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Linguistic Output
COLD, WARM... HOT

Fuzzy Output
Cortex	
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Figure 13.1 Sensory pathways take neuronal signals from temperature receptors in
the skin through the spinal cord and the lower brain to the cerebral cortex, whore they
are ultimately transformed into linguistic categories. Fuzzy-neural hybrids are inspired
by such biological-cognitive synergisms.
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(the upper part of the brain). In the cerebral cortex, ultimately these
temperature sensations get fused and expressed linguistically. Thus, a person
may "know" that the temperature in the room is COLD or WARM oi HOT,
all linguistic (fuzzy) categorizations of the sensation of temperature. 2 This
knowledge becomes a basis for human decisions and actions such as, for
example, turning off the air-conditioning or a heating system. By analogy, we
can train a neural network to cluster and map a set of temperature measure-
ments from the ambience to a set of fuzzy values as shown in Figure 13.1. Of
course, compared to the complexities and intricacies of the biological-cogni-
tive system responsible for the sensation of temperature, our fuzzy-neural
analog is at best very naive.

In this chapter we bring neural methods into fuzzy systems, both for the
purpose of identifying (extracting) rules and membership functions and for
adaptation of a fuzzy system (or linguistic description) to a changing physical
systctn and its environment. The approach is known in the literature as
neural-network-driven fuzzy reasoning (Takagi, 1992). For both expert knowl-
edge elicitation and adaptation, the underlying strategy is, in essence, to
identify ceilain parameters of fuzz' 3ySrelnS and use neural networks to induce
and/or adjust them. Generally a fuzzy linguistic description of the kind we
examined in Chaptes 5 and 6 is computationally identical to a neural net, a
fact theoretically proven by Buckley and Hayashi (1993), who demonstrated
that neural nets can approximate continuous fuzzy controllers (and eon-
vcrselv) to any degree of accuracy.

Adaptation concerns the maintenance of a fuzzy linguistic description on
the face of a changing process. The salient questions here have to do with
how to adjust, over time, either the rules or what is involved vthin the rules,
in order to better reflect changes in the actual physical system and its
environment. Adaptation relates to the issue of learning. An adaptive system
(that is, an adaptir;e astern description) is one that can learn about the
changes in the physical (target) system and modify its internals to improve
the correspondence between the physical system and itself and/or its envi-
ronment.

13.2 FUZZY-NEURAL HYBRIDS

In an abstract manner, a system can be viewed as shown in Figure 13.2a, a
relation between inputs and outputs (where the relation is not necessarily a
function, but a more general relation sach as a many-to-many mapping). In
Figure 13.2b and 13.2c we have two idealized extremes where either (I) we
know exactl y how the system should be working but have no example of its

21t is iiocresting to note that at a skin temperature of about 33 CC (91.4'F) we are usually
unawarO of any temperature sensation. Raising or lovering skin temperatiirc above this neutral
Point prnd-2ccs a sensation of wansling or 020/log.
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'tull)fl (a systems logic) or the

chosen.
input-output behavior of a system is known, fuiiy	

It flirol modeling tools may be

input—output behavior (see Figure 13.2b) o its input—output
behavior but know nothing of the system's intcl 

't.tl (i.e., we have a black box)
(sec Figure 13.2c).

In the first case, it is convenient to WI itL' 
itI /.ry if/then rules, at theappropriate level of precision, to describe (or 

l ht -'Seribc) system behavior. In
the second case, it is convenient to use the tV%j1 input—output data to
train artificial neural networks to model th' 

il iternals of the system. Of
course, in real-world systems we may have titit examples of a system's
input—output behavior and some knowledge ni What is inside the black (or



-V

FUZZY-NEURAL HYBRIDS 	 449

better yet "gray") box. Hence, we may utilize various hybrids of neural and
fuzzy tools to successfully model the system. In the final analysis, however,
our choice is made not by a commitment to a particular tool but a desire to
adequately model the system at hand in a timely, rcliable, and cost-effective
manner.

The great array of system conditions that may be encountered calls for a
variety of series and parallel combinations of fuzzy and neural systems.
Consider the arrangement shown in Figure 13.3 which provides a means of
inspecting and testing physically damaged components. Here a neural net-
work is trained to receive three measurements as inputs (electrical and visual
data from an automated test station testing electronic components for the
Purpose of eliminating physical defects (O'inca, 1994)). The input is mapped
to two numerical values that serve as input to a fuzzy algorithm. The output
of the neural module indicates the degree of a component's physical damage
(a number between 0 and 1) and the Signal-to-noise ratio (a number between 0
and 30). These two features are subsequently fed as inputs into a fuzzy
system where fuzzy variables map signal-to-noise ratio and physical damage
information to the quality of the component. The output of the fuzzy system
is an action (decision) to accept or reject the component.

1he benefits in using hybrid combinations of neural and fuzzy systems
such as the one shown in Figure 13.3 are clue to the fact that numerical
measurements may actually provide too much detail to be effectivel y used

lie	 fe,tkr.s	 .4ctio1

Figuro 13.3 A hybrid system invoMng a neural nelwat< in se'es win-i a fui.j rysfernwhere 1-000Suremenls Oct mapped to features servino as inputs to the fuzzy system.
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on-line (in addition to noise and other problems). Hence, neural filtering,
smoothing, and mapping of numerical measurements to a feature space (e.g.,
physical damage and signal-to-noise ratio) may facilitate quick action by a
fuzzy controller. Of course the arrangement can be reversed; that is, fuzzy
processing can precede the neural network. Such an approach was taken by
Yea and his coworkers in Japan in an interesting project involving odor
discrimination where in order to discriminate amongst many kinds of odor
species, a system has been developed using multiple gas sensors as sensory
input to neural networks (Yea et al., 1994). When the system is presented
with a number of inflammable gases, fragrant smells or even offensive odors,
it is capable of an almost 100% discrimination of the different odors. The
discrimination is performed in two steps: First, classification of the odor
group performed by a fuzzy' algorithm—that is, determining the groups of
inflammable gases, fragrant smells, or offensive odors; s cond, discrimination
of individual odor species in the classified :roup, Icr	 mcci by ncu:al tools.

13.3 NEURAL NETWORKS FOR DETERMINING MEMERSHP FUNCTIONS

An interesting and often advantageous feature of fuzzy systems is that they
allow for rather flexible categorization of a domain of interest. for example,
when a problem calls for a small number of categories of temperature, we
define £\L4LL, MEDIUM, and L4RGE as the values of the fuzz)' variable

temperature, instead of say 100 categories of natural numbers taking us from
1°C to 100°C. For each and every linguistic value a unique membership
function analytically describing the degree of membership to the fuzzy value
of each individual crisp element of the universe of discourse is sought. The'
problem of determining membership functions has occupied a central impor-
tance in the history of fuzzy logic with a number of subjectivist, statistical,
and (more recently) neural approaches being proposed.

Membership function determination may be viewed as a data clustering
and classification problem. Hence, neural clustering and classification algo-
rithnis can be brought to hear to solve this problem as illustrated in Figure
13.4. When multidimensional data are clustered, we can extract either
one-dimensional membership functions based on a distance metric 8 (as
shown in the figure) or obtain multidimensional membership functions mod-
eling fuzzy relations (i.e., if/then rules). A typical use of neural networks for
producing membership functions involved a two-stage process: clustering and
fuzzification (Adeli and hung, 1995). The first stage is essentially a classifica-

tion stage where a neural network is used to classify or cluster domain data
into -I number of clusters. The second stage is a fuzzification process
where fuzzy membership values are assigned (to each training instance) in
the set of classified clusters [see also Travis, 1994)1. Of course the problem of
membership function determination is not totally separate from the problem
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Figure 13.4 Cksfering approaches ore Used to detormlno rnor nhership functions in
da t a-rich cppIicaons.

of identifying rules (only the alter one is much more difficult). In practice,
both the determination of membership functions and the extraction of rules
proceed through sonic kind of clustering.

The methods used in the categorization of a universe of discourse are
typicafly ha.scd on sonic type of Kohonen or u;siiperiscd learning network.
A pattern clustering method based oil Kohoncn feature mopping algo-
rithm and the hackpropagation nsuItilayer r: I crceptro1 has i:eeu usd for
membership function determination by Pham and l3ayia-Corrochano (1994).
The method is applied first to the training data set to divide it into labeled
rlusTc i	 mc, the 1lohoncn algorithm and a cluster laheling procedure, The



452	 NEURAL METHODS IN FUZZY SYSTEMS

data clusters are then employed to train a three-layer perceptron. The
approach is self-organizing by virtue of the Kohonen algorithm, and it
produces fuzzy outputs as a consequence of the hackpropa( 

'
ation network.

Kuo Cohen and Kuinara at Penn State have taken a similar yet different
approach in developing a novel self-organizing and self-adjusting fuzzy mod-
cling approach with learning capabilities (Kuo et al., 1994). Basically, their
approach consists of two stages: a self-organizing and a self-adjusting stage. In

the first stage, the input data are divided into several groups by applying
Kohonen's feature maps. Gaussian distribution functions are employed as the
standard form of the membership functions. Statistical tools are used to
determine the center and width of the membership function for each group.
Error hackpropagatiOn (see Section 13.5) fine-tunes the parameters involved.
Fcedforward neural estimation for membership function determination and
fuzzy classification have also been investigated by Purushotaman and
Karayianriis at the University of Houston (Purushothaman and Karayiannis,
1994), while Higgins and Goodman at MIT developed a different method for
learning membership functions and rules from a set of examples (Higgins and
Goodman, 1994). Their method is a general function approximation system
using a three-step approach: first, learning the membership functions and
creating a cell-based rule representation; second, simplifying the cell-based
rules using an information-theoretic approach for induction of rules from
discrete-valued data; and, finally, constructing a neural network to compute
the function value given its independent variables.

A typical use of neural networks for producing membership functions
involved a two-stage process. The first stage is essentially a classification stage

where a neural network is used to classify or cluster domain data into a
certain number of clusters. The second stage is a fuzzification process where
the fuzzy membership values for each training instance in the set of supports,
classified clusters, are evaluated. Let us look at the Adeli—Hung algorirhn

(Al-IA) for determining membership functions (Adeli and Hung, 1994).

Determining Membership Functions Through the Adeli—Hung
Algorithm
Suppose that our data consist of N training instances X 1 , X ...... XN and we

have M patterns in each training instance, X = [x 1 , x, .....,}. The mean

rector of these instances may he defined as

1 .c
-	 =	 (13.3-1)

For N ± 1 training instances the mean vector is found from the mean
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and the instance XN^I as follows:

= N f 1

I{}

=	 11AV ±

N -	 1
=	 ±	 (13.3-2)

Classification by Al IA is performed using a topology.an(i.cightehge
two-layer (fiat) neural network where the number of input nodes equals the
number of patterns (M) in each training instance and the number of output
nodes equals the number of clusters.

The algorithm uses a neural network NN(Al, 1) with Al inputs and an as
Yet undetermined number of outputs. The first training instance gets as-
signed to the first cluster. If the second instance is classified to the first
cluster, the output node representing the first cluster becnilics active. If the
second training instance is classified as a new cluster, all 	 outputnode is added to the network, and so on. until all training instances a
classified.   	 re

To perform the classification in Al-IA, a function (Jif/(X, C) is defined,called the deçu'e of difference  representing the difference between a traininginstance X and a cluster C in a NN(M P) network (P indicates the numberOf output nodes or equivalently the number of classes). This function maps
two given vectors (X and C) to a real number (diff). The patterns of each
cluster (means of the patterns of the instance in the cluster) are stored in the
weights of the network during the classification process. The following
P rocedure for elassif'ing a training instance into an active or new cluste is
used in i\HA:

Step 1. Calculate the degre of difference, dfff(X, Ci ), htw 0 n the train-ing instance X, and each cluster, C,.. A Euclidean disia,icc is used (in
iiaagc recognition applications) and the function dif(X, C) hconie

d(ff(X,C.) =
Af

 (13.3-3)
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Step 2. Find the smallest degree of difference, diff 1 (X, C i ), and make the
cluster with the smallest degree of difference an active cluster:

= ( C l min ( diff( X , C,)), i = 1,2.... . P}	 (13.3-4)

Step 3. Compare the value of cliff,,,;, with a predefined a threshold value
K. If the value of cliff is greater than the predefined threshold, the
training instance is classified as it new cluster (at this point one more
output node is turned on).

C	 = A'	 if  < min{diff(X,C), i = 1,2.... . P} (13.3-5)

Suppose the given N training instances have been classified into P
clusters. Let us use the symbols Cj to denote the jth cluster and use U
to denote the set of all clusters. If the clusters are completely disjoint,
each instance in the training set belongs to only one of the classified
clusters and a binary matrix Z can be used to record the cluster of each
instance. If the instance i belongs to the j cluster we have z = 1, while
if it does not belong we have z 0. On the other hand, if the
classified clusters are partly overlapping, a given instance in the training
set may belong to more than one cluster. Hence the boundaries of the
classified clusters are fuzzy rather than crisp. The same binary matrix Z
may be used to record the cluster of each instance, The prototype for
each cluster is defined as the mean of all instances in that cluster, and
the degree of membership of each instance in the cluster is based on
how similar this instance is to the prototype one. The similarity can he
defined as a function of distance between the instance and the proto-
type of the cluster. If there are np instances in a cluster p, the pattern
vector of the ith instance in the cluster p is Xf = [xi', xf. ... ..
Then, the vector of the prototype instance (the mean of all instances) in
cluster p is defined as

I "
C/ 	[ c1,,

 '7P .. .... c J = -	 Xi'	 (13.3-6)
p i-i

where c ,,, = (1/n).L 1 x, and j = 1,2.... . Al. Using triangular-shaped
membership functions (over the diff universe of discourse) the fuzzy
membership value of the ith instance in the p cluster is defined as

L( Xf) = f[D(Xf, C,,)]

0	 if D"(Xf,C,,) > <
D'(X/',C )	

(13.3

K

-7)

-	
if D(Xf,C) < K
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where a predefined threshold value K is "sect as crossover value. Thc
similarity function is defined as the weighted norm D(Xf, Cr ). The
weighted norm in the Adcli—Hung algorithm is defined as the Lu-
clidean distance:

D(Xf,	 =	 (X/',	
=	 (xc. -- c 1 ) 2 (13.3-8)

In image recognition problems, a value of 1 is used for the weight
parameters w and w,. If the Euclidean distance for a given instance is
less than the crossover value K, the instance belongs to the cluster p to
a degree given by the membership value.

13.4 NEURAL-NETWORKDRIVEN FUZZY REASONING

In fuzzy systems employing more than three or four fu7z'5' variables, it may he
practically difficult to formulate fuzz y if/then rules, and it would be desirable
if they could be extracted automatically Out of data from the physical system
being modeled. The problem of inducing (extracting) fuzzy rules has been
addressed by several researchers and is still undergoing intense investigation
(Kosko, 1992; Takagi, 1991; Hayashi et al.. 1992; (Keller and Tahani, 1992;
(Keller et al., 1994; Khan, 1993; Li and Wit, 1994; Wang, 1994; Wang and
Mendel, 1992; Nie, 1994; Jang and Sun, 1995; Werhos, 1992; Yager, 1994;
Blanco et al., 1995). In an important paper published in 1991, Matsushita
Electric engineers Tagaki and Hayashi presented a comprehensive approach
for the induciori and tuning of fuzzy rules, known as rmeurol-ne:3jorkdfrjL,i',z
fuzzy reasoning or the Takagi—Ilayas/ii (T-II) method.

Consider the situation shown in Figure 13.5 v0icte we have the data space
of two inputs, x and 1 2 (e.g., two measurements obtained from sensors),
knowledge of the target or desirable output, and a nonlinear partition of this
Space in three legions. These regions correspond to three fuzzy if/then rules.
The identified rules R 1 , R,, and 1? 3 are of the Sugeno variety (see Chapter
6); that is, their consequent is a functional mapping of the antccedxit
variables, with the mapping actually being performed by specially trained
neural net works . 3 The 1'a:agi — Hayashi method consists of three major parts:

Part 1: Partitions the control or decision hypersurface into a number of
rules.

Part 2. Identifies a given rule's IllS (antecedent) values (i.e., determines
heir membership functions).

3A potential drawback of the T–H method as well as iiest imil;,r incl'ods is ti:t Lflc liis
decide in ad.ance the possible number of rules —for C. ep1: three rules in this :as



X1

c:	 .
•	 :	 :.:::::::I. 	-

XL

R1

R2

R3

,.
<'I

1?.

<••
/

NN

r

eA

456	 NEURAL METHODS IN FUZZY SYSTEMS

X,

Figure 13.5 Schematic of the Hayashi-Takagi method for extracting fuzzy rules.

Part 3. Identifies a given rule's RHS (consequent) values (the amount of
control for each control rule).

Part I determines the number of fuzzy inference rules through clustering
performed on the data available. Part 2 employs a neural network to derive
the membership function for each rule (it thejefore identifies the LUS of
rules). The T—H method combines all the variables (x and x,, for example.)
in the LHS and is based on the theoretical result that an arbitrary continuous
function is equivalent to a neural network having at least one hidden layer.
Buckley and Ilayashi (1993) have shown the computational equivalence
between continuous functions, regular neural nets, fuzzy controllers, and
discrete fuzzy expert systems and have shown how to build hybrid neural nets
numerically identical to a fuzzy controller or a discrete fuzzy expert system.
Part 3 of the T—H method determines the RHS parts using neural networks
with supervised learning (supervised by the learning data and the control
value for each rule as in Purl 2).

Sugeno-type rules are used (see Chapter 6) where the output is a function
of the inputs. Sugeno rules are typically of the form

if x 1 is A 1 AND X 2 is A,..., then y	 f(x 1 ,...,x,)	 (13.4-1)

where f is a function of the inputs x 1 ,...,x,. In the T—H method this
function has been replaced by a neural network. For example, an induced
rule would be of the form

if (x 1 ,x2 ) is A 5 , then y 5 = NN(x 1 ,x,)	 (13.4-2)

where x	 (x i , x 2 ) is the vector of inputs and y 5 = NN5(x 1 , x,) is a neural
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network that deternuocs the output y of the sib rile and -1 is the
member ship function of the antecedent of the silt rule.

A block diagram of the 'I'—H method is shown in Figure 13.6. As inc he
seen in the figure, several neural networks arc used. The neural netsvmrjk
labeled is responsible for generating the membership functions of the
antecedents of rules ss h:lc networks VA'1 . A'A'. ........\ determine the con-
sequent parts. Networks AN,, NN ,...VN provide, the RHS function of
Sugeno rules shown in equation (13.4-1). In actual :mpplicmticcs these aic
three-layer networks trained by backpropagation. As seen in Figre 136,-the
overall system weighs the output of the RITS networks by the membership
values of IllS and computes a firm] output value. The following eight steps
constitute the outline of the procedure used in the Takagi—HavOdd method:

Step 1. We define y1 as the output and define x1, j = 1, 2.....k, as the
input variables. Inputs X 1 , j = 1, 2......in, or a k, that nie related to
the observed value of the output are selected by a neural network
through a backward elimination method using sum of squared errors as
a cost function for the purpose of eliminating input variables attributed
to noise. It is important to select only those input variables that have
significant correlation to the observed values.
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Step 2. The input–output population it 	 divided into training data (TRI))
of a 1 ) and checking data (CI IT) of it,), where it 	 a, + n.

Step 3, The TRD is p rtitioned into r groups using a clustering method.
Each partition is labeled as s = 1,2.... . r, and the data within the
ith partition is expressed as. (x, y), where i = 1,2,..., (a,)' and (a,)'
are the 1 RD numbers in each B'. Partitioning the dcta 	 into
partitions implies that the number of inference rules will be taken to
he r.

Step 4. 1 he antecedent part of each rule is identified through NPs' F . .I (the
- neural network generating the membership functions, see Figure 13.().

If x are the values for the input layer of	 the weights w5 
are

assigned as the supervised data for the output layer, where

(1, x ER'

=

	

	 =	 I...... r 	(13.4.3)O, x 

The network NN,,,1 is trained to infer weights w,' given an input vector
x. N\c..r, thus becomes capable of computing the degree of member-
ship ' of each training data item x, to the nile (or partition) R'. The
mcnibeship function of the antecedent A S of the sth rule is defined as
the inferred value i,'—that is, the output of NI'sm

i	 1,2.....a	 (13.4-4)

Step 5. After identifying the antecedent membership function in step 4, we
now identify the consequent part of the Sugeno fuzzy if/tJe,i rules we
are looking for. The RHS of each rule is expressed by the input–output
relationship. Inputs and outputs y5, i = 1,2.....(,)1, from
the training data are used as input–output pairs for training the ts?sç
neural network that models the consequent of the sth rule. Subse-
quently the checking data x,,, - - - , x,,,,  I = 1, 2_ , . , n t., are used as
input and the sum of squared errors is formed:

14,(x,) ', 1 (x)] 2	(13.4-5)

where u 5 (x 1 ) is the calculated output of NA, y is the target output for
the network, and is sum of squared errors. The sum can also he
computed after weighing by .1 (x); that is,

	

i ,1 (x) . [v	 u,(x 1 ) ' jz,(x)j 2	(13.4-6)

Takagi and Ilayashi use an index to decide the best iteration number
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during training (to prevent "overlearning" or mcmorization):

'IC
p =

	

	 [Yr -+ n _

( n5)	 "
+

	

	 - u(x 1 ) .	 1 (x1 )] 2	 (13.4-7)()S +

If the sth network has overlearned, the error of the TJRj) becomes
small but the error of the CHI) beeoincs large, suggesting that the
oplimum number of iterations is the one that gives the smallest I' in
equation (13.4-6).

Step 6 In this step a number of variables may be eliminated from the
consequent through a backward elimination method, Out of the in
input variables of a network inferring the consequent of a rule, one
(e.g .,x 0) is arbitrarily eliminated, and the neural network for each
consequent is trained using the TEll) as in step 5. Equation (13.4-8)
below gives the squared error (-P of the control value of the sth rule
in the ease where x" has been eliminated. This sum squared error can
be estimated using the checking data:

	

=	 [y, - u3(x1)	 ()].	 p = 1,2.... . ni (13.1-8)

After comparing equatios (13.4-6) and (13.4-8) and > (-3;_ , the
significance of the eliminated variable x" can he considered minimal,
and .11' can be discarded.

Siep 7. li-c operations in step 6 arc carhed out for the remaining in - 1
input variables until it is no longer true that O, > (3,SP I for any of the
remaining input variables. The model that gives the minimum 0 1 value
is the best-trained neural network for the stli rule.

	

.Ste; 8. Equation (13.4-8) below gives the final control aluc v7:	 -

-1 1L4(Xj)(U5(X.)).1

	

Y7	 i = 1,2,,.., n (13.4-8)
;

where [u,(x)} 1 is all 	 value obtained when Cl ') is substituted
in the best NN obtained in step 7.

It should be noted that the T—J-j method allows for nonlinear
partitioning of the input space and hence the identification of nonlinear
membership functions. Each cluster of input data corresponds to an
if/then Sugeno-type rule as shown in (13.4-2). Aithiouglt these rules
individually make a good fit for data similar to what they have been
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trained on, a gradual fitting to multiple rules has to be performed for
data near the boundary region (see Figure 13.5). The following example
[taken from Flayashi et al. (1992)] serves to illustrate the T—H method.

Example 13.1 COD Density Estimation. Data of che,nical oxygen demand
(COD) density in Japan's Osaka •Bay taken over a 10-month interval were
used by Takagi and Hayashi (1992) to test their neural-network-driven fuzzy
reasoning method. In this application of the T—H method the input—output
variables are

y	 COD density (ppm)
Water temperature (°C)
Transparency (m)
Dissolved oxygen density (ppm)
Salinity (%)

x j	Filtered COD density (ppm)

In acco rdance with step 2 in the T--H method, the data were divided in
training and checking data as shown in Figure 13.7. Thirty-two data points
were used for estimation, while 12 data points were used for testing. Perform-
ing a backward elimination experiment suggested the use of all input vari-
ables for estimation.

