
Part I

Problems and Search

Chapter 1

What Is Artificial Intelligence?

What exactly is artificial intelligence" Although most attenilits to detioe complex and
widely used terms precisely are exercises in futility, it is useful to draw at least an ap-
prptimate boundary around the concept to provide a perspective on the discussion that
follows. To do this, we propose the following by no means universally accepted defini-

tion. Artificial intelligence (Al) is the study of how to make computers do things which.
at the moment, people do better. This definition is, of course, somewhat ephemeral
because of its reference to the cuiTcOt state of computer science. And it fails to include
some arets of potentially very late impact. riaiiwiy problems that cannot now be solved
well by either computers or people. Bitt it provides a good outline of what constitutes
artificial •ntelligence, and it avoids the philosophical iSsues that dominate attempts to
define the meaning of either arlijmcial or intelligence. Interestingly, though. it suggests a
similarity with philosophy at the same time it is avoiding it. Philosophy has always been
the study of those branches of knowledge that were so poorly understood that they had
not yet become separate tliscipines in their oNkn right. As fields such as mathematics or
physics became more advanced, they broke off from philosophy. Perhaps if Al succeeds
it can reduce itself to the empty set.

1.1 The Al Problems

\Vltai Elicit are some of the proolems .ontained within Al? Much of the early work ri irie
field focused nit formal tasks, such as game pla y ing and theorem proving. Samuel wrote

checkers-playing program that not only played gaines with opponents but also used
its experience at those games to improve its later performance Chess also rec. d a
good deal of attention. The Logic Theorist was an early attempt to prove rnathei.i ic-al
theorems. it was able to prove several theorems from the first chapter of Whitehead and

Russell's Principia Mathernatira. Ucicrnter's tneorem prover explored another area of
mathematics: geometry. Game playing and theorem proving share the propert y that

people who do ilwrn well are consideie.d to be displaying intelligence. Despite this.
it appeared initially that computers could perform well at those tasks simply by being
fast at exploring a large number of solution paths and then selecting the best one. It
was thought that thi s proces required very little knowledge and could iliereforc be

(HAPTEA / WI/AT 15 ARTFEY,IAI. .'NTElJJGFN(i'

progr':tttud .asiy. A. wc will set later, this assumption turned out to he fdw since
no c,nrntret is fast enough to overcome the ctsrnbtnatorial explosion generated by most
problems

Another early foray into Al foctised nit tlw sort of problem solving that we Jo every
day when we decide how to get to work in the morning, often called i'o,,,monxen.se
reasoning. It includes reasoning about physical objects and their relationships in eah
other(e.g., an objee! can be in only one plat'.e at a time), as well as reasoning about
actions and their consequences (e.g., if you let go of something, it will fall to the Moor
antI maybe break). To investigate this sort of reasoning, Ncwell. Shaw. and S i mon built
the Geneial Problem Solver (GPS), which the y applied to several commonsense tasks
as well as to the problem of performing symbolic manipulations of logical expressions.
5.gain, no attempt was made to create a program with a large amount of knowledge
about a particular problem domain. Only quite simple tasks were selected.

As Al research progressed and techniques for handling larger amounts of world
InnwIes1ge were developed, some progress was made on the tasks just described and
new tasks could reasonably be attempted. These include perception (vision and speech),
iiatuial language understanding, and problem solving in specialized domains such as
medical diagnosis and chemical analysis.

Perception of the world around us is crucial to our survival. Animals with much
less intelligence than people are capable of more sophisticated visual perception than
are current machine s . Perceptual tasks are difficult because they involve analog (rather
than digital) signals; the signals are typically very noisy and usually a large number ol
things (some of which may be partiall y obscuring others) must be perceived at once.
The problems of perception are discussed in greater detail in Chapter 21.

The abilit y It, use language to communicate a wide variet y of ideas is perhaps the
most important thing that separates hitniamis from the other animals. The problem of
understanding spoken language is a perceptual problem and is hard to solve for the
reasons just discussed. But suppose we simplify the problem by restricting it to written
language. This problem, usually referred to as natural language understanding, is still
extremely difficult In order to understand sentences about a topic, it is necessary to
know not only a lot about the language itself (its vocabulary and grammar) but also a
good deal about the topic sO that unstated assumpioiis can be recogrzed. We discuss
this problem again later ii this chapter and then in more detail in Chapter 15.

In addition to these mundane tasks, many people can also perform one or maybe
more speciali7ed tasks in hich carefully acquired expertise it necessary. Examples
of such tasks icclude engineering design. scientific discovery, medical diagnosis. and
financial planning. l 5togranis that can solve problems in these domains also fall under
the aegis of artificial intelligence. Figure 1.1 lists some of the tasks that are the targets
of work in Al.

A person, who knows how to perform tasks from several of the categories shown in
the figure learns the necessary skills iii a standard order. First perceptual, linguistic, and
commonsense skills are learned. Later (intl tit course for s onic people. never) expert.
skills such as engineering, medicine, or finance are acquired. It might seem to make
sense then that the earlier skills are easier and thus more amenable to computerized
duplication than are the later, more specialized ones.. For this reason, much of the initial
Al work was coiicentiit,d io those early areas. But it turns not that this naive assumption
is not right. Although expert silts require knowledge that many of us tb not have, they

1.1. THE Al PROBLEMS

Mundane tasks

• Perception
-- Vision
- Speech

• Natural language
- Understanding

Generation
Translation

• Commonscnsc reasoning
• Robot control

Formal lasks

• Games
- Chess
- Backganiriisit
- Checkers
-Go

• Mathematics
-- (Jeomctr
- Logic
- Integral calculu.
- Proving properties ot piogtaw,

Expert Tasks

• Engineering
Design
Fault finding

- Manufacturing plaiuiing
Scientilic analysis

• Medical diagnosis
• Financial analysis

Figure I I; Some of the Task Domains of Artificial Intelligence

CIMP1EX i. WHit! IS ARTIFICIAL iNTi.IJ(if N:f

often require much less knowledge than do the more mundane skills and that knowiedg'
is usually easier to represent and deal with inside programs.

As a result, the problem areas where Al is now flourishing most as a practical
discipline (as opposed to a purely research one) are primarily the domains that require
only specialized expertise without the assistance of commonsense knowledge. There are
now thousands of programs called expert systems in day-to-day operation throughout

a1 areas of industry and government. Each of these systems attempts to solve part, or
perhaps all, of a practical, significant problem that previously required scarce human
expertise. in Chapter 20 we examine several of these systems and explore techniques
for constructing them.

Before embarking on a study of specit(r Al problems and solution techniques, it is
uniporlant at least to discuss, if not to answer, the following fout questions:

I What are our underlying assumptions about intelligencc

2. What kinds of techniques will be useful for solving Al problems?

3. At what level of detail, if at all, are we trying to model human intelligence?

4. Now will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that is a
survey of some Al books that may be of interest and a summary of the chapter.

1.2 'fhe Underlying Assumption

At the heart of research in artificial intelligence lies wha' Newejl and Simon 19761
call the physical symbol vctem hypothesis. They define a physical symbol system as

fol lows:

A physical symbol system consists of a set of entities, called symbols, which
are physical patterns that can occur as components of another type of entity
called an expression or s ymbol structure). Thus. a symbol structure is
(-Oniposcd of a number of instances (or tokens) of symbols related in some
physical way such as one token being next to another). At any instant
of time the system will contain a collection of these symbol structures.
Besides those structures, the system also contains a collection of processes
That operate on expressions to produce other expressions: processes of
creation, modification, reproduction and destruction. A physical symbol
system is a machine that produces through time arm evolving collection o1
symbol structures. Such a system exists in a world of objects wider than
just these symbolic expressions themselves

They then state the hypothesis as

The Physical Svftihof System H ypothesis. A physical symbol system has

the necessary and sufficient means for general intelligent action.

This hypothesis is only a hypothesis. There appears to be no way to prove or disprove
it on logical grounds. So it must be subjected to empirical validation. We may find that

12 THE UNDERLYING ASSUMPTION

it is false. We may find that the bulk of the evidence says that it is true. But the only

way to determine its truth is by exçenmentattOfl.
Computers provide the Perfect medium (or this experimentation since they .an be

programmed to simulate any physical symbol system we like. This ability of computers
to serve as arbitrary symbol manipulators was noticed very early in the history of
computing. Lady Lovelace made the following observation about Babbage's proposed

Analytical Engine in lM2'

The operating mechanism can eveii be. ilitown into action mdcpcndefltly

O f any ohcct to operate upon (although of course no result could then be
developed). Again, it might act upon other things besides numbers, were
objects found whose mutual fundamental relations could be expressed by
those of the abstract science of operations, and which should be also suscep-
uible of adaptations to the action of the operating notation and mechanism
of the engine. Supposing. for instance, that the fundamental relations of
pi'i'hcd sounds in the science of harmony and of musical composition were

susceptible of such expression and adziptations, t he engine might compose

elaborate and scientific pieces of music of any degree of complexity or

extent. [Lovelace. 1961

As it has become increasingly easy to build tOuIIputifl Machines. so it has become

increasingly possible to conduct empirical i. .rrgaiuonsof ilw phsstcal symbol system

hypothesis In each such investigation, a parti.ular task M it might be rcgcrdcd

requiring intelligence is selected. A program to perform the task is piuposed and then
tested. Although we have not been completely successful at creating programs that
perform all the selected tasks, most scientists believe that many of the problems that
have been encountered will ultimately prove to be surmountable by more sophisticated

programs than we have vet produced.
Evidence in suppot of the physical symbol system hypothesis has come not only

from areas such as game playing, where one might tons' expect to find it, but also from
atas such as visual perception, where it is more tempting to suspect the influence of
\uhsymbulic processes. however, subsymbolic models (for example, neural networks)

are beginning to challenge symbolic u 'ute at such low level tasks. Such models are

discussed in Chapter 18. Whether certain subsytoholic models conflict with the physical
symbol system hypothesis is a topic still debate (e.g., Smolensky 119881) And
it is important to note that even the success of uthsyrnholic systems is not necessarily
evidence against the hypothesis. It is often possible to accompltsl a task in more than

one way.
One interesting attempt to reduce a particularly human activity, the understanding

of jokes. to a process of symbol manipulation is provided in the book Ma,he,no1usaiI

Minor [Paulos. 19801. It is, of course possible that the hypothesis will turn out to be

only partially true. Perhaps physical symbol systems will prove able to model sonic
aspects of human intelligence and not others. Only time and effort will tell.

The importance of the physical symbol system hypothesis is twofold. it is a signtti-
rant theory of the nature of human intelligence and so is of great uutterest to psychalog' sti.
it also forms the basis of the belief that it is possible to build programs that can perform

.ntclligenl tasks now performed by people. Our major concern here is with the latter of
esc implications, although as we will suw,n .ee, the two issues are not unrelated

NAPT1R I WHAT IS ARTIFICIAL INTE1,L!(jL/v(. cf

1.3 What is an Al Technique?

Artificial intelligence problems span a very broad spectrum. They appear to have very
iittle in common except that they are hard. Are there any techniques that are appropriate
for the solution of variety of these problems? The answer to this question is yes. there
are. What, then, if anything, can we say about those techniques besides the fact that they
;r.;mipulatr symbols? how could we tell if those techniques might be useful in solving
other problems, perhaps ones riot traditionally regarded as Al tasks'! The rest of this
book is an attempt to answer those questions in detail. But before we begin examining
closely the individual techniques. it is enlightening to take a broad look at them to see
what properties they ought to possess

One of the few hard and fast results to come out of the first three decades of Al
research is that intelligence requires knowledge. To compensate for its one overpowering
asset, indispensability, knowledge possesses some less desirable properties, including:

• It is voluminous.

• It is hard to characterize accurately.

• It is constantly changing.

• It differs from data by being organized in a way that corresponds to the ways it
will be used.

So where does this leave us in our attempt to define Al techniques? We are forced
to conclude that an Al technique is a method tli,it exploits knowledge that should be
represented in such a way that:

• The knowledge captures gcneraliziilions. in other words, it is not necessary
to represent separately each individual situation. Instead, situations that share
important properties are grouped togeth:r. If knowledge does not have this
property, inordinate amounts of memory and updating will be required. So we
usually call something without this properly 'thta' rather than knowledge.

• It can be urderstood by people who must provide a. Although for many programs,
the bulk of the data can be acquired automatically (for example, by taking readings
from a variety ot instruments), in many Al domains, most of the knowledge a
piogram has must ultimately be provided by people in terms they understand.

• It can easily be modified to correct errors and to reflect changes in the world and
n our world view.

• It can be used in a great many situations even if it Is not totally accurate or
complete.

• It cm be used to help overcome its own sheer buriL by F:elping to farrow the range
of possibilities that must usually be considered

Although Al techniques must be designed in keeping with these constraints imposed
by Al problems, there is some degree of independence between problems and problem-
solving techniques. It is possible to solw Al problem s without using Al techniques

13 WHAT IS ANA] TECHNIQUE

(although, as we suggested above, those solutions are not likely to be very good). Arlo
it is possible to apply Al techniques to the solution of non-Al problems. This is likel y tc

be a go& thing to do for problems that pu'sess rniiy jf the '.arne characteristics as do
Al problems. In order to try to characterize Al icchniqtirs in as problem-indcpendent a
way as possible. let's look at two very different problems artd'a series of appriach 	 or

solving each of them.

1.3.1 Tic-lac.-loe

In this section, we prescot a cries 0,, drcc poguim:. o pla 'iC tac-toc. The programs

in this series increase in:

• Their complexity

• Their use of generalizations

• The clarity of their knowledge

• The extensibility of their approach

Thus they move toward being representatio"s of what we 'a1l Al 'hr'queS.

Data Structures

Board	 A nine-element vector repreSetitig me ooaiti. 	 e ?teIflefltS

of the vector correspond to the board positions as follo w s-

1

4	 6]

An element contains the value 0 if the corresponding square is blank,
I if it is filled with an X, or 2 if it is filled with an 0.

Movetable A large vector of 19,683 elements (39), each element of which
is a nine-element vector. The contents of this vector are chosei

specifically to allow the algorithm to work.

The Algorithm

To make a move, do the following:

1. View the vector Board as a ternary (base three) number. Convert it to a decimal

number,

2. Use the number computed in step l as an index into Movetahic and acc
ess the

vector stored there.

The vector selected in step 2 represents the way the board will look after the move
that should be made So set Anard eaual to that vector

10	 CHAPTER] WHAT (S AiTiFI('iAL 1T21.(JGENCE9

Comments

This program is very efficient in terms of time. And, in theory, it could play an optima
game of tic-tac-toe. But it has several disadvantages:

• It takes a lot of space to store the table that specifies the correct move to make
from each board position.

• Someone will have to do a tot of work specifying all the entries in the movetabte.

• It is very unlikely that all the required rnovetahk entries can be determined and
entered without an y errors.

lI we want to extend the game, say to three dimensions, we would have to start
from scratch, and in fact this technique would no longer work at all, since 3
board positions would have to be stored, thus overwhelming present computer
memories.

Fhc technique embodied in this program does not appear to meet any of our requirements
for a good Al technique. Let's see if we can do better.

Prorom 2

Data Structures

Board A nine-element vector representing the board, as described for Pro-
gram I. But instead of using the numbers 0, 1, or 2 in each element,
we store 2 (indicating blank), 3 (indicating X), or 5 (indmcaiiug 0).

Turn	 An integer indicating which move of the game is about to be played:
I indicates the first move. 9 the Inst.

The Algorithm

The main algorithm uses three subprocedures:

Make2

Poswin(p)

Returns 5 ifr.he center square of the board is blank, that is. mfBoardE5
2. Otherwise, this function returns any blank noncorner square

(2.4.6. or 8).
Returns 0 if player p cannot win on his next move; otherwise, U

returns the number of the square that constitutes a winning move.
This function will enable the program both to win and to block the
opponent's win. Posswin operates by checking, one at a time, each
of the rows, columns. and diagonals. Because of the way values are
numbered, it can test an entire row (column or diagonal) to see if it
is a possible win by multiplying the values of its squares rogethem.
If the product is 18(3 x 3 x 2), then X can win. lf the product is 50
(5 x 5 x 2), then Ocan win. If we find a winning row, we determine
which element is blank, and return the number of that square.

, 3 WHAT IS AN Al TECflNIQLJE'

Go(n)	 Makes a move iii square n. This procedure sets Board(n) to 3 if

Turn is odd, or 5 if Turn is even It also increments Turn by one.

The algorithm has a buili-i& s trategy for each move it may have to make. it makes the

odd-numbered moves if it is playing X. the even-numbered moves it it is playing 0.

The strategy for each turn is as follows:

Turnl

Turn=2

Tum=3

Turn4

Tum'5

Turn=

Turn'7

urn

Turn=')

G,_)(1) (upper left corncr).

If Board[5} is blank. Go(S), else GOO)

If 5oacd(9 is blank. Go(9), else (Jo(3i.

It Po''.win(X) is no' 0, then Go(Posswn(X)) [i.e.. block opponent's

cle Go(Make2

If Posswin(X) is not 0 then GO(PnSNWIO(X)) [i.e _ winI else if Pos-

swisi(0) i s not (,. then GoPosswin(0)) i.e., block win], else if

Boordl'fl Is l4ajik, then (jot7). else Go3). [Here the program is
tflgi, i ! O iork

It	 . • 'i ' inn (iu'P0sswin(0), Cl se it Pusswtn(X) I'S

nuT 0. then (01 ?OSSWtfl(X). else GulMake'l).

Li 'otsin(X) is not U then Gotposswin(X)'. ise if Posswn(0) is
nut C then GoPosswinit))), else go anywhere 1hat is hi:ink.

If Possi's)t is not 0 then o(Psi'i(0). else if Priswin(Xi is

not 0, then G(,tPoswin(X)). cisc go anywhere that is blank.

Same as Turn=7

Comments

This program is ri ov quite as cliicieiit ill tesms 1,1 tithC .ss the first one since it has lii

check several conditions before making each move. But it is a lot more efficient in

terms of space It is also a lot easier to understand the program's strategy or to change
the strategy if desired. But the total strategy has still been figured out in advance by the
programmer. Any bugs in the programmer's tic-tac-toe playing skill will show up in
the program's play. And we still cannot generalize any of the program's knowledge to

a different domain, such as three-dimflsiOnat tic-tac-Ioe

Program 2'

This proglam is identical to Program 2 except for one change in the representation
of the board. We again represent the board as a nine-eIemflt vector, but this time we
assign board positions to vector elements as follows:

LÔ L7. 2J

12	 sI1tPJER I WHAT IS' 4R7'IFICi4L I,\TEIJ.IGEN(, i?

Notice that this numbering of the board produces a magic square all the rows,
columns, and diagonals sum to Ii. Ibis means that we can simplify the process of
checking for a possible win. In addition to marking the board as moves are made, we
keep a list, for each player. of the squares in which he or she has played. To check for a
possible win for one player. we coiisidei each pair of squares owned by that player and
compute the difference between 15 and the sum of the two squares. It this difl'e,crice
is not positive or if it is greater than 9, then the original two squares were not collinear
and so can be ignored. Otherwise, if the stuare representing the difference is blank,

move there will produce a win. Since no player can have wore than four squarc As at
a time, there will be many fewer squares examined using this .cheme than there sere
using the more straightforward approach of Program 2. This shows him the c'bn,c of
representation can have a major impact on the eFhii'iiv 1 :i prthki-' tiig piogram.

Comments

This comparison raises an interesting question about tl relottonsh:p hclwee'i he way
people solve problems and the way computers do. Why do people Iliro

'
he i'.'w scan

approach easier while the nuinber-counting approach is more efficient 'ri a

We do not know enough about how people work to answer that ques'. 	 simnpleteiv.
One dart of the answer is that people are parallel processors and can look at several
parts sf the board at once, whereas the conventional computer must look at the squares
one it a trne. Sometimes an Investigation ot how people solve problems sheds great
light on how .om'u;ers should do so. At other time,. the differences in the hardware
of the two ee.Iii i great that different strategies seen' best. As sm' l-:in more about
problerr ' .iviiig hoth by people and by machines. we rra know ba:ttr', ','tieih', 'he same
represenhino.n and algorithms are best for both people and nia(hiries. We will discuss
this question further in Section 1.4.

Program 3

Data Strudures

BnardPositior A structure containing a nine-element vector representing the board,
a list of board positions that could result from the nest r'IOVC, and a
number representing an estimate of how likely the hoard position is
to lead to an ultimate win for the player to moe.

The Algorithm

To decide on the next move. look ahead at the board positions that result from each
possible move. Decide which position is best (as described below), make the move that
leads to that position, and assign the rating of that best move to the current position.

To decide which of a set of board positions is best, do the follow i ng for each of

them:

See if it is a win. If so. call it the best by giving it the highest possible rating

13 WHAT IS AN AI TECHNIQUE?
	

13

2. Othecwise, consider all the moves the opponent could make next. See which of
them is worst for us (by recursively calling this procedure). Assume the opponent
will make that move. Whatever rating that move has, assign it to the node we are

considering.

3. The best node is then the one with the highest rating

This algorithm will look ahead at various sequences of moves in order to 111111 a

.'.ctjlieiice that leads to a w UI. it atcmpts to maxiritize the I eldioc1 III winhinig, while

assuming that the opponent will try to minimize that likelihood. This algorithm is called

the minirnax procedare. and it is dt'cusse! i n driail la Chat)ter 12

Comments

This program will require much more time than either of the others since it nius' scarci:
a tree representing all possible move sequences before making each move. But it is
superior to the other programs in one very big w v It could be extended to handle games
more complicated than ac-ttw for which ic exhaustive enumeration approach of
the other pigrini would completely fall apaet. It can also be augmented by a variety N'

specific .iud'; of knowledge about games and how to play them. for eainple, instead

of considering all pos sible next rn:ves, it might consider only a subset of them that ar

detennined. by some simple algoriih ; . :o be reasonable. And, instead of following each

series of moves until oi	 aycr wins, it could search For a limited time and evaluate 11 i f

 of each resulting board position using some static function.
Program 3 is an example of the use of an Al technique. For very small problems,

it is k,s,s efficient than a variety of more direct methods However, it can be used in
situations when' those methods would fail

1.3.2 Question Answering

In this section we look at a serie t 1 progroo that read in English text and then answcL
questions, also stated in English, ab3ut that text. This task differs from the last 'Inc 'is
that it is more difficult now to state fornxaily and precisely what our problem is anti what
constitutes correct solutions it For example, suppose that the input text were just the

single sentence

Russia massed troop. on the Cz• h border.

Then either of the following question-answering dialogues might occur (and in fact
did occur with the POLIIR.S program ICarboncll. 19901).

Dialogue I

Q:	 Why did Russia do this?

A:

	

	 Because Russia thought that it could take political control of Czechoslovakia bs
sending troops.

Q:	 What should the United Stases do.'

A:	 The United States should intervene militarily

14	 CHAPTEI? I. WHAT IS AX? IFJCML !NTELIJGfrJsCL

Dialogue 2

Q.	 'Why did Russia-do this?

A:	 Because Russia wanted to increae its potitical influence over Ctcchoslo'vakia.

Q:	 What should the United States do!

A:	 The United States should denounce the Russian action in the United Nations.

In the POLITICS program, answers were cojistiucted by considering both the input
lexi and a separate model of the beliefs and actions of varli ii,s political entitles, including
Russia When the model is changed, as it was between these two dialogues, the system's
.jnswers also change. In this example. the I:rst dialogue was produced when POLITICS
was given a model that was intended to correspond to" the beliefs of a typical American
conservative (circa 1977). The second dialogue occurred when POLITICS was given a

i.xIel that was intended to correspond to the beliefs of a typical American liberal (of

the same vintage).
The general point here is that defining what it cleans to produce a CUrPe(t answer to a

question may be very hard. Usually, question-answering programs deline what it rn'i
bean answer by the procedure that jsed to compute the answer Then their authors

appeal to other people to agree that the answers found by the program "make sense'
and so to confirm the model of question aiwcrIng define(I in the program. This is noT
completely satisfactory, but no better was' of defining the problem has yet been found
For tack of a better method, we will do the sane hr ic -ind iIustrate three definitions of

question answermg, each with a corresponding pn1g.cn that tioplernenis the definition.
In order to be able to compare the three programs, we illustrate all of them usingusing the

following text:

Mary went shopping bra new coat. She found a red one she really liked.
When she got it home, she discovered that it went perteeth y with ncr favotite

dress.

We will also attempt to answer each of the following questions with each program:

QI:	 What did Mary go shopping for?

Q2: What did Mary find that she liked?

Q3: Did Mary hu' anything?

Program I

This program aticnipts to answer questions using the literal input text. It sinip4

marchc text fragments in the questions again
st the input text.

Data Structures

Quest ioiiPattcrns A set of templates that match common question forms aria produce
patterns to he used to match against inputs. Templates and patterns

which we call te i pa:teln5) are paired so that if a template matches

successfully against an input question then its associated text pat-

terrt are used to try to find appropriate answers in the text Fot

1.i . Whit! f ,*i'i Al TEC!lNIQUL'

example, it the template Who did .r y' matches an input question,

then the text pattern . v :" is matched against the input text and the

value of: is g iven a the answer to the question.

lest	 The input text stored sim pl y as a long character stnng.

Question	 The current que ' tiofl atsotorcd as a character string.

The Algorithm

To answer a question, do the tot lowing:

1. Compare each element of Question Pat tents against the Qucst:o'i arid use all those

that match successfully to ciIe ,ile .i st'i of text patterns.

2 Pass each of these pauc throughasubsiutiiLi0i1Pns'e that generates altcriiative

forms of verbs so that, for esam ple. go' in a question night miich "went" in the

text. This step generates a pew, cxuuded set of text patterns.

