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Figure 13.1 Sensory pathways take neuronal signals from temperature receptors in
the skin through the spinal cord and the lower brain fo the cerebral cortex, where thay
are ultimately transformed Into linguistic categories. Fuzzy-neural hybrids are inspired
by such biclogical-cognitive synergisrms.
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(the upper part of the brain). In the cerebral cortex, ultimately these
temperature sensations get fused and cxpressed linguistically. Thus, a person
may “know” that the temperature in the room is COLD or WARM or HOT,
all linguistic (fuzzy) categorizations of the sensation of temperature.” This
knowledge becomes a basis for human decisions and actions such as, for
example, turning off the air-conditioning or a heating system. By analogy, we
can train a neural network to cluster and map a set of temperature measure-
ments from the ambience to a set of fuzzy values as shown in Figure 13.1. Of
course, compared to the complexities and intricacies of the biological-cogni-
tive system responsible for the sensation of temperature, our fuzzy-neural
analog is at best very naive.

In this chapter we bring ncural methods into fuzzy systems, both for the
purpose of identifying (extracting) rules and membership functions and for
adaptation of a fuzzy system (or linguistic description) to a changing physical
systetn and its environment. The approach is known in the literature as
newral-network-driven fuzzy reasoning (Takagi, 1992). For both expert knowi-
edge elicitation and adapration, the underlying strategy is, in essence, to
identify certain parameters of fuzzy systems and use neural networks to induce
and /or adjust them. Generally a fuzzy linguistic description of the kind we
examined in Chapters 5 and 6 is computationally identical to a neural net, a
fact theoretically proven by Buckley and Hayashi (1993), who demonstrated
that neural nets can approximate continuous fuzzy controllers (and con-
versely) to any degree of accuracy.

Adapration concerns the maintenance of a fuzzy linguistic description on
the face of a changing process. The salient questions here have to do with
hew to adjust, over time, either the rules or what is involved within the rules,
in order to better reflect changes in the actual physical system and its
environment, Adaptation relates to the issue of leaming. An adaptive system
(that is, an adaptive system description) is one that can learn about the
changes in the physical (target) system and modify its internals to improve
the correspondence between the physical system and itself and /or its envi-
ronment.

13.2 FUZZY-NEURAL HYBRIDS J i

In an abstract manner, a system can be viewed as shown in Figure 13.2a, a
relation between inputs and outputs (where the relation is not necessarily a
function, but a more general relation such as a many-to-many mapping). In
:Figurc 13.2b and 13.2¢ we have two idealized extremes where either (1) we
know exactly how the system should be working but have no example of its

2 . . - -

Tt is inferesting to note that at a skin temperature of about 33°C (91.4°F) we are usually
unaware of any temperature sensation. Raising or lowering skin temperature above this neutral
point produces a sensation of warming or coeling.



448 NEURAL METHODS IN FUZZY SYSTEMS

!
Inputs  wnig Outputs

A System is a Relation Between |, ity and Outputs

When the System Logic is Known, 11,,, luzzy iffthen Rules

P Outputs

When Examples of Input/Output are Knawy, ¢ i M A

Figure 13.2 Depending on whether the internal 1., Mon : ;
; ; : ' a systern’s logic) or the
input-output behavior of a system is known, fuzzy noural mgdenng 12215 may be
chosen,

input—outpur behavior (see Figure 13.2b) or (2) we know its input-output
behavior but know nothing of the system’s inte, mls (i:6., we have a black box)
(sce Figure 13.2¢). S '
In the first case, it is convenient to wrii,
appropriate level of precision, to describe (or Prescribe) system behavior. In
the second case, it is convenient to use the available input-output data to
train artificial neural networks to model the inlernals of the system. Of
course, in real-world systems we may have y,,0 cxamples of a system'’s
input—output behavior and some knowledge of o .is Aoy of 8 e

lurzy if/then rules, at the
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better yet “gray”) box. Hence, we may utilize various hybrids of neural and
fuzzy tools to successfully model the system. In the final analysis, however,
our choice is made not by a commitment to a particular tool but a desire to
adequately model the system at hand in a timely, reliable, and cost-effective
manner,

The great array of system conditions that may be encountered calls for a
variety of series and parallel combinations of fuzzy and neural systems.
Consider the arrangement shown in Figure 13.3 which provides a means of
inspecting and testing physically damaged components, Here a neural net-
work is trained to reccive three measurements as inputs (clectrical and visual
data from an automated test station testing electronic components for the
purpose of eliminating physical defects (Q'inca, 1994)), The input is mapped
to two numerical values that serve as input to a fuzzy algorithm, The output
of the neural module indicates the degree of a component’s physical darnage
(a number between 0 and 1) and the signal-to-noise ratio (a number between 0
and 30). These two features are subsequently fed as inputs into a fuzzy
system where fuzzy variables map signal-to-noise ratio and physical damage
information to the quality of the component, The output of the fuzzy system
is an action (decision) to accept or rejeet the component,

The benefits in using hybrid combinations of neural and fuzzy systems
such as the one shown in Figure 13.3 are due to the fact that numerical
measurements may actually provide too much detail to be effectively used

Newral Network
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Figure 12.3 A hybrid system invelving a neural network in series with @ fuzry system
where rmeosurements gt mapped to features serving as inputs to the fuzzy system,
.
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on-line (in addition to noisc and other problems). Hence, neural filtering,
smoothing, and mapping of numerical measurements to a feature space (e.g.,
physical damage and signal-to-noise ratio) may facilitate quick action by a
fuzzy controller. Of course the arrangement can be reversed; that is, fuzzy
processing can precede the neural network. Such an approach was taken by
Yea and his coworkers in Japan in an interesting project involving odor
discrimination where in order to discriminate amongst many kinds of odor
species, a system has been developed using multiple gas sensors as sensory
input to neural networks (Yea et al,, 1994). When the system is presented
with a number of inflammable gases, fragrant smells or even offensive odors,
it is capable of an almost 100% discrimination of the different odors. The
discrimination is performed in two steps: First, classification of the odor
group performed by a fuzzy algorithm—that is, determining the groups ol
inflammable gases, fragrant smells, or offensive odors; sccond, discrimination
of individual odor species in the classified group, performed by neural tools.

13.3 NEURAL NETWORKS FOR DETERMINING MEMBERSHIP FUNCTIONS

An interesting and often advantageous feature of fuzzy systems is that they
allow for rather flexible categorization of a domain of interest. For example,
when a problem calls for a small number of categories of temperature, we
define SMALL, MEDIUM, and LARGE as the values of the fuzzy variable
temperature, instead of say 100 categories of natural numbers taking us from
1°C to 100°C. For each and every linguistic value a unique membership
function analytically describing the degree of membership to the fuzzy valug
of each individual crisp element of the universe of discourse is sought. The:
problem of determining membership functions has occupied a central impor-
tance in the history of fuzzy logic with a number of subjectivist, statistical,
and (more recently) ncural approaches being proposed.

Membership function determination may be viewed as a data clustering
and classification problem. Hence, ncural clustering and classification algo-
rithms can be brought to bear to solve this problem as illustrated in Figure
13.4. When multidimensional data are clustered, we can extract either
one-dimensional membership functions based on a distance metric § (as
shown in the figure) or obtain multidimensional membership functions mod-
cling fuzzy relations (i.e., if /then rules). A typical use of neural networks for
producing membership functions involved a two-stage process: clustering and
fuzzification (Adeli and Hung, 1995). The first stage is essentially a classifica-
tion stage where a necural network is used to classify or cluster domain data
into a certain number of clusters. The second stage is a fuzzification process
where fuzzy membership values are assigned (to each training instance) in
the set of classified clusters [see also Travis, 1994)]. Of course the problem of
membership function determination is not totally separate from the problem
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#(8) Membership Functions

Data Space

Figure 13.4 Clustering approaches are used to determing membership functions in
data-rich applications,

of identifying rules (only the alter one is much more difficult). In practice,
both the determination of membership functions and the extraction of rules
proceed through some kind of clustering.

The methods used in the categorization of a universe of discourse are
typically based on some type of Kohonen or unsupervised learning network.
A pattern clustering method based on the Kohonen feature mapping algo-
rithm and the backpropagation multilayer perceptron has been uscd for
membership function determination by Pham and Bayro-Corrochano (1994),
The method is applied first to the training data set to divide it into labeled
clusters using the Kohonen algorithm and a cluster labeling procedure. The
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data clusters are then employed to train a three-layer perceptron. The
approach is self-organizing by virtue of the Kohonen algorithm, and it
produces fuzzy outputs as a consequence of the backpropagation network,

Kuo, Cohen, and Kumara at Penn State have taken a similar yet different
approach in developing a novel self-organizing and self-adjusting fuzzy mod-’
cling approach with learning capabilities (Kuo et al, 1994). Basically, their
approach consists of two stages: a self-organizing and a self-adjusting stage. In
the first stage, the input data are divided into scveral groups by applying
Kohonen’s feature maps. Gaussian distribution functions are employed as the
standard form of the membership functions. Statistical tools are used to
determine the center and width of the membership function for each group.
Error backpropagation (see Section 13.5) finc-tunes the parameters involved.
Feedforward neural estimation for membership function determination and
fuzzy classification have also been investigated by Purushotaman and
Karayiannis at the University of Houston (Purushothaman and Karaylannis,
1994), while Higgins and Goodman at MIT developed a different method for
learning membership functions and rules from a set of examples (Higgins and
Goodman, 1994), Their method is a general function approximation system
using a three-step approach: first, learning the membership functions and
creating a cell-based rule representation; second, simplifying the cell-based
rules using an information-theoretic approach for induction of rules from
discrete-valued data; and, finally, constructing a neural network to compute
the function value given its independent variables.

A typical use of neural networks for producing membership functions
involved a two-stage process. The first stage is essentially a classification stage
where a neural network is used to classify or cluster domain data into a
certain number of clusters. The second stage is a fuzzification process where
the fuzzy membership values for each training instance in the set of supports,
classified clusters, are evaluated. Let us look at the Adeli-Hung algorithm
(AHA) for determining membership functions (Adeli and Hung, 1994).

Determining Membership Functions Through the Adeli-Hung
Algorithm

Suppose that our data consist of NV training instances X, X5, Xy and we

have M patterns in each training instance, X; = [x;, x,.,. +s X;, ). The mean

vector of these instances may be defined as

5 . 1=
2. Xymim NX; (13.3-1)

For N + 1 training instances the mean vector is found from the mean >
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and the instance X, as follows:
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Classification by AHA is performed using a topology-and-weight-change,
two-layer (flat) ncural network where the number of input nodes equals the
number of patterns (M) in each training instance and the number of output
nodes equals the number of clusters,

The algorithm uses a neural network NN(M, 1) with M inputs and an as
yet undetermined number of outputs. The first training instance gets as-
signed to the first cluster. If the second instance is classified to the first
cluster, the output node representing the first cluster becomes active. If the
second training instance is classified as a new cluster, an additional output
node is added to the network, and so on, until all training instances are
classified.

To perform the classification in AHA, a function diff(X,C) is defined,
called the degree of difference, representing the difference between a training
instance X and a cluster C in a NN(M, P) nctwork (P indicates the number
of output nodes or cquivalently the number of classes), This function maps
two given vectors (X and C) to a real number (diff ). The patterns of cach
cluster (means of the patterns of the instance in the cluster) are stored in the
weights of the network during the classification process. The following
procedure for classifying a lraining instance into an active or new cluster js
used in AHA:

Step 1. Calculate the degreé of difference, diff (X, C,), between the train-
ing instance, X, and each cluster, C.. A Euclidean distance is used (in
image recognition applications) and the function Jiff( X, ) becomes

diff(X,C;) = (13.3-3)
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Step 2. Find the smallest degree of difference, diff i, (X, C)), and make the
cluster with the smallest degree of difference an active cluster:

Cose = {Clmin{diff(X,C))}.i=1,2,..., P}  (13.34)

Step 3. Compare the value of diff,,, with a predefined a threshold value

x. If the value of diff,,, is greater than the predefined threshold, the

training instance is classified as a new cluster (at this point one more
output node is turned on).

Cow =X if k <min{diff(X,C)),i=1,2,..., P} (13.35)

Suppose the given N training instances have becn classified into P
clusters. Let us use the symbols C; to denote the jth cluster and use U
to denote the set of all clusters. If the clusters are completely disjoint,
each instance in the training set belongs to only one of the classified
clusters and a binary matrix Z can be used to record the cluster of each
instance. If the instance i belongs to the j cluster we have z;; = 1, while
if it does not belong we have z,; =0. On the other hand, if the
classified clusters are partly overlapping, a given instance in the training
set may belong to more than one cluster. Hence the boundaries of the
classified clusters are fuzzy rather than crisp. The same binary matrix Z
may be used to record the cluster of each instance. The prototype for
each cluster is defined as the mean of all instances in that cluster, and
the degree of membership of each instance in the cluster is based on
how similar this instance is to the prototype one. The similarity can be
defined as a function of distance between the instance and the proto-
type of the cluster. If there are n, instances in a cluster p, the pattern
vector of the ith instance in the cluster p is X/ =[x, xf,..., x/ ]
Then, the vector of the prototype instance {the mean of aii instances) in
cluster p is defined as

Ny
Cp = [eprCppreea€p ) = - LAY (13.3-6)

P i=1

where ¢, = (1/n,)Xfz xfand j = 1,2,..., M. Using triangular-shaped
! R . 3 - .

membership functions (over the diff universe of discourse) the fuzzy

membership value of the ith instance in the p cluster is defined as

mo(XP) = f[D"(X7.C,)]
0 it D¥(XP,C,) >«
= D¥(Xt.C (13.3-7)
1- ko) if D*(XF,C,) < x

K
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where a predefined threshold value x is used as crossover value, The
similarity function is defined as the weighted norm D“(X,P,CPJ. The
weighted norm in the Adecli-Hung algorithm is defined as the Fu-
clidean distance:

M
D*(XF,C,) =wo( X1, G =\ X (xf~¢,)" (13.38)

=1

In image recognition problems, a value of 1 is used for the weight
parameters w and w,. If the Euclidean distance for a given instance is
less than the crossover value k, the instance belongs to the cluster pto
a degree given by the membership value.

13.4 NEURAL-NETWORK-DRIVEN FUZZY REASONING

In fuzzy systems employing more than three or four fuzzy variables, it may be
practically difficult to formulate fuzzy if/then rules, and it would be desirable
if they could be extracted automatically out of data from the physical system
being modeled. The problem of inducing (extracting) fuzzy rules has been
addressed by several researchers and is stil] undergoing intense investigation
(Kosko, 1992; Takagi, 1991; Hayashi et al,, 1992; (Keller and Tahani, 1952;
(Keller et al., 1994; Khan, 1993; Li and Wu, 1994; Wang, 1994; Wang and
Mendel, 1992; Nie, 1994; Jang and Sun, 1995; Werbos, 1992; Yager, 1994;
Blanco et al., 1995). In an important paper published in 1991, Matsushita
Electric engineers Tagaki and Hayashi prescated a comprehensive approach
for the induction and tuning of fuzzy rules, known as neural-network-driven
fuzzy reasoning or the Takagi~Hayashi (T--H) method,

Consider the situation shown in Figure 13.5 where we have the data space
of two inputs, x, and x, (e.g., two measurements obtaincd from scnsors),
knowledge of the target or desirable output, and a nonlinear partition of this
space in three regions. These regions correspond to three fuzzy if /then rules.
The identified rules R,, R,, and R, are of the Sugeno variety (see Chapter
6); that is, their consequent is a functional mapping of the antecedent
variables, with the mapping actually being performed by specially trained
neural networks.” The Takagi-Hayashi method consists of three major parts:

Part I: Partitions the control or decision hypersurface into a number of

rules, :

Fart 2: Identifics a given rule’s LHS (antecedent) values (ie., determines
their membership functions),

3 : oo 7
A potential drawback of the T-H method as well as most similar methods is that one has to
decide in advance the possible number of rules—for example, three rules in this case,

#
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Figure 13.5 Schernatic of the Hayashi-Takagi method for extraocting fuzzy nules.

Part 3: Identifies a given rule’s RHS (consequent) values (the amount of
control for each control rule).

Part 1 determines the number of fuzzy inference rules through clustering
performed on the data available, Part 2 employs a neural network to derive
the membership function for each rule (it therefore identifies the LHS of
rules). The T-H method combines all the variables (x, and x,, for example)
in the LHS and is based on the theoretical result that an arbitrary continuous
function is equivalent to a neural network having at least one hidden layer.
Buckley and Hayashi (1993) have shown the computational equivalence
between continuous functions, regular neural nets, fuzzy controllers, and
discrete fuzzy expert systems and have shown how to build hybrid neural nets
numerically identical to a fuzzy controller or a discrete fuzzy expert system.
Part 3 of the T-H method determines the RHS parts using neural networks
with supervised learning (supervised by the learning data and the control
value for each rule as in Part 2).

Sugeno-type rules are used (see Chapter 6) where the output is a function
of the inputs. Sugeno rules are typically of the form

if x, is A, ANDx, is Ay...,then y = f(xy,...,%,) (13.4-1)

where f is a function of the inputs x,,...,x,. In the T-H method this
function has been replaced by a neural network. For example, an induced
rule would be of the form

if (x;,x,) is A%, then y* = NN,(x,, x,) (13.4-2)

where x = (x,, x,) is the vector of inputs and y* = NN,(x,, x,) is a neural
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Flgure 13.6 Block dingrom of the Hoyashi-Takagi method for extrocting fuzzy riles.

network that determines the output y* of the sth le and A4° is the
membership function of the antecedent of the sth rule,

A block diagram of the T-H method is shown in Figure 13.6. As may he
scen in the figure, several ncural networks arc used. The neural network
labeled NN, Is responsible for generating the membership functions of the
antecedents of rules while networks NN, AN, ..., NN, determine the con-
sequent parts. Networks NN, NN,, ..., NN provide the RHS function of
Sugeno rules shown in equation (13.4-1). In actual applications these are
three-layer networks truined by backpropagation. As scen in Figure 13.6-the
overall system weighs the output of the RHS networks by the membership
values of LHS and computes a final output value. The following cight steps
constitute the outline of the procedure used in the Takagi—Hayashi method:

Step 1. We define y; as the output and define x;, j=1,2,..., k, as the
input variables. Inputs x;, j=1,2,...,m, m <k, that are related to
the observed value of the output are selected by a ncural network
through a backward elimination method using sum of squared crrors as
a cost function for the purpose of eliminating input variables attributed
to noise. It is important to select only those input variables that have
significant correlation to the observed valucs.
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Step 2. The input—output population n is divided into training data (TRD)
of n,) and checking data (CHD of n ), where n = n, + n_.

Step 3. The TRD is partitioned into r groups using a clustering method,
Each partition is labeled as RY, s = 1,2,..., r, and the data within the
ith partition is expressed as.(xj, y), where i = 1,2,...,(n,)" and (n,)*
are the TRD numbers in each R’. Partitioning the data space into ¢
partitions implies that the number of inference rules will be taken to
be r.

Step 4. “The antecedent part of each rule is identified through NN, (the

neural network generating the membership functions, see Figure 13.6),

If x; are the valucs for the input layer of NN,.., the weights w' are

assigned as the supervised data for the output layer, where

1, x;€R" :
wi = B il F=Lyrelpi 85 Tyoann® (134-3)
’ -

The network NN, is trained to infer weights w] given an input vector
x. NN,., thus becomes capable of computing the degree of member-
ship W/ of each training data item x; to the rule (or partition) R*. The
membership function of the antecedent A7 of the sth rule is defined as
the inferred value w/—that is, the output of NN .:

pe(x)=w, i=1,2,....n (13.4-4)

Step 5. After identifying the antecedent membership function in step 4, we
now identify the consequent part of the Sugeno fuzzy if/then rules we
are looking for. The RHS of each rule is expressed by the input—output
relationship. Inputs xf,,..., x/, and outputs y*, i =1,2,...,(n,)’, from
the training data are used as input-output pairs for training the NN,
neural network that models the consequent of the sth rule. Subse-
quently the checking data x;,...,x;,, i =1,2,...,n,, are used as
input and the sum of squared errors is formed:

er

9;: - fé [yi - II"‘:(xl') & f"'/f'(xi)]z (134-5)

where u(x;) is the calculated output of NN,, y, is the target output for
the network, and ©) is sum of squared errors. The sum can also be
computed after weighing by g .(x,); that is,

05 = L wa(x) - [0 - w(x)  me(x)]  (13.46)
i=1

Takagi and Hayashi use an index to decide the best iteration number
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during training (to prevent “overlearning” or memorization):

i ﬁc (E’[ ]2
= T e il ” 0 I
(”:) +”’r f=1 }' ‘( '}

(Hl)j Zr -
t o B ) )] (13.47)

[f the sth network has overlearned, the error of the TRD becomes
small but the crror of the CHD becomes large, suggesting that the
optimum number of iterations is the one that gives the smallest /* in
equation (13.4-6). :

Step 6. In this step a number of varisbles may be eliminated from the
consequent through a backward elimination method. Out of the m
input variables of a network inferring the consequent of a rule, one
(e.g., x") is arbitrarily climinated, and the neural network for each
consequent is trained using the TRD as in step 5. Equation (13.4-8)
below gives the squared error 2., of the control value of the sth rule
in the casc where x# has been eliminated. This sum squared error can
be ¢stimated using the checking data:

He

&fa= Lln-u(x) mex)]’, p=12..,m (1348)
i=1

Alter comparing cquations (13.4-6) and (13.4-8) and O > @ . the
significance of the climinated variable x? can be considered minimal,
and x¥ can be discarded.

Step 7. The operations in step 6 arc carried out for the remaining m — |
input variables until it is no longer true that @), > O} | for any of the
remaining input variables, The model that gives the minimum ©° value
is the best-trained neural network for the sth rule.

Step 8. Equation (13.4-8) below gives the final control value &

g ooy (%) - {u (%)}
' E:-l 'u'rj‘(xl)

; i=12,....,n (13.4-8)

where [u,(x));,; is an inferred value obtained when CHD is substituted
in the best NN obtained in step 7.

It should be noted that the T-H method allows for nonlinear
partitioning of the input space and hence the identification of nonlinear
membership functions. Each cluster of input data corresponds to an
if/then Sugeno-type rule as shown in (13.4-2). Although these rules
individually make a good fit for data similar to what they have been
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trained on, a gradual fitting to multiple rules has to be performed for
data near the boundary region (see Figure 13.5). The following example
[taken from Hayashi et al. (1992)] serves to illustrate the T—-H method.

Example 13.1 COD Density Estimation. Data of chemical oxygen demand
(COD) density in Japan's Osaka Bay taken over a 10-month interval were
used by Takagi and Hayashi (1992) to test their neural-network-driven fuzzy
reasoning method. In this application of the T-H method the input—output
variables are

- y COD density (ppm)
% Water temperature (°C)
Xy Transparency (m)
X3 Dissolved oxygen density (ppm)
X Salinity (%)
%5 Filtered COD density (ppm)

In accordance with step 2 in the T-H mecthod, the data were divided in
training and checking data as shown in Figure 13.7. Thirty-two data points
were used for estimation, while 12 data points were used for testing. Perform-
ing a backward elimination experiment suggested the use of all input vari-
ahles for estimation,

For determining the membership functions of the antecedent sets (ic.,
NNpeq ), a four-layer network with five input nodes in the input layer, two

estimated

(ppm)

CcOoD

14
'IlfTIllll'f‘!IlrIlllillIIIIIII'I TrTTrrrfJTrirryrrvrrrry
76 r 2 !

