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Chapter 1

What Is Artificial Intelligence?

What exactly is artificial intelligence? Although most attempis to define complex and
widely used terms precisely are excreises in futility, it is useful to draw at least an ap-
prgr.imalc boundary around the concept to provide a perspective on the discussion that
follows. To do this, we propose the following by no means universally accepted defini-
tion. Artificial intelligence (Al) is the study of how to make computers do things which.
at the moment, people do better, This definition is, of course, somewhat ephemeral
because of its reference to the current state of computer science. And it fails to include
some areas of potentially very larze impact, namely problems thai cannot now be solved
well by either computers or people. But it provides a good outline of what constitutes
artificial intelligence, and it avoids the philosophical issues that dominate altempis 1o
define the meaming of either artificial or intelligence. Interestingly, though, it suggests a
similarity with philosophy al the same time it is avoiding it. Philosophy has always been
the study of those branches of knowledge that were so poorly understood that they had
nol yet become separate disciplines in their own right, As fields such as mathematics or
physics became more advanced, they broke off from philosophy. Perhaps if Al succeeds
it can reduce itself 1o the empty set.

1.1 The Al Problems

What then are some of the problems contained within AI? Much of the early work in the
field focused on formal 1asks, such as pame playing and theorem proving. Samuel wrote
a checkers-playing program that not only played games with opponents but also used
its experience at those games to improve its later performance. Chess also rece =d a
good deal of attention. The Logic Theorist was an early attempt 10 prove mather wtical
theorems. It was able to prove several theorems from the first chapier of Whitehead and
Russell's Principia Mathematica. Gelernter's theorem prover explored another area of
mathematics: geometry. Game playing and thcorem proving share the property that
people who do them well are considered to be displaying intelligence. Despite this,
it appeared initially that computers could perform well at thosc tasks simply by beng
fast at exploring a large number of solution paths and then sclecting the best one. Tt
was thought that this procese required very linle knowledge and could therefare be
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programuned casily As we will see latér, this assumption turned oul 1o be false since
no cusmpartes s fast enough to overcome the combinatonal explosion generated by most
problems

Another early foray into Al focused on the sort of problem solving that we do every
day when we decide how 1o get 1o work in the moming, often called commonsense
reasoning. 1 includes reasoning abowr physical objects and their relationships to each
other (¢.g.. an object can be in only one place at a time), as well as reasoning about
actions and their consequences (e.g., if you let go of something, it will fall to the Noor
and maybe break). To investigate this sort of reasoning, Newell, Shaw, and Simon built
the General Problem Solver (GPS). which they applied to several commonsense tasks
as well as 1o the problem of performing symbolic manipulations of logical expressions,
Again, no attemnpt was made to create a program with a large amount of knowledge
about a particular problem domain. Only quite simple tasks were selected.

As Al research progressed and techniques for handling larger amounts of world
knowledge werc developed, some progress was made on the tasks just described and
new tasks could réasonably be atiempted. These include perception (vision and speech).
natural language understanding. and problem solving in specialized domains such as
medical diagnosis and chemical analysis.

Perception of the world around us is crucial 10 our survival. Animals with much
less intelligence than people are capable of more sophisticaled visual perception than
are current machines. Perceptual tasks are difficult because they involve analog (rather
than digital) signals; the signals are typically very noisy and usually a large number oi
things (some of which may be partially obscuring others) must be perceived ar once.
The problems of perception are discussed in greater detail in Chapter 21.

The ability to use language 10 communicate a wide variety of ideas is perhaps the
most important thing that separates humans from the other animals. The problem of
understanding spoken language is a perceptual problem and is hard 1o solve for the
reasons just discussed. But suppose we simplify the problem by restricting it to written
language. This problem. usually referred to as narural language understanding, is sull
extremely difficult  In vrder to understand sentences about a topic, it is necessary 1o
know not only a lot about the language itself (its vocabulary and grammar) bur also &
gouod deal about the topic so thal unstated assumptions can be recognized. We discuss
this problem again later in this chapter and then in more detail in Chapter 15.

In addition 10 these mundane tasks, many people can also perform one or maybe
more specialized tasks in which carefully acquired expertise is nccessary. Examples
of such tasks include engineering design, scientific discovery, medical diagnosis, and
financial planning. Programs that can solve problems in these domains also fall under
the aegis of antificial intelligence. Figure 1.1 lists some of the tasks that are the targets
of work in AL )

A person who knows how to perform tasks from scveral of the calegories shown in
the figure leams the necessary skills in a standard order. First pereeptual, linguistic, and
commonsense skills are learned. Later (and of course for some people, never) expert
skills such as engineering, medicine, or finance are acquired. 1i might seem 1o make
sense then that the earlier skills are easier and thus more amenable 1o compuierized
duplication than are the later, more specialized ones. For this reason, much of the initial
Al work was concentrated in those early areas. But it tums out that this naive assumption
is not right. Although expert skills require knowledge that many of us do not have, they
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Mundane Tasks

« Perception

- Vision

- Speech
& Natural language

- Understanding

Generation

- Translation
+ Commonsensc reasoning
+ Robot control

Formal Tasks

» Games
- Chess
- Backgammun
- Checkers
-Go
o Mathematics
- Geomelry
- Logic
— Integral calculus .
— Proving properties of prograims

Expert Tasks

s Engineening
Design
Fault finding
— Manufacturing planning
» Scientific analysis
e Medical diagnosis
« Financial analysis

Figure 1.1: Some of the Task Domains of Artificial Intelligence
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often require much less knowledge than do the more mundane skills and that knowledge
15 nsually easier to represent and deal with inside programs.

As @ result, the problem areas where Al is now flourishing most as a practical
discipline (as opposcd to a purely research one) are primarily the domains that require
only specialized expertise without the assistance of commensense knowledge. There are
now thousands of programs called expert systems in day-to-day operation throughout
al; areas of industry and govemment. Each of these sysiems attempts 1o solve part, or
perhaps all, of a practical, significant problem that previously required scarce human
expertise. In Chapter 20 we examine several of these systems and explore techniques
for constructing them.

Before embarking on a siudy of specific Al problems and solution techniques, it is
important at least to discuss, if not (o answer, the following four questions:

|. What are our underlying assurmptions about intelligence?

2. What kinds of techniques will be uscful for solving Al problems?
3. At what level of detail, if at all, are we trying to model human intelligence?
4. How will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that is a
survey of some Al books that may be of interest and a summary of the chapter.

1.2 The Underlying Assumption

Al the heart of research in artificial intelligence lies what Newe]l and Simon [1976]
call the physical symbol system hypothesis. They define a physical symbol system as
follows:

A physical symbol system consists of a set of entities, called symbols, which
are physical patterns that can oceur as componenis of another type of entity
called an expression (or symbol structure). Thus, a symbol structure is
composed of a number of instances (or tokens) of symbols related in some
physical way (such as one loken being next to another). At any instant
of time the system will contain a collection of these symbol structures.
Besides these structures, the system also contains a collection of processes
that operate on expressions to produce other expressions: processes of
creation, modification, reproduction and destruction, A physical symbol
system is a machine that produces through time an evolving collection of
symbel structures. Such a system exists in a world of objects wider than
just these symbolic expressions themselves,

They then state the hypothesis as

The Physical Symbol System Hypothesis. A physical symbol system has
the necessary and sufficient means for general intelligent action.

This hypothesis is only a hypothesis. There appears (0 be no way to prove of disprove
it on logical grounds. So it must be subjected to empirical validation. We may find that
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it is false. We may find ihat the bulk of the evidenue says that it is true. Bul the only
way to determine its truth is by experimentation.

Computers provide the perfect medium for this experimentation since they can be
programmed to simulate any physical symbol system we like. This ability of computers
to serve as arbitrary symbol manipulators was noticed very early in the history of
computing. Lady Lovelace made the following observation about Babbage’s proposed
Analytical Enginc in 1842

The operating mechanism can even be thrown into action independently
of any ohject lo operate upon {although of course no result could then be
developed). Again, it might act upon other things besides numbers, were
objects found whose mutual fundamental relations could be expressed by
those of the abstract science of operations, and which should be also suscep-
tible of adaptations to the action of the operating notation and mechanism
of the engine. Supposing, for instance, that the fundamental relations of
pitched sounds in the science of harmony and of musical composition were
susceptible of such expression and adaptations, the engine might compose
elaborate and scientific pieces of music of any degrec of complexity or
extent. [Lovelace, 1961}

As it has become increasingly easy 1o build computing machines, so it has become
increasingly possible to conduct empirical 1 cstigations of the phvsical symbol system
hypothesis. In each such investigation, a particular task that might be regarded as
requiring intelligence is selected, A program to perform the task is proposed and then
tested, Although we have not been completcly successful at creating programs that
perform all the selected tasks, most scientists believe that many of the problems that
have been encountered will ultimately prove to be surmountable by more sophisticated
programs than we have yet produced.

Evidence in support of the physical symbol systern hypothesis has come not only
from areas such us game playing, where one might most expect to find it, but also from
areas such as visual perception, where it is more templing Lo suspect the influence of
subsymbolic processes, However, subsymbolic models (for example, neural networks)
are beginning to challenge symbolic ones at such low-level tasks, Such models are
discussed in Chapter 18. Whether certain subsymbolic models conflict with the physical
symbol system hypothesis is 2 topic still under debate (e.g.. Smolensky [1988]) And
it is important 1o note that even the success of subsymbolic systems 15 not necessarily
evidence against the hypothesis. It is ofen possible 10 accomplish a task in more than
one 'way.

One interesting attempt 1o reduce a particularly human activity, the understanding
of jokes. to a process of symbol manipulation is provided in the book Mathematics and
Humor [Paulos, 1980]. It is, of course. possible that the hypothesis will turn ouf to be
only partially true. Perhaps physical symbol systems will prove able 10 model some
aspects of human imtelligence and not others. Only time and effort will teli.

The importance of the physical symbol system hypothesis is twofold. It is a signifi-
~ant theory of the nature of human intelligence and so is of great interest to psychologists.
it also forms the basis of the belief that it is possible to build programs that can perform
intelligent tasks now performed by people. Our major concen here is with the latter of
these implications, although as we will soon see, the two issues are not unrelated
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.3 What Is an Al Technique?

Artificial intelligence problems span a very broad spectrum. They appear to have very
itttle in common except that they are hard. Are there any techniques thal are appropriate
tor the solution of a variety of these problems? The answer to this question is yes, there
are. What, then, if anything, can we say about those technigues besides the fact that they
manipulate symbols? How could we tell if those techniques might be useful in solving
other problems, perhaps ones nol traditionally regarded as Al tasks? The rest of this
book is an attempt to answer those guestions in detail. But before we begin examining
closely the individual techniques, it is enlightening to 1ake a broad lock at them to see
what properties they ought to possess.

One of the few hard and fast results to come out of the first three decades of Al
research is that intelligence requires knowledge. To compensate forits one overpowering
assel, indispensability, knowledge possesses some less desirable properties, including:

» [tis voluminous.
e [t is hard to characterize accurately.
= It 15 constantly changing.

o [t differs from data by being organized in a way that corresponds to the ways it
will be used.

So where does this leave us in our attempt to define Al techniques? We are forced
to conclude that an Al technique is a method that exploits knowledge that should be
represented in such a way that:

e The knowledge captures generalizations.  In other words, it is not necessary
10 represent separately each individual situation. Instead, situations that share
important properties are grouped together. If knowledge does not have this
property, inordinate amounts of memory and updating will be required. So we
usually call something without this property “data” rather than knowledge.

» Ircan be understood by people who must provide 1t. Although for many programs,
the bulk of the data can be acquired automatically (for example, by taking readings
from a variety of instruments), in many Al domains, most of the knowledge a
program has must uitimatcly be provided by people in terms they understand.

& It can easily be modified to correct errors and to reflect changes in the world and
in our world view.

e [t can be used in a great many situations even if it 15 not totally accurate or
complete.

+ Itcan be used to help overcome its own sheer bulk by helping to narrow the range
of possibilities that must usually be considered

Although AT techniques must be designed in keeping with these constraints imposed

by Al problems. there is some degree of independence between problems and problem-
solving techniques. It is possible to solve Al problems without using Al techniques
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(although, as we suggesicd above, those solutions are not likely to be very good). And
it is possible to apply Al techniques to the solution of non-Al problems. This 1s likely (o
be a good thing to do for problems that possess many of the sare charactenstics as 6o
Al problems. In order to try 10 characterize Al techniques in as problem-independent a
way as possible, let’s look at two very different problems and a series of approaches for
solving each of them.

i.3.1 Tic-Tac-Toe
In this section, we present a series of three programs to play ne-tac-toe. The programs
in this series increase in:
e Their complexity
s Their use of generalizations
e The clarity of their knowledge
« The extensibility of their approach
Thus they move toward being representatioas of what we call Al technigues.

f'rogram ¢
Data Strizctures

Board A nine-element vector representing me poard, whesr ine slements
of the vector correspond to the boasd positions as follaws

1]z
lals]e
o
(T8

An element contains the vaiue 0 if the cormesponding square is blank,
1 if itis filled with an X, or 2 if it is filled with an O.

Movetable A large vector of 19,683 elements {3%), each clement of which
is a nine-element vector. The contents of this vector are chosen
specifically to allow the algorithm to work.

The Algorithm
To make a move, do the following:

1. View the vector Board as a temary (basc three) number. Convert icto & decimal
number.

2. Use the number computed in step 1 as an index into Movetable and access the
vector stored there.

3 The vector selected in step 2 represents the way the board will look after the move
that should be made. So set Board equal to that vector
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Comments

This program is very efficient in terms of time. And, in theory, it could play an optimai
game of tic-tac-toe. But it has several disadvantages:

o It takes a lot of space to store the table that specifies the correct move to make
from each board position.
» Someone will have 1o do a lot of work specifying all the cntries in the movetable.

» it is very uniikely that all the required movetable eniri¢s can be determined and
entered without any errors.

» U we want (o extend the game, say to three dimensions, we would have (o start
from scratch, and in fact this technique would no longer work at all, since 377
board positions would have to be stored, thus overwhelming present computer
mMemornes.

he technique embodied in this program does not appear to meet any of our requirements
for a good Al technique. Let’s see if we can do better.

Program 2

Diata Structures

Board A nine-element vector representing the board, as described for Pro-
gram 1, But instead of using the numbers 0, 1, or 2 in each element,
we slore 2 (indicating blank), 3 (indicating X), or 5 (indicating 0),

Turn An integer indicating which move of the game is about to be played:
! indicates the first move. 9 the last.

The Algorithm

The main algorithm uses three subprocedures:

Make2 Retums 5 if the center square of the board is blank, that is, 1f Board(5]
= 2. Otherwise, this function returns any blank noncorner square
(2,4,6,0r8).

Posswin(p) Reiurns 0 if player p cannot win on his next move; otherwise, it

returns the number of the square that constitutes a winning move.
This function will enable the program both to win and to block the
opponent’s win. Posswin operates by checking, one at & time, each
of the rows, columns, and diagonals. Because of the way values are
numbered, it can test an entire row (column or diagonal) to see if it
15 & possible win by multiplying the values of its squares together.
If the product is 18 (3 x 3 x 2), then X can win. If the product is 50
(5 x 5 x 2), then O can win. If we find a winning row, we determine
which element is blank, and retumn the number of that square.
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Goin) Makes a move in square n. This procedure sets Board[n] 1o 3 if
Tura is 0dd, or 5 if Tum is even. It also increments Turn by one.

The algorithm has a built-in strategy for each move 1t may have vo make. It makes the
odd-numbered moves if it is playing X, the even-numbered moves if it is playing O.
The strategy for each tum is as follows:

Tum=! Go(1) (upper left comer).

Tum=2 If Board[5] is blank, Go(5). else Go(1).

Tumn= If Board[9] is blank, Go(), else Go(35.

Turn=4 If Posswin(X) is not 0, then Go(Posswin(X)) li-e.. block opponent’s
win], clse Go(Make2)

Turmn=3 I Posswin(X) 15 not © then Go(Posswin(X)) [i.e.. win| else if Pos-

swin(O} is not 0. then Goi Posswin(O)) fie., block win], else if
Board[7] is Bank, then Gol7), cise Goi3) [Here the program is
trying o mke = fork

Turn=>% I Posswair (21 i« not b then GodPosswin(O), clse if Posswin(X) is
st 0, then CiolPosswin( X)), else GoiMakel).

Tum=7 (i Posswin(X) 1s not U then GotPosswin{X)}, cise if Posswin{O) 15
not 0. then GotPosswini (1)), else go anywhere that is blank.

Tumn=8 If Posswiniy 1s not O then Go(Posswin{ ()}, else if Posswin(X) is

. not 0, then GolPosswin(X)), clse go anywhere that is blank.
Turn=4 Same as Tum=7
Comments

This program is not quite as efficient in texms of time as the first one since it has 1o
check several conditions before making each move, But it 1s a lot more efficient in
terms of space. 1115 also a lot easier Lo understand the program’s strategy or to change
the strategy if desired. But the total strategy has still been figured out in advance by the
programmer. Any bugs in the programmer’s lic-tac-10e playing skill will show up in
the program’s play. And we still cannot generalize any of the program’s knowledge to
2 different domain, such as three-dimensional tic-tac-10e

Program 2’

This program is identical 1o Program 2 except for one change in the representation
of the board, We again represent the board as a nine-element vector, but this time we
assign board positions 1o vector elements as follows:
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Notice that this numbenng of the board produces a magic square. all the rows,
columns, and diagonals sum to 13. This means that we can simplify the process of
checking for a possible win. In addition to marking the board as moves are made, we
keep a list, for each player, of the squares in which he or she has played. Te check fora
possible win for one player. we consider each pair of squares owned by that player and
compute the difference between 15 and the sum of the two squares. I this difference
1§ not positive or if it is greater than 9, then the original iwo squares were not collinear
and so can be ignored. Otherwise, if the square representing the difference is blank,
2 move there will produce a win, Since no player can have more than four squarct at
a time, there will be many fewer squares examined using this scheme than there were
using the more straightforward approach of Program 2. This shows how the choice of
representation can have a major impact on the efficiency of a problem-solving program.

Comments

This comparison raises an interesting question about the relationship between the way
people solve problems and the way computers do. Why do people fing ihe row-scan
approach easier while the number-counting approach is more efficient for 2 computer?
We do not know enough about how people work 10 answer that quesuon completely.
One part of the answer is that people are parallel processors and can look a1 several
parts of the board at once, whereas the conventional computer must look af the squares
one + 3 ume. Somefimes an investigation of how people sulve problems sheds great
light on how comyuters should do so. At other nmes. the differences in the hardware
of the twr seem 50 great that different strategies seem best. As we l2am more about
problem soniving both by people and by machines. we may know better whethst the same
representations and algorithms are best for both people and machines. We will discuss
this question larther in Section 1.4,

Program 3
Dats Struciures
BoardPaosition A structure containing a nine-clement vector representing the board.
a list of board positions that could result from the next mieve, and a
aumber representing an estimate of how likely the board position is
to lead 1o an ultimate win for the player 1o move.
The Algorithm

To decide on the next move, look ahead at the board positions thal result from cach
possible move. Decide which position is best (as described below), make the move that
leads to that position, and assign the rating of that best move to the current position.

To decide which of a set of board positions is best, do the follawing for each f
them:

1. Seeif itis a win. If so, call it the best by giving it the highest possible rating
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2. Otherwise, consider all the moves the opponent could make next. See which of
them is worst for us (by recursively calling this procedure). Assumne the opponent
will make that move. Whatever rating that move has, assign it 1o the node we are
considering.

3. The best node is then the one with the highest rating.

This algorithm will look ahead at various sequences of moves in order o find a
sequence that leads to a win. It attempts to maximize the likelihood of winuing, wlnle
assuming that the opponent will try to minimize that likelihood. This algorithm is called
the minimax procedure, and 1t is discussed in detail w Chaoter 12

Comments

This program will require much more time than either of the others smce 1L Mus’ search
a tree representing all possible move sequences before making each move. But it is
superior to the other programs in one very big wav. [tcould be extended o handle games
more complicated than tic-1ac-toe, for which the exhaustive enumeration approach of
the other programs would completely fall apait. It can also be augmented by a variety o!
specific kinds of knowledge about games and how to play them. For example, instead
of considering all possibls next maves, it might consider only a subset of them that ar¢
determined, by some simple algonthi 1. to be reasonable. And, instead of following eact
series of moves until or. jlayer wins, it could search for a limited time and evaluate the
merit of each resulting board position using some static function.

Program 3 is an example of the use of an Al technique. For very small problems.
it is less officient than a variety of more direct methods  However, it can be used
situations where those metheds would fail

132 Qu&stimi Answering

In this section we look at a sener ! programs thai read 1n English iext and then answe:
questions, also stated in English, about that text. This task differs from the last one in
that it is more difficult now to statc formaily and precisely what our problem 1s and what
constitutes correct solutions .o it. For example, suppose that the input text were just the
single sentence

Russia massed troop: on the Czeoh border.

Then either of the following question-answering dialogues might occur (and in fact
did occur with the POLITICS program [Carbonell, 1980]):

Dialogue 1
Q: Why did Russia do this?
A: Because Russia thought that it could take political control of Czechoslovakia by
sending troops.
Q:  What should the United States do”
A: The United States should intervene militarily.
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Dialogue 2

Q Why did Russia-do this?

A: Because Russia wanted 10 increase its political influence over Czechosiovakia.
Q: What should the United States do?

Ax The United States should denounce the Russian action in the United Nations.