For determining the membership functions of the antecedent sets (i.e.,
N1'	 ), a four-layer network with five input nodes in the input layer, two

5	 0	 1	 5	 0	 1	 5	 9	 1	 5	 9
months

Figure 13.7 Osaka Boy data used for training and checking the Hoycishi\Takogi
method. (rokaki and Hayashi, 1991).
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hidden layers with 12 nodes each, and two output nodes in the output layer
was used. Similarly, for determining the consequent part of rules, four-lay Cr
networks were used with rn input nodes in the input layer On = 5,4, . . . ),
two hidden layers with 12 nodes each, and an output liver with only one

[lode (see Figure 13.6).
Network training took 1500-2000 iterations, and the following rule sruc-

tore was finally identified:

R	 if (x 1 , x, x, x 1 ,	 is A' then v'	 x, x.,

R,:	 if (x,, x 2 , x, x 4 , x 5 ) is A, then y 2 = NN,(x 1 , x,, x, x5)

The estimated COD density by tb: above system was in very good agreement
with observed data, and it performed better in comparison with results
obtained by other methods. L

13.5 LEARNING AND ADAPTATION IN FUZZY SYSTEMS

VIA NEURAL METHODS

In recent y ears Nomura. I laynshi, and \Vakami proposed an approacl to
fuzzy system adaptation utilizing the grathent-descent enor mnininlization we
saw in COIlIICCtiOfl with backprOpdigation in Chapter 5. A parameterized
description of a fuzzy system with symmetric, triangular-shaped membership
functions for inputs and crisp outputs was developed, and error n:nuiIiz:ition
through gradient-descent was used (Nomura et al., 1994; Wang, 1994; Jang
and Sun, 1995). Ichihashi et al. (1993) used gradient descent with exponential
membership functions. Guély and Siarmy (1993) have solved the problem
more generallvthat is, for symmetric as well as nonsvmnletric antecedent
membership functions and different connectives and consequent forms.

Most fuzzy system adaptation approaches rely on gradient-descent opti-
mization. As is the case in neural learning, an obj ective function E is sought
to he minimized:

E =	 -	 (13.5-i)

where v is the output of the fuzzy system and y' is the reference (target)
S/S(Cmfl output.

Consider the ith zero-order Sugeno rule of a system having n such rules
C	 1,.., it):

R:	 if x, is A 1 , AND	 .4NDx, is A then y is n , (13.5-2)

where A,, .... I A. are the fuzzy values of the LI IS of the rule and w is a
constant in the consequent of the ith rule. In a fuzzy system, we combine
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fuLly if/then rules like the one above to perform a mapping from fuzzy sets
of the I_I-IS universe of discourse to constants in the 101S. 	 it, he the
membership. function for the fuzzy relation of the ith rule. l'licn thc output
of a simplified fuzzy reasoning approach, v can be obtained through equa-
tions

iii = fl A e ( x1 )	 ( 135-3)

and

y (13.5-4)-

Using input-output data and a gradient-descent algorithm, we can optimize
the iv1 's by minimizing all function E such as the one given by
equation (13.5-I). Let us rewrite this squared error function as

E =
	 2	 (13.5-5)

here v" is the target for the pth input data (xf' .......) and y" is the
calculated output of the system corresponding to the same input data. The
learning rule for the real numbers ill 	 RHS of rules (13.5-2) is

(IlL

	

u'	 • -I- I)	 it, ( t)	 - K ----	 (135-6)
ow'

where t is the numhcr of itc niearning. Following Nomura et al.
(1994) and using the -.bovc errLr ii.oiciion (13.5-5) in (13.5-6), we express the
ii', update as

	

w(t' ± 1)	 w,i') - K -	 (y" - y")	 (13.5-7)

\vhele i'/' is the membership value of the ith rule corresponding to the pth
input--output example and K is a constant.

Using input—Output examples with learning rule (13.5-7) repeatedly, the
RI IS numbers w, are updated so as to minimize the error function, ultimatcv
reaching a global minimum since r2E1aw 1 2 > 0 is obtained for all rules.

As with n cural-nettvo,&- .cl,-ivr'n fuzzy reasoning in the previous scctioa,
this adaptation approach too one has to come up a priori with the opt
number of tiles, often through a thaI-and-error approach. A number of
researchers are proposing various genetic approaches to address this issue
[see Nomura et M. (1994), Pedrycz (1995), Perneel (1995)1.

See Chapter 17 of hk x'u.
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Using gradient descent, the niernhersiiip functions of the LI IS 01 rules
(15.4-2) may he tuned to better reflect the problem at hand. Consider the
symmetric triangular membership function for the jth antecedent of the ith
rule. shown in bigot e 13.8. Such it membership [unction can he represented

by the peak a, and the support b, and therefore the entire rule (1150) can
be parameterii-cd through the peaks of antecedent values a,, their support

b0 . and iv,.
Following Guclv and Siam (1993), let us address adaptation for rules with

svnlrnetric triangular niembership functions in the 1.11S, product Interpreta-

tion of AND, center of area output calculation, and constant outputs as in
rule (9501 As seen hi I touR' 131a, the snimetric triangular membership
functions in the 1.1 IS are niven by

(	 X	 1)
Lv -aH	

(13.5-St

I. 	 others'. K.

As before, we want to adapt the parameters (a,n b,. Q let p denote the
nuiiif)cr of training samples. and v' the training saniple output. Ushig
radient descent nicatis that our peak pariticters for example, cviii he

1lpd.ted in the following manner:

1),
+ 1) = (t,,,(t)

Er.

where ,, Is the gi adient-Llcsccnt speed An a, the peak pam ruc-ter. mu ccc
use p, and ij for tIme support b, and the MIS parameTer it',, rcsneu'tivek.
GuAv and Siam' observed experimentally that learning was sensitive to these
parameters.

To simplif y (135-9) let us use K. y, and v' instead of If,., s'", and v 0 for
the 17th input output example. Then ccc have the following derivative that
we could use in equation (1151) to obtain the update of the peak pmtranle-
tcrs:

dE	 UK
=	

-
	 (13.5-10)

1),	 P

Similarly for the upgrade of the support timid RIIS p:l raructer. ccc need to



a11 -	 + c

0 L

444	 NEURAL METHODS IN FUZZY SYSTEMS

A.

- (0. 5)h(/	a11	 ay 1- (0--5)b'ij	
J

(a)

/i?)
Ay

(b)

Flguru 13.8 Parameters used to describe the triangular-shaped membership functioh
for ho jlh antecedent of th ith rule. (a) Symmetric triangular membership functions
or. f b) nonsymmetric hiongu!or membership functions.



LEARNING AND ADAPTATION IN FUZZY SYSTEMS VIA NEURAL METHODS 	 465

evaluate the following derivatives:

- T/.

3/),

and

E	 (J

(13.5-il)

(13.5-12)

(jivcri the symmetric trian g ular shape of the nienibem :hip functions [equation
(13.5-8)] and the product interpretation of AND, the partial derivatives in
the above cqtm:it ions arc as follows:

(13.5-13)
r 1 S

The partial oy/ 3 me is

And eako have (t eatine i as constant)

-

3t,,	 /i,T( x j  )

- 2 sign (x	 (1,; )

(ia, -

i -

(13.5-14)

(13.5-15)

(13.5-1(i)

(13.5-17)

(13.5-IS)

Equations (13.5-10) to (13.5-18) pros ide all the terms needed for the learning
formula (13.5-9) for the peak, but also for the support and RI IS parameters
—that is, the entire set of parameters (a,. h,, n) we use to adapt our fuzz
systems. In general. the system is sensitive to the gradient-descent speeds
and increasing the number of rules makes training more difficult.

Similarly we can train a fuzzy system that uses nonsvmrietric antecedent
niemnbership functions such as the one shown in Fiure I 3.83 by repeatmne
the above procedure for the set of relevant parameters. Variations of the
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gradient-descent procedure have been developed and applied when the rules
use the n-tin interpretation of AND (instead of product) and a polynomial
R1IS instead of constant [see Guély and Siarry, (1993)]. In general, re-
searchers report considerable advantages in the speed of training adaptive
fuzzy systems when compared to regular three-layer neural networks.

13.6 ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEMS

To tackle the problem of parameter identification, Jang and Sun (Jang, 1992;
Jang and Sun, 1995; (Jang and Gulley, 1995) have proposed an adaprfre
network-based Jhz.zy inference syslem (ANFIS) that identifies a set of parame-
ters through a hybrid learning rule combining the hackpropagation gradient-
descent and a least-squares method. ANFIS can be built through the fuzzy
toolbox available for MATLAB [actually developed by Jang (lang and Gulley,
1995)]. Applications and properties of ANFIS have been investigated, and a
number of methods has been proposed for partitioning the input space and
hence address the structure identification problem. Fundamentally, ANFIS is
a graphical network representation of Sugeno-type fuzzy systems, endowed
with neural learning capabilities. The network is comprised of nodes and with
specific functions, or duties, collected in layers with specific functions. To
illustrate its representational strength, let us consider two first-order Sugeno
rules having outputs which arc linear co1ninations of their inputs:

if x is Al AND y is 13 1 , tlicii f1 = p 1 x ± qy + r1

if x is A, ANDy is 13,, then f2 P 2 X ± (7)' ± r,	
(13.6-1)

ANFIS can construct a network realization of rules (13.6-1). Figure 13.9
illustrates the evaluation of these tules (upper part) and the corresponding
ANFIS architecture (lower part). The nodes in the same layer of ANFIS are
of the same function family and are arranged as follows:

Lai c,, 3. Each node in this layer generates the membership grades of a
linguistic label. The ith node for example may perform the following
(fiL; zification) operation:

(13.6-2)
2

1±.---.

a,

:-ierc x, is theii 1 put to tile	 : iodeiud A is the linguistic value
(small, large, etc.) assceiitcd with this node. The set of parameters

b1 , c 1 ) is used to adjust the shape of the membership function.
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/1(X)	 p/v)

L2IIiJLIP"E'I	 p(vl	 t
I /7

Wi [f--P +IJLV±1

0-,

[f2 =

41. -

1wifi_^
W I + 07

LJ

W	 •11

N	 2'J2

Ix!) ''r I	 Layer 2	 lover 3	 LavL-r -I	 Zxn.er5

	

Figuro 13.9 Lvoluat;ofl of a network rc':e. 	 of rules (13.6-1) (t-p or	 -c cone-
spondng ANFS architecture (bottom)

layer 2. Each node in this layer calculates the fume. strcneih :d each rule

via multiplicalion (or mm):

0 2 =	 =	 r(x) X	 ()-).	 I = 1,2	 (13.6-3)

Lover 3. 'Ihe ith node of this layer calculates the ratio of the ith rules
firing strength to the sum of all rules' firing strengths:

W

= i%	 , 	 I = 1,2	 (13.6-4)
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Layer 4. The ith node in this layer has the following function:

	

= f = Fli(px + q,y ± r)	 (13.6-5)

where TT, is the output of layer 3, and {p. q, r) is the parameter set.
Parameters in this layer will be referred to as the conseq eat parwnet crc

Layer 5. The single node in this layer aggregates the overall output as the
summation of all incoming signals:

== overall output =	 -	 (]3.b-6)

The learning rule of ANFJS is based on gradient descent optirtiization
as with the fccdforwarcl neural networks that we have seen in Chapters
8 and 9 [see MATI.A13'5 fuzzy toolbox for more details oil (Jang
and Gulley, 1995)],
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PROBLEMS

1. Show a nontriangular form for the membership function of the it],
instance in the p cluster described by Equation 13.3-7 and discuss its
potential benefit.

2. Derive, Equation (13.4-6) in the Takagi-llayashi (1-H) method.

3. Explain qualitatively the significance and use of Equation (13.4-7).

4. Explain qualitatively how the number of variables in the consequent of
Equation (13.4-1) is controlled in the F-TI method.

S . Show that for a fuzzy algorithm comprised of zero-order Sugeno rules
the output is given by Equation (13.5-1). Identify the parameters that
may he used for training.

6. Using input-output data and gradient descent we can modify (adapt) the
parametets of a fuzzy algorithm in a manner analogous to neural learn-
ing. Show how the cuation for updating parameters such as weights,
that is Equation (13.5-7), is obtained,

7. Given a fuzzy algorithn comprised of a first -Older Sugeno rules, derive
expressions analogous to Equations (13.5-3) and (13.5-4) and identify all
parameters that may be used for training.

8. How can the parameters of the fuzzy algorithm of Problem 7 he trained?
Describe all assumptions that nc. d to be made and give the learning rule
for each parameter.

9. If snn instead of product is used in fuzzy algorithms comprised of
zero order Sugeno rules, how would their pai ameter training he differ-
eat

10. Derive expressions for the training parameters involved in fuzzy ago-
- thins that use nnsyrnmctrie riu oular mci hership functions such as
hown in Figure 1 3.
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14.1 INTRODUCTION

Recent years have, seen a rapidly growing number in Ileilral-fu7zy applica-
tions and a blossoming bibliography on the subject) Although it is too early
for the merits of an y particular approach to be comprehensivel y assessed, it
appeas ihat in a number of engineering disciplines the research is niaturin
and moving toward developmental phases. In this chapter we describe
selected h ybrid neurofu7.zy engineering applications. The task of reponting on
a field that is still in a state of flux is difficult and tricky, and unfortunately
our selection is incomplete. Nevertheless, we think it may he useful to offer a
panoramic view of applications through the neurofuzzy bibliography.

In Part II of this book we have seen that problems associated with
obtaining expert knowledge and adapting a system description to changes in
itself or its environment can be addressed through neural networks. Since
neural descriptions of systems are typically made through example data or
some kind of performance function, expert knowledge is not explicitly re-
quired. In addition, neural networks are inherently capable of adaptation
through the various learning algorithms which were reviewed earlier. It
would seem plausible, therefore, to try to overcome the expert knowledge
and adaptation problems of fuzzy systems through synergistically exploiting
these advantageous features of neural networks.

Ihe material presented in this chapter is target y a condensation of research reports in
neurofuzzy appticarirris that have appeared in the early 1990s, including material obtained
throu g h searches at Purdue University Lttrrays Erenerin g Index.

471



472	 SELECTED HYBRID NEUROFUY APPLICATIONS

Table 14.1 Comparative charocterl.sflc3 of fuzzy and neural systoms

Fuzzy Systems	 Neural Systems
-- -•.----- --	 - --- :.-

Linguistic Representation 	 Black Box Representation

Expert Knowledge Required	 Example Data or Performance
Function Required

Some Adaptation	 Adaptation Mechanisms Available

Fault Tolerant	 Fault Tolerwrt

Application-Dependent Computational Rather High Computational Cost
Cost	 -

Multiple Descr,t,fjo,js Possible	 Multiple Descriptions Pos.vibTe---

Neural networks exhibit highly desirable inherent parallelism and fault-
tolerant behavior. Of course, they have disadvantages of their own such as,
for example, difficulties in inspecting and modifying internal parameters.
Whereas fuzzy systems are relatively easy to inspect and mntlify, neural
networks arc not as transparent to a user. Ill there may be
situations wherc adequate data are simply not readily available, which could
cause difficulties in training or possibly a high computational cost associated
with training. Table 14.1 presents a compar ison and a summary 01 th
characteristics of fuzzy and neural systems.

14.2 NEUROFUZZY INTERPOLATION

The notion of interpolation typically refers to a process whereby we estimate
the value of a function between values that are already known. More
generally, this action refers to methods for approximating a function with a
simpler one, when interpolating values or derivative values are provided, as is
the ca	 in splinr; fitting of L ngiarige interpolation.

In fuzzy logic, we deal primarily with complex many-to-many mappings
rther than the simple many-to-one mappings (or functions). Consider the
Situation shown ill 14.1a, where the emply circles represent known
fuz y rules (see Chapter 5). As seen in the figure, there are regions where
such knowledge (i.e., the underlying relations) is missing. We can think of
ths problem in a manner analogous to crisp interpolation, that is, find a
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Figure 14.1 Neurofuziy inlerpokflon inio.'e trC uO o n;::iI	 cb:: Hnci
tno interpolated ru/OS.

method through which we can estimate the relation in the missing part.
When this is accomplished through neural methods, we have what is known
as neurofazzy interpolation. To obtain the rules involves finding the appropri-
ate membership functions as shown schematically in Figure 14,1b where the
shaded circles represent interpolated rules.

Abe and his colleagues at Hitachi (Abe and Lan, 1993) have developed a
method for extrcting fuzzy rules directly from numerical input—output data
for pattern classification in a manner similar to neural networks and ex-
tended it to approximate any arbitrary function. For function approximation
the universe of discourse of an output variable is divided into multiple
intervals, and each interval is treated as a class. Then in a manner similar to
that used for pattern classification, fuiiv rules ate recursively defined by
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(a) activation hvperboxes which show the existence region of the data for the
interval and (h) inhibition hyperboxes which inhibit the existence region of
data for that interval. Input data are used for each individual interval. The
approximation accuracy of the fuzzy system derived by this method has been
empirically studied by Abe and Lan (1993) using an operation learning
application of a water purification plant and found to be satisfactory. Addi-
tionally, it has been reported that the approximation performance of the
fuzzy system compares favorably with the function approximation approach
based on neural networks.

Blanco and Delgado (1993) have also developed an interpolation method
based oil neural network's ability to approximate any function. The
methodology involves a neural network learning the information contained in
fuzzy rules, as well as expert knowledge found in a set of examples, and
directly interpolating from rules through the output of neural networks.

Kosko (1994) has shown that an additive fuzzy system can uniformly
approximate any real continuous function on a compact domain to any
degree of accuracy. An additive fuzzy system approximates the function by
Covering its graph with fuzzy patches in the input—output state space and
averaging patches that overlap. The fuzzy system computes a conditional
expectation E1 Y X1 if the fuzzy sets are viewed as random Sets. Each fuzzy
rule defines a fuzzy patch and utilizes common-sense knowledge with state-
space geometry. Neural or statistical clustering systems can approximate the
unknown fuzzy patches from training data. Kosko (1994) has reported
that these adaptive fuzzy systems approximate a function at two levels. At the
local level the neural system approximates and tunes the fuzzy rules. At
the global level the rules or patches approximate the function.

14.3 GENERAL NEUROFUZZY METHODOLOGICAL DEVELOPMENTS

Le4.I ig a research field from infancy to maturity and technologic..l cleplov
ment is a particularly difficult task, and crucial methodological developments
obtained through the insight and intuition of experienced researchers make a
difference. Let us take a look at some of these pivotal methodological
advancements which have contributed to neurofuzzy integration.

W.Abos (1993) iitroduced the concept of elastic Jirzzy logic as a way of
combining neural and fuzzy capabilities. Werbos' methodology uses fuzzy
logic is a kind of "translation" technology, to go back and forth between the
woids of a human expert and the equations of a controller, a classifier, or
sonic other useful system. One can then use neural methods to adapt that
system to improve performance. Elastic fuzzy logic translates the words of ar
cx1 crt into an elastic fuzzy logic network, a kind of local neural network
whi.h can he plugged directly into a wide range of neural network designs,
ran.ing from pattern classification through the brain-like optimizing control.
Thc words of the expert are used to initialize this network, but neural
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network methods can then he used to adapt all the weights or parameters. In
\Verhos' methodology, neural network methods can also be used to prune or

grow the network.
Ronald Yager, a prominent researcher in the field of fuzzy systems, has

advanced a general framework for developing fuzzy algorithms using IlCLlr1l
networks. Yager (1994) interprets the firing level of a neuron as a measure of
possibility between two fuzzy sets, the weights of connection and the input,
and suggests a way to represent fuzzy production rules in a neural frame-
work. Central to Yager's rcpresentatkm is the notion that the Iinuistic
variables associated with a fuzzy if/i/zen rule may be represented as weights
in the resulting neural structure. Such a structure allows for learning of the
membership functions involved.

Several investigators have proposed neural-network-based fuzzy sys:c ms.
A leading part of the rescarch and important methodological advancements
have come out of the work of Professor Keller and his coworkers at tb:
University of Missouri (Keller et al., 1994; Keller and Tahani, 1992). Over
the years they have developed a variety of approaches toward improving the
performance of various systems by cxpinitiig the neurofuzzy synergism. , 1 he'
have introduced evidence aggregation networks based on additive fuzzy
hybrid operators, for image segmentation, pattern recognition, and general
multieriteria decision-making. These networks have excellent properties for
decision-making under uncertaint y and present advantages in training due to
their simple form. Keller's additive h ybrid operators are found to be flcJblc
and useful for modeling nodes in a network structure for fuzzy logic infer-
ence capable of learning appropriate functional relationships while being
rather transparent; that is, after training, i:ldi'Vidl.1,11 nodes call anal yzed as
a collection of "mini-rules

Neural networks for the parallel high-speed processing of the rules found
in a fuzzy logic controller have been used by Patrikar and Provence (1993) at
Southem u Methodist University. In the methodolog y advanced b y the re-
searchers, the fuzzy algorithm is replaced by a fceclforward neural network
with a single hidden layer that is trained using haekpropagation and input
and output fuzzy values expressed in terms of numerical patterns.

As we have seen in Chapter 13, the automatic categorization of a univemse
of discourse is typically based oil type of Kohonen network. A pattern
clustering me.tllc)d based on the Kohonen feature mapping algorithm and the
back-propagation multilayer perceptron has been used for membership func-
tion determination by Phazn and Bayro-Corrochano (1994). The method is
applied first to the training data set to divide it into labeled clusters using the
Kohonen algorithm and a simple cluster labeling procedure. The data clus-
ters are then employed to train a three-layer perceptron using the error
lackpropagation trainin g . Thus, this approach is self-organizing by virtue of
the Kohonen algorithm and produces fuzzy outputs as a consequence of the
back-propagation network. Results of using the pattern clustering method on
standard problems show it to be superior in perfor mamice compared to crisp
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clustering networks such as the Kohonen feature map and the ART-2
network [see also Nic (1994)].

Fecdforwai-d neural estimation for membership function determination
and fuzzy classification has been proposed by Purushotaman and Karayiannis
(1994) at the University of Houston. They have used feedforward neural
networks inherently capable of fuzzy classification of overlapping pattern
classes such as a feedfonvard neural network in conjunction with multilevel
neurons in two hidden layers called (a) the "quantum neural network" and
(b) a "membership estimating network," which is a fecdforward network
trained with generalized 1-Jebbian learning rules. Professor Karayiannis and
his students have offered theoretical and experimental results showing that
both architectures are inherently capable of partitioning the feature space in
a fuzzy manner.

To a large extent, the successful implementation of neural nets depends
on several ancillary techniques for data preprocessing, training, and testing.
Some of these techniques were investigated and discussed by Professor
El-Sharkawi of the University of Washington [see El-Sharkawi (1994)]. They
include genetic algorithms, fuzzy logic theory, query-based learning, and
feature extraction. The advantages of the application of these ancillary
techniques for neural networks and simulation studies have been performed
to assess their role and practicality.

14.4 ENGINEERING APPLICATIONS

Fuzzy and neural approaches have found their way in a variety of engineering
applications, including, but not limited to, consumer electronics, various
aspects of control, diagnostics, industrial production lines, biotechnology,
power generation, chemical processes, power electronics, communications,
and software resource management. It is expected that the applications of
the fuzzy-neural synergism will increasingly move toward computer applica-
tions as well, such as machine learning [see Adeli and Hung (1995)].

It is now rather well established that fuzzy systems aided by neural
networks can adequately address the adaptation problems we discussed in
Chapters 12 and 13. Ishibuchi and his coworkers have reported on an
appioach based on empirical research where they examine the ability of
trainable fuzzy systems as approximators of nonlinear mappings by computer
simulations using real-life data. Fuzzy if/then rules of the Sugeno variety
(Sc`,Chapter ) are adjusted by a gradient descent method. After examining
ti. cat- bilities of fuzzy systems by numerical examples, the researchers
te..ed lem through an incresling project, involving the development of a
sx-variable fuzzy relation used in rice tasting. By computer simulations based
on a random subsampling technique, they demonstrated that the perfor-
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manec of individual fuzzy systems is comparable to that of neural networks
(Ishibuchi et al., 1994).

Researchers at Tohoku University in Japan have used neural network-.% in
conjunction with a fuzzy logic for decision-making (Kozma et al., 1994). They
developed a method which can make a distinction between the occurrence of
unexperienced events and any inconsistency in the judgments of agents
caused by statistical uncertainties in actual data. The method has been
applied to the analysis of signals of numerical experiments and also actual
measurements in a nuclear reactor.

Several fuzzy-neural methodologies are of special interest to many re-
searchers when integrated with other approaches. Pao (1994) reported on the
fusion of three distinct computational intelligence paradigms, neural comput-
ing, evolutionary programming, and fuzzy-logic, to support the task of process
monitoring and optimization. The resulting computational intelligence has
been successfully applied to optimal process planning in electric power
utilities that include, but are not limited to, heat rate improvement and NQ
emission minimization.