5 0 1 5 9 ¥ 5 9 1 5 9
months

Figure 13.7 Osaka Bay data used for training and checking the Hayashi\Takagi
method. (Takaki and Hayashi, 1991).
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hidden layers with 12 nodes each, and two output nodes in the output layer
was used. Similarly, for determining the consequent part of rules, four-layer
networks were used with m input nodes in the input layer (m = 5,4,...),
two hidden layers with 12 nodes cach, and an output layer with only one
node (sec Figure 13.6).

Network training took 15002000 itcrations, and the following rule strue-
ture was finally identified:

Rir B[ Xqu X5 Xy 5] IS A HHEN ¥ = NNG( 2 X3 By Fun Xs)
1 2 ] 5 1 1 3 3

L

Ry:  if(%, X5, %50 Xy, Xs) I8 A, then y* = NN3(xy, x5, X3, X5)

The estimated COD density by the above system was in very good agreement
with observed data, and it performed better in comparison with results
obtained by other methods, O

13.5 LEARNING AND ADAPTATION IN FUZZY SYSTEMS
VIA NEURAL METHODS

In recent years Nomura, Hayashi, and Wakami proposed an approach to
fuzzy system adaptation utilizing the gradient-descent error minimization we
saw in connection with backpropagation in Chapter 8. A parameterized
description of a fuzzy system with symmetric, triangular-shaped membership
functions for inputs and crisp outputs was developed, and crror minimization
through gradient-descent was used (Nomura et al., 1994; Wang, 1994, Jang
and Sun, 1995). Ichihashi et al. (1993) used gradient descent with exponential
membership functions. Guély and Siarry (1993) have solved the problem
more generally—that is, for symmetric as well as nonsymmetric antecedent
membership functions and different connectives and consequent forms.

Most fuzzy system adaptation approaches rely on gradient-descent opti-
mization. As is the case in neural learning, an objective function £ is sought
to be minimized:

E=1y -y (13.5-1)

where y is the output of the fuzzy system and y" is the reference (target)
system output.

Consider the fth zero-order Sugeno rule of a system having n such rules
(i=1,...,n)
R: if x; is A;; AND -+ ANDx, is A, then y isw, (13.5-2)

il

where A4,,..., A, are the fuzzy values of the LHS of the rule and w, is a
constant in the consequent of the ith rule. In a fuzzy system, we combine
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fuzzy if /then rules like the one above to perform a mapping from fuzzy sets
of the LHS universe of discourse to constants in the RHS. Let i be the
membership. function for the fuzzy relation of the ith rule. Then the output
of a simplified fuzzy reasoning approach, v, can be obtained through equa-
tions

By = I_{A.-J-(r,) (13.5-3)
=

and
Liay 1w
= .__'.*"J_.f__i (13.5-4)
LiAI Ky
Using input-output data and a gradient-descent algorithm, we can aptimize
the w;'s by minimizing an objective function E such as the one given by
equation (13.5-1). Let us rewrite this squared error function as

E={(y?~yr)’ (13.5-5)

where y'” is the target for the pth input data (xfy...,xf) and y? is the
calculated output of the system corresponding to the same input data. The
learning rule for the real numbers in the RHS of rules (13,5-2) js

als

wilt' + 1) = w(r') ~ Ko (13.5-6)

where 1 is the number of iteration of learning. Following Nomura et al.
(1994) and using the above error function (13.5-5) in (13.5-6), we express the
w, update as

P

w(r'+ 1) =w(r') - K- Efl'—ﬁ?(yf’ =) (13.5-7)

where pf is the membership value of the ith rule carresponding to the pth
input—output example and K is a constant,

Using input-output examples with learning rule (13.5-7) repeatedly, the
RHS numbers w; are updated so as to minimize the error function, ultimately
reaching a global minimum since 62E/aw? > 0 is obtained for all rules,

As with newral-network-driven fuzzy reasoning in the previous scction, in
this adaplation approach too one has to come up a priori with the optimal
number of rules, often through a trial-and-error approach. A number of
researchers are proposing various genetic approaches to address this issuc
[see Nomura et al. (1994), Pedrycz (1995), Perneel (19935)]°.

“See Chapter 17 of this book.
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Using gradient descent, the membership functions of the LHS of rules
(15.4-2) may be tuned to better reflect the problem at hand, Consider the
symmetric trl.lnouldr membership function for the jth antecedent of the ith
rule shown in Figure 13.8. Such a membership function can be represented
by the peak q;; and the support b,;, and therefore the entire rule (13.5-2) can
be pummlgnad through the p‘.dks of antecedent values a,, their support
b, i and w,

Fnllumnu Guély and Siarry (1593), let us address adaptation for rules with
symmetric trmngular membership functions in the LHS, product mmprcm-
tion of AND, center of arca output calculation, and constant outputs as in
rule (13.5-2). As scen in Figure 13.84, the symmetric triangular membership
functions in the LHS arc given by

== if [x, —a,| E‘
0, otherwise

As before, we want to adapt the parameters (a,. b, w,). Let p denote the
number of training samples, and ¥y’ the training sample output. Using
gradient descent means that our peak parameters, for exumple, will be
updated in the following manner:

) . n. dE
w1 - gt~ ",_;. e .
7, ) ol .
=a,(')—-=—" L —F (13.5-9)

- b -
=p gl Hﬂu

where n, is the gradient-descent speed for a;, the peak parameter, and we
use 7, and 7, for the support b, and the RES parameter w, respectively.
Guély and Siarry ohserved experimentally that learning was sensitive to these
parameters.

To simplify (13.5-9) let us use E, y, and y' instead of £, y", and y™ for
the pth input-output example. Then we have the following derivative that
we could use in equation (13.5-9) to obtain the update of the peak parame-
ters:

alk Ak dy  fu,  du,
s S e R e R (13.5-10)
ad; dy dmy e, da )

Similarly for the upgrade of the support and RHS parameter, we nced to
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Figure 13.8 Parameters used to describe the friangular-sHoped membership function

for the jih ontecedant of the ith rule. (@) Symmetric triangutar membership functions
and (b) nonsymmetric tiangular membership functions.
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evaluate the following derivatives:

aE dE  dy dw,

— A e 13.5-11
ab,, dy dy, dw, db, ( )
and
af dE  dy .
e e fen (13.5-12)
aw, dy dw,

Given the symmetric triangular shape of the membership functions [equation
{13.5-8)] and the product interpretation of AN, the partial derivatives in
the above equations are as follows:

aE
— =y -y 13.5-13)
FIE ( )

The partial 2y /dw; is

iy i,

By 13.5:14
r"‘\\'; ‘:‘” =1 ¢ [: )

And we also have (treating )" as constant)

r"‘- (b‘.l o Ij-)

g et 3.5-15
T 5 ST ? :
lr?

. . . (13.5-16)
(%))
By . 28ENE—4) (13.5-17)
da,, b, e
I'}.U:u N ] == “;J(I,-.] (lg z 18‘}
r:ib” b,, o

Equations (13.5-10) to (13.5-18) provide all the terms needed for the learning
formula (13.5-9) for the peak, but also for the support and RHS parameters
—that is, the entire set of parameters (a,,, b,,, w,) we use to adapt our fuzzy
systems. In general, the system is sensitive 1o the gradient-descent speeds,
and increasing the number of rules makes training more difficult.

Similarly we can (rain a fuzzy system that uses nonsymmetric antecedent
membership functions such as the one shown in Figure 13.86 by repeating
the above procedure for the sct of relevant parameters. Variations of the
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gradient-descent procedure have been developed and applied when the rules
use the min interpretation of AND (instead of product) and a polynomial
RHS instcad of constant [see Guély and Siarry, (1993)], In general, re-
scarchers report considerable advantages in the speed of training adaptive
fuzzy systems when compared to regular three-layer ncural networks.

13.6 ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEMS

To tackle the problem of parameter identification, Jang and Sun (Jang, 1992;
Jang and Sun, 1995; (Jang and Gulley, 1995) have proposed an adaptive
network-based fuzzy inference system (ANFIS) that identifies a set of parame-
ters through a hybrid learning rule combining the backpropagation gradient-
descent and a least-squares method. ANFIS can be built through the fuzzy
toolbox available for MATLARB [actually developed by Jang (Jang and Gulley,
1995)]. Applications and properties of ANFIS have been investigated, and a
number of methods has been proposed for partitioning the input space and
hence address the structure identification problem. Fundamentally, ANFIS is
a graphical network representation of Sugeno-type fuzzy systems, endowed
with neural learning capabilitics. The network s comprised of nodes and with
specific functions, or duties, collected in layers with specific functions. To
illustrate its representational strength, let us consider two first-order Sugeno
rules having outputs which are linear combinations of their inputs:

if xis A; ANDy is By, then f, = p,x + gy +r
, ; ] (13.6-1)
if xis A, ANDy is B,,then f, = Prx+ g,y +r,

ANFIS can construct a network realization of rules (13.6-1). Figure 13.9
illustrates the evaluation of these rules (upper part) and the corresponding
ANFIS architecture (lower part). The nodes in the same layer of ANFIS are
of the same function family and are arranged as follows:

Layer 1. Each node in this layer generates the membership grades of a
linguistic label. The ith node for ¢xample may perform the following
(fuzzification) operation:

(13.6-2)

where x is the input to the ith node and A; is the linguistic value
{small, large, etc.) associated with this node. The sct of parameters
\@;, by, ¢} is used to adjust the shape of the membership function.

S
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Figure 13.9 Evaluation of a network redlization of rules (13.6-1) (fep) and the corre-
sponding ANFIS architecture (bottom).

Layer 2. Each node in this layer calculates the firing strength of each rule
via multiplication (or min):

012 o Pl P’-,il(x) X P“B,{J"), i=1,2 (1363)

Layer 3. The ith node of this layer calculates the ratio of the ith rule’s
firing strength to the sum of all rules’ firing strengths:

”
AT A T SN P (13.6-4)

1
Wy + Wy
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Layer 4. The ith node in this layer has the following function;

O} =w,f, = wi(px +qy+r) (13.6-5)

i

where #; is the output of layer 3, and {p: g;r) is the parameter set.
Parameters in this layer will be referred to as the consequent parameters.

Layer 5. The single node in this layer aggregates the overall output as the
summation of all incoming signals:

Ei'“':i ]
O = overall output = Lwf = —E—i (13.6-6)
i i

The learning rule of ANFIS is based on gradient descent optimization
as with the feedforward neural networks that we have seen in Chapters
8 and 9 [sce MATLAB's fuzzy toolbox for more details on ANFIS (Jang
and Gulley, 1995)].
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PROBLEMS

L. Show a nontriangular form for the membership function of the ith
instance in the p cluster described by Equation 13.3-7 and discuss its
potential benefit.

2. Derive Equation (13.4-6) in the Takagi-Hayashi (T-H) method.
3. Explain qualitatively the significance and use of Equation (13.4-7).

4. Explain qualitatively how the number of variables in the consequent of
Equation (13.4-1) is controlled in the T-H method.

5. Show that for a fuzzy algorithm comprised of zero-order Sugeno rules
the outpul is given by Equation (13.5-4). Identify the parameters that
may be used for training.

6. Using input-output data and gradient descent we can modify (adapt) the
paramelers of a fuzzy algorithm in a manner analogous to neural learn-
ing. Show how the equation for updating parameters such as weights,
that is Equation (13.5-7), is obtained,

7. Given a fuzzy algorithin comprised of n first-order Sugeno rules, derive
expressions analogous to Equations (13,5-3) and (13.5-4) and identify all
parameters that may be used for training,

8. How can the parameters of the fuzzy algorithm of Problem 7 be trained?
Describe all assumptions that need to be made and give the learning rule
for each parameter.

9. If min instead of product is used in fuzzy algorithms comprised of
zero-order Sugeno rules, how would their parameter training be differ-
ent?

10. Derive expressions for the training parameters involved in fuzzy algo-
rithms that use nonsymmetric triangular membership functions such as
shown in Figure 13.8,

e
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14.1 INTRODUCTION

Recent years have seen a rapidly growing number in neural-fuzzy applica-
tions and a blossoming bibliography on the subject.! Although it is too early
for the merits of any particular approach to be comprchensively assessed, it
appears that in a number of engineering disciplines the research is maturing
and moving toward developmental phases. In this chapter we describe |
selected hybrid neurofuzzy enginecring applications. The task of reporting on

a field that is still in a state of flux is difficult and tricky, and unfortunately
our selection is incomplete. Nevertheless, we think it may be useful to offer a
panoramic view of applications through the neurofuzzy bibliography.

In Part II of this book we have seen that problems associated with
obtaining expert knowledge and adapting a system description to changes in
itself or its environment can be addressed through neural networks. Since
neural descriptions of systems are typically made through example data or
some kind of performance function, expert knowledge is not explicitly re-
quired. In addition, neural networks are inherently capable of adaptation
through the various learning algorithms which were reviewed earlier. It
would seem plausible, therefore, to try to overcome the expert knowledge
and adaptation problems of fuzzy systems through synergistically exploiting
these advantageous features of neural networks,

' The material presented in this chapter is largely a condensation of rescarch reports in
neurofuzzy applications that have appeared in the early 1990's, including material obtained
through scarches at Purdue University Library’s Engincering Index.
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Table 14,1 Comparative characteristics of fuzzy and neural systems

Fuzzy Systems Neural Systems
Linguistic Representation Black Box Representation
Expert Knowledge Required £xample Data or Performance

Function Required

Some Adapration Adaptation Mechanisms Available
Feult Tolerant Fault Toleram
Application-Dependent  Computational | Rather High Compurational Cost
Cost '
Multiple Descriptions Possible Multiple Descriptions Possible

Neural networks exhibit highly desirable inherent parallelism and fault-
tolerant behavior, Of course, they have disadvantages of their own such as,
for example, difficultics in inspecting and modifying internal parameters,
Whereas fuzzy systems are relatively easy to inspect and modify, neural
networks are not as transparent to a user. In addition, there may be
situations where adequate data are simply not readily available, which could
cause difficulties in training or possibly a high computational cost associated
with training. Table 14.1 presents a comparison and a summary of the
characteristics of fuzzy and neural systems.

14.2  NEUROFUZZY INTERPOLATION

The notion of interpolation typically refers to a process whereby we estimate
the value of a function between values that arc already known. More
generally, this notion refers to methods for approximating a function with a
simpler one, when interpolating values or derivative values are provided, as is
the case in spline fitting of Langrange interpolation.

In fuzzy logic, we deal primarily with complex many-to-many mappings
rather than the simple many-to-one mappings (or functions). Consider the
situation shown in Figure 14.1a, where the empty circles represent known
fuzzy rules (see Chapter 5). As seen in the figure, there are regions where
such knowledge (i.c., the underlying relations) is missing. We can think of
this problem in 2 manner analogous to crisp interpolation, that is, find a
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Figure 14.1 Neurofuzzy Interpolation invelves the use of neural methods for obtaining
fhe interpolated rules. :

method through which we can estimate the relation in the missing part.
When this is accomplished through neural methods, we have what is known
as neurofuzzy interpolation. To obtain the rules involves finding the appropri-
ate membership functions as shown schematically in Figure 14.16 where the
shaded circles represent interpolated rules.

Abe and his colleagues at Hitachi (Abe and Lan, 1993) have developed a
method for extrActing fuzzy rules directly from numerical input—output data
for pattern classification in a manner similar to neural networks and ex-
tended it to approximate any arbitrary function. For function approximation,
the universe of discourse of an output variable is divided into multiple
intervals, and each interval is treated as a class. Then in a manner similar to
that used for pattern classification, fuzzy rules are recursively defined by
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(@) activation hyperboxes which show the existence region of the data for the
interval and (b) inhibition hyperboxes which inhibit the existence region of
data for that.interval. Input data are used for each individual interval. The
approximation accuracy of the fuzzy system derived by this method has been
empirically studied by Abe and Lan (1993) using an operation lcarning
application of a water purification plant and found to be satisfactory. Addi-
tionally, it has been reported that the approximation performance of the
fuzzy system compares favorably with the function approximation approach
based on neural networks.

Blanco and Delgado (1993) have also developed an interpolation method
based on a neural network’s ability to approximate any function. The
methodology involves a neural network learning the information contained in
fuzzy rules, as well as expert knowledge found in a set of examples, and
directly interpolating from rules through the output of neural networks.

Kosko (1994) has shown that an additive fuzzy system can uniformly
approximate any real continuous function on a compact domain to any
degree of accuracy. An additive fuzzy system approximates the function by
covering its graph with fuzzy patches in the input—output state space and
averaging patches that overlap. The fuzzy system computes a conditional
expectation E[Y|X] if the fuzzy sets are viewed as random sets, Each fuzzy
rule defines a fuzzy patch and utilizes common-sense knowledge with state-
space geometry. Neural or statistical clustering systems can approximate the
unknown fuzzy patches from training data. Kosko (1994) has reported
that these adaptive fuzzy systems approximate a function at two levels, At the
local level the neural system approximates and tunes the fuzzy rules. At
the global level the rules or patches approximate the function.

14.3 GENERAL NEUROFUZZY METHODOLOGICAL DEVELOPMENTS

Leading a rescarch field from infancy to maturity and technological deploy-
ment is a particularly difficult task, and crucial methodological developments
obtained through the insight and intuition of experienced researchers make a
difference. Let us take a look at some of these pivotal methodological
advancements which have contributed to neurofuzzy integration.

Werbos (1993) introduced the concept of elastic fuzzy logic as a way of
combining neural and fuzzy capabilities. Werbos' methodology uses fuzzy
logic as a kind of “translation” technology, to go back and forth between the
words of a human expert and the equations of a controller, a classifier, or
some other useful system. One can then use ncural methods to adapt that
system to improve performance. Elastic fuzzy logic translates the words of an
expert into an elastic fuzzy logic network, a kind of local neural network
which can be plugged directly into a wide range of neural network designs,
ranging from pattern classification through the brain-like optimizing control.
The words of the expert are used to initialize this network, but neural

L Seeead Jatab B P
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network methods can then be used to adapt all the weights or parameters, In
Werbos’ methodology, neural network methods can also be used to prune er
grow the network.

Ronald Yager, a prominent researcher in the field of fuzzy systems, has
advanced a general framework for developing fuzzy algorithms using neural
networks. Yager (1994) interprets the firing level of a neuron as a measure of
possibility between two fuzzy sets, the weights of connection and the input,
and suggests a way to represent fuzzy production rules in a neural frame-
work. Central to Yager’s representation is the notion that the linguistic
variables associated with a fuzzy if /then rule may be represcnted as weights
in the resulting neural structure. Such a structure allows for learning of the
membership functions involved.

Several investigators have proposed neural-network-based fuzzy systems.
A leading part of the research and important methedological advancements
have come out of the work of Professor Keller and his coworkers at the
University of Missouri (Keller et al,, 1994; Keller and Tahani, 1992). Over
the years they have developed a variety of approaches toward improving the
performance of various systems by exploiting the neurofuzzy synergism. They
have introduced evidence aggregation networks based on additive fuzzy
hybrid operators, for image segmentation, pattern recognition, and general
multicriteria decision-making. These networks have cxcellent properties for
decision-making under uncertainty and present advantages in training due to
their simple form. Keller's additive hybrid operators are found to be flexible
and useful for modeling nodes in a network structure for fuzzy logic infer-
ence capable of learning appropriate functional relationships while being
rather transparent; that is, after training, individual nodes can be analyzed as
a collection of “mini-rules™. '

Neural networks for the parallel high-speed processing of the rules found
in a fuzzy logic controller have been used by Patrikar and Provence (1993) at
Southern Methodist University. In the methodology advanced by the re-
searchers, the fuzzy algorithm is replaced by a feedforward ncural network
with a single hidden layer that is trained using backpropagation and input
and output fuzzy values expressed in terms of numerical patterns.

As we have seen in Chapter 13, the automatic categorization of a universe
of discourse is typically based on some type of Kohonen nctwork. A pattern
clustering method bascd on the Kohonen feature mapping algorithm and the
backpropagation multilaycr perceptron has been used for membership func-
tion determination by Pham and Bayro-Corrochano (1994). The method is
applied first to the training data sct to divide it into labeled clusters using the
Kohonen algorithm and a simple cluster labeling pracedure. The dala clus-
ters are then employed to train a three-layer perceptron using the error
backpropagation training. Thus, this approach is self-organizing by virtue of
the Kohonen algorithm and produces fuzzy outputs as a consequence of the
backpropagation network. Results of using the pattern clustering method on
standard problems show it to be superior in performance compared to crisp
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clustering networks such as the Kohonen feature map and the ART-2
network [see also Nie (1994)].

Feedforward neural estimation for membership function determination
and fuzzy classification has been proposed by Purushotaman and Karayiannis
(1994) at the University of Houston. They have used feedforward neural
networks inherently capable of fuzzy classification of overlapping pattern
classes such as a feedforward neural network in conjunction with multilevel
neurons in two hidden layers called (a) the “quantum ncural network” and
(b) a “membership estimating network,” which is a fecdforward network
trained with generalized Hebbian learning rules. Professor Karayiannis and
his students have offered theoretical and experimental results showing that
both architectures are inherently capable of partitioning the feature space in
a fuzzy manner.

To a large extent, the successful implementation of neural nets depends
on several ancillary techniques for data preprocessing, training, and testing.
Some of these techniques were investigated and discussed by Professor
El-Sharkawi of the University of Washington [see El-Sharkawi (1994)). They
include genetic algorithms, fuzzy logic theory, query-based learning, and
feature extraction. The advantages of the application of these ancillary
techniques for neural networks and simulation studies have been performed
to assess their role and practicality.

14.4 ENGINEERING APPLICATIONS

Fuzzy and neural approaches have found their way in a variety of engineering
applications, including, but not limited to, consumer electronics, various
aspects of control, diagnostics, industrial production lines, biotechnology,
power generation, chemical processes, power electronics, communications,
and software resource management. It is expected that the applications of
the fuzzy-neural synergism will increasingly move toward computer applica-
tions as well, such as machine learning [see Adeli and Hung (1995)).

It is now rather well established that fuzzy systems aided by neural
networks can adequately address the adaptation problems we discussed in
Chapters 12 and 13. Ishibuchi and his coworkers have reported on an
approach based on empirical research where they examine the ability of
trainable fuzzy systems as approximators of nonlinear mappings by computer
simulations using real-life data. Fuzzy if/then rules of the Sugeno variety
(sce Chapter 6) are adjusted by a gradient descent method. After examining
the capabilities of fuzzy systems by numierical examples, the researchers
tested them through an interesting project, involving the development of a
six-variable fuzzy relation used in rice tasting. By computer simulations based
on a random subsampling technique, they demonstrated that the perfor-
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mance of individual fuzzy systems is comparable to that of neural networks
(Ishibuchi et al., 1994).

Researchers at Tohoku University in Japan have used neural networks in
conjunction with a fuzzy logic for decision-making (Kozma et al.,, 1994). They
developed a method which can make a distinction between the occurrence of
unexperienced events and any inconsistency in the judgments of agents
caused by statistical uncertainties in actual data. The method has been
applied to the analysis of signals of numerical experiments and also actual
measurements in a nuclear reactor.

Several fuzzy-neural methodologies are of special interest to many re-
searchers when integrated with other approaches. Pao (1994) reported on the
fusion of three distinct computational intelligence paradigms, neural comput-
ing, evolutionary programming, and fuzzy-logic, to support the task of process
monitoring and optimization. The resulting computational intelligence has
been successfully applied to optimal process planning in electric power
utilities that include, but are not limited to, heat rate improvement and NO,
emission minimization.

14.5 DIAGNOSTICS IN COMPLEX SYSTEMS

Hybrid fuzzy-neural systems have been used in several aerospace applica-
tions. Raza, loannou, and Youssef (1994) reported on the problem of
detecting control surface failures of a high-performance aircraft. The detec-
tion model is developed using a linear, six-degree-of-freedom dynamic model
of an F-18 aircraft. The detection scheme makes use of a residual tracking
errar between the actual system and the model output in order to detect and
identify a particular fault. Two parallel models detect the existence of a
surface failure, whereas the isolation and magnitude of any onec of the
possible failure modes is estimated by a decision algorithm using neural
networks and fuzzy logic. Simulation results demonstrate that detection can
be achieved without false alarms even in the presence of actuator/sensor
dynamics and noise.