In the POLITICS program, answers were constructed by considering both the mput
iext and a separate model of the beliefs and actions of various political entitics, including
Russia. When the model is changed, as it was between these two dialogues, the system’s
answers also change. In this example, the first dialogue was produced when POLITICS
was given a model that was mtended to correspond 16 the beliefs of a typical American
conservative (circa 1977). The second dialogue occurred when POLITICS was given a
model that was intended to correspond to the beliefs of a typical American liberal (of
the same vintage).

The general point here is that defining what it means to produce a correct answer 104
question may be very hard. Usually, question-answering programs define what it means
10 be an answer by the procedure that ig used to compute the answer. Then their authors
appeal 10 other people to agrec that the answers found by the program “make sense”
and so to confirm the model of question answering defined in the program. This is not
completely satisfactory, but no better way of defining the problem has yet been fourtk
For lack of a better method, we will do the same here and illustrate three definitions of
question answering, each with a corresponding prograin that nnplements the definition.

In order to be able to compare the three programs, we illusiraic all of them using the
following text:

Mary went shopping for a new coat. She found a red one she really liked.
When she got it home, she discovered that it went pertectly with ner favorite
dress.

We will also attempt 10 answer each of the following questions with each program:
Ql:  What did Mary go shopping for?

Q2: What did Mary find that she liked?

Q3:  Did Mary buy anything?

Program 1

This program attempts (0 answer questions using the literal input text. It simply
marches text fragments.in the questions against the input text.

Data Structures

QuestionPatterns A st of templates that match common question forms and produce
patterns to be used 1o match against inputs. Templates and patterns

(which we call rexs patterns) are paired so that if a template maiches

successfully against an input question then its associated texi pat-

. ternis-are used to try to find appropriate answers in the (ext. For
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example, il the template = Who did 1 y" matches an input guestion,
then the text pattern .t v =" is matched against the input text and the
value of = is given as the answer to the question.

lext The input text stored simply as a long character stnng.
Question The current question aisostored as a character stning.
The Algorithm

To answer a question, do the leilowing:

1. Compare each element of QuestionPatterns against the Question and use all those
that match successfully to geierate a ~et of texi patterns

= ]

. Pass each of these patterns through a substitutionprocess that generates aliernative
forms of verbs so that, for example, "go™ in a question might maich “weri™ in the
text. This step generates a pew, cxpanded set of text patterns.

3. Apply each of these text patterns to Text, and collect all the resulring answers,

4. Reply with the set of answers jus! colected.

Exampies

Q1:  The template “What did 1y maltches this question and generates the 1ex1 patier
“Mary go shopping for =.7 _Afler the pattern-substitution step, this paticra 1=
expanded to a set of patierns including “Maty goes shopping for =" and “Mary
went shopping for 2." The latier pattern matches the input text: the progrant,
using a convention that vanables match the longest possible string up to 4
sentence delimiter (such as 3 period), assigns = the value. "a new coat,” which
is given as the answer.

Q2:  Uniess the template set is very large, al jowing for the insertion of the object of
“find” between it and the modifying phrase “that she liked,” the msertion of the
word “really” in the text. and the substitution of “she” for “Mary,” this question
is not answerable. If all of these variations are accounted For and the question
can be answered, then the response is “a red one.”

Q3:  Since noanswer o this questionis contained in the text. no answer will be found.

Comments

This approach is clearly nadequate to answer the kinds of questions people could
answer after reading a simple text. Even its ability to answer the most direct questions is
delicately dependent on the exact form in which questions are stated and on the variations
that were anticipated in the design of the templates and the paitern substitutions that
the system uses. In fact, the sheer inadequacy of this program to perform the task may
make you wonder how such an approach could even be proposed. This program ts
substantially farther away from being useful than was the ininal program we looked
at for tic-tac-toe. Is this just a strawman designed to make some other technique look
good in comparison” Ina wiy. ves. but it is worth mentioning that the approach that
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this program uses, namely maiching patierns, performing simple tex! substitutions. and
then forming answers using straightforward combinations of canned text and sentence
fragments located by the matcher, is the same approach that is used in one of the most
famous “Al" programs ever written— _ELIZA, which we discuss in Section 6.4.3. But,
as you read the rest of this sequence of programs, it should become clear that what we
mean by the term “artificial intelligence” does not include programs such as this except
by a substantial stretching of definitions.

s

Program 2

This program first converts the input text into a structured internal form that attempls
to capture the meaning of the senlences. It also converts guestions into that form. It
finds answers by maiching structured forms against each other.

Data Structures

EnglishKnow A description of the words, grammar, and appropriate semaniic
interpretations of a large enough subset of English 1o account for the
input texts that the system will see. This knowledge of English 15
used both to map input sentences into an internal, meaning-orented
form and to map from such internal forms back nto English. The
former process is used when Engli sh text is being read: the latter is
used to generate English answers from the meaning-onenied form
that constitutes the program’s knowledge base,

InputText The mput text in character form.

Structured Text A structured representation of the content of the input text. This
structure attempls to capiure the essential knowledge contained in
the text, independently of the exact way that the knowledge was
stated in English. Some things that were not explicit in the English
text, such as the referents of pronouns, have been made explicn
in this form. Representing knowledge such as this is an important
issue in the design of almost all Al programs. Existing programs
exploit a variety of frameworks for doing this. There are threc
important families of such knowledge representation sysicms: pro-
duction rules (of the form “if x then y7), slot-and-filler structures.
and statements in mathematical logic. We discuss all of these meth-
ods later in substantial detail, and we look at key questions that need
lo be answered in order to choose a method for a particular pro-
gram. For now though, we just pick one arbitrarily. The one we've
chosen is a slot-and-filler structure. For cxample, the sentence "She
found a red one she really liked,” might be represented as shown in
Figure 1.2. Actually. thisis a simplified description of the conlents
of the serntence. Notice that it is not very explicit about temporal
relatiorships (for example, events are just marked as past tensc)
nor have we made any real attempt to represent the meaning of the
qualifier “really.” It should, however, illustrate the basic form that
representations such as this take. One of the key ideas in this sort
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InputQuestion
StructQuestion

The Algorithm

Eveni2
insiance ; Finaing
tense : Pasi
agent : Mary
object : Thingl
Thingl
instance | Coar
color Red
Evenr?
instance : Liking
tense : Past
modifier . Much
ohject =" Thingl

Figure 1.2° A Structured Representation of a Sentence

of representation is that entities in the representation derive their
meaning from their connections to other entities. In the figure, only
the entities defined by the sentence are shown. But other entities,
corresponding to concepis that the program knew about before 1t
read this sentence, also exist in the representation and can be 1e-
ferred 1o within these new structures. In this example, for instance,
we refer to the entities Mary, Coar (the general concept of 2 coal of
which Thingl is a specific instance), Liking (the general concept vl
liking), and Finding (the general concept of finding)

The input guestion in character form.

A structured representation of the content of the user’s question.
The structure is the same as the one used 1o represent the content of
the input text,

Convert the InputText into structured form using the knowledge contained in English-

Know. This inay require considering several different polential structures, for a variery

of reasons. including the fact that English words can be ambiguous, English grammatical

structurcs can be ambiguous, and pronouns may have several possible antecedents.
Then, to answer a question, do the following:

1. Convert the question to structured form, again using the knowledge contaned in
EnglishKnow, Use some special marker in the structure to indicate the part of the
structure that should be returned as 1the answer. This marker will often correspond
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to the occurrence of a question word (like “who™ or “what™) in the sentence.
The exact way in which this marking gets done depends on the form chosen for
representing StructuredText. 1f a slot-and-filler structure, such as ours, is used.
a special marker can be placed in one or more slots. If a logical system is used
however, markers will appear as variables in the logical formulas that represent
the question,

[

Match this structured form against StructuredText.

3 Return as the answer those parts of the lext that match the requested segment of
the question.

Examples

QI:  This question is apswered straightforwardly with, “a new coat.”
Q2:  This one also is answered successfully with, “a red coat.”

Q3:  This one, though, cannot be answered, since there is no direct response 1o 1t 1n
the text.

Comments

This appraach is substantially more meamng (knowicdge)-based than that of the first
program and so is more effective. It can answer most questions (0 which replies are
contained in the text, and it is much less brittle than the first program with respect to
the exact forms of the text and the questions. As we expect, based on our experience
with the patiern recognition and tic-tac-toe programs, the price we pay for this increased
flexibility is time spent scarching the various knowledge bases (i.e., EnglishKnow,
Structured Text).

One word' of warning is appropriate here. The problem of producing a knowledgpe
base for English that is powerful enough to handle a wide range of English inputy is very
difficult. It is discussed at greater length in Chapter 15, In addition, it is now recognized
that knowledge of English alone is not adequate in general 1o enable a program to
build the kird of structured representation shown here. Additional knowledge about
the world with which the text deals is often required to support lexical and syntactic
disambiguation and the correct assignment of antecedents to pronouns, among other
things. For example, in the text

Mary walked up to the salesperson. She asked where the toy deparument
Wus,

it is not possible 1o determine what the word “she” refers to withoutknowiedge aboul the
roles of customere and salespeople in stores, To see this, contrast the correct antecedent
of “she” in that text with the correct antecedent for the first occurrence of “she” in the
following example:

Mary walked up to the salesperson. She asked her if she needed any heip.
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In the simple case illustrated in our coat-buying exampie, 1t 1s possible to derive
correct answers to our first two guestions without any additional knowledge about stores
or coats, and the fact that some such additional information may be necessary 10 support
question answering has already been illustrated by the failure of this program o find an
answer to question 3. Thus we see that although extracting a structured representation
of the meaning of the input text is an improvement over the meaning-ree approach uf
Program 1. it is by no means sufficient in general. 50 we need to ook a1 an even more
sophisticated (1.e., knowledge-rich} approach, w hich is what we do neat

Program 3

This program converts the input text intoa structured form that contains the meanngs
of the sentences in the text, and then it combines that form with other structured forms
that describe prior knowledge about the objects and situations involved in thetexe It
answers guestions using this augmented knowledge structure.

Data Structures

WorldModel A stiuctured representation of background world knowledge. Tis
structure contains knowledge about objects, actions, and situation:
that are described in the input text. This structure s used 1o construct
Integrated Text from the inputtext, Forexample, Figure 1.3showsan
example of a structure that represents the system’s knowledge ubout
shopping. Ths kind of stored knowledge about siereotypical events
is called a scripr and is discussed in more detail in Section 10.2
The notation used here difters from the one nonmally used in the
literature Tor the sake of simplicity. The prime notation describes
an object of the same type as the unprimed symbol that may or may
not refer 1o the identical object. In the case of our text, for example,
M is a cout and M’ is a red coat, Branches in the hgure describe
alternative paths through the script.

EnghishKnow Same as in Program 2.
InputText The input text in character form

IntegratedText A structured representation of the knowledge contained in the in-
put text (similar 1o the structured description of Program 2) bu
combined now with other background, related knowledge.

InputQuestion The inpul guestion in character torm.

StructQuestion A structured representation of the question.

The Algorithm

Convert the InputText into structured form using both the knowledge contained in
EnglishKnow and that contained in WorldModel. The number of possible structures
will usually be greater now than it was in Program 2 because so much more knowledge
is being used. Sometimes, though, it may be possible to consider fewer possibilities by
using the additional knowledge to filier the altemnatives
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Shopping Script:

roles: C (customer), S (salesperson)
props: M (merchandise), D (dollars)
location: L (a store)

1, C enters L

2. C begins looking around
]

' ‘

3. C looks for a specific M 4, C looks for any interesting M

|

5. C asks 8 for help
|

6.
— l
7.C finds M’ 8. C fails to find M
3 R
9. Cleaves L 10. C buys M’ 11. C leaves L. 2. goto step 2
13.C leaves L.
14. C takes M’

Figurc 1.3: A Shopping Script



[ 3. WHAT IS AN Al TECHNIQUE” 21

To answer a question, do the following:

Convert the question to structured form as in Program 2 but use WorldModel if
necessary to resolve any ambiguities that may arisc.

. Match this structured form against IntegratedText.

. Return as the answer those parts of the text that match the requested segment of

the question,

Examples

QI:
Q2:
Q3

Same as Program 2.
Same as Program 2.

Now this question can be answered. The shopping script is instantiated for this
text, and because of the last sentence, the path through step 14 of the script is
the one that is used in forming the representation of this text. When the script
is instantiated M’ is bound 1o the structure representing the red coat (because
the script says that M’ is what gets laken home and the text says that a red coat
is what got taken home). After the script has been instantiated, IntegratedText
contains several events fhat are taken from the script but that are not described
in the original lext, including the event “Mary buys a red coat”™ (from step 10 of
the seript). Thus, using the integrated text as the basis for question answering
allows the program to respond “She bought a red coat.”

(omments

This program is more powerful than either of the first two because if exploits more
knowledge. Thus it, like the final program in each of the other two sequences we have
examnined, is exploiting what we call Al technugues. But. again, a few caveats are in
order. Even the technigues we have exploited in this program arc not adequate for
complete English question answering. The most important thing that is missing from
this program is a general reasoning (inference) mechanism to be used when the requested
answer is not contained explicitly even in IntegratedText, but that answer does follow
logically from the knowledge that is there. For example, given the text

Saturday moming Mary went shopping. Her brother tried to call her then.
but he couldn’t get hold of her.

it should be possible to answer the question

Why couldn’t Mary's brother reach her?

with the reply

Because she wasn't home.
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But to do so requires knowing that one cannot be two places at once and then
using that fact to conclude that Mary could not have been home becaise she was
shopping instead. Thus, although we avoided the inference problem temporarily by
building IntegratedText, which had some obvious inferences built into it, we cannol
avoid it forever. It is simply not practical 1o anticipate all legitimate inferences, In later
chapters, we look @ ways of providing a general inference mechanism that could be
used to support a program such as the last one in this series,

This limitation does not contradict the main point of this example though. In fact, it
is adiitional evidence for that point, namely, an effective question-answering procedure
must be one based soundly on knowledge aud the computational use of that knowledge.
The purpose of Al techniques is to support this effective use of knowledge,

i3.3 Conclusion

We have just examined two series of piograms to solve two very different problems. In
cach series, the final program exemplifies what we mean by an Al technique. These two
programs are slower to execule than the earlier ones in their respective series, but they
llustrate three important Al techniques:

* Search—Provides a way of solving problems for which no more direct approach
is available as well as a framework into which any direct techniques that are
available cun be embedded.

s Lise of Knowledge—Providesa way of solving complex probiems by explosting
the structures of the objects that are involved.

* Abstraction—Provides a way of separating important features and variations from
the many unimportant ones that would otherwise overwhelm any process.

For the solution of hard problems, programs that exploit these technigues have
several advantages over those that do not. They are much less fragile; they wili not
be thrown off completely by a small perturbation in their input. People can easily
understand what the program’s knowledge is. And these techniques can work for large
problems where more direct methods break down.

We have still not given a precise definition of an Al technique. It is probably not
possible to do so. But we have given some examples of what one is and what one is
not. Throughout the rest of this book, we talk in great detail about what one is The
definition should then become a bit clearer, or less necessary,

»

1.4 The Level of the Model

Before we set out to do something, it is a good idea 10 decide cxactly what we are trying
1o do. So we must ask ourselves, “What is our goal in trying to produce programs that
do the intelligent things that people do?” Are we trying to produce programs that do the
tasks the same way people do? Or, are we attempting to produce programs that simply
do the tasks in whatever way appears casiest? There have been Al projects motivated
by each of these goals.



(2%
L=

i 4. THE LEVEL OF THE MODEL

Efforts to build programs that perform tasks the way people do can be divided into
iwo classes. ‘ngrams. in the first class attempt to solve problems that do not really
fit our definition of an Al task. They arc problems that a computer could easily solve,
although that easy solution would exploit mechanisms that de not seem to be available
to people. A classical exampte of this class of program is the Elementary Perceiver
and Memorizer (EPAM) [Feigenbaum, 1963), which memorized associated pairs of
nonsense syllables. Memorizing pairs of nonsense syllables is easy for a computes
Simply input them. To retrieve a response syllable given its associated stimulus one, the
compnter just scans for the stimulus syllable and responds with the dne stored nex1 1o
it. But this task is hard for people. EPAM simulated one way people might perform the
task. It built & discrimination net through which it could find images of the syllables it
had seen. It also stored, with each stimulus image, a cue that it could later pass through
the discrimination net to try to find the correct response image. But it stored as acue only
as much information about the response syllable as was necessary to avoid ambiguity
al the ime the association was stored. This might be just the first letter, for example
But, of course, as the discrimination net grew and more syllables were added. an old
cue might no longer be sufficient to identify a response syllable uniguely. Thus EPAM,
like people, sometimes “forgoi” previously learned responses. Many people regard
programs in this first class to be unintercsting, and 1o some extent they are probably
right. These programs can, however, be useful tools for psychologists who want Lo Lest
theories of human performance.

The second class of programs that attempt 10 model human performance are those
that do things that fall more clearly within our definition of Al tasks; they do things
that are not trivial for the computer. There are several reasons one might want to model
human performance at these sorts of tasks:

I. To test psychological theories of human performance. One example of a program
that was wrilten for this reason is PARRY [Colby, 1975]. which exploited a modcl
of humnan paranoid behavior to simulate the conversational behavior of a paranoid
person. The model was good encugh that when several psychologists were given
the opportunity to converse with the program via a terminal, they diagnosed its
behavior as paranoid.

‘2. Toenablc computers to understand human reasoning. Forexample, for a computer
to be able to read a newspaper slory and then answer a question, such as “Why
did the terrorists kill the hostages?” 1ts program must be able to simulate the
reasoning processes of people.

3. To enable people to understand computer reasoning.  In many circumstances.
people are reluctant to rely on the output of a computer unless they can understand
how the machine arrived at its result. 1f the computer’s reasoning process is similas
1o that of people. then producing an acceptable explanation is much easier.

4, To exploit what knowledge we can glean from people. Since people are the best-
known performers of most of the tasks with which we are dealing, it makes a lot
of sense 1o look to them for clues as to how to proceed.

This last motivation is probably the most pervasive of the four. It motivated several
very early systems that attempted 10 produce intelligent hehavior by imitatiog people
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at the level of individual neurons, For examples of this. see the eariy theoretical
work of McCulloch and Pitts [1943], the work on perceptrons, onginally developed
by Frank Rosenblatt but best described in Perceptrons [Minsky and Papert, 196Y] and
Design for a Brain |Ashby, 1952]. It proved impossible, however, to produce even
minimally intelligent behavior with such simple devices. One reason was that there
were severe theoretical limitations to the particular neural net architecture that was
being used. More recently, several new neural net architectures have been proposed
These structures are not subject to the same theoretical limitations as were perceptrons.
These new architcctures are loosely called connectionist, and they have been used as
a basis for several learning and problem-solving programs, We have more 1o say
about them in Chapter I18. Also, we must consider that while human brains are highly
parallel devices, most current computing systems are essentially serial engines. A highly
successful parallel technique may be computationally intractable on a serial compurer
But recently, partly because of the existence of the new family of parallel cognitive
models. as well as because of the general promise of parallel computing, there is now
substantial interest in the design of massively parallel mhchines to support Al programs.

Human cognitive theorics have alse influenced Al 1o look for higher-level (i.c.,
far above the neuron level) theories that do not require rgassive parallelism for their
implementarion. An early example of this approach can be seen in GPS. which are
discussed in more detail in Section 3.6. This same approach can also be seen in much
current work in natural language understanding, The failure of straightforward syntactic
parsing mechanisms to make much of a dent in the problem of interpreting English
sentences has led many people who are interested in naturdl language understanding
by machine to look seriously for inspiration at what little we know about how people
interprei language  And when people who are trying to build programs to analyze
pictures discover that a filter function they have developed is.very similarto what we
think people use, they take heart that perhaps they are on the right track.

As you can see, this last motivation pervades a great many areas of Al research,
In fact, it, in conpunction.with the other motivations we mentioned, tends 1o make the
distinction between the goal of simulating human performance and the goal of building
an intelligent program any way we can scem much less different than they at first
appeared. In either case, what we really need is a good model of the processes involved
inintelligent reasoning. The field of cognitive science, in which psychologists. linguists.
and computer scientists all work together, has as its goal the discovery of such a model.
For a good survey of the variety of approaches contained within the field, see Norman
{1UR1], Anderson [1985], and Gardner [1985).

i.5 Criteria for Success

One of the most important questions 1o answer in any scientific or engineening research
project is "How will we know if we have succeeded”  Anmificial intelligence is no
exception. How will we know if we have constructed a machine that is intelligent? That
question is at least as hard as the unanswerable question “*‘What is intelligence”” Bui
can we do anything to measure our progress?

In 1950, Alan Turing proposed the following method for determining whether a
machine can think. His method has since become known as the Turing test. To conduct
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this test, we need two people and the machine 1o be evaluated. One person plays the
role of the interrogator, who is in a separate room from the computer and the other
person. The interrogator can ask questions of either the person or the computer by
typing questions and receiving typed responses. However, the interrogator knows them
only as A and B and aims to determine which 1s the person and which is the machine.
The goal of the machine is to fool the interrogator into belicving that it is the person.
If the machine succeeds at this, then we will conclude that the machine can think. The
machine is allowed to do whatever it can to fool the interrogator. So, for example, if
asked the question “How much is 12,324 times 73,9817" it could wait several minutes
and then respond with the wrong answer [Turing, 1963]. "

The more serious issue, though, is the amount of knowledge that a machine would
need to pass the Turing test. Tunng gives the following example of the sort of dialogue
a machine would have 1o be capable of:

Interrogator: In the first line of your sonnet which reads “Shall I compare thee 10
a summer’s day.” would not 7a spring day™ do as well or better?

A: It wouldn't scan.

Interrogator: How about “a winter's day " That would scan all right.

A Yes, but nobody wants to be compared to a winter's day.

interrogalor: Would you say Mr. Pickwiek reminded you of Christmas?