14.5 DIAGNOSTICS IN COMPLEX SYSTEMS

I lybrid fuzzy-neural systems have been used in several aerospace applica-
tions. Raza, Joannou, and Youssef (1994) reported on the problem of
detecting control surface failures of a high-performance aircraft. The detec-
tion model is developed using a linear, six-degree-of-freedom dynamic model
of all aircraft. The detection scheme makes use of a residual tracking
error between the actual system and the mode] output in order to detect and
identify a particular fault. Two parallel models detect the existence of a
surface failure, whereas the isolation and magnitude of any one of the
possible failure modes is estimated by a decision algorithm using neural
ncivorks and fuzzy logic. Simulation results demonstrate that detection can
he achieved without false alarms even in the presence of actuator/sensor
d ynamics and noise.

Ta the power industry, neural networks and fuzzy logic systems offer an
interesting, challenging, and productive means of addressing many of the
problems that occur in the operation of nuclear power plants. Uhrig,
Tsoukalas, and Ikonomopoulos (1994) have described how such systems can
be used to model nuclear reactor s ystem dynamics and nuclear fission step
responses of nuclear plants. They can also help operators in assessing the
condition of the plant during abnormal operation or cmcrencies by analyz-
ing and integrating the process parameters and system interactions (Guo and
Uhrig, 1992).

Matsuoka and Blanco (1993) reported on an Electric Power Research
Institute (EPRI) survey of recent advances and ti ends in Ja panese power
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plants. The survey includes case studies of many applications and widespread
implementations of advanced technologies such as: (1) a neurofuzzy system
for plant monitoring and diagnosis, combined with knowledge-based preven-
tive maintenance systems: (2) fuzzy-logic dynamics schedulers for plant
transient operations; (3) fuzzy-expert tuners of dynamic control systems;
(4) fuzzy-algorithmic operation guidance systems for major plant equipment;

and (5) telepresence with machine vision and robotics; among others. These
advanced approaches had to he introduced due to smaller stability margins in
the plants, rapid changes toward more efficient thermal cycles and new plant
equipment dynamics, coming with stronger norihinearities and subsystem
interconnections.

In the field of nuclear engineering diagnostics is a ver y important task for
the safety of power plants. Moon and his coworkers at the Korean Advanced
institute oil and Technology have reported on a method for predict-
ing the critical heat flux (CIIF) --a quantity with safety significance— based
on fuzzy clustering and neural networks [Moon and Chang, (1994)]. The fuzzy
clustering classifies the experimental CHF data into a few data clusters (data
groups) according to the data characteristics. Alter classification of the
experimental data, the characteristics of the resulting clusters were carefully
examined. Using the CIIF data in each group, neural networks were trained
and successfully predicted the (THF.

14.6 NEUROFUZZY CONTROL SYSTEMS

In another application, Chen and Chen (1994) have investigated the relation-
ship between a piecewise linear fuzzy controller (PLFC), in which the
incnihcrship functions for fuzzy values and the fuzzy if/then rules are all in
piecewise linear forms, and a Gaussian potential function network-based
controller (GPFNC), in which the network output is a weighted summation of
hidden responses from a series of Gaussian potential function units System-
atic procedures were developed for transformations from a PLFC to its
GPFNC counterpart, and vice versa. Based on these transformation pririci-
pIes, a series of systematic and feasible steps were developed for the design
of all PLFC (PLFC) using neural network techniques. The
optimized GPFNJC (GPFNC) can he implemented directly to actual systems,
and the GPFNC* could further be converted into its fuzzy counterpart
(PLFC) if more structural interpretation of the intelligent control strategy is
required.

Several self-organizing fuzzy, controllers have found their way to field
deployment. Li and Wu (1994) developed an interesting a self-organizing
fuzzy logic control scheme based on neural networks, which consists of a
traditional fuzzy logic controller and a conventional derivative controller.
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Neural networks are used to optimize membership functions that are param-
eterized by the use of the cubic splines in a self-organizing manner.

In another development, Professors Lin and Lee (1994) have proposed a
promising approach for constructing a fuzzy system automatically. In their
approach a reinforcement new ofuzzy control system with multiple COIInCC-
tionist models with fecdfonvard multilayered networks is used to realize a
fuzzy logic controller. One network performs the role of a fuzzy predictor,
while the other acts as a fuzzy controller. Using the temporal difference
prediction method, the fuzzy predictor can predict the external reinforce-
inent signal and at the same time provide a more informative internal
reinforcement signal to the fuzzy controller. During the learning process,
both structure learning and parameter learning are performed simultane-
ously in the two networks using a fuzzy similarity measure, and a reward/
penalty signal.

As far as the practical implementation of neurofuzzy control is concerned,
there is tremendous variation in the themes and areas of applications. Stylios
and Sotomi (1994) have developed a neurofuzzy sewing controller for the
next generation of, the so-called intelligent sewing machines. The model
incorporates discrimination of material characteristics to he stitched and
automatic determination of their properties. 'I lie fabric—machine interactions
at different speeds have been articulated in the form of fuzzy if/then and
implemented in a neural network to allow for optimization of fuzzy member-
ship functions and, subsequentl y , self-learning. The controller was success-
fully applied to an instrumented industrial sewing machine.

Neurofuzzy approaches are expected to play a major role in the develop-
went of future fusion reactors. Yaniazaki et al. (1994) reported that the
world's largest superconducting fusion machine Liii) (large helical device),
under construction in Japan, will utilize fuzzy logic and neural networks for
feedback control of plasma configurations in addition to classical propor-
tional-integral-derivative control. Design studies of the control sstcm and
related R & D programs with coil-plasma simulation systems include neuro-
fuzzy control systems.

Foslien and Samad (1993) at Honeywell reported oil 	 general probleiii
of optimizing a fuzzy controller through the use of a neural network model

r the process in the optimization procedure. The integration of neural
network models with fuzzy control is vemy appropriate since both techniques
are best used when detailed analytical understanding of a process is not
available. To illustrate this concept, a fuzzy controller was synthesized for a
simple nonlinear process with (1) a fcedfoiward neural network used for
modeling the process and (2) an optimization criterion based on setpoint
error.

The synergistic utilization of fuzzy and neural systems, often resulting in
an entity of its own referred to as nourofuzzy .cysrems, is incrcasingy applica-
ble in many control technologies (Werbos, 1992). As we hay : seen in Chapter
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	6, for example, a d	 it part in designing an ordinary fuzzy controller is

	

selecting which fuzzy	 are best representing the controlled and controlling

	

variables. Most fuzzy	 itrollers are sensitive to the shapes of the member-

	

ship functions, and	 ic number of rules increases, the use of "trial and

	

error" tuning proced	 become less and less feasible.

	

A report in IEEE	 ctnm magazine (Schwartz and Mir, 1992) described

	

work at Matsushita 	 I Hitachi in Japanese in which a backpropagation
neural network learr the needed membership functions from a set of
training examples (Ilayashi et al., 1992). It is claimed that a tuning task that
had -previously taken 6 months was accomplished in 1 month. Wakami ci al.
(1993) at Matsushita Electric reported on recent applications of fuzzy-neural
methodologies to home electric appliances. Many appliances produced in
Japan have internally encoded expert knowledge for their operation. In order
to overcome the problem of extracting the necessary expertise, Matsushita
engineers use neural networks in conjunction with fuzzy rules. Applications
of their neurofuzzy methods are found in refrigerators, air-conditioning
systems, and welding machines. In air-conditioning systems, a thermal sen-
sory system and a fuzzy-image-understanding algorithm are used to identify
the number and positions of occupants in a room. Allowing air-conditioning
systems to "see" their environment allows them to better and more efficiently
produce a comfortable thermal environment.

As far as the industrial merit Of fleurofuzzy technologies is conccm ned,
Wegmann (1994) at Siemens meported a growing interest in programmable
logic controller (PLC) applications and a wide range of possible applications
in the area of nonlinear processes, especially those with great parameter
fluctuations. Applications in envirunrnental processes, such as sewage and
exhaust gas cleaning, appear to be of particular interest. Neural networks
alone may be at a disadvantage in operating phases of a process where
example data are not readily available, whereas neurofuzzy formulations lend
themselves conveniently to such situations allowing the control behavior in
such phases to be prescribed by a fuzzy algorithm, with most learning left to
neural networks.

In another interesting application, Yen (1994) reported on the design of
control algorithms for flexible space structures, possessing nonlinear dynam-
ics which are often time-varying and usually ill-modeled. A hybrid cunnee-
tionist system was used as a learning controller with reconfiguration capabil-
ily. Neural networks were used to provide vibration suppression and trajec-
tory maneuvering for precision pointing of flexible structures. Radial basis
function networks were employed for capturing spatiotemporal interactions
among the structure members. A fuzzy-based fault diagnosis system provided
the neural controller with various failure scenarios, and the associative
memory incorporated into the adaptive architecture compensated for catas-
trophic changes of structural parameters by offering a continuous solution
space of acceptable controller configurations.
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Sharaf and Lic (1994) reported on a novel neurofuzzy hybrid power system
stabilizer designed for damping electromechanical modes of oscillation and
enhancing power system synchronous stability. The hybrid system comprises a
front-end conventional analog power system stabilizer design, an artificial
neural network based stabilizer, and a fuzzy logic postprocessor gain sched-
uler.

In the power electronics field, Professor Bose at the University of
Tennessee reported on new applications emerging in the field that exploit
fuzzy and neural approaches along with other Al techniques (Bose, 1994).

14.7 NEUROFUZZY CONTROL IN ROBOTICS

In the field of robotics, there is a booming interest in neurofuzzy means for
supervisory control, planning, grasping, and guidance, and a variety of appli-
cations are found (Kuo, 1993; Kuo et al., 1994). Professor l3ourhakis and his
colleagues at Binghamton University (Tascillo Ct al., 1993) have developed a
neurofuzzy hand-grasp algorithm for improving the first grasp of a wheelchair
robotic arm with two three-joined fingers and a two-jointed thumb. The
robotic arm uses pressure and force feedback and a learning mechanism that
helps to avoid an extensive search of an optimal grasp each time an object is
lifted.

Hanes et al. (1994) reported on an intelligent control architecture for a
robotic grasping system capable of acquiring an object into a fully enveloping
power grasp. Control of the internal forces of the grasp is provided, along
with trajectory control of object position, as the object is picked up. Fuzzy
control techniques are used for control of internal forces in the power grasp,
and a neural network provides a means of in-process nonlinear friction
cstiin ation.

Fatikow and Wohlke (1994) reported oil neurofuzzy architecture for the
intelligent control of multifinger robot hands. The control system is based on
the combination of a neural network approach for the adaptation of grasp
parameters and a fuzzy logic approach for the correction of parameter values
given to a conventional control 1 cr. A planning component of the system
determines initial manipulation p: rameters,while a neural network performs
continual computations of suboptimal grasp forces. On-line learning of fuzzy
(f/then rules is used for parameter adjusting.

A neurofuzzy controller for adaptive tracking in unknown nonlinear dy-
namic systems and for on-line computation of inverse kinematic transfornta-
tions of a two-linked robot has been developed by Rao and Gupta (1994).
The controller is comprised of a fuz7y algorithm iii the feedback eonfigura-
tion and a recurrent neural network in the inverse mode (fecdforward)
configuration. The controller provides a means for converting a linguistic
control Strategy into control actions while the neural net\vork provides
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sensory (low-level) computations and embodies important features such as
learning, fault-tolerance, parallelism, and generalization in a manner similar
to the one we have seen in Chapter 13.

14,8 PATTERN RECOGNITION AND IMAGE ENHANCEMENT

Neural networks have been extensively used in connection with fuzzy algo-
rithms for edge detection and in connection with fuzzy means for definLng
parameters they are producing interesting realizations of ncurofuzzy systems.
Kim and Cho (1994) reported on an edge relaxation method utilizing fuzzy
logic and neural networks where candidates for edge segments are first
estimated using a local derivative operator with a window of small size. Fuzzy
f/theiz rules, each of which is associated with a neighborhood pattern
defined by the spatial relationships among the neighboring edge segments,
arc used as a computational framework of collecting the evidence for the
existence of an edge segment. The fuzzy rules are trained by a specially
structured neural network which performs a fuzzy reasoning operation.

Improvements on clustering algorithms are being investigated by many
researchers. The extension of neural-net-based crisp clustering algorithms to
fuzzy clustering algorithms has been addressed extensively. For a comprehen-
sive review see the excellent compilation of papers in the hook Fuzzy Mc,deLc
for Pattern Recognition, edited by J. C. l3ezdek and A. K. Pal (Bezdek and Pal,
1994). 1 lowever, many neurofuzzy clustering algorithms developed so far
suffer from restrictions in identifying the actual decision boundaries among
clusters with overlapping regions. These restrictions are induced by the
choice of the similarity measure and the representation of clusters. An
integrated adaptive fuzzy clustering algorithm was developed by Kim and
Mitra (1994) to generate improved decision boundaries by introducing a new
similarity measure and by integrating the advantages of the fuzzy optimiza-
tion constraint of fuzzy c-means, the control structure of adaptive resonance
theory (ART-1), and a fuzzified Kohonen-type learning rule.

Dalton (1994) at Apple Computers reported on a fuzzy-neural approach to
image manipulations that allows a user to quantify qualitative aesthetics.
Image enhancement and other desired manipulations are thought of as
nonlinear transformations from an input space of arbitrary images into an
output space of desired aesthetic images. Derivation of imaging manipula-
tions of this type can be viewed as supervised learning problems that can he
solved by neural methods. In order to reduce the dimensionality of the
transformations involved, descriptors more structured than raw image pixels
may be used; hence, imaging transformations between sets of image metrics
as opposed to sets of image pixels can be learned by the network (from
example images). Alternatively, an adaptive fuzzy algorithm can he used to
achieve the underlying functional transformation while providing a link
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between semantic labeling of qualitative image characteristics and the under-
lying raw image data.

Kulkarni Ct al. (1994) have proposed a neural network modcl for fuzzy
logic decisions consisting of six layers; the first three laycrs map the input
variables to membership functions, and the last three layers implement the
decision rules. 'Friangular membership functions are used, and the model
learns the decision rules using it supervised gradient descent procedure. The
connection strengths between the last three layers encode the decision-rules
used in decision-making. Layer I is the input layer that receives the input
features, while layer 2 represents the linguistic variables (with five values,
VERY LOW, Loll', AfEDJLL1, JHGH, and VERY 111011) for each input
feature; I Icnce. layer 2 has five times as many nodes as layer 1. Each node 01
layer 2 is connected with weights ± I to two nodes in layer 3 where the two
nodes represent the left and right sides of the triangular membership
functions. Each node in layer 4 combines the outputs of the cot responding
two nodes in layer 3 so that it now represents the membership valu(:s, which
is presented to layer 5. I.ayers 5 and 6 are implementing the inference
process. Layers 4 1 5, and 6 represent a simple three-layer feed forward
network with hackpropagation learning. The number of nodes in the output
layer is equal to the number of output decisions. i)urinc trainiiii, only the
weights between laycrs 4, 5, and 6 are adjusted.

The above system has been successfully used to recognize objects in
inultispectral satellite images based on data obtained from thematic mapper
sensors (a niultispectral scanner that captures data in seven spectrdl bands).
Five inputs to la yer 1 were used, and la yers 2, 3, and 1 contained 5, 50, and
25 nodes, respectively, since five linguistic values were used. Vaycrs 5
contained 35 nodes, and la yer 6 contained 5 node; ieprescntim output
categories. "I -he researchers have reported that results obtained wet e virtually
identical with results from a three-layer conventional neural network classi-
fier ai:d a conventional maximum likelihood classifier. I fuwever, the conven-
tional neural network took over 24 hours to train as opposed to about 25
minutes for the fuzzy neural system. Both the conventional and fuzzy neural
network systems gave results vemy rapidly after training. In contrast, the
conventional maximum likelihood classifier had to handle each pixel individ-
ually and sequentiall y; as a result, the conventional classifier took e.scessiv clv
long times for classification.

14.9 MEDICAL AND ENVIRONMENTAL IMAGING USING
NEUROFIJZZy METHODOLOGIES

The extraction of fuzzy values is of particular interest in medical imaging,
where a plethora of data-rich situations exist. Computed tonoraph y, mag-
netic resonance, digital ultrasound, and other forms of compute r-assicted
radiology provide an unirccedented volume of data di;'. i ii;' oreted
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correctly, lead to the visualization of the body's internals and diagnosis of
subtle decease processes at a very early stage of development (Ichihashi
et al., 1993). Physicians and engineers collaborate in many areas of medicine
to develope and use revolutionary computer-assisted techniques for educa-
tion, visualization, diagnostics, and telesurgery, amongst others.

Brotherton et al. (1991) have developed a neurofuzzy system to auumi-
cally classify structures and tissues in echocardiograms. The system performs
structure classification as a first step using advanced multiple-feature, hierar-
chical, fuzzy neural network fusion approach. It learns to classify tissue types
by examination of image training data. Classification assigns each image pixel
a fuzzy membership measure for each structure or tissue type. Final hard
classification, if required, is delayed until the system's output stage. This
allows important information to be retained throughout the system. The first
layer in the hierarchy of networks determines gross spatial relationships
and texture classes, while the second layer fuses the spatial and textual net
outputs to make final classifications.

In a related medical imaging problem, I. Chen, W-C. Lin, and C-T. Chen
(Chen et al., 1994) at Argonne National Laboratory have developed a
fuzzy neural network based approach to 3-D heart motion understanding
using expert cardiologist knowledge to specify different classes of motion arid
obtain classification rules. The objective is to tind the decisions for all
possible classes of motion in the form of possibilities. Experiments on real
data have been conducted to corroborate the neurofuzzy approach.

On the environmental side of ncurofuzzy applications, Barbosa et al.
(1994) in Brazil reported on a neural system for deforestation monitoring
through automatic interpretation of satellite images of the Amazon region.
Their approach is based on a combination of image segmentation and
classification techniques, the latter employing a neural network architecture
that works oil fuzzy model of classification. It appears that such an
approach has a range of advantages over more traditional, pixel-based
approaches employing statistical techniques, ranging from the possibility of
treating transition and interference phenomena in the images to the ease
with which complex information related to a region's geometry, texture, and
contextual setting can be used.

14.10 TRANSPORTATION CONTROL

In the field of transportation engineering, efforts to manage freeway conges-
tion have been seriously impeded by the inability to promptly and reliably
detect the presence of traffic incidents. Traditional incident-detection algo-
rithms distinguish between congested and uncongested operations by com-
paring measured traffic-stream parameters with predefined threshold values.
Given the range of possible operating conditions in a certain traffic stream,
selecting a single threshold value may he a difficult and uncertain decision. A
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system called fu:zv logic incident patrol system was developed b y Hsiao, Lin,
and Cassidy (1994) to solve many of the problems inherent in traditional
incident-detection algorithms. The fuzzy logic incidentpatrolsystem is a hybrid
neurofuzzy system constructed from training examples to find the optimal
input — output membership functions. Threshold values, implicitly obtained by
if/then rules and membership functions, are treated as dependent variables,
which change according to prevailing traffic-stream parameters measured by
detectors.

14.11 ADAPTIVE FUZZY SYSTEMS

Neural- network-based adaptive fuzzy systems have been used in the field of
seismic evaluation. Chu and Mendcl (1994) have developed a method for
solving the so-called 'first break picking'' problem in seismic signal process-
ing, one that requires rinich liuniLn effort and is difficult to automate. The
goal has been to reduce the manual effort in the picking process and
accurately perform the picking. A hackpropagation fuzzy logic system has
been used for first break picking by employing derived seismic attributes as
features. 1xperimental results reported by Chu and Mcndel have indicated
that this neurofuzzy system achieves about the same picking accuracy as a
feedforvard neural network that is also trained using a back-propagation
algorithm; however, it is trained in a much shorter time because there is a
systematic way in which initial parameters can be chosen, uS opposed to the
random 'say in which the weights of the neural network are chosen.

Mitra and Pal (1994) have proposed a self-organizing artificial neural
network, based on JKohon's model of self-organization, which is cuipable of
handling fuzzy inputs and of providing fuzzy classification. Unlike conven-
tional neural net models this algorithm incorporates fuzzy set-theoretic
concepts at various sta ges. The input vector consists of membership values
for linguistic properties along with some contextual class membership infor-
mation which is used during self-organization to permit efficient modeling of
fuzzy (ambiguous) patterns A new definition of gain factor for weight
updating has been proposed by the researchers. Incorporation of the concept
Of fuzzy parlitioning allows natural self-organization of- the input data,
especially when the y have ill-defined boundaries. The output of unknown test
patterns is generated in terms of class membership values. Incorporation of
fuzziness in input and output is seen to provide better performance than a
Kolionen model.

Fei-Yue Wang and D. D. (Then (Wang and Chen, 1994) have investigated
general principles involved in the design of adaptive fuzz y controllers via
neural networks and proposed a method that implements a rule-based fuzzy
control system via a neural network consisting of two subnetworks: one for
pattern recognition and the other for fuzzy reasoning and control synthesis.
The neural network is arranged in such a way that ti l e strucuiire and
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operations of the original fuzzy control system can be fully retrieved from its
network implementation. Equipped with the learning capability of neural
networks, this implementation provides a mechanism for refining the exisling
rules and generate new rules for fuzzy control (Wang, 1994)

1412 INSPECTION USING NEUROFUZZY METHODS

In the area of fault diagnosis, Goode and Chow (1994) presented a novel
hybrid fuzzyneural fault detector that will use the learning capabilities of the
neural network to detect if a motor has an incipient fault. Once the
neurofuzzy fault detector is trained, heuristic knowledge about the motor and
the fault detection process can also he extracted. With better understanding
of heuristics through the use of fuzzy rules and fuzz y membership functions,
a better understanding of the fault detection process of the system is
obtained.

Moganti, Dagli, and Ercal (1994) developed a fuzzy-neural method for
automatically inspecting printed circuit boards for defects. The process
involves a two-level classification of the board image subpatterns into either
standard nondcfcctive patterns or defective patterns. The patterns that are
identified as being defective in the first level arc thoroughl y checked for
defects in the second level, and the patterns that are nondefective are
checked for dimensional verification for the classes that a board has been
identified and assigned to the correct class.

14,13 NEUROFUZZY METHODS IN FINANCIAL ENGINEERING

Another application where the use of neural network technology is introduc-
ing fuzzy concepts is in the financial community. It is well known that neural
networks have been used for several years in the selection of investments
because of their ability to identify patterns of behavior that are not readily
available. Much of this work has been proprietary for the obvious reason that
the users want to take advantage of their insight into the market gained
through the use of neural network technology.

In the past year, some financial work has incorporated neurofuzzy technol-
ogy. I-lohhs and Bourbakis (1995) have described a neurofuzzy simulator used
for stock investing that identifies patterns associated with whether a stock is
underpriced or overpriced. Since stock prices are determined by what a buyer
will pay, most stocks tend to be underpriced or overpriced at one time or
another. Eventually, the price corrects itself, but there is an opportunity for
an investor who can recognize these conditions to make money by buying an
underpriced stock or selling an overpriced stock and perhaps buying it back
later. Buying and selling options is another way of making money on the use
of this information.
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The fuzzy neural network used by Hobbs and Bourhakis is a modification
of S. Y. Kung's fuzzy-based neural network (Kong, 1993). The inputs are 13
market indexes provided by the various financial services and institutions that
reflect the average stock price. The program has consistently averaged over
20% annual return -

T4.14 COMMERCIAL NEUROFIJZZY SYSTEM SOFTWARE

Several software products arc currently available to help with neurofuzzy
problems. Four of these systems will he briefly described on the basis of
information provided to the authors by the commercial or ganization involved.The y are listed alphabetically by their commonly accepted name.

AiVFJS. Jang has described ANFIS, an acronym for adaptive tzeuro-flzzymjerenc-e ssstem. It has an architecture that is equivalent to a two-input
first-order Sugcno fuzzy model with nine rules, where each input is assumed
to have three associated membership functions (Jang and Sun, 1995). Its
two-dimensional input space is partitioned into nine overlapping fuzzy re-
gions, each of which is governed by fuzzy if-then rules, where the premise
part of a Rile defines a fuzzy region, and the consequent part specifics the
output within this region. ANFIS can achieve a hi ghly nonlinear mappino. It
consists of fuzzy rules which are local mappings instead of global ones. It can
also be used as a neurofuzzy controller. ANFIS is implemented in time Fuzzy
Systems Toolbox of MATT-AB, a commercial softwame package Produced by
MathWorks, Inc.