In the power industry, ncural networks and fuzzy logic systems offer an
interesting, challenging, and productive means of addressing many of the
problems that occur in the operation of nuclear power plants. Bhrig,
Tsoukalas, and [konomopoulos (1994) have described how such systems can
be used to model nuclear reactor system dynamics and nuclear fission step
responses of nuclear plants. They can also help operators in assessing the
condition of the plant during abnormal operation or emergencies by analyz-
ing and integrating the process parameters and system interactions (Guo and
Uhrig, 1992).

Matsuoka and Blanco (1993) reported on an Electric Power Rescarch
Institute (EPRI) survey of recent advances and trends in Japancse power
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plants. The survey includes case studies of many applications and widespread
implcmcntations of advanced technologies such as: (1) a neurofuzzy system
for plant monitoring and diagnosis, combined with knowledge-based preven-
tive maintenance systems: (2) fuzzy-logic dynamics schedulers for plant
transient operations; (3) fuzzy-expert tuners of dynamic control systems;
(4) fuzzy-algorithmic operation guidance systems for major plant equipment;
and (5) telepresence with machine vision and robotics; among others. These
advanced approaches had to be introduced due to smaller stability margins in
the plants, rapid changes toward more efficient thermal cycles and new plant
equipment dynamics, coming with stronger nonlinearities and subsystem
interconnections.

In the field of nuclear engincering diagnostics is a very important task for
the safety of power plants. Moon and his coworkers at the Korean Advanced
Institute on Science and Technology have reported on a method for predict-
ing the critical heat flux (CHF)—a quantity with safety significance— based
on fuzzy clustering and neural networks [Moon and Chang, (1994)]. The fuzzy
clustering classifies the experimental CHF data into a few data clusters (data
groups) according to the data characteristics. After classification of the
experimental data, the characteristics of the resulting clusters were carefully
examined. Using the CHF data in each group, neural networks were trained
and successfully predicted the CHF.

14.6 NEUROFUZZY CONTROL SYSTEMS

In another application, Chen and Chen (1994) have investigated the relation-
ship between a piecewise lincar fuzzy controller (PLFC), in which the
membership functions for fuzzy values and the fuzzy if /then rules are all in
piccewise lincar forms, and a Gaussian potential function network-based
controller (GPENC), in which the network output is a weighted summation of
hidden responses from a serics of Gaussian potential function units. System-
atic procedures were developed for transformations from a PLFC to its
GPENC counterpart, and vice versa. Based on these transformation princi-
ples, a series of systematic and feasible steps were developed for the design
of an optimized PLFC (PLFC®) using neural network techniques. The
optimized GPFNC (GPFNC*) can be implemented directly to actual systems,
and the GPFNC* could further be converted into its fuzzy counterpart
(PLFC*) if more structural interpretation of the intelligent control strategy is
required.

Several self-organizing fuzzy controllers have found their way to field
deployment. Li and Wu (1994) developed an interesting a self-organizing
fuzzy logic control scheme based on neural networks, which consists of a
traditional fuzzy logic controller and a conventional derivative controller.
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Neural networks are used to optimize membership functions that are param-
eterized by the use of the cubic splines in a self-organizing manner.

In another development, Professors Lin and Lee (1994) have proposed a
promising approach for constructing a fuzzy system automatically. In their
approach a reinforcement neurofuzzy control system with multiple connee-
tionist models with feedforward multilayered networks is used to realize a
fuzzy logic controller. One network performs the role of a fuzzy predictor,
while the other acts as a fuzzy controller. Using the temporal difference
prediction method, the fuzzy predictor can predict the external reinforce-
ment signal and at the same time provide a more informative internal
reinforcement signal to the fuzzy controller. During the learning process,
both structure learning and parameter learning are performed simultane-
ously in the two networks using a fuzzy similarity measure, and a reward /
penalty signal,

As far as the practical implementation of neurofuzzy control is concerned,
there is tremendous variation in the themes and areas of applications. Stylios
and Sotomi (1994) have developed a neurofuzzy sewing controller for the
next generation of, the so-called intelligent sewing machines. The model
incorporates discrimination of material characteristics to be stitched and
automatic determination of their properties. The fabric—machine interactions
at different speeds have been articulated in the form of fuzzy if/then and
implemented in a neural network to allow for optimization of fuzzy member-
ship functions and, subsequently, self-learning. The controller was success-
fully applied to an instrumented industrial sewing machine.

Neurofuzzy approaches are expected to play a major role in the develop-
ment of future fusion reactors, Yamazaki et al. (1994) reported that the
world’s largest superconducting fusion machine LHD (large helical device),
under construction in Japan, will utilize fuzzy logic and neural networks for
fecdback control of plasma configurations in addition to classical propor-
tional-integral-derivative control. Design studies of the control system and
related R & D programs with coil-plasma simulation systems include neuro-
fuzzy control systems.

Foslien and Samad (1993) at Honeywell reported on the general problem
of optimizing a fuzzy controller through the use of a neural network model
for the process in the optimization procedure. The integration of néural
network models with fuzzy control is very appropriate since both techniques
are best used when detailed analytical understanding of a process is not
available. To illustrate this concept, a fuzzy controller was synthesized for a
simple nonlinear process with (1) a fecedforward neural network used for
modeling the process and (2) an optimization criterion based on setpoint
CITOr.

The synergistic utilization of fuzzy and neural systems, often resulting in
an entity of its own referred to as newrofuzzy systems, is increasingly applica-
ble in many control technologies (Werbos, 1992). As we have seen in Chapter
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6, for example, a di It part in designing an ordinary fuzzy controller is
selecting which fuzzy . are best representing the controlled and controlling
variables. Most fuzzy  atrollers are sensitive to the shapes of the member-
ship functions, and ¢+ He number of rules increases, the use of “trial and
error” tuning proced. < become less and less feasible.

A report in JEEE  ctrum magazine (Schwartz and Klir, 1992) described
work at Matsushita . 1 Hitachi in Japanese in which a backpropagation

neural network learn: | the needed membership functions from a set of
training examples (FHayashi et al.,, 1992). It is claimed that a tuning task that
had -previously taken 6 months was accomplished in 1 month, Wakami ct al,

" (1993) at Matsushita Electric reported on recent applications of fuzzy-neural
methodologies to home electric appliances. Many appliances produced in
Japan have internally encoded expert knowledge for their operation. In order
to overcome the problem of extracting the necessary expertise, Matsushita
engineers use neural networks in conjunction with fuzzy rules. Applications
of their neurofuzzy methods are found in refrigerators, air-conditioning
systems, and welding machines. In air-conditioning systems, a thermal sen-
sory system and a fuzzy-image-understanding algorithm are used to identify
the number and positions of occupants in a room. Allowing air-conditioning
systems to “see” their environment allows them to better and more efficiently
produce a comfortable thermal environment.

As far as the industrial merit of neurofuzzy technologies is concerned,
Wegmann (1994) at Siemens reported a growing interest in programmable
logic controller (PLC) applications and a wide range of possible applications
in the area of nonlinear processes, especially those with great parameter
fluctuations. Applications in environmental processes, such as sewage and
exhaust'gas cleaning, appear to be of particular interest. Neural networks
alone may be at a disadvantage in operating phases of a process where
example data are not readily available, whereas neurofuzzy formulations lend
themselves conveniently to such situations allowing the control behavior in
such phases to be prescribed by a fuzzy algorithm, with most learning left to
neural networks.

In another interesting application, Yen (1994) reported on the design of
control algorithms for flexible space structures, possessing nonlinear dynam-
ics which are often time-varying and usually ill-modeled. A hybrid connec-
tionist system was used as a learning controller with reconfiguration capabil-
ity. Neural networks were used to provide vibration suppression and trajec-
tory mancuvering for precision pointing of flexible structures. Radial basis
function networks were employed for capturing spatiotemporal interactions
among the structure members. A fuzzy-based fault diagnosis system provided
the neural controller with various failure scenarios, and the associative
memory incorporated into the adaptive architecture compensated for catas-
trophic changes of structural parameters by offering a continuous solution
space of acceptable controller configurations.
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Sharaf and Lie (1994) reported on a novel neurofuzzy hybrid power system
stabilizer designed for damping electromechanical modes of oscillation and
enhancing power system synchronous stability. The hybrid system comprises a
front-end conventional analog power system stabilizer design, an artificial
neural network based stabilizer, and a fuzzy logic postprocessor gain sched-
uler.

In the power electronics field, Profcssor Bosc at the University of
Tennessee reported on new applications emerging in the ficld that exploit
fuzzy and ncural approaches along with other Al techniques (Bose, 1994).

14.7 NEUROFUZZY CONTROL IN ROBOTICS

In the field of robotics, there is a booming interest in neurofuzzy mcans for
supervisory control, planning, grasping, and guidance, and a varicty of appli-
cations are found (Kuo, 1993; Kuo et al,, 1994). Professor Bourbakis and his
colleagues at Binghamton University (Tascillo et al., 1993) have developed a
neurofuzzy hand-grasp algorithm for improving the first grasp of a wheelchair
robotic arm with two three-joined fingers and a two-jointed thumb. The
robotic arm uses pressure and force feedback and a learning mechanism that
helps to avoid an extensive search of an optimal grasp each time an object is
lifted.

Hanes ct al. (1994) reported on an intelligent control architecture for a
robotic grasping system capable of acquiring an object into a fully enveloping
power grasp. Control of the internal forces of the grasp is provided, along
with trajectory control of object position, as the object is picked up. Fuzzy
control techniques are used for control of internal forces in the power grasp,
and a neural network provides a means of in-process nonlinear friction
estimation.

Fatikow and Wohlke (1994) reported on a neurofuzzy architecture for the
intelligent control of multifinger robot hands. The control system is based on
the combination of a neural network approach for the adaptation of grasp
parameters and a fuzzy logic approach for the correction of parameter values
given to a conventional controller. A planning component of the system
determines initial manipulation parameters, while a neural network performs
conlinual computations of suboptimal grasp forces. On-line learning of fuzzy
if /then rules is used for parameter adjusting.

A neurofuzzy controller for adaptive tracking in unknown nonlinear dy-
namic systems and for on-linc computation of inverse kinematic transforma-
tions of a two-linked robot has been developed by Rao and Gupta (1994).
The controller is comprised of a fuzzy algorithm in the feedback configura-
tion and a recurrent neural network in the inverse mode (fecdforward)
configuration. The controller provides a means for converting a linguistic
control strategy into control actions while the neural network provides
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sensory (low-level) computations and embodies important features such as
learning, fault-tolerance, parallelism, and generalization in a manner similar
to the one we have seen in Chapter 13.

14.8 PATTERN RECOGNITION AND IMAGE ENHANCEMENT

Neural networks have been extensively used in connection with fuzzy algo-
rithms for edge detection, and in connection with fuzzy means for defining
parameters they are producing interesting realizations of neurofuzzy systems.
Kim and Cho (1994) reported on an edge relaxation method utilizing fuzzy
logic and neural networks where candidates for edge segments are first
estimated using a local derivative operator with a window of small size. Fuzzy
if/then rules, each of which is associated with a neighborhood pattern
defined by the spatial relationships among the neighboring edge segments,
are used as a computational framework of collecting the evidence for the
existence of an edge segment. The fuzzy rules are trained by a specially
structured neural network which performs a fuzzy reasoning operation.

Improvements on clustering algorithms are being investigated by many
researchers. The extension of neural-net-based crisp clustering algorithms to
fuzzy clustering algorithms has been addressed extensively. For a comprchen-
sive review see the excellent compilation of papers in the book Fuzzy Models
for Pattern Recognition, edited by J. C. Bezdek and A. K. Pal (Bezdek and Pal,
1994). However, many ncurofuzzy clustering algorithns developed so far
suffer from restrictions in identifying the actual decision boundaries among
clusters with overlapping regions. These restrictions are induced by the
choice of the similarity measure and the representation of clusters. An
integrated adaptive fuzzy clustering algorithm was developed by Kim and
Mitra (1994) to generate improved decision boundaries by introducing a new
similarity measure and by integrating the advantages of the fuzzy optimiza-
tion constraint of fuzzy c-means, the control structure of adaptive resonance
theory (ART-1), and a fuzzified Kohonen-type learning rule.

Dalton (1994) at Apple Computers reported on a fuzzy-neural approach to
image manipulations that allows a uscr to quantify qualitative aesthetics.
Image enhancement and other desired manipulations are thought of as
nonlinear transformations from an input space of arbitrary images into an
output space of desired aesthetic images. Derivation of imaging manipula-
tions of this type can be viewed as supervised learning problems that can be
solved by neural methods. In order to reduce the dimensionality of the
transformations involved, descriptors more structured than raw image pixels
may be used; hence, imaging transformations between sets of image metrics
as opposed to sets of image pixels can be learned by the network (from
example images). Alternatively, an adaptive fuzzy algorithm can be used to
achieve the underlying functional transformation while providing a link
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between semantic labeling of qualitative image characteristics and the under-
lying raw image data.

Kulkarni ct al. (1994) have proposed a neural network model for fuzzy
logic decisions consisting of six layers; the first three layers map the input
variables to membership functions, and the last three layers implement the
decision rules, Triangular membership functions are used, and the model
learns the decision rules using a supervised gradient descent procedure. The
connection strengths between the last three layers encode the decision-rules
used in decision-making. Layer 1 is the input layer that receives the input
features, while layer 2 represents the linguistic variables (with five values,
VERY LOW, LOW, MEDIUM, HIGH, and VERY HIGH) for cach input
feature; Hence, layer 2 has five times as many nodes as layer 1. Each node of
layer 2 is connccted with weights +1 to two nodes in layer 3 where the two
nodes represent the left and right sides of the triangular membership
functions. Each node in layer 4 combines the outputs of the corresponding
two nodes in layer 3 so that it now represents the membership values, which
is presented to layer 5. Layers 5 and 6 arec implementing the inference
process. Layers 4, 5, and 6 represent a simple three-layer feedforward
network with backpropagation learning. The number of nodes in the output
layer is equal to the number of output decisions. During training, only the
weights between layers 4, 5, and 6 are adjusted.

The above system has been successfully used to recognize objects in
multispectral satellite images based on data obtained from thematic mapper
sensors (a multispectral scanner that captures data in seven spectral bands).
Five inputs to layer 1 were used, and layers 2, 3, and 4 contained 25, 50, and
25 nodes, respectively, since five linguistic values were used, ILayers 5
contained 335 nodes, and layer 6 contained 5 nodes representing output
categories. The researchers have reported that results abtained were virtually
identical with results from a three-layer conventional neural network classi-
fier and a conventional maximum likelihood classificr. However, the conven-
tional neural network took over 24 hours to train as opposed to about 25
minutes for the fuzzy neural system. Both the conventional and fuzzy neural
network systems gave results very rapidly after training. In contrast, the
conventional maximum likelihood classifier had to handle cach pixel individ-
ually and sequentially; as a result, the conventional classifier took excessively
long times for classification.

14.9 MEDICAL AND ENVIRONMENTAL IMAGING USING
NEUROFUZZY METHODOLOGIES

The extraction of fuzzy values is of parlicular interest in medical imaging,
where a plethora of data-rich situations exist. Computed tomography, mag-
netic resonance, digital ultrasound, and other forms of computer-assisted
radiology provide an unprecedented volume of data that, if interpreted
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correctly, lead to the visualization of the body's internals and diagnosis of
subtle deccase processes at a very early stage of development (Ichihashi
et al., 1993). Physicians and engineers collaborate in many areas of medicine
to develope and use revolutionary computer-assisted techniques for educa-
tion, visualization, diagnostics, and' telesurgery, amongst others.

Brotherton et al. (1994) have devcloped a neurofuzzy system to automati-
cally classify structures and tissues in echocardiograms. The system performs
structure classification as a first step using advanced multiple-feature, hierar-
chical, fuzzy neural network fusion approach. It learns to classify tissuc types
by éxamination of image training data. Classification assigns each image pixel
a fuzzy membership measure for each structure or tissue type. Final hard
classification, if required, is delayed until the system's output stage. This
allows important information to be retained throughout the system. The first
layer in the hierarchy of networks determines gross spatial relationships
and texture classes, while the second layer fuses the spatial and textual net
outputs to make final classifications.

In a related medical imaging problem, T. Chen, W-C. Lin, and C-T. Chen
(Chen et al, 1994) at Argonne National Laboratory have developed a
fuzzy neural network based approach to 3-D heart motion understanding
using expert cardiologist knowledge to specify different classes of motion and
obtain classification rules. The objective is to find the decisions for all
possible classes of motion in the form of possibilities. Experiments on real
data have been conducted to corroborate the neurofuzzy approach.

On the environmental side of ncurofuzzy applications, Barbosa et al,
(1994) in Brazil reported on a neural system for deforestation monitoring
through automatic interpretation of satellite images of the Amazon region.
Their approach is based on a combination of image segmentation and
classification techniques, the latter employing a ncural network architecture
that works on a fuzzy model of classification. It appears that such an
approach has a range of advantages over morc traditional, pixel-based
approaches employing statistical techniques, ranging from the possibility of
treating transition and interference phenomena in the images to the ease
with which complex information related to a region’s geometry, texture, and
contextual setting can be used.

14.10 TRANSPORTATION CONTROL

[n the field of transportation engineering, cfforts to manage frecway conges-
tion have been seriously impeded by the inability to promptly and reliably
detect the presence of traffic incidents. Traditional incident-detection algo-
rithms distinguish between congested and uncongested operations by com-
paring measured traffic-stream parameters with predefined threshold values.
Given the range of possible operating conditions in a certain traffic stream,
selecting a single threshold value may be a difficult and uncertain decision. A
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system called fuzzy logic incident patrol system was developed by Hsiao, Lin,
and Cassidy (1994) to solve many of the problems inherent in traditional
incident-detection algorithms. The fuzzy logic incident patrol system is a hybrid
neurofuzzy system constructed from training examples to find the optimal
input-output membership functions. Threshold values, implicitly obtained by
if /then rules and membership functions, are treated as dependent variables,
which change according to prevailing traffic-stream parameters measured by
detectors.

14.11 ADAPTIVE FUZZY SYSTEMS

Neural-network-based adaptive fuzzy systems have been used in the field of
seismic evaluation. Chu and Mendel (1994) have developed a method for
solving the so-called “first break picking” problem in seismic signal process-
ing, one that requires much human effort and is difficult to automate. The
goal has been to reduce the manual effort in the picking process and
accurately perform the picking. A backpropagation fuzzy logic system has
been used for first break picking by employing derived seismic attributes as
features. Experimental results reported by Chu and Mendel have indicated
that this neurofuzzy system achieves about the same picking dccuracy as a
feedforward ncural network that is also trained using a backpropagation
algorithm; however, it is trained in a much shorter time because there is a
systematic way in which initial parameters can be chosen, as opposed to the
random way in which the weights of the neural network are chosen.

Mitra and Pal (1994) have proposed a sclf-organizing artificial neural
network, based on Kohonen's model of self-organization, which is capable of
handling fuzzy inputs and of providing fuzzy classification. Unlike conven-
tional neural net models, this algorithm incorporates fuzzy set-theoretic
concepts at various stages. The input vector consists of membership values
for linguistic properties along with some contextual class membership infor-
mation which is used during self-organization to permit efficient modeling of
fuzzy (ambiguous) patterns. A new definition of gain factor for weight
updating has been proposed by the researchers. Incorporation of the concept
of fuzzy partitioning allows natural self-organization of the input data,
especially when they have ill-defined boundaries. The output of unknown test
patterns is generated in terms of class membership values. Incorporation of
fuzziness in input and output is seen to provide better performance than a
Kohonen model.

Fei-Yue Wang and D. D. Chen (Wang and Chen, 1994) have investigated
general principles involved in the design of adaptive fuzzy controllers via
neural networks and proposed a method that implements a rule-based fuzzy
control system via a neural network consisting of two subnetworks: one for
pattern recognition and the other for fuzzy reasoning and control synthesis.
The neural network is arranged in such a way that the structure and
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operations of the original fuzzy control system can be fully retrieved from its
network implementation. Equipped with the learning capability of neural
networks, this implementation provides a mechanism for refining the existing
rules and generate new rules for fuzzy control (Wang, 1994)

- 14.12 INSPECTION USING NEUROFUZZY METHODS

In the arca of fault diagnosis, Goode and Chow (1994) presented a novel
hybrid fuzzyneural fault detector that will use the learning capabilities of the
neural network to detect if a motor has an incipient fault. Once the
neurofuzzy fault detector is trained, heuristic knowledge about the motor and
the fault detection process can also be extracted. With better understanding
of heuristics through the use of fuzzy rules and fuzzy membership functions,
a better understanding of the fault detection process of the system is
obtained.

Moganti, Dagli, and Ercal (1994) developed a fuzzy-neural method for
automatically inspecting printed circuit boards for defects. The process
involves a two-level classification of the board image subpatterns into either
standard nondefective patterns or defective patterns. The patterns that are
identified as being defective in the first level are thoroughly checked for
defects in the second level, and the patterns that are nondefective are
checked for dimensional verification for the classes that a board has been
identified and assigned to the correct class.

14.13 NEUROFUZZY METHODS IN FINANCIAL ENGINEERING

Another application where the use of neural network technology is introduc-
ing fuzzy concepts is in the financial community. It is well known that neural
networks have been used for several years in the selection of investments
because of their ability to identify patterns of behavior that are not readily
available. Much of this work has been proprietary for the obvious reason that
the users want to take advantage of their insight into the market gained
through the use of neural network technology.

In the past year, some financial work has incorporated neurofuzzy technol-
ogy. Hobbs and Bourbakis (1995) have described a neurofuzzy simulator used
for stock investing that identifies patterns associated with whether a stock is
underpriced or overpriced. Since stock prices are determined by what a buyer
will pay, most stocks tend to be underpriced or overpriced at one time or
another. Eventually, the price corrects itself, but there is an opportunity for
an investor who can recognize these conditions to make money by buying an
underpriced stock or selling an overpriced stock and perhaps buying it back
later. Buying and selling options is another way of making money on the use
of this information.
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The fuzzy neural network used by Hobbs and Bourbakis is a modification
of S. Y, Kung’s fuzzy-based ncural network (Kung, 1993). The inputs are 13
market indexes provided by the various financial services and institutions that
reflect the average stock price. The program has consistently averaged over
20% annual return.

14.14 COMMERCIAL NEUROFUZZY SYSTEM SOFTWARE

Several software products are currently available to help with neurofuzzy
problems. Four of these systems will be briefly described on the basis of
information provided to the authors by the commereial organization involved,
They are listed alphabetically by their commonly accepted name.

ANFIS. Jang has described ANFIS, an acronym for adaptive neuro-fuzzy
inference system. It has an architecture that is equivalent to a two-input
first-order Sugeno fuzzy model with nine rules, where each input is assumed
to have three associated membership functions (Uang and Sun, 1995). Its
two-dimensional input Space is partitioned into nine overlapping fuzzy re-
gions, each of which is governed by fuzzy if-then rules, where the premisc
part of a rule defines a fuzzy region, and the conscquent part specifies the
output within this region. ANFIS can achieve a highly nonlinear mapping. It
consists of fuzzy rules which are local mappings instead of global ones. It can
also be used as a neurofuzzy controller. ANFIS is implemented in the Fuzzy
Systems Toolbox of MATLAR, a commercial software package produced by
MathWorks, Inc.