A: In a way.

Interrogator: Yet Christmas is a winter's day, and I do not think Mr. Pickwick

would mind the compurison.

A 1 don’t think you're serious. By a winter’s day one means a typical
winler’s day, rather than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe
none ever will. But suppose we arc willing to settle for less than a complete imitation
of a person. Can we measure the achievement of Al 1n more restricted domains?

Often the answer to this question is yes. Somelimes it is possible to get a tairly
precise measure of the achievement of a program. For example, a program can acquire
a chess rating in the same way as a human player. The rating is based on the ratings
of players whom the program can beat. Already programs hdve acquired chess ratings
higher than the vast majority of human players. For other problem domains, a less
precise measure of a program’s achicvement is possible. For example, DENDRAL is a
program that analyzes organic compounds 10 determine their structure. It is hard to get
a precise measure of DENDRAL's level of achievement compared o human chemists,
but it has produced analyses that have been published as original research results. Thus
it is certainly performing competently.

In other technical domains, it is possible to compare the time 1t takes for a program
to complete a task to the time required by a person to do the same thing. For example.
there are several programs in use by computer companies to configure particular systems
10 customers” needs (of which the pioneer was a program calied R1). These programns
typically require minutes to perform tasks that previously required hours of a skilled
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engincer’s time. Such programs are usually evaluated by looking at the boitom linc—
whether they save (or make) money.

For many everyday tasks, though, it may be even harder to measure a program’s
performance. Suppose, for example, we ask a program to paraphrase & newspaper story.
For problems such as this. the best test is usually just whether the program responded in
a way that a person could have,

If our goal in writing a program is 10 simulate human performance at « task, then the
measure of success is the extent to which the progrun’s behavior corresponds to that
performance, as measured by various kinds of experiments and protocol analyses. In
this we do not simply wanl a program that docs as well as possible. We want ane that
fails when people do. Various techniques developed by psychologists for comparing
individuals and for testing models can be used to do this anal ysis.

We are forced to conclude that the question of whether a machine has intelligence
or can think is too nebulous o answer precisely. But it is often possible to construct
& computer program that meets some performance standard for a particular task. That
does not mean that the program does the task in the best possible way. It means only
that we understand at lcast one way of doing at least part of 3 1ask. When we set out 1o
design an Al program, we should attiempt to specify as well as possible the criteria for
success for that particular program functioning in its restricted domain. For the moment,
that is the best we can do. '

1.6 Some General References

There are a great many sources of information about artificial intelligence. First, some
survey books: The broadest are the multi-volume Handbaok of Artificial Intelligence
[Barr er al., 1981] and Encyclopedia of Artificial Intelligence [Shapiro and Eckroth,
1987], both of which contain articles on each of the major topics in the field. Four
other books that provide good overviews of the field are Artificial Intelligence | Winston,
1984), Introduction to Artificial Intelligence [Charniak and McDermott, 1985). Logical
Foundations of Artificial Intelligence [Genesereth and Nilsson, 1987), and The Elements
of Artificial Intelligence [Tanimoto, 1987]. Of ‘more restricted scope is Principles
of Artificial Intelligence [Nilsson. 1980], which contains a formal treatment of same
general-purpose Al techniques.

The history of research in artificial intelligence is a fascinating story, related by
Pamela McCorduck [1979] in her book Machines Whe Think. Because almost all of
what we call Al has been developed over the last 30 years, McCorduck was able to
conduct her research for the book by actually interviewing almost all of the people
whose work was influential in forming the ficld.

Most of the work conducted in Al has been originally reported in journal srticles.
conference proceedings, or technical reports. But some of the most interesting of these
papers have later appeared in special collections published as books. Computers and
Thought |Feigenbaum and Feldman, 1963] is a very early collection of this sori. Later
ones include Simon and Siklossy [1972]. Schank and Colby [1973], Bobrow and Collins
{1975], Waterman and Hayes-Roth [1978], Findler [ 1979], Webber and Nilsson [1981}.
Halpem [1986). Shrobe [1988], and several others that are mentioned in later chapters
in connection with specific topics.
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“The major journal of Al research is called simply Arrificial butelligence. In addition.
Cognitive Science 1s devoted 1o papers dealing with the overlapping areas of psychology.,
linguistics, and artificial intelligence. A/ Magazine is a more ephemeral, less techni-
cal magazine that is published by the American Association tor Artificial Intelligence
(AAAI). IEEE Exper: and several other journals publish papers about expert systems in
a wide variety of application domains.

Since 1969, there has been a major Al conference, the International Joint Conference
on Artificial Intelligence (ICAI). held every two years. The proceedings of these
conferences give a good picture of the work that was taking place at the time. The
oiher important Al conference, held three out of every four years starting in 1980, is
sponsored by the AAAL and its proceedings, (00, are published.

In addition to these general references, there exists a whole array of papers and
books describing individual Al projects. Rather than trying to list them all here, they
are referred to as appropriate throughout the rest of this book.

1.7 One Final Word

What conclusions can we draw from this hurried introduction to the major questions
of Al? The problerns are varied. interesting. and hard. If we solve them, we will have
useful programs and perhaps a better understanding of human thought, We should do
the best we can fo sel criteria so that we can 1ell if we have solved the problems, and
then we must try to do so.

How actually to go about solving these problems is the topic for the rest of this book
We need methods to help us solve Al's serious dilemma:

1. An Al system must contain a lot of knowledge if it is to handle anything but trivial
toy problems.

2. Butasthe amount of knowledge grows. it becomes harder to access the appropriate
things when needed, so more knowledge must be added to help. But now there is
even more knowledge to manage, so more must be added. and so forth,

Our goal in Al 1s to construct working programs that solve the problems we are
interested in. Throughout most of this book we focus on the design of representalion
mechanisms and algorithms that can be used by programs to solve the problems. We
do not spend much time discussing the programining process required to turn these
designs into working programs. In theory, it does not matter how this process is carried
out. in what language it is done, or on what machine the product is run. In practice,
of course. it is often much casier 1o produce a program using one system rather than
another. Specifically, Al programs are casiest to build using languages that have been
designed 1o support symbolic rather than primarily numeric computation.

For a variety of reasons, LISP has historically been the most commonly used lan
guage for Al programming. We say little explicitly about LISP in this book, although
we occasionally rely on it as a notation. There used Lo be several competing dialects of
LISP, but Common Lisp is now accepted as a standard. If you are unfamiliar with LISP,
consult any of the following sources: LISP [ Winston and Hom, 1989), Common Lisp
i Hennessey. 1989], Common LISPcraft [Wilensky, 1986], and Common Lisp: A Genrle
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Introduction 1o Symbolic Computation [Touretzky, 1989a]. For a complete description
of Common Lisp, see Common Lisp: The Reference [Steele, 1990). Another language
that is often used for Al programming is PROLOG, which is described briefly in Chap-
ter 6. And increasingly, as Al makes its way into the conventional programming world,
Al systems are being written in general purpose programming languages such as C. One
reason for this is that Al programs are ceasing 10 be standalone systems; instead, they
are becoming components of larger systems, which may include conventional programs
and databases of various forms. Real code does not form a big part of this book precisely
becausc itis possible to implement the techniques we discuss in any of several languages
and it is important not (o confuse the ideas with their specific implementations. But you
should keep in mind as you read the rest of this book thut both the knowledge structures
and the problem-solving strategies we discuss must ultimately be coded and integrated
into a working program,

Al is still a young discipline. We have leamed many things, some of which are
presented in this book. But it is still hard to know exactly the perspective from which
those things should be viewed. We cannot resist quoting an observation made by Lady
Lovelace more than 100 years ago:

In considering any new subject, there 18 frequently a tendency, first, to
overrate what we find to be already interesting or remarkable: and, secondly,
by a sort of natural reaction, to undervalue the true state of the case. when we
do discover that our notions have surpassed those that were really tenable.
[Lovelace, 1961]

She was talking shout Babbage's Analytical Engine. But she could have been
describing artificial intelligence.

1.8 Exercises

1. Pick a-specific topic within the scope of Al and use the sources described in this
chapter to do a preliminary literature search to determine what the current state
of understanding of that topic is. If you cannot think of 4 more novel topic, try
one of the following: expert systems for some specific domain (e.g.. cancer ther
Apy, compuier design, financial planning), recognizing motion in images, using
natural {i.e., humanlike) methods for proving mathematical theorems, resolving
pronominal references in natural language texts, representing sequences of evenls
in time, or designing a memory organization scheme for knowledge in a computer
system based on our knowledge of human memory organization.

2. Explore the spectrum from static to Al-based technigues for a problem other thaa
the 1wo discussed in this chapter. Think of your own problem or use one of the
following:

¢ Translating an English sentence into Japanese
& Teaching a child to subtract integers

* Discovering patiems in empirical data taken from scientific experniments,
and suggesting further experiments to find more patterns



Chapter 2

Problems, Problem Spaces, and
Search

In the last chapler, we gave a brief description of the kinds of problems with which AT 1s
typically concerned, as well as a conple of examples of the techniques it offers 10 soive
those problems. To build a system 1o solve a particular problem, we need 10 do four
things:

1. Define the problem precisely. This definition must include precise specifications
of what the initial situation(s) will be as well as what final situations constitule
acceptable solutions to the problem.

=

Analyze the problem. A few very important features can have an immense impact
on the appropriateness of various possible techniques for solving the problem.

3. Isolate and represent (he task knowledge that is necessary 10 solve the problem.

4. Choose the best problem-solving technigue(s ) and apply it (them) to the particuiar
prablem.

In this chapter and the next, we discuss the first two and the last of these issues.
Then, in the chapters in Part 11, we focus on the 1ssue of knowledge representation.

2.1 Defining the Problem as a State Space Search

Suppose we start with the problem slatement “Play chess.” Although there are a lot
of people 10 whom we could say that and reasonably expect that they will do as we
intended, as our request now stands it is a very incomplete statement of the problem we
want solved To build  program that could "'Play chess.” we would first have to specify
the starting position of the chess board, the rules that define the legal moves, and the
board positions that represent a win for one side or the other. In addition, we must make
explicit the previously implicit goal of not only playing a lcgal game of chess hut also
winning the game, if possible.
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Figure 2.1: One Legal Chess Move

For the problem “Play chess,” it is fairly casy to provide a formal and complete
problem description. The starting position can be described as an 8-by-8 array where
each position contains a symbol standing for the appropriate piece in the official chess
opening position, We can define as our goal any board position in which the opponent
does not have a legal move and his or her king is under aitack. The legal moves provide
the way of getting from the initial state to a goal stale. They can be described easily as
a set of rules consisting of two paris: a left side that serves as a pattern (o be matched
aguinst the current board position and a right side that describes the change 10 be made
to the board position 1o reflect the move. There are several ways in which these rules
can be written. For example. we could write a rule such as that shown in Figure 2.1,

However, if we write rules like the one above, we have 1o write a very larpe number
of them since there has 1o be a separate rule for each of the roughly 10'% possible board
positions. Using so many rules poses two serious practical difficulties:

e No person could ever supply a complete set of such rules. It would take (oo long
and could certainly not be done without mistakes.

& No program could easily handle all those rules. Although a hasling scheme could
be used to find the relevant rules for each move fairly quickly, just storing that
many rules poses senous difliculties.

In order to minimize such problems, we should look for a way to write the rules
describing the legal moves in as general a way as possible. To do this. it is useful
to introduce some convenient notation for describing patterns and substitutions. For
example, the rule descnibed in Figure 2.1, as well as many like it, could be wrillen as
shown in Figure 2.2." In general. the more succinctly we can describe the rules we need.
the less work we will have to do to provide them and the more efficient the programihat
uses them can be,

We have just defined the problem of playing chess as a problem of moving around
in a state space. where each state corresponds to a legal position of the board. We can

To be completely accuraie. this rule should include a check for pinned pieces, which have been ignored
here.
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to Square(file ¢, rank 4)

Figure 2.2: Another Way to Describe Chess Moves

then play chess by starting at an initial state, using a sel of rules o move from one
state to another, and attempting to end up in one of a set of final states. This state space
representation seems natural for chess because the set of states. which corresponds o the
set of board positions, is artificial and well-organized. This same Kind of representation
is also useful for naturally occurring, less well-structured problems, although it may be
necessary to use more complex structures than a matrix to describe an individual state,
The state space representation forms the basis of most of the Al methods we discuss
here. Jts structure corresponds to the sifucture of problem solving in two important
ways:

o [t allows for a formal definition of a problem as the need to convert seme given
situation into some desired situation using a set of permissible operations,

o It permits us to define the process of solving a particular problem as acombination
of known techniques (cach represented as a rule defining a single stepin the space)
and search, the general technique of exploring the space Lo try 10 find some path
from the current stale 10 a goal stale. Search is a very imporiant process in the
solution of hard problems for which no more direct techniques are av ailable.

In order to show the generalily of the state space representation, we use it todescribe
a problem very different from that of chess. '

A Water Jug Problem: You are given iwo jugs, a 4-gallon one and a
3.gallon one. Neither has any measuring markers on it. There i a pump
that can be used to fill the jugs with water. How can vou get exactly 2
gallons of water into the 4-gallon jug?

The state space for this problem can be described as the set of ordered pairs of
integers (x, y). suchthat v =0, 1.2, 3, ord and y = 0. 1, 2, or 3; x represents the numbe1
of gallons of water in the 4-gallon jug, and v represents the quantity of water in the
3.gallon jug. The start state is (0. 0). The goal state is (2, n) for any value of n (since
the problem does not specify how many gallons need to be in the 3-gallon jug).

The operators® to be used 1o solve the problem can be described as shown in
Figure 2.3. As in the chess problem, they are represented as rules whose left sides are

2 The word “operator” refers W some represeitation of an action. An operator usunlly includes information
P ope. ¥

about what must be trae in the world before the acrion can ke pla: e, and how the world s changed by the
action
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matched against the current state and whose right sides describe the new state that results
from applying the rule. Nolice that in order to describe the operators completely, it was
necessary to make explicit some assumptions not mentioned in the problem statement

We have assumed that we can fill a jug from the pump, that we can pour water out of a
jug onto the ground, that we can pour water from one jug 1o another, and that there are
no other measuring devices available. Additional assumptions such as these are almost
always required when converting from a typical problem statement given in English to
a formal representation of the problem suitable for use by a program,

To solve the water jug problem, all we need. in addition to the problem description
given above, is a control structure that loops through a simple cycle in which some rule
whose left side matches the current state is chosen. the appropriate change to the state is
made as described in the corresponding right side. and the resulting state is checked 10
see if 1t corresponds to a goal state. As long as it does not, the cycle continues, Clearly
the speed with which the problem gets solved depends on the mechanism that is used
to select the next operation to be performed. In Chapter 3, we discuss several ways of
making that sclection.

For the water jug problem, as with many others, there arc scveral sequences of
opcrators that solve the problem. One such sequence is shown in Figure 2.4. Often, a
problem contains the explicit or implied statement that the shortest (or cheapest) such
sequence be found. If present, this requirement will have a significant effect on the
choice of an appropriate mechanism 1o guide the search for a solution. We discuss this
issue in Section 2.3.4,

Several issues that ofien arise in converting an informal problem statement into »
formal problem description are illustrated by this sample water jug problem. The first
of these issues concerns the rele of the condirions that occur in the left sides of the
rules.  All but one of the rules shown in Figure 2.3 contain conditions thai must be
satisfied before the operator described by the rule can be applied. For example, the
first rule says, “If the 4-gallon jug is not already full, fill it.”" This rule could, however,
have been written as, “Fill the 4-gallon jug,” since it is physically possible to fill the
jug even if it is already full. It is stupid to do so since no change in the problem state
resulis, but it is possible. By encoding in the left sides of the rules constraints that are
nol strictly necessary but that restrict the application of the rules (o states in which the
rules arc most likely to lead 1o a solution, we can generally increase the efficiency of the
problem-solving programn that uses the rules.

The extreme of this approach is shown in the firsi tic-tac-toe program of Chapter |.
Each entry in the move vector corresponds 1o a rule that describes an operation. The
left side of each rule describes a board configuration and is represented implicitly by
the index position. The nght side of each rule describes the operation lo be performed
and is represented by a nine-clement vector that corresponds to the resulting board
configuration. Each of these rules is maximally specific: it applies only 1o a single board
configuration, and., as a result. no search is required when such rules are used. However,
the drawback 1o this extreme approach is that the problem solver can take no action
at all in a novel situation. In fact. essentially no problem sohving ever reall ¥ occurs.
For a tic-tac-toe playing program, this is not a serious probiem, since it is possible 1o
enumerate all the situations (1.e., board configurations) that may occur. Bul for most
problems, this is not the case. In order to solve new problems. more general rules must
be available.
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Fill the 4-gallon jug
Fill the 3-galion jug

Pour some water out of
the 4-gallon jug

Pour some water out of
the 3-gallon jug

Empty the 4-gallon jug
on the ground

Empty the 3-gallon jug
on the ground

Pour water from the
3-gallon jug into the
4-gallon jug until the
4-gallon jug is full

Pour water from the
4-gallon jug into the
3-gallon jug until the
3-pallon jug is full

Pour all the water
from the 3-gallon jug
into the 4-gallon jug

Pour all the water
from the 4-gallon jug
into the 3-gallon jug

Pour the 2 gallons
from the 3-gailon jug
into the 4-gallon jug

Empty the 2 gallons in
the 4-gallon jug on
the ground

Figure 2.3: Production Rules for the Water Jug Problem
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Gallons inthe Gallons inthe Rule Applied
4-Gallon Jug  3-Gallon Jug

0 0
2
0 3
9
3 0
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3 3
7
4 2
Sorl2
0 2
Yorll
2 0

Figure 2.4: One Solution to the Water Jug Problem

A second issue is exemplified by rules 3 and 4 in Figure 2.3, Should they or
should they not be included in the list of available operators? Empiying an unmeasured
amount of water onto the ground is certainly allowed by the problem statement. But a
superficial preliminary analysis of the problem makes it clear that doing so will never
get us any closer to a solution. Again, we see the tradeoff between wniting a set of rules
that describe just the problem itself. as opposed 1o a set of rules that describe both the
prablem and some knowledge about its solution.

Rules 11 and 12 illustrate a third issue. To see the problem-solving knowledge that
these rules represent, look at the last two steps of the solution shown in Figure 2.4.
Once the state (4, 2) is reached, it is obvious what to do next. The desired 2 gallons
have been produced. but they are in the wrong jug. So the thing to do is to move them
(rule 11). But before that can be done. the water that is already in the 4-gallon jug must
be emptied out (rule 12). The idea behind these special-purpose rules is to capture the
special-case knowledge that can be used at this stage in solving the problem. These
rules do not actually add power to the system since the operations they describe are
already provided by rule 9 (in the case of rule 11} and by rule 5 (in the case of rule 12).
In fac1, depending on the control strategy that is used for selecting rules to use during
problem solving. the use of these rules may degrade performance. But the use of these
rules may also improve performance if preference i+ given to special-case rules (as we
discuss in Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug
problem. From these discussions, it should be clear that the first step toward the design
of a program to solve a problem must be the creation of a formal and manipulable
description of the problem itself. Ultimately, we would like to be able to wriie programs
that can themselves produce such formal descriptions from informal ones, This process
is called operationalizatien. Tt is not at all well-understood how to construct such
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programs, but see Section 17.3 for a description of one program that solves a picee of
this problem. Untilit becomes possible {0 automate this process, it must be done by hand.
however. For simple problems, such as chess or the water jug, this is not very difficulr.
The problems are artificial and highly structured.  For other problems. particularly
naturally occurring ones, this step is much more difficult. Consider, for example, the
sk of specifying precisely what it means to understand an English sentence. Although
such a specification must somehow be provided hefore we can design a program to solve
tne problem, producing such a specification is itself s very hard problem. Althcughour
ultimate goal is to be able to solve difficult, unstructured problems, such as natural
language understanding, it is useful to explore simpler problems. such as the water jug
problem, in order to gain insight into the details of methods that can form the basis for
solutions to the harder problems.

Summarizing what we have just said, in order to provide a formal description of a
problem, we must do the following:

" 1. Define a statc space that contains all the possible configurations of the relevant
objects (and perhaps some impossible ones). It is, of course, possible 1o define
this space without explicitly enumerating all of the states 1 contains.

2. Specify one or more states within that space that describe possible situations from
which the problem-solving process may start, Thesc states are called the initial
states.

3. Specify one or more states that would be acceptable as solutions 10 the problem
These states are called goal states.

4. Specify a set of rules that describe the actions (operators) available. Doing this
will require giving thought to the following issues:

» What unstated assumptions are present in the informal problem descript ion?
» How general should the rules be?

o Howmuch of the work required 1o solve the problem should be precomputed
and represented in the rules? » '

The problem can then be solved by using the rules, in combination with an appropri-
ate control strategy, 1o move through the problem space until a path from an initial state
10 a goal state is found. Thus the process of search is fundamental to the problem-solving
process. The fact that search provides the basis for the process of problem solving does
not, however, mean that other, more direct approaches cannot also be exploited. When
ever possible, they can be included as steps in the search by encoding them into the
rules. For example, in the water jug problem, we use the standard arithmetic operations
as single steps in the rules. We do not use search to find a number with the property
that it is equal 10 y — (4 — x). Of course. for complex problems, more sophisticated
computations will be needed. Search is a general mechanism that can be used when no
more direct method is known. At the same time, it provides the framework into which
more direct methods for solving subparns of a problem can be embedded
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2.2 Production Systems

Since search forms the core of many intelligent processes, it is useful to structure
Al programs in a way that facilitales describing and performing the search process,
Production systems provide such struciures. A definition of a production system is
given below. Do not be confused by other uses of the word production, such as o
describe what is done in lactories. A production system consists of;

* A set of rules, cach consisiing of a left side (a parten) that determines the
applicability of the rule and a right side that describes the operation 1o be performed
if the rule is applied.’

s One or more knowledge/databases that contain whatever information is appropri-
ate for the particular task. Some parts of the database may be permanent, while
other parts of it may pertain only to the solution of the current problem. The
information in these databases may be structured in any appropriate way.

