
FUNDAMENTALS
OF NEURAL NETWORKS-----	 __

7,1 I NTRODUCTION

In 3956, the Rockefeller Foundation sponsorod a a aici erce	 i)ai anoith
College that had as its scope

The poteiitai use of computers NO siniutatiori in .	 tc	 t ft
ny ctitcr feature of intelthnce.

v,asat this otifereucc that the term "ajti[ 	 tte]lmcnce' cane into
a • IK]:t use. z \.i tificial intelligence can be brna'y	 . fincd as

Cuiitputcr pruccscs that attempt to emulate the lrnn thought proccs,s bra
are associated with activities that require the use of iatelhigece.

Centrally, this definitien included the fields of 	 teniatic lirnitte. eajer-
stnndrng na tu at language, vision-image recognitk 	 voice recognition, game
pit tie, mathematical sillvijigr, rohotics, and cxoert systel]ls. In
recent years, Seano researchers have included leurti networks and other
related technologies as constituents of artificial iateh1igcice, while oth rs,
poin t ing to their origin in hiological sciences, hace SO]] eat to avoid this
association. In this text we accept neural networks r.s a ]':gitimnte field of
arId ial iIteIigctice. Furthermore, we incinee genet he a]corilnns, fuzzy logic
or fuzzy systems, wavclets, cellular automata, and c1:latic systems as lacing
within the general field of artificial intelligence.
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7.2 BIOLOGICAL BASIS OF NEURAL NETWORKS

The human brain is a very complex system capable of thinking, remembering,
and problem solving. There have been many attempts to emulate brain
functions with cmputer models, and although there have been some rather
spcctacuLr	 ;cments coming from these efforts, all of the models devel-
oped to ci	 into obliv n when compared with the complex functioning
of the hn	 in.

A	 e fnu:li'm :..it ccll..lar unit of the brain's nervous system. It
is sinp	 .;siu elem i t that rcceives and combines signals from ether
neurons .. npc:^ pati called dendrites. If the combined input signal is
strong cnoi.'i., t e neuron "fires," producing an output signal along the axon
that connects to ftc dendrites of many other neurons. Figure 7.1 is a sketch
of a neuron slio' . ng the various components. Each signal coming into a
neuron along ci adrite passes through a synapse or synaptic junction. This
junction is an infinitesimal gap in the dendrite that is filled with neurotrans-
mitter fluid tiat either accelerates or retards the flow of electrical charges.
The fundamental actions of the neuron are chemical in nature, and this
neurotraiisniitter fluid produces electrical signls that go to the nucleus or
soma of the neuron. The adjustment of the impedance or conductance of the
synaptic gap is a critically important process. Indeed, these adjustments lead
to memory and learning. As the synaptic strengths of the neurons are
adjusted, the brain ''learns" and stores information.

Figure 7.1 Sketch of a biological neuron showing components.



ARTIFICIAL NEURONS	 193

When a person is born, the cerebral cortex portion of his or her brain
contains approximately 100 billion eurons. The outputs of each of these
neurons are connected through their respective axons (output paths) to about
1000 other neurons. Each of these 1000 paths contains a synaptic junction by
which the flow of electrical charges can be controlled by a neirochcrnical
process. Hence, there are about 100 trillion synaptic junctions that are
capable of having influence on the behavior of the brain. It is readily
apparent that in our attempts to emulate the processes of the human brain,
we cannot think of billions of neurons and trillions of synaptic junctions.
Indeed, the largest of our neural networks typic:il!y contain a few thousand
artificial neurons and less than a million artificial synaptic junctions.

The one area in which artiiicial neural networks may have an advantage is
speed. When a person walks into a room, it typically takes another person
about half a second to recognize them. We are old that this recognition
process involves about 200-250 individual scp:iracc operations within the
brain. As a benchmark for speed, this means that the human brain operates
at about 400-500 hci tz çllz). Modern digital computers typically olcratc at
clock speeds between 100 and 200 megahertz (MIE), which means that they
have a 'crv large speed advantage over the brain. I-Jo". ever, this advantage is
dramatically reduced because digital comouters operate in a serial mode
whem eas the brain operates in a parallel mode. 1-Jowevcr, neural network
chips have been developed in recent years that enable neural computers to
operate in  parallel mode.

The moluenclalure in the neural network iiehl is still net standardized.
You will find books and technical articles that refer to artificial 11CLual
nctsvoi k-s as eOnnL'ctj011jst .vvstems and ai titicial neurons as proCesYilig (!enlentS
PEs), neurodes, nodes, or simply neurri,rv. Ta this text we shall use the terms

IlcUrolis and tletOa/ iieiivrks, except in situations where an alternate dei;ita-
tion would he more descriptive. Often we drop the adjective 'artificial,''
because we deal only witti artificial nenions in this teat.

7.3 ARTIFICIAL NEUhONS

An am tificiiI ncarnn	 :1 ntodel whose components have direct analogs to
coniponenis of an ar tual neuron. Fgure 7.2 shows the schematic representa -
tion of an artificial neuron. Ile :iiput signals are represente d	by

c i, x 2 ....... . lThse icnas arc coatinuons variables, iot the discrete
electrictl pulses that occur in the brain. Each of these inputs is modified by a
is'elg/lt (sometimes c aIled the sitaptfc ucla/it) whose fucti oi is analogous to
that of the synaj:nic junction in a biotngical neuron. These weights can be
either positive or negative, corresponding to accdlcraticn CC iuhd:-itioi of time
fio'.v of electrical signals. This processing clement consists of two parts. The
first part simply aggregates (sums) the V.c ightcd inttts 11SI RL I g in a &juanl ity
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Figure 7.2 Schematic representation 01 on atificiol neuron.

I; the second part is effectively a nonlinear filter, usually called the actirvUion
flu1ction, t through which the combined signal flows.

Figure 7.3 shows several possible activation functions. It may he a thresh-
old function as shown in Figure 7.3a that passes information (usually a + 1
signal) only when the output I of the first part of the artificial neuron
exceeds the threshold 7. It can be the signuin function (sometimes called a
quantizer function) shown in Figure 7.3b that passes negative information
when the output is less than the threshold T and positive information when
the output is greater than the threshold 7'. More commonly, the activation
function is a continuous function that varies gradually between two asymp-
totic values, typically 0 and 1, or —1 and + 1 1 called the siginoidal function.
The most widely used activation function is the logistic function, one of the
sigmoidal activation functions, which is shown in Figure 7.3c and is repre-
sented by the equation

(I) 
=i ±	 (7.3-1)

where a is a coefficient that adjusts the abruptness of this function as it
changes between the two asymptotic values.

A more descriptive term for the activation function is "squashin g function,"
which indicates that this function squashes or limits the values of the output

1 A rather common name used in man y books for the activation function is transfer function
We will avoid the use of this term in the text to avoid confusion, because this term is commonly
used in engineering—to describe the input-output behavior of linear systems.
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FIgure 7.3 rionster functions for neurons: (a) Threshold uctivahon function (when
T = 0. this is called a binury activation function). (b) Signum activation function
(sometimes called a quontizer'). (c) logisTic activolon functions for	 0, 5, 1 and 2.
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of an artificial neuron to values between the two asymptotes. This limitation
is very useful in keeping the output of the processing elements within a
reasonable dynamic range. However, there are certain situations in which a
linear relation, sometimes only in the right half-plane, is wed for the
activation function. It should he noted, however, that the use of a linear
activation function removes the nonlineari' from the artificial neuron.
Without nonlinearjtics, a neural network cannot model nonlinear phenom-
ena.

7.4 ARTIFICIAL NEU7AL NETWORKS

An artificial neural network can be defined as

A data processing systm consisting of a large number of simple, highly
interconnected procesong elements (artificial neurons) in an architecture
inspired by the structure of the cerebral cortex of the brain.

These processing elements are usuall y organized into a sequence of layers or
slabs with full or random connections between the layers. This arrangement
is shown in Figure 7.4, where the input layer is a buffer that presents data to
the network. This input layer is not a neural computing layer because the
nodes have no input weights and no activation functions. (Some authors do
not count this layer in describing neural networks. We will count it, but we
Will use different symbols for the nodes in this layer where there is a need to
distinguish between the different kinds of neurons.) The top layer is the
output layer which presents the output response to a given input. The other
layer (or layers) is called the intermediate or hidden la yer because it usually

il	 .Yq	 y,.

Flgura 7.4 Example of on neural network architecture.
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has no connections to the outside world. Typically the input, hidden, and
output layers are designated the ith, jth, and k th layers, respectively.

Two general kinds of neural networks are in use: the Iietcroassociative
neural network in which the output vector is different than the input vector,
and the autoassoci live neural network in which the output is identical to the
input. Unless otherwise indicated, all neural networks in this book are
he te ro associative.

A typical neural network is ''fully connected," which means that there is a
connection between each of the neurons in any given layer with each of the
neurons in thc next layer as shown in Figure 7.5. When there are no lateral
connections between neurons in a given layer and [lone back to previous
layers, the network is said to be a fcedfoiward network. Neural networks with
feedback connections (i.e., networks with Connections from one la yer hack to
a previous layer) arc also useful and arc discussed in the following chapters.
Lateral connections between neurons in the same layer are also called
feedback connections. In certain cases, a neuron has feedback fiom its

['5
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Figure 7.5 Simple foudnn'. urd ;CUrOI netwo:k.
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Output to its own input. In all cases, these connections have weights that must
lie trained.

Each of the connections between neurons has an adjustable weight as
shcwn in Figure 7.5. This simple neural network is a fully connected,
fecdfoiward network with three neurons in the input layer, four in the
middle or hidden layer, and two in the output layer. The individual weights
are shown as s:ilid dots on the Connection and are designated by symbols
such as it'. For instance, the symbol w indicates a weight on the connec-
tion between nrons 3 and 7.

Let us co:1sier the neural network of Figure 7.5, which has nit input
vector X consisting of components x 1 , x,, and x 3 and an output vector Y
having components y5, and When a signal x 1 is applied to neuron 1 in
the input layer, the output x 1 goes to each of the artificial neurons in the
middle or hidden layer, passing through weights , w 15 , w, and w1,.

The input signal x 2 and x 3 behave in a similar manner, sending signals
to neurons 4, 5, 6, and 7 through the appropriate weights, as shown in
Figure 7.5.

Now let us consider the behavior of neuron 4. It has three inputs from the
three neurons in the input layer that have been modified by the connection
weights Vv I-1 1 IV141 and w 3,. The first part of this neuron simply sums up these
three weighted inputs. Then this summation is passed to the second part of
the neuron, which is a nonlinear function—typically a logistic curve between
o and 1 as shown in Figure 7.3c. The output of this activation function or
squashin g function is then Sent to neurons S and 9 throu g h weights w4 and

Neurons 5, 6, and 7 behave in a similar manner. Neurons 8 and 9 collect
the weighted inputs from neurons 4, 5, 6 and 7, sum them, and pass the sums
through the activation functions to produce y 8 and y 9 , the components of the
output Vector Y.

Vocor and Matrix Notation

It is convenient to utilize vector and matrix notation in dealing with the
inputs, outputs, and weights. Let us cut the neural network in Figure 7.5, just
above the hid ten layer as shown in Figume 7.6. The outputs of neurons 4, 5, 6,
and 7 are shown to he the vector \ ,, which has components , v, and v7.

If we limit the activation functions to linear functions, the mathematical
relationships described in the previous section call 	 written in matrix form;
that is, the column vector V, is equal to the dot product of the weight matrix

and the input vector X. This relationship is given by

04	1V1,	 lV4	 lV,

l0 2	 W35

V	 W	 W266

0 7	 n	 w27 w37

=	 x	 (7.4-2)
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Figure To [o.,-' odon Cf neural network cut obove	 hidden nyc'.

In a sinular manner using the upper half of the artificja
c	 ncural ne vj kljosy in Figure 7.7, it can he shown that the output Vector

	 is equal to thedot product of the wctht nuitj ix \V, and the input vector V.. This 
rojajship is given by

1Y 7.  3)

or

(71-4)
Dy combining equations (7.4-1) and (7.4-3), it is apparent that he outputector Yk. is equal to the dct product of the two rnat i ic (, s and the inputVector X.

	

4114	
'2411,34I Y8 -= f Y.15	 i	

W79W15	 it,	
35	 1XI

isy9J	
[	 Vs	 '1ó	 025	 1075

-	 17	 2?	 1117	 -	 -
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YS	 Y9

V 1	V5	 V6	
V7

I' =  WJk V

Figure 7.7 Upper portion of neural network cut above the hidden layer.

Since the two matrices can then be reduced to a single matrix, \%'., it follows
that the output vector V is equal to the dot product of the combined matrix
and the input vector:

(7.4-6)

The limitation of linear activation functions means that the relationships
given in equations (7.4-1) through (7.4-6) are severely limited. Indeed, this
indicates that a three-layer perceptron with linear activation functions in the
middle and output layers can he replaced with a two-layer network with a
linear activation function in the output layer. Nevertheless, this process has
introduced the concept of the weight matrices, which is very useful in many
situations.

Neural Networks and Feedback

The feedforward neural network shown in Fi gure 7.5 operates in a simple
straightforward manner. When the vector X . is applied to the input layer, the
calculations for weighting inputs, as well as summing and filtering, are rapidly
carried out for each neuron as the process moves from the input to the
middle layer and on to the output layer. However, when there are feedback
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Connections, either between neurons in the same layer or from one layer to
all layer, the process is niuch more complicated In a neural network
where the niatlicinatical operations are performed almost 

insta ntaneously,
information revct berates around the network, across layers and within layers,
until some sort of convergence status is reached. NVIien the mathematical
operations arc implemented serially, the process is more Complicated 'l'heoutputs for the fccdforward connections are performed first, then the calcu-
lations for the feedback connections are perforn)ed then the calculations for
the feedforward connections are again performed using the results of the
previous calculations and this process continues until equilibrium values arereached. Under many ci rcumstances, arOficial neural networks with feedback
connections can be very useful. However, about 80% of the neural n etworkapplications today utilize feedforward neural networks.

Neural Networks in Perspecfjv

Neural networks have profound strengths and weaknesses nnd these roust bereco g
nized if they are to be used properly. Although neural nclwOt ks are

sometimes	 ies called neural coputers they are in fact not computers: hut
rather, they are basically memories that memorize results, just as the
brain nlemoriLes certain results. F 	 human

or instance, a person memorizes the fact
that the product of four tmmcs six is lventy-four, and this fact is stored in the
Person's memory for life. On the other hand, the cheapest ctigitrl calculator
actually calculates the product eve time the numbers are entered.

Neural networks use mnenloiy-hasej storage of infornu:j tioni in 'va s that
are different and mom c flexible than simple stornc in a look

. np !.'ihle. 1.. tireucutal network, as in the brain, the storag
t	 e f information is distrfl,nted
hroughout the Iiet\vrk, Atihoucli this makes it hard to keep thiings separate

that should he kept separate, it doe give rise to the networks , ability to mikecfleralizatj,j, i s that are s ' ) important to the f;rnc tical app Iicatjos of neural
networks I-ut thlenmiiore, the loss of a few neurons (real or artificial) does not
materially affect the in liornlation stored.

Linear Associator Neural NoIwo,k

The most e]ernentry neural ne,vork is
its learni	 a 'linear associatiji ' that, alone with

ng rules, can be used to demonstrate the abilities and limitations 
ofnteimral networks We sto t s ith the funclarnenta I assumpt n i that inforis stored by a patter ii o

	

	 &nntion
r a set of activities of many neurons that is often

represented as a 'State vector," ¶ lence, the output of die net
w ork is theresult of the interactjoj i of ninny neurons (sometimes called neural comuput

img), not just the response of a single neuron, As discuss,' '1 earlier, 
thefundanIcmital neuron sunis the weighted inputs and then 

su bjccis thisa nonlinear activation function, t

	

	 sum toypically a sigmnoidal function, to keep the
output of the neuron within a rcasuinahle range.
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The architecture of a linear associator is a set of input neurons that are
connected to a set of output neurons (i.e., a two-layer neural network). Any
particular output y (one component of the output state vector Y) can be
computed from the activities of all the various inputs x 1 and the strengths of
the weights on the connections. Mathematically, the output from the sum-
ming unit is equal to the inner product (dot product) between the weight
matrix and the input vector. In the linear associator, the activation function is
a linear function. While this simplifies the network considerably, care must
he taken to ensure that the outputs do not exceed the range of the output
neuron.

hi simple terms, the operation of a linear associator involves the input of a
pattern that then produces the output pattern that we want (i.e., the 'right"
answer). For this to happen, we have to train the weights of the linear
associator to give the desired pattern. This can be accomplished b y present-
in '- the nctw.rk with training vector pairs (inputs and desired outputs) and
utilizing an appropriate training rule. Any of the different training rules
discussed later can be used to perform this training. In theory, the initial
weights can have any values, but experience indicates that starting with small
randomized weights is advantageous.

Suppose that we have one set of neurons projecting to another set through
modifiable weights as shown in Figure 7.8. When the activation functions of
the neurons are linear, this network is a linear assoctator What this means is

y l	 Y2	 .5,	 yf,,

xl	 xi	 xfl

Figure 7.8 Sketch of a linear as.sociafor.
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that after the neural network is trained, presentation of an input pattern to
the input layer will produce the desired (associated) output pattern. This is
represented mathematically by the following equation:

V1 =	 (7.4-7)

where \V is the trained weight matrix, and X and Y are the ith input and
output vectors, rcspcctive]y.

One of the unique and advantageous features of the linear associator is its
ability to store more than one relationship simultaneously. This is discussed
and demonstrated in a later section. Tl:e problems with the linear associator
is that it is not vets' accurate, especially if too ninn y items are stored in the
assoctor. Second, simple networks that use Hebbian learning 2 cannot com-
pute some functions that may be desired. This lends to the concept of
comparing the output with the desired output and using the difference
(error) as a basis for adjusting the weights, such as is the case in lVidrow—Jfo If
learning. Iii effect, this procedure constitutes a form of" s'.perviscd" learning
that is discussed in the next chapter.

7.5 LEARNING AND RECALL

Neural networks perform ;'o major functions'. learning and recall. Learning
is the process of adapting the connection weights in an artificial neural
network to produce the desired output vector in response to a stimulus vector
p resented to the input buffer. Recall is the process of accepting an input
stimulus and producing an output response in accordance with the network
weight structure. Recall occurs when a neural net'.; urk globally processes the
stimulus prcsei:ed at its input buffer and creatcsaresponse at the output
buffer. Recall is an integral part of the leariang process since a desired
response to the network must be compared to the actual output to c eate an
error function.

The learning rules of neural computation indicate ho;v connection weights
are adjusted in response to a learning example. In supereised lcanmirg, the
artificial neural network is trained to give the desired response to a spe'cifie
input stimulus. In graded lea nimg, the output is ''graded" as good or bad an a
numucniea] scale, and the connection weights are adjusted iii ace rdanec with
time grade.

In unsupcn ised learning there is no spe. ific response sought, but rather
the response is based on the networks'ability to organize itself. Only the
input stimuli are applied to the input buffers of the network. The network
then org aiazcs itself intern:fly so that e.lch hidden neuron responds strongly
to a drif, ciit set of input stimuli. i:iesc sets of input stimuli represent

II	 s ettr tC!1'a; pat.ii1s	 :	 prntci in (haj:.r
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clusters in the input space (which often represent distinct real-world concepts
or features).

The vast majority of learning in engineering applications involves super-
vised learning. In this case a stimulus is presented at the input buffer
representing the input vector, and another stimulus is presented at the
output buffer representing the dcsred response to the given input. This
desired response must he provided by a knowledgeable teacher. The differ-
ence between actual output and desired response constitutes an error, which
is used to adjust the connection weights. In other cases, the weights arc
adjusted in accordance with criteria that are prescribed by the nature of the
learning process, as in competitive learning or in Ilebbian learning.

There are a number of common supervised learning algorithms utilized
in neural networks. Perhaps the oldest is Hebbian learning, named after
Donald Ilcbb, who proposed a model for biological learning (llebb, 1949)
where a connection weight is incremented if both the input and the desired
output are large. This type of learning comes from the biological world,
where a neural pathway is strengthened each time it is used. 'Delta rule"
learning takes place when the error (i.e., the difference between the desired
output response and the actual output response) is minimized, usually b y a
least squares process. Competitive learning, on the other hand, occurs when
the artificial neurons compete among themselves, and only the one that
yields the largest response to a given input modifies its weight to become
more like the input. There is also random learning in which random mere-
mental changes are introduced into the weights, and then either retained or
dropped, depending upon whether the output is improved or not (based on
whatever criteria the user specifies).

In the recall process, a neural network accepts the signal presented at the
input buffer and then produces a response at the output buffer that is
determined by the "training" of the network. The simplest form of recall
occurs when there are no feedback connections from one layer to another or
within a layer (i.e., the signals flow from the input buffer to the output buffer
in a "fecdfonvard" manner). In a fecdforvard network the response is
produced in one cycle of calculations by the computer.

Supervised Learning

In order to demonstrate supervised learning, let us modify the neural
network shown in Figure 7.5, to include a desired output pattern, a compara-
tor, and a weight adjusting algorithm. This arrangement is shown in Figure
7.9, where the desired output is represented by the vector Z with components
z5 and z9 . The inputs to the comparator are the desired output pattern Z and
the actual output pattern Y. The error coming from the comparator—that is,
the difference between V and Z--is then utilized in the weight-adjusting
algorithm to determine the amount of the adjustment to be made in the
weights in both layers.
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zlj	 Z9

K3

Figure 7.9 A rej: net....rkr s.ro;au	 :Jrr'q.

In order to sait the	 CCs, ci us randoml y adjust all the weights in the
networknetork in liurc 7.9 to suall random alus, and then consider the

training pair X and Z with components .v .r x I and z1, respectively.
When the vector X is applied to the neural network, it produces an output
vector Y. which is compared with the vector Z to produce the error. The
weight-adjusting algorithm then modifies the wei g hts in the direction that
reduces this error. When the input vector X is again applied, it produces a
new \. which IS Compared with Z. and the error is applied to the weight-
adjusting algorithm a g ain to adjust the weights. this process is repeated over
and over until the error is reduced to some specified value or an irreducible
small quantity. At that point tile output vector V and the desired output
vector 7. are substantially equivalent, and the neural network is said to have
been trained to map input vcctom X into the desired output vector Z. '11is is
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the essence of superviscd training. Of course, we must specify and explain
the mechanism by which the weights are adjusted before there is a complete
understanding of this process.

Example 7,1 Mapping the Alphabet to a Five-Bit Co(le. In order to under-
stand how a neural network trainint process works, let its consider the
arrangements shown in Figure 7.10. O il left we have a 7 x 5 matrix array
of inputs that are restricted to either 0 or 1. In the center we have a neural
network, with the input layer on the left having 35 input artificial neurons.
Each of these 35 neurons is connected to one of the inputs from the 7 X S
matrix array. On the right we have a 5 )< I matrix array of outputs, each of
them connected to one of the neurons in the output layer of the neural
network in the center. fhc hidden layer in the neural network in this case
has 20 ai tificial neurons, a number that was chosen arbitrarily. The input
ector on the left, X. has 35 components (.v 	 ) and the output

vector Y oil right has five components ()' 1 , y,, y, y4, y). In effect we are
going to map the pattern contained in the 7 X S matrix on the left into a
pattern on the right contained by the 5 X 1 matrix. In a sense, this isa form
Of data compression where the data contained in the 35-bit matrix on the left
is n.ppcd into the five-bit matrix on the right. The compression ratio in this
case is 7 : 1.

Let us introduce a pattern to represent an uppercase letter A in the 7 < 5
matrix on tlic left, where the shaded areas in Figure 7.10 represent Is and
the unshaded areas rep! esent Os. Suppose we went to map tIns pattern into
the flvu-bit pattern in the matrix oil 	 riL',ht, which is shown to he

3, 1). The artificial neural network has an input pattern representing
te A: a I the desired (ltfJu pattern is reprcseatcd by the five-bit matrix on
the righ t . To carry out tbk......:'i:, ..c i usa j ust iiic vcights in both the

-iguro 1.10 II;?. I.I1---cjiJfntjt rnr.p 1 sjncj of ft'o lotter A
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connections between the input and hidden layers and the connection I,,-
tsvecn the hidden nOd Output layers.

If the neural network is fully connected, we have 700 (35 x 20) conncc-
lions with 700 weights between the input and hidden layers. In the contice-
lions between the hidden and output layers, we have another 100 (20 x 5)

wights, giving a total of 800 weights that must be adjusted. In effect, we cc'i
think of this arrangement as having 800 degrees of freedom because of 0
800 adjustable weights. It is very clear that we do not need 600 r'.grees of
freedom to map a 35-hit input into a five-hit output. What this means is ti::t
there are hundreds, if not thousands, of different combinations of these hh0
weights that will permit this neural network to carry out this mapping.

In order to start the training for this mapping, all the weights in the nci :0
network are set to small random values, usuall y between -43 and -t 3.
Then the training proccsc is started. This involves applying the pattern f: :a
the 35-bit matrix ori the left to the input layer, multipl y in g these inputs
700 connection weights between the input and hidden layer, and 0; n
summing the 35 weighted inputs going into each of the 20 neurons in the
hidden layer. These 20 sums then pass through the nonlinear activation
function to produce the 20 out7uts that go to each of the five neurons in the
output layer. Each of these 20 outputs is multiplied by the appropriate
weights, summed by each output neuron and passed throu gh the nonlinear
activation function to produce the five outputs. (Note that these outputs are
not Os and Is, but rather numerical values between 0 and 1. Thcrefore, an
interpretation of the outputs is needed. For instance, an octput greater than
0.9 could he considered as a 1; an output less than 0.1 could he considered as
a 0; and any value in between 0.1 and 0.9 could 10 considered as indeteroii-
nate.) These outputs are then compared with the desired output shown in the
5 >( I matrix on the right. The difference between the actual output of the
neural network and the desired output becomes the error vector that is then
used to adjust both layers of weights in such a way that the overall error is
reduced. Then the process is repeated over and over again until eventually,
every time an A is applied to the input, the desired output is produced by the
neural network within limits prescribed by some specific criteria At this
point we say that the neural network is trained and is capable of mapping a
35-bit representation of A into a five-hit representation of the A.

Now let us consider the arrangcn'cnt in Figure 7.11, where we have a
35-hit representation of a B as an input to the neural network and a five-hit
representation of the B as a desired output, which in this case is (0, 1. 0. 1, 0).
If we use the neural network we have just trained for an A and appl y the B at
the input matrix, we can continue the sante procedure used before to
calculate the output of the neural network and compare it with the desired
output. Although there is a small probability that we might get the right
output initially, the most likely outcome is that the actual output and the
desired output will he quite different (i.e., some of the outputs will he wrong
and others will be between 0.1 and 0.9 and hence indeterminate). This
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produces another error signal that becomes the basis for adjusting the
weights further beyond the training provided for the A input. We continue
this training process until every time we apply B at the input matrix on the
left, we get the desired (0, 1, 0, 1, 0) output at the five-bit matrix at the right.
At this point we have trained the neural network to map a 35-bit represenia-
[ion of it 13 into a five-bit representation.

Now suppose we again apply an A to this neural network that has been
trained for an A and a B. Are we l ikely to get the desired output? Maybe,
maybe not. If not, we can carry out additional training, until we achieve the
desired results. Then we can apply the 13 again. Will we get the desired
output? Mayb.; maybe not. If not, we can carry out more training. This
process of going back and forth bctwet a the A and B can be continued until
cvciy time we apply an A to the input matrix we get the desired (1, 0, 1, 0, 1)
oot'ut and every time we apply a fl to the input matrix we also get tho
dcsir ' ;l (0, 1, 0, 1,0) output NOW we have a network that is capable of
mapping both an A and a 13 into the n yc-hit representations we specified.

Now let us apply a C to the input matrix as shown in Figure 7.12 and
specify the desired output matrix as being a (1,0,0, 1, 0). When we apply the
C, ihx e is a high probability that we will not get the desired output that we
have chosen. So we st2rt the training process again and continue it until
every time that we apply a C to the left-hand matrix, we get the desired
( 1 , 0 , 0, 1, 0) output. We now have a n e twork that is capable of niappin the
35-bit representation of a C into the desired five-bit representation.

If we now apply the A to this trained network, will we get the desired
output? Maybe, maybe not. If ijot, we perform more training until we achie\ C
the desired rcult. Then we can apply a B. If we don't get the desired output,
we carry out additional training. 'Then we can apply a C. If we don't get the
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desired output, we cane out more training. We repeat thic cs over end
over until every time we put in an A, a B, or a (.', we gt the desired Outpnt.
At this point the neural network has been trained to map an A or Ii and a C
into the desired representation that we have chosen.

At this point we could continue the process with D, L, and F and work our
way through the alphabet. Since we have a five-hit binary output, the total
number of possible mappings is 2, or 32. Hence, we can represent the whole
alphabet plus six punctuation symbols. However, this is not a ver y efficient
process to go throu gh the complete training process for one symbol before
starting th e training process for another symbol. A more realistic and
appropriate way would he to choose the 32 training sets (i.e., an A and its
five-bit representation, a 13 and its five-bit representation, etc.) and, after
randomizing the weights, to apply all 32 training sets, one after the other
until we go all the way through the 32 letters and punctuation symbols once.
This set of 32 input and desired output pairs, known as an epoch, is applied
a-ain and again until all 32 letters or symbols are mapped into the five-bit
codes we specified.

Overall error is a better determination of the states of the training than it
is of whether all the outputs are correct or t. This is simply the summation
of all the errors between outputs of the nenra] network and the correspond-
ing desired outputs (Os and is) for all pairs in the epoch. Ideally, this overall
error should approach zero. If it (toes not, additional training should be
carried out. However, if there is any noisenoise in the inputs and/or outputs, an
overall error of zero is never attained. Indeed, it is possible to overtrain a
neural network until it fits the noise pattern rather than the underlying
relationship.	 ti
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Figure 7.13 l rver s c mapping of the letter A.

Exarnpe 7.2 Data Compression and Expansion. Now let us consider the
arrnncjst shown in Fiu,ure 7.13. Here we have an input matrix that isa
livcThji representation of an A and an output that is a 35-hit representation
Of the letter A. Is it possible to train a neural network to map a five-bit
re p r ecntation into a 35-hit representation! Yes, it is. The process is exar ly
the same as we went through in mapping the reverse arrangement. fit this
CtSC, We have data expansion instead of data compresiou.

We c.:i even have an arraccrne nit that combined the networks shown in
Figures 7.10 a11d7. l3—t1iai is, a 35- it rcprcsentatien that k curiinsrcsset.l
into a five-bit represectntkr of an A and then is expanded hack nut to a
35-hit representation of the lci.tcr A as shown in Figure 7.14. Why wordd we
want, such an a rangement? Suppose we were sending information down a
nar ow-band data channel. We could compress the data (in this case by a
facur of seven), scud it desy n the channel, and then expand it back to the
Orngnnal symbol. This process is used in ninny practical situations. ii

(?.
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FIgure 7.14 Compceion coil exponsion using neural networks.
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Example 7.3 Distortion Correction, A variation of the compression--expan-
sion arrangement is shown in Figure 7.14, where the input to the neural
network is exactly the same as the output. This arrangement is called an
autoasSUClatiVe neural network, which simply means that the input and the
output are exactly the same. in this case, we randomly adjust the weights,
apply the 35-bit representation of A as the input, apply the came 3:-bit
representation of the A oil right as the desired output, and start the
training the piocess that we have used in the previous examples until we can
consistently get an output that is equal to the desired output. Why would we
want to do this? Suppose,after trainint the network, instead of usir.n the
35-bit representation of an A as the input to the trained ANN, we put in a
representation of a distorted A. The output of the neural network svoald he
an undistorted A, because this is the only output pattern tilC neural ncae.ork
is trained to produce.

Suppose we go further and train this autoasaociative network to rcpeeccnt
all 26 letters of the alphabet plus the six punctuation symbols that we
discussed earlier. It would then be reasonable to expect that cver y time that
yea applied a distorted symbol as the input, you would get the correct smbol
as the output. In general, this is true, but there are exceptions. Suppose we
put in a distorted B with the distortion in the lower right-hand side. This
network rni ght produce a B as the output or it might produce an R. [he
choice by the network would depend upon whether the distorted B inpat was
closer, in a least square sense, to the B or the R that was used in the training.
The same is true for other, similar combinations of letters--for example,
0 & 0, R & P, C & Cl, and perhaps others. Li

7.6 FEATURES OF ARTIFICIAL NEURAL NETWORKS

What makes neural net\voi ks different from artificial intellicnce or tradi-
tional computing? Generally, there are four features that are associated with
artificial neural networks:

• They learn by example.

• The y constitute a distributed, associative memory.

• They are fault-tolerant.

• They are capable of pattern recognition.

Neural networks are not the only systems capable of learning by example, but
this feature certainly is an important characteristic of neural networks
Indeed, one of the most important characteristics of artificial neural net-
works is the ability to utilize examples taken from data and to organize the
information into a form that is useful. Typically, this form constitutes a model
that represents the relationship between the input and output variables. In



Afaoix

212	 FUNDAMENTALS OF NEURAL NETWORKS

essence, this is what we were doing with the mapping exercises that we went
through in the last section.

A neural network memory is both distributed and associative. By dis-
tributed, we mean that the information is spread among all of the weights
that have been adjusted in the training process. These connection weights are
the memory units of neural networks, and the values of the weights represent
the current state of the knowledge of the network. I fence, each individual
unit of knowledge is distributed across all the memory units in the network.
Furthermore, it shares these memory units with all other items of informa-
tion stored in the network.

The memory in a ocural network is also associative. This means that if the
trained network is presented with a partial input, the network will choose the
closest match in the memory to that input and generate an output that
corresponds to a full input. This is the process that was discussed with the
autoassociative network in Figure 7.15, wheic the presentation of partial
input vectors to the network resulted in their completion.

Neural networks are also fault-tolerant, since the information storage is
distributed over all the weights. For instance, in the example in Figure 7.10,
the information is distributed over 800 weigh;s. Hence, the destruction or
misadjustment oi 

I
one or a few of these 800 v eights does not significantly

influence the mapping process between the in11115 and Outputs. In general,
the amount of distortion is approximately equal to the fraction of the weithts
that have been destroyed.

Furthermore., even when a large number of the weights arc destroyed, the
perlorrnancc of the neu;al itetv.ork degrades radual]y. \Vhde the peifor-
monet suffers, the Sv's t C111 rot furl catastropiically because the iitrma-
tion is not contained in 

'
just one place but is, ins:-ad, distributed throughout

the network. When neural nctwork arc iinplcm.: ited in hardware, they are

.E --L:
1f1.
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Flguro 7.15 flPUtIJtputnoç)ping in en ctoossociotivo nourainework.
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very fault-tolerant, as contrasted to von N umann-type computers where the
failures of a single component can, in thcoiy, lead to catastrophic results. For
this reason, neural networks show great promise for use in environments
where robust, fault-tolerant pattern recognition is necessary in a real-time
node, and the incoming data may be distorted or noisy. Such applications
might include: nuclear power plants, miss i le guidance systems, space probes,
or any system that is inccessiblc for repair or where continuous performance
is critical;

Pattern recognition requires the neural network to match large amounts C

input information simultaneously and generate a categorical or generalized
output with a reasonable response to noisy or incomplete data. Neor:l
networks are good pattern recognizers, even when the information comprs-
irig the patterns is noisy , sparse, or incomplete. I-or a coe:plex system wi:i
many sensors and possible fault types, real-time response is a difficut
challenge to bow human operators and expert systems. While the traiuit:g
time for a neural network may he lon g , once it has been trained to recognise
the various conditions or states of a complex system, it only takes one cycle of
the neural network to detect or identify a specific condition or state.

Neural computing networks consist of interconnected units that act on
data instantly in a massive parallel manner. Indeed, when a neural network is
implemented in hardware, such computation occurs vtrtually instanta fie ousl.
Such a neural computer provides an approach that is closer to human
perception and recognition than that of conventional computers, and it can
produce reasonable results with noisy or incomplete inputs.

7.7 HISTORICAL DEVELOPMENT OF NEURAL NETWORKS'

Artificial intelligence had its beginning at the Dartmouth Summer Research
Conference in 1956, which was organized by Marvin Minsky (learning inn-
duties), John McCarthy (symbolic languages), Nathaniel Rochester (neural
systems), and Claude Shannon (information theory). This conference led to
the development of computer programs capable of making machines perform
human-like or intelligent tasks and to the development of machines that used
mechanisms modeled after studies of the biain to become intelligent." The
conference inspired Frank Rosenblatt to develop his concept of the percep-
trort, a generalization of the 1943 McCulloch —Fitts concept of the functioning
of the brain by adding learning. The McCulloch-Pitts abstract model of a

3 1hc history of the development of neural networks has been well documented b y a number of
books in the past few years: Caudill and Butler (1959, 1992), DARPA (19S8), Hecht-Niekeo
(1959), Marcn, Pap, and Harstoii (1990), Miller, Sutton, and WerIc 's (1990). Nelson and
1ilingssorth (1900), Pao (19S9z0, Simpson (1990), Wasserman (1959, 19:)3), and White and Sofge
(1992). We will limit this review to descriptions of Rosenhlati's Perceptron, Minsky and }'apert's
review entitled J'erccpirons; and \Vidrow's ADAI.INE because all had a profound influence on
the development of neural networks
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brain cell was based on the theory that the probability of a neuron firing
depended on the input signals and the voltage thresholds in the soma. It
introduced the idea of a step threshold, but it did not have the ability to
learn.

The first learning machine was actually built by Minsky and Dean in 1951
(before the Dartmouth conference) at the Massachusetts Institute of Tech-
nologv. It had 40 processing elements, which, when described in neural
network terms, were neurons with synapses that adjusted their weights
according to their success in performing a specific task. Each neuron or
processing element required six vacuum tubes and a motor/clutch/control
system. The machine utilized J-Iebbinn learning and was able to learn enough
that it could "run a maze." It worked surprisingly well, considering the state
of electronics and the understanding of the learning process at that time.

Rosonblatt's Perceptron

After the Dartmouth conference, Frahk Rosenblatt of Cornell Ac rolabora-
tory deve]opcd a computational model for the retina of the eye, called
the 'perccptron 'The perceptron (see Figure 7.16) was inspired by the
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.UiO 7.16 Dogcm of the perceptron.
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McCulloch --Pitts model and incorporated Hebbiart learning, which lie sum-
marized as follows:

When the synaptic input and the neuron output were both active, the strength
of the connection is enhanced.

The perceptron was a pattern classification system that Could identify both
abstract and geometrical patterns. The first perceptron was primaril y an
optical system that had a grid of 400 photocell.,, connected to associator units
in the input buffer, which collected electrical impulses from the photocells.
The photocells were randomly connected to the associators and received
optical stimuli. The output of the sensors were connected to hard-wired
genetically predetermined set of processing elements (called deft .ns) that
recognized priticular types of patterns. The output of each demon was
connected to a flircshnld logic unit which had no output until a certain le ci
and type of input was received. Then the output rose linearly with the input.
This concept was inspired by the observation that the neuron does not tire
until the balance of input activity exceeds some threshold, and that the firing
rate is incrca:-_'d in proportion to certain characteristics of the input. It was
quite robust and capable of some learning, it po;scssed a great deal of
plasticity (i.e., information could be retained after some of the cells had been
destroyed), and it was capable of making limited generalizations. It could
properly categorize patterns despite noise in the input.

Rosenblatt studied both the two-lover and three-layer petceptrons. Ile was
able to prove that the two-la yer perceptron could separate inputs into two
classes only if the two classes were linearly separable. In sonic systems,
supervised learning was used in which the weights were adj usted in propor-
tion to the error between the desired and actual output. While his attempts
to ex-tend the learning procedure to the three-layer perceptrons were encour-
aging, he could not find a mathematical basis for distributing credit (or
blame) for the output errors between the two layers of weights. I truce, there
was no mathematical basis for making corrections to the weighting functions.
Actually Amari had solved the credit assignment problem in 1967, but it went
unnoticed, because it WLS published in the Japanese literature. had Amari's
work been more widely known, it could have mitigated the impact of the
critical book entitled Perceptron.c by Minsky and Papert discussed later in this
section.

The perceptron paradigm was designed to explain and model the pattern
recognition capabilities of the visual system. The perceptron was a feedfor-
ward network without any feedback, without connections between neurons in
the same lover, and without any randomness about the operation of the
network. It was basically a three-la yer network in which the input layer was a
buffer (fanout) layer that mapped a rectangular pixelized sensor pattern to a
linear array. The second layer, consisting of a set of feature detectors or
feature demons, was either full y or randomly connected to the input layer.
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This layer used either linear or nonlinear threshold activation functions to
condition the outputs. The output layer contained "pattern recognizers" or
"perceptrons." The weights of the inputs to the second layer were random-
ized and then fixed while the weights of the output layer were 'trainable."
'I'lic artificial neurons in the output or perceptron layer each had an input
tied to a bias with a value of + 1. The activation functions on the neurons in
the output layer sometimes were "threshold-linear" functions in which the
output signal is zero until the sum of the weighted inputs becomes positive, at
which time the output increased to the weighted summation of the inputs. An
alternate activation function sometimes used was a threshold function in
which the output was zero if the weighted sum was zero or negative and
equal to one if the weighted summation of the input was positive.

The basic learning algorithm procedure for training the perceptron is as
follows

If the output is correct, leave the weights unchanged.
If the output should be 1 but is instead 0, increment the weights on the
active input lines (an active input line is defined as one that has a
Positive input).
If the output should be 0 but is instead 1, decrement the weights on the
act he input lines.

'['he amount that the '''eights we le clia ned depended upon the leaiiiing
scheme that has been cliscii. The three haic tvp:s of learning used in the

were as foI1u\'.'.:

o A fixed increment or decrement.
A variable amount of increment or decrement based upon the error
(i:ei'ined as the difference between the weighted sum and the desired

• --onibinatiuA of both a fixed increment and an ico'mcnt proportional
the error.

To classify a wide variety of shapes, the number of fcturc neurons must
be 'ite iai ze. By seh'cdvc use of feedback, it is possible to radically reduce
the mn ;he' of ne.iaro:o; rceiuired. Another scheme used with the perocatron
involved (a. he SCgiiCnt:it:ot1 of the image into .iiiallcr piece:; ani (h) tho
creation oc eu1 OilS that we1 c specific to particular areas.

Minsky un i Pc_l pori's Percopirons

In the mid-1960s, Marvin Minsky began studying the "limitations" of the
perccptrons, because of concern that Rosenblatt was making claims that were
not being substantiated. (fierce competition between Minsky and Rosenblatt
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is alleged to have extended back to the time when both were students rt the
Bronx High School of Science, which was probabl y the top technical huh
school in the Unitcd States at that time.) He and Seymour Papert showed
that the two-layer perceptron was rather limited because it could only work
problems with a linearly separable solution space. The exclusiveor (XOR)
problem was cited as an elementary system that the perceptron was unable to
solve. They emphasized the inability of the perceptron to assign credit for the
errors to the different layers of vcights. After their hook entitled P('fCC(TL.fl
was published in the late 1960s, virtually all support for research in the
neural networks field was ended by the various U.S. funding agencics.

A quotation from Perccptrons is indicative of the nature of the crc isen by
Minsky and Papert.

The perceptron hasho.vn itself to he worthy of study despite (arid c'.en
because of!) its severe limitations. It has many features to attract attention: its
linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a
kind of parallel computer. There is no reason to suppose that any of these
virtues carry over to the many layered version. Nevertheless, we consider it an
important research probiciri to elucidate (or reject) our intuitive jridrneir: that
the extension is sterile. Perhaps some power conversion theorem is hi he
dkcovered, or sonic profound reason for the failure to produce an intercsting
'learning theorm for the multi-layered machine will be found.

The criticism in Perceprron.c, while generall y fair in the contexts of the state
of knowledge at that time, was absolutely wrong in one respect. The virtues
cited by Minsky and Papert for the two-layer network indeed did carry
over to the many-layered version, and in fact a threclaver perceptron was
capable of separating linearly inseparable valdables, including the XOR
problem. Rosenblatt died in a boat accident shortly after publication of
Perccptrons, and unfortunatel y , the criticism of Minsky trnd Papert was never
properly refuted at that time.

Widrow's Adaline

Adaline (adaptive linear element) is a neural network that adapts a system to
minimize the ''error" signal using supervised learning. It acts as a filter to sort
input data patterns into two categories. Up until the last decade, it was
perhaps the most successful application of neural networks, because it is used
in virtually all highspeed modems and telephone switching systems to cancel
out the echo of a reflected signal in a transmission line or corridor. It was
invented by Bernard Widrow and M. E. (Ted) Hoff of Stanford University in
the early 1960s. (Hoff is also generally credited with being the inventor of the
microprocessor as we kao',v it today and was the founder of Intel Corpora-
tion.)

The basic design of the Aclalinc is shown in Figure 7.17. This arrangement
is substantially the same as that for the perceptron discussed earlier, with the
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Desired Output

Figure 7.17 Diagram clan Adalirie processing enmerf.

ie1't,icn that the qrc n icr is a threshold type ;oluiuear function with + I
and - 1 L s the limiting values (i.e., if the summation of the weighted inputs is

	

iojljv the output of the ystem mAl be	 ; and if it is zero or negative, the
Pu wi l l P -1). The learning algorithm nscs the difference between

tiIC MAY output and toe tmlpilt of the SLOtlIUii in (ant We output of the
(Uarttize) 10 p oduce the erA r € function u-1 to adjust the weights. In
c<i 1 ç	 used	 c .1iifercrce	 a	 0t of t1
Sy.tc ui and the jj- 1 j Ol.tji	 the CArOl i'u:c..:.., to adjust the weights in
I lic

P i ii- 	to the bcginnirtg of the trainino, ill 	 -! its must be c li jusled to
lAilliIu	 \etucS. With the Adeline, an input 1. inn A present.. 1 to the
P1 ( 'CCS i elements that filter' L or a specific celceory. if the input matches
the Cap ,. 'iy, the proccusinb elncnt tutput is -	 and P' it does net match
th catec,,y , the pi cssii	 C1fl' flt oUtput iS — I. Ihc learning rule is tile

1 ) ha Role," also known as the "Widrow--Hoff J&.arning Rule," which is, in
fac h a least mean squares rninirrization of error psccedurc and is discussed
CX(ç Ilsively in ROW 8.?. tt involves the adjustment of weights according to
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the error in the priccssing clement, compt'n?. a 'clelt" '.

Aw 
= 1)E.	

(7.7-1)
'xl

where i is the learning constant, E is the c i,:,x is the ith inpu t ( - 1, or

+ 1). and X is the input vector. This \Vidro,...........learning i ule is dcusscd

in Section 8.2 of the next chapte.
The learning al?orithm for Alatine invoh. 	 application o -	 input

(which may be noisy) to the single	 roc. .... . clement or ieOi'.). The

application of the desired output and a conu	 an of the err, deli 1cd as

the difference between thc weighted sum j" to the quantizer and the
desired output, provides the input to the leai.	 module. Then coh s;eight

is adjusted so that the error is equally '	 autedanion?, the weights

(including the weight for the bbs). Equation ( . . .) becomes

7)Ct	 C'
- .-- = -	 (7.7-2)

(N	 -

where (i's ' ± 1) is the number of inputs plus tb: bias input and 1, (N' -F 1
replaces the learning constant 7). This means that the error is 'iifrnil

assigned to the (A' -F 1) inputs.
Since all inputs are + 1 or - 1. this adds or subtracts a fixed amoe et to the

wei ght for each element input, depending on the sign. This p:occss is
repeated over and over again for each set of inputs in the epoch, and the
epochs are repeated until the error is reduced to the desired value. Since
both the desired output and actual inputs are binary, it is possible to have
complete agreement between the desired outputs and the quantizer output
even though tine error (the difference between the desired value and the
neuron output before the quantizer) has a substantial value. Further training
beyond the time when the quantizer output is equal to the desired output is
performed because the minimization of the error makes the system more
tolerant of noise fluctuations in the input signals. This algorithm has been
shown to guarantee convergence, provided that a set of weights exist that will
minimize the error in a least squares sense.

Most of the time, the convergence of the learning process in the Aclaline is
very fast. However, the nature of the initial randomization can have a major
effect on the speed of convergence. In a limited number of cases, conver-
gence will not occur at all. Some of the real-world problems dealing with the
Adaline occur where input patterns may not he perfect examples of the
categories the y represent. For instance, suppose we consider separating
"circle' from "nuncircic." The pertinent question is. How perfect does the
circle have to be before it is considered a circle; or, alternately, how much
deviation from a perfect circle is necessary before it figure is considered as a
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noncircic? Another restriction associated with the Adaline, as it was origi-
nally conceived, is that it is capable of classifying only linearly separable
patterns. Later versions involving inultilayers of Adalines proved more pow-
erful and capable of separating input space even though the variables were
not linearly separable.

One of the major applications by Widrow of the Adaline is in adaptive
noise reduction. Every telephone has different transfer characteristics which
can change during a single transmission. The use of an adaptive network to
adjust the input signals spectrum so as to keep the signal-to-noise-ratio high
for the given state of the line was one of the early applications. Other
applications of the Adaline by Widrow and his students at Stanford Univer-
sity include: (1) adaptive antenna arrays, (2) adaptive blood pressure regula-
tion, (3) adaptive filtering, (4) seismic signal pattern recognition, (5) weather
forecasting, (6) long-distance and satellite telephone adaptive echo cancella-
tion, (7) cancellation of correlated interference in acoustical and electronic
instruments, (8) separation of a fetal heartbeat from its mother's heartbeat,
and (9) signal equalization in all high-speed modems in use today.

Widrow's Madaline

A Madaline (which is an acronym for "Many Adalines') involves the use of
several Adalines as the middle layer of a three-layer neural nctwork. 'ftc
input layer, as in the case of the perceptron, is an input buffer to ensure that
all inputs go to each of the Adalines, and the output layer is a single unit that
combines the outputs of all Adalines in a prescribed way. Sometimes this
output unit gives a -t- 1 when the majority of the inputs are ± 1, and a 1
when they are not (i.e., voting majority). In other cases, it will give a + I only
when all of the output if all Adaline's are + 1 (an "AND"output). In another
situation, the output unit will give a + 1 when any of the outputs of the
Adaline are +I (an "OR" output).

Since Madaline has a binary output, it can only he used to discriminate
between two classes. It is possible of course to use many independent
Mada!jnes to discriminate between more than two classes. One Madaline is
nLcdri for each pair of classes added. Typically, the final classification is the
class that c'nstitutes the most outputs. A typical Madalinc network architec-
ture is shown in Figure 7.18. The Madaline combiner unit does not have a
bias input, and the weights on the input to the Madaline unit are fixed; that
is, they are adjusted initially to represent the importance of the specific
Adaline output. Here again the stability of the Madaline relates to the
stability of individual Adalines, and convergence is seldom a problem.
Adaline elements in a Madaline network evolve as detectors for a specific
input features. This is particularly useful when the Madaline is used in
control systems,
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Figure 7.18 Dkagrarn of a Modo[ie network architecture.