CUBICALC. CUBICALC is a “fuzzy shell” that has great flexibility in
building various kinds of fuzzy systems for decisions, inference, and control.
Its primary basis for being listed here is that it has a library of neural network
subroutines that can be utilized in a way that makes it possible to constiuct
neurofuzzy systems (Watkins, 1993),

NEUFUZ. Khan (1993) reported a novel method of combining neural.ncts
with fuzzy logic. The combined technology, NeuFuz, generates membership
functions as well as fuzzy if/then rules by learning the system behavior
using input-output data, The generated rules and membership functions are -
then processed using new fuzzy logic algorithms for defuzzification, rule
evaluation, and antecedent processing which are developed based on neural
network architecture and learning. These fuzzy logic algorithms replace
conventional heuristic fuzzy logic algorithms and enable full mapping of
neural net to fuzzy logic. Full mapping provides an important key feature of
generating fuzzy rules and membership functions to meet a prespecified
dccuracy level, Simulation results have shown the approach to significantly
Improve performance and reliability while reducing design time and compu-
tational cost. .
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O’INCA. Intelligent Machines, Inc. has produced O'INCA (1994), an inte-
grated platform for the development of fuzzy logic, neural networks, and
neurofuzzy systems (O'Inca, 1993). It allows for user-defined modules in the
same framework as the other systems. It combines graphical user interface,
design validation, simulation and debugging, C code generation, and design
documentation. In the fuzzy logic module, intermediate results after fuzzifi-
cation, rulebasc evaluation (inference), and defuzzification can be examined.
“Fired" (active) rules can be isolated, and the results of the rule antecedent
and consequent parts, rule weights, and the effects can also be examined. In
the neural network module, output and bias values of all neurons, as well as
all link weights, can be examined. Fixed weights and biases can be modified
during simulation.
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15.1 INTRODUCTION

In the decade of the 1990s, the authors and their graduate students' have
carried out research activities that utilize hybrid systems involving various
combinations of neural network, fuzzy systems, genetic algorithms, and
expert systems. These hybrid systems were utilized to acquire and process
data from enginecring systems, ranging from nuclear and fossil power plants
to steel rolling mills, as well as their various components (check valves,
compressors, rolling element bearings, control systems, ¢tc.) The purpose of
this chapter is not to describe the result of this work, but rather to convey the
essence of the methodologies developed and how they were used advanta-
geously in comparison with more conventional technologies. Hence, only
those details necessary to illustrate the use of hybrid anificial intelligence
techniques are presented. Although the results of the work are not given,
they can be obtained from the references cited.

Various aspects of the analysis of data from three specific sets of experi-
ments are involved in the work described here. The first is a set of vibration
spectral data provided by Elcctricité de France on accelerated testing of
bearings with faults deliberately introduced in some bearings to induce early

! Special acknowledgment must be given to Dr. Andreas Ikonomopoulos, on leave from the
Demokritos Nuclear Research Laboratary, Athens, Greece; Dr. Anna Loskiewicz-Buczak, now
with AlliedSignal Corporation, Morristewn, NI, and Dr. Isracl E. Alguindigue of the University
of Tennessee, Chattancoga, who worked with the authors on many of the activities deseribed in
this chapter while pursuing their doctoral degrees at the University of Tennessee, Knoxville, TN
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failure.? The diagnosis of faults in roller bearings is based on the relative
magnitude of the peaks occurring in spectra at characteristic frequencies
(and their harmonics) associated with the bearing geometry and the basic
rotating frequency. A comparison between the results using crisp magnitudes
of the amplitudes and two types of fuzzy representation of these amplitudes
is presented. The goal was to detect which bearings had faults and to identify
the magnitude and location (inner race, outer race, or ball) of the faults from
the vibration spectra measured by accelerometers mounted on the frame
supporting the bearing (Loskiewicz-Buczak, 1993).

The sccond is a set of vibration spectral data® taken from “laminar flow”
table rolling machines in a steel sheet manufacturing mill. Data were taken
from sensors_at nine locations on cach of 163 table rolling machines, 49 of
which had one or more faults identified. In this example, a composite
diagnosis of single and multiple faults in the machines is obtained based on
the fusion of nine tentative diagnoses (which were usually all not the same)
indicated by nine neural networks processing data from nine sensors placed
on the individual machine. The fusion of these decisions is performed by a
fuzzy logic connective called the gencralized mean (a generalized type of
fuzzy variable). The goal of the study was to fuse the data together using
neural nétworks and fuzzy systems methodologies to identify the faults
(Loskiewicz-Buczak and Uhrig, 1994).

The third is a set of data taken from the High Flux Isotapes Reactor
(HFIR) at Oak Ridge National Laboratory* during startup from source level
to full power. The goal here is to demonstrate the interrelationship between
the various output variables at the HFIR and to infer the value of a variable
that cannot be measured directly (Tsoukalas, 1993; Ikonomopoulos et al.,
1994).

The final section deals with various aspects of neurofuzzy control, includ-
ing some discussion of neurofuzzy approaches to anticipatory control. Fuzzy
logic and neural networks are complementary technologies, and both are well
suited for controlling nonlinear and time-varying system. This discussion
reviews the benefits of integrating these two methodologies in an advanta-
geous way. Anticipatory control is one of the areas that can benefit from a
neurofuzzy approach. The ability to predict the future faster than real time

*The authors are indebted to Electricité de France for providing the data used here from tests
carried out at their laboratory facilities near Paris. This work was performed as part of a contract
with Electricité de France carried out by one of the authors and his graduale students at the
University of Tennessee.

*The authors are indebted to the U.S. Steel Corporation, Gary, IN, for permission to utilize
vibration spectra data from rolling mills in their plants and to Technology for Energy Corpora-
tion, Knoxville, TN, for gathering these data and making them available to the authors and théir
graduaie students.

The authors want to acknowledge the efforts made by many individuals at Oak Ridge National

Laboratory to make this project possible.
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enables us to take steps to correct a deteriorating siluation (Tsoukalas et al,
1994a,b),

15.2 FUZZY-NEURAL DIAGNQSIS FOR VIERATION MONITORING

Vibration monitoring of engineering systems involves the collection of vibra-
tion data from system components and detailed analysis to detect features
which reflect the operational state of the machinery. The analysis leads 1o the
identification of potential failures and their causes and makes it possible to
perform timely preventive maintenance. A hybrid neurofuzzy system for
vibration monitering of rolling element bearings is discussed. The system
takes advantage of the learning and generalization abilitics of neural net-
works. The ambiguity that accompanics fault diagnosis is handled by mecans
of fuzzy membership functions. The combination of neural networks and
fuzzy logic contributes to the high speed and flexibility of the system.

For many machines, the vibration frequency spectrum has a characteristic
shape when the machine is operating properly, and it has other features for
different faults that may appear. Recognition of faults can be accomplished
in many cases by detecting specific features in the frequency spectrum which
are known to be related to particular faults. All vibration monitoring tech-
niques are based fundamentally on the recording and quantification of small
vibration impulses (Zwingelstein and Hamon, 1990). Often, spectral features
associated with specific defects are generated at frequencies that can be
calculated from formulae derived from bearing geometry.

However, the task of recognition is complicated by a series of factors, such
as noise, presence of multiple faults,'severity of the fault and speed changes.
Fault recognition is alse complicated by the fact that fundamental frequency
components often disappear at advanced stages of the defect, while harmonic
components remain. Furthermore, when performing vibration monitoring
of rolling element bearings, the emphasis is more on the content of
the speetrum than on its amplitude (Hewlett Packard, 1983; Berry, 1990)
(Jackson 1979). Amplitudes of bearing characteristic frequencies often begin
to decrease as conditions worsen. Therefore, more importance should be
attributed to the fact that a multiple number of fault frequencies are
appearing in the spectrum than to the exact amplitude. This fact led to
incorporation of fuzzy logic into the classification system. The soft bound-
aries in fuzzy logic environments, obtained by membership functions, are of
special interest because their use results in flexible, more human-like classifi-
cations. On the other hand, neural networks provide a viable technique for
the analysis of vibration data because of their inherent ability to operate on
noisy, incomplete, or sparse data and to model processes from actual system
parameters. Some previous University of Tennessee work (Loskiewicz-Buczak
and Uhrig, 1992, 1993a, b; Alguindigue et al,, 1993) deals with the problem of
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vibration monitoring by neural network technology alone. By combining
neural networks and fuzzy logic, we are able to take advantage of the
strengths of both approaches (Loskiewicz-Buczak, 1993a, b).

Vibration Signatures

To perform spectral monitoring of components in an operating engincering
system, signatures are collected from plant machinery and analyzed to detect
features which reflect the operational state of the machinery. The data
consist of vibration measurements collected from SKF ball bearings of type
6206 during an aging simulation process. The rolling element under test is
mounted on a horizontal shaft and loaded radially by means of a jack,
imposing a vertical force on the bearing. These severe conditions generate
scaling faults on the component. Data are collected using an accelerometer
placed in the radial direction to the loading zone of the bearing. From these
measurements, spectra are generated using fast Fourier technique transform
(FFT) techniques (see Figure 15.1). Spectra are averaged over 16 samples
with a Hanning window, and each contains 397 points in the range 5 Hz to 1
kHz.

Methodology

For this project, first the characteristic frequencies for a flaw in the inner and
outer races and in one of the balls can be calculated in terms of its rotational

Amplitude

L
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Figure 15.1 Spectum of o healthy 6206 bearing.
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speed from its dimensions (Berry, 1990). These critical frequencics for the
type 6206 bearing manufactured by SKF were calculated. Then the location
of the peaks at these characteristic frequencies as well as at their harmonics
was investigated. The exact value of the amplitude of each peak is not
important for the classification process. Instead, we need to know if there is a
peak at a given frequency and whether it is small or big Therefore a
transformation of peaks’ amplitudes by fuzzy membership functions was
performed. At the beginning three triangular membership functions—"none,”
“small,” and “big” (see Figure 15.2)—were used. Then four membership
functions were tried using “non,” “small,” “medium,” and “big” (See Figure
15.3). These values of membership functions are the input to the Kohonen
self-organizing map with categorization. The output of the network is the
fault (or faults) present. The effect of different number of membership
functions on the final classification was investigated.

For the analysis of spectral signatures, ncural networks may be used both
as classifving and clustering systems. To perform classification it is necessary
to attach to each signature a label which describes the operational state of
the machine at the time of cullecting the signature. The input to the network
is a spectrum, or some features from it, and the output is the class label. The
network is trained to identify an arbitrary pattern as a member of a state
among a sct of possible states. Clustering involves the grouping of patterns
according to their internal similarity and is performed in an unsupervised
mode. The aim of clustering is to distribute the set of patterns into states
such that the patterns in each state have similar statistical and geometrical
properties.

For this project a two-dimensional self-organizing map (SOM) neural
network was used (Kohonen, 1990; NeuralWare, 1991). In order for the SOM

4
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Figure 15.2 Membership functions for “"none,” “'small,’ and " big."”



498 DYNAMIC HYBRID NEUROFUZZY SYSTEMS

i
A :
o None Small Medium Big
0.8
0.6 —
0.4
0.2
| | ] T ™
0.2 0.4 0.6 0.8 1.0
Peak

Figure 15.3 Membership functions for “*none,"” " small,”" ** medium, ond "' big.”

network to solve categorization problems, an output layer is added to the
network. During training the SOM is given a sufficicnt number of iterations
in which to stabilize with the learning rate of the weights going to the output
layer set to zero. Hence, the network begins training in an unsupervised
mode and then uses supervised training for the output layer.

Results

Far this project the NeuralWorks™ version of SOM with a categorization
nelwork (NeuralWare, 1991) was used. Three different kinds of inputs to the
nutworks were compared. As the first type of input, amplitudes transformed
by three membership functions (see Figure 15.2) were used. The sccond type
of input consisted of amplitudes transformed by four membership functions.
(sce Figure 15.3.). The last type of input were “raw” amplitudes (without the
iembership function transformation). In each case, 21 signatures (29.6% of
the whole set) were used for training, and the entire set (71 signatures) was
uvsed for reeall. The output layer of the network was the same in all the
sitnations: six output nodes, each one corresponding to one fault. An activa-
tion of 0.5 in an ourput node indicated the presence of the corresponding
fault. Activation in more than one node corresponded to a multiple fault,
while no activation was perceived’ as no fault. ’
For the transformation of amplitudes by three membership functions the
network has 48 inputs (16+3). This corresponds to three membership values
for each of 16 amplitudes at frequencies related to faults. Different sizes of
the Kohonen map were tried: 4 X 5, 5x 5, 6 X 5, 6 X 6, 6 x 7. The best
results were obtained with the 6 X 5 Kohonen layer. In this case, only one
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misclassification occurred (98.5% accuracy). One of the signatures used in
training was classified as nonfaulty, whereas it was an instance of a general-
ized scaling fault of all the components, Had only the signatures not used in
training been classificd, the accuracy would have been 100%.

-:When using four membership functions for the transformation process,
the input layer had 64 (16 «4) nodes. The best results were obtained with the
Kohonen layer 6 X 5, resulting in misclassification of one signature, This
signature, instead of being classified as a localized fault on the outer oo,
was classified as nonfaulty. The results for three and four membership
function transformations give the same accuracy. However, for four member-
ship functions many of the nonfaulty signatures have one of the outputs with
value about 0.3, whercas when three membership functions are used the
outputs for nonfaully signatures arc at most 0.05. This means that the
transformation by three membership functions gives more robust results than
the transtormation by four functions.

When using the raw amplitudes as the input to the neural network, the
input layer has 16 nodes. The best results were obtained also for the 6 % 5
Kohonen layer. However, even in this case, 12 of the 71 signatures were
misclassilied, which gives only §3.1% classification accuracy. The transforma-
tions of both fuzzy membership functions results in great improvements of
the final classification over a neural network that uses raw amplitudes as
inputs.

Fuzzy c-Means Clustering Algorithm

The fuzzy c-means algorithm has been used for the clustering and classifica-
tion of vibration signatures in the frequency domain (Alguindigue et al.,
1992). The fuzzy c-means algorithm is a variant of the fuzzy clusteing
algorithms pioneered by Bezdeck since the late 1970s. It attempts to cluster
measurement vectors by searching for local minima of the generalized within
group sum of squared errors functions (WGSSE). It was proposed by Trivedi
and Bezdeck (1986) and is given by

SR T )=

k] fml

i 1 <m<= (15.2-1)

where ¢ is the number of clusters, n is the number of vectors, x, is a kth
measurement vector, v, is the ith centroid vector, m is the fuzzy coefficient,
| » |4 is an inner producl norm, [0l = 0740, and A is a d X d positive
definite matrix where d is the dimension of the pattern vectors.

When m = 1 the objective function J in (15.2-1) is the classical WGSSE
function, and the algorithm reduces to the erisp k-means clustering algo-
rithm. For m > 1 under the assumption that x, # ¢, (U,v) may be a local
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minimum of J,, only if
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The fuzzy c-means algorithm consists of the following steps (Trivedi and
Bezdeck, 1986):

1. Fix the number of clusters ¢. Select the inner product norm. Fix the

fuzzy coefficient rm. Set p = 1 and initialize U,

Calculate fuzzy cluster centers (v(?) using U*~" and the condition

specified in equation (15.2-3).

3. Update U'? using v'”and the condition specified in equation (15.2-2).

4. If lu® — utr=m|, < & then terminate; else set p=p+1andgoto
step 2,

[

15.3 DECISION FUSION BY FUZZY SET OPERATIONS

Fusion of information from multiple sources for object recognition and
classification is an increasingly important area of research and application.
Information fusion is employed in robotics, computer vision, managerial
decision-making systems, and many engineering systems. Fusion of informa-
tion is often made more difficult by problems of uncertainty characterized by
vagueness, inexactness, and ill-definedness. This is the reason to employ
fuzzy set theory in information fusion systems.

Vibration Signatures

Data used for this project consist of vibration signatures from 163 identical
“liminar flow” table rolls in a steel sheet manufacturing mill. Data were
ccllocted with sensors attached to the plant machinery at the same nine
loc ons on each machine. Spectra acquired from the ninc sensors are
co: =d but not identical due to different vibration levels throughout the
m - and to the fact that the faults which are particular to a bearing
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located near one sensor are not necessarily recorded by the other more
distant sensors. The 150-point spectrum of each sensor output is generated
using FFT techniques, and the coefficients are stored in a database. The data
set contains signatures from 49 machines for which the types of faults had
been identified. For some machines, onc to three sensor readings were
missing. The data sets reflected faulty operating conditions such as misalign-
ment (M), looseness (L), wear (W), outboard bearing damage (O), lubrication
(©), and their combinations (double and triple faults.) Data from machines
operating properly were not included in the data set used here.

The first step is classification of signatures coming from each sensor
separately using recirculation neural networks to reduce dimensionality, and
backpropagation or probabilistic neural networks for classification of faults.
This classification process has been adequately described in the literature
(Alguindigue et al, 1993; Loskiewicz-Buczak and Uhrig, 1993a, b, 1992) and
will not be repeated here. The second step is information fusion from these
nine classifications, performed by means of fuzzy set operations. Information
fusion is used whenever several sensors are employed in a system, in order to
reduce uncertainty and resolve the ambiguity often present in classifications
from several sensors. In this approach, a confidence factor of the fused
decision is determined and the data are fused only from the sensors which
cause the confidence factor to grow.

Inforration Fusion by Means of Fuzzy Logic

Among the approaches for information fusion that have been proposed in the
literature are probability theory, Dempster—Shafer theory, neural networks
theory and fuzzy set theory. Fuzzy set theory provides several advantages due
to the fact that there are numerous ways of combining fuzzy scts in addition
to the union (e.g,, the “max” operator) and intersection (e.g., the “min”
operator) used in traditional theories. Numerous fuzzy set cannectives can he
used for the purpose of aggregation (Krishnapuram and Lee, 1992; Zimmer-
mann, 1987). The requisites of the decision-making process and the character
as well as relative importance of criteria determine the particular connective
to be chosen, The requisite may be that all the criteria be satisfied for which
an intersection conncetive should be used, or any one of the criteria be
satisfied for which a union connective should be used. When the criteria are
mutually compensatory, a mean operator is the most appropriate. Usually in
decision-making based on several criteria, a certain amount of compensation
is desirable. Zimmermann (1987) showed that human decisions and evalua-
tions almost always show some degree of compensation and that the “gener-
alized mean” used here very closely matches the human-decision making
process. In almost all categorization problems the final classification that the
system should give is the one that humans would give, This is the reason to
use the aggregation conncclives that match the best the human decision-
making process for fusion of evidence.
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For this project the “generalized mean™ operator was chosen for the
fusion process. It was proposed first by Djumovic (1974) and later Dyckhoff
and Pedrycz (1984) and defined by

n 1/p
X4y 3,000 X0 Py Wy WaponsyW,) = ( Zw,-x,f’) (15.3-1)
' ; i=1

where p is the degree of fuzziness, and the w;,'s can be thought as the relative
importance factors for the different criteria where

witw, + o +w, =1 (15.3-2)

The behavior of the generalized mean with p is shown in Figure 15.4 where
the amplitude has been scaled between 0.1 and 0.9. The attractive properties
of the generalized mean are as follows:

e min(a, b) < mean (a, b) < max{a, b);

« mean increases with an increase in p; by varying the value of p between
—= and +%, one can obtain all values between min (intersection) and
max (union) respectively.

Generalized Mean
1-
max (x}, x3) = 0.9
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Figure 15.4 The generallzed mean operator,
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Therefore in the extreme cases the generalized mean operator can be used as
union or intersection. Also, it can be shown that p = —1 gives the harmonic
mean, p = 0 gives the gecometric mean, and p = 1 gives the arithmetic mean.
The rate of compensation for the generalized mean can be controlled by
changing p. When using larger values of p, the partition becomes more
fuzzy.

The definition of the confidence factor can affect the fusion results
significantly. For classification problems, the confidence factor (CE) is de-
fined as:

1
CFe ——— (15.3-3)
average error
average error = wy - error! + w, - error? (15.3-4)
n c %
error* =,/ Y ¥ (mcan,-j =i putturnfj) (15.3-5)
=1 f=1

where n is the number of patterns, ¢ indicates the number of classes of
faults, and k = 1,2 is the sensor number. The average error [equation
(15.3-4)] is a measure of how different the aggregated decision is from the
earlier decisions that were the input to the aggregation process. This error
will become small when enough decisions are aggrepated, because the deci-
sion from the next sensor will tend to be redundant with the decisions
alrcady fused.

The weights used in the calculation of the average crror are the weights
used for the fusion process. These weights should describe the relative
confidence that we have in those sensor measurements. If there is no reason
to bias the decision, all the weights should be the same. For this project,
there is no information on the precision of the sensor readings, and therefore
the weights for the [usion process for each sensor are the same when fusing
information from the first two sensors. At later fusion steps involving n
decisions, when one decision is already an aggregated decision from n — 1
sensors and the other is a decision from only one sensor, the weights are
calculated as (n — 1)/n and 1/n, respectively. This ensures that the decision
from each sensor is given the same importance.

"Active" Information Fusion Scheme

For the fusion process, one can choose a larger p wvalue for fusion of
information from complementary sensors and choose a smaller p value for
fusion of information from redundant sensors. In this case, information on
the degree of complementarity /redundancy of the sensors is required. How-
ever, if no such information is available (but the number of sensors is large),
it is reasonable to presume that at the beginning of the fusion process
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[i.c., when fusing information from a small number of sensors (1, 2, 3..)], this
information is complementary; as the number of sensors increases, the
information should become more and more redundant. Therefore using large
p (union-like operation) at the beginning of the fusion process, and decreas-
ing p as the number of sensor increases, seems to be the most appropriate
method. In the project this method was used.

Our goal is the best classification possible. We want the fusion process to
be “active,” meaning that the next step of the fusion process is determined by
the results of the previous one. The fusion scheme is the following:

1. Fuse the decisions from two sensors.

2. Evaluate the confidence factor of the fused decision.

3. Fuse the decision from the next sensor.

4. 1f the confidence factor has decreased undo step 3 (do not fuse data
from this sensor.)

5. If there are data from more sensors, repeat steps 3-5; otherwise, this is
the aggregated decision.

As the number of sensors involved increased, the value of p in cquation
(15.3-1) changed from a large value for complementary sensors to a smaller
value when the addition sensor information was considered redundant.
Subsequent work involved the use of genetic algorithms to optimize the
sequence in which the sensor decisions are fused. The concern herc is that
the choice of a bad sensor decision for the first fusion step could lead to the
rejection of good sensor decisions in later fusion steps. Each advancement in
methodology improved the resultant identification of the faults.

The final decision has to be obtained from the aggregated decision by
some defuzzification method. The method chosen was a-cuts. After fixing
the value of @, an a-cut is performed on the aggregated decision. For cach
of the five faults (M, L, W, O, C) there is a corresponding a-level set
M., L,, W,, O,, C,). Each of these sets includes all the patterns that are
manifesting a given fault. If a pattern belongs only to one a-level set, it
means that the final decision is that it is exhibiting only this fault (single fault
pattern). If a given pattern belongs to more than one a-level set, it means
that the final decision is that it is a multiple fault pattern, manifesting the
faults to which a-level sets the pattern belongs.

15.4 HYBRID NEUROFUZZY METHODOLOGY
FOR VIRTUAL MEASUREMENTS

A method of generating fuzzy numbers representing the values of system-
specific variables such as performance has been developed (Ikonomopoulos
et al., 1992, 1994). It constitutes essentially the fuzzification (symbolization)
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of measurements (and predictions), and thus we refer to it as virtual measure-
ment. It should be remembered, however, that virtual measurements are
simply predictions involving fuzzy numbers where the notion of a measuring
device has been extended to incorporate significant modeling capability at
the level of the instrument.