3 Appl y each of these text patterns to Text, and collect all the tesulting arswei:

4 Reply with the set of answers just collected.

Examples

Qi:	 The reniplaie What did.s s' maichea this question and generat:s the ic. ' t pter

'Mar	 o shopping for :." - .\fter the pattern-substitution step, mis pattern
expanded to a set of patterns including "Maty goes shopping for :." and "Mary
went shopping for: " The latter pattern matches the input text: the program.
using a convention that vstahles match the longest possible string up to a
sentence delimiter (such as a period). assigt)	 (Or value. "a new .u'tt " which

is given as the answer.

Q2: Unless the template set is very lame, alirlAing for the insertion of the object of

"find" between it and the niodifetng phrase "that liked," the insertion of the

word 'really" in the text. and the suIstutution oI"shse" for "Mary.' this question
is not answerable. If all of these va'ialions are accounted for and the qtit'StOti

can he answeicd, then the response is "ii i(Ll 011C.'

Q3: Since no answer to this qsicsiioil is coittained in the ext. i 1 all ,wer will he fniiid.

Comments

This approach is clearly inadequate to ansser the kind' of questions people could
answer after reading a simple text. Even its ,thiii'v to atiswei the most direct questions s
delicately dependent on theexact form in which CtUeStiOii'3ft' stated and on ih ­-11,111(111-

that were anticipated in the design (it the temnptaiev and the pattern suhstitLtiOfl" thst

the system uses. In fact, the sheer inadequacy of this program to pertorni the task nia

make you wonder how such an approach could even be proposed. This i)iotram i

substantially farther away from being useful than was the initial program se looked

at for tic-tac-tor Is this ;usl a strawman designed to make srxmc other technique look
good in c'itnparison" in a w iv, vex. N it it is worth nieittioiiing that the a ri'ae 5i that

16	 CHAPTER I. WHAT IS 4KflFKIAI. INTELliGENCE?

this program uses, namely matching patterns, performing simple text substitutions. and
then forming answers using straightforward combinations of canned text and sentence
fragments located by the matcher, is the same approach that is usesi ii one of the most
famous "Al" programs ever written- -ELIZA, which we discuss in Section 6.4.3. But,
as you read the rest of this sequence of programs, it should become clear that what we
mean by the term "artificial intelligence" does not include programs such as this except

by a substantial stietchitig of definitions.

Program 2

This program first converts the input text into a structured internal form that attempts
to capture the meaning of the sentences. It also converts questions into that form. It
finds answers by marching structured forms against each other.

Data Strudurta

FnglishKnow	 A description o the word;, grammar, and açsp.upriate semantic
interpretations of a large enough subset of EngfiNh to acLoUnt for the
input texts that the system will see. This knowledge 01 English
used both to map input sriuieuces into an internal, mcairing-oriented
form and to map from such internal forms back into English. The
former process is used when English text is being iead: the latter is
used to generate English answers l'rorn the rneaning-orieiiied f-'
that constitutes the program's knowledge base.

tnputTexi	 The input text in character form.

Structuredl'eXi .A structured representation of the content of the tnput text. 1'hi
structure attempts to caitwe the casential knowledge contained in
the text, independenTly of the eact way that the knowledge was
stated in English. Some things that were not cxplicit,iii the Fiighsh
text, such as the referents of pronouns, have been made explicit
in this form. Representing knowledge such as this is an important
issue in the design of almost all Al programs. ExIstinpr0giITiS
exploit a variety of frameworks for doing this. There' are three
important families of such knowledge representation systems: pro-

duction rules (of the form "if r then; v"). slot-and-filler structures.
and statements in mathematical logic. We discuss all of these meth-
ods later in substantial detail, and we look at key questions that need
to be answered in order to choose a method for a particular pro-
gram. For now though. we just pick one arbitrarily. The one we've
chosen is a skn-and-filler structure. For example, the sentence "She
found a red one she really liked." might be represented as shown in
Figure 1.2. Actually, this is a simplified description of the contents
of the sertence. Notice that it is not very explicit about temporal
relatiorships (for example. events are just marked as past tense)

nor have we made an y real attempt to represent the meaning of the
qualifier 'really." It should, however illustrate the basic form that

repesei44tiOflS such as this take- One of the ke y ideas in this rt

I J WHAT IS API Al TRCFIsWQLE?
	

IN

Evem2
instance :	 I' l"Olfl

tense:	 Paci
agent :	 Mary
object:	 Thing

ThuuI
(F1sta!ict'
color :	 Red

Fient2
instance :	Liking
tense :	 Past
modifier :	 Much
ohjee :	 Tiring I

Figure i -1 A Srruclured Representation of a Sentence

of representation Is that cntiIcs in the iepreseritatiuii derive their
meaning from their connections in other entities. In the figure, onk
the entities defined b y the sentence are shown. But other entities.
correspindiii to concc'pis that the program knew about before It
read dis WUk'flCe, also exist in the representation and can be re -
(cried to within these new structures. In this example, for instance.
we refer to the entities Mart, Coat (the general concept of a coat
which Thingl is a specific instance). Liking (the general concept ol
liking). and Finding (the general concept of finding)

triputQuestion	 The input question in charactri form.

StruciQuestion A structured lepresentalion of the content of the user's question.
The structure is the same as the one used to represent the content d
the input text.

The Algorithm

Convert the lnputText into structured form using the knowledge contained in English-
Know. This .nay require considering several different potential structures, for a variety
of reasons. includingihe fact that English wordscan be ambiguous. English grammatical
structures can be ambiguous, and pronouns may have several possible antecedents.

Then, to answer a question, do the following:

I. Convert the question to structured form, again using the knowledge contained in
Englishknnw. Lise some special marker in the structure to indicate the part of the
structure that huutd be returned as the answer This marker will often orrespond

18	 CHAPTER / WHAT IS ART/F/CIA!. INTLLL!GLNCE:'

to the occurrence of a question word (like "who" or "what") in the sentence.
The exact way in which this marking gets done depends on the form chosen io
representing SttucturedText. if a slot-and-tiller structure, such as ours, is usea.
a special marker can be placed in one or wore slots. If a logical system is used
however, markei s will appear as variablew in the logical formulas that represer"

[lie question.

2. March this sti iictiircd form against StrucluredText.

Return as the answer those parts of the text that match the ieqtiested segment of

the question.

Examples

QI:	 This question is apsweied straightforwardly with. "a new coat.'

Q2: [his one also is answered successfully with. "a red coat."

Q3: This one, though, cannot be answered. since there is no direct response to it in

the text.

Comments

This approach is suhtamtiaI15 more meaning (kiiow led ge)-bascd than that of the ilisi
program and so is more effective, it can answer most questions to which replies are
contained in the text, and it is much less brittle than the first program with res pect to

the exact forms of the text and the questions. As we expect, based on our experience

with the pattern reroetiiuon and tic-tac-toe programs, the price we pay for this increased

I exibility is time spent searching the various knowledge bases (i.e.. F.nglishKnow,

StruciuredTexl).
One worc of warning k. appropriate here Thc problem of producing a knowledge

base for Engish that is powerful enough to handle it A ide range of English inputs is very

diliitult. It it, discussed at greater length in Chapter 15. liL addition, it is now recognized
that knowledge of English alone is not adeqUate in general to enable a program to
build the kird of structured representation shown here. Additional knowledge about
the world with which the text deals is often required to support lexical and synia.tii
disumbuguation and the correct assignment of antecedents to pronouns. among other
fl-ings. For example. in the text

Mary walked up to the salespeison. She asked where the toy department
was.

ills not possible to determine what the word "she" refers to without knowledge about tli
roles of customers and salespeople in stores. To see this, contrast the correct antecedent
of "she" in that text with the correct antecedent for the first occurrence of "she" in the

hollowing example:

Mary walked up to the salesperson. She asked her if she needed :rfy help

13 - 4I1AT IS ANA] TECHNQL . .

In the simple case illustrated in our coat buying e:suop, it is .hle to derrvr

correct anssscrs toour first two questions without ally attdiunal knowlcdgc about siorC
or coats. and the fact that some such additional information mav be necessary to support
question answering has already beets illustrated by the tailurc of this proor.ni III hod all

answer to question 3. Thus we see that altluiugli extiacting a structured representation
of the meaning of thr input lest is an improvement over the meanmg-liee approach el
Prograni I. it is by no means sufficient in general. So se nod to look at an even Mort
sopttsicated (i.e., knuskdge-iis!tt approach, sshich ;-. .vhai wc do ceSt

Program 3

tI i s program converts the input t ext into astructured forum that conidmits the flteatliflgs
of the sentences in the test, and then it combines that form with other structured forms
hat describe prior knowledge about time ohects ;mil siluatlUmis involved in ihricxt It
answers questiciris using this augmented knowledge structure.

Data Structures

WorldModel A stiucritreit rct)iesC'iItaIiIi of background world know ledge. Tills
strue(urC contains knowledge about objects, actions, and situation
that are described iii the innutte'st. This structure is used to construct
InnegratedTcxt from the input text. For example. Figure 1.3 shows an
example of a structure that represents the s y stent knowledge about

shopping. mis kind of stored knowledge about stereotypical CsefltS

is called a s rip! and is discussed in mr,orc detail iii Section 11.2

The notation used here di ttrs froiri the ole imor mat ly used in the
Imicratirre for the sake of simplicity. The prime notation describes
an object of the same type as the unpnnicd symbol that tna or may
not refer to the identicat object. In the case of our text. for example.

M is a ;.oat and M' is a red coat. Branches in the figure describe

aitematixe paths throu g h the script.

EnglishKnow

1nput1xt

tntegratedTcst

InpuiQuestion

Same as in Program

The input text in charactc tofu

A structured representation of 11m g knowledge contained in the in-
put text tsumilar to the structured description of Program 21 hut
combined now with other background. related knowledge.

The input question in character form.

StruciQuest ion	 A structured representation cml the question.

The Algorithm

Convert the Input Test into structured form using both the knowledge contained irm
EnglishKnow and that contained in WoridModel. The number of possible structures
will usually be greater now than it was in Progriumi 2 because so much more knowledge
is being used. Sometimes, though, it may be possible to consider fewer possibilities by
c,iuug the additional knowledge to filter the alternatives

20	 CHAPTER I. HT IS ARTIFICIAL IN!FLL!GENCE:

Shopping Script:

roles: C (customer), S (salesperson)
propv M (merchandise), I) (dollars)
location: L (a store.)

I. Centers L

2. C begins looking around

3. C looks for a specific M	 4. C looks for any interesting M

. C asks S for hrlp

7. C finds M	 8. C fails to find M

F
9. C leaves L	 10. C buys M	 I L C [eaves [.	 12. goto step 2

13.C leaves

14.(' takes M

Figure 1.3: A Shopping Script

I?. WHAT IS AN Al TECHNiQUE"
	 2!

To answer a question. do the following

I Convert the question to structured form as in Program 2 but use WoridModel if
necessary to resolve any ambiguities that may arise.

2. Match this structured form against lntegratcdText.

3. Return as the answer those parts of the text that match the requested segment of

the question.

Examples

QI:	 SamcasProgram2.

Q2: Same as Program 2

Q3: Now this question can be answered. The shopping script is instantiated for this
text, and because of the last sentence, the path through step 14 of the script is
the one that is used in forming the representation of this text. Wheti the script
is instantiated M' is bound to the structure representing the red coat (because
the script say.-i that M' is what gets taken home and the text says that a red coal
is what got taken home). After the script has been instantiated, lntegratedText
contains several eventsiliai are taken from the script but that are not described
in the otigiial [ext, including the event "Mary buys a red coat" (from step 10 of
the seript). Thus, using the integrated text as the basis for question answering

allows the program to respond "She bought a red coat."

Comments

This program is more powerful than either of the first two because it exploits more
knowledge. Thus it, like the final program in each of the other two sequences we have
examined, is exploiting what we call Al techniques. But, again, a few caveats are in
order. Even the techniques we have exploited in this program are not adequate for
complete English question answering. The most important thing that is missing from
this program is genera! reasoning (inference) mechanism to he used when the requested
answer is not contained explicitly even in lntegratedText, but that answer does follow
logically ironi the knowledge that is there. For example, given the text

Saturday morning Mary went shopping. Her brother it 	 to call her then.

but he couldn't get hold of her.

it should he possible to answer the question

Why couldn't Mary's brother reach her?

with the reply

Because she wasn't home.

22	 CHAPTER l. WHAT/S ARTIFICML iNLLLIjENcE'

But to do so requires knowing that one cannot be two places at once and then
using that fact to conchide that Mary could not have been home because she was
shopping iuisiead. Thus. alThough we avoided the inference problem temporarily by
building lntegratedTexc, which had same obvious inferences built into it. we cannot
avoid it forever. It is simply not piactical to anticipate all legitimate inferences, In later
chauiers, we look at ways of puovidimi?, a general inference mechanism that could be
used to support a program such as the la':m one in this series,

This limitation does not contradict the main point ul tiik esanipic though. In tact, it
us au1uluronal evidence for that point, namely, an etiective qucwtiuum-amiswcning procedure
must he one based soundly on knowled ge aid the computational use of that knowledge.
The purpose of Al techniques is to support this effective use of knowledge.

1.3.3 Conclusion

We have pUSL examined two series of piograms to solve two very different problems. Iii
each series, the final program exemplifies what we mean by an Al technique. these two
programs are slower to execute than the earlier ones iii their respective series brit they
illustrate three important Al techniques:

• Search---Provides a way of solving problems for which no more direct approach
is available as well as a ftarnework into which any direct techniques that are
available can he embedded.

• use of Krunwicdgc -Providea way of solving complex problems by exploiting
me structures of the objects thai are involved.

• Abstraction—Providesa way of separating important features and variations from,
the many unimportant ones that would otherwise overwhelm an y process.

For the solution of hard problems. programs that exploit these techniques have
several advantages over those that do not. They are much less fragile; they will not
he thrown off completely by a small perturbation in their input. People can easily
understand what the program's knowledge is. And these techniques can work for large
problems where more direct methods break down

We have still not given a precise definition of an Al teclinitisme. It is probably not
possible to do so. Bin we have given some examples of what one is and what one is
(lot. l'hroughout the rest of this book, we talk in great detail about what one is Tile
definition should therm hew ruuiuc a hit clearer, or less necessary.

1.4 The Level of the Model

Rehire we sun out to do sonlettiinv, ills a e .s idea lo decide xactk w,ut we cc trvinc
to do. So we must ask ourselves. "What is our goal in trying to produce piogiwos that
do the intelligent things that people do?" Are we trung to produce programs that do ttit'
tasks the same way people do? Or, are we attempting to produce programs that simply
do the tasks in whatever way appears easiest? There have been Al projects motivated
by each of these goals.

1,4. rUE LEVEL OF 7HE MODEL	 2'

Efforts to build progiams that perform tasks the way people do can be divided into
two classes. Programs in the first class attempt to solve problems that do not really

fit our definition of an Al task. They arc problems that a computer could easily solve,
although that easy solution would exploit mechanisms that do not seem to be available
to people. A classical example of this class of program is the Elementary Perceiver
and Memorizer (EPAM) I Perienbaum, 19631, which irieniuri,ed associated pairs of
nonsense syllables. Memorizing pairs of nonsense syllables is easy fur a coinpute.
Simply input them. 'to retrieve a response syllable given its associated stimulus uric, the
computer just scans for the stimulus s y llable and responds with the one stored next to
it. But this task is hard for people. EPAM simulated one way people might perform the
task. It built a (lis 	 iilcriinatic)n n(-.t t through which it could find images of the syllables it

had seen. It also stored, with each stiu'ruluus Image, a cue that it could later pass through
the discrimination net to try to find the correct response image. But it stored as a cue only
as much information about the response syllable as was necessary to avoid ambiguity
at the time the association was stored. This might be Just the first letter. for example.
Rut, of course, as the discrimination net grew and more syllables were added, an old
cue might no longer he sufficient to identity a response syllable uniquely. Thus EPAM,
like people, sometimes "forgot" previously learned responses. Many people regard
programs in this first class to he uninteresting and to some extent they are probably
right. These programs can, however, be useful tools for psychologists who want to test

theories of human performance.
'I lie second class of programs that attempt to model human performance are those

that do things that tall more clearly within our definition of Al tasks; they (10 thing'

that are not trivial for the computer. There are several reasons one might want to model
human performance at these sorts of tasks:

I. To test psychological theories of liiiiuiaii performance. One example Of a program
that was written for this reason is PARRY JCtilby, 19751, which exploited a model
of human paranoid behavior to simulate the conversational behavior of a paranoid
person. The model was good enough that when several psychologists were given
the opportunity to converse with the program via a terminal, they diagnosed its
behavior as paranoid.

2. To enable computers to understand human reasoning. For example. for a computer
to be able to read a newspaper story and then answer a question, such as "Why
did the terrorists kill llie hostages'.` its program must he able to simulate the
reasoning processes of people.

3. To enable people to understand computer reasoning In many circumstances.
people are reluctant to rely on the output of a computer unless they can understand
how the machine arrived at its result. If the computer's reasoning process is simil:rr
to that of people. then producing an acceptable explanation is much easier.

4. To exploit what knowledge we can glean from people. Since people are the best-
known performers of most of the tasks with which we are dealing, it makes a lot
of sense to look to them for clues as to how to proceed.

This last motivation is probably the most pervasive of the four. It motivated several
very early systems that attempted to produce intelligent behavior by utnitalioa peopk

24	 CHAPTER 1. WHAT/S ARTIFICIAL IWTELL/GE,vc2

at the level of individual neurons. For examples of this, see the early theoretical
work of McCulloch and Pitts [1943j. the work on perccptrons, originall y developed
by Frank Rosenblatt but best described in Percep:mns [Minsk), and Papert, 19691 and
Design for a Brain IAshhy, 19521. It proved impossible, however, to produce even
minimally intelligent behavior with such simple devices. One reasajn was that their
were severe theoretical limitations to the particular neural net architecture that was
being used. More recently, several new neural net architectures have been proposed
These structures are not subject to the same theoretical limitations as were perceptrons.
These new architcciiires are loosely called eon nectionist. and they have been used as
a basis for several learning and problem-solving programs. We have more to say
about them in Chapter 18. Also, we must consider that while human brains are highly
parallel devices, most current computing systems are essentially serial engines. A highly
successful parallel technique may be computationally intractable on a serial computer
But recently, partly because of the existence of the new family of parallel cognitive
models, as well as because of the general promise of parallel computing, there is now
substantial interest in the design of massivel y parallel machines to support Al programs.

Human cognitive theories have also influenced Al to look for higher-level tie.,
far above the neuron level) theorie-s that do not require iassive parallelism for their
implementation. An early example of this approach can be seen in GPS. which are
discussed in more detail in Section 3.6. This same approach can also be seen in much
current work in natural language understanding. The failure of straightforward syntactic
parsing mechanisms to make much of a dent in the problem of interpreting English
sentences has led man y people who are interested in natural language understanding
by machine to look seriously for inspiration at what little we know about how people
Interpret language And when people who are trying to build programs to analyze
pictures discover that a filter function they have developed isvery sirnilarsto what
think people rise, they take heart that perhaps they are on the right track.

As you can see, this last motivation pervades a great many areas of Al research.
In tact, it, in co-ljunction.with the other motivations we mentioned, tends to make [tie
distinction between the goal of simulating human performance and the goal of building
an intelligent program any way we can seem much less different than they at first
appeared. In either case, what we really need is a good model of the processes involved
in intelligent reasoning. The held of ognisive si 'enee, in which psychologists, linguists.
and computer scientists all work together, has as its goal the discovery of'such a model.
For a good survey of the variety of approaches contained within the field, see Norman
il')t ll, Anderson ll9S51. and Gardner (l985I

1.5 Criteria for Success

One of the most important quetions to answer in any scieriiiiic or engineering re',earehr
pro;ect is "How will we know if we have succeeded" Artificial intelligence is no
exception. How will we know if we have constructed a machine that is intelligent? That
question is at least as hard as the unanswerable question "What is intelligence?" Hut
can we do anything to measure our progress?

In 1950, Alan Turing proposed the following method for determining whether a
machine can think. His nieihod has since become known as the Turing lest. To conduct

L5. CRITERIA FOR SUCCESS	 25

ibis test, we need two people and the machine to be evaluated. One person plays the
role of the interrogator, who is in a separate room from the computer and the other
person. The interrogator can ask questions of either the person or the computer by
typing questions and receiving typed responses. However, the interrogator knows them

onl y as A and B and aims to determine which is the person and which is the machine.
The goal of the machine is to fool the interrogator in-Do believing that it is the person.

lithe machine snicerdc at this, then we will eoncl;ide that the toachmc can thmk. The
machine is allowed to do whatever it can to fool the interrogator. So, for example. if
asked the question 'How niuctt is 12.324 times 73,91T' it could wait several minutes
and then respond with the wrong answer [Turing, 1963.

The more serious issue, though, is the amount of knowledge that a machine would
need to pass the l't:rmng test. luring gives the following example of the sort of dialogue
a machine would have to be capable of:

lnterrogalor

A.

Interrogator:

A'

Interrogator'

A:

In the first line of your sonnet which reads "Shall I compare thee to
a summer's day," would not :'a spring day" do as well or better

It wouldn't scan.

How about "a winter's day.' That would scan all right.

Yes, but nobody wants to be compared to a winter's day.

Would you say Mr. Pickwiëk reminded you ol Chrtstmas

In a wa.

Interrogator:	 Yet Christmas is a winter's day, and I do not think Mi. Pickwick
would mind the comparison.

A:	 I don't think you're serious. By a winter's day one means a typical
winter's day, rather than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe
none ever will. But suppose we are willing to settle for less than a complete imitation
of a person Can we measure the achievement of Alin more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a tairly
precise measure of the achievement of a program. For example, a program can acquire
a chess rating in the same wa y as a human player. The rating is based on the ratings
of players whom the program can heat. Already progiams have acytimied chess ratings
higher than the vast majority of human players. For other , problem domains, a less
precise measure of a program's achievement is possible. For example. DENDRAL is
program that anal yzes organic compounds to determine their structure. It is hard to get
a precise measure of DENDRAL's level of achievement compared to human chemists.
but it has produced analyses that have been published as original research results. Thus
it is certainly performing competently.

In other technical domains. it is possible to compare the time it takes for a program
to complete a task to the time required by a person to do the same thing. For example
there are several programs in use bv computer companies to configure particular systems
to customers' needs (of which the pioneer was a program called R I). These programs
typically require minutes to perform tasks that previously required hours of a skilled

26	 Cl/A PTFR V WHAT/S ,4R7'/FICML JNYLLLJGENCE.'

engineer's time Such programs are uanally evaluated by looking at the bottom line--
whether they save (or make I money.

For many everyday tasks, though. it may be even harder to measure a program's
performance. Suppose, For example. we ask a program to paraphrase a newspaper story.
For problems such as this, the hest test is usually just whether the program responded in
a way that a person could have.

If our goal in writing i program is in in ilIn human performance at a task, then the
measure of success is the extent to which the prugrani's behavior corresponds to that
performance, as measured by various kinds of experiments and protocol analyses. In
his we do not simply want a program that does as well as possible. We want one that

tails when people do. Various techniques developed by psychologists for comparing
individuals and for testing models can be used to do this analysis.

We are forced to conclude than the question of whether a machine has intelligence
or can think is too nebulous to answer precisely. But it is often possible to construct
a computer program that meets some performance standard for a particular task. That
does not mean that the program does the task in the best possible way It means only
that we understand at least one way of doing at least part of a task. When we set out to
design an Al proglam, we should attempt to specify as well as possible the criteria for
success for that particular program functioning in its restricted domain. For the moment.
that is the best we can do.

1,6 Some General References

There are a great many sources of information about artificial intelligence. First, sonic
surve y books: The broadest are the multi-volume Handbook of Artificial Intelligence
[Barr ci al.. 19811 and Eruw.-lopedia of Artificial Intelligence [Shapiro and Eckroth,
lOS]], both of which contain articles on each of the major topics in the field. Four
other books that provide good overviews of the field are 4itif1eiai intelligence [Winston,
19841, lnt,oducnon to Artificial intelligence [Charniak and McDermott. 19851. Logical
!'o!crdutwns ofAi-ojrcial Intelligence [Genescreth and Nilsson. 19871. and Tire Elements
of Astijit-ini Intelligence [Tanimoto, 19871. Of more restricted scope is Principles
of As'nJ5i-tal Intelligence]Nilsson, 19801, which contains a formal treatment I some
general-purpose Al techniques.

The history of research in artificial intelligence is a fascinating story, related by
Pamela McCorduck 119791 in her book Machines Who Think. Because almost all of
what we call Al has been developed over the ,last 30 years, McCorduck was able to
conduct her research for the book by actually interviewing almost all of the people
whose work was influential in forming the field.

Most of the work conducted in Al has been originally reported in journal articles.
conference proceedings, or technical reports. But some of the most intereiing of these
papers have later appeared ill special collcctions published as books. Computers and
Thought JFeigenbaum and Feldman. 19631 is a very early collection of thus sort. Later
ones include Simon and Siklossy [1972]. Schank and Colby [10731- E3obrow and Collins
[1975). Watennan and Hayes-Roth [1978]. Firidler 11979), Webber and Nilsson 119811,
Halpern 11986J. Shrobc 119881, and several others that are mentioned in later chapters
in connection with specific topics.

J 7. ONh FINAL WORD	
2'

[he major journal of Al research is called simply Ariipt wi I,,tci/igeiii v In addition.

Cognitive Seien', isdevoted to papers dealing with the overlapping areas of psychology,

l inguistics, and artificial intelligence. ,tI Pt1aa::ne is a more ephemeral. less techni-

cal magazine that is published by the American Association for Artificial Intelligence

(AAAI). IEEE Eperi and several other journals puhhshpzipers about expert systems In

a wide variety of application domains
Since 1969. there has been a major Al conicrence, the luternational Joint Conference

on Artificial Intelligence (1JCAI). held every two years. The proceedings of ihes
conferences give a good picture of the work that was taking place at the time. The
other important Al conlèrencc, held three out of every four years starting in 1980. is

sponsored by the AAA]. and its proceedings, too. are published.
lii addition to these general references, there exists a whole array 01 papers and

books describing individual Al proiCctS. Rather than trying to list them all here. they.

are referred to as appropriate throughout the rest of this honk.