CUBIC4LC. CVI3ICAIC is a "fuzzy shell" that has great flexft . i] :, inbuilding various kinds of fu z ' s ystems for decisions, inference, and ci itrol.
Its prima' basis for being listed here is that it has a library of neural ictv,ork
subroutines that can he utilized in a way that mnakcs it possible to Ccnst net
ne urofuzzy systems (Watkins, 1993).

NE, UFUZ, Khan (1993) reported a novel method of combining neural .i:ts
with fuzzy logic. The combined technology, NeuFuz, generates mcmbersiip
functions as well as fuzzy if/i/men rules by learning the s ystem behaviorusing i nput — output data. The generated rules and membership functions are
then processed using new fuzzy logic algorithms for defuzzificat;on cic
evaluation, and antecedent processing which are developed based on neural
network architecture and learning. These fuzzy logic algorithms replace
conventional heuristic fuzzy logic algorithms and enable full mapping of
neural net to fuzzy logic. Full mapping provides an important key kature ofg
enerating fuzzy rules and membership functions to meet a prcspccified

accuracy l evel.Simulation results have shown the approach to significant yl
improve performance and reliability while reducing design time and compu-
tational cost.
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O'INcA. Intelligent Machines, Inc. has produced O'INCA (1994), an inte-
grated platform for the development of fuzzy logic, neural networks, and
ncurofuzzy systems (O'Inca, 1993). It allows for u er-defined modules in the
same framework as the other systems. It combines graphical user interface,
design validation, simulation and debugging, C code generation, and design
documentation. In the fuzzy logic module, intermediate results after fuzzifi-
cation, rulehasc evaluation (inference), and dcfuzzifjcation can he examined.
"Fired" (active) rules can be isolated, and the results of the rule antecedent
and consequent parts, rule weights, and the effects can also be examined. In
the neural network module, output and bias values of all neurons, as well as
all link weights, can be examined. Fixed weights and biases can he modified
during simulation.
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DYNAMIC HYBRID
NEUROFUZZY SYSIEMS

15.1 INTRODUCTION

In the decade of the 1990s, the authors and their graduate stdvttts hac
carried out research activities that utilize h ybrid systems involving various
conihinations of neural network, fuzzy systems, genetic algorithms, and
expert systems. These hybrid systems were utilized to acquire and process
data from engineering systems. ranging from nuclear and fossil power plants
to steel rolling mills, as well as their various components (check valves,
compressors, rolling clement hearings, control systems, etc.) The purpose of
this chapter is not to describe the result of this work, but rather to conve y the
essence of the methodologies developed and how the y were used advanta-
geously in comparison ',vith more conventional technologies. I hence, only
those details necessary to illustrate the use of hybrid artificial intelligence
techniques arc presented. Although the results of the work are not given,
they can he obtained from the references cited.

Various aspects of the anal ysis of data from three specific sets of experi-
ments are involved in the work described here. The first is a set of vibration
spectral data provided by f-Icctricite de France on accelerated testing of
bearings with faults deliberatel y introduced in some hearings to induce early

Special ack c k'dgmen L in ust be gis en to Dr, An Ire is I io ne in opo U is, on ic ave Iron the
I)'rnokrrts Nuclear RLsearch Laboratory, Athens, Greece; Dr. Anna 1oskiewiC-13uceak, now
with AhliedSaytal Corporation, Morristown, NJ, and Dr. Israel E. Alguindigue of the Uniser-sirv
of Tennessee, Chrattareroga, ss Ira wirrrcd with the authors on marry of the activities desci bed iii
this chapter s hue pursuing their doetoral degrees at the Ui versits of Tennessee, Knoxville, TN

493



494	 DYNAMIC HYBRID NEUROFUZZY SYSTEMS

failure.' The diagnosis of faults in roller bearings is based on the relative
magnitude of the peaks occurring in spectra at characteristic frequencies
(and their harmonics) associated with the bearing geometry and the basic
rotating frequency. A comparison between the results using crisp magnitudes
of the amplitudes and two types of fuzzy representation of these amplitudes
is presented. The goal was to detect which bearings had faults and to identify
the magnitude and location (inner race, outer race, or ball) of the faults from
the vibration spectra measured by accelerometers mounted on the frame
supporting the bearing (Loskicwicz-Buczak, 1993).

The second is a set of vibration spectral data  taken from "laminar flow"
table rolling machines in a steel sheet manufacturing mill. Data were taken
from sensors , at nine locations on each of 163 table rolling machines, 49 of
which had one or more faults identified. In this example, a composite
diagnosis of single and mu]tiple faults in the machines is obtained based on
the fusion of nine tentative diagnoses (which were usually all not the same)
indicated by nine neural networks processing data from nine sensors placed
on the individual machine. The fusion of these decisions is performed by a
fuzzy logic connective called the generalized mean (a generalized type of
fuzzy variable). The goal of the study was to fuse the data together using
neural networks and fuzzy systems methodologies to identify the faults
(Loskiewicz-Buczak and Uhrig, 1994).

The third is a set of data taken from the High Flux Isotopes Reactor
(HFIR) at Oak Ridge National Laboratory 4 during startup from source level
to full power. The goal here is to demonstrate the interrelationship between
the various output variables at the HFIR and to infer the value of a variable
that cannot be measured directly (Tsoukalas, 1993; Ikonomopoulos et al.,
1994).

The final section deals with various aspects of neurofuzzy control, includ-
ing some discussion of neurofuzzy approaches to anticipatory control. Fuzzy
logic and neural networks are complementary technologies, and both are well
suited for controlling nonlinear and time-varying system. This discussion
reviews the benefits of integrating these two methodologies in an advanta-
geous way. Anticipatory control is one of the areas that can benefit from a
neurofuzzy approach. The ability to predict the future faster than real time

2 The authors are indebted to Etectricité do France for providing the data used here from tests
carried out at their laboratory facilities near Paris. This work was performed as part of a contract
with Electricité de France carried out by one of the authors and his graduate students at the
University of Tennessee.
3 'rne authors are indcrted to the U.S. Steel Corporation, Gar y, IN, for peliiiissiori to utilize
\iLratiOn spectra data from rolling mills in their plants and to Technology for Energy Corpora-
tion, KiiOx\ ilk, TN, for gathering these data and making them available to the authors and their
raduate students.
The authors want to acknowledge the efforts made by many individuals at Oak Ridge National
aboratoD' to make this project possible.
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enables us to take steps to correct a deteriorating situation (Tsouk-alas et aL,
I 994a,h).

15.2 FUZZY-NEURAL DIAGNOSIS FOR VIBRATION MONITORING

\'ib. -ation monitoring of engineering systems involves the collection of vibra-
tion data from system components and detailed analysis to detect features
which reflect the operational state of the maclinciy. The analysis leads to the
identification of potential failures and their causes and makes it possible to
perform timely preventive maintenance. A h ybrid neurofuzzy system for
vibration monito;ing of rolling clement bearings is discussed. The system
takes advantage of the learning and generalization abilities of neural net-
works. The ambiguity that accompanies fault diagnosis is handled b y means
of fuzzy membership functions. The combination of neural networks raid
fuzzy loge contributes to the high speed and flexibility of the system.

For many machines, the vibration frequency spectrum has a characteristic
shape when the machine is operating properl y , and it has other featutes fo:
different faults that ma y appear. Recognition of faults can he accornplkhed
in man y cases by detecting Specific features in the frequency spectrum which
ate known to be related to particular faults. All vibration monitorin g, tech-
niques are based fundatne-ntallv on the recordiag and quart tificatioti of small
Vibration ImpLilses (Zwingelstcin and I lamon, 1990). Often, spectral features
associated with specific defects are generated at frequencies that can be
calculated from formulae derived from bearing acoitictry.

However, the task of recognition is complicated by a series cf factors, such
as noi>c, presence of multiple faults, severity of the fault and speed changes.
Fault recognition is also complicated b y the fact that fundamental frequency
components often disappear at advanced stages of the defect, while harmonic
components remain. Jurthermore, when performing vibration monitoring
of rolling element bearings, the emphasis is more on the content of
the spectrum than on its amplitude (hewlett Packard, 1983; Berr y , 199(1)
(Jackson 1979). Amplitudes of hearing characteristic frequencies often begin
to decrease as conditions worsen. Therefore, more importance should be
attributed to the fact that it multiple number of fault frequencies are
appearing in the spectrum than to the exact amplitude. This fact led to
incorporation of fuzzy logic into the classification system. The soft bound-
aries in fuzzy logic environments, obtained by membership functions, are of
special interest because their use results in flexible, more hum-an-like classifi-
cations. On the other hand, neural networks provide a viable technique for
the analysis of vibration data because of their inherent ability to operate on
noisy , incomplete, or sparse data and to model processes from actual System
parameters. Some previous University of Tennessee work (Los kiewicz-l3uczak
and Uhrig, 1992, 1993a, b; Alguindiguc et al, 1993) deals with the problem of



496	 DYNAMIC HYBRID NEUROFUY SYSTEMS

vibration monitoring by neural network technology alone. By combining
neural networks and fuzzy logic, we are able to take advantage of the
strengths of both approaches (Loskiewicz- Ruczak, 1 993a, b).

Vibration Signatures

To perform spectral monitoring of components in an operating engineering
system, signatures are collected from plant machinery and analyzed to detect
features which reflect the operational state of the machinery. The data
consist of vibration measurements collected from SKF ball bearings of type
6206 during an aging simulation process. The rolling element under test is
mounted oil horizontal shaft and loaded radially by means of a jack,
imposing a vertical force on the hearing. These severe conditions generate
scaling faults on the component. Data are collected using an accelerometer
placed in the radial direction to the loading zone of the hearing. From these
measurements, spectra are generated using fast Fourier technique transform
(FFT) techniques (see Figure 15.1). Spectra are averaged over 16 samples
with a Hanning window, and each contains 397 points in the range 5 Hz to 1
kHz.

Methodology

For this project, first the characteristic frequencies fora flaw in the inner and
outer races and in one of the balls can be calculated in terms of its rotational
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Figure 15.1 Spectrum of a healthy 6206 bearing.
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speed from its dimensions (harry, 1990). These critical frequencies for the
type 6206 bearing manufactured by SKF were calculated. Then the location
of the peaks at these characteristic frequencies as well as at their harmonics
was investigated. The exact value of the amplitude of each peak is not
important for the classification process. Instead, we need to know if there is a
peak at a given frequency and whether it is small or big. Therefore a
transformation of peaks' amplitudes by fuzzy membership functions was
performed. At the beginning three triangular membership functions—"none,"
"small," and "big" (see Figure 15.2)—were used. Then four membership
functions were tried LiSifl " non, " ''small," "medium,' and big" (See Figure
15.3). These values of membership functions are the input to the Kohonen
self-organizing map with categorization. The output of the network is the
fault (or faults) present. The effect of different number of membership
functions on the final classification was investigated.

For the anal ysis of spectral signatures, neural networks ma y he used both
as classifying and clustering systems. To perform classification it is necessary
to attach to each signature a label which describes the operational state of
the machine at the time of a. Ileeting the signature. The input to the network
is a spectrum, or sonic feature-s from it, and the output is the class label. The
network is trained to identify an arbitrary pattern as a member of a state
ariloilg a set of possible state-s. Clustering involves thegrouping of patterns
according to their internal similarity and is performed iii an unsupervised
mode. The aim of clustering is to distribute the set of patterns into States
such that the patterns in each state have similar statistical and geometrical
properties.

For this project a two-dimensional self-organizing map (SOM) neural
network was used (Kohonen, 1990; NeuraiWare, 1991). In order for the SOM

Peak
FIgure 15.2 Membership functions for none.' 'smciy and big.
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Peak
figure 15.3 Membership functions for • none,' small,	 medkim, "and" big."

network to solve categorization problems, an output layer is added to the
network. During training the SOM is given a sufficient number of iterations
in which to stabilize with the learning rate of the weights going to the output
layer set to zero. Hence, the network begins training in an unsupervised
mode and then uses supervised training for the output layer.

Rs'lts

Fcir this project the NcuralWorksThl version of SOM with a categorization
n ork (NeuralWarc, 1991) was used. Three different kinds of inputs to the
n: U.vorks were compared. As the first type of input, amplitudes transformed
by three membership functions (see Figure 15.2) were used. 'I he second type
of input consisted of amplitudes transformed by four membership functions.
(see Figure 15.3.). The last type of input were "raw" amplitudes (without the
j. mbership function transformation). In each case, 21 signatures (29.6% of
ti whole Set) wemu used for training, and the entire set (71 signatures) was
Li. I for recall. The output layer of the network was the same in all the
si ations: six output nodes, each one corresponding to one fault. An activa-
tion of 0.5 in an OTT)11t node indicated the presence of the concsponding
fault. Activation in iore than one node corresponded to a milultiple fault,
while no activation .-ns perceivcdas no fault.

For the transfou:ation of amplitudes by three membership functions the
network has 48 inpUtS (16 3). This corresponds to three membership values
for each of 16 amplitudes at frequencies related to faults. Different sizes of
the Kohonen map were tried: 4 X 5, 5 x 5, 6 x 5, 6 x 6, 6 >< 7. The best
results were obtained with the 6 X 5 Kohonen layer. In this case, only one
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misclassilteation occurred (98.5 6/c accuracy). One of the signatures used in
training was classified as nonfaulty, whereas it was an instance of a general-
ized scaling fault of all the components. Had only the signatures not used in
training been classified, the accuracy would have been 100%.

When using four membership functions for the transformation process,
the input layer had 64 (16 * 4) nodes. The best results were obtained svhh the
Kohoucn layer 6 X 5, resulting in misclassification of one signature. This
signature, instead of being classified as a localized fault on the outer r:
was classified as nonfaulty. The results for three and four membcrshp
function transformations give the sante accuracy. However, for four member-
ship functions many of the nonfaulty signatures have one of the outputs with
value about 0.3, whereas when three membership functions are used the
outputs for nonfautLy signatures are at most 0.05. This means that the
transformation by three membership functions gives more robust results than
the transt irmation by four functions.

When using the raw amplitudes as the input to the neural network, the
input layer has 16 nodes. The best results were obtained also for the 6 x 5
Kohoncn la yer. However, even in this case, 12 of the 71 shnaure were
muiscla.ssilied. which gives only 83.1% classification accuracy. The transfointa-
tions Of both fuzzy membership functions rcsuhs irl great iInpiovcinent of
the final classification over it neural network that uses raw amplitudes as
inputs.

Fuzzy c-Means Clustering Algorithm

The frizzy c-means algorithm has been used for the clustering and classifica-
tion of vibration signatures in the frequency domain (Atguindigue et al.,
1992). The fuzzy c-means algorithm is a variant of the fuzzy clusteing
al gorithms pioneered by Bezdeck since the late 1970s. It attempts to cluster
measurement vectors by searching for local minima of the generalized within
group sum of squared errors functions (WGSSE). It was proposed b y 'I'rivedi
and Bezdeck (1986) and is given by

J,(U,v) C

I
 (u) " jx - . v,	 1 <in < -	 (15.2-I)

where c is the number of clusters, it is the number of vectors, x is a k th
measurement vector, u, is the i th centrord vector, in is the fuzzy coefficient,

is an inner product norm, JQ = QT4Q, and A is a d x d positive
definite matrix where d is the dimension of the pattern Vectors.

When 1/i 1 the objective function J,,, in (15.2-1) is the classical WGSSE
function, and the algorithm reduces to the crisp k-means clustering algo-
rithin. For in > 1 under the assumption that .r. =A t . . ( U, v) may he a local
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rninij -nurn of J, only if
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(u)"x

k-I
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(u)'7
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The fuzzy c-means algorithm consists of the following steps (Trivcdi and
Bczdeck, 1986):

1. Fix the number of clusters c. Select the inner product norm. Fix the
fuzzy coefficient m. Set p = 1 and initialize U.

2. Calculate fuzzy Cluster centers (()) using	 1) and the condition
specified in equation (15.2-3).

3. Update	 using v t and the condition specified in equation (15.2-2).
4. If II U(") 	 I! < e then terminate; else set p	 p + 1 and go to

S IC!) 2.

15.3 DECISION FUSION BY FUZZY SET OPERATIONS

Fusion of information from multiple sources for object recognition and
classification is an increasingly important area of research and application.
Information fusion is employed in robotics, computer vision managerial
decision-making systems, and many engineering systems. Fusion of informa-
tion is often niidc more difficult by problems of uncertainty characterized by
vagueness, ink actness, and ill-definedness. This is the reason to employ
fnzzy set them y in information fusion systems.

Vibrol ti Signatures

Data used for this project consist of vibration signatures from 163 identical
"I niinar flow" table rolls in a steel sheet manufacturing mill. Data were
cc. rted with sensors attached to the plant machinery at the same nine
lu,	 )ns on each machine. Spectra acquired from the nine sensors are
co.	 -d but not identical due to different vibration levels throughout the

and to the fact that the faults which are particular to a bearing
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located near one sensor are not necessarily recorded by the other more
distant sensors. The 150-point spectrum of each sensor output is generated
using Fl--I techniques, and the coefficients are stored in a database. The data
set contains signatures from 49 machines for which the types of faults had
been identified. For some machines, one to three sensor readings were
missing. The data sets reflected faulty operating conditions such as misalign-
nient (M), looseness (L), wear (W), outboard hearing damage (0), lubrication
(C), and their combinations (double and triple faults.) Data from machines
operating properly were not included in the data set used here.

The first step is classification of signatures coming from each sensor
separately using recirculation neural networks to reduce dimensionality, and
backpropagation or probabilistic neural networks for classification of faults.
This classification process has been adequately described in the literature
(Alguindigtie et al., 1993; Loskiewicz-Ftuczak and Uhrig. 1993a, b, 1902) and
will not be repeated here. The second step is information fusion from these
nine classifications, performed by means of fuzzy set operations. Information
fusion is used whenever several sensors are employed in a system, in order to
reduce uncertainty and resolve the ambiguity often present in classifications
from scvcral sensors. In this approach, a confidence factor of the fused
decision is determined and the data are fused only from the sensors which
cause the confidence factor to grow.

Information Fusion by Means of Fuzzy Logic

Among the approaches for information fusion that have been proposed ill tile
literature arc probability theory, Dcmpster—Shafer theori, neural networks
theory and fuzzy set theory . Fuzzy set theory provides several advantages due
to the fact that there are numerous ways of combining fuzzy sets in addition
to the union (e.g., the "unix" operator) and intersection (e.g., the "min'
operator) used in traditional theories. Numerous fn/.zy set connectives can be
used for the purpose of aggregation (Krishnapuramn and I .ee, 1992; Zimmer-
mann, 197). The requisites of the decision-making process and the character
as well as relative importance of criteria determine the particular connective
to be chosen. The requisite may he that all the criteria he satisfied for which
all connective should be used, or any one of the criteria he
satisfied for which a union connective, should be used. When the criteria are
mutually compensatory, a mean operator is the most appropriate. Usually in
decision-making based cii several criteria, a certain amount of compensation
is desirable. Zimmermann (1987) showed that human decisions and evalua-
tions almost always show some degree of compensation ad that the ''gener-
alized mean" used here vety closely matches the human-decision making
process. In almost all catcgorizaiion problems the final classification that tile
System should give is the one that humans would give. This is the reason to
use the aggregation connectives that match the best the human decision-
making process for fusion of evidence.
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For this project the "generalized mean" operator was chosen for the
fusion process. Jt was PrOPOSCd first by Djumovic (1974) and later Dyckhoff
and Pedrycz (1934) and defined by

n
g(x 1 , x2,	 . , x,; J), "'1 1 '2 ,.,R) =	 ( 15.3-1)

where p is the degree of fu7zi:ess, and the n's can he thought as the relative
importance factors for the different criteria where

R 1 + n. 2 +	 + w  = 1	 (15.3-2)

The behavior of the generalized mean with p is shown in Figure 15.4 where
the amplitude has been scaled between 0.1 and 0.9. The attractive properties
of the generalized mean are as follows:

• mm (a, b) :!:-z mean (a, h) :!z; max (a, h);

• mean increases with an increase in p; by varying the value of p between
- and +, one can obtain all values between min (intersection) and
max (union) respectively.

Generalized Mean

-15	 -10	 -5	 1	 5	 10	 15	 20

value of p
Figure 15.4 The generalized mean operator.
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Therefore in the extreme cases the generalized mean operator can be used as
union or intersection. Also, it can be shown that p = - 1 gives the harmonic
mean, p = 0 gives the geometric mean, and p = 1 gives the arithmetic mean.
The rate of compensation for the generalized mean can be controlled by
changing p. When using larger values of p, the partition becomes more
fuzzy.

The definition of the confidence factor can affect the fusion results
significantly. For classification problems, the confidence factor (CF) is de-
fined as:

	

CF =	 (t5.3-3)
average error

average error	 n' 1 error 1 + w, error	 (15.3-1)

	

error  =	 (mean pattcrn1 )	 (15.3-5)
j'1

where n is the ntuuher of patterns, c indicates the number of classes of
faults, and k = 1, 2 is the sensor number. The averane error [equation
(15.3-4)] is a measure of how different the aggregated decision is from the
earlier decisions that were the input to the aggregation process. This error
will become small when enough decisions are aggregated, because the deci -
sion from the next sensor will tend to be redundant with the decisions
already fused.

The weights used in the calculation of the average error are the weights
used for the fusion process. These weights should describe the relative
confidence that we have in those sensor measurements. If there is no reason
to bias the decision, all the weights should be the same. For this project,
thet e is no information on the precisioa of tile scnsor readings, and therefore
the weights for the fusion process for each sensor are the same when fusing
information from the first two sensot s .At later fusioi Steps involvig 11

decisions, when one decision is already an aggregated decision from n - I
sensors and the other is a decision from only one sensor, the weights are
calculated as (n 1)/n and 11n, respectively. This ensures that the decision
from each sensor is given the same importance.

Active' Information Fucion Scheme

For the fusion process, one can choose a larger p value for Fus:on of
information from complementary sensors and choose a smaller p value for
fusion of information from redundant sensors. In this case, information on
the degree of complemcntarity/redundancy of the sensors is required. Flow-
ever, if no such information is available (but the number of Sensors is large),
it is reasonable to presume that at the beginning of the fusion process
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[i.e., when fusing information from a small number of sensors (1, 2, 3...)), this
information is complementary; as the number of sensors increases, the
information should become more and more redundant. Therefore using large
p (union-like operation) at the beginning of the fusion process, and decreas-
ing p as the number of sensor increases, seems to be the most appropriate
method. In the project this method was used.

Our goal is the best classificati6n possible. We want the fusion process to
be 'active," meaning that the next step of the fusion process is determined by
the results of the previous one, The fusion scheme is the following:

1. Fuse the decisions from two sensors.
2. Evaluate the confidence factor of the fused decision.
3. Fuse the decision from the next sensor.
4. If the confidence factor has decreased undo step 3 (do not fuse data

from this sensor.)
5. If there are data from more sensors, repeat steps 3-5; otherwise, this is

the aggregated decision.

As the number of sensors involved mci eased, the vaue of p in equation
(15.3-1) changed from a large value for complementary Sensors to a smaller
value when the addition sensor information was considered redundant.
Subsequent work involved the use of genetic algorithms to optimize the
sequence in which the sensor decisions are fused. The concern here is that
the choice of a had sensor decision for the first fusion step could lead to the
rejection of good sensor decisions in later fusion steps. Each advancement in
methodology improved the resultant identification of the faults.

The final decision has to be obtained from the aggregated decision by
some defuzzification method. The method chosen was a-cuts. After fixing
the value of a, an a-cut is performed on the aggregated decision. For each
of the five faults (M, L, W, 0, C) there is a corresponding a-level set
(M e,, L,,, \,, O, C,,). Each of these sets includes all the patterns that are
manifesting a given fault. If a pattern belongs only to one a-level set, it
means that the final decision is that it is exhibiting only this fault (single fault
pattern). If a given pattern belongs to more than one a-level set, it means
that the final decision is that it is a multiple fault pattern, manifesting the
faults to which a-level sets the pattern belongs.

15.4 HYBRID NEUROFUZZY METHODOLOGY
FOR VIRTUAL MEASUREMENTS

A method of generating fuzzy numbers representing the values of system-
specific variables such as performance has been developed (Ikonomopoulos
Ct al,, 1992, 1994). It constitutes essentially the fuzzification (symbolization)
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of measurements (and predictions), and thus we refer to it as i irtual measure-
ment. It should be remembered, however, that virtual measurements are
simply predictions involving fuzzy numbers where the notion of a measuring
device has been extended to incorporate significant modeling capability at
the level of the instrument.