* A control strategy that specifies the order in which the rules will be compared
to the database and a way of resolving the conflicts that arise when several rules
match at once. .

+ A rule applier.

So far, our definition of a production system has been very genefal. It encompasses
a great many systems, including our descriptions of both a chess player and a water jug
problem solver. It also encompasses a family of general production system interpreters,
including:

» Basic production system languages, such as OPSS [Brownston er al., 1985) and
ACT* [Anderson, 1983].

* More complex, often hybrid systems called expert system shells, which provide
complete (relatively speaking) environments for the consiruction of knowledge-
based expert systems.

» General problem-solving architectures like SOAR [Laird er al., 1987], a system
based on a specific set of cognitively motivated hypotheses about the nature of
problem solving.

All of these systems provide the overall architecture of a production system and
allow the programmer to write rules that define pariicular problems 0 be solved. We
discuss production system issues further in Chapter 6.

We have now seen that in order to solve a problem, we must first reduce it to one
for which a precise statement can be given. This can be done by defining the problem’s
state space (including the start and goal siates) and a set of operators for moving in
that space. The problem can then be solved by searching for a path through the space
from an initial state to a goal state. The nrocess of solving the problem can usefully be

“This conveniion for the ise of Icft and right sides is natiral for forward rules. As we will see Jater, many
backward nile systems reverse the sides.
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modeled as a production system. In the rest of this section, we look at the problem of
choosing the appropriate control structure for the production sysiem so that the search
can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply
next during the process of searching for a solution 10 a problem. This question arises
since often more than one rule (and sometimes fewer than one rule) will have its left
side maich the current state. Even without a great deal of thought, it is clear that how
such decistons are made will have a crucial impact on how quickly, and even whether.
a problem is finally solved.

e The first requirement of a good control strategy is that it cause motion. Consider
again the water jug problem of the last section. Supposc we implemented the
simple control strategy of starting cach time at the top of the st of rules and
choosing the first applicable one. [ we did that. we would never solve the
problem. We would continue indefinitely filling the 4-gallon jug with water
Control strategies that do not cause motion will never lead to a solution.

o The second requirement of a good control sirategy s that it he systematic. Here is
another simple control strategy for the water jug problem: On each cycle, choose
at random from among the applicable rules, This strategy is better than the first.
It causes motion. Tt will lead to a solution eventually. But we are likely 1o arive
al the same state several times during the process and (o use many more steps than
are necessary, Because the control strategy is not systematic, we may explore
a particular useless sequence of operators several times before we finally find a
solution. The requirement that a control stratepy be systematic corresponds 10
the need for global motion (over the course of several steps) as well as for local
motion (over the course of a single step). One systematic control stratcgy for the
water jug problem is the following. Construct a tree with the initial state as its
root. Generate all the offspring of the root by applying each of the applicable
rules to the initial state. Figure 2.5 shows how the tree looks at this point. Now
for each leaf node, generate all its successors by applying all the rules that are
appropriate. The tree at this point is shown in Figure 2.6.* Continue this process
until some rule produces a goal state. This process, called breadth-first search,
can be described precisely as follows.

Algorithm: Breadth-First Search
1. Create a variable called NODE-LIST and set it to the initial stale,
2. Until a goal state is found or NODE-LIST is empty do:

(a) Remove the first element from NODE-LIST and call it E. If NODE-LIST
was empty, quit

© 4Rules3,4. 11, and Ii-hmbetnipwam:unmlin;mesurchm
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Figure 2.5: One Level of a Breadth First Search Tree

Figure 2.6: Two Levels of a Breadth-First Search Tree

(b) For each way that each rule can match the state described in £ do:

1. Apply the rule 10 generate a new stale,
il. If the new state is a goal state, quit and retumn this state.
iti, Otherwise, add the new state to the end of NODE-LIST.

Other systematic control stratcgies are also available. For example, we could puisue
a single branch of the tree until it yields a solution or until a decision 1o terminate the
path is made. It makes sense to lerminate a path if it reaches a dead-end, produces a
previous state. or becomes longer than some prespecified “futility” limit. In such a case,
backiracking occurs. The most recently created state from which alternative moves are
available will be revisited and a new state will be created. This form of backtracking 1s
called chronological backiracking because the order in which steps arc undone depends
only on the temporal sequence in which the steps were vriginally made. Specifically,
the most recent step is always the first to be undone. This form of backtracking is what
1s usually meant by the simple term backrracking. But there are other ways of retracting
steps of a computation. We discuss one important such way, dependency-directed
backtracking. in Chapter 7, Until then, though, when we use the term backtracking, il
means chronological backitracking.

The search procedure we have just described is also called deprh-first search. The
following algorithm describes this precisely.
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Figure 2.7: A Depth-First Search Tree

Algorithm: Depth-First Search
1. If the initial state is a goal state, quit and return success.
2. Otherwise, do the following until success or failure is signaled:

{a) Generate a successor, E, of the ininal s1ate. 1t there are no MOre SUCCESSOTS,
signal failure.

(by Call Depth-First Search with £ as the initial state.

(¢} If success is returned, signal success. Otherwise continue in this loop.

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A
comparison of these two simple methods produces the following observations.

Advantages of Depth-First Search

o Depth-first scarch requires less memory since only the nodes on the current path
are stored. This contrasts with breadth-first search, where all of the tree that has
so far been generated must be stored.

o By chance (or if care is taken in ordenng the alternative successor states}, depth-
first search may find a solution without examining much of the search spacc at
all. This contrasts with breadth-first search in which all parts of the tree must be
examined 1o level # before any nodes on level n + | can be examined. This is
particularly significant if many acceptable solutions exist. Depth-first search can
stop when one of them is found. .

Advantages of Breadth-First Search

o Breadth-first search will not get wrapped exploring a blind alley. This contrasts
with depth-first searching, which may follow a single. unfruitful path for a very
long time, perhaps forever, before the path actually terminates in a state that has
no successors. This is a particular problem in depth-first search if there are loops
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(i.e., a siate has a successor that is also one of its ancestors) unlcss special care is
expended (o test for such a situation. The example in Figure 2.7, if it continues
always choosing the first (in numerical sequence) rule that applies, will have
exactly this problem.

« Ifthere is a solution, then breadth- first search is guaranteed to find it. Furthermore,
if there are multiple solutions, then a minimal solution (i.e., one that reguires the
minimum number of steps) will be found. This is guaranteed by the fact that longer
paths are never explored until all shorter ones have already been examined. This
contrasts with depth-first search, which may find a long path to a solution in vne
part of the tree, when a shorter path exists in some other, unexplored part of the
tree.

Clearly what we would like is a way to combine the advantages of both of these
methods. In Section 3.3 we will talk about one way of doing this when we have some
additional information. Later, in Section 12.5, we will describe an uninformed way of
doing so.

For the water jug problem, most control strategies that cause motion and are sys-
tematic will lead to an answer. The problem is simple. But this is not always the case.
In order 1o solve some problems during our lifetime, we must also demand a control
structure thal is efficient.

Consider the following problem.

The Traveling Salesman Problem: A salesman has a list of cities, each
of which he must visit exactly once. There are direct rouds between cach
pair of cities on the list. Find the route the salesman should follow for the
shortest possible round trip that both starts and finishes at any one of the
cities.

A simple, motion-causing and systematic control structure could, in principle, solve
this problem. It would simply explore all possible paths in the tree and return the one
with the shortest length. This approach will even work in practice for very short lists of
cities. But it breaks down quickly as the number of cities grows. If there are N cities,
then the number of different paths among themis 1 -2 .. (N — 1), or (N - 1)!. The time
1o cxamine a single path is proportional to N. Su the total time required to perform this
search is proportional to N!. Assumning there are only 10 cities, 10! is 3,628,800, which
is a very large number. The salesman could easily have 25 cities to visit. To solve this
problem would take more time than he would be willing to spend. This phenomenon is
called combinatorial explosion. To combat it, we need a new control strategy.

We can beat the simple strategy outlined above using a technique called branch-
and-bound. Begin generating complete paths, keeping track of the shortest path found
so far. Give up exploring any path as soon as iis partial length becomes greater than
the shortest path found so far. Using this technique, we are still guaranteed to find the
shortest path. Unfortunately, although this algorithm is more efficient than the first one,
it still requires exponential time. The exact amount of time it saves for a particular
problem depends on the order in which the paths are explored. But it is stil] inadequate

for solving large problems.
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2.2.2 Heuristic Search
In order to solve many hard problems efficiently, it is often necessary 1o compromise
the requirements of mobility and systematicity and to construct a control structure that
is no longer guaranteed to find the best answer but that will almost always find a very
good answer. Thus we introduce the idea of a heuristic> A hewristic is a technigue
that improves the efficiency of a search process, possibly by sacrificing claims of
completeness. Heuristics are like tour guides. They are good to the extent that they
point in generally interesting directions: they are bad lo e extent that they may miss
points of interest to particular individuals. Some heuristics help to guide a search process
without sacrificing any claims (o completencss that the process might previously have
had. Others {in fact, many of the best ones) may occasionally cause an excelleni path
{0 be overlooked. But, on the average, they improve the quality of the paths that are
explored. Using good heuristics, we can hope 10 get good (though possibly nonoptimal )
solutions to hard problems, such as the traveling salesman. in less than exponential
time. There are some good general-purpose heuristics that arc useful in a wide variety
of problem domains. In addition, it is possible to consiruct special-purpose heuristic:
that exploit domain specific knowledge 10 solve particular problems

One example of a good general-purpose heuristic that is useful for a variety of
combinatorial problems is the nearest neighbor heuristic, which waorks by selecting L
jocally superior alternative at cach step. Applying it to the traveling salesman prohlem.
we produce the following procedure:

I Arbitrarily sclect a starting city.

3. To select the next city, look at all citres not yet visited, and select the one closes:
to the current city, Go 1o 1L next.

3. Repeat step 2 until all cities have been visited.

This procedure executes in Lime proportional 10 N2, a significant improvement ovet
A and it is possible to prove an upper bound un the error it incurs, For general-purpose
heuristics, such as nearest neighbor, it is often possible to prove such emor-bounds,
which provides reassurance that one is not paying oo high & price in accuracy for speed.

“In many Al problems, however. it is not possible to produce such reassuring bounds.
This is true for two reasons:

» For real world problems, it is often hard 10 measwe preciscly the valuc of 4
particular solution. Although the length of a trip Lo several cilies 1S 2 precise
notion, the appropriatencss of a particular response [0 such guestions as =~ Why
has inflation increased?” is much less so.

« For real world problems, it is often useful 10 ntroduce heunstics based on vela-
tively unstructured knowledge. It is ofien impossible to dehine this knowledge n
such a way that a mathemaical analysis of ws ffect on the search process can b2
performed.

5The word heuristic comes from the Greek word hewnickers. mezning 10 decoves,” which is also the

siigin of eureka, derived from Archimede~" reputed exclamation, heurik ifor 1 have foana™) unered when
he haid discovered a method for determining the punity of gold
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There are many heuristics that, although they are not as general as the neares!
ueighbor heuristic, are nevertheless useful in a wide variety of domains. For example,
consider the task of discovering interesting ideas in some specified area. The following

- heuristic [Lenat, 1983b] is often useful:

If there is an interesting function of two arguments f(x, y), look at wha
happens if the two arguments are identical.

In the domain of mathematics, this heuristic leads to the discovery of squaring if f is
the multiplication function, and it leads to the discovery of an identity function if f is the
function of set union. In less formal domains, this same heuristic leads (o the discovery
of introspection if { is the function contemplate or it leads to the notion of suicide if £ is
the function kill.

Without heuristics, we would become hopelessly ensnarled in a combinatorial ex-
plosion. This alone might be a sufficient argument in favor of their use. But there are
other argunients as well:

» Rarely do we actually need the optimum solution; a good approximation will
usually serve very well. In fact, there is some evidence that people. when they
solve problems, are not optimizers but rather are satisficers [Simon, 1981]. In
other words, they seek any solution that satisfies some set of requircments, and as
soon as they find onc they quit. A good example of this is the search for a parking
space. Mosi people stop as soon as they find a fairly good space, even if there
might be a slightly betler space up ahead

s Although the approximations produced by heuristics may not be very good in the
worst case, worst cases rarely arise in the real world. For example, although many
graphs are not separable (or even nearly so) and thus cannot be considered as a
set af small problems rather than one large one, a lot of graphs describing the real
world are.®

« Trying to understand why a heuristic works, or why it doesn't work, often leads
to a deeper understanding of the problem.

One of the best descriptions of the imgportance of heuristics in solving interesting
problems is How to Solve It [Polya, 1957]. Although the focus of the book is the solution
of mathematical problems, many of the technigues it describes are more generally
applicable. For example, given a problem to solve, look for a similar problem you
have solved before. Ask whether you can use either the solution of that problem or the
method that was used to obtain the solution 10 help solve the new problem. Polya’s
work serves as an excellent guide for people who want to become betier problem
solvers. Unfortunately, it is not a panacea for Al for a couple of reasons. One is that
it relies on human abilities that we must first understand well enough to build into a
program. For example, many of the problems Polya discusses are geometric oncs in
which once an appropriate picture is drawn, the answer can be seen immediately. But to
exploit such techniques in programs, we must develop a good way of representing and
manipulating descriptions of those figures. Another is that the rules are very general.

SFor arguments in support of this, see Simon [1981],
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They have extremely underspecified left sides, so it is hard to use them [0 guide s
mmyutumascmpﬁublemonu. Moflhem]ﬁmrnliymly
useful for looking back and rationalizing a solution afier it has been found. In essenge.
the problem is that Polya’s rules have not been operationalized.

Nevertheless, Polya was several sieps ahead of AL A comment he made in the
preface to the first printing (1944) of the book is interesting in this respect:

The following pages are written comewhat concisely, but as simply as pos-
cible, and are based on a long and serious study of methods of solution. This
sort of study, called heuristic by some WITETs, 1s not in fashion nowadays
but has a long past and, perhaps, some future.

There are Two major ways in which domain-specific, heuristic knowledge can be
incorporated into a rule-based search procedure:

o In the rules themselves. For example, the rules for a chess -playing system might
describe not simply the set of jegal moves but rather & sel of “sensiblc™ moves, as
determined by the rule writer.

o As a heuristic function tha: evaluates individual problem states and determtnes
how desirable they are.

A heuristic functionis a funclion that maps from problem state descriptions 10 MEASUITS
of desirability, usually represented as nupnbers. Which aspects of the problem state are
considercd, how those aspects are eval uated, and the weights given to individual aspects
are chosen in such a way that the value of the heunstic function al & given node in
the search process gives as good an estimate as possible of whether that node is on the
d:sired path (o a solution. '

Well-designed heuristic funcuons can play an important part in efficiently guiding
4 search process toward a solution Sometimes very simple heuristic funcrions can
provide a fairly good estimate of whether a path is any good or nol. In other situations,
more complex heurisiic functions should be employed. Figure 2.8 shows some simple
heuristic functions for a few problems. Notice that sometimes a high value of the
heuristic function indicates a relatively good position (as shown for chess and hic-tac-
1o0e), while at other times a low value indicates an advantagecus situation (as shown
for the traveling salesman) It does not matter, in general, which way the function 1s
stated. The program that uses the values of the function can atrempt o minimize it o5 '0
maximize 1t as appropriate.

The purpose of a heuristic function is 1o guide ihe search process in the most profitadle
direction by suggesting which path to follow first when morc than one is availabie. The
more accurately the heuristic function estimates the true merits of each node 1 the
search tree (or graph), the more dircet the solution process. In the extreme. the heunstic
function would be so good that cssentially no search would be required. The system
would move directly 1o a solution. But for many problems, the cost of computing the
value of such a function would ourweigh the effort saved i the search process. After
all, it would be possible to compute a perfect heuristic function by doing a complele
search from the node in question and determining whether it leads to a good solution.
In general, there is a trade-off between the cos! of evalumiing a heuristic function and
the savings in search time that the function proviges
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Chess the material advantage of our
side over the opponent

Traveling Salesman the sum of the distances so far

Tic-Tac-Toe I for each row in which we could

win and in which we already have
one piece plus 2 for each such
row in which we have two pieces

Figure 2.8: Some Simple Heuristic Functions

In the previous section, the solutions to Al problems were described as centering on
a search process. From the discussion in this section, it should be clear that it can more
precisely be described as a process of heuristic search. Some heuristics will be used
to define the control structure that guides the application of rules in the search process.
Others, as we shall sec, will be encoded in the mles themselves, In both cases, they will
represent cither general or specific world knowledge that makes the solution of hard
problems feasible. This leads to another way that one could define artificial intell igence:
the study of technigues for solving exponentially hard problems in polynomial time by
exploiting knowledge about the problem domain.

2.3 Problem Characteristics

Heuristic search is a very general method applicable 1o a large class of problems. It
encompasses a variety of specific techniques, each of which is particularly effective
for a small class of problems. In order to choose the most appropriate method (or
combination of methods) for a particular problem, it is necessary 10 analyze the problem
along several key dimensions:

e Is the problem decomposable into a set of (nearly) independent smaller or casier
subproblems?

* Can solution steps be ignored or at least undone if they prove unwise?

# Is the problem’s universe predictable?

* Isa good solution to the problem obvious without comparison to all other possible
solutions?

® Is the desired solution a state of the world or a path 1o a state?

* Is a large amount of knowledge absolutely required to solve the problem, or is
knowledge important only to constrain the search?

* Can a computer that is simply given the problem return the solution. or will the
solution of the problem require interaction between the computer and a person?
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Figurc 2.9: A Desompoesable Problem

In the rest of this section, we examine each of these questions in greater detal
Notice that some of these questions involve not just the statement of the problem itself
but also charactenstics of the solution thai 1s desired and the circumstances under wiich
(he solution must take place.

2.3.1 Isthe Problem Decomposable?

Suppose we want o solve the problem of computing the CXPIesSIOn
f(;:" + 31+ sin’r - cos ) dx

We can solve this problem by breaking it down into three smaller problems, cach of
which we can then solve by using a small collection of specific rules. Figure 2.9 shows
the problem tree that will be generated by the process of problem decomposition as it can
be exploited by a simple recursive integration program that works as follows: At each
step. it checks to see whether the problem it is workingon is immediately solvable. 1750,
then the answer is returned directly. If the problem is not easily solvable, the integrator
checks 10 see whether it can decompose the problem into smaller problems. If it can,
it creates those problems and catls wself recursively on them. Using this technique ©i
probiem decomposition, we can often solve very large problems casily '

Now consider the problem illustrated in Figure 5 10, This problem is drawn from the
domain often referred 10 in Al luerature as the blocks worid. Assume thal the following
nperators arc available:
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Start: Goal:
B
ON(C, A) ON(B, C) and ON(A, B)

Figure 2,10: A Simple Blocks World Problem

| ONeB, €) and ON(A, B) |

ON(B. C)

PutBon C

| ON(B, C) |

CLEAR(A)

Move A 1o table Put Aon R

[cearm) - [ovaB]
CLEAR(A) ON(A. B)

Figure 2.11: A Proposed Solution for the Blocks Problem

I. CLEAR(x) [block r has null‘in:g on i — ON(x, Table) [pick up x and put it on
the table]

2. CLEAR(x) and CLEAR(y) — ON(x, ¥}-[put x on y}

Applying the technique of problem decomposition (o this simple blocks world ex-
ample would lead to a solution tree such as that shown in Figure 2.11. In the figurc,
goals are underlined. States that-have been achieved are not underlined. The idea of this
solution is to reduce the problem of getting B on C and A on B 1o two separate problems.
The first of these new problems, getting B on C, is simple, given the start state. Simply
put B on C. The second subgoal is not quite so simple. Since the only operators we
have allow us to pick up single blocks at a time, we have to clear off A by removing C
before we can pick up A and pui it on B. This can easily be done. However, if we now
try to combine the iwo subsolutions into one solution, we will fail. Regardless of which
one we do first, we-will not be able 1o do the second as we had planned. In this problem,
the two subproblems are not independent. They interact and those interactions must be
considered in order to armve al a solution for the entire problem.

These two examples, symbolic integration and the blocks world, illustrate the differ-
ence between decomposable and nondecomposable problems. In Chapter 3, we present
a specific algorithm for problem decomposition, and in Chapter 13, we look a1 what
happens when decompeosition’is impossible.
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Start Cioal
2183 1213
1|64 | 8 4
7 5 | I.-’LE’_LS

Figure 2.12: An Example of the 8-Purzle

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are trying to prove a mathematical theorem. We proceed by first proving a
jemma that we think will be useful. Eventually, we realize that the lemma is no help at
Al Are we in trouble?

No. Everything we need to know to prove the theorem is still true and in memory,
if iz ever was. Any rules that could have been applicd at the outset can still be applied.
We can just proceed as we should have in the first place All we have lost 1s the effort
that was spent exploring the blind alley.

Now consider a different problem.

The 8-Puzzle: The 8-puzzle is a square tray in which are placed eight
square tiles. The remaining ninth square is uncovered. Each tile has a
number on it. A tile that is adjacent to the blank space can be slid into that
space. A game consisis of a starting position and a specified goal position.
The goal is to transform the starting position intothe goal positionby sliding
the tiles around.

