and sometimes
component failure. Analysis of time records from piezoelectric accelerome- ‘
ters attached to check valves on a large nuclear power plant has been used to
demonstrate this process. The procedure uses an autoassociative-like neural
network, in which the inputs and desired outputs are values of the PSDs of
two related time series representing vibration at two different positions on
the valve. It was trained to produce a neural network model of the interrela-
tionship when the valve is operating properly as deseribed in Section 10.8.
During monitoring, the output PSD of one accelerometer is used to predict
the output PSD of the other accelerometer, which is then compared with the
actual PSD. A significant deviation indicates failure of the check valve. The
difference in the two spectra are evaluated numerically using the procedure
indicated in Figure 10.26 to cvaluate the mean square difference A,

Comparison of PSD spectra between identical 30-inch check valves (onc
broken and one normal), operating under identical conditions, demonstrated
that this technique can identify the failed valve. Subsequent measurements
taken on the broken valve after it was repaired further confirmed the validity
of this technique. Tests on three 6-inch check valves (one normal and two
that failed for different reasons) operating under identical test conditions has
indicated that different kinds of failures give different values for the mean
square diffcrence A (Ikonomopoulos et al., 1992). Larger values of A indicate
more serious problems. O

Example 10.4 Large Motor Pump Bearing Failure. The Jwo-sensor tech-
nique was also used to analyze the progressive failure of a large (950 HP)
motor pump bearing in a nuclear power plant (Loskiewicz-Buczak et al,
1992). A series of measurements of horizontal and vertical components of
acceleration for a large motor-pump bearing were taken periodically at
intervals of about 6 weeks throughout the operating lifetime of the bearing
and as it began to fail. The power spectra of the horizontal and vertical
components of acceleration on the bearing during the first four sets of
measurements (when the bearing was known to be operating properly) were
the input and desired output, respectively, of a neural network while it was
being trained. The bearing operated normally for the next three months and
then began to fail. For the next five scts of measurements, while the bearing
progressed toward failure, the predicted value of the vertical component of
acceleration (obtained from the neural network with the horizontal compo-
nent as the input) was compared with the actual value of the vertical
component. The mean square difference A (described in Section 10.7)
between the predicted and actual vertical spectra grew as the bearing
progressed toward failure,

It can be speculated that it might be possible ta predict remaining life in
bearings. The integrated use of neural networks and noise (vibration) analysis
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has been shown to perform satisfactorily in monitoring the operability of
check valves in power plants and in a large motor-pump bearing. There are
many other applications in neural networks to the noise analysis field where
the two technologies can be advantageously used together, O

10.9 TIME-SERIES PREDICTION

Neural networks can be used to predict future values in a time series based
on current and historical values. Such predictions are, in a sense, a form of
inference measurements discussed earlier. They are particularly useful to
economists, metcorologists, and planners. Recently, there has been an ex-
traordinary amount of interest in the use of neural networks to predict the
stock market behavior, including the publication of at least two commercial
periodicals specializing in financial investing (Artificial Intelligence in Finance,
published by Miller-Freeman Publishing Co. since 1995, and MNeuroVe$t,
published by R. B. Caldwell since 1993). This popularity continues in spite of
the fact that the predictions by neural networks cannot be explained, Perhaps
the main reasons for the continuing popularity in the field are that deural
networks do not require a system model and that they are relatively insensi-
tive to unusual data patterns.

Although backpropagation neural networks are usually used for time-series
prediction, it is possible to use any neural network capable of mapping an
input vector into an output vector. Typically, the input of a single time serics
into a neural network is made as shown in Figure 10.28. The fluctuating
variable is sampled at an appropriate rate to avoid aliasing, and sequential
samples are introduced into the input luyer in a manner similar to that used
in a transverse filter. At every time increment, a new sample value is
introduced into the rightmost input neuron, and a sample value in the
leftmost input neuron is discarded. The main difference compared to the
transverse filter is that the sample preceding those going to the input is
introduced into the single output neuron as the desired output. In this way,
the network will be trained to predict the value of the time series one time
increment ahead based on the previously sampled values. The network can
be trained to predict more than one time increment ahead, but the accuracy
of the prediction decreases when predictions are further into the future.
Since such systems are often used in real time, or to secure data from historic
records, the amount of training data is usually very large. Even so, it is
important to periodically check the training to ensure that overtraining does
not occur,

Although it is possible to predict multiple outputs, it is best to predict only
one valuc because the network minimizes the square error with respect to all
neurons in the output layer. Minimizing square error with respect to a single
output gives a more precise result. If multiple time predictions are needed,
- dividual networks should be used for each prediction.
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Figure 10.28 Neural network for fime-series prediction,

Generally, large-scale deterministic components, such as trends and sea-
sonal variations, should be eliminated from inputs. The rcason is that the
network will attempt to learn the trend and use it in the prediction. This may
be appropriate if the number of input neurons is sufficient for input data to
span a complete cycle (e.g., an annual cycle). If trends are important, they
can be removed and then added back in later. This allows the network to
conceatrate on the important details necessary for an accurate prediction.

The standard method of removing a trend is to use a least-squares fit of
the data to a straight line, although nonlinear fitting may be appropriaje in
some cases (e.g, cyclic fluctuations). An alternate method of re mowving trends
and seasonal variations is to pass the data through a high-pass filter with a
low cutoff frequency. There are alternative techniques in which a low-pass
filter is used to leave only the slowly varying trend which then i- subtracted
from the original signal, with the difference being the value sent > the neural
network input layer.

One of the interesting variations of the above technique for piediction is
to use differcnces between successive sample values as inputs to the neural
network, This effectively eliminates constant trends and slowly changing
trends by converting them to a constant offset. Even seasonal trends are
usually removed. Using differences in predicting is generally useful in such
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fields as stock price predictions, especially if the difference is scaled relative
to the total price of the stock, which is effectively using the percent price
change.
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PROBLEMS

1. Show how Equations 10.1-10 and 10.1-11 are obtained from Equations
10.1-8 and 10.1-9, respectively, for white noise inputs,

2, For the system in Figure 10.2, add a white noise q{¢) to the input. Derive
the cquations for the power spectral density of the output and the
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4.

cross-spectral density between the input and the output comparable to
Equations 10.1-23 and 10.1-26.

In Figure 10.11b the control system is located after the actual system and
controls by feedback whereas the reverse arrangement is given in Figure
10.12. Discuss the merits of the two arrangements.

The difference between the systems in Figures 10.22 and 10.23 is the
source of the signal for the recurrent feedback (ie., from the neural
network output in Figure 1022 and from the system output in Figure
10.23). If the neural network were perfectly trained, these two signals
would be identical. Discuss the difference that the source of this signal
makes and explain why there is a difference.

. In time-series prediction, the quality of the predicted signal deteriorates

as the time increment into the future increases. Discuss how the quality
(by whatever criterion you choose) decreases with future time. How do
you determine a practical limit? (Note: This problem is also discussed in
the context of fuzzy control in Section 15.4.)



PRACTICAL ASPECTS OF
USING NEURAL NETWORKS

11.1  SELECTION OF NEURAL NETWORKS FOR SOLUTION TO A PROBLEM

Perhaps the best approach to determine whether an application of neural
networks is appropriate is to compare its characteristics to those that have
been successful in other application. Bailey and Thompson (1990a) have cited
a survey of suecessful neural-network applications developers  and
gave the following heuristics for successful applications:

«» Conventional computer technology is inadequate.
» Problem requires qualitative or complex quantitative reasoning.

« Sclution is derived from highly interdependent parameters that have no
precise quantification,

+ The phenomena involved depend upen multiple-interacting parameters.

« Data arc readily available but are multivariate and intrinsically noisy or
eITor-prone.

e There is a great deal of data from specific examples available for
modeling the system.

o Some of the data may be EITOneous ar missing.

« The phenomena involved are so complex that other approaches are not
useful, loo complicated, or too expensive.

» Project development time is short, but sufficient network training time is
available.

Most successful applications of ncural networks involve pattern recognition,
statistical mapping, or modeling. Successful applications can include signal

385
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validation, process monitoring, diagnostics, signal and information process-
ing, and control of complex (often nonlinear) systems. However, problems
that can be solved using conventional computer methodologies, especially
those that require high precision or involve mathematical rigor, are usually
not appropriate for an artificial neural network approach.

Choice of Neural Network Type

The appropriate choice of the type of neural network (supervised, unsuper-
vised, or reinforced) depends on data available. Supervised learning requires
pairs of data consisting of input patterns and the correct outputs, which are
sometimes difficult to obtain. Unsupervised training classifies input patterns
internally and does not need expected results. The data requirements for
unsupervised training arc thus much easier and less costly to meet, but the
capability of the network is significantly less than for supervised learning.
A compromise between supervised and unsupervised training is reinforce-
ment learning, which requires an input and only a grade or reward signal as
the desired output.

Time required for both the training and recall are also important in the
development of neural networks. Most neural networks have relatively long
training times, but the recall involves only a single pass through the nerwork.
When the necural network is implemented in hardware with the neurons
operating in parallel, the recall time is virtually instantaneous. On the other
hand, certain paradigms, such as the probabilistic neural network, radial
basis function, and general regression neural network, train in a single pass
through the network, but the exccution time is essentially the same as the
training time. Hence, the need to meet on-line requircments (c.g., in an
active control system) may dictate the type of neural network used, or it may
require that the network be implemented in hardware.

11.2 DESIGN OF THE NEURAL NETWORK

Size of Neural Networks

Neural network size is sometimes related to the experience of the user as
much as the nature of the problem. Beginners tend to stick with small
networks and reduce the size of the application accordingly. Those with
considerable experience with neural networks are usually willing to let the
nature of the problem decide the size of the network. With the neural
network simulation software available for personal computers and work-
stations today, a neural network with a thousand neurons and perhaps a
hundred thousand connections may no longer be a practical upper limit for
nonstatistical paradigms such as backpropagation or counterpropagation.
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Choice of Output

The type of output is usually determined by the nature of the application.
The activation of the output neurons may be either binary or gray scale
(many individual values). Real-number outputs translate into values such as
dollars, time units, or distances and may be given in binary form or gray
scale. Each of the four common interpretations of neural network
outputs—classifications, patterns, real numbers, and optimal choice—has its
own specific requirements, For example, since classifications statistically map
input patterns into discrete categories, there will usually be two or more
output neurons with only one having an output for a given input. In contrast,
neural networks that identify patterns such as spectra often have multiple
output neurons, all usuvally active at the same time, which form a pattern in
response to the input, Optimization problems usually yield a special pattern
that can be interpreted as a set of decisions (Bailey and Thompson, 1990b).

Neuron Activation function

Typically, the activation function is a continuous function that increases
monotonically between a lower limit and an upper limit (0 and 1 or —1 and
+1) as the weighted summation increases in magnitude, Since one of the
primary purposes of the activation function is to keep the outputs of the
neurons within reasonable limits, it is sometimes called a “squashing” func-
tion. By far the most common activation function is the logistic function
discussed in Chapter 7, but virtually any function meeting the sigmoidal
requirements stated in Chapter 8 will work satisfactorily. Step or signum
(threshold) functions are often used for the activation function when the
inputs and outputs are binary (0 and 1) or bipolar (=1 and +1).

Activation functions that have heen used include linear, clamped linear,
step, signum, sigmoid, arctangent, and hyperbolic tangent functions. The
choice is usually based on both the types of input and output and the
learning algorithm to be used. Certain paradigms such as backpropagation
require that the derivative of the activation function be continuous, which
climinates step, signum, and clamped linear functions. Many binary (0 and 1)
and bipolar (-1 to +1) input-output pairs use networks with step and
signum functions, respectively, for the activation function. Continuous valued
outputs use linear or sigmoidal (or other S-shaped) activation functions.

Number of Layers

Backpropagation networks typically have three layers, but more may be
advantageous under some circumstances. It is sometimes better to use two
smaller hidden layers rather than one bigger layer. Some neural network
paradigms commonly used have a predetermined number of layers. Adalines,
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Madalines, Hopfield networks, ART-1, Kohonen self-organizing feature maps,
and bidirectional associative memories all require either one or two layers,

Hidden layers act as layers of synthesis, extracting features from inputs.
Usually a large: number of hidden layers increases the processing power of
the neural network but requires significantly more time for training and a
larger number of training examples to train the network properly, As indi-
cated in Chapter 7, one hidden layer (i.e., a three-layer -network) with
sufficient neurons is capable (theoretically) of representing any mapping.
Additional hidden layers should be added only when a single hidden layer
has been found to be inadequate. Cascade correlation neural networks start
with two layers and add as many one-neuron layers as necessary to satisfy its
convergence criterion.