In virtual measurements, neural networks are used to perform a mapping

f: M - E	 (15.4-I)

where the domain %I is the hyperspace of accessible variables such as
temperatures and pressures in an engineering system, and the output range
E is a set of fuzzy numbers that constitute our predictions of fuzzy values
referred to as vinual measurement ualues (VMVs). (VTMs are the fuzzy
analogs of the units of measure, e.g., volts, pounds, degrees, etc.) As dis-
cussed in Chapter 4, a fuzzy number is a normal and convex fuzzy set oil the
real numbers which models the value of a fuzzy variable at any given time,
uniquely represented by a membership function. The fuzzy numbers used
here had a trapezoidal shape. Trapezoidal membership functions are uniquely
described by a set of four numbers --for example, a given number C
(01, 0: 0 3 , 0 4 ), where 0 ^	 ,, o, 04	 1 and (o f , 0 1 o, o) (froni left to
right) represents the universe of discourse components of the four corners of
the trapezoid (from left to right). Such representations offer considerable
advantage to computing speed.

The methodology for predie(i fuzzy numbers used here has been de-
scribed elsewhere (Ikonomoiijulas ct al., 1994), and its ifl:iifl JoilitS 1OiV be
summarized in the tollowing steps:

I. Decide how many fuzzy values are nceessav to mcca Iv co':Lr the
range of the fuzzy va iable to he predicted.

2. Determine the number and the type of physically nicasura Ic variables
that will he the basis (i.e., the input) of the virtual instrument.

3. Train one neural network per VMV, for example, a program trained on
five VMVs will require five trained neural networks as shown in Figure

4. Design no appropriate logic using the indav of i1iS.5e172b1wi00 to select
which membei ship function will he the predicted value of the instru-
nient at any given tune.

The networks N1 , N,. ....A'., comprising the virtual instrument are trained
(in a process analogous to "calibration") with time series as input vectors,
and vectors (os, o, 0 3 , 04 ) representing fuzzy numbers are trained as outputs.
Each network learns to map a constellation of input patterns to a particular
linguistic label. The situation is illustrated in Figure 15.5, where five inputs to
each of the 1 1 networks are used; hence this virtual instrument is calii.ratccl
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Figure 15.5 Each neural network ino virtual instrument maps a timeserics npL;t \ecl)r
onto a vector (02, 03 , 03 , oj representing a trapezoidal fuzzy number,

with n fuzzy numbers. After training, all networks N1 , Al2 ,..., N,, receive
on-line time signals as inputs and produce a set of membership functions as
outputs. Generally the outputs will be somewhat different from the member-
ship functions the networks were trained for (the prototypes); moreover, one
or at most two (if we allow overlap of membership functions) will represent
correct values while the rest need to be ignored. it is thus important to
identify the correct output. Since we consider each network's output to be a
fuzzy number, we use a dissemblance index (Kaufmann and Gupta, 1991) to
estimate the output membership functions that are closest to the set of
prototype membership functions on which we trained the networks and select
one as the predicted fuzzy value. The dissemblance index, 6(A, B), of
two fuzzy numbers A, B gives the distance between the fuzzy numbers.
When 8(A, B) = 0 we can infer that the fuzzy numbers are identical. When
rS(A, B) = I we infer that the fuzzy numbers are totally different.

Using physically observable quantities to predict fuzzy values offers Some
unique advantages. A set of complicated time series is mapped to the
universe of discourse of human linguistics through a neural network which
acts as an interpreter of vital information supplied from the system. The
information encoded in a time series is in the form of rate of increase/
decrease and maximum/minimum values attained over a period of time. The
network is trained to represent this kind of "hidden" information in the form
of membership functions which can be used for fuzzy inferencing as shown by
Sugeno and Yasukawa (1993). The membership function provides sufficient
information to predict the value of a fuzzy variable in the near future.
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Furthermore, a network trained to recognize a specific complicated time
pattern (i.e.,the time series has 'crisp" values) will lose much of its ability to
deal with noisy input signals since it will tend, for distorted inputs, to
produce averaged forms of the desired output, missing therefore vital pieces
of information.

As an example of the prediction nietliod, consider the following experi-
ment. Actual data obtained during a start-up of the high fILix isotope reactor
(1 IFIR) was used in order to test the methodology for predicting fuzzy values.
HFTR is a three-loop pressurized water research reactor operated at the Oak
Ridge National Laboratory. A flow control valve oil secondary side of the
system is used as the main mechanism for control (there is also a "trim flow
control valve" for finer flow adjustments, as well as control rods) as shown illin
Figure 15.6. Although the signal sent to the motor of the valve is known, the
actual position of the secondary flow control valve is not known and is rather
hard to predict. The disk position is something that the operators of the plant
"learn" how to estimate intuitively on the basis of experience. However, valve
aging and varying plant operating conditions as vell as operator experience
are major factors for substantial variations in the estimate of valve position.

Five pai meters in the form of time series were chosen as the basis for
predicting tilO secondary flow control valve position: neutron Jinx, pnrnwy
flow pn'ssure variation ( DP), core inlet temperature, core outlet temperature, and
secondaiy flow. All but the last one of the above-mentioned time series
contain average values of the corresponding parameters of the three-loop
system. Figure 15.7 shows the secondary flow signal normalized in the angc
between zero and one. These five parameters Nkcrc selected in order to
provide sufficient description of conditions in both the prinlay and see-
ondaiy sides of 1 IFIR during start-up. The time series of these live parame-
ters are uccd to train five neural networks (i.e., it 5, but it can he any
number dependent upon the virtual measurement values (VNIV). Fach ore

Secondaiy flow
Control Valve

Flure 15.6 Schematic of the high-Lox isotope reactor.
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Figure 15.7 Secondary flow signal during start-up.

of them has five neurons at the input la yer and four neurons at the output
layer and 10 neurons in the hidden layer of each network, in each network N
in Figure 15.5, there are five input neurons each receiving a time series from
the five physically measurable variables; four output neurons represent the
four corners of a trapezoidal membership function. The output is a member-
ship function uniquely labeling a fuzzy value of the fuzzy variable describing
the position of the secondary flow control valve, referred to as valve–position.
The data for each of the time series used for network training is to the
interval 0.1 to 0.9 and sampled every 16 seconds, with a total of 1240 samples
available.

Designing a virtual instrument to predict valvc_poi!ion requires first the
partition of its membership of discourse with the appropriate number of
VMVs. In this example, five values—CLOSED, 1ARTL4LLY._(.'LOSED,
MEDIUM and PAR TL4LLY._OPEN and OPEN–were chosen. (The choice
of five VMVs had nothing to do with the fact that there are five input
variables.) Each value is represented by a membership function, namely,
/1CLOSLD, P-PARTJ,.ILLYCLOSED , /-'-MEDIUM , P-I'ARTJALLY_OPEA', and 1LOpE.

These five membership functions describe the position of the valve at every
instant during the start-up period. The universe of discourse oil these
membership functions are defined is the interval [0, 1 ], Thus, /1'EN associ-
ates each point in the universe of discourse with the fuzzy value OPEN at
this point.

The membership functions representing the output of the predictive
instrument in this particular study have trapezoidal shape or the degenerated
(triangular) form of it, which is very useful for computations in the fuzzy
control area. The membership function for CLOSED, namely /.LCLQSE.O S

defined by a trapezoid with peak coordinates ((0.02, 0), (0.05, 1), (0.10, 1),
(0.2, 0)). Similarly, PARTIALLY–CLOSED is represented by the trapezoid
with coordinates ((0.15, 0), (0.2, 0), (0.30, 1), (0.4, 0)), MEDIUM by ((0.35, 0),
(0.4, 1), (0.50, 1), (0.6, 0)), PARTIALLY–OPEN by ((0.5, 0), (0.6, 1), (0.7, 1),
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(0.75, 0)}, and OPEN by {(0.7, 0), (0.82, 1), (0.85, 1), (0.90 (}. P is evh' :jjt
from the above geometrical schemes that there is an ovedap Lct\vcen the
rnc'inbership functions used. The reason for the overlap is the fuzziness in One
definition of the different states of valve position.

Figure 15.8 shows the prediction of the instrumcnt dui ing a start-up of tie
reactor (1240 time steps). The valve is initially CLOSEt) as sesu by the
membership function iii the origin of the 3-1) aph. It goes tiioeugh the
"medium" range rather quickly in the vicinity of -400-500 time sicps, and
finally it becomes fully open after the 800th times: P.utc that this ufirnis
rather well the trend shown in Figure 15.7 whcrc t t tc _ond :ir ft i t icarhcs
its maximum value after about the 800th time stp.

To test the ability of each network to predic t the valve pos ion by
calculating the right membership function at any p:u-:ulai Lane sU. p, differ-
cot levels of noise v;ere introduced in the input signals. Initially up to 10%
noise was introduced to all five input signals, and the set of networks was
tested with the 'noisy" vectors. The appropriate networks fired at the
corresponding time steps, calculating the coordinates of the peaks of the
corresponding membership functions with 98% accuracy. Henceforth there
was an excellent prediction of the position of the disk valve during il whole
tone interval under consideration. In addition, 20% noise was introduced to

- '1''e

FIgure 15.8 Virtual measurement for time steps 0-1240 in 200-step intervals.
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Flguro 15.9 Vnuol rnecuuramenf for time steps 0 120 in 200-step intervals when the
secondcry Now input signal has been substituted with 100% noise.

all five input signals, and the networks were tested again. The response of the
system was indistinguishable form the previous case.

Even when the most closely related input signal was replaced with random
noise, the predichve instrument still predicted the vals e position rather
accurately. Figure 15.9 shows the output of the instrument when the sec-
ondary flow signal has been replaced with random noise, Comparison with
Figi ire 15.8 shows that the virtual instrument still indicates the valve position
ra1er well. A series of statistical tests were conducted to confirm that the
output of the instrument is actually within random error of the previous case.
This represents a significant tolerance to informational hazards to which the
isstrument was exposed. Even with about 20% of its input information lost, it
still rather accurately measured the valve position. Similar results were
obtained by replacing the other irput signals one by one with andoni noise.

15.5 NEUROUZZY APPROACHES TO ANTICIPATORY CONTROL

Anticipatory systems are systems where change of state is based on informa-
tion pertaining to present as well as future states. Cellular organisms,
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industrial processes, and global mar kets provide many examples of h
where global output is the result of anticipated, as well as current, states. In
the global economy, for example, the anticipation of an oil shortage or of a
significant default of foreign loans can have profound effects upon the course
of the economy, whether or not the anticipated events conic to pi
(Holland, 1988). Participants in the economy build up models of the rest of
the economy and use them to make predictions. The models are more
prescriptive (prescribing what should he done in a given situation) than
descriptive (describing the options of a given Situation) and involve strategies
appropriately formulated in terms of loolw/read, or anticipation of market
conditions. In an industrial process, the prescriptions arc typically standard
operating procedures (SOPs), dictating actions to be taken under specific
conditions. The accumulated experience of various decision-makers at all
lvcls of the process provides increasingly refined SOPs and progressively
more sophisticated interactions amongst them and computer tools designed
to assist the operators. As another example, consider a car driven on a busy
highway. The driver and the car taken together are a simple, everyday
example of an anticipatory system. An automobile driver makes decisions on
time basis of predicting what may he happening in the future, not simply
reacting to what happens at the present. Driving requires one to be aware of
future system inputs by observing the curvature and grade of the road ahead,
road conditions, and the behavior of other drivers. Perceptual information
received at the present may he thought of as input to internal predictive
models. Such a system, however, is very difficult to model using conventional
approaches. In part, the difficulty relates to the fact that conventional
predictive models are unduly constrained by excessive precision. Generally,
in situations like the driver—car system, it is important for a decision-maker
(the driver) to use a parsimonious description of the overall situation-- that is,
a model with the appropriate level of precision. Predictions about the future
are not very precise, arid, of course, they may be wrong. Yet, their efficacy
does not rest on precision as much as on the more genera] issue of accuracy
and their successful utilization. High levels of precision may not only he
unnecessary for problems utilizing predicted values, they may very well he
counterproductive. Arm ovcrpreeisc driver may actually he a dangerous driver.

Although anticipatory systems have been studied by a number of rc-
searchers in the context of mathematical biology (Rosen, 1985), it should be
noted that automata theory (Trachtenbrot and Barzdin, 1973), preview con-
trol (Tomizuka and Whitney, 1975), and their epistemological roots may he
traced back to Aristotle's views on causality. It is only recently that the advent
of modern computing technologies makes it possible to employ them for
complex system regulation and management (Berkan ct al., 1991; Tsoukalas
et al., 1990, 1994b). In Japan, the automatic train operator (ATO) used in
Scndai's subway system, as well as some tunnel ventilation systems and
elevator control systems employ anticipatory control strategies (Yasunobu,
1985); and researchers at Toholcu University and Mitsubishi Research Insti-
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tute have studied an innovative anticipatory guidance and control system for
computer-assisted operation of nuclear power plants (\Vashio, 1993).

Probabilistic Predictions

In preview control, future information was considered as probabilistic in
kind, and the control problem was seen as a problem of time delay (Tomizuka
and Whitney, 1975). The situation is illustrated in Figure 15.10a where a
discrete control problem that lasts ii time steps, presently at time i, is

y
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FIgure 15.10 (a) The future in finite preview problems is modeled deterministically
and stochastically. (b) The future in anticipatory systems is modeled fuzzily.
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considered. Tomizuka postulated that up to certain tone n, bey' I i,
predictions can he made and utilized by the controllej at i. Thus, the	 u-c
is divided into deterministic and probabilistic parts as seen in Figure
The controller is assumed to make use of preview information with respect to
a command signal (desired trajectory) from the present time i up to : time
Units into deterministic future. The quantity ni is the preview time (r kny'h
of wiricipatzcm) and is usually shorter than a, the problem duration, often 1 y
one or two time steps. To make the solution applicable to a broader ciass of
problems, measurements of time delay, observation noise, and driving aoisc
were included in formulating the problem. The solution showed bc.. to
utilize the local future information obtained by finite preview (nia)
to minimize an optimality criterion evaluated over the problem duration n. It
was found that preview dramatically improved the performance of a sv:cm
relative to nonpreview optimal performance, and a heuristic criterion about
the preview time,	 was suggested, that is, 111a	 X (longest closed-i aop
plant time constant).

Fuzzy Predictions

The point of departure for our formulation is that future information is
essentially fizzv in nature, that is, predicted values are not imbued with
stochastic or probabilistic type of uncertainty. Whatever can he said about
the future does not come from measurements but instead front models;
hence, such predictions are fuzzy numbers—that is, linguistic categorizations
of information pertaining to the future of the system. Generally, fuzziness is
a property of language, whereas randomness is a property of observation; and
since there is no physical measurement pertaining to the future, the mathe-
matics of fuzzy sets may be more appropriate for anticipatory systems.
Consider, for example, the process depicted in Figure 15.10b. At any time i
we have available information from the present as well as information from
the output of Some predictive model. According to our formulation, this is a
fuzzy prediction. Therefore, the mathematical tools for utilizing it at time i
ought to he fuzzy as well. The time t into the future, the anticipatory time
step, depends oil nature of the problem and the predictive model used
and, generally, need not be one or two time steps as is often the case in
preview control. As is suggested in Figure 15.10b, the fuzziness of a predic-
tion is postulated to depend on time in the future in the sense that for
greater time we get fuzzier predictions.

Issues of Formalism in Anticipatory Systems

A system that makes decisions in the present on the basis of what may he
happening in the future is thus envisioned to he different in two important
respects: in the language used to formulate models of its behavior and in the
method of measurement used to access future states. The first we call the
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Lcsue of forrnaliz,n and we address it in this section, while the latter we
examined in the previous section through the concept of virtual measure-
ment.

Consider the typical systems formulation in modern control theory. A
system is described by a set of difference (differential) equations of the form

x(t + 1)	 Ax(t) ± Bu(t) + w(t),	 x(r0) = X1)

v(t) = Cx(t) + 0(r)

where {e(t)) is an r X I input sequence, (y(t)) is an ni x 1 output sequence,
(x(t)) is an a < 1 state sequence, A, B, and C are appropriate transition
matrices, x, sonic initial state, and, v(t) and v(t) are noise terms.

A system is called anticipatoly if x(t i 1) and y(t) are not uniquely
determined by x(t) and u(t) alone, but use information pertaining to some
future state x(t + t) and/or input u(t + it).

Looking at equations (15.5-1) we observe that it, is rather difficult to
include future information in these equations except by containing it within
the noi ,, c terms as in the case of nondetcrministic systems. In such a case,
one obtains sets of values x(t + 1) and y(t) with each pair [x(t), 0(t)].
Suppose that the values of x and y are subsets of some larger Sets X and Y.
If we denote these subsets of X and Y by X' and Y, we obtain mappings
of the form

	

= F[x(t), 0(01	
(15.5.2)

1'' = G[x(t), u(f)]

Of cow se, one could fu7:ify this system by assurn!ng ti it these X 1 j Y'
are fuzzy subsets on X and Y, respectively, and obtain a fuzzy system
detc:nined by conditional membership functions

+ 1)jx(t). u(t)]	
(15,5-3)

[y(t)k(t), u(t)]

Subsequently the compositional rule of inference may be used to calculate
the fuzzy response of the fuzz-v system to any fuzzy input. The problem,
however, of involving future information in the formulation of equations
(15.5-1) still remains. Generally, if we do so, the mappings in equations
(15.5-2) cease to he many-to-one mappings (i.e., functions) but instead
become more general many-to-many mappings such as we now have in fuzzy
relations.
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Consider acain equations (155-1). Another approach is to consid
equal signs	 " as the assignment operators	 '', that is

	

x(t + 1)	 4(t) -F Bu(t) ± n (t),	 x(t0) =
(!5.5-4)

v(t) = Cr(i) ± u(t)

\ViiCre the ossignmClil operator '' is an 1f/iI1en rule, which a icus the
right-hand side (RI IS) of equation (15.5-4) to the left-hand side (Lils) upon
update. Now we are in the realm of logical implications and we euri easily
include terms such asx (t + At), and u(t ±At) in our if/then rules. The
calL ulus of fuzzy if/then rules is rather well known and provides an interest-
ing alternative and cnhanccmen of formulations such as ecpatio; ) (15.5-1),
porticulailv for the purpose of qualitative end coi;iplex system modeling.
Thus, an anticipatory system con he described by a collection of fuzzy if/then
rules

{R1,R...... R')	 (15.5-5)

1',Ich rule is a situation/action pair, denoted as ,v - a, where both pocscn
and anticipated situaian.s are considered in the LHS and cwient OCI!flfl is
considered in the RI-IS. The rules of equation (15.5-5) may ho rewritten as

	

fl v

	

	 i 
= { s -p 

(7 1 ,  s
1 - a 2 ' . . . , 

S  -- a )

12	 (15.5-6)
=	 - a))

j-1

where is an appropriate implication operator (Terano et al., 1992). In
man y cases we can further partition the set of rules in equation (I5.5) into
rule bases (RB), with each rule base being responsible for one action; that is,

	

=
[RB]	 (15.5-7)

Rule bases (15.5-7) can be made to reflect temporal partitions that is, we can
have rules that describe the state of the system at r, that is,

S(t) -- a(t)	 (15.5-8)

and we can also have rules that describe the possible state of the system at
some time later, that is,

.c(t +	 t) --' a(z)	 (15.5-9)

Thus an anticipatory fuzzy algorithm can infer the current action 0(1) on the
basis of the present state s(t) as well as anticipated ones s(t + At).
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Generally, the rules of (15.5-5) describe relations of it more general type
than that of functions, i.e., many-to-many mappings (see Chapter 5). Such
mappings have the linguistic form of fuzzy if/then rules—for example,

if x is A then y is B	 (15.5-10)

where .v is a fuzzy variable whose arguments are tuzzy sets denoted as A,

and y is a fuzzy variable whose arguments are the fuzzy sets B. Similar rules
pertaining to future states are of the form

if ,t will be A, then y is B	 (15.5-I1)

where x is thought of as a situation variable and y is the corresponding
action variable. Evaluation of formulations using rules such as (15.5-10) and
(15.5-11) can be done through generalized modus poiiens as we have seen in
Chapter 5.

Anticipatory control strategies may he based on global fu77y variables such
as per where a decision at each time t is taken in order to mainiizc
current as well as anticipated performance pertaining to r ± t. Performance
in this case is a fuzzy variable (with an appropriate set of fuzzy values) that
summarizes information about the system, thereby allowing the system to
make decisions about its change of state. The observation/prediction of such
variables can be addressed by the methodology presented in Section 15.4.

Alternatively we may use fuzzy if/then rules to generate a decision from
(15.5-7) and call a predictive routine to anticipate the effect of the proposed
decision on the system output (Yasuitohu and Mivamotu. 1985). Additional
rules may be called if the current decision will result in system behavior
which is unacceptable. Consider, for example, the following rule:

/7 the current decision (ut) will cause the thJjrcnce letwe'ii the current and
anticipated states to be big, then

it	 u ,.(I	 . bir)
	

(15.5-12)

WhL : l is a u.sei -chosen parameter between 0 and 1 and bigi is the
fulfjilment function for the anticipated difference states. The parameter
may also be chosen by employing a predictive neural network (McCullough,
1u3).
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IN NEUROFUZZY SYSTEMS

16.1 INTRODUCTION

Artificial intelligence is a branch of computer science that attempts to
emulate certain mental processes of humans by using computer models. In
exper t systems, perhaps the first field of artificial intelligence to be commer-
cially recognized in its own right, one of the primary objectives is to mimic
human expertise and judgment using a computer program by appl ying knowl-
edge of specific areas of expertise to solve finite, well-defined problems.
These computer programs contain human expertise (called heiusric know!-
edge) obtained either directly from human experts or indirectly from hooks,
publications, codes, standards, or databases, as well as general and special-
ized knowledge that pertains to specific situations. Expert systems have the
ability to reason using formal logic, to seek information from a variety of
sources including databases and the user, and to interact with conventional
pograins to carry out a variety of tasks including sophisticated cornputaion.

The principal use of expert systems in ncurofuzzy systems is to ensure that
the unique capabilities of neural networks and fuzzy logic Systems are
implemented in the proper way including the fuzzy rules of fuzzy algorithms,
sometimes called "fuzzy associate memory" (FAM) ratrices (see Figure 6.2).
While it may be possible to use ordinary software programs to do this, the
ability of expert systems to adapt to and deal with unforeseen situations is
very important when the outputs may not be precise or the model may be
based on less-than-perfect data.

523
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16.2 CHARACTERISTICS OF EXPERT SYSTEMS

A number of characteristics of expert systems are unique and generally
advantageous [see, for example, Van Horn (1986) and Feigenbaurn et al.,
(1988)]:

1. Experts need not he present for a consultation; expert systems may be
delivered to remote locations where expertise may not be otherwise
available.

2. Expert systems do not suffer from some of the shortcomings of human
beings (e.g... they do not get tired or careless as the work load increases)
hut, when properly used, Continue to provide dependable and consis-
tent results.

3. The techniques inherent in the technology of expert systems minimize
the recollection of information by requesting only relevant data from
the user or appropriate databases (i.e., data encountered in the rcasom.. -
ing path).

4. Expert knowledge is saved and readily available because the expert
system can become a repository for undocumented knowledge that
might otherwise be lost (e.g.. through retirement).

5. The development of expert systems forces documentation of consistent
decision-making policies. The clear definition of these policies makes
the overall decision-making process transparent and the implementa-
tion of policy changes instant and simultaneous at all sites.

On the other hand, expert systems have disadvantages that affect their
use:

1. They usually deal only with static situations.
2. They must be kept up to date as conditions change.
3. They often cannot be used in novel or unique situations.
4. Results are very dependent on the adequacy of the knowledge incorpo-

rated into the expert system.

5. Perhaps most important, they do not benefit from experience except
through updating of the knowledge base (based on human experience).

6. Expert systems are unable to solve problems outside their domain of
expertise. In many cases they are unable to detect the limitations of
their domain (Swartout and Smoliar, 1987; Ricker, 1986).

The domain of an expert system refers to the scope of the knowledge
contained within the knowledge base. If the expert system operates outside
its domain, it is possible that it may generate incorrect results by utilizing
nonapplicable, irrelevant knowledge while searching for a solution, The
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inability of expert systems to recognize the limitations of their knowledge has
been identified as a very serious shortcoming.