A sample game using the 8-puzzle is shown in Figure 2.12. In attempting 1o solve the
8-puzzle. we might make 2 stupid move. For cxample, in the game shown above, we
might start by sliding tile § into the empty space. Having done that, we cannot change
our mind and immediately slide tile 6 into the empty space since the empty space will
essentially have moved. But we can backtrack and undo the first move, sliding tile 5
back to where it was. Then we can move tile 6. Mistakes can still be recovered from
but not quite as easily as in the theorem-proving problem. An additional step must
be performed to undo cach incorrect step, whereas no action was required to “undo” a
uscless lemma. In addition. the control mechanism for an. 8spuzzle solver must keep
track of the order in which operations arc performed so that the operations can be undone
one al a time if necessary. The control structure for a theorem prover does not need o
record all that information. .

Now consider again the problem of playing chess. Suppose a chess-playing program
makes a stupid move and realizes it a couple of moves later. It cannot simply play as
though it had neves made the stupid move. Nor can it simply back up and start the game
over from that point. All it can do is to try to make the best of the current situation and
go on from there.
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These three problems—theorem proving, the B-puzae, and chess—illustrate the
differences between three important classes of problems:

¢ Ignorable (c.g., theorem proving), in which solution steps can be ignored
¢ Recoverable (e.g.. 8-puzzle), in which solution steps can be undone
» Irrecoverable (e.g., chess). in which solution steps cannot be undone

These three definitions make reference to the steps of the solution to a problem and
thus may appear 1o characterize panticular production systems for solving a problem
rather than the problem itself. Perhaps a different formulation of the same problem
would lead to the problem being characterized differently. Strictly speaking, this is
truc. But for a great many problems, there is only one (or a small number of essentially
equivalent) formulations that rarurally deseribe the problem. This was true for cach of
the problems used as examples above. When this is the case, it makes sense 1o view the
recoverability of a problem as equivalent to the recoverability of a natural formulation
of it.

The recoverability of a problem plays an important role in determining the complex-
ity of the.control structure necessary for the problem’s solution. Ignorable problems
can be solved using a simpie control structure that never backiracks. Such a control
structure is easy to implement. Recoverable problems can be solved by a slightly more
complicated control strategy that does sumetimes make mistakes. Backiracking will be
necessary to recover from such mistakes, so the control structure must be implemented
using a push-down stack, in which decisions are recorded in case they need 1o be undone
later. lrrecoverable problems, on the other hand, will need to be solved by a system
that expends a grear deal of effort making each decision since the decision must be
final. Some irmecoverable problems can be solved by recoverable style methods used
in a planning g rocess, in which an entire sequence of steps is analyzed in advance to
discover where it will lead before the first step is actually taken. We discuss nexi the
kinds of problems in which this is possible.

2.3.3 Is the Universe Predictable?

Again suppose that we are playing with the 8-puzzle. Every time we make a move, we
know exactly what will happen. This means that it is possible to plan an entire sequence
of moves and be confident that we know what the resulting state will be. We can use
planning to avoid having 1o undo actual moves, although it will still be necessary to
backtrack past those moves one at a time during the planning process. Thus a control
structure that allows backtracking will be necessry.

However, in games other than the 8-puzzle, this planning process may not be possi-
ble. Suppose we want to play bridge. One of the decisions we will have to make is which
card to play on the first trick. What we would like to do is to plan the entire hand before
making that first play. Bur now it is not possible to do such planning with centainty
since we cannot know exactly where all the cards are or what the other players will do
on their tumns. The best we can do is 10 investigate several plans and use probabilities
of the various outcomes to choose a plan that has the highest estimated probability of
leading 10 a good score on the hand
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These two games illustrate the difference between certain-ottcome (e.g., 8-puzzie)
and uncertain-outcome (e.g.. bridge) problems. One way of describing planning is thatii
is problem solving without feedback from the environment. For solving certain-outcome
problems. this open-foop approach will work fine since the result of an action can be
predicted perfectly. Thus, planning can he used to generate a sequence of operators that
is guaranieed to lead to a solution. For uncertain-outcome problems. however, planning
can at best generaie a sequence of operators that has a good probability of leading w a
solution. To solve such problems, we need (o allow for a process of plan revision 10 take
place as the plan is carried out and the necessary feedback is provided. In addition 1o
providing no guarantec of an actual solution, planning for uncertain -outcome problems
has the drawback that it is often very expensive since the number of solution paths that
need 10 be explored increases exponentially with the number of points at which the
outcome cannot be predicted

The last two problem characteristics we have discussed, ignorable versus recoverable
versus irrecoverable and cerlain-oulcome versus uncertain-oulcome, interact in an in-
teresting way. As has already been mentioned, one way to solve irrecoverable problems
is 1o plan an cntire solution before embarking on an implementation of the plan. But
this planning process can only be done effectively for certain-outcome problems. Thus
one of the hardest types of problems to solve is the irrecoverable, uncertain- outcome.
A few examples of such problems are:

e Playing bridge. But we can do fairly well since we have available accuraie
estimates of the probabilitics of each of the possible outcomes.

 Conirolling a robot arm. The outcome is uncertain for a variety of reasons.
Someone might move something into the path of the arm. The gears of the arm
might stick. A slight error could cause the arm 1o knock over a whole stack of
things.

e Helping a lawyer decide how to defend his client against s murder charge. Here
we probably cannot even list all the possible outcomes, much less assess their
prohabilities.

2.3.4 Is a Good Solution Absolute or Relative?

Consider the problem of answering questions based on a database of simple fucts, such
as the following:

. Marcus was a man.

. Marcus was a Pompeian,

. Marcus was born in 40 A.D.

. Ail men are mortal.

. All Pompeians died when the volcano erupted in 79 A.D.
. No mortal hives longer than 150 years.

7. lris now 1991 AD.

Suppose we ask the question “Is Marcus alive?” By representing each of these facts
in a formal language. such us predicate logic, and then using formal inference methods

Sn st b —
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Justification
1. Marcus was a man. axiom |
4, All men are mortal. axiom 4
& Marcus i1s mortal, I, 4
3.  Marcus was bom in 40 A.D. axiom 3
7 Itisnmow 1991 AD. axiom 7
9. Marcus® age is 1951 years. 3.7
6. Nomonal lives longer than 150 years, axiom 6
10.  Marcus is dead. 8.6,9
OR

7. Itisnow 1991 A.D axiom 7
5.  All Pompeians died in 79 A.D. axiom 5
1. All Pompeians are dead now. 7.5

2. Marcus was a Pompeian, axiom 2
12.  Marcus is dead. 11,2

Figure 2.13: Two Ways of Deciding That Marcus 1s Deud

" | Boston | New York | Miami | Dallas | SF

i Boston 250 | 1450 | 1700 | 3000

| New York | 250 1200 | 1500 | 2900
Miami 1450 1200 T 1600 | 3300
Dallas | 1700 | 1500 | 1600 | 1700
S.F. 3000 2900 3300 [ 1700 ]

Figure 7 [4: An Instance of the Traveling Salesman Problem

we can fairly casily derive an answer to the question.” In fact, either of two reasoning
paths will lead 1o the answer, as shown in Figure 2.13. Since all we are interested in is
the answer 1o the question, it does not matter which path we follow. If wa do follow one
path successfully to the answer, there is no reason o go back and see if some other path
might also lead to a solution.

But now consider again the rraveling salesman problem. Our goal is to find the
shortest route that visits each city exactly once. Suppose the cities to e visited and the
distances between them are as shown in Figure 2.14.

One place the salesman could start is Boston. In that case, one path that might be
followed 15 the one shown in Figure 2.15. which is B850 miles long. Bui is this the
solution to the problem? The answer is that we cannot be sure unless we also try all

"Of course, representing these statements so that 2 mechanical Procedure could explont them to answer
ihe yuestion also requires the explicit mention of other facts. such as “gead implics not alive ™ We do this in

Chapter 5.
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Boston

{3000

(1700)

(1500)

(1200)
(1450)

Tojal: (8850)

Figure 2.15; One Path among the Cities

other paths to make sure that none of them is shorter, In this case, as can be seen from
Figure 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examples illustrate the difference between any-path problems and best
‘path problems. Best-path problems are, in general, computationally harder than any-path
problems. Any-path preblems can often be solved in a reasonable amount of time by
using heuristics that suggest good paths to explore. (Sec the discussion of best-first
search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible. but that does not matter, For true
best-path problems, however, no heuristic that cou 1d possibly miss the best solution can
be used. So a much more exhaustive search will be performed.

2.3.5 Is the Solution a State or a Path?

Consider the problem of finding a consistent interpretation for the sentence
The bank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, in isolation, may have
more than one interpretation. But the components must form a coherent whole, and so
they constrain each other’s interpretations. Some of the sources of ambiguity in this
sentence anc the following:

The word “bank™” may refer either 1o a financial institutionor io a side of a nver.
But only one of these may have a president

p-FI7Q
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Boston

(3000) (250)

: San Fl'sm:iscn] | New Yurki

(12000

(1450)

Total: (BR50) Total: (7750

Figure 2.16: Two Paths Among the Cities

* ihe word “dish" is the object of the verb “eat.” It is possible that a dish was eaten.
But it is more likely that the pasta salad in the dish was eaten,

* Pasta salad is a salad containing pasia. But there are other ways meanings can be
formed from pairs of nouns. For example. dog food does not normally contain

dogs

e The phruse “with the fork™ could modify several parts of the sentence, In this
case, it modifies the verb “eat.™ But, if the phrase had been “with vegetables,"
then the modification structure would be different. And if the phrase had been
“with her friends,” the siructure would be different still.

Because of the interaction among the interpretations of the constituents of this sentence,
some scarch may be required to find a complete interpretation for the sentence. Bul to
solve the problem of finding the interpretation we need to produce only the interpretation
itsell. No record of the processing by which the interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not sufficient to report that we
have solved the problem and that the final state is (2, 0). For this kind of problem, what
we really must report is not the final state but the path that we found to that state. Thus
a statement of a solution to this problem must be a sequence of operations (sometimes
called a plan) that produces the final state.

These two examples, natural language understanding and the water jug problem.
illustrate the difference between problems whose solution is a state of the world and
problems whose solution is a path 1o a state. At one level, this difference can be ignored
and all problems can be formulated as ones in which only a state is required to be
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reported. If we do this for problems such as the water jug, then we must redescribe our
states so that each state represents a partial path 10 a solution rather than just a single
state of the world. So this question is not a formally significant one. But, just as for the
question of ignorability versus recoverability, there is often a natural (and economical)
formulation of a problem in which problem states correspond to situations in the world,
not sequences of operations. In this case, the answer 1o this question tells us whether it
is necessary to record the path of the problem-solving process as it proceeds.

2.3.6 What Is the Role of Knowledge?

Consider again the problem of playing chess. Supposc you had unlimited computing
power available. How much knowledge would be required by a perfect program?
The answer to this question is very little—just the rules for determining legal moves
and some simple control mechanism that implements an appropriate search procedurc.
Additional knowledge about such things as good strategy ,and tactics could of course
help considerably to constrain the search and speed up the execution of the program.

“But now consider the problem of scanning daily newspapers lo decide which are
supporting the Demecrats and which are supporting the Republicans in some upcoming
election. Again assuming unlimited computing power, how much knowledge would be
required by a computer 1rying 1o solve this problem? This time the answer is a greal
deal. It would have to know such things as:

o The names of the candidates in each party.

« The fact that if the major thing you want to see done is have taxes lowered, you
arc probably supporting the Republicans.

» The fact that if the major thing you want 10 see done is improved education for
minority students. you arc probably supporting the Democrals.

 The fact that if vou are opposed to big government, you are probably supporting
the Republicans.

e Andsoon...

These two problems, chess and newspaper story understanding, illustrate the differ-
ence between problems for which a lot of knowledge is important only 1o constrain the
search for a solution and those for which a lot of knowledge is required even 10 be able
to recognize a solution.

237 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to solve problems in ways that the majority
of people would not be able to understand. This is fine if the level of the interaction
between the computer and its human users is problem-in solution-out. But increasingly
we are building programs that require intermediate interaction with people. both 10
provide additional input to the program and to provide additional reassurance to ihe
user.

Consider, for example, the problem of proving mathematical theorems. If



54 CHAPTER 2. PROBLEMS, PROBLEM SPACES. AND SEARCH

I. All we want is to know that there is a proof
2. The program is capable of finding a proof by itself

then it does not matter what strategy the program takes to find the proof. It can use, for
example, the resolution procedure (see Chapier 5), which can be very cfficient but which
does not appear natural 10 people. But if cither of those conditions is violated, it may
matier very much how a proof is found, Suppose that we are trying to prove some new,
very difficult theorem. We might demand a proof that follows traditional parterns so thar
a mathematician can read the proof and check 10 make sure it is correct, Alternativel ¥
finding a proof of the theorem might he sufficiently difficult that the program does not
know where 1o start. At the moment, people are still better at doing the high-level
strategy required for a proof. So the computer might like to be able 10 ask for advice

For example, it is often much easier to do a proof in geometry if someone suggests the
right line to draw into the figure. To exploit such advice, the computer's reasoning musi
be analogous to that of its human advisor, at least on a few levels. As compulers move
into areas of great significance 10 human lives, such as medical diagnosis, people will be
very unwilling to aceept the verdict of a program whose reasoning they cannot follow.

Thus we must distinguish between two types of problems:

e Solitary, in which the computer is given a problem description and produces an an-
swer with no intermediate communication and with no demand for an explanation
of the reasoning process

+ Conversational, in which there is intermediate communication between a person
and the computer, either to provide additional assistance 1o the computer or 1o
provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains.
As we just showed, mathematical theorem proving could be regarded as either. But fora
particular application, one or the other of these types of systems will usually be desired
and that decision will be important in the choice of a problem-solving method.

2.3.8 Problem Classification

When actual problems are exariined from the point of view of all of these questions,
it becomes apparent that there are several broad classes into which the problems fall.
These classes can each be associated with a generic control strategy that is appropriate
for solving the problem. For example, consider the generic problem of classification.
The task here is to examine an input and then decide which of a set of known classes
the input is an instance of. Most diagnostic tasks, including medical diagnosis as well
as diagnosis of faults in mechanical devices, are examples of classificatton. Another
example of a genenc strategy is propose and refine. Many design and planning problems
can be attacked with this strategy,

Depending on the granularity at which we attempt to classify problems and control
strategies, we may come up with different lists of generic tasks and procedures. See
Chandrasckaran [1986] and McDermott [ 1988] for two approaches 10 constructing such
lists. The important thing to remember here, though, since we are about to embark on 4
discussion of a variety of problem-solving methods, is that there is no one single way of
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solvingall problems. But neither must cach aew problem be considered totally ab inito.
Tnstead, if we analyze our problems carefully and sert our problem-solving methods by
the kinds of problems for which they are suitable, we will be able to bring to each new
problem much of what we have learned from solving other, similar problems.

2.4 Production System Characteristics

We have just examined a set of charactenstics that distinguish various classes of prob
lems. We have also argued that production systems are a good way to describe the
operations that can be performed in a search for a solution to a problem. Twao guestions
we might reasonably ask at this point are:

1. Can production systems, like prablems, be described by a set of characteristics
that shed some light on how they can casily be implemenicd?

2. If so. what relationships are there between problem types and the types of pro
duction systems best suited to solving the problems?

The answer to the first question is yes, Consider the following definitions of classes
of production systems. A monotonic production system 15 @ production system in which
the application of a rule never prevents the later application of another rule that could
also have been applied at the time the first rule was selected. A nonmonotonic production
systern is onc in which this is not true. A partially commutative production system is a
production system with the property that if the application of a particular sequence of
rules transforms state ¥ into state y. then any permutation of those rules that is allowable
(i.e.. each rule's preconditions are satisfied when it 1s applied) also transforms state xinto
state y. A comnmudative production system is a production system that is both monotonic
and partially commutative.” ' e

The significance of these categories of production sysiems lies in the relationship
between the categories and appropriate implementation strategies. But before discussing
that relationship. it may be helpful to make the meanings of the definitions clearer by
showing how they relate to specific problems.

Thus we arrive at the second question above, which asked whether aere is an
interesting relationship between classes of production systems and classes of problems.
For any solvable problem, there exist un infinite number of production systems that
describe ways to find solutions. Some will be more natural or efficient than others. Any
problem that can be solved by any production system can be solved by a commutatives
one (our most restricted class), but the commutative one may be so unwieldy as 1o
be practically useless. It may use individual states 1o represent entire sequences of
applications of rules of a simpler, noncommutative system. So in a formal sense, therc
is no relationship between kinds of problems and kinds of production systems since all
problems can be solved by all kinds of systems. Bul in a practical sense. there definitely
is such a relationship between kinds of problems and the kinds of systems thal lend
themselves naturally to describing those problems. To see this, let us look ar a few
examples. Figure 2.17 shows the four categories of production systems produced by
the two dichotomies, monotonic versus nonmonotonic and partially commutative sersus

*This corresponds to the definition of & commutative production systiem given in Nibson 11950]
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Monotonic Nonmonotonic |
-_Panially "~ | Theorem proving Robot navigation
commutative |
Not partially | Chemical synthesis Bridge
| commutative J|

Figure 2.17: The Four Categories of Production Systems

nonpartially commutative, along with some problems that can naturally be solved hy
each type of system. The upper left comer represents commutative systems.

Partially commutative, monotonic production systems are useful for solving ignor-
able problems, This is not surprising since the definitions of the two are essentially the
same. Bul recall that ignorable problems are those for which a natural formulation leads
Lo solution steps that can be ignored. Such a natural formulation will then be a partially
commutative, monotonic system. Problems that involve creating new things rather than
changing old ones are generally ignorable. Theorem proving, as we have described it.
is one example of such a creative process. Making deductions from some known facts
is a similar creative process. Both of those processes can easily be implemented with a
partially commutative, monotonic system.

Partially commutative, monotonic production systems are important from an imple-
mentation standpoint because they can be implemented without the ability to backirack to
previous states when it is discovered that an incorrect path has been followed. Although
it is often useful to implement such systems with backtracking in order 1o guarantee a
systemalic search, the actual database representing the problem staie need not be re-
stored. This often results in a considerable increase in efficiency, particularly because,
since the database will never have 1o be restored, it is nol necessary to keep track of
where in the search process every change was made,

We have now discussed partially commutative production systems that are also
monotonic. They are good for problems where things do not change; new things get
created. Nonmonoronic, partially commutative systems, on the other hand, are useful for
problems in which changes occur but can be reversed and in which order of operations
is not critical. This is usually the case in physical manipulation problems, such as
robot navigation on a flat plane. Suppose that a robot has the following operators: go
north (N), go cast (E), go south (S), and go west (W). To reach its goal, it does not
matter whether the robot executes N-N-E or N-E-N. Depending on how the operators
are chosen, the 8-Puzzle and the blocks world problem can also be considered partially
commutative,

Both types of pantially commutative production systems are significant from an im-
plementation point of view because they tend 10 lead to many duplications of individual
states during the search process. This is discussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems
in which irreversible changes occur, For example, consider the problem of determining
a process 1o produce a desired chemical compound. The operators available include
such things as “Add chemical x to the pot” or “Change the temperature to  degrees.”
These operators may cause irreversible changes 1o the potion being brewed. The order
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Figure 2.18: A Search Tree for the Water Jug Problem

in which they are performed can be very imponant in determining the final output. It
is possible that if x is added 1o y, a stable compound will be formed. so later addition
of = will have no effect; if 2 is added 1o v, however, a different stable compound may be
formed, so later addition of x will have no effect. Nonpartially comimutative production
systems are less likely to produce the same node many times in the search process.
When dealing with ones that describe ineversible processes, it s particularly imporiani
to make correct decisions the first time, although H the universe is predictable, planning
can be used 1o make thal less important.

2.5 Issues in the Design of Search Programs

Every search process can be viewed as a traversal of a tree structure in which each
node represents a problem state and each arc represents a relationship between the states
represented by the nodes it connects. For example, Figure 2.18 shows pan of a scarch
trec for a water jug problem. The arcs have not been labeled in the figure, but they
correspond to panticulis water-pouring operations. The search process must find a path
oi paths through the tree thar connect an initial state with one or more final states. The
tree that must be searched could. in principle, be constructed in its entirety from the
rules that define allowable moves in the problem space. But. in practice, most of it never
15. It is too large and most of it need never be explored. Instead of first building the tres
explicirly and then searching it, most search programs represent the tree iniplicitly in the
rules and generate explicitly only those pans that they decide 1o explore. Throughout
our discussion of search methods, it is important to keep in mind this distinction between
implicit search trees and the explicit partial search trees that are actually constructed hy
the search program, -

In the next chapier, we present a family of general-purpose search techniques. B
pefore doing so we need to mention some important issues that arise in all of them:

» Thedirection in which to conduct the search {forwand versus backward reasoning).
We can search forward through the state space from the start state 10 4 goal stare.
or we can search backward from the goal.
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* How to select applicable rales (marching). Production systems typically spend
mast of their time looking for rules 10 apply, so it is critical to have efficient
procedures for matching rules against states.

* How to represent each node of the search process (the knowledge representaiion
probiem and the frame problem). For problems like chess, a node can be fully
represented by a simple array. In more complex problem solving, however, it
1y inefficient and/or impossible to represent all of the facrs in the warld and 1o
determine all of the side effects an action may have.

We discuss the knowlerdge representation and frame problems further in Chapter 4.
We investigate matching and forward versus backward reasoning when we retumn 10
production systems in Chapter 6.