In virtual measurements, neural networks are used to perform a mapping

fiM—>E (15.4-1)

where the domain M is the hyperspace of accessible variables such as
temperatures and pressures in an engineering system, and the output range
L is a set of fuzzy numbers that constitute our predictions of fuzzy values
referred to as wirtual measurement values (VMVs). (VTMs are the fuzzy
analogs of the units of measure, e.g., volts, pounds, degrees, elc.) As dis-
cussed in Chapter 4, a fuzzy number is a normal and convex fuzzy sct on the
real numbers which models the value of a fuzzy variable at any given time,
uniquely represented by a membership function. The fuzzy numbers used
here had a trapezoidal shape. Trapezoidal membership functions are uniquely
described by a set of four numbers—for example, a given number C =
{01,0;,0;,04), where O < 0,,0,,05,0, s 1 and {0, 0,, 04, 0,} (from left to
right) represents the universe of discourse components of the four corners of
the trapezoid (from left to right). Such representations offer considerable
advantage to computing speed,

The methodology for predicting fuzzy numbers used here has been de-
scribed elsewhere (Ikonomopoulos ¢t al., 1994), and its main points may be
summarized in the following steps:

1. Decide how many fuzzy values are nccessary to adequatcly cover the
range of the fuzzy variable to be predicted.

2. Determine the number and the type of physically measurabile variables
that will be the basis (i.e., the input) of the virtual instrument.

3. Train one neural network per YMYV, for example, a program trained on
five VMVs will require five trained ncural networks as shown in Figure
15:5. 2

4. Design an appropriate logic using the index of dissemblance to select
which membership function will be the predicted value of the instru-
ment at any given time.

The networks N, N,,..., N, comprising the virtual instrument are trained
(in a process analogous to “calibration”) with time series as input vectors,
and vectors {0, 0,, 0, 0,) representing fuzzy numbers are trained as outputs.
l?ach network learns to map a constellation of input patterns to a particular
linguistic label. The situation is illustrated in Figure 15.5, where five inputs to
each of the n networks are used; hence this virtual instrument is calibrated
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Figure 15.5 Each neural network in a virtual Instrument maps o tirme-series input vecior
onto a vector {0,, 0,. 01, o;} representing a trapezoldal fuzzy number,

with n fuzzy numbers. After training, all networks N, N,,..., N, reccive
on-line time signals as inputs and produce a set of membership functions as
outputs, Generally the outputs will be somewhat different from the member-
ship functions the networks were trained for (the prototypes); moreover, one
or at most two (if we allow overlap of membership functions) will represent
correct values while the rest need to be ignored. It is thus important to
identify the correct output. Since'we consider cach network’s output to be a
fuzzy number, we usc a dissemblance index (Kaufmann and Gupta, 1991) to
cstimate the output membership functions that are closest to the set of
prototype membership functions on which we trained the networks and select
one as the predicted fuzzy value. The dissemblance index, §(A, B), of
two fuzzy numbers A, B gives the distance between the fuzzy numbers,
When &(4, B) = 0 we can infer that the fuzzy numbers are identical. When
6(A4, B) = 1 we infer that the fuzzy numbers are totally different.

Using physically observable quantitics to predict fuzzy valucs offers some
unique advantages. A set of complicated time scries is mapped to the
universe of discourse of human linguistics through a neural network which
acts as an interpreter of vital information supplied from the system. The
information encoded in a time series is in the form of rate of increase /
decrease and maximum /minimum values attained over a period of time. The
network is trained to represent this kind of “hidden” information in the form
of membership functions which can be used for fuzzy inferencing as shown by
Sugeno and Yasukawa (1993). The membership function provides sufficient
information to predict the value of a fuzzy variable in the near future.
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Furthermore, a network trained to recognize a specific complicated time
pattern (i.e.the time series has “crisp” values) will lose much of its ability to
deal with noisy input signals since it will tend, for distorted inputs, to
produce averaged forms of the desired output, missing therefore vital pieces
of information.

As an example of the prediction method, consider the following experi-
ment. Actual data obtained during a start-up of the high flux isotope reactor
(HFIR) was used in order to test the methodology for predicting fuzzy values.
HFIR is a three-loop pressurized water research reactor operated at the Oak
Ridge National Laboratory. A flow control valve on the secondary side of the
system is used as the main mechanism for control (there is also a “trim flow
control valve” for finer flow adjustments, as well as control rods) as shown in
Figure 15.6. Although the signal sent to the motor of the valve is known, the
actual position of the secondary flow contrel valve is not known and is rather
hard to predict. The disk position is something that the operators of the plant
“learn” how to estimate intuitively on the basis of experience. However, valve
aging and varying plant operating conditions as well as operator experience
are major factors for substantial variations in the estimate of valve position.

Five parnmeters in the form of time series were chosen as the basis for
predicting the secondary flow control valve position: newtron flux, primary
flaw pressure variation (DF), core inlet temperature, core outlet temperature, and
secondary flow. All but the last one of the above-mentioned time series
contain average values of the corresponding parameters of the three-loop
system. Figure 15.7 shows the sccondary flow signal normalized in the range
between zero and one. These five parameters were selected in order to
provide sufficicnt description of conditions in both the primary and sec-
ondary sides of HFIR during start-up. The time series of these five parame-
ters are used to train five neural networks (i.c.,, 7 = 5, but it can be any
number dependent upon the virtual measurement values (VMV), Each one

Secondary Flow
Control Valye

Reactor

Heat
Exchangers

Figurs 15.6 Schemalic of the high-flux isotepe recctor,
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Figure 15.7 Secondory flow signal during stort-up.

of them has five neurons at the input layer and four neurons at the output
layer and 10 neurons in the hidden layer of each network. In each network N
in Figure 15.5, there are five input neurons cach receiving a time series from
the five physically measurable variables; four output neurons represent the
four corners of a trapezoidal membership function. The output is a member-
ship function uniquely labeling a fuzzy value of the fuzzy variable describing
the position of the secondary flow control valve, referred to as valve_position.
The data for each of the time series used for network training is scaled to the
interval 0.1 to 0.9 and sampled every 16 seconds, with a total of 1240 samples
available.

Designing a virtual instrument to predict valve_position requires first the
partition of its membership of discourse with the appropriate number of
VMVs. In this example, five values—CLOSED, PARTIALLY- CLOSED,
MEDIUM and PARTIALLY_OPEN and OPEN—were chosen. (The choice
of five VMVs had nothing to do with the fact that there are five input
variables.) Each value is represented by a membership function, namely,
Hcroseps Hpartiarry_cLoseps Huepiuss Mparriarry-opens a0 fopep.
These five membership functions describe the position of the valve at every
instant during the start-up period. The universe of discourse on which these
membership functions are defined is the interval [0, 1]. Thus, pgp.y associ-
ates each point in the universe of discourse with the fuzzy value OPEN at
this point.

The membership functions representing the output of the predictive
instrument in this particular study have trapezoidal shape or the degenerated
(triangular) form of it, which is very useful for computations in the fuzzy
control area. The membership function for CLOSED, namely pp) poep i
defined by a trapezoid with peak coordinates {(0.02, 0), (0.05, 1), (0.10, 1),
(0.2, 0)). Similarly, PARTIALLY_CLOSED is represented by the trapezoid
with coordinates {(0.15, 0), (0.2, 0, (0.30, 1), (0.4, 0)}, MEDIUM by {(0.35, 0),
(0.4, 1), (0.50, 1), (0.6, 0)}, PARTIALLY_OPEN by {(0.5, 0), (0.6, 1), (0.7, 1),
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(0.75, 0)}, and OPEN by {(0.7, 0), (0.82, 1), (0.85, 1), (0.90, 0)}. 1t is evic.nt
from the above geometrical schemes that there is an overlap between the
membership functions used. The reason for the overlap is the fuzziness in the
definition of the different states of valve position.

Figure 15.8 shows the prediction of the instrument during a start-up of the
reactor (1240 time steps). The valve is initially CLOSED as secn by the
membership function in the origin of the 3-1) graph. It goes through the
“medium” range rather quickly in the vicinity of 400-500 time sleps, and
finally it becomes fully open after the 800th time step. Note that this confirms
rather well the trend shown in Figure 15.7 where the sccondary flow reaches
its maximum value after about the 800th time step.

To test the ability of each network to predict the valve position by
calculating the right membership function at any particular time step, differ-
ent levels of noise were introduced in the input signals. Initially up to 10%
noise was introduced to all five input signals, and the set of networks was
tested with the “noisy” vectors. The appropriate networks fired at the
corresponding time steps, calculating the coordinates of the peaks of the
corresponding membership functions with 98% accuracy. Henceforth there
was an excellent prediction of the position of the disk valve during the whole
time interval under consideration. In addition, 20%: noise was introduced to

Virtual Measurement

Figure 15.8 Virtual measurement for time steps 0-1240 in 200-step intervals.
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Virtual Measurement

Figure 15.9 Virtual measurement for fime steps 0-1240 in 200-step intervals when the
secondary flow input signal has been substituted with 100% noise.

all five input signals, and the networks were tested again. The response of the
system was indistinguishable form the previous case.

Even when the most closely related input signal was replaced with random
noise, the predictive instrument still predicted the valve position rather
accurately. Figure 15.9 shows the output of the instrument when the sec-
ondary flow signal has been replaced with random noise. Comparison with
Figure 15.8 shows that the virtual instrument still indicates the valve position
rather well. A series of statistical tests were conducted to confirm that the
output of the instrument is actually within random error of the previous case.
This represents a significant tolerance to informational hazards to which the
instrument was exposed. Even with about 209 of its input information lost, it
still rather accurately measured the valve position, Similar results were
obtained by replacing the other input signals one by one with random noise.

15.5 NEUROFUZZY APPROACHES TO ANTICIPATORY CONTROL

Anticipatory systems are systems where change of state is based on informa-
tion pertaining to present as well as future states. Cellular organisms,
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industrial processes, and global markets provide many examples of belavior
where global output is the result of anticipated, as well as current, states. In
the global economy, for cxample, the anticipation of an oil shortage or of a
significant default of foreign loans can have profound effects upon the course

"of the economy, whether or not the anticipated events come to pass

{(Holland, 1988). Participants in the economy build up models of the rest of
the economy and usc them to make predictions. The models are more
prescriptive (prescribing what should be done in a given situation) than
descriptive (describing the options of a given situation) and involve stratcgics
apprapriately formulated in terms of lookahead, or anticipation of market
conditions. In an industrial process, the prescriptions are typically standard
operating procedures (SOPs), dictating actions to be taken under specific
conditions. The accumulated experience of various decision-makers at all
levels of the process provides increasingly refined SOPs and progressively
more sophisticated interactions amongst them and computer tools designed
lo assist the operators. As another example, consider a car driven on a busy
highway. The driver and the car taken together are a simple, everyday
cxample of an anticipatory system. An automobile driver makes decisions on
the basis of predicting what may be happening in the future, not simply
reacting to what happens at the present. Driving requires one to be aware of
future system inputs by observing the curvature and grade of the road ahead,
road conditions, and the behavior of other drivers. Perceptual information
received at the present may be thought of as input to internal predictive
models. Such a system, however, is very difficult to model using conventional
approaches. In part, the difficulty relates to the fact that conventional
predictive models are unduly constrained by excessive precision. Generally,
in situations like the driver—car system, it is important for a decision-maker
(the driver) to use a parsimonious description of the overall situation—that is,
a model with the appropriate level of precision. Predictions about the future
are not very precise, and, of course, they may be wrong. Yet, their efficacy
does not rest on precision as much as on the more general issue of accuracy
and their successful utilization. High levels of precision may not only be
unnecessary for problems utilizing predicted values, they may very well be
counterproductive. An overprecise driver may actually be a dangerous driver.

Although anticipatory systems have been studicd by a number of re-
searchers in the context of mathematical biology (Rosen, 1985), it should be
noted that automata theory (Trachtenbrot and Barzdin, 1973), preview con-
trol (Tomizuka and Whitney, 1975), and their epistemological roots may be
traced back to Aristotle’s views on causality. It is only recently that the advent
of modern computing technologies makes it possible to employ them for
complex system regulation and management (Berkan ct al., 1991; Tsoukalas
ct al,, 1990, 1994b). In Japan, the automatic train operator (ATO) used in
Sendai’s subway system, as well as some tunnel ventilation systems and
elevator control systems employ anticipatory control strategies (Yasunobu,
1985); and rescarchers at Tohoku University and Mitsubishi Research Insti-
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tute have studied an innovative anticipatory guidance and control system for
computer-assisted operation of nuclear power plants (Washio, 1993).

Probabilistic Predictions

[n preview control, future information was considered as probabilistic in
kind, and the control problem was seen as a problem of time delay (Tomizuka
and Whitney, 1975). The situation is illustrated in Figure 15.10a where a
discrete control problem that lasts n time steps, presently at time i, is
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Figure 15.10 () The future In finite preview problems is modeled deterrninistically
and stochastically. (b) The future In anticipatory systems s modeled fuzzily.
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considered. Tomizuka postulated that up to certain time n,, beyr 1 |,
predictions can be made and utilized by the controller at i. Thus, the (ure
is divided into deterministic and probabilistic parts as seen in Figure 15.10a.
The controller is assumed to make use of preview information with respect to
a command signal (desired trajectory) from the present time i up to »,, time
units into deterministic future. The quantity ny, is the preview time (or length
of anticipation) and is usually shorter than n, the problem duration, often by
one or two time steps. To make the solution applicable to a broader class of
problems, measurements of time delay, observation noise, and driving roise
were included in formulating the problem. The solution showed how to
utilize the local future information obtained by finite preview (n,,) in order
to minimize an optimality criterion evaluated over the problem duration n. It
was found that preview dramatically improved the performance of a sysiem
relative to nonpreview optimal performance, and a heuristic criterion about
the preview time, n,,, was suggested, that is, M, = 3 X (longest closed-loop
plant time constant),

Fuzzy Predictions

The point of departure for our formulation is that future information is
essentially fuzzy in nature, that is, predicted values are not imbued with
stochastic or probabilistic type of uncertainty. Whatever can be said about
the future does not come from measurements but instead from models;
hence, such predictions are fuzzy numbers—that is, linguistic categorizations
of information pertaining to the future of the system. Generally, fuzziness is
a property of language, whereas randomness is a property of observation; and
since there is no physical measurement pertaining to the future, the mathe-
matics of fuzzy sets may be more appropriate for anticipatory systcms.
Consider, for example, the process depicted in Figure 15.105. At any time §
we have available information from the present as well as information from
the output of some predictive model. According to our formulation, this is a
fuzzy prediction. Therefore, the mathematical tools for utilizing it at time ¢
ought to be fuzzy as well. The time At into the future, the anticipatory time
step, depends on the nature of the problem and the predictive model used
and, gencrally, need not be one or two time steps as is often the case in
preview control. As is suggested in Figure 15.105, the fuzziness of a predic-
tion is postulated to depend on time in the future in the sense that for
greater time we get fuzzier predictions.

Issues of Formalism in Anficipatory Systems

A system that makes decisions in the present on the basis of what may be
happening in the future is thus envisioned to be different in two important
respects: in the language used to formulate models of its behavior and in the
method of measurement used to access future states. The first we call the
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issue of formalism and we address it in this section, while the latter we
examincd in the previous section through the concept of virtual measure-

ment.
Consider the typical systems formulation in modern control theory. A
system is described by a set of difference (differential) equations of the form

x(r+ 1) = Ax(1) + Bu(t) + w(t), x(ty) =x,

y(r) = Cx(1) + (1)

(15.5-1)

where {u(1)} is an 7 x 1 input sequence. {y(¢)} is an m X 1 output sequence,
{x(t)} is an n X 1 state sequence, 4, B, and C are appropriate transition
matrices, x, some initial state, and, w(t) and o(¢) are noise terms.

A system is called anticipatory if x(t + 1) and y(¢) are not uniquely
determined by x(¢) and wu(t) alone, but use information pertaining to some
future state x(t + At) and /or input u(t + Ar).

Looking at equations (15.5-1) we observe that it, is rather difficult to
include future information in these equations except by containing it within
the noise terms as in the case of nondeterministic systems. In such a case,
one obtains sets of values x(r + 1) and y(¢r) with each pair [x(¢), u(s)].
Suppose that the values of x and y are subsets of some larger sets X and Y.
If we denote these subsets of X and Y by X**' and ¥, we obtain mappings
of the form

XV =Flx(e),u()] (15.5-2)
Y' = G[x(¢),u(s)]

Of course, one could fuzzify this system by assuming that these X'*' and Y'
are fuzzy subsets on X and Y, respectively, and obtain a fuzzy system
determined by conditional membership functions

plx(e + 1)) e(e), u(n)]
uly(O)]x(e), w()]

(15.5-3)

Subsequently the compositional rule of inference may be used to calculate

the fuzzy response of the fuzzy system to any fuzzy input. The problem,

however, of involving future information in the formulation of equations
(15.5-1) still remains. Generally, if we do so, the mappings in equations
(15.5-2) cease to be many-to-one mappings (i.e., functions) but instead
become more general many-to-many mappings such as we now have in fuzzy
relations.
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Consider again equations (15.5-1). Another approach is to consid o
cqual signs “="" as the assighment operators “ «= ", that is

x(t + 1) = Ax(1) + Bu(t) +w(t), x(tp) =1,
y(t) = (1) + (1)

i

where the assignment operator = " is an If/then rule, which assigns the
right-hand side (RHS) of equation (15.5-4) to the left-hand side (L HS) upon
update. Now we are in the realm of logical implications and we can easily
include terms such as x(r + Ar), and u(t + At) in our if/then rules. The
calculus of fuzzy if/then rules is rather well known and provides an interest-
ing alternative and enhancement of formulations such as equation (15.5-1),
particularly for the purpose of qualitative and complex system modeling,
Thus, an anticipatory system can be described by a collection of fuzzy if /then
rules

(15.5-4)

RY = (R, R%,..., R") (15.5-5)

LZach rule is a sitwation /action pair, denoted as s — a, where both presen
and anticipated situations are considered in the LHS and current acrion is
considered in the RHS, The rules of equation (15.5-5) may be rewritten as

)
R¥ =(s'»a',s?—=a’...,s" 20"

N (,f:“(.s‘f—rﬂf) (15.5-6
i=1

where ¢ is an approp.ll'ialc implication operator (Terano et al, 1992), In

o

many cases we can further partition the set of rules in equation (15.5-6) into
rule bases (RB), with each rule base bcing responsible for one action; that is,

RY = U [RB*] (15.5-7)
j=1

Rule bases (15.5-7) can be made to reflect temporal partitions that is, we can
have rules that describe the state of the system at r, that is,

s(r) — a(t) (15.5-8)

and we can also have rules that describe the possible state of the system at
some time later, that is,

st + At) = a(r) _ (15.5-9)

Thus an anticipatory fuzzy algorithm can infer the current action a(t) on the
basis of the present state s(r) as well as anticipated oncs s(t + At).
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Generally, the rules of (15.5-5) describe relations of a more general type
than that of functions, i.e., many-to-many mappings (sce Chapter 5). Such
mappings have the linguistic form of fuzzy if/then rules—for example,

if xis A thenyis B (15.5-10)

where x is a fuzzy variable whose arguments are fuzzy sets denoted as A,
and y is a fuzzy variable whose arguments are the fuzzy sets B. Similar rules
pertaining to future states are of the form

if xwillbe 4, then yis B (15.5-11)

where x is thought of as a situation variable and y is the corresponding
action variable. Evaluation of formulations using rules such as (15.5-10) and
(15.5-11) can be done through generalized modus ponens as we have seen in
Chapter 5.

Anticipatory control strategics may be based on global fuzzy variables such
as performance where a decision at cach time ¢ is taken in order to matimize
current as well as anticipated performance pertaining to ¢ + Ar. Performance
in this case is a fuzzy variable (with an appropriate set of fuzzy values) that
summarizes information about the system, thereby allowing the system to
make decisions about its change of state. The observation /prediction of such
variables can be addressed by the methodology presented in Section 15.4.

Alternatively we may use fuzzy if/then rules to generate a decision from
(15.5-7) and call a predictive routine to anticipate the effect of the proposed
decision on the system output (Yasunobu and Miyamoto, 1985). Additional
rules may be called if the current decision will result in system behavior
which is unacceptable. Consider, for example, the following rule:

If the current decision () will cause the difference between the current and
anticipated states to be big, then

w=u,(l— p-big) ' (15.53-12)

where 3 is a user-chosen parameter between 0 and 1 and bigt is the
fulfillment function for the anticipated difference states. The parameter j
may also be chosen by employing a predictive neural network (McCullough,
1593).
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EXPERT SYSTEMS
IN NEUROFUZZY SYSTEMS

16.1 INTRODUCTION

Artificial intelligence is a branch of computer science that attempts to
¢mulate certain mental processes of humans by using computer models. In
cxpert systems, perhaps the first field of artificial intelligence to be commer-
cially recognized in its own right, one of the primary objectives is to mimic
human expertise and judgment using a computer program by applying knawl-
edge of specific arcas of expertise to solve finite, well-defined problems.
These computer programs contain human expertise (called heuristic knowl-
edge) obtained cither directly from human experts or indirectly from books,
publications, codes, standards, or databascs, as well as general and special-
ized knowledge that pertains to specific situations. Expert systems have the
ability to reason using formal logic, to seck information from a varicty of
sources including databases and the user, and to interact with conventional
programs to carry out a variety of tasks including sophisticated computation.

"The principal use of expert systems in neurofuzzy systems is to ensure that
the unique capabilities of neural networks and fuzzy logic systems are
implemented in the proper way including the fuzzy rules of fuzzy algorithms,
sometimes called “fuzzy associate memory” (FAM) matrices (see Figure 6.2).
While it may be possible to use ordinary software programs to do this, the
ability of expert systems to adapt to and deal with unforeseen situations is
very important when the outputs may not be precise or the model may be
based on less-than-perfect data,
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16.2 CHARACTERISTICS OF EXPERT SYSTEMS

A number of characteristics of expert systems are unique and generally
advantageous [see, for example, Van Horn (1986) and Feigenbaum et al,
(1988)]:

. Experts need not be present for a consultation; expert systems may be

delivered to remote locations where expertise may not be otherwise
available.

- Expert systems do not suffer from some of the shortcomings of human

beings (e.g., they do not get tired or careless as the work load increases)
but, when properly used, continue to provide dependable and consis-
tent results.

. The techniques inherent in the technology of expert systems minimize

the recollection of information by requesting only relevant data from
the user or appropriate databases (i.c,, data encountered in the reason-
ing path).

- Expert knowledge is saved and readily available because the expert

system can become a repository for undocumented knowledge that
might otherwise be lost (e.g., through retirement).

The development of expert systems forces documentation of consistent
decision-making policies. The clear definition of these policies makes
the overall decision-making process transparent and the implementa-
tion of policy changes instant and simultancous at all sites.

On the other hand, expert systems have disadvantages that affect their

use:

B B R

The

. They usually deal only with static situations,

. They must be kept up to date as conditions change,

. They often cannat be used in novel or unique situations.

. Results are very dependent on the adequacy of the knowledge incorpo-

rated into the expert system.

. Perhaps most important, they do not benefit from expericnce except

through updating of the knowledge base (based on human expericnce).

. Expert systems are unable to solve problems outside their domain of

cxpertise. In many cases they are unable to detect the limitations of
their domain (Swartout and Smoliar, 1987; Ricker, 1986).

domain of an expert system refers to the scope of the knowledge

contained within the knowledge base. If the expert system operates outside
its domain, it is possible that it may generate incorrect results by utilizing
nonapplicable, irrelevant knowledge while searching for a solution. The
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inability of expert systems to recognize the limitations of their knowledge has
been identified as a very serious shortcoming.