Expert systems can, under certain circumstances, deal with imprecise or
"fuzzy" information, missing information, and even .I amount of
conflicting information through the use of "certainty factors" or Bayesian
probabilities (Kaplan ct al., 1987). Certainty factors represent a measure of
belief of the user that a piece of evidence is true. Those are not probabilities
but rather simply a subjective judgment on the degree of truth or validity of
an assertion. Some of the information used in development and application
of an expert system may not be absolutely certain, and the use of certaiaty
factors allows this subjective evaluation to be incorporated into the expert
system. The final results in these cases may he the 'most probable" SOlUti(Jfl
or the "best" solution, but there is no absolute guarantee that the solution is
the ''correct" solution. Recent work incorporating "fuz.zv logic" and

reasoning under uncertainty" into expert systems has greatly i:npoved the
performance of expert systems when dealing with complex systems.

A comparison of human and artificial expertise will help cun'.'ey the
strengths and weaknesses of expert Systems. Human expertise is prishahic
and difficult to transfer, whereas artificial expertise is permanent and easy to
transfer. I lumen expertise is not always consistent, whereas artificial exper-
tise is consistent. (If you give an expert system the same problem oil
occasions you will get the sense answer unless stochastic processes are
involved; this is not necessarily true of a human expert.) On the other hand,
human expertise is creative and has a broad focus, whereas artificial exj'citisc
is uninspired and usually has a very narrow focus. Above all, human expertise
is adaptive and demonstrates common sense, characteristics usuall y lackin g in
expert systems because the knowledge is entirely technical or objective in
nature. For instance, at titictal expertise does not know that the objects
cannot occupy the same space unless it is told.

16.3 COMPONENTS OF AN EXPERT SYSTEM

The principal components of an expert system are the inference cnml1ic, the
knowledge base, and the intcijhce between the expert system and humans
(users, knowledge engineers, and experts). The inference en gine is a com-
puter program that gathers the information needed from the knowledge base,
associated databases, or the user, guides the search process in accordance
with a preselected strateg y , uses rules of logic to draw inferences or conclu-
sions for the processes involved, and presents these inferences or conclusions
(where warranted) with explanations or bases.

The knowledge base consists oh information stomed in ictrie ahle form in
the computer, usuall y in the form of rules or frames. The correctness and
completeness of the information within the knowledge base is the key to
obtaining correct results or solutions using expert systems. Knowledge bases
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may contain models of systems which produce real-time i esults or certain
learning systems (such as neural nctworks) that provide new knowledge.

The interface between the human and the expert system must translate
user input into the computer language, and it must present conclusions and
explanations to the user in clear written or graphical form. It should also
include an editor to assist in adding to or changing the knowledge base.

One of the major breakthroughs in development of expert systems came in
the mid-1970s with the expert system MYCIN, a diagnostic system for
infectious diseases of the blood. The MYCIN architecture completely sepa-
rated the knowledge base from the inference engine, which permitted modifi-
cation of the knowledge base without any influence on the inference engine.
Hence, it was possible to start with a simple expert system and incrementally
add features and complexity as needed, Such a separation is common today
even in conventional software, but it was a significant advancement in the
mid-1970s.

The knowledge base of an , expert system contains the expertise (facts and
heuristics) collected from experts, books, publications, and other sources and
encoded into rules, frames, or other computer representations of knowledge.
This information describes a methodology for solving the problem as a
human expert would solve it, Collecting , adequate knowledge from experts
and translating it into computer code (a process called "knowledge acquisi-
tion") has proven to be a very difficult task. All too often, experts really do
not understand the processes by which they reason or solve problems. In
Other cases, experts are reluctant to give up their expert knowledge because
they perceive that the availability of an expert system with their expertise
may lessen their value to their employer or clients. Because all system
is only as good as its knowledge base, proper collection and representation of
knowledge is critical for the successful implementation and operation of
expert systems.

Some expert SySin!nS contain a degree of self-awareness or self-knowledge
that allows them to reason about their own operation and to display infer-
ence chains and laces of the rationale behind their results (Waterman,
1956). These abilitics (the explanation facilities) have been recognized as one
of the most valuable features of expert systems. The user can take advantage
of explanation facilities to request a complete trace for a consultation,
request an explanation on how a particular goal or subgoal was inferred, or
request an explanat i on of why a particular piece of information is needed.
These facilities can he used to obtain information on the status of a system.
LxpIanationgeneratjn p facilities are also of great use in debugging expert
rstems and may play a key role in verification and validation of expert
:ystems.

'File performance of mature expert systems has shown that the reliability*
of an expert system in a given subject area asymptotically approaches the
reliability of the expert as the knowledge base approaches the expert's
k'iowledge in that area. In some cases the reliability of an expert system
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exceeds the reliability of the expert, not because the expert system is
"smarter" than the expert, but rather because the expert system does not
forget anything contained in the kno'vledge base and is capable of rapidly
carrying out analytic and mathematical operations.

An expert system "shell" is a computer program used to develop an expert
system. Early shells were expert systems from which the doniain-spccPc
knowledge bases had been removed and the mechanism for creating a rw
knowledge base of the user's choice had been made "user friendly." Often a
shell also has provisions for changing the reasoning processes of the infer-
ence engine to adapt to the specific problem. The first shell was IiMYCIN
(essential MYCIN), in which the knosvleclge base on infectious diseases of the
blood was removed from MYCIN and knowledge bases ciii cancer treatment
and pulmonary diseases were used to create two new expert systems
(ONCONIN and I'IJFF, respectis ely) to assist doctors in these fields. The
pioneering efforts of Stanford University on EMYCIN paved the way for
virtually all modern expert s ystem shells. Indeed, only in the last few vea:s
have expert system shells begun to deviate significantly from the overall
structure developed for IdYCIN.

Expci system shells today differ significantly from each other and offer
the user ii wic variety of capabilites. Some have sacrificed size of knowledge
base to improve case of updating the l:riowledgc base, and vice versa. Certain
expert systems (e.g., 1ST CLASS and VP EXPERT) have the abilit y to derive
the knowledge base from a series of examples by induction. Such ability to
extract info ination from databases and experimental results arc one of the
strengths of artificial neural networks. I leiicc, the use of a hybrid consisting
of an artificial neural network in the knowledge base of an expert system is
feasible and often advantageous. Recently, an expert s ystem shell was intro-
duced with HYPER-FE-XT as part of the knowledge base. Selection of an
expert system to fit a specific need is almost a research project in itself and
has, in feet, been the topic for an expert system.

16.4 KNOWLEDGE REPRESENTATION AND INFERENCE

There are a variety of apomoaehcs ti c coJc human expertise in expert
systems. the most common one beinC if/then rules. Semantic networks,
frames, and logical expressions are alternative paradigms of knowledge
representation, although the majority of industrial expert systems use the
rule-based paradigm. [For a discussion of the subject see (Gonzalez and
Dankel, 1993).)

'Ilie three basic constituents of a rule-based expert s ystem are: rule base,

working nmi'inorv and rule interpreter. The rule base is often partitioned into
groups of rules, called role clusters. Each rule cluster encodes the knowledge
required to perform a certain task or a fraction of a task, usually referred to
as a subtask. There may also be rules for internal control purposes- for
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example, to signal which rule cluster to select as holding potentially relevant
knowledge at a given time. Collectively, these rules are referred to as the
control structure of all system. Another class of rules, called demons,
may be present; they are designed to function outside the control structure of
the program for the purpose of enhancing its ability to respond quickly to the
occurrence of an event requiring some immediate action. Demons address
inefficiency issues that may arise from excessive control over the rule base
(Cooper and Wogrin, 1988).

if'orking nwmoiy is a database holding input data, inferred hypotheses,
and internal information about the program. In all expert system with
monitoring functions, for example, the state of working memory at any given
time reflects changes occurring in the process being monitored as well as
internal changes due to the reasoning process of the program itself.

The mechanism through which rules are selected to be fired is called the
rule (ntcrprefrr. It is based oil pattern matching algorithm whose main
purpose is to associate at any given time the state of the system (input data,
inferred hypotheses, etc.) with applicable rules from the rule base.

the inference engine of an expert system is in charge of manipulating the
data presented to the system and arriving at a conclusion. In expert system
technology the two most widely used reasoning techniques are forward
chaining (forward reasoning) and backward chaining (backward reasoning).
In forward chaining the system reasons forward from a set of known facts
and tries to infer the conclusions or goals. Design of a complex system is a
forward-chaining application where the expert system starts with the known
requirements, investigates the very large array of possible arrangements, and
makes a recommendation based on criteria specified by the user.

In backward chaining the system works backward from tentative conclu-
sions or goals and attempts to find supporting evidence to verify their
correctness. Solving a crime is a backward chaining application where the
expert system identifies the possible suspects, looks for evidence indicating
the guilt and innocence of each suspect, and makes a recommendation
regarding which suspect is the most likely criminal. In many cases,
backward-chaining systems are more efficient than true fonvard-chaining
systems because they tend to reduce the search space and arrive at a
conclusion more quickly.

Many advanced expert systems use a combination of both forward and
backward chaining. Different search strategies, such as "depth first" or
"breadth first", may he incorporated into either backward or forward chain-
ing.

Data enter an expert system either through a user interface or from other
programs such as databases, data acquisition systems, simulation packages,
and so on, and form the initial facts (or assertions or evidence) available to
the rules. From the input data, conclusions are drawn in a process called
inferencing. The two basic infereneing strategies, forward chaining and back-ward chaining, are also referred to as modus poneris and modus tollens,
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respectively. These are crisp versions of GM1 1 and GMT intrduced in

Chapter 5 for fuzzy systems.
In modu.s ponens, if we have the following rule

if A is true, then B is true

Hence if it is known that 'A is tnre," then we call that B is true."
Most expert systems use this power lul infercucing strategy. In modus to/c ns,
if we know that the rule i true and we also know that ''B is false," , then we
can infer that "A is false." We often simply write A instead of "A is true"

and NOT A instead of 'A is fals " The requirement for an exact mach
between input data and what is stated in a rule is relaxed ill 	 expel

Systems where tU7ZifiCd versions of the basic iirfercncing strategies h:cve been

d eve op J.

16.5 UNCERTAINlY MANAGEMENT

An important issue in exoert systems is uncertainty management. Represent-
ing or corni in ing uncertain data and drawin g reirahic inferences from it has
been extensively investigated over the past two decades, and several theories
Of uncertainty have provided tools for solving uncertainty prohlem (Kruse
et ill., 1991). Probability theory and certainty factors have been frequently
used; but also possibility (fuzzy) theory, Dempster-Shafer belief measures.
Cohen's theory of endorsements, and subjective Bayesian methods are uncer-
tainty management paradigms that have found important applications.

The oldest approach to uncertainty management has been the prohadilis-
tic approach which essentially ascribes probabilities to facts and rules and
uses Bayes' rule and a rather large amount of statistical data to construct the
various probabilities in the knowledge base (Kruse et al., 1991). A drawback-
of the probabilistic approach is its difficulty in distinguishing between
absence of belief and doubt or to represent how ignorance is related to the
lack of knowledge.

Certainty Factors

In order to overcome the difficulties of Bayesian probabilities (e.g.. requiring
a large volume of data or distinguishing between absence of belief and doubt),
certainty factors may be used. In the certainty factor (CF) formalism,
knowledge is expressed as a set of i ules having the form

if B, then It with CF( IflE)

where F is the evidence—that is, one or more facts known to Support the
Iiypothi'si.v II, and CF(HE) is the certainty factor for the rule, a measure of
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belief in ii, given that E has been observed. The value of CF ranges
—1 to + 1, When CF = - 1 the hypothesis 11 is totally denied, While
CF = ± 1, the hypothesis II is totally confirmed.

Certainty factors are obtained from measures of belief, MB(Ij,
measures of disbelief, MD(JI, E), both taking values between 0 and 

1. Ameasure of belief MB(H, F) represents the degree to which the hclicf in
hypothesis H is supported by observing evidence E, and it is computed by

f
MB( HIE) = i
	 if p(II) = 1

[p(HE) - (H)}/[I -p(H)] else

A measure of disbelief MD(H, F), on the other hand, represents the degree to
which the disbelief in h ypothesis II is supported by evidence F. It k
computedted h

1 1	 ifp(H) -
MD(H, F)	

[p(II) -- p ( H I E )]/[ 1 - p(H)] else	
(16.5.2)

The certainty factor CF is defined in terms of MB(, F) and measure of
disbelief MD(JI, F)

CF = [MB( H, F) -- MD(H, E)]/{1 - MIN [MB( H, F), MD(lI, E)])

(16.5-3)

During the execution of a knowledge base, multiple rules are typically
capable of deriving the same hypothesis or conclusion, resulting in modifica-
tion of the CF's involved. Consider, for example, a case where two different
e idences E 1 and F2 lead to the same hypothesis H. In such cases, certainty
factors of the same or opposite signs can be combined directly by the
following formulas (Gonzalez, 1993; Kruse et aL, 1991):

Case 1. When both CF(HIE 1 ) AND CF(HIE) > 0

CI-(H1E1, 2) = CF(HIE 1 ) 4- CF(HIE,) -- CF(HIE1)*CF(111E2)

When —I <CF(111E1)*CF(111E2)<0

CF(HE 1 , 11:2)

= [cF(II!E) ± CF(111E2 )]1{1 -- MJN [JCF(111E 1 )j, CF(HIE2)I)}
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Caxr' 3. When CF(fZlE 1 ) CF(I1 j E2 ) = -- 1

(.J(111E 1 , JeT,) =

Case 4. When both CF(111E 1 ) AND CF(IIF) <0

(.F(111 F 1 J) = CF(11E 1 ) + cF(LIE) ± CF(iIE) CF(JiiT)

It has been assumed in the above equations that we have absolute confidence
in the evidence of premises used to derive various vibes. in expert systems,

often (but not always) a hypothesis from a rule is used as evidence tar

another rule and hence we should not actuall y have absolute conhdence in
the evidence, and the ccrtantv factor approach does not rnatei all con-
tribute to the final resuhs. An additional drawback of certaint y factors secais

to he the complexity of iaaintaiiting them. When, for example, now
edge is added or deleted from the knowledge base, the certainty factors vi
existing knowledge change as well, making the maintenance of the sst 'ma

madier co;iiptiea± d. Yo; thocc reasons and others, use of fLlzzv set tltiirv in
the form of reasoning tinder uncertainty is more camumnonlv encountered

luLl ay.

16.6 STATE OF THE ART OF EXPERT SYSTEMS

The hiijact Of expert systems tccluaio .Ty bias beeui bit in many areas of
science, education, and industi. In time past decade a great many applica-

t i ons have been initiated, and many are now operational or in the prototype
stage. (Uhrig, 1988; Herti, 1988). The extent of the potential application of
tins technology is not yet known, because expert sr stenus ill future ma y be

used in completely new Settings to solve quite different problems. However,

the introduction of futv rules has greatly enhanced the usefulness of expert

systems.
It is very difficult to gain a true picture of just how widespread the use of

expert systems has become. In man y cases, organizations are using expert

systems internall y . Even the fact that they are used, let alone the details of
the expert systems, are treated as proprietary for the simple reason that the
company or organization wants to gain competitive advantage. By one ana-
lyst's estimate, about half of the companies listed ill 1-ortune SOO are
developing expert systems (('Dates, 19$tsi. One automobile manufacturer is
reportedly insisting that manufacturers supply diagnostic expert systems with
the equipment the y pi ovide.

Expet sy stems may change the manner in which many organizations
operate, and they could change the workplace in general. In large organiZa-
tionS such as governniemtt, big corporations, anti associations, rune expert

predicts that 6Y9-90'TT of iii jobs ame candidates for augnientati)ui. dispiace-
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ment, or replacement by expert systems (Coates, 1988). Coates further
predicts that by about the turn of the century the capabilities of expert
systems will have grown to such a degree that their impact will be felt
throughout most occupations and workplaces.

16.7 USE OF EXPERT SYSTEMS

Generally, but not always, problems that are amenable to a numerical
solution should be solved using conventional computer programs. However,
there are many situations in which expert systems offer unique advantages
over conventional programs. Most applications of expert systems today can
he classified into the following six categories: (1) monitoring systems,
(2) control systems, (3) configuring systems, (4) planning systems, (5) schedul-
ing systems, and (6) diagnostic systems.

Monitoring Systems

Monitoring systems are dedicated to data collection and analysis over a
period of time. The collected values are compared against expected perfor-
mance, and if discrepancies are identified the expert system generates
recommendations and/or notifies the operator.

Control Systems

Control systems are monitoring systems in which action (e.g., opening a valve,
adjusting a bias, turning oil heater, etc.) is taken as a result of the
discrepancy identified by the monitoring system.

Configuring Systems

Contguring systems address problems in which a finite set of components is
to be arranged in one of many possible patterns. The classical example in this
category is XCON, an expert system used by a large computer manufacturer
to configure its equipment in accordance with its own rules and the user
specifications.

SChod' ig and Pkirir,!.g Systems

Scheduling and planning expert systems coordinate the capabilities or corn
ponents within an organization to optimize production and/or increase
efficiency. The d:ffcrencc between planning and scheduling systems is that
the components for a task are not always known in planning systems.
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Diagnostic Systrns

Diagnostic systems observe and analyze data and map the anal ysis results to
a set of problems. Once the problems have been identified, the cxuer system
usually recommends a solution based on facts in its knowledge base and on
the other information it can acquire. Expert systems have been used to solve
ninny different problems in a variety of fields. Some of these areas ace listed
in Table 16.1, which is intended to give a brief overview of the breadth of
applications that has developed. One area in which there has been CXtCi1SIVC

efforts to utilize expert systems is the nuclear power field, many of which
could affect safety and safety-related ystemns. The scope of these applica-
tions has been documented by Bernard and \Vashio (199).

Tcihl3 16.1 Applications of expert systems

lIEU)	 V
Design and engineering

Computer applications

Manufacturing

Collecting and Storing knowledge of
best designers speeding the design
p:OCeSS
Configuring equipment to user specifications
Diagnosing problems with computer cuipment

Managing human and machine resecrces
Facilitating factory automation

Finance	 Decision support tools
Providing tax and other business advice
Processing loan and mortgage applications
Analyzing financial risk

Science and r.iedicine Providing medical advice in hospitals
Providing diagnostic assistance to medical personnel
Patient monitoring

Advising regarding mineral deposit and oil locations
Advising drillers regarding stuck bits

Interface for computer-aided instruction
Assisting in computer-based training

Geological applications

Training
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16.8 EXPERT SYSTEMS USED WITH NEURAL NETWORKS
AND FUZZY SYSTEMS

Neural Network in the Knowledge Base of an Expert System

Neural networks, in spite of the extraordinary usefulness, have relatively
limited capabilities. They are trained using available data, tested, and put
into use. All they can do is recall an output when presented with an input
consistent with the training data. They cannot reason, seek data from
available databases to assist their operation, or provide an explanation of
their outputs. They need a structured environment in which to operate,
which can be provided in some cases by conventional software programming.
Ilowever, recent experience indicates that usefulness of a neural network can
be enhanced significantly if an expert system is used to provide this operating
environment. Indeed, all system can retrain a neural network to adapt
this hybrid system to new situations, or it can intermittently update the
training of the neural network to adapt to changing situations. Some recent
work indicates that expert systems can be used to provide explanations for
why a neural network gives the output it does.

Perhaps the most direct combination of these two artificial intelligence
technologies is the use of a neural network in the knowledge base of an
expert system. This gives the expert system the ability to learn from data
presented to it. The training may be on-line or performed during an initial -
ization period. Multiple and/or modular neural networks may he incorpo-
rated into the knowledge base, and neural network outputs may be combined
within the knowledge base. Control of the neural network is carried out by
the inference engine in the same way that it seeks additional information
from a database or initiates a logic reasoning step.

Fuzzy Rules in the Knowledge Base

One of the most popular methods of storing information in the knowledge
base is through the use of if/then rules. Both the antecedent and the
consequent or action of the rules may have multiple statements connected by
Co njunctions such as AND and/or OR. For simple systems, the rules can be
relatively simple and straightforward. If the individual components of a
System are independent and follow a "logic tree" structure, the rules proceed
)L) a monotonic manner; that is, the • inferencing process always proceeds
fo iward. However, if the components are interconnected, the logic trees
fl lcract with the result that the rules become very long (more quiflfyiag

conditions connected by conjunctions), more complex, and more numerous.
I kncc, it is increasingly harder to prevent rules from conflicting with each
Other. Indeed, it has been the experience of many investigators that when the
number of rules gets beyond about 200, it is virtually impossible to write a
IOeil llLngful rule that does not conflict with previously written rules. This
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paralysis of the knowledge base for complex systems caused interest in expert
systems to decline in middle to late 1980s. With the advent, of fuzzy rules,
based on fuzzy set technology, expert systems are again being introduced in
high-technoloy systems. For instance, an autonomous navigation system
using sensor signals to navigate between moving objects was almost aban-
doned when 450 rules did not provide a salisfactoty system. lowever, the
replacement of the navigation system's 450 rules with 15 fezzy ides provii.l
a system with outstanding performance (Pin, 1992). Comparable results in the
reduction in size of expem t system knowledge bases b y the introduction of
fuzzy rules have been reported by many investigators (Terano ci al., 1994).

It is this usc of fuzzy rules in an expert system, a conabinat ion that is often
called fuzzy expert svsteiiis," that has reawakened interest in expert systenis.
In a traditional expem I svstenl, the number of rules necessary to unambigu-
ously define a situation tended to grow in an exponential-like fashion as the
complexit y of the system increased. For complex problems thrit were amenable
to monotonic reasoning (i.e., the reasoning proceeded forwa:d directl y to-
ward a goal with a reversal), a large number of rules simpl y meant a slow and
cumbemsome process. Fur complex problems that involved seatelming ninny
paths with reversals and many-to-many mappings, use of a rmi!e-baseci knowl-
edge base was simply not feasible. 'Ihe abitilv of fuzzy rules to drastically
reduce the number of i miles has been the secret of success in using expert
systems in most complex situations.

Even in frizzy expert systems, a major effort must be made to minimize the
nuruber of rules N% tliout deteriorating the operation. Cons:der the case
where there are three inputs and one output that utilize five membership
functions each. This could lead to 54 (625) fuzz y rules. Fortunatel y , in most
situations, all the rules do not contribute equally to the solution. Many
methods are available to reduce the number of rules involved. One way
would be to use a genetic algorithm optinuzati iii. Usuall y , however, a
statistic-based proces:-or can analyze the situation and give the contribution
Of each rule to the solution. I'hcn the riser can Set the threshold for including
rules at a level consistent with the specifications for precision and speed.

16.9 POTENTIAL IMPLEMENTATION ISSUES FOR EXPERT SYSTEMS

Potential problems iii uuplelllcntillg expert s ystems in complex engineering
systems can be projected from past experience v., ith the introduction of new
and innovative systems.

General Implementation Issues

1. Most complex engineering systems, as presently built and operated, arc
con'iderect by the operators to be safe. enouiTh. \\itli the possible
exception of the severe accidents (i.e., Chernib yl. Hu-l ough. etc.),
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expert systems are not perceived to be needed to provide additional
safety functions.

2. Introduction and use of an expert system must not introduce a new
operatio nal or safety problem. A thorough analysis of what Could go
wrong and what effect it could have oil plant and its safety system
would he essential before implementation The ultimate criterion in
judging any new system is whether its failure can, in any way, lead to a
challenge of existing plant protection systems.

Implementation Issues That Need To Be Addressed
A number of issues regarding the i mplementation of expert systems in
complex engineering systems need to be addressed. These include, but are
not limited to, the following:

1. Quamiratjt:e and Objective Performance Guidelines for Evpert Systems,
The primary concern about the introduction of any new system into a
complex engineering system appear to be the impact it can have on the safety
system when something goes wrong. The ultimate question in judging any
new system must le "Can the failure of the expert system lead to a challenge
of the existing safety systems'?' Above all, replacement of an existing system
with an expert system must not introduce new unresolved issues (i.e., new
unreviewed safety hazards).

Introduction of a new system must not lead to confusion of operators or
other plant personnel. New tools may he needed to evaluate and measure the
performance of expert systems and the impact of these systems on human
performance. Objective criteria that are quantitative in nature are needed.

2. Validation and Verification ( v&' V). In conventional software program-
niing, verification and validation have well-established meanings; verification
is a determination that software has been developed in a formally correct
manner in accordance with a specified software engineering methodology;
validation means demonstrating that the completed program performs the
fnnctions in the requirements specification and is usable for the intended
Purposes. However, expert s ystems go beyond the procedures of conventional
software engineering, and a modularized, top-down, hierarchically decom-
posed design that makes conventional V & V possible may not be achievable.
Expert systenis, especially those operating under uncertainty or with incom-
plete deta, may have so many states as to make exhaustive testing unfeasible.
Hence, new approaches to V & V are needed for expert systems.