7.8 SPI\RATION OF NONLIiEALY SEPAF. 4d3L: VAFlABL[•:s

The abhly of an Ada]ine to separate linearl y . eparable variahlcs can he
readily demonstrated with a processing element or neuron that invo!',c two
inputs (x nnd ) and two weights (iv, and vv). The neuron shown n Figure
7.19a suns the t\vO weighted iuputs—that is,

I :rw +ya.	 (7.8-1)

fhc o'put z is equal to I if the. sum is greater than the threshold value 1',
and it is equal to 0 (or i in an Adalinc) if the sum is less than or equal to
the threshold value. A special case occurs when the output is equal to the.
threshold T (i.e., the case that di.ides the two regions). Equatf.n (7.8-1)
bccom es

.uv + yw). = T	 (7.8-2)



222	 FUNDAMENTALS OF NEUP.A L NETWORKS

X	

OUTPUT z

y .	
THRESHOLD FUVC1'10,V T

0

	

I	 y 1 ., •r (/;
yThtr 'pi	 _

	

X•Wr +}W > T	 System Jires (z 1)

X ,	 + v w < T	 System dsses not Fire (: - 0)

	

1. W + YWy - T	 Disiding Line

(b)

Figure 7.9 Separation of variables by a neural network: (a) Processing element w)h
two inputs, (b) Division of x-y plane by a processing element

which can he rearranged to

w	 7'

	

y = --	 x + -	 (7.8-3)
IVY

This is the equation of it straight line where the slope is equal to { -.
and the y intercept is [T/w,I, which divides the plane into values that are
below the threshold and above the threshold as shown in Figure 7.19b.

This concept can be extended further with a three-layer network as shown
in Figure 7.20, where the first layer is a buffer with two inputs .v and y; the
middle layer has two neurons fully connected to the buffer layer with weights
on each connection. The output layer is a single processing element whose
input weights are set at 0.5 and whose threshold is set at 0.75. This
configuration represents a logic "and" function, where both processing ele-
ments in the middle layer must produce a 1 to give a 1 in the output layer.
The two processing elements in the middle layer are threshold functions with
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Input layer	 Hidden Layer	 Output Layer

wit

902

y	
W22	

05	
= 0.75

Figure 7.20 Three-layer rehvok for roporotied rton'neady separabo varicbkss.

thresholds 14 and 1 7 . hence, the Outputs are either 0 or I, depending upon
whether the summation of the weighted inputs is In than or greater than
the threshold values. As in the previous paragraphs, each of these threshold
values effectively allow the plane to be divided.

Ile equations for the cases where the outputs f We two middle layer
neurons are equal to the threshold values F1 and F, are

"01 A my- F1 .'	 (7..4)

	

12 ± ye	 T,	 (7. -S)

vluch can L; well ranged into tile classical equation fol r . 1 f.	 a .I;' H, ht line:

	

W1 I	 I
	= --x + ---	 (7.8-6)

	

:i	
IV

±	 (707)

	

11'-,	 II'

It is readily apparent that On use of two processing elements it the hidden
layer provides for a double division of the plane as shown in Figian 721. The
location and Ci icntation of these two Fnes arc determined by iK quantities,
namely, the values of the four weights aid the tvn thresholds. Sitcc only four
parameters are needed to d ' Il.0 tiICcC Wt) lines unanih:uous , there is a
wide range of values of weigi .s and ilireahold values that will d: i re any two
particular lines,

iflcC the outpilIS of the W.0 neurons in the middle lav:r arc t :Ler 0 or 1,
it is apparent that both out uts must be 1 if the output layer is ' produce a

It is rc.adiiv shown that this corresponds to coordinates x ai
d
 y being

located in on, one lartcu!ar"qua d r:int'' nreducecl lmvth:';sc h.	 ' ..fcT.eeting
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lAlyer 2 has a Value of] Only
in the Shaded Region

	

;

X Tljj	 5 j

--	 ---. 

-<j	
x

X 12 
-L 

Y '22

Fgwo 7.21 Divis ion of x y plane by Iwo neurons.

lines. I lence, only one 'quadrant" of this area will have a value of 1 whflc the
other three "quadrants" will have a value of 0.

The use of three hidd n processing elements in the middle layer further
snhdivdes the plane with three lines, producing a triangular closed region.
Writing tile equations for the outputs of the proccssin elements in the
middle layer of the neural networks shown in Figure 7.22 and setting them
equal to the thresholds give the three dividing lines:

03	 13 +	 ( 7.8-8)

04 = XV14 + yW 71 = T4 	(7.8-9)

	= xu'15 f yn'	 (7.8-10)

where 7', 2, and T5 are the thresholds. Again, these equations can he put in
the classical form for a strai ght line where the coefficient of the x terms are
the slopes of the three lines and the three constant terms involvin g thresholds
1 3 , T4 , and T5 are the v intercepts of the three straight lines:

TV 13	 T3

Y = ---x+	 (7.8-11)
IV23	 '23

IV 14	 7'4
Y	 -	 (7.8-12)

W 24	 1534

TV 15	 T5

	

Y = - —x + -	 (7.8-13)
1V 25	W

which are shown in Figure 7.23.
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Flour 722 Three-Ioycr net\vok w;h t'reo r.t % uons n -,he hJcn L.31
:cnc \'JiIh ti rca Incs.

k.

Lz ±::ii
FIgUre 7.23 Pcne seporaed by threo lines to provide a closod hi-ngukr roon.
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A 

\A	 A and B

B

(a)

B

\

(b)
Figure 7.24 Areas enclosed by use of many neurons: (a) Closed triangular area with
re-entrant area created by six lines (six nodes in middle layer of Figure 7.22).
(b) Separate closed areas created by eight lines (eight nodes in middle layer of
Figure 7.22).

It is readily apparent that the use of additional processing elements irs the
hidden layer allows us to generate virtually an y type of enclosed area desired,
ranging from an approximation of a circle to a convex polygon with re-
entrant regions as shown in Figure 7.24a. Indeed, not all of the outputs of
the middle layer need to overlap, and hence it is possible to use such an
artificial neural network to enclose multiple regions as shown in Figure
7.24 b.
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1. o 1tc linear associator of ligure 7.8, the input vector .v is r.'e
component vector (0.3, -- o.7,0.2) and the output vector is it four rO, ipo-
'lent vector (-0.8,-- 0.3, 0.6, 0.9). Calculate the weights.

2. J)iscuss the differences hctvcen \','jiirc,sv"; Adalimne and Madaitne fl: ':arks
and .Roscnhlatt's pen ccpt ron. I low do they differ as far as rror irpiit is

,tceiied?

'[Jo' three-layer nei\voL k t! ! nrc 7....divides the plane viPm thi c hues

	

tiling a triangle. Calculate lbs weigitstha 'aOl p ve a treen!e	 :9 its
vortices at (x, y) coordinates (0, 0), (1, 3), and (3, 1).

1)caign a three-layer network as shown in Figure '1.20 to
lion-linearly scptraths :riablcsfr the ''exclusive-nor" fi'nctfn i	 the
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foIl owing trnth table:

Input x

0	 1

0	 1	 0
Input. y

1	 0	 1

5. The five-bit code for the letter Q is 01011. Develop a storage matrix W

and correct it so that chaotic oscillations will not occur. Show that this
storage mai[Lx can produce a correct memory state, even when n erro-
neous code for q is applied. Use the erroneous representation of (2 to be
01010. Show all steps involved,

6. A weight r atrLx Al is given by

123	 2
M= —2 1 3 -1

3 1 2 -3

Draw a 2-layer neural network in which ttcc given mark rcprc cats the
weights.



BACKPROPAGATION
AND RELATED

TRAINING ALGORITHMS
t: ta,t Si7.flt-,.-V.t

8.1 BACKPROPAG,VIION TRAINING

l3ackropagatioci is it s\'sten]utic method for t rai:iic	 .lti	 (thee or
mnrc)-layr:r altificial neural networks. '.flic cltic j Ji j o 	 ç>f	 ti:j	 abc-
'ithin in 1986 by Ruinelliart, I unIon, and Williams O986) was the -v step in
making neural networks lraeticI] ill many real wrcr iii sit cc dons. '-'vever.
Rumekiart, llncton, and \V;cicains sscrc not the Iii to dcv: gc the I: Ipiop-
agatiori algorithni_ It ias ilvc lopcd indcpelleleLcilv by Puiki (1 '5_fl iii
and car icr by Werbos (1b74) in 1974 as pt of his Ph.D. i:a	 :tion at
Hnr.'ard University. Nevertheless, the baekprcpagaticc i i algoc but '.. critical
to the ;. I% ances in neural networks because of the lirci j tatin :s f' tb. ,e- and
two-la:r networks discussed previously. I;:deed, backpro g:tcn1 ';oycd a
critiea t y ; tiportan t role in the resurgence of the neural nctvoi-k dcii in the
mid-1 SOS. Today, it is estimated that SO% of all applications ttiib:e this
backpropagation algorithm in one form or another. In spite of its ibitatjons,
backpi'opagatfon has dramatically expanded the r age of puohicic' which
neural network can be applied, perhaps because it Iu a strung ir.,cnatical
foundation,

Prr to llic development of backpropagatcon, at np to 	 p	 gtrons
with more than one layer of weights weid frustrated by what was . acI the

weight assignment problem" [i.e., how do you c!lccate ticiJ the
output layer between the two (or more) layers of \\cigh  v;hci P.	 is :10
fir:n oatheninticaI fictidePon for doing so?]. I n ii . p:lecij	 : the
neural network field for over two decades and was cite u 1	 and
Papert as one of the critickms of mu]tilayer percepc rons. Jronieal' 	 H S.; need
nol have been the ease, because Amari developed a netlincl 1	 'uting

229
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X2

Xi

230	 BAC<PROPAGATION AND RELATED TRAIN I NG ALGORITHMS

XI

weights in the 1960s that was not widely disseminated (Amari, 1972'). Even
more ironic is the fact that Rosenblatt's method of using a randou chstribu-
tion of the weight values in the middle neuron layer and adjusting only the
weights for the Output neuron layer has been shown to provide adequate
training of the network in most cases.

Let us consider a typical neuron as shown in Figure 8.1, with inputs x
weights w, a summation function in the left half of the neuron, and a
nonlinear activation function in the right half. The summation of the weighted
inputs designated by 1 is given by

I x1w +xw, +	 +x,. w, 

The nonlinear activation function used is the typical sigmoidal function and is
given by

=	 e°1) 
= ( 1 ± e')'

This function is, in fact, the logistic function, one of several siginoidal
functions which monotonically increase from a lower limit (0 or -1) to an
upper limit (+])  as I increases. A plot of a logistic function is shown in
Figure 8.2a, in which values vary between 0 and 1, with a value of 0.5 when I
is zero. An examination of this figure shows that the derivative (slope) of the
curve asymptotically approaches zero as the input I approaches minus
infinity and plus infinity, and it reaches a maximum value of c/4 when I
equals zero as shown in Figure 8.2b. Since this derivative function will be
utilized in backpropagat ion, let us reduce it to its most simple form. If we

c(i)
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P(i)

I
(i)

e(I)(J) / (.1

1: 

-fl	 1	 I

/

1 ; rT	 I.TII

(I;')
Figure 8.2 (a) Logisc acvoUon fund.. ( -. 2	 •.. ......	 nd (b) Is fi . l dorvaft.e
(slope).	 -

take a criat ve of eqItoii (8.1-2), we get

+	 r!)2(J)	 (8.1-3)
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If we solve equation (8.1-2) for e ", substitute it into equation (8.1-3), and
simplify, We get

lcb(J)	
1 --	 c2(j)	

- c (T)](i)) =CrO-ill

where c1(1) has been simplified to 'T by droppinL' (I).
Ft is important to point out that inultiiaver ntworks have greater repre-

sentational power than single-layer networks only if nonlinearitics are intro-
duced. The logistic function (al-,o called the "squashing" function) provides
the needed nonlinearity. However, in the use of the backpropagation algo-
rithm, any nonlinear function can he used if it is eeervwlierc differentiable
and monotonically increasin with I. Sigmoidal functions, including logistic,
hyperbolic tangent, and arctangerit functions, meet these requircment. The
arctanLtcnt function, denoted as mi - , has the form

cp(J) = - tan (a!)	 (8.1-5)
IT

where the factor 2/7r reduces the amplitude of thearctangen function so
that it is restricted to the range -1 to -1-1.  The constant a determines the
rate at which the function changes between the limits of -- I and -I 1 and to
the slope of the function at the origin is 2 a/iT. It. influences the shape the
arctangept function in the same way that a influences the ]ogistic function in
ligure 8.2a. The arctangcnt function has the same sigmoidal shape as shown
in Figure 8.3a. The derivative is

,./(J)(J)	 2	 a
r[i+2]

which v. ould he used in place of equation (8.1-4) if the arctangent replaced
the logistic activation function.

The hyperbolic tangent function has the form

C" ! -
= tanh( al)	 --------el +

and its shape is shown in Figure 8.3b. Its derivative is

cI	
= asech2(aJ) 
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rp(J) = - arctan(cJ)

( i)A	 ul	 ale

F- - - •-•

r

:

(i'))

F;guro 8.3 tor	 u;IvcjIio	 mur;jjor	 f.--.,r I	 () ,\rcnt.
(b) Hypoibc 'tc tangnt.

T he sIop of d(I) at the ori g in is 4a,and it ceteircs ch rae at which the
W1Ltiin C1C	 WceII the i'i: of -- 1 ani	 hi the snoc genenil 'vy

iltht	 iniluencos	 shape of the ogsic . ` t;1,  i ii Ihnrc Ch2u.

	

The, :e of a si1nioid;d (siivas1iin) fuiicliei' 	 'es a form of' aiitoniatic
f;aill '.ifflrol' thinL is, for Siall Vaues of I 'ft -iCiC,, tl	 slope of the
input -Coitpot CWC ms steep, j.'r0(NICifl a Iii ;io since alt igrnuida1
activation functions have drivimi ives with 1wil sha es of the type shown in
iiure 821b. As tI;e uRignhtude of I Iict:uin:, •Lc;Ltci in a pio: i tjvc or neralivc
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direction, the gahi decreases. Hence, large signals can be accommodated
without saturation. This is shown in Figure 8.2 a.

8.2 \VliDC)W—HOFF D}ITA 1APNING RULE

'I [,e \vcl:ow—Hof delta learning rule can be derived by considering the ii de
of igare .4, v;here T is the target or desiicd value vector and I is defied
by equation (8.1-1) as the dot product of the weight and input vectors and is
gi;eii by

1	 (8.2-1)

For this ciuration. no quantizer or other vcrnlinear activation function is
included, but the result presented here is equtly valid when such nonlinear
elements are included.

From Figure 8.4, we see the error functinn : as a function of all weights
is, and WC see the squared error e to be

= (T —1)	 (8.2-2)

= (T - 
1)2	 (.2-3)

XII

Xl

XI

Figure 8.4 Neuron without activation function but with a target value r and
on error e.
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Thc gradient of the square error vector is the partial derivatives with respect
to each of these i weights:

rip2
-	 -2(T-J)= -2(T-1)x.	 (8.2 - 4)a ',	 .1 wl

Since this gradient involves only the 
ill ) weight Component, the Summation of

equation (8.2-1) disappears.
For demonstration purposes, let tic consider a tic won with only two

inputs, x and x2. The square ci ror is now gvcn by

[F--	 -

= j-2 +	 - 2iit x - 2Jtx I 2W ; hW: 2

=W X f ic'1[-2x(T --	 v)} -. [r

x.-	 -I-	 [2(F - IYix i )1	 [(/	 W1x1)J	 (8.2)

The minimum square error occurs when the partial derivatives of square
error with respect to the weights me 1 and Im' arc set edit-il to zero:

(7E :i

-:[T- Im1	 ;m'iJs	 I)	 ($\my I

-2{7*	 il'1X1 -	 = U

Sinec x 1	 .d :-	 C nnt be zemo, the ̂Trm ntiifcs ill the i:';tcle(s.	 iih
1. 1 ' : Oils ,must h:	 iro. This

I -- w 1 .v 1 •- W,f,

from "";ell ti::- uc:n of the milininilin in the :c, and mm, dhiWnsioms are

7' -
m y 1 	 —

 —i---	 (.2-U3

--i..
0 2 -- 

- --:	 ---	 (8 .-1O)

Sabstituijon ci either of these vstn y ; into C1Olthin 	 ;he minimimmn
re error to he zero. 'Fcclinica Ily, this is currec, hLt hi the real world the

a: h-urn square error is never equal to ZCIIJ bccjuc of notdinearjtjcs noise.
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and imperfect data. The presence of noise with a signioidal activation
function will give a minimum square error that is not zero which we designate
as

Examination of equation (8.2-5) shows that plots of 62 versus w 1 or v2

will be parabolic in shape. The parabolic curve of squared error E2 versus
is shown in Figure 8.5 fortwo cases. of minimum square error: zero and
For both cases, the minimum square error occurred at a value of a given by
equation (8.2-9). An identical result can be obtained for squared error versus
0 2 where the niinirflum vluc occurs at the value of n given by equation
(8.2-10). Hence, the minimum square error surface for the two dimensional
\vciglit case is a paraboloid of revolution with the e 2 axis located at (w1, 02)

A geometrical interpretation of the delta rule is that it involves a gradient
descent algorithm to onnimize the square error. When the square error is
viewed in three dimensions (o. w, E 2 ) the square error surface is a
paraboaid of revolution wiii the weight vector descendin g toward the
mm iniurn value along a gradient vector oil swfacc of the paraboloid. The
projection of this gradient vecter on the I ,. , ] - w, plane is the delta vector as
shown in Fiure 8.6. The delt:i rule mo, es the weight vector along the
negative gradient of the cunc•.I --:rface award the ideal weight vector

C2

I .
Wt=

'V2 X2

Xi

Figure 8.5 Minimization of square error during Widrow-Hoff training.
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position. Because it follows the gradient, it is called a gradient d'scent or
steepest descent algorithm. Since the gradient is the most efficient path to the
bottom of the curved surface, the delta rule is the most efficient way to
minimize the square error, There is, however, one caveat that must he added
here: This statement is true only if the weight vector is descending toward a
loba1 minimum. If there are local minima, which are common with niuhidi-

mensional problems, other techniques must be used to ensure that a Su!utiou
(i.e., a vieiht configuration) is not trapped in one of these local minima.

The Wid: ow—Hoff delta training ILO-" provides that the change in (sch
weight vector component is proportiona' to the negative of i:s gradient:

d & -
doe 1	--J'	 K 2i	 i)x1	2K:x1	 (8.2-11)

divi

where K is a constant of proportinnalis'. 'The negative sign
bceauc a rnhrilaL;Lation process is ineovcd. it is common to . ' >rmnalize the

(Err(,,)2

"Delta"JJ'igiit wj	 J L'CIOf'	
'ector

Figure 8.6 Goometo intei'.:toc>n of d€:o rub,
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input Vector Component x by dividing by	 I2. Equation (8.2-11) now
becomes

ex.	 jex.
.wi =	

jjj- = .-i^	
(8.2-12)

which agrees with equation (7.6-1) if we define the learning Constant 77 to be
equal to the terms in the brackets:

= 2K 1X 1 2 	(8.2-13)

8.3 BACKPPOPAGATIOF': TRAINING rOR A MULTILAYER
NEURAL NETWORK'

Before discussing the details of the back-propagation process, let us consider
the benefits of the middle layer(s) in an artificial neural network. A network
with only two l ayeis (input and output) can only represent the input with
whatever representation already exists in the input data. hence, if the data
are 1]icontinuous or nonlinearly separable, the innate representation is
inconsistent, and the mapping cannot he learned. Adding a third (middle)
layer to the artificial neural network allows it to develop its own internal
representation of this mapping. Having this rich and complex internal repre-
sentation capability allows the hierarchical network to learn any mapping.
not just linearly separable ones.

Some guidance to the number of new ons in the hidden layer is given by
Kolmogorov's theorem as it is applied to artificial neural networks. In any
artificial neural network, the goal is to map any real vector of dimension in

mv other rca] vcctor of dimension n. Let us assume that the ioput
v:.., l ors are scaled to Tic in the region from 0 to 1, but there aic no ccimstrnicit
on the output vector. Then, E(olmogoi'ov's theorem tells us that a three-layer
new al network exists that can perform this mapping exactly (not an appm(_xi-ninlion) and that the input layer will have iii i ieurons, the output layer wdlhave n neurons, and the middle layer will have 2m -4- 1 neurons. Hence,
Kohaogorov's theorem guarantees that a three-layer iii tificial neural network
will solve all nonlinearl y separable problems. What it does not say is that (1)
this network is the most cfjicient one for this napping, (2) a smaller network
cannot also perform this nmauping, or (3) a simpler network cannot perfor
the ma] ping just as wed. Umu'& tunatehy, it dues not provide enough detami 'n
find and build a network t' t cfficicntli performs the mapping we want. It
does, hove' or, gu.nra tim. i:cthod of mm lap;ng does e:dst in tile foimn of
an artifjcal neural net, (,rk t'oggio and Girosi, 1990).

The anab ci	 :c.scntcd here is tie chosicI approach 0 which th tiiijen mmd oumpimi t3yerneurons h	 i dJ activation fm -mci enS. An altern atemc appro ch In which 0)c cut put nc roeshew linear	 •.men fuu;ions is presemOed in Section 87.
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Let us consider the tilr F e-laver network shown in Fieiie 8.7, v.1 ore an

activation functions are loyistic functions. It is important to note thu t buck-
propagation can he applied to an artificial neural network with any number
of hidden layers (Werbcs, 1994). The traii:ing objective is to adjust the
weights so that the application of a set of inputs produces the d osired
outputs. To accomplish this the netv:ork is usually trained with a
number of -input--output pairs, which we al:,o call examples.

The training procedure is as follows:

• Randomize the weights to small random vales (both posiPve arid

negative) to ensure that the network is not sa:uratcd by large values of
weights. Of all weights start at equal values, and the deii ri perfor-
mance leqilir es unequal weirhts, the network would not tral.	 all.)

2. Select a training paim from the training set.

3. Appl the input vector te rietwi: k input.

1. Calculate the notv.or. output.

5. Calculate the error, the difference between the oetwork output a nrt the
desired output.

(n Adjust the weights of the network in a "ay that lr1rlI:IfliLes tbjs acs.
(This ridjostment process is discussed later in this section.)

V	
WI/i	

01 k

xh -o---

	
i-I

I

d" L%i ni	 Jthj2j.r
Index ) 	 Irder p 	In:(ev q

n .VonIes	 r NL'.s

Figure 8.7 Sketch of multmloyor neural network showing the symbo15 and indices used
in deriving the backpropagotion training algorithm
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7. Repeat steps 2-6 for each pair of input—output vectors in the training
Iet until the error for the entire system is acceptably low.

Training of an artificial neural network involves two passes. In the fonvai (I
pass the input signals propagate from the network input to tile output. Jn the
reverse pass, the calculated error signals propagate backward through
the network, where they are used to adjust the weights. The calculation of
the output is carried out, layer by layer, in the forward direction. The output
Of one layer is the input to the next layer. In the reverse pass, the weights of
the output neuron layer arc adjusted first since the target value of each
output neuron is available to guide the adjustment of the associated weights,
using the delta rule. Next, we adjust the weights of the middle layers. The
problem is that the middle uyer neurons have no target values. Hence, the
training is more complicated, because the error must be propagated hack
through the network, including the nonlinear functions, layer by layer.

Calculation of Weights for the Output-Layer Neurons

Let US Consider the dc tails of the backprupagation learning process for the
weights of the output layer. Figure 8.8 is a representation of a train of
neurons leading to the output layer d'' ignatcd Ly the Subscript k with
neurons p and q, outputs (J) ,, (J) and cl,, d(), input '.veights ic11, and iv,,, q ,
and a target value 7 ,,. '[he notation (1) in (Pg k(') will he dropped for
convenience. The 0 11 (1)1)1 of the neuron in layer k is subtracted from its t'rgct
value and Squared to prohce the square error signal, which for a laver
neur in is

Eq - ['
	 '	 q.k J

01CC Cuily Onc OUtput Clio , is involved. Hence

2, 

Tc d ,_-ha ni!u indicatos 1HJ	 in a wcihL is proportional to the

F!uro8.8r-_I PiOfll0tion cf a tiea c. 	 j'Ci icr cc. ,k; 'e:	 t.:: 100 '.1 v.'ohffor On 0Ut,U(-I(Dyr ,':: )n I bcctp:op riaei
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rate of change of the 5civarc error with respect to that v.eti-- -that is,

A!Ypq k = - T).,	 (f$3)

.vhrc	 is constant of proportionality called tearoom rate. To calun' this
partil derivatve, we use the chain rule of differentiation:

k	 q k

'pq k —	 q k

Each of these terms arc ev:luated in turn. The partial de :vative of equation
(8.3-1) .4th i :.pect to (j),, k

From cqna'.iim (a. 1-4), y e get

=	 ,1k1 - 07 d	 (8.3-6)
From Figure 8.7 we see that 1. I k is the sum of the weighted inputs from the
middle layer -- t  at is,

k =Y— Ivpq
 )pj	 -	 ( 8.3-7)

I'ahing the partial (lenv r:ve with respect to me,,5 k gives

k 

=	 (8.3-8)
k

Since we are dealing with one wei g ht, only one term of the summation of
equation (8.3-7) sui'ives. Substituting equations (8.3-5), (8.3-6), and (8.3-8)
into equation (8.3-4) gives

r?E

= _2[T,? - 
q.k]q k [1 --	 I = -	 ( 8.3-9)
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where (Spq k is dcfincd as

jq k	
2u[J q -- (l)q 	(1)qk{1 -

a
= 2	 (8.3.10)

q -

Substituting equations (8.3-9) into equation (8.3-3) gives

Wrq . k = - 77, q	 =	 Th'.q Opq.kp	 (8.3-1 1)

W..q &( N	 1) = w, 5 (N)	 jSpgd)p.j	 (8.3-12)

where N k the number of the iteration involved. Ar1 identical process is
performed for each weight of the output layer to give the adjusted values of
the weights. The error tetin from cquatinn (8.3-10) is used to ad:tst the
weights of the output layer ICUFOfl5 using equation (83-11) and (8.3-12). It is
useful to discuss why the Ccriv q tivc of the activation function is involved in
this process. In equation it)) we have culculaleci an error which must be
pro p ar ated back through the network. This enor exists because the output
neurons generate the wroun outputs. 'lhc reasons tue (1) their own incorrect
weights and (2) the mictde -layer neurons generate the wrong uutput. To
assien this blai ;e. we ::ur epagate the error:; Inc ench output-layer neuron,
using the same intercunacetions and \veighI as the middle la er used to
traosm;t its outputs to the output layer.

When a weight beo.vern a middle-layer neuron and an output-layer
net:: on is large and the o;tput layer nc i:rnn has a very large error, the
wcihts of the middle layer neurons may be assigned a very large error, even
if Jmt neuron has av ei' ;utnaii output and titus ceuld not have contributed
much to the output error. By applying the derivailve of the squashing
function, this error is mederntcd, and only small to moderate changes are
made to the middle-layer weigh Es because of the hell-shaped curve of the
deci;uiive function shüv.'u ii: Figure 82b.

Cccr : leul.'n of W j iis f.: f Hiddm Letyor PI uons

Since the hJuJen l-tyeis have ;:) target ectouc, the problem c, 	 tile
weights cf the hidden lavcr, stymied workei s in this field for years until
backpropagt:tc n-as p'ut fou la. Backpropagalion trains hidden layers by
proptlgrut.iilit the adjusted error back through the network, layer by layer,
adjusting 11 e1 weight of each iiiycr as it goes. The equations for the hidden
layer arc he same as for the output layer except that the error term 8,,,
must be geitorated without a target vector. We must compute 8,,,, for each
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flCU!Ofl in the middle layer that includes contriu	 ft on the	 ors i
each neuron in the o:'uut layer to which it is c. :iod. Let US CO	 er a
single neuron in the hidden la yer just before the output layer, de. riatad
with the subscript p (see Figure S.S). In the f.rwid pass, this
propagates its outpi.t values to the q neurons in the output layer tlir,u : tl;e
interconnecting weights nyj k During training, these weights oper:.t	 1

reverse order, pnrng the value of 4, k horn the cutout layer beck tu
hidden layer. Lad of One weights is uiuhtiplicrl b y the value or the no:.
through which it connects in the output layer. The value of d. neede
the hidden layer neuron is produced by summing tiN such pro.:cts.

The arrangen-.cnt in Figure 8.9 shows the errors that arc h:cl:pruaa:d
to produce the C arige in 1v,,, ,- Since all error trrns of the jri.'t Liver arc
in. And, the partial derivative involves a sumliieiion over the r c itputs. The
or ceriure for c:ilcciauiog Shp is substantiall y the same as cale iting &

us starl. vi . h the inruvative of the Square error with tCSgeCL o the	 It
II:.: risicldic Lure: tiu.t is to ho adjustcc. Then in a joanne; n:ielogotlS ['a

.) iiiu oelt:u rile I rninin:I gives

= - 7L	 -	 (	 l)

I ' d . )	 I '	 I; j

whore the tot- 1 mean square e; 2 is now defined by

=	 [iq - <7k]
	

(8.3-14)

since several output errors ma y be involved. 1 he learning constant 	 ,	 is

	

o",	
p ii	 e'	 TI

,7r:r

	

,ih Layer	 Laver	 A°'

	

Index h	 I, Jr p	 1,,,/ex q

	

m	 I? ,1

	

ui hodrs	 n Nodes	 r Nodes

Fjuro 83 Representation, of C] train of neurons for calculatIng the change of weight
for a inddlo (hidden) layer neuron in backpropagation.
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usually, but not necessarily, equal to	 q. Again, we can evaluate the last
term of equation (8.3-13) using the chain rule of differentiation, which gives

=	 ±iL cI k	
(83-15)

)	 . ] 3	 k d'q.k Ô(I) J tllpJ (Y IV

Each of these terms is similar to those in equation (8.3-4) and are cvalnatJ
in the same manner.

The first two terms are already given by equations (8.3-5) and (8.3-6,
which are

- qk)

k

11 k
-	 0	 k (I - (I)q. k

1akin the partial derivative of cqution (8.3-7)

iVrq,k(
j' I	

P 

With 1 51;eet to r1, gives

(8.3-16)

(8.3-17)

(8.3-Is)

== w
1')

Inc SUUUllat j Ofl GVCF f	 :p.:•; because oniy OUC CC']flCCtiCin is iriulvcd.
Uhangine subscripts on eqtlaions (8.3-6) to coricspoi! to the middle itiver
gives

(t 3

Tij:.!5	 '.n,t:in (8.37)	 jilt' i-.,, tr	 :,er innut

I, I
	 (3.3-21)
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Taking the pai til 'e . ti e	 qt1ation (8.3-21) gives

(..2))
[ I 4'.izJ, •1

Again, the sumrnatin over h in equation (S.3-2 10 cisctpa r c hecaus'
one connect' a i., ic'.'h ed Sn itotioa of cc' •ii''ie Wd 7) 0 - juJ (h._'
No cquaina (8.451 use of equation M3-1 , .;acd the aLfir:ithn of &
equation (8.3 i 0) gives

= Y (-2)a('	 &;.1.(1 --	 )'	 ..1 - 4)1
d I

5m Kock

r

--	 (83-23)
q-'I

If '.vc defne	 as

0
a: j'.kpjk -:-

	

(S.324)

then equation (8.3-23) becomes

r

x,

	

if	 q -. 1

Since the change in weights as given in cquttiorl U343) is proportional to
the negative of the rate of chance of the squaie ciror with respect to that
weight, then, substitution of eqia:ion (8.3-23) and (8.3-21) into equation
(8.3-13) gives

W h 1 , J	 =

'.1

and hence

	

R), •( N ± 1) = w 	 ( N) + m, x 1 	(8.3-27)

If there are more than one middle la yer of neurons, this process moves
through the network, layer by la yer to the input, adjusting the weights as it
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goes. When finished, a new training input is applied and the process starts
the who]c process again, It continues until all error is reached. At
that point thc network is trained.

Example 8.1 Updating Weights Through Backpropagation. A simple, fully
connected fccdforward neural network is shown in Figure 8.10, where bias
inputs of -I- I and adjustable weights t v

1-1VID and W IE have been added to
neurons C, 1), and E, respectively. (See Section 8.4 for a discussion of bias.)
All neurons have the same logistic activation function with r = 1 and the
same leai fling constants with 71	 0.5.

The desired output of neuron If is 0.1. The weights are randomized to the
values shown, and training is started. Then the backpropugatiori process of
learning is applied in the backward direction and tile process is carried
tirr000il one cycle, i.e., the change in each of the six weights and the nev
values of the weights are calculated.

For the weights between layers j and k, substitution cf equation (8. 3-9 1)'
into equation (8.3-11) gives the changes to he

k -,	 pq[_2([7'q -	 *z! kI 1 j j 	 (E8.l-l)

For tile weights between layers i and j, substitution of equaton (8.3-23) into

.1O \Voht odj 'ste ,'t (trcning) 00 stmp!o 00 ccl flC3tw ;.
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euu.ion (8.3-20) gives the changes to be

- 2 (1: - o , . L )0. ( 1 --	 )	 c 4F	 - 2, )
q

(133.1-2)

iNc ni er'nts 11, f; (., r.1 I :JCcS m, n, aci2 r u::	 hued in Ninrc 27.
Subscript 1 refers to tnc	 1 in ss turnss..

First, calculate the outputs OLP euch neuron using. Lh: loistic fienctiun with
(5	 1.

= 0.4 x 0.1 i (-0.7) x (-0.2) - nix (--122)	 0.0 + L'.14--O.50

= -0.32	 h(L-)	 0.42

0.4 >1 0.4 + (-0.7) >( 0.2	 1 > (-0.2)	 0.16 -0.14-- 0.2

-0.18	 t(ID) =

1'1:	 0.42 > (1.2 +0.6	 ± 1	 H CL ( )	 0.0$	 (i2$ --

- 0.75	 ih( li . )	 0.32

Suhstitution Of these 'sine.- ±Ll ohi Ilc!.wo:k	 intO equsticus

(138.1-I) and (138.2-2) gtves

= -0.5 X (-2) x  >( (0.10-0.32) X 0.32 X (1.00-0.32) X 0.42

= -0.020

= -0.5 x (-2) x 1 x (0.10- 0.32) x 0.32 x (1(10 -0.32) X 0.-h)

= --0.022

= .1)5 x (-2) xi x (0.10- 0.32) x 0.32 x (1.01) -0.32) xi

= -0.0-18

= --0.5 x (-2) > 1 x (0.10 - 0.32) x 0.32 x (1.00 - 0.32) x 0.20

X 1 x 0.42 x (1.00-0.42) )< 0.4

= -0.00093 = --0.001
A w, = -0.5 x (-2) x 1 x (0.10 -- 0.32) x 0.32 x (1.00 - 0.32)

X(-0.50) x I x 0.46 x (1.00 -0.46) x 0.4

= 0.00238 = 0.002

-0.5 x (-2) x 1 x (0.10- 0.32) x 0.32 x (1.00 - 0.32) >( 0.20

X I x 0.42 x ([.00-0.42) x (-0.7)

= 0.00163 = 0.002
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'BL) = - 0.5 x ('-2) x 1 x (0,10 - 0.32) x 0.32 x (1.00 - 0.32)

x(-0.50) X 1 )< 0.46 x (LOU - 0.46) x - 0.7

= -0.00142 = -0.001

= -0.5 x (-2) x I x (0.10 - 0.32) x 0.32 x (1.00 - 0.32) x 020

x 1 x 0.42(1.00 - 0.42) x 1

= -0.0023 = -0.002

Alt" , '	 0,5 X (2) >< 1 < (0.10 - 0.32) X 0.32X (1.01)	 0.32)

x - (0.50) x 1 X 0.46(1.00 - 0.46) X 1

= 0.0059 = 0.006

Adding these changes to the odginal weights gives the new weights.

WCE 0.200 - 0.020 = 0.180

	

= -0.500 - 0.022	 -0.522

	

VJE' 0.600 -- 0.048	 -0.648

	

it' 4C	 0.100 --- 0.001 = 0.099

	

i v.ID = 0.100 1- 0.002	 0.02

	

BC	 0.200 + 0.002	 -0.198

	

0BLi	 -- 0 001	 0.100

	

--0.500 -- 0.002	 --0.502

	

R,•	 0.200 1- 0,006 = -0.194

'Itiis p O:jss is repeated i.Wt1 01 sample pairs in the epoch !i;wc been
uti!;.cd. 'J Icr these weight liaic. have been calculated, the total squ'rc
error is ft 'n calckdaed. If it is marc than the specified amount, the 1earllin'
aigoA;thnI 5 again applied to the network using another epoch of trainu'
(Iota. A e . ' (or ultertitiv is . eontiiue 11W training process until l:oniioriii
of the t	 souare error fr.'. :st Sci of data starts to increase, even though
the total •a-c error for l:c nainn: set continues to decrease. 0

8.4 FACI •. IHA.T INil 'c 'ACKPROPAGATlON TAli'!hNo

Adding a L' (n ± 1 in;uL viii e training weight, winch can he either
positive or neylive) to each neuan is usually desirable to offset the origin of
the activatioo Otiiction. Thi.s pcduc an effect equivalent to adjusting the
threshold of the neuron and 'en I C! n - its more rapid training. The weight
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of the bias is tr:iinab!e just like any other v.cigjit ccept that the ioput i

aLays +1.

Morn cr :u rn

Anoth :r technique to reduce training time is the v.;e of momentui, Tecauss

it enh:nces the aLiiy of the training proc.'s:. Moinerimm is usc 1 to beep
the uaining process going in the same general direction analogous to 1hu way
that noinentUrn of a moving object L htvs. This involves a,:ici a t•c a to
the wciht aJjutnent that is proportional to the amuout of Or peevious
wci'zht cHngc. In cilect, the previous adustmeut is 'remembered' :id used
to modify the nexE Jangc in weights. I lence, cque tion (63-11) imm becomes

LVj, q 	 A + 1)	 - 1 i 3 O .kh 'pj •i j	 rt1	 (8.4-1)

where it is the In On 	 coej)icienc (typicall y about 0.9). ThL, rolatioosiip is
shown in ia'u:c 8.11.11:.. ncx value of to wcie,hi then bccotn-ec eqoi to t

previous value of the might plus the weight change of equation ($. II),
whicl; iaeLes the mo:neiitum term. Equation (8.2-12) now becomes

	

is, q ; (iV t 1) = R P k( A ) ± Awl,,	 + 1)	 ($nT-2)

This process works veil in ninny problems, but not so well in othc s. Ar'.oth ci
way of YiCWifliT the pur nose of momenIun is to overcome the effects of beat

A '

/t ii

(N4 1)
we;gIr: cIJnrgr'
u'jt/m nmoinentunr

Figure 8.11 Intuence of mornenfum upon weight change
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minima. The use of ihc momentum term will often eariy a weight change
process through one or more local minima and get it into a global minima.
This is perhaps its most !mpoi tant function.

There is a substantial number of advanced algorithms or other procedures
that have been proposed as means of speeding up the training of backpropa -
gation networks. Sejnowski and Rosenberg (1987) proposed a similar woolen-
turn method that used exponential sinootluag. However, the results were
mixed. To some cases it improved the speed of the training, whereas iii other
cases it did not. Parker (1987) proposed it called the ''second-order"
backpropagation that used the second derivative to produce a more accurate
estimation of the correct weight change - The computational requirements
were greater and were generally viewed as not being cost effective compsrcd
to other nietiods. it was, however, clear that higher-order (greater than 2)
backpropagstiuu s ystems were not effective Stornetta and Jluberman (1987)
pointed out that the 0-1 range f signioidal function is not optimal for binary
inputs. Since the ma nitude of a '.'eight adjustment is proportional to the
output level of the neuron from which it originates, a level of 0 results in no
modification. With binary inputs, half of the outputs (on the average) will be
zero, and weights do not train. The proposed solution was to change the
input range of the activation function from -- 112 to + 1/2 b y adding a bias
of -1/2. They dciuionstrated that for binar y functions this procedure re-
deces the training time by 30-50%. Today a more common method of
accomplishing t is is to use the arctan or hyperbol ic taacnt activation
function.

I )espite some spectacular results, it is clear that backprnpagation is not a
panacea. 'the main problem is the long and sometimes uncertain training
time. Some artificial new at networks have been known to require days or
v, ecis of trainine-, and iii OOiC eases the netv.ork simply wfll not train at all.
Fhis may be the result of a poor choice of training co flicienTs nr perhaps the
initial random distnbu ti1 o the weigh ts. I fo.vevcr, in most cases failure to
train is usually due to local minima or i:c'o,k pera!u'sLc, where trnnine,
irtirally ceases due to opcuitio'i ill the flat cgion of the sigiold function.

Siabi lily

'itie oroof f Corive gcnce at ekpropagation by Runneihar t, Hinton and
Williams (19P 6) used infinitesina I weight adjustments. This is impr:ietical
because it requires infinite training lime, In the real world, if ha step Si7c is
too sntafl, the train ing is too slow; if the step size is too large, instah9it' may
esult. I Iu.ve cc, een L efforts tiat involve the use of large stcp ;iiitiaH' with

automatic reduction as the training Proceeds have been quite successful in
reducing train lag tintie.

Another isuc is temporal b lity. if a nelavoi k is to learn the alphabet,
it is of no vsuc to carn the lettcr B if it destroys tim learnin g of letter A.
The network must learn the entire training set without disruptiag what is
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already learned. Rumeihart's convergence requires the network to process all
training examples before adjusting any weights. Furthermore, baekpropaga-
tion may not be useful if the network faces a continuously changing environ-
ment where the inputs are continuously changing, because the process may
never converge. There are alternate networks discussed later that are useful
in Such situations.

Adjusting ix Cooflicient in Sigmoidcil Torm

Sometimes weights become vely large in value and force the neurons to
operate in a region where the sigmoicial function is very flat—that is, its
derivative is s'cj y small. Since the error sent back for training in hackproj aga-
tion is proportional to the derivative of the sigmoid function, very little
training takes place. This network paralysis can sometimes by avoided by
reducing the training coefficient, which unfortunately results in extending the
training tune.

A better method of coping with network paralysis if to adjust the
coefficient on the exponential term in the lo;istic t arm. fly decreasing o , we
effectively spread out the sigmoidal function over a wider range. Values of I

that gave (P(1) of 0.99 now gives smaller values, like 0.75 or peihaps 0351
depending upon the value of . The training process is now operating in a
ranec where the derivative of the sigmoidal is much greater, and he nec
training will proceed much faster.

For large negative values of 1, the logistic activation function SUCC7C5 the
(1)( 1) values close to zero. Use of hyperbolic tangent and arctangent activa-
ton functions spreads these values down into the range between 0 and - 1
thereby eliminating the network paralysis. The use of a trainable bias term as
an input to each neuron, which is standard practice in most commercial
neural network software, is also useful in avoiding network paralysis.

Dealing with Local Minima

Perhaps the major probleni of backpropagation is local minima. Since hack-
propagation employs a form of gradient descent, it is assumed that the error
surface slope is always negative and hence constantly adjusting weights
toward the minimum. However, error surfaces often involve complex, high-
dimensional space that is highly convoluted with hills, valle y s, folds, and
gullies. It is very easy for the training process to get trapped in a local
minimum. One of the most practical solutions involves the introduction of a
shock—that is, changing all ss'cights by specific or random amounts. If this
fails, then the most practical solution is ti re-randorniie the weights and start
the training over.

Another alternative is to utilize si,in!teil nnneahug, a technique that is
used to search for global minima in a search surface in which states are
updated based on a statistical rule rather than deterministicall y . This update
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rule changes to become more deterrniiiistic as the search progresses. (Simu-
lated annealing is discussed later in Chapter 9.) The procedure is to use
backpropagation until the process seems to stall. Then simulated annealing is
used to continue train log until the local mm inium has been left behind. Then
the simulated annealing is stopped and the backpropagation training contin-
ues until a global milliIIIII111 is icached. In most cases, only a few simulated
annealing cycles of this two-stage POCC S S are needed. If the mean square
error of the outputs stalls in its descent, then the annealing process ma y have
to he used again. The final training step in this process is backpropagation to
mini nuze the overall error of the process.

Looming Constants

Choosing the correct learning constant 1 is important in backpropapation
training. First, 71 cannot he negative because this would cause the change of
the weight vector to move away from the ideal weight vector position. Of
course, if q is equal to 0, then rio learning takes place. Therefore, 7) must
always be positive. It can be shown both anal ytically and experimentally that
if 1 is greater than 2, then the network is unstable, and if 7 1 is greater than 1,
then the weight vector will overshoot the ideal position and oscillate, rather
than settle into a solution. Hence, 77 should he in the range between 0 and I

If 71 is large (0.8 or thereabouts), then the weight vector will take relatively
large steps and will find the minlmnunt faster. However, if the input data
patterns are not highly compacted around the ideal" example. this will c:immse
The network to jump wildly each time a new input pattern is presented. If the
value of 71 is small (0.2 :m' thereabouts), then tile weight vector will take small
steps toward the ''idea)' position, and will not vary wildly if the inout data
j otleriis are not vcm-v close to an ''ideal" ex.unpie. However, the network will
re rlmirc a longer time to learn the pi[tCrnS with ninny iterations of the dam
nonied.

As a Compromise, lar ge values of 7) are used when the input data patterns
arc (ose to the ideal whereas small values of 77 are tired s'1men they are not.
V,-'hen the nature of the input data patterns are not known, then it is better to

a :uodernte value of ij. As sugg:sted earlier, air even better method is to
ehango the value of 7) as the nct'.'.'ork learns, beginning with a large value

am:cl red uing P as the learning progresses. Then the leaning process
is not distracted b y na:ummr variations in the input data. It is important to
CC iierobcr that roLl da;t patterns are never perfect examples of a category,
mod that t.	 sep. mating hyperplaucs cannot mh',avs	 .mn;mte all the iup't dat
J') a Sjs	 2 flit abor of categori S.

urn Ski: idard Backpicpuciiic_ i Actorithrn
u a u n ion to such s,ndard techniques ire adding ntorrmcntnim, admistimig

Ic:' rni,' rate, adj:;, ..g tIre exponential decay constant in the sigmoidal
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function, and using other activation functions, there are a number of other
variations that are often useful in many situations. Most of them niodilv the
standard hackpropagat inn aJorithm in one way or another.

Cumululivo Update of Weights

A variation of backpropagation training (called ''corn utative baekpropaea ti ni
that seems to he helpful in speeding up training is the cuinulaiivc update of
weights. In this case, the individual weight changes for cach weight are
accumulated for an epoch of training, summed, and then the eutnulotive
weights changes arc made hi the individual \VCig!lts. This proceria C

candy reduces the amount of computation involved, and there u- alty is no
noticeable effect on the final training of the network,

Fast Backpropagaion

this vaiistio:i of backpropagation introduced by Tarid Sarnad of 
Samad, 198) involves the ful!owing changes in standard hackpropa •:.I ii ni. A

inultipc it the error it blur Jr is added to the k-layer activaLion
prior to doing the weight update for wciphts on connections bct'. C Ft tile J
and Jr layers. This can dramatically increase the speed of traininn, uotailv by
tunic than an order of magnitude. Furdict more, it has been sli )\Vmt in 011C

case to e;icli conve ree n e when standard h.actcpropa . iitica training  QP,j to
do so after 10.000 itei ations.

(LiCkPtC)i) Training

F;hlmam; quicicprnp training algorithm is one of h more cfccti\n
rithmns in uvercnnling the step-siLe probbon in hack aonagation. Iiir dd lutv
values arc rorngtiicd as in st .ndard bactprnpagai. at (Fahlnian, lObS). I low-
eve, a eceiiih-oriei niiod OlLIlCO to Nc''ton'e etc hod iised to iipgr:ide
We weights iii place of simple gradient descent. Fahlman reports that
ouickprop consistently ottperfors hackpropagr tion, somctitncs by a .'vide
margin.

Quickprop's vieight update procedure depends on U.' ta ippioxiulat iris: (I
Small changes in one v'cght produce reTctivcy Ihile effect on the error
ira hient ohsrrve .l at othcr weights. (2) the Circif fcnr'ben ,',:iti respecl to
each weight is locally quadratic. '111c slopes and 'ecairts for current and
previous iterations are used to define a parboh;. 'the rrlrtoritlu ii then goes to
tile tninimurn point of this pal:i jan; the n:o.t ;•'eight. ')'his 	 ecr'ss contin-
rtt going through all weights for an epoch. If Cl'-' orror is sufficiently small,
the training ulocess is terminated: if Pon tr,mirit .	 errtinues for another
epoch.
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Use of Different Error Functions

The error function defined in equation (8.3-2) is proportional to the square
of the Euclidean distance between the desired output and the actual output
of the network for a particular input pattern. As an alternative, we can
substitute any other error function whose derivatives exist and can
be calculated as the output layer. Errors of third and fourth order have been
used to replace the traditional square error criterion. NeuralWorks 2 has
suggested cubic and quadratic errors of the forms

=	 I [ri, 113 (8.4-3)
ql

=	
-	 (8.4.4)

which have local errors, analogous to equation (8.3-10), of

-, al
pq k = - 3(7 - 1q.k)	 (8.4-5)

gk

'pq.k 
== _4(Tq - >,.k) j	

(8.4-6)
d qk

It is not clear whether the benefits of cubic and quw.xrL1Ic crrui
compensate for the additional complexity introduced-

Delta-Bar-Delta Networks

Most changes of the standard backpropagation algorithni involve one of two
methods: (1) Incorporate more analytical information to guide the search
such as second-order back-propagation, which has not proven particularly
successful, and (2) use heuristics (often intuition) that are reasonably accu-
rate. The delta-bar-delta algorithm is an attempt introduced by R. A. Jacobs
(Jacobs, 1988) to improve the speed of convergence using heuristics. Empiri-
cal evidence suggests that each dimension of the weight space may be quite
different in terms of the overall error surface. By using past values of the
gradient, heuristics can be used to imply the curvature of the local error
surface, from which intelligent steps can he taken in weight optimization.
Since parameters for one weight dimension may not he appropriate for all
weight dimensions, each neuron has its own learning rate which is adjusted
over time (i.e., reduced as the training progresses). This method has proven
to be effective in reducing the time required for training neural networks.