One other issue we should consider 31 this point is that of search trees versus search
graphs. As mentioned above, we can think of production rules as generating nodes in
a search tree. Each node can be expanded in turn, generating a set of successors. This
process continues until a node representing a solution is found. Implementing such a
procedure requires little bookkeeping. However. this process often results in the same
node being generated as pan of several paths and so being processed more than once.
This happens because the search space may really be an arbitrary directed graph rather
than a tree. )

For example, in the tree shown in Figure 2.18, the node (4, 3), representing 4 gallons
of water in one jug and 3 gallons in the other, can be generated either by first filling the
4-gallon jug and then the 3-gallon one or by filling them in the opposite order. Since
the order does not matter, continuing to process both these nodes would be redundant,
This example also illustiates another problem that often anses when the search process
operates as a tree walk On the third level, the node (0, 0) appears. (In fact, it appears
twice.) Butthis is the same as the top node of the lree, which has already been expanded.
Those two paths have not gotten us anywhere. So we would like to eliminate them and
continue only along the other branches.

The waste cf effort that anses when the same node is generated more than once can
be avoided at the price f additional bookkeeping. Instead of traversing a search tree,
we traverse a directed gragph. This graph differs from a tree in that several paths muy
come together at a node. The graph comresponding to the tree of Figure 2.18 is shown
in Figure 2.19.

Any tree search procedure that keeps track of all the nodes that have been generated
so far can be converted to a graph search procedure by modifying the action performed
each tlime a node is generated. Notice that of the two systematic search procedures we
have discussed so far, this requirement that nodes be kept track of 1s met by breadih-firs
search bul not by depth-first search. But. of course, depth-first sedrch could be modified,
at the expense of additional storage, to retatn 1n memory nodes that have been expanded
and then backed-up over. Since all nodes are saved in the search graph, we must use th
following algorithm instead of simply adding a new node to the graph.

Algorithm: Check Duplicate Nodes '

1. Examine the set of nodes that have heen created so far to see if the new noic
already exists.



25 ISSUES IN THE DESIGN OF SEARCH PROGRAMS 59

(LA e

) ‘

Figure 2.19: A Search Graph for the Water Jug Problem

2. 1If it does not,simply add it to the graph just as for a tree.
3. If it does already exist. then do the following:

(1) Set the node that is being expanded to point 10 the already existing node
corresponding 10 its successor rather than to the new one. The new ong can
simply be thrown away.

If you are keeping track of the best (shortest or otherwise least-cost) path o
each node. then check 1o see if the new path is better or worse than the old
ane. 1f worse, do nothing. I better, record the new path as the correct path
to use 1o get to the node and propagate the corresponding change in cost
down through successor nodes as necessary.

(b

One problem that may anse here is that cycles may be introduced into the search
graph. A ¢ycle is a path through the graph in which a given node appears more than
once. For example, the graph of Figure 2,19 contains two cycles of length two. One
includes the nodes (0. 0) and (4, 0): the other includes the nodes (0. 0) and (0, 3).
Whenever there is a cycle. there can be paths of arbitrary length. Thus it may become
more difficull 1o show that a graph traversal algonthm is guaranteed (o terminate.

Treating the search process as a graph search rather than as a tree search reduces the
amount f effort that is spent exploring essentially the same path several times. But il
requires additional cffort each trme a node is generated to see if it has been generated
before. Whether this effort is justificd depends on the particular problem. If it is very
likely that the same node will be generated in several different ways, then il is more
worthwhile to use a graph procedure than if such duplication will happen only rarely.

Graph search procedures are especially useful for dealing with partially commu-
tative production systems in which a given set of operations will produce the same
result regardless of the order in which the operations are applied. A systematic search
procedure will try many of the permutations of these operators and so will generate the
same node many times. This is ¢xactly what happened in the water jug example shown
above.
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2.6 Additional Problems

Several specific problems have been discussed throughout this chapter. Other problems
have not yet been mentioned, but are common throughout the Al literature. Some have
become such classics that no Al book could be complete without them, so we present
them in this section. A useful exercise, at this point, would be to evaluate each of them
in light of the seven problem characteristics we have just discussed.

A brief justification is perhaps required before this parade of toy problems is pre-
sented. Artificial intelligence is not merely a science of toy problems and microworlds
{such as the blocks world), Many of the technigues that have been developed for these
problems have become the core of sysiems that solve very nontoy problems. So think
about these problems not as defining the scope of Al but rather as pre viding a core from
which much more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of  river. They
have agreed that they would all like to get (o the other side. But the missionaries are
not sure what clse the cannibals have agreed to. So the missionaries want (0 manage
the trip across the river in such a way that the number of missionaries on either side of
the river is never less than the number of cannibals who are on the same side. The only
boal available holds only two people at a time. How can everyone get across the river
without the missionanes risking being eaten?

The Tower of Hanoi

Somewhere near Hanoi there is a monastery whose monks devote their lives 1o a very
important task. In their courtyard are three tall posts. On these posts is a set of sixty-four
disks, each with a hole in the center and each of a different radius. When the monastery
was established, all of the disks were on one of the posts, each disk resting on the one
just larger than it. The monks' task is to move all of the disks to one of the other pegs.
Only one disk may be moved at a time, and all the other disks must be on one of the
pegs. In addition, at no time during the process may a disk be placed on top of a smalles
disk. The third peg can, of course, be used as a temporary resting plac: for the disks.
What is the guickest way for the monks to accomplish their mission?

Even the best solution to this problem will take the mcnks a very long time, This is
fortunate, since legend has it that the world will end when they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from
the ceiling. The monkey, unfortunately, cannot reach the bananas. However, in the
room there are also a chair and a stick. The ceiling 1s just the right height so that a
monkey standing on a chair could knock the bananas down with the stick. The monkey
knows how to move around, carry other things around, reach for the bananas, and wave
a stick in the air. What is the best sequence of actions for the monkey 1o 1ake to acquire
lunch?
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Figure 2.20: Some Cryptanithmetic Problems

Cryptarithmetic

Consider an anthmetic problem represented in letlers. as shown in ihe examples
Figure 2.20. Assign a decimal digit 10 each of the letiers in such a way that the answer
to the problem is correct. If the same letter occurs more than once, it must be assipned
the same digit each time. No two different ietters may be assigned the same digit

People’s strategies for solving cryplarithmetic problems have been studied inten
sively by Newell and Simon {1972}

2.7 Summary

I this chapter we have discussed the first iwe steps that must be taken toward the design
of a program to selve a particular problem:

I Define the probiem precisely Specify the problem space, the operators formoving
within the space, and the starting and goal state(s).

2. Analyze the problem lo determine where it falls with respect to seven imporiant
issues,

The las* two steps for developing 3 program to solve that problem ar=, of course

3. Identify and represent the knowledge required by the task.

4. Choeose one or more techniques for problem solving, and apply those techniques
to the problem

Several general-purpose, problem-soiving techniques are presented in the neat chap
ter, and several of them have ulrcady been alluded to in the discussion of the problem
characteristics in this chapter. The relationships between problem characteristics and
specific technigues should become even ¢learer as we go on. Then, in Pan [i, we discuss
the issue of how domain knowledge'is 1o be represented.

2.8 KExercises

1. In this chapter, the following problems were mentioned:

» Chess
o Water jug
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* B-puzzle

» Traveling salesman

¢ Missionaries and cannibals
» Tower of Hanoi

+ Monkey and bananas

e Cryptarithmetic

* Brdge -

Analyze each of them with respect 1o the seven problem characieristics discussed
in Secticn 2.3,

2. Before we can solve a problem usmg state space search, we must define an

appropriate state space. For cach of the problems mentioned above for which it
was not done in the text, find a good state space Tepresentarion.

- Describe how the branch-and-bound technique could be used 1o find the shortest

solution 10 a water jug problem.

- For each of the following types of problems, try to describe a good heuristic

function:

(a) Blocks world
(b) Theorem proving
{c) Missionaries and cannibals

- Give an example of a problem for which breadth-tirst search would work better

than depth-first search. Give an example of a problem for which depth-first search
would work better than breadth-first search.

- Write an algorithm to perform breadth-first search of u problem graph. Make sure

your algorithm works properly when a single node is penerated at more than one
level in the graph.

- Try to construct an algorithm for solving blacks world problems, such as the one

in Figure 2.10. Do not cheat by looking ahead (0 Chapter 13.



Chapter 3 ‘

Heuristic Search Techniques

In the last chapter, we saw that many of the problems that fall within the purview of
artificia) intelligence are too complex to be solved by direct techniques: rather they
must be attacked by appropriate search methods armed with whatever direct techniques
are available to guide the search. In this chapter, a framework for describing search
methods is provided and several general-purpose search techniques are discussed. These
methods are all variaties of heuristic search. They can be described independently of
any particular task or problem domain. But when applied to particular problems, their
efficacy is highly dependent on the way they cxploit domain-specific knowledge since
in and of themselves they are unable to overcome the combinatorial explosion to which
search processes are su vulnerable. For this reason, these techniques are often called
weak methods. Althougharealization of the limited effectiveness of thesc weak methods
to solve hard problems by themselves has been an important result that emerged from the
last three decades of Al rescarch, these technigues continue to provide the framework
into which domain-specific knowledge can be placed, either by hand or as a result of
automatic lcarning. Thus they continue to form the core of most Al systems.
We have already discussed two very basic scarch strategies:

o Depth-first search
« Breadth-first search
In the cest of this chapter, we present some others.
« Oencrate-and-tes!
+ Hill climbing
« Best-first search

Problem reduction

» Constraint satsfaction

« Means-ends analysis

“3
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3.1 Generate-and-Test

The generate-and-test strategy is the simplest of all the approaches we discuss. 1t consists
of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some probleins, this means gencraling a par-
ticular point in the problem space. For others, it means generating a path from a
start stale.

2. Test to see if this is actually a solution by comparing the chosen point or the
endpoint of the chosen path 1o the set of accepiable zoal states.

3. If a solution has been found, quit. Otherwise, return to step 1.

if the genermtlon of possible solutions is done systematically, then this procedure
will find a solution eventually, if one exists. Unfortunately, if the problem space is very
large, “‘eventually™ may be a very long time.

The generate-and-test algorithm is a depth-first search piocedure since compleie
solutions must be generated before they can be tested. In its most systematic form, it is
simply an exhaustive scarch of the problem space. Generaie-and-test can, of course, also
operate by generating solutions randomly, but then there is no guarantee that a solution
will ever be found. Tn this form, it is also known as the British Museum algorithm,
@ reference 1o a method for finding an object in the British Museum by wandering
randomly.! Between these two extremes lies a practicsl middle ground in which the
search process proceeds systematically, but some paths are not considered because they
seem unlikely to iead to a solution. This evaluation is performed by a heuristic function.
as described in Section 2.2,2,

The most straightforward way © implement systematic generate-and-lest is as 4
depth-first search tree with backtracking. If some intermediaie staes are likely 10
appear often in the tree, however, it may be better 1o modify that procedure., as described
above, 10 traverse a graph rather than a tree.

For simple problems, exhaustive generate-and-test is often a reasonable technigue.
For example, consider the puzzle that consisis of four six-sided cubes, with each side of
each cube painted one of four colors. A solution to the puzzle consizts of an arrangement
of the cubes in a row such that on all four sides of the row one block face of each color is
showing. This problem can be solved by a person (who is a much slower processor for
this sort of thing than even a-wvery cheap computer) in several minutes by systematically
and exhaustively trying all possibilities. It can be solved even more quickly using a
heuristic generate-and-test procedure. A quick glance at the four blocks reveals that
there are more, say, red faces than there are of other colors. Thus when placing a block
with several red faces, it would be a good idea to use as few of them as possible as
outside faces. As many of them as possible should be placed 1o abut the next block.
Using this heuristic. many configurations need never be explored and a solution can be
found quite quickly.

'Ox. as another story goes, if a sufficient number of -monkeys were placed in front of a set of typewiiters
and Icft alone long enough, then they would eventually produce all of the works of Shakespeare.



32. HILL CLIMBING 65

Unfortunately, for problems much harder than this, even heuristic generate-and-test,
all by itself, is not a very effective technique. But when combined with other techniques
to restrict the space in which to search even further, the technique can be very effective.

For example, onc carly example of a successful Al program is DENDRAL [Lindsay
et al., 1980], which infers the structure of organic compounds using mass spectrogram
and nuclear magnetic resonance (NMR j data. Ttuses a strategy called plan-generate-test,
in which a planning process that uses constraint-satisfaction techniques (see Section 3.5)
creates lists of recommended and contraindicated substructures. The generate-and-est
procedure then uses those lists so that it can explore only a fairly limiied set of structures.
Constrained in this way, the generate-and-test procedure has proved highly effective.

This combination of planning, using one problem-solving method (in this case,
constraint salisfaction) with the use of the plan by another problem-solving method.
generate-and-test, is an excellent example of the way techniques can be combined to
overcome the limitations that each possesses individually. A major weakness of planning
is that it often produces somewhat inaccurate solutions since there is no feedbatk fron.
the world. But by using it only to produce pieces of solutions that will then be exploited
in the generate-and-test process, the lack of detailed accuracy becomes unimportant.
And, at the same time, the combinatorial problems that arise in simple generate-and-iest
are avoided by judicious reference to the plans.

3.2 Hill Climbing

Hill climbing is a variant of generate-and-test in which feedback from the test procedure
is used 10 help the generator decide which direction to move in the search space. Ina
pure generale-and-test procedure, the test function responds with only a yes or no. But
if the test function is augmented with o heuristic function® that provides an estimate
of how close a given state is to a goal state, the generate procedure can exploit it as
shown in the procedure below. This is particularly nice because often the computation
of the heuristic function can be done at aimost o cost at the same time that the test for a
solution is being performed. Hill climbing is often used when a good heuristic function
is available for evaluating states but when no other useful knowledge is available. For
example, suppese you are in an unfamiliar city without a map and you want 10 get
downlown. You simply aim for the tall buildings. The heuristic function is just distance
between the current location and the location of the tall buildings and the desirable states
are those in which this distance s minimized.

Recall from Section 2.3.4 that one way to characterize problems is according to their
answer to the question, “Is a good solution absolute or relative?” Absolute solutions
exist whenever it is possible 1o recognize a goal state just by examining it. Geiting
downtown is an example of such a problem. For these problems, hill climbing can
terminate whenever a goal state is reached. Only relative solutions exist, however. (o
maximization (or minimization) problems, such as the traveling salesman problem. In
these problems. there is no @ priovi goal state. For problems of this sort, it makes sense
10 terminate hill clintbing when there is no reasonable alternative state to move to

*What we are calling the heuristic function is sometimes slso called the phjecive Swnenon, pariculardy m
she literature of mathemanical optymization
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32.1 Simple Hill Climbing
The simplest way to implement hill climbing is as follows.

Algorithm: Simple Hill Climbing

1. Evaluate the initial state. If it is also a goal siate, then return it and quit. Otherwise,
continue with the initial state as the current state.

2. Loop until a solution is found or until there are no new operators left 1o be applierd
in the current state:

(a) Select an operator that has not yel been applied 1o the current state and apply
it to produce a new state.

(b) Evaluate the new state,

1. Ifitis a goal state, then return it and quit,
. If it is not a goal state but it is better than the current state, then make i1
the current state.
- iit. If it is not betier than the current stale, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and-
test is the use of an evaluation function as a way 1o inject task-specific knowledge
into the control process. It s the use of such knowledge that makes this and the
other methods discussed in the rest of this chapter hewristic search methods, and it is
that same knowledge that gives these methous their power 1o solve some otherwise
intractable problems.

Notice that in this algorithm, we have asked the relatively vague question, "1s one
state berrer than another?” For the algorithm to work, a precise definition of berter must
be provided. In some cases. it means a higher value of the heuristic function. In others.
it means a lower value. It does not matter which. as long as a particular hill-climbing
program is consistent in its interpretation.

To see how hill climbing works, let's return to the puzzle of the four colored blocks.
To solve the problem, we first need to define a heuristic function that describes how
close a particular configuration is 1o being a solution. One such function is simply the
sum of the number of different colors on each of the four sides. A solution 1o the puzzle
will have a value of 16. Next we need to define a sel of rules that describe ways of
transforming one configuration into another.  Actually, one rule will suffice. Tt says
simply pick a block and rotate it 90 degrees in any direction. Having provided these
definitions, the next step is to generate a starting configuration, This can either he done
at random or with the aid of the heuristic function described in the last section. Now
hill climbing can begin. We generate a new state by selecting a block and rotating it. If
the resulting state is better, then we keep it. If not, we return 1o the previous state and
try a different perturbation.

322 Steepest-Ascent Hill Climbing

A uscful variation on simple hill climbing considers all the moves from the curreni statg
and selects the best one as the next state. This method is called steepest-ascent hill
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climbing or gradient search. Notice that this contrasts with the basic method in which
the first state that is better than the current state is selected. The algorithm works as
follows.

Algorithm: Steepest-Ascent Hill Climbing

I. Evaluate the imtial state. 1fitis alsoa goal state. then return it and quat. Otherwise.
continue with the initial state as the current state.

(%

. Loop until a solution is found or until a complete tteration produces no change 0
current state:

(8) Let SUCC be a state such that any possible successor of the current state
will be better than SUCC.

(b) For each operator that applies (o the current state do:

1. Apply the operator and generate a new state.

ii. Evaluate the new state If it is a goal state, then return it and quit. If
not, compare it 10 SUCC. If it is beuer, then set SUCC to this state, 1f
it is not better, leave SUCC alone.

(¢) If the SUCC is better than current state, then set current state 10 SUCC.

To apply steepest-ascent hill climbing (o the colored blocks problem. we must
consider all periurbations of the initial state and chowse the best. For this problem. this
is difficull since there are so many possible moves. There is a trade-off between the
time required to select a move (usually longer for steepesi-ascent hill climbing) and the
number of moves required 1o get 10 a solution (usually longer for basic hill climbing)
that must be considered when deciding which method will work better for a particular
problem, .

Both basic and steepest-ascent hill elimbing may fail fo find a solution. Either
algorithm may terminate niot by finding a goal state bur by getting to a state from which
no better states can be generated. This will happen if the program has reached either a
local maximum, o plateau, or a ndes

A incal maximem is a state that is better than all its neighbors but is not
betler than some other siates farther away. Al a local maximum, all moves
appear 1o make things worse. Local maxima are parl icularly frustrating
because they often occur almost within sight of a solution. In this case,
they are called foothills.

A plateau is a flat area of the search space i which a whole set of neighbor
ing states have the same value. On a plateau. it is not possible to determine
the best direction in which to move by making local comparisons.

A ridge is a special kind of local maximum? It is an area of the search space
that is higher than surrounding areas and that itself has a slope (which one
would like 1o climb). But the orientation of the high region, compared to
the st of available moves and the directions in which thcy move, makes 1t
impossible 10 traverse a ridge by single moves
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There are some ways of dealing with these problems, although these methods are by
no means guaranieed:

¢ Backtrack to some earlier node and try going in a different direction. This is
particularly reasonabie if at that node there was another direction that Jooked as
promisingor almost as promising as the one that was chosen earlier. To implement
this strategy, maintain a list of paths almosi taken and go back 1o one of them if
the path that was taken lesds to a dead end. This is a fairly good way of dealing
with local maxima.

* Make a big jump in some direction to try to get to a new section of the search
space. This is a particularly good way of dealing with plateaus. If the only
rules available describe single smal) steps, apply them several times in the same
direction.

* Apply two or more rules before doing the test. This corresponds to moving in
several directions at once. This is a particularly good strategy for dealing with
ridges.

Even with these first-aid measures, hill climbing is not always very effeciive. It
15 particularly unsuited to problems where the value of the heuristic function drops off
suddenly as you move away from a solution. This is often the case whenever any son
of threshold effect is present. Hill climbing is a local method, by which we mean that it
decides what 10 do next by looking only at the “immediate™ consequences of its choice
rather than by exhaustively exploring all the consequences. It shares with other local
methods, such as the nearest neighbor heuristic described in Section 2.2.2. the advaniage
of being less combinatorially explosive than comparable global methods. But it afso
shares with other local methods a lack of a guarantee that it will be effective, Although
it is true that the hill-climbing procedure itself looks only one move ahead and not any
farther, that examination may in fact exploit an arbitrary amount of global information if
that information is encoded in the heuristic function, Consider the biocks world problem
shown in Figure 3.1, Assume the same operators (1.e., pick up one block and put it on
the table; pick up one block and put it on another one) that were used in S ~1ipn 2.3.]
Suppose we use the following heuristic function:

Local: Add one point for every block that is resting on the thing it is
supposed 1o be resting on. Subtract one point for every block that is sitting
on the wrong thing.

Using this function, the goal state has a score of 8. The initial state hos a score of 4
(since it gets one point added for blocks C. D, E, F, G, and H and one point subtracted for
blocks A and B). There is only one move from the initial state, namely (o move block A
to the table. That produces a state with a score of 6 (since now A's position canses a
point to be added rather than subtracted). The hill-climbing procedure will accept thar
move. From the new state. there are three possible moves, leading 1o the three statcs
shown in Figure 3.2. These states have the scores: (a)4,(b) 4, and (¢) 4. Hill climbing
will halt because all these states have lower scores than the current state. The process
has reached a local maximum that is not the global maximum, The problem i5 that
by purely local examination of support structures, the current state appears to be beiter



32. HILL CLIMBING 69

|

[A] H
o o
G 1]
] |
E D]
I =
D 5
T B
B A
mitial state goal state

Figure 3.1: A Hill-Climbing Problem
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Figure 3.2: Three Possible Moves

than any of its successors becavse more blocks rest on the correct objects. To solve this
problem, it is necessary to disassemble a good local structure (the stack B through H)
because it 1s in the wrong global context.