1.7 One Final Word

What conclusions can we draw from this hurried introduction to the major questions
of Al? The problems are varied, interesting, and hard. If we solve them. we will have
useful programs and perhaps a better understanding of human thought. We should do
the best we can to set criteria so that we can tell if we have solved the problems. and

then we must try to do so.
How actually to go about solving these problems is the topic for the test of this htik

We need methods to help its solve Al's serious dilemma:

An Al system must contain a tot of knowledge it' it is to handle aiiything hut trivial

toy problems.

?. But as the amount of knowledge grows, it becomes harder to access the appropriate

things when needed. so more knowledge must be added to help. But now there is

even more knowledge to rimaumage. so mute must be added, and so forth.

Our goal in Al is to construct working programs that coke the problems we are
interested in. Throughout most of this hook we focus on the design of' representation
mechanisms and algorithms that can be used by programs to solve the prohtem. We

do not spend much time discussing the programming process required to turn these

designs into working programs. In theor y, it does not matter how this process is carried

out, in what language it is done, or on what machine the pioduct is roil. In practice.
of course, it is often much easier to produce a program using one system rather than

another. Specifically. Al programs are easiest to build using languages that have been

designed to support symbo li c rather than primarily numeric computation.

For a variety of reasons, LISP ha s historically been the most commonly used lan-

guage for Al programming. We sa y little explicitly about LISP in this book, although
we occasionally rely On it as a notation. There used to he several competing dialects of
LISP, but Common Lisp is now accepted as a standard. If you are unfiiiiiliai' with LISP.

consult any of the following sources; LISP jWinston and Horn, 19891. Common I.i.sp
n Lisp: A GntIeHennesse.y. 19891. Common IlSPcraft Wilensky. 19861. and Comm,

28	 CHAPTER I. WHAT IS ARTIFICIAL INTELLIGENCE?

Introduction to Symbolic Computation [Touretzky, 1989a]. For a complete description
of Common Lisp. see Common Lisp; The Reference ISleck, 19901. Another language
that is often used fot Al programming is PROLOG, which is described briefl y iii Chap.
ter 6. And increasingly, as Al makes its way into the conventional programming %orld,
Al systems are being written in general purpose programming languages such as C. One
reason for this is that Al programs are ceasing to be standalone systems: instead, they
are becoming components of larger systems, which may include conventional programs
and databases of various forms. Real code does not form a big part of this book precisely
because it is possible to implement the iechnique.s we discuss in any of several languages
and it is iropintamul nut to cunfue he ideas with their specific irnplementahions But you
should keep in mind as you read the real of this hook chat both the knowledge structures
and the problem-solving strategies we discuss must ultimately be coded and integrated
into a working program.

Al is still a young discipline. We have learned many things, some of which are
presented in this hook. But it is still hard to know exactl y the pci.speclivc from which
those things should be viewed. We cannot resist quoting an ob s

ervation made by Lady
Lovelace more than 100 years ago:

In considering an y new subject, there is frequently a tendency, first, to
overrate what we find to be already interesting or remaskahlc; and, secondly.
by a sort of natural reaction, tounde,-valup the true slate nfthecase. when we
do discover that

 our not ions have suqiassed those that were really tenable.
[Lovelace, 1961

She was talknig .ahoiut Babbage's Analytical Engine. But the could have been
descrjb,n artificial intelligence

Exercises

I. Pick a specific iopic within the scope of Al and use the sources described in this
chapter to do a preliminary literature search to determine what the current stale
of understanding of that topic is. If you cannot think of a more novel topic, try
one of the IOhInWTfl. expert systems for sonic specific domiiiii (e.g. cans'er ilirr
apy, coinporer design, financial planning), recognizing motion in images, using
natural i.e., humanlike) methods for proving mathematical theorems, resolving
pronom i nal references in natural language texts, representing sequences of events
in time, ordesigning a memory organization scheme for knowledge in a computer
system based on our knowledge of human memory organization.

2. Explore the spectrum from static to Al-based techniques for a problem other that:
the two discussed in this chapter. Think of your own problem or use one of the
toll owi rig:

Translating an English sentence into Japanese

Teaching a child to subtract integers
Discovering patterns hi empirical data taken from scientific experiments.
and suggesting further experiments to find more patterns

Chapter 2

Problems, Problem Spaces, and
Search

In the last chapter, we gave a brief description of the kinds of problems with which Al is
typically concerned, as well as a couple of examples of the techniques it offers to solve
those problems. lo build a system to solve a particular problem, we need to do four

things:

I. Define the problem precisely. This definition must include precise specifications
of what the initial situation(s) will be as well as what final situations constitute

acceptable solutions to the problem.

2 Artalyie the pr(-ibleiiv A few very importaia features can have an immense impact
on the appropriateness of various possible leclirtiqies for solving the problem

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply it (them) to the particular

problem.

In this chapter and the next, we discuss the first two and the last of these issues.
Then, in the chapters in Part H. we focus nit the issue of knowledge representation.

2.1 Defining the Problem as a State Space Search

Suppose we start with the problem statement Play chess" Although ihtic are a lot

of people to whom we could say that and reasonably expect that they ssill do as we

intended, as our request now stands it is a very incomplete statement of the problem we
want solved To build a program that cculd "Play chess," we would first have to specify
the starting position of the chess hoard, the rules that define the legal thoves, and the
board positions that represent a w lit for one side or the other. In addition, we roust make
explicit the previously implicit goal of not only playing a legal game of chess but also

winning the game, if possible.

29

B

5

4

3

2

30	 CHAPTER 2 PROBLEMS, PROBLEM SPACES, .4VL' SEAkC/!

Black	 Biark

d	 b	 c	 d	 e	 a	 6	 C	 d	 e	 f	 g	 I;

White	 Whim
Figure 2.1: One Legal Chess Movc

Fut the problem "Play chess." it is fairly easy to provide a formal arid complete
problem description- The starling position can he described as an 8-by-8 array where
each position contains a symbol standing for the appropriate piece in the official chess
opening position. We can define as our goal any board position in which the opponent
does not have a legal move and his or her king k under attack. The legal naives prov!41r
the way of getting from the initial state to a goal state. They can he descnbcd easily a
a set of rules consisting of two parts: a left side that serves as a pattern to he matched
against the current hoard position and a right side that describes the ehaiige to he iaad
to the board position in ieftcci the move. There are several ways in which these rrlc.,
can be written. For example. we could write a nile such as that shown in Fi g ure 2..

However. if we write rules like the one above, we have to write a vety larc number
ofthem since there has to be a separate rule for each of the roti:h! y 101 possible b,,aet
positions. Using so many rules poses two serious practical difficulties:

• No person could ever supply a complete set of such rules. Ti Would take too long
and could certainly riot he done without mistakes

• No program could easil y handle all those rules. Alttiinigh .i too. lJng scheme could
be used to find the relevant rules for each move fa i rly quickly, just stoling that
many rules poses serious difficulties.

In order to minimize such problems, we should look for a way to write the rules
describing the legal moves in as general a wa y as possible. To Jo this. It is useful
to introduce some convenient notation for describing pattelils and suhstirniioiio For
example. the rule described in Figure 2.1. as well as many like it, could be Written iIS

shown in Figure 2.2) In general, the more succinctly we can describe the rules we need.
the less work we will have to do to provide theni and the more efficient the program that
uses them can be.

We have just defined the problem of playing chess as a problem of moving around
ii a Crate spare. where each stale coreslKituls to a legal position of the hoard. We cart

To -,C iu'nkleIy accuraIe. :1) IN ruleshould include a check for irined pieces. hicb h2,c been ignored
here.

2.1. DEFINING 1 HE PROdLEM AS A yit: sf%CE 5AR'. 	 - 1

White pawn at
Square(file e, rank 2)

AND
Square(file e. rank 3)

is empty
AND

Squarc(lile e. rank 4)
is empty

move pawn from
—	 Square(file e. rank 2)

to Squarc(filc e. rank 4)

Figure 2.2: Another Way to Describe Chess Moves

then play chess by starting at an initial state. using a set of rules to move from one
state to another, and attempting to end up in one of a set of final states. This state space
representation seems natural for chess because the set of states. which corresponds to the
set of board tiositions, is artificial and well organized. This same kind of representation
is also useful for naturally occurring, less well-structured problems. although it may be
neessary to rise more complex structures than a rrratnx to describe an individual state.
The state space represeutaloti Fomic the basic of most of the Al methods we discuss
here. Its structure corresponds to 1 1 1C slilictuiC of problem solving in two important

'says:

• It allows for a Loinsal definition of a pioi.lcm as the need to convert some given
situation into some desired situation using a set of l it.nnissible operations.

• Ii permits us to define the process of solving a particular problem as a combination
of known techniques)each represented as a role defining a siiiglc step in the space)
and search, the general technique of exploring the space to try to find sirine path
from the current state to a goal state. Search is a very Important process in the
solution of hard problems for which no more direct techniques are available.

In order to show the ecnerality of the state space representation, we use it to describe
a problem very different From that of chess.

.\ Water Jug Problem: You are given two ug%. a 4-gallon one and a
3-gallon one. Neither has any measuring markers on it. There is a pump
that cats be used to fill the jugs with water. how can you get exactly 2
gallons of water into the 4-gallon jug?

rue state space for this problem can be described as the set of ordered pairs of
integers (.r. y). such that .v 0. 1. 2. 3. or 4 and .) , = 0. I, 2, or 3:.; represents the number
of gallons of water in the 4-gallon jug, and i represents the quantity of water in Lbs

3-gallon jug. The start state is (0. 0). The goal state is 12. u) for any value of it (since
the problem does not specify how marry gallons need tube iii the 3-gallon jug).

The operators to be used to solve the problem can be des&itbed as shown in
Figure 2.3. As in the chess problem. they are represented as rules whose left sides are

The word operdior reins K' -wine r.picscntaiionof an act ion. An operator usually includes inform3licit,
.rbuC char maci be true in the world before the asiurin car iate pta. e.a,d how the world is changed by the

ri,,

32	 .H.4PTfJR 2. PROBLEMS. PkOBLEM .P.4CES, .4k!) LAJ&'/!

matched against the current state and whose right sides describe the new state That results
from applying the rule. Notice that in order to describe the operators completely, it was
necessary to make explicit some assumptions not mentioned in the ptohleni statement
We have assumed that we call a jug from the pump, that we can 1xiri, waler out oft
jug onto the ground, that we can pour water from one jug to another, and that there are
no other measuring devices available. Additional assumptions such as these are almost
always required when converting from a typical problem statement given in English to
a formal representation of the problem 'uitabl for use b a program.

To solve the water jug problem, all we need, in addition to the problem description
given above, is a control structure that loops through a simple cycle in which some rule
whose left side matches the current state is chosen. the appropriate change to the stale is
made as described in the corresponding right side, and the resulting iate is checked to
see ii ii corresponds to a goal state. As long as it does not, the cycle continues. Clearly
the speed with which the problem gets solved depends on the mechanism that is used
to select the next operation to be performed. In Chapter 3, we discuss several ways of
making that selection.

For the water jug problem. as with many others, there are several sequences of
operators that solve the problem. One such sequence is shown in FIgLIFC 2.4. Often, a
problem contains the explicit or implied statement chat the shortest (or cheapest) such
sequence be found. If present, this requirement will have a significant effect on the
choice of an appropriate mechanism to guide the search for a solution. We discuss this
issue in Section 2.3.4.

Several issues that often arise in converting an informal problem statement into a
formal problem description are illustrated by this sample water jug problem. The lust
of these issues concerns the role of the conditions that occur in the left sides of rhe

rules. All but one of the rules shown in Figure 2.3 contain conditions that must be
satisfied before the operator described by the rule can be applied. For example. the
first rule says, ''If the 4-gallon jug is not already full, fill it." This rule could, however.
have been written as. "Fill the 4-gallon jug," since it is physically possible to fifl the
pug even if it is already full. It is stupid to do so since rio change in the problem sate
results, but it is possible. By encoding in the left sides of the rules constraints that are
not strictly necessary but that restrict the application of the rules to states in which the
rules are most likely to lead to a solution, we can generally increase the etlicieney of the
problem-solving program that uses the rules.

The extreme of this approach is shown in the first tic-tac-toe program of Chapter I.
Each entry in the move vector corresponds to a rule that describes an operation. The
left side of each rule describes a board configuration and is represented implicitly by
the index position. The right side of each rule describes the operation to be performed
and is represented by a nine-element vector ibat corresponds to the resulting board
configuration. Each of these rules is maximally specific: it applies only to ii single board
cunli gmiralmnir. and, as a result, no sc;urch is required when such niles are used However,
the drawback to this extreme approach is that the problem solver can take no action
at all in a novel situation. In fact, essentially no problem wiving ever really occurs.
For a tic-tac-ioe playing program, this is not a serious problem, since it is possible to
enumerate all the Situations (i.e.. board configurations) that may occur. But br most
problems. this is not the case. In order to solve new problems, more general riles must
be available.

2.1, DEFINING THE PROBLEM AS A STATE SPACE SEARCH	 33

I	 (xy)
if x < 4

2	 (x,y.t
ify < 3

3	 (ry)
if x> 0

4 (X, y)

if) > 0
S	 (x, v)

its >0
6	 (v. y)

tfy> 0
7	 (x,)

if +y> 4 and y > 0

8 (xy)

+y > 3 and x> 0

12

-+ (4y)	 Fill the 4-gallon jug

-4 x. 3)	 Fill the 3-gallon jug

- i. x - d, y)	 Pour some water Out of
the 4-gallon jug

- (x, y - d)	 Pour some water out of
the 3-gallon jug

- (0, y)	 Empty the 4-gallon jug
on the ground

- (x, 0)	 Empty the 3-gallon jug
on the ground

- (4 y - (4 - x)) Pour water from the
3 gallon jug into the
4-gallon jug until the
4-gallon jug is full

t3 v, 31 Pour water from the
4-gallon jug into the

-gallon jug until the
3-gall oil jug is fill

- (Y, Ot	 Pour all the water
from the 3-gallon jug
into the 4-gallon jog

- (0, x + v)	 Pour all the water
from the 4-gallon jug
into the 3-gallon jug

2	 Pour the 2 gallons
from the 3-gallon jug
into the 4 :galk)n jug

-4 (0. v)	 Empty the 2 gallons in
the 4 gallon jog on
the ground

9	 (v)
iI.s.-v<4 and v -0

10	 (X, , v)

ifx+	 ., 4fld	 0

1	 (0.2

Figure 2.3. Production Rules for the Water Jug Pro!cm

34	 CHAPTLR 2. PROBLEMS, PROBLEM SPACE.. .4ND SEA..t.'tI

Gallons in the Gallons in the Rule Applieti
4 Gallon Jug	 3-Gallon Jug

I)	 (I

0	 3
9

3	 0

3	 3

4	 2
5 or 12

0	 2

9 or II
2	 0

Figure 2,4: One Solution to the Water Jug Problem

A second issue is exemplified by rules 3 arid 4 in Figure 2 3. Should they or
should they not be included in the list of available operators! Eniptyirig an unmeasureil
amount of water onto the ground is certainly allowed by the problem statement. But a
superficial preliminary analysis of the problem makes it cleat that doing so will never
get its any closer to a solution. Again. we see the tradeoff between writing a set of rules
hat describe just the problem itsclf, as opposed to a set of rules that describe both the

problem and some knowledge shout its solution.
Rules 11 and 12 illustrate a third issue. To see the problem solving knowledge that

these rules represent, look at the last two steps of the solution shown in Figure 2.4.

Once the state (4, 2) is reached, it is obvious What to do next. The desired 2 gallons
have been produced, but they are in the wrong jug. So the thing to do is to move them
(rule 11). But before that can be done, the water that is already in the 4- gallon jug must
be emptied out (rule 12. The idea behind these special-purpose rules is to capture the
special case knowledge that can he used at this stage in solving the ptohlcni. 'these
rules do not actually add power to the system since the operations they describe are
already provided by rule 9 (in the case of rule II) and by rule 5 (in the case of rule 1 2)

In fact, depending on the control strategy that is used for selecting rules to use during
problem solving, the use of these rules may degrade performance. But the use of these
rules may also improve performance if preference ..given to special-case rules (as we
discuss in Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug
problem. From these discussions, it should be clear that the first step toward the design
of a program to solve a problem must be the creation of a formal and manipulable
description of the problem itself. Ultimately, we would like lobe able to wnte programs
that can themselves produce such formal descriptions from informal ones. This process
is called operationalizzatiron, It is not at all well-understood how to construct such

2.1. DEFINING THE PROBLEM AS A STATE SPACE SEARCH	 35

programs, but see Section 17.3 for a description of one program that solves a piece of
this problem. Until it becomes possble to automate this process, it must be done by hand.
however. For simple problems, such as chess or the water jug, this is not very difficult.

The problems are artificial and highly structured. For other problems. particularly
naturally occurring ones, this step is much more difficult. Consider, for example. the
i&k of specifying precisely what it means to understand an English sentence. Although
such a specification must somehow he provided before we can design a program to solve
toe problem, producing such a specification is itself a very hard problem. Although our
ultimate goal is to be able to solve diftica!t, unsirsictured prolilems, such as natural
language understanding, it is useful to explore simpler problems. such as the water jug
problem, in order to gain insight into the details of methods that can form the basis for

solutions to the harder problems.
Summarizing what we have just said, in order to provide a formal description of a

problem, we must do the following:

1 Define a state space that contains all the possible configurations of the relevant
objects (and perhaps some impossible ones). It is, of course, possible to define
this space without explicitly enumerating all of the states it contains.

1 Specify one or niore stales within that space that describe possible situations from
which the problem-solving process may start. These states are called the .mtiaI

states.

3. Specify one or more states that would be acceptable as solutions to the problem.
These Slates are called goal states.

4. Specify a set of rus that describe the actions (operators) available. Doing this
will require giving thought to the following issue-c:

. What unstated assumptions are present in the informal problem description"

• How general should the rules be'?

• How much of the work required to solve the problem should be precomputesJ
and represented in the rules?

The problem can then be solved by using the rules, in combination with artappropri-

ate control strate g y. to move through the problem space until a path from an initial state
to a goal state is found. Thus the process of search is fundamental to the problem-solving
process. The fact that search provides the basis for the process of problem solving does
not, however, mean that other, more direct approaches cannot also be exploited. When
ever possible. they can be included as steps in the search by encoding them into the
rules. For example. in the water jug problem, we use the standard arithmetic operations
as single steps in the rules. We do not use search to find a number with the property
that ,t is equal to v -- 4 r). Of course, for complex problems, more sophisticated
computations will be needed Search is a general mechanism that can be used when no
more direct method is known. At the same time, it provides the framework into which
more direct methods for solving subparts of a problem can be embedded

36	 CHAPTER 2. PROBLEMS, PROBLM SPACLS. A!v1) M?CH

2.2 Production Systems

Since search forms the core of many intelligent proeesscs, it is uscfu to Structure
Al prografns in a way that facilitates describing and performing the search process.
Production systems provide such structures. A definition of a poxiuctiori system is
given below. Do not be confused by other uses of the word prothwlion, such as to
describe what is done ilk factories. A production svsrem consists of;

A set of rules. cacli consisting of a left side (a pattern) that detcrrniims the
applicability of the rule and a right side that describes the operation to be performed
f the rule is applied.

• One or more knowledge/databases that contain whatever information is appropri-
ate for the particular task. Some parts of the database may be permanent, will
other parts of it may pertain only to the solution of the current problem. The
information in these databases may be structured in any appropriate way.

• A control strategy that specifies the order iii which the ruleS will he compared
to the database and a way of resolving the conflicts that arise when several niles
ii	 at once.

• A rule applier.

So far, our definition of a production system has been very genel'al. It encompasses
a great many Systems, including our descriptions of both a chess player and a water jug
problem solver. It also encompasses a family of general production system interpreters,
including:

• Basic production system languages, such as OPS5 [Brownstonci al.. 19851 and
ACT (Anderson, 19831.

• More complex. often hybrid systems called t'Wert system shells, which piovide
complete (relatively speaking) environments for the construction of knowledge-
based expert systems.

• General problem-solving architectures like SOAR [Laird etal., 1987], a system
based on a specific set of cognitively motivated hypotheses about the nature of
problem solving.

All of these systems provide the overall architecture of a production system and
allow the programmer to write rules that define paiular problems to be solved. We
(IiSCUSS production system issues further in Chapter b.

We have now seen that in order to solve a problem, we must first reduce it IL) IIF1C

for which a precise statement can he given. This call done by defining the problem's
slate space (including the start and goal slates) and a set of operators for moving in
that space. The problem call 	 be solved by searching for a path through the space
from an initial state to a goal state. The nrocess of solving the problem can usefully be

convenuon for the use of left and right sides is naitiral for forward rules As we will see later. msnv
backward nile systems reverse the sides.

2.2, PRODUCTION SYSTEMS
	

37

modeled as a production system. In the rest of this section. we look at the problem of
choosing the appropriate control structure for the production s ystem so that the search

can be as efficient as possible.

2.2.1 Control Stralegies
So far, we have uuiiipletcly ignored the qin'stion of how to decide which tale to apply
next during the process of searching for a solution to a problem. This question arises
since often more than one rule (and sometimes fewer than one rule) will have !is left
side match the current state. Even without a great deal of thought, it is clear that how
such decisions are made will have a crucial impact on how quickl y, and even whether.
a tiroblem is finally solved.

• The first rrqtliremenl of a good control strategy 13 that it cause motion Consider
again the water jug problem of the last section. Suppose we implemented the
implc control strategy of starting each time at the top of the list of rules and

choosing the first applicable one. If we did that, we would never solve the
problem. We would comilimiuc iiidIinitely tilling the 4-gallon jug with watel
Control strategies that do not cause motion will never lead to a solution.

The second requirement of a good control s(-aseg y is that it he s ystematic Here is
another simple cont rol strateg y for the water jug problem: On each cycle, choose
at random from among the applicable rules. This strategy is better than the first.
It causes motion. It will lead to a solution eventually. But we arc likely to airive
at the same state sevetal tiTHes during the process and to use many more steps than
are necessary. Because the control strategy is not systematic, we may explore
a particular useless sequence of operators several times before we finally find a
solution. The requirement that a control strategy be systematic corresponds to
the need for global motion (over the course of several steps) as well as for local
motion (over the course of a single step). One systematic control strategy for the
watem jug problem is the following. Construct a tree with the initial state as its
root. Generate all the nlTspriimg of the root b y applying each of the applicable
rules to the initial stale. Figure 2.5 shows how the tree looks at this point. Now
for each leaf node, generate all its successors by applying all the rules that are
appropriate. The tree at this point is shown in Figure 2,0 Continue this process
until some rule produces a goal state. This process, called breadth-first search,
can be described precisely as follows.

Algorithm: Breadth-First Search

I Create a variable called NODE-LIST and set 1110 the initial state.

2. Until a goal slate is found or NODE-LIST is empty do:

(a) Remove the first element from NODE-LIST and call it F. If NODE-LIST

was empty. quit

4 RuteS 3.4. II, and 12 have been ignoreo in cansU'ucltr. g ihe search tree

CHAPTER 2 PROBLEMS. PROBLEM S1MCiS t'V1') St ARC//

(0,0)

_____	 (0,3)

Figure 2.5: One Level of a Breadth First Search Tree

Figure 26: Two Levels of a Breadth-First Search Tree

(b) For each way that each rule can match the state described in Edo:

i. Apply the rule to generate a new stale.
ii. If the new state is a goal state, quit and return this state.

iii. Otherwise, add the new state to the end of' NODE-LIST.

Other systematic control strategies are also available. For example, we could pm sue
a single branch of the tree until it yields a solution or until a decision to terminate the
path is made, It makes sense to terminate a path if it reaches a dead-end, produces a
previous state, or becomes longer than some prespecihed "futility" limit. In such a case.
backtracking occurs. The most recently created state from which alternative moves are
available will he revisited and a new stale will he created. This form of backtracking is
called chronologicalhwJj1-k18 hecatise the order in which steps arc undone depends
only on the temporal sequence in which the steps were originally wade. Specifically,
the most recent step is always the first to he undone. This form of backtracking is what
is usually meant by the simple term Fxzcktrw kin. But there are other ways of retracting
steps of a computation. We discuss one important such way, dependency-directed
backtracking. in Chapter 7. Until then, though, when we use the le g-rn backtracking, if
means chronological backtracking.

The se-arch procedure we have just described is also called depth-first search. The
following algorithm describes this precisely.

2.2. PRODUCTION SYS1EM'.

7
EE

Figure ?— 7: A Depth-First Search Tree

Algorithm: Depth-First Search

I. If the initial state is a goal state, quit and return success.

2. Otherwise, do the following until success or failure is signaled:

(a) Generate a successor, L, of the initial state. It there are no more successors,

signal failure.

tb ('all Depth-First Search with F as the initial state.

(C) If success is returned, signal success. Otherwise continue in this loop.

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A

comparison of these two simple methods produces the following observations.

Advantages of Depth-First Search

• Depth-first search requires less Mem0rV since only the nodes on the currelt path
are stored. This contrasts with breadth-first search. where all of the tree that has

so far been generated must be stored.

• By chance (or if caic is taken in ordering the alternative successor states). depth-
first search may find a solution without examining much of the search space at
all. This contrasts with breadth-first search in which all parts of the tree must be

examined to level n before any nodes on level ri + I can be examined. This is
particularly significant if many acceptable solutions exist. Depth-first search can

stop when one of them is found.