2 Copyright held by NeuraiWare Inc., l'ittsbugh, PA.
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Exondod Delta-Bar-Delta

Minai and Williams (1990) have extended the dclla-lci r-della algorithm by (I)
adding a time-varying moincntum term and (2) adding a time-vaiying learn-
ing rate. The rates of change in momentum and learning rate decrease
exponentially with weighted gradient components so that greater increases
will be applied in areas of small slope or curvature than in the areas of high
curvature. To prevent wild jumps and oscillations in weight space, ceilings are
placed on the individual learning and momentum rates.

8.5 SENSITIVITY ANALYSIS IN A BACKPPOPAGATJON NEURAL N \70RK

Sensitivity analysis is an extremely usefid toll) in man y pi acticul apple. ions.
The introduction of a small perturbation in one of the inpul neurons usually
produces perlul barions in the outputs of nil neurons connected, directly or
indirectl y, to that input neuron (Guo and Uh rig, 1992; 1 Jashcnt, 1992). The
ratio of the magnitude of the perturbation in the output if a specific i.utput
neuron to the perturbation iii the input of a specific input node is c!finci as
the scircitirire. A perturbation of .v of the multila yer neuron ne p,vork in
Figure 8.7 produces perturbations in all values of I-knee, the scisi;i'.itv
rq. j, iS given by

	

-	
::*- 1)

vherc the i : 111) (if the \ perturl Nose ILLl vii
(after taking the appropriate limit). Using the rotation of I1gure i. 7, equa-
tion (85-1) becomes

•:	 = ± L 'L
h	 9Jq. 0 q) 1	x,	 '-	 -

I he first iCl in is given b y equation (8.3-6) to he

3(J)

	

= ( l0 i . it i	 .	 J
The second tc a is found by taking the	 dcl derivative of eqi'arioii (8.3-7)
v.ith respect o t• which gives

L	 qk	 (5.5-4)



256	 BACKPROPAGATION AND RELATED TRAINING ALGORITHMS

The third term is given by equation (8.3-20) to be

= a) 1 [1	 (g.5-5)

The fourth term is found by taking the part ; .-, f derivative with respect to x of
equation (8.3-21) to oc

'? If p.

Aguin t	 Siuniation d'pp: r because on 1 y one input is involved. Std:;tj-
tUti!u t1cs lour teliL, into cquuuon ($.-2)	 vcA

=	 (bq.A [1 -- (P k } .	 A cu • 	-	 , ] ; v 1 	 (3.57j
P 1

which hecootes

A =
	 2 (j	 [1	 q A]	 'jqkj [1 - (I] R Ap	 (8.5-8)

Exporirncntal Evaluation o f Sonsitvity Cocitficients

An experimental evaluation of sensitivity coefficients, Sometimes called th
'dither' method, is possil-1c after a neural network has been trained It
involves the introduction of small ir1urba60ns of each input x, one at a
time, of about 0.5% in both the positive and negative directions. ihe
resultant perturbations of each output y in each direction for each input
Perturbation is measured and averaced. Inc sensitivity coetfiLicilt is then
taken as

where the averages arc taken over the perturbations in the positive and
negative dir	 ions. If there are h inputs and q outputs, then there arc
sensitivity co	 ients that can be evaluated experimentally.

In general, uscfilncss of such measurements are limited. The principal
ohlcm is tii. the values are valid only for the particular location in
•hlem space repicsentcd by the values of the inputs and outputs before

are perturbed.
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8.6 AUTOASSOCIATIVE NEURAL NETWORKS

Although any layer in an neural network can have any number of neurons,
the most common backpropagation network starts with a large jilininer of
neurons in the input layer and has relatively few neurons in the output layer.
1he reason is that many problems involve a complex description of a
situation or condition as the input, and a limited number of classes or
conditions as the Output. There is no rule prescribing the number in neurons
of a middle or hidden layer of a three-la yer neural network. Koiinogorov's
theorem gives us a number of neurons that guarantee the eskteare of a
mapping function between the input and output, but as indicated cat her, this
may not be the optimal or most appropriate number of neuron'; in any gwen
situation. As a rule of thumb, the number of neurons in the middle layer
should be less than the number of data sets in an epoch so that we neural
network does not memorize the various input data sets; that is, a pat Ocular
neuron in the hidden layer becomes associated with a particular data set of
an epoch.

Autoassiei;;t;ve neural networks, in which the output is trained to he
identical to the input, have mans' unusual cliar;cteisiks tht can he ex-
ploited in many applications. Au toassociative neural networks as defined
here are feedforwarcl, fully connected, mubilayer Perceptions usually (hut
not always) trained using backpc opagatioll (Masters, 19931 The number of
neurons in the hidden layer(s) may he greeter or smaller than tic number in
We in1-nmt and output, All neurons in ihe middle layer(s) cnhist have nonlinear
sigma, Odal (logistic. arctangent, or h yperbolic tangent) iiclivatiun Omuciion, but
the output layer may have either a knear or nonlinear nct;.'aiion function.
Kramer (1991, 1092) has investigated the special case where ftc middle layer
has fewer neurons (which Kramer called a "bottleneck") and reported
feetures that lend themselves to diaonostic and maomT.toring as veil as to the
utcitiflcalion cf ic;rilimicar princ;oal compc'u uts. This hotliortuek layer pie-
v:i;ls a simple one-to-one of 'strai it tIc :"i.h" mapping fto';t developing
on ue, the training of the netwOc he.

Let us consider the autoassoniati\c i:;ck J n-nujagation netw'rk shown in
Figure 8.11 where there are 100 neurons 51 tie input and output lavccs and
40 neurons in the hidden (bottleneck) layer. We start \vidm t he desired output
of the output layer being exactly equal to input to the input layer, and we
proceed with the training using backDropagatiofl. The data for the trutinirig
set ucust be ehor ;ri SC) that individual unf;'ut-oeil.ut Vill 2s cover the range
over wl.ch the network will have to accept inputs in the future. )iivctituahly,
within some tolerable error, the input aid output of tb.' te 'coO: are the
sane. This indicates that the information contained in the iput vector which
h is 100 cnmpoi;: An is approximately equal Er; the infer. .t on en a tamed in
the output vector ',; :tich also has 100 nrnpomients. Furthea tore, the in font a-
tent in th;c inpu, vector passes through the middle layer, '.'.hcre it is rep'
nnkd by a 40 cu;nponcnt cector. This emnprt ssion of tb; ir;turmatiou into
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Figure B.12 Autoassociative neural network.

40 components is a very useful property for certain specific applications. In
effect, the 100-dimensional data set has been reduced to a 40-dimensional
data set and then recxpanded to a 100-dimensional data set with the error
minimized in a least square sense. This means that the 100-dimensional input
must be reproduced at the output with only 40 independent variables
represented by the outputs of the neurons in the middle la yer. In effect, least
squares training induces the network to model correlations and redundancies
in the input data in order to reproduce the input data at the output with
minimal distortion under the dimensional retriion of the "bottleneck"
layer.

A quantity that is often of interest is the compressed representation of the
input variable consisting of 40 values in the hidden layer. The values from
this middle layer are often extracted and utilized as a compressed representa-
tion of the input information. Since we are now effectively dealing with a
two-layer n ork (the input layer and the middle layer, which is now an
output layer), he validity of this representation is dependent upon the nature

the input urta. There is no "hidden" layer to capture the patterns of
tures of the input data and present it in an organized manner to the
'die layer. The same situation exists with respect to the conversion of a
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40-dimension representation of the data contained in the middle layer to a
100 dunensiort representation of the data contained in the output layer.
These situations can be overcome by putting in two "intermediate" layers,
one between the input and the bottleneck layer and another between the
middle layer and the output Liver, to give a five-la yer neural network. Such
an arrangement is shown in Figure 8.13. The Second and fourth layers, each
having 135 neurons, are effectively feature extraction kivers. Kramer calls
them ''mapping" and ''(1eniapping" layers, respectively. These layers have
more nodes than the input and output layers so that they are capa hlc of
representing nonlinear functions of arbitrary form. I lowcvei-, cai e must he
taken to avoid memorization by the neurons in these lay ers. With this
configuration, the signal now coming from the third (widdle) layer of this
live-layer neural outwork now is all appropriate 40-dimensional repi esenia -
tion of the input data. In the case of this live-layer autoassociative he oral
network, the second a id fourth la yers must have nonlinear riutivatinil func-
tions, but the middle and o!.Itput layers may have either linear or nonlinear
activation functions. Kramer indicates that to captul e linear functionality
efficiently , linear bypasses can he allowed from the input layer to the
bottleneck la	 ayer nd from the bottleneck hayer to the output layer, hot not
acrons the bottleneck lover.

rho functioning of autoassociatrvc neural networks should not he con-
fused with associative memory of the t ype illustrated itt thu last chapter,
'Nhero a :ieuial network that was N airied to recognize the letters of the
alphabet could lccognizc distorted versions of the letters. In efee. the
disto ted letter was closer (in a let squares scuSe) to the coercepooding
011distoiteil letter stored in the a.csoctalive lileniory. Iii contrast, the ;iuto;Isso-
ci;ttio neiiriil network has no stnrd quantities 'ut no disc,-etc Jaes, and
its on tnnis	 e c:tn'inuons variables.

Once the outoas.sociative neural network 1 f l-i4ulre 8.13 his hac ut rained,
it can be split into two separate neural networks. The hi si rios:cv of the
moat, ninupiun 7 and hottlun"ck lineN s .shcvn in Future U la n ssiiiclu thu
input is separated into a rchiiccd-dimensioriat representation 'f Vic in1ajt. If
31 neurons in this autoassociat:ve neural network had linnr aciivoticnt
functions, the output of the middle layer would he the linear principal
Components. With nonlinear activation functions, these COITipflr)ufltS fCpiC-
sent noiihincar principle cemponents of the ilpUt, and the natiho- A princi-
pal components obtained is equal to the number of neurons ii the , bottleneck
layer.

;'t.e se'ood netv,'e: k c 'au i kts of ft bottle icc!:, den Tp:lr', I output
laycis as shown in Figure 1114b, in whichib rcduced-dii:icnsio;i tepresen-
taFon of the middle layer is expanded into a good re:jrcsciito 'a of the
original :llpot signal. 'Ibis separation can occur o nly after trairti 	 has takun
plac; o ceeis: lleie am no target soh.s a,ai!abhe foe he nek 	 in the
middle Layer.
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[	
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100 Node Input Ier

Flguro 8.13 1 ivnayer outoassociafive neural network.

Use of an Auoassocjate Neural Net-work for Filloring

The process described above is a form of "filtering" where the amount of
information lost is related inversely to the number of neurons in the 'bot-
tleneck" layer. If the input is a time series taken from an fluctuating analog
signal with a sampling rate of 100 samples per second, then the 100 input
ccmponents represents 1 sec of data. (Similarity, if the sampling rate is 5 or
1000 samples per second, the input data represents 20 or 0.1 sec of data,
respectively.) The training proceeds by using data sets consisting of successive
groups of 100 samples, shifted by one sample, which are entered into the
neural network software or hardware as both the input and desired output.
Each successive group of 100 values consists of the next sample value and the



AUTOASSOCIATIVE NEURAL NETWORKS	 261

lOO-Nxk Output Jyer

_t	 .

[
J 50-A'ude Denapping Layer

/0 "VC-des	 Bottleneck

(1)

I_._1t -Th

L

-

J0jJ7?dr

(Lj)

V. k.
	 ()5)a5C raucI nIvr bckün into ho-;(.



262	 BACKPt?OPAGATON AND RELATED TRAINING AL(O1iTHMS

preceding 99 sample values. The oldest sample is dropped. The neural
network then undergoes another training cycle, and then the data are shifted
again to include the next data point, and the training process proceeds. Care
no st be taken to ensure that the range of variables to which the 100 inputs
an1 outputs are subjected during training covers the range of input data
expected in the future, When this training is complete, a time series can be
introduced into the neural network by introducing successive 100-sample

I of data to the input layer. Because the bottleneck forces the variable
to be represented by fever dimensions, some information is lost. In this case,
it is the high-frcquenc, irformation that is lost since more dimensions arc
required to ieprcsent a high-frequency variable. In effect, the autoassociative
neural network behaves as a low-pass filter.

It is in this filtering application that the true nature of the autoassociative
net -W, k process is revealed. In effect, the high-f;;quency couponents in the
s -,nal are eliminated by the middle layer. The smaller the number of neurons
in the middle luycr, the lower the cutoff frequency and the greater the
number of high-frequency components that are eliminated. hence, it is very
clear that the input and output signals can never be identical, because
in formation has been filtered out of the input signal. The output can lee only
a low-frequency approximation of the original input signal. As the number of
neurons in the hidden layer decreases, Inc cutoff frequency is reduced
further, thereby eliminating more of the higher-frequency components.

Use of Autoassociativo Neural Networks in Systomwid9 Monitoring

Neural networks, in combination with other artificial intelligence technolo-
gies, offer means of interpreting data and nicasurements ni ways that are not
otherwise possible. The unique characteristics of three- and five-layer autoas-
soeiativc neural networks in which the outputs are trained to emulate the
inputs over all dynamic range have been explored and found to
he useful in systemwide monitoring. Many (typically 10--20) variables of
complex systems (power plants, chemical or manufacturing processes, social
systems, etc.) that have some degree of correlation (typically > 0.3) with
each oilier constitute the inputs. Hence, each output receives some informa-
tion from almost every input. During training to make each output equal to
the corresponding input, the interrelationships between all the input vari-
ables and each individual output are embedded in the connection weights of
the network. As a result, 111V specific output, even the corresponding output
shows only a small fraction of the input change over a reasonably large range.
This characteristic allows the autoassoejative neural network to detect drift,
deterioration, or failure of a sensor by simply comparing each input with the
corresponding output.

Upadhyaya and Eryurek (1992) have demonstrated the feasibility of such
an application using data from the EBR-2 (Experimental Breeder Reactor
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#2) A necessary prerequisite for such an application is that the various
inputs have some degree of correlation. As indicated above, when all of the
inputs to an autoussociative neural network are correlated to some degree,

then each output is dependent on all the inputs. 1-fence, the deterioration Of
one input signal will have only a slight influence on the outputs. The change
ni the channel that c.orrcSpOiiLIS to that input would be larger than the
changes in the other channels, but significantly smaller than the change in
the input because of the influence of the correlation with the inputs from the
other channels.

In principle, all that is necessary is to detect a deterioi ating sensor or
instrumentation channel is to compare each input with the corresponding
output, calculate the difference, compare it to an allowable difference, and
trip an alarm when the difference exceeds the allowable difference. To aoid
false alarms, several small deviations beyond the limit may be required in a
specified time to trip an alarm. A single large deviation, of course, should trip
the alarm. In most practical applications, especially when noise is present, a
more sophisticated technique to detect error, such as "sequence probability
ratio tcst," (Wald. 1945) should he employed to minimize the nunihcr of
missed and false-positive alarms.

An alternative interpretation of the existence of differences between the
ijiuts and the corresponding outputs of the autoussoeiative neural network

might be that the input--output relationship of the system from which tile
signidscome may have changed due to s ystem failin e or changes of smile sol

in the system. All of the results reported in the c.:periinerital work discussed
in this section arc based on the assumption tim the underlying svste in does
not chantze and that only the scosois and related instrumentation channels

ver, ill the real world, systems change withare being validated. Howe 
time --sometimes slowl y, sometimes rapidlv'.v bile'ti l l behaving net inaib'-

Sometimes the changes are anticipated; coiimctjmcS these changes come. as a
surprise If the changes occur during the lraioing period (or ca it be artificially

intro 'J irced), then the elationsllil) between the variables for LljffC I cut condi-
tions can be trained into an autoassociatiVe neural netwot k. This is the ease
with power ascetisian from 45 1- to 100% of full povoi: in the lixperiniental
idreeder Reactor-2 as sItu s-n in Texaniplc 8.2 tUpadhyaya and Ftyurck, 1992).

Cetoct&cl	 idi	 from Dotrioraiing	 ailcm' Ccriso;s

One of the uniliue advantages of using axitoassociative neural networl-ts is the
abiliry to obtain the correct i-ending for a scn-;or that has failed. Since the
specific sensor that has failed can be identified as discussed above, all that is
needed is 10 early out al -. aJustn ..at of de IonIc to the i nput neuron
representing that sensor input to bring the outputs of the autoassociative
neural network back to their original values (in a ritiuhmili/iltiOlt of least
sluares difference sense). Multiple fadures c;mn also he hr;ic.ed in the same
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way with a multidimensional search for the proper irijut values, provided
that the number of correct sensors is greater than the number of neurons in
the bottleneck layer.

Robust Autoassociative Neural Networks

To improve the behavior of the autoassociatjvc neural network, a technique
involving the addition of uniform random noise up to 10 to each input, One
at a time, while retaining the noise-free values for the desired output, can be
employed. This tcchnicj iic is analogous to adding noise to a neural network
input to avoid "memorization" and to speed training. Application of this
process to all input—output pairs of neurons during training can produce a
very robust autuassociative neural network in which the outputs are virtually
immune to input change up to 10% of the range of the input (Wrest, 1996).

A critically important issue is how to deal with changing plant configura-
tions and cond:Lions that are not trained into the autoassociative neural
network. Fortunately, such changes would he readily detected in most cases
by the comparison of outputs with inputs. Differences in more than one
input—output pair are almost invariably associated with changes in the system
rather than sensor failure, because simultaneous failures of more than one
sensor are very rare. ( Icarly a change in configuration not trained into the
autoassociative neural network requires immediate additional training or
retraining. Another important issue that needs to he investigated is how the
retrained networks relate to the previously trained network. It may be
advantageous to retain all consecutive network configuration to have an
'audit trail" for the calibration and drift detection. For a slowly changing
condition ,,especially one that is cyclic in nature, is better to train over a
whole cycle when possible so that the influence of this quantity is included in
the trained network.

Example 8.2 Behavior of an Autoassocjatjve Neural Network as a Plantwide
Monitoring System. This autoassociative technique of plant-wide monitoring
was applied to data from 18 signals (8 from the primary system and 10 from
the secondary system) from the EBR-2 during ascension in power, and
the results of these measurements for the primary system are shown in
Figure 8.15. Data were collected for the eight primary variables (defined in
Table 8.0 as EBR-2 increased in power output from 4510 (run #0 to 100%
(run #150) of full power. All variables were normalized and scaled into the
interval 0.1-0.9. The autoassociative neural network was trained using data
collected during the power ascension. Some variables changed rather signifi-
cantly during the power ascension (between run #1 and run #150) while
others changed very little. (The lines connecting the points are used only to
indicate that these points belong to the same run.) In all cases, the values
predicted by the trained network were within about 0.5% of the measured
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value. I Towever, \!1C11 an error was deliberately introduced into variable #1
(as indicated with the point connected with '(1ashed" lines in Figure 8.15),
the corresponding value predicted by the trained network did not change
significantly. It is this characteristic behavior of autoassociative neural net-
works that allows monitoring of many variables to be carried out simultane-
ously by simply comparing network inputs and outputs. J
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Infrential measurement, as the name implies, is the inferring of a measure-
rnent value from its relationship, usually its physical correlation, with other
variables (Guha, 1992). Reasons for an inferential measurement are that the
quantity cannot be measured directly, measurements are difficult or expen-
sive, a sensor is failing or has fai:ed, the measurement process itself is.
dcterioratng, or comparison of an inferred v'iue with an actual value will
assist in the identification and diagnoses of problems. The niappinga bility of
neual networks are ideal for such inferential measurements because they
can map plant characteristics to he quantity whose measurement is to be
i;ired. Typically, the neural network is a simple multilayer perceptron with

it few (three to five) inputs and a single output. The number of neurons
in the middle layer is usually not important as lung as memorization and
overtreiiwg are avoided. The inputs must have some deg rees of correlation
with the quantity to be inferred, because using an input with no relation to
the output would only deteriorate the quality of the measurement.

xamples of where inferential measurements have been used advanta-
geously include the following examples:

1. Inferential measurements of nitrous oxide emissions from a gas-line
pumping station have been used to demonstrate compliance with regu-
latory requirements. This avoided the placement of a chemical analysis
unit at each of many pumping stations that often are located at remote
sites as well as the need for technical personnel required to carry out
the measurements.

2. Inferential measurements of feedwater flv in a nuclear power plant
(an important quantity in the thermal power calibration) have been
carried out using a neural network to map four related inputs to the
flow. The neural network is trained using data gathered immediately
after the venturi flowmeter has been cleaned and calibrated. As the
venturi fouls due to water chemistry phenomena, a 1-2% difference
develops between the inferred (correct) value and the (incorrect) mea-
surement by the fouled flowrneter.

3. Inferential measurements are also being used for sensor validation.
Again the process is one of mapping several related inputs to a single
measured quantit y . If the actual measurement deviates significantly
from the value predicted by the trained neural network, then sensor
failure or deterioration may he involved.

8.7 AN ALTERNATE APPROACH TO NEURAL NETWORK TRAINING

In Section 8.3, the traditional approach to baekpropagation training of a
neural network was examined. The neural network was a traditional three-
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layer network with the input la yer as a buffer ]ayer and the hidden and
output layCrS having nonlinear activation functions (a logistic function in this
case). Such a network has been shown by Kolniogorov (1965) to he capable of
mapping any arbitrary function into any other arbitrary functon, i.e., it is a
universal applOximator. This holds true for ncural network 's with several
hidden layers, each having neurons with nonlinear activation functions. While
such configurations were shown to he sufficient for the arbitrary mappings of
it 	 approximator, they were not shown to he necessary.

In the past few years, a simpler network configuration has been shown to
he equally effective in performing arbitrary mappings (C'yhenko, 1989; Funa-
hashi, 1989; Hornik, 1939). This network has one or more hidden layers with
nonlinear activation functions, hut the output layer has a line; activation
function. Because of these linear activation functions of the neurons in the
output (k tlt) layer, its output vector 

1k is proportional to the summationvector Tk• Since it is common practice to set the constant of proportionality
equal to unity (because this constant would simply scale the weights associ-
ated with the output layer), we now have tI equal to 1k, which in turn is
equal to the desired output vector T if we set the error vector 	 equal toZero.

Such a configuration was explored extensively almost a decade 
a tm by

I rcdcs and Farber and found to be "ejy useful, especially when the output
of the network were analog variables (Lapedes, 1958). This confisuration is
proposed here as an alternative to Conventional Iack-rnpagatbn training
that takes advantage of the linearity.

 the output of the output layer ofnc U otis to speed up training. Generall y, this procedure is i m pleincnt:J using
a mati cs type software program such as MATf.AJ3 3 so tint a set of traininvector pairs (X, T), the correspontliri g layer Summation mid wtput vcctOt
'k'	 , and t, and the error vector 

t, ate handled as mati ices of V'ctors forthe z pairs of training samples.
I et us apply the methodology and notation of Section 8.3 to such a

network with a SiOUIC hidden la>cr. (It is equally applicable to the last layer
wei'dtt inatrtx in neural nctworhs with more thafl one hidden layer.) The
boess Stalls in the same manner its cumulative ba ck- propagation with therandomiza t ion of the weights, the application cf the input matrix X f the
trcining set (X, T) containing z patterns to the itinut layer, and the (--alcii
lion of the output matrix of the hidden (j-th) layer '1.	 -

Lot its asswne as a starling point that the error matrix 	 is zero. Nov, s; ahave the target matrix i' equal to the output	 which in turn k equal
because of the linear activation fti actioji. We n 'w have a deterministiciuruit—out 1 artt relationship for the output liver weight matrix V. The middle
layer Output matrix b1 (which we have just calculated) is the input and T

is a regisIid trademark Owned Ey Mnh',V:kc !a	 N:,:ft u, '...
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(which is obtained from the training set) is the output, both related by

T =k = W1 1 	(8.7-1)

which can be solved for the weight matrix Wk either exactly by matrix
inversion or approximately by regression. ecauseT and tPj either represent
or wcrc calculated from experimental ft 1, 

ID, usually cannot he inverted,
and regression is really the only practical method for solving for \Y.

This regression calculation of W is a first approximation of the weight
matrix W, . It is dependent on the vi-ht matrix that was created by a
raudumization process. The critical question then is whether a neural net-
work with such a combination of % and V/k can model adequately the
proccs from which the training data set was obtained. Masters (1993, p. 170)
has pointed out that

The essence of neural networks is that they activate hidden neurons based on
patterns in the input data. What we are reall y interested in is the weights that
connect the inputs to the hidden layer (and interconnect hidden layers if more
than one is used). Once these weights are determined, computation Of tile
weights that lead to the output layer is almost an afterthought.

'I'his view is further enhanced by recent work of Lo (1996) that indicates that
the essence of the representation of the model of a system is contained in the
weights associated with the hidden layer(s) (whose neurons have nonlinear
activation functions), a view consistent with the concept of the hidden layer
being a "feature detection" layer as described in Chapter 7. Hence, we need
do more than create the hidden layer weights by a randomization process.
Indeed, randomization of weights is only a convenient starting condition that
avoids some training problems and is useful only when associated with a long
training process (e.g., hackpropagation) that allows these randomized hidden
layer weights to be adjusted sufficiently that they represent adequately the
system model. Hence, we need to proceed with a modified form of hackprop-
agation in which a regression method is used to solve for the weight matrix
W,. The weight matrix %%. is then iteratively determined using hackpropaga-
tion.

One reason that conventional baekpropagation training is very slow to
converge is that the error terms are propagated back through the output
layer weights to the hidden layer to provide art error correction. When these
error terms are backpropagated through the non-optimal output layer weights,
the changes in the hidden layer weights are far from optimal. Hence, the use
of a regression method to provide a good first approximation of W', albeit
based on randomized weights, greatly speeds up the training process.

Use of Regression to Solve for the Weight Matrix Wk

We can solve for the weight matrix NV,. in equation (8.7-1) using a least square
error regression method. Given the input matrix (I) , the output matrix
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I, and the weight matrix Wk, a standard regression equation for CC)Ud-

tion (8.7-1) is

= %Vk()J	 (8.7-2)

which we can use 10 solve for the weirdtt matrix usio the generni Ic ist
squares procedure

wi,	 (1 J b;)I';I k	(5.7-3)

In this solution, the rirean squared error is minimized with extremely high
precision. The weight values produced by this algorithm may contain very
large values (5 or 6 orders of magnitude) that result in very poor network
generalization. Instead of learning the general trend of the data, the network
has also learned the noise. The fit to the training data would be excellent, but
the generalization would he very poor. There are several methods by which
this ieast••squares operation mv be carried out properly the method sug-
gested as best by Masters (1993), "Singular Value Decomposition," is dis-
cussed below.

At this point, we have a neural network whose state of training is much
better than the typical neural network after the first iteration of hackprupa-
gation training. We now proceed with conventional back-propa g ation as
described in Section 9.3, modified to include the regression method for
calculating W . This combination of a good star ring state and an algorithm
for optimally calculating one la yer of weights speeds UI) the training process
dramatically. Application of this methodology has sped up the training of
neural networks 40-fold (Uhrig, 1996), and resulted in networks with superior
gcncrali7ation capabilities. After this initial pass through the network, we
start again with the application of the input matrix X of the training set to the
hufter input layer and calculate our way through the network to produce the
hidden la yer Output matrix 1',. Then we use the regression method to
calculate the changes in W. and conventional backpropagation to calculate
time change in Vii,. Then the weight matrices arc updated, and the input matrix
X is applied to the input layer, starting a new cycle of this hybrid training
process. As the training proceeds, the features of model of the system tinder
study is embedded in the weight matrix W associated with tire hidden
layer(s).

Singular Value Decomposition

The hidden layer output matrix (1)is broken down into its singular value
composition given by

(J)J	 USN T	 (8.7-4)
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Were

z >( n matrix of hidden la yer outputs

	

U	 z X n matrix of principle components

	

S	 n x it diagonal matrix of single values

	

V	 it 	 it matrix of riuht sineular values (othunorma1 matrix)

T = z X it matrix of target outputs

Fn this inetho&l, onl y the most relevant information is retained to Cuitifitlic the
weights. The least important information is discarded because it is most likely
W result from noise. The amount of noise that is removed from the solution
to the system is determined relative to the largest weight expected in the
network. This is achieved by altering the diagonal matrix of singular values
(8). Singular values in the matrix S that are less than a cutoff value (e), are
changed to zero in the inverse matrix. The weights are then calculated by

	

= VS_IIJTT	 (8.7-5)

Esperimental results show that keeping the niagriitutle of the weights within
± 10 pmvidcs excellent network generalization with no loss of mnporte it
irifornmation.

Adoptaitori of Models to Chir;na Conditions

1 ic corcentrtijjn of the model information in tic hdd.n
pmined out by Lo (196) in; described above also addresses one of thte most

a blesome problems in tHug neural networks to model ninny real-world
s.ilations, namely, the non:;Honary system with small but often continuous
changing of the operatiut; conditions over tinie. Adapi ing the neural network
m.iudl to Ltangnlg operating conditions withoi,t the model. rcprescmttalion
suffering deterioration can be performed by auljustia the linear output layer

:i 1 s usHo I he regression m nethod (i.e., singular '.nl•'c decomposition) as
(!es: ilued Love. This updates effcctbely the neural liet .vcrk to actual plant

	

CCfl:.tit101iS	 t ui es, 1096).
l here i::. ho vever, -risk th:tt using this method for continuous adaptation of

the i urai 'teotk ui . idl may nisk a continuouslydeteriorating coutdhon
Of the Sp !  l-{cnce, it rmuay be useful to have duplicate neitral netivork
models, ore that is continually edjutted and one that is not adjusted. By
n-ionm'oring luG difference between We outputs of these two models, it is-

	

possible ic	 see: whet her th	 cJitie changing cn r ons re presentation rehluesi:nts

	

detejioraib	 or p.o imui l.:-ru:uviur.
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8.8 MODULAR NEURAL NETWORKS'

The modular neural network is another rather special cxUnsion of the
backpropagation network. It is comprised of (a) several independently o per-
ating expert networks competing to produce the correct response to individ-
ual input vectors and (U) a gating network mediating this con)pctiti::n.
Basicall y , the modular neural network consis t s of the input layer, a process-
ing "superlayer" cotisprising the expert networks and the gating rietwerk, or I
the output layer. The input units are fully connected to the input units of
both the expert networks and the gating network, but there are no wcihts ill
these connections. The expert network output units are fully connected to

the modular neural network output Units, with connections having ss
whose values correspond to the values prorlucecl in the output units ti the
gating network. The output units perform it summation of the weighted
inconiing signals without applying any activ:Itiori function to the result. .'\
topolov of the modular neural network with two input units, three expert
networks, and a single output unit is shown in Figure 8.16.

For the function approximation task the expel t nctworksar e typically
simple perceptrons (i.e., often backpropagation networks with only two
layers) with their output neurons performing univ a simple sLininlati'sn
without using an activation function. H(- wever, the expert networks cart also
he the classical three-lover backpropagation networks) or even another
modular neural network, thus creating a complex hierarchical structure), and
their output nodes may use nonlinear activation functions. The structure of
tic expert networks has to be chosen in such a way that the task of concet n
cannot he solved by a single expert network, because otherwise the modular
neural network would gradually degenerate during training into a network
with the structure of this expert network (i.e., all the input vectors would he
processed solely by one of the expert networks). In any case, all the expert
networks in the modular neural network have to have the sonic structure with
the same number of layers and identical processing units in them.

The gating network is a fully connected fceciforward neim ral network,
having typically only two layers. 'There is one output neuron in the paling
network for each expert network in the whole modular neural network
(hence, the weights in all connections between the output neurons of each
expert network and the output neurons of the whole modular neural network
are identical). Similarl y to the backpropagation netwoik processing neurons,
the gating network output neurons sum the weighted signals received from
the input units and filter the result through an activation functiomi. This
activation function, however, is the so-called "softmax" function which essen-

Part of this section was extracted from a thesis "Modeling a Probabilistic Safety Assessment
Using Neural Networks' by Vactav itojnv, a graduate student at the Unisersty of Tennessee,
1993-i995,
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ltrjul	 Processing	 Output
La) er Super-Layer	 Layer

FIgure 8.16 Topology of the modular neural network,

tially normalizes activations of output Units iind amplifies differences be-
tween them. The acliv;mtioir function for the smiftmnax function as given in
Figure 8,17 is

P

L
1- 1

Operating of the modular neural network consists of the following: division
of a complex task to be solved into several simpler suhtasks, finding of
separated solutions for these subtasks, and combination of these subsolutions
into the desired solution of the original complex task. This approach is
sometimes referred to as a principle of 'divide and conquer.''To achieve this,
the modular neural network utilizes a special combination of supervised and
unsupervised training based on maximization of the likelihood function,
which represents a product of the probabilities of generating the correct
output vectors for individual input-output vector pairs. These probabilities
are typically modeled using a mixture model (i.e., a linear combination) of
unuliivariatc Gaussian distributions, which characterize conditional probabili-
ties of producing the correct output vectors by the individual expert networks
for a given input vector from the training set. To maximize the likelihood
function, its known parameters have to be optimized—that is, properly
adjusted during training. In this modular neural network, these parameters
represent (a) the weights in connections of the expert network processing
units and (b) the weights in connections of the expert network output units
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Figaro 8.17 Oufput re.ron of the modules neurcl retwc'k gatng nerwork

and the output units of the whole modular neural network. All these weiehts
arc N ained simultaneously starting from small arbitrar y values. During the
training, the modular neural network is presented with individual input
vectors from the set of training samples to which individual expert networks
and gating networks respond with certain output vectors.

The basic training of the expert networks is supervised and utilizes a
procedure very similar to that used by the backpropagation neural network.
The resulting update values of the weights for each expert network are,
however, modified by a probability that the particular expert network is
allowed to produce the particular modular neural network output vector. The
value of this probability is determined as a product of the distance (typically
Luclidcaii) between the output vector produced by the given expert network
and the target output vector multiplied by the value produced by the gating
network output corresponding to this expert network. Values of these prod-
ucts, determined for individual expert networks, are then processed through
the softinax function with the aim of anipliling the outcome of the competi-
tion of the expert networks. The resulting values of the products effectively
represent posterior probabilities that the particular expert networks are
allowed to produce the particular modular neural network output rector,
while the values produced by the corresponding gating network outputs
represent prior probabilities of it. The training of the gating network is
essentially unsupervised and aimed at minimization of the differences be-
tween these prior and posterior possibilities. The training procedure for the
gating network is, in fact, the same one used in hackpropagation networks.
The elements of the target output vector of the gating network are deter-
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ineed by the posterior probabilities of the corresponding expert networks
(which arc, to a great extent, independent on the modular neural network
tnnet output vector). Al! the input–output vector pairs in the training set are
repeatedly presented to the modular neural network until its error decreases
to an acceptable level, or until the niodua] neural network reaches a steady
state when the values of its weights stop changing.

8.9 RECIRCULATION NEURAL NETWORKS

Another variation 1 the hac hackpropagation rLtwork is the reiictii
tioti neural network (RTNN) introduced by Ocotfi cv I linton and James
McClclland (1988) as a neurally plausible alternative to the auloassociative
hack-propagation network. They considered hackpropagation to be ncurallv
implausible and hard to implement in hardware, because it requires that all
connections be used backwaxds, that these connections be symmetrical, and
that the units are different input---output functions for the forward and
backward passes. In a hackpropagation network, errors are passed backwards
through the same connections that arc used in the forward pass, but they are
scaled by the derivative of the feed forward activation function. In a recircu-
lation neural network, data are processed through weights in only one
direction.

The recirculation neural network is a four-la yer autoascociative lyric
network as shown in Figure 8.18. in which the input and output layei s are
burier layers with the same number of neurons. The other two layers are
called the "visible" and the "hidden" layers. In a recirculation neural net-
work, the visible and hidden layers are fully connected to each other in both
directions by separate links with separate sets of weights. The visible-to-hid-
den connections involve what is called the bottom-op weights, and the hidden-
to-visible connections contain the top-down wc'i/its. liach neuron in the
visible arid hidden layers is connected to a bias clement with ci trainable
weight.

The learning schedule involves two complete p asse s between the visible
and hidden layers. The learning is carried out using only local
knowledge—that is, the state of the processing element and the input values
of the particular connection to he adapted. The purpose of the learning rule
is to construct in the hidden layer an internal representation of the data
presented at the visible layer. Recirculation neural networks use unsuper-
vised learning, in the sense that no desired vector is required to be present at
the output layer. A bias term is used for all neurons in the hidden and visible
layers. The learning process proceeds in the following manner. Initially, all
weights, including the bias weights, are randomly set to small values. The
data are first presented at the visible layer (time 0), then filtered through the
bottom-up weights to the hidden layer (time 1), and then circulated back to
the visible layer through the top-down weights (time 2). Finally, the data are
pr sed for a second time (recirculated) to the hidden layer through the
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bottom-up weights (time 3) and hack to the visible layer through the topdown
weights (time 4) and on to the output buffer layer. If desired, there could be
a SeCOnd Output buffer layer connected to the hidden layer where the
compi ssed version of the output could be made available.

Learning occurs only after the second pass through the network. The
output of the visible la yer at time 2 is the reconstruction of the original input
vector from the compressed vector in the hidden la yer at time 1. The aim of
the learning is to minimize the error between the original input and the
reconstructed vector at time 2 by adjusting the top-down weights, as well as
to minimize the error between the compressed vectors at times 1 and 3 by
adjusting the bottom-up weights. All summations over the hidden layer (times
I and 3) or visible layer (times 0 and 2) include the bias terms. During
training the output of the hidden layer at time 1 is the compressed version of
the input data. In 1-union and MeClelland's simulations, cumulative learning
is used—that is, changes in the weights are accumulated over an epoch—and
the actual weights are changed only at the end of an epoch.

The state of the visible layer at time 2 is the top-down response of the
network to the initial bottom-up stimulus. Hinton and McClelland used
sigmoid functions for the activation functions for both visible and hidden
layers, although their analysis assumes that the activation function for the
hidden layers is linear and that the activation function for the visible layer is
Lilly smooth monotonic nonlinear function with bounded derivatives.

The recirculation neural network has full connectivity between the hidden
and visible ldyers in both directions. Learning for the top-down weights in the
connections from the jUi hidden la yer to the ith visible layer and bottom-UP

Visible
Layer

A (o;rpoI;Li,

Iiioiit
Layer
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weights in the connections from the ith visible layer to the jth hidden layer
are given by

(0) - (2)1y j	 (I op down weight change)	 (8.9-1)

and

Alvij = 4, [ 
H -. 4 ) ]	 ( bottom tip weight (-hange) 	 (8.9-2)

where yi) is the state of the ith visible neuron at time Q, v ) is the state of
the ith visible neuron after the activity has passed around the 1001) OnCe, Y
is the state of the jth visible neuron at time 1 (first pass around the loop), 4.)
is the state of the jth neuron at time :3 (second pass around the loop), and

1) and	 2) are the errors after recirculation.
1 This learning process for the recirculation neni al network approaches

gradient descent under certain specific conditions. The error at each process-
ing element in the visible layer between its state at time U and at time 2 is
referred to as the "reconstruction error." The learning in the top-down
weights seeks to reduce the reconstruction error. Hinton and McClelarid
have shown that under certain conditions the learning in the bottom-up
weights also performs gradient descent learning in the reconstruction errot.
For the visible-to-hidden connections, the changes are partially related to the
gradient descent. Early changes do not necessarily improve the state of the
system, but as learning progresses, these changes tend to agree with the
gradient descent and total agreement occurs after the hidden-to-visible
weights are approximately aligned with the visible-to-hidden weights.

Example 8.3 An Application of Recirculation Neural Nctsvorks 5 . One of the
applications of the recirculation neural network is to transform narrow peaks
in a Fourier transform of undamped vibration data of rotating machinery into
a pattern where the information in the peaks is spread over the entire
frequency range. An example of the influence of small changes in the
amplitude and the frequency for a single narrow peak is shown in the next
four figures. In I ig'.ire 8.19 we have a single peak at a specific frequency in
which the amplitude decreases for the series of six examples. When these six
peaks are subject to transformation by the use of the RNN, the results are
shown in Figure 8.20, where the individual values in the spectrum have been
connected. It is clear that the information contained in the single peak has
been spread throughout the frequency range and that the shape changes as
the amplitude is decreasing. However, this transformation is even more
drastic when there is a small shift ill the frequency. In this case, small
changes in the frequency in the original spectrum in Figure 8.21 produces
drastic changes in the transformed spectrum shown in Figure 8.22. D

5 Resutts presented in Figures 8,19 through 8.22 were produced by Dr. Israel E. Atguidingue,
when he was a graduate studcnt at the Univeisity of Tennessee, 1989-1993.
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8.10 FUNCTIONAL LINKS

In conventional backpropagation networks, weights are applied only to con-
ncting links leading to neurons. The hidden layer in back prop aatkn
networks provides the ability to form complex relationships between input
pattern elements. However, if the data pattern presented is in a form ti-nit

already has complex elements in the form of functional links, then the hidde 1

layer may not be necessary. In functional link networks, developed by
Yoh-Ilan Pan (19 8M Conmlection (links) provide information to the network
by incorporating a representation of the relationships between the input and
output patterns. This involves adding inputs that are functions of the normal
inputs. While it is possible for back-propagation to learn complex relation-
ships (e.g., x 2 , xy, cos 2 (x), sin(x), etc.), functional link networks establish
these relationships directly. The difficulty is knowing which functions to use.
Generally, this requires an understanding of the nal'ire of the prablemn
involved. If the problem can he represented by a polynomial, then simple
power and cross terms (e.g	 2 iç x 2 

Y etc.) may he appropri ate as addi-
tional inputs to the netwoik. If a problem has cyclic terms for frequencies
that are important, then sine and cosine terms ma y he appropriate. Func-
tional link networks are fcedfursvard networks that use standard hack-propa-
gation training. Clearly, the output layer neurons must have nonlinear
activation functions if there are only two layers in the network.

There arc two kinds of functional links. The first type is the outem product
(tensor) model where each component of the input is multiplied b y the entire
input vector x 1 (1 !^ i :^ ii) or xx1 , where i f; j :!^ n and i j . Representation
of the input space is enhanced, making it easier for the model to learn.

'1 he second general type of functional link is functional expansion where
the input variables are individually acted upon b y the appropriate functions
—that is, sin(x), cos(x), sin(2x), and so oil. The functions selected may he a
subset of the orthonormal basic functions. The overall effect is to map the
input vector into a larger pattern space, enhancing the representation. Of
course, it is possible to combine the tensor and functional expansion types of
functional links.

Although functional links offer an attractive analytical alternative to the
general problem of specifying the architecture of a network, they have their
own limitations. The principal concern with functional links are the follow-
ing:

As the number of inputs increases, the nu:ubcr of connections (with
weights) increases.

There are indications that a smaller number of training examples
relative to the number of connections can influence the ability of the
network to generalize.
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3. With fevcr examples per connection, the model may lcli o to reproduce
the training Set errors aid riot	 iirhzc. This prc' bl&rit k
difficult with noisy data.

8.11 CASCADE-CORRELATION NEURAL NETWORKS

Cascade-correlation is a supervised learning algorithm for neural nct\volks
that adjusts the nctwork architecrui e as well as the weights (F'alilmait and
Lcbierc, 1990). Cascade-correlation starts with a minimal network and adds
new hidden neurons one-by-one, creating ,I network ill learn-
i ' 1 9 process. Once a new hidden neuron has been added to the network, its
input-side weights arc fixed, and it becomes a permanent part of the
network, helping to serve the function of hidden layers (i.e., feature detec-
tion). This architecture attempts to overcome the issues which cause back-
propagation to he so slow in training a neural network. Two specific issues
that are addressed are (1) the step-size problem and (2) the moving target
problem.

The "step problem" arises in backpropagation because only infinitesimal
changes during the learning process (which implies an infinite training time)
can reasonably ensure that a global nunimuin carl be reached. Large changes,
which would speed up the training process, tend to cause hackpropagation to
i each local minima; and various methods, such as the use of niolnentuin of
simulated annealing, must be used to reach a global nliuinlunl.

The "moving target problem" arises because each neuron in the interior of
the network is trying to evolve into a feature detector that will play some
useful role in the network's overall computation, but its task is complicated
by the fact that it cannot communicate to other neurons to which it is
connected (both directly and indirectly), which are changing all the time. One
way of decreasing the moving target problem is to allow only a few of the
weights in the network to change at once. In a sense, this is redlicills , the
dimensionality of the training process.

There are two related P1 iniary features of the caseada-eori-ela fun training
Process: (1) the cascade architecture in which hidden neurons with fixed
(nontrainable) inputs are added to the network one at a time and (2) the
learning algorithm which creates and installs the new hidden neurons. All
neurons have bias inputs with trainable weights and nonlinear activation
functions which may he any of the sigrnnidal functions. All weights are
initially randomized between -1 and  I.

The cascade-correlation neural network starts as a two-layer, fully con
nccted perceptron with adjustable weights on every connection which are
initially randomized. The direct input—output Connections arc trained using
the Widrow—Ijoff delta training rule (or any other training algorithm for two
layer networks such as Quickprop). 'Fraining is terminated when the weight
values approach an asymptotic value, based oil " patience" parameter set by
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the used. Then the overall error is measured, and a decision is made as to
v hether to continue training.

Training is continued by adding a single neuron to create a l:lden layer.
It is connected to all input neurons through connections with fixed weights
and to all output neurons through trainable (randomized) weights. The fied
input weighs of the new neuron are set by a "pretraining" process before the
outputs are connected to the output layer. In this pretraining process, a
number of training sets are applied to this single neuron, and the input
weights are adjusted after each pass to maximize the sum (over all outputs) of
the magnitude of the correlation between the neurons oLitput and the
residual output error of the neuron.

Training proceeds the same as previously because the fixed moat weiehts
allow the network to ixe treated as if it were a two-lavr network. When tilC
training stops because the "patience" parameter is reached, the over:ill error
is calculated and a decision is again made whether to proceed. If So, another
single neuron is added, in the same manner as the first neuron, fully
connected with fixed weights (set by the optimization prctrainiug preess
described above) to the inputs, and full y connected with trainable (rntJo-
mixed) weights to the output layer. However, the onl y connection betwce,i
the two added neurons is from the output of the first neuron to the input of
the second neuron through it fixed weigh Thist. his treans that we have ettee-
lively added a second hidden la yer with a single neuron.

The process of adding one neuron at a time continues until the user is
satisfied with the overall error of the network for the training data. The
multitude of single-neuron hidden layers presents a very Powerful feature
detector, but it also leads to a large fanout of the input connections and a
very "deep" network. Fahlman arid Lchierc (1990) indicate that strategies for
addressing these issues are being investigated.

8.12 RECURRENT NEURAL NETWORKS

The liaekpropagation neural networks previously discussed arc strictly
feeclforvard" nctwcirks in which there are no feedbacks from the output of

one layer to the inputs of the same layer or earlier layers of neurons.
However, such networks have no memory since the output at any instant is
dependent entirely on the inputs and the weights at that instant.

There are situations (e.g., when dynamic behavior is involved) where it is
advantageous to use feedback in neural networks. When the output of a
neuron is fed back into a neuron in art la yer, the output of that
neuron is a function of both the inputs from the previous layer at time I and
its own output that existed at an earlier time —that is, at time (r A t),
where At is the time for one cycle of calculation. Hence, such networks
exhibit characteristics similar to short-term memory, because the output of
the network depends on both current and prior inputs.
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Ncur;tl nt\vcrks that contain such feedback are called r'cnfl'nf neural
netuorks. Au bough vii tual]y all neural networks that contain feedhack could
be considered as recurrent networks, the discussion here will he limited to
those that use backpropagation for training (often called 'recurrent back-
prop networks"). Jet us consider the elementary fcedforward network shown
in Figure 8.23a, where the input, middle, and output layers each have only
one neuron, and where neuron It is a buffer ncuron that instantaneously
send the input .v to neuron p. When the input x(U) (x at time 0) is applied to
the input, the outputs of neurons p and q at time (0), v(0), and Y(0),
respectively, are

U(0)	 {[1c11x(I)] }
	

( S.12-1)

y(0)	 k[u(0)1}	 I{uJ[w11 .v(0)j))	 (8.l22)

where J) is the activation function operator (usually a sigrnoidal function)
and (0) indicates the value at time ft

(1)
	

b)

Figure 8.23 Simple neural networks without (a) and with (b) recurrent feedback.
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For nonrecurrent networks (no feedback), this relationship remei . v1iJ
for times 1,2.3,. . . , 	 . N, and so on. Hence above equation becoine

	

= { cb[iv . c(n)] }	 (5.121)

(0)	 U'([L.(fl)I}	 ()(.{(0[.v(,.]}}	 (S.l2-1)

To make this network rcurrcnt, we add feedback hum the output ne n,::n to
the middle la yc and fiOln the Middle neuron to the input layer through Pc
recurrent neurons (which are buffer neurons) labeled R aad the corres p ond-
ilIg weights w and nt., respectively, as shown in ligure 813b. 'Pic oetpuis
to neurons p and q must exist before there can he an y feedback. 1 knee. as
the process proceeds step by step, the feedback term of neurons p md q will
riot come into play until time 1. 1 knee, the equation (5.11-2) for yU isva IjLI
for a recurrent network for time 0, but the feedback terms must he added for
dli subsequent times. the output of the network for neurons p and q at time
1 are

U(1)	 dtmvFx(1)] -+

= {m vx(1)	 (h{u,x(0)]})	 (S.12-5)

y ( l )	 cI'(n(1) . mt'jY(0))

(1) + mm.(C1)[ w1x(0)] })

	

k;	 (0)]))) }
	

(5.12-6)

For time 2, the outputs 0r neurons p and q are

(2) = '([ 3 x (2)] ±

1- mt) i {{lt 1 x(1)] + i.j1[mv,1x(0)])})	 (5.12-7)

y(2) = (I1[r)kr(2)] + [tv(1)]

) 
(

t {(1i[ mvx(2)j ± it	 o. .x( 1)] I w{O [v x(0)] } }}

+	 {d) It1i[ ox (1)]	 iY {ci [ w ,x(0)1 })

± mt kI {(0 k([ ic, j x(0)] ) ) } ) } }
	

(S. 12-5)
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For time 3, the outputs of neurons p and q are

i{ [ w, 1 x (3)] + [ wv(2)]

(l){ [w 1 x(3)] + wj{q{ [ w 1 x(2)} + o {[ n '1 x ( 1)]

+	 (h [ w x (0)] ) } } })
	

(8.12-9)

y(3)	 1 1 {[v(3)] + [wk,y(2)])

^ I{{ [ '( )1	 {q{ [ w 1 x(2)] + w{0 [wx( 1)]

I i t, 
j
	 [wx (0)1 } }} } } } + 

w1 { { 
w{ [ w0x(2)]

{ q [iv, x( 1)]	 w {o [i)• (0)1 }}} }

+ wk){{tk{) [ w11 x( 1)] -1-	
}}

u'k ((1) { Wi k (P[ w1x(0)] ) 
1 ]J	 1	

(8.12-10)

Magnitude of Terms

Note that the equation (8.11-10) for y(3) has .i(0), .v(l), x(2), and .r(3) as
inputs. An equation for y(4) would add x(4) to the list of inputs; y(S) would
add .i(5), and so on. Furthermore, art examination of the terms of the
equation for )'(3) indicates that the magnitudes of the earlier inputs decrease
when later inputs are added. This is seen more readily if we assume that the
activation function is linear — that is,

( P{ X) = x

Then the equations for y(0), y(l), y(2), and )(3) become

y ( 0 ) = nw0 [x(0)J	 (8.12-12)

y( 1)	 uvw{[x(1)] +	 + wkJ][ x ( 0 )]	 (8.12-13)

y(2) =	 v1([x(2)] + [ wj, + w] [x(1)]

± [w ± u. )i wk J + w,] [.i(0)]	 ($.-i

= wuv 1 {[x ( 3 ) ] + {w11 .1.