We could blame hill climbing itself for this failure (o look far enough ahead to find
a solution. But we could also blame the heuristic function and try to modify it. Suppose
we ry the following heunistic function in place of the firsi one:

Global: For each block that has the correct support structure (i.e., the
complele structure undemeath it is exactly as it should be), add one paint
forevery block in the support structure. For each block that has an incorrect
suppon structure, subtract one point for every block in the existing suppor
structure

Using this funciion, the goal state has the score 28 (1 for B. 2 for C, etc.). The ininal state
has the score —28. Moving A to the table yields a state with a score of —21 since A no
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longer has seven wrong blocks under it. The three states that can be produced next now
have the fallowing scorcs: (a) —28, (b) =16, and () —15, This tlime, sleepest-ascent
hill climbing will choose move (), which is the correct one. This new heuristic function
captures the two Key aspects of this problem: incorrect structures are bad and should
he taken apart; and correct siructures are good and should be built up. As a result, the
same hill elimbing procedure that failed with the earlier heuristic function now works
perfectly.

Unlortunately, it is not always possible Lo construct such a perfect heuristic function.
For example. consider again the problem of driving downtown. The perfect heuristic
tunction would need 1o have knowledge about one-way and dead-end sirects, which, in
the case of a strange city, is noi always ayailable. And even if perfect knowledge is,
in principle, available, it may not be computationally tractable (o use. As an extreme
example. imagine a heuristic function that computes a value for a state by invoking its
own problem-solving procedure to look ahead from the state it is given 1o find a solution.
It then knows the exact cost of finding that solution and can return that cost as its value.
A heuristic function that does this converts the local hill-climbing procedure into a
global methed by embedding a global method within it. But now the computational
advantages of a local method have been lost. Thus it is still true that hill climbing can be
very inefficient in a large, rough problem space. But it is often useful when combined
with other methods that get it started in the right general neighborhood.

3.2.3 Simulated Annealing

Simulated annealing is a vanation of hill climbing in which, at the beginning of the
process, some downhill moves may be made. The idea is to do enough exploration of
the whole space carly on so that the final solution is relatively insensitive to the starting
state. This should lower the chances of getting caught a1 a local maximum, a plateau,
or a ridge.

In order 1o be compatible with standard usage in discussions of simulated annealing,
we make two nolational changes for the duration of this section. We use the term
objective function in place of the term hewristic function.

“ind we attempt to minimize rather than maximize the value ¢ 1 objective function.
Thus we actually describe a process of valley descending rather thai hill climbing.

Simulated annealing (Kirkpatrick ez ol , 1983 asa compultational process is patterned!
afier the physical process of annealing, in which physical substances such as metals are
melied (i.e., raised 10 high energy levels) and then gradually cooled until some solid state
is reached. The goal of this process is to produce a mi nimal-energy final state. Thus this
process is one of valley descending in which the objective function is the energy level.
Physical substances usually move from higher encr 2y configurations to lower ones. so
the valley descending occurs naturally. But there is some probability that a transition to
a higher energy state will occur. This probability is given by the function

p= - AT
where A £ is the positive change in the encigy level, T is the tlemperature, and &

is Boltzmann's constant. Thus. in the physical valley descending that occurs during
annealing. the probability of a large uphill move is lower than the probability of a small
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one. Also, the probability that an uphill move will be made decreases as the temperature
decreases. Thus such moves are more likely during the beginning of the process when the
temperature is high, and they become less likely at the end as the lemperature becomes
lower. One way to characterize this process is that downhill moves are allowed anytime.
Large upward moves may occur early un. bul as the process progresscs, only relatively
small upward moves are allowed until finally the process converges 1o & local minimum
configuration.

The rate at which the system is cooled is called the annealing schedule. Physical
annealing processes are very sensilive to the annealing schedule. If cooling occurs (oo
rapidly, stable regions of high energy will form. In other words, 2 local but not global
minimum is reached. If, however, a slower schedule is used, a uniform crystalline
structure, which corresponds to a global minimum. is more likely to develop. But, if the
schedule is too slow, time 1s wasted. At high temperatures, where essentially random
motion is allowed, nothing useful happens, At low temperatures a lot of time may be
wasted after the final structure has already been formed. The optimal annealing schedule
for each particular anncaling problem must usually be discovered empirically.

‘These properties of physical annealing can be used to define an analogous process
of simulated annealing, which can be used (although not always effectively ) whenever
simple hill climbing can be fised. In this analogous process, AE is generalized so that
it represents not specifically the change in energy but more generally, the change in
the value of the objective function, whatever it is, The analogy for &7 is slightly less
straightforward. In the physical process, temperature is a well-defined notion, measured
in standard units. The vanable & describes the comespondence between the units of
temperature and the units of energy. Since, in the analogous process, the units for
both E and T are artificial. it makes sense to incorporate k into 7T, selecting values for
7 that produce desirable behavior on the part of the algorithm. Thus we use the revised
probability formula

P o= e AEIT

But we still need tochoose a schedule of values for 7 (which we stillcall temperature ).
‘We discuss this briefly below afier we present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different from the simple
hill-climbing procedure. The three differences are:

e The anncaling schedule must be maintained.
e Moves 1o worse states may be accepted,

o It is a good iden to maintain. in addition to the current state. the best state found
so far. Then, if the final state is worse than that carlicr state (because of bad juck
in accepling moves to worse states), the earlier state is still available,

Algorithm: Simulated Annealing

1. Evaluate the initial state. If it is also a goal state, then return it and guit. Otherwise
continue with the initial state as the current state.

2. Ininialize BEST-50-FAR to the currem s1ate
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3. Ininalize T according to the annealing schedule.

4. Loop until a solution is found or until there are no new operators lefi 1o e applied
in the current state.

() Select an operator that has not yet been applied to the current state and apply
it 1o produce a new state.

(b) Evaluate the new state. Compute
AE = (value of current) — gvalue of new state)

s If the new state is a goal state, then return it and quit.

¢ If it is not a goal state but 15 betier than the current state, then make it
the current state. Also sct BEST-SO-FAR to this new siate.

o If 1t 15 not better than the current state, then make it the current state
with probability p’ as defined above. This step is usually implemented
by invoking a random number generator to produce a number in the
range [0,1]. Tf that number is less than p’, then the move is accepted,
Otherwise, do nothing.

(¢) Revise T as necessary according to the annealing schedule.
5 Return BEST-SO-FAR as the answer,

To implement this revised algorithm, it is necessary to select ai: annealing schedule,
which has three components. The first is the initial value 1o be used for temperature.
‘The second is the criteria that will be used 10 decide when the temperature of the system
should be reduced. The third is the amount by which the temperature will be reduced
each lime it is changed. There may also be a fourth component of the schedule, namely,
when to quit. Simulated annealing is ofien used to solve problems in which the number
of moves from a given state 1s very large (such os the number of permutations that
can be made o 3 proposed traveling salesman route). For such problems, it may not
make sense to try all possible moves. Instead, it may be useful to exploit some criterion
involving the number of moves tha' have been tried since an improvement was found,

Experiments that have been done with simulated annealing on 2 variety of problems
suggest that the best way to select an annealing schedule is by trying several and
observing the effect on both the quality of the solution that is found and the rate at
which the process converges. To begin to get a feel for how to come up with a schedule,
the first thing to notice is that as T approaches zero, the probability of accepting a
move 10 a worse state poes (o zero and simulated anncaling becomes identical lo simple
hill climbing. The second thing to notice is the! what really matters in computing the
probability of accepting a move is the ratio A £/T. Thus it is important that values of T
be scaled so that this ratio i1s meaningful. For example, T could be initialized to a value
such that, for an average A E, p’ would be 0.5,

Chapter 18 returns to simulated annealing in the context of neural networks
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3.3 Best-First Search

Until now, we have really only discussed (wo systematic control strategies, breadth-firsi
search and depih-first scarch (of several vaneties). In this section, we discuss a new
method, best-first search, which is a way of combining the advantages of both depth-first
and breadth-first search into a single method.

3.3.1 OR Graphs

Depth-first search is good because it allows a solution 1o be found without ail competing
branches having to be expanded. Breadth-first search 1s good because it does not get
trapped on dead-end paths. One way of combining the two is to follow a single path at
a time, but switch paths whenever some competing path looks more promising than the
current one does.

At each step of the best-first search process. we select the most promising of the
nodes we have generated so far. This is done by applying an appropriate heuristic
function to each of them. We then expand the chosen node by using the rules to generate
its successors. 1f one of them is a solution, we can quit. If not, all those new nodes are
added 1o the set of nodes generated so far. Again the most promising node is selected
and the process continues, Usually what happens is that a bit of depth-first searching
occurs as the most promising branch is explored. But eventuaily, if a solution is not
found. that branch will start 1o look less promising than one of the top-level branches that
had been ignored. At that point, the now more promising, previously ignored branch
will be explored. But the old branch is not forgotten., Its last node remains in the et of
generated but unexpanded nodes. The search can returm to it whenever all the others get
had enough that it is again the most promising path.

Figure 3.3 shows the beginning of a best-first search procedure. Initially, there is
only one node, so it will be expanded. Doing so generates thres new nodes. The heuristic
function, which, in this example, is an estimate of the cost of getting to a solution from a
given node, is applied to each of these new nodes. Since node D is the most promising,
it is expanded next, producing two successor nodes, E and F. Bul then the heurislic
function is applied to them. Now another path. that going through node B, looks more
promising, so it is pursued, generating nodes G and H, But again when these new nodes
are evaluated they look less promising than another path, so attention is returned to the
path through D to E. E is then expanded, yielding nodes | and J. At the next siep, J will
be expanded, since it is the most promising. This process can continue until a solution
is found,

Notice that this procedure is very similar to the procedure for steepest-ascent hill
climbing. with two exceptions. In hill climbing. one move is selecied and all the others
are rejected, never to be reconsidered. This produces the siraightline behavior thar 1s
characteristic of hill climbing. In best-first scarch, one move is selected, bui the others
are kept around so that they can be revisited later if the selecied path becomes less
promising.” Further, the best available state is selected in best-first search, even if thal
state has a value that is lower than the value of the state that was just explored. This

Vin a variation of besi first search, called beam search, only the » most promising states are kept for
future consideration. This procedure is more efficient with respect 1o memary but introduces the possibility
of missing a solution ahogethet by pruning the search tree oo early
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Step 3

Figure 3.3: A Best-First Search

contrasts with hill climbing, which will stop if there are no successor states with better
values than the current state.

Although the example shown above illusirates a besi-first search of a tree, it is
sometimes important to search a graph imstead so that duplicate paths will not be
pursued. An algorithm to do this will operate by searching a directed graph in which
each node represents a point in the problem space. Fach node will contain, in addition
to a description of the problem state it represents, an indication of how promising il is, &
parent link that points back to the best node from which it came, and a list of the nodes
that were generdred from it, The parent link will riake it possible to recover the path 1o
the goal once the goal is found. The list of successors will make it possible, if a better
path is found to an already existing node, 10 propagate the improvement down o its
successors. We will call a graph of this sort an OR graph, since cach of its branches
represents an alternative problem-solving path.

To implement such a graph-search procedure, we will need to use two lists of nodes:

® OPEN—nodes that have been generated and have had the heuristic function
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applied to them but which have not yet been examined (i.c.. had their successors
generated). OPEN is actually a priority queue in which the clements with the
highest priority are those with the most promising value of the heuristic function
Standard technigues for manipulating priority queues can be used 1o manipulate
the list.

o CLOSED— nodes that have already been examined. We need to keep these nodes
in memory if we wanl 10 search a graph rather than a tree, since whenever a new
node is generated, we need to check whether it has been generated before.

We will alsn need a heuristic function that estimates the merits of each node we
generate. This will enable the algorithm (0 search more promising paths first. Call
this function f’(to indicate that it is an approximation to a function f that gives the true
evaluation of the node). For many applications. it is convenient to define this function
as the sum of two components that we call g and &', The function g is a measure of the
cost of getting from the initial state to the current node. Note that g is not an estimate
of anything; it is known to be the exact sum of the costs of appiying each of the rules
that were applied along the best path to the nade. The function k' is an estimate of the
additional cost of getting from the current node to a goal state. This is the place where
knowledge about the problem domain is exploited. The combined function . then,
represents an estimate of the cost of getting from the initial state to a goal state along
the path that generated the current node. If more than one path generated the node, then
the algorithm will record the best one. Note that because g and A’ must be added, it is
important that &' be a measure of the cost of getting from the node o a solution (i.e..
good nodes get low values; bad nodes get high values) rather than a measure af the
goodness of a node (i.e., good nodes get high values), But that is easy 10 ammange with
judicious placement of minus signs. It is also important that g be nonnegative. If this is
not true, then paths that traverse cycles in the graph will appear to get better as they get
longer.

The actual operation of the algorithm is very simple, It proceeds in steps, expanding
one node at each step, until it generates a node that corresponds to a goal state. At each
step, it picks the most promising of the nodes that have so far been generated but not
expanded. It generates the successors of the chosen node, applies the hewristic function
to them, and adds them 1o the list of open nodes, after checking to see if any of them
have been generated before. By doing this check, we can guarantee that each node only
uppears once in the graph, although many nodes may point [0 it as a successor. Then
the next step begins.

. This process can be summarized as follows.

Algorithm: Best-First Search
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:

{a) Pick the best node on OPEN.
(b) Generate its successors.
(c) Foreach successor do:
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i. If it has not been generated before, evaluate it, add it to OPEN, and
record its parent.

il IF it has been generated before, change the parent if this new path is
better than the previous one. In that case, update the cost of getting to
this node and to any successors that this node may alrcady have,

The basic 1dea of this algorithm is simple. Unfortunately, it is rarely the case that
graph traversal algorithms are simple to write cormrectly. And it is even rarer that 1 s
simple 10 guarantee the correctness of sach algorithms. In the section that follows, we
describe this algorithm in more detail as an example of the design and analysis of a
graph-search program.

3.3.2 The A* Algorithm

The best-first search algorithm that was just presented is a simplification of an algorithm
called A*, which was first presented by Hart er al. [1968; 1972]. This algorithm uses
the same f', g, and &' functions, as well as the lists OPEN and CLOSED, that we have
already described.

Algorithm: A*

1. Start with OPEN containing only the initial node. Set that node's £ value to @, ity
' value to whatever it is, and its /' value to &' + 0, or i'. Set CLOSED to the
empty lisi. .

2. Until a goal node is found, repeat the following procedure: If there are no nodes
on OPEN, report failure. Otherwise, pick the node on OPEN with the lowest i
value. Call it BESTNODE. Remove it from OPEN. Place it on CLOSED. See il
BESTNODE is a goal node. If 5o, exit and report a solution (either BESTNODE
if all we-want is the node or the path that has been created between the initial
state and BESTNODE if we are interested in the path). Otherwisc, generate the
successors of RFSTNODE but do not set BESTNODE to point to them yet. ‘First
we need to see il any of them have already been generated.) For each suc,
SUCCESSOR, do the following:

(a) Set SUCCESSOR to point back 10 BESTNODE. These backwards links will
make it possible to recover the path once a solution is found.

(b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of getting from
- BESTNODE to SUCCESSOR.

(c) See if SUCCESSOR is the same as any node on OPEN (i.e.. it has already
been generated but not processed). If so, call that node OLD  Since this
node already exists in the graph, we can throw SI/CCESSOR away and add
OLD 1o the list of BESTNODE's successors. Now we must decide whether
OLD’s parent link should be reset to point to BESTNODE. It should be if
the path we have just found to SUCCESSOR is cheaper than the current bes
path to OLD (since SUCCESSOR and OLD are really the same node). So see
whether it is cheaper to get 1o OLD via its current parent or to SU/CCESSOR
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via BESTNODE by comparing their g values. If OLD is cheaper (or just
as chéap), then we need do nothing. If SUCCESSOR is cheaper. then reset
OLD’s parent link 10 point to BESTNODE, record the new cheaper path in
e(OLD). and update [ (OLD).

(d) If SUCCESSOR was not on OFPEN, see if it is on CLOSED, If so, call the
node on CLOSED OLD and add OLD 10 the listof BESTNODE's successors.
Check 10 see if the new path or the old path is better just as in step 2{e).
and set the parent link and g and /* values appropriately, If we have just
found a better path 10 GLD). we must propagate the improvement o OLD’s
successors, This s a bittricky, OLD points to its successors. Each successor
in turn points to its successors, and so forth, until each branch terminates
with a node that either is stillon OPEN or has no successors. So lo propagate
the new cost downward, do a depth-first traversal of the tree stanting at OLD.
changing each node's g value (and thus also its f* value). terminating éach
branch when you reach either a node with no successors or a node to which
an equivalent or better path has already been found.* This condition is easy
to check for. Each node's perent link points back to its best known parent.
As we propagate down 1o a node, see if its parent points to the node we are
coming from. If so. continue the propagation. [ not, then its g value already
reflects the better path of which it is part. So the propagation may stop here.
But i1 is possible that with the new value of g being propagated downward,
the path we are following may become better than the path through the
current parent. So compare the two. If the path through the current parent
is still better, stop the propagation. If the path we are propagating through
is now better, reset the parent and continue propagation.

{e) If SUCCESSOR was not already on either OPEN or CLOSED, then put
it on OPEN, and add it 1o the list of BESTNODE’s successors. Compute

S (SUCCESSOR) = gtSUCCESSOR) + h'(SUCCESSOR).

Several interesting observations can be made about this al gorithm. The first concemns
the role of the g function. It lets us choose which node to expand next on the basis not
only of how good the node itself looks (as measured by /'), but aiso on the basis of how
good the path (o the node was. By incorporating g into f”, we will not always choose as
our next node to expand the node that appears (o be closest to the goal. This is useful if
we care aboul the path we find. If, on the other hand, we only care about getting to a
solution somehow, we can define g always to be 0, thus always choosing the node that
seems closest to a goal. If we want to find a path involving the fewest number of sieps.
then we set the cost of going from a node to its successor as a constant, usually 1. If,
on the other hand, we wan! to find the cheapest path and some operators cost more than
others, then we sel the cost of going from one node to another to reflect those costs.
Thus the A* algorithm can be used whether we are interested in finding a minimal-cost
overall path or simply any path as quickly as possible.

The second observation involves A, the estimator of A, the distance of a node Lo the
goal. IF /' is a perfect estimator of . then A* will converge immediately to the goal

This second check guarantees that the algorithm will lerminate even if there are cycles in the graph I
there is @ cy<le, then the sccond lnne that a given node = visited, the path will be no beiter than the first iime
ani so propagation will stop.
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(343)

Figure 3.4: &' Underestimates h

wilh no search. The betier /' is, the closer we will get to that direct approach. If, on
the other hand, the value of /' is always 0, the search will be controlled by g. If the
value of g is also 0, the search strategy will be random. If the value of £ is always 1, the
search will be breadth first. All nodes on one level will have lower £ values, and thus
lower f* values than will all nodes on the next level. What if, on the other hand, &' is
neither perfect nor 07 Can we say anything interes{ing about the behavior of the search?
The answer 1s yes if we can guarantee that &' never overestimates h. In that case, the
A* algorithm is guaranteed to find an optimal (as determined by g) path to a goal, if one
exists. This can easily be seen fromea few examples.®

Consider the situation shown in Figure 3.4. Assume that the cost of all arcs is 1.
Initially, all nodes except A are on OPEN (although the figure shows the situation two
steps later, after B and E have been expanded). For each node, /' is indicated as the
sum of #" and g. In this example, node B has the lowest f', 4, so it is expanded firsi.
Suppose it has only one successor E, which also appears 1o be three moves away from
a goal. Now f'(E) is 5, the same as f'(C). Suppose we resolve this in favor of the
path we are currently following. Then we will expand E next. Suppose it too has a
single successor F, also judged to be three moves from a goal. We are clear] y using up
moves and making no progress. But f'(F) = 6, which is greater than f'(C). So we will
expand C next. Thus we see that by underestimating /1(B) we have wasted some effort.
But eventually we discover that B was farther away than we thought and we go back
and try another path.

Now consider the situation shown in Figure 3.5 Again we expand B on the first
step. On the second step we again expand E. At the next step we expand F, and finally
we gencrate G, for a solution path of length 4. But suppose there is a direct path from D
to a solution, giving a path of length 2. .We will never find it. By overestimating
#'(D) we make D look so bad that we may find some other, worse solution without
ever expanding D. In general, if 4’ might overestimate /, we cannot be guaranteed of '
finding the cheapest path solution unless we expand the entire graph unul all paths are

*A search algorithm that is guaranteed to find an optimal path 1o 2 goal, if one exists, is called adm csible
[Nilsson. | 980). £
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Figure 3.5: A" Overestimates /r

fonger than the best solution. An interesting question is. “Of what practical significance
is the theorem that if i’ never overestimates h then A™ is admissible?” The answer is,
“almost none.” because, for most real problemns, the only way (o guarantee that k' never
overestimates 4 is (o set it to zero. Bui then we are back 10 breadih-first search, which is
admissible but not efficient. But there is 4 corollary to this theorem that is very useful.
We can state it loosely as follows:

Graceful Decay of Admissibility: 1f &' rarely overestimates h by mare
than &, then the A* algorithm will rarely find a solution whose cost is more
than & greater than the cost of the optimal solution.

The formalization and proof of this coroilary will be left as an exercise.

The third observation we can make about the A* algorithm has to do with the
relationship between trees and graphs. The algorithm was stated in its most general
form es it applies to graphs. It can, of course, be simplified to apply to trees by not
bothering to check whether a new node is already on OPEN or CLOSED. This makes it
faster to generate nodes but may result in the same scarch being conducted many times
if nodes are often duplicated.