Advantages of Breadth-First Search

• Breadth-first search will not get trapped exploring a blind alley. This contrasts
with depth- first searching, which may follow a single. unfruitful path for a very
long time, perhaps forever, before the path actually terminates in a state that has
no successors. This is a particular problem in depth-first search if there are loop-

CHAP'IER 2 PROBLEMS, PROBLEM SPACES. AND SEAR(--H

(i.e., a state has a successor that is also one of its ancestors) unless special care is
expended to test for such a situation. The example in Figure 2.7. if it continues
always choosing the first (in numerical sequence) rule that applies, will have
exactly this problem.

If there is a solution, then breadth-first search is guaranteed to find it. Furthermore,
if there are multiple solutions, then a minimal solution (Le., one that requires the
ninirnum nuinbei of stcis) will be fo:ind. This is guaranteed by the fact that longer
paths are never explored until all shorter ones have already been examined. This
contrasts with depth-first search, which may find a long path to a solution iii one
pan of the tree, when a shorter path exists in some other. unexplored part of ihr
tree.

Oearly what we would like is a way to combine the advantages of both of these
methods. In Section 3.3 we will talk about one way of doing this when WO have some
additional information. Later, in Section 125. we will describe an uninfoirried way of
doing so.

For the water jug problem, most control strategies that cause motion and are sys
tematie will lead to an answer. The problem is simple. But this is not always the case.
In order to solve some problems during our lifetime, we must also demand a control
tructure that is efficient.

Consider the following problem.

The Traveling Salesman Problem: A salesman has a list of cities, each
of which he must visit exactl y once. There are direct roads between each
pair of cities on the list. Find the route the salesman should follow for the
shortest possible round trip that both starts and finishes at any one of ilic
cities.

A simple, motion-causing and systematic control structure could, iii principle, solve
this problem. It would simply explore all possible paths in the tree and return the one
with the shortest length. This approach will even work in practice for very short lists of
cities. But It breaks down quickly as the number of cities grows. 11 there are N cities,
then the number of different paths among theiii is I -2 . (N - 1), or N - I)' The time
to examine a single path is proportional to N. So the total time required to perform this
search is proportional to N!. Assuming there are only 10 cities. 10! is 3,628.800, which
is a very large number. The salesman could easily have 25 cities to visit. To solve this
problem would take more time than he would be willing to spend. This phenomenon is
called combinatorial explosion. To combat it, we need a new control strategy.

We can beat the simple strategy outlined above using a technique called branch-
and-bound. Begin generating complete paths, kccu-.og track of the shortest path found
so far. Give up exploring any path as soon as partial length becomes greater than
the shortest path found so far. Using (his technique. we are still guaranteed to find the
shortest path. UnfnrlLlmiately. although this algorithm is more efficient than the first one,
it still requires exponential time. The exact amount of time it saves for a particular
problem depends on the order in which the paths are explored. But it is still inadequate
for solving large problems.

	

22. PRODUCTION SYSTEMS
	 41

2.2.2 Heuristic Search

In order to solve many hard problems eflicienily, it is often necessary to compromise
the requirements of mobility and systematicilY and to construct a control structure that
is no longer guaranteed to find the best answer but that will almost always find a

good answer. Thus we introduce the idea of a heunstic. 5 A heuristic is a technique

that improves the efficiency of a search process, possibly by sacrific i ng claims ('i

completeness. Heuristics are like tout guides. They are good to the extent that they
point in generally interesting directions: they are bad to the extent that they may mi,;s
points of interest to particular individuals. Some heuristics help to guide a search process
without sacrificing any claims to completeness that the process might previously have
had. Others (in fact, many of the best ones) may occasionally cause an excellent path
to be overlooked. But, on the average, they improve the quality of the paths that are
explored. Using g&ttxl heuristics, we can hope to get good (though possibly nonoptimal
solutions to hard problems, such a, the traveling salesman. in less than exponential
time. There are some good general-purpose heuristics that are useful in a wide var1et
of problem domains. In addition, it is possibic to construct special-purpose heuristic
that exploit domain specilic knowledge to solve particular problems

One example of a good general purpose heuristic that is useful for a varitty kit

combinatorial problems is the nearest neighbor heuristic, which works by selecung LIT-

locally superior alternative at each step. Applying it to the traveling salesman problem.

we produce the following procedure

I Albitranly select a starting city.

2. To select the next city, look at all cities not yet visited, and select the one elosesi

to the current city. Go to it iic.st.

. Repeat step 2 uniii all cities have been visited.

This procedure executes in time proportional to N2 . a significant improvemen t ove.'

and it is possible to prove an upper bound on the error It
incurs. For gcneral-PUTPO'lt

heuristtcs, such as nearest neighbor, it is often possthi' to prove such c.-Tor-bounds,
which provides reassurance that one is not paying too high a 1.incc in accuracy loi speed.

in many Al problems, however, it is not possible to produce such ceas.sIiriulg bounds.

'11I	 r true for two reasons:

• For real world problems, it is often, hard to measule piecisely the saluc ot it

particular solution. Although the length of a trip to several cities is a precise

notion, the appropriatenes s of a particular ;e'sportse to such questions as " Wh"

has inflation increased?" is much less so.

• For real world problems, it is often useful to introduce heuristics based ot, .ela

lively unstructured knowledge. It is often impossible to define this knowledge in
such a way that a mathern2 ical analysts of ii. 'ffec: ic,:hce:'.rCh proess can h

performed.

The word heur istic c ..,esfrnmtheGTv-e	 h,',i.ct.ii. ,ti,iflg '10	 v.tlCti IS -is('
I lui	 ­­ 11. 1 ltit"!I.l Whi'i'

h.' t'aJ liscc"ete,t a nirihixi for let , rniinimg the pi, rIls t,r ,olit

42	 CHAP11R 2. PROBLEMS. PROBLEM SPA(uS, AND .IFAF?CH

There are many heuristics that, although they are not as general as the nearest
neighbor heuristic, are nevertheless useful in a wide variety of domains. For esainple,
consider the task of discovering interesting ideas in some specified area. The following
heuristic [Lenat, 1983b1 is often useful.

If there is art interesting function of two arguments f(x, v), look at what
happens if the two arguments are identical.

In the dotitain of mathematics, this heuristic leads to the discovery ot rqsiarLiig iif i
the multiplication function, and it leads to the dkcovery of an iden:Th function if f is the
function of set union. In less formal domains, this same heuristic leads to the iiscover
of introspection iff is the function contemplate or it leads to the notion of suicide ilf is

the function kill.
Without heuristics, we would become hopelessly ensnarled in a combinatorial ex-

plosion. This alone might be a sufficient argument in favor of their use. But there aie
other arguments as well:

Rarely do we actually need the optimum solution; a good approximation will
usually serve very well. In fact, there is some evidence that people. when they
solve problems, are not optimizers but rather arc satisficers ISirnon. 19811. In
other words, they seek any solution that satisfies some set of requirements, and as
soon as they find one they quit. A good example of this is the search for parking
space. Most people stop as soon aS hey find a fairly good space, even if there
might he a slightly better space up ahead

• Although the approximations produced by heuristics may not be very good in the
worst case, worst cases rarel y arise in the real world. For example, although many

-graphs are not separable (or even nearly so) and thus cannot be considered as a
set of small problems rather than one large one, a lot of graphs describing the teal
world are.6

• Trying to understand why it 	 works, or why it doesn't work, often leads
to a deeper understanding of the problem.

One of the best descriptions of the iroportance of heuristics in solving interesting
problems is How to Solve It IPolva, 19571. Although the focus of the book is the solution
of mathematical problems, many of the techniques it describes are more generally
applicable. For example, given a problem to solve, look for a similar problem you
have solved before. Ask whether you can use either the soluiioi of that problem or the
method that was used to obtain the solution to help solve the tie problem. Polya's
work serves as al excellent guide for people who want to become better problem
solvers. Unfortunately, it is not a panacea for Al for a couple of reasons. One is that
it relies on human abilities that we must first understand well enough to build into a
program. For example, man y of the problems Polya discusses are geometric ones in
which once an appropriate picture is drawn, the answer can be seen immediately. But to
exploit such techniques in programs, we must develop a good way of representing and
manipulating descriptions of those figures. Another is that the rules are very general.

5 Forargumenicin supportof this. ice Simon 1981).

.1

2.2. PRODUCTION SYStEMS

They
have extremely underspccified left sides, so it is hard to use them to guide ii

realty only
search— -too many of them are applicable at once. Many of the rules are

useful for looking back and rational iiiflg a solution after it has been found. In este.

the problem is that Polya's rules have not been operationalized.
NeverthelCS'. Polya 'as several steps ahead of Al. A comment he made in the

preface to the lirsi printing (1944) of the hook is interesting in this respect:

Tlut following pagcs arc wr:tlen oinewhat concisely. hi as 'simply as po-
sible, and ate based on a long and serious study of methods of solution. Thi.

sort of study, called heuristic by some writers, is not In fashion rriadiiys

but has a long past and. perhaps, some future

There are two major ways in which doinarn-specifle. hcuii:,tic Knowledge cn be

i ncorporated into a rule-based search procedure

• In the rules themselves. For es.inplc, the rules lot a chess -pla)ing system might
describe not simply the set of legal moves but rather a ct of "sensible" moves, as

determincil by the rule writer.

• As a heuristic function that evaluates individual problem states and deteroilflCS

how desirable they are..

A hcuri qi (% fjjrjt non is a fundion that maps from problem state descriptions to measures

of desirability, usually represented as nuflibe rN . Which aspects 01 the problem state are

considered, how those aspects are evaluated, and the weights given to individual aspects
are chosen in such a way that the value of the heuristic function at a given node in
ile' srarcll process gives as goid all estimate as possible of whether that node is on the

sired path to a solution.
Well-designed heuristic functions can play an i

mportant part in efficientlyguiding

a search process toward a soluti on . Sometimes very SicILpIC heuristic ucttoi can
provide a fairly good estimate of whether a path is any good or nut. Lu other situations,

si	 le
more complex heuristic functions should be eiiipioyed. Figure 2. shows some mp
heuristic functions for a few problems. Notice that socnrtliflCS a high value of the

heuristic function indicates a relativel y good position (as shown for chess and tic tac-

toe), while at other times a low saluc indicates an advantag'aUS situation tas shown
for the traveling sJesrnaiit It does not matter, in gerrer.tl. which way the function is
stated. The program that uses the values ot'the function cart attempt to minlrfliLe it oi

'0

toast utile It as appropriate
l'hc purpose of a heuristic functions to guide ,he search process in the most profitahle

dicCctiofl by suggesting which path to follow first when more than one is available. The
more accurately the heuristic tunct'on estimates the true merits of each node tu Me
search tree (or graph), the more direct the solution piocess. In the extreme. the heuristic
function would be so good that essentially no search sould be required. The system

would move directl y to a srtiution. But for many probteruN. the Cost of Computing the

value of such a function world outweigh the effort saved in the search process. After

all, it would be possible to compute a perfect heuristic function b y doing a complete

search from the node in question and determining whether it leads to a good solution.

al, there is a trade-ott between the COSt of evaluati;i	 uria hestic functio
hi genet

n and

the savings in search time that the lunction provides

4	 CHAPTER 2. PROBLEMS PROBLEM SPACES. AND EAR(,-,

Chess	 the material advantage of our
side over the opponent

Traveling Salesman	 the sum of the distances so far

Tic TacToe	 1 for each row in which we could
win and in which we already have
one piece plus 2 for each such
row in which we have two pieces

Figure 2.8: Some Simple Heuristic Functions

Iii the previous section, the solutions to Al problems were described as centering on
a search process. From the discussion in this section, it should be clear that it can more
Precisely be described as a process of heuristic search. Some heuristics will he used
to define the control structure that guides the application of rules in the search process.
Others, as we shall see, will be encoded in the rules themselves. In both cases, they will
represent either general or specific world knowledge that makes the solution of hard
problems feasible. This leads to another way that one could define artificial intelligence:
the study of techniques for solving exponentially hard problems in polynomial time by
exploiting knowledge about the problem domain.

23 Problem Characteristics

Heuristic search is a very general method applicable to a large class of problems, It
encompasses d variety of specific techniques, each of which is particularl y effective
for a small class of problems. in order to choose the most appropriate method (or
combination of meth(As) for a particular problem, it is necessary to analyze the problem
along several key dimensions:

• Is the problem decomposable into a set of (nearly) independent smaller or easier
subproblems?

• Can solution steps be ignored or at least undone if they prove unwise?

• Is the problem's universe predictable?

• Is good solution to the problem obvious without comparison to all other possible
solutions?

• Is the desired solution a state of the world or a path to a state?

• Is a large amount of knowledge absolutely required to solve the problem, or is
knowledge important only to constrain the search?

• Can a computer that is simpl> given the problem return the solution, or will the
solution of the problem require interaction between the computer and a person?

4 .5
3. PROBL..LM (IIwaIR!TiCS

(.	 7
3

x +3x+stn
2
Xc0s.di

S
x 2di	 J3x di	 5 SID 2. COSX

I	 I
5 it

. rc tnc2r

$ cos dk	 -J cos4 s dx

-51 J	 .jcos2.s di

I	 I
slaZ

Figure 2.9: A Decompostible Problem

in the ,est of this section, we examine each of these questions in greater dctail
Notice that some of these questions involve not just the statement of the prnhLffl)tell

hut aiso cr.aracieflSliC s of ti s0 lutioiith4i is lestred and the circumStanCes wider wlilLh

11w colutiOfl must take Place.

2.3.1 Is the Problem DetornpOsab1e?

Suppose we wflL to SO Ne the pRihlIl ut 'ompt1lIr1i the cxp1esStO

+ + snr cosx dx

We can solve this problem by breaking it down into three smaller problem ,,. cch ol

which we can then solve by using a small collection of specific rules. Figure
2.Y shows

the problem tree that will be f.ertcrated by the process or problem decomposition as it can
be exploited by a simple recursive integration program that works as follows At each
step. it checks to scC whether the problem it is working On i'. immediately

solvable. If so,

then the answer is rctuincd directly. the problem is not easily solvable, the integrator
cheeksin we wbthcr it can decotmipSe the problem into smaller problems. If it can

It creates those problems aod ..tl ' itself recursively on them. Using this technique o

pra&m decomposliiofl, we can often .olve scry large problems easily
Now consider the problem illustrated in Figute 2. d Th -. problem is drawn from the

domain often referred to in Al loerature as the b!0Ck3 world. Assume that the foiowtng

.perdiors arc available

46	 CF1tPILR 2. PiOBLEvIS, PROBLEM SPACES, AND SEARCJ-'

Start:	 Goal:	
A

C	 B
A [L	 C

ON(C, A)	 ON(B, C) and ON(A, B)

riure 2. Q: A Simple Blocks World Problem

ON(B, C) and ON(A, B)

ON(B,C) J
Put B on C

ON(B,C) I

F"

CLFAR(A)]	 ON(A,B)

Move A to table	 Put	 A on H

CLEAR(A)!	 I ONA. B)

ligure 2	 A Proposed Solution for the Blocks Problem

1. CLEARu) (block u has nothing on i, I -. flN(t. Table) [pick upz and put it on
the table

2. CLEAJ((A) and CI.EAR(y) -. ONtr, v) [put .r on v

Applying the technique of problem deconiposition to this simple blocks world 'x-
ample would lead to a solution tree such as that shown in Figure 2.1 I. In the figure,
goals are underlined. States that have been achieved are not underlined. The idea of this
solution is to reduce the problem of getting B on C and A on B to two separate problems.
The first of these new problems, getting B on C. is simple, given the start state. Simply
put B on C. The second subgoal is not quite so simple. Since the only operators we
have allow us to pick up single blocks at a time, we have to clear off A by removing C
before we can pick up A and put it on B This can easily be done. However, if we now
try to combine the two subsolutions into one solution, we will fail. Regardless

of
which

one we do first, we-will not be able to do the second as we had planned. In this problem.
the two subproblems are not independent. They interact and those interactions must be
considered in order to arrive at a solution for the entire problem.

These two examples, symllic integration and the blocks world, illustrate the differ-
ence between decomposable and nondccomposabk problems. In Chapter 3, we present
a specific algorithm for problem decomposition. and in Chapter 13, we look at what
happens when decompositioni impossible.

23. PROBLEM CHARACTERISTICS
	 47

Start	 Goal

	

2 8 3	 2fi

	

5	 ^7 6 5

Figure 2.12: An Example of thr 8-Pu/Lie

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are tr y ing to prose j mathematical theorem. We proceed b first proving

lemma that we think will be useful. Eventually, we realize that the lemma is no help at
all. Ate WC 10 t1l)UhiC

No. E&iyihiitg we need to kiii iv. to prove the theorem is still true and in melnor\,
if it ever was. Any rules that could have been applied at the outset can still be applied.
We can just proceed as we should have in the first place All we have lost is the effort
that was spent exploring the blind alley.

Now consider a different problem.

The 8-Puzzle: The 8-puzil is a square tray in which are placed. eight
square tiles. The remaining ninth square is uncovered. Each tile has a
number on it. A tile that is adjacent to the blank space can he slid into that
space. A game consists ol it starting position and a specified goal position.
The goal is to transform the i:irlingposition into ihc goal position by sliding
die tiles around.

A sample game using the 8-puzzle is shown in Figure 2.12. in attempting to solve the
8-puz71c. we might make a stupid move. For example, in the game shown above, we
might si.tn by sliding tile 5 into the empty space. having done that, we cannot change
our mind and immediately slide tile 6 into the empty space since the empty space will
essentially have moved. But we can backtrack and undo the first move, sliding tile 5
back to where it was. 1 -hen we can move tile 6. Mistakes can still be recovered from
but not quite as easily as in the theorem-proving problem. An additional step must
be performed to undo each incorrect step, whereas no action was required to 'undo" a
useless lemma. in addition, the control mechanism for an 8.puzzk solver must keep
track of the order in which operations are performed so that the operations can be undone
one at a time if necessary The control structure for a theorem prover does not need to
record all that information.

Now consider again the problem of playing chess. Suppose a chess-playing program
makes a stupid move and realizes it a couple of moves later. It cannot simply play as

though it had never made the stupid move. Nor can it simply back up and start the game
over from that point. All it can do is to try to make the best of the current situation and
go on from there.

48	 CHAPTER 2. PROBLEMS, PROBLEM SPACES. AND SEARCH

These three problems—theorem proving, the 8-puzzle, and chess—illustrate the
differences between three important classes of problems:

• Ignorable (e.g.. theorem proving), in which solution steps can be ignored

• Recoverable (e.g.. 8-puzzle), in which solution steps can be undone

• Irrecoverable (e.g.. chess), in which solution 'tcps cannot be undone

These three definitions make reference to the steps of the solution to a 1noblein ard
thus may appear to characterize particular production systems for solving a problem
rather than the problem itself. Perhaps a different formulation of the same problem
would lead to the problem being characterized differently. Strictly speaking, this is
true But fora great many problems. there is only one (or a small number of e';sentiall
equivalent) formulations that nurumllv describe the problem. This was true for each of
the problems used as examples above. When !his is the case, it makes sense to view the
recoverability of a problem as equivalent to the recoverability of a nauttal foiniulatien
of it.

The recoverability o a problem plays an important role in determining the complex-
ity of the control structure necessary for the problem's solution. Ignorable problems
can be solved using a simple control structure that never backtracks. Such a control
structuje is easy to mniplemnent. Reenvemable problems can be solved by a slightly more
complicated control strategy that does suilletinics make mistakes. Backtracking will la'
necessary to recover from such mistakes, so the control structure must be iiiipleinciitemi
using a push-down stack, in which decisions are recorded iii case they need to he undone
later. Irrecoverable problems, on the other hand, will need to be solved by a system
that expends a great deal of etloil making each decision since the decision must be
final. Some irrcoverable problems can be solved by recoverable style methods used
in a plrinninm,' I rocess. iii winch an entire sequence of steps is analyzed in advance to
discover where it will lead before the fist step is actuall y taken. We discuss next the
kinds of proheins in which this is possible.

2.3.3 Is the Universe Predictable?

Again suppose that we are playing with the 8-puzzle. Every time we make a move, we
know exactly what will happen. This means that it is possible to plan an entire sequence
01 m'jves and be confident that we know what the resulting state will be. We can use
planning to avoid having to undo actual moves, alilit ugh it %% ill still he necessary to
backtrack past those moves one at a time during the planning process. Thus a control
structure that allows backtracking will be neces ry.

However, in games other than the 8-puzzle, this planning process may not be possi-
ble. Suppose we want play bridge. One of the decisions we will have to make is which
card to play on the first trick. What we would like to do is to plan the entire hand before
making that first play. Bur now it is 1101 possible to do such planning with certainty
since we cannot know exactly where all the cant ' He or what the othet players will di:
on their turns. The best we can do is to investigate several plans and use probabilities
of the various outcomes to choose a plan that has the highest estimated probability of
leading to a good score on the hand

23. PROBLEM CHARACTE-R(S11CS

These two games illustrate the difference between certain-outcome (e.g. 8-pu7zle)
and uncertain-outcome (e.g.. bridge) problems. One way of describing planning is that it

is problem solving without feedback from the environment. For sot ving certain -outcome
problems. this open-loop approach will work fine since the result Of an action can he
predicted perfectly. Thus, planning can be used to generate a sequence of operators that
is guaranteed to lead to a solutiow ho unceitalii-outCoiIiL: problems, lioever. planning
can at best generate a sequence of operators that has a good probability of leading in a
solution. To solve such probleriis, we need to allow for a process of plan rev'sini to take

place as the plan is carried out and the necessary feedback is provided. In addition to
providing no guarantee of art actual olutiun, planning for uncertain -outcome problems
has the drawback that it is often very expensive since the number of solution laths that

need to be explored increases exponentially with the number of points at which the

outcome cannot be predicted
The last twoproblem characteristics we have discussed, tgnorablevei sus recoverable

versus irrecoverable and certain-outcome versus uncertain-OuTcOrne. interact i n an in-

teresting way. As has already been mentioned, one wa y to solve irrecoverable problems

is to plan an entire solution before embarking on anan implementation of the plan But

this planning process can onl y be done effectively for certain-outcome problems. Thus
one of the hardest types tif prrihlcnis to solve is the irrCCOsCrat)IC. uncertain outcome.
A few examples of such problems are:

Playing budge. But we can do fairly well since we have available accurate
estimates of the probabilities of each of the possible outcomes.

• Controlling a robot urns. The outcome is uncertain for a variet y of reasons

Someone might move something into the path of the arm. The gears of the arm
might stick. A slight error could cause the arm to knock oser a whole stack of
thin as.

• Uelptiig a lawyer decide how to defend his client against a murder charge. 1-Ecre
we probablv cantiut esen hit all the pusible outcomes, much less assess their
probabilities

2.3.4 Is a Good Solution Absolute or Relative?

Consider the problem of answerin g questions based on a database of simple facts, such
as the following:

I. Marcus was a man.
2. Marcus was a Pompeian.
3. Marcus was born in 40 A.D.
4. Ail men are mortal.
5. All Pompeians died when the volcano erupted in 79 A.D.
6 No iniirial lives longer than 150 years.
7.11 is now 1991 A.D.

Suppose we ask the question 'Is Marcus alive?' By representing each of these facts
in a formal Ianu,iee. such us predicate logic, and then using formal inference methods

50	 CHAPTER 2 PROBLEMS, PROBLEM SPACES, AND SEARCH

Justification

1. Marcus was a man.
4, Al! men are mortal.
8. Marcus is mortal.
3. Marcus was boin in 40 AD.
7
	

It is now 1991 A.D.
9.	 Marcus' age is 1951 years.
6. No monal lives longer than 150 years

10. Marcus is dead.

OR

7. Itisnow 199 AU
5.	 All Pompeians died in 79 A.D.

II. All Pompeians are dead now.
2. Marcus was a Pompeian.

12.	 Maicusj'.dead.

axiom I
axiom 4

1,4
axiom 3
axiom 7

3. 7
axiom 6
8. 6,9

axiom 7
axiom 5

5
axiom 2

ii. 2

Figure 2.13: Two Way. of Deciding 'Iliat Marcus Is Dead

Boston,J_ew Y i MiarniDaflas - I S.F.
Boston	 20	 ! 4501700 3000
New York , 250	 1 1200 1 1500 2900

I Miami	 I	 20
I [)allasiTOTt	 O0'1 - 16(X)	 11700

Li 11 ii3000	 2900	 3300	 17(X)

Figure ' 4: An Instance of the Traveling Sale"i.n Problem

-

we can fairly easily derive an answer to the question." In fact, either of two reasoning
paths will lead to the answer, as shown in Figure 2.13. Since all we are interested in is
the answer to the que7tion, it does not matter which path we follow. If we do follow one
path succcssiullv to the answer, there is no reason to go back and see it some other path
might also lead to a solution.

But now consider again the traveling salc'iiian problem. Our goal is to find the
shortest route that visits each city t'saclly onzt' Suppose the cities to he visited and the
distances between them are as shown in Fiiurc 2.14.

One place the salesman could start is Boston. In that case, one path that might be
followed is the one shown in Figure 2.15. which is 8850 miles long. But is this the
solution to the problem'! The answer is that we cannot be sure unless we also try all

course. represenhtng these sia!emenIs so that a inechan,cai procedure couSi exploit them to ancwer
the question also requact ifur expl ici t mention or culier tacts. such a ...cienif iniplics not .ttse " We do :his in
(.'t'apier 5.

Li PROBLEM CHARACTERISTICS

Boston
(3000)

San Francisco

i.j700

Dallas

00)w York

((200)

Miami

(14.50)

Boston

Tolai: (88501

Figure 2.15: One Path among the Cities

other paths to make sure that none of them is shorter. In this case, as can he seen from
Figure 2.16, the first path is definitely not the solution to the salesman's problem.

These two examples illustrate the difference between any-path problems and best
path problems. Best-path problems are, in general, computatioflallY harder than any-path
problems. Any-path problems can often be solved in a reasonable amount of time by
using heuristics that suggest good paths to explore. See the discussion of best-first
search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible. hut that does not matter. For true
best-path problems, however. no heuristic that could possibly miss the best solution can

be used. So a much more exhaustive search will he 1ertormed.