4- [ it, + It, R' 	± wr2 j [v( 1)]

+ [R + w,i Wkj +	 i- n',] [x (0)] } (8.12-15)
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Since the weights are usually less than 1, the increasing power of the weights
for the earlier terms [is 2 for x(3), iv 3 for x(2), iv 4 for .r(l), and w 5 for x(0)]
causes the coefficients to decrease rapidl. When the signioidal (or any
nonlinear activation function) is used, the presence of multiple nonlinear
activation functions in the above equations for (0), y (I), y(2), and v(3), each
with a n	 nieixium	 svalue of I, reduces the early term much faster than for a
linear activation function. As later inputs are introduced, the influence of the
earlier terms become negligible. This reduced weighting of the cailier terms
is analogous to the decrease of influence of earlier values in a convolution
transformation,

The complexity introduced by feedback conncctinn, even for thw eleniell-
tary system of Figure 8.23a, is readily apparent. For networks more conipli-
cated than the elementary system in Figure 8.23b, the same principles are
applied, but the complexity grows even more rapidly. However, the increase
in eniplcxitv is often compensated for because the feedback almost alwios
drasticall y reduces the number of cycles needed to train a neural network
significantly. Feedback can often he used advantageously to speed up the
training of a neural network and to avoid local minima. Indeed, it is
sometimes possible to train a neural network after feedback has been added
v. wrens it may not have been previously possible to train it to the desired
level of error. However, capturing dynamic behavior in a model is the most
common justification for the rice of feedback, and recur rent neural networks
(or neural networks with delayed inputs) are almost always used for dynamic
signals.
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PROBLEMS

I. The backpropagation training algorithm is developed in Section 8.3, using
the lo4istie function as the activation function where the dc rivativc has the
convenient form given in Equation 8.1-4. Derive the backpropagation
training algorithm for the case where the activation function is an arctan
function where the dcrivative is given b y Lquation 8.1-6.

2. Derive the hockpropagation training algorithm for the case where the
neurons in the hidden layer have a logistic function for the activation
function and the neurons in the oulput layer have littea r activation
functions. Compare the results with those obtained in Section 8.1 where
this arrangement of activation functions are used.	 -

3. In the recurrent neural network of Section 8.12, the feedback of both
loops conies into action at time 1. If the feedback from the output neuron
does not come into action until time 2, how will the Equations 8.11-3
through 8.11-15 change?

4. Discuss the results shown in Figures 8.19 tllrmu9'ht 8.22 for a recit etilatioti
neural network and their implications.

S. lit the operation of backpropagation, eonira',t hot', the changes oi eat niuig
constant, changes of momentum coefficient, and changes in the mx value ill
the logistic function influence the time reqircd to train a neural network.
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6. Derive the backpropagation training algorithm for the simple recurrent
neural network shown in Figure 8.23h using the approach given in Section
8.3.

7. Discuss the role of the "bottleneck" layer in a five-layer autoassociatjve
neural network with respect to the identification of principal components.
(Hint, Sec references by Kramer and McAvoy at the end of this chapter.)

. C mipare TIC reduced representation of an input vector in the hidden
hyer of a recirculatiori neural network with the reduced representation of
in input vec(jr in the middle l;iycr of tlii:ee- and five-layer a1!ruassociativc
neural networks.



COMPETITIVE, ASSOCIATIVE,
AND OTHER SPECIAL

NEURAL NETWORKS

9.1 HEBBIAN LEARNING

Donald I Iehb 0949) introduced a flonniatliematiciI statement of bioloe,ical
learning in 1949. The I-Icbhian system was the first truly self-orgaruzing
System developed. Even today, it is very prevalent throughout theaenial
network field beeaue there are many paradiums based on I tehhian Ic 1 mnirtu.
I lebb's law can he summarized as follows:

As A becomes more efficient at stimulutini , 13 r!'Jliniz training. A scnsiti-z 	 H
to Its stimulus, and the weight on the connection 'loin A to 13 increases do
training as 13 becomes sensitized to A.

One problem with Lel'ib's law is that it is Ion vague. Ouestfons such as tie
following arise: I low much should a weight increase? 1-low active does 13
need to be for training to occur? Furthermore, there is no way for the

eights to decrease. In theory, they can increase to infinity. Inhibitory
synapses are not allowed, whereas it is well known that real biological
systems clearly have inhibitory (negatively weighted) connections.

Corrections to l-Jebh's law involve normalizing the weights to force them to
stay within limited bounds and forcing them to both increase and decrease to
retain the normalization. There are many variations of Hebbian learning that
are utilized. One of these is the Nco-Hehbian learning put forward by Steven
(Jrossberg, who developed an explicit mathematical statement for the weight
change law of the form

13- re) -- ulXaXc

289
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where n'. , is the veg9t on the synapse connecting neuron A with neuron B,
cr is the "forgetting" term that accounts for the fact that biological systems
forget slowly with time, and jG is a "learning" constant that accounts for
simultaneous firing of neurons A and B. The right-hand term is called the
"liebbian learning term" because it tics the learning rate to the product of
the neuron outputs. Hebbian learning is characterized by the product of two
neuron activities. Hence, anytime such a product appears in an equation,
I lcbbian learning is involved. Generally, both cc and f are in the range
between 0 and 1.

It we rearrane,c equa'aun (9.1-1) and put it into the form

- a	 -	 =	
- 0	 - 13.tac .1	(9.1-2)

t	 - A t	 alt

and consider only the terms involving , it is clear that the forgetting term
involves a slow exponential decay with time conslant a. Even so, neo-
Hebbian learning does not permit the weights to decrease when the neuron
outputs decrease.

To overcome this problem. Grossbcrg introduced differential Hchhian
Icarrung. It has the same mathematical form as Ilebbian learning of equation
(9.1-1) except that it uses the product of rates of change iii the outputs for
the neurons A and B, as given

=	 (1 - a) ± !3—_ -j--	 (9.1-3)
tit

9.2 COHEN—GROSSBERG LEARNING

Pavlov's Experiments

Cohen Gr• ssbcrg learning comes from an attempt to mathematically explain
the observations from psychological conditioning experiments carried out by
Pavlov. Let us consider the various types of conditioning. The first is
"observational conditioning," which involves copying the actions of others
and is sometimes described as "monkey see, monkey do." The second type of
conditioning is "operational conditioning," which involves an action and a
response. It is described as "push button, get food." The third type of
conditioning is "classical conditioning," and it involves a stimulus and a
response. The experiments of Pavlov fall into the classical conditioning
category.

The psychological model used in the Cohen —Grosshcrg learning is Pavlo-
vian learning in which a clog is offered food at the same time a bell rings.
Eventuall y, the clog associates food with the bell ringing and salivates when
the bell rings even when no food is presented. This behavior is illustrated in
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Tablo 9.1 Sttmull and corresponding roponse5 in Pavlov g experiment

Stage
	

Stimulus
	

Response

LI
	

Unconditional Stimulus ====>

(Plate of Fo(A)

2.	 Unconditional Stimulus

(Plate of Food)

plu.r ====>

Conditioned Stimulus

(Bell Rings)

Unconditioned Response

(Dog Salivates)

Conditioned Response

(Dog Salivates)

3.	 Conditioned Stimulus ==r=>	 Conditioned Response

(Bell Rings)
	

(Dog Salivates)

Example 9.1 to be Grossbcrg outstar learning. The three stages o Pavlovian
learning are shown diagrammatically in Table 9.1.

Instars and Outstars

Next, we nuist develop the concept of ''instars' and ''outstats" to explain
Pavlovian conditioning or learning. Every neuron receives hundreds or thou-
sands of inputs through its own synapses from the axon collaferals of other
neurons. Schematically, this can he represented as a "star" with radially
inward paths called the instar. Indeed, every artificial neuron in a neural
network is an instar.

Every neuron also sends out hundreds or thousands of collatcrals which
branch off from the main axon and go to the synapses of other neurons. This
also can be represented by a "star" with radial outward paths. This configu-
ration is called an "outstar," and again every neuron is effectively an outstar.
A geometrical interpretation of the instar and outstar configurations is shown
in Figure 9.1. The instar has many inputs and a single output whereas the
outstar has a single input and many outputs. The fallout of a neuron in the



292	 COMPETITIVE, ASSOCIATIVE, AND OTHER SPECIAL NEUiAL NETWORKS

0
S.

(a)

oS'oo

O5O
Figure 9.1 Graphical representations of on
'instar (a) and an "outstar"(b).	 (b)

input layer of a neural network can he considered as an oritstar, v1ie reas a
neuron in the output layer can be considered as an instr r.

Development of Cohen–Grossberg Learning Equations-
Instar Activity

Let us consider Pavlovian learning from the perspective of an instar. The
activity of the instar processing clement or neuron has a number of require-
ments:

1. The activity must grow when there is an external stimulus.
2. It must rapidly decrease if it is no longer stimulated from the outside.
3. It must respond to stimuli from other neurons in the network.

Let us consider the arrangement in Figure 9.2, in which an instar y ,, receives
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Figure 9.2 An instar y, receives a signal from the outstor y thcugli 0 \eCciflit . (T is
The threshold (or The incoming signal to node y, and is ho tLne r .rod for the
signal to trovot frorrr g to

signals v(t ) from uutstars r through weights W,.The activity of the instar
can he represented iw a differential equation

dy(t)
= -As() -	 - B	 rv3y,(t)	 (9.2-1)

where ' 1 (t) is the activity of the ith neuron, I,, is the external stimulus. w0 is
the weight between the tth and jth neurons, and A and B are constants.
The first term on the right-hand side of equation (9.2-1) allows the activit

y of
the instar to decrease exponentially with a time constant A when it is no
longer stimulated by I or inputs from other neurons. The second term I
corresponds to an external stimulus, and the third term represents the stimuli
from the ti neurons in the network. We need to allow for sfgntls received at
neuron j that were actually generated in the neuron i at some previous time
T ago and transmitted to neuron j, where r is the "average' transmission
time to from neuron i to neuron j. We also need to put a ihrcslrld (T) on
the intrancurori inputs so that random noise will not interfere with the
network's operation. hence, we can modify equation (9.2-1) as follows:

dy(t)
+ 1(1) 4 B	 w1Ey(t	 - F]	 (9.2-2)dl	

h-I

Whe re the superscript + means that only positive values are used.
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Instar's Learning Law

The two processes involved in instar's learning law are Hebbian learning and
forgetting. We need a process that will explicitly allow forgetting to
occur—that is, to allow the weight to slowly deca y. Also, we need to put a
threshold on the ILICOIO ing activity terni and to account for the transmission
time between neurons i and j . Hence, we can write the instar lcarninr law,
which controls the adjustment of the weights between neurons i and 1 irs the
form given in Equation (9.1-2)

- G(i)jy(t - T)	 (9.2-3)
it

where F is the forge:t;i	 tim• constant that should be much snralL (i.e.,
slower decay rate) than the activity decay constant A, and (7 is the gain or
learning constant. The value of F is never greater than about 0.01, and the
superscript -4- means that we should use only the positive values.

Equation (9.2-3) incorporates the 'sinipic" Hebbi-an leamnine,, and hence it
typically does not allow the weights to decrease except for the very slow
decay process associated with the forgetting term. A iiioie appropriate
Cohen–Grossbcrg learning law would be one in which the first derivative of
the activities with respect to time are substituted for the activities—that is,

div (i)dv (r) dy (t -
--Fw(t) + G------	

i7	
-.	 (9.24)

This is a version of the differential Hebbiari learning given in equation
(9.1-3).

Grossberg Learning in Outstars
The minimum number of artificial neurons that must he activated to cause
recall of a complex spatial pattern is only one, the hub of the outstar.
Repeatedly applying a stimulus on the hub neuron and simultaneously
putting a pattern stimuli on nr neurons on the rim of the outstar (see Figure
9.1b), or to a grid of neurons (see Figure 9.3), each connected to the hub
neuron, eventually will cause the weight pattern to reflect the input pattern
on the rim due to the Hebbian learning. The mathematical mode of spatial
learning in outstars describes the outcome of the standard psychological
experiments conducted by Pavlov.

Grossherg outstar learning is based on 1-lebbian learning; that is, if a
stimulus arrives at a receiving neuron at the time when it is active, then the
weight associated with that link will be increased. In outstar learning, the
weight increase depends on the product of the input and the output signals
to the grid neuron; that is, the grid neurons corresponding to bright spots in a
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Flguro 9.3 An ''outstar corning net'.eork.

pattern will have large outputs at the time the stimulus arrives. Hence, the
weights will be incrcascd. A lie gtid neurons corresponding to medium spots
will have lower outputs, arid the weights will change less. After . number of
cycles, bright spots will correspond to large weights while medium spots will
coiresponti to medium weights. Flow about the dark spots? They are a
problem. The use of neo-Hchbian icarning adds a forgetting term. I lcnce,
wcights subject to neo-Hcbbian learning that do not increase will slowly
decrease.

Example 9.1 Crossbcrg Ontstar Learning. This example illustrates ''outstar
learning." Consider the neural network shown in Figure 9.3 that has a single
outstar neuron and N instar neurons in the second layer. The input to the
outstar is a binaty signal that switches alternatively between 0 or 1 with a
period A. The output is a vector Y having N components y 1 , Y2 1 Yi,.
The desired output is a vector X having components x 1 , x, Xi.... I XN-  The
weights w, iv,, iv w.v re to be adjusted using the hlebbian learning
algorithm,

Initially, the weights are set to randomly small values. WhLin a I (which is
considered a "high'') is applied to the outstar neuron at the same time the
vector X (whose components may be "high," "low," or any value in between)
is applied to the second layer, I-Eebhian learning requires that the weight on
the connections between two neurons increase in proportion to the product
of the magnitudes of the two weights. Hence, those weights on connections
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leading to neurons in the second layer with large vahics of x1 increase
significantly since the outstar output is unity. The weights on the connections
to neurons with medium values of ., increase somewhat less. The weights on
the connections to neurons with low values of x i increase only slightly or do
not increase at all. This process occurs each time the outstar signal switches
to 1. The changes in weights become smaller as the weights increase and
eventually stop increasing. Now, the magnitudes of the weight vector Compo-
nents mv, mimic the magnitudes of the corresponding values of die input
Vector components x.

At this point, the desired output vector X can he removed. When the input
is 0, all the components Yj of output vector Y are equal to 0. When' the input
is 1, the components Yj of the output vector Y arc proportional to compo-
nents w of the trained weight vector W; that is, the output vector V mimics
the desired output vector X even though it is no longer applied. Hence,
except for a constant of proportionality, the output vector V is the same as
the desired vector X. This means that all that is necessary to produce the
desired output at the second layer is to apply a I to the outstar.

If we return to the analogy with Pavlovian learning, the pattern X is
analogous to the food, the unconditioned stimulus; the input to the outstar is
analogous to ringing the bell, the conditioned stimulus; the stimulus of the
grid output is analogous to dog salivating when the food is presented initially,
the unconditioned response: and the output Y after the pattein X is elimi-
nated is analogous to the dog salivating after the food is eliminated, the
conditioned response. 0

Driver Reinforcement Learning

Driver reinforcement learning is a variation of outstar learning that uses
differential Ilebbian learning in which the weight increase depends on the
product of the change in the output signal of the receiving neuron and a
time-weighted sum of the changes of the inputs to that neuron over a period
of time. The weight used in weighing the sum of the changes is the weight of
the neuron at that time.

During training, we artificially cause grid neurons to display the image we
want the network to reproduce. Hence, grid neurons corresponding to bright
spots on the pattern have large outputs when the outstar stimulus is received,
and weights are increased with each repetition. Eventually, the otmtstar's
stimulus alone is sufficient to cause the neurons to produce the pattern
without the input. This process is the essence of driver reinforcement
learning.

9.3 ASSOCIATIVE MEMORIES

An associative memory is any memory system that stores information by
associating each data item with one or more other stored data items. The
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characteristics of associative flIelliriries ate such that they usually store
information in a distributed form. They are content addressable memories;
that is, data are accessed by its content, not b y its address. They are robust
and can usually handle parbicil or incomplete data inputs and can usually
operate with some failed elements. In many ways, they are very similar to
human memory.

Data are stored as patterns of activity in an associative memory. As a
result, associative memories are insensitive To minor differences in details.
This provides the robustness which allows garbled inputs to be still under-
stood, and minor errors or damage to the network do not cause loss of
functionality.

It is useful to distinguish between heteroassociativc and autoassociative
memories. In a hcteroassociative memory network, the input X and the
output Y are different patterns; that is, the input and output are not the
same. [ii the case of the autoassociative memory networks, the input and
the output patterns arc the same. At first glance, this may seem like a trivial
system, but it is very useful. When the input to an autoassociative memory is
sorne\vhat garbled (e.g., it is a distorted version of X), the network will
produce a "correct" version of X as the output.

While associative memories do not lmve to involve neural networks, there
are several types of neural networks that constitute associative niemories.
The most common types are the crossbar associative mcmni-y and the
adaptive filter (e.g., the Adaline neural nct\voi k can he used as a ll associative
memnry. There are other architectures in neural networks that call be used
as associative memories, but they are not Conimnonr. Generally, associative
networks are i mportant because they provide wbist and efficient storace of
patten n data and are generally considered to be essential to any "intelligent"
system.

Annthcr c]as\mfication of associative memories is that they are accretive or
interpolative. IThis indicates how they interpret data. Suppose we have an
associative memory that associates the color red with the numerical value 1.
the color blue with 2, and the color greet) with 3; that is, if we put the color
magenta into the associative network, an accretive associative network will
return the value of either 1 or 2, depending upon whether the shade of
magenta is closer to red or blue. if the magenta corresponded to a valmc of
1.6, then the accretivc neiwork would give all Output of 2. On the other baird,
an interpolative associative memory would return the actual numerical value
0.6 in this case).

Crossbar Structure

Crossbar networks have the structure of air early twentieth-century telephone
exchange system from which they take their name. They t ypically have one or
two layers of artificial neurons, and each neuron or layer is fully intercon-
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nected with the other neurons or layers. Crossbar representations that are
commonly used are matrix representti in, energy surface representation, and
a feedback competition reprcsentati'n. The matrix representation is perhaps
the most common because the weights are stored as elements of a matrix.
The matrix weight representation discussed here is substantially the same as
those given in Fi gures 7.6 and 7.7 This representation is popular because
matrix mathematics and operations are well understood by most researchers.
They are also mathematically tractable, allowing simple eTlanations of
characteristics. If we consider the fully connected network shown in Figure
9.4, the input is a column vector X with components x 1 , x,, x, and x, and
the output is a column vector Y with components y1, y 21 and y3; ti::l we can
say that

Y.= \V•X	 (9.3-1)

where \V is the weight matrix. If we expand the terms in equation (9.3-1), it
beco in cs

X1
it 11	 W21	 31	 1541

02	 022	 1532	 1W4,	
'	

( 9.3.2)
Wi r	 W2.,	 R'	 I13

14

It	
X2	 X3	 X4

Figure 9.4 Matrix representation of a neural network.
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Bidirectional Associative Memory

M:itheinaticaii y, -,I bidirectional associative inemoiy (HAM) developed by
l'osko (1988) is also a matrix; technically it isacrossbar network with
Symmetric weights. Each neuron in each layer has one input from the outside
and inputs from each of the neurons in the other field of the neurons.

Supiicse we construct a HAM to Store three pattern pails: [X ] , Y1].
[X, Y. 1, and [X 3 . Y}. Since a HAM is bidirectional we can enter any X
and retrieve the corresponding Y, or we can enter any V and retrieve the
corresponding X.

The process in a HAM is fundamentall y different than the operation of
other types of neural tietwoiPs. For instance, in tic h : t'hpropagatioo network
discussed p eviousl y, the weights are trained to provide the desired
input—output mapping. In the case of a HAM, the weight rn: ux is not
trained; it is constructed using the input output pairs. 'lhe proc ss involves
cc .t nstrlictillg a matrix for each input output pair itni then C(ltflI iiti them
imo a mister matrix. X and V. are treated as column '.eetors, a:. I then the
matrix is pioduccd by taking the product of the X 1 vector arid u t j'i:OSi.  of
Ihe Y vector, Y/. Let us consider the three pairs shown below:

	

K1:	 (	 -1-1-	 l-1±l)<(-.i L1-l)	 :	 (*31)

	

X:	 (-1-t-l-.l--I±ll)<:>(Ii.l)	 :Y,	 (934)

X -

	

,:	 :Y.	 (O35)

VVCicIhi Mairix Ropresenlation Since X, I::s (3 clenients anti Y has 3
CtCIl.: ' : ls. the matrix for each set of 3nn;:t; r .nit i a a 6 > 3 niatox. It is
imp 1	 it to note thit each of the patterns is r:i!u up of + 1 and -- I values,

r::ca:Is that the ec!nponcnts are bipolar. If the uatteins values are
(i.e., made tip of I	 () salucs), the y s!:id he eo:tvcrUd to bipolar

6a :ii b y substitutnig -- 1 for each Ci betoze 111,-,; a 	 used in a HAM. The
co:re!ai:oi rn:ttiiccs M for equations 9•3-3) )3	 and ('.3-:) i re obtained
b y r(-"s product oi i\. cal 7:---that is,

M 1	x x y1
	

(9.3-6)

[he thi ' :c corrciat:iai.

•1. .	 1	 1
- C

	

X 1 x	 •C- 1

	

t-1	 --I	 1 I

.+ij

	 +1	 1
	

1- I
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--1	 —1	 +1	 +1

	

I 2 x 2 x yr []xi±i —1	 ij

(9.3-8)
	+1 	 --1	 -1

	

--1	 +1	 -1
= -1 —1 +1

	

1	 +1	 --1

	

-f-I	 ±1	 •-1

	

---1	 -1	 -ii

(9.3-9)

Note that each value in the above matrices is a produet of two quantities, one
component of X and one component of Y. This pIo..IueL x 1 v is a classical
indication that Hebbian learning is involved.

In order to obtain an associative weight mcnioy (L-ecl the roaster weight
matrix) capable of storing the three pairs in equations (9.3-3), (9.3-4), and
(9.3-5), we simply add the three correlation matrix equations (9.3-7), (9.3-8),
and (9.3-9). The result is

	

M = M 1 + M, + M 3	 (9.3-10)

—1 +3 —1

±3 —1 —1

	

M = —1	 —1	 ±3	
(9.3-11)

-

	

II	 ±1	 +1

	

+3	 —1	 --1

	

--3	 ±1	 -1-1

Matrices can be added only if they are the same size. Hence, this means that
all of the X1" patterns must have the same number of components, and
all of the Y vector patterns must have the same number of components.
However, the number of components in the X 1 pattern can be different from
the number of components in the V1 patterns (as is the case in this example).

In order to put in any X and get back any V (or put in any Y, and get
hack any X 1 ), we have to take the product of the input vector and the matrix.
This is equivalent to taking the dot product of the vectors and the master
matrix. The result is

•-1

X1 = M ' V	 (9.3-12)
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and

1T,	 (9.3-13)

where the M's are 6 X 3 weight nlatrices. X is a 6 > 1 column vector, and V
is a 3 X I column vector. Note that we must ue the transpose of the mast
matrix to get V: that is,

	

—1	 +3 -1	 +1	 ±3 —3
MT	 3	 - I	 - 1	 --1	 + 1	 (9.3-14)

	

—1	 —1	 -t3	 ±1	 —1	 f-I

Example 9.2 Using a Bidirectional Assuciati e Memory. Let US USc caun-
lion (9.3-12) to obtain X, trout \'

	

+3	 —1	 -iS

X,
	 I	 al
	

[±1	 —1	 - 1]	
—1	

(9.3-Ia)

	

13	 --1	 --.1	 a-S	 41

	

--3	 +1	 -f-I	 —1

which is the correct pattern. 1he last step i'i equation (9.3-15) is accciin-
plishcd through the use of the threshold iulc; that is, the component is - I if
the original value is < 0, and it is + I if the original value is > 0.

Operation of a B,-IM. The master matrix now has three pairs stored in it. If
any of the Xs or Vs are introduced to this matrix in the proper wa y, the
corresponding response is given immediatel y. The problem comes when the
input is a distorted version of X (or Y) which we will call X* (or Y*) is
introduced, especially if X has some similarit y to more than one of the Xs.
The initial response obtained as the dot product of X and M may not he any
of the Vs stored in the matrix, but may be some combination of two or more
of the Bs which ssc will call Y. In turn, V is sent hack throu gh the BAM to
give X' as the dot product of Y' and M'. X' irioves hack across the BAM to
give V' as the dot product of X' and NI. Y" then moves hack across the RAM
to give X' as the product of V and NIT. This process continues until an
cquilmhriuni condition is attained when successive values of X' and V do not
change.

The sequence of events are as follows:

I. An X input pattern is presented to the BANI.
2. The neurons in field X generate an activity pattern that is passed to

field V through the weight matrix NI
3. Field V accepts input from field X and then generates a response back

to field X through the transpose weight matrix MT
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Field X accepts the return response from Y, and then it generates a
response back to field Y through the weight matrix M.

The activity bounces hack and forth until a 'resonance" is achieved,
which means that no further changes in the patterns occur (i.e., succes-
sive values of Xs and Vs are the same). At this point, the output Y is
one of The Y values stored in the master matrix, and it is the correct
response for the distorted X input.

In summary, we constructed a master matjix with three pairs of input
patterns [X 1 , V 1 ] [X.) , \',J, and [X 3 , Y3]. We transposed this matrix (if neces-
sary, depending upon which half of the pair we used as input) and then
applied it to the input patterns. The result following thresholding was the
other half of the pattern pair. This apparently arbitrary methodology always
generates a memory matrix from which we can recall the input patterns used
to produce it. Where ire the patterns actuall y stored in the DAM matrix?
They are not stored in any individual element of the weight matrix, because if
we were to change one of the three patterns and reconstruct the matrix, we
would get an entirel y different weight matrix with virtually every element
changed. Changing an individual pattern doesn't just change one row or one
column of the matrix; it chane,es every element. We must therefore conclude
that the information is stored not in an individual elements but in the matrix
as a whole, and each pattern is distributed over the entire matrix.

Adding and I.)elering Pa((e,n Pairs to the Ma.ster. Matrix. We Can add another
Patter

n pair [X., V4 ) to our matrix by adding its matiix NI 4 to get to the
nuentoiy matrix M:

New NI = M 1 ± Nj, + NI 3 ± M	 (93.1(6)

i\Jternatcly, we can "forget" or erase a pattern pair by subtracting the matrix
for that oatterri pair from the niernoi y matrix. For instance, if we wanted to
remove the pair [X 2' Y2 ] from the nuennoi'v, we could do it by subtn acting the
matrix M, from the memory matrix:

New Ni M -- M,	 (9.3-17)

This system has all the requisite features of a memory system. It can store
into flieniory, it can recall from memory, it cart write new information, and it
can erase old information. U

Capacity and Efficiency of a Crossbar Network

Th e capacity of a crossbar network of size N x N neurons is theoretically
limited to approximately N patterns. In reality, the actual capacity of the
crossbar networks is more on the order of 10-15% of N. In the matrix
example cited earlier, _288 bits were needed (18 elements of 16 bits per



ASSOCIATiVE ML.)rEs	 303

clement) to store three patterns of 9 (total) bits cai, or 27 bus toOl. The
storage and recall operation required several major matrix operations (multi-
plication, transposition, a.,[ addition). With current tecHnology this is much
less efficient than simply storing the data conventionally.

Disadvantaces of Crossbars

There are many disadvantages of crossbars ti:at ii ' :ed to be considered Tl:co
are as follows:

1. TIn' Aumhcr of Connections. A 100-node ne H;:k h:s 100 x 100, or
10,000, total connections.

2. Binary -Oily input. To inipleinent an analog problem, sr':ne
transformation must be used to convert analog quant itO: 	 i
signals.

3. Capacity. The theoretical storage is low for the number of 	 :u!:ctic
and the real storage capacity is even much lower.

4. Or-,hoo,aliiv. For best results, the stored data patterns houiJ 0:
orthogonal as pussblc to minimize the overlap.

5 Spurious Results. In energy surface representation, spw ieu minima U:
''energy wells" that have nothint', to do with the PrOlen aic sonie:m:mes
produced. These are the so-called ''localized minnia.''

There are, however, sonic mitigating circumstances. Near-nm thogonality is
usuall y adequate because the capacity is so hnv . Ihere are few spurious
minima because low capacit y implies sparse coding (lots of zeros) in the data.
Finally, the efficiency could' be dramaticall y improved whcn practical op: cal
systems become a reality.

Hopfield Networks

Dr. John Hopfield is the pemson perhaps roost responsible for the rejuverm:i-
tion of the neural network field after publication of Pcrccptrons. Hi contri-
butions include work conceptualizing neural networks in terms o an energy
model (based on spin glass physics). He showed that an energy function exists
for the network and that processing elements with bistable outputs are
guaranteed to converge to a stable local energy minimum. his presentation at
the National Academ y of Science meeting in 1982 triggered the subsequent
large-scale interest in neural networks. A crossbar associative network is
called the Hopfield network in his honor (IIecht-Nielsen 1990).

A typical Hopfield network is shown in Figure 95. It has only one
computine, la yer, called the Flopfield la yer, and the other two layers are the
input and output buffers. In contrast to the hack-propagation network dis-
cussed earlier, the Ilopfield network has feedback from each neuron to each
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FIgure 9.5 I Iopfield notwok architecture.

of the other neurons, but not to itself. The llopfieltl la yer of neurons
computes the weighted sum of the inputs, and it quantizes the output to 0 or
I. 0 11.s restriction was later reined.) The activation function used was a
sigmoid with a icactive (resistor--capacitor) delay. An examination of this
network shows that the weights are symmetrical; that is,

W11	 (9.3-18)

The basic 1-opfield learning rule is

(2x 1 - 1)(2x1	1)	 (9.3-19)

where x 1 and xj have values of t) and I, x i is the current neuron, x is the
input to the neuron, and Ivi i is the connection between the jtli neuron and
the ith neuron. Furthermore, symmctry dictates that weight changes are
symmetrical; that is,

wii	 Xlv1	 (9.3-20)

Examination of equat i on (9.3-19) shows that the learning is llchhian; that is,
the change in weight is the product of two activities, and the change in weight
is proportional to this product. Since x and x1 call have values of 0
and 1, thel) the (2x -- 1) terms effectively convert the binary inputs and
outputs into bipolar inputs and outputs; that is, the I remains a 1 and the 0
becomes a -1- The connections are strengthened (i.e., made more excita-
tory) when the output of a neuron is the same as the input (i.e,, both are 0 or
both ae 1). Connections arc weakened (i.e., made more inhibitory) when the
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input differs from the output of the neuron (when one input or output is a 0
and the other is a . llnpfield has shown that for a large number of neurons
the upper bound for the memory capacity is 0.5 X (N/log N), where V is
the number of processing elements.

Energy Suri'aco Reproontation

The key to the popularity of crossbar notworks is that the 'state' of the
network call represented by an "energy surface" in which data storace
corresponds to "sculpting" energy rninirii,'I in the energy surface. This vie': is
mathematically equivalent to well-understood physical systems known as
"spin glasses." Each energy well in the energy surface has a co:rcsoorniing
area within which all states wl move to the bottom of that well or -h-sin of
at traction."

A crossbar associative (1 lopfield) memory operates by attracting thc net-
work state to an cnerc.y IniniminTi. If we consider the energ y function ( the
crossbar associative memory as a foarn sheet with dents of different dpis,
the bottoms of the dents are the cncrgv minima. They correspond to the ctta
stored ill the crossbar network. It is sometimes said that tire network state is
falling down into the nearest energy well, which may or may not be the global
mininiuni

Simulated Annealing

Simulated alzneallr!g is a process used in neural networks to reach a global
minimization of an error function. It is analogous to the annealing process in
metallurgy in which a metal is heated beyond a transition temperature,
allowing the preexisting structure to change physically (relieving residual
stresses, changing the nietallograpluc structure, eliminating dislocations and
disruptions in the crystal lattice, etc.) due to ther trial agitation. lhen the
temperature is lowered slowly to room temperature, allowing the metal
structure to slowly go through a transformation and grow structures by which
it attempts to attain a global ''minimum energy" configuration. In practice,
the annealing POCCSS does not take place suddenl y , but instead the transition
starts almost simultaneously at many locations, creating many homogeneous
regions that are usually separated by dislocations. Hence, there is no guaran-
tee that the final energy level will he lower, but it usuall y is lower.

When a minimization process is trapped in a spurious local mininiurn, one
of the few ways to get out of this trap is to add noise to the function until it
literally escapes the minimum. This is equivalent to raising the temperature
in the annealing process. When the high noise level has driven the function
away from the spurious local minimum, the noise level (temperature) can he
gradually lowered, allowing the function to gradually approach a global
minimum. The success of this process is dependent upon the temperature
used and the programmed cooling rate. If the global minimnuni is not reached,
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the process can be repeated as many times as m:Cessarity using other
temperatures and cooling iate curves. The details of this process are dis-
cussed in detail ill references (1 lecht-Nielsen, 990; Korn, 1992; Aarts
and Korst, 1989).

It is common to combine simulated annealing with other minimization or
training processes. An example of this was discussed in Section 8.4 of
Chapter 8, in which simulated annealing was tiscd after the hackpropaation
training  process had become stuck in i t local minimum. After simulated
annealing has moved the process away from the local minimum, hackpropa-
gation was resumed to complete the training of the neural network.

Stochastic Neural Networks

Stochastic neural networks use noise processes in their operation in an effort
to reach a global minimum of an error function. ']'Ile process involved in
virtually all statistical networks is simulated annealing. Examples of statistical
neural networks are the Bollznjmnn machine and the Cauchy machine. The
Boltzmann machine is a discrete-time Ilopfield net in which the processing
element transfer function is modified to use the annealing process, The
Cauchy machine is similar to time l_Toltzmann machine, in which different
temperatures, cooling rate patterns, and procedures are used. Both allow the
error to increase under some conditions in order to move out of a local
miimum.

9.4 COMPET[IVE LEARNING: KOHONEN SELF-ORGANIZING SYSTEMS

"Self reaflizat ion" refers to the ability of sonic net'.vorks to learn without
Deing given the corresponding output for an input pattern. Se If-organizing
networks niodify their connection strengths based only on the characteristics
of the input patterns. The Kohonen feature map, perhaps the simplest
se lf-organization system, consists of a single layer of neurons (called the
Kohonen layer) which are highly interconnected (lateral connections) within
the Kohonen layer as well as to the outside world through an input buffer
layer that is fully connected to the neurons in the Kohonen layer through
adjustable weights.

Lateral Inhibition

Kohonen networks utilize lateral inhibition (i.e., connections between neu-
lulls within a layer) to piovide (a) positive or excitatory Connections, to
neurons in the immediate vicinity and (b) negative or inhibitory connections
to neurons that arc further away. The strengths of the connections Vary
inversely with distance between the neurons, that is, the strengths are
stronger when neurons are close, but they are weaker when the neurons are
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distant. Thc inputs from lower levels and outputs to higher levels (if anv
arc the same as for other networks. Generally, there is no feedback from
higher to tower layers.

Lateral connections moderate competition betsvcen neurons in the
Kohonen layer. When an input pattern is presented to the lohoneri Leer,
each neuron receives a complete copy of the input pattcrr mo.lified by the
connecting weights, and the varying responses establish a competition gy
flows over the intraiaycr connections. Thc purpose of tire conpctitioi is to
determine which neuron has the strongest response to tire iripLit. luiell
neuron in the layer tries to enhance its output and the output of its
immediate neighbors and inhibit the output of the remaining neurons that
are further aWey. lateral connections can CUiSC oscih:rtions in ntsvorks, bat
the output eventually stabilizes with the output of the neuron, vitn the
stron:cst resp)nse being declared the winner and being transmittcJ to
the next layer if there is one. The activity of all other neurons is squashed.
aS the network cletermirrcs for itself which neuron his the greatest respu:;:e
to the input pattern. The relative impact of a neurons inierlaver inhibition is
also permitted to decrc'ie v. rh training. Initially, it starts fairl y large and is
s1os ly reduced to include only tire winner and po ,,sihiv its ic,medi:ite neigh -
hors. It has been shown that similar s ystems exist in the brain with reguaJ to
VisiOn.

The complexity of intriilaycr connections makes lateral inhibition and
excitation hard to implement. An alternative which is much easier to irriple-
ment is to use a max" function to determine the neuron with the rrcatest
iesporrse to the input and their assign this neuron a ±1 value to tire output
while iissignrir1 a zero to all other neurons in that la yer. The \Virrning ireUrorr
m eprcserrts tire category to which the input Pattern hem rigs. ibis is not a true
implementation of lateral inhibition, but it gene rally gives the same result as
a true implementation, and it is far more efficient when implemented rising
serial computers. An even simpler alteirrati'. e is to merel y p ire (lotc:ornute tire
P roduct of ea

ch 
' of the weight vectors with the input arid then select tire

winner from this list.

In training, the Kohonen network classifies the input vector Coniponcnins
into groups that are sinrilar. This is accomplished by adjusting the Kohomren
layer weights, so that similar inputs activate the same Kohoiren neurons.
Preprocessing tire input vectors is very helpful. This involves normalizing all
inputs before applying thenir to the network—that is : divide each component
of tire input vector by the vector's length:

= --	 ._±__Th.	 (h4-l)

\Vinhuildinc a Kohorren layer, two new things are required:

Weight vectors must be properly initialized. Gcrrcrallv, this means that
the weight vectors point in random directions.
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2. \Vcight vectors and input vectors must be nurmaloed to a Constant
fixed length, usually "unity." Such normalization can cause loss of
information in some situations, and there 

are methods of dealing with it
if it OCCUrS.

Let us assunic that the weight vectors are randomly dit ihuted and then
determine how close each neurons weight vector is to the input Vector. The
neurons then CUrflpetC for the privilege of learning. En essence, ncc, the neuron
with the largest dot product of the input vector and a weight component is
declared the winner. This neuron is the only neuron that will be allowed to
generate an output signal; all other neuron Outputs will be set to zero.
r:Ilrthermorc, this flCLlrOIl and its immediate neighbors are the only ones
permitted to learn in this presentation. Only the winner is permitted to have
MI output(i.e., winner takes all).

Kohorten Learning Ruk3

Determining the winner is the key to training it Kohonen network. Only the
winner and its immediate neighbors modify the weights on their connections,
The remaining neurons experience no training. The training law used is

Awl = 171.1, -
	

(9. 4 -) )

Figure 9.6 Learning in a Kohonen neural network.
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Where 77 is the learning constant whose value may vary between 0 and 1, wi:h
a typical value of about 0.2, and x 1 is the input along the ith connection,. Ii
can be shown that this learning rule is a variation of the Wood row—Ifoff
learning rule. This is shown graphically in Fi gure 9.6 for the two-dimensional
case. Learning is illustrated for the case of an input x and a weight ieo.

The difference between these two unit vectors is a vector from the tip of w,
to the tip of x. In Figure 9.6, this vector is broken into two parts (cords of
the unit circle) so that the 	 vill ha9e a unit length. The vector from the
tip of	 to w'' represents the change in the weight vector due to lc.trrling
and is equal to 7 10c- . w M ).

If we consider the collection of weights for a given neuron as the
components of an n-dimensional weight vector \V, and consIder the
corresponding inputs as the components of an in-dimensional input veelol I,
then Kohonen learning merely TI_loves the weight '.cctor so that it is more
nearl y aligned with the input vector. Since both input vectors and weight
vectors are genL'rallv normahzcd to a unit magnitude, each vector points to a
position on the unit circle. The winning neuron is the one with the wci't
vector closest to the input vec toi . Each ti aining pass nudges the vcigh
vector closer to the input vector. The winner's neighbors also adjust wcisthts
using the sante learning equation, and their weight vectors move closer to the
input Vector. Training a Kohoncn la yer begins with a fairly large neighbor.
hood size that is slowly decreased as training proceeds. The icaining constant
also starts with a large value and decreases as training progresses.

Let us consider the unsupervised trainin g process for three input vectors,
each with eight components and hence eight weights (a small training I_ct
solely for illustrative purposes) at three different stages of training: initial
random weight distribution, partially trained weights, and full y trained
weights. These three conditions are shown in two dimensions in Figure 9.7.
Initially, the wcihit vectors are randoml y scattered around the unit circle. As

W7	 we

V,5	 WI	 w

V3	 X3	 v_i

V,:5	

w2

Randomi:ecl Jitig/is	 ir.''r/9 lrr,V,d Weights	 Ii '/ i,ai,wd Jlt'ihO

._,,.. In/July

Weighis

Figure 9.7 Training of weights in a Kohonen neural network.
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tialning proceeds, thr: weight veetnis move toward the nearest input. \Vhcn
the system is fully tra 'ned, the weights cluster around the three inputs so that
the centroids of the Free local weight clusters are oil 	 three input vectors.

Training of a Kohori Neural Network.

Let us consider a Kr,Lctnen neural network [sometimes called a self-organiz-
ing map (SCM)] tb an input buffer layer (typicall y a linear array) and it
Kohonen ]aer ( t ic;lly a rectangular array or grid) that are fully connected.
An input vector is applied to the buffer layer, and its Component vectors are
transmitted to each neuron in the Kohonen layer through randomized
Connecting weights. i he neuron ill 	 Kohonen layer with (he strongest
response (let's call it neuron q) is declared the winner and its value is set
equal to I. 'IThen tl1c weights connecting all component vectors front
buffer layer to the winnijig neuron undergo ti aining in accordance with the
process shown graphe ;illy in Figure 9.6. Neurons immediately adjacent to the
winner are also alloyed to undergo training. Then a second input vector is
applied to the buffer layer, another neuron in the Kohonen layer is declared
the winner, its value i', set equal to unity, and it and its neighbors are allowed
to undeigo training. 1 his proccSs continues until all the inputs in the epoch
of data have been a ptlicd to the buffer input layer. In the training process,
the weights tend to luster around the input VectOm 5 as indicated in Figure
9.7. Training stops Whe,t a criterion relating time nearness of the weights in
the clusters to the relcint input vector is satisfied. Kohoncn neural networks
tiain relatively rapidly compared to hackpropagatiei mien rd networks. Often
a single Cycle throutmh an epoch of data, especci I!v if the data set is large,
Constitutes adequate 'minute.

It is important to note that just bec:use the input vector selected neuron (7
as the most active in t

ile first cycle of training does not mean that it will
select neuron q in thi Second or subsequent cycles of ilaining, because the
weights on cOnnectin,,5 to neuron q change during training and perhaps
training caused by adj;ice1it neurons being winners in the first cycle. Further-
more, it is cOfllflmOfl particular Kohonen layer neuron to be tIme winner
for many inputs. Dut ing the training process, input vectors that have similar
characteristics fllO'.'C II,to it of neurons in a particular area of the
Kohoneii layer, often t a single neuron. Other input vectors that have
similar characteristics, Mlich are different than those of the first cluster,
move toward anothem area of the Kohoncn layer. There will he as many
clusters as there are t Y15 of inputs if an appropriate-sized rectangular array
size is chosen for the R olmon layer. More clusters require larger rectangular
am rays of neurons an,l , the larger the number of neurons in the Kohonen
la cr, the longer the ti nining process.

A Kohonen netwom k models the probability distribution function of the
inp vectors used dur imir training. Many weight vectors cluster in portions of
I], ,; hypersphere that hny relatively many inputs, and few weight vectors
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cluster in portions of the hypersphere that have relatively few inputs. Knho-
nen networks pe form this statistical niodeling, even in cases where no
closed-form analytical expression can describe the distribution. The Kohonen
network can achieve this modeling spontaneously, with no outside tutor.

Kohonen networks work best when the iietsvorks are very large. The
smaller the network, the less accurate the statistical model will h. Kohonen
neural networks are very fast, even whilc training. Activation of the network
is a single-pass, feedforward flow. Thus, Kohoncn networks have the poten-
tial for real-time application learning. Koheuen neural nctwoi ks can literally
learn continuously. I lence, if the statistical distribution of the input da'a
changes over time, it can automatically ad-apt to those changes and continu-
ally model the current distribution of the input pattern. The statist cal
modeline capabilities of the Kohonen network are unmatched by any odter
neurel network.

The learning rate coefficient 71 is always less than 1; it usu.lty starts at
about 0.7 and is gradually rcduced duiing training. If only one input vector
V11-1 1C to ho associated s Oh each Kohonen neuron, the Kohc ' nen lver could
he trained in one calculation per weight. .1 ne weights of a winning neuron
s¼ould he adj usted to the components of the ti ainiiig vector (with T7 < I).
Usually, a training set has many input vectors that are similar, and the
network should be ti riuiied to activate the same Kohone n neuron for erich of
them.

The weight vector must be set before tialning begins. it is common
practice to randomize these weights to small values. For the Kolioncn
network training, the randomized weights must he normalized..  Ied.	 tem train::g.
the weights must end up equal to the normalized input vectors. Prenot mnal-
ization to unit vectors will start weight vectors closer to their final states.
thereby shortening the trainin g process.

The most desirable arrangement is to distribute the weight vcturs accord-
ing to the density of the input vectors that must be separated. This places
more weight vectors in the vicinity of the input vectors. Although this is
impractical to implement directly, there are several techniques that approxi-
m-ite this ideal arrangement (Masters, 1993).

Example 9.3 Valve Status Classification Using Kohonen Neural Networks.
Uhrig et al. (1994) have reported a method of utilizing all
spectrum to determine the status of check valves under full flow conditions.
The same data have also been applied to a Kohonen SOM to illustrate its
ability to classify check valves by type and condition. The procedure involved
acquiring an analog time record from an accelei ator mounted oil check
valve, digitizing the time record, performing a fast Fourier transform of the
data to produce man y spectra, and then introducin g these spectra as input
vectors to a Kohoncn SOM. Typically, four seconds of data, sampled at
25,000 samples per second and filtered through a hand pass filter with 50-
and 10,000-11i cutoff frequencies, were fast 1:uurier transformed to pi odttcc
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390 spectra, each with 128 values. 1-lence the input buffer layer had 128
neurons. The size of the Koliunen rectangular a ray was varied, rlcpciiding
upon the nuniher, type, and condition of the valves that were being iiivccti-
eated. In several cases, spectral measurements wcre taken oi l

 same valve
when it was faulty or broken and again after it had been repaired. The results
of several runs are shown in Figure 9.8 through 9.10.

Fi p ure 9.8 shows a 1)101 of a Kohonen SOM for five 18-jnch-c-tfainetcr
valves, three of them (V63, V124, and V251) being identical single-disk swing
check valves and two of them (VHS and V150) being identical duo-check"
valves that have two moving vanes, each covering half of the valve opening.
Clearly, the spectra for the swing check valves clustered in the lower

V148
%'lSO

V124
V25 1
V63

V/-IS and P150 arc klt'ofj<ü/ 15-Inch 'Duo-Check' 1'ü/u,
P124 and P251 are IdcnPcoI 18-I1?ch Suing Check I'iZvcs

Figure 9.8 SOM plot for 18-inch check vc!ijes.

V34	 I
V64	 Broke

V65	 Disk

Vo34
Loose
Bolt

V34, V64, and V65 are Identical 14-Inch Swing Check Valves
\'o34 is V34 Operating with a Loose Bolt in the Disk Structure
V065 is V65 Operating with a Broken Disk

Figure 9.9 SOM plot for 14-inch swing chock values.
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FiOuro 9.10 SOM pie' for sJrnJor 3-inch check vcives OPCiCOd under normal and
deqrodud concillEcos

tight-hand neuron, whereas the spectra for the duo-check valves clustered in
the upper left-hand neuron. Identical results were obtained for spectra from
acce]erometer 111ea.curemcnt on the upstream side near the hinge pin and on
the downstream side near the backstop.

Figure 9.9 shows a plot of a Kohonen SONI for three identical 14-inch
swing check valves, two of theism having measurements taken bath in a
degraded or broken condition and after they were repaired. All the spectra
for the good valves clustered in the upper left-hand neuron, whereas time
spectra for the degraded and broken valves clustered in the two right-hand
neurons. Again, identical results were obtained from accelerometer measure-
mncnts taken on the upstream and downstream sides of the valve.

F'igurc 9.10 Shows a plot of a Kolionen SOM for similar 3-inch and 4-inch
swing check valves that were tested in a test flow loop facility for both normal
and degraded conditions. Both valves were tested under normal conditions
twice and deliberately subjected to 30% degradation of the hinge pin (a less
serious problem), 30% degradation of the stud pin (a more serious problem),
and a stuck disk condition (a very serious problem). Spectra for the 3-inch
valve tended to cluster in the top rows of neurons, whereas spectra for the
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4-inch valve tended to cluster in the bottom rows of neurons. Spectra for
normal conditions (with one exception) clustered in the third column of
ilCUroos, whereas spectra for degraded conditions (with one exception)
clustcicd in the leftmost or rightmost COIUfl1US of neurons. In all cases, the
spectra for the hinge pin (TIP) degraded condition (a lesser problem) cliis-
tered closer to the neurons for normal (good) conditions than the spectra for
the stud pin (SP) degraded conditions and the stuck disk conditions (both
more Serious problems).