Number of Neurons in Each Layer

The number of neurons in the input and output layers are determined by the
nature of the problem. For instance, a problem that utilizes a 128-point
power spectral density function as an input and classifies the inputs into 10
categories requires 128 neurons in the input layer and 10 neurons in the
output layer. Determining the proper number of neurons for the hidden layer
is often accomplished through experimentation. Too few neurons in the
hidden layer prevent it from correctly mapping inputs to outputs, while too
many impede generalization and increase training time. Too many neurons
may allow the network to “memorize” the patterns presented to it without
extracting the pertinent features for generalization. Thus, when presented
with new patterns, the network is unable to process them properly, because it
has not discovered the underlying principles of the system.

For a network with a single hidden layer, it is common practice to initially
make the number of neurons equal to about two-thirds of the number in the
input layer (Bailey and Thompson, 1990a). When there is more than one
hidden layer, the number of neurons is significantly smaller in each hidden
layer. Experimentation with greater and smaller numbers of neurons in the
hidden layer(s) may change the training time as well as the ability of the
neural network to generalize. Often there is a wide range in the number of
neurons in the hidden layer that can be used successfully. Harp, Samad and
Guha (1989) has utilized an optimization methodology for determining the
optimal number of ncurons in a single hidden layer of a neural network
based on a genetic algorithm optimization process.

Multiple Parallel Slabs

Another method of increasing a neural network’s processing power is to add
multiple slabs within a single hidden layer. A multiple parallel slab arrange-
ment may use different types of activation functions and different numbers of
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neurons, because this architecture is attempting to force each slab to extract
different features simultaneously.

11.3 DATA SOURCES AND PROCESSING FOR NEURAL NETWORKS

A successful neural network requires that the training data set and training
procedure be appropriate to the problem. This includes making the training
data set representative of the kinds of patterns the operational network will
have to recognize. Furthermore, the training set must span the total range of
input patterns sufficiently well so that the trained network can generalize
about the data. In order to have cxtrapolation and interpolation capabilities,
neural networks must be trained on a wide enough set of input data to
generalize from their training sets. Although most of what is presented here
deals with neural networks using the backpropagation training paradigm,
much of what is said applies to other, less common neural network paradigms
as well.

All data that in any way relate to the application should be reviewed and
purged of any data that are considered to be unreliable or impractical for
technical or economic reasons, Combining and /or preprocessing data to
make it more meaningful can be extremely beneficial. For example, power
spectral density functions are much more useful than a time series from
sampled time records as inputs to neural networks.

Errors in Databases

Databases are rarely perfect. Hence, a database for 100,000 homes may
contain a few with entries such as “200 people in a home or a child aged
1975” Protecting neural networks from such gross errors is essential, because
it doesn’t take many ridiculous values to distort a neural network’s training,
especially when the importance of errors is increased by squaring those
errors. The use of elementary statistical analysis and time plots of data can
help detect such errors.

Subtle data errors that don’t involve grossly out-of-range values also oecur.
Checking the consistency of units will eliminate such errors as one office
reporting production in units and another reporting it in dozens. The only
way to find errors like this is to remain alert to the possibility of data errors
and investigate any suspicions that develop about the sensibleness of the
data. Clustering data can often help identify discrepancies, If erratic data
cannot be fixed, the impact of discarding the data should be investigated. For
instance, discarding sales for the month of December when Christmas sales
are very large, even when it is necessary because of erroncous data, can
distort the results of an analysis,
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Incomplete Data Sets

In spite of the rhetoric that neural networks can work with incomplete data
sets, missing data can create serious problems. If the data cannot be found
(missing data often has merely been placed in the wrong field or misnamed),
the common sense (and technically correct) thing to do is to replace every
missing value with the best estimate of what it would have been were it not
missing. (Crooks 1992) suggests several ways in which this can be done. The
simplest method is to replace missing values with the expected value of the
variable. If all other variations in the example are ignored, the expected value
of a real-valued variable is the mean of the variable across the sample of
cases. If the variable is an arbitrary categorization, the most common value or
mode is appropriate. For ordinal values, the median valuc for the population
is the expected value. More sophisticated methods are available, but they
invariably involve the assumption that the process is time stationary and that
the underlying conditions do not change during the time the missing data are
important. Whether this is true is dependent upon the individual situation.
The pragmatic approach of using whatever technique seems to make the
model train and predict better is usually best, but there is need to ensure that
future predictions have some general and reliable basis by using an appropri-
ate test data set.

Time Variations in Data

A neural network can detect trends in time-oriented data such as sales data,
Although recurrent neural network models have some sustaining memory of
previous data, most networks consider only one example at a time. Since
there is no explicit memory of the example from an earlier time, it is not
possible to simply present data in a sequential order (i.c., first Monday's data,
then Tuesday's data, and so on) and expect it to find the trend. Time-
oriented problems such as predicting tomorrow’s sales requires that the sales
for the last week or two (or some ‘appropriate time period) be utilized. A
productive approach that is often used in training is to present input training
that spans several time periods (days, weeks, hours, months, etc.) and use
data for the next time period as the desired output.

Pictorial Data

When the information is pictorial, the data for the neural network are best
suited to a nondistributed representation. For example, in a black-and-white
picture, each input neuron receives a number representing the intensity of
one pixel (picture element) of the visual field for every point in the picture,
as well as parameters indicating the location of the pixel. The biggest
problem with pictures is that too many pixels are needed to train a neural
network in a reasonable amount of time. If a camera image is 1024 pixels on
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a side, the number of necessary input neurons is more than a million, and the
training time would probably be prohibitive. One approach for feature
extraction uses Fourier descriptors of the items to be recognized and feeds
them into a ncural network for recognition and translation into meaningful
results. Characters and graphics have frequency magnitude and phase
“signatures” that can be recognized by a neural nctwork. The neural network’s
output must be formatted into an appropriate form for training and recall.

Data Acquisition

Applications requiring sensory data input to the ncural network are impeded
when information transfer from the equipment is disrupted. Sensors and data
acquisition facilities must be thoroughly tested before being used to provide
data to a neural network. Indeed, the influence of sensors and data acquisi-
tion facilities on the overall information processing systems needs to be
evaluated prior to including them in the system, Situations sometimes arise in
which one missing piece of information disrupts the flow (timing) of the
system and causes undesirable, sometimes unpredictable, and almost always
erroneous results,

11.4 DATA REPRESENTATION

Data may have to be converted into another form to be meaningful to a
neural network. How data are represented and /or translated also plays an
important role in the network’s ability to grasp the problem, that is, a
network can learn more easily from some representations than from others.
Certain kinds of data (e.g., the time-oriented data used in such problems as
forccasting) are especially difficult to handle,

Continuous Valued Versus Binary Representations of Data

Data may be continuous-valued or binary. Sometimes data can be repre-
sented cither as a single continuous value or as a set of ranges that are
assigned binary representations. For instance, temperature could be repre-
sented by the actual temperature values or as one of five possible values:
frozen, chilled, mild, warm, or hot. When there are naturally occurring
groups, the binary catcgories are often the best method for making correla-
tions. When the values are very continuous, artificially breaking them up into
groups can be a mistake, because it is often difficult for the network to learn
¢xamples that have values on or near the, border between two proups.

Arbitrary Numerical Codos

Using continuous-valued inputs to Tepresent unique concepts can cause
problems. Although it may seem perfectly reasonable to represent the months
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of the year as numbers from 1 to 12, the neural network will presume such
data to be continuous-valued and as having “more or less” or “better or
worse” qualitics. Since the month July (represented by 7) is not more or
better than June (represented by 6), individual inputs are required for each
month. Discontinuities such as going from 12 for December to 1 for January
are also troublesome. Zip codes, bar codes, and marital status are examples
of data that require more than one input (Lawrence, 1991).

Variable values represented with numbers don’t always behave like num-
bers, because they sometimes don’t reflect any specific sequence or order,
For example, although there is some obscure plan behind postal zip codes, it
is not possible to add, subtract, or compare zip codes and infer meaningful
results. (Generally, a larger zip code indicates the post office is further west
in the United States, but there is certainly no sensible interpretation of the
sum of two zip codes.) Arbitrary numerical codes should be treated in the
same way as mutually exclusive nonnumeric codes (like male/female or
apple forange /pear/banana), that is, assign one input neuron for every
possible value. In any single case, only one of the neurons should be set to
one, and all of those representing other values should be set to zero. If a
categorization has too many possible values, like the states of the United
States, it may be necessary to combine some of the categories to produce a
taxonomy of fewer values (L.e., combining states into Northwest, Southwest,
Northeast, Southeast, and Midwest categories).

“Fairly Continuous' Data

Lawrence (1991) points out that the choice between binary and continuous
data representations may not be simple. If the data are fairly continuous but
not evenly distributed over the entire range, even the best representation can
be tricky. For example, a network that predicts the income level of individu-
als based upon demographics and personal history might have inputs for the
person’s education level with values from 0 to 20 years. Alternately, natural
groupings occur around traditionally recognized levels of achievement (i.e.,
high school, baccalaurcate, masters, and doctoral graduations), and the data
could be grouped into ranges such as less than 13, 13-16, 17-18, and 19-20
years. However, if significant differences occur within a group (e.g., “less
than 13” could mean either high-school graduate or grade-school dropout),
the representation may not be valid. On the other hand, if one continuous-
valued input representing the actual number of years of schooling is used, the
neural network might have trouble. For instance, if there is a significant
difference in the effect on monetary savings between having a high-school
diploma and not having one, the network may not pick it up, because 12 and
11 look very similar in the range 0-20. The best representation may be a
combination of the two approaches (e.g., several groups, each continuous-
valued). Experimentation with several representations may be necessary to
determine the best representation.
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Ordering of Variables

At the opposite extreme from nominal numeric values are real or continuous
values, Most measurements of natural quantities result in real numbers. Two
real values for the same variable can be compared, and the difference will be
meaningful. In this context, it is not continuity that matters as much as the
orderings possible for the set of numbers used.

Falling between nominal and continuous are variables whose numeric
values imply a real ordering, but with undefined intervals between the values,
For example, if all of the soldicrs in a platoon were lined up and ranked in
order from the shortest to the tallest, you could say that soldier #10 was
taller than soldier #5, but you couldn't say by how much, and you certainly
couldn’t say soldier #10 is twice as tall as soldier #5, Crooks (1992) points
out that rankings like this are especially troublesome because the rank value
depends not only on the height of a particular soldier, but also on how many
and which soldiers are compared,

Rank orderings are often handled by converting a ranking into a per-
centile (more precisely, a pereentile divided by 100 to keep the value under
1.0} to make the values independent of the number of cases in the sample
taken. Alternately, all observations can be divided into quintiles representing
values from the highest quintile as 0.9 with second quintile values at 0.7, and
so on, down to 0.1 for the lowest quintile. The approach is the same, but the
number of categories is reduced from 100 to five by the use of quintiles, It is
cssential that boundaries for percentiles and quintiles be based on a good
sample of the population of cases to be modeled. It is more important that
percentile and quintile valies be reliable and repeatable throughout the
training and use of a neural network than that they be accurate.

Changes in Values Versus Absolule Values

Another important factor in representing continuous-valued data is whether
'0 use actual values or changes in values. One reason for using changes in
values is that the smaller the range, the more meaningful small-value differ-
ences are to the netwaork, However, the range of some data, such as the Dow
Jones industrial average (DJIA), will probably ¢hange over time, The day-to-
day change in the DJIA over a maonth (with rare exeeptions) is not likely to
exceed 4200 points. On the other hand, the change over a year might be
1000 points and maybe 3000 points over a decade. The decision whether
o use the absolute value or the change depends upon the nature of the
problem. If small changes in the day-to-day values of the DIIA are an
important consideration in the problem being investigated, then the change
in DJTA should be used. If the trend over a decade or over a few years is
important, then the actual values should he used, scaled to spread the values
between the expected maximum and minimum values over the operating
range of the ncural network simulator (see Section 11.5).
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Distributed Versus Nondistributed Information

A decision whether to describe the information as unique items (i.e., gender,
minority status, etc.) or as a set of descriptive qualities (such as height, age,
weight, etc.) is necessary. Information that exclusively categorizes a thing or
person into one of several possible categories is called a nondistributed
representation. Only one neuron is needed when the choice is between two
categories (e.g., male or female), but one neuron is needed for each category
when there are more than two alternatives (c.g, minority status, Black,
His-panic, Native American, etc.). Using nondistributed information may
increase the size of a neural network with resultant training and generalizing
problems.