Expert systems can, under certain circumstances, deal with imprecise or
“fuzzy" information, missing information, and even a certain amount of
conflicting information through the use of “certainty factors” or Bayesian
probabilities (Kaplan et al.,, 1087). Certainty factors represent a measure of
belief of the user that a piece of cvidence is true. These are not probabilities
but rather simply a subjective judgment on the degree of truth or validity of
an assertion. Some of the information used in development and application
of an expert system may not be absolutely certain, and the use of certainty
factors allows this subjective evaluation to be incorporated into the expert
system, The final results in these cases may be the “most probable” solution
or the “best” solution, but there is no absolute guarantee that the solution is
the “correct’™ solution. Recent work incorporating “fuzzy logic” and
“reasoning under uncertainty” into expert systems has greatly improved the
performance of cxpert systems when dealing with complex systems.

A comparison of human and artificial expertise will help convey the
strengths and weaknesses of expert systems. Human expertise is perishable
and difficult to transfer, whereas artificial expertise is permanent and easy to
transfer. Human expertise is not always consistent, whereas artificial exper-
tise is consistent. (If you pive an expert system the same problem on two
occasions you will get the same answer unless stochastic processes are
involved; this is not necessarily truc of a human expert.) On the other hand,
human expertise is creative and has a broad focus, whereas artificial expertise
is uninspired and usually has a very narrow focus, Above all, human expertise
is adaptive and demonstrates common sense, characteristics usually lacking in
expert systems because the knowledge is entirely technical or objective in
nature. For instance, artificial expertise does not know that the objects
cannot occupy the same space unless it is told.

16.3 COMPONENTS OF AN EXPERT SYSTEM

The principal components of an expert system are the inference engine, the
knowledge base, and the interface between the expert system and humans
(users, knowledge engineers, and experts). The inference engine is a com-
puter program that gathers the information needed from the knowledge base,
associated databases, or the user, guides the search process in accordance
with a preselected strategy, vses rules of logic to draw inferences or conclu-
sions for the processes involved, and presents these inferences or conclusions
(where warranted) with explanations or bases.

The knowledge base consists of information stored in retrievable form in
the computer, usually in the form of rules or frames. The correctness and
completeness of the information within the knowledge base is the key to
obtaining corrcet results or solutions using expert systems, Knowledge bases



526 EXPERT SYSTEMS IN NEUROFUZZY SYSTEMS

may contain models of systems which produce real-time results or certain
learning systems (such as ncural networks) that provide new knowledge.

The interface between the human and the €xpert systerm must translate
user input into the computer language, and it must present conclusions and
explanations to the user in clear written or graphical form. It should also
include an editor to assist in adding to or changing the knowledge base,

One of the major breakthroughs in development of expert systems came in
the mid-1970s with the expert system MYCIN, a diagnostic system for
infectious discases of the blood. The MYCIN architecture completely sepa-
rated the knowledge base from the inference engine, which permitted modifi-
cation of the knowledge base without any influence on the inference engine.
Hence, it was possible to start with a simple expert system and incrementally
add features and complexity as needed. Such a separation is common today
even in conventional software, but it was a significant advancement in the
mid-1970s.

The knowledge base of an, expert system contains the expertise (facts and
heuristics) collected from experts, books, publications, and other sources and
encoded into rules, frames, or other compuler representations of knowledge.
This information describes a methodology for solving the problem as a
human expert would solve it Collecting 'adequate knowledge from experts
and translating it into computer code (a process called “knowledge acquisi-
tion”) has proven to be a very difficult task. All too often, experts really do
not understand the processes by which they reason or solve problems. In
other cases, experts are reluctant to give up their expert knowledge because
they perceive that the availability of an expert system with their expertise
may lessen their value to their employer or clients. Because an expert system
is only as good as its knowledge base, proper collection and representation of
knowledge is critical for the successful implementation and operation of
CXpErt systems,

Some expert systems contain a degree of self-awareness or self-knowledge
that allows them to reason about their own operation and to display infer-
ence chains and tiaces of the rationale behind their results (Waterman,
1986). These abilities (the explanation facilities) have been recognized as one
of the most valuable features of expert systems. The user can take advantage
of explanation facilities to request a complete trace for a consultation,
request an explanation on how a particular goal or subgoal was inferred, or
request an explanation of why a particular picce of information is needed.
These facilities can be used to obtain information on the status of a system.
Ixplanation-generating facilities are also of great use in debugging expert
Systems and may play a key role in verification and validation of expert
systems.

The performance of mature expert systems has shown that the reliability
of an expert system in a given subject area asymptotically approaches the
reliability of the expert as the knowledge base approaches the expert’s
knowledge in that area. In some cases the reliability of an expert system
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exceeds the reliability of the expert, not because the expert system is
“smarter” than the cxpert, but rather because the cxpert system does not
forget anything contained in the knowledge base and is capable of rapidly
cartying out analytic and mathematical operations.

= An expert system “shell” is a computer program used to develop an expert
system. Early shells were expert systems from which the domain-specific
knowledge bases had been removed and the mechanism for creating a new
knowledge base of the user’s choice had been made “user friendly.” Often a
shell also has provisions for changing the reasoning processes of the infer-
ence engine to adapt to the speeilic problem. The first shell was EMYCIN
(essential MYCIN), in which the knowledge base on infectious diseases of the
blood was removed from MYCIN and knowledge bases on cancer treatment
and pulmonary diseases were used to create two new expert systems
(ONCONIN and PUFF, respectively) to assist doctors in these fields. The
pioneering efforts of Stanford University on EMYCIN paved the way for
virtually all modern expert system shells. Indeed, only in the last few years
have expert system shells begun to deviate significantly from the overall
structure developed for MYCIN,

Expert system shells today differ significantly from each other and offer
the user a wide variety of capabilities. Some have sacrificed size of knowledge
base to improve case of updating the knowledge base, and vice versa. Certain
expert systems (e.g., 1ST CLASS and VP EXPERT) have the ability to derive
the knowledge base from a series of examples by induction. Such ability to
extract information from databases and experimental results are one of the
strengths of artificial neural networks. Hence, the use of a hybrid consisting
of an artificial ncural network in the knowledge base of an expert system is
feasible and often advantageous, Recently, an expert system shell was intro-
duced with HYPERTEXT as part of the knowledge base. Selection of an
expert system to fit a specific need is almost a research project in itself and
has, in fact, been the topie for an expertl system.

16.4 KNOWLEDGE REPRESENTATION AND INFERENCE

There are a variety of approaches to encode human expertise in expert
systerns, the most common one being if/then rules. Semantic networks,
frames, and logical expressions are alternative paradigms of knowledge
representation, although the majority of industrial expert systems use the
rule-based paradigm. [For a discussion of the subject see (Gonzalez and
Dankel, 1993).)

The three basic constituents of a rule-based expert system are: rule base,
working memory and rule interpreter. ‘The rule base is often partitioned into
groups of rules, called rule clusters. Each rule cluster encodes the knowledge
required to perform a certain task or a fraction of a task, usually referred to
as a subtask. There may also be rules for internal control purposes—for
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example, to signal which rule cluster to select as holding potentially relevant
knowledge at a given time. Collectively, these rules are referred to as the
control structure of an expert system. Another class of rules, called denions,
may be present; they are designed to function outside the control structure of
the program for the purpose of enhancing its ability to respond quickly to the
occurrence of an event requiring some immediate action. Demons address
incfficiency issues that may arisc from excessive control over the rule base
(Cooper and Wogrin, 1988).

Working memory is a database holding input data, inferred hypotheses,
and internal information about the program, In an on-line expert systcm with
monitoring functions, for example, the state of working memory at any given
time reflects changes occurring in the process being monitored as well as
internal changes due to the reasoning process of the program itself,

The mechanism through which rules are selected to be fired is called the
rule interpreter. Tt is based on a pattern matching algorithm whose main
Purpose is to associate at any given time the state of the system (input data,
inferred hypotheses, cte.) with applicable rules from the rule base.

The inference engine of an expert system is in charge of manipulating the
data presented to the system and arriving at a conclusion. In expert system
technology the two most widely used reasoning techniques are forward
chaining (forward reasoning) and backward chaining (backward reasoning).
In forward chaining the system reasons forward from a set of known facts
and tries to infer the conclusions or goals. Design of a complex system is a
forward-chaining application where the expert system starts with the known
requirements, investigates the very large array of possible arrangements, and
makes a recommendation based on criteria specified by the user.

In backward chaining the system works backward from tentative conclu-
sions or goals and attempts to find supporting evidence to verify their
correctness. Solving a erime is a backward chaining application where the
cxpert system 1dentifies the possible suspects, looks for evidence indicating
the guilt and innocence of each suspect, and makes a recommendation
regarding which suspect is the most likely criminal. In many cases,
backward-chaining systems are more efficient than true forward-chaining
Systems because they tend to reduce the search space and arrive at a
conclusion more quickly.

Many advanced expert systems use a combination of both forward and
backward chaining. Different search strategies, such as “depth first” or
“breadth first”, may be incorporated into either backward or forward chain-
ing,

Data enter an expert system either through a user interface or from other
programs such as databases, data acquisition systems, simulation packages,
and so on, and form the initial facts (or assertions or evidence) available to
the rules. From the input data, conclusions are drawn in a process called
inferencing. The two basic inferencing strategies, forward chaining and back-
ward chaining, are also referred to as modus ponens and modus tollens,

e e
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respectively, These are crisp versions of GMP and GMT introduced in
Chapter 5 for fuzzy systems,
In modus ponens, if we have the following rule

if Aistrue, then B islrue

Henee if it is known that “A is true,”” then we can infer that “& is true.”
Most expert systems use this powerful inferencing strategy. In madus tollens,
if we know that the rule is true and we also know that “B is false,” then we
can infer that “A is false.,” We often simply write A instead of “A is true”
and NOT A instead of “A is false.” The requirement for an exact match
between input data and what is stated in a rule is relaxed in fuzzy expert
systems where fuzzified versions of the basic inferencing strategies have been
developed.

16.5 UNCERTAINTY MANAGEMENT

An important issue in expert systems is uncertainty management. Represent-
ing or combining uncertain data and drawing reliable inferences from it has
been extensively investigated over the past two decades, and several theories
of uncertainty have provided tools for solving uncertainty problems (Kruse
et al,, 1991). Probability theory and certainty factors have been f{requently
used; but also possibility (fuzzy) theory, Dempster—Shafer belief measures,
Cohen's theory of endorsements, and subjective Bayesian methods are uncer-
tainty management paradigms that have found important applications.

The oldest approach to uncertainty management has been the probabilis-
tic approach which cssentially ascribes probabilitics to facts and rules and
uses Bayes' rule and a rather large amount of statistical data to construct the
various probabilities in the knowledge base (Kruse et al, 1991). A drawback
of the probabilistic approach is its difficulty in distinguishing between
absence of belief and doubt or to represent how ignorance is related to the
lack of knowledge.

Certainty Factors

In order to overcome the difficulties of Bayesian probabilities {(e.g., requiring
a large volume of data or distinguishing between absence of belief and dowubt),
certainty factors may be used. In the certainty factor (CF) formalism,
knowledge is expressed as a set of rules having the form

if E, then H with CF(HIE)

where E is the evidence—that is, one or more facts known to support the
hypothesis H, and CF(HIE) is the certainty factor for the rule, a measure of
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belief in ff, given that E has been observed. The value of CF 4
—1to +1. When CF = —1 the hypothesis H is totally denied
CF = +1, the hypothesis  is totally confirmed.

Certainty factors are obtained from measures of belief, MB(}], B s
measures of disbelief, MD(H, E), both taking values between 0 and'] A
measure of belief MB(H, E) represents the degree to which the belief in
hypothesis H is supported by observing evidence E, and it is computeq by

nges from
" “"hilt a

1 if p(H) =1

[p(HIE) = (H)]][1 - p(H)] else (16.5-1)

MB(H, E) = {

A measure of disbelief MD(H, E), on the other hand, represents the degree 1o
which the disbelief in hypothesis H is supported by evidence F, It is
computed by '

&
MD(H,E)={1 ol =1 (16.5-2)

[p(H) = p(HIE)]/[1 = p(H)] else

The certainty factor CF is defined in terms of MB(H, E) and measure of
disbelief MD(H, E)

CF = [MB(H, E) - MD(H, E)] /{1 ~ MIN [MB(H, E), MD(H, E)))
(16.5-3)

During the execution of a knowledge base, multiple rules are typically
capable of deriving the same hypothesis or conclusion, resulting in modifica-
tion of the CF’s involved. Consider, for example, a case where two different
cvidences E; and £, lead to the same hypothesis H. In such cases, certainty
factors of the same or opposite signs can be combined directly by the
following formulas (Gonzalez, 1993; Kruse et al., 1991):

Case 1. When both CF(HI|E,) AND CF(HIE,) >0

CF(HI|E,, E,) = CF(HIE,) + CF(HIE,) - CF(HIE,)*CF(HIE,)
Case 2. When —1 < CF(H|E,)* CF(H|E,) < 0
CF(HIE,, E,)

= [CF(HIE,) + CF(HIE,)] [(1 - MIN[|CF(HIE,)|, | CF(HIE)|]}
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Case 3. When CF(H|E,)+ CF(HIE;) = —1

CF(H|E,, E,) = undefined
Case 4. When both CFUHIE) AND CF(HI|E;) <0
CF(HIE,, Ey) = CF(HIE,) + CF(HIE;) + CF(HIE, )= CF(HIE,)

It has been assumed in the above equations that we have absolute confidence
in the evidence of premises used to derive various values, In expert systems,
often (but not always) a hypothesis from a rule is used as evidence for
another rule and hence we should not actually have absolute confidence in
the evidence, and the certainly factor approach does not materially con-
tribute to the final results. An additional drawback of certainty factors seenis
to be the complexity of maintaining them. When, for example, new know!-
edge is edded or deleted from the knowledge base, the certainty faciors of
existing knowledge change as well, making the maintenance of the system
rather complicated. For these reasons and others, use of fuzzy set theory in
the form of reasoning under uncertainty is more commonly e¢ncountered
today.

16.6 STATE OF THE ART OF EXPERT SYSTEMS

The impact of expert systems technology has been felt in many areas of
science, education, and industry. In the past decade a great many applica-
tions have been initiated, and many arc now operational or in the prototype
stage. (Uhrig, 1988; Hertz, 1988). The extent of the potential application of
this technology is not yet known, because expert systems in the future may be
used in completely new settings to solve quite different problems. However,
the introduction of fuzzy rules has greatly enhanced the usefulness of expert
systems.

It is very difficult to gain a true picture of just how widespread the use of
expert systems has become. In many cases, organizations are using expert
systems internally. Even the fact that they are used, let alone the details of
the expert systems, are treated as proprietary for the simple reason that the
company or organization wants 1o gain competitive advantage. By onc ana-
lyst’s estimate, about half of the companies listed in the Fortune 500 are
developing expert systems (Coates, 1988). One automobile manufacturer 15
reportedly insisting that manufacturers supply diagnostic expert systems with
the equipment they provide.

Experl systems may change the manner in which many organizations
operate, and they could change the workplace in gencral. In large organiza-
tions such as government, big corporations, and associations, one experl
predicts that 60-90% of all jobs are candidates for augmentation, displace-
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ment, or replacement by expert systems (Coates, 1988). Coates further
predicts that by about the turn of the century the capabilities of expert
systems will have grown to such a degrce that their impact will be felt
throughout most occupations and workplaces.

16.7 USE OF EXPERT SYSTEMS

Generally, but not always, problems that are amenable to a numerical
solution should be solved using conventional computer programs. However,
there are many situations in which expert systems offer unique advantages
over conventional programs. Most applications of expert systems today can
be classified into the following six categorics: (1) monitoring systems,
(2) control systems, (3) configuring systems, (4) planning systems, (5) schedul-
ing systems, and (6) diagnostic systems, :

Monitoring Systems

Monitoring systems are dedicated to data collection and analysis over a
period of time. The collected values are compared against expected perfor-
mance, and if discrepancies are identified the expert system generates
recommendations and /or notifies the operator.

Confirol Systems

Control systems are monitoring systems in which action (e.g., opening a valve,
adjusting a bias, turning on a heater, ete.) is taken as a result of the
discrepancy identified by the monitoring system.

Configuring Systems

Configuring systems address problems in which a finite set of components is
to be arranged in one of many possible patterns. The classical example in this
category is XCON, an expert system used by a large computer manufacturer
to configure its equipment in accordance with its own rules and the user
specifications.

Scheduling and Planning Systems

Scheduling and planning expert systems coordinate the capabilitics or com-
ponents within an organization to optimize production and/or increase
efficiency. The difference between planning and scheduling systems is that
the components for a task are not always known in planning systems.
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Diagnostic Systems

Diagnostic systems observe and analyze data and map the analysis results to
a set of problems. Once the problems have been identified, the expert system
usually recommends a solution based on facts in its knowledge base and on
the other information it can acquire. Expert systems have been used 1o solve
many different problems in a varicty of fields. Some of these areas are listed
in Table 16.1, which is intended to give a brief overview of the breadth of
applications that has developed. One are in which there has been extensive
efforts to utilize expert systems is the nuclear power field, many of which
could affect safety and safety-related systems. The scope of these applica-
tions has been documented by Bernard and Washio (1989).

Tahla 16.1  Applications of expert systeim

S— =
Frern Use
T ez COEE S Rl
Design and enginecring Collecting and storing knowledge of
best designers speeding the design
process

Compuler applications Configuring cquipment to user specifications
Diagnosing problems with computer equipment

Manufacturing Managing human and machine resources
Facilitating factory automation

Finance Decision support tools

Providing tax and other business advice

Processing loan and mortgage applications
Analyzing financial risk

Science and medicine Providing medical advice in hospitals

Providing diagnostic assistance to medical personnel
Patient monitoring

Geological applications Advising regarding mineral deposit and oil locations
Advising drillers regarding stuck bits

Training Interface for computer-aided instruction
Assisting in computer-based training
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16,8 EXPERT SYSTEMS USED WITH NEURAL NETWORKS
AND FUZZY SYSTEMS

Neural Network in the Knowledge Base of an Expert System

Neural networks, in spite of the extraordinary usefulness, have relatively
limited capabilities. They are trained using available data, tested, and put
into use. All they can do is recall an output when presented with an input
consistent with the training data. They cannot reason, seek data from
available databases to assist their operation, or provide an explanation of
their outputs, They need a structured environment in which to operate,
which can be provided in some cases by conventional software programming.
However, recent experience indicates that usefulness of a neural network can
be enhanced significantly if an expert system is used to provide this operating
environment. Indeed, an expert system can retrain a neural network to adapt
this hybrid system to new situations, or it can intermittently update the
training of the neural network to adapt to changing situations. Some recent
work indicates that expert systems can be used to provide explanations for
why a neural network gives the output it does.

Perhaps the most direct combination of these two artificial intelligence
technologies is the use of a neural network in the knowledge base of an
expert system, This gives the expert system the ability to learn from data
presented to it. The training may be on-line or performed during an initial-
ization period. Multiple and /or modular neural networks may he incorpa-
rated into the knowledge base, and neural network outputs may be combined
within the knowledge base. Control of the neural network is carried out by
the inference engine in the same way that it seeks additional information
from a database or initiates a logic reasoning step.

Fuzzy Rules in the Knowledge Base

One of the most popular methods of storing information in the knowledge
base is through the use of if/then rules. Both the antecedent and the
cansequent or action of the rules may have multiple statements connected by
conjunctions such as AND and/or OR. For simple systems, the rules can be
relatively simple and straightforward. If the individual components of a
system are independent and follow a “logic tree” structure, the rules proceed
N a monotonic manner; that is, the-inferencing process always proceeds
forward. However, if the components are interconnected, - the logic trees
nteract with the result that the rules become very long (more qualifying
Conditions connected by conjunctions), more complex, and more numerous,
Hence, it is increasingly harder to prevent rules from conflicting with each
Other. Indeed, it has been the experience of many investigators that when the
number of rules gets beyond about 200, it is virtually impossible to write a
Meaningful rule that does not conflict with previously written rules. This
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paralysis of the knowledge base for complex systems caused interest in cxpert
systems to decline in middle to late 1980s. With the advent of fuzzy rules,
based on fuzzy set technology, expert systems are again being introduced in
high-technology systems. For instance, an autonomous navigation system
using sensor signals to navigate between moving objeets was almost aban-
doned when 450 rules did not provide a satisfactory system. However, the
replacement of the navigation system's 450 rules with 15 fuzzy rules provided
a system with outstanding performance (Pin, 1992). Comparable results in the
reduction In size of expert system knowledge bases by the introduction of
fuzzy rules have been reported by many investigators (Terano et al,, 1994).

It is this use of fuzzy rules in an expert system, a combination that is often
called “fuzzy experl systems,” that has reawakened interest in expert systems,
In a traditional expert systenm, the number of rules necessary to unambigu-
ously define a situation tended to grow in an exponential-like fashion as the
complexity of the system increased. For complex problems that were amenable
to monotonic reasoning (i.e., the reasoning proceeded forward directly to-
ward a goal with a reversal), a large number of rules simply meant a slow and
cumbersome process. I'or complex problems that involved searching many
paths with reversals and many-to-many mappings, use of a rule-based knowl-
cdge base was simply not feasible. The ability of fuzzy rules to drastically
reduce the number of rules has been the secret of success in using cxpert
systems in most complex situations.

Even in fuzzy expert systems, a major effort must be made to minimize the
number of rules without deteriorating the operation, Consider the case
where there are three inputs and one output that utilize five membership
functions each. This could lead to 5% (625) fuzzy rules. Fortunately, in most
situations, all the rules do not contribute equally to the solution. Many
methods are available to reduce the number of rules involved. One way
would be to use a genetic algorithm optimization. Usually, however, a
statistic-based processor can analyze the situation and give the contribution
of each rule to the solution, Then the user can set the threshold for including
rules at a level consistent with the specifications for precision and speed.

16.9 POTENTIAL IMPLEMENTATION ISSUES FOR EXPERT SYSTEMS
Potential problems in implementing expert systems in complex engincering
systems can be projected from past experience with the introduction of new
and innovative systems.
General Implementation Issues

1. Most complex engineering systems, as presently built and operated, are

considered by the operators to be safe enough. With the possible
exception of the severe accidents e Chernobyl, Bopough. etc.),
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expert systems are not perceived to be needed to provide additional
safety functions.

2. Introduction and use of an expert system must not introduce a new
operational or safety problem. A thorough analysis of what could go
wrong and what effect it could have on the plant and its safety system
would be essential before implementation. The ultimate criterion in
judging any new system is whether its failure can, in any way, lead to a
challenge of existing plant protection systems.

Implementation Issues That Need To Be Addressed

A number of issues regarding the implementation of expert systems in
complex engineering systems need to be addressed. These include, but are
not limited to, the following:

1. Quantitative and Chjective Performance Guidelines for Expert Systems.
The primary concern about the introduction of any new system into a
complex engineering system appear to be the impact it can have on the safety
system when something goes wrong. The ultimate question in Jjudging any
new system must be “Can the failure of the expert system lead to a challenge
of the existing safety systems?” Above all, replacement of an existing system
with an expert system must not introduce new unresolved issues (ie., new
unreviewed safety hazards).

Introduction of a new system must not lead to confusion of operators or
other plant personnel. New tools may be needed to cvaluate and measure the
performance of expert systems and the impact of these systems on human
performance. Objective criteria that are quantitative in nature are nceded.

2. Validation and Verification (V & V). In conventional software program-
ming, verification and validation have well-established meanings; verification
is a determination that software has been developed in a formally correct
manner in accordance with a specified software engineering methodology;
validation means demonstrating that the completed program performs the
functions in the requirements specification and is usable for the intended
purposes. However, expert systems go beyond the procedures of conventional
software engineering, and a modularized, top-down, hierarchically decom-
pased design that makes conventional V & V possible may not be achievable.
Expert systems, especially those operaling under uncertainty or with incom-
plete data, may have so many states as to make exhaustive testing unfeasible,
Hence, new approaches to V & V are needed for expert systems.