The choice in the size and arrangement of the Kohoncn layers were
arri\ ed at by trial and error, although similar results usually were found over
a range of sizes. One of the interesting aspects of this work is that there was
no Way of controlling where the clustering occurred within the Kohonen
network. This is to be expected since self-organizing is involved here, which
P cans that the results are dependent only on the data that is introduced into
the Kohonen SOM. Li

Looming Vector Quantization

A variation of the learning scheme and the addition of all layer of
neurons can make the Kohorien network into a classification network called
lcai ning vector quant icr (LVO). The modification involves changing the
training scheme from an unsupervised system to a supervised procedure. This
requires a collection of train:np examples, each assined to one of a et of

n categories or classes. The number of neurons in the output layer is
equal to the number of classes in the training data set. The Kolionen layci'
is trained first using a modified training procedure. I ,VQ training proceeds in
a manlier similar to that of Kohonen featnre map training. An input pattern
is presented to the network, and the winning node is determined by selecting
the neuron with weight vector closest to the input vector. '['his neuron
responds with its assi g ned catc 'fjory and is allowed to update its '.vciglts. The
Kohcuien training law is modified as shown here:

Awl	 77k - ie'	 (if answer is correct)	 (9.4-3)

It', - • -	 - wd)	 (if answer is not correct) 	 (9.1-4)

T'hut is, if the winning weight ve.ctor.(i lie one closest to the input vector) is
the correct category for the input pattern, the weight vector is nudged closer
to that input pattern. If, however, the winning vector is the wrong one, the
weight cnange repels the weight vector from the input pattern vector. This
should allow another weight vector to win the next time that input pattern, or
one similar to it, is presented to the network. LVQ systems, including some
more elaborate variations on the basic idea presented here, call
performance that is nearly as good as an optimal Bayesian decision system.
The system is mathematically simple to implement and does not require
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knowled ge of the prolahilities involved (Ilayki r, 1994). Afier the tric is
complete, the activated neurons in the Kolonen layer for input vector.
associated with each class are connected directly to the output neuron for
that class. Kobonen layer neurons not activated by any input vectors are not
connected to the outp it layer.

9.5 COUNTEI1PROPAGATION NEr,vo:xs

The countcrpropagation network was developed by Rhert I lcd -Nh.
1987 (Ucclit-Niclscn, 1990) as an alternative to the back propngato.i ml-
't-work. It can reduce traininc time b y a factor of 100, hut it is not as geitrnL ii
its ap:siieation. The couite propaatio:i network is a combination of to
nctwo-ks, a self-ol " m-li " ing Koijunen network and a Or ossherg outstar uct-
work. Tius combination yields p operties not aviilabhc in either alone. In
many respects this network can function as ii 'look-up'' table that is capable
of gcTIC  ahia0on. It has a supervised learning process, because the training
tsoLiates input vectors wbh the corresponding output vectors (Wi id may he
biiinr or continuous) . Once the network is trained, appivinc an input
produces the desired output, even with partiall y incomplete input. Jr is usefil
for pattern recognition, pattern completion, and signal enhancerrc nt. The
counterpropagation network combines the cate g orization capabilit y of the
Kohoncn self-organizing ictivork with the conditioning capabilities of
the ontstar network.

Robert licclmt-Nmclscn, the Inventor of counterpropagrition, realized its
limitations, indicating that cou:rterpropagation is obviously inferior to back-
propagation for most applications. Its advantages are its simplicity, the fact
that it forms a good statistical model of the input vector environment, its
abilit\ to train rapidly, and its ability to save large amounts of comnputin
time. It can he useful for rapid prototyping of systems where great accurac y is
not required or a quick approximation is adequate. Furthermore, tiic dlilt
to generate a function and its inverse is often useful.

Unidirectional Countorpropagafion Network

Figure 9.11 shows the connection scheme of a unidirectional counterpropaga -
tion network. For clarity, onl y a few of the input neurons' connections to the
middle layer are shown as well as only a few of the middle layers connections
to the output layer. At first glance, this appears to he very similar to a fully
connected hackpropagation network, with connections between the input and
output layers that b ypass the Kohonert middle la yer, but i: is serv different.

Consider -,I mapping of pattern A of size n elements to pattcfn B of size in
elements. ihe objective is to introduce the A pattern to the network and get
back to corresponding B pattern. The input hoer receives both the A and B
patterns, and thus it must be of size in ± 11. The output layer must he able to
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FIUUIQ 9.1 1 Unidicoct:onol c000tcrpropag(Ition net 	 Inc ;'•.',cJ<.

reproduce only the B patterns SO it must be a size in. There is also a direct
COflfleetion between the B input and the output neurons. These connections
arc shown in Figure 9.11. The size and geometry of the middle layer also has
In he determined.

The input layer is split into two subsections, one which receives the
incoming A pattern and the other that rcccivcs the incoming B pattern. 'Ihe
middle layer is a competitive layer in which only a single neuron generates an
output signal for each input. This output is normally set to 4- 1 as it is with
the Kohorien network. As a icsidt, each neuron in the output la yer merely
receives a single signal, a -I- I representing the input patterns category, froIki
the middle layer and an on put from the 13 section of the input layer. Ihe
connections between the middle layer and the output layer obey the rico-
Hebbian (outstar) learning law as dcmon'rated iii Example 9.1, thereby
producing the B output pattern when thc A pattern is applied to the input
layer.

The output layer's main function is to associate the coi reet output pattern
for each category generated by tile middle Kohonen layer. Because the
outstar uses a supci'iscd learning procedure corresponding to classical
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cui:d:tioning, the direct connections horn the input Liver's B subsection to
the output layer are used to provide each neuron with an "external'' input or
unconditioned stimulus that defines the correct output for each of niidclle
la yer's categories. The single ± 1 signal that arrives from the middle
(Kolionen) layer neurons acts as the condition stimulus during the trziiirina of
the output Liver. Hence, the weight oil Connection between the Kt,lonun
layer and an output neuron is trained using neo-1 1ebhiin learning,

The operation of ,
I

 unidirectional counte rprupagaliori network can
be suninimrized as follows: An input pattern is presented to the A subsection
of the input layer and is categorized by the middle ( Kohone n) aver. The
output layer treats the category gcmmcrtted by the Middle layer as an ou Istar
stimulus, because the output layer itself corresponds to the grid Of an outstar
network. After training is completed, an input of ,I category
pi'escmitcd to the A input section of the network causes the output layer to
cenerate the correct output pattern for that category \Vi icut :n input from
the H input Section.

Altlioumli the operation is simple, training the counterpropagit inn net-
v.ork is not simple, because this network involves two ver y different lear uiirg
methods. Kohonen and outstar. Kohonemi uses unsupervised trainint'. whereas
o [star equircs supervised training. 1'raining such a hybrid nctsviiik nurmirally
involves a two-step procedure. In (lie enunlcrpropagation network the middle
Kohonen Liver and the output outstar layer are separatel y trained. First the
Kohioimcrr layer is trained oil patterns and develops i valid tuature map
for the input data. Generally. the Knimorten layer is trained until it accijimately
reconmics the input patterns and categorizes them into the correct number
Of categories. During this training period the output la yers nuLl learning
constants are set to very low values (i.r even zero) because tIre output of the.
network dues not matter at this time. Once the middle layer is adequately
trained, the weights between the input and middle layer are frozen. ihe
learning constants for the middle layer are set to zero to ensure that no
further changes occur, because the middle la yer has learned the COt rect
category for cacti input Novi i t is imp to the outstar to reproduce the curt ect
output for each categi mu y. Ihe lesuut ing constants for the outstar layer are
increased so that learning occurs and continues until the out put la yer is
appropriately trained.

Bidirectional Counterpropagational Network
The unidirectional counterpropagatiozi network really has little advantage
over other networks and systems that perform a mapping function between
the input pattern and output pattern. The only advantages over backpropaga-
tion is that the middle layer does give a probability distrilautioui I lapping of
the input data and the training may be faster.

The bidirectional counterpropagation nctwok is lio'r in Figure 9.12
with only a few of the connections. Both the A and 13 input layer subsections
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El gu ro 9.12 Bidirectional counte rpropagation neural network,

connect to the Kohonen middle layer, and each also has a one-to-one
connection to the corresponding subsection of the output la yers. This effec-
tively constitutes two countcrpropaization networks, one to map A patterns to
13 patterns and one to map B patterns to A patterns, operating with a single
Kohonen layer. A bidirectional network can accept either kind of pattern as
its input and respond with a corresponding pattern with the opposite type.
An A input yields a B pattern output, and a B input pattern yields an A
output pattern.

In bidirectional counterpropagation networks, the input and output layers
are the same size, both have A and B input sections with full connections to
the middle Kohonen layer, and the middle layer is fully connected to both
sections of the output layer. Each input neuron in each section has direct
connections to the corresponding output neuron. The middle layer receives
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input from all elements of the input layer and transmits its output to the
entire output layer. 'Ffainillg is the same two-step process as for the unidirec-
tional network. First the niiddle Inycr is trained using. Kolionen learning to
categorize the inputs correctly. '['hen the oulput layer is ti tiucd to produce
the correct output for each category of input using outsta r learning. 'l'he
major difference is that bidirectional network can only learn one-to one
mappings. If several A patterns generate the same B pattern, then when that
13 pattern becomes an input, it canhiot determine which A pattern to produce.
Hence, one-to-many or many-to-One mappings are not possible with a bi-
directional conoterpropagation neural network.

Characteristics of Countorpropagation Neural Networks

Cotintcrpropagatioii networks have the same disadvantages as do both the
Kohonen and the outsiar networks. The problem encountered most Ire-

rl rIC ncy is getting a variety of winners in the Kohonen layer so that the input
patterns are categorized correctly. It is not unusual to find that the Kohonen
layer has only ;v few distinct clusters during the early part of thc training
section, particularly if the weight vectors are randomly dist ibutcd tlirouh
n-di ate nsional space.

Countcrpropagation networks tend to be larger than corresponding back-
pi'opagation networks. If a certain number of mapping categories ire to be
learned, the middle layer must have at least that number of neurons.
'Ira ining is usuall y faster if the ni.iiubcr of neurons in the middle layer is
stibstan tially larger than the number of mappings. I lowever, the counterprop-
agatiorT network can do inverse mappings. It can prcrvdc ungarhled"
versions of A and 13 when supplied with gar bled versions. Very few networks
have a bidirectional abilit y ; most require two networks to achieve the same
result. Furthermore, the self-organization of the features of the Kohoiten
layer is loct, and the outputs must he supplied for supel vised training.

9.6 PROBABILISTIC NEURAL NETWORKS

The probabilistic neural network (lNN) developed by Donald Specht pro-
vides a general technique for solving pattern classification problems. In
mathematical terms, an input vector (called a feature vector) is used to
determine a category (e.g., the spectral energy values from a sensor system
can be represented as a feature vector), arid the net-work classifiers are
trained by being shown data of known classifications. The PNN uses the
ti aiiiing data to develop distribution functions that are in turn used to
estimate the likelihood of :I vector being within several given cate-
gories. Ideally, this can be combined with a priori probability (relative
frequency) of each category to determine the most likely category for a
feature vector.



320	 COMPETITIVE, ASSOCIATiVE AND OTHER SPECIAL NEURAL NETWORKS

Bayesian PobabiIily

The PNN is a neural network iniplemcntation of Bayesian classifiers. There-
fore, let us look at how Bayesian probability works. Bayes inversion formula
gives

P(YIX).P(x)
1'(XIY) •-	 ().6-i)

This conation indicates that for an event X with a certain known probability
1'(X), the probabilit y of event X given event Y has occurred [P(XY)} can
he computed from the probability of Y occurring given that X has occurred
[P( Y IX)] and the overall probability that Y will occur at all [1'(Y )I. Therelationship PDX) is called the a posteriori (the posterior) probability
indicating that the probability is kn'wn only before after the event X itself
has occurred.

The Bayesian formula also provides a method for categorizing patterns. In
this foi niulation, Y is interpreted as a possible category into which a pattern
might he placed and X is interpreted as the pattern itself. The decision
function can he associated with each possible category (all values of Y).
Bayesian decision theory tries to place a pattern in the category that has the
Ureatest value of its decision function. however, in real-world problems, we
rarely have known probabilities and most estimate or approximate such
Bayesian probabilities. A. probabilistic neural network has this capability.
Bayesian classifiers require probability density functions that can be con-
structed using Parzcn estimators which are used to obtain the probability
density function over the feature space for each category. This allows the
computation of the chance a given vector libs within a given category. Then,
combining this information with the relative frequency of each category, thL
PNN selects the most likely category for a given feature vector. The PNN is a
simple network that categorizes by estimating the probability distribution
function. Like the Kohonen feature map, input data to the PNN is often
norma'izcd to a standard value, usually one.

Structure of Probabilistic Neural Networks
The probabilistic neural network consists of four layers as shown in Figure
9.13. The first layer is the input layer, which is a "fanout" or buffer layer.
The second or pattern layer is fully connected to the input layer, with one
neuron for each pattern in the training set. Each of the neurons in the
pattern layer performs a weighted sum of its incoming signals from the input
layer and then applies a nonlinear activation function to give that neuron's
output.

The third layer is the summation layer to which each pattern layer neuron
transmits its output to a single summation layer neuron. The weights on the
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connection.s to ike 'inmoit layer ar fixcd at 1.0 so that the siilnnlatiori
layer merely adds the outputs from the pattern layer uclirons, which gener-
ates the networks category choice. There is one summation laver neuron per
category.

Thc nonlinear activation function used by pattern la yer neutrons is not a
signuiidal function but instead is an exponentialfunction as shown in Figure
9.14. Fhis activation function is given by

9( J) = exp[( J -. l)/u 
J	 (9 -2)

Where I is the weighted input to the ncuuut and the u- is the Snh()Otl1i1O

parameter that determines how smooth the surface Separating categories will
be. .\ reasonable range of values for a- is 0.1 to 10. The reason for the
exponential activation function is that it is a simplification of the Parzan
Ctinator of a Bayesian surface. Using a Bayesian estimating function in the
pattern layer neurons allows the 1NN to approximate Bayesian probabilities
in categorizing patterns.
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Flcuro 9.14 Expc)nerl)ice activation function for 	 11pcflE;rn Lycr naurons in a probabsfic neural 	 P(11) - exp I _L

newtoct<.	 IU

i he pattern layer has one neuron for each pattern in the training set. if
there are 20 patterns in the training set, 12 in category A, and 8 in cate-
gory B, then i here are 20 neurons in the pattern layer. Each of these neurons
has a set of weighted connectinns between it and the input layer. Each
Pattern la yer neuron is assigned to one of the 20 training patterns, which
connects to the Summation layer neuron that represents its patterns category.
Since in this case the sunlrnatioa layer has two neurons, the category A
neuron receives inputs only from the 12-pattern layer neurons that represent
category A, and the category B neuron receives inputs only from the
eight-pattern layer neurons that represent categories It patterns. The weighti
oil connections from the pattern layer to the s ,,m,,ina l ioll layer are fixed at
unity.

Each neuron in the output layer received only two inputs, one from each
of two summation units. One weight is fixed with a strength of unity; the
other weight has a variable strength equal to

= - {Jr11/Ir J[ 1 /l ][ nA/n U]	 (9.6.3)

where Jr refers to a priori probahhty of patterns being in category /1 or B,

I is the loss associated with identifying a pattern as being in one category
when it is in reality in the other category, and tr is the number of ,i or B
patterns in the training set. The values for h,1 , h a, lii, and a 1 are deter-
mined by the data pattern themselves, but the losses must be based on
knowledge of the application. In man y real-world cases there is no difference
in loss if the categorization is wrong in one direction or the other. If so and if
the training samples are present at approximately the ratio of their overall
likelihood of occurrence, this weight reduces to unity.
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Ilie PNN h- rihl h' settini' the svc:ghts of one neuron ill lie p:ilteifl
la yer to the nt:igmtude of each tiaining pattein's elemcnts. That neuron is
then connected to the summation unit corresponding to that pattern's cate-
gory. With a single p:is through Uic training set the network is trained.

The Smoothing Paramnetor

A smoothing paranictcr which affects the generality of decision boundaries
can he modified without rctr aining. The PNN usually needs a reasonable
number of training samples for good generalization. but it can give good
results with a small nujimber of tininiug samples. Since each traininr. sample is
represented by It neuron in the pattern layer, this serial iinpleme jitation of it
PNN will typically take longer in ilie recall mode than a backpropagation
model. Inputs need not he normalized, which in sonic cases may distort the
uiputs spec in an undesirable way. I Iosevcr, so me implementations of INN
do normalize inputs for convenience.

The smoothing parameter a- varies between zero and infinity, but neither
limit provides an optimal separation. A degree of averaging of nearest
neighbors provides better generalization where the degree of averaging is
dictated by the density of the training samples. Figure 9.15 slios s the
snmoothin 1' parameter a- as it varies between 0.1 md 1.0. For the lowest value
the estimated probability density function has five distinct neurons, whereas
for the largest variable there is a very severe flattening of the prohal.uhitv
densit y function between	 3 and -4-3.

Advaritagos and Disadvantages of the PNN

The advantage of probabilistic imeutal net'vom k_s is that the shape of time
decision surface can he made as complex as necessary using the smomitli ing
parameter. Ihe decision surface can approach J3ayes cptimnml solutions, and
the neural ne work tolerates erroneous samples and works reasonably well
with sparse data. For timne-vamying Statistics, old patterns Clill hc OVe1\vri1tc!1
with new patterns.

'Ihe PNN operates in parallel without feedback, and train jig is almost
instantaneous. As soon as one pattern per category has been observed, the
network can begin to generalize. As new patterns are included, the decision
boundary becomes more complex and better defined, and the entire training
set must be stored. Testing (recalling) requires that the entire data set he
used. 'File amount of computation required for PNN to classify any unknown
pattern is proportional to the size of the training set. Unfortunately, the PNN
is not as general as other neural network algorithms.

One of the serious drawbacks of the PNN is that it cannot deal with
extremely large training sets. Since there must be one neuron in the pattern
layer for each example in the training set, the network nIcnlory requirements
can increase very rapidly with the size of training sets. In effect, the entire
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Figure 9.15 Influence of smoothing Parameter a on probability density function
fA(x). The output of the summation neurons In the PNN.

training set is stored continually and retained during the classification of all
feature patterns. On the other hand, the PNN signal training technique
provides an extremely fast training time, particularly in comparison with an
iterative network such as the backpropagation network. Furthermore, the
network can deal with problems that have only a few samples of sonic of the
categories.

(r	 0.1

(1 0.2

CT = 0,5

a=1.
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9.7 RADIAL BASIS FUNCTION NETWORK

The radial basis function netwoik (RBFN) (NeuralWarc, 1993; Hush and
1-Tome, 1993; Moody and Darken, 1989; Wasserman, 1993) always consists of
three layers: the input layer, the pattern (or hidden) la yer, arid the Output
layer (i.e., the topology of the RI3FN is thus identical to the hackpropagatioit
neural network). It is a fully connected and fecdforward network with all
connections between its processing units provided with weights. The individ-
ual pattern units compote their activation using a radial basis function:
typically the Gaussian kernel function as shown in Figure 9.16 is used where
a- is the width of the radial function. The activations of pattern units
essuaitially elmi acterize the distances of ccntc rs of radial basis functions of
the pattern units from a given input vector. 1 he radial basis functions thus
produce localized, bounded, and radially symmetric activations—that is,
activations rapidly decreasing with the distance from the function's centers
(in contrast, the hackpropagation network si grnoidal activation functions
produce global and unbounded activations). U!se of the radial basis activation
functions requires a careful choice of the number of the pattern un its to he
used for a specific application, especially when a good generalization is
needed; the areas of siriificant Iclivatiori have in cover all the inpot scce
\s bile overlapping in just the right way. For function approximation appl Ca-
tions, this means that the samples included in the training set have to evenly
represent all possible input vectors. I'he output units of the RBFN simply
stint the weighted activations of individual pattern unit.s without using any
activation function. 10 speed up the trainin g , the pattern layer neurons are
augmented with bias units which have their activation values fixed to one.

'[ha training of the RBFN diffeis substantially (morn the training used for
the haekpropagation network. It consists of two s1)arate stages. During the
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first stage, parameters of the radial basis functions (i.e., their centers and
widths) for individual pattern units are set using the unsupervised train' i
The centers of radial basis functions of the individual pattern units defin

nge

input Vectors causing rna.ximal activation of these units. Location of these
centers is the first step of the training and is conducted with the help of some
clustering algorithm (typically, tl:e k-means algorithm is used). The clustering
algorithms usually operate iteratively, and the clustering process is finished
when locations of the centers for individual pattern units stabilize. The
resulting values of individual elements of the center vectors are then directly
used as values of the weights in connections between the input units and the
cotcsponcling pattern units. The widths of radial basis functions of the
individual pattern units (denoted o in Figure 9.16) determine the radii of
the areas of the input suace around the centers where activations of these
units are significant. Their determination is the next step of the training and
is performed using the nearest-neighbor" heuristic.

In the second training stage, the weights in connections between the
pattern units and the output units arc determined using the supervised
training based (as when Iraining the backpropagation network) on minimiza -
tion of a suni of squared errors of RBFN output values over the set of
training input—output vector pairs. Before the training starts, these weights
are randomized to small arbitrary values. At that stage, the weights in
connections between the input units and the pattern units and the parame-
ters of the radial basis functions of the pattern units arealready set as
determined in the first training stage and are not subject to any furthei
changes. During this training, the RBFN is presented with individual inu1
Vectors from time set of training samples and responds with certain output
vectors. These output vectors are compared with the target output vectors
also given in the training set, and the individual weights are updated in a way
ensuring a decrease of the difference between the actual and target output
vectors (typically, the steepest descent optimization algo rithm is used). The
individual input — output training pairs are presented to the RBFN repeatedly
until the error decreases to an acceptable level.

9.8 GENERALIZED REGRESSION NEURAL NETWORK

The generalized regression neural network (GRNN) (NeuralWare, 1993;
Wasserman, 1993; (Spccht, 1991; Caudill, 1993) is it special extension of the
RBFN. It is a feedforward neural network based on nonlinear regression
theory consisting of four layers: the input layer, the pattern layer, the
summation layer, and the output la yer (see Figure 9.17). It can approximate
any arbitrary mapping between input and output vectors. While the neurons
in the first three layers are fully connected, each output neuron is connected
only to Some processing units in the summation layer. The function of the
input and pattern layers of the (IRNN is exactly the same as it is in the
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RUN. The summation layer has two different types of processing units:
tl'1i)i)ili1fl UflhiS aiid 3 Single ilivi,ioii unit. The nii]libeI of the sI1;nm1 11-

lion units is always the same as the number of the GRNN output units; their
function is essentially the same as the function of the output units in the
R131-N. The division unit only sums the weighted activations of the pattern
units without using any activation function. Each of the (IRNN output units
is connected only to its corresponding ill unit ant] to the division
unit; there are 110 weights ill these connections. The function of the output
units Consists in a simple division of lie signal coming from the summation
unit by the signal coining from the division unit. The summation :11(1 output
layers to gothe r basically perform a mini mnaliLation of the output vector, thus
making the i;RNN much less SCflS1IIYC to the proper choice of the number of
piltie in units than the RUFN. The overlapping of radial basis functions of
individual pattern units is not a problem for the GRNN: in fact, it turns out
to he an iunporlaiit parameter allowing the user to influence generalization
capabilities of the URNN. Tn general, larger values of the width of radial
basis functions of the pattern units results in a smoother interpolation of the
output vectors values among the values corresponding to the centers of radial
basis functions of the individual pattern units.

The training of the GRNN is quite dilferent from the training used for the
RBFN It is completed after presentation of each input—output vector pair
from the training set to the GRNN input la yer only once; that is, both the
centers of the radial basis functions of the pattern Units and the weights in
connections of the pattern units and the processing units in the summation
layer are assigned simultaneously. The training of the pattern units is
unsupervised, as in the case of the RI3FN. but emplo ys a special clustering



328	 COMPETITIVE, ASSOCIATIVE, AND OTHE1 SPECIAL NEURAL NETWORKS

algorithm which makes it unnecessary to define the number of pattern units
in advance.. Instead, it is the radius of the clusters that needs to he specified
before the training starts. The first input vector in the training set becomes
the center of the radial basis function of the first pattern unit. The next input
vector is then compared with this center of the first pattern unit and is
assigned to the same pattern unit (cluster) if its distance from this center is
less than the prespecified radius; otherwise it becomes the center of the
radial basis function of the next pattern unit. In the same manner, all the
other input vectors are compared one-by-one with all the pattern units
already set, and the whole pattern layer is thus gradually built. During tIns
training, the determined values of individual elements of the center vectors
are directly assigned to the weights in connections between the input units
and the corresponding pattern units. Owing to the much lower sensitivity of
the GRNN to the overlapping of the radial basis functions of the pattern
units, the widths of radial basis functions of the individual pattern units need
not be Set according to the resulting structure of the pattern layer. Instead,
their setting typically becomes the subject of experimentation as their values
determine generalization properties of the C1RNN.

Simultaneously with building the pattern layer, the values of the weights in
connections between the neurons in the pattern layer and the summation
layer are also set using the supervised training. The weights in Connection
between each pattern unit and the individual summation units are directly
assigned with values identical to the elements of the output vector corre-
sponding in the training set to the input vector which formed the center of
the radial basis function of that particular pattern unit. In case that some
additional input vectors in the training set are assigned to the same pattern
unit, values of the elements of their corresponding output vectors are simply
added to the previous values of these weights. At the same time, the weight
in the connection of each pattern unit and the division unit, which was
originally set to zero, is increased by one for each input vector from the
training set which is assigned to this pattern unit.

9.9 ADAPTIVE RESONANCE THEORY (ART-1) NEURAL NETWORKS

Adaptive resonance neural networks are among the more complex neural
networks in use today. They are based oil resonance theory (AR!')
developed by Carpenter and Grossherg (1986). Three general types of AR'!'
networks are used: (a) ART-1, which can handle only binary inputs and was
developed in 1986; (b) ART-2, which call gray-scale inputs and was
developed in 1987; and (c) ART-3, which can handle analog inputs better, is
more complex, and was developed in 1989 to overcome some limitations of
ART-2. We will discuss ART neural networks as a general system, because
the principles and characteristics of adaptive resonance in all three versions
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arc the same. However, the implementation becomes increasingly compli-
cated for gray-scale and analog inputs.

General Operations of an ART Neural Network

ART neural networks are two-layer neural networks fully connected with
inputs going to the bottom layer, from which they are transmitted through
adjustable weights to the top or storage la yer, This is a bottom-up or ''trial"F ,

 that is presented to stored P atterns of the upper storage layer. The
input pattern is modified during its transmission through the ''bottom-up"
weights to the upper layer, where it tries to stimulate a response pattern in
the stoiage layer that contains several possible responses. Training takes
Place after every pass of the pattern, up or down. Since the training rule does
not matter, it is common to use 1lehbian learning for convenience. If this
"bottom-up" pattern is selected, then "resonance" occurs, and the input is
put into the matching pattern Category. If it is not selected, the resulting
activity in the "top-down" layer (called the "expectation" patteril or "first
guess" pattern) is usually different from the bottom-up pattern because the
top-down pattern is presented through the top-down weights to the bottom
l yer. Then the weights are adjusted, mat the process is repeated After a
number of trial,-,, the process is stopped. and a new category of pattern is
created in the storage layer. This ability of ART to create new categories
is its most important characteristic

When a pattern fails to produce a match, ,I pattern of nodes (from the
5101 age la yer) is now free to attempt to reach resonance with the input layer's
p1ttcnri. In eHect, wlicii the trial patterns do not match, a reset Subcvstei
signals the stni age layer that 3 pa, ticular guessWaS wrong. 'then that guess is
"turned off," allowing another Pattern from storage to take its place. This
cycle repeats as many times as necessai. When resonance is reached and the
guess is deemed acceptable, the search automatically terminates, Thus is lot
the only way a search call the system call its search by

learning the unfamiliar pattern being presented. As each trial of the search
occurs, small weight changes occur in the weights of both the bottom-up and
top-down pathways. These weight changes mean that the nexi time the trial
Pattern is passed nip to the storage layer, a slightly' different activity patternThs
received, providing a mechanism for the storage layer to change its guess. If
the system cannot find a match and if tile input Pa ttern persists long enough,the weights eventually are modified enough that an uncoimnitted node in the
Storage layer learns to respond to the new pattern. These changes in weights
also explain why the storage layer's second or third guess may prove to be a
better choice than the original one. The small weight changes ensure that the
activity generated by the bottom-up pattern Ill 	 second pass is somewhat
different from the activity generated ill first pass. If the input is ii slightly
noisy version of a stored pattern, it may require a few weight changes before
the truly best guess can be matched.
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Alternate View of Adaptive Resonance Operation.

The basic mode of operation in adaptive resonance is hypothesis testing. An
input pattern is passed to the tipper storage layer which attempts to recog-
nize it by making a guess about the category to which the input layer belongs.
It is then sent in the form of a top-down pattern to the lower layer. The
result is then compared to the original pattern. If the guess is correct (or
close enough), the two patterns reinforce each other and all is well. If the
guess is incorrect, the upper layer tries again. Eventually, either the pattern is
placed into an existing category or it is learned as the first example of a new
category. Thus the upper layer forms a hypothesis of the correct category for
each input pattern, which is tested by sending it back down to the lower
layer. If it good match is made, the hypothesis is validated. However, a bd
match results in a new hypothesis. If the pattern excited in the input layer
nodes by the top down input isa close match to the pattern excited in the
input layer by the external input, then the system is said to he in adaptive
resonance, because each layer's activity mutually reinforces and strengthcns
the other layer's activity. It is adaptive because both sets of weights on the
inlet connections between the layers are continually modified to strengthen
the recognition of the input pattern while the patterns resonate. Complexities
must he added to carry out all the comparisons and decisions. The implemen-
tation of the acceptance/rejection process and storage of patterns ate
straightforward but complex and based on logical operations.

Vigilance

ART-1 also has the property of vigilance by which the accuracy with which
the network guesses the correct match can be varied. By setting a new value
for vigilance, the user can control whether the network deals with small
differences or concerns itself only with global features. A low reset threshold
implies high vigilance and close attention to detail. A high threshold implies
low vigilance and a more global view of the pattern in the matching process.
By controlling the vigilance, the user can differentiate "insignificant noise"
and a "significant new pattern." Hence, the coarseness of the categories into
which the system sorts patterns can be chosen. High vigilance forces the
system to separate patterns into a large number of fine categories, while low
vigilance causes the same set of patterns to he lumped into a small number of
coarse categories.

Properties of ART-1
ART-I possesses several of the characteristics needed in a system capable of
autonomous learning. The more important characteristics are listed below:

1. It learns constantly but learns only significant information and does not
have to be told what information is significant.
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2. New knowledge does not destroy itif retation already learned.

3. It rapidly recalls an input pattern it has already learned.

4. It functions as an autonomous associate nicmoiv.

5. It can (with a chance in the vietLnce pa1111etcr) learn ritore detail if
that becomes neccss cv.

0. It recoRnizes its associative categories as ecdoct.

7. Theoreticall y, it can even be made to have an unrestricted storage
capacity by moving away front single -node patterns in the storage layer.

8. However, it can handle only binary patterns.

9. Its :ebilitv to create new catecot ics is its most rinoi tall t attiihtitc.
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PRO EMS

1. Construct a bidirectional associative memory (13AM) that will map the
Fray code (see Table 17.1) for the ten digits (1, 2, 3, 4, 5, 6, 7, 8, 9, and 0)
into the corresponding 4-bit binary code. Introduce a distorted (one bit
wrong) gray scale representation for 7 and see if you get the correct binary
code (0111). If so, why; if not, why not?

2. A Kohonen network has input- at 450 and 170° on the Unit circle as Shown
in 1igures 9.6 and 9.7. Randomied weights are located at 270 and 90.
Use a learning constant of 0.5. Calcu l i: the new positions of the weight
vectors after one upgrade cycle.

3. Discuss the relative benefits and modes of operation for probabilistic
neural network, radial basis function network, and the generalized regres-
sion neural network. (Tive examples where each can be used advanta-
ge no:; ly.

4. The Kohonen network part of the counter propagation neural network
u.;es ITchbian leurning. Derive the equation for the training al rithm for
this network if hackpropagation is used.
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10.1 INTRODUCTION

'Ihe abilit y of an arti rfcial neural network to model a system or phenomenon
allows it to be used in a variet y of ways. Even clementaj -y linear neural
s ystems with a single neuron such as the Adaline (adaptive linear neuron)
network introduced by Vidrow have proven to he extremel y useful. Indeed,
much of what is called "adaptive linear systems thcoi'y" is directl y applicable
to artificial neural networks. The abilit y of neurdi nct\ orks to develop
nonlinear nioclels of a system offers an additional advantage that can Lie
useful in many cases. in this chapter, we will explore the use of both simple
and complex artificial neural networks to accomplish a variety of dyninuc
tasks, including control of complex systems.

10.2 LINEAR SYSTEMS THEORY

Linear systems theory is a well-developed field that is extremely important to
the processing of data and the application of technolog ies such as neural
networks to practical problems. When combined with random noise theory,
the resultant technolo gy becomes a powerful tool for investigating complex
systems. It i5 assumed that the reader is generall y familiar with the concepts
of both linear systems theory and random noise theory. For those who want a
review, there are a number of textbooks, ineiudin one written b y one of the
authors (Uhrig, 1970), that can provide the necessary background. Only the
concepts needed for a general understanding of the applications will he
presented here.
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Physical

X(o)	
Sya tetn

g. (t)	 It(t)

G( w )	 H (to)

Y (1) Input x(l) and Outjnlly(t)

Y(w) Fourier Transform of x(i) rind y(t)

(t) AutocorrL'lation Junction ofx(1,) and r('x)

Poster ectra1 Density of x() ai;dv()

It (i) Impulse Re.vponsc Function
K (w) System l?e.sponse Funcuiomi

FIgure 10.1 Simple physical system will) input ond oulput.

Autocorrelation and Power Spectra! Density Relationships

Let us consider ,I system with an input x(t), an output v(1), an
impulse response function h(t). and a system response function 11(w), as
shown in Figure 10.1. 11(u) ) is a complex quantity with both amphtudc and
phase (or real and imaginaty compcnicnts). t The system response function is
the lamirier tra nsformation of the impulse response function; that is,

11(w)	 fIm(r)e''di	 (10.2-1)

where r is the variable of integration. The output y(t) of the physical system
in the time domain is the convolution of the input X(1) and the impulse
l'csporIse function h(t);

	

y(t) S f/i(k)x(t -- A) dA	 (10.2-2)

where A is the di;iu	 vniiahle. of integration. The corresponding relation-
ship ill the P CIjilelicy domain is

Y( em)	 II( w)X( to)	 (10.2-3)

The term 5fc,p t response fwmcrjrum as used here is the classical meaning of the term; it is the
lotirier t t,iflsfOrflhilt ic In of the inipulse response function of the ph ysical systerim. It is sometimes
erroneously c.itcd tran.cfcrfijnctjon which is the Laplace transformation of the impulse responsefunction The uçc f 1 1 1 Cciin "transfer function in neural ne Ls5 orks to mean the activationfunction Or S nnp1	 element on the output of a neuron is an unlortunaic situation
that soilletimneS OCClims whcn two fields are merged,
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w' te rc'	 and X(w) aic Fourier transformations of the output y(i) and
inptit .r(t), respectively; that is,

X( (v)	 f x(r)c 1 dr	 (10.2-4)

0	 = fy(r)o 1 r!c	 (10.2-3)

For a time Stationary process(i . e., a process whose rhiractaiitics rcra;ici
constant with time), the autocorretation function V_(T) of the fl:tu:ithi
variable input x(t) is defined by

hm	 + 7) (it	 [x(t)x(t ^ 7)] (10,2-4)

and the corresponding power spccral density (](i;) is %ivcn by the FOuii:.
tran,sfo'matian of	 to he

(10.2-7)

Relationships identical to e4uatiofls (10.2-6) and (10.2-7) also apply to the
output variable (I).

The relationship between the autocorrelation functions and the power
spectral cici:sitjes of the input and output variables and the physical svs:cni
characteistics has been shown to be (Uhrig. 1970)

g1(r) 
= f fli( A)/( )g(	 +A) d dA	 (10.2-8)

	

= 1l(w)H(w)G(w) = ! H ( w ) G ( w )	 (10.2-9)

whete J[*( (,J) is the conjugate value of 1-1K ci) (i.e., the sign of the imaginary
part of 11(w) is reversed). Note that G 5 ( o,) and G r ( w) are real quantities,
and hence only the amplitude or macloins of the system response function
ll( w) is involved in this relationship. The phase angle of the system
response function is not involved.

For the special case svhere the input x(t) is a white noise—that i. the
posver spectral density G( cv) is a constant K over all frequencies, and the
autocorrelation function is a Dirac delta function, 27rK6(0—equatioI1s
(10.2-8) and (102-9) become

	

= 2,K[JJt(A)h()(—	 ± A)dc1A (10.2-10)

G( cv) = KJ i1( ;) 12(10.2-11)
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\\r1ilc equation (10.2-11) is simple. and easil y implemented, equation (10.2-1)
is complvx. 1-Inwever, if we haven sim!e first-order le.e.' s ystem with an
exponential 11jIlAlIsc response i'uric6in ol lie. folill

h,(r)	 .1e.	 "	 (10.1-12)

a Situation that often occurs ni practicul shuntions, then equation (10.2-10)
can he reduced to

g, > (r)	 [ /1 2 K/ 1 x]e	 K'e	 (10.2-13)

where K' is a constant of proportionality and i is a decay constant Similar
simplifications are possible for other impulse response functions that are
more complex than equation (11.2-12).

The autocorrclation relationship of equation (10.2-8) has been developed
into a more useful form (Lee, 1960) by introducing the concept of the
autocorrelation function of the impulse response function g 51.(r) which is
defined as in em l 1ation (10.2-6) to be

g 5 (F )	 i 1 / T I 1iin f'It(t)Ii	 e.) (/(	 J[/I(1)f!(!	 r)j	 (10.2-14)

iu]oatinn (10.2-8) then becomes

g(r) -= J	 1t)c'r - 1) i it	 (10,2-15)

Cross-Correlation and Cross-Spectral Density Relationships

In a manner similar to equation (10.2-6), the cross-correlation function g,(r)
betwccn two vaiinblcs x() and y(t) is defined by

S) (T) =,e.	
L1 1:')>'( ±r) (it	 + 7)] (10.2-16)

and the corresponding cross-spectral density G 5 (w) is given by the Fourier
transformation of

al 	(10.2-17)G( o) fgCr)e

Note that the cross-spectral density (].,,( w) is a conlp]cx quantity with
amplitude and phase, whereas the power , spectral density ( ;" ( Cu) is a leal
quantity with magnitude only.
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The time- and frequency-domain input output relationships for the
cross-correlation functions and cross-specti al lensities, when applied to the
physical system of Figure 10.1, are

gjT)	 f/:(A).(t_. .\) JA	 (10.2-1.)

	

(,.( w) = Jf..( w)(r.( cc)	 (10.2-10)

	

For the p:ciaI case where the input Va: 1al	 x(c) is svitiie noise, Oc:-
relationships become

	

g,( T) '-' 2a-KIi(i-)	 (10.2-20)

;( w)	 l\lI ( cc)	 (1 ().-:. 1)

where K	 it constant C'.! ' proportionality equal to iii:pe.ser spcct:al ci:n Y
of the 'white flO!Se.'

Influonco of Noise on Meosurornonts

The relationships of equations (10.2-5), (10.2-9), (10.2-18), and (10.2-19) are
valid as long as the signals are uncorrupted with noise or other extraneous
signals. When noise is present, these eqLlations can he modified to include
the influence of the noise (which is dependent upon whiee the noise is
introduced), but it is necessary to know the characteristics of the noise to
obtain meaningful measurements. Sometimes, the noise is an approximation
of "white" noise (i.e., the power spectral density is constant over the fre-
quency rane,c of interest), and this fact may allow the input—output relation-
,ships dcrived here, modified for the noise inputs, to he used advantageously.

For instance, let us consider the arrangeine nt shown in Figure 10.2, which
consists of a physical system with an input .v(t) and an instrumentation
system with an input that is the sum of the output of the ph ysical s ystem and
external or detector noise as its input. Application of equation (10.2-9) gives

G.( co)	 Il( (0) 2 [G( w) ± G,( w)J

= 1l( w) I [i 11( cc) LG( (0) + (,,( cc)]	 (10.2-22)

If the instrumentation s ystem has a flat response beyond the range of interest
and the detector noise G,,. is "white" (i.e., the power snectral density of the
noise is constant), then equation (10.2-22) becomes

G.( cc) = K I [I 11(w) I 2 G,( cc) 4. K 2 ]	 (10.2-23)
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Figuro 10.2 Smple physical system having a dcteclion system With a noise input.

where K 1 and K 1 are onstanls. For the special case where the input x(t) is
"white" and G,, G)) is constant, equation (10.2-23) can be rearranged to give

JI(w)1 2 = K 3 (;, :( (0 ) ± K,	 (10.2-24)

Tile presence of K 2 and K 4 in equations (10.2-23) and (10.2-24) is due to the
detection noise. If K 1 and K4 are large compared to A' 1 and K, iespec-
lively, then the presence of the noise may seriously deteriorate the quality of
the measurccneii I and the ability to evaluate the systerit rcspon:c Inaction
and the parameters of the system being studied.

Cross-spectral density measurements oifcr a means of overcoming some of
these problems under Certain circumstances. Consider the ease of the system
in Figure 10.2 with Iwo inputs: .r (t) that goes through both the physical
system and the instrumentation system, and !2(z) that goes only through the.
instrumentation has been analyzed (U11 ig, 1970). The result is

°( co ) = H( (,))G,,( a) 1 	 (o)G,,.( a)	 (10.2-25)

If the noise im(t) is completely uncorreiated with the input x(), which is
almost always the Case, then G,,(a) is zero, and equation (10.2-25) reduces
to

G( (U) = H( (0)G,( a) (10.2-26)

which is identical to equation (10.2-9) for the noiseless case. This demon-
strates the ability of cross-spectral density measurements to eliminate the
influence of noise in ninny practical eases. Equation (10.2-26) can he further
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educed for a sshite noise input to

= K11( (o)	 (lfl.2-27)

'J'hct the amplitude of the transfer f :iletion I fI( w)i is proportional to the
amplituJe of the cross-spectral densv betwc co the input and ft: on put,
and the phase angle of the system response cnctioa O( o) is cca1 to the
phase angle of the cross-spectral density.

Cohoronco Funcion as an Index of the Qucdiiy Of M3clsr:rrn.ni

As indicated aho'.c, the presence of the constants K 2 ani	 in equations
(10.2-2) ar.cl (10.2-2a) can seriously de g rade the rne:isu rcrcicnt. V,'e can
en index of the j ul lucncc of the presence of noise on measure ucnts hy
dcfrning the coherence function y 2() to he tIre ratio of I 1J( )V ni deter-
urine) hy the power spectral density method equation (10.2-9) to hf )U ai
(iCtC[ ifliIiCd b y tliC cross-spectral density method equation 1 0.2-1 cU. Since
equation (10.2-19) gives a result that is independent of the influence of noise
whereas the vanditv of equation (10.2-9) debt iorates as the noise increases,
this ratio is a valid reflection of the adverse urfiucuce of noise. I hence

	

2	 G()L/[G,(w)]	 !:.((1)1
	y 	

=	 G0 (w)/G(	 -	
(l0.-2o)

For the case of no input noise, the coherence function is unity. A the noise
increases, the quality of the measurement using equation ( 10.2-0 detcrio-
rates, and the coherence as given by equation (10.2-21) decreases. It is
intuitive and readily demonstrated that time coherence function is always less
than Or equal to unity; that is,

	

1	 (10.2-29)

Correlation and Spectral Measurements Using Psoudorandom
Binary Variables

In modeling a d ynamic s ystem with an artificial neural network, one signal
from the system is the input and another is the desired output. Generally, the
fluctuations of the input isade quate to ensure training of the , network over
the desired dynamic range. I Lowever, it is sometimes necessary to introduce a
small perturbation of the input to make sure that the input signal contains
the desired frequency content Generall y thk perturbation is either a multi-
ple-frequency signal (sum of sinusoidal signals with frequencies spread cvenl
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oil 	 logarithmic or a linear scale) or a random signal that approximates a
"white" noise over the frequency range of iiitercst

One signal that is particularly useful and easy to implement is the
pseudorandom binary maximum-length shift register sequence" signal

(Uhri g , 1970). It is a binary signal that instantaneously shifts between 0 and I
(or between -- I and ± I), with the shifts occurring at integral numbers of the
Lime inteival A. It is easily produced %vith software or a hardware shift
register. It is a periodic signal that has (a) a narrow triangular spike as an
autocorre]ation function and (b) a power spectral density whose discrete
values have an envelope of the general forin of sin(x)/x. The period of the
signal (N's) can be controlled easily by (a) tIm number of shifts iV in one
period of a shift register generating the signal and (b) the time interval A.
increasing N and decreasing i while keeping the period N constant, the
autocorrelation function of the signal becomes narrower, more nearly approx-
imating a Dirac function, and the frequency range over which the power
spectral density envelope sin(x)/x remains almost constant increases. Under
these conditions, we approach the characteristics of a "white noise," amid
equations (10.2-20) and (10.2-21) apply. Then, the cross-correlation function
between the pseudorandom input signal and the output gives a quantity
proportional to the impulse function, and the cross-spectral density between
the pseudorandom signal arid the output gives a quantity proportional to the
system response function. Since all other noise sources are umicorrelated with
the pscudot andom input, they have no influence oil measurements.
Indeed, two pseimdorandom signals of different lengths (i.e., generated with
shift regislcrs having different time intemvals and number of shifts per cycle)
are independent of each other, 2 "d the cross-correlation functions with
system sicnals arc also independent of each other. Hence pseudorandom
signals can he introduced at different locations in the system in order to
model system response characteristics of individual components of tIc Sys-
! C111. The power of cross-correlation and cross-spectral density measurements
becomes apparent when it is ralizcd that multiple sources of such ''white"
noise (that are, in fact, deterministic periodic variables) are independent of
each other and call 	 injected into a system without unduly influencing the
behavior of the system or the other measurements taking place.

The fact that the pseudorandom signal is periodic usually simplifies the
processing of the data to obtain the cross-correlation and cross-spectral
density. Furthermore, the shift register configuration for generating the
pseudorandom signal can he implenunted in software, and its output can he
introduced directly into time input of an artificial neural network or mixed
with other input signals in any desired manner. There are several variations
of this pseudorandom signal and the associated shift register systems (Llhrig,
1970). A three-level pseudorandom signal that deals separately with the
linear and nonlinear portions of the system response function has also been
demonstrated (G),ftopoulos and Hooker, 1964).
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1 L3 ADAPTIVE SIGNAL PF.1OCSSING

Much of the Ca' ly work in the artificial ncur:tl network field was carried out
by Bernard Widrow and his associates at Stanford University witha the
S aIne\VOrk of , ''aclaptvc linear systems and adaptive signal proecsinc'
(Widrow and Hoff, 19501 Virtually all of the upphcations developed in ils
svor can adviintaitoousl y utilizc an auti itcial neural network v. ith its r:oro
linear capability in the place of the 'adaptive linear combiner." Indeed,
\\iOrow's Adaline is no adapilve linear combiner that u;ilivesa LIIpUr
output eleiriet as in nonlinear output device in order to accomplish its
tasks.2

Adaptive Linear Corobirtor

Tite adaptive linear combinr, a iionreeursive acltt 5e filter, is ftladem:!1...l
to adaptive signal pioxosing, and it is all part of an artiieial neuiu!
ncl'.vc'rk. It is used, ill one form or another, in most ndapt. e filters ant
caitrol svsten' t. It is the most iniprirtant clement in "learuing''systms. It is
essentially it tilne-varying, noiueeursive digital filter ftst is implemented in
mutin y forms, and its behavior and its means of addntr!adon are vcll iitden-
stood and readily analyzed.

Multiple-Input Adaptive Linoar Combinor

The general form of an adaptive linear combiner is slirss i i in T5urc 111 lb.
It th input is a vector X k Will 	 x 1 , x,..................; that is,

x k = [x Ok x 1k	 , x, ]	 (113-1)

where the superscript T indicates the transposed vector (i.e.. it is a
vector).

A weight vector Yr'5 with a constituent set of adjustable. weights
............., and a summing unit produces a single output J. Most

s : ktcms also include a bias with an aniiplititde x equal to Unity and tint
adjustable weight w. 1lie confi guration shown in Figure 103, known as a
''multiple input adaptive linear combiner,'' accepts all of the components of
the vector X k simultaneously and produces a single output. Then the weights
are adjusted, the next input vector is applied, another output is jirodimeest the
weights are adjusted again, and so on. This is the form of the classical
implementation of almost all neural networks used today.

 h 0 v is ircrthiimg interent in the dehn:5rr St nieer:! nt. at, C.A	 Iat the
Oic ir.'UrorIs be nonlinear.	 t s p oi7;lcd out In (h:ptes I (kiLl 8, •thc use of
actiVation funicticnis in (lie hiddein biters Si5fl1eant4 limits the i e1enni and capatrililnes of a
ne U rd ne (work -
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Bias	 ri

x0i	 ;i2

X 2	 x I	 1k

Xyj-	 IV
Wvk

Inputs	 Adjustable
JVci'/iis

Ficurs, 10.3 Multi o puT m fcptive linear combiner.

Singb-lnput Adaptive Transverse Fitter

An alternate form of the adaptive linear combiner (wl,ich is cua!ly ap p lica-
ble to artificial neural networks in general) is shown in Figure 1111, in which
the input is applied scuentia!!v to the input layer through a sci ies of time
dclays, lnovalg dcv;n the input layer untl it reaches the end. The hues
between each pair ol delay units arc tapped, and the signals (in addition to
being sent to the next delay unit) are sent through adjustable weights to a

FIgure 10.4 S.ngte-inpuf adaptive transverse filter.
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summing node. Such a system has historically been called a "tapped delay
line," which is quite descriptive of the process when implemented in analog
hardware. In a digital computer, the process is implemented by manipulating
sequential values of a sampled time series from a file. If a bias is used, it is
applied directly to the summing junction through an adjustable weight.
However, it is not normally required for single-input systems if the mean
value has been removed from the time-varying input signal. The length of the
time delay (designated z from the "z" transform as used in digital control
theory) is normally equal to the sampling interval, or some multiple of it,
used in digitizing the input analog variable. The length of the input signal
presented to the summing junction is the product of the number of delays in
a cycle and the length of the time delay. For instance, a network having 100
input neurons (and 99 time delays) and a sampling rate of 1000 samples per
second (z = 0.001 see) has an input signal that spans (100 x 0.001) or
0.1 sec. These parameters are related to the frequency content of the sI1a1
as well as the characteristic time constant of the system modeled in the
artificial neural network. Such a system is known as a "single-input adaptive
transversal filter." Its input vector is given by

	

= [ x A..vk_l 	 X,;_, IT

Input—Output Relationships

The output for the multiple-input adaptive linear combiner of Figure 10.3 is

N
=

	

	 (10.3-3)
r,

while the output for the single-input adaptive transversal filter of Figure 10.4
is

(10.3-4)

For both types of systems, we have a weight vector

	

= [wkw	
1,,"k ]T	 (10.3-5)

With the definitions of equations (10.3-1), (10.3-2). and (10.3-5), we can
express the outputs of both types of systems with a single relationship:

= XW = kXk	 (10.3-6)
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Desired Response and Error

Although the adaptive line .r combiner can be used in both open- and
closed-loop adaptive systerr , the primary interest here is in closed-loop
operation. Hence, the weig vector adjustment depends primarily on the
output and its deviation fro the desired output. The weight vector W k is
adjusted or optimized so as to minimize the difference between the actual
output 'k and the desired r target) output T,—that is, to minimize the
square error defined by

Fkl = I T,	 IT
	

(10.3-7)

The arrangement for dealing with this error and target output for the
single-input adaptive transversal filter is shown in Figure 10.5. The minimiza-
tion of square error follows the procedure described in Section 8.2 and the
\Vidrow-Hoff Delta learning rule (1985).