Distributed information involves using a few pieces of information to
define a unique pattern. For example, by using three primary color inputs
(red, blue, and yellow), many possible color combinations can be represented
without adding neurons. Such a distributed input scheme reduces the number
of neurons needed to represent a large number of patterns that share
common qualities and enhance the generalization ability as well, but there
has to be a means of interpreting the results. However, there are potential
problems with using a distributed approach for the output. A network with a
distributed output layer also has less learning capacity because it has fewer
weights. Such a network output sometimes must be decoded twice: first, from
neuron activations to the distributed qualities and then to the nondistributed
output, For example, if color were expressed as a distributed output pattern
such as 0.2 blue, 0.7 yellow, and 0.4 red, this result would have to be decoded
again by some external observer or program to designate the color “brown.”

Advantages of a distributed output network are that it uses fewer neurons
in the output and the hidden layers, has fewer connections, does less
computation, and runs faster. Generally speaking, neural networks with a
greater numbcr of inputs than outputs perform better. More outputs make it
harder to train the neural network to be accurate. Overall error, rather than
the error in individual outputs, is minimized.

Encoding Data

An encoding algorithm’s function is to take input data and convert it into a
form suitable for presenting to the network. A decoding algorithm takes the
values of the output layer neurons and converts them into a meaningful
answer. Encoding and decoding algorithms are neural-network-specifie, but
some guiding principles can be applied. Neurons operate with numeric inputs
and outputs that correspond to the activation values of the neurons—that is
within the range neurons understand (usually 0 to 1, or —1 to +1). The
input encoding must interpret the raw data—that is, turn it into a sequence
of numeric values that the network can understand. The output decoding
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must take a sequence of numbers that corresponds to the output neurons’
values and turn them into the form required for the final output.

As an example, consider a three-neuron output with a binary (0,1) output.
This neuron output can represent eight categories of output (e, 101
represents the fifth category which can be arbitrarily defined). Since outputs
are not likely to be exactly 0 or 1, an output in the range 0.8 to 1 could be
interpreted as 1 and an output in the range 0 to 0.2 could be interpreted as 0.
Values between 0.2 and 0.8 would then represent ambiguous results, Some
investigators arbitrarily split the outputs between 0 and 1 at some arbitrary
threshold (not necessarily 0.5).

Fourier analysis of waveforms can also be used for the analysis of acousti-
cal waves, vibration, motion, or clectrocardiograph records. The frequency
content of the digitally recorded waveform is obtained using the fast Fourier
transform technique. The value presented to cach input neuron represents
the amplitude of the signal at a particular frequency range.

11.6 SCALING, NORMALIZATION, AND THE ABSOLUTE MAGNITUDE
OF DATA '

Neural networks are very sensitive to absolute magnitudes. [ one input
ranges from 1000 to 1,000,000 and a second one ranges from 0 to 1,
fluctuations in the first input will tend to sWamp any importance given to the
second, even if the second input is much more important in predicting the
desired output. To minimize the influence of absolute scale, all inputs to a
neural network should be scaled and normalized so that they correspond to
roughly the same range of values. Commonly chosen rangesare Ota 1 or —1
g +1.

Even though ane of the great strength of neural networks is that they wark
well in nonlinear situations, linear relationships are the easiest for neural
networks to learn and enjulate. Therefore, minimizing the cffects of nonlin-
carity of a problem pays off in terms of faster training, a less complicated
network, and better oversll performance. Hence, anc goal of data prepara-
tion is to reduce nonlinearity when its character is known and let the network
resolve the hidden nonlinearities that are not understood.

Data Nerrmalization

Numeric data must be normalized or scaled if it has a natural range that is
different than the network’s operating range. Normalization is simply dividing
all values of a set by an arbitrary reference value, usually the maximum value.
Usc of the maximum value will limit the maximum value (o unity. This
process, although very commonly used, carries with it the potential for loss of
information. It can also distort the data if one or a few values are much
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larger than the rest of the data (e.g.,, anomalous spikes) or when all the data
are within a narrow band. Scaling, on the other hand, is establishing a linear
relationship between two variables over the desired range of each. Normal-
ization is a special case of scaling where the minimum value of both variables

is zero. ’

Data éca[ing

Scaling has the advantage of mapping the desired range of a variable (with a
range between the minimum and maximum values) to the full “working”
range of the network input. For example, let us assume that the values
between the minimum and maximum (called the range A) must be scaled into
the range 0.1 to 0.9 for the neural network input. This linear scaling is shown
in Figure 11.1, where the straight line has the form

y=mc+b (11.5-1)
where m is the slope and b is the y intercept. If we substitute the values

y=10.1 when x = X, (11.5-2)

Scaled Variable
A

0.9

0.1

Actual Variable

Figure 11.1 Scaling of input variabies for artificial neural nebworks



——— o

SCALING, NORMALIZATION, AND THE ABSOLUTE MAGNITUDE OF DATA 397

and

y=09 when x =x_. (11.5-3)

we can solve for the constants m and b to be

m=08/(Xp — Xun) = 0.8/4, (11.5-4)
and
b=1[09—08x,./4] (11.5-5)
where
e R (11.5-6)

Equation (11.5-1) then becomes
y =(0.8/4)x + (0.9 — 0.8x_,./4) (11.5-7)

Scaling of the variable between 0.1 and 0.9 is often used to limit the amount
of the sigmoid activation function uscd in the representation of the variables
in order to avoid “nctwork paralysis” in the training process. Many neural
network simulation software systems perform such scaling automatically.
Liven so, it is necessary 1o understand what is occurring so that unforescen
scaling factors are not inadvertently introduced into the process. For in-
stance, if the input is scaled to its maximum and minimum values and the
desired output is scaled to its maximum and minimum values which are
different, then the recall output has a scale factor that is the ratio of the two
input scale factors. This can be avoided by using a single-scale factor for both
input and desired output that is based on the maximum and minimum values
that occur in both the input and desired output variables. Most commercial
software packages automatically use a single-scale factor unless directed to
do otherwise.

Crooks (1992) points out that scaling to similar magnitudes is not always
adequatc. For instance, if one input variable to a neural network fluctuates
from 50 to 1000 and a second input variable changes only from 930 to 1000
(even though it may have been very low in the past), it is clear that the region
of typical variation is much different for these two variables, even though
they have similar magnitudes and historical ranges. Since networks pay
attention not only to the magnitude of inputs but to their variability as well,
the greater variability of the first variable would tend to distract the network
relative to the smaller, but perhaps more important, variation in the second
variable.
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Z-Scores

An appropriate approach for some problems is to compensate for variability
in the scaling of variables. The common way to do this is to scale inputs to
their “Z scores” (the number of standard deviations above or below the
mean), To perform Z-score scaling on one variable, first calculate the mean
and standard deviation for the variable across all of the examples in the data
sct. Then convert each example valuc to a Z score by subtracting the mean
and dividing the difference by the standard deviation. This procedure par-
tially compensates for both different magnitudes and variabilities. Z-score
scaling does not take away some useful information, but instead, it makes the
information independent of units of measure.

Crooks (1992) gives two precautions that must be observed when working
with Z scoring. First, the calculated mean and standard deviations for an
input variable are merely estimates of the mean and standard deviations for
the entire population sampled by the data at hand. Hence, if more than one
set of training data is used, the scaling for the two sets may be different
because the estimated mean and standard deviations will be different for the
different samples. This often presents a practical problem when comparing
results from different training sets. The solution is to select one estimate for
the population mean and one estimate for the population standard deviation
and then use them uniformly to scale all data sets in the same way for the
selected variable. Second, if one output value is scaled using the Z-score
method, the output neurons must represent values throughout the range of
about —3.0 to +3.0. Often, output neuron sigmoids prevent outputs greater
than +1.0 or less than 0.0 (or ~ 1.0), which would make it impossible for the
network’s output to reach 2.0 (or —2.0). Clearly Z scores are not appropriate
for cases where this problem arises and is not addressed properly.

Input Transformalions

Some fairly simple input transformations, such as ratios, can save a network a
good deal of work. While the network can learn to do the division by itself,
networks normally perform division by effectively converting the numerator
and denominator each to logs, subtracting them, and taking the antilog
Although these three nonlinear operations are often performed by networks,
it is more productive to carry out the division in data preprocessing and let
the neural network concentrate on establishing: relationships from the data.

Besides ratios, nonlinearity in a problem may be reduced by the use of
logarithmic scaling for inputs of an exponential or compounding character or
the use of exponential scaling for inputs with a logarithmic pattern. Nonlin-
€ir scaling is also used to emphasize a particular range of variables. For
Instance, logarithmic scaling is often used to compress the scale for larger

fucs whereas exponential scaling is used to expand the scale for smaller
ues.
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When a problem may have a geometrical aspect, precalculating relevant
distances, areas, and volumes is helpful. In short, when an input is known to
have a specific nonlinear tendency, try to counteract the tendency with
scaling that will yield a more linear input to the neural network and simplify
its operation.

Redundancy in Input Data from Monitored Variables

Experience has shown that the existence of a high degree of redundancy in
the data from the monitored variables of a complex process or system can
and usually does have an adverse influence of the results of neural network
modeling. Decorrelation of the input variables using ordinary statistical
methods (Jurik, 1993) can be quite effective in improving the validity of the
model. In effect, the methodology of Jurik typically identifies a few special
variables in which a high fraction (typically 95%) of the information is
contained. These few special variables y,, (which are, in fact, principal
components) have the form

N
Y = ). ogx, (11.5-8)
j=1

where i is the index for the number of special variables (principal compo-
nents) used, and j is the index for the N input variables being monitored in
the complex system or process. Once the coefficients @; for these principal
components have been determined using the decorrelation code, they can be
implemented by an additional input, network ahcad of the usual input
network with the connecting weights set to equal the values of a,.

These principal components can also be obtained using autoassociative
neural networks as discussed in Section 8.4, where the data are extracted
from the “bottlencck” layer. A network of the type shown in Figure 8.14a
can be used to provide the principal components as inputs, after the com-
plete network has been trained as an autoassociative neural network.

Genetic algorithms have also been used to select the most important
variables for a neural network by Guo and Uhrig (1992) (see Example 17.2 in
Chapter 17) and later by Harp, Samad and Guha (1989, 1990).

11.6 DATA SELECTION FOR TRAINING AND TESTING'

Kinds of Data

All that is nceded to train a neural network is an adequate amount of the
kind of information that is important in solving a problem. If there is

! Many of the suggestions in this section were given by Lawrence (1551)
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uncertainty whether specific data are important, it is usually best to include it
because a neural network can learn to ignore inputs that have little or
nothing to do with the problem, provided that enough examples are provided,
Using too much or too many kinds of data is seldom a problem if there is
adequate data. If inadequate data are used, correlations become difficult to
find. Training time may become excessive when not enough kinds of data
exist to make proper associations. This is often the case with backpropaga-
tion networks with a very large number of hidden neurons. The end result is
memorization of the individual values, and the network trains well but tests
poorly on new data.

Difference in Data Requirements in Supervised and Unsupervised
Learning

Lawrence (1991) points out that there is a big difference in how data get
organized between supervised networks and unsupervised networks, Super-
vised neural networks are generally used for prediction, evaluation, or
generalization, They basically learn to associate one set of input data with the
corresponding set of output data, For example, a neural network can associ-
ate an increase in agricultural crop yield with certain types of weather
patterns; to predict the crop yield, the weather pattern (rainfall, temperature,
humidity, cloud cover, ete.), including historical patterns, would be specified
as inputs to the neural network, Unsupervised networks, such as Kohonen
networks, are best applied to classification or recognition types of problems
(e.p., descriptions of diseases can be stored; when a new medical case comes
in with a partial description of the symptoms, the Kohonen neural network
would look at the description and provide as an output the storcd diagnosis
that most closely matches one of the descriptions stored in the network).

Generally, the more example sets that are presented to a network for
training and testing, the better the training will be. However, there must be
enough examples of a sufficient variety for training that tHe network will be
able to make valid correlations and generalizations for unfamiliar cases. The
variety must include a good distribution of possible inputs and outputs,
Lawrence (1991) cites the following example: If a network is to perform an
evaluation such as the operational readiness of an aircraft, examples of good
and bad situations should be used in fairly even proportions, However, if
1000 examples of the aircraft being ready and 10 of it not being ready are
provided for training, the network will probably not be able to learn those 10
cases. Even if it does learn them, the network may predict that the airplane is
ready more often than it should be.