2.33 Is the Solution a State or a Path?

Consider the problem of finding a consistent interpretation for the sentence

The hank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, in isolation, may have
more than one interpretation. But the components must form a coherent whole, and so

they constrain each other's interpretations. Some of the sources of ambiguity in this

sentence are the following:

The word "bank" may refer either to -a financial institut ion or to a side of a river.

But only one of these may have a president.

, "/7/2

52	 CHAPTER 2 PROBLEMS, PROBLEM SPACLS. .4N1) .cMRC,1

Boston
13000	 ,'	 -.,. (250)

San Fraiwisco I I New York

(I7(t)	

EDallas

Dallas]	 Mi

(i500t /
	

600)

I New York 1
t200) /
	

\ (1700)

Miami	 [ian Francisco

14	

j

(50) /
	 (30(X)p

Boston	 Boston

Total (8850)	 'Final 0 1 So

Figure 2.16: Two Paths Among the Cities

• i h word "dish" is the object of the verb "eat." It is possible that adish was eaten.
But it is more likely that the pasta salad in the dish was eaten.

• Pasta salad is a salad containing pasta. But there are other ways meanings can be
formed fiota pairs of nouns. For cxiTip)e, dog food does not normally contain
dois

• The plira'. "w i th the fork" could modify evcraJ parts of the sentence. In this
case, it modifies the verb "eat." But, if the phrase had been "with vegetables,"
Ilion the modification structure would he diftèient. And lithe phrase had been
with het friends," the ri,cture would be different still.

Because of the interaction among the interpretations of the constituents oft his sentence,
sonic search may be required to find a complete interpretation for the sentence. But to
solve the problem of findu rig the interpretation we need to produce only the interpretation
use)!. No record ol'the processing by which the interpretation was found is necessary.

Contrast this with the water jug problem here it is not sufficient to report that we
have solved the problem and that the final state i' t. 0). For this kind 01 problem, what
we really must report is not the final state but the path that we found to that state. Thus
a statement of a solution to this problem must be a sequence of operations (sometimes
called aplan) that produces the final state.

These two examples, natural language understanding and the water jug problem.
Illustrate the difference between problems whose solution is a state of the world and

problems whose solution is a path to a stale. At one level, this difference can be ignored
and all problems can be formulated as ones in which only a state is required to be

23. PROBLEM

reported. If we do this for problems such as the water jug, then we must redescribe oui
states so that each state represents a partial path to a solution rather than just a single
state of the world. So this question is not a formally significant one. But, just as for the
question of ignorabilily versus recoverability, there is often a natural (and economical)
formulation of a problem in which problem states correspond to situations in the world.
not sequences of operations. In this case, the answer to this question tells us whether it
is necessary to record the path of the problem -solving process as it proceeds.

2.3.6 What Is the Role of Knowledge?

Consider again the problem of playing chess Suppose you had unlimited computing
power available. How much knowledge would be required by a perfect program?
The answer to this question is very little—just the rules for determining legal moves
and some simple control mechanism that implements art search procedure.
Additional knowledge about such things as good strategy ,and tactics could of course
help considerably to constrain the search and speed up the execution of the program.

But now consider the problem of scanning daily newspapers to decide which are
supporting the l)emocia!s and which are supporting the Republicans in some upcoming
election. Again assuming unlimited computing power, how much knowledge would be
required by a computer trying to solve this problem? This time the answer is a great

deal. It would have to know such things as:

• The names of the candidates in each party.

• The fact that if the major thing you want to see done is have taxes lowered, you

are probably supporting the Republicans.

• The fact that it the major thing you want to see done is improved education for
minority students, you arc probably supporting the Democrats.

• The fact that if you are opposed to big government you are probably supporting

the Republicans.

• And soon...

These two problems. chess and newspaper story understanding, illustrate the differ-
enco between problems for which a lot of knowledge is important only to constrain the
search for a solution and those for shich a lot of knowledge is required even to be able

to recognize a solution.

2.3.7 Does the Task Require Interaction with a Person?

Sometimes It is useful to program computers to solve problems in ways that the majority
of people would not be able to understand. This is fine if the level of the interactiOn
between the computer and its human users is p.ohkitl-in solution-out. But increasingly

we are building programs that require inteiniediate i nteraction with people. both to

provide additional input to the program and to provide additional reassurance to the

user.
Consider, for example, the problem of proving mathematical theorems. If

54	 CHAPTER 2. PROBLEMS, PROBLEM SPACES- AND SEARCH

I. All we want is to know that there is a proof

2. The program is capable of finding a proof by itself

then it does not matter what strategy the program takes to find the proof. It can use, for
example, the resolution procedure (see Chapter 5), which can be very efficient but which
does not appear natural to people But if either of those conditions is violated, it may
matter very much how a proof is found. Suppose that we are trying to prove some new,
very difficult theorem. We might demand a proof that follows traditional pasterns so that
a mathematician can read the piouf and check to make sure it is correct. Alternatively,
finding a pwof of the theorem might be sufficient!)' difficult that the program does not
know where to start. At the moment, people are still better at doing the high-level
strategy required for a proof. So the computer might like to be able to ask for advice
For example, it is often much easier to do a proof in geometry if someone suggests the
right line to draw into the figure. To exploit such advice, the computer's reasoning illUst
he analogous to that of its human advisor, at least oi l few levels As computers move
into areas of great significance to human lives, such as medical diagnosis, people will be
very unwilling to accept the verdict of a program whose reasoning they cannot follow.

Thus we must distinguish between two types of problems:

Solitary, in which the computer is given a problem description and produces an an-
swer with no iiitermediate communication and with no demand for an explanation
of the reasoning process

• Conversational, in which there is intermediate communication between a person
and trie computer, either to provide additional a,ssistaiice in g le computer or to
provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains.
As wcJ ust s'owed, mathematical theorem proving could be regarded as either. But for a
particular application, one or the other of these types of systems will usually be desired
and that decision will be important in the choice of a problem solving method.

2.3.8 Problem Classification

When actual problems are cxiii. ned from the point of view of all of these questions,
it becomes apparent that there arc several broad classes into which the problems falT.
These classes can each he associated with a generic control strategy that is appropriate
for solving the problem:. For example, consider the generic problem of elascrflcatinn.
The task here is to examine an input and then decide which of a set of known classes
the input is an instance of. Most diagnostic tasks, including medical diagnosis as well
as diagnosis of faults in mechanical devices. are examples of classification. Another
example of a generic strategy is propose and refine. Many design and planning problems
can be attacked with this strategy.

Depending oil granularity at which we attempt to classify problems and control
strategies. we may conic up with different lists of generic tasks and procedures. See
Chandrasek-aran [l986 and McDermott [1988] for two approaches to constructing such
lists. The important thing to remember here, though, since we are about to embark on a
discussion of variety of problem-solving methods, is that there is no one single way of

2.4. PRODUCTION SYSTEM CHAR.4CJ ER!STIC?

solving all problems. But neither must each new prohierit be considered totally ab 10100.

Instead, if we aiiaIy' out problems care-fully and sort our problem-solving methods by
the kinds of problems for which they are suitable, we will be able to bring to each new
problem much of what we have learned from solving other, similar problems.

2.4 Production System Characteristics

We have just examined a set of chai;ictei isiics that distinguish various classes of prof
lertis. We have also argued that production systems are a good way to describe the
ujleruLiOfls that call performed in a search for a solution to a problem. Two questions

e might reasonably ask at this point ace:

I. Can production systems, like problems, be described by a set of characteristics
that shed some light on how they can easily be implemented?

2. It so. what relationships are there between problem types and the types of pro
ducrion systems best suited to solving the problems?

The answer to the first question is yes. Consider the following definitions of classes

of production systems. A ,no,wronu.rwoduct:on s ystem is a production system in which
the application of a rule never prevents the later application of another rule that could
also have been applied at the lime (he first rule was selected. A noonronotonup7mIu lum
ayatcm is one ill which this is not true. A ,,auiiallv commurati , e)uulu4 tern sV.sfrlii is a

production system with the property that if the application of a particular sequence of
rules tiatisfonns staler into state v. then any permutation of those rules that is allowable

(i.e.. each rule's preconditions are atislied when it is applied)also transforms state.i into
state s A cominuiativeprodueriorr cv.tteflu is a production system that is both monotonic

and partially commutative.5
the signrhcaiiee of these categories of production systems lies in the relationship

between the categories and appropriate implementation strategies. But before discussir
that relationship, it may be helpful to make the meanings of the definitions clearer by

showing hns they relate to sp&tlic problems.
TItus we arrive at the second question above, which asked whether .. reie is am

interesting relationship between classes of production systems and, classes 01 problem.
For any solsable problem, there exist an infinite number of production systems that
describe ways to find solutions. Some will be more natural or efficient than others. Any
problem that can be solved by an y production system can be solved by a comviiutaii'.v

one (our most restricted class), but the cc,iiuinutaiive one ma y be so unwieldy as to

he practically iiselcs. It nra)' use individual states to represent entire sequences o
applications of rules of a simpler, nonconlmutative system. So in a formal sense, [her(
is no relationship between kinds of problems and kinds of production systems since all

problems can be solved b y all kinds of systems. But in a practical sense. there definitely
is such a relationship between kinds of problems and the kinds ot systems that lend
Themselves naturally to describing those problems. To see this, let us iook it u tess

examples. Figure 2.17 shows the four categories of production systems produced by

the two dichotomies. monoumic versus nor monotonic and partially commutative cr50'

- "This cnrrcpondsio the dc fin uuion or comriruiuiive production vIem given in Nrkson iiQPttJl

So	 CHAPTER 2. PROBLEMS, PROBLEM SPACES. AND SEARCH

r	 J_Monotonic -	 NonmonoionjJ
bpartiaiiy	 Theorem pios lug	 Robot navigation

commutative
Not partially Chemical synthesis Bridge^Trlj

Ltixj_______

Figure 2.17: The Four Categories of Production Systems

nonparstally commutative, along with some problems that can naturally be solved by
each type of system. The upper left corner represents commutative systems.

Partially commutative, monotonic production systems are useful for solving ignor-
able problems. This is not surprising since the definitions of the two are essentially the
same. But recall that ignorable problems are those for which a nalural tormulation leads
to solution steps that can he ignored. Such a natural formulation will then be a partially
commutative, monotonic system. Problems that involve creating new things rather than
changing old ones ate generally ignorable. Theorem proving, as we have described it.
is one example of such a creative process. Making deductions from some known facts
is a similar creative process. Both of those processes can easily be implemented with a
partially commutative, monotonic system.

Partially commutative, monotonic production systems are important from an imple-
mentation standpoint because they can he implemented without the ability to backtrack to
previous states when it is discovered that an incorrect path has been followed. Although
it is often useful to implement such systems with backtracking in order to guarantee a
s ystematic search, the actual database representing the problem state need not he re-
stored. This often results in a considerable increase in efficiency, particularly because,
since the database will never have to be restored, it is not necessary to keep track of
where in the search process every change was made.

Wc have now discussed partially commutative production systems that are also
monotonic. They are good for problems where things do not change: new things get
created. Nonmono'onic, partially conmnititative systems. on the other hand, arc useful for
problems in which changes occur but can be reversed and in which k-.rder of operation%
is not cnttcal. This is usually the case in physical manipulation problems. such as
robot navigation on a flat plane. Suppose that a robot has the following operators: gem
north (N), go east (E). go south (S). and go west (W). To reach its goal, it does not
matter whether the robot executes N-N . E or N-E-N. Depending on how the operators
re chosen, the 8-Pu,dc and the blocks world problem can also be considered partially

commutative.
Both types of partially commutative proiJuc. on systems are significant from an im-

plementation point of view because they tend in lead to many duplicationsof individual
states during the search process. This is disLussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems
in which irreversible changes occur. For example, consider the problem of determining
a process to produce a desired chemical compound. The operators available include
such things as "Add chemical r to the pot" or "Change the temperature to i degrees.'
These operators may cause irreversible changes to the potion being brewed The ordeu

LS. ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Figure 2.18: A Search Tree for the Water Jug Problem

in which they are performed can be very important in determining the final output. Ii
is possible that if .t is added toy, a stable compound will be formed, so later additiru
of: will have no effect; if: is added to v, however, a different stable compsiiind may be
formed, so lateraddition of will have no effect. Nonpartially viiiiillliita(iVC production
svstenis are lc ,, likely to produce the same node maii times in the search process.
When dealing with ones that describe irieveisible processes, it is particularly important
to make correct decisions the first time, although H the uniserse is predictahie, planning
can be used to make that less important.

25 Issues in the Design of Search Programs

Every search process can be viewed as a iriversil of a ti'e structure in which each
node represents a problem state and each arc represel ItS a relationship between the states
represented hs the nodes it connects. For example, Figure 2.18. c t iws part of a search
tree for a water jug problem. The arc , have not been labeled in the figure. but they
correspond to part uciilc c:acer-pouring operations The search process must find a pail
or paths through the tree mat connect an initial state with one or more final stales. The
tree that must be searched could, in principle, be constructed in its entirely from the
rules that define allowable moves in the problem space. Rut. in praciice, most of it never
is. It is too]ar2e and most of it need never be explored Instead of first building the tree
,'tp/frvli and then searching it, most search programs represent the tree inipluiilv in Ilti'
rules and generate explicitl y onl y those parts that they decide to explore. Throughout
our discussion of search methods it is important to keep in miiid this distinction between
implicit scatch trees and the explicit partial search trees that are actually constructed by
the seai cli program.

In the next chapter, we present a family of general -purpose search techniques. But
riefore doing so we need to mention some important issues that arise in all of them:

• The direction in which tocotiduct the search if(usiarc/versils hackasvdieasortingt.
We can search forward through the state space from the start state to a goal stare.
or we can search backward from the goal.

38	 CHAPTER 2. PROBLEMS, PROBLEM SPACES. AND .SF,1JCH

• How to select applicable rules (matching). Production systems typically spend
mcist of their time looking for rules to apply, 30 it is critical to have efficient
procedures for matching rules against states

• How to repteseni each node of the search process (the knowledge nprescntaiirrn
problem and the fir ame problem). For problems like chess, a node can be tuII
represented by a simple array. In more complex problem solving, however, ii

inefficient arid/or trpossih!c to repruscit; all of the facts in the world ar:d to
determine all of the side effects a;i action may have

We discuss the knowledge representation and frame prohiema further in Chapter 4.
We investigate matching and forward versus backward reasoning when we return to
production systems in Chapter 6.

One other issue we should consider at this point is that of search trees versus search
graphs. As mentioned above, we can think of production rules as generating nodes in
a search tree. Each node can be expanded in turn, generating a set of successors. This
process continues until a node representing a solution is found. implementing such a
procedure requires little bookkeeping. However, this process often results in the same
node being generated as pan of several paths and so being processed itiore than once.
This happens because the search space may really be an arbitrary directed graph rather
than a tree.

For example, in the tree shown in Figure 2.18. the node (4, 3), representing 4 gallons
of water in one jug and 3 gallons in the other, can be generated either by first filling the
4-gallon jug and then the 3-gallon one or by filling them in the opposite order. Since
the order does not matter, continuing to process both these nodes would be redundant
This example also hlu.stiates another problem that often arises when the search process
operates as a tree walk On the third level, the node (0, 0) appears. (In fact, it appears
twice.) But this is the same as the top node of the tree, which has already been expanded.
those two paths have not gotten us anywhere. So we would like to eliminate them and
continue only along the other branches.

The waste cfeffort that arises when the same node is generated more than once can
be avoided at the price f additional bookkeeping. Instead of traversing a search tree,
we traverse a directed grah. This graph differs from a tree in that several paths m.-,
come together at a rode, The graph corresponding to the tree of Figure 2.18 is shown
in Figure 2.19.

Any tree search procedure that keeps track of all the nodes that have been generated
so tar can be converted to a graph search procedure by modifying the action perfontied
each time a node is generated. Notice that of the two systematic search procedures we
have discussed so far, this requirement that nodes he kept track of is met by breadth-first
xeai'h but not by depth-first search. But. of course, (hpth-11rsl search could be modified.
at the expense of additional storage, to retain no memory nodes that have been expanded
and (lien backed-up over. Since all nodes are saved in the search graph. we must use hv
following algorithm inad of simpl y adding a new ttode to the graph.

Algorithm: Check Duplicate Nodes

1. Examine the set of nodes that have been created so tar to Sec if the new no' k
already exists.

2.5. ISSUES IN THE DESIGN OF SEARCH PROGRAMS	 39

Figure 2.19: A Search Graph for the Water lug Problem

2. it it does not.-simply add it to the graph just as for a tree.

3. If it does already exist, then do the loliowing:

(a) Set the node that is being espanded to point to the already existing node

corresponding to its succe
ssor rather than to the new one. The new one can

simply be thrown away.

(h) If you are keeping track of the best (shortest or otherwise least-cost) path to
each node, then check to see if the new path is better or worse than the old

one. If worse, do nothing. If better, record the new patti as the correct path

to use to get to the node and propagate the corresponding change in cost
down through successor nodes as necessary.

One problem that may arise here is that cycles may he introduced into the search

graph. A c ycle is a patti through the graph in which a given node appears more than
once. For example, the graph of Figure 2.19 contains Iwo cycles of length two. One

includes the nodes 10. th and (4, O)
'

the other includes the nodes (0. 0) and (0, 3).

Whenever there is a cycle, there can be pahs of arbitrary length. Thus it may become
more difficult to show that a graph traversal algorithm is guaranteed to terminate.

Treatinp the search process as a graph search rather than as a tree search reduces the
amount of ettoil that is spent exploring essentially the same path several times. But it
requires addition,-] effort each time a node is generated to see if it has been generated
before. Whether this effort is justified depends on the particular problem. If it is very
likely thai ito' same node will be generated in several different ways, then it is more
worthwhile to use a graph procedure than if such duplication will happen only rarely.

Graph search procedures are especially useful for dealing with partially commu-
tative production systems in which a given set of oper.itions will produce the same
result regardless of the order in which the operations are applied. A systematic search
procedure will try many of the permutations of these operators and so will generate the
same node many times. This is exactly what happened in the water jug example shown

above.

60	 CHAP1LR 2. PROBLEMS, PROBLEM SPACES, AND SEARCH

2.6 Additional Problems

Several specific problems have been discussed throughout this chapter. Other problems
have not yet been mentioned, but are common throughout the Al literature. Some have
become such classics that no AT book could be complete without them, so we present
them in this section. A useful exercise, at this point, would be to evaluate each of theta
in tight of the seven problem characteristics we have just discussed.

A brief luslificaton is perhaps required before this parade of toy problems is pre-
sented. Artificial intelligence is not merely a science of toy problems and mirroworlds
(such as the blocks world). Many of the techniques that have been dev&opcd for these
problems have become the core of systems that solve very rtontoy problems. So think
about these problems not as defining the scope of Al but rathci as prcsiding a core from
which much more has developed.

Thv Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of a over. They
have agreed that they would all like to get to the other side. But the missionaries are
not sure what else the cannibals have agreed to. So the missionaries want to manage
the trip across the river in such a way that the number of missionaries on either side of
the rivers never less than the number of cannibals who are on the same side. The only
boat avlahle holds only two people at a time. How can everyone get across the rivei
without the missionaries risking being eaten!

The 'tower of Hanoi

'ornewherc near hanoi there is a monastery whose monks devote their lives to a very
i mportant task. In their court yard are three tall posts. On these posts is a set of sixty-four
disks, each with a hole in the center and each of a different radius. When the monastery
was established, all of the disks were on one of the posts, each disk resting on the one
just larger than it. The monks' task is to move all of the disks to one of the other pegs.
Only one disk may be moved at a time, and all the other disks must be on one of the
pegs. In addition, at no time during the process may a disk be placed nit top of a snial let
disk. The third peg cart, of Course. be used as a temporary resting plac: for the disks.
What is the quickest way for the monks to accomplish their mission?

Even the best solution to this problem will take the mi.s a very long time. This is
fortunate, since legend has it that the world will end whe:i they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from
the ceiling. The monke y. unfortunately, cannot reach the bananas. However, in the
room there are also a chair and a stick. The ceiling is just the right height so that a
monkey standing on a chair could knock the bananas down with the stick. The monkey
knows how to move around, carry other things around, reach for the bananas, and wave
a stick in the air. What is the best sequence of actions for the monkey to take to acquire
lunch?

ni
2 7 SUMMAR

	

SEND	 Al

	

wr	 ERALD	 RO1DS
Ma

	

MONEY	 aEP

Figure 220: Some Cryptanthmetic Problems

Cryptaril hnietic

Csmsiilei an aritliitii p,hciii reprecntcd in letters, as shown in tile e.amples to
Figure 2.20 Assign a decimal iligil ic each of the letter , n such a way that the ansver

to the problem is correct. If the same letter occurs more than oiled, it niiist be &ssignei
the same digit each time. No two dtft'eren' letters may be assigned the same digit

People's strategies for solving cryptarithmetiC problems have been studied intel

SIVCIV by Newell and Simon I 197'21.

2.7 Summary
In this chapter we have discussed the first two steps that must be taken !oward the design

of a program to solve a partetiiar problem:

I Define the probleiti precisely Sjim try the problem space. the operators for moving
within the space. and the starting and goal state(s).

2. Anal yze the problem to determine where it tails with respect to seven important

issues.

The 1as two steps for developing a program to solve that problem ar, of course

3. identify am) reI)rcrsrilt the tiisiwlrilge required by the ttsk.

4. Choose one or more techniques for problem solving, and appl y those techniquc

to the pr'hleni

Several general-purpose, prohIem-dsing techniques ate presented in the nest chap

ter, and several of them have already been alluded to in thethe discussioll of the problem

characteristics iii this chapter. The relationships between problem uliaracIeiistuS and
specitic techniques should become even clearer as we go on. Then. in Pan U. we discuss

the issue of how domain knowledge 'is to be represented.

2.8 Exercises

I. In this chapter, the following problems were mentioned:

• Chess

• Water jug

CHAPTER 2. PROBLEMS, PROBLEM SPACES. AND SEARCH

• t-pu.'ile

e Traveling salesman

• Missionaries and cannibals

• Tower of Hanoi

• Monkey and bananas

• Crjptarithmeric

• Bridge

Analyze each of them with respect to the seven problem cIarac:ertstjcs discussed
in Section 2.3,

2. Before we can solve a problem using state space search, we must define an
appropriate state space. For each of th prohienis iiient,oned above lot which it
was not done in the text. find a good stale spate representation.

3. Describe how the branch-arid-bound technique could he used o find the shortest
solution In a waler jug problem.

4. For each of the iollov,tng types of problems, Fry to describe a good heuristic
function:

aj Blocks world

tb) Theorem proving

(c) Missionaries and cannibals

¶ Give an example of a problem for which breadth -hrst search would work better
than depth-first search. Give an example 01' a problem for Whkh depth-first search
would work better than breadth-first search.

b. Write an algorithin fopeiforin breadth-first search of a probktn graph. Make sure
yuut atgorithni works properly when a single node is generated at more than one
level in the graph.

7. 'Try to construct an algorithm for solving blocks world problems, such as the one
in Figure 2.10. Do not cheat by looking ahead io Chapter 13.

Chapter 3

Heuristic Search Techniques

In the last chapter, we saw that many of the problems that fail within the purview of
artificial intelligence are too coinplez to be solved by direct techniques: rather they

must be attacked by approlniat e search methods armed with whatever direct techniques
are available to guide the search. In this chapteE, a framework for describing search
methods is provided and several general-purpose search techniques are discussed- These

methods are all vari e ties of heuristic search. They can be described independently of
any particular task or problem domain. But when applied to prttcular problems, their
efficacy is highly dependent on the way they exploit cton 1ain-spccific knowledge since

in and of themselves theyarc- unable to overcome the combinatorial explosion to which
search processes are st vulnerable- For this reason, these techniques are often called

weak methods. Although a realization (if the limited effectiveness if these weak method
to solve hard problems by themselves has been an important result that emerged from the
last three decades of At research, these techniques continue to provide the framework
into which domain-specific knowledge can be placed, either by hand or as a result of
automatic learning. Thus they continue to form the core of most Al systems

We have already discussed two very basic search strategies:

• Depth-first search

• Breadth-first searci

In the j-esi of this chapter, we present some others.

• Gen'rale-and-te-s

• Hill climbing

• Best-first search

• Problem mrductimjii

• Constraint satsfact ion

Means-ends analyss

64	 C!IAP7bJR c. Ilt..URJS7J(.1,4R(ii I LC/IN/O it'.

3.1 Generate-and-Test

The generate -aiid -tesi strategy is the stmplestof all the approach:-c wc tiicus.-. It con-osts
of the following steps:

Algorithm-	 nerate-and-Test

Generate a possible soiut:on. For some rure;i1.. ifits an; generating a par-
ticular point in the problem space. For others, it means generating a path from a
start state.

2. Test to s	 if this is at-tiiatly a solution by comparing the chosen point or th
endpoiiii of the chosen path to the set of acceptahi" goal states.

. If a solution has been found, quit. Otherwise, return to step 1.

It the generation of possible solutions is done systematically, then this procedure
will find a solution eventually, if one exists. Unfortunately, if the problem space is very
large. "eventually" may be a very long time.

The generate-and test algorithm is a depth -first search pioccdure since complete
solutions must be generated before the y can he tested. In its most systematic form, it is
simply an exhaustive search of the problem space. (ienerate-and-testcat, of course., also
operate by generating solutions randomly, but then there is no guarantee that a solution
will ever be foufld Iii this form, it is also -nt)Wn as the British Museum algorithm,
a reference to a method for finding an object in the British Museum by wandering
randomly) Between these two extremes lies a practicil mtiklie ground in which the
search process proceeds systematically, but some paths are not considered because they
seem unlikely to lead to it solution. This evaluation is performed by a heuristic function,
as described in Section 2.2,2.