Linear Control Theory

Linear control theory is well documented in the literature and is taught in
most undergraduate engineering curricula. The proportional-integral-dif-
ferential (PID) type of control, the moit common linear control system, is
discussed briefl y in Section 6.1 and Example 6.1 in Chapter 6 ("Fuzzy
Control") and in Section 10.5 ("Neural Network Control"). We will presume
that the reader has a basic understanding of the PID control system and such
concepts as stability, feedback, gain, and so on. Adaptive control and model-
reference adaptive control will he explained briefly in the section of this
chapter where it is introduced.

r	 Xk.J	 Xk.'	 X..

Flguro 10.5 Single-input adoptive transversal filter with a target output.
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The use of a single-input adaptive transverse filter (shown in Figure 10.5)
to model a physical system whose characteristics are not known gives the
iripuise response function. Alter the weights have been adjusted to Innimize
tile least squares error between the desired output and the actual output, the
values of the weights sequentially from left to right give the values of the
impulse response function at the corrospoilding time. Of courC, since
the icinber of weights is finite and an impulse response function /i(t) as
dcfind in Section 10.1 extends to infinib, these weights are only an approxi-
mation of /i(t). As a result, the single-input adaptive transfer filter is often
called a ' finite impulse response" (FIR) system.

10.4 ADAPTIVE PROCESSORS AND NEURAL NEIWOPKS

The tet III "adaptive neural networks' refers to a neural network that adapts
its weights to accomplish a mapping of the input to the desired output. Most
neural networks that employ s lip eivised learning belong to this category.
Least suares adaptation algarithmsar a the basic learning systems for both
adaptive signal processing systems and adaptive neural networks. I east
squares minimization was discussed jr, Chapter 8 in conjunction with the
\\idro'.v—1 bIt delta learning rule used in backpropagation training.

Linear Versus Nonlinear Systems
Although certain types of adaptive systems called "linear adaptive systems"
can become linear when their adjustments are held constant after adaptation,
most adaptive systems, by their very nature, have time-varying parameters
and are nonlinear. Their characteristics depend on the input and the struc-
ture of the adaptive process. Adaptive s ystems are adjustable and depend on

finite-time average signal characteristics rather than on instantaneous values
of signals or instantaneous values of the internal system states. 1he adjust-
Merit of adaptive s ystems are made with the goal of optimizing specific
performance measures. Hence, we can take advantage of the neural network's
ability to utilize the nonlinear activation function to deal with nonhincarities
in the modeling process.

Applications of Adaptive Neural Networks

\Vidrow and Stearns (1985) have discussed a wide variety of applications of
the adaptive signal processing systems. We shall discuss many of these
applications in the context of a neural network used to perform the same
task. Although some adaptive systems operate in the open-loop mode, we
shall deal primarily with closed-loop operation, a mode that provides
"performance monitoring." Closed-loop operation, as we normally encounter
it. involves measurement of the input and output signals of a s ystem, utihi
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Inputs

Figure 10.6 Adaptive processor and its components.

zation of a performance index (which can be as simple as a comparison of
two values), and automatic adjustment of one or more input parameters of
the system. These steps can be sequential discrete operations, but more
commonly, all steps take place concurrently (at ]cast in analog systems).
Figure 10.6 shows the basic elements of a closed-loop adaptation system
that in subsequent discussions in this section will be called an "adaptive
processor." The performance calculator can be simple [i.e., the calculation of
error or square error as in equation (10.3-7)] or sophisticated (i.e., the
calculation of an energy or cost function using many quantities). The adapta-
tion algorithm typically is minimization of least squares error, but it can
utilize any optimization process desired. Clearly, a backpropagation neural
network can be considered to be an adaptive processor.

In this chapter, the adaptive processor will be implemented as a neural
network. This could be viewed as somewhat of a restriction because the type
of neural network often determines the type of performance monitoring. For
instance, use of a hackpropagation neural network inherently involves mini-
mization of least squares error and gradient descent optimization. however,
training of neural networks can involve any type of optimization that can be
used anywhere. Closed-loop operation can be used in situations where
characteristic parameters of the physical system being operated arc poorly
known or are changing with time. Closed-loop adaptive operation can also
compensate for some degree of deterioration of components in the physical
system. Hence, performance monitoring can result in a more robust and/or a
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more reliable system. However, the closed-loop adaptation process is not
without difficulties. In some cases, the performance indices to be optimized
have more than one minimum that, under some circumstances, c'n result in
the adaptation reaching a "false optimum.' Feedback can also lead to
instabilities that could degrade the performance or endanger the operation of
the physical systems. Even ''limit cycle" instabilities (where the ffcct of
instabilities is self-limiting due to satur:ition) can cause serious difficulties.
Feedback systems with adaptation based oil monitoring are
subject to the same stability criteria that apply to other feedback control
systems. Nevertheless, performance monitoring with adaptation of the phvsi-
cal system is widely used in complex systems that are difficult to analyze or
model analytically.

Conligumlions of Adaptivo Noniral Notwork Systems

Four basic configurations for d1[p1ive s ystems (Wiilrcnv arid Stearns, 1535)
are as follows:

.Sv\teni identification C:: niocicliig (used in adaptive cant: ci)

2. Inverse modeling (used in equalization and dccoiivlution)

3. Adaptive interfcmencc canceling

-1. Adaptive predict ion

Each of these systems uses a single adaptive processor or neural netwot k in
different configurations to carry out the adapting task 10 oidcr to acc nplii
its desired function listed above. Each of these simple systems is subject to
the limitations and problems of adaptive systems discussed above. Neverthe-
less, each system has been extremely successful and s ca3:ble of performing
its specific task with a minimum of difficulty.

System Identification or Modoling

One of the roost comnion processes for which adaptive neural networks iTL

used is system idciitifieatioii or modeling. This involves placing the neural
network in parallel with the physical system, applying the system input to the
input of the network, using the s ystem output as the desired output for the
neural network, and training the neural network until the error between
the system output and the network output reaches an acceptable level. This
configuration is shown in Figure I0.7a. The single-input adaptive transversal
filter discussed in Section 10.3 is usuall y iniplementeci by introducing a
sampled timnc-var1'ing signal (a time series) into the input of a neural network
where the sampled input values advance laterally along time in p ut layer. (Note
that this is not a form of lateral feedback between neurons in the input layer,
but instead it is simply a means of introducing the appropriate input values to
the network to represent a time series or sampled vat table.) At the same
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(a)

(b)

Figure 10.7 Configurations of adaptive modeling systems: (a) Simple modeTng sys-
tem. (b) Modeling system with delay A and input noise.

time, the corresponding sampled output value advances as the desired output
for the single output neuron at the same rate. For multiple input—output
systems, individual inputs and desired outputs may be assigned to certain
parts of the input and output layers, respectively. Generally, it is necessary to
specially design an artificial neural network for multiple- ,
input, multiple-output modeling. One common arrangement is to use individ-
ual neural networks for each input and then use another neural network to
combine the individual outputs.

After the network is trained, it is expected that the relationship of its input
and output is the same as for the input and output of the physical system
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being modeled. This will he true if the variables have been trained over the
appropriate dynamic range for the particular application. For instance, if a
neural network is expected to respond over a specific dynamic range (e.g.,
from 0.1 to 10 lIz), the input signals to the neural network during the
training should cover this dynamic range. Therefore, a neural network
trained over the above range should not he expected to give proper results
for input signals below 0.1 Hz or above 10 Hz. Furthermore, if a periodic
signal (other than a single-frequency, harmonic) is used in the training, the
length of the cycle should he longer than the settling time of the physical
system (the time required for the impulse response to approach zero) to
ensure 1 00per modci;ig.

Sometimes it is necessary to introduce a time delay A, (which has no
relation to the sampling time interval z - ') into the configuration in order to
model the finite time that is required for a signal to move through a physical
process. Indeed, the length of this delay can he a parameter that is adjusted
to minimize the residual error in the neural network model. It is often
necessary to introduce a noise source into the configuration if such a noise
source is inherent in the processes itself. For instance, noise sometimes arises
from a random process internal to the physical system (e.g., the measurement
Of the intensity of a radiation source involves individual events of absorptions
or collisions, which are unrelated to the source emissions) and should be
included in the model. Even the detection process itself may he an indepen-
dent source of noise that must he included in an y realistic modeling of the
process and its measuring system. Figure 10.7b shows a modeling configura-
tion with both a time delay and a noise source.

Inverse Modeling
In a sense, inverse modeling is the same modeling discussed above with the
input and desired output signals reversed. (From the standpoint of a neural
network, it really does not make any difference where the input and desired
output signals oliginate.) Inverse models are very important in control
systems where they are often put in series with the controller or the process.
Figure 10.8a gives the configuration normally used for inverse modeling .. As
in direct modeling, the time for a signal to propagate through a physical
system should be included in the modeling process in order to reduce the
mean square error to a minimum. Noise sources, if they exist in the actual
system, should also be included in the neural network model. Figure 10,8b
shows the inverse modeling configuration with a time delay A and a noise
source.

An inverse model will have frequency response characteristics that are
opposite to those of the original system: If the amplitude of the frequency
response function at a particular frequency is decreasing in the system, it will
be increasing in the inverse model. As a result, the product of the amplitudes
of a model and its inverse model is equal to unity when the system and
inverse model zire connected in series.
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Figurn 10.8 Configurations of adaptive inverse modeling systems: (c)) lr:verse model-
ing system. (b) Inverse rnodotng system with delay A and input noise.

This feature is often used in practical applications to negate the miegma:ling
influence of an instrumentation system. For instance, if the frequenc y re-
sponse function 11,( w) of the instrumentation system in Figure 10.2 falls off
and significantly influences the measurement (we had previously assumed
that its frequency response was constant over the frequency range of interest),
then we can introduce an inverse model of this instrumentation system in
series with the instrumentation to negate this adverse influence.
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Equalization and Deconvolution
In communications, telephone and radio channels are dispersive; that is,
high-frequency signals travel faster and are attenuated more rapidly than
low-frequency signals. In dispersive channels, an inverse adaptive filter can
be placed at the receiving end to "equalize" the channel—that is, provide a
frequency and phase response in the receiver that is the inverse or reciprocal
of that of the channel itself. In effect, it "deconvolves" the dissipative
influence of the channel characteristic and restores the original signal charac-
teristics. It avoids destructive interference that would virtually destroy the
ability of communications channels to transmit information. High-speed
transmission of digital signals, which is particularly susceptible to this prob-
lem, would not be possible without equalization and deconvolution.

The physical arrangement used for equalization and dcconvolution is the
same as the one used for inverse modeling in Figure 10.8h. The neural
network attempts to recover a delayed version of the signal which may have
been altered by the slowing varying system characteristics and which contains
noise. The delay is to allow for the propagation time through the system and
the neural network. In effect, this system attempts to deconvolve (undo) the
effects of the communications channel. It also has applications in control
systems.

Interference Canceling
Another very useful application of the adaptive processor is interference
canceling. One of the most obvious applications is to cancel out 60-I-li
interference from ordinary a.c. electrical power supplies.. In this case, the
interference frequency is known (60 Hz) and constant, and cancellation is
relatively easy. The challenge is to cancel noise when the nature of the
interference is unknown and changing. The advantage of noise cancellation
as compared to noise filtering is that noise cancellation does not attenuate
the signal and hence gives a much higher signal-to-noise ratio under virtually
all conditions.

One of the most successful applications of this technology has been the
cancellation of background noise from voice communication in small aircraft.
The system used is shown in Figure 10.9, where the desired signal S (e.g.,
voice) is corrupted with background noise N (e.g., aircraft engine noise)
when the microphone picks up both signals. The secret to success is to find a
source of background noise N' that does not contain the desired signal S but
is reasonably correlated with the interference noise N (i.e., a second micro-
phone located away ftom the speaker's mouth). In this case, the adaptive
processor is configured to produce an output Y that closely resembles N
which is then subtracted from the speaker's microphone output so that the
overall oqtput 5' closely resembles the original input signal S.

Another application of interference cancellation is the separation of the
weak heartbeat of a fetus from the strong heartbeat of the mother. A
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microplionic sensor is attached near the fetus and picks up the heartbeat of
both the mether and the fetus, thus providing the S 4- N signal Another

nuicrophonic sensor is attached to L1IC inather far from the fetus, where only
her heartbeat is picked up, thus providing the N' signal. Ti he system of

Figure 10.9 then adapts to produce the fetal heartbeat signal 5'.

Prediction

Another configuration of the adaptive processor is to predict the future of a
signal froin its behavior in the past. Figure 10.10 shows the system configura-
tion used. The input signal S() is delayed by an amount A before it is
presented to time neural network. Then the neural network is adjusted so that

Predicted Output

(it time (t A)

Figure 10.10 Configuration of prediction system.
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the error between the delayed input and the undelayed signal is minimized.
In effect, the neural network has been trained to produce an output signal
S(z) from an earlier input signal S(t - ). What is needed for prediction is a
neural network that uses an input 5(0 and produces a future value SO ± ).

This can be accomplished by using a "slave" neural network which has the
same structure as the original neural network and whose weights are updated
in real time to be identical to the weights in the original neural network.
Such an arrangement is shown in Figure 10.10, where the "slave" neural
network has an input signal 5(z) and an output S(t + ).

10.5 NEURAL NETWORK CONTROL

The field of control them)' and systems is treated ezhaustively in liter,
thousands of hooks and publications. The purpose of this treatment is
introduce only those concepts that are important and useful in dealing with
neural network control systems. Control, by definition, is	 t	 n to

achieve a desired result or goal. For instance, the ternj
modern homes is controlled by a simple, but effective, on-c
vated by a thermostat that turns the furnace on when the temperature rails
below a specified temperature and turns it off when room rcachs slightly
higher (typically 2-3° higher) temperature. The room tern 	 tie is com-

pared with the desired temperature (the setpoint), and the crence consti-
tutes an error signal that activates a simple control system to turn the furnace
on and off.

Werbos (1992) has divided neural control into five categories: (1) super-
'ised control, (2) inverse control, (3) adaptive control, (4) haekpropagation
through time, and (5) adaptive critic methods. Each of these methods will he
discussed briefly here, and some of them will be covered in more depth in
later sections.

There are many neural-network-based approaches to cor'.trol problems,
but most of them consist in using neural networks for two basic processes
that are duplicated and combined as appropriate, along with time lags, to
achieve the specific objective of the control system. These two basic processes
are system or process modeling (system identification) and some means of
control (often based on an inverse model of the system or process). A simple
open-loop control system with a single input and output is shown in Figure
10.11a. Neural control systems are sometimes used to complement PID
control systems by adaptively tuning the parameters of the controller to
match the changing system characteristics. "Black box" identification and
model-based controller optimization are commonly. used in current neural
control systems. For simplicity, single input-output systems are discussed
here. However, multiple input-output systems are treated in the same
manner; indeed, most neural control systems are multivariable systems.
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x(ir)Actual System or I	 y( i)	 I Control S'yston 
Process? odel	 (Inverse .kfode/) H	 x(t)

(b)

Flgu: 10.1 1 Simple open-loop(a) and closed-loop (b) control systems. x(f) and y(t)
are ssem input and output, respectively, and 8x(t) is the change in x(t).

For systems that are linear or can be linearized over the required range of
operation, conventional linear control theory is adequate for most applica -
tions. However, most complex systems are nonlinear and require either a very
sophisticated mathematical treatment or a simulation. Since the needed
parameters for mathematical modeling and simulation models of most com-
plex nonlinear systems are usually not available, an experimental determina -
tion of the system characteristics often becomes necessary.

More challenging is the mathematical derivation of an inverse model from
a system response function (i.e., taking the inverse Fourier transformation if
indeed it actually exists). Even for relatively simple linear systems, such an
inverse operation can be quite difficult and sometimes impossible. For
nonlinear systems, it is almost always impossible, thereby requiring approxi-
mations and simplifications or, more commonly, modeling of the system or
process and its inverse configuration based on experimental data. This is
where neural networks become very useful. Data from tests carried out on
the system can be used to train a neural network to emulate the system
behavior, thereby providing a neural network model, of the system or
process. Because of the unique characteristics of neural networks, it is usually
possible to reverse the input and output data provided to another neural
network and train an inverse model of the system or process. When con-
nected as shown in Figure J011a, these two neural networks become an
open-loop control system.
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Regulatory Control

Regulatory or closed-loop control is the most common control method; this is
the essence of the room temperature control discussed en clier, where the
control action IS based oil an ci ro I signal Jeprcscut ig the ihilerence bctv;ccn
the desired tenipe rature and the actual room temperature. (See Figure
10.12.) Indeed, error feedback is the essence of the training process ill most
supervised neural networks. For closed-loop control systems, the configiira-
tion of Figure 10.11 a is oftc n reversed so that the feedback signal is the input
to the actual Svstcifl or p[0C0S model, which is oftcn compared to a desired
input x(t). In this case, .v( is the input for the comparator arid x(t) to he
the input to the actual system or process model as Shiowli in Figure 10. 11 1).

More coinnioii is the P11) controller, a second-order control system where
the feedback is a weighted sum of three quantities: The deviation 01 the
output varjnh!e fiern its desired value (i.e., the error), tilecrirrerit (iclivulive
of the error, and the integral of tile error over some time pci iod are fed back
in an effort to control the Output Lii the lace of fluctuating paraiictcrs
and/or cndition. Ibis an angenlent is sh:ovn ill 10. t 3, Tn recent
scars, multiple input output and multiple process systems have beconse

Set	 Error	 Eoom
Point

- L'iIIi] - LII1 i ± .
(Dc ',rcd	

T
1eo)erifre)

Flcjuro 10.12 Closed -loop con'. ol system for a home heal irij systum

K	 K,	 Kd

Ke-i K,Jcd rKj dc
'ft

FIgure 10.13 The P1  controller shucture. The symbol e Is the irutcirRonoous orror.
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'reasingly prevaint, but virtually all of them arc second-order linear
rns.

.00trc" s also use control chscd loop operation through ac'justmcnt of
paramete. p., the "tuninp'' Ci the gains of the three feedback crnponents
of a 1111) :rul system). Autotuniog (on-line adjusting the parameters of
loop contiuders, or adjusting theit' "sctpoints" for optimal performance) is
a form of adaptive contrd 1. The use of a fecdforward controller to provide
a steady-slate process input signal provides f ster response and enables a
feedback controller to reject noise rod improves distuibaice har dung. I lere
again, these control svsten-is fall within the linear systems domain.

The assumption of linearity is common, but it does not represent many
real-world systems and processes. Most nonlinear systems are linearized over
a limited range of operation. In many cases, time assumption of linearity is
rcasoi'ahle and produces rnnd results, especially when a small ranpe of
adjustment is involved. Indeed, neural control is often used to complement
linear control systems. Nevertheless, neural networks with their inherent
ability to model nonlinear behavior show advantages that are important in
m ny cases, particularly with complex systems.

th the s y stem idd ntifioation and control portions of neural control can
viewed as nonlinear optimization processes; they seek to find neural

network parameters (i.e., the wcim,rht matrix) for which some Cost function is
JTlifli!YliZCd. lhe type of cost function differentiates the different types of
ricu ral control concepts discussed below.

:rmmi)le 10.1 Multi I/O System. An example of a nntltiple-input/
iult iple output, open-loop inverse control system is a neural network to

ntrol tic gas—tungsten arc welding process developed b y Mid-South Engi-
1. ring it(] Vanderbilt University for the National Aeronautics and Space
A minis tation (Andersen ci at., 1991). This approach is necessary because

com j	it)' of the physics of the arc, the molten pool, and the surround-
ii	 eted zone were virtually impossible to model using first princi-
ples. '11, Ick of reliable, general, and yet computationally fast physical
models of such a multivariable system makes the design of a real-time
conventional controller a difficult task. Relationships between the Va FiOLIS

process inputs and outputs are nonlinear and not well-defined, and the
process variables are coupled (i.e., a change in any given input parameter
affects more than one output parameter). The are welding process is con-
trofled by a number of parameters, and the objectives of the welding process
are specified in terms of the parameters shown in Figure 10.14.

An inverse open-loop system is used here because of the difficulty of
providing feedba'h for closed-loop control purposes since the outputs of the
welding process zre very difficult to measure in real time The weld must cool
before physical measurements can be made. However, such output parame-
ters as welding bead width and bead penetration call measured off-line for
purposes of modeling a neural network model from which they call
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aici ccii oil-inc. I he inpil1 larainctelS that arc CiitltrO!c L1 (e.g., Current,
voltage. travel speed. etc.) cats he nicasrised on-line. Fable 10.1 gives data
cbtaincd from lest webs conducted over the expected dyttatnic ratme of

ccnct:tiicit for NASA(j\tttcrscii et a., 199)). The hnldf rice data wore 	 ci-
testing the validity of the neural tictwork givetl in Figure 10.15 after the test
of the data was used for training with the back-propagation algorithm. Wicit

fobto 10.1 Drctci used to train and lost backpopcgulon rtotwork for wold modollng
and equipment parameter selection

Indirect Weld Par:tnictei'i I)ruct Weld Paranictcts

Current
Voltage
Travel speed
Electrode

Feed rate
Extension

Travel angle
Focused spot size
Depth of focus
Pulse duration
Pulse -'-petition rate
J3eani pervrr

Gcocnctiical:
Bead width
Penetration

\t Cell siCsl:
DircZilily

Microstructure:
Giant size
Phase

Discontinuities.
Pci on ty
Jriconip!ctc III sioc
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Figure 10.15 Thu neural network used for weld modeling.

the test data (1101 used in trainine) were. introduced into the neural network,
the 1rc licted bead Nvidth and depth of penetration agreed with the actual
neasur ments to within about ± 5%. This trained neural network now
snstitues a (direct) model of the welding process.
The data in Table 10.1 were also used to train an inverse model of the
'ldirig rocess to provide a control neural network for parameter selection

foi the Jer. This inversi model has the desired weld parameters as inputs
and the control parameters for the welder as outputs. It can provide the
welder controls with the information needed to produce a proper weld with
the desired dimensions.

To simulate the performances of such a welding process, the direct and
inverse neural network models were coupled together as shown in Figure
10.16 to form a cascade model of the control system (parameter selector)
with the welding process. This arrangement is substantially the same as the
open-loop control configuration shown in Figure 10.11a. A comparison of the
outputs of the two neural network models with the data in Table 10.1 showed
the errors of the inverse model output (first neural network) and the process
model output (second neural network) to he about 10% and 2%, respectively.
The reason for the low error in the process model output is that the errors in
neural networks (which effectively are the inverse of each other) when
trained on the Same data tend to cancel each other out. [1
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Neural Accrptivo Control

linear adaptive control has been a standard topic in control lhcni'' for at
least three decades, and there appears to be little advantage of using neural
networks in this domain except as a basis for departure into nonlinaer neural
adaptive control. N arcndra et A. utilized new a] networks ti) carry out linear
adaptive control as a basis for later work lit nonlinear control (Narendi a and
L'arthirsa]-at]Iv, 1990). The goal of adaptive control is to maintain optimal
Performance as nicauircd by some index of terformanca (c 	 efficiency,
Inillil l" I 'll ennssromrs, etc.) under changing plant anieters or ope rating
conditions. Often, the index of perfom nuance and optimization algorithms are
included in a reference model. The difference (error) hctwcen the actual
output of the system and the desired output as provided by the optimal
reference model serves as the basis for adjusting parameters to improve
performance. Because of the important Vol(-, adaptive control plas in real-
world situations, it is discussed extensively in tire next. section.

Supervised Control

Supervised control involves using a neural network to mimic the behavior of
a Conventional (i.e., PID) controller or even the behavior of a human being
controlling a process or system, The . neural network receives the same input
and (desired) output as the P11) or human controller, and training (typically
baekprupagatiomu) proceeds in the conventional manner. When ti'ai 111M4 is
completed over the appropriate range of variables, the trained neural net-
work replaces the 1 1 1f) or hminiami controller. The major concern here is that
the Performance of the neural network control system can he no better than
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the PID or human controller. Even so, PW and human control have often
proven to be remarkably effective. It is a well-known fact that a human
being's ability to recognize almost imperceptible trends and behavior has
resulted in adequate performance for many systems and that the P11)
controller has been the "workhorse" of the control industiy for over half a
century. More importantly, supeiviec1 control provides a starting point from
which more sophisticated control systems can be used to impiovc pcifcir-
mance of a system.

Inverse Control

Inverse modeling as discussed in the previous section can readily be adapted
to neural control, Inverse modeling involves training a neural network
arranged in accord ncc with the configuration shown in Figure lUSh over
the appropriate range of variables. Such s y stems are typically used in an
open-loop mode as shown in ITigume 10.11 r. The operator simply provides an
input equal to the output that is desired.

The major concern is that the inverse configuration actually cxi Es and is
physically realizable. For instance, if several different inputs produce the
same output, then the inverse function does not exist. Another example is a
system model where the gain goes to zero under some conditions. Th'n the
inverse model would need infinite gain.

Backpropagation Through Time

In hackpropagation through time (BYI'), the user specifies it model of thc
external environment as well as an index of performance (utility function) to
be maximized. Backpropagation is used to predict the derivative of this index
of performance, summed over all future times with respect to current actions.
These derivatives are then used to adapt the artificial neural network that
provides the output actions. This approach is used because the designer can
select any index of performance to he optimized, and the method accounts
precisely for the impact of present actions on future values of the index of
performance. BYJ' is basically equivalent to the calculus of variations as used
in control theory. The only essential difference is that BY!' includes a way of
calculating the derivatives of the utility function. Its disadvantages are that it
requires a model of the external environment which should be noise-free and
exact and that it requires calculations backwards through time, which is not
consistent with real-time learning. however, real-time learning has been
implemented by dividing experience into distinct "experiments" and updating
weights after each experiment is analyzed (Werhos, 1992),

Adaptive Critics Method of Neural Conhol

The adaptive critics method of neural control is a form of reinforcement
control in which an index of performance to be optimized is supplied by the
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usc i . . I he long-term optimization problem is solved by using an additional
artiocial neural network (called the critic network) that evaluates the l)logrss
that the system is making and provides input to the reinforccm:nt leu fling
controller. 11i is arrangement, shown in Figwe 10.17, is particularly useful for
5110101005 where the model of the physical system is vague and ill-defined
(e.g., the overall performance of a plant as measured by its tntal emissions to
the atmosphere is such a system).

Example 10.2 Monitoring and Improving I Teat Rate of a Power Plant. In
the past few scars, several systems for monitoring the heat mate (propom tional
to the reciprocal of cfliciencs') of power plants have become available.
Generally, these systems are based on a first-principles model involving mass
flow and energy balance equations applied to the many subsystems of a
power plant. Typically, the model involves assumptions of idealized condi-
tions, linearizations, and usc of experimental correlation coefficients that are
valid over limited ranges. The alternative Proposed here is to take advantage
of a neural network's ability to model noimlinearities and nonideal conditions
inherent in any complex system. The thesis here is that a neural network
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model is more realistic under "real-world" conditions and that any subse-
quent analysis (e.g., optimization) is more effectie than similar analyses
peifurmed on first-principles models. Because of the sensitivity of cost
savings to heat rate, even a small improvement in heat rate call a large
financial impact (e.g., an improvement of only 0.1% in efficiency ill
1000-MWe power plant call 	 in about $500,000 per year additional
revenue at current prices).

(Jun and Uhrig (1992) carried out the modeling of the thermodynamics of
TVA-'s Sequoyah Nuclear Power Plant, Unit 1, using data taken weekly over
about a year. Because of the complexity of the plant, use of ordinary
multilayer perceptron networks trained using hackpropagation was not iicle-
quate as indicated t-y the fact that the training error was large and the
network output was not equal to the desired output used in either the
training or testing sets. Rather, it was necessary to utilize a hybrid netwock
(N-Net 210) developed by Pao (1989) in which a Kohonen neural network is
used to cluster the data and then the backpropagation neural network is
trained to a very small system error using the ccntroids of the clustrred data
as the inputs and the corresponding heat rates as desired Outputs for
training. When the original data (not the centroids) were presented to the
trained network, the average error was about 0.06%.

Sensitivity Analysis. The sensitivity analysis procedure discussed in Section
8.3 was applied to the trained network. This process gave sensitivity coeffi-
cients that were ranked in order based on absolute value, since the sign only
indicates the direction that heat rate moved in response to a positive change
in the input perturbation. The three most important variables for heat rate
based on this sensitivity analysis were (I) unexpected power deviations, (2)
measured condenser backpressure, and (3) condenser circulating water inlet
temperature.

Item 3 is a function of the environment and cannot be controlled. Item 2
can he controlled only to the extent that it clues not go below the saturation
temperature for the condenser circulating water. Item 1 is a calculated value
that cannot be controlled. At this point, it appears that little has been gained
from the modeling and sensitivity analysis since the three most important
inputs to the network model, as far as heat rate is concerned, cannot be
controlled. however, a second modeling sensitivity and analysis can he
performed to determine which inputs are important to any of these three
"most important" variables. This was done for item 1, unexpected power
deviations.

This second modeling was carried out by using the satire hybrid neural
network to cluster the data and predict a new output, item 1 unexpected
power deviations. Again a sensitivity analysis was performed indicating that
the three most important variables, as far as unexpected power deviations is
concerned, are (1) total unaccounted electrical losses, (2) condenser thermal
losses, and (3) auxiliary steam loads. This tells its that unexpected power
deviations, and hence the plant efficienc y, call 	 improved by reducing
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electrical Losses, condenser thermal losses, and auxdai-e te: I a loads. Each of
these items can he investigated individually.

A further study of the original sensitivity anal ysis cho'e s that the three
variables that have the least influence on cftieicney are (1) feedwater flow,
(2) reactor power (within limits), and (3) impu c pressure at the tuibine
inlet. Since one's intuition would indicate that all three of these items might
be important, this sensitive analysis has directed the plant personnel away
from these items and toward those itCiflS listed in the previous paragraph that
are impoitant.

Iterutite I'roceiltue for Improt'inq i'Innt Performance. Since plant conditions
are always changing, keeping the plant at peak efficiency can be carried out
using the following iterative process; (1) Train a neural network model of the
plant using on-line data, (2) carry out a sensitivity analysis (or other analysis)
to determine which two or three vai iahles are the most important to heat
rate, (3) adjust one or more of these variables in the direction indicated by
the sensitivity analysis, and (4) wait for the plant to reach thermodynamic
c1uilibi iuin. This four-step process could be carried out every few minutes
with the interval being determined 1w the time necessary to reach therioody-
ii arnie ci pilibrium. This procedure ensures that the ida nt is always rno ing
toward peak efficiency for the configuration and caper ating conditions that
exist at the time of the anal ysis. If the plant condition changes (e.g., one train
of feedwater heaters is taken out of service for maintenance) or the operating
conditions chan ge (e.g., the plant load changes or the condenser water
temperature changes due to environmental conditions), it is still possible to
move toward a more efficient (hut different) configuration tia.lcr the existing
cii c U msiances. Li

10.6 SYSTEM IDENTIFICATION

Securing knowledge of the dynamics of -I being controlled is the first
step in control. Sometimes a priori knowledge about the process is available
in the form of a parameterized model where the parameters can he estimated
from process input—output data. First-principles models are typically ncrnlin-
ear, which typically must he linearized; they are usually valid o4y over a
limited range of performance. Often these process models are relatively
simple; for example, several second-order systems with lags are often ade-
quate to represent a chemical process. III for where first-principles
models are not available, the modeling procedure (nonparametric identifica-
tion) discussed below (sometimes called "black box" modeling) is useful.

Nonparametric Identification

Nonparametrie identification develops ''black box" models of the input-out-
put relationship as discussed in Section 10.3. Neural 	 iW111Mrailletric
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process models can be seen as a nonlinear extension of the system identifica-
tion problem (Tsuug, 1991). For instance, the adaptive transverse filter shown
earlier in Figure 10.4, when implemented by a neural network, becomes a
finite impulse iesponse (FIR) network, which is a nonparemetric identification
system. The network is provided with art input vector of weighted past
samples of the variable as a means of modeling dynamic phenomena. The
number of samples must be sufficient to provide an interval of time long
enough that no input signal prior to Xk_f will have any significant effcci ott
the response at time k.

Param&rc ldnjfjcaiion

Parametric identification identifies structural features and parameter values
for models of real-world physical systems. This includes identification of the

Figure 10.18 Dynamic neural net-work with fime-deiayed direct inputs
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model structure (i.e., the form of linear or nonlinear differential or difference
equations as well as parameter estimation where the model structure is
known). Nural networks trained through supervised learning can be used for
both structure identification and parameter estimation. As structure identi-
fiers, they can be trained to select elements of a model structure from a
predetermined set. Structure identification with neural networks requires
that the space of likely model structures he known in advance. Neural
network parameter estimators, however, generate parameter values for a
given structure or set of structures (Piovoso et al., 1991; Foslien et al., 1992).
Neural network structure identifiers and parameter estimators are both
trained off-line with a generalized simulation system. In structure identifica-
tion, for example, the network output is a vector of structural features and
network weights that are optimized to minimize the sum square error
between the actual feature and its computer representation.

Figure 1019 Dynamic neural network with time-delayed recurrent inputs
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M deIs of Dynamic Systems

Since most dynamical systems have temporal behavior, time-dela yed versions
of the input and/or the output signal are needed to propeiJy model the
system. Figure 10.18 shows a neural network with time-delayed versions of
the input signal. When a dynamic system's current output usually depends on
its prcious Outputs, recurrent connection with time-delayed Versions of the
output fed back to the inputs as shown in Figure 10.19 are needed. If the
output of the system is not independent of previous inputs, then a time-
delayed versions of both the input and output as shown in Figure 10.20 are
needed.

In system identification, the neural network is connected in parallel with
the system being modeled. Again, dynamic systems require time-delayed
direct and recurrent inputs of the type shown in Figures 10.18 to 10.20.

Fl
	

0.20 Dynrnic neural network with time-delayed dict and recurrent inputs.
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Figure 10.21 shows the nonrecurrent parallel identification model with time-
delayed direct inputs. Figure 10,22 shows the recurrent parallel identification
model with time-delayed recurrent (feedback) neurons as inputs. Unfortu-
nately, a recurrent network can become unstable due to the feedback loop
between its output and input, and there is no guarantee that the output will
converge to a stable configuration. This can be solved by feeding back the
signal from the system, not the neural network model output, in the recur-
rent series—parallel identification model shownin Figure 10.23. Finall y , when
there is need for both the input and output to be delayed, the general
series parallel identification model shown in Figure 10.24 is used.

Figure 10.21 Nonrecurrenf parallel identificrition model withtrne-d a- yEd d r ect n
PUtS.



Xk Yk-

368	 DYNAMIC SYSTEMS AND NEURAL CONTROL

fl(;;r: 0.22 Recurrent parallel i&niL:ation model with time-delayed recurrent out-
pu t; )m the neural network.

10.7 !MPLEMENTATLQN OF NEURAL CONTROL SYSTEMS

The status of neural control is well-defined in two recent books based on
rrymposia: Neural Networks J;r Control (Miller et al., 1990) and handbook of
I'itelliee,it Comrol—Neural, uzy, and Adaj tit:cApproac/tes (White and Sofgc,
1992). articu1ai ly valuable contributions in the neural control field include
Narendra and Parthasarathy (1990); Narcndra (1992), Werbos (1990),
winiard (1990), Nguyen and Widrow (1990), Tsund (1991), and Dong and
c.Avoy (1994). Sainad (1993) has explored neural network-based approaches
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Figure 10.23 Reourr€.nt sores poraII idontifloation model with time-dOlayed recur-
rent outputs from the physical system.

to solving control problems, and some of his concepts are incorporated into
this chapter.

Inverse Modeling

Inverse modeling develops models that predict corresponding process inputs
from process outputs. Inverse models are typicall y developed with steady-state
data and used for supervisory control as feedforward controllers. The appro-
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Fl,'ura 0.24 CenrcJ seric -pnruel identification model With lime-delayed direct
inputs and time-doloyco rocurrer':f outputs from the physical system,

prtatc stoady-state contrci sgnal for some setpoiiit can he determii-ed imme-
diately without the dela: m;sociatcd with the incrcnicntal crrnr-:orrccting
Opel on nf Fcohack ccl: rot. Neural network inveoc models cm ptui c a
chatacte source of nonlincarity in litany, indusi, ial processes ((g., the
variation C process gain with the operating point). Training is readily
aCcOrnp]'icd since the existing controller output is available.

There aru t.vo problems associated with inverse modeling. Many processes
h.oe trarnsp:)rt delays that imply that any change in the input to a process will
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only affect the process response after a dead time." With the introduction of
a transport delay into the inverse modeling process and some experimenta-
tion with the length of delay, this problem can be overcome in some cases.
The second problem is that mapping from steady-state process oulput to
steady-state process input may be one-to-many. Experience indicates that
least-mean-squarcs averaging behavior of many inverse network function
approximation models will in such cases lead to control actions that will likely
not be effective.

Controller Autotuning
Controller autotuning estimates appropriate values for controller parameters
such as I'll) gains as shown in Figure 10.13. Although there are many
traditional methods used to determine these gain constants, neural networks
offer a convenient way of dealing with the nonlincarities involved. A non-
parametric neural network process model, once trained, can simulate the
closed-loop process and serve as the process simulation. An optimization
al oorithin can then be used to adjust PID gains, in simulation, until some
prespecified cost function or evaluation criterion is minimized. The disadvan-
tage of this approach is the computational complexity, since an iterative
algorithm is required and each iteration involves a closed-loop simulation
using the neural network process model. However, since the al gorithm is not
being used for closed-loop control, real-time response is not required.

An alternative is to use a neural network as an autotuner in which the
output of the neural network is the ND gains. In training the neural
network, the three output gains are compared to precomputed optimal I'ID
gains for a set of training examples. An advantage of this approach is that the
network can be trained in simulation (i.e., training on actual process data is
not necessary) (Swiniarski, 1990; Ruano et al., 1992).

Adaptive Control Systems
The control of a physical system is usuall y accomplished by a controller that
takes information froni the outside world and, in the case of a closed-loop
system (a system with feedback), from the physical system itself. An industrial
drying oven is an example of a system with a closed-loop control system
where the difference between the oven temperature and the setpoint is the
error signal that provides a basis for changing the power to the oven. If
everything remains constant such a closed-loop system can produce a very
uniform product. On the other hand, if the electrical voltage varies from 210
to 250 volts and/or the thermal capacity of the products moving through the
oven changes, the end product may not he very uniform. In other situations,
some sort of unforeseen (usually nonlinear) temperature dependence may
exist or develop with the aging of equipment. Adjustment is needed to take
into account the unforeseen variations in the ph ysical system being controlled
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that take place, based oil 	 of the product produced. A system capable
of adapting to unforeseen changes is air system. The adaptive
processor shown in Figure 10.6 is itself a form of adaptive system. It has a
performance calculator capable of providing a quality index based on the
input, output, and any other variables available. It has an algorithm by which
adjustments can he made, and it has a means of making those adjustments.
As utilized in the applications described above, it operates as an autonomous
unit to make the desired adjustments. Its functions call be integrated
into a more sophisticated control system to carry out adaptive control of a
complex physical system.

The most logical approach to using adaptive control is to place an adaptive
controller ahead of the physical system and utilize feedback and other inputs
to evaluate the performance. One problem with this "direct adaptive" ap-
proach is that the system needs operating data to establish a basis for
adaption. Suddenly introducing such a control system without adequate
historical data to reach a near normal set of conditions could be disruptive.
One approach is to use a conventional PID controller and connect the
adaptive system in parallel until it learns to match the behavior of the PID
system. A similar approach is to manually control the physical system with
feedback through human observation while the adaptive controller accumu-
lates the historical information needed to perform its tasks of performance
evaluation.

Adaptive Model Control

In adaptive model control, an external model of the physical system that is
not part of the control system is obtained using system identification as
discussed in Section 10.5. Then the model is used to determine control inputs
to the plant, which will produce the desired system outputs. (Manual control
can also be used as a model in this approach.) When we apply these same
control inputs to the actual physical system, the system output closely
matches the desired output. \Vhile this appears to be open-loop control, the
loop is actually closed through the adaptive process.

Adaptive Inverse Model Control

In adaptive inverse control, the unknown physical system cancan be made to
track all command signal when it is applied to a controller wbse
system response function approximates the inverse of its system response
function. (All the following arrangements can be implemented using atificial
neural networks as the adaptive inverse models.) This adaptive inverse model
becom  s the controller whose output is the input to the physical system. Its
weight adjustment is slaved to a second adaptive inverse model of the type
shown in Figure 10.8b, that is used to minimize the error between the plant
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Modeling Delay

Controller

Reference Adaptive

Inverse
eA'Iodei InversPhysical

System [jodel(S/are)

None

(opy heights

Figaro 10.25 Adotve i nversc. model control system.

output and the input setpoint. This arrangement is shown in Figure 1025. An
input perturbation or noise is deliberately introduced to ensure that the
adaptive process occurs continuously. The introduction of the pseudorandom
binary-type noise discussed in Section 10.4 can accomplish this task while at
the same time offering the opportunity for cross-correlation and cross-spec-
tral density measurements that could be useful either in the control process,
in the identification of process parameters, or the reference model discussed
in the next section.

Model Reference Adaptive Control

The configuration of Figure 10.25 can be modified to implement model
reference adaptive control. In this concept, a physical system is adapted in
such a way that its overall input—output response characteristics best match a
reference model response. In this case, the reference model replaces the
modeling delay. As a result, the unknown physical system and the adaptive
inverse model will be matched to the reference model rather than that of a
simple delay.

In some applications, the reference model is a performance model; that is,
the performance (efficiency, emissions, etc.) of the system is matched with
that of the model rather than matching input—output behavior. Tile resultant
system is usually more complicated than matching input—output response as
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desc ribed above, and it is usually implemented as a form of reinforcement
learning as described in the next section.

Oi flforcement Learning

Rei nforcement learning addresses the problem of improving performance as
evaluated by any index of performance the user chooses. The basis for this
approach is that desired control signals exist that lead to optimization, but
the learning system is not told what they are because there is no system
knowledgeable enough to identify them. In reinforcement, the object is to
detc mime desired changes in the controller output that will increase the
index of performance, which is not necessarily defined in terms of the desired
Outputs of the system.

Re inforcement learning involves two issues: (1) how to construct a critic
network capable of evaluating physical system performance consistent with
the chosen index of performance and (2) how to alter the controller outputs
to improve performance as measured by the critic network. These issues ire
discussed extensively by l3arto (1990). Clearly, there is not one unique
approach to these issues. Some approaches attempt to introduce knowledge
known about the system to bias the learning process in a favorable direction.
Others rely oil considerations. For instance, a class of reinforce-
me 1t -lcarring algorithms known as stochastic learning automata prohabilisti-
call)' select actions froni a finite set of possible actions and update action
probabilities on the basis of evaluative feedback. It is also possible to
combine stochastic learning automata with parameter estimation by mapping
Pattern inputs to action probabilities. As These parameters are adjusted
under the influence of evaluative feedback, action probabilities are adjusted
to i ncrease the expected evaluation of the index of performance. Research is
Continu ing in these areas.

Rei nforcement learning is a very general approach to learning that can he
au. lic&l when the knowledge required to apply supervised learning is not
a'.,.lahle. If sufficient information is available, reinforcement learning can
readily handle a specific problem. However, it is usually better to use other
metho d s discussed earlier in this Section, because the y are more direct and
thcr lindeilying analytical basis is usually well understood.

10.8 A PPLICATIC. N!S OF NEURAL NETWORKS IN NOISE ANALYSIS

The integrated use of neural network and noise analysis technologies offers
advantages not available by the use of either technology alone. The applica-
tion of neural network technology to noise analysis offers an opportunity to
expand the scope of problems where noise analysis can be used productively.
The two-sensor technique, in which the related responses of two sensots on 'a
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system whose characteristics are unknown responding to an unknown driving
source, is used to illustrate such integration.

In the last three decades, vibration analysis has become a separately
identified field of noise analysis that is used as a means of detecting faults in
dynamic systems, estimating parameters for models of complex s ystems, and
detecting and identiing loose parts in fluid flow systems. Commercial
instruments that quantitatively evaluate the power spectra of signals from
accelerometcs mounted on rotating nachinery and interpret the results
automatically (based on a model of the system being tested) are readily
available. In other cases, spectra must be interpreted by experts because of
the complexity of the system and the complex vibration spectra it produces.
In these cases, neural networks with their abilit y to learn characteristics
associated with different types and sources of vibration can enhance our
ability to interpret the measurements.

Two-Sensor Technique

A specific example will serve to illustrate the syiihiotc relatiomhip hct'.uen
vibration analysis and neural networks. The technique described he:o in-
volves training a neural network to model the internal behavior of a co-apo-
nent or system using vibration data taken from two sensors (accelerometers)
located at different positions or mounted in different directions on the
component or system. The power spectral density (PSD) (typically 128 values)
of a sampled time series (typicall y 100,000 samples which produces 390
spectra) from one accelerometer is used as the input to the neural ners ark,
and the PSD of the sampled time series from the other accelerometer t:iken
at the same time is the desired output of the neural network. The network is
trained using the 390 pairs of spectra when the component or s ystem is
known to he operating properly. The trained neural network is then put into
a monitoring mode to predict the output (second) sensor PSI) from the input
(first) sensor PSD, and a comparison is made between the predicted and
actual output signal PSDs using the method described in Figure 10.26. The
mean square difference A, was used as an index of whether operation was
normal or deteriorated. Significant deviations indicate that the interrelation-
ship between the input and output signals has been modified due to a change
(failure) in the component or system. The usefulness of this methodology has
been demonstrated in the monitoring of the operability of cheek valves
(Ikormoniopoulos et al.. 1992; Uhrig, 1993) and a pump-motor bearing
(Loskiewicz-Buczak et al., 1992). These applications are described in Exam-
ples 10.3 and 10.4 later in this chapter.

Noise Analysis Considerations

In almost every situation, both sensors measure output vibrations induced by
a driving function (e.g., imbalance in a rotating system or turbulence of the
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Figure 10.26 Schoinatic representation of the check-valve testing procedure. 	 0 if
The tested valve is in good condition. A, > 0 if the tested valve has some degradation.

0 ifthe tested valve has significant degradation.

Figure 10.27 Block diagram of a one-signal-input--Iwo-output system.

water as it flows through a pipe or valve) (Uhrig, 1995). This arrangement can
bc rcprescntc0 in the frequency domain as shown r1 Figure 10.27, whcrc the
PSI) of the driving turbulence function is represented by ( ((0 ), the PSDs
of the resultant vibration are rcpreentcd by the output PSDs of the ac-
celeronfttcrs G 11() and a1 and a, are coupling coefficients for the
attcnua d vibration transmitted between the two sensors, and H(o) and
1-1 2 (w) are the system response functions relating the driving turbulence to
th	 resultant outputs of the two accelerometers. Application of the
input—output relationships for PSDs (Uhrig, 1970) as given in equation
(10.2-9),

G(o) = l H ( w )I 2G1 (w),	 where i = I or 	 (10.8-1)
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when applied to the system of Figure 10.27, gives the relationship between
G 11(o) and G(w); after mathematically eliminating G,(w), this becomes

[1 ± aijHi(o)L]1112(w)j	 (10.8-2)G,( w) = G LI ( 
w) [i + a,I H( ) vj I H 1 ( w) I

Let us postulate a simple model of this phenomena in which these system
response functions H(w) are assumed to he underdampcd, second-order
systems (i.e., each system response fun._ has a single peak which may he
located at any frequency). The frequency response functions and their square
moduli can he represented by

K
11(w) =	 (10.8-3)

+jw

K2
=	

2 t [i - T j &Y]	 [Aw}

where A repcscm1Is damping constants and r represents time constants
associated with the natural frequencies of the systems. Substitution of equa-
tion (10.8-4) into equation (10.8-2) gives

K[ I  - ( 1 co)
2 ] 

+ [ A I . ] 2 ± a K1

	

G,,( w)	 Gm t ( w)	
2 

-- (r2wY] + [A,w] ±

We can obtain the general shape of the curve by considering very high and
very low frequencies. For very high frequencies, the term in braces in
equation (10.8-5) approaches a constant value of iKr/K]. For very
low frequencies, the term in the braces approach a constant value of
(K[1 + a 1 K]/K[l + t,K,]). For mid-range frequencies, the term in the
braces is greater than for high or low frequencies. In both H 1 ( o) and H,( w),
the amplitudes of their peaks and the frequencies at which the peaks occur
arc dependent upon A i and i-i , respectively. hence the peak value of the term
in braces and its location are dependent on the values of A and r.

For a more complex model in which the system response functions H1 ( w)
and H,(w) have several peaks, many second-order systems having in and n
peaks designated by subscripts i and k, respectively, can be superimposed.
Equation (10.8-5) now becomes

	

[ 
n	 ri	 K4[1 - ( Tlw)212	 [ A 1 wJ 2 -

	

G_( ) =	 i (w)	 I	 2
k- K[[1 - (T2.w} -f- [A 2 w] ±

(10.8-6)
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Again, the values of terms in the braces, which represent the square modulus
of the overall system response function for the interior behavior of a complex
system, approach constant, but different, values for very low and high
frequencies, and there are many peaks over the intermediate frequencies for
both '(°,) and H2(U)

This model is consistent with the experimentally measured spectra G1(w)
and G1 2 (w), indicating that the multipeaked representation of the overall
System response function of the interior behavior is consistent with the neural
network model used in the two-sensor neural network technique for fault
identification. Furthermore, this model gives insight into the phenomena
modeled by the neural neiwoi k.

Alternately, the accelerometers can be near each other but mounted so
that they measure acceleration in different (usually perpendicular) directions.
Under perfect balance conditions for both forces and moments (a rare
condition), spectra in different directions at one position would he exactly the
same. In almost all real-world conditions, the spectra from sensors located in
perpendicular directions are different. Furthermore, the relative shapes of
the two spectra change as the systems change or deteriorate.

The diagnosis of faults usually involves measurement and analysis of small
tiuctuating signals that represent the dynamic behavior of a system or
component. Usually this fluctuation is the output signal of an accelerometer
measuring vibration or acoustics, but it call the small random-like fluctua-
tions of a steady-state variable (pressure, temperature, etc.). The objectives
of such diagnostic work are to identify the existence of abnorivalities/
deviations and interpreting the results of the monitoring in all way
to identify the fault so that noise specialists and experts are not required for
interpretation. While relatively little attention to date has been given to
automating these procedures, it is clear that such automation is possible and
necessary when this technology is implemented iii actual plants and complex
industrial/scientific systems. Furthermore, the neural networks can he iinple-
meni_d in microchips to give almost instantaneous outputs.