Cases Where Inadequate Data Are Available

There should be sufficient training sets so that a random sampling of data
¢xamples can be set aside for testing the neural network. If an inadequate
number of training examples are available, creating a data set from simulator
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runs or using expert evaluations of situations may be nccessary and accept-
able. Several experts can rate examples, and a single network might be
trained on the sum total of the expert’s views. Alternately, a network might
be trained for each expert’s opinion to see which nctwork gives the best
results after training.

- For fabricated examples, use of “border” patterns (examples in which the
output just begins to be different) can be very effective. Rescarch has shown
that the success rate of a trained ncural network increases rapidly as the
number of border training patterns used increases. A manufactured training
set using both border patterns and divérse-valued training patterns is sub-
stantially better.

If there are only a fow data examples, a technique called “leave one out”
can be used to train several networks, each with a different subset of most of
the examples. Then each network is tested with a different subset. Leaving a
different set of cxamples out of the training set and subsequently testing on a
different set will greatly improve assessing the network’s effectiveness and
may show where more examples are needed. It should also indicate whether
a network trained with all of the examples can generalize well.

Randomly chosen training patterns, although often used, may inadver-
tently emphasize the wrong conceptual points. Since the most easily identifi-
able patterns must be included for the network to learn the basics, a
randomly chosen training set may not include these basic patterns in the
proper proportions (Lawrence, 1991).

Data that cover too long a time spun can include changes of cquipment or
other cvents that make the process nonstationary or even discontinuous,
When the behavior has changed over time, data collection should be limited
to a time period of similar behavior. For example, the strongest influcnces on
the value of gold today may not be the same as those before the breakup of
the Saviet Union. Adding a ncuron indication as to whether the data
examples were before or after breakup will solve this problem. When the
changes are long term rather than associated with specific events, throwing
out the oldest data and adding newly collected examples to a training sct can
be very helpful.

11.7 TRAINING NEURAL NETWORKS

Backpropagation Training

Backpropagation is a gradient descent system that tries to minimize the mean
squared error of the system by moving down the gradient of the error curve.
In a real situation, however, the network is not a simple two-dimensional
system, and the error curve is not a smooth bowl-shaped figure. Instead, it is
usually a highly complex, multidimensional, and more-or-less bowl-shaped
curve that can have all kinds of bumps, valleys, and hills that the network
must negotiate before finding its lowest point (the minimum mean-squared
error position). The number of iterations through the data set required to
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achieve a given level of training will generally increase as the size of the
training set increases, as the number of layers increases, and as the size of
the middle layer increases. In general, the bigger the nctwork, the slower
each pass through the training data, when the network is simulated on a
serial-type digital computer.

Dealing with Local Minima

Despite backpropagation’s widespread use, it is sometimes difficult to use,
and training times are often excessive. Caudill (1991a) has offered some tips
on training techniques that have been found to be useful. It is important to
note that these suggestions are specific to backpropagation networks and may
be unsuitable for other paradigms.

Perhaps the “easiest” way to deal with a neural network that is stuck in
local minima created by the hills and valleys and will not train is to start over
by reinitializing the weights to some new set of small random values.
Geometrically, this changes the starting position of the network so that it has
a new set of obstacles and traps to negotiate to get to the bottom of the error

vsurface. Tt is expected (but certainly not guaranteed) that as a result of
starting from a new position there will be fewer obstacles in reaching the
global minimum of the error surface, The difficulty is that the user must be
willing to forego any progress in training and start over on a path that may
be no better, or even worse, than the first path.

A less drastic approach is to “‘shock” the neural network by modifying the
weights in some small random or systematic way. Again, it is expected (but
not guaranteed) that a small move in the error surface will provide a path to
the global minimum. A good rule of thumb is to vary each weight by adding a
random number of as much as 10% of the original weight range (e.g., if the
weights range from —1 to +1, add random values to each weight in the
range —0.1 to +0.1). Generally, this technique is used when the network has
lcarned most of the patterns before stalling, whereas starting over is used
when the network has been unable to learn very few of the patterns. Such
changes should be made only after an integral number of epochs have been
presented to the network.

Applying the proper amount of momentum to a backpropagation network
is probably the single easiest thing to do to make the network train faster.
The momentum term helps a backpropagation network keep moving down
the error surface, even when it meets a temporary upward surface, In effect,
Mmementum ensures that if the weights were changing so the error decreased
last time, there will be a “force” to make the next weight change reduce the
error further. '

_Another cffective way to reduce a network’s training time is to use slightly
Nhoisy data. Oddly enough, networks actually train faster with noisy data. For
example, an input that is a matrix-binary representation (0s and 1s) of an
alphabetical letter that is being mapped into an ASCII code for the letter will
train faster if the “pure” binary representation is corrupted by the addition
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of 10-15% random noise. The network never sees two images of the letter
that are exactly alike. Hence, this technique forces the network to generalize,
a key goal in the training of neural networks.

Monitoring the Training Process *

Manitoring the training process includes looking for local minima, overtrain-
ing, and network paralysis. Eliminating local minima or overtraining may
involve introducing specific or random’ changes into the weights and often
adjusting training parameters (c.g., increasing the momentum or changing the
learning and /or activation function constants). If these techniques do not
produce results in a reasonable time, it may be necessary to reinitialize the
weights and start the training over.

The method of presenting the training set to the network can affect the
training resulls in certain learning algorithms. To mitigate these effects,
neural network simulation software often change the order in which the
training cases are presented to the network (e.g., present the test cascs
randomly or in some predetermined order) or delay the adjustment of the
weights until an integral number of epochs of training data (or a specific
number of data sets) are presented to the network.

After the network has been trained, it is important to test it against both
the training set and examples that the network has never encountered before.
Increasing the size of the hidden layer usually improves the network's
accuracy on the training set, but decreasing the size of the hidden layer
generally improves generalization, and hence the performance on new cases.
An optimal size can be attained by a balance between the objectives of
accuracy and generalization for each particular application. Creating a func-
tioning neural network that provides the most accurate, consistent, and
robust model possible requires iterative building, training, and testing to
refine the neural network,

Overtraining is probably the most common error in training neural nct-
works. The best method of ensuring that overtraining does not occur is to
monitor periodically the sum square error for both the training data and the
test data. It is normal for the sum square error for the training data to
continue to decrease with training. However, this may be forcing the neural
network to fit the noise in the training data. To avoid this problem, stop
periodically the training, substitute the test data for one epoch, and record
the sum square error. When the sum square error of the test data begins to
increase, the training should be stopped. Indeed, if the weights at the
previous monitoring are available, they should be used.

Another form of testing uses special inputs to study the ncural network’s
responses (similar to the use of impulse or step functions in testing electrical
circuits under specific conditions). Activating (cither positively ‘'or negatively)
an input node and then examining the input-output relationship (e.g., the
ratio of the change in a specific output for a given change in a specific input)
can give the sensitivity of input-output relationships. If significant problems
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are found, the ncural network or the training process must be debugged.
Every aspect of the network and the training process must be examined,
including the quality, representativeness, and accuracy of the training data
scts, the constants within the learning algorithms, and especially the normal-
ization and scaling (including denormalization and descaling) processes,

Role of the Hidden Layer in Training

The traditional explanation of the functions of the hidden layer of a well-
trained three-layer network is that it views the input pattern to determine
which features are present in the pattern, and the output layer considers
what output should be generated for the particular combination of features
identified by the hidden layer. Unfortunately, the hidden layer may memo-
rize the input patterns rather than learning the features, especially if the
number of neurons in the hidden layer exceed the number of training cases.
If the network memorizes its response instead of generalizing features, it may
give the perfect answer for the training input and have no idea at all what to
generate for a test-input pattern. If a single neuron responds to a particular
input pattern, it is called a “grandmother” cell. Unfortunately, this concen-
tration of information into a single neuron makes the network, which is
usually robust, very vulnerable to the failure of a single neuron. Memoriza-
tion can be prevented by ensuring that the network never sees exactly the
same input pattern more than once. This can be done by adding random
noise to the each input pattern.

Setting the number on neurons in the middle layer equal to the number of
patterns in the training set can encourage the network to assign one neuron
in the middle layer to each training pattern, which obviously docs not
encourage general featurc detection and gencralization. Solutions include
adding noise to the input or reducing the number of neurons in the hidden
layer.

Applying a little noise to the training set will generally produce a network
that is robust to noisy inputs. Although a network trained with no noise ray
still do well with noisy inputs in the real world, one trained with an
appropriate level of noise will do much better. The exact type and amount of
noisc depends on the data, but a general rule is that 10-15% perturbation of
the signal is a good starting point.

In general, the exact size of the middle layer isn't a critical parameter, and
training times don’t vary significantly for similar-sized middie layers. Some-
times increasing the size of the middle layer will provide more feature
detectors. When the middle layer is just too small, increasing it by 10% or
20% may make a huge difference. However, too large a middle layer will:
lengthen the training process, and extra degrees of freedom may allow the
neural network to “overtrain” (i.e., the neural network will be trained to the
point that it fits the noisy fluctuations in the mapping relationship).
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12.1 INTRODUCTION

Although fuzzy and neural systems are structurally different, they share a
rather complementary nature as far as strengths and weaknesses are con-
cerned. In this chapter we will examine the possibilities of introducing fuzzy
operations within individual ncurons and networks. Tmproving the overall
expressiveness and flexibility of neural networks is what is sought. In the next
chapter we will bring neuronal learning capabilities into fuzzy systems.
Making fuzzy systems capable of on-line adaptation would be the desirable
objective there, Neuronal enhancements of fuzzy systems as well as the
fuzzification of neural systems aim at exploiting the complementary nature of
the two approaches through their integration into a soft computing paradigm
that permits a certain tolerance for imprecision and uncertainty.

Applying fuzzy methods into the workings of neural networks constitutes a
major thrust of neurofuzzy computing (Gupta and Rao, 1994; Gupta, 1994;
Pedrycz, 1993; Hirota and Pedrycz, 1993b). Although the ficld is an active
area of research undergoing major changes, in this chapter, at the risk of
omitting important research findings and developments, we attempt to intro-
duce some fundamental notions and applications. To begin with, we briefly
review the basic model of the artificial ncuron we presented in Chapter 7 and
then proceed with the “fuzzification” of its workings. Mathematical models of
fuzzy neurons employ adaptive fuzzy relations and operators at the synapses
in order to convert the external inputs into the synaptic output. Fuzzy logic
operators such as min (A) and max (V ), and more generally 7' norms and §
norms, are used to perform the confluence and aggregation of dendritic
inputs to a neuron’s main body, or soma. Although fuzziness may be intro-
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410 FUZZY METHODS IN NEURAL NETWORKS

duced at all aspects of the workings of an artificial neuron (ie., inputs,
weights, aggregation operation, transfer function, and output), the main
thrust of fuzzy neural nets has focused on (a) the fuzzification of the
dendritic inputs and (b) the aggregation operation of a conventional neuron,
The result is a variety of fuzzy neurons differing in properties according to
whether, for example, instead of summation we aggregale the inputs through
max, min, or some other T-norm and S-norm operation. At the end of the
chapter we present a set of applications and a summary of recent develop-
ments. It should be stressed, however, that since there is a rapidly growing
volume of research dealing with fuzzified neural networks, our survey is
partial and unfortunately incomplete.

122 FROM CRISP TO FUZZY NEURONS

As we have seen in Chapter 7, a neural network consists of densely intercon-
nected information processing units called artificial neurons. The structure of
an artificial neuron is schematically reviewed in Figure 12.1. It consists of
external inpuls, synapses, dendrites, a soma, and an axon through which
individual neural output is transmitted to other neurons. Let us call this the
Jth neuron of the network. We recall that a vector of external inputs
[x1,x5,..., %17 enters the jth neuron and gets modified by weights
Wijp Wajr ..., W,; representing the synaptic junctions of the neuron. In earlier
chapters, we considered these weights as simple gains—that is, scalars
modifying via multiplication the external input vector [y xy0000,x, 1. In
general, however, the synaptic weights may be functions of the external
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Figure 121 Simpiified model of o neuron as an information processor,
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inputs—that is, wy;(x)),wy,(x3),.. ., w,;(x,). Each sgimaptic output consti-
tutes an input to the soma, called the dendritic input. Thus, the input to the
jth neuron’s soma is the vector of dendritic inputs [dyidyiees dn__-]T. where
each dendritic input is a.transformed version of an external input x; that is,

di =y lx) (12.1-1)

The weighting function w(-) that models the synaptic junciion between the
axon of the transmitting ncuron and the dendrite of the receiving neuron is
thought of as a memory of the neuron's past expericnce, capable of adapting
to new experiences through learning.