Time inference engine omay be considered simply as another digital com-
puter program, and its V& V can be dealt with in the same way as with other
digital computer programs (e.g., IEEE-5.3.2.1). The real problem is the
adequacy of the knowledge base — that is, the qualifications of the expertwhose expertise is incorporated into thc knowledge base, the method used
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for acquisition of this expertise, and the method used to represent this
expertise in the knowledge base, Except for relatively simple expert systems,
exhaustive testing of the expert system or the knowledge base to cover all
likely situations may not be adequate or feasible.

Generally, as a matter of policy, V & V should always he carried out by a
g roup completely independent of the group that developed the expert system.
Because V & V in expert systems is SO intimately related to the design, true
independence may extremely difficult to achieve. To the extent possible, the
independence of the group that dues V & V should he ensured by quality
assurance procedures and orgaui7ati0n policy.

3. Ilumwi Factors. A primary human factors concern is that the expert
system should present information to the user in a way that is comnprchciisi-
ble and understandable. Inforniation must mesh well with the perspectives
used by the human, and the way in v,licli the in foi ination i: displayed should
correspond to the user's iue atal mcidul of the ploi L. '1 he user should be able
LO understand the expert system's behavior.

Another concern is user reaction to the expert s;stem. Will they like the
svtcm and accept it? Will they he conifortahie v th an expert System m'J LISC

it when needed? Will they believe that the system will work and that it is
useful? Above all, will they trust rind have confidence in the iriforuintion
presented by the expert system? Oit the other hand, the user could become
too dependent upon the guidance of an expert system and ignore other
indications that might not agree with the conclusion of an expert system.

The function allocation and dkision of responsibility between the expert
system and the human is another irimportaut issue. 1-lurnans should be
assigned only those functions that they are most capable of performing and
that utilize their abilities. Expert systems should relieve sonic of the physical
and cognitive womkload on users to avoid overload of the operators. The
system should make human jobs more efficient. The expert system should be
integrated with the other hardware, software, and tools in the user's work
environment. Clearly, users should be involved in the design and anal ysis of
the expert system and its interface with users.
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PROr MS

1. F ecuss how expert .systc ins can he vet ified and validated in the sense that
sof'vare undergo verification and validation. Consider the different re-
qui ements for the inference engine and the knowledge base,

2. It is well known that the use of fuzzy rules has revived the USC of expert
ss'tetns. Explain what you believe to he responsible for this resurgence of
interest of expert sys tems. Is the reason the same for all types of expert
sys zrns? If not, why?

3. Liscuss the legal ramifications of using expert systems. If an expert system
r a noural netwotk) fak in service and causes damages, who is rcsponsi-

Lie'! The company selling the expert system? the user? The person wh
xrote the software for the expert system? The expert who supplied the
infcrnvtion to the expert system? All of the above?

4. Discuss the relative advantages and disadvantages of having a determinis-
tic model of a system in the knowlcdgc base compared to having a neural
network model in the knowledge base.
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GENETIC ALGORITHMS

17.1 INTRODUCTION

Genetic algoi ithms as a field of study was initiated and cleecloped in the
cody 1970s by John Holland (Holland, 1975, 1992) and his students, but its
applications to real-world practical problems was almost two decades in
developing. In one way or another, the primary purpose of using genetic
algorithms is optimization. The specific nature of the problem or system to
which optinhization is being applied will determine the approach, the t ype of
genetic algorithms used, and especially the evaluation or fitness function.
There is no guarantee that a genetic algorithm will give an optimal solution
or arrangement, only that the solution will be near-optimal in the light of the
specific fitness function used in the evaluation of the many possible solutions
generated.

In this chapter, the terms chromosomes and genes may appear to he used
synonymously, but they are not. The meaning of these terms as used here is
the same as that used by Goldberg (199). Chromosomes are composed of
genes which define the characteristics of the chromosomes and may take on
several values called alleles. The position of a gene (its locus) is identified
separately from the gene's function. Hence we can have a particular gene
with a locus of position 12 whose allele value is brown. Generall y . the strings
of artificial genetic systems are analogous to chromosomes in biological
Systems and are often called chromosomes.

539
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17.2 BASIC CONCEPTS OF GENETIC ALGORITHMS

Genetic algorithms mimic some of the processes of natural evolution. r
doing so, some of the inherent features of evolution are utilized in fields tar
beyond genetics. However, there is no necessity that genetic algorithms as we
use them mimic in detail the behavior of the evolutionary process. Indeed,
Users are free to utilize those features that are useful and discard aspects that
seem unimportant in their applications. Since normal evolution processes are
quite slow, biased reproduction, based on an aggressive "survival of the
fittest" philosophy, is used to speed up the evaluation process.

The mechanisms that induces evolution arc not well understood, but the
features of evolution have been investigated thoroughly. First, evolution takes
place in chromosomes, the genetic units that encode the features and
structure of living creatures. The specific descriptive features of a living
creature is determined by the chromosomes of the previous generation, and
evolution influences only these chromosomes, not the living creature from
which they came. Since evolution is limited to chromosomes, living creatures
do not evolve during their lifetime; their features, which are presumably set
at the time of conception, are different from the previous generation univ
because the chromosomes of their parents changed through evolution.

Evolution, Natural Selection, and the Gene Pool

Natural selection is a process by which nature causes those chromosomes
that encode better characteristics (by some criteria) to reproduce more often
than those that encode poorer characteristics. Natural selection is the process
that causes genetic algoithimns to produce near-optimal solutions when the
selected chromosome is decoded. This process involves creation of many
chromosomes by reproduction, mating (crossoeer), mutation, and the survival
of the chromosomes with the better characteristics. Successive generations of
chromosomes improve in quality, provided that the criteria used for survival
is appropriate. iltis process is often referred to as Darwinian natural selection
or the surviia-il of the fittest . In nature, this process of evolution occurs over
many years, even hundreds or thousands of years. In the computer, the
representations of chromosomes can undergo literally thousands of genera-
tions of change in a few seconds.

Histo rically, the characteristics of the chromosomes in genetic algorithms
have been represented by Os and Is. All of Holland's work used this
representation, and we will use it here. However, chromosomes can be
represented by real numbers, permutations of elements, a list of rules, or
other symbols. Binary cpresentation is still the most common representation
because the behavior of bit strings are more familiar and better understood.

Evolution takes place through the process of reproduction, which involves
mutations and recombination after mixing of the parent's chromosomes to
produce a creature that may have entirely different characteristics from the
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10001101100 010101110

01100011101 011100011

Original Pair of Strings

10001101100 011100011

01100011101010101110

Pair of strings after crossover
at one location

String A

String B

(a) it Parr of Strings With Crossover at One location.

1000110110010,10 10  1110

0110001110101110 0011

Original Pair of Strings

10001101100 01110 1110

01 1 0 001110101010 0011

Pair of strings after crossover
at two locations

String A

String 

(b) A Pair of Strings with Crossover at Trio Locations.

10001101100 010101110

01100011101 011 100011

Original Pair of Strings

*
10001101000011100011

01100011101 010101110

Pair of strings after crossover
atone locatbu and
mutation at

Stong A

Stuns [3

(c) A Pair of Strings wial Crossover at one Location and a Mutation at .
Figure 17.1 Dernonstrotcn of crossover at one and two locations and Mutation.

pevious generation. The chromosomes of the two parents are mixed b y a
process called "crossover," in which two new chromosomes are produced,
each having some of the characteristics of the two parents. The two parent
chromosomes split at some point, and one part of one parent chromosome is
exchanged for the corresponding part of the oilier parent chromosome. The
location of the crossover point at which the parents' chromosomes divide is
apparently a uniforni random process. If one of the new chromosomes
obtains 75% of its characteristics from one parent and 25% from the other,
the second new chromosome gets 25% form the first parent and 75% from
the other. This process is illustrated schematically in Figure 17.1, where the
chromosome is illustrated as a string of Os and is.

Both of the resultant chromosomes go in to the gene pool (where all the
alleles reside), where they either replace poorer-quality chromosomes or are
discarded, Once a chromosome is discarded, its unique features (good or
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had) are lost forever. It is only through the processes of mutation (described
below) that such a chromosome might possibly be recreated.

Mutation is a process by which a single component of a chromosome is
changed randomly. It occurs in only a very small fraction (typically less than a
fraction of a percent) of the chromosomes. It represents an abrupt change in
the nature of the chromosome and influences all subsciucnt generations of
chromosomes containing this mutated component. Of course, if this mutation
results in a poorer-quality chromosome, it will be discarded and lost from the
gene pool.

Each population has a gene pool consisting of a large number of chromno-
somes generated by the process of natural selection. The choice of which Iwo
chromosomes are mated and subject to the crossover process is somewhat
random, but the fitter chromosomes are more likely to be selected first. New
chromosomes are constantly being reproduced by the mating process de-
scribedabove, arid those with better characteristics retained while those
with poorer characteristics are discarded. Generally, but not always, the
mixing of chromosomes with quite different characteristics produce better
chromosomes. As the process proceeds, the average quality of the gene pool
improves because the poorer-quality chromosomes are discardd.

Objective Function-Fitness Function
The function on which all algorithm operates--that is, seeking
its maximum or mininlom- -is called the objective function. In neural net-
works, the objective function to be minimized is the mean square error over
the entire training set. In genetic algorithms, the "fitness" is the quantity that
determines the quality of a chromosome, from which a determination can be
made as to whether it is better or worse than other chromosomes in the gene
pool. The fitness is evaluated by a "fitness function" that must be established
for each specific problem. This fitness function is chosen so that its maximum
value is the desired value of the quantity to be optimized. Its importance
cannot be overemphasized, because it is the only connection between the
genetic algorithm and the problem in the real world. A fitness function must
reward the desired behavior; otherwise the genetic aluorithin may solve the
wrong problem. Fitness functions should be informative and have regulari-
ties. However, they need not be low-dimensional, continuous, differentiable,
or unimodal.

17.3 BINARY AND REAL-VALUE REPRESENTATIONS OF CHROMOSOMES

Weight representation in the chromosome has used both binary and real-value
encodings, with binary being time more prevalent method. Binary, coding of
the weights can be implemented using either an ordinary binary representa-
tion of real-value weights or a corresponding Gray-scale binary encoding.
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Tablo 17.1 ComparIson 01 hamming distances In binary and gray coding

Decimal

0

2
3
4
5
6
7

Binary Hamming	 Gray

Coding Distance	 Codi,

0000	 0000

0001	 1	 0001
0010	 2	 0011
0011	 1	 0010
0100	 3	 0110
0101	 1	 0111
0110	 2	 0101
(JIll	 1	 0100

Hamming
Distance

8
	

1600
	

4
	

1100
9
	

1001
	

110]
l0
	

1010
	

2
	

liii
ii
	

101]
	

1110
2
	

1100
	

3
	

1010
13
	

1101
	

1011
1-1
	

1110
	

2
	

1001
15
	

1111
	

1000
16
	

10000
	

5
	

11000

Binary and Gray-Scale' Representations

Gray scaling has the characteristic that the Hamming distance (the number
of binary digits that change between successive decimal numbers) is always I
compared to binary coding where the hamming distance is 4 in a four-bit
repremntaton (i.e., all bits change) as a decimal number changes from 7 to 8
(see Table 17.1). Such so-called Hamming cliffs can make genetic algorithms
less stable. The reason is that change of a single digit due to mutation will
usually cause a smaller change if the Hamming distance is small. In the
binary code, half the changes uavc a Hamming value of 2 or more, whereas
all changes in the gray scale have a Hamming distance of 1, Empirical studies
(Laruana and Schaffer, 1988) on algorithms indicate that gray coding im-
proves the process forsome functions and performs no worse than binary
coding in all cases.

There are several gray codings for any number, but the most commonly
used Gray coding is the binary-reflected gray code. Oae siuiiple scheme for

Gray encoding or gray scale refcrs to the usc of a hirma:y cc.'e k\eIpcd by F. (Ray (1953),
U. S. Patent #2-632-058 issued March 17 1953.
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generating such a gray code sequence is "start with all bits set equal to zero
and then successively flip the rightmost bit that produces a new string." Table
17.1 compares binary coding with Gray coding for decimal numbers from 0 to
16. (At 16, the binary and gray codes must go to S digits since all possible
combinations of 4 digits have been .exhauscd.) Interestingly, the 4-digit
combinations used for representation of numbers from 0 to 15 are exactly the
same for the binary and gray encodings, except that a specific combination of
4 digits represent different decimal numbers in the two codes. For instance,
0111 represents 7 in the binary cede and 5 in the gray code.

Roal-Valuod Roprosonlations of ChrornOsorn9S

In i cal-valued encodings, the network weights are encoded as lists of real-val-
ued weights. Crossover oecws across whole weights instead of occurring
across bit strings representing weights. In mutations, incremental changes
(plus or minus) are introduced into the real values. Davis (1991) discusses the
advantages and disadvantages of real-valued encodings and argues that such
encodings can yield superior results. Peihaps the main disadvantages of
real-valued encodings are that robust parameters are not known and that
specialized genetic algorithms may need to he tailored for each problem.
Both of these disadvantages should be lessened as we gain more experience
viUi genetic algorithms using real-valued representations of chromosomes.

17.4 IMPLEMENTATION OF GENETIC ALGORITHM OPTIMIZATION

Living creatures are probably the most complex systems in the universe.
Hence, if evolution that involves reproduction with crossover, mutation, and
natural selection can result in improvement of the species, it seems reason-
able that the process will work to optimize other complex systems. Indeed,
this has been the case, and the range of applications where genetic algo-
rithins can optimize a process or system is limited only by the ingenuity of the
user. Applications have now reached the point where many users are no
longer versed in the details of how genetic algorithms operate; rather, they
arc concerned only with how the powerful capability of genetic algorithms, as
presented in commercial software, can be utilized to optimize their particular
problem or system.

Genetic algorithms do not rely on any analytical properties of the function
to be optimized (such as the existence of a derivative). They are well suited to
a wide class of problems, including optimization over parameter sets as well
as global optimization of functions. However, before the genetic algorithni
process can be carried out, two steps are necessary: (1) encode the variable to
be optimized into a string of binary bits (or other appropriate representa-
tions) and (2) create an appropL iate fitness function.
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Bit-String Representation
It is necessary to structure bit strings to represent practical problems before
undertaking a search for optimal conditions. Individual bit strings are orga-
nized to form an initial population of chromosomes. Thcy can be generated
randomly, but its is advantageous if tile initial population of chromosomes
can be somewhat related to the nature of thc system being optimized.
Genetic algorithms guide the string population to propagate from generation
to generation to improve the survival probability of the entire population.

There are two approaches to determining which chromosomes to delete
after a cycle of reproduction, crossover, and mutation, These are (a) the
generational approach, where the entire population is replaced after each
cycle, and (b) the .tteady state approach, where the members of both the old
and the new gene pools with the highest fitness factor are retained. The
generational approach tends to speed convergence, perhaps at the expense of
diversity in the gene pool. The steady-state approach tends to producesomewhat better performance by retaining the best-performing bit strings,
but the best solution may be missed because new genes that are the
precursors of high-performing genes may he eliminated prematurely.

The convergence criteria for stopping the genetic algorithm is somewhat
arbitrary, Generally, enctic algorithms converge rapidly, t ypically in a few
hundred cycles or less. Stability in the value of the average fitness function
from one generation to the next is generally the most appropriate criterion.

A related issue is the reproduction process where there are several options
for selecting which genes should be reproduced. The two most common
methods are proportioimal selectjo and tank -bas eel selection. In proportional
selection (discussed below) the number of times the gene can be meproduced
is propom tional to its fitness function. This technique, which was used by
Holland, involves selecting the top Performers and allowing multiple rcpi o-
duetions of the best performers. A sampling algorithm is usually used to
allocate the number of reproductions to the various genes. The proportinal
method sometimes tends to ive undue emphasis to superior perfom ii1ri:
chromosomes whose fitness functions may he 10 times the average fit,, 'itcss
function. If such a super chrornosonie is reproduced 10 times in apol of
50 genes, it would clearly distort the gene pool. In the rank-based selection
process, each gene is typically reproduced only once, although there are
variations of this algorithm that allow multiple reproduction of a single cene.
Rank-based selection tends to converge slowly with less premature c wer-genee and better diversity of the gene pool.

Reproduction

In the implementation of genetic algorithms, the reproduction process
ists in the copying of individual strings according to the priority estabhisied

by their objective function or fitness function 
f. (We will use the 1atcr L nm
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in this chapter.) Copying strings according to their fitness function values
means that candidates with higher fitness values have a greater probability of
contributing one or more offsprings in the next generation. This is the
"proportional" selection method discussed above. The selection probability
for an individual st log i (the j ib string in the population) ma y be defined as

fi
p1 =
	

( 17.4-i)

where f, is the fitness value of the ith individual in the population N.
The mating pool of the next generation is selected according to the

probability p. Once an individual has been selected for reproduction, it is
then entered in the mating pool, for further genetic operation action. If there
is no overlapping between populations (i.e., the population size remains
constant when a new generation replaces the old or parent generation), the
expected number of reproductions of ith individual string is

= r	 N .4	 4	 (17.42)

N

whei c f	 the averaRe fitness of tli,2 o pu ation. This agrees with our earlier
thesis that the best chains are inure likely to be reproduced.

17.5 FITNESS FUNCTIONS

The fitness function of a genetic algorithm can he designed to perform
different search tasks of optimization. The value of fitness function is the
quantity to guide the reproduction process in the genetic algorithms for
creating the next generation. Usually, the fitness function is designed in a
way that its values are all positive, and the higher the value of the fitness
function, the better the performance of the individual hit string in the
population. A higher value of the fitness function also means that the
individual bit string gets the better chance to be selected for production of
the next generation. These guidelines indicate that the fitness function is a
function of the number of inputs selected (the fewer the number, the greater
the fitness) and the network training error (the smaller the value, the greater
the fitness).

To illustrate the role of the fitness function and the general process
involved in using genetic algorithrris for optimization, two examples aie
provided. In the first, Example 17.1, a quadratic function y(x)	 1 - x110 +

2/200 is to be optimized for its maximum or minimum value. In Example
17.2, an actual problem is used to illustrate the selection of the fitness
function.



FITNESS FUNCTIONS	 547

Example 17.1 Simple Hand-Calculated Example of the Genetic Algorithm
Process. Let us assume that we want to optimize (i.e., find the minimum or
maximum value of a function)

1.	 1
v(x) = 1 - -j-6X +	 (E17.1-1)

using a genetic algorithm process. Of course, we can readily determine that
this function has a minimal value of 0,5 at x = 10 by other means. Please
understand that this problem has been contrived to demonstrate the method-
ology of genetic algorithms. Because of the small size and small number of
binary strings, the behavior of the process is not representative of that in real
world genetic algorithms.

We can create the initial population by flipping a coin to select our mating
pool, which in this simple example consists of five 5-bit random binary
sequences. These are listed in 'Fable 17.2 as "String x," and their binary
values converted to the base 10 are listed as "Value x."The function y(x) is
then evaluated using the above formula. Clearly, y(x) is related to the fitness
function since it represents the quantity we want to optimize. In this case, the
optimal value is a minimum, and the genetic algorithm process gives the
maximum value of the fitness function. 1-fence, it seems reasonable to let the
fitness function be the reciprocal of y(x); that is, J(x) = 1/v.(x). Gcncrally,
however, we do not have a formula of the quantity to be optimized, and the
fitness function has to he selected on the basis of data available and the
nature of the problem involved (see Example 17.2). Note that the last two
columns in Table 17.2 are the selection probability for an individual string
and the expected number of reproductions of the ith individual string as
given by equations (17.4-1) and (17.4-2) respectively.

Table 17.2 Hand calculations for a genetic algorithm

V 1	 10111
V 2	 01100
V 3	 10100
V 4	 00110
V 5	 01001

.'Ur1r

Avg
Max

y(x)	 j(x)

23	 1.345	 0.743
12	 0.520	 1.923
20	 1.000	 1.000
6	 0.580	 1.732
9	 0.505	 1.980

f111

	

0.101	 0.504

	

0.261	 1.304

	

0.136	 0.677

	

0.235	 1.173

	

0.267	 1.342

String	 Value
X	 x

	

7.378	 1.000	 :3.000

	

1.476	 0.200	 1.000

	

1.980	 0.207	 1.342
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Now, let us carry out reproduction, crossover, and mutation operations on
string x. This is shown in Table 17.3. The strings are iandomly mated with
other strings at the indicated crossover points to produce new strings.
Furthermore, mutation takes place in the middle digit of value v (indicated
by an asterisk in Table 17.3), where a ,1 changes to a 0 after crossover has
taken place.

This mutation changes the fitness function cf v from a 1.000 to a 1.471, a
47,1% increase. Table 17.3 shows the results of reproduction, crossover, and
mutation on the group of five chromosome strings. Crossover between each
mated pair of genes in the pool produces two new chromosomes which are
given in the column headed "new population." These new genes are evalu-
ated to give their fitness functions listed tinder the column labeled fi ( x). The
double asterisk indicates the five genes with the hi ghest fitness functions that
are to he reproduced in the next generation if rank-based selection is used.
Of these five genes, three have much higher values of fi ( x). Hence., if
proportional sc lection is used, the two genes with lower values of f(x) would
probably be replaced with duplicates of the two genes with the highest values
of f(x).

It is intel esting to note that the average fitness function of the original five
strings is 1.476 (see Table 17.2) compared to an average fitness function of
1.459 (see Table 17.3), a 1.1% decrease for the 10 new chromosomes
produced by crossover and mutation. However, the fitness function of the
five new chromosomes selected for reproduction is 1.821, an increase of 23%
over the original five chromosomes. This increase is unusually high for one
cycle due to the small length of the strings, which tends to increase the
impact of even a change in a single digit.

An examination of the new set of strings indicates that new 1 : 5 could be a
"super" string that could dominate futuree cycles of reproduction. This is not
desirable, particularly in the early part of the optimization process, because it
could lead to a premature selection of an optimum which was not a trite
optimum. The concern here is prematurily limiting the gene pool which could
cause the process to select a local minimum or maximum rather than a global
value. There are a number of techniques available to avoid this problem
which the reader can find in literature that specializes in genetic algorithms
(Holland, 1975, 1992: Goldberg, 1989; Davis, 1991).

The generation, crossover, and mutation processes continue until there is
no significant change in the average value of the fitness functions. At that
point, it is necessary to decode the string to identify the optimal value, a
minimum in the function in this case. Let us use the largest value of fitness
function (2.000) to represent the optimal case. Because of the reciprocal
relationship, the optimal value of y(x) is 0.500. If we substitute this value
into the equation for y, we get

1	 1

	

Y(X)	 1 -	 + -jjx 2 = 0.5	 (E17.1-2)
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We can then solve the quadratic equation (E17.1-2) for the value of x = 10
as the location of the optimal value, which is then calculated to be 0.5.

Clearly, this example was contrived to give good results with only a single
cycle. The short length of the bit string and the small size of the gene pool
accentuate the effect of the processe-s involved. In it practical problem, the'
typical gene 1)001 may have 50 to 200 chromosomes and go through hundreds
of cycles. However, pools of over 50,000 chromosomes and tens of thousands
of cycles have been used. A large population gives more diversity and better
final solutions, but longer computational times ace involved. Pools of less
than 30 chromosomes are subject to premature convergence because stochas-
tic effects tend to dominate the behavior of the genetic algorithm.

Example 17.2 Evolution of a Fitness Function. 2 In this example, it large
neural network with 25 inputs (which are instantaneous values of 25 different
measured parameters) and 8 outputs (representing 7 different transients and
a no transient state) is used to diagnose transients in it nuclear power plant.
Every half-second, the 25 measured values are applied to the neural network
whose output indicates almost instantaneously v,hicli transient is occurring oi
that there is no transient. 'ihe neural network is trained on transients
generated in a full scope, high fidelity nuclear power plant simulator. A
complex recurrent baekpropagatiotI neural network was needed to model the
plant dynamic behavior because of the complex interrelations between the

variables.
A sensitivity analysis as described in Section 8.5 was used to determine the

most iinportLtrtt nputs (typically 4 to 6 inputs) needed for the detection of
each specific transient. This allowed the use of modular' : neural networks,'

small back-propa g ation networks without recurrent connections with onl y it
few inputs and a single output for each transient. Subsequent tests indicated
that the modular neural networks were equally as effective in detecting
transients as the large master neural network with 25 inputs and 8 outputs.
The problem was that the master neural network had to be created before
the sensitivity analysis could be used to determine the most important inputs
for the inodula r" neural networks.