Typically, measured variables from components or systems are analog
vanables that must be sampled and normalized to expected peak values
before they can be utilized. All the normal precautions associated with
digitizing lalog data must be exercised to avoid the adverse effects of
aliasing and nonstationarity. Often, data must he processed to put them into
an acceutable form (e.g., a fast Fourier transformation of the time series to
pro.uce a spectrum). In most eases, comparison of predicted results (based
an the output(s) of neural network models developed from data taken when
the system WaS working properly) or patterns (learned by neural network
modeis from data presented to it along with actual results or pail-rns
involved) is utilized for fault detection.

Example 10.3 Check-Valve Monitoring. Although there aic many poasble
failure niechanisms for check valves, the most common problems associated
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with check-valve failures arc due to flow induced system disturbances or
system piping vibrations. These vibrations and disturbances induce measur-
able accelerations that produce check-valve component wear and sometimes
component failure. Analysis of time records from piezoelectric accelerome-
ters attached to check valves on a large nuclear power plant has been used to
demonstrate this process. The procedure uses an autoassociative-like neural
network, in which the inputs and desired outputs are values of the PSDs of
two related time series representing vibration at two different positions on
the valve. It was trained to produce a neural network model of the interrela-
tionship when the valve is operating properly as described in Section 10.8.
During monitoring, the output PSD of one accelerometer is used to predict
the output PSD of the other accclero:nete r, which is then compared with the
actual PSD. A significant deviation indicates failure of the check valve. The
difference in the two spectra are evaluated numerically using the procedure
indicated in Figure 10.26 to evaluate the mean squale difference A.

Comparison of PSD spectra between identical 30-inch check valves (one
broken and one normal), operating under identical conditions, demonstrated
that this technique can identify the failed valve Subsequent measurements
taken on the broken valve after it was repaired further confirmed the validity
of this technique. lcsts on three 6-inch check valves (one normal and two
that failed for different reasons) operating under identical test conditions has
indicated that different kinds of failures give different values for the mean
square difference A (Ikonomopoulos et oh, 1992). Larger values of A indicate
more serious problems. C

Example 10.4 Large Motor Pump Bearing Failure. The two-sensor tech-
nique was also used to anal yze the progressive failure of a large (90 111))
motor pump hearing in a nuclear power plant (l.oskiewicz-Buczak ct al.,
1992). A series of Measurements of horizontal and vertical components of
acceleration for a laige motor-pump hearing were taken periodically at
intem'als of about 6 weeks throughout the operating lifetime of the bearing
and as it began to fail. The power spectra of the horizontal and vertical
components of acceleration on the bearing during the first four sets of
measurements (when the bearing was known to be operating properly) were
the input and desired output, respectively, of a neural network while it was
being trained. The hearing operated normally for the next three months and
then began to fail. For the next five sets of measurements, while the hearing
progressed toward failure, the predicted value of the vertical component of
acceleration (obtained from the neural network with the horizontal compo-
nent as the input) was compared with the actual value of the. vertical
component. The mean square difference A (described in Section 10.7)
between the predicted and actual vertical spectra grew as the bearing
progressed toward failure.

It can be speculated that it might be possible to predict remaining life in
hearings. The integrated use of neural networks and noise (vibration) analysis
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has been shown to perform satisfactorily in monitoring the operability of
check valves in power plants and in a large motor-pump bearing. There are
many other applications in neural networks to the noise analysis field where
the two technologies can he advantageously used together. D

10.9 TIME-SERIES PREDICTION

Neural networks can he used to predict future values in a time series based
on cl]rrent and historical values. Such predictions are, in a sense, a form of
inference measurements discussed earlier. They are particularly useful to
economists, meteorologists, and planners. Recently, there has been an ex-
traordinary amount of interest in the use of neural networks to predict the
stock market behavior, including the publication of at least two commercial
periodicals specializing in financial investing (Artificial Intelligence in finance,
published by Miller-Freeman Publishing Co. since 1995, and NeuroVeSt,
published by R. B. Caldwell since 1993). This popularity continues in spite of
the fact that the predictions by neural networks cannot be explained. Perhaps
the main reasons for the continuing popularit y in the field are that deural
networks do not require a systern model and that they are relatively insensi-
tive to unusual data patterns.

Although backpropagation neural networks ame usually used for time-series
prediction, it is possible to use any neural network capable of mapping an
input vector into an output vector. Typically, the input of a single time series
into a neural network is made as shown in Figure 10,28. The fluctuating
variable is sampled at an appropriate rate to avoid aliasing, and sequential
samples are introduced into the input layer in a manner similar to that used
in a tran:vemse filter. At every time increment, a new sample value is
introduced into the rightmost input neuron, and a sample value in the
leftmost input neuron is discarded. The main difference compared to the
transverse filter is that the sampe preceding those going to the input is
introduced into the single output neuron as the desired output. In this way,
the network 'viii he trained to predict the value of the time series one time
increment ahead based on the previously sampled values. The network can
be trained to predict more than one time increment ahead, but the accuracy
of the prediction decreases when predictions are further into the future.
Sioc sjeli systems are often used in real time, or to secure data from historic
records, the amount of training data is usually very large. Even so, it is
important to periodically check the training to ensure the.t overtrainiog does
not occur.

Although it is possible to predict multiple outputs, h is best to predict only
one value because the network minimizes the square error with respect to all
neurons in the output layer. Minimizing square error with respect to a single
c'ltput gives a more precise result. If multiple time predictions are needed,

lividual networks should be used for each prediction.
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Outpua' ye,-

-'1

FIgure 1028 Neural outwork for time-series prediction.

(eli,'. large-scale deterministic e1nrponerits, such as trends and ca-
sonal v,Irirtirjns, shouid be eliminated from inputs. The reason is that the
network will attempt to learn the trend and use it in the prediction. This may
he appropriate if the number of input neurons is sufficient for input data to
span a complete cycle 'c.g., an annual cycle). If trends are important, they
can he removed and then added hack in later. ']'his allows the network to
concentrate on the important details necessary for all 	 prediction.

The standard method of removing a trend is to use a least-squares fit of
the data to a straight line, although nonlinear fitting may be apnropriajc in
some cases (e.g., cyclic fluctuations). An alternate method of removing trends
and seasonal variations is to pass the data through a high-pass iter with a
low cutoff frequency, There are alternative techniques in whic' a low-pass
filter is used to leave only the slowly varying trend which then I subtracted
from the original signal, with the difference being the value sent the neural
network input layer,

One of the interesting variations of the above technique for pi diction is
to use differences between successive sample values as inputs to the neural
network. l'his effectively eliminates constant trends and slowly changing
trends by converting them to a constant offset. Even seasonal iends are
usually removed. Using differences in predicting is generally useful in such
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fields as stock price predictions, especially if the difference is scaled relative
to the total price of the stock, which is effectively using the percent price

change.nge.
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PROBLEMS

1. Show how Equations 10.1-10 and 10.1-11 are oltained from Equations
10.1-8 and 10.1-9, respectively, for white noise inputs.

2. For the system in Figure 102, add a white noise q(t) to the input. Derive
the equations for the passer spectral density of the output and the
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cross-spectral density between the input and the output comparable to
Equations 10.1-23 and 10.1-26.

3. In Figure 10,11b the control system is located after the actual system and
controls by feedback whereas the reverse arrangement is given in Figure
10.12. Discuss the merits of the two arrangements.

4. The difference between the systems in Figures 10.22 and 10.23 i's the
source of the signal for the recurrent feedback (i.e., from the neural
network output in Figure 10.22 and from the system output in Figure
10.23). If the neural network were perfectly trained, these two signals
would be identical. Discuss the difference that the source of this signal
makes and explain why there is a difference.

5. In time-series prediction, the quality of the predicted signal deteriorates
as the time increment into the future increases. Discuss how the quality
(by whatever criterion you choose) decreases with future time. How do
you determine a practical limit? (Wote: This problem is also discussed in
the context of fuzzy control in Section 15.4.)



11

PRACTICAL ASPECTS OF
USING NEURAL NETWORKS

11.1 SELECTION OF NEURAL NETWORKS FOR SOLUTION TO A PROBLEM

Perhaps the best approach to determine v hcthcr an application of neural
nctw ni ks is appropriate is to compare its characteristics to those that have
been successful in other application. Bailey and Thompson (1990a) have cited
a survey of successful neural-network applications dcvelopers and
gave the following heuristics for successful applications:

• Conventional computer technology is inadequate.
• Problem requires qualitative or complex quantitative reasoning.
• Solution is derived from highly interdependent parameters that have no

precise quantification.

• The phenomena involved depend upon multiple-interacting parameters.
• Data are readily available Lut are multivariate and intrinsically noiy or

error-prone.

• There is a great deal of data from specific examples available for
modeling the system.

• Some of the data may be erroneous or missing.

• The phenomena involved are so complex that rithcr approaches are not
useful, too complicated, or too expensive.

• Project development time is short, but sufficient network training time is
available.

Jost successful applications of neural :1e L\V rks involve pattern recognition,
statistical mapping, or modeling. Successful applications can include signal

385
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validation, process monitoring, diagnostics, signal and information process-
ing, and control of complex (often nonlinear) systems. However, problems
that can be solved using conventional computer methodologies, especially
those that require high precision or involve mathematical rigor, are usually
not appropriate for an artificial neural network approach.

Choice of Neural Notwork Type

The appropriate choice of the type of neural network (supervised, unsuper-
vised, or reinforced) depends on data available. Supervised learning requires
pairs of data consisting of input patterns and the correct outputs, which are
sometimes difficult to obtain. Unsupervised training classifies input patterns
internally and does not need expected results. The data requirements for
unsupervised training are thus much easier and less costly to meet, but the
capability of the network is significantly less than for supervised learning.
A compromise between supervised and unsupervised training is reinforce-
ment learning, which requires an input and only a grade or reward signal as
the desired output.

Time required for both the training and recall are also important in the
development of neural netwL 'rks. Most neural networks have relatively long
training times, but the recall involves only a single pass through the network.
When the neural network is implemented in hardware with the neurons
operating in parallel, the recall time is virtually instantaneous. On the other
hand, certain paradigms, such as the probabilistic neural network, radial
basis function, and general regression neural network, train in a sin gle pass
through the network, but the execution time is essentially the same as the
training time. Hence, the need to meet on-line requirements (c.g., in an
active control system) may dictate the type of neural network used, or it may
require that the network he implemented in hardware.

11.2 DESIGN OF THE NEURAL NETWORK

Size of Neural Networks

Neural network size is sometimes related to the experience of the user as
much as the nature of the problem. Beginners tend to stick with small
networks and reduce the size of the application accordingly. Those with
considerable experience with neural networks are usually willing to let the
nature of the problem decide the size of the network. With the neural
network simulation software available for personal computers and work-
stations today, a neural network with a thousand neurons and perhaps a
hundred thousand connections may no longer be a practical upper limit for
nonstatistical paradigms such as backpropagation or counterpropagation.
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Choice of Output

The type of output is usually determined by the nature of the application.
The activation of the output neurons may be either binary or gray scale
(many individual values). Real-number outputs translate into values such as
dollars, time units, or distances and may be given in binary form or gray
scale. Each of the four common interpretations of neural network
outputs—classifications, patterns, real numbers, and optimal choice--has its
own specific requirements. For example, since classifications statisticall y nap
input patterns into discrete categories, there will usually he two or more
output neurons with only one having an output for a given input. in contrast,
neural networks that identify patterns such as spectra often have multiple
output neurons, all usually active at the same time, which form a pattemn in
response to the input. Optimization problems usually yield a special pattern
that can he interpreted as a set of decisions (Bailey mid Thompson, I

Neuron Activation function

Typically, the activation function is a continuous function that increases
monotonically between a lower limit and an upper limit (0 and I or - I and
+ 1) as the weighted summation increases in magnitude. Since one of the
primary purposes of the activation function is to keep the outputs of the
neurons within reasonable limits, it is sometimes called a "squashing" func-
tiOn. By far the most common activation function is the logistic function
discussed in Chapter 7, hut virtually any function meeting the siginoida]
requirements stated in Chapter 8 will work satisfutorily. Step or signuin
(threshold) functions are often used for the activation function when the
inputs and outputs are binary (0 and 1) or bipolar (- 1 and + 1).

Activation functions that have been used include linear, clamped linear,
slen, c ignum, signioid, aretangent, and hyperbolic tangent functinus. The
choice is usually based on both the types of input and output and the
learning algorithm to he used. Certain paradigms such as hackpropagation
require that the derivative of the activation function be continuous, which
eliminates step, signuni, and clamped linear functions. Many binary (0 anl I)
and bipolar (- 1 to + 1) input–output pairs use networks with step and
signum functions, respectively, for the activation function. Continuous valued
outputs use linear or siginoidal (or other S-shaped) activation functions.

Number of Layers

Backpropagation networks t ypically have three laycis, h t moo' ma y he
advantageous under some circumstances. It is sometimes better to use avo
smUer hidden layers rather than one bigger la yer. Scimno neural nct'.,-ork
pai adigms commonly used have 2 predetermined numher of la yers Adahiie.
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Madalines, Hopfield networks, ART-1, Kohonen self-organizing feature maps,
and bidirectional associative memories all require either one or two layers.

Hidden layers act as layers of synthesis, extracting features from inputs.
Usually a large: number of hidden layers increases the processing power of
the neural network but requires significantly more time for training and a
larger number of training examples to train the network properly. As indi-
cated in Chapter 7, one hidden layer (i.e., a three-layer network) with
sufficient neurons is capable (theoretically) of representing any flapping.
Additional hidden layers should be added only when it single hidden layer
ha been found to he inadequate. Cascade correlation neural networks start
with two layers and add as many one-neuron layers as necessaryto satisfy its
convergence criterion.

Number of Neurons in Each Layer

The number of neurons in the input and output layers are determined by the
nature of the problem. For instance, a problem that utilizes a 128-point
power spectral density function as an input and classifies the inputs into 10
categories requires 128 neurons in the input layer and 10 neurons in the
output la yer. Determining the proper number of neurons for the hidden layer
is often accomplished through experimentation. Too few neurons in the
hidden layer prevent it from correctly mapping inputs to outputs, while too
many impede generalization and increase training time. Too many neurons
may allow the network to "memorize" the patterns presented to it without
extracting the pertinent features for generalization. Thus, when presented
with new patterns, the network is unable to process them properly, because it
las not discovered the underlying principles of the system.

For a network with a single hidden layer, it is common practice to initially
make the number of neurons equal to about two-thirds of the number in the
input layer (Bailey and Thompson, 1990a). When there is more than one
hidden layer, the number of neurons is significantly smaller in each hidden
layer. Experimentation with greater and smaller numbers of neurons in the
hidden layer(s) may change the training time as well as the ability of the
neural network to generalize. Often there is a wide range in the number of
neurons in the hidden layer that can be used successfully. Harp, Samad and
Ouha (1989) has utilized an optimization methodology for determining the
optimal number of neurons in a single hidden layer of a neural network
based on a genetic algorithm optimization process.

Multiple Parallel Slabs

Another method of increasing a neural network's processin g power is to add
multiple slabs within a single hidden layer. A multiple parallel slab arrange-
ment may use different types of activation functions and different numbers of



DATA SOURCES AND PROCESSING FOR NEURAL NETWORKS	 389

neurons, because this architecture is attempting to force each slab to extract
different features simultaneously.

11.3 DATA SOURCES AND PROCESSING FOR NEURAL NETWORKS

A. successful neural network requires that the training data set and training
procedure be appropriate to the problem. This includes making the training
data set representative of the kinds of patterns the operational network will
have to recognize. Furthermore, the training set must span the total range of
input patterns sufficiently well so that the trained network can general ie
about the data, in order to have extrapolation and interpolation capabilities,
neural networks must he trained on a wide enough set of input data to
generalize from their training sets. Although most of what is presented here
deals with neural networks using the backpropagation training paradigm,
much of what is said applies to other, less common neural network paradigms
as well.

All data that in any way relate to the application should he reviewed and
purged of any data that are considered to he unreliable or

'
 cical for

technical or economic reasons. Combining and/or preprocessing data to
make it more meaningful can be extremely beneficial. For example, power
spectral density functions are much more useful than a time series from
sampled time records as inputs to neural networks.

Errors in Databases

Databases are rarely perfect. Hence, a database for 100,000 homes may
contain a few with entries such as "200 people in a home or a child aged
1975" Protecting neural networks from such gross errors is essential, because
it doesn't take many ridiculous values to distort a neural network'sraining,
especially when the importance of errors is increased by squaring those
errors. The use of elementary statistical analysis and time plots of data can
help detect such errors.

Subtle data errors that don't involve grossly out-of-range values also occur.
Checking the consistency of units will eliminate such errors as one office
reporting production in units and another reporting it in dozens. The only
way to find errors like this is to remain alert to the possibility of data errors
and investigate any Suspicions that develop about the sensibleness of the
data. Clustering data can often help identify discrepancies, If erratic data
cannot be fixed, the impact of discarding the data should be investigated. For
instance, discarding sales for the month of December when ('hrislmnas sales
are very large, even when it is necessary because of erroneous data, cnn
distort the results of an analysis.
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Incomplete Data Sets

In spite of the rhetoric that neural networks can work with incomplete data
sets, missing data can create serious problems. If the data cannot be found
(missing data often has merely been placed in the wrong field or misnamed),
the common sense (and technically correct) thing to do is to replace every
missing value with the best estimate of what it would have been were it not
missing. (Crooks 1992) suggests several ways in which this can be done. The
simplest method is to replace missing values with the expected value of the
variable. If all other variations in the example are ignored, the expected value
of real-valued variable is the mean of the variable across the sample of
cases. If the variable is an arbitrary categorization, the most common value or
mode is appropriate. For ordinal values, the median value for the population
is the expected value. More sophisticated methods are available, but they
invariably involve the assumption that the process is time stationary and that
the underly ing conditions do not change during the time the missing data are
important. Whether this is true is dependent upon the individual situation.
The pragmatic approach of using whatever technique seems to make the
model train and predict better is usually best, but there is need to ensure that
future predictions have some general and reliable basis by using all

 test data set.

Time Variations in Data

A neural network can detect trends in time-oriented data such as sales data.
Although recurrent neural network models have some sustaining memory of
previous data, most networks consider only one example at a time. Since
there is no explicit memory of the example from an earlier time, it is not
possible to simply present data in a sequential order (i.e., first Monday's data,
then Tuesday's data, and so on) and expect it to find the trend. Time-
oriented problems such as predicting tomorrow's sales requires that the sales
for the last week or two (or sonic appropriate time period) be utilized. A
productive approach that is often used in training is to present input training
that spans several time periods (days, weeks, hours, months, etc.) and use
data for the next time period as the desired output.

Pictorial Data

When time information is pictorial, the data for the neural network arc best
suited to a nondistribuled representation. For example, in a black-and-white
picture, each input neuron receives a number representing the intensity of
one pixel (picture element) of the visual field for every point in the picture,
as well as parameters indicating the location of the pixel. The biggest
problem with pictures is that too many pixels are needed to train a neural
network in a reasonable amount of time. If a camera image is 1024 pixels oil
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a side, the nurnlcr of necessary input neurons is more than a million, and the
training time would probably be prohibitive. One approach for feature
extraction uses Fourier descriptors of the items to he recognized and feeds
them into a neural network for recognition and translation into meaningful
results. Characters and graphics have frequency magnitude and phase
"signatures" that can he recognized by a neural network. The neural network's
output must he formatted into an appropriate form for training and recall.

Data Acquisition

Applications requiring sensory data input to the neural network are impeded
when information transfer from the equipment is disrupted. Sensors and data
acquisition facilities must be thoroughly tested before being used to provide
data to a neural network. Indeed, the influence of sensors and data acquisi-
tion facilities on the overall information processing systems needs to he
evaluated prior to including them in the system Situations sometimes arise in
which one missing piece of information disrupts the flow (timing) of the
system and causes undesirable, sometimes unpredictable, and almost always
erroneous results.

11.4 DATA REPRESENTATION

L)ta may have to he converted into another form to be meaningful to a
neural network. how data are represented and/or translated also plays an
imuortant role in the network's ability to gras1) the problem, that is, it
neiwoi k can learn more easily from some representations than from others.
( ei iin kinds of data (e.g., th time-oriented data used in such problems as
foracasting) are especially dii iicult to handle.

Continuous Valued Versus Binary Popresontations of Data

l)ata may be continuous valued or binary. Sometimes data call 	 repre-
sented either as a single continuous value or as a set of ranees that are
assigned binary representations.m For instance, temperature cpuld he repre-
sented by the actual teperature values or as one of five possible values:
frozen, chilled, mild, warm, or hot. When there are naturally occurring
groups, the binary categories are often the best method for making correla-
tions. \Vhcn the values are very continuous, artitcia1ly breaking them up into
groups can he a ni:t,mke, because it is otteri chifhcult for the r;chcork to learn
examples that have values oil 	 near the, border between two groups.

Arbitrary Numerical Codos

Using continuous-valued inputs to represent unique concepts can cause
problems. Although it may seem perfectly reasonable to rcpi esent the months
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of the year as numbers from 1 to 12, the neural network will presume such
data to be continuous-valued and as having "more or less" or "better or
worse" qualities. Since the month July (represented by 7) is not more or
better than June (represented by 6), individual inputs are required for each
month. Discontinuities such as going fro M: 12 for December to 1 for January
are also troublesome. Zip codes, bar codes, and marital status are examples
of data that require more than one input (Lawrence, 1991).

Variable values represented with numbers don't always behave like num-
bers, because they sometimes don't reflect any specific sequence or order.
For example, although there is some obscure plan behind postal zip codes, it
is not possible to add, subtract, or compare zip codes and infer meaningful
results. (Generally, a larger zip code indicates the post office is further west
in the United States, but there is certainly no sensible interpretation of the
sum of two zip codes.) Arbitrary numerical codes should be treated in the
same way as mutually exclusive nonnumeric codes (like male/female or
apple/orange/pear/banana), that is, assign one input neuron for every
possible value. In any single case, only one of the neurons should be set to
one, and all of those representing other values should be set to zero. If a
categorization has too many possible values, like the states of the United
States, it may he necessary to combine some of the categories to produce a
taxonomy of fewer values (i.e., combining states into Northwest, Southwest,
Northeast, Southeast, and Midwest categories).

"Fairly Continuous" Data

Lawrence (1991) points out that the choice between binary and continuous
data representations may not he simple. If the data are fairly continuous but
not evenly distributed over the entire range, even the best representation can
he tricky. For example, a network that predicts the income level of indiviclu-
als based upon demographics and personal history might have inputs for the
person's education level with values from 0 to 20 years. Alternately, natural
groupings occur around traditionally recognized levels of achievement (i.e.,
high school, baccalaureate, masters, and doctoral graduations), and the data
could be grouped into ranges such as less than 13, 13-16, 17-18, and 19-20
years. however, if significant differences occur within a group (e.g., "less
than 13" could mean either high-school graduate or grade-school dropout),
the representation may not be valid. On the other hand, if one continuous-
valued input representing the actual number of years of schooling is used, the
neural network might have trouble. For instance, if there is a significant
difference in the effect on monetary savings between having a high-school
diploma and not having one, the network may not pick it up, because 12 and
11 look very similar in the range 0-20. The best representation may be a
combination of the two approaches (e.g., several groups, each continuous-
valued). Experimentation with several representations may be necessary to
determine the best representation.
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Ordering of Variables

At the opposite extreme from nominal numeric values are real or continuous
values. Most measurements of natural quantities result in real numbers. Two
real values for the same variable can he Compared, and the difference will he
meaningful. In this context, it is not continuity that matters as much as the
orderings possible for the set of numbers used.

Falling between nominal and continuous are variables whose numeric
values imply a real ordering, but with undefined in(ei'als between the values.
For example, if all of the soldiers in a platoon were lined up and ranked in
order from the shortest to the tallest, you could say that soldier #10 was
taller than soldier #5, but von couldn't say byhow much, and you certainty
couldn't say soldier #10 is twice as tall as soldier #5. Crooks (1992) points
out that rankings like this are especially troublesome because the rank value
depends not only on the height of a particular soldier, but also oil 	 man yand which soldiers are compared.

Rank orderings are often handled by converting a ranking into a per-
centile (more precisely, a percentile divided by 100 to keep the value under
1.0) to make the values independent of the number of cases in the sample
taken. Alternately, all ohseations can he divided into quintiles representing
values from the highest quintile as 0.9 with second quintile values at 0.7, mid
so on, down to 0.1 for the lowest quintile. The approach is the same, but the
number of categories is reduced from 100 to five by the use of quintiles. It is
essential that boundaries for percentiles and quintiles be based on a
sample of the population of cases to he modeled. It is more impoitant that
percentile and quintile values be reliable and repeatable throughout the
ti aining and use of a neural network than that they he accurate.

Changes in Values Versus Absoftjto Values
Another important factor in re presenting continuotIs'lucd d.oa is wiiethiei
to use actual values or changes in values. One reason for using changes in
values is that the smaller the range, the more meaningful smallvalue differ-
ences are to the nctwoxk. I {nsvcvcr, the range of some data, such as the Dow
Jones industrial average (DJIA). will probably change Over time. The da y-to-
day change in the 1)JIA over a month (with rare exceptions) is not likely- toexceed ± 200 points. On the other hand, the change over a year might be
11100 points and maybe 200(1 points over a decade. The decision whether
to use the absolute value or the change deeils upon the nature of the
problem. 1 small clinugesi, the day-to-day values of the DJIA are animportant consideration in the problem hing investigated, then the change
in DJIA should be used. If `I -,c trend over a decade or over a few years isimportant , then the actual values should he used, scaled to spread the values
beeen the expected maximum and minimum values ecr the Operating
range of the neural network simulator (see Section 11.5).
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Distributed Versus Nondistributed Information
A decision whether to describe the information as unique items (i.e., gender,
minority status, etc.) or as a set of descriptive qualities (such as height, age,
weight, etc.) is necessary. Information that exclusively categorizes a thing or
person into one of several possible categories is called a nondistributed
representation. Only one neuron is needed when the choice is between two
categories (e.g., male or female), but one neuron is needed for each category
when there are more than two alternatives (e.g., minority status; Black,
Hispanic, Native American, etc.). Using nondistributed information may
increase the size of a neural network with resultant training and generalizing
problems.

Distributed information involves using a few pieces of information to
define a unique pattern. For example, by using three primary color inputs
(red, blue, and yellow), many possible color combinations can he represented
without adding neurons. Such a distributed input scheme reduces the number
of neurons needed to represent a large number of patterns that share
common qualities and enhance the generalization ability as well, but there
has to be a means of interpreting the results. However, there are potential
problems with using a distributed approach for the output. A network with a
distributed output layer also has less learning capacity because it has fewer
weights. Such a network output sometimes must he decoded twice: first, from
neuron activations to the distributed qualities and then to the nondistributed
output. For example, if color were expressed as a distributed output pattern
such as 0.2 blue, 0.7 yellow, and 0.4 red, this result would have to he decoded
again by some external observer or program to designate the color 'brown."

Advantages of a distributed output network are that it uses fewer neurons
in the output and the hidden layers, has fewer connections, does less
computation, and runs faster. Generally speaking, neural networks with a
greater number of inputs than outputs perform better. More outputs makd it
harder to train the neural network to be accurate. Overall error, rather than
the error in individual outputs, is minimized.

Encoding Data

An encoding algorithm's function is to take input data and convert it into a
form suitable for presenting to the network, A decoding algorithm takes the
values of the output layer neurons and converts them into a meaningful
answer. Encoding and decoding algorithms are neural-network-specific, but
some guiding principles can be applied. Neurons operate with numeric inputs
and outputs that correspond to the activation values of the neurons—that is
within the range neurons understand (usually 0 to 1, or 1 to + 1). The
input encoding must interpret the raw data—that is., turn it into a sequence
of numeric values that the network can understand. The output decoding
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must take a sequence of numbers that corrcsponds to thc output neurons
values and turn them into the foi ni required for the final output.

As an example, consider a three-neuron output with a binary (0.]) output.
This neuron output can represent eight categories of output (i.e 101
represents the fifth category which can be arbitrarily defined). Since outputs
ate not likel y to he exactly 0 or 1, an output in the range 0.8 to I could be
interpreted as I and all output in the range (I to 0.2 could he interpreted as 0.
Values between 0.2 and 0.8 would then represent ambiguous results. Some
investigators arbitrarily split the outputs between 0 and I at some arbitrary
threshold (not necessarily 0.5).

Fourier analysis of waveforms can also he used for the anal ysis of acousti-
cal waves, vibration, motion, or electrocardiograph records. The frequency
content of the digitally recorded waveform is obtained using the fast Fourier
transform technique. The value presented to each input neuron represents
the aniplitude of the signal at a particular frequenc y range.

11.5 SCALING, NORMALIZATION AND THE ABSOLUTE MAGNITUDE
OF DATA

Neural icUs o: ks are eiv sensitive to absolute magnitudes. If one input
ranges from 1(100 to 1 : 000,000 and a second one rantcs from 0 to I
fluctuations in the hi st input  will tend to Swamp any importance given to the
second, even if the second input is much more important in prcdictint; the
desired output. To minimize the influence of absolute scale, all inputS to a
neural network should he scaled and normalized so that the y corrc\p(:nd to
roughly the sCore range of valrtc;. Commonl y chcsen ranges lie 0 U 1 or - - I10 +1.

Even though one of the great strength of neural networks is that they work
well ill situations, linear relationships are the easiest for neural
Oet\\ trks to leat n and emulate. Therefore, minimniiing the effects of non I in-
earity of a piobe:u pays off i ii terms of faster training, a less complicated
network, and better overall performance. I-knee, one goal of data 

p pta-tion is to reduce no:ulinetirit ' when its character is known and let tIre m;e'v,-ork
resolve the hidden nonlinearities that are not understood

Data Normaljzafjort

Numeric data must be normali7cj or sealed if it has a natu:-al ran th: 1 is
different than the iteisrork's opet ating range. Normalization is simply dividing
all values of a set by an arbitrary- reference value, usually the maximum value.
Use of the inaxinitmm value will limit the maximum value to unity. 'i•iuis
Process, although very commonly used, carries with it the potent i,-.1 for loss of
iuiformaticin It can also distort the data if one or it few val ( jes are rmch
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larger than the rest of the data (e.g., anomalous spikes) or when all the data
are within a narrow band. Scaling, on the other hand, is establishing a linear
relationship between two variables over the desired range of each. Normal-
ization is a special case of scaling where the minimum value of both variables
is zero.

Data Scaling

Scaling has the advantage of mapping the desired range of a variable (with a
range between the minimum and maximum values) to the full 'working"
range of the network input. For example, let us assume that the values
between the minimum and maximum (called the range ) must he scaled into
the range 0.1 to 0.9 for the neural network input. This linear scaling is shown
in Figure 11.1, where the straight line has the form

y =rnx+b	 (11.5-1)

where in is the slope and b is the y intercept. If we substitute the values

y = 0.1	 whcn x =	 (11.5-2)

Scaled Variable

Mum	 Max

Actual Variable

Figure 11.1 Scaling of input variables for arfciaI neural networks
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and

Y = 0.9	 when x =	 (11.5-3)

we can solve for the constants in and b to be

in = 0.8/(X m , -	 = 0.8/i,	 (11.5-4)

and

	

b = [ 0.9	 O.Sx	 (11.5-5)

where

	

=	 xtl,I,	 (11.5-6)

Equation (11.5-1) then becomes

	

v = (0.8/)x	 1 (0.9— U.Sx T /) 	(11.5-7)

Scaling of the variable between 0.1 and 0.9 is often used to limit the amount
of the sigmoid activation function used in the repi esentation of the variables
in order to avoid "network paralysis" in the training process. Many neural
network simulation software systems perform such scaling automatically.
Even so, it is necessary to understand what is occurring so that unforeseen
scaling factors are not inadvertently introduced into the process. For in-
stance, if the input is scaled to its maximum and minimum values and the
desired output is scaled to its maximum and minimum values which are
different, then the recall output has a scale factor that is the ratio of the two
input scale factors. This can he avoided by using a single-scale factor for both
input and desired output that is based on the maximum and minimum values
that occur in both the input and desired output variables. Most commercial
software packages automatically use a single-scale factor unless directed to
do otherwise.

Crooks (1992) points out that scaling to similar magnitudes is not always
adequate. For instance, if one input variable to a neural network fluctuates
from 50 to 1000 and a second input variable changes only from 950 to 1000
(even though it may have been very low in the past), it is clear that the region
of typical variation is much different for these two variables, even though
they have similar magnitudes and historical ranges. Since networks pay
attention not onl y to the magnitude of inputs but to their variabilitv as well.
the greater variability of the first variable would tend to distract the network
relative to the smaller, but perhaps more important, variation in the second
variable.
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Z-Scores

An appropriate approach for sonic problems is to compensate for variability
in the scaling of variables. The common way to do this is to scale inputs to
their "Z scores" (the number of standard deviations above or below the
mean). To perform Z-scorc scaling on one variable, first calculate the mean
and standard deviation for the variable across all of the examples in the data
set. Then convert each example value to a Z score by subtracting the mean
and dividing the difference by the standard deviation. This procedure par-
tially compensates for both different magnitudes and variabilities. Z-score
scaling does not take away some useful information, but instead, it makes the
information independent of units of measure.

Crooks (1992) gives two precautions that must be observed when working
with Z scoring. First, the calculated mean and standard deviations for an
input variable are merely estimates of the mean and standard deviations for
the entire population sampled by the data at hand. Hence, if more than one
set of training data is used, the scaling for the two sets may he different
because the estimated mean and standard deviations will he different for the
different samples This often presents a practical problem when comparing
results from different training sets. The solution is to select one estimate for
the population mean and one estimate for the population standard deviation
arid then use them uniformly to scale all data sets in the same way for the
selected variable. Second, if one output value is sealed using tt Z-score
method, the output neurons must represent values throughout the range of
abort —3.0 to 1-3.0. Often, output neuron sigmoids prevent outputs greater
than ± 1.0 or less than 0.0 (or 1.0), which would make it impossible for the
network's output to reach 2.0 (or —2.0). Clearly Z scores are not appropriate
fur cases where this problem arises and is not addressed properly.

Input Transformations

Sonic fairly simple input transformations, such as ratios, can save a network a
good deal of work. While the network can learn to do the division by itself,
networks normally perforni division by effectively converting the numerator
arid onominator each to logs, subtracting them, and taking the antilog
Although these three nonlinear operations are often performed by networks,
it is more productive to carry out the division in data preprocessing and let
ftc neural network concentrate on establishing relationships from the data.

heidcs ratios, nonlinearity in ;r problem may be reduced by the use of
lugarithmic scaling for inputs of an exponential or compounding character or
the use of exponential scaling for inputs with a logarithmic pattern. Nonlin-
C .r scaling is also used to emphasize a particular range of variables. For
O1Iance, logarithmic scaling is often used to compress the scale for larger

Lies whereas exponential scaling is used to expand the scale for smaller
UCS.
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When a problem may have a geometrical aspect, precalculating relevant
distances, areas, and volumes is helpful. In short, when an input is known to
have a specific nonlinear tendency, try to counteract the tendency with
scaling that will yield a more linear input to the neural network and simplify

itS operation.

Redundancy in Input Data from Monitored Variables

Experience has shown that the existence of a high degree of redunLlancy in
the data from the monitored variables of a complex process or s ystem can
and usually does have an adverse influence of the results of neural network
modeling. Decorrelation of the input variables using ordinary statistical
methods (Junk, 1993) can be quite effective in improving the validity of the
model. In effect, the methodology of Junk typically identifies a few special
variables in which a high fraction (typically 957r) of the information is
contained. These few special variables v, (which are, in fact, principal

components) have the form

yi	 ax	 (115-8)

where i is the index for the number of special Niiiahlcs (principal coinpo-
nents) used, and j is the index for the N input variables being monitored in
the complex system or process. Once the coefficients a 1 for these principal
components have been determined using the decorrelation code., they can he
implemented by an additional input, network ahead of the usual input
network with the connecting weights set to equal the values of a,.

These principal components can also he obtained using autoassociative
neural networks as discussed in Section 8.4, where the data are extracted
from the "bottleneck" layer. A network of the type shown in Figure i'L14a
can he used to provide the principal components as inputs, after the com-
plete network has been trained as an autoassociative neural network.

Genetic algorithms have also been used to select the most important
variables for a neural network by Coo and Uhrig (1992) (see Example 17.2 in
Chapter 17) and later by Harp, Samad and Guha (1989, 1990).

11.6 DATA SELECTION FOR TRAINING AND TESTING'

Kinds of Data

All that is needed to it ii:, it neural network is a:t adequate amount of the
kind of information that is important in solvin g it problem. It there is

V.

Man y of the suegestions in this section were gisen by Lt rence (1991).
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uncertainty whether specific data are important, it is usually best to include it
because a neural network can ]earn to ignore inputs that have little or
nothing to do with the problem, provided that enough examples are provided.
Using too much or too many kinds of data is seldom a problem if there is
adequate data. If inadequate data are used, correlations become difficult to
find. Training time may become excessive when not enough kinds of data
exist to make proper associations. This is often the case with hackpropaga-
lion networks with a very large number of hidden neurons. The end result is
memorization of the individual values, and the network trains well but tests
poorly on new data.

Difference in Data Requirements in Supervised and Unsupervised
Learning

Lawrence (1991 .) points out that there is a big difference in how data get
organized between supervised networks and unsupervised networks. Super-
vised neural networks are generally used for prediction, evaluation, or
generalization. They basically learn to associate one set of input data with the
corresponding set of output data, For example, a neural network can associ-
ate an increase in agricultural crop yield with certain types of weather
patterns; to predict the crop yield, the weather pattern (rainfall, temperature,
humidity, cloud cover, etc.), including historical patterns, would be specified
as inputs to the neural network. tJnsupervisccl networks, such as Kohoncn
networks, are best applied to classification or recognition types of problems
(e.'.., descriptions of diseases can be stored; when a new medical ease comes
in with a partial description of the s y mptoms, the Kohonen neural network
would look at the description and povidc as an output the stored diagnosis
that most closely matches one of the descriptions stored in the network).

Generally, the more example sets that are presented to a network for
training and testing, time better the training will be. However, there must be
enough examples of a sufficient variety for training that the network will be
able to make valid correlations and generalizations for unfamiliar cases. The
variety must include a good distribution of possible inputs and outputs.
Lawrence (1991) cites the following example: If a network is to perform an
evaluation such as the operational readiness of an aircraft, examples :f good
and bad situations should be used in fairly even proportions. However, if
1003 examples of the aircraft being ready and 10 of it not being ready are
pro'id•J for training, the netwgik will probably not be able to learn those 10
cases. E en if it does learn them, the network may predict that the airplane i
ready norc often than it should be.

Cases Where Inadequate Data Are Available

There should be sufficient training scs so that a random sampling of data
examples can he set aside for testing the neural network. If an inadequate
number of training examples aic available, creating a data set from simulator
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runs or using expert evaluations of situations may he necessary and accept-
able. Several experts can rate examples, and a single network might he
trained on the sum total of the expert's views. Alternately, a network might
be trained for each expert's opinion to see which network gives the best

results after training.
For fabricated examples, use of 'border" patterns (examples in which the

output just begins to be different) can be very effective. Research has shown
that the success rate of a trained neural network increases rapidly as the
number of border training patterns used increases. A manufactured training
set using both border patterns and diverse-valued training patterns is sub-

stantially better.
If there are only a few data examples, a technique called 'leave one out'

can be used to train several networks, each with a different subset of most of
the examples. Then each network is tested with a different subset. Leaving a
different set of examples out of the training set and subsequently testing on a
different set will greatly improve assessing the network's effectiveness and
may show where more examples are needed. It should also indicate whether
a network trained with all of the examples can generalize well.

Randomly chosen training patterns, althou p h often used, may inadver-
tently emphasize the wrong conceptual points. Since the most easily identifi-
able patterns must he included for the network to learn the basics, a
randomly chosen training set ma y not include these basic patterns in the
proper proportions (Lawrence, 1991).

Data that cover too long it time spun can include changes of equipment or
other events that make the process nonstationary or even discontinuous.
When the behavior has changed over time, data collection should be limited
to it period of similar behavior. For example, the strongest influences on
the value of gold today may not he the same as those before the breakup of
the Soviet Union. Adding a neuron indication as to whether the data
examples were before or after breakup will solve this problem. When the
changes are long term rather than associated with specific events, thosving
out the oldct data and adding newly collected examples to a training set can
he very helpful.

11.7 TRAINING NEURAL NETWORKS

Bcickpropagation Training

ldackpropagation is a gradient descent system that tries to minimize the mean
squared error of the system by movin g down the gradient of the error curve.
In a real situation, however, the network is not a simple two-dimensional
system, and the error curve is not a smooth howl-shaped figure. Instead, it is
usuall y a highly complex, multidimensional, and more-or-less howl-shaped
curve that can have all kinds of humps, valleys, and hills that the network
must negotiate before finding its lowest point (the minimum mean-squared
error position). The number of iterations through the data set required to
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achieve a given level of training will generally increase as the size of the
training set increases, as the number of layers increases, and as the size of
thc middle layer increases. III the bigger the network, the slower
each pass through the training data, when the network is simulated on a
serial-type digital computer.

Dealing with Local Minima

Despite hackpropagation's widespread use, it is sometimes difficult to use,
and training times are often excessive. Caudill (1991a) has offered some tips
oil techniques that have been found to he useful. It is important to
11010 that these suggestions are specific to huekpropagation networks and may
be unsuitable for other paradigms.

Perhaps the "easiest" way to deal with a neural network that is stuck in
local minima created by the hills and valleys and will not train is to start over
by reinitializing the weights to some new set of small random values.
Geometrically, this changes the starting position of the network so that it has
a new set of obstacles and traps to negotiate to get to the bottom of the error
Surface. It is expected (but certainly not guaranteed) that as a result of
starting from a new position there will he fewer obstacles in reaching the
global minimum of the error surface. The difficulty is that the user must be
willing to forego any progress in training and start over o il path that may
Nc no helter, or even worse, than the first path.

A less drastic approach is to "shock" the neural network by modifying the
weights in some small random or systematic way. Again, it is expected (but
not guaranteed) that a small move in the error surface will provide a path to
the global minimum. A good rule of thumb is to vary each weight by adding, a
mandom number of as much as 10% of the original weight range (e.g., if the
weights range from - 1 to ± 1, add random values to each weight in the
range —0.1 to +0.1). Generally, this technique is used when the network has
lcaincd most of the patterns before stalling, wh ucas starting over is used
when the network has been unable to learn very few of the patterns. Such
changes should be in;dc only after dii integral number of epochs have been
presented to the network.

Applying the proper amount of momentum to a hack-propagation network
is Phbly the single easiest thing to do to make the network train faster.
The momentum tcrffl helps a hackpropagation network keep moving down
time error surface, even when it meets a temporary upward surface. In effcLt,
:ionentum ensuics that if the weights were changing so the error decreased

la:,t time, there will he a "force" to make the next weight change reduce the
error further.

Another effective way to reduce a network's training time is to use slightly
nOisy data. Oddly enough, networks actually train faster with noisy data. For
example, an input that is a matrix-Nimoy representation (Os and Is) of an
alphabet ic ii letter that is being mapped into an ASCII code for the letter will
train fastc f the "pure" binary representation is corrupted by the addition
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of 10-15% random noise. The network never sees two images of the letter
that are exactly alike. hence, this technique forces the network to generalize%
a key goal in the training of neural networks.

Monitoring the Training Process

Monitoring the training process includes looking for local minima, ove[train-
ing, and network paralysis. Eliminating local minima or overtrainin may
involve introducing specific or random changes into the weights and often
adjusting training parameters (e.g., increasing the momentum or changing the
learning and/or activation function constants). If these techniques do not
produce results in a reasonable time, it may he necessary to reinitialize the
weights and start the training over.

The method of presenting the training set to the network can affect the
training results in certain learning algorithms. To mitigate these efccts,
neural network simulation software often chan ge the order in which the
training cases are presented to the network (e.g., present the test cases
randomly or in some predetermined order) or delay the adjustment of the
weights until an integral number of epochs of training data (or a specific
number of data sets) are presented to the network.

After the network has been trained, it is important to test it against both
the training set and examples that the network has never encountered before.
Increasing the size of the hidden la yer usually improves the networks
accuracy on the training set, but decreasing the size of the hidden layer
generally improves generalization, and hence the performance on new cases.
An optimal size can he attained by a balance between the objecti'. es of
accuracy and generalization for each particular application. Creating a func-
tioning neural network that provides the most accurate, consistent, and
robust model possible requires iterative buildin g , training, and testing to
refine the neural network.

Ovcrtraining is probably the most common error in training neural net-
works. The best method of ensuring that overtrairiing does not occur is to
monitor periodically the sum square error for both the training data and the
test data. It is normal for the sum square error for the training data to
continue to decrease with training. However, this may he forcing the neural
network to fit the noise in the training data. To avoid this problem, stop
periodically the training, substitute the test data for one epoch, and record
the sum square error. When the sum square error of the test data begins to
increase, the training should be stopped. Indeed, if the weights at the
previous monitoring are available, the y should be used.

Another form of testing uses special inputs to study the neural network's
responses (similar to the use of impulse or step functions in testing electrical
circuits under specific conditions). Activating (either positively • or negatively)
an input node and then examining the input—output relationship (e.g.. the
ratio of the change in a specific output for a given change in a specific input)
can give the sensitivity of input — output relationships. 11 significant problems
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are found, the neural network or the training process must be debugged.
Every aspect of the network and the training process must be examined,
including the quality, representativeness, and accuracy of the training data
sets, the constants within the learning algorithms, and especially the normal-
ization and scaling (including denorma]ization and descaling) processes.

Roo of the Hidden Layer in Training

The traditional explanation of the functions of the hidden layer of a well-
trained three-layer network is that it views the input pattern to determine
which features are present in the pattern, and the output layer considers
what output should be generated for the particular combination of features
identified by the hidden layer. Unfortunately, the hidden layer may memo-
rize the input patterns rather than learning the features, especially if the
number of neurons in the hidden layer exceed the number of training cases.
If the network memorizes its response instead of generalizing features, it may
give the perfect answer for the training input and have no idea at all what to
generate for a test-input pattern. If a single neuron responds to a particular
input pattern, it is called a "grandmother" cell. Unfortunately, this concen-
tration of information into a single neuron makes the network, which is
usually m ohust, very vulnerable to the failure of a single neuron. Memoriza-
tion can be prevented by ensuring that the network never sees exactly the
same input pattern inure than once. This can he (lone by adding random
noise to the each input pattern.

Setting the number on neurons in the middle layer equal to the number of
patterns in the training set can encourage the network to assign one neuron
in the middle layer to each training pattern, which obviously doe; not
encourage general feature detection and generalization. Solutions iodide
adding noise to the input or reducing the number of neurons in the lJdcn
layer.

Applying a little noise to the training set will generally produce a nei\vork
that is robust to noisy inputs. Although a network trained with no noise amy
still do well with noisy inputs in the real world, one trained with an
ap)iopriate levci of noise will do much better. '1lte exact type and amount of
noise depends on the data, but a general mid 	 that 10-15% perturbation of
the u;ignal is a good Startituu point.

Jim general, the exact size of the middle layer isn't a critical parameter, and
traiung times don't vary significantly for similar-sized middle layers. Some-
times increasing the size of the middle layer will provide more feature
<Jctxetors. When the middle layer is just too sniall, increasing it by 10% or
20% may make a huge difference. However, too large a middle layer will
tcn ,-thcn the training process, and extra degrees of frecdorn. ma y allow the
neural network to "overtrain" (i.e., the neural network will be trained to the
point that it fits the noisy fluctuations in the mapping relationship),
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FUZZY METHODS
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12.1 INTRODUCTION

Although fuzzy and neural systems are structure!Iy differen:, the y share a
rather cornplcmentaiy nature as far as strengths and weaknesses are con-
cerned. In this chapter we will examine the possibilities of introducing fuzzy
operations within individual neurons and networks. Improving the overall
expressiveness and flexibility of neural networks is what is sought. In the next
chapter we will bring neuronal learning capabilities into fuzzy systems.
Making fuzzy systems capable of on-line, adaptation would he the desirable
objective there, Neuronal enhancements of fuzzy systems as well as the
fuzzification of neural systems aim at exploiting the complementary nature of
the two approaches through their integration into a soft computing paradigm
that permits a certain tolerance for imprecision and uncertainty.

Applying fuzzy methods into the workings of neural networks contiLutes a
major thrust of neurofuzzy computing (Gupta and Rao, 1994; Gupta, 1994;
Pcdrycz, 1993; Hirota and Pcdiycz, 1993h). Although the field is an active
area of research undergoing major changes, in this chapter. at the risk of
omitting important research findings and developments, we attempt to intro-
duce some fundamental notions and applications. To begin with, we briefly
review the basic model of the artificial neuron we presented in Chapter 7 and
then proceed with the "fuzz ification" of its workings. Mathematical models of
fuzzy neurons employ adaptive fuzzy relations and operators at the synapses
in order to convert the external inputs into the synaptic output. FLizzy logic
Operators such as rain ( A ) and max (v), and more generally 2 norms and S
norms, are used to perform the confluence and aggregation of dendritic
inputs to a neuron's main bod y, or soma. Although fuzziness may be intro-

409
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duccd at all aspects of the workings of an artificial neuron (i.e., inputs,
weights, aggregation operation, transfer function, and output), the main
thrust of fuzzy neural nets has focused on (a) the fuzzification of the
dcndritic inputs and (b) the aggregation operation of a conventional neuron.
The result is a variety of fuzzy neurons differing in properties according to
whether, for example, instead of summation we aggregate the inputs through
max, ruin, or some other T-nori-n and S-norm operation. At the end of the
chapter we present a set of applications and a summary of recent develop-
ments. It should be stressed, however, that since there is a rapidly growing
volume of research dealing with fu7.zified neural networks, our survey is
partial and unfos tunately incomplete.