The neuron produces an output response when the aggregate activity of all
dendritic inputs exceeds some threshold level 7). Computing this aggregate
input activity is an essential somatic operation as seen in Figure 12.L
Mathematically, this is usually expressed as

L=Yd, (12.2-2)

where n is the number of dendritic inputs to the neuron. It should be
mentioned, however, that there is nothing sacred about summation as the
aggregation operator in cquation (12.2-2). We could, and indeed we will, usc
other aggregation operators—for example, min, max, and more generally T
norms and S norms—in place of summation.’

Finally, the output y, of the jth neuron is produced by the other essential
operation within a neuron’s soma, which is that performed by the activation
(or transfer) function ®, (really a decision function). The neural output y, is
mathematically expressed as

y, = ‘1‘;[]:' Tj] (12.2-3)

where @, is the activation function that describes the degree to which the jth
neuron is active, f; is the total aggregate input activity incident on the soma
of the neuron, and ?: is the inherent threshold level for this ncuron. The

perceptron, for example, is an artificial neuron with a neural outpul given by

i=1

N
y; =sign| 1w, x, + ?J] (12.2-4)

where the activation function is assumed to be a binary “on-off” function
given by sign [], the aggregation operator is the summation of weighted
inputs, and the inherent threshold 7; is a negative bias value. For the

' » . ’ . ;
See Appendix for a discussion of T norms and their co-norms, called 8 norms.
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Figure 12.2 Anexample of a min (AND) fuzzy neuron.

perceptron, all external inputs and the resultant ncural response are assumed
to be binary (+1). The synaptic weights, w,;, may be either positive (excita-
tory) or negative (inhibitory) real numbers. Both the synaptic weights and the
threshold level are assigned to the neuron during rraining.

Fuzzy Neurons and Fuzzy Neural Netwaorks

A fuzzy neuron has the same basice structure as the artificial neuron shown in
Figure 12.1, except that some or all of its components and parameters may be
described through the mathematics of fuzzy logic. There are many possibili-
ties for fuzzification of an artificial neuron and hence one encounters a
variety of fuzzy ncurons in the literature, all possessing interesting logic-ori-
ented information processing properties. Figure 12.2 shows a fuzzy neuron
where the external inpul vector x =[x}, x5,...,x,]7 € R" is defined over
the unit hypercube [0,1]" and is comprised of fuzzy signals bounded by
graded membership aver the unit interval [0, 1).2 The external inputs, after
being modified by synaptic weights w;; (also defined over the unit interval),
become dendritic inputs d;; to the soma. Input modification may be done
through straightforward multiplication d;; = x;w; or taking the maximum
between input and weight d;; = x; V w; (i.c., like an OR-gate).

The dendritic inputs are processed by an aggregation operator I; that
selects the minimum (A ) of the product (or max) modifications; for example,
n n

L= Ady= Axw; (12.2-5)

iy
i=1 i=1

“Ter implicity we will use x; instead of #;, and 5o on, when referring to fuzzy signals.
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This type of fuzzy neuron may be thought of as the implementation of fuzzy
conjunction ( AND-gate). Gencerally, fuzzy neurons use aggregation operators
such as min and max and more generally T norms and § norms instead of
summation as in equation (12.2-2),

As far as the meaning and purpose of neuronal fuzzification goes, we can
say that cach fuzzy neuron may be thought as the represcntation of a
linguistic value such as LOW, MEDIUM, and so on.® Hence the output of
the neuron y; in Figure 12.2 could be associated with membership to some
linguistic value; that is, y, expresses the degree to which the input pattern
[xq,25,...,x,]" belongs to a given linguistic category. In other words, the
output y; is a real value in the interval [0, 1] indicating the degree to which
the applicd external inputs are able to generate the given linguistic value.
The jth neuron after receiving n inputs [x;, ;,...,2,]" and producing an
output y; can subscquently convey this degree to the m — 1 other fuzzy
neurons in a network consisting of m neurons,

The synaptic operations, but most importantly the aggregation operator,
and the activation function determine the character of a fuzzy neuron. Using
different aggregation operators and activation functions results in fuzzy
neurons with different properties. Thus, many different types of fuzzy neu-
rons can be defined, Consider, for example, the following neurons (Kwan and
Cai, 1994),

Max (OR) Fuzzy Neuron

A max fuzzy newron is a neuron that uses an aggregation function that sclects
the maximum (V) of the dendritic inputs to the soma; that is,

I = Iv;,r:w” (12.2-6)
fi

(A max fuzzy neuron is an implementation of a fogical OR; hence we can also
call this an OR fuzzy neuron.*)

Min ( AND) Fuzzy Neuron

A min fuzzy neuron is a neuron that uses an aggregation function that selects
the minimum (A ) of the dendritic inputs; that is,

L= Axwy (12.2-7)

i=1

jActual!_v fuzzy neurons may model if /then rules also, as we shall see [ater on,
A special class of OR and AND furzy neurons that has been defined by Pedryez in terms of T
norms will be examined later in the chapter.

.
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(A min fuzzy neuron is an implementation of a logical AND; hence it can
also be called an AND fuzzy neuron.)

In addition, one can define inpuw! fuzzy neurons such as the fan-in newrons
that we have seen in Chapter 7 whose purpose is simply to distribute input
signals to other neurons. An inpuf fuzzy neuron is an element used in the
input layer of a fuzzy neural network, and it has only one input x such that

peig (12.2-8)

In general, the weights, the activating threshold, and the output functions
which describe the interaction between fuzzy neurons could be adjusted via a
learning procedure resulting in neurons that are adaptive. The aim is, of
course, to synthesize fuzzy neural networks capable of learning from experi-
ence.

123 GENERALIZED FUZZY NEURON AND NETWORKS

Let us consider a nenral network consisting of m fuzzy neurons, cach
admitting n inputs. As noted in the previous section, fuzziness may be
introduced at the synaptic inputs (weights), the aggregation operation, and
the transfer function of individual neurons. Thus, fuzzy sets can be used to
describe various aspects of neuronal processing (Gupta and Knopf, 1992).
The following are conventions frequently encountered in fuzzy neural net-
works.

Synaptic Inputs. The input vector x =[x, x;,...,x,) €R to a fuzzy
neuron may be thought of as grades of membership to a fuzzy set. For
simplicity we do not employ the usual symbol for membership ( ,).
Rather the individual inputs x; & [0, 1] are taken to represent fuzzy
signals bounded by a graded membership over the unit interval.

Dendritic Inputs. For each jth neuron in the network (j = 1,2,..., m) the
dendritic inputs arc also bounded by a graded membership over the
unit interval. Thus, if we let « € [0, 1] designate an element of a gencric
universe of discourse [0, 1], we would use for defining fuzzy quantities
the dendritic inputs are fuzzy sets

d; = i #y (1) /1, ue[0,1] (12.3-1)
j=1

Aggregated Values. The output of the aggregation operator in each of the
m fuzzy neurons of the network can also be thought of as graded
membership over the unit interval. Thus we have

b= i ra(u) /i, ue[0,1] (12.3-2)

=1
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Neuron Output. Finally, the cutput y; of cach of the m fuzzy neurons may
also be thought of as a grade of membership to a fuzzy set; that is,

m

y= X #_‘,J(u)/u, ue[0,1] (12.3-3)
=1

The weighting function w;; transforming an external input x, into den-
dritic signal d;; for the jth fuzzy neuron does not have to be just a simple
gain. It can, in general, be a fuzzy relation defined over the Cartesian product
wy; =x; X d,;. Such a synaptic junction fuzzy relation between the external
inputs x; and dendritic inputs ;; may assume many forms, with the simplest
and actually the most common being d;; = x,w,;. More generally, however,
the dendritic inputs d,; may be given by the composition x;ew,; of fuzzy
input signals and the weight relation; that is,

d =y w'”. (123-4}

1

The concept of fuzzy negation is used in order to produce both excitatory and
inhibitory inputs to a fuzzy ncuron.® Consider a jth fuzzy neuron such as the
one shown in Figure 12.3. The synaptic outpuls, d;;, may be modified (o
produce excitatory or inhibitory effects by defining a new variable §, to
denote both excitatory and inhibitory inputs received by the soma, and a
negation operation that modifies d,; as follows:

d;;  (for excitatory inputs)

I | (for inhibitory inputs)

Consider, for example, the fuzzy neuron shown in Figure 12.3. This ncuron
receives four dendritic inputs: d,;, d,,, dy;, dy;. The first two are excitatory
inputs sent to the aggregation operator just as they are, while the second two
are inhibitory inputs, which are complemented in a fuzzy scnse according to
cquation (12.3-6). We graphically indicate the inhibitory signals by <mall
(white) circles at the end of the corresponding arrows as shown in Figure

$is R H 3 e o i
Since we use the [0, 1] range, it is not possible 1o use negative values for inhibitory inputs,
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‘H‘;j

- xcitatary 1j=dyj 53;=d.3,'
nhibitory 53,= 1 - ‘fj'j 5.4= 1 - dy

Xy

Figure 12.3  Excitatory ond inhibitory dendritic inputs to g fuzzy neuron.

12.3. Thus this ncuron’s aggregation operator [, will aggrepate the following
signals:

8); = dy;

I

A (12.3-7)
63}2 1 _ﬂtjj

By=1—d,

The result of the aggregation will be subsequently modified by the function
®; to produce the neuron’s output W

12.4 AGGREGATION AND ACTIVATION FUNCTIONS
IN FUZZY NEURONS

In a fuzzy neuron the aggregation operator I, may be a T norm (see
Appendix) mathematically expressed as

n
L= Ts, (12.4-1)

Often, but not always, fuzzy neurons do not explicitly use a threshold;
thresholding may instead be contained within the choice of the activation
function. The activation function @, is a mapping operator that transforms
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the membership of the aggregate fuzzy set I, into the fuzzy set of the
neuronal response y;. In a sense, this mapping operation corresponds to a
linguistic modifier such as VERY and MORE-OR-LESS (see Chapter 2). The
role of this modification is to enhance or diminish the degree to which the
external inputs give rise to the fuzzy value represented by the jth fuzzy
neuron, before becoming an external input to neighboring neurons. Thus, a
general expression of the response of the jth fuzzy neuron may be written as

y=w[1] = cbj[g: au.J (12.4-2)

where cach dendritic input 8,; is given by cquations (12.3-5) and (12.3-6).

If the activation function is assumed to be a linear relationship with unit
slope (ie., y, = I), we have an interesting special case (we will see more of it
in the following sections), a simplified fuzzy neuron whose response can be
written as

yi= T 85 : (12.4-3)

The concepts of T norm and § norm (or T conorm), originally used in the
field of probability theory, provide a means for generalizing and parametriz-
ing fuzzy sct operations such as urion and intersection as well as implication
operators, fuzzy inferencing, and fuzzy neurons (Dubois and Prade, 1980;
Gupta and Qi, 1991; Terano et al, 1992: Terano et al., 1994),

AT norm can be thought of as a circuit (gate) with two inputs (x,, x,) and
one output T(x,, x,), also written as x,Zx,. The most widely used 7' norm is
the min; that is, T(x,, x;) =x, Ax, (but also algebraic product, bownled
product, and drastic product are all T norms; see Appendix),

An § norm can be thought of as a circuit with two inputs (x,, x,) and one
output §(x,, x,), also written as x; § x50 A very common § norm is the
logical sum or max; that is, 5(x,, x,) =x, Vx, (but also the algebraic sum,
bounded sum, and drastic sum are some other § norms).

The relationship between 7 norms and S norms is given by fuzzy
De Morgan’s laws, which may be written as

T(xy,x,) = g(“—’viz}

. (12.4-4)
§(xy, x;3) = T('ft- -fz)

where 7 is the T norm and § is the .S norm and the bar over the symbols

indicates negation. _
Let us consider the simplified fuzzy neuron, shown in Figure 12.4a, using
a linear transfer function and output given by equation (12.4-3). For simplic-
ity we assume that the dendritic inputs are dircctly reccived from the external
inputs ignoring any weight function modifications, This neuron can be

-
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X!
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Figura 12.4 A simplified fuzzy neuron using T-norm agaragation and a linear transfer
function can perform both (@} T norm and (b) S norm operations on the signals
Coy, 25D

thought 'of as the realization of a T norm operation. With the aid of
equations (12.4-4), this simplified fuzzy neuron can be used to construct a
network of neurons, such as the one shown in Figure 12.45, that realizes an §
norm. As indicated by the small circles in the left neuron of Figure 12,45 the
inputs are first necgated in a fuzzy sense and then aggregated by a T-norm
aggregation. The output of this neuron is complemented again by the second
neuron, in accordance with equation (12.4-4). Thus the network of neurons in
Figure 12.4b is a realization of an § norm, made out of cascaded neurons
that individually use T norm for the aggregation operation.