Thc most straightforward way to mniplenient s ystematic rierale-aiid-tcst is as a
depth-first search tree with backtracking. If some intennediate sates are likely to
appear often in the tree, howes er, it may be better to modify that procedure. as described
above, to traverse a graph rather than a tree.

For simple problems, exhaustive generate-and-test is often a reasonable technique.
For example, consider the puz7le that consists of foui six-smde cubes, with each side of
each cube painted one of four colors. A solution to the puzzle corisits of an arrangement
of the cubes in a row such that on all four sides 01 the row one block face of cacti color is
showing. This problem can be solved by :i person (who is a much slower processor for
this sort of thing titan even a'very cheap computer) in several miro'tes liv systematically
and exhaustively trying all possibilities. It can be solved even more quickly using a
heuristic generate-and-test procedure. A quick glance at the four blocks reveals that
there are more, say, red laces than there are 01 othe: colors, thus when placing a block
with several red faces, it would be a good idea to use as few of them as possible as
outside faces. As many of them as possible should be placed to abut the next block
Using this heuristic, many configurations need never be explored and a solution can be
found quite quickly -

'OF, as another story goes. if a suil&tcni number of monkeys were placed in limit of a set of typewriters
and left stone tone: enough, then they would eventually prodece all of the works of Shakespeare.

32. HILL CUM R!NG	 65

Unfortunately, for problems much harder than this, even heuristic generate-and-test,
all by itself, is not a very effective technique. But when combined with other techniques
to restrict the space in which to search even further, the technique can be very effective.

For example, one early example of a successful Al program is DEN DRAL [Lindsay

al., 1901, which infers the structure of organic compounds using mass spectrogram
and nuclear magnetic resonance (N MR) data. lt uses a strategy called plan-gent i ale-Zest,

in which a planning process that uses constraint-satisfaction techniques (see Section 3.5)
creates lists of recommended and contraindicated substructures. The generate-and-test
procedure then uses those lists so that it can explore only a fairly lin;ed set of structures.
Constrained in this way. file generate and-testprocedure has proved highl y effective.

This combination of planning, using one problem-solving method (in this case,
constraint satisfaction) with the use of the plan by another problem-solving method.
generate-and-test, is air example of the way techniques can he combined to
overcome the liiniiationsihst each possesses individually. A major weakness of planning
is that it often produces somewhat inaccurate solutions since there is no feedback trot,
the world. But b> using it only to produce pieces of solutions that will then be exploited
in the generate-and-test process, the lack of detailed accuracy becomes unimportant.
And, at the same time, the combinatorial problems that arise in simple generate-and-tes'
are avoided by judicious reference to the plans.

3.2 Hill Climbing

Hill climoing i a variant of generate-and-test in which feedback from the lest procedure
is used to help the generator decide which direction to move in the search space. Ina
pure generate-and-test procedure, the test function responds with only a yes or no. But
if the test function is augmented with a heuristic function that provides an estirrate
of how close a given state is in a goal staff:, the generate procedure can exploit it as
shown in the proccilire below. This is particularly nice because often the computation
of the heuristic function can be done at almost no cost at the same time that tire test for a

,miulion is being performed. Hill climbing is often used when a good heuristic function
is available for evaluating states but when no other useful knowledge is available. For
example, sunpose you are in an unfamiliar city without a map and you want to get
do ntown. You simply aim f'r the call buildings. The hcuritic fi'nction is just distance
between the current location and the location of the tall buildings and the dcsirahle ,tatcs
are those in which this listanre is miniiiin,ed.

Recall from Sctiii 23.4 that one way to cliaricierize problems is ac-cindtng in tlictr
answer to the question. 'I a good solution absolute or relative?" Absolute solutions
exist whenever it is possible to recognize a goal stac just by examining IL Getting

downtown is an example of such a problem. For these problems, bill climbing can
terminate whenever a goal state is reached. Only relative solutions exist, however, tot
maximization (or minimization) pioblems. such as the traveling salesman problem. In
these prohlcrn. there is no a prioj4 goal state. For problems of this sort, it macs sense
to terminate hill din-thing when there is no reasonable alternative state to move to

What e ,tC calling the t,uriiis rurSi3Oil n sunlelilirs ji-'u CdtcJ tilr ('bIt' It J,,,uFinfl, p3Iihutarty in
bc 11leriticle 0* maihemimi,cal o,IImoa'ion

66	 CHAPTER 3. IIEIJIdSTIC SLARC'l/ TFCIINIQUtS

3.2.1 Simple Hill Climbing

The simplest way to implement hill dimbing is as follows

Algorithm: Simple Hill Climbing

I. Evaluate the initial state. lilt is also a goal state, then return it and quit. Otherwise,
continue with the initial state as the current stale.

2 Loop until a solution is found or until there are no new operators left to be applied
in the current state:

(a) Select an operator that has not yet been applied In the current state and apply
it to produce a new state.

(h) Evaluate the new state.

i. If it is a goal state, then return it and quit.
ii. If it is not a goal state but it is better than the current state, then make it

the current State.

iii If it is not better than the current state, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and .
-lest is the use of an evaluation function as a way to inject task-specific knowledge

into the control process. It is the use of such knowledge thai makes this and the
other methods discussed in the rest of this chapter heuristic search methods, and it is
that sanie knowledge that gives these methods their power to solve some otherwise
intractable problems.

Notice that in this algorithm, we have asked the relatively vague question. "Is one
state better than another?" Fr the algorithm to work, a precise definition of better must
be provided. In some cases, it means a higher value ofthe heuristic function. In others.
it means a lower value. It does not matter which, as long as a particular hill-climbing
program is consistent in its interpretation.

To see how hill climbing works, let's return to the puJI1le of the lout colored blocks.
To solve the problem, we first need to define a heuristic function that describes how
close a particular configuration is to being a solution. One such function is simply the
sum of the number of different colors on each of the four sides. A solution to the puLJle
will have a value of 16 Next we need to define a set of rules that describe ways of
transforming one configuration 11110 another. Actually, one rule will suffice. It sass
simply pick a block and rotate it 90 degrees in any direction. Having priovided these
definitions, the host step is to generate a starting configuration. This can eülier be doii
at random or with the aid of the heuristic function described in the last section. Now
bill climbing can begin. We generate a new state by selecting a block and rotating it. It
the resulting state is better, then we keep it. If not, we return to the previous state and
try a different perturbation.

3.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers all the moves from the current state
and selects the best one as the next state. This method is called steepe.%1-ascent hill

J.2. 11111. cL/M13!N(;

di,nhing or gradient search. Notice that this contrasts with the basic method in which

the first state that is better than the current stale is selected. The alguritl-.in works as

follows.

Algorithm: Steepest-Ascent Hill Climbing

I. Evaluate the initial state. If it is also it goal state, then return it and quit. Otherwise.

continue sith the initial slate as the current state.

2. Loop until a solution is found ot until a complete iteration produue 110 (flarige I t,

current state:

(a) Let .SLCC be a state such that any possible successor of the current statc

will be better than St/CC.
kb) For each operator that applies to the current state do:

i: Apply the operator and generate a new state.

ii- Evaluate the new state If it is a giial state, then return it and quit. If

not, compare %I to SLCC. If it is better, then set .cL'CC to this stale. If

it is not better, leave SUCC alone.

(c) It the St/CC is better than current state, then set current state to 511CC.

To apply steepest-ascetil bill (limbing to the colored blocks problem, we must
consider all perturbations of the initial state and choose the best. For this problem. this

is difficult since there are so many possible moves. There is a trade-off between the
time required to select a move (usually longer for steepest-ascent hilt climbing) and the
number of moves required to rct to a solution (usually longer for basic hill climbing)
that must be considered when de.':ding which method will work better for a particular

problem.
Both basic and steepest-ascent lull climbing may fail to find a solution. Either

algorithm may terminate riot by finding a goal state but by getting io it state from which

no better slates can be generated. This will happen if the program has reached either a
local maximum, a plateau, or a ru1r".

A 1(11 i.'1 niau,nii.,1l is a state that is better than all its neighbors but is not
better than some other states farther away. At a heal maximum, all moves
appear to make things worse. Local maxima are particularly frustrating
because they often occur almost within sight of a solution. lit this case,

they are called foothills.

A plateau is a flat area of the search space in which a whole set o neighbor
tng states have the saute value. On a platcau, it is not possible to determine
the best direction in which to move by making local comparisons.

A ,'id,u,'e is a special kind of local maximum! It is an area of the search space
that is higher than surrounding areas and that itself has a slope (which one
would like to climb). But the orientation of the high region, compared to
the set of available moves and the directions in which they move, makes it
impossible to traverse a ridge b y . ingIe moves

68	 CHAPTER 3. HEU/?!SI'/(,LAR(i-I JF(.'u1NIQ:/ic

There are some ways ol dealing with these problems, although these riteihods arc b)
no means guaranteed:

• Backtrack to sonic earlier nude and try going in a different direction. Th i s i
particularly reasonable if at that node there was another direction that looked as
promising or almost as promising as the one that was chosen earlier. To impk'rncni
this strategy, maintain a list of paths almost taken and go back to one of them if
the path That was taken leads to a dead end. Th i s is a fairly good way ofilealinp
with local maxima.

• Make a big jump in some direction to try to get to a iiew section of the search
space. This is a particularly good way of dealing with plateaus. If the onis
rules available describe single small steps, apply them several times in the same
direction.

• Apply two or more rules before doing the test. 'This corresponds to moving in
several directions at once. This is a particularly good strategy for dealing with
ridges.

Even with these first-aid measures. hill climbing is not always very effective. It
is particularly unsuited to problems where the value of the heuristic function drops off
suddenly as you move away from a solution This is often the case whenever any sort
of threshold effect is present. Hill climbing is a local method, by which we mean that it
decides what to do next by looking only at the "immediate" consequences of its choice
rather than by exhaustively exploring all the consequences. It shares with other local
methods, such as the nearest neighbor heuristic dcscri bed in Section 2.2.2, the advanitage
of being less combinarorially explosive than comparable global methods. But it also
shares with other local niethotis a lack of a guarantee that it will be effective. Although
it is true that the hill-climbing procedure itself looks only one move ahead and not any
farther, that examination may in tact exploit an arbitrary amount 01 global information if
that information is encoded in the heuristic function. Consider the blocks world problem
shown in Figure 3.1. Assume the same operator; (i.e., pick up one block and put it on
the table; pick up one block and 'put it on another one) that were used in c. - , ion 2.3-1
Suppose we use !le following heuristic function:

Local Add one point for every block that is resting on the thing it is
supposed lobe resting on. Subtract one point for ever y block that is sitting
on the wrong thing.

Using this function, the goal state has a score of . The initial state his a 'core of 4
(since it gets One point added for blocks C. U. E. 1 G. and H and one point subtracted for
blocks A and B). There is only one move from the initial slate, namely to move block A
to the table. That produces a state with a score of 6 (since now A's position causes a
point to be added rather than subtracted). The hill-climbing piocerlure will accept that
move. From the new state, there are three possible moves, leading to the three states
shown in Figure 3.2. These slates have the scores: (a) 4, (h) 4. and (c) 4. Hill climbing
will halt because all these states have lower scores than the current state. The prueess
has reached a local maximum that is not the global maximum. The problem is that
by purely local examination of support structures, the current state appears to be better

A
H
G
F
L
D
C
B

i1
G

E
D
C
4B

A

F

E

D[i1c
F1B

(h)

r1
El
G
F
E
D
C
B

(a)

32. HILL CLIMBING
	 6)

initial state	 goal state

Figure 3.1: A Hill-Climbing Problem

Figure 3.2: Three Possible Moves

than any of its successors because more blocks rest on the correct objects. To solve this
problem, it is nccesary in disassemble a good local structure (the stack B through H)
because it is in the wrong global context.

We could blame hill climbing itself for this failure to look far enough ahead to find
a solution. but we could also blame the heuristic function and try to modify it. Suppose
we try the following heuristic function in place of the first one:

Global: For each block that has the correct support structure (i.e., the
complete structure underneath it is exactly as it should be). add one point
for evety block in the support structure. For each block that has an incorrect
support structure, subtract one point for every block in the existing support
structure

Using this tunction, the goal state has the score 28(1 for B. 2 for C. etc.). The initial state
has the score —28. Moving A to the table yields a state with a score of —21 since A no

70	 CHAPTER 3. HEURISTIC .sEARCII TL(i?WQu!

ionger has seven wrong blocks under it. The three slates that can be produced next now
have the lollowirig scores: (a) --28, (h) -16, and (C) 15. This time, steepest-ascent
bill climbing will choose move (r), which is the correct one. This new heuristic funcikiii
e4ptiaces the Iwo Key. of this problem: incorrect sIruciures are had and should
he taken apart: and correct structures are good and should be built up. As a result, the
same hill climbing procedure that tailed with the earlier heuristic function now work.
perfectly.

Unlortunatcis, ills not always possible to construct such a perfect heuristic function.
Pot cxiirriplc. consider again the problem of driving downtown. The perfect heuristic
function would need to have knowledge about one-way and dead-end sheds, which, in
the cas

e ul a strange city, is not always aailahPe. And even if perfect knowledge is,
in principle, available, it may not be cornpuiationally tractable to use. As an extreme
example, imagine a heuristic function that computes a value for a state by invoking its
own problem-solving procedure to look ahead from the state it is given to find a solution.
l then knows the exact cost of finding that solution and can return that cost as its value.
.A heuristic function that does this converts the local hill-climbing procedure into a
global method by embedding a global method within it. But now the computational
ads aniages of a local method have been lost Thus It is still ii tie itt -at trill ci irrihi ng can be
very inefficient in a large. rough problem space. But it is often useful when combined
with other methods that get it started in the right general neighborhood.

3.2.3 Simulated Annealing

Simulated annealing is a variation of bill climbing in which, at the beginning of the
process, some downhill moves may be made. The idea is to do enough exploration of
the whole space early on so that the final solution is iclatively insensitive to the starting
state. This should lower the chatices of getting caught at a local maximum. a plateau.
or a ridge.

In order robe compatible with standard usage in discussions of simulated annealing,
we make two notational changes Ir the duration of this section. We use the term
o/Jc(yftcfun(wfl in place of the hermit heuristic frm/ior,.

nd we attempt to,nuunu:erather than maximize the value c': !. - objective function.
Thus we actually describe a process of valley descendiog rather that frill climbing.

Simulated anmtealingKirkpatricI. ctaI . 18I as actriiipuliiional process ispaiterneet
:tficr the physical process of a'rm'aI,m, in which physical substances such as metals ate
melted (i.e.. raised to high energy levels) and then gradually cooled until some solid stare
is reached. The goal of this process is to produce a minimal-energy final state. Thus this
process is one of valley descending in which the objective function is the energy level.
Physical substances usually move from higher cnc'y configurations to lower OflCS. 50
the valley descending occurs naturally. But there is some probability that a transition to
a hi gher energy state will occur. This probabilit y is given by the function

P = e1/LT

where A E is the positive change in the energy level. T is the temperature, and .
is Ruliini;rmin's constutli, Thus. in the physical valley descending that occurs during
annealin g, the probability ofa large uphill move is lower than the probability of a small

3.2. HILL CUMB!NG	 71

one. Also, the probability that an uphill move will be made decreases as the temperature
decreases. Thus such moves are more likely during the beginning of the process when the
temperature is high, and they become less likely at the end as the temperature becomes
lower- One way to characterize this process is that downhill moves are allowed anytime.
Large upward moves may occur early on. but as the process progresses, only relatively
small upward moves are allowed until finally the process converges to a local miniiriuiii

configuration.
The rate at which the system is cooled is called the annealing sheiule. Physical

annealing processes are very sensitive to the annealing schedule. If cooling occurs 1(x)
rapidly, stable regoii of high energy will f or-in. In other words. a local but not global
nhlnimum is reached If, however, a slower schedule is used, a uniform crystalline
structure, which corresponds toa global minimum, is more-likely to develop. But, it-the
schedule is too slow, time is wasted. Al ugh tcrliperaturus. where essentially random
motion is allowed, nothing useful happens. At low tem1eratu!es a lot o f time may be
wasted after the final structure has already been formed The upt mat annealing schedule
for each particular annealing pinhkmn must usually he discovered empirically.

These piopertues of 11liY\i l annealing can be used to (feline an analogous process
t,fsiitiulated annealing, which can he used (although not always efctise!) whenever
simple hill climbing can he used. In this analogou s process. A E is generalized so that

it represents not '.pcutiicallv the change in energy but more generally, the change in
the value of (lie objective Function, whatever It is. The analogy for A T is slightly less
straightforssard. In the ph's sical process, temperature is well-defined iaitit.ifl, measured
in standard units. The variable A desciihes the correspondence between the units of
temperature and the units of energy. Since, in the analogous process. the units for
both E and T are artihcial, it makes sense to incorporate A into T, selecting values for

T that produce desirable behavior on the part of the algorithm. 'Ihus we use the revised
pro.bahility formula

= C_AHT

But we still need tchose a sdiedule of values for T(which we still call temperature I.
We discuss this briefly below after we present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different from the sircipic
hill-climbing procedure. The three ditlei ,'nces are:

• The annealing schedule iiiusi be maintained.

• Moves to worse states may he accepted.

• It is a good idea to maintain, in addition to the current state. the best state found
so far. Then. t the tinal state is worse than that earlier state (because of had luck
in accepting moves to worse states). the earlier state is still available.

Algorithm: Simulated Annealing

- Evaluate the initial state. If it is also ..t goal stale, then return it and quit. Otherwise
continue with the initial state as the current state.

2. Initialize BEST-SO-FAR to the current staic

72	 CHAPTER.(. HEURiSTIC SFARCh I.' i!N1QUE

3. Initialize Taccording to the annealing schedule.

4. Loop until a solution is found or until there are no new operators left to he applied
in the current state.

(a) Select an operator that has not yet been -applied to the current state and apply
it to produce a new state.

(b) Evaluate the new state. Compote

(value of current) - (value of new state)

• If the new state is a goat slate, then return it and quit.

• If it is out a goal slate but is better than the current state, then make it
the current -,late. Also set BES1 SO MR to this new state.

• If it is not better than the current state, then make it the current state
with probability p' as defined above. This step is usually implemented
by invoking a randonq number generator to produce a number in ihe
range 10,1J. If that number is less than p', then the move is accepted.
Otherwise, do nothing.

IC) Revise [as necessary according to the annealing schedule.

5 Return BEST-SO-FAR as the answer.

To implement this reviseal algorithm, it is necessary to select a; annealing schedule,
which has three components. The lust is the initial value to be used for temperature.
The second is the criteria that will be used to decide wheii the temperature of the system
should be reduced. The third is the amount by which the temperature will be reduced
each time it is changed. lucre may also he a fourth component of the schedule, namely,
ssht'ii to quit. Simulated anecatint is often used to solve problems in which the number
of moves from a given slate is very large (such as the number of permutations that
can be made to a proposed traveling salesman route). For such problems, it may not
make sense to try all possible rouses. Instead, It may be useful to exploit some criterion
involviniz the number ol moves th "sve been tried since an improvement was found.

Experiments that have been done v.ith simulated annealing on a variety of prohIcm
suggest that the best way to select an annealing schedule is by trying several and
observing the effect on both the quality of the solution that is found and the rate at
which the process converges. To begin to get a feel for how to come up with a schedule,
the first thing to notice is that as 1 approaches zero, the probability of accepting a
move to a worse slate goes to zero and simulated annealing becomes identical to simple
hill climbing. The second thing to notice is the what really matters in computing the
probability of accepting a move is the ratio A HT. Thus it is important that values of l'
be scaled so that this ratio is meaningful. For example. T could be initialized to a value
such that, for an average A E. p' would be 0.5.

Chapter 18 returns to simulated annealing in the context of neural networks

H. BE57-FIRS7SFL4RCH

3.3 Best-First Search
Until now, we base really only discussed two systematic control strategies, breadth-first

search and depiJ fast search (of several varieties) In this section, we discuss a new

method, best-lust search, which is away of combining the advantages of both depth-first

and breadth-first search into a single method.

33.1 OR Graphs

Depth-first search is good because it allows a solution to be found without all competing

branches having to be expanded. Breadth-first search is good because it does not get

trapped on dead-end paths. One way of combining the two is to follow a single path at
a time, but switch paths whenever some competing path looks more promising than the

current one does.
At each step of the bcst-firsl search process. we select the most promising of the

nodes we have generated so far. This is done by applying an appropriate heuristic
function to each of them, We then expand the chosen node by using the rules to generate

its sticcessor'. If one of them is a solution, we can quit. If not, all those new nodes are

added to the set of nodes generated so far. Again the most promising node is selected

and the process continues. Usuall y what happens is that a bit of depth first searching
occurs as the most promising branch is explored. But evcntually, it a solution is not
found, that branch will start to look less promising than one of the top-level branches that
had been ignored. At that point, the now more promising. previously ignored branch
will be explored. But the old branch is not forgotten., Its last o0dC rt'niains in the set of

generated but unexpanded nodes. The search can return to if whenever all the others get
bad enough that it is again the most promising path.

Figure 3.3 shows the beginning of a best-first search procedure. Initially, there is
onl y one node, so it will be expanded. Doing so generates three new nodes. The heuristic
function, which, in this example, is an estimate of the cost of getting to a soluti9n from a
given node, is applied to each of these new nodes. Since node D is the most promising.
it is expanded next, producing two successor notles, E mud F. But then the li&'urmsiit'
furiclioti is applied in their,. Now 'n'other path. that going through node B. looks more
promising, so it is pursued. generatin nodes G and H. But agaiii when these new nodes
are evaluated they look less promising than another path, so attention is returned to the
path through D to E. E is then expanded, yielding nodes I and J. At the next step. 3 will
be expanded, since it is the most promising. This process can continue until a solution
is found.

Notice that this procedure is very similar to the ptocedure for steepest-ascent hill
climbing, with two exceptions I n hill chinbing, one move is selected and all the others
are rejected. never to be reconsidered. This produces the straightltne behasior that is

characteristic of hill climbing. In best-first search, one move is selected, but the others
are kept around so that they can be revisited later if the selected path becomes less
promising 3 Further, the best available state is selected in best first search, even it that
state has a value that is lower than the value of the state that was just explored. This

a s'anat,On of best first search. called beam seat-ch. on1 the ri most promising stairs ant kept icir

future coiwidetation. This procedure i^ more et5cieni with respect iii memory hut nro'iuces the possihiIti.

, i f missing a solution altogethâ i'iy pruning the search tree ton ear's

(6)

7 	 (ILPTLk 3 hEURISTIC SEARCH 1u:l-IWIQUE,'I

Step I	 Step 2	 Step 3

rAl A

A

	

)	 1JD
MMM

Step 	 Step 5

Figure 33: A Best-First Search

contrasts with hill climbing, which will stop if there are no successor states with better
values than the current state.

Although the example .linwi alasc illustrates a best-first search of a tree, it is
sometimes important to search a graph instead so that duplicate paths will not be
pursued. An algorithm to do this will operate by searching a directed graph in which
each node represents a point iti the problem space. Each node will contain, in addition
to a description of the problem state it represents, an indication of how promising it is. a
parent link that points back to the best node from which it came, and a list of the nodes
that were genera'red from it. The parent link will ,ake it possible to recover the path to
the goal once the goat is found. The list of suLcessors will make it possible, if a better
path is found to an already existing node, to propagate the improvement down to its
successors. We will call a graph of this Sort an OR graph, since each of its branches
represents an alternative problem-solving path

To implement such a graph-search procedure, we will need to use two lists of nodes:

. OPEN—nodes that have been generated and have had the heuristic function

33. BEST-FIRST SEARCH
	 75

applied to them but which have not yet been examined (i.e.. had their successors

generated) OPEN i g actually a priority queue in which the elements with the
highest priority are those with the most promising value of the heuristic function
Standard techniques for manipulating priority queues ',wt used to manipulate

the list

• CLOSED— -nodes that have already been examined. We need to keep these nodes
in memory if we want to search a graph iather than a tree, since whenever a new
node is generated, we need to check whether it has been uenerated before.

We will also need a heuristic function that estimates the merits of each node we
generate. This will enable the algorithm to search more promising paths first. Call
this function['(to indicate that it is an approximation to a functionf that gives the true
evaluation of the node). For many applications. it is convenient to define this functio,i
as the sum of two components that we cult g and k. The (unction g is a measure of the
cost of getting from the initial state to the current node. Note that g is not an estimate
of armthing it is known to be the exact sum of the costs of applying each of the rules
that weme applied along the best path to the node.. The function Ii' s an estimate of the
additional cost of getting (ruin the current node to a goal stale. This is the place where
knowledge about the problem domain is exploited. The combined function f. then,

represcnts an estimate of the cost of getting from the initial state to a goal state along
the patti that generated the current node. If more than one path vcrleruted the node, then
the algorithm will record the best one. Note that because g and h' must be added, it is

important that Ii' be a measure of the cost of getting from the node to a solution (i.e.
good nodes get low values had nodes get high values) rather than a measure of the
goodness of a node (i.e_ good nodes get high values). But that is easy to arnuige wtli
judicious placement of minus signs. It is also important that g be nor.negative. If this is
not true, then paths that traverse cycles in the graph will appear to get better as they get
longer.

The actual operation of the algorithm is very simple, It proceeds ilk Steps, expanding

one node at each step, until it generates a node that corresponds to a goal stale. Al each
step. it *ks the most promising of the nodes that have so far been '.iuerated but not
expanded. It generates the successois of the chosen node, applies the huiistic function
to them, and adds them to the list of open nodes, after checking to see if any of them
have been generated before. by doing this check, we can guarantee that each node only
appears once in the graph, although many nodes may point to it as a successor. Then
the next step begins.

This pxcss can be summarized as follows.

Algorithm: Best-First Search

t. Start with OPEN containing just the initial state.

lJiuil a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.

(b) Generate its successors.

(c) For each successor do:

76	 CHAPTER .. HEURISTIC SEARCh tXHP1IIQUL.s

i. If it has not been generated betore, evaluate it, add it to OPEN, and
record its parent.

ii. If it has been generated before, change the parent if this new path i,
better than the previous one. In that case, update the cost of getting l
this node and to any successors that this node may alread y have.