The inference engine may be considered simply as another digital com-
PUter program, and its V & V can be dealt with in the same way as with other
digital computer programs (e.g., IEEE-532.1). The real problem is the
adequacy of the knowledge base—that is, the qualifications of the expert
whose expertise js incorporated into the knowledge base, the method used
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for acquisition of this expertise, and the method used to represent this
expertise in the knowledge base. Except for relatively simple expert systems,
exhaustive testing of the expert system or the knowledge base to cover all
likely situations may not be adequate or feasible. '

Generally, as a matter of policy, V & V should always be carried out by a
group completely independent of the group that developed the expert system.
Because V & V in cxpert systems is 5o intimately related to the design, true
independence may extremely difficult to achieve. To the extent possible, the
independence of the group that does V & V should be ensured by quality
assurance procedures and organization policy.

3, Human Factors. A primary human factors concern is that the expert
system should present information to the user in a way that is comprehensi-
ble and understandable, Information must mesh well with the perspectives
used by the human, and the way in which the information is displayed should
correspond to the user's mental model of the plant. The user should be able
to understand the expert system’s behavior,

Another concern is user reaction to the expert system. Will they like the
system and accept it? Will they be comfortable with an expert system and use
it when needed? Will they believe that the system will work and that it is
useful? Above all, will they trust and have confidence in the information
presented by the expert system? On the other hand, the user could become
too dependent upon the guidance of an expert system and ignore other
indications that might not agree with the conclusion of an expert system.

The function allocation and division of responsibility between the expert
system and the human is another important issue. Humans should be
assigned only those functions that they are most capable of performing and
that utilize their abilities. Expert systems should relieve some of the physical
and cognitive worldoad on users to avoid overload of the operators. The
system should make human jobs more efficient. The expert system should be
integrated with the other hardware, software, and tools in the user's work
cnvironment. Clearly, users should be involved in the design and analysis of
the cxpert system and its interface with users.
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PROELEMS

L. Discuss how expert systems can be verified and validated in the sense that
software undergo verification and validation. Consider the different re-
quirements for the inference engine and the knowledge base.

2. Tt is well known that the use of fuzzy rules has revived the use of expert
systems. Explain what you believe to be responsible for this resurgence of
Interest of expert systems. Is the reason the same for all types of expert
systems? If not, why?

3. Discuss the legal ramifications of using expert systems. If an expert system
(or a neural network) fails in service and causes damages, who is responsi-
bie? The company selling the expert system? the user? The person who
wrote the software for the expert system? The expert who supplied the
information to the expert system? All of the above?

4. Discuss the relative advantages and disadvantages of having a determinis-
tic model of a system in the knowledge base compared to having a neural
network model in the knowledge base.
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17.1 INTRODUCTION

Genetic algorithms as a field of study was initiated and developed in the
carly 1970s by John Holland (Holland, 1975, 1992) and his students, but its
applications to real-world practical problems was almost two desades in
developing. In one way or another, the primary purpose of using genetic
algorithms is optimization. The specific nature of the problem or system to
which optimization is being applied will determine the approach, the type of
genetic algorithms used, and especially the evaluation or fitness function.
There is no guarantee that a genetic algorithm will give an optimal solution
or arrangement, only that the solution will be near-optimal in the light of the
specific fitness function used in the evaluation of the many possible solutions
generated.

In this chapter, the terms chromosomes and genes may appear to be used
synonymously, but they are not. The meaning of these terms as used here is
the same as that used by Goldberg (1989). Chromosomes are composed of
genes which define the characteristics of the chromosomes and may take on
several values called alleles. The position of a gene (its locus) is identified
separately from the gene’s function. Hence we can have a particular gene
with a locus of position 12 whose allele value is brown. Generally, the strings
of artificial genetic systems are analogous to chromosomes in biological
systems and are often called chromosomes.

539
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17.2 BASIC CONCEPTS OF GENETIC ALGORITHMS

Genetic algorithms mimic some of the processes of natural evolution. In
doing so, some of the inherent features of evolution are utilized in ficlds far
beyond genetics. However, there is no necessity that genetic algorithms as we
use them mimic in detail the behavior of the evolutionary process. Indeed,
users are free to utilize those features that are useful and discard aspects that
seem unimportant in their applications. Since normal evolution processes are
quite slow, biased reproduction, based on an aggressive “survival of the
fittest” philosophy, is used to speed up the evaluation process,

The mechanisms that induces evolution are not well understood, but the
features of evolution have been investigated thoroughly. First, evolution takes
place in chromasomes, the genetic units that encode the features and
structure of living creatures. The specific descriptive features of a living
creature is determined by the chromosomes of the previous generation, and
evolution influences only these chromosomes, not the living creature from
which they came. Since evolution is limited to chromosomes, living creatures
do not evolve during their lifetime; their features, which are presumably set
at the time of conception, are different from the previous generation only
because the chromosomes of their parents changed through evolution.

Evolution, Natural Selection, and the Gene Pool

Natural selection is a process by which nature causes those chromosomes
that encode better characteristics (by some eriteria) to reproduce more often
than those that encode poorer characteristics. Natural selection is the process
that causes genetic algorithms to produce near-optimal solutions when the
sclected chromosome is decoded. This process involves creation of many
chromosomes by reproduction, mating (crossover), mutation, and the survival
of the chromosomes with the better characteristics. Successive generations of
chromosomes improve in quality, provided that the criteria used for survival
is appropriate. This process is often referred to as Darwinian natural selection
or the survival of the fittest, In nature, this process of evolution oceurs over
many years, even hundreds or thousands of years. In the computer, the
representations of chromosomes can undergo literally thousands of genera-
tions of change in a few scconds.

Historically, the characteristics of the chromosomes in genetic algorithms
have been represented by Os and 1s. All of Holland’s work used this
representation, and we will use it here. However, chromosomes can be
represented by real numbers, permutations of elements, a list of rules, or
other symbols. Binary representation is still the most common representation
because the behavior of bit strings are more familiar and better understood.

Evolution takes place through the process of reproduction, which involves
mutations and recombination after mixing of the parent's chromosomes to
produce a creature that may have entirely different characteristics from the
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Stnng A 10001101100010101110 10001101100{011100011
String B 01100011101/011100011 01100011101[010101110
Original Pair of Strings Pair of strings after crossover

atone location

(a) A Puair of Strings with Crossover at One Location.

String A 10001101100/01010{1110 10001101100f01110[/1110
String B 01100011101({01110[/0011 01100011101|01010 0011
Oniginal Pair of Strings Pair of strings afler crossover

at two locations

(b) A Fair of Strings with Crossover at Two Locations.

W *
String A 10001101100/010101110 10001101000 011100011
String B 01100011101{011100011 01100011101{010101110
Original Pair of Suings Pair of strings after crossover

at one location and
mutation at *

(c) A Pair of Strings with Crossaver ar one Location and a Mutation at *.
Figure 17.1  Demonstration of crossover at one and two locations and Mufation.

previous generation. The chromosomes of the two parents are mixed by a
process called “crossover,” in which two new chromosomes are produced,
each having some of the characteristics of the two parents. The two parent
chromosomes split at some point, and one part of one parent chromosome is
exchanged for the corresponding part of the other parent chromosome. The
location of the crossover point at which the parents’ chromosomes divide is
apparently a uniform random process. If onc of the new chromosomes
obtains 75% of its characteristics from one parent and 25% from the other,
the second new chromosome gets 25% form the first parent and 75% from
the other. This process is illustrated schematically in Figure 17.1, where the
chromosome is illustrated as a string of Os and 1s.

Both of the resultant chromosomes go into the gene pool (where all the
alleles reside), where they either replace poorer-quality chromosomes or are
discarded. Once a chromosome is discarded, its unique features (good or
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bad) are lost forever. It is only through the processes of mutation (described
below) that such a chromosome might possibly be recreated.

Mutation is a process by which a single component of a chromosome is
changed randomly. It oceurs in only a very small fraction (typically less than a
fraction of a percent) of the chromosomes. It represents an abrupt change in
the nature of the chromosome and influences all subsequent generations of
chromosomes containing this mutated component. Of course, if this mutation
results in a poorer-quality chromosome, it will be discarded and lost from the
gene pool.

Each population has a gene pool consisting of a large number of chromo-
somes generated by the process of natural selection. The choice of which two
chromosomes are mated and subject to the crossover process is somewhat
random, but the fitter chromosomes are more likely to be selected first. New
chromosomes are constantly being reproduced by the mating process de-
scribed above, and those with better characteristics are retained while those
with poorer characteristics are discarded. Generally, but not always, the
mixing of chromosomes with quite different characteristics produce better
chromosomes. As the process proceeds, the average quality of the gene pool
improves becausc the poorer-quality chromosomes are discarded.

Objective Function-Fitness Function

The function on which an optimization algorithm operates—that is, secking
its maximum or minimum-—is called the objective function. In neural net-
works, the objective function to be minimized is the mean square crror over
the entire training set. In genetic algorithms, the "fitness” is the quantity that
determines the quality of a chromosome, from which a determination can be
made as to whether it is better or worse than other chromosomes in the gene
pool. The fitness is evaluated by a “fitness function” that must be established
for each specific problem. This fitness function is chosen so that its maximum
value is the desired value of the quantity to be optimized. Its importance
cannot be overemphasized, because it is the only connection between the
genetic algorithm and the problem in the real world. A fitness function must
reward the desired behavior; otherwise the genetic algorithm may solve the
wrong problem. Fitness functions should be informative and have regulari-
ties. However, they need not be low-dimensional, continuous, differcntiable,
or unimodal.

17.3 BINARY AND REAL-VALUE REPRESENTATIONS OF CHROMOSOMES

Weight representation in the chromosome has used both binary and real-value
encodings, with binary being the more prevalent method. Binary coding of
the weights can be implemented using either an ordinary binary representa-
tion of real-value weights or a corresponding Gray-scale binary encoding.
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Table 17,1 Cemparson of hamming distances In binary and gray coding

Decimal Binary — Hamming Gray Hamming
Number Coding  Distance Coding Distance

0 0000 0000

1 0001 1 0001 1

2 0010 2 0011 1

3 0011 1 0010 1

4 0100 3 0110 1

5 0101 1 0111 1

6 a1io 2 0101 1

7 a111 1 0100 1

8 1000 4 1100 1

9 1001 1 1101 1

10 © 1010 2 1111 1

11 1011 1 : 1110 1

12 1100 3 1010 1

13 1101 1 1011 1

14 1110 2 1001 1

15 1111 1 1000 1

16 10000 5 11000 1

Binary and Gray-Scale' Represenlations

Gray scaling has the characteristic that the Hamming distance (the number
of binary digits that change between successive decimal numbers) is always 1
compared to binary coding where the hamming distance is 4 in a four-hit
representation (i.e., all bits change) as a decimal number changes from 7 to 8
(sce Table 17.1). Such so-called Hamming cliffs can make genetic algorithms
less stable. The reason is that change of a single digit due to mutation will
usually cause a smaller change if the Hamming distance is small. In the
binary code, half the changes have a Hamming value of 2 or more, whereas
all changes in the gray scale have a Hamming distance of 1. Empirical studies
(Caruana and Schaffer, 1988) on algorithms indicate that gray coding im-
proves the process for.some functions and performs no worse than binary
coding in all cases.

There are several gray codings for any number, but the most commonly
used Gray coding is the binary-reflected gray code. One simple schemie for

' Gray encoding or gray scale refers to the use of a binary code developed by F. Gray (1953),
U. S. Patent #2-632-058 issued March 17, 1953,
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generating such a gray code sequence is “start with all bits set equal to zero
and then successively flip the rightmost bit that produces a new string.” Table
17.1 compares binary coding with Gray coding for decimal numbers from 0 to
16. (At 16, the binary and gray codes must go to 5 digits since all possible
combinations of 4 digits have becn exhausted.) Interestingly, the 4-digit
combinations used for representation of numbers from O to 15 are exactly the
same for the binary and gray encodings, except that a specific combination of
4 digits represent different decimal numbers in the two codes. For instance,
0111 represents 7 in the binary code and 5 in the gray code.

Real-Valuad Ropresentations of Chromosomaes

In real-valued encodings, the network weights are encoded as lists of real-val-
ued weights. Crossover occurs across whole weights instead of occurring
across bit strings representing weights. In mutations, incremental changes
(plus or minus) are introduced into the real values. Davis (1991) discusses the
advantages and disadvantages of real-valued encodings and argues that such
encodings can yicld superior results. Perhaps the main disadvantages of
real-valued encodings are that robust paramecters are not known and that
specialized genetic algorithms may need to be tailored for cach problem.
Both of these disadvantages should be lessened as we gain more experience
with genetic algorithms using real-valued representations of chromosomes.

17.4 IMPLEMENTATION OF GENETIC ALGORITHM OPTIMIZATION

Living creatures are probably thc most complex systems in the universe.
Hence, if evolution that involves reproduction with crossover, mutation, and
natural selection can result in improvement of the species, it seems reason-
able that the process will work to optimize other complex systems. Indeed,
this has been the case, and the range of applications where genetic algo-
rithms can optimize a process or system is limited only by the ingenuity of the
user. Applications have now reached the point where many users are no
Jonger versed in the details of how genetic algorithms operate; rather, they
are concerned only with how the powerful capability of genetic algorithms, as
presented in commercial software, can be utilized to optimize their particular
problem or system.

Genetic algorithms do not rely on any analytical properties of the function
to be optimized (such as the existence of a derivative). They are well suited to
a wide class of problems, including optimization over paramcter sets as well
as global optimization of functions. However, before the genetic algorithm
process can be carried out, two steps are necessary: (1) encode the variable to
be optimized into a string of binary bits (or other appropriate representa-
tions) and (2) create an appropriate fitness function.
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Bit-String Representation

It is necessary to structure bit strings to represent practical problems before
undertaking a search for optimal conditions, Individual bit strings are orga-
nized to form an initial population of chromosomes. They can be generated
randomly, but its is advantageous if the initial population of chromosomes
can be somewhat rclated to the nature of the system being optimized.
Genetic algorithms guide the string population to propagate from generation
{0 generation o improve the survival probability of the entire population.

There are two approaches to determining which chromosomes to delete
after a cycle of reproduction, crossover, and mutation. These are (a) the
generational approach, where the entire population is replaced after each
cycle, and (b) the steady siate approach, where the members of both the old
and the new gene pools with the highest fitness factor are retained, The
generational approach tends to speed convergence, perhaps at the expense of
diversity in the gene pool. The steady-state approach tends to produce
somewhat better performance by retaining the best-performing bit strings,
but the best solution may be missed because new genes that are the
precursors of high-performing genes may be eliminated prematurely.

The convergence criteria for stopping the genetic algorithm is somewhat
arbitrary. Generally, genetic algorithms converge rapidly, typically in a few
hundred cycles or less. Stability in the value of the average fitness function
from one generation to the next is generally the most appropriate criterion.

A related issue is the reproduction process where there are séveral options
for selecting which genes should be reproduced. The two most common
methods are proportional selection and rank-based selection. In proportional
selection (discussed below) the number of times the gene can be reproduced
is proportional to its fitness function. This technique, which was used by
Holland, involves selecting the top performers and allowing multiple repro-
ductions of the best performers, A sampling algorithm is usually used to
allocate the number of reproductions to the various genes. The proportional
method sometimes tends to give undue emphasis to superior perfonming
chromosomes whose fitness functions may be 10 times the average fitiess
function. If such a super chromosome js reproduced 10 times in a pool of
50 genes, it would clearly distort the gene pool. In the rank-based selection
process, each gene s typically reproduced only once, although there are
variations of this algorithm that allow multiple reproduction of a single gene,
Rank-based selection tends to converge slowly with less premature conver-
gence and better diversity of the gene pool,

Reproduction

In the implementation of genetic algorithms, the reproduction process con-
sists in the copying of individual strings according to the priority establishied
by their objective function or fitness function f. (We will use the latter term
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in this chapter.) Copying strings according to their fitness function values
means that candidates with higher fitness values have a greater probability of
contributing one or more offsprings in the next generation. This is the
“proportional” selection method discussed above. The selection probability
for an individual string i (the ith string in the population) may be defined as

f;
pi= L—‘j (17.4-1)

where f, is the fitness value of the Jth individual in the population A.

The mating pool of the next gencration is selected according to the
probability p;,. Once an individual has been selected for reproduction, it is
then entered in the mating pool, for further genetic operation action. If there
is no overlapping between populations (i.e., the population size remains
constant when a new generation replaces the old or parent generation), the
expected number of reproductions of ith individual string is

fi fi fi
nf:N-PI;= N-";-- = "———.—'—-"—.' (17"’12)
Lf; 2(2) f

where f is the average fitness of the population. This agrees with our earlier
thesis that the best chains are more likely to be reproduced.

17.5 FITNESS FUNCTIONS

The fitness function of a genetic algorithm can be designed to perform
different scarch tasks of optimization. The value of fitness function is the
quantity to guide the reproduction process in the genctic algorithms for
creating the next generation. Usually, the fitness function is designed in a
way that its values are all positive, and the higher the value of the fitness
function, the belter the performance of the individual bit string in the
population. A higher value of the fitness function also means that the
individual bit string gets the better chance to be selected for production of
the next generation. These guidelines indicate that the fitness function is a
function of the number of inputs selected (the fewer the number, the greater
the fitness) and the network training error (the smaller the value, the greater
the fitness).

To illustrate the role of the fitness function and the general process
involved in using genetic algorithms for optimization, two examples are
provided. In the first, Example 17.1, a quadratic function y(x) = 1 — x/10 +
x*/200 is to be optimized for its maximum or minimum value, In Example
17.2, an actual problem is used to illustrate the selection of the fitness
function.
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Example 17.1 Simple Hand-Calculated Example of the Genetic Algorithm
Process. Let us assume that we want to optimize (i.c., find the minimum or
maximum value of a function)

1
y(x) =1-—x+ —x? (E17.1-1)

using a genetic algorithm process. Of course, we can readily determine that
this function has a minimal value of 0.5 at x = 10 by other means. Please
understand that this problem has been contrived to demonstrate the method-
ology of genetic algorithms. Because of the small size and small number of
binary strings, the behavior of the process is not representative of that in real
world genetic algorithms.

We can create the initial population by flipping a coin to select our mating
pool, which in this simple example consists of five 5-bit random binary
sequences. These arc listed in Table 17.2 as “String x,” and their binary
values converted to the base 10 are listed as “Value x.” The function y(x) is
then evaluated using the above formula, Clearly, y(x) is related to the fitness
function since it represents the quantity we want to optimize. In this case, the
optimal value is a minimum, and the genelic algorithm process gives the
maximum value of the titness function. Hence, it seems reasonable to let the
fitness function be the reciprocal of y(x); that is, fi(x) = 1/y,(x). Generally,
however, we do not have a formula of the quantity to be optimized, and the
fitness function has to be selected on the basis of data available and the
nature of the problem involved (see Example 17.2). Note that the last two
columns in Table 17.2 are the selection probability for an individual string
and the expected number of reproductions of the ith individual string as
given by equations (17.4-1) and (17.4-2) respectively.

Table 17.2 Hand calculations for a genelic algarthm

String Value ¥ J']'(I) X6 6l

X x
v, 10111 23 1.345 0743 0.101 0504
vy 01100 12 0.520 1923 0.261  1.304 s
Vi 10100 20 1.000 1.000 0.136  0.677
v, 00110 6 0.580 1.732 0.235 1173
Vs 01001 9 0.505 1.980 0.267 1.342
Sum 7.378 1,000 5.000
Avg, 1.476 0.200  1.000

Max 1.980 0.267 1342
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Now, let us carry out reproduction, crossover, and mutation operations on
string x. This is shown in Table 17.3. The strings are randomly mated with
other strings at the indicated crossover points to produce new strings.
Furthermore, mutation takes place in the middle digit of value v, (indicated
by an asterisk in Table 17.3), where a:1 changes to a 0 after crossover has
taken place.

This mutation changes the fitness function of v, from a 1.000 to a 1.471, a
47.1% increase, Table 17.3 shows the results of reproduction, crossover, and
mutation on the group of five chromosome strings. Crossover between cach
mated pair of genes in the pool produces two new chromosomes which are
given in the column headed “new population.” These new genes are evalu-
ated to give their fitness functions listed under the column labeled f(x). The
double asterisk indicates the five genes with the highest fitness functions that
are to be reproduced in the next generation if rank-based selection is used.
Of these five genes, three have much higher values of f(x). Hence, if
proportional sclection is used, the two genes with lower values of f,(x) would
probably be replaced with duplicates of the two genes with the highest values
of fi{x).

It is interesting to note that the average fitness function of the original five
strings is 1.476 (see Table 17.2) compared to an average fitness function of
1.459 (see Table 17.3), a 1.19% decrease for the 10 new chromosomes
produced by crossover and mutation. However, the fitness function of the
five new chromosemes selected for reproduction is 1.821, an increase of 23%
over the original five chromosomes. This increasc is unusually high for one
cycle due to the small length of the strings, which tends to increase the
impact of even a change in a single digit.

An examination of the new sct of strings indicates that new v could be a
“super” string that could dominate future cycles of reproduction. This is not
desirable, particularly in the early part of the optimization process, because it
could lead to a prematurc selection of an optimum which was not a true
optimum. The concern here is prematurily limiting the gene pool which could
cause the process to select a local minimum or maximum rather than a global
value. There are a number of techniques available to avoid this problem
which the reader can find in literaturc that specializes in genetic algorithms
(Holland, 1975, 1992: Goldberg, 1989; Davis, 1991).

The generation, crossover, and mutation processes continue until there is
no significant change in the average value of the fitness functions. At that
point, it is necessary to decode the string to identify the optimal value, a
minimum in the function in this case. Let us use the largest value of fitness
function (2.000) to represent the optimal case. Because of the reciprocal
relationship, the optimal value of y(x) is 0.500. If we substitute this value
into the equation for y, we get

1 0
s (|l e e 12
y(x)=1 TR 0.5 (E17.1-2)
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We can then solve the quadratic equation (E17.1-2) for the value of x = 10
as the location of the optimal value, which is then calculated to be 0.5.

Clearly, this example was contrived to give good results with only a single
cycle. The short length of the bit string and the small size of the gene pool
accentuate the effect of the processes involved. In a practical problem, the
typical gene pool may have 50 to 200 chromosomes and go through hundreds
of cycles. However, pools of over 50,000 chromosomes and tens of thousands
of cycles have been used. A large population gives more diversity and betler
final solutions, but longer computational times are involved. Pools of less
than 30 chromosomes are subject to premature convergence because stochas-
tic effects tend to dominate the behavior of the genetic algorithm. O

Example 17.2 Evolution of a Fitness Function.” In this example, a large
neural network with 25 inputs (which are instantaneous values of 25 different
measured parameters) and 8 outputs (representing 7 different transients and
a no transient state) is used to diagnose transients in a nuclear power plant.
Every half-second, the 25 measurcd values are applied to the neural network
whase output indicates almost instantaneously which transient is occurring or
that there is no transient, The ncural network is trained on transients
senerated in a full scope, high fidelity nuclear power plant simulator. A
complex recurrent backpropagation neural network was needed to model the
plant dynamic behavior because of the complex interrelations between the
variables,

A sensitivity analysis as described in Section 8.5 was used to determine the
most important inputs (typically 4 to 6 inputs) needed for the detection of
cach specific transient. This allowed the use of “modular™ neural networks,’
small backpropagation networks without recurrent connections with only a
few inputs and a single output for each transient. Subsequent tests indicated
that the modular neural networks were equally as effective in detecting
transicnts as the large master neural network with 25 inputs and 8 outputs.
The problem was that the master neural network had to be created before
the sensitivity analysis could be used 10 determine the most important inputs
for the “modular” ncural networks.