126 AND AND OR FUZZY NEURONS

A special class of fuzzy neurons are the AND and OR neurons shown in
Figure 12.5. These neurons employ the T norm and S norm operations for
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Figure 12.5 (a) An AND fuzzy neuron ond (b) on OR f 22y neUron.

forming dendritic inputs to the soma and for aggregating them (Pedrycz,
1993, Rueda and Pedrycz, 1994; Pedrycz and Rocha, 1993).

The AND ncuron first uses equation (12.3-4) to perform an § norm or OR
aperation between external input x; and corresponding weight w,; that is,

d;; =x; ORw;, (12.5-1)

Subsequently, it uses a 7 norm or AND operation lo carry the following
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aggregation of its dendritic inputs (assuming a linear activation function):
y; = (x, ORw;) AND (x, OR W) AND -+ AND (x, OR W) (12.5-2)

It should be noted that AND and OR are generally realized by taking any T
norm and § norm—for example, logical product (min), logical sum (max),
algebraic product, algebraic sum, and so on. In practice, however, the min
and max interpretations are most commonly used.

The output of an AND neuron can succinctly be written using 7" norms
and S norms as

y = g'l'(x, Swy) (12.5-3)

The OR neuron, on the other hand, performs a complementary computation;

=S8 (x Twy;) (12.5-4)

i=]1

Both the AND and OR neurons given above are intrinsically excitatory in
their behavior; that is, higher values for the x,’s imply higher values for - To
allow for inhibitory behaviors of such AND or OR fuzzy neurons (and still
maintain the standard [0, 1] range of the grades of membership) we include
negated values of x,—that is, 1 — x;; [as we have seen before in equation
(12.3-6)]—thus potentially doubling the size of the input vector. The AND.
and OR neuron can now handle both inhibitory and excitatory behaviors,
depending on the numerical values of the connections.

Now let us look at some interesting boundary cases, say in the AND
neuron (Pedrycz, 1993). First, suppose that all the weights of a neuron equal
zero—that is, w;; = 0. Then we should have x; § w;; = x; (c.g, x, S 0 = x,).
Second, if all the weights are unity, w;; = 1, we have x; § 1 = 1; that is, the
input does not have any influence on the output. To deal with such extremes,
a bias term may be added as an additional term in (12.5-3) driven by a
constant input signal always equal to 0, say 0 § Wy, Where w,, denotes the
connections associated with this input. The AND neuron incorporating such
a bias is given by

g f_Tn‘ (xi S wy) (12.5-5)

where, by convention, we put x, = 0. A similar bias term may be added to an
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OR neuron, making equation (12.5-4) look like

Yy '§n (x; Tw,) (12.5-6)

In equations (12.5-5) and (12.5-6) we have assumed that the neuronal output
is produced immediately after aggregation; in other words, the activation
function used is lincar. However, a nonlinear activation function such as a
sigmoidal function may also be used.

12,6 MULTILAYER FUZZY NEURAL NETWORKS

The fuzzy neurons discussed in the previous section can be put together to
construct more general compultational structures with enhanced representa-
tional capabilities. While in Part II of the book we used networks composed
of identical neurons, the networks built out of fuzzy neurons are often
heterogeneous; that is, they are composed of neurons with different compu-
tational charatteristics—for example, AND or OR fuzzy neurons—organized
into several layers (most commonly (hree),

Let us look at a three-layer neural network built out of AND and OR
neurons [originally proposed by Pedrycz (1993)], Each layer in the network is
constructed out of neurons of the same type (ic., AND or OR only). A
hidden layer is used to enhance the representational capabilities of the entire
structure. In Figure 12.6a the hidden layer is made out of AND ncurodes,
while in Figure 12.6b6 the hidden layer has only OR neurons. These are
actually two different types of networks: One uses AND neurons in the
hidden layer, with the output layer consisting of a single OR neuron, whereas
the other uses OR neurons in its hidden layer and a single AND neuron in
the output layer. As seen in Figure 12.64, the first network has an input layer
consisting of 2n input neurodes: both networks use direct signals and their
complements, namely, Xy Xzpnens Xy X, Xy, 000, ¥, Because the neurons of
the first layer are fan-in neurodes [sce equation (12.2-8)], (they simply
distribute the input signals to all the nodes of the hidden layer,.

The hidden layer itself is composed of p AND neurons, each one of them
sending to the output layer signal

z; = AND(w,, x), =120 (12.6-1)

"The weight vector of connections, wy, captures information about the connec-
tions between the /th node of the hidden layer and the input nodes; that is,

2 = [-Z(I' S W,{.)}r( T(5 Su.',(ﬂ‘”)] (12.6-2)

i=1
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Figure 12.6 Three-layer networks with fuzzy (@) AND ond (b) OR neurons in the
hidden layer

where [ = 1,2,..., p. The output layer consists of a single OR performing an
aggregation of z’s:

Fe
y= ;Sl (2, Ty) (12.6-3)

If we put OR ncurons in the hidden layer and an AND ncuron at the output
layer (see Figure 12.6b, we perform a similar sequence of computations,
except we interchange T° norm and § norm operations in equations (12.6-2)
and (12.6-3).
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Other network architectures are also possible. Consider, for example, the
homogencous network shown in Figure 12.7. Here only T-norm aggregating
(AND) neurons are used to realize a network structure of three layers
emulating a system of m fuzzy if/then rules, that is a fuzzy rule base,
receiving n inputs and producing one output. The first layer consists of m
fuzzy neurons, with each neuron being a representation of an if/then rule.
As scen in Figure 12.7, the output of cach fuzzy neuron in layer 1 becomes
an external input to a single OR neuron realized as cascaded AND neurons
(see Figure 12.4) comprising layers 2 and 3. This three-layered neural
network architecture can be used to simulate a situation when n fuzzy inputs
arc applied to m fuzzy inference rules (Gupta and Knopf, 1992).

12.7 LEARNING AND ADAPTATION IN FUZZY NEURAL NETWORKS

The process of learning in fuzzy neural networks consists of modifying their
parameters by presenting them with examples of their past experience. How
can this be done in pmchce'? Typically by a.d]umng the weights of the
networks so that a certain performance index is optimized (maximized or
minimized). This requires that a collection of input—output pairs be specified
and also requires a performance index that expresses how well the network
maps inputs x; into the corresponding target values of the output r,.

Let us recall that an important difference between a crisp (nonfuzzy)
neuron and a fuzzy neuron lies in the model of the synaptic connection.

Xn

Layer | Layer 2 Layer 3

Figure 12.7 A fuzzy neural network architecturs for m fuzzy rules accepting n inputs.
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Synaptic connections in a crisp neuron are linear gains multiplying inputs ¥
Any adaptation or learning occurring within an individual neuron involves
modifying the values of these gains by adjusting w;;. For a fuzzy neuron,
synaptic connections are represented as a two-dimensional fuzzy relation
between synaptic inputs and outputs. Hence, learning in fuzzy neurons, in the
most general case, involves changing a two-dimensional relation surface at
each synapse, )

Consider one synaptic connection to the jth neuron as shown in Figure
12.8. For a given external input to this synapse at time k, x,(k), we want to
determine the corresponding fuzzy relation, w,(k), such that we have mini-
mum error ¢;(k) between the fuzzy neuron response and the desired target
response ;(k). In order to achieve this, we can employ the following
adaptation rule to modify the fuzzy relation surface:

wi(k +1) = wi(k) + Aw (k) (12.7-1)

The term Aw;(k) is the change in the fuzzy relation surface given as a
function F [-] of the error ef(k); that is,

Aw;;(k) = Fe;(k)] = F[t,(k) — y; (k)] (12.7-2)

In multilayer networks, learning involves matching ¢, (up to some error) with
the output of the entire network y. For this purpose, a distance function—for
example, Euclidean distance between y and t,—may be used. Then a
performance index Q (a global error term to be minimized) may be defined
as follows

I"b
Q=X [y(x) -u] (12.7:3)
k=1
x[(®) j1 neuron's soma
¥y (k)

Weight e (k) fI
Modification &

Algorithm 1

G

Figure 12.8 Leamning ot the level of the individual neuron.
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Q in Lquation (12.7-3) reflects quantitatively the state of the networks
learning process. Optimization includes all the weights of the network be-
tween the input layer and the hidden layer as well as between the hidden
layer and the output layer. The simplest update scheme is that in which the
madifications are driven by a gradient of the performance index taken with
respect to the connections themselves (see Chapter 8). The learning formula
can be expressed as

aQ

e e 2.7-4
Ié(n:onruecticms) e

A(connections) = — 7

where 5 denotes a leaming factor, 1 & (0, 1). Detailed computations can be
performed once the performance index Q and a parametric description of
the network have been defined, as is done in the example that follows.

Example 12.1 Learning and Adaptation in AND / OR Neurons. Given a
three-layer network having a hidden layer of AND neurons and output with
an OR fuzzy neuron (as shown in Figure 12.6@) and an error based on sum of
squared errors, we want to derive an on-line learning algorithm for modifying
its weights. The network’s neurons use algebraic swm for the § norm and use
product for the T norm [see Appendix and Pedrycz (1993)).

A single pair of input-output data involves x and 1.° For the hidden layer
(sce Figure 12.6a) we have the following intermediate outputs based on
equation (12 6-2);

" n
:.lr = 2‘ {,\"- S wl‘u)]r[ :[' (i.i S‘ ”‘Ja’|{r1ﬂ'1)j| U‘:l,?..l-l)
P i=1
While the output layer gives [according to equation (12.6-3)]
y2g
y= 8 (2, Ty,) (E12.1-2)
fim1
where p denotes the dimension of the hidden layer. In order to adjust the
weights, we differentiate the performance (error) function of (12.7-3) with
respect 1o hidden layer weights, that is,

é@ a0  ay 2[y(x) — t]ay

- =1 Zosm, =19, .
awy,; gy dwy; awy; Pe 35Tk an

(E12.1-3)
and then we differentiate the error function with respect to the intermediate

Since we develop an on-line learning version [where each pair (x;, t,) immediately affects the
cennections of the network), the index k& denoting the element in the training set can be
dropped.
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weights (we use the letter v for those);

30 2[y(x) —t]ay

s BEER E12.1-4
au, aw, P ( )

Now we have that

ay d L3 3 : . ) |
G, v, h:_rl(fn TU:.)] - TBEI‘“ (zTw)] (E12.15)

where A is a shorthand notation defined as A = § (2, S v,)-
LES

Since we use algebraic sum and product for the 7" norm and S norm, we
have

=[A +uyz,— Avz;] = z)(1 — A) (E12.1-6)

r}' U
(A8 (2, Tv)] = [4S2,8] =4 + 28, — Az, (E121-7)
Hence we can compute that the output change with respect to input weights
is given by the following expression:
ay Pogy dz,

(E12.1-8)

E“‘"I:j het 925 r'h-.",IF

The above sum reduces to single component, since only one term contributes;
that is,
: 62;.

thl.f‘

=0, Vh#h, (E12.1-9)

Hence, we obtain
ay

O S (2 Tbl)] = %H[BS (an' TUH)] = _a_i_;[BSzhl’uM]

dzy 72y

o
= [B + zjuy — Bzyuy,] = v, — Buy

azy

ay ay dzp,
AWy, ; ri'z_,;r Wy, ;

ay £

=UI{I_B)! B= S (Uh Szh)

Iz, hok,

dz, a L "
— W, : + X. — r L+ X =W o
3"'1.”' aww '1:11( L i wh”x‘)‘l:{ (wﬁ;rn iy TX “’J:,{m-.]ra)

(E12.1-10)
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Thus we can write

7 G(l=x), HAlxsn
g 1 _’) 7 (E12.1-11)
awy, ; C(1-%), ifj>n

where C, and C, stand for the product terms in (E12.1-10), not including x;
or its complement.