12.2 FROM CRISP TO FUZZY NEURONS

As we have seen in Chapter 7, a neural network consists of densely intercon-
nected information processing units called artificial neurons. The structure of
an artificial neuron is schematically reviewed in Figure 12.1. It consists of
eternal inputs, synapses, dendrites, a suma, and an axon through which
individual neural output is transmitted to other neurons. Let us call this the
jth neuron of the network. We recall that a vector of external inputs
[x i , x2.....x,]' enters the jth neuron and gets modified by weights
R',, 

W, ,.., representing the synaptic junctions of the neuron. In earlier
chapters, we considered these weights as simple gains—that is, scalars
modifying via multiplication the external input vector {x1, X21 ... 	 In
gene-al, however, the vnaptic weights may he functions of the external

WI3 (xi)
xl

R ., ((3	
.4ciivor ion

x
Neural

latemal
Inputs Aggregation

Axon
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xn	 -N	 Dendrites

Synapses

Ftguro 12.1 SimpIrod model of o neuron as an information processor.
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inputs--that is, wu(x), ,C),...,n'1(x1). Fcch synaptic output consti-

tutes an input to the soma, called the dendntic inpu!. Thus, the input to the
jth neuron's soma is the vector of dendritic inputs {d 11 , d,......d;]T, where
each dendritic input is a.transformcd version of an external in.:L x; that is,

	

d = n'(.)	 (12.1-i)

The weighting function o() that models the s na ic juncdon between the
axon of the transmitting neuron and the dendrite of the receivinr , neuron is
thought of as a memory of the neurons past experience, capable of adapting
to new exper i ences through learning.

The neuron produces an output response when the aggregate activit y of all
dendritic inputs exceeds some threshold level 7.. ('nInputing this aggre ate
input activity is an essential somatic operation as seen in Figure 121.
Mathematically, this is usuall y expressed as

where a is the number of dcndritic inputs to the neuron. It should be
mentioned, hmvevcr, that there is nothin g sacred about summation as tile
aggregation operator in equation (12.2-2). We could, and indeed we will, use
other aggregation operators--for example, mm, max, and more generally T
norms and S normsin place of suniniat Oil.

Finally, the output y of the jth neuron is produced by the other essential
operation within a neuron's soma, which is that performed 1w the activation
(or transfer) flnction (I (really a decision function). The neural output 5 ) is
mathematically expressed as

	

= cI[I,7]	 (12.2-3)

where is the aC-tiVatiOrl function that describes the degree to which the jth
neuron is active, I is the total aggregate input activity incident on the soma
of the neuron, and 7 is the inherent threshold level for this neuron. The
perceptron, for example, is an artificial neuron with a neural output given by

	

Yj = sin{	 w,x	 +	 (12.2-4)

where the activation function is assumed to he a binary 'on—oiL function
given by sign El, the aggregation operator is the summation of weighted
inputs, and the inherent threshold 7, is a negative bias value. For the

See Apçerdix fra discussion of 1 norms and their CO-nouns, called S n,rr.is.
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Figure 12.2 An example of a mm (AND)fuzzy neuron.

perceptron, all external inputs and the resultant ncural response are assumed
to be binary (± 1). The synaptic weights, wU, may be either positive (excita-
tory) or negative (inhibitory) real numbers. Both the synaptic weights and the
threshold level are assigned to the neuron during training.

Fuzzy Neurons and Fuzzy Neural Networks

A fuzzy neuron has the same basic structure as the artificial neuron shown in
Figure 12.1, except that some or all of its components and parameters may be
described through the mathematics of fuzzy logic. There are many possibili-
ties for fuzzification of an artificial neuron and hence one encounters a
variety of fuzzy neurons in the literature, all possessing interesting logic-ori
ented information processing properties. Figure 12.2 shows a fuzzy neuron
where the external input vector x = [x , x 2 ......r .s R' is defined over
the unit hypercube [0, 11' and is comprised of fuzzy signals bounded by
graded membership over the unit interval [0, 11.2 The external inputs, after
being modified by synaptic weights w 1 (also defined over the unit interval),
become dendritic inputs d 1 to the soma. Input modification may be done
through straightforward multiplication d11 = x 1w	 or taking the maximum
between input and weight d 1 x V WU (i.e., like an OR-gate).

The dendritie inputs are processed by an aggregation operator I that
selects the minimum ( A ) of the product (or max) modifications; for example,

Ii =d1 = A x,w 1	 (12.2-5)

W2J

-	 nplicity we will use xj instead of jui , and so on, when referring to fuzzy signals.
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This type of fuzzy neuron may be thought of as the implementation of fuzzy
conjunction (APIL)-gate). Generally, fuzzy neurons USC aggregation operators
such as min and max and more generally 2' norms and S norms instead of
summation as in equation (12,2-2).

As far as the meaning and purpose of neuronal flizzification goes, we can
say that each fuzzy neuron may he thought as the representation of a
linguistic value such as LOW, MEDIUM, and so on. 3 Hence the output of
the neuron y1 in Figure 12.2 could be associated with membership to some
linguistic value; that is, y1 expresses the degree to which the input pattern
[x 1 , x2,..., x,] T belongs to a given linguistic category . In other words, the
output y1 is a real value iii the interval [0, 11 indicating the degree to which
the applied external inputs are able to generate the given linguistic value.
The jth neuron after receiving it 	 [x 1 , x2	 ]T and producing an
output y1 call 	 convey this degree to the in	 1 other fuzzy
neurons in a network consisting of in neurons.

The synaptic operations, but most importantly the aggregation operator,
and the activation function determine the character of a fuzzy neuron. Using
different aggregation oprators and activation functions results in fuzzy
neurons with different properties. Thus, many different types of fuzzy neu-
rons call defined. Consider, for example, the following neurons (Kwan and
('al, 1994).

Max (OR) Fuzzy Neuron

A i aJizzy neuron is a neuron that uses an aggregation function that selects
the maximum ( V) of the dendritic inputs to the soma; that is,

Ii ='	 xw1	 (12.2-6), 

(A max fuzzy neuron is all 	 of a logical OR; hence we can also
Call this an OR ji1z2), neuron.')

Mm (AND) Fuzzy Neuron

A min fizzy neuron is a neuron that uses an aggregation function that selects
the minimum (A) of the dendritic inputs; that is,

Ii
it

 xu'	 (12.2-7)

3Actually fuzzy neurons may model iflfhen mics also, as we shall see later on.
4A special class of OR and AND fu7zY neurons that has been defined by Pediyc-z in terms of T
norms will be examined Iatcr in the chapter.
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(A Olin fuzzy neuron is an implementation of a logical AND; hence it can
also be called an AND Jhzzy neuron.)

In addition, one can define input fuzzy neurons such as the fan-in neurons
that we have seen in Chapter 7 whose purpose is simply to distribute input
signals to other neurons. An input fuzzy neuron is an element used in the
input layer of a fuzzy neural network, and it has only one input x such that

	

y = X	 (12.2-8)

In general, the weights, the activating threshold, and the output functions
which describe the interaction between fuzzy neurons could be adjusted via a
learning procedure resulting in neurons that are adaptive. The aim is, of
course, to synthesize fuzzy neural networks capable of learning from experi-
ence.

12.3 GENERALIZED FUZZY NEURON AND NETWORKS

Let us consider -I network consisting of in fuzzy neurons, cach
admitting n inputs. As noted in the previous section, fuzziness may he
introduced at the synaptic inputs (weights), the aggregation operation, and
the transfer function of individual neurons. Thus, fuzz y sets can he used to
describe various aspects of neuronal processing (Gupta and Knopf, 1992).
The following are conventions frequently encountered in fuzzy neural net-
works.

Synaptic Inputs. The input vector x = [x 17 - 2 ........ . E R to a fuz
neuron may be thought of as grades of membership to a fuzzy set. For
simplicity we do not employ the usual symbol for membership ().
Rather the individual inputs x, E [0, 11 are taken to represent fuzzy
signals bounded by a graded membership over the unit interval.

Dendritic Inputs. For each jth neuron in the network (j = 1, 2.... . in) the
dendritic inputs are also hounded by a graded membership over the
unit interval. Thus, if we let u C [0, 11 designate an element of a generic
universe of discourse [0. 11, we would use for defining fuzzy quantities
the dendritic inputs are fuzzy sets

d1 
=	

E [0,1]	 (12.3-1)

Aggregated Values. The output of the aggregation operator in each of the
in fuzzy neurons of the network can also he thought of as graded
membership over the unit interval. Thus we have

'U

I =

	

	 j ii 1 (u)/u.u e [0,1]	 (12.3-2)
j-1
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Neuron Output. Finally, thc output y1 of each of the in fuzzy neurons may
also be thought of as a grade of membership to a fuzzy set; that is,

=	
(u)/u,	 u E [0,1]	 (12.3-3)

The weighting function nU transforming an external input x into den-
di itic signal d 1 for the 1th fU77y neuron does not havc to he just a simple
gain. It can, in general, he a Jhzzy relation defined over the Cartesian product
w, = x d0 . Such a synaptic junction fuzzy, relation between the external
inputs x 1 and dcndritic inputs il, 1 may assume many forms, with the simplest
and actuall y the most common being d;j xw 1 . More generally, however,
the dendritic inputs d, 1 may he given by the composition x, iv, i of fuzzy
input signals and the weight relation; that is,

= .r, " w, ,,	 (12.3-4)

The concept of fuzz)' negation is used in order to produce both excitatoly and
in/tibitoiy inputs to a fuzzy neuron. 5 Consider a jth fuzzy neuron such as the
one shown in Figure 12.3. The synaptic outputs, d0 , ma y be modified to
produce e.rcitatori or inhibitory effects by defining a new variable S to
denote both excitatory and inhibitory inputs received by the soma, al a
nei1ation operation that modifies il, as follows:

d 1	 (for excitatory inputs)

	

(j	 •c)
(1 1	 (for inhibitory inputs)

wherc the inhibitory inputs are fuzzy complements of the czitatoiy inputs

1 - d 1	(.12.2.6)

Consider, for example, the fuzzy neuron shown in Figure 113. This neuron
receives four deiii.Jrirje iio(s:	 C1, 	 eL i . 1 he firsL two arc i
inputs sent to the aggregation operator just as they are, while the second two
are tnlabito,y inputs, which are complemented in a fuzzy sense :'cc-. ding to
equation (12.3-6). We graphically indicate the inhibitory signals by nail
(white) circles at the end of the corresponding arrows as shown in Figure

1ie the [0, 11 range, it is not povibte to use ncgotive values for
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W I

Figure 12.3 Excirotory cnd inhibtory cJendriic iripus too fuzzy neuron

12.3. Thus this neuron's aggregation operator 1, will agregatc the fo1lowiri
signals:

=

5 1J	 d
4	 2j

61,1	 d31	
(12.3-7- - 

The result of the aggregation will be subsequently modified by the function
to produce the neuron's output y1•

12.4 AGGREGATION AND ACTIVATION FUNCTIONS
IN FUZZY NEURONS

In a fuzzy neuron the aggregation operator I may he a T norm (see
Appendix) mathematically expressed as

= T 8,
11
	 (12,4-1)

Often, but not always, fuzzy neurons do not explicitly use a threshold;
thresho]ding may instead be contained within the choice of the activation
function. The activation function C1 ,, is a mapping operator that transforms
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the membership of the aggregate fuzzy , set 1, into the fuzzy set of the
neuronal response y1. In a sense, this mapping Operation corresponds to a
linguistic modifier such as VERY and MORE-OR-LESS (see Chapter 2). The
role of this modification is to enhance or diminish the degree to which the
external inputs give rise to the fuzzy value represented by the jth fuzzy
neuron, before becoming an external input to neighboring neurons. Thus, a
general expression of the response of the jth fuzzy neuron may be written as

= 1[j =	 (12.4-2)

where each dendritic input 	 is given by equations (12.3-5) and (12.3-6).
If the activation function is assumed to be it linear relationship with unit

slope (i.e., t'1 = I,), we have an interesting special case (we will see more of it
in the following sections), a simplified fuzzy neuron whose response call
Written as

yf =

tj

 

49	 ,	 (12.4-3)

The concepts of 1' norm and S norm (or •I conorm), originally used in the
field of probability theory, provide a means for generalizing and parametriz-
ing fuzzy set operations such as union and iiuerscctio,j as well as implication
operators, fuzzy infercncing, and fuzzy neurons (Dubois and Prade, 1980;
Gupta and Qi, 1991; Terano et al., 1992; Tcrano ci a]., 1994).

A 7 norm can he thought of as a circuit (gate) with two inputs ( x i. x2) and
one output T( 1 , x,), also written as xTu. The most widely used T norm is
the ruin; that is, T(x 1 , 12) = x 

1 A i, (hut also algebraic product, boon cd
product, and drastic product are all 1 norms; see Appendix).

An S norm can he thought of as a circuit with two inputs (x i , x) and one
Output 5(x 11 1 2), also written as x 1 S x 2 . A very common S norm is the
logical swn or max; that is, S(x 1 , 12) = 1 1 V .i (but also the algebraic sum,
bounded sum, and drastic Sum are sonic other S norms).

The relationship between F norms and S norms is given by fuzzy
De Moigan's laws, which may he written as

T(x1,x,) =	
( 12.4-4)

S(. 1 ,x2 ) =

where T is the T norm and S is the S norm and the bar ovr the rinbjh;indicates negation.
re: us consider the simplified fuzzy neuron, shown in Figure 12.4a, using

a linear transfer function and output given by equation (12.4-3). For simplic-
ity we assume that the dendritie inputs are directly received from the external
inputs ignoring any weight function modifications. This neuron can be



418	 FUZZY METHODS IN NEURL NETWORKS

XI

('xj, X2)

XI

(a)

yJ =S(x1x2)=T(i)

Figure 12.4 A simplified fuzzy neuron using T-norm aggregation and a linear transfer
function can perform both (a) T norm and (b) S norm operations on the signals
( X I , x2).

thought of as the realization of a T norm operation. With the aid of
equations (12.44), this simplified fuzzy neuron can be used to construct a
network of neurons, such as the one shown in Figure 12.4h, that realizes an S
norm. As indicated by the small circles in the left neuron of Figure 12.4b the
inputs are first negated in a fuzzy sense and then aggregated by a T-norm
aggregation. The output of this neuron is complemented again by the second
neuron, in accordance with equation (12.4-4). Thus the network of neurons in
Figure 12,4b is a realization of an S norm, made out of cascaded neurons
that individually use T norm for the aggregation operation.

12.5 AND AND OR FUZZY NEURONS

A special class of fuzzy neurons are the AND and OR neurons shown in
Figure 12.5. These neurons employ the T norm and S norm operations for
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(b)
Figure 12.5 (a) An AND fuiiy neuron and (b) an OR f . naJ:c'

farming dcndritic inputs to the sonia arid for 	 regat. ig thej;i (Pedrycz.,
1993, Rueda and Pedrycz, 1994; Pedrycz and Roch.i, 199T).

The AND neuron first uses equation (12.3-4) to poiforril an S norm or OR
operation between external input x and corresponding weight n ; that is,

= x i OR wij

Subsequently, it uses a .1 norm or AND operation 10 carry the foliowing
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aggregation of its dendritic inputs (assuming a linear activation function):

y1 = (x 1 OR w i ,) AND (x 2 OR w2 . ) AND	 AND (,, OR w,) (125-2)

It should he noted that AND and OR are generally realized by taking any T
norm and S norm—for example; logical product (mm), logical suni (max),
algebraic product, algebraic sum, and so on. In practice, however, the nun
and max interpretations are most commonly used.

The output of an AND neuron can succinctly be written using T norms
and S norms as

=	 (x S ) v,)	 (12.5-3)

The OR neuron, on the other hand, performs a complementary Computation:

	

Yj = S (x 1 Tw11 )	 ( 12.5-4)

Both the AND and OR neurons given above are intrinsically excitatory in
their behavior; that is, higher values for the x 1 's imply higher values for y . To
allow for inhibitory hehnviors of such AND or OR fuzzy neurons (and still
maintain the standard [0, 11 range of the grades of membership) we include
negated values of x, 1-1hat is, I - x 0 [as we have seen before in equation
(12.3-6)]—thus potentially doubling the size of the input vector. The AND
and OR neuron can now handle both inhibitory and excitatory behaviors,
depending on the numerical values of the connections.

Now let us look at some interesting boundary cases, say in the AND
neuron (Pedrycz, 1993). First, suppose that all the weights of a neuron equal
zero—that is, w1 , = 0. Then we should have x 1 S w11 = x (e. g .,x 1 S 0 = x1).
Second, if all the weights are unity, w, 1 = 1, we have x S I = 1; that is, the
input does not have any influence on the output. To deal with such extremes,
a bias term may be added as an additional term in (12.5-3) driven by a
constant input signal always equal to 0, say 0 S w, where wui denotes the
connections associated with this input. The AND neuron incorporating such
a bias is given by

yj =

	

T (xi Sw,)	 (12.5-5)

where, by convention, we put x 0 = 0. A similar bias term may be added to an
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OR neuron, making equation (12.5-4) look like

ti

5' (x i T w,1)	 (12.5-6)

In equations (12.5-5) and (12.5-6) we have assumed that the neuronal output
is produced immediately after aggregation; in other words, the activation
function used is linear. However, a nonlinear activation function such as a
sigrnoidal function may also be used.

12.6 MULTILAYER FUZZY NEURAL NETWORKS

The fuzzy neurons discussed in the previous Section can be put together to
construct more general computational structures with enhanced representa-
tional capabilities. While in Part H of the book we used networks composed
of identical neurons, the networks built out of fuzzy neurons are often
heterogeneous; that is, they are composed of neurons with different compu-
tational characteristics for example, AND or OR fuzzy lieu rnns—organi ed
into several layers (most commonly t ce).

Let us look at a three-layer neural nctwni k built out of AND and OR
neurons [originally proposed by Pedrycz (1993)]. Each la yer in the network is
constructed out of neurons of the same type (i.e., 

AA'D or OR only). A
hidden layer is used to enhance the representational capabilities of the entire
structure. III 126a the hidden layer is made tat of AND ncurodes,
while in Figure 12.6b the hidden layer has only OR :ieurc;ls. These arc
actually two different types of act-works: One uses AA -D neurons in the
hidden layer, with the output la yer consisting of a single 01? neuron, whereasthe other uses OR neurons in its hidden layer and a angle AiVD neuron inthe output layer. AS seen in Figure 12.6a, the first nevork has an input layer
clesting of 2n input neurodcs; both networks use direct signals and their
cora; ements, namely, x 1 , x,. ... .., ., ...... ,. Because the neurons of
t. Prst layer arc fan-in ncurodcs [see equation (12.2-8)1. (they simply
distribute the input signals to all the nodes of the hidden layer.

The hidden layer itself is coni g oscri of p AND ncuions, each One of them
sending to the output layer signal

Z, = AND(w1 , x),	 / = 1,2.....p	 (12.6.1)

The weight vector of connection, is',, captures informn:ution about the connec-
tions between the Itlt node of the hidden layer and the input nodes;; that is,

7I	
71

C1	 T (C, S u'1 ) T T (; .'	 (12.6-2)11	 r1
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Input Layer	 Hidden Layer	 Output Layer

(a)

Figure 12.6 Three-layer noworks with fuzzy (a) ANT) and (b) 0? nerons in the
hidden layer.

where I = 1 7 2.....p. The output layer consists of a single OR performing an
aggregation of z's:

y	 S ( z , Tue )	 (12.6-3)

If we put OR neurons in the hidden layer and an AND neuron at the output
layer (see Figure 12.6b, we perform a similar sequence of computations,
except we interchange T norm and S norm operations in equations (12.6-2)
and (12.6-3).
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Other network architectures are also possible. Consider, for example, the
homogeneous network shown in Figure 12.7. Here only T-norm aggregating
(AND) neurons are used to realize a network structure of three layers
emulating a system of ill fuzzy if/theiz rules, that is a fuzzy rule base,
receiving ii inputs and producing one output. The first layer consists of in
fuzzy neurons, with each neuron being a representation of an if/then rule.
As seen in Figure 12.7, the output of each fuzzy neuron in layer 1 becomes
an external input to a single OR neuron realized as cascaded AND neurons
(see Figure 12.4) comprising layers 2 and 3. This three-layered neural
network architecture can be used to simulate a Situation when ii fuzzy inputs
are applied to ill 	 inference rules (Gupta and Knopf, 1992).

12.7 LEARNING AND ADAPTATION IN FUZZY NEURAL NETWORKS

The process of learning in fuzzy neural networks consists of modifying their
paiameters by presenting them with examples of their past experience. How
can this he done in practice? Typically by adjusting the weights of the
networks so that a Certain performance index is optimized (maximized or
minimized). This requires that a collection of input—output pairs be specified
and also requires a performance index that expresses how well the network
maps inputs X k into the corresponding target values of the output t,

let us recall that an important difference between a crisp (nonf1177y)
neuron and a fuzzy neuron lies in the model of the synaptic connection.

Fiuo 123 A 'n neural network crchitectu' far 'a fue' es occepir- n inputs.
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Synaptic connections in a crisp neuron are linear gains multiplying inputs x1.

Any adaptation or learning occurring within an individual neuron involves
modifying the values of these gains by adjusting w0 . For a fuzzy neuron,
synaptic connections are represented as a two-dimensional fuzzy relation
between synaptic inputs and outputs. Hence, learning in fuzzy neurons, in the
most general case, involves changing a two-dimensional relation surface at
each synapse.

Consider one synaptic connection to the jth neuron as shown in Figure
12.8. For a given external input to this synapse at time k, x,(k), we want to
determine the corresponding fuzzy relation, w(k), such that we have mini-
mum error e(k) between the fuzzy neuron response and the desired target
response t1 (k). In order to achieve this, we can employ the following
adaptation rule to modify the fuzzy relation surface:

w,(k + 1) = w 1 (k) + w 1 (k)	 (12.7-1)

The term	 w11 (k) is the change in the fuzzy relation surface given as a
function F [] of the error e1 (k); that is,

w 1 (k) = F[e1 (k)]	 F[r(k) - y( k)]	 (12.7-2)

In multilayer networks, learning involves matching tk (up to some error) with
the output of the entire network y. For this purpose, a distance function—for
example, Euclidean distance between y and 'k—may he used. Then a
performance index Q (a global error term to he minimized) may be defined
as follows

Q =	 [y(x) -.	 (12.7-3)

Figure 12.8 Learning at the level or the indlMdual neuron.



LEARNING AND ADAPTATION IN FUZZY NEURAL NETWORKS 	 425

Q in Equation (12.7-3) reflects quantitatively the state of the networks
learning process. Optimization includes all the weights of the network be-
tween the input layer and the hidden layer as well as between the hidden
layer and the output layer. The simplest update scheme is that in which the
modifications are driven by a gradient of thc performance index taken with
respect to the connections tlicniselvcs (see Chapter 8). The learning formula
can be expressed as

0 Q	A(conticctions) = -	 -	 (12.7-4)
d (connections)

where 11 denotes a learning factor, zj c: (0, 1). Detailed computations can be
performed once the performance index Q and a parametric description of
the network have been defined, as is done in the example that follows.

Example 12,1. Learning and Adaptation in AND/OROR Neurons. Given a
three-layer network having a hidden layer of AND neurons and output with
an OR fuzzy net run (as shown in Figure 12.6a) and an error based on sum of
squared errors, we want to derive an on-line learning algorithm for modifying
its weights. The netwoik's iewons use algebraic suni for the S norm and use
product for the 1' itotni [see Appendix and Pcdiycz (1993)].

A single pair of input—output data involves x and t. For the hidden layer
(see Figure 12.60 we have the following intermediate outputs hased on
equation (126-2):

	

-	 Fl

T (x S lt,) T T ( S	 (P12.1-i)
il

Whil e the output layer gives [according to equation (12.6-3)]

(z Tv)	 (E12.1-2)

\ heic p ft rts the W: ncnn of the hidden layer. In order to adjust the
;eights, 'c LilUcrenIlate die performance (error) function of (12.7-3) with
respect to hidden layer weights, that is,

OQ	 di•)	 Oy	 2[y(x) - r] 8y- -	 =	 ,	 It = 1,2.....p,	 j = 1,2,.,., 2,zOw,, 1	'	 8 a,

(El 2.1-3)

and then v Jffefe pt i : W . the error function with respect to the inlennediate

6Sincc we cteelp an ull- I illo leamilig vcion whcie each pair (x,	 ) immediate IN, at Cii the
f the )Ctc1k]	 I-c iid.x k dcicti' the ciCinent ii theii	 set	 an

dropped.
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weights (we use the letter o for those);

8Q	 2[. y(x) - t] 0y
- =	 ,	 Ii	 1,2,...,p	 (E12.1-4)

Now we have that

=
T (zh Tvh )] -	 [ A S (z 1 TV1 )]	 (E12.1-5)

8 v1 ,	 8th /, I 1

P

where A is a shorthand notation defined as A	 S (z 5 S v1,);
h1

Since we use algebraic sum and product for the T norm and S norm, we
have

8
= [A + v1 z 1 - Az,] = z(1 - A)	 (E12.1-6)

8 V1

[A S (z h TVh )] [A S z,,V, = A + Z 1,V1, Az h nh (E12.1-7)

llcncc we can compute that the output change with respect to input weights
is given by the following expression:

p	 (ly
=	 --	 (P12.1-8)

8w111	 h	 8z1,

The above sum reduces to single component, since onl y one term contrihutcs
that is,

0z.
	= 0,	 V/i	 (E12.1-9)

8w1211

Hence, we obtain

8)?	 .	 1	 8	 8

dzm
= -h--- S (z 1 TV,) = 1-I BS (z h , ii.,,)] =

I	 j,	 .-,,(	 C

ci
= —[B + z,eh / B:hl n,,,] = 

- ôy 8z11,

ôw, 1 - (lZh (9w121

ôy	 p

B),	 B=S(v1Sz11)

=,,,	
(w	 - x - w 12 ,x 1 ) f (w,,,1	 > +	 -

(E12.1-10)
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Thus we can write

	

C1(1 - x1 ),	 if <
=	 (E12.1-11)

(JWhj	 C,(1 - i,),	 if > it

where C 1 and C 2 stand for the product terms in (E12.1-10), not including x1

Or its complement.
If we use nondifferentiable T norm and S norm such as minimum and

maximum, the derivatives must he judiciously defined since they can severely
affect the learning algorithm as we saw in Chapter 8. For example, the
derivative of (x A iv) with respect to iv is

A w)	 11,	 if .v	 iv	 (1il2.l-1)
div	 0, if x < w

This type of "on—off' weight updates call be affected, however, by
peculiarities in the connections and the data cncountcrcd during learning.
One possibility for ameliorating this problem is to replace the above two-val-
ued situation, that is, 0 or 1 in equation 0312.1-12), by some smooth,
although very similar, function; for example, (Pcdr'cz, 1993)

+ w)	 \/iR)2+ 52 1 	 (for minimum)

	

[x + TV) + \/ iv)±6 -
	

(fur maximum)

where the paranlctcr 5 is typically -I 	 positive constant (about 0.05). II

Example 12.2 Steering Contrul for an Automobile. Let US 1(10k at all
 of an automatic steering control mechanism (Macda and Murakani, 1989;

Sugcno and Nishida, 1955) and its equivalent fuzzy neural network architec-
ture (Gupta, 1994) (Gupta and Knopf, 1992)

The controller is based on a driver's ability to manipulate both the poitiuIi
and direction of a moving automobileoji a straight highway (assumed for
simplicity to travel down the middle of the roar!). The approximate position
and direction for the vehicle with respect to the road edge is used, and hence
position-from-/eJt-sidc jiosirion-fwin -right-side, direction-angle and chan5'e-in -
direction-angle will be fuzzy variables. The output of the controller is another
fuzzy variable, namel y, the stccring-oeg!c by which the steeiing wheel should
he turned (Gupta and Knopf, 1992). Figuie 12.9 shows the position and
dirction variables employed in modeling the situation.

The steering control rules Consist of two rule bases. The first rule base,
called the positioning algorithm, involves a linguistic description that posi-
tions the vehicle in the middle of the road, and the second, called the
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,
L.k..

VE +V.E	 OUTPLT

Figure 12,9 Th e, position and direction fuziy, \'aiabos in the acmoto steering
control problem a re left and right dsances from road sde, position, and steerng
wheel angles.

direction algorithm, involves rules to ensure that the vehicle is parallel to the
edge of the road.

We can writewrite the 16 rules of the positioning algorithm succinctly as

if position-from-left-side is 14 AND position -from -right-side is R

then steering-angle is O, V j = 1,..., 16

(E12.2-1)

The direction algorithm has nine rules that can be succinctly written as

if direction-angle isAND change-in-direction-angle is1	
(E12.2-2)

then steering angle is 0,1, V j	 1,..., 9
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where L, R,	 ,	 and	 are linguistic values for the jth i ule and k is
the time index. These fuzzy sets are defined as follosss:

Lk , R 5

	

	 Fuzzy values describing the approximate distances between the
road edge and the vehicle (R, right; L, left)

cik

	

	 Fuzzy values descrLbing the angle and change in angie for the
direction of the vehicle with respect to centerline

0k	 Fuzzy value for the output steering angle at time k

The linguistic labels of these values are as follows:

ZE
	

Approximately zero
S
	

Small
Af
	

Medium
L
	

Large
P
	

Positive
N
	

Negative
PS
	

Positive small
111W
	

Positive medium
I,'-.	 Positive large
NS
	

Negative small
NAf
	

Ne g ative medium
NL
	

Negative large

The membeiship functions for the input and output fu7zy sets are shown in
Figure 12.10.

Each rule in the fuzzy positioning and direction algorithms above may he
represented by a single fuzzy neuron, and the collection of rules in its
entirety by a neural network. hence, for the automatic steering control
mechanism the control rules are represented as the network of fuzzy neurons
shown in Figure 12.11.

The outputs from the neurons of the first la yer in Figure 12.11 become the
inputs to one of the two neurons located in the second la yer. To obtain the
collective decision from either the position or direction control rules we
require each neuron in the second layer to perform an S-norm operation.
This is achieved by defining the inputs to both neurons as inhibitory. The
expression for the position control neuron is

=	 [N( ok)]	 (E 12.2-3)

and the expression for the direction control neuron is

[v(e,	 (E12.2-41)
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U', R (cm)

rol
	

60	 , (deg)

I Igiro 12.10 Fuzzy vduesforinput--;uput varLbles,

•	 puls from both fii77.y neurons arc then transmitted to a single neuron
hi a third layer as shown in Figure 12.11, producing the following

Y3 = 7'(y1, y2)	 (E12.2-5)
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.2

Layer I	 Loi'r 2	 layer 3	 leer 4

Figure 12.11 FuzzV-nouroI notwo rpresentation of automobile stearirg ccmtroor.

Finally the response of this neuron in the third layer becomes an inhibitory
input of a neuron situated in the fourth la yer, giving

	

=	 (1712.2-6)

Y4 is generally a fuzzy set, hence the final decision is reached through a
defuzzifiecl version of the fuzzy membership function representing y4 . U

2.8 FUZZY ARTMAP

In Chapter 9, we briefly discussed the features of adaptive resonance theory
neural networks (ART) with emphasis on its unique ability to create new
categories of arbitrary accuracy to accommodate inputs that did not fit into
the existing categories. With ' the introduction of fuzzy concepts, Fuzzy
ARTMAP (the MAP refers to mapping inputs to outputs), a synthesis of
ART-i and fuzzy logic, capable of accepting either analog or binary inputs,
was developed by Carpenter and Grossherg (1994). Furthermore, it is able to
deal with nonstationary time series as inputs.
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Fuzzy ARTMAP is a self-organizing architecture that is capable of rapidly
learning to recognize, test hypotheses about, and predict the consequences of
virtually any input. (There is no ambiguity about the initial configuration
since the network literally grows from scratch.) It Involves a combination of
neural and fuzzy operations that together give these useful capabilities. Like
other versions of ART, its use is almost exclusively for classification, and it
has only one user-selectable parameter (vigilance) which determines the
fineness or coarseness of the patterns into which the inputs are fitted. It can
learn virtually every training pattern in a few training iterations in an
unsupervised mode. Yet, it can use predictive disconfirmations to supervise
learning of categories that fit the statistics of patterns being categorized.

Fuzzy ARTMAP operates by autonomously determining how much com-
pression or generalization is needed for each input category to fit the
categories of choice. The more general categories have more fuzziness in the
feature values that are accepted by the specific category. The acceptable
range (or fuzziness) of a particular category is learned through a series of
iterations that involve the use of fuzzy logic operators. The fuzzy AND (mm)
and OR (max) operators are used to define the range of values that are
tolerated by a category for each linguistic variable or feature. The member-
ship functions over the range from 0 to 1 (discussed in Chapters 2 through 5)
directly relevant to this determination of the acceptability of an input pattern
in a particular category. The nun operator helps define features that are
"critically present," whereas the max operator helps define features that arc
"critically absent." The ruin operator can he realized by nodes that are turned
on by an external input, whereas the max operator is realized by nodes that
are turned off by an external input. Thus the min and max operators can be
introduced at appropriate positions in the neural network by externally
controlled on—off switches. The category that best matches an input pattern
is chosen by the operation of fuzzy subsethood. Fuzzy logic provides a
method by which fuzzy ARTMAP adaptively categorizes analog, as well as
binar y, i nput patterns. Hence fuzzy ARTMAP can autonomously learn,
recogn , and make rare events, large nonstationaiy databases, morphologi-
cal vari:•:de types of events, and many-to-one and one-to-many relationships.
These f Mures and many 

other details of fuzzy ARTMAP are discussed
extensiv y by Carpenter and Grossberg (1994).

Althc h fuzzy ARTMAP has proven itself as a supervised incremental
learnin stem in pattern recognition and M- to N-dimensional mappings by
compark m with other techniques, a simplified fuzzy ARTMAP (Kasuba,
1993) has been introduced. It reduces the computational overhead and
architectural redundancy of fuzzy ARTMAP with no loss of pattern-recogniz
ing capability. This description follows that of Kasuba (1993).

Normally, when backpropagation neural networks are used for pattern
classification, a single output node is assigned to each category of objects that
the net-work is expected to recognize. The creation of these categories are left
up to network in both fuzzy ARTMAP and its simplified derivative. Figure
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Raw input Pattern of Size d

Figure 12.12 SmpIifod fuzzy APTMAt' struct'.jro.

12.12 shows the structure of the simplified fuzzy ARTMAP to be a two-layer
network (input and output category layers) with connection weights, shows a
category la yer to interpret the results of output layer, and shows a "Comple-
ment coder" to preprocess the raw input data. This complement coder"
normalizes the input and stretches it to twice its original size to help the
network form its decision regions. The vigilance feature (0 to 1) determines
the fineness of the categories and thus determines the number of categories
to be created.

The expanded input (I) from the "complement coder" then flows to the
input layer. Weights (w) from each of the output category nodes hold the
names of the M number of categories that the network has to learn. Since a
single output node can only encode a single category, it can only point to a
single position in the category layer. Category input is only supplied to the
category layer during the supervised training. The "match tracker" portion of
the network lets it self-adjust its vi gilance during learning from the level set
by the user in response to errors in classification (luring training, thereby
controlling the creation of new categories.

Complement coding is an input normalization process that represents the
presence or absence of a particular feature vector 8 with d components in

7tcI7
ng
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the input. Its complement 5 = 1 - a is valid since a has a value between C
and 1. Therefore the complement-coded input vector I is given by the
2t1-dimensional vector

I = [a, 1i) = [a1,a2 .... . a 1 1 11 721 ... . 71 d]	 (12.8-1)

For instance, the three-dimensional vector (0.2, 0.8, 0.4) is transformed into
the six-dimensional vector (0.2, 0.8, 0.4, 0.8, 0.2, 0.6) through complement cod-
ing. This process automatically normalized the input vectors, indicating that
the norm of any vector is just the sum of all elements in the vector. Hence,
the sum of the elements of a complement-coded vector is equal to the
dimensionality of the oiiginal non-complement-coded input vector.

When this network is presented with an input pattern, all output nodes
become active to some degree. This output activation is denoted by T for the
jth output node and its weights wp The function to produce this activation is
given by

1 A w
T(I) =

jJ	

(12.8-2)

where a is a small value near zero, usually about 0.0000001. The winning
output node is the node with the highest activation; that is, the winner is
max I. Hence, the category associated with the winning output node is the
network's classification of the current input pattern.

The match function is used to compare the complement-coded input
features and a particular output node's weight to help determine if learning
has occurred. It calculates the degree to which I is a fuzzy subset of ss—tlint
IS, whether the match function value indicates that the current input is a
good enough match or whether a new output category should be generated.
If this match function is greater than the vigilance function, the network is
said to he in a state of resonance A mismatch occurs if the match function
value is less than the vigilance, indicating that the current output node does
not meet the encoding granularity of the vigilance. Once a winning output
node j has been selected to learn a particular input pattern I, the top-down
vcctor w1 from the output node is updated. The simplified fuzzy ARTMAP
ne eral network is a general-purpose classifier with top-down weight's deci-
sion-making facilities so transparent that its classification rules can literally
he read out of the nct',,ork. It can be compared to a self-learning expert
System in that it learns from example.

2.9 FUZZY-NEURAL Y3RID DATA REPRESENTATION

During the last few years there has been a large and energetic upswing in
research efforts aimed at synthesizing fuzzy logic with neural networks.
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Neural networks possess advantages in the areas of learning, classification,
and optimization, whereas fuzzy logic has advantages in areas such as
reasoning on a high (semantic or linguistic) level. The two technologies nicely
complement each other, and a number of synergisms have been proposed

[,see Bezdek (1995) and Saleeni (1994)1. In addition to the fuzzy neurons and
networks we have seen, several applications have focused on utilizing and
processing fuzzy inputs and outputs in conjunction with conventional net-
works (Travis and Tsoukalas, 1994; Werbos, 1992). An additional variation is
using fuzzy logic to control crisp neural network processes. Let us take a look

at some of these.

Fuzzy Representations of Variables that are Inputs and Outputs
of Neural Networks
Sometimes dealing with all possible outputs of a neural network requires a
large number of neurons, thereby increasing the complexity and training
time. For instance, if we consider the temperatures between freezing boiling
of water, even on the centigrade scale, there would be 100 integral values.
The number can he reduced by grouping these 100 values into groups of 10
successive values and representing each group of 10 values with a single value
(e.g., the 10 values in the range 210 to 30° could be represented by 15°).
Hence, the scale would become 50, 150, 25°. 35 .....95t Such groupings lead
us to considering fuzzy or linguistic representation of the variable, where 0°
to 10° might he "extremely cold," 10' to 20° might he "very cold," 20° to 30°
might be "cold," 30' to 400 might he 'slightly cold,' and SO on. If one views
these temperatures from the standpoint of human comfort, as opposed to the
distance along a scale between the freezing and boiling point of water, a
nonuniform distribution with fewer values might be more appropriate—that

is, 00 to 153, 160 to 20°, 21° to 23°, 24° to 30°, and 31° to 100 3 . In linc.uistic

terms, these ranges might he designated too cold, cold, comfortable, hot, and

too hot. Generally, the sequence of events that are involved in utilizing fuzzy

data in neural networks is as follows:

1. Crisp (or fuzzy ) data are converted into membership functions or sets.

2. These memberships or sets are then subject to fuzzy logic operations.

3. The resultant sets are then defuzzified into crisp data that are pre-
sented to the neural network.

4. The neural network may also have their direct inputs that are crisp and
do not need the fuzzy processing.

5. The output of the neural network is a crisp set that utilizes a member-
ship function to convert it into a fuzzy variable.

6. This fuzzy output is then operated on fuzzy logic.

7. The fuzzy logic output is then defuzzified to produce a crisp output.
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Fuzzy "One-of-n" Coding of Neural Network Inputs

Typically, an input variable is represented by a single input node in the
neural network. When an input variable has a special relationship with other
variables over only a small portion of its range, the training process of the
neural network is made especially difficult. Sometimes a nonlinear transfor-
mation is used to emphasize the particular region, but this is usually not a
satisfactory process. The difficulty can be overcome by providing the neural
network with neurons that focus on one region of the variables' domain. The
domain is divided into n regions (where n is typically 3, 5, or 7), and each is
assigned a fuzzy set having a triangular membership function. (Of course, the
lowest and highest sets have horizontal extensions starting at the minimum
and maximum expected values, respectively.) The membership value in each
fuzzy set determines the activation level of its associated input neuron. This
"one-of-n" coding expands the range of the variable into i t network inputs,
each covering a fraction of the domain. While the resulting specialization
often facilitates learning, the increase in the number of neurons tends to slow
down learning. This technique is advantageous only when the importance of
the variable changes significantly across its domain,

There is a tendency to want more measurements of imprecise (Or linguis-
tic) data in older to compensate for lack of precision. Let us consider the
case of two time signals that are to be sampled, digitized, and fast-Fourier.
transformed so that one fast Fourier transform (F F1) is the input to a neural
network and the other one is the desired output. If we have 100,000
simultaneously sampled data points for each variable and are dealing with
spectra that have 128 points each (and another 128 points in the negative
fm':quenv rctngc), dividing 100,000 points by 256 points per spectrum gives
3o) complete spectra for each evaluation. The traditional approach with such
FVFs is to average the 390 spectra to obtain an average spectrum with a high
degree of confidence for each variable and to apply these two spectra to the
neural nPvork for training. A much better alternative would be to train the
neural network using each of the 390 individual spectra, even though each of
them is much less precise and would he considered "noisy" or perhaps
"fuzzy." Subjecting the 128 components of the input and desired output
vectors to " o rie-ofn" coding in the manner described above is another
alternative that should be considered

Fuzzy Postprocoing of Neural Network Outputs
A neural network cal l

 trained to produce the desired final product, but
there are often advantages to (raining the network to present intermediate
values with postprocessing to obtain the desired results. The advantages are
that the neural network may be easier to train and that the necessity for
retraining if other outputs are desired can be avoided. An example of such a
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postprocessor might be control of the electrical output of a gas-fired plant
when there is Competition for the gas with residential users and industrial
users, both of which have a higher priority for the gas. A neural network with
such inputs as current air temperature and at several earlier times and at
several locations, overall demand for industrial products now and at several
earlier times, the competitiveness of the products, plant efficiencies as a
function of power output, and so on, could be trained to predict the available
gas. However, intermediate values such as future temperatures at several
locations and future industrial output may be more appropriate since they
can reasonably he obtained using art neural network. However, the
relationship between the availability of gas and the intermediate network
outputs are fuzzy and should be treated as such.

Fuzzy Control of Backpropagation Learning

Numerous methods of speeding up the learning in back-propagation neural
networks have been attempted with varying degrees of success. One of the
most common methods have been to adjust the learning rate during the
training using an adaptive method that satisfies sonic index of performance.
(The dclta-bar-clelta'' training procedure is such a method.) Wang and
Menclel (Wang. 1994) (Wang and Mendel, 1992) have shown that fuzzy
systems may he viewed as a laverd feedfoivard network and have developed
a hackpropagation algorithm for training this form of fuzzy system to match
the input and desired output pairs of patterns or variables. Ilaykin (199 4 ) has
described a method in which an on-line fuzzy logic controller is used to adapt
the learning parameters of a multilayer perceptron with backpropagation
learning. The system uses the classical four-step fuzzy control process of
(1) scaling and fuzzification of the crisp input, (2) development of a fuzzy rule
base, (3) fuzzy inference using the fuzzy rule base, and (4) rescahing and
clefuzzifieation to give a crisp result or recommended action. The idea is to
implement heuristics in the form of fuzzy if/then rules that are used for the

PU U POS C of achieving a faster rate of convergence. The heuristics (as is
the case of almost all supervised training) are based on the behavior of the
instantaneous sum of squared errors.

1210 SURVEY OF ENGINEERING APPLICATIONS

Fuzzy neural networks aspiring to integrate neural learnin g with the knowl-
edge representation capabilities of fuzzy systems have been actively investi-
gated in recent years. A growing number of researchers in a number of fields
have proposed and tested several types of fuzzy neurons. By far the greatest
number has turned to the rather simple AND and OR neurons of Section
12.5 in building fuzzy neural networks. The networks are typically heteroge-
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neous in order to best reflect the logic of a given problem. The layers and
nodes of such fuzzy neural networks can he interpreted as a realization of
fuzzy if/then rules.

Pcdrycz and Rocha (1993) introduced a number of ncurofuzzy models,
using logic operators (AND, OR, NO]) encountered in the theory of fuzzy
sets superimposed in neural structures. Aggregation neurons (AND and OR
neurons) and referential neurons (for matching, dominance, inclusion) were
designed using T norms and S norms and inhibitory and excitatory character-
istics captured by embodying direct and complemented (negated) input
signals. The researchers have proposed a number of topologies of neural
networks put together with the use of these neurons and demonstrated
straightforward relationships between the problem specificity and the result-
ing architecture of the network (Pedrycz, 1993).

Hirota and Pedrycz (1993a) have also proposed a distributed computa-
tional structure called knowledge-based network that allows for an explicit
representation of domain classification knowledge. The knowledge-based
network is composed of basic AND and OR neurons and has been used in
pattern classification problems, Logic-based neurons have also been investi-
gated in conjunction with new architectural aspects of fuzzy neural networks,
including those aimed at representing and processing uncertainty associated
with the input data (Pedrycz, 1993). Hybrids such as, for example, a multi-
variable hierarchical controller for all robot manipula-
tor for control tracking problems implemented as a fuzzy-neural network,
whose purpose is to select activation levels for local regulators implemented
as PD controllers, have also been developed and anal yzed (Rueda and
Pcdrycz, 1994). Lin and Song (1994) have proposed a similar three-layer fuzzy
neural network with different types of fuzzy neurons.

The terms fuzzy-neural or neurofi4zzy networks very often in the literature
refer to hybrid combinations of fuzzy logic and neural tools—for example,
giving fuzzy inputs to a crisp network and extracting fuzzy outputs as well.
Recently, Srinivasan (1994) has reported on a forecasting approach using
fuzz-1.7  iaputs to a neural network, in electric load forecasting problems.
Expert knowledge represented by fuzzy rules is used for preprocessing input
data f'i to a neural network. The method effectively deals with trends and
special o:cnts that occur annually. The fuzzy-neural network was trained on
real data from a power system and evaluated for forecasting next-day load
profiles :.ased oil weather data and other parameters and according
to the rcccarchers't-is demonstrated very good performance.

A fuzzy-neural notwork approach developed by Cooley, Zhang, and Chen
(1994) utilizes a hybrid consisting of a parameter-computing network, a
converting layer, and a hackpropagat ion -based one for classification prob-
len-ms with complex feature sets. The approach has been applied to satellite
9 'ge classification and lithology determination. Lee and Wang (1994) have

proposcd a neural network for classification problems with fuzzy inputs.
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A fuzzy input is represented as an LR-typc fuzzy Set, and the network
structure is automatically generated with the number of hidden nodes deter-
mined by the overlapping degree of training instances. Two sample problems,
heart disease and knowledge-based evaluator, have been addressed by the
researches to illustrate the working of the model. Sharpe et al. (1994) have
also presented a hybrid method using fuzzy logic techniques to adapt a
conventional network configuration criteria.

In another interesting hybrid applicdtion, fuzzy logic has been used by Ilu
and Hertz (1994) for controlling the learning processes of neural networks.
Since the convergence of niultilaycr feedforvard neural networks using the
hackpropagation training algorithm may he slow and uncertain due to the
iterative nature of the dynamic process of finding the weight mati ices with
static control naraineters, I lu and Hertz use a fuzz y logic controller during
the course of training to adjust the learnin g rate dynamically according to the
output error of a neuron and a set of heuristic rules. Comparative tests
reported by the investigators have showed that such fuzzy hackpropagation
algorithms stabilized the training processes of these neural networks and,
produced two to three tii.ies more converged tests than the conventional
hack-propagation algorithms. Kuo (1993) has also reported a new learning
scheme which integrates the standard backpropagation learning algor:thm
and fuzzy rules, which are able to dynamically adjust the learning rate,
momentum, and steepness of activation function.

A fuzzification layer to a conventional fecdforward neural netwolk has
been added by Zhang and Morris (1994a, h) for on-line process fault diagno-
sis. The fu7ziiication la yer converts the increment in each on-line measure-
ment and controller output into three fuzzy sets: "INCREASE," 'S!LADY,"

and "DECREASE," with corresponding membership functions. The feedlor-
ward neural network then classifies abnormalities, represented by fuzzy
increments in on-line measurements and controller outputs, into various
categories.

Kwan and Cai (1994) have defined four types of fuzzy neurons similar to
those we have seen in Section 12,2, and they have proposed a structure of a
four-layer feedforwarcl fuzzy neural network and its associated learning
algorithm. The proposed four-la yer fuzzy neural network performs well u-i
several pattern recognition problems. In a biotechnology application, a five-
layer fuzzy neural network was developed for the control of fed-hatch
cultivation of recombinant Esclierichia (Ye et al.. 1994).

Karayiannis and Pai (1994) have developed a family of fuzzy algorithms for
learning vector quantization and introduced feedforward neural networks
inherently capable of fuzzy classification of rtonsparsc or overlapping pattern
classes. On the other hand, a three-layer radial basis function (RUF) network
has been developed by H-algamuge et a]. (1994 to extract rules and to
identify the necessary membership functions of the inputs for a fuzzy classifi-
cation system.
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PROELEMS

1. Explain the assumptions made and describe the forms of the dendritic
inpnt, the aggregation operator, and the activation rUflCtlOrl in the
perceptron [Uq. (12.2-4)].

2. l3csidcs summation, how else could the dcndritic inputs to a neuron be
as'grcgatcd? List at least three operators that could he used for aggrega-
I ion.

3. Assuming a [0, 11 range for the input values to the fuzzy neuron shown in
Figure 12.2, show that the output will dso be in the [0, 11 range. What
happens to the output of the synaptic modifications are made through a
max operator or any other S norm? Can the same be said when the
synaptic modification is done through a T norm?

4. Explain why and how a bias term may be incorporated in the fuzzy
neurons described by Equations (12.5-3) and (12.5-4).
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5. Consider a fuzzy neuron having as input the fuzzy set A = 0.5/1 +
1.0/2 + 0.5/3 and a weight fuzzy relation given by

= 0.33/( 5) + 0.5/(2,6) + 0,57(2,7) + 0.5/(2,8) + 0.33/(2.9)

+ 0.33/(3.5) + 0.67/(3, 6) ± 1.0/(3,7) + 0.67/(3, 8) ± O.33/(3,9)

± 0.33/(4, 5) ± 0.5/(4,6) + 0.5/(4, 7) ± 0.51(4, 8) + 0.33/(4, 9)

What is the dendritic input to the neuron's soma? State all assumptions
dc a rl'.

6. How can excitatory and inhibitory inputs be taken into account in tc
fuzzy neuron described in Problem 5?

7. Consider a three-layer fuzzy neural network having AND neurons in Oie
hidden layer as shown in Figure 12.6a. Show that the network's output is
given by Equation (12.6-3). Suppose next that the net\sork has OR
neurons in the middle layer as shown in Figure 126b. What is its output?

8. For the three-layer nework of Figure 116o using probabilistic sum for S
flOi in and product for the T norm, show that the rate of output change
with respect to input weights is given b y Equation W12.1-7).

9. Derive an expr:ssion for the rate of output change with respect to input
weights iii Problem S when min and max are used for I norm and S
norm, respectively.

10. Develop it fuzzy-neural network reprcsentation similar to the one shown
in Figure 12.11 for the fuzzy algorithm described in Example 6.3 (rules
given in (E6.3-1)).