Genetic algorithms were selected as an alternate method of determining
the most important (optimal) variables for the modular networks without
having to create and train the master neural network. The fitness function
needs to be defined to guide the scorch for the best combination of inputs for
the individual modular networks. The fitness function may have different
forms for different optimal search tasks. It needs to he defined to guide the

2 This example was developed by Zhichao Guo in his Ph.D dissertation in Nuclear Engineering
entitled "Nuclear Power Plant Diagnostics and flierinat Performance Studies using Neural
Networks and Genetic Algorithms." t'r.ivcrsity of Tennessee Library, Knoxville, TN, 1992.

3 The term modular" as used here dot's not refer to modular neural networks as described in
Section 88.
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:::-uts for different modular networks.
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fitness =
c 1 (total number of in-,---. 	

-number of inputs selec	 (E17.2-1)network training error

where c l and c 2 are constants
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resultant neural network training
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of the fitness functio of equationEl7,2_2), one specitic string	 nP t !\\	
4 of the 20 s Itins ii rthc pool.
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The experience with the socond fitness function led to the proposal of a
third fitness function of the form

fitness	 (1 - e-	
1) n.:5^ 1.
	 (E17.2-3)

where, x and y are defined as in the previous fitness function. 'Ibis fitness

function was found to provide the appropriate influence of the number of
inputs and the training erior without the undue influence of cad)' strings
having-large fitness functons.

Subsequent comparison of the input variables selected for the "modular"
neural networks by sensitivity analysis and by genetic algorithms showed that

the two most important inputs for each of the seven transients and the

normal states were almost always the same. Beyond the second most i:flpOr-
tant variable, there were a number of inconsistencies. However, tests hcwd
that the training errors after a prescribed number of cycles for the networks
selected by the two methods were substantially the same and that the

networks performed iuY well.
It is seen that this fitness function was arrived at by a series of "trials and

errors." Clearly, experience in working with fitness functions gives insight

into the form of the fitness function. However, if specific information that is

useful in forming the fitness function is available, it should he used. 0

17.6 APPLICATION OF GENETIC ALGORITHMS
TO NEURAL NETWORKS

A number of researchers have tried to connect the genetic algorithms with
neural networks in recent years. Whitely and co-workers (Whitely and
Bogart, 1989, 1990; Whitely and Starkwerther, 1990) psed genetic algorithms
to guide a backpropagation based neural network in finding the necessary
connections instead of full connections in the GENITOR II software in order
to enhance the speed of training. They also used this software to optimize
small networks with the result that the resultant networks learned much
faster and much more consistently than fully connected networks. Koza
(1990) used genetic algorithms to guide search for the time-optimal "bang-
hang" control strategy for the cart-centering problem, a version of the broom
balancing problem, with the additional constraint that the cart be located at a
specific location during operation, by genetically breeding populations on
control strategy. Maricic and Nikolov (1990) used the neural network de-
signer GENNET to find the most appropriate network architecture for
solving a given problem. In GENNET, a genetic algorithm block is responsi-
ble for generating population architectures, which are used to create a set of
stand-alone backpropagation networks. Interactions between genetic algo-
rithrns and neural networks generate the best network architecture. Claris
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(1990) used a genetic algorithm to train modular neural networks by finding
the proper weights for the full 

connections. Genetic algorithms have been
used to guide the design of neural control circuits, which combine the neural
modules to form functional hierarchies. Muscili and Ridella (1990) proposed
a combination method of genetic algorithms and simulated annealing to
generate and choose the set of points in the network connection weight space
to speed up reliability and convergence.

Combining Neural Networks and Genetic Algorithms4

Genetic algorithms typically encode the parameters of artificial neural net-
works as a string or list of the n etwork's properties. The algorithm requires
that there be a large population of these lists or strings 

(chro mosomes)representing ninny possible parameter sets fbr the given network 
Th e utiliza-tion of genetic algorithms for optimization lends itself easily to parallel

computers. Advantages of using parallel techniques include the abilit to
N

search the entire weight space versus localized search in.thc weight space via
a gradient descent technique. This global aspect of the search helps avoid
local minima which can occur with other gradient descent techniques. Com-
bined genetic algorithm—neural network technolo (sometimes called
GANN) have the ability to locate the neighborhood of an optimal solution
quicker than backpropagation methods clue to its global search strategy, but
once in the neighborhood of the optimal solution, the GANN algomith tends
to converge to the optimal solution slower than 

hackpropagatinjn methods
This is because the final convergence of the genetic algorithm from the
optimal neighbor hood to the op
mutation	 timal solution is controlled mainly by theoperators. D rawbacks of the GANN technology are the largeamount of memory required to maintain a viable poptilatioll of chromosomes
for a gisdn network and some question as to 

whether this technique scales tolarger network sizes.
The most common i mplementations of neural networks and geneticrithnis use direct e

 weight	
strategies that directly encode	

algo-
network paranie-ters, such as eight values and network connectivity to optimize the weights

and/or architecture of a given artificial neural network. Whe
n optimizationis confined to the weights of a given neural network (i.e - , the structure isfed), the network weights are encoded as genetic strings (

chromosomes) orlists of parameters A large population of these strings where each stringrepresents In iustflce of a network's parameters, is then comnhncd using the
genetic operators of crossover and mutatidn to form the next generation of
chr

omosomes based on their fitness function These fitness functions are
Ofte

n 
taken as the inverse of the network error (yielding a large number for

t;ood weights) scaled by the sum total error of the 
population.

"art 	 this section was taRcn from a dassreport prepared b y	 n c P C..111strdent at th Urc.erty of Tennessee in 1995-1996
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Using genetic algorithms to optimize the architecture of an artificial
neural network is carried out in a similar fashion with the network connectiv-
ity of the neurons being encoded into the chromosomes. Because of the large
and initially diverse population, a larger area of the weight space is much
more likely to be searched comp3red to more traditional gradient descent
techniques.

A combination of neural network and genetic algorithm training methods
(called the Lamarkian learning method) involves periods of genetic optimiza-
tion in between periods of backpropagation training. ihis method provides a
powerful method for combining gradient descent techniques (like hackpropa-
gation) with evolutionary optimization techniques encompassed in the genetic
algorithms.

An alternative approach is the Baldwin learning method which utilizes the
back-propagation algorithm to adjust the fitness value for chromosomes.
Hence, chromosomes that show the ability to lent it through the hackpropaga-
tion algorilhm arc considered to be more fit and therefore more likely to he
selected to pass their genetic material onto subsequent generations.

Most cormilon coding strategies employ connection-based systems which
allow for weight anti connectivity optimization of a predefined architecture.
Issues which must be addressed before the start of training include popula-
tion si7C, hinamy versus real valued weight representation, how many bits to
use if binary chromosomes are used, type of crossover used, the prevalence of
mutation, whether to use rank-based roulette wheel or proportional selec-
tion, and the criterion for stopping the process.

17.7 FUZZY GENETIC MODELING

As discussed earlier, fuzzy systems are made op of fuzzy sets, defined by their
membership functions and fuzz y rules that determine the action of the fuzzy
systems. Fuzzy systems can model general nonlinear mappings in a manner
similar to fecdforward neural networks since it is a well-defined function
mapping of real-valued inputs to ical-valued outputs. Kosko (1992) has
shown that fuzzy systems, like feediorward neural networks, are universal
approximatOrs in that they are capable of approximating general nonlinear
functions to any desired degree of accuracy. All that is needed for practical
application is a means of adjusting the systern parameters so that the system
output matches the training data. Genetic algorithms can provide such a
means. Furthermore, fuzzy systems are effectively transparent in that every-
thing that happens is clearly apparent. Each fuzzy associate memor y (FAM)
matrix entry is just a fuzzy rule that is easy to understand. This is very
different from neural networks where the weight matrix, the most visible
parameter, is virtually uninterpretable. Furthermore, a fuzzy system has the
capability to analyze the distribution of training data versus the distribution
of test data. If these are radically different, then one knows in advance that
the result,-, of the mapping will not he satisfactory.
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Fuzzy rules can he concisely represented with one or more PAM matrices.
In some cases, the FAM matrix can be established on the basis of a person's
knowledge of the system. If such information is not available, then genetic
algorithms can he used to establish the FAM matrix.

Optimizing a FAM Matrix Using Genetic Algorithms
Earlier the PAM matrix in fuzzy systems was discussed as all to a
neural network to relate or model complex inputs and outputs when they
were represented by fuzzy sets in a fuzzy variable. This arrangement was
particularly attractive when there were two inputs, and the overall behavior
was intuitively obvious or the relationship could be derived from simple
experiments. When this was not the case, the PAM matrix has to be trained
from data available in ways similar to the training of neural networks. This
section discusses the use of genetic algorithms to optimize the training of the
PAM matrix.

A fuzzy system has a number of parameters that define fuzzy sets that are
candidates for optimization. While optimization of several variables simulta-
neously is possible, it is much simpler and more practical to optimize only
one variable at ,I 	 This is usually possible if the general nature of most
variables are known or at least hounded.

A fuzzy system has several parameters that can be optimized using genetic
algorithms. Included az e fuzzy sets used for input and output variables, the
membership functions that define fuzzy sets, the structure and entries in the
PAM matrix, and, in sonic cases, the weight assigned to each rule. \Velsted
(1994) presents such an example where the PAM matrix entries are opti-
mized because they have the most influence in determining system output_ 

litthat exam p le, adaptation is accomplished through the minimizatjo i of an
error function. The approach used by Weisted is to convert the matrix entries
into a long binary string. Since each matrix entiy is a string of Is and Os, the
linking together cad to end of these entries creates a very long hinaiy vector.
This is the chroniosome used in the optimization in genetic algorithms.

Welstcd's example Problem (interest rate modeling) is structured to use a
single FAM matrix that deals with all five inputs simultaneously. I lowcvcr,
with five input variables, the PAM- matrix is a five-dimensional livpercuhc.
With three fuzzy sets per variable (negative, zero, and positive represented b y
a "left shoul'Jcr," a trapezoid, and a "right shoulder," respectively), the FAM
matrix has 3, or 243, entries. This is the "curse of dimensionality" referred
to by Kosko (1992). The number of fuzzy sets per input determines ho'.v finely
we look at a problem and how much data we have to haye for training. Each
FAM matrix is an output fuzzy set represented by a three-bit representation;
hence there are eight (2) output fuzzy sets.

If only one item in each matrix entry is activated, we need S x 243 or 1914
items of infomniation just for training. This problem is equally serious in
neural networks where increasing the number of inputs increases the number
of data Sets needed for training to cover the dynamic range over which the
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variables may change. Inadequate data in either fuzzy systems or neural
networks will result in regions of the state space not being covered.

The training (adapting) and testing phases of this process are similar to
the training phase of neural networks. The system is "initialized" by setting
initial input values and corresponding initial output values. The quantity to
be mjriimzcd is the crro accumulated over the training set between the
fuzzy system output and the desired output. Since the fitness function is to
maximized, it is defined as a constant minus this accumulated error. Training
is accomplished by running the genetic algorithm operating on the fuzzy

system fitness function. The outputs of the genetic algorithni training process
are the coordinates of the defining values of the fuzzy sets. Every time a new
optimal value is attained, the fuzzy system is saved to file.

Since the genetic algorithm is used only to minimize the error in the
training process, it is not used after training is complete. Use of the CAM
matrix to relate inputs and outputs proceeds in a normal manner.

17.8 USE OF GENETIC ALGORITHMS IN THE DESIGN
OF NEURAL NETWORKS

At the present time, there is no generally accepted theory or methodology for
the design of neural networks, and the process used is generally a trial-and-
error approach based on the experience of the designer. The complexity of
neural network design arises from the high-dimensional, heterogeneous space
that must be explored by the system. The primary features, that are of
concern in the design of neural networks are the structure of the network,
the inputs to the networks, and the specification of the learning algorithm
parameters. All of these quantities are problem-specific. While there are
guidelines based on experience that can be very helpful in the design, some
mathematical-based procedure would be very helpful. Optimization of the
design based on the use of genetic algorithms offers such a methodology.

Use of Genetic Algorithms in Selecting Neural Network Structure

The Honeywell Technology Center (Harp and Samad, 1994) has developed
an approach for designing and utilizing genetic algorithms for optimizing
neural networks for use in modeling of complex systems. Their experience
shows that the simultaneous optimization of network inputs, structure, and
learning parameters is crucial for accurate modeling.

Usually, all of a network's parameters are encoded as genes in a chromo-
some in the form of a string of bits. Genetic algorithms procedures are then
used to manipulate these of  to produce improved parameters

represented by the hit strings. Honeywell personnel (I larp and Samad, 1994)
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extended the concept of chromosomes and bit strings to a trecsEructured
entity with three generic families of genes: bytes, sequences, and structures.
Byte genes represent scalar-valued parameters (e.g., learning rates). Se-
quence genes are ordered collections of other genes in which all the genes
within a sequence are of a given s5ecified type. Structure genes are fixed
length ordered collections of genes of given types, with the type heiri
determined by position. In an analogy to trees, the leaves are byte genes
while the branches are formed by sequence and Structure genes. An individ-
ual genetic tree is a sequence of structure genes representing areas and
related connectivity that correspond loosely to a layer of a neural network
but are more broadly applicable. Each area structure gene parameterizes the
area in terms of an address, its number of neurons, the connecting weights,
the learning parameters, and so on.

Harp et al. (1989, 1990) used a "blueprint" scheme to manipulate genetic
algorithm representations of how sets of neurons are connected. In this work,
network characteristics are represented by a blueprint, defined as a data
srueture that encodes various characteristics of the network including struc-
tural properties, input selection, and leai fling algorithm parameter values. A
blueprint is instantiated into an actual network, and the neural network is
trained using a learning algorithm and the learning parameters specified in
the blueprint. The trained neural network is then evaluated using testing
data. including an evaluation of its robustness by disabling some neural units
or perturbing the learned weight values. Then its fitness is computed. The
fitness estimate can be an arbitraril y complex function, such as the weighted
linear sum of relevant criteria such as the number of nodes and weights in
the network, accuracy, learning speed, efficiency, average and maximum
number of outgoing weights from a node, and the various test scores.

After the evaluation, the next generation of the network is formulated in
the blueprint. This process is mediated by a number of genetic operators
(crossover, mutation, etc.) in which two blueprints arc spliced together to
produce a child blueprint. In effect, the genetic operators are being applied
to these blueprints on a macroscale whereas genetic algorithms apply these
genetic operators to hit Strings on a nucroscale. The advantage of using the
overall approach described here compared to ''manual optimization" is that
it allows the developer of the neural networks to explore large amounts of
design space that would otherwise he left unexplored.
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PROBLEMS

1. Discuss the relative merits of the "proportional selection" and the "rank-
based selection" of the surviving chromosomes. Which is easier to imple-
ment?

2. The ''fitness function" is by far the most important quantity in the use of
genetic algorithms. One method of selecting this function was illustrated
in Section 17.5. Discuss other means of determining the most appropriate
"fitness function." Can you envision a method of optimizing the selection
of the "fitness function" used in an optimization process?

3. Consider the data presented in Table 10.1 for welding tests. If you \aated
to use genetic algorithms to optimize the travel speed and arc current for
a given configuration (thickness, head width, and bead pcnetrltion .) of a
weld, how would VOL] go about it? What kind of ''fitness function" would
you develop? I-low would you co abiut ensurinc that the 'fitness function"
was appropriate?

4. Carry the reproduction, cro;uve r, and na taijon prucecs on for another
c ycle usinu the information pros ided in fable 17.3. Is there significant
inipmovemnent (om deterioration) of the ' hiness" of the chromosomes? It so,
why? If not, why?

5. An alternate fitness function for Example 17.1 is

t(x) = 1 -
	 (x)

The denominator 271 is y(d) when x = 3], the largest possible value of x
for a 5-hit binary string. Evaluate f,(x) and f(x)* * in Table 17.3. Arc the
new genes selected the same? If so, why? If not, wh y not?
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18.1 INTRODUCTION

In the late 1960s, the American Society for Engineering Education (ASLE)
issued a special report entitled "Goals of Engineering Education" in which
the authors looked into their crystal balls to the year 2000 and predicted the
types of projects on which engineers would he working during the next
one-third century. The point of the stud y was that the engineering students in
school at the time of the study (1967-1968) would still be active in the
engineering profession at the turn of the century, and it was the engineering
educators' responsibility to see to it that educational experiences at engineer-
ing colleges constitute proper preparation to meet the challenges that would
arise in the rest of the century. Among the projects they predicted were:

Large-scale ocean farnu ng

Fabrication of synthetic protein

Controlled thermonuclear power (fusion energy)

Regional weather control

Correction of hereditary defects by molecular (genetic) engineering

Automated high-JO machines (expert systems and artificial intelligence in
general)

Universal language through automated communications

Mining and manufacturing on the moon

Directed energy (microwave and laser) beams

Commercial global ballistic transports (the "Tok yo Express'')

561
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With less than half a decade to go, many of these predictions for the year
2000 are well on their way toward reality, while others, though feasible, are
not being given serious consideration today. Perhaps artificial intelligence in
the more general form of "soft computing" has had as much, if not more,
impact than any of the other technologies listed above. Yet, we have only
seen the tip of the iceberg as far as its influence on the future.

As far out as some of the items listed by the ASEE seemed in 1967, most
of them are accepted as legitimate areas for engineering involvement today.
However, some of the things appearing on the horizon today virtually defy
our imaginations. For example, it has recently been reported that a team of
scientists at the Max Planck Institute has opened a two-way communication
link between a silicon chip and a biological neuron, effectively establishing a
signaling channel that works in both directions. (ACM, 1995). The chip
stimulates a leech's nerve cell through induced charges, and while capable of
communication, no electrical current flows between the neuron and the chip
(an essential requirement for any prosthetic limb controlled by the brain
through a living nervous system).

18.2 Is ARTIFICIAL INTELLIGENCE REALLY INTELLIGENT?

In her book entitled In Our Own Image; Building an AmJicial Person,
Maureen Caudill (Caudill, 1994) examines the current state of technology
and the accelerating trend in developments of robots, computer vision,
understanding speech, sensing, diagnostics, and so on, and concludes that the
construction of an "artificial person" is closer than most of us believe.
Clearly, the first such "artificial person" would not be a Commander Data of
Star Trek fame, but the essential processes to sustain "artificial life" arc
perceived by Caudill to be feasible in the twenty-first centuty. While we take
no position on this well-documented but controversial thesis, we will point
out that most of the advnces in the technologies listed under soft computing
have their origin in biological processes of humans, especially physiological
processes and psychological behavior of the brain.

Many scientists and engineers are somewhat skeptical about artificial
intelligence, especially in the light of the "excessive claims" of some of the
pioneers in expert systems and neural networks. Fuzzy systems avoided this
pitfIl only because it was quietly developed in Japan without much fanfare
until successful systems were being demonstrated. The skepticism comes
frotti deep and privately held gut feelings that computers can never "be like"
or "live like" humans. They are perceived as "just machines," and hence by
definition they cannot be intelligent. We often tend to use anthropomorphic
terms like "intelligence" to describe their workings in the age-old tradition of
i:rOjecting something of ourselves and nature to the artifacts we made. It may

ii he that computers are no more intelligent than locomotives are iron
ses. Artificial intelligence may simply be an inspiring metaphor for pursu-
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ing the enhancement of human intelligence. Indeed, concepts that have
sprung out of artificial intelligence are revolutionizing the workplace, the
office, the school, the marketplace, and the laboratory. In the manufacturing
sector, soft computing is changing not only the design and analysis, but also
the physical manufacturing with added flexibility and benefits in scheduling,
production, ni:iifltenaflCe and managment. The most often heard terms in
manufacturing these days are agile mwiufacturing and the virtual company,,

concepts that are considered to map directly. to advancements in soft comput-

ing and its implementations.
The fundamental charactet isticc cf emerging new products and systems

may he quite different from these we deal with today. Agile or flexible

systems will, of necessity, he more proactive. Whether ihey are intelligent
agents or subjective objects (like today's machines that respond only to
present conditions), is less important than the fact that the y get the job clone
for you. Already a rend is underway in Japan toward predictive iincl

anticipatory systems using predictive fuzzy control. Examples include control
systems in many Japanese elevators, the Sendai metroliner, and the Fugcn
miclear power plant.

In the futuic, technology that is user-friendly to people and capable of
self-adjustment to custom fit individual needs will become important. In
order to bring this flexibility, we see neurofuz.zy technologies becoming part
of the roan-machine interface. They truly hold considerable promise to
harmonize and enhance the relation between humans and machines and
make it possible to incorporate actions, judgments, and thoughts that are
near-human into a wide variety of devices and systems. Ncurofuzzy technolo-
gies that respect the users' subjective desires, backgrounds, and idiosyricracies

way into a great variety of products, making itare expected to find their 
possible for machines to sa y things like "Is this what you are trying to say?"
or ''Is this what you really want?" In industry, this may he particularly
suitable for addressing bad structure problems for which computerized
control has until now been difficult; it may indeed make automatic operation
equivalent to operation by skilled operators.

183 THE ROLE OF NEUROFUZZY TECHNOLOGY

The principal topic in this book that is not commonly covered in other hooks
or in university courses in the science and engineering fields is the neurofuzzy
methodologies of Chapters 12 through 15. In Chapter 12, artificial neurons
that utilize fuzzy operations (e.g., max, mm, etc.) in place of multiplication
and addition, as scll as neural networks that also utilize fuzzy processes, are
described. Applications such as "Fuzzy ARTMAP"and "fuzz y clustering" are

already widel y known in the artificial intelligence community and beginning
to be utilized in engineering research and development.
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In Chapter 13, we introduced neural methods into fuzzy systems. 'l'he
overriding issue in fuzzy systems, whether they be used for expert systems,
decision-making, or control, is defining the linguistic if/then relationships
that constitute the algorithm on which the process is based. Neural networks
and/or neural processes with their ability to extract information from exam-
ples (learning) can play an essential role in providing a better basis for fuzzy
algorithms. Defining membership functions for fuzzy variables by using
neural network is a very valuable process.

Chapter 14 is the result of a computerized literature search of scientific
and technical journals for titles of articles that include both the words fuzzy
and neural. Out of about 700 such publications, we chose about 50 examples
from 12 fields where neurofuzzy systems were used advantageously. The
purpose of this chapter was to illustrate the wide range of applications of
neurofuzzy systems.

In Chapter 15, examples of research carried by graduate students working
under the authors have demonstrated the advantage of utilizing fuzzy sys-
tems, neural networks, and genetic algorithms as semi-integrated processes.
More complete integration of these methodologies will bring additional
benefits when we learn to control the integrated fuzzy neurons and networks
and the neurofuzzy systems in a straightforward manner. Indeed, the main
reason for using these various methodologies in a semi-integrated (and
usually sequentially) manner is to keep the processes under control.

We cannot overemphasize this last point. Neurofuzzy systems are at the
state of development as neural networks before the rediscovery of backprop-
agation in 1968. We are proceeding on a trial-and-error basis with little
guidance as to which is the best way to apply neurofuzzy concepts. The
potential payoff for using neurofuzzy systems properly can be enormous.
Indeed, the "fuzzy neuron" or the "neurofuzzy system" are the modern
analogs of the perceptron and the adaline processing units, and they are at
about the same stage of development today as the perceptron and adaline in
1)60. What is now needed is the creation or discovery of an integrated
training/control process.

18.4 LAST THOUGHTS

'l'om Peters, coauthor of In Search of Eicdllence (Peters and \Vatermann,
1982), wrote the Foreword of The Rise of the F_tpert Company, an exposition
on the benefits of expert systems in industry by Feigenbaum, McCorduck,

'RI Nh (1988). The closing two paragraphs stated the following:

I came to this hook and to the task of writing this foreword interested, even
fascinated, by the topic about which I am largely naive. I leave the process of

gesting the nianuscript and writing the foreword mesmerized. The emerging
arid, brilliantly and pragmatically described in The Rise of the Expert company,
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is not the world we now know. The consequences are cxciting and a bit
frightening —and clearly monumental.

I conclude that any senior manager in any business of almost ally size who
isn't at least learning about Al and sticking a tentative we or two into Al's
Waters is simply out of step, dangerously so.

In the eight years since that foreword was written, neural networks and fuzzy
systems have achieved equall y important status as expert systems in 1988.
Neurofuzzy technology is the next big step because of the synergistic benefits
of the merging these two important technologies. It is our hope that we have
taken that first step—that is, put that first tentative toe into neurofuz.zy
technology's waters, lest we ton get out of Step, clangorously so.
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