If we use nondiffcrentiable 77 norm and § norm such as minimum and
maximum, the derivatives must be judiciously defined since they can severely
affect the learning algorithm as we saw in Chapter 8. For example, the
derivative of (x A w) with respect to w is
B {1- Exmw (E12.1-12)

dw 0, ifx<w
This type of “on-off” weight updates can easily be affected, however, by
peculiarities in the conncctions and the data encountered during learning.
One possibility for ameliorating this problem is to replace the above two-val-
ued situation, that is, 0 or 1 in equation (E12.1-12), by some smooth,
although very similar, function; for example, (Pedrycz, 1993)

.1.[{1 +w) — V(x- w)z + 8% 4 5] (for minimum)
l—[(r -awy =k A= w)2 + 51- - é‘i] (for maximum)

where the parameter § is typically a small positive constant (about 0.05). O

Example 12.2  Steering Control for an Automobile. Let us look at an exam-
ple of an automatic steering control mechanism (Maeda and Murakani, 1989;
Sugeno and Nishida, 1983) and its equivalent fuzzy neural network architee-
ture (Gupta, 1994) (Gupta and Knopf, 1992)

The controller is bascd on a driver’s ability to manipulate both the position
and direction of a moving automobile on a straight highway (assumed for
simplicity to travel down the middle of the road). The approximate position
and direction for the vehicle with respect to the road edge is used, and hence
position-from-left-side position-from-right-side, direction-angle and change-in-
direction-angle will be fuzzy variables. The output of the controller is another
fuzzy variable, namely, the steering-angle by which the steering wheel should
be turned (Gupta and Knopf, 1992). Figuie 12.9 shows the position and
direction variables employed in modeling the situation,

The steering control rules consist of two rule bases. The first rule base,
called the positioning algorithm, involves a linguistic description that posi-
tions the wvehicle in the middle of the road, and the sccond, called the
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Figure 129 The position and direction fuzzy varables in the automaobile steering
control problerm are left and right distances from road side, position, and steering
wheel angles.

direction algorithm, involves rules to ensure that the vehicle is parallel to the
edge of the road.
We can write the 16 rules of the positioning algorithm succinctly as

if position-from-left-side is L} AND position-from-right-side is R
then steering-angle is 6/,¥j=1,...,16
(E12.21)

The direction algorithm has nine rules that can be succinctly written as

if direction-angle is ¢} AND change-in-direction-angle is A¢f
E12.2-2
then steering angle is 8%,V j=1,...,9 ( )
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where L%, R, ¢/, Agf, and 6 are linguistic values for the jth rule and k is
the time index. These fuzzy sets are defined as follows:

Ir B Fuzzy values describing the approximate distances between the
; road edge and the vehicle (R, right; L, left)
¢, A¢*  Fuzzy values describing the angle and change in angle for the
direction of the vehicle with respect to centerline
i Fuzzy value for the output steering angle al time &

The linguistic labels of these values are as follows:

Zl Approximately zero
S Small

M Medium

L Large

P Positive

N Negative

FS Positive small
FM Positive medium
Bl Positive large

NS Negative small
NM Negative medium
NL Negalive large

The membership functions for the input and output fuzzy sets are shown in
Figure 12.10.

Lach rule in the fuzzy positioning and direction algorithms above may be
represented by a single fuzzy neuron, and the collection of rules in its
entirety by a neural network. Hence, for the automatic steering control
mechanism the control rules are represented as the network of fuzzy neurons
shown o Figure 12.11,

The outputs from the neurans of the first layer in Figure 12.11 become the
inpuls to one of the two ncurons located in the second layer. To obtain the
collective decision from either the position or direction control rules we
require each neuron in the second layer to perform an S-norm operation.
This is achieved by defining the inputs to both neurons as inhibitory. The
expression for the position control neuron is

16

yi = T[N(6")] (E12.2-3)

f=1

and the expression for the direction control neuron is

yo= T [~(6})] (E12.2-4)

j=1
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Flgura 12,10 Fuzzy values for input-output variables.

= outputs from both fuzzy neurons are then transmitted to a single neuron

tin a third layer as shown in Figure 12.11, producing the following

y3=T(y1 ) (E12.2-5)
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Figure 12.11 Fuzzy-neural nehwork représentation of automobile stegring conirollar,

Finally the response of this neuron in the third layer becomes an inhibitory
input of a neuron situated in the fourth layer, giving

¥y = T(N(y5)) (E12.2-6)

y, is generally a fuzzy set, hence the final decision is reached through a
defuzzified version of the fuzzy membership function representing y,. O

12.8 FUZZY ARTMAP

In Chapter 9, we briefly discussed the features of adaptive resonance theory
neural networks (ART) with emphasis on its unique ability to create new
categories of arbitrary accuracy to accommodate inputs that did not fit into
the existing categories. With the introduction of fuzzy concepts, Fuzzy
ARTMAP (the MAP refers to mapping inputs to outputs), a synthesis of
ART-1 and fuzzy logic, capable of accepting either analog or binary inputs,
was developed by Carpenter and Grossberg (1994). Furthermore, it is able to
deal with nonstationary time series as inputs.
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Fuzzy ARTMAP is a self-organizing architecture that is capable of rapidly
learning to recognize, test hypotheses about, and predict the consequences of
virtually any input. (There is no ambiguity about the initial configuration
since the network literally grows from scratch.) It involves a combination of
neural and fuzzy operations that together give these useful capabilities. Like
other versions of ART, its use is almost exclusively for classification, and it
has only one user-selectable parameter (vigilance) which determines the
fineness or coarsencss of the patterns into which the inputs are fitted. It can
lcarn virtually every training pattern in a few training iterations in an
unsupervised mode. Yet, it can use predictive disconfirmations to supervise
learning of categories that fit the statistics of patterns being categorized.

Fuzzy ARTMAP operates by autonomously determining how much com-
pression or generalization is needed for each input category to fit the
categories of choice. The more general categories have more fuzziness in the
feature values that are accepted by the specific category. The acceptable
range (or fuzziness) of a particular category is learned through a series of
iterations that involve the use of fuzzy logic operators. The fuzzy AND (min)
and OR (max) operators are used to define the range of values that are
tolerated by a category for each linguistic variable or feature. The member-
ship functions over the range from 0 to 1 (discussed in Chapters 2 through 5)
directly relevant to this determination of the acceptability of an input pattern
in a particular category. The min operator helps define fcatures that are
“critically present,” whereas the max operator helps define features that are
“critically absent.” The min operator can be realized by nodes that are turned
on by an external input, whercas the max operator is realized by nodes that
are turned off by an external input. Thus the min and max operators can be
introduced at appropriate positions in the neural network by externally
controlled on—off switches. The category that best matches an input pattern
is chosen by the operation of fuzzy subsethood. Fuzzy logic provides a
method by which fuzzy ARTMAP adaptively categorizes analog, as well as
binary, input patterns. Hence fuzzy ARTMAP can autonomously learn,
recognivc, and make rare events, large nonstationary databases, morphologi-
cal varinble types of events, and many-to-one and one-to-many relationships.
These fratures and many other details of fuzzy ARTMAP are discussed
extensive 'y by Carpenter and Grossberg (1994). ;

Although fuzzy ARTMAP has proven itself as a supervised incremental
learning -ystem in pattern recognition and M- to N-dimensional mappings by
comparison with other techniques, a simplified fuzzy ARTMAP (Kasuba,
1993) has been introduced. It reduces the computational overhead and
architectural redundancy of fuzzy ARTMAP with no loss of pattern-recogniz:
ing capability. This description follows that of Kasuba (1993).

Normally, when backpropagation neural networks are used for pattern
classification, a single output node is assigned to each category of objects that
the network is expected to recognize. The creation of these categories are left
up to network in both fuzzy ARTMAP and its simplified derivative. Figure
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Figure 12.12 Simplified fuzry ARTMAP structure,

12.12 shows the structure of the simplified fuzzy ARTMAP to be a two-layer
network (input and output category layers) with connection weights, shows a
category layer 1o interpret the results of output layer, and shows a “comple-
ment coder” to preprocess the raw input data. This “complement coder”
normalizes the input and stretches it to twice its original size to help the
network form its decision regions. The vigilance feature (0 to 1) determines
the fineness of the categories and thus determines the number of categorics
to be created.

The expanded input (I) from the “complement coder” then flows to the
input layer. Weights (w) from each of the output category nodes hold the
names of the M number of categories that the network has to learn. Since a
single output node can only encode a single category, it can only point to a
single position in the category layer. Category input is only supplied to the
category layer during the supervised training. The “match tracker” portion of
the network lets it self-adjust its vigilance during learning from the level set
by the user in response to errors in classification during training, thereby
controlling the creation of new categories.

Complement coding is an input normalization process that represents the
presence or absence of a particular feature vector with d components in
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the input. Its complement @ = 1 — a is valid since a has a value between 0
and 1. Therefore the complement-coded input vector I is given by the
2d-dimensional vector

I1=[a,8] = [a,,a,,...,a,,8,0,,..., i, (12.8-1)

For instance, the three-dimensional vector (0.2, 0.8, 0.4) is transformed into
the six-dimensional vector (0.2, 0.8, 0.4, 0.8, 0.2, 0.6) through complement cod-
ing. This process automatically normalized the input vectors, indicating that
the norm of any vector is just the sum of all elements in the vector. Hence,
the sum of the elements of a complement-coded vector is equal to the
dimensionality of the original non-complement-coded input vector.

When this network is presented with an input pattern, all output nodes
become active to some degree. This output activation is denoted by T; for the
Jth output node and its weights w;. The function to produce this activation is
given by '

—L (12.8-2)

a i & |wj-|

TJ(I) =

where a is a small value near zero, usually about 0.0000001. The winning
output node is the node with the highest activation; that is, the winner is
maxT;. Hence, the category associated with the winning output node is the
network’s classification of the current input pattern.

The match function is used to compare the complement-coded input
features and a particular output node’s weight to help determine if learning
has occurred. It calculates the degree to which I is a fuzzy subset of w—that
is, whether the match function value indicates that the current input is a
good enough match or whether a new output category should be gencrated,
If this match function is greater than the vigilance function, the network is
said to be in a state of resonance. A mismatch occurs if the match function
value is less than the vigilance, indicating that the current output node does
not mect the encoding granularity of the vigilance. Once a winning output
node j has been selected to learn a particular input pattern I, the top-down
vector w; from the output node is updated. The simplified fuzzy ARTMAP
ncural network is a gencral-purpose classifier with top-down weight’s deci-
sion-making facilities so transparent that its classification rules can literally
be read out of the network. It can'be compared to a self-learning expert
system in that it leamns from example,

12.9 FUZZY-NEURAL HYBRID DATA REPRESENTATION

During the last few years there has been a large and energetic upswing in
Iesearch efforts aimed at synthesizing fuzzy logic with neural networks.
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Neural networks possess advantages in the arcas of learning, classification,
and optimization, whereas fuzzy logic has advantages in areas such as
reasoning on a high (semantic or linguistic) level. The two technologies nicely
complement cach other, and a number of synergisms have been proposed
[see Bezdek (1995) and Saleem (1994)). Tn addition to the fuzzy neurons and
networks we have seen, several applications have focused on utilizing and
processing fuzzy inputs and outputs in conjunction with conventional net-
works (Travis and Tsoukalas, 1994; Werbos, 1992). An additional variation is
using fuzzy logic to control crisp neural network processes. Let us take a look
at some of these.

Fuzzy Representations of Variables that are Inputs and Outputs
of Neural Networks

Sometimes dealing with all possible outputs of a neural network requires a
large number of neurons, thereby increasing the complexity and training
time. For instance, if we consider the temperatures between freezing boiling
of water, cven on the centigrade scale, there would be 100 integral values.
The number can be reduced by grouping these 100 values into groups of 10
successive values and representing each group of 10 values with a single value
(e.g., the 10 values in the range 21° to 30° could be represented by 157N
Hence, the scale would become 5°, 15°, 25°, 35%,..., 957 Such groupings lead
us to considering fuzzy or linguistic representation of the variable, where 0
to 10° might be “extremely cold,” 10° to 20° might be “very cold,” 20° to age
might be “cold,” 30° to 40° might be “slightly cold,” and so on. If one views
these temperatures from the standpoint of human comfort, as opposed to the
distance along a scalc between the freczing and boiling point of water, a
nonuniform distribution with fewer values might be more appropriate —that
is, 0° to 15°, 16° to 20°, 21° to 237, 24° to 30° and 31° to 100° In linguistic
terms, these ranges might be designated too cold, cold, comfortable, hot, and
too hot. Generally, the sequence of events that are involved in utilizing fuzzy
data in neural networks is as follows:

1. Crisp (or fuzzy) data are converted into membership functions or sets.
2. These memberships or sets are then subject to fuzzy logic operations.