The basic idea of this algorithm is simple. Unfortunately, it is rarely the case that
graph traversal algorithms are simple to write correctl y. And it is even rarer that i is
simple to guarantee the correctness of such algorithms. In the scctiori that follows, Ac

describe this algorithm W more detail as an example of the design and anal y sis of a
graph-search program.

33.2 The A* Algorithm

the best tirst search algorithm that was Just presented is a simplification of an algorithm
called A d', which was first presented by Hart C! a?. [1968; 19721. This algorithm uses
the samef', g, and h' tunctions, as well as the lists OPEN and CLOSH), that we have
already described.

Algorithm: A*

I. Stan with OPEN containing only the initial node. Set that nodes g -value to IL its
It' value to whatever it is. and its f' value to It' + 0, or h'. Set CLOSED to the
empty list.

Until a goal node is found, repeat the following procedure: If there are no nudes
on OPEN, report failure. Otherwise, pick the node oil 	 with the lowest f'
value. Call it BESTNODE. Remove it front Place it on CLOSED. See it
BESTNODE is a goal node. It so. exit and report a solution (either BESTNODE
if all we want is the node or the path that has been created between the initial
slate and BEcTNODF if we are intere . tcd in the path), Otherwise. generate the
successors of 'TNODE but do not set BFSTNODE to point to them yet, F , rst
we need to see it any of them have already been generated.) For each nut-
SUCCESSOR. do the following:

(a) Set SUCCESSOR to poitut back to BESTNODF. These backwards links will
make it possible to recover the path once a solution is found

(b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of getting from
BESTNODE to SUCCESSOR.

(c) See if SUCCESSOR is the same as any node on OPEN (i.e., it has already
been generated but not processed). If so, call that node OLD Since this
nude already exists in the graph, we can throw SUCCESSOR away and add
OLD to the list of BESTNODE's successors. Now we must decide whether
OLD's parent link should be reset to point to BESTVODE, It should be if
the path we have just found to SUCCESSOR is cheaper than the current best
path to OU) (since SUCCESSOR and OLD are really the same node). So see
whether it is cheaper to get to OLD via its current parent otto SUCCESSOR

3.3 BEST-FiRST SEARCH
	 77

via BESTNODE by comparing their g values. If OLD is cheaper tot just

as cheap), then we need do nothing. If SUCCESSOR is cheaper. then reset

OLD's parent link to point to 8ESINODE, record the new cheaper path to

gtOLD). and update J'(OLI)t.

i.d} If SUCCESSOR was not on UPII', we it it is oil If so, call the

node on CLOSED DLL) ajid add 01.1) to the list of BESINODE s successors.

Check to see if th new pith or the old path is better just as in step 2(e).
and set the parent link and g arid f values appropriately. it we (lave just

A bettet path to 011). we must propagate the unprovernent to (11 Ii's
successors This is a hit trick y. OLD points to its successors. Each successor
ill turn points to its successors, and so forth, until each branch terminates
\s tb a node that either is still on OPEN or has no successors. Solo propagate
the new cost downward, do a depth-first traversal of the tree starting at OLD.
changing each node's g value)and thus also its!' value). terminating each
branch when you teach either a node with no successors or a ncsk tu which
Ml equivalent or bettet patti has already been 1`61110. 4 This condition is easy
to check fur. Each rides parent hnk points hack to its best known parent.
As we propagate down to a node. see if its parent points to the node we are

coining from. if so. continue the propagation. If then its. value already
reflects the better path of which it is part. So the propagation may stop here.
But it is possible that with the new value of g being propagated downward.
the path we are following may become better than the path through the
current parent. SO compare the two If the patti through the current parent
is ',*ill better, stop the propagation. If the path we are propagating through
is now better, reset ihe parent and continue propagation.

(c) If SUCCESSOR was not already on either OPEN or CLOSED, then)Ut

it on OPEN, and add it to the list of BESTNODE's successors. Compute

f(SUCCESSOR) =g(SUCCESSOR) + h'(SUCCESSOR).

Several interesting observations can be made about this algorithm. The first concerns
the role of the g func

t ion. It lets us choose which node to expand next on the basis not
only of how good the ruKle itself looks (as measured by h'), but also on the basis of how
good the path to the node was. By incorporatingg iritof 1 , we will not always choose as
our next node to expand the node that appears to be closest to the goal. This is useful if
we care about the path we find. If, on the other hand, we only care about getting to a
solution somehow, we can define . always to be 0, thus always choosing the node that

seems closest to a goal. If we want to find a path involving the fewest number of steps.
dieii we set the cost of going front a node to its successor as a constant. usually I. If.
on the other baud, we want to tind the cheapest path and some operators cost more than
others, then we set the cost of going from one node to another to reflect those costs.
Thus the At algorithm can be used whether we are interested in finding a minimal-cost
overall path or simply any path as quickly as possible.

The second observation involves h', the estimator of It. the distance of a node to the
goal. if h' is a perfect estimator of It. then A* will converge immediately to the goal

'This Sirci.nd i.hcck tiu.mranws thai the algorithm will terminate even it there ,are crk in the graph it
their is a cycle. then the scconii ujinc that .i giver node is visited, the patti will he no better than the tirci :imc
and co ptopagaikan will clop.

(5+1)

78	 CHAPTER 3. HEURISTiC SEARCh 1FCHNIQtJE.

Figure 3.4: 6' Underestimates h

with no warcli. The belier h' is, the c!oser we will get to that direct approach. Ii. on
the other hand, the value uf 6' is always u), the search will he controlled by g. If the
value of g is also 0, the search strategy will be random. If the value of g is always I, the
search will be breadth first. All nodes on one level will have lower g values, and thus
lowerf' values than will all nodes on the next level. What if, on the other hand, F,' is
neither perfect nor 0? Can we say anything interesting about the behavior of the search?
The answer is yes if we can guarantee that h' never overestimates h. In that case, the
A* algorithm is guaranteed to find an optimal (aa determined b y g) path to a goal, it one
exists This can easily he seen from'a few examples.

Consider the situation shown in Figure 3.4. Assume that the cost of all arcs is I.
Initially, all rodes except A are on OPEN (although the figure shows the situation two
steps later. after B and E have been expanded) For each node, f' is indicated as the
sum of 6' and g. In this example, node B has the lowestf, 4, so u is expanded first.
Suppose it has only one successor E. whieti also appears to be three moves away from
a goal. Nowf(E) is 5, the same asf'(C). Suppose we resolve this in favor of the
path we aje currently following. Then we will expand E next. Suppose it too has a
single successor F, also judged to be three moves from a goal. We are clearly using up
moves and making no progress. Butf'(F) = 6, which is greater than f'(C). So we will
expand C next. Thus we see that by underestimating /1(B) we have wasted some effini.
Bill eventually we discover that B was farther away than we thought and we go back
and try anothd path.

Now consider the situation shown in Figure 3.5 Again we expand B on the first
step. On the second step we again expand E. At the next step we expand F, and finally
we generate C!, for a solution path of lengtl: 4 But suppose there is a direct path from I)
to a solution, giving a path of length 2. .We will never find it. By overestimating

we make D look so had that we may find some oilier, worse solution without
evar expanding D. In general, if 6' might overestimate 6, we cannot be guaranteed of
finding the cheapest path solution unless we expand the entire graph until all paths are

'A search algorithm that is guaranteedto find an optimal path to goal, if one exists is .alled adrn,c.,hfr
(Nilsson. 19801.

(541)

3.3. REST-FIRST SEARCH

Figure	 l: A' Overestimates It

longer than the best solution. An intcrcsting question is. "Oi what practical significance

is the theorem that if h' never overestfl1aLes A then A is admissible')" The answer is.

"almost itoFie. because, for most real pr .hkiits, the only way to guarantee that h' never

overestimates Ii is to set it to zero. But then we are back to breadth-first search, which is
admissible but not efficient. But iere is a corollary io this theoremthat is very useful.

We can stare it loosel y as follows:

Graceful Deeay of Admissibility: If A' rarely overestimates A by more

than '. then the A algorithm will rarely find a solution whose cost is more
than greater than the cost of the optimal solution.

The formalization and proof of this coroiiary will be kit as all cxercise.
The third observation we can make about the A* aloriihm has to do with the

relationship between trees and graphs. The algorithm sas stated tn its most genera)
Form us it applies to graphs. It can, of course, be simpitlied to apply to trees by not
bothering to check whether a new node is already on OPFN or CLOSED. This makes it

I astcr to generate nodes but may result in the same scarch being conducted many times

if nodes are often duplicated.
Under ceulain conditions, the .A* aleorithili can he shown to be optima) in that it

generates the fewest nodes in the process of finding a solution to a problem, tinder other

conditions it is not optimal. For formal discussions of these conditions, see Gelpermn

rl977J and MartelliIQ7ll	 -

3.3.3 Agendas

In our discussit' . of best-first search in OR graphs, we assumed that we could evaluaie

rooltiple paths to the same node indepets iently of each ocher. For example, i n the water

1(0	 UMP7ER3. HEIJRJST!CSFAR('H IELiItvJQI.'!'S

jug problem, it makes no difference to the evaluation of the merit of the position (4.)
that there are at least two separate paths by which it could be reached. This is not
true, however, in all situations, e.g.. especially when there is no single, simple heunstic
function that measures the distance btrwecn a given node and a goal

(otisider, for example, the task faced by the mathematics discovery program AM,
written by Lenat 11977; 19821. AM was gis cii a small set of stalling facts about
number theory and a set of perator it could use no develop new ideas. These operators
included such things as 'Find examples of oncepL you already know." AM's goal
was to enerale new "interestin g " maulcmuical concepts. It succeeslid in discovering
such things as prime nt'nibers and GoidhacIs conje.:ture.

Armed solely with its basic operator). AM would have been able to create a great
many new concepts, most of which would have been worthless. It needed away to decide
intelligently which rules to apply. For this it was provided with a set of heuristic rules
that said such thni:es as "The extreme caes of any concept are likely to he interesting."
"Interest" was then used the measure of merit of individuallasks that the system could
perftn'ni. The system operated by selecting at each cycle the most interesting task, doing
It, and possibl y gener,ating ues tasks in the process. This corresponds to the selection
of the most promising node ill the best-first search procedure. But in AM's situation the
ft that several paths recommend the same task does matter. Each contributes a reason
why the task would lead to an Interesting result. The more such reasons there 'are, the
more likely, it is that the la,sk really woud lead 10 something good. So we need a way
to record proposed tasks along with the reasons they hase been proposed. AM used a
task agenda. An agenda is a list of tasks a system could perfuutu Associated with each
task there are usuall y two things: a list of reasons why the task is being pioposed (often
called justifications) and a rating representing the overall weight of evidence suggesting
that the task would be useful

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search

1. Do until a goal slate is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice that this task
can be represented in any desired form. It can be thought of as an explicit
statement of what to do next or simply as an indication of the next node to
be expanded.

(b) Execute the task by devoting to it the number of resources determined
by its tniporsance. The important resources to consider are time and space.
Executing the task will probably generate additional tasks (successor nodes).
For each of them, do the following:

i,. See if it is already on the agenda. If so. then see if this same rca-suit fun
doing it is airrady on its fist of justifications. If so, ignore this current
evidence. If This justification waswas not already present, add it to the list
If the task was not on the agenda, insert it.

ii. Compute the new task's rating, combining the evidence front all its
justifications. Not all justifications need have equal weight. It is often
useful to associate with each justification a measure of how strong a

3.3. HEST-FIRST SEARCH

reason it Ia. These measures are then combined at this step to produce
an overall rating for the task.

One important question that arises in agenda-driven systems Is hoss to find the most
promising task on each cycle. One way to do this is simple. Maintain the agenda surted
by rating. When a new task is created. insert it into the agenda in its proper place- When
a task has its justifications changed. recompute its tiding arid move it to the correct
place in the list. But this method causes great deal ot time to be spent keeping the
agenda in perfect order. Ninth of this time is wasted since we do not need perfect order.
We only itced to know the propei first element. The following modified strategy ma
occasionalls cause a task other than the best toheeseuted, but it is significantly cheaper
than the perfect method. When a task is proposed. or a new justification is added to an
existing task, compute the now rating and compare it against the top few (e g_ five of

ten) elements on the agenda. if it is better, insert the node into its proper position at the
top of the list. Otherwise, leave It where it is or simply ir,serl it at the end of the agenda.
At the beginning of eak. Ii c ycle, choosc the first task on the agenda. In addition, once in
a while, go through the ace;ida and reorder it properly.

An agenda driven control structure is also useful it some tasks (or nodes) provide
liegatise evidence about the merits ot other tasks (or nodes. This can he represented
by justifications with ilegatise weightings. If these tiegati-ve weightings are used, if may
oc important to check riot ouly for the possibility of mes iiig it task to the head of the
agenda but also of moving a top task to the hüttcmi ilitew. iiegaitvcju.s!itications appear.
But this is easy to-do.

As you call sec, the agenda mechanism providesa good way of focusing the attention
of a complex s stein iii the areas suggested by the greatest nuniberol positive indicators.
But the overhead for each task executed may he fairly high. ihis raises the question of
the propergrain size f'orthe divisonof the entire problem- solvingprocess Into individual
tasks. Suppose each task is very small. Then we will never do evens a very small thing
artless it really is the best thing to do. But we will spend a large percentage of'our total
effort on figuring out what to do next. If, off other hand, the size of an individual
task is very large, then some effort may be spent finishing one task when there are more
promising ones that could be dune. But a smaller percentage o f the total time will be
spent on the overhead of figuring out what to do. The exact choice of task size for a
particular s)stem depends on the extent to which doing one small thing really means
that a set of other small things is likel y to he very good to do too. It often requires soon'

experimentation to get right.
There are some problem domains fur which an ageiida iitechanisrri is inappropriate.

The agenda mechanism assumes that if there -v good rca' iij 10 do something now, then
there will also be the same good reason to do something later unless something better
comes along in the interim. Bitt this is not alwa)s the case, particularly for systems that
are interacting with people The following dialogue would not be acceptable to most
people:

Person:	 I don't wan! to rcad,­iriv more about China. Give me something elsi'

Computer:	 OK. What else are you interested in?

F'crscn:	 How about traly? ! think I'd finçi Italy fascinating.

Computer	 What things about Ital y arc you interested in reading uioot"

C!-1APTRR 3. HEIJRJSTICSLAR(H Thi'.HNFQL.S

Person:	 1 think I'd like to start with its history.

Computer.	 Why don't you want to read any more about China9

it would have been fine to have tried to find out why the person was no longer
interested in China right after he or she mentioned it. The computer chose instead
10 try to find a new area of positive interest, also a ver y reasonable thing to do. But

in conversations. the fdu that something is reasonable now does not mean that a iti
continue to be so after the conversation has proceeded bra while. So it is not a good idea
simply to put possible statements on an agenda, wait until a later lull, and then pop out
with them. More precisely, agendas are a good way to implement monotonic production
systems (in the sense of Section 2.4) and a poor way to implement Imonnlonotontc ones.

Despite these ditjicuitmes. aaenda-driven control structures are very useful, Thc
provide an excellent way of integrating information from a variety of sources into
one program since each source simply adds tasks and justifications to the agenda. As
Al programs become more complex and their knowledge bases grow, this becomes a
particularly significant advantage.

3.4 Problem Reduction

So far, we have considered search strategies for OR graphs through whit It we warn to
find a single. path to a goal. Such structures represent the fact that we will know how to
cci from a node to a goal state if we can discover how to get from that node to a goat
tate along any one of the hianches leaving it.

3.4.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is useful for representing
the solution of problems that can be solved by deeboiposing them into a set of smaller
problems, all of which must then he solved. This decomposition, or reduction, generates
arcs that we call AND arcs. One AND arc may point to any number of successor nodes.
all of which must he solcd in eder for the art' to point to a solution. Just as in an OR
graph, several arcs may emerge from a single node, indicating a variety of ways in which
the original problem might be solved. This is why the structure is called not simply an
AND graph but rather an AND-OR graph. An example of an AND-OR graph (which
.lso happens to be an AND OR tree) is gi v en in Figure 3.6. AND arcs are indicated
s ith a line connecting all the components

In order to find solutions in an AND-OR graph, we need an algorithm similar to best-
hst search but with the ability to handle the AND arcs appropriately. This algorithm
should find a path from the starting node of the graph to a set of nodes representing
solution states. Notice that ii may be necessary to get to more than one solution stale
since each arm of an AND arc must le'ad to its own solution node.

To see why our best first search algorithm is not adequate for searching AND OR
graphs, consider Figure 33(a). The top node, A, has been expanded, producing two
arcs, one leading to B and one leading to C and D. The numbers at each mmdc represent
the value

'
of f' at that node. We assume, for simplicity, that every operation has a

ciuniform csi, so each arc with a single successor has a cost of I and each AND arc with

(5)	 I Rh	 3)	 (4)	 (15)	 (1W

3.4. PROBLEM REDUCTION
	

83

LGoal: Acquire rv

(Goal: Steal TV set	 [al: Earn some money 1 I Goal: Buy TV set

Figure 3.6: A Simple AND-OR Graph

(5)
____> (9)

 (3)	 (4)

(a)	 (b)

Figure 3.7 AND-OR Graphs

multiple successors has a cost of 1 for each of its components. If we look just at the
nodes and choose for expansion the one with the lowest;' value, we must select C.
But using the infomiation now available, it would be better to explore the path goune
through B since to use C we must also use D. (ui .. total cost 019 (C+Df2) compared to
the cost of 6 that we pet by going through B. The problem is that the choice of which
node to expand next must depend not only on the f' value of that node but also on
whether that node is part of the current best path from the initial node. The tree shown
in Figure 3.7(h) makes this esen c)eaiei Th- must promising single node is (3 with an

F value of 3. It is even part iii the most promising are G-H, with a total cost of 9. But
that are is not part of the current best path since to use it we must also use the arc I-i
with a cost of 27. The path from A. through B. to F. and F is better, with a total cost
of IS. So we should not expand U next: rather we should examine either F. or F.

Jut order to describe an algorithm for searching an AND-OR graph. we need t{ii exploit
a value that we call FULILITY. If the estimated cost of a solution becomes greeiler than
the value of FUTilITY, then we abandon the search FUTILITY should be chosen to
correspond to a threshold such that any solution with a cost above it is too expensive lit
be practical, even if it could eser he found Now we can state the alger'.thrn

I?4PiEf' .4. HEURISTIC SEARCH ifcHNIQfJFS

Algorithm: Problem Reduction

1 Initialize the graph to the starting node.

2. Loop until the starling node s abeleii SOLVE!) or ontil its cost goes above
FUTILITY:

(a) Traverse the graph, starting at the initial node and following the cut-rent best
path, and accuniulate the set of nodes that are or that path Poivi' 'cit yet
been expanded or labeled as solved.

b) Pick one of these uncs panded nodes and expand it. If there are no successors,
assign FUTILITY as the value of this node, Otherwise, add its successors
to [he graph and for each of them computef' (use only h' and ignore g,
for reasons we discuss below). 1ff' of any node is 0, mark that node as
SOLVED.

(c) Change the!' estimate of the newly expanded nside to reflect the new
information pros ided by its successors. Propagate this change backward
through the graph. If any node contains a successor are whose descendants
are all solved, label the node itself asSOLVED. At each node that is visited
while going up the graph. decide which of its successor arcs is the most
promising and mark it as part of the current best path. This may cause
the current best path to change. This propagation of revised cost estimaics
hack up the tree was not necessary in the bcsi-lir.si search algorithm because
only unexpanded nodes were examined. But now expanded nodes muci be
reexamined so that the best current path can he selected. Thus it is important
that theirf' values be the best estimates available.

flits process is illustrated in Figure 3.. At step I. A is the only node, so it is at the
end of the .urrent best path. It is expanded, yielding nodes B. C. and F). The arc to F)
is labeled as the most promising one emerging from A, since it costs 6 compared to 13
and C, which costs 9. (Marked arcs are indicated in the figures by arrows.) In step 2.
node D is chosen for expansion. This process produces one new arc, the AND are to Ej,
and F, wtiin a itnhtncd c--:t es!imalc of tO. So we update the 1' value of D to 10.
Going back one more level, w&- see that this makes the AND arc B-c better than the arc
to D. so it is labeled as the current best path. At step 3. we traverse that arc from A
and discover the unexpanded nodes B and C. 11 we ate going to find a solution along
this path, we will have to expand both B and C eventually, so let's choose to espkire B
first. flits generates two new arcs, the ones to C and to H. Propagating theirf values
backward, we updarcf' of B to 6(since that is the best we think we can do, which we
cmi achieve by going through G). This requires updar'ng the cost of the AND arc B-C to

2 (6-i-4+2). Alter doing that, tbe arc to D is again the better path from A, so we record
that as the current best patti anti either node f or node F wiil be chosen for expansion
at step 4. This process continues until either a solution is found or all paths have led to
dead ends, indicating that there is no solution.

In addition to the difference discussed above, there is a second important way in
which an algorithm for searching an AND OR graph must differ from one for searching
an O raph. This difference, too, arises from the fact that individual paths from node
fo node cannot be consdei-ed independently of the paths through other nodes connected

(4)	 (4) 5)	 (7)	 (4)	 (4)

Figure 3.8 The Operation of Problem !eiJiietiun

34. PROBLEM REDUCTION

Before step I	 Before step 2

(3)	 (4)	 (5)

Before step . 	 Before step 4

to the original ones by AND ales In the best-first search algorithm. she desired path
from one node to another was always the one with the lowest cost. Rut this is not alwa.,

the case when searching an AND OR graph.
Consider the example shown in Figure 3.a). The nodes were generated in alpha

betical order. Now suppose that node J is espanded at the next step and that one of its
successors is node E, producing the graph shown in Figure 3.9(h). This new path to Ii
is longer than the previous path to E going through U. But since the path through C will
only lead to a solution if there is also a solution to D. which we know there is not, the

path through its better.
There is one important limitation of the algorithm we have just described. It fails

to take into account any interaction between subgoals A simple example of this failure
is shown in Figure 3.10. Assuming that both node C and node E ultimately lead to a
solution, our algorithm will report a complete solution that includes both of them. The
AND-OR graph states that for A to be solved, both C and D itiiist be solved. But then
the algorithm considers the solution of D as a completely separate process from the
solution of C. Looking just at the alternatives from D, E is the best path. But it turns
out that C is necessary anyway. so it would be better also to use it to satisfy D. 13w

since our algorithm does not consider such interactions, it will find a nonopitmal path
In Chapter 13. problem-solving methods that can consider interactions among ,nbgoals
are presented.

CHAP/ER 3. fIEUR/I'JC SEARCH TF(.'IINIQ(JES

able

t5)	 (2)

(a)	 (h)

Figuie 3.9 A Longer Path May Be Better

Fgure 3. lIt: Interacting Subgoals

3.4.2 The AO* Algorithm

[be problem reduction algorithm we just described is a simplication of an algoritton
described in Marielli and Montanari (1 973. Martelli and Montanari f 19791, and Nilsson
lItgO . Nilsson calls it the A0 4 algorithm. the nanie we assume.

Rather than the two lists. OPEN and CLOSED, that were used in the A 4 algonthni.
the A04 algni iitirii will USC a single structure GRAPH, representing the part of the search
graph that has been explicitly generated so far. Each node in the graph will point both
down to its immediate successors and up to its imrni'diaie predecessors . Each node
in the g raph will also have associated with it in h' value, an estimate of the cost of a
path from itself to a set of solution nodes. We will not store g (the cost of getting from
the start node to the current node) as we did in the A* algorithm. It is not possible to
compute a single such value since there may be many paths to the same state. And such
it value is not necessary because of the top-down traversing of the best-known path,
which guarantees that only nodes that are on the best path will ever be considered for
expansion So Iv will serve as the estimate of goodnes\ of a node.

3.4. PROBLEM REDUCTION

Algorithm: AO

I. Let GRAPH consist only Qi the node reprcscnIng the initial state. (Call this node

INIT.) Compute .V(LVU).

2. Until INIT i s labeled SOLVED or until IN/T's h' value becomes greater than
FUTII,rr'r. repeat the following procedure:

(a) Trace the labeled arcs from INIT and elect for expansion one ot the as ye
unexpanded nodes that occurs on this path (all the selected node NODE.

(h) (,eneratc the successors ol NOl)F. If there are none, then assign FliT/LU)'
as the h' value of NODE. 'rhis is equivalent to saying ilia(NODE is not
solvable. If there are successous, then for each one (called SIJ('('ESSOR
that is not also an ancestor ol NC)DF. do the following:

i. Add SUCCESSOR to GRAPH
ii. If.SUC'CESSOR is a teiminal node, label it 	 and assign it in h'

value of 0.

If SUCCESSOR is oni a terminal node, compute itS W value.

(C) Propagate the newly discovered information up the graph by doing the
following: Let S he a set of nodes that have been labeled SOLVED or whose

,1i' val)es have been changed and so need to have values propagated hack to
their parcnt. Initialize S to NODE. Until S is empty, repeat the ftilhowin

procedure.

i. If possible, select from S a node none of whose descendants in GRAPH
occurs in S. If there is no such node. select any node from S. Call this
node CURRENT, and remove it from S.

ii. Compute the cost of each of the arcs emerging from CURRENT. The
cost of each are is equal to the sum of the /,' values of each of the nodes
at the end of the arc plus whatever the cost of the arc itself us. Assign
as CURRENT's new /t' value the minimum or the costs just computed
for the arcs emerging from it.

iii. Mark the best path out 01 CLIRRENI by marking the are that had the
minimum cost as computed in the previous step.

iv, Mark CURRENT SOLVED if all of the nodes connected to it through
the new labeled arc have been labeled SOLVED.

v, If CURRENT has been labeled SOIl El) or if the cost of CURRENT
was just changed, ibeut its new status roust be propagated back up the
graph. So add all of the ancestors of CURRENT to S.