Genetic algorithms were selected as an alternate method of determining
the most important (optimal) variables for the modular networks without
having to create and train the master neural network. The fitness function
needs to be defined to guide the search for the best combination of inputs for
the individual modular networks. The fitness function may have different
forms for different optimal search tasks. It needs to be defined to guide the

? This example was developed by Zhichao Guo in his Ph.D. dissertation in Nuclear Engincering
cntitled “Nuclear Power Plant Diagnostics and Thermal Ferformance Studies using Neural
Networks and Genetic Algorithms,” University of Tennessee Library, Knoxville, TN, 1992,
IThe term “modular” as used here does not refer to modular neural networks as described in
Section 8.8,
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The experience with the sccond fitness function led to the proposal of a
third fitness function of the form

[RUETS) - aireptdd
J - 001y .

fitness = (1 — et~V (E17.2-3)

where, x and y are defined as in the previous fitness function. This fitness
function was found to provide the appropriate influence of the number of
inputs and the training error without the undue influence of carly strings
having-large fitness functions.

Subsequent comparison of the input variables selected for the “modular”
neural networks by sensitivity analysis and by genetic algorithms showed that
the two most important inputs for each of the seven transients and the
normal states were almost always the same, Beyond the second most impor-
tant variable, there were a number of inconsistencies. However, tests sh owed
that the training errors after a prescribed number of cycles for the networks
selected by the two methods were substantially the same and that the
networks performed equally well.

It is seen that this fitness function was arrived at by a series of “trials and
errors.” Clearly, experience in working with fitness functions gives insight
into the form of the fitness function. However, if specific information that is
useful in forming the fitness function is available, it should be used. O

17.6 APPLICATION OF GENETIC ALGORITHMS

TO NEURAL NETWORKS

A number of tesearchers have tried to connect the genetic algorithms with
neural networks in recent years. Whitely and co-workers (Whitely and
Bogart, 1989, 1990; Whitely and Starkwerther, 1990) used genetic algorithms
to guide a backpropagation based neural network in finding the necessary
connections instead of full connections in the GENITOR II software in order
to enhance the speed of training. They also used this software to optimize
small networks with the result that the resultant networks learned much
faster and much more consistently than fully connected networks. Koza
(1990) used genetic algorithms to guide search for the time-optimal “bang-
bang” control strategy for the cart-centering problem, a version of the broom
balancing problem, with the additional constraint that the cart be located at a
specific location during operation, by genetically breeding populations on
control strategy. Maricic and Nikolov (1990) used the neural network de-
signer GENNET to find the most appropriate network architecture for
solving a given problem. In GENNET, a genetic algorithm block is responsi-
ble for generating population architectures, which are used to create a set of
stand-alone backpropagation networks. Interactions between genetic algo-
rithms and neural networks generate the best network architecture. Garis
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(1990) used a genctic algorithm to train modular neural networks by finding
the proper weights for the full connections. Genetic algorithms have been
used to guide the design of neural contro] circuits, which combine the neural
modules to form functional hierarchies. Muselli and Ridella (1990) proposed
a combination method of genetic algorithms and simulated annealing to
generate and choose the set of peints in the network connection weight space
to speed up reliability and convergence.

Combining Neural Networks and Genefic Algorithms*

Genetic algorithms typically encode the parameters of artificial neural net-
works as a string or list of the network’s propertics, The algorithm requires
that there be a large population of these lists or strings (chromosomes)
representing many possible parameter sets for the given network, The utiliza-
tion of genetic algorithms for optimization lends itself casily to parallel
computers. Advantages of using parallel techniques include the ability to
search the entire weight Space versus localized search in.the weight space via
a gradient descent technique. This global aspect of the search helps avoid
local minima which can occur with other gradient descent techniques. Com-
bined genetic algorithm—neura] network technology (sometimes called
GANN) have the ability to locate the neighborhood of an optimal solution
quicker than backpropagation methods due to its global search strategy, but
once in the neighborhood of the optimal solution, the GANN algorithm tends
to converge to the optimal solution slower than backpropagation methods,
This is because the final convergence of the genetic algorithm from the
optimal neighborhood to the optimal solution s controlled mainly by the
mutation operators. Drawbacks of (he GANN technology are the large
amount of memory required to maintain a viable population of chromosomes
for a given network and some question as to whether this technique scales to
larger network sizes.

The most common implementations of neural networks and genetic algo-
rithms use direct encoding strategies that directly encode network parame-
ters, such as weight values and network connectivity to optimize the weights
and /or architecture of a given artificial neural network. When optimization
is confined to the weights of a given neural network (ie., the structure is
fixed), the network weights are encoded as genetic strings (chromosomes) or
lists of parameters. A large population of these strings, where cach string
TepIcsents an instance of a network’s parameters, is then combined using the
genetic operators of crossover and mutation to form the next generation of
chromosomes based on their fitness function, These fitness functions are
often taken as the inverse of the network error (yielding a large number for
£00d weights) scaled by the sum total error of the population,

! Part of this seclion was taken from a class report prepared by James R. Caip, a graduate
student at the University of Tennessee in 1955-1996,

-
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Using penetic algorithms to optimize the architecture of an artificial
neural network is carried out in a similar fashion with the network connectiv-
ity of the neurons being encoded into the chromosomes. Because of the large
and initially diverse population, a larger area of the weight space is much
more likely to be searched compared to more traditional gradient descent
techniques,

A combination of neural network and genetic algorithm training methods
(called the Lamarkian learning method) involves periods of genetic optimiza-
tion in between periods of backpropagation training. This method provides a
powerful method for combining gradient descent techniques (like backpropa-
gation) with evolutionary optimization techniques encompassed in the genetic
algorithms,

An alternative approach is the Baldwin learning method which utilizes the
backpropagation algorithm to adjust the fitness value for chromosomes.
Hence, chromosomes that show the ability to learn through the backpropaga-
tion algorithm are considered to be more fit and therefore more likely to be
sclected to pass their genetic material onto subsequent generations.

Most common coding strategies employ connection-based systems which
allow for weight and connectivity optimization of a predefined architecture.
Issues which must be addressed before the start of training include popula-
tion size, binary versus real valued weight representation, how many bits to
use if binary chromosomes are used, type of crossover used, the prevalence of
mutation, whether to use rank-based roulette wheel or proportional selec-
tion, and the criterion for stopping the process.

17.7 FUZZY GENETIC MODELING

As discussed earlier, fuzzy systems are made up of fuzzy sets, defined by their
membership functions and fuzzy rules that determine the action of the fuzzy
systems. Fuzzy systems can model general nonlinear mappings in a manner
similar to feedforward ncural networks since it is a well-defined function
mapping of rcal-valued inputs to real-valued outputs. Kosko (1992) has
shown that fuzzy systems, like feedforward neural networks, are universal
approximators in that they are capable of approximating general nonlinear
functions to any desired degree of accuracy. All that is needed for practical
application is a means of adjusting the system parameters so that the system
output matches the training data. Genetic algorithms can provide such a
means. Furthermore, fuzzy systems are cffectively transparent in that every-
thing that happens is clearly apparent. Each fuzzy associate memory (FAM)
matrix entry is just a fuzzy rule that is easy to understand. This is very
different from neural networks where the weight matrix, the most visible
parameter, is virtually uninterpretable. Furthermore, a fuzzy system has the
capability to analyze the distribution of training data versus the distribution
of test data. If these are radically different, then one knows in advance that
the results of the mapping will not be satisfactory.
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Fuzzy rules can be concisely represented with one or more FAM matrices.
In some cases, the FAM matrix can be established on the basis of a person’s
knowledge of the system. If such information is not available, then genetic
algorithms can be used to establish the FAM matrix.

Optimizing a FAM Matrix Using Genetic Algorithms

Earlier the FAM matrix in fuzzy Systems was discussed as an alternative to a
neural network to relate or model complex inputs and outputs when they
were represented by fuzzy sets in a fuzzy variable. This arrangement was
particularly attractive when there were two inputs, and the overall behavior
was intuitively obvious or the relationship could be derived from simple
experiments. When this was not the case, the FAM matrix has to be trained
from data available in ways similar to the training of neural networks. This
section discusses the use of genetic algorithms to optimize the training of the
FAM matrix,

A fuzzy system has a number of parameters that define fuzzy scts that are
candidates for optimization. While optimization of several variables simulta-
neously is possible, it is much simpler and more practical to optimize only
one variable at a time. This is usually possible if the general nature of most
variables are known or at least bounded.

A fuzzy system has several parameters that can be optimized using genetic
algorithms. Included are fuzzy sets used for input and output variables, the
membership functions that define fuzzy sets, the structure and entries in the
FAM matrix, and, in some cases, the weight assigned to each rule, Welsted
(1994) presents such an example where the FAM matrix entries are opti-
mized because they have the most influence in determining system output. In
that example, adaptation is accomplished through the minimization of an
error function. The approach used by Welsted is to convert the matrix entries
Into a long binary string. Since each matrix entry is a string of 1s and 0s, the
linking together end to end of these entries creates a very long binary vector.
This is the chromosome used in the optimization in genetic algorithms.

Welsted's example problem (interest rate modeling) is structured to use a
single FAM matrix that deals with all five inputs simultaneously. However,
with five input variables, the FAM matrix is a five-dimensional hypercube.
With three fuzzy sets per variable (negative, zero, and positive represented by
a “left shoulder,” a trapezoid, and a “right shoulder,” respectively), the FAM
matrix has 3%, or 243, entries. This is the “curse of dimensionality” referred
to by Kosko (1992). The number of fuzzy scts per input determines how finely
we look at a problem and how much data we have to haye for training. Each
FAM matrix is an output fuzzy set represented by a three-bit representation:
hence there are eight (2°) output fuzzy sets.

If only one item in each matrix entry is activated, we need 8 X 243 or 1944
items of information just for training. This problem is cqually serious in
neural networks where increasing the number of Inputs increases the number
of data scts needed for training to cover the dynamic range over which the
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variables may change. Inadequate data in either fuzzy systems or ncural
networks will result in regions of the state space not being covered.

The training (adapting) and testing phases of this process are similar to
the training phase of neural networks. The system is “initialized” by setting
initial input values and corresponding-initial output values. The quantity to
be minimized is the error accumulated over the training set between the
fuzzy system output and the desired output. Since the fitness function is 1o
maximized, it is defined as a constant minus this accumulated error. Training
is accomplished by running the genetic algorithm operating on the fuzzy
system fitness function. The outputs of the genetic algorithm training process
are the coordinates of the defining values of the fuzzy sets. Every time a new
optimal value is attained, the fuzzy system is saved to file.

Since the genetic algorithm is used only to minimize the error in the
training process, it is not used after training is complete. Use of the FAM
matrix to relate inputs and outputs proceeds in a normal manner.

17.8 USE OF GENETIC ALGORITHMS IN THE DESIGN
OF NEURAL NETWORKS

At the present time, there is no generally accepted theory or methodology for
the design of neural networks, and the process used is generally a trial-and-
error approach based on the experience of the designer. The complexity of
neural network design arises from the high-dimensional, heterogencous space
that must be explored by the system. The primary features, that arc of
concern in the design of neural networks are the structure of the network,
the inputs to the networks, and the specification of the learning algorithm
parameters. All of these quantities are problem-specific. While there are
guidelines based on experience that can be very helpful in the design, some
mathematical-based procedure would be very helpful. Optimization of the
design based on the use of genetic algorithms offers such a methodology.

Use of Genelic Algorithms in Selecting Neural Nelwork Structure

The Honeywell Technology Center (Harp and Samad, 1994) has developed
an approach for designing and utilizing genetic algorithms for optimizing
neural networks for use in modeling of complex systems. Their experience
shows that the simultancous optimization of network inputs, structure, and
learning parameters is crucial for accurate modeling.

Usually, all of a network’s parameters are encoded as genes in a chromo-
some in the form of a string of bits. Genetic algorithms procedures are then
used to manipulate these chromosomes to produce improved parameters
represented by the bit strings, Honeywell personnel (Harp and Samad, 1994)
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extended the concept of chromosomes and bit strings to a tree-structured
entity with three generic families of genes: bytes, sequences, and structures.
Byte genes represent scalar-valued parameters (e.g., learning rates), Se-
quence genes arc ordered collections of other genes in which all the genes
within a sequence are of a given specified type. Structure genes are fixed
length ordered collections of genes of given types, with the type being
determined by position. In an analogy to trees, the leaves are byte genes
while the branches are formed by sequence and structure genes. An individ-
ual genetic tree is a sequence of structure genes representing areas and
related connectivity that correspond loosely to a layer of a neural network
but are more broadly applicable. Each area structure gene parameterizes the
area in terms of an address, its number of neurons, the connecting weights,
the learning parameters, and so on,

Harp et al. (1989, 1990) used a “blueprint” scheme to manipulate genetic
algorithm representations of how sets of neurons are connected. In this work,
network characteristics are represented by a blueprint, defined as a data
structure that encodes various characteristics of the network including struc-
tural properties, input selection, and learning algorithm parameter values. A
blueprint is instantiated into an actual network, and the neural network is
trained using a learning algorithm and the learning parameters specified in
the blueprint. The trained neural network is then evaluated using testing
data, including an evaluation of its robustness by disabling some neural units
or perturbing the learned weight valucs. Then its fitness is computed. The
fitness estimate can be an arbitrarily complex function, such as the weighted
linear sum of relevant criteria such as the number of nodes and weights in
the network, accuracy, leaming speed, efficiency, average and maximum
number of outgoing weights from a node, and the various test scores.

After the evaluation, the next generation of the network is formulated in
the blueprint. This process is mediated by a number of genetic operators
(crossover, mutation, etc.) in which two blueprints are spliced together to
produce a child blueprint. In effect, the genetic operators are being applied
to these blueprints on a macroscale whereas genetic algorithms apply these
genetic operators to bit strings on a microscale. The advantage of using the
overall approach described here compared to “manual optimization™ is that
it allows the developer of the neural networks to explore large amounts of
design space that would otherwise be left unexplored.
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PROBLEMS

tn
i

Discuss the relative merits of the “proportional selection” and the “rank-
based selection” of the surviving chromosomes. Which is easier to imple-

ment?

The “fitness function™ is by far the most important quantity in the use of
genetic algorithms. One method of sclecting this function was illustrated
in Section 17.5. Discuss other mcans of determining the most appropriate
“fitness function.” Can you envision a method of optimizing the selection
of the *““fitness function” used in an optimization process?

Consider the data presented in Table 10.1 for welding tests. If you wanted
to use genetic algorithms to optimize the travel speed and arc current for
a given configuration (thickness, bead width, and bead penetration) of a
weld, how would you ge about it? What kind of “fitness function” would
you develop? How would you go about ensuring that the “fitness function”
was appropriate?

Carry the reproduction, crossover, and mutation processes on for another
cycle using the information provided in Table 17.3. Is therc significant
improvement (or deterioration) of the *fitness” of the chromosomes? If so,
why? If not, why?

An alternate fitness function for Example 17.1 is

flx) = 1- 222

The denominator 2.71 is y,(x) when x = 31, the largest possible value of x
for a 5-bit binary string. Evaluate f(x) and f{(x)** in Table 17.3. Are the
new genes selected the same? If so, why? I not, why not?
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18.1 [INTRODUCTION

In the late 1960s, the American Society for Engineering Education (ASEE)
issued a special report entitled “Goals of Engincering Education” in which
the authors looked into their erystal balls to the year 2000 and predicted the
types of projects on which engineers would be working during the next
one-third century. The point of the study was that the engincering students in
school at the time of the study (1967-1968) would still be active in the
engineering profession at the turn of the century, and it was the enginecring
educators’ responsibility to see to it that educational expericnces at engincer-
ing colleges constitute proper preparation to meet the challenges that would
arise in the rest of the century. Among the projects they predicted were:

Large-scale ocean farming

Fabrication of synthetic protein

Controlled thermonuclear power (fusion energy)

Regional weather control

Correction of hereditary defects by molecular (genetic) engineering

Automated high-1Q machines (expert systems and artificial intelligence in
general)

Universal language through automated communications
Mining and manufacturing on the moon

Directed energy (microwave and laser) beams

Commereial global ballistic transports (the “Tokyo Express”)
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With less than half a decade to go, many of these predictions for the year
2000 are well on their way toward reality, while others, though feasible, are
not being given serious consideration today. Perhaps artificial intelligence in
the more general form of “soft computing” has had as much, if not more,
impact than any of the other technologies listed above. Yet, we have only
seen the tip of the iceberg as far as its influence on the future.

As far out as some of the items listed by the ASEE seemed in 1967, most
of them are accepted as legitimate areas for engineering involvement today.
However, some of the things appearing on the horizon today virtually defy
our imaginations. For example, it has recently been reported that a team of
scientists at the Max Planck Institute has opened a two-way communication
link between a silicon chip and a biological neuron, effectively establishing a
signaling channel that works in both directions. (ACM, 1995). The chip
stimulates a leech’s nerve cell through induced charges, and while capable of
communication, no electrical current flows between the neuron and the chip
(an essential requirement for any prosthetic limb controlled by the brain
through a living nervous system).

18.2 IS ARTIFICIAL INTELLIGENCE REALLY INTELLIGENT?

In her book entitled In Our Own Image; Building an Anificial Person,
Maureen Caudill (Caudill, 1994) examines the current state of technology
and the accelerating trend in developments of robots, computer vision,
understanding speech, sensing, diagnostics, and so on, and concludes that the
construction of an “artificial person™ is closer than most of us believe.
Clearly, the first such “artificial person” would not be a Commander Data of
Star Trek fame, but the essential processes to sustain “artificial life” are
perceived by Caudill to be feasible in the twenty-first century. While we take
no position on this well-documented but controversial thesis, we will point
out that most of the advances in the technologies listed under soft computing
have their origin in biological processes of humans, especially physiological
processes and psychological behavior of the brain.

Many scientists and engineers are somewhat skeptical about artificial
intelligence, especially in the light of the “excessive claims” of some of the
pioneers in expert systems and neural networks. Fuzzy systems avoided this
pitfall only because it was quietly developed in Japan without much fanfare
until successful systems were being demonstrated. The skepticism comes
from deep and privately held gut feelings that computers can never “be like”
or “live like” humans. They are perceived as “just machines,” and hence by
definition they cannot be intelligent. We often tend to use anthropomorphic
terms like “intelligence” to describe their workings in the age-old tradition of
rojecting something of ourselves and nature to the artifacts we made. It may
~ -l be that computers are no more intelligent than locomotives are iron
1 ses. Artificial intelligence may simply be an inspiring metaphor for pursu-

it sl
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ing the enhanccment of human intelligence. Indeed, concepts that have
sprung out of artificial intelligence are revolutionizing the workplace, the
office, the school, the marketplace, and the laboratory. In the manufacturing
sector, soft computing is changing not only the design and analysis, but also
the physical manufacturing with added flexibility and benefits in scheduling,
production, maintenance and managment. The most often heard terms in
manufacturing these days are agile manufacturing and the virtual company,
concepts that are considered to map directly. to advancements in soft comput-
ing and its implementations.

The fundamental characteristics of emerging new products and systems
may be quite different from these we deal with today. Agile or flexible
systems will, of necessity, be more proactive. Whether they are intelligent
agents or subjective objects (like today’s machines that respond only to
present conditions), is less important than the fact that they get the job done
for you. Alrcady a trend is underway in Japan toward predictive and
anticipatory systems using predictive fuzzy control. Examples include control
systems in many Japanese elevators, the Sendai metroliner, and the Fugen
nuclear power plant.

In the future, technology that is user-friendly to people and capable of
self-adjustment to custom fit individual needs will become important. In
order to bring this flexibility, we see neurofuzzy technologies becoming part
of the man-machine interface. They truly hold considerable promise to
harmonize and enhance the relation between humans and machines and
make it possible to incorporate actions, judgments, and thoughts that arc
near-human into a wide varicty of devices and systems. Neurofuzzy technolo-
gics that respect the users’ subjective desires, backgrounds, and idiosyncracies
are expected to find their way into a great variety of products, making it
possible for machines to say things like “Is this what you are trying to say?"
or “Is this what you really want?” In industry, this may be particularly
suitable for addressing bad structure problems for which computenized
control has until now been difficult; it may indeed make automatic operation
equivalent to operation by skilled operators.

18.3 THE ROLE OF NEUROFUZZY TECHNOLOGY

The principal topic in this book that is not commonly covered in other books
or in university courses in the science and engineering fields is the newrofuzzy
methodologies of Chapters 12 through 15. In Chapter 12, artificial neurons
that utilize fuzzy operations (e.g., max, min, ete.) in place of multiplication
and addition, as well as neural networks that also utilize fuzzy processes, arc
described. Applications such as “Fuzzy ARTMAP"and “fuzzy clustering” are
already widely known in the artificial intclligence community and beginning
to be utilized in engineering research and development.
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In Chapter 13, we introduced neural methods into fuzzy systems. The
overriding issue in fuzzy systems, whether they be used for expert systems,
decision-making, or control, is defining the linguistic if/then relationships
that constitute the algorithm on which the process is based. Neural networks
and /or neural processes with their ability to extract information from cxam-
ples (learning) can play an essential role in providing a better basis for fuzzy
algorithms. Defining membership functions for fuzzy variables by using
neural network is a very valuable process.

Chapter 14 is the result of a computerized literature scarch of scientific
and technical journals for titles of articles that include both the words fuzzy
and newral. Out of about 700 such publications, we chose about 50 examples
from 12 fields where neurofuzzy systems were used advantageously. The
purpose of this chapter was to illustrate the wide range of applications of
neurofuzzy systems.

In Chapter 15, examples of research carried by graduate students working
under the authors have demonstrated the advantage of utilizing fuzzy sys-
tems, neural networks, and genetic algorithms as semi-integrated processes.
More complete integration of these methodologies will bring additional
benefits when we learn to control the integrated fuzzy neurons and networks
and the neurofuzzy systems in a straightforward manner. Indeed, the main
rcason for using these various methodologies in a semi-integrated (and
usually sequentially) manner is to keep the processes under control.

We cannot overemphasize this last point. Neurofuzzy systems are at the
state of development as neural networks before the rediscovery of backprop-
agation in 1968. We are proceeding on a trial-and-error basis with little
guidance as to which is the best way to apply neurofuzzy concepts, The
potential payoff for using neurofuzzy systems properly can be enormous.
Indeed, the “fuzzy neuron” or the “neurofuzzy system” are the modern
analogs of the perceptron and the adaline processing units, and they are at
about the same stage of development today as the perceptron and adaline in
1960. What is now needed is the creation or discovery of an integrated
training /control process.

18.4 LAST THOUGHTS

Tom Peters, coauthor of In Search of Excellence (Peters and Watermann,
1982), wrote the Foreword of The Rise of the Expert Company, an exposition
on the benefits of expert systems in industry by Feigenbaum, McCorduck,
and Nii (1988). The closing two paragraphs stated the following: .

I came to this book and to the task of writing this foreword interested, even
fascinated, by the topic about which I am largely naive. T leave the process of
igesting the manuscript and writing the foreword mesmerized, The emerging
corld, brilliantly and pragmatically described in The Rise of the Expert Company,
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is not the world we now know. The consequences are exciting and a bit
frightening—and clearly monumental.

I conclude that any senior manager in any business of almost any size who
isn’t at least learning about Al and sticking a tentative toe or two into Al's
walers is simply out of step, dangerously so.

In the eight years since that foreword was written, neural networks and fuzzy
systems have achicved equally important status as expert systems in 1988,
Neurofuzzy technology is the next big step because of the synergistic benefits
of the merging these two important technologies. 1t is our hope that we have
taken that first step—that is, put that first tentative toe into neurofuzzy
technology's waters, lest we too get out of step, dangerously so.
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