3. The resultant scts are then defuzzified into crisp data that are pre-
sented to the neural network.

4. The neural network may also have their direct inputs that are crisp and
do not need the fuzzy processing.

5. The output of the neural network is a crisp set that utilizes a member-
ship function to convert it into a fuzzy variable.

6. This fuzzy output is then operated on fuzzy logic.

7. The fuzzy logic output is then defuzzified to produce a crisp outpul.



436 FUZZY METHODS IN NEURAL NETWORKS

Fuzzy "“One-of-n" Coding of Neural Network Inputs

Typically, an-input variable is represented by a single input node in the
neural network. When an input variable has a special relationship with other
variables over only a small portion of its range, the training process of the
neural network is made especially difficult. Sometimes a nonlinear transfor-
mation is used to emphasize the particular region, but this is usually not a
satisfactory process. The difficulty can be overcome by providing the neural
network with neurons that focus on one region of the variables’ domain. The
domain is divided into n regions (where n is typically 3, 5, or 7), and each is
assigned a fuzzy set having a triangular membership function. (Of course, the
lowest and highest sets have horizontal extensions starting at the minimum
and maximum expected values, respectively.) The membership value in each
fuzzy set determines the activation level of its associated input neuron. This
“one-of-n” coding expands the range of the variable into # network inputs,
cach covering a fraction of the domain. While the resulting specialization
often facilitates learning, the increase in the number of neurons tends to slow
down learning, This technique is advantageous only when the importance of
the variable changes significantly across its domain. '

There is a tendency to want more measurements of imprecise (or linguis-
tic) data in order to compensate for lack of precision. Let us consider the
casc of two time signals that are to be sampled, digitized, and fast-Fourjer-
transformed so that one fast Fourier transform (FFT) is the input to a nenral
network and the other one is the desired output. If we have 100,000
simultaneously sampled data points for cach variable and are dealing with
spectra that have 128 points cach (and another 128 points in the negative
frequency range), dividing 100,000 points by 256 points per spectrum gives
390 complete spectra for each evaluation. The traditional approach with such
FI'Ts is to average the 390 Specira to obtain an average spectrum with a high
degree of confidence for cach variable and to apply these two spectra to the
neural network for training. A much better alternative would be to train the
neural network using each of the 390 individual spectra, even though each of
them is much less precise and would be considered “noisy” or perhaps
“fuzzy.” Subjecting the 128 components of the input and desired output
vectors to “one-of-n” coding in the manner described above is another
alternative that should be considered. '

'Fuzzy Poslprocessing of Neural Network Qutputs

A neural network can be trained to produce the desired final product, but
there are often advantages to training the network to present intermediate
values with posiprocessing to obtain the desired results. The advantages are
that the neural network may be easier to train and that the necessity for
retraining if other outputs are desired can be avoided. An example of such a
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postprocessor might be control of the electrical output of a gas-fired plant
when there is competition for the gas with residential users and industrial
users, both of which have a higher priority for the gas. A neural network with
such inputs as current air temperature and at several earlier times and at
several locations, overall demand for industrial products now and at several
carlier times, the competitiveness of the products, plant efficiencies as a
function of power output, and so on, could be trained to predict the available
gas. However, intermediate values such as future temperatures at several
locations and future industrial output may be more appropriate since they
can reasonably be obtained using an ordinary neural network. However, the
relationship between the availability of gas and the intermediate network
outputs are fuzzy and should be treated as such.

Fuzzy Control of Backpropagation Learning

Numerous methods of speeding up the learning in backpropagation necural
networks have been attempted with varying degrees of success. One of the
most common methods have been to adjust the learning rate during the
training using an adaptive method that satisfics some index of performance.
(The “delta-bar-delta” training procedure is such a method.) Wang and
Mende! (Wang, 1994) (Wang and Mendel, 1992) have shown that fuzzy
systems may be viewed as a layered feedforward network and have developed
a backpropagation algorithm for training this form of fuzzy system to match
the input and desired output pairs of patterns or variables. Haykin (1994) has
described a method in which an on-line fuzzy logic controller is used to adapt
the learning parameters of a multilayer perceptron with backpropagation
learning. The system uses the classical four-step fuzzy control process of
(1) scaling and fuzzification of the crisp input, (2) development of a fuzzy rule
base, (3) fuzzy inference using the fuzzy rule base, and (4) rescaling and
defuzzilication to give a crisp result or recommended action. The idea is to
implement heuristics in the form of fuzzy if /then rules that are used for the
purposc of achieving a faster rate of convergence. The heuristics (as is
the case of almost all supervised training) are based on the behavior of the
instantaneous sum of squared errors,

12,10 SURVEY OF ENGINEERING APPLICATIONS

Fuzzy neural networks aspiring to integrate neural learning with the knowl-
edge representation capabilities of fuzzy systems have been actively investi-
gated in recent years. A growing number of researchers in a number of fields
have proposced and tested several types of fuzzy neurons. By far the greatest
number has turned to the rather simple AND and OR neurons of Section
12.5 in building fuzzy neural networks. The networks are typically heteroge-
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neous in order to best reflect the logic of a given problem. The layers and
nodes of such fuzzy neural networks can be interpreted as a realization of
fuzzy if /then rules.

Pedrycz and Rocha (1993) introduced a number of neurofuzzy models,
using logic operators (AND, OR, NOT) encountered in the theory of fuzzy
sets superimposed in necural structures. Aggregation neurons (AND and OR
neurons) and referential neurons (for matching, dominance, inclusion) were
designed using T norms and § norms and inhibitory and excitatory character-
isties captured by embodying direct and complemented (negated). input
signals. The researchers have proposed a number of topologies of neural
networks put together with the use of these neurons and demonstrated
straightforward relationships between the problem specificity and the result-
ing architecture of the network (Pedrycz, 1993).

Hirota and Pedrycz (1993a) have also proposed a distributed computa-
tional structure called knowledge-based network that allows for an explicit
representation of domain classification knowledge. The knowledge-based
network is composed of basic AND and OR neurons and has been used in
pattern classification problems. Logic-based neurons have also been investi-
gated in conjunction with new architectural aspects of fuzzy neural networks,
including those aimed at representing and processing uncertainty associated
with the input data (Pedrycz, 1993), Hybrids such as, for example, a multi-
variable hierarchical controller for an N-degrees-of-freedom robot manipula-
tor for control tracking problems implemented as a fuzzy-neural network,
whose purpose is to select activation Jevels for local regulators implemented
as PD controllers, have also been developed and analyzed (Rueda and
Pediycz, 1994). Lin and Song (1994) have proposed a similar three-layer fuzzy
neural network with different types of fuzzy neurons.

The terms fuzzy-neural or neurofizzy networks very often in the literature
refer to hybrid combinations of fuzzy logic and neural tools—for example,
giving [uzzy inputs to a crisp network and extracting fuzzy outputs as well,
Recently, Srinivasan (1994) has reported on a forecasting approach using
fuzzy inputs to a neural network, in clectric load forecasting problems,
Expert knowledge represented by fuzzy rules is used for preprocessing input
data fed to a neural network. The method effectively deals with trends and
special cvents that occur annually, The fuzzy-neural network was trained on
real data from a power system and evaluated for forecasting next-day load
profiles based on forecast weather data and other parameters and according
to the researchers has demonstrated very good performance.

A fuzzy-neural network approach developed by Cooley, Zhang, and Chen
(1994) utilizes a hybrid consisting of a parameter-computing network, a
converting layer, and a backpropagation-based one for classification prob-
lems with complex feature sets. The approach has been applied to satellite
image classification and lithology determination. Lee and Wang (1994) have

! proposcd a neural network for classification problems with fuzzy inputs.
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A fuzzy input is represented as an LR-type fuzzy sct, and the network
struclure is automatically generated with the number of hidden nodes deter-
mined by the overlapping degree of training instances. Two sample problems,
heart disease and knowledge-based evaluator, have been addressed by the
researches to illustrate the working of the model. Sharpe et al. (1994) have
also presented a hybrid method using fuzzy logic techniques to adapt a
conventional network configuration criteria.

In another interesting hybrid application, fuzzy logic has been used by Hu
and Hertz (1994) for controlling the learning processes of neural networks,
Since the convergence of multilayer feedforward neural networks using the
backpropagation training algorithm may be slow and uncertain due ta the
iterative nature of the dynamic process of finding the weight matrices with
stalic control parameters, Hu and Hertz use a fuzzy logic controller during
the course of training to adjust the learning rate dynamically according to the
output error of a ncuron and a set of heuristic rules. Comparative tests
reported by the investigators have showed that such fuzzy backpropagation
algorithms stabilized the training processes of these neural networks and,
produced two to three times more converged tests than the conventional
backpropagation algorithms. Kuo (1993) has also reported a new learning
scheme which integrates the standard backpropagation learning algorithm
and fuzzy rules, which arc able to dynamically adjust the learning rate,
momentum, and steepness of activation function.

A fuzzification layer to a conventional feedforward neural network has
been added by Zhang and Morris (19944, b) for on-line process fault diagno-
sis. The fuzzification layer converts the increment in cach on-line measurc-
ment and controller output inte three fuzzy sets: “INCREASE,” “STEADY "
and “DECREASE,” with corresponding membership functions. The feedfor-
ward ncural network then classifies abnormalitics, represented by fuzzy
increments in on-line measurements and controller outputs, into various
categorics.

Kwan and Cai (1994) have defined four types of fuzzy ncurons similar to
those we have seen in Scction 122, and they have proposed a structure of a
four-layer feedforward fuzzy ncural network and its associated learning
algorithm, The proposed four-layer fuzzy neural network performs well in
several pattern recognition problems. In a biotechnology application, a five-
layer fuzzy ncural nctwork was developed for the control of fed-batch
cultivation of recombinant Escherichia (Ye et al., 1994).

Karayiannis and Pai (1994) have developed a family of fuzzy algorithms for
learning vector quantization and introduced feedforward neural networks
inherently capable of fuzzy classification of nonsparse or overlapping pattern
classes. On the other hand, a three-layer radial basis function (RBF) network
has been developed by Halgamuge et al. (1994) to extract rules and to
identify the necessary membership functions of the inputs for a fuzzy classifi-
cation system.
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PROBLEMS

1. Explain the assumptions made and describe the forms of the dendritic
input, the aggregation operator, and the activation function in the
perceptron [Eq. (12.2-4)].

2. Besides summation, how else could the dendritic inputs to a neuron be
aggregated? List at least three operators that could be used for aggrega-
tion.

3. Assuming a [0, 1] range for the input values to the fizzy neuron shown in
Figure 12.2, show that the output will also be in the [0, 1] range. What
happens to the output of the synaptic modifications are made through a
max operator or any other § norm? Can the same be said when the
synaptic modification is done through a T norm?

4. Explain why and how a bias term may be incorporated in the fuzzy
neurons described by Equations (12.5-3) and (12.5-4).
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5. Consider a fuzzy neuron having as input the fuzzy set 4 =05/1 +
1.0/2 + 0.5/3 and a weight fuzzy relation given by

W, (x.y) = 033/(2,5) + 0.5/(2,6) + 05/(2,7) + 0.5/(2.8) + 033/(2.9)

+0.33/(3,5) + 067/(3,6) + 10/(3,7) + 0.67/(3,8) + 033/(3.9)
+0.33/(4,5) + 05/(4,6) + 0.5/(3,7) + 0.5/(4,8) + 0.33/(4,9)

What is the dendritic input to the neuron's soma? State all assumptions
clearly.

6. How can excitatory and inhibitory inputs be taken into account in the
fuzzy neuron described in Problem 5?

7. Consider a three-layer fuzzy neural network having AND neurons in the
hidden layer as shown in Figure 12.6a. Show that the network’s output is
given by Equation (12.6-3). Suppose next that the network has OR
neurons in the middle layer as shown in Figure 12.6h. What is its output?

8. For the three-layer network of Figure 12.6a using probabilistic sum for §
norm and product for the 7 norm, show that the rate of output change
with respect to input weights is given by Equation (E12.1-7).

9, Derive an expression for the rate of output change with respect to input
weights in Problem 8 when min and max are used for T norm and §
norm, respectively.

10. Develop a fuzey-neural network representation similar to the one shown
in Figure 12.11 for the fuzzy algorithm deseribed in Example 6.3 (rules

given in (E6.3-1)).