It is worih noticing a couple of points about the operation of this algorithumi Instep
2(W. the ancestors of a node whose cost was altered are added to the set 01 nodes whose
costs must also be revised. As stated, the algorithm will insert all the node's ancestors
into the set, which may result in the propagation of the cost change back up through
a large number 01 paths that are alread) known not to be very good. For example,
in Figure 3.11. it is clear that the path through C will always be better than the path
through B. so work expendrl on the path thmugl' B is wasted B; :1 the I of h: i'

CHAPTER 3 HEURISTIC SEARCH TPCHN1QUkS

A (1

(6)

X^c
Figure 3.11: An Unnecessary Backward Propagation

revised and that change is not propagated up through B as well as through C, B may
appear to be better. For example, if, as a result of expanding nude F, we update its
cost to 10, then the cost of C will be updated to 11. If this is all that is done, then
when A is examined. the path through B will have a cost of only II compared to 12
for the path through C. and it will be labeled erroneousl y as the most promising path.
In this example, the mistake might be detected at the next step, during which 1) will be
expanded. If its cost changes and is propagated hack to B, 9's cost will be recomputed
and the new cost of E will be used. Then the new cost of B will propagate hack to A.
At that point, the path through C will again be better. All that happened was that sonic
time was wasted in expanding D. But if the node whose cost has changed is farther
down in the search graph, the error may never be detected. An example of this is shown
in Figure 3.12(a). If the cost of U is revised as shown in Figure 3.12(h) and if it is
not immediately propagated back to E. then the change will never be recorded and a
rionoptimal solution through B may he discovered.

A second point concerns the terrrtiiiat ion (If the backward cost piopagation of step
2(c). Because G?APH may contain cycles. there is no guarantee that this process will
terminate simply bes.ause it reaches the 'top' of the graph. It turns out that the process
can be guaranteed ti tmtnatc for a different reason, though. One of the exercises at
the end of this chapter explores why.

3.5 Constraint Satisfaction

Many problems in Al can he iewed a problems ottoismientsaii.c4uyion ill which thc
goal is to discover some problem state that satisfies a given set of constraints. Examples
Of this sort problem include cryptarithmetmc puiiles (as described in Section 2.o
and many real-world perceptual labeling problems. Design tasks can also be viewed as
consIraiimi-satmsfacton problems in which a design must be created within fixed limit,
on time, cost, and rnatcri,tls.

By viewing a problem as one of constraint satisfaction, its ntlen possible to reduce
substantially the amount of search that, is required as compared with a method that
attempts to form partial solutions directly by choosing specific values for components
of the eventual solution. For example, a straightforward search procedure to solve a
cryptarithmetic problem mightoperate in a state space of partial solutions in which letters

89

(3

33. CON,TRAINi SATISFACTION

A (II)

(13)	 C (ID)

0 (51	 ()) E G

	

F

(a)	 (h)

Figure 1.l2: A Necessary Backward Propagation

are assigned particular numbers as their values. A (leplh-hrst control schrrne could then
follow a path of assignments until either a solution or an inconsistency is discovered. In
contrast to this. a constraint satisfaction approach to solving this problem avoids making
guesses on particular assignments of numbers to letters until it has to. Instead, the initial
ccl of constraints, which says that each number may coiiesporid to only one letter and
that the sums of the digits must be as they are given in the problem. is first augmented
to include restrictions that can be inferred irorii tlw rules of arithmetic. Then, although

er ci allowable guesses is reduced and so theguessing may still be required, the numb
iegrcc of search is curtailed.

Constraint satisfaction is a search procethtre that operates in a space of Constraint
sets The initial state contains the constraints that are originally given in the problem
description. A goal state is any state that has been constrained -enough." where "enough'

must be defined for cacti problem. For exalnplr. for cryptarithmetic. enough means that

each letter has been assigned a unique numeric value.
Constraint satisfaction is a two-step process. First, constraints are discovered and

propagated as far as possible throughout the system. Then, if there is still not a solution.

search begins. A guess about something is made and added as a new constraint

Pipagation can then occur with this new constraint, and so tot-1h.
(lie first step, prOparatiOfl. arises from the fact that there are usually dependencies

imong the Constraints. These dependencies occur because many constraints insolse
more than one object and many objects partil pale in more than one constraint. So.
for esample, assume we start with one constraint. N = E + I. Then, if we added the
constraint N - 3, we could propagate that to get a stronger constraint on F, rirnely
that E = 2. Constraint propagation also aitse' tioii th' pre'fl('e of inference r.lr,

90	 CHAPTER 3. HEURj7/C SEARCH TEc//N/QuL

Mao al10 additional constraints to be inferred from the ones thatarc given. C'oiitrajnt
p"opagat ton terminates for one of two reason,s. First, a contradiction may be detected
If this happens, then there s cdi so lutioncOnsistent with all the known cunstrai,iIs U
ti1 contradiction involves oiily muse constraints that were given as part of the problem
s pecification (as opposed to ones that were guessed during problem solving), then nos
olution exists. The second possible reason for termination is that the propagation has

run out of steam and there are no further changes that can be made on the basis of current
knowledge. If this happens and a solution has not yet been adequately specified, then
search is necessary to get the process moving again.

At this point, the second step begins. Some hypothesis about a way to strengthen
thc LJ1Is I 1411115 must he aiaik. lii the c 	 of the cryptarithmeiic problem, for example
this usually uieauis guessing a parIcutar value for come letter. Once this has been done,
constraint propagation can begin again from this new state. If a solution is found, it can
be reported If still more guesses are tequired, they can be made. If a contradiction is
detected, then backtracking can he used to try a different guess and proceed with it We
can state this procedure more precisely as follows:

Algorithm: Constraint Satistactian

I Propagate available constraints. To do this, first set OPEN to the set 01 all objects
that must have values assigned to them in a complete solution. Then do until an
inconsistency is detected or until OPEN is empty:

(a) Select an object 08 from ()PFW. Streiigil,rii as much as possible the set of
Constraints that apply to 08.

(b) If this set is different from the set that was assigned the last time On was
examined or if this is the first time 08 has been examined, then add to 0PJJv
all objects that share any constraints with 08.

(e) Remove 08 from OPEN.

2. If the union of the Constraints itn'overed above defines a solution, then quit andreport the solution.

3. If the union of the constrairc% discovered above defines a contradiction then return
failure.

4. If neither of the above occurs, then it is nece.s.sar'.' to make a guess at something in
order to proceed. To do this, loop until a solution is ttind or all possible solutions
have been eliminated:

(a) Select an object whose value is not yet determined and select a way of
strengthening the constraints on that object.

(b) Recursivel y invoke contruifli satistuctioti with the current set ut constrajtits
augmented by the strengthening constritni just selected.

This algorithm has been stated as generally as possible. lb apply it in a particular
problem domain requires the use of two kinds of rules: rules that define the way
constraints may validly be propagated and rules that suggest gues ses when guesses are

3.5. CO,STRAINT SATISFACTION

Problem:

END

,MORE

MONEY

Initial State:

No two letters have the same value.

The sums of the digits must be as shown in
the problem

Figure 3.13: A Cryptariihmetic Problem

necessary. It is worth noting, though, that in some problem dnrnaiias guessing may
not be required. l'or example, the Walti algorithm for propagating line labels in a
picture, which is described in Chapter 14, is a s' rision of this constraint satisfaction
al gorithm with the guessing step eliuiiitated. In general, the more powerful the rules for
propagating constraints, the less need there is for guessing.

To see how this algorithm works, consider the cryptariihmetic problem shown in
Figure 3.13. The goal slate is problem state in which all letters have been assigned a
digit in such a way that all the initial constraints arc satislied.

The solution process proceeds in c ycles At each cycle, two significant things are
(lone (corresponding to steps I and 4 of this algorithm):

1. Constraints are propagated by using rtHs that correspond to the properties of
arithmetic,

. A value is guessed for some letter whose value is not yet determined.

In the first step, it does not usually matter a great deal what order the propagation is

done in. since all available propagations will be performed before the step ends. In the
second step. though, the order in a hich guesses are tried may have a substantial impact
on the degree of search that is necessary. A few useful heuristics can help to select the
best guess to try first. For example, if there is a letter that has only two possible values
iuI nnoihcr with Ox possible values, there is a bettcrchance ofguessirtg right ott the tIrsi

than on the second. Another useful heuristic is that if there is a letter that oazticipatcs
in many constraints then it is a good idea to prefer it to a letter that participates in a
few. A guess on such a highly constrained letter will usually lead quickly either to a
contradiction (if its wrong) or to the geilt'r4tion of many additional constraint (i(it is
right). A guess on a ksstotrdjttlJ letter, on the other hand, provides less iriformatioti,

The result of the first re . cycles ofprocessia, this example is showt in Figure 3:4.
'tnce 'onsTia,nts neve' disappear t towes kvd, only t he ones being added are showti

U

92	 CHAPTER 3. HEURISTIC SEARCH /'CHNJQVLS

for each level, It will not be much harder for the problem solver to a& cess the constraints
as a set of lists than as one long list, and this approach is efficient both in terms of storage
space and the ease of backtracking, Ano t her reasonable approach for this problem would
he to store all the constraints in one certtal database and also to record at each node
the. changes that must be undone during backtracking. Cl, C2. C3, and C4 indicate the
carry bits out of the columns, numbering from the right.

Initially, rules for propagating cuisstiaiuls generate the following additional con-
straints:

• M 1, since two single-digit numbers plus acarry cannot total more than 19

• S=8or9, since S+MfC3>9 (to generate tie carry) and MlS+l+c3>
9. so S + C3 > 8 and C3 is at most 1.

• O=0,since S + M(l)+C3(<.. 1) must be at least 101o generate acarry and it
can be at must IL But M is already 1. so must be 0.

• N - F. or + i, depending on the value of C2. But N cannot have the same value
as E. SoN=E+l and C2 is I.

• In order for C2 to be], the sum of + R+CI must be greater than 9, so + R
must be greater than l.

• N + k cannot be greater than 18, even with a carry in. so E cannot be 9.

At this polill, let us asstinie that no more constraints can be generated. Then, to
snake progress from here, we must gurss Suppose F. is assigned the value 2. (We chose
to guess a value for E because it occurs three times and thus interacts highly with the
other letters.) Now the next cycle begins.

The constraint propagator now observes that:

• N z3, since N = E+ I.

• R= 8 o 9, s ince Ri' N (3)+C1 (1 or 	 2 n 12. But since N is already 3, the
sum of these nonnegative numbers cannot be less than 3. Thus R + 3 + (0 or I)
12 and R = 8 or 9,

• 2 + D Y or 2 + I) = 10 + Y, from the sum in the rightmost column.

Again, assuming no further constraints can be generated, a guess is required. Sup-
pose ('I is chosen to guess a value for. It we try the value 1, then we eventually reach
dead ends, as shown in the figure. Whcn this happens, the process will backtrack and
try Cl =0.

A couple of ob servations are worth making on this process Notice that all that is
required of the constraint propagation rules is that they not infer spurious constraints.
'['hey do not have to infer all legal ones. For example, we could have reasoned through
to the result that C equals 0. We could have done so by observing that for C lv be
I, the following must hold: 2 + 1) = 10 + Y. For this to be the case, I.) would have to
he 8 or 9. But both S and R must be either 8 or 9 and three letters cannot share two
values. SoCI cannot be I. If we kad realized this initially, some search could have been
avoided. But since uheconsiraint propagation rules we used were not that sophisticated.

35. CONSTRAINT SATISFACTION
	 93

END
Initial State	

S
 L_T 	 + MO R E

MONEY

M=l
S = 8 019

O -0 or I - 0=0
N F or E+I — N = E+l
C2 =
N+R >8
E 9

E=2

N=3
R = 8019
2+D Y or 2+D = IO-'-Y

Cl=O -"

2+D=Y -	 2+D=I0+Y

+R=Io+E]

Conflict	 Conflict

Figure 3.14: Solving a Cypariihmetic Problem

94	 ChAPTER J. HEURISTIC SEARCH TECIIlQUES

it took some search. Whether the search route takes more or less actual ture than doc
the constraint propagation route depends on how long it takes to perform the iea.son lug
required for constraint propagation.

A second thing to notice is that there are often two kinds of corritrairris. hit-
first kind are simple; thty just list possible values Ii.r a single object. The second
kind are more complex; they describe relationships between or among objects. Both
fdnds of constraints play the same role in the constraint satkfactiou process. and it; tin.
cryptarithmettc example they were treated identically. For some problems, however, it
may be useful to represent the two kinds of constraints differentl y. The simple, value-
l nting constraints are always dynamic, and so must always he represented explicitly
in each problem state. The more complicated, relationship-expressing constraints are
dynamic in the cryptarithmctrc domain since they are different for cacti cryptanthuretie
problem. But in marry other domains Ehcy are static. For example, in the Waits line
labeling algorithm, the only binary constraints arise from the nature of the physicai
'i,rld, in which surfaces can meet in onl' a fixed number of possible ways. These
ways are the same for all pictures that that algorithm may see. Whenever the binary
nn.ctraints are static, it may be computationally efficient not to represent them explicitly

ir. the state description but rather to encode them in the algorithm directly. When this is
done, the only things that get propagated are possible values. But the essential algorithm
is the same in both cases.

So far, we have described a fairly simple algorithm for constraint satisfaction in
which chronological backtracking is used when guessing leads to an inconsistent set of
constraints. An alternative is to use a more sophisticated scheme in which the specific
cause of the Inconsistency is identified and onl y constçaints that depend on that culprit
are undone. Others. even though they may have been generated after the culprit. are
left alone if they are independent of the problem and its cause. This approach is called
dependenc y -directed backtracking (DDB). If is descnbcd iii detail ill Section 7.S. I.

3.6 Means-Ends Analysis

So far, we have presented a collection of search strategies that can reason either forward
or backward, but for a given problem, one direction or the other must be chosen. Often,
however, a mixture of the two directions is appropriate. Such a mixed strategy would
make it possible to solve the major pails of a problem first and then go track and solve
the small problems that arise in "gluing" the big pieces together. A technique known as
means-ends anal ysis allows us to do that.

The means-ends anal ysis process centers around the detection of differences between
the current state and the goal slate. Once such a difference is isolated, an operator that
can reduce the difference must be found. But perhaps that operator cannot be applied
to the current state. So we set up a subproblcrn of getting to a state in which it can
be applied. The kind of backward chaining in which trperiittu-s are selected and titer,
subgoals are set up to establish the preconditions of the operators is called operarot
cuhgoalint But maybe the operator does not produce exactly the goal state we want.
!hen we have a second subproblem of getting froth the state it does produce In the
goat But if the difference was chosen correctly and if the operator is realty effective
at reducing the difference then the two subproblems should be easier to solve than the

. MtAI-Z.P"DS ma_ys,S

Operator

PUSH(obj, bc)

CARRY(ObJ, bet

WALK(loc)

PICK U P(obj)

PUTDOWN(obj)

PLACEobjl, ohj2)

P,-t',o,inJn3

at(robot, obj) A
iarge(otij) A
ctear(uht) A
armenipi>

at robot, ohi I A
smalb(ohj

none

at(robot, obj)

holding(obj

at(iubtit, obj2) I'.

holdtng(obj I

TTh1

at(ohj. be) A
at(robot. lock

attohj, tOo)A
at(robst, toe

at(robot, loot

holding(obj)

- liobdtn!tohjt

on(ohjl ohj2)

Figure 3.15: The Robot's Operators

original problem. The means-ends analysts process can then be applied recursively, in
order to focus the system's attention on the big problems first, the differences can he
assigned priority levels. i)itTerences of higher priority can then be considered before
lower priority nies.

The first Al Program to eXploit means-ends analysis was the General Problem Solver
(GPS)FNewell and Simon. 1963: Ernst and Newell. 19691. Its design was motivated by
the observation that people olten use this technique when they solve problems. But CPS
provides a good example of the fuzziness of the boundary between building programs
that simulate what people do and building programs that simply solve a problem an."

way they can.
Just like the othem problem-solving techniques we have discussed. means-ends anal

y'ds relies on a set of rules that can transform one problem state into another. 1 hese rules
are usually not represented with complete stale descriptions on each side. Instead, thc
are represented as a left side that describes the conditions that must he met tOT the rule

to be applicable (these conditions are called the rule's preronditranso and a might side

that describes those aspects of the problem state that will be changed by the application

of the rube. A separate data structure called a d,ffereu e iuh/e indexes the rules by the

differences that they ca l l he used to reduce.
Cnsidcr a 'dmple household robot domain. The available operators are shown in

Figure 3. 15, along with their precondittonsanii results. Figure 3. l shows the difference
table that describes when each of the operators is appropriate. Notice that sometimes
there may be more than one operator that can reduce a given difference and that a given
operator may be able to reduce more than one difference.

Suppose that the robot in this dcmtnain were given the problem of moving a desk with
two things on it from one room to another The objects on top must also be moved, The

96	 CHAPTER 3. HEURiSTIC SEARCH TECHNIQUES

Walk

Move robot
Clear object
Gel object one
Get anli empty

Figure 3.16: A Difference Table

	

A	 B	 C	 I)

	

I	 Push	 I
	Start	 Goal

Figure 3.17: 'the Progress of the Means- Fnds Analysis Method

main difference between the start state and the goal state would be the location of the
desk. To reduce this difference, either PUSH or CARRY could be chosen. If CARRY
is chosen first, its preconditions must be met. This results in two more differences that
must be reduced, the location of the robot and the size of the desk. The location of the
robot can be handled.by applying WALK, but there are no operators than can change
the size of an object (since we did not include SAW-APART). So this path leads to a
dead-end. Following the other branch, we attempt to apply PUSH. Figure 3.17 shows
the problem solver's progress at this point. It has found a way of doing sorrieThing
useful. But it is not yet in a position to do that thing. And the thing does not get it quite
to the goal stale. So now the differences between A and B and between C and 1) must
be reduced.

PUSH has tour preconditions, two of which produce differences between the start
and the goal states: the robot must be at the desk, and the desk must be clear. Since
the desk is already large, and the robot's arm is empty, those two preconditions can be
ignored. The robot can be brought to the correct location by using WALK. And the
surface of the desk can he cleared by two uses of PICKUP. But after one PICKUP.
an attempt to do the second results in another difference--the arm must be empty.
PUTDOWN can be used to reduce that difference.

Once PUSH is performed, the problem state is close to the goal state, but not quite.
The objects must be placed hack on the desk- PLACE will put them there. But it cannot
he applied immediately. Another difference must be eliminated, since, the robot must
be holding the objects The progress of the prohh"ni solver at this point is shown in
Figure 3.18.

The final difference between C and F. can he reduced by using WALK to get the
robot back to the objects, followed by PICKUP and CARRY.

The process we have just illustrated (which we call MEA for short) can be sumnia
aied s.'; tól1ow:

3.7. SUMMARY

1Walk 1 Pick up I Put down I Pick up Put down PushH
Start	 Goal

Figure 3.18: More Progress of the Means-F.nds Method

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

1. Compare CURRENT to GOAL. If there are no differences between them then

return.

2. Otherwise, select the most important difference and reduce it by doing the fol

lowing until success or failure is signaled:

(a) Select an as yet untncd operator 0 that is applicable to the current difference

If there are no such operators. then signal failure.

th) Attempt to apply 0 to CURRENT. Generate descriptions of two states:

0-START. a state in which 0's preconditions are satisfied and 0-RESULT,

the state that would result if 0 were applied in 0-START.

(ci If
FIRST-PART - MEA(CURREN7. 0-START))

and
(LAST-PART - MEA(0-RESULT, GOALYI
are successful, then.ignal success and return the result of concatenating

FIRSTPART, 0, and LAST-PART.

Many of tht. details of this process have been omitted in this di5Lus\jOfl in particular.
the order in which ditlerences are considered can be critical I t is important that

significant differences be reduced before less critical ones. If this i s, not done, a great

deal of effort may be wasted on situations that take care of themselves once the main

paris of the problem are solved
The simple pti)cess we have described is usually not adequate for solving complex

problems. The number of permutations of differences may get too large. Working on
one difference may interfere with the plan for reducing another., And in complex worlds.

the required difference tables would be immense. In C'hapier 13 we look at some way,
in which the basic means-ends analysis approach can be extended to tackle some of

these problems.

3.7 Summary
in Chapter 2. we listed four steps that must be iaten to design a program to solve an Al

problem. The first two steps were:

- Define the problem preetsely. Specify the prcrhletn space. the operators for moving

within the space, and the starling and goal slate(s).

9R	
CHAPTER 3. HEURISTIC SEARCH TECIJNIQLfFS

2 Analyze the problem to determine where it falls with respect to seven importantissues.

The othcrtwc; steps were to isolate and represent the task knowledge required, and to
choo.c. problem solving techniques and apply them to the problem. In this chapter, we
began our discussion ot' the last step of this process by

od.5	 presenting some gertcralpui.pose
differ. including:

problem-solving meth	
thei'e arc several important ways in which these algorithms

• What the sraies in the search space(s) represent Sometimes the states represent
complete potential solutions (as in bill climbing). Sometimes they

representsolutions that are Part i all y specihed as in constraint catisf	 cm
• How, at each stage of the search process, a state is selected for expansion

• How operators to be applied to that node are selected

• Whether an optimal solution can he guaranteed,

• Whether a given state may end up being considered more than once.

• How many stale descriptions must be maintained
throughout the search process.

• Under what circumstaiiccs should a Particular search path be abandoned.

In the chapters that follow, we talk about ways that
know ledge about task dothainscan be encoded in problem-solving progran i s jnd we discuss techniques for cnmhjii-tug problem-solving techniques with knowledge to solve several

important classc, ofproblersis.

3.8 Exercises

When would best-bust search be worse than simple hr eadtlifjj-s1 search
Suppose we have a problem that se intend to solvr' using a 'fltilrpsiic best-first
search procedure We need to decide whether to implement if as a tree search oras a graph search. Suppose that we know that, on the average, each distinct

nodewill be generated N times during the search process. We also know that if we use
a graph, it will take, on the average, the same amount of lime to check a node to
W if it has already been generall as it takes to process

.M nodes if no checking
is done, flow can we decide whether louse a tree or a graph? In addition to the
parameter., N and M. what other assumptions must be made?

Consider trying to solve the I-pule using hill climbing. Can you find a heuristic
function that makes this work? Make sure it works on the following example

Start	
Goal

IP21T1
J 2	 3

L.L?JJ	 5Tti

LJLL	 LILIt.1

(3+1) (3+1)

i.. LXLRC!S
	

1'

4. Describe the behavior of a revised version of the s pcst tscer1t hilt ciIrnhiit:
algorithm in which step 2(c) is replaced by "set current slate to best successor.

5. Suppose that the first step of the operation of the best-first search algorithm resuli
in the following situation (a -f h means that the value of /i at a node is a and the
value of g is b).

A

B 14+)	 C (34-tI

The second and third steps then result in the following sequence of situations:

a) What node will be expanded at the nest step'

(b) Can we guarantee that Lhc best solution will be found?

6. Why must the A algorithm work properly on graphs containing cycles? Cycles
could be prevented if wheji a new path is generated to an existing node, that path
wt'ie simpl y thrown away if it is no better than the existing recorded one. It

is nonnegative, a cyclic path can never be better than the same path with the
cycle omitted. For example, consider the lust graph shown below, in which the
nodes were generated in alphabetical order. the fact that node D is a successor
of node F could simply not be recordvd since the path through node F is Longei
than the one through node B. This same reasoning would also prevent us from
recording node E as a successor of node F. if such was the case. But what would
happen in the situation shown in the second graph below 1 the path from node G
to node F were not recorded and, at the nest slep, it were discovered that nncle 6

I)

100	 CHAPTER 3. HE(IRISTIC SEARCH rF(-HN,oL'rs

is a successor of node C?

7. Formalize the Graceful Decay s'IAdinissibiIityC'orolla-y and prove that it is Inie
of the A S algorithm.

fit 2(a) of the AO algorithm, a random stale at the end of the current best
path is chosen for expansion. But there are heuristics that can be used to influence
this choice. For example. it may make sense to choose the state whose current
cost estimate is the lowest. The argument for th;s is that for such nodes, only a
few steps are required bek,r either a solution is found or a revised cost estimate
is produced. With nodes whose current Cost estimate is large, on the other hand,
many steps may be required before any new information is obtained. Flow would
the algorithm have to be changed to implement this state-selection heuristic?

the backward cuss propagation stcp?(ct of the A0 5 algorithmmust be guaranteed
to terminate even on graphs conl4ining c'cles. flow can we guarantee that it does?
To help answer III isquestion, consider what happens for the following two graphs.
assuming in each cast that node F is expanded next and that iL, only suciessoI
is A:

A (28)	 A (28)

(50	 ll2:,E(lc	 II)	 (i

3.8. EXERCISES

Also consider what happens in the following graph if the cost of node Cis changc.

to 3:

A (6)-

(66) 1 R

10. The AO* algorithm, instep 2(0i, requires that anode with no descendants in S be

selected from S. if possible. How should the manipuation of S be implemented so

that such a node can be chosen efficiently? Make sure that your technique works

correctly on the following graph, if the cost of node E is changed:

Consider again the AO* algorithm. Under what circumstances will it happen that
there are nxlrs in S but there are no nodes in that have no descendants also in S?

12. -rrace the constraint satisfaction procedure solving the following cryptarilhmetic

problem:

C' ROSS
+ ROADS

DANGER

13. The constraint satisfaction procedure we have described peifornis depth-first
search whenever some kind of search is necessary- But depth-first is not the
only way to conduct such a search (although it is perhaps the simplest).

(a) Rewrite the constraint satisfaction piocedure to use breadth-first search.

(b) Rewrite the constraint satisfaction procedure to use best-first search.

1 I . Show how means-ends anal ysis could be used to solve the problem of getting
fiom one place to another. Assume that the available operators are waik. drive.

take the bus, take a cab, and fly.