Under certain conditions, the A* ulyorithm can be shown to be optimal in that it
generates the fewest nodes in the process of finding u solution to a problem. Under other
conditions it is not optimal. For formal discussions of these conditions, see Gelpenn
{1977] and Martell [ 1977 -

333 Agendas

In our discussios of best-first search in OR graphs, we assumed that we covld evaluate
multiple paths 10 the same node independentiy of each other. For ex ample. in the water
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Jjug problem, it makes no difference to the evaluation of the merit of the position (4. 3)
that there are at least two separate paths by which it could be reached  This is not
true, however, in all siwations, e.g,, especially when there is no single, simple heunistic
function that measures the distance between a given node and a goal

Consider, for example, the task faced by the mathematics discovery program AM,
wrilten by Lenat [1977; 1982). AM was given a small sei of starting facts about
number theory and a set of operators it could use to develop new ideas. These operators
included such things as “Find examples of 4 concept you already know.” AM's goal
was 10 generale new “interesting” mathematical cencepts. It succeeded in discovering
such things as prime numbers and Goldbach’s compecture.

Armed solely with its basic operators, AM would have been able to create a great
many new concepts, most of which would have been worthless. 1t needed a way to decide
intelligently which rules 1o apply, For this it was provided with a set of heuristic rules
that said such things as “The extreme cases of any concept are likely 1o be interesting.”
“Interest” was then used as the measure of merit of individual fasks that the system could
perform. The system operated by selecting at each cycle the most interesting task, doing
it, and possibly generating new tasks in the process. This corresponds to the selection
of the most promising node in the best-first search procedure, But in AM’s situation the
fact that several paths recommend the same lask does maiter. Each coniributes a reason
why the task would lead to an interesting result. The more such reasons there are, the
more likciy it 1s that the task really wou!d lead 1o something good. So we need a way
to record proposed tasks along with the reasons they have been proposed, AM used a
task agenda. An agenda s a lisi of tasks a system could perform. Associated with cach
task there are usually two things: a list of reasons why the task is being proposed (offcn
called justifications) and a rating representing the overall weight of evidence suggesting
that the task would be useful

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search
1. Do until a goal state is reached or the agenda is empiy:

(a) Choose the most promising task from the ogenda. Notice that this task
can be represented in any desired form. It can be thought of as an explicil
statement of what to do next or simply as an indication of the next node to
be expanded.

(b) Execute the task by devoling 1o it the number of resources determined
by its importance. The important resources Lo consider are time and space.
Executing the task will probably generate additional 1asks (successor nodes).
For each of them, do the following:

i. See if it is already on the agenda. If 5o, then see if this same reason for
doing it is already on its list of justifications. If so, ignore this current
evidence. If this justification was not alrcady present, add it to the list
If the task was not on the agenda, insert i1,

ii, Compute the new task’s rating, combining the evidence from all its
justifications. Not all justifications need have equal weight. It is often
useful to associate with each justification a measure of how strong a
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reason il is. These measures are then combined at this step to produce
an overall rating for the task.

One important question that arises in agenda-driven systems is how to find the mos!
promising task on each cycle. One way to do this is simple. Maintain the agenda sorted
by rating. When a new task is created, insert itinto the agenda in its proper place. When
a task has its justifications changed, recompute its rating and move 1t to the correct
place in the list. But this method causes « greal deal of rime 1o be spent keeping the
agenda in perfect order. Much of this time is wasted since we do not need perfect order.
We only need 1o know the proper first element. The following modified strategy may
occastonally cause a task other than the best to be executed, but itis significantly cheaper
than the perfect method. When a task is proposed, or a new justification is added to an
existing task, compute the new rating and compare it againsi the top few (e.g., live o1
ten) elements on the agenda. If it is better, insert the node into its proper position at the
top of the list, Otherwise, leave it where it i1s or simply insert it at the end of the agenda.
At the beginning of each cycle, choose the first task on the agenda. In adduion, once
a while, go through the agenda and reorder it properly.

An agenda-driven control structure is also useful it some tasks (or nodes) provide
negative evidence about the merits of other 1asks (or nodes). This can be represented
by justifications with negative weightings. 1f these negafive weightings are used, it may
be important to check not only for the possibility of maving i tisk 1o the head of the
agenda butalso of moving a top task to the hottem il new, negative justifications appear.
But this is casy 1o do,

As you can see, the agenda mechanism provides a good way of focusing the attention
of a complex system in the areas suggested by the greatest number of positive indicators.
But the overhead for cach task executed may be fairly high. This raises the question of
the proper grain size for the division of the entire problem-solving process intoindividual
tasks. Suppose each task is very small. Then we will never do ever a very small thing
unless it really is the best thing to do. But we will spend a large percentage of our total
elfort on hguring out what to do next. If, on the other hand, the size of an individual
task is very large, then sume effort may be spent finishing one task when there are more
promising ones that could be done. But a smaller percentage of the total time will be
spent on the overhead of figuring out what to do. The exact choice of task size for a
particular system depends on the extent to which doing one small thing really means
that a set of other small things is likely 1o be very good to do too. [t often requires some
experimentation to get right.

There are some problem domains for which an agenda mechanism is inappropriate.
The agenda mechanism assumes that if there is pood reas i 1o do something now, then
there will also be the same good reason 1o do something tater unless something betier
comes along in the interim. But this is not always the case, particularly for systems that
are interacting with people. The following dialogue would not be acceplable to mast
peopte:

Person: 1don’t want to read anv more about China, Give me something else
Computer: OK. What else are you interested in?
Person: How about ltaly? 1 think 1'd find Italy fascinating

Computer: What things ubout ltaly are you interested in reading abowt?
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Person: I think I'd like to start with its history.
Computer: Why don't you want to read any more about China?

It would have been fine to have tried 1o find out why the person was no longer
interested in China right after he or she mentioned it. The computer chose instead
to try to find a new area of positive interest, also a very reasonable Lhing to do. But
in conversations, the fact that somcething is reasonable now does not mean that it will
continue 1o be so after the conversation has proceeded fora while. Soit is nota good idea
simply to put possible statements on an agenda, wait until a later lull, and then pop out
with them. More precisely, agendas are a good way to implement monotonic production
systems (in the sense of Section 2.4) and a poor way o implement nenmonotonic ones.

Despite these difficulties, agenda-driven control structures are very useful, They
provide an excellent way of integrating information from a variety of sources into
one program since each source simply adds tasks and justifications to the agenda. As
Al programs become more complex and their knowledge bases grow, this becomes a
particularly significant advaniage.

3.4 Problem Reduction

So far, we have considered search strategies for OR graphs through which we want to
find a single path to a goal. Such structures represent the fact that we will know how to
get from a node 1o a goal state if we can discover how to ger from that nede 1o a goal
state along any one of the branches leaving il

34.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is useful for representing
the solution of problems that can be solved by decomposing them into a set of smaller
problems, all of which must then be solved. This decomposition, or reduction, generates
arcs that we call AND arcs. One AND arc may point to any number of successor nodes,
all of which musi be solved in order for the arc to point Lo a solution. Just as in an OR
graph, several arcs may emerge from a single node. indicating a vanety of ways in which
the original problem might be solved. This is why the structure is called not simply an
AND graph but rather'an AND-OR graph. An example of an AND-OR graph (which
#lso happens to be an AND-OR tree) is given in Figure 3.6. AND arcs are indicated
with a line connecting all the components.

In order to find solutions in an AND-OR graph, we need an algorithm similar 1o best-
first search but with the ability to handle the AND arcs appropnately. This algonthm
should find a path from the starting node of the graph to a set of nodes representing
solution states. Notice that it may be necessary to get to more than one solution state
since each arm of an AND arc must lead to its own solution node.

To sec why our best-first search algorithm is not adequate for searching AND-OR
graphs, consider Figure 3.7(a). The top node, A, has been expanded, producing two
arcs, one leading to B and one icading to C and D. The numbers at each node represent
the value of /' at that node. We assume, for simplicity, that every operation has a
uniform cost, so each arc with a single successor has a cost of | and each AND arc with
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Figure 3.6: A Simple AND-OR Graph
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Figure 3.7: AND-OR Graphs

multiple successors has a cost of | for each of its components. If we look just at the
nodes and choose for expansion the one with the lowest /' value, we must select C.
But using the information now available, it would be better to explore the path going
through B since to use C we must also use D. for . total cost of 9 (C+D+2) compared to
the cost of 6 thal we get by going through B. The problem is that the choice of which
node to expand next must depend not only on the f* value of that node but also on
whether that node is part of the current best path from the initial node. The tree shown
in Figure 3.7(b) makes this even clearer The most promising single node is G with an
f* value of 3. It is even part of the most promising arc G-H. with a total cost of 9. But
that arc is not part of the current best path since 1o use it we musl also use the arc |-1.
with a cost of 27. The path from A, through B, to E and F 1s better, with a total cost
of 18. So we should not expand G next; rather we should examine either E or F.

In order to describe an algorithm for searching an AND-OR graph, we need to exploit
a value that we call FUTILITY . If the estimated cost of a solution becomes greater than
the value of FUTILITY, then we abandon the search FUTILITY should be chosen to
correspond to a threshold such that any solution with a cost above it is (oo expensive 1o
be practical, even if it could ever he found Now we can state the algerithm
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Algorithm: Problem Reduction
i. Initialize the graph to the starting node.

2. Loop until the starting node is labeled SOLVED or until its cost goes above
FUTILITY:

(a) Traverse the graph, sléning at the initial node and following the current best
path, and accumulate the set of nodes that are on that path and have not vet
been expanded or labeled as solved.

(b) Pick one of these unexpanded nodes and expand it. If there arc no successors,
assign FUTILITY as the value of this node. Otherwise, add its successors
10 the graph and for each of them compute f* {use only &' and ignore g,
for reasons we discuss below). If /' of any node is 0, mark that nodc as
SOLVED.

(¢) Change the f' estimate of the newly expanded node to reflect the new
information provided by its successors. Propagate this change backward
through the graph. If any node contains a successor arc whose descendunts
are all solved, label the node itself as SOLVED. At each node that is visited
while going up the graph, decide which of its successor arcs is the most
promising and mark it as part of the current best path. This may cause
the current best path to change. This propagation of revised cost estimates
back up the tree was not necessary in the besi-first search algorithm because
only unexpanded nodes were examined. But now expanded nodes musi be
reexamined so that ihe best current path can be selected. Thus it is importani
that their /' valucs be the best estimates available.

This process is illustrated in Figure 3.8. At step 1, A is the only node, so it is at the
end of the current best path. It is expanded, yielding nodes B, C, and D. The arc 1o D
15 labeled as the most promising one emerging from A, since it costs 6 compared 10 B
and C, which costs 9. (Marked arcs are indicated in the figures by arrows.) In step 2,
node D is chosen for expansion. This process produces one new arc, the AND arc to E
and F, with a combined cost estimate of 10. So we update the /7 value of D 1o 10,
Going back one more level, we see that this makes the AND arc B-C better than the arc
to D, 50 it is labeled as the current best path. At step 3. we traverse that arc from A
and discover the unexpanded nodes B and C. If we are going fo find a solution along
this path, we will have (0 expand both B and C eventually, so let's choose 1o explore B
first. This generates (wo new arcs, the ones 1o G and to H. Propagating their /' values
backward, we update f* of B 10 6 (since that is the best we think we can do, which we
can achieve by going through G). This requires updating the cos of the AND arc B-C to
12 (6+4+2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node I or node F wiil be chosen for expansion
at step 4. This process continues until either a solution is found or all paths have led to
dead ends, indicating that there is no solution. :

In addition to the difference discussed above, there is a second important way in
which an algorithm for searching an AND-OR graph must differ from one for searching
an OR graph. This difference, too, arises from the fact that individual paths from node

“To node cannot be considered independently of the paths through other nodes connected
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Figure 3.8: The Operation of Problem Reduction

to the original ones by AND arcs. In the best-first search algorithm, the desired path
from one node to another was always the one with the lowest cost. Butthis is not always
the case when searching an AND-OR graph.

Consider the example shown in Figure 3.%a). The nodes were generated in alpha-
betical order. Now suppose that node J is expanded at the next step and that one of its
successors is node E, producing the graph shown in Figure 31.9(k). This new path o E
is Tonger than the previvus path to E going through C. But since the path through C will
only lead to a solution if there is also 4 solution to D. which we know there is not, the
path through J is better.

There is one important limitation of the algorithm we have just described. It fails
1o take into account any interaction between subgoals. A simple exampte of this failure
is shown in Figure 3.10. Assuming that both nede € and node E ultimatcly lead 1o &
solution, our algorithm will report a complete solution that includes both of them. The
AND-OR graph states that for A to be solved, both C and D must be solved. But then
the algorithm considers the solution of D as a completely separale process from the
solution of C. Looking just at the aliernatives from D, E is the best path. But it tumns
out that C is necessary anyway, so it would be beuter also 10 use 1 1o satisfy D. Bu
since our algorithm does not consider such interactions, it will find a nonoptimal path.
In Chapicer 13, problem-solving methods (hat can consider interactions among subgoals
are presented.
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Figure 3.9: A Longer Path May Be Better
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Figure 3.10: Inleracting Subgoals

34.2 The AO* Algorithm

I'he problem reduction algorithm we just described is a simplification of an algorithim
described in Martellr and Montanari [ 1973], Martelli and Montanari [ 1978], and Nilsson
[ 1980]. Nilsson calls it the AO* algorithm, the name we assume.

Rather than the two lists, @PEN and CLOSED, that were used in the A* algorithm,
the AD* algorithm will use a single structure GRAPH, representing the part of the search
graph that has been explicitly generated so far. Fach node in the graph will point both
down 1o its immediate successors and up (o its immediate predecessors.  Fach node
in the graph will also have associated with it an k' value, an estimate of the cost of a
path from itself to a set of solution nodes. We will not store g (the cost of geting from
the start node to the current node) as we did in the A* algorithm. It is not possible to
compute a single such value since there may be many paths to the same state. And such
a value is not necessary because of the top-down traversing of the best-known path,
which guarantees that only nodes that are on the best path will ever be considered for
expansion. So /" will serve as the estimate of goodness of a node.
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Algorithm: AO*

1. Let GRAPH consist only of the node representing the initial state. (Call this node
INIT.) Compute &' (UNIT).

2. Until INIT is labeled SOLVED or unul IN{T's &' value becomes greater than
FUTILITY , repea: the following procedure:

(a) Teace the labeled arcs from INIT and select for expansion one of the as ye
unexpanded nodes that occurs on this paih. Call the selected node NODE

b

Generate the successors of NODE, If there are none, then assign FUTILITY
as the &' value of NODE. This is equivalent to saying that NODE is not
solvable. If there are suceessors, then for each one (called SUCCESSOR:
that is not also an ancestor of NODE do the following:

Add SUCCESSOR 10 GRAFH.

1f SUCCESSOR is a terminal node, label 1t SOLVED and assign itan k'
value of 0.

If SUCCESSOR 1s not a terminal node. compute its &' value.

Propagate the newly discovered information up the graph by doing the
following: Let § be a set of nodes that have been labeled SOLVED or whose
h' values have been changed and so need to have values propagated back to
their parents. Initialize S to NODE. Until § 1s empty. repear the following
procedure;

L

T,

If possible, select from § a node none of whose descendants in GRAPH
occurs in S, If there is no such node, select any node from §. Call this
node CURRENT, and remove it from S,

i. Caompute the cost of each of the arcs emerging from CURRENT. The

cost of each arc is equal to the sum of the 4’ values of each of the nodes
at the end of the arc plus whatever the cost of the arc itself 1s. Assign
as CURRENT 's new h' value the minimum of the costs just computed
for the ares emerging from it

Mark the best path out oi CURRENT by marking the arc that had the
minimum cost as computed in the previous step.

iv. Mark CURRENT SOLVED if all of the nodes connected to it through

the new labeled arc have been labeled SOLVED.

. If CURRENT has been labeled SOLVED or if the cost of CURRENT

was just changed, then its new status must be propagated back up the
graph. So add all of the ancestors of CURRENT 105,

1t is worth noticing a couple of points about the operation of this algorithm. In step
2(¢)v, the ancestors of a node whose cost was altered are added 1o the set of nodes whose
costs must also be revised. As stated, the algorithm will insert all the node’s ancestors
into the set, which may result in the propagation of the cost change back up through
a large number of paths that are already known not 10 be very good. For example.
in Figure 3.11, it is clear that the path through C will always be better than the path
through B, so work expended on the path through B 15 wasted But if the cout of E Qs
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Figure 3.11: An Unnccessiry Backward Propagation

revised and that change is not propagated up through B as well as through C, B may
appear 1o be better. For example, if, as a result of expanding node E. we update its
cost to 10, then the cost of C will be updated 10 11. If this is ali that is done, then
when A is examined, the path through B will have a cost of only 11 compared 1o 12
for the path through C, and it will be labeled erroneously as the most promising path.
In this example, the mistake might be detected at the next step, during which D will be
expanded. If its cost changes and is propagated back to B, 3's cost will be recomputed
and the new cost of E will be used. Then the new cost of B will propagate back 1o A.
At that point, the path through C will again be better. All that happened was that some
ime was wasted in expanding D. But if the node whose cost has changed is farther
down in the search graph, the error may never be detected. An example of this is shown
in Figure 3.12(a). If the cost of G is revised as shown in Figure 3.12(h) and if it is
not immediately propagated back to E, then the change will never be recorded and a
nonuptimal solution through B may be discovered. :

A second point concerns the lermination of the backward cost propagation of slep
2(c). Because GFAPH may comain cycles, there is no guarantee that this process will
terminate simply because it reaches the “top” of the graph. It tums out thai the process
can be guaranteed (o terminate for a different reason, though. One of the exercises at
the end of this chapter explores why.

3.5 Constraint Satisfaction

Many problems in Al can be viewed as problems of constraint satisfaction in which the
goal is to discover some problem state that satisfies a given set of constraints. Examples
of this sort of problem include cryptarithmetic puzzles (as described in Section 2.6)
and many real-world perceptual labeling problems. Design tasks can also be viewed as
constraini-satisfaction problems in which a design must be created within fixed limits
on time, cost. and matetials.

By viewing a problem as one of constraint satisfaction, it is often possihle to reduce
substantially the amount of search that is required as compared with a method that
attempts to form partial sofutions directly by choosing specific values for components
of the cventual solution. For example, a straightforward search procedure to solve o
cryptarithmetic problem might operate in a state space of partial solutionsin which fetters
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Figure 3.12: A Necessary Backward Propagation

are assigned particular numbers as their values. A depth-first control scheme could then
follow a path of assignments until either 4 solution or an inconsistency is discovered. In
contrast to this. a constraint satisfaction approach to solving this problem avoids making
puesses on particular assignments of pumbers to letters until it has to. Instead, the imitial
set of constraints, which says that each number may correspond 1o only one letter and
that the sums of the digis musi be as they are given in the problem, is first augmenied
10 include restrictions that can be inferred from the rules of anthmetic., Then, although
guessing may still be required, the number of allowable guesses is reduced and so the
degree of search is curtailed.

Constraint satisfaction is a search procedure that operates in a space of constraint
sets. The initial state contains the constraints that are uriginally given in the problem
description. A goal stareis any state that has been const rained “enough,” where “enough”
must be defined for each problem, For example, for cryplarithmet ic. enough means that
cach letter has been assigned a unigue numeric value.

Constraint satisfaction is @ two-step process, First, constraints are discovered and
propagated as far as possible throughout the system, Then, if there is still not a solution,
scarch begins. A guess about something is made and added as a new constramt.
Propagation can then occur with this new constraint, and so forth. ‘

The first step. propagation, arises from the fact that there are usuilly dependencies
among the constraints. These dependencies occur because many constraints involve
more than one object and many objects participale in miore thun one constraint. So.
for example, assume we start with one constraint. N = E + |. Then. if we added the
constraint N = 3, we could propagate thal 1o el & stronger consiraint on E. namely
that E = 2. Constraint propagation also arises from the presence of mference riles
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that allow additional constraimts 1o be inferred from the ones that are given, Constraint
propagation terminates for one of rwo reasons, First, a contradiction may be deiected.
If this happens, then there 15 no solution consistent with all the known constraints. |If
the contradiction involves oily those constraints that were given as pan of the problem
specification (as opposed 1o ones thar were guessed during problem solving), then no
solution exists, The second possible reason for termination is that the propagation has
fun out of steam and there are no further changes that can be made on the basis of current
knowledge. If this happens and a solution has not yet been adequately specified, then
scarch is necessary to get the process moving again.

At this point, the second step begins. Some hypothesis about a way to strengthen
the constraints must be made. In the case of the cryptarithmetic problem, for example.
this usually means guessing a particular value for some letter. Once this has been done,
constraint propagation can begin again from this new state. If a solution is found, it can
be reported. I still more Buesses are required, they can be made. If a contradiction is
detected. then backiracking can be used 1o iry a different guess and proceed with i1, We
can state this proecedure more precisely as follows:

Algorithm: Constraint Satistaction

1. Propagate available constraints. To do this, first set OPEN 1o the set of all objects
that must have values assigned to them in a complete solution. Then do until an
inconsistency is detected or until OPEN is emply:

(@) Select an ohject OR from OPEN . Strengthen as much as possible the ser of
consiraints that apply to OB.

(b) If this set is different from the set thar was assigned the last time OB was
examined or if this is the first time O8 has been examined, then add to OPEN
all objects that share any constraints with OB.

i¢) Remove OB from OPEN.

2. If the union of the constraints discovered above defines a solution, then quit and
repori the solution.

3. Ifthe union of the eonstraints discovered above defines a contradiction, then return
failure.

4. If neither of the above occurs, then it is necessary to make a guess at something in
order to proceed. To do this, loop until a solution is found or all possible solutions
have been eliminated:

{a) Selecr an object whose value is not et determined and select 2 way of
strengthening the constraints on that object. '

(b) Recursively invoke constraini satisfaction with the current sct of constraints
sugmented by the strengthening constraint Just selected,

This algorithm has been staied as gencrally as possible. To apply it ina particular
problem domain requires the use of two kinds of rules: rules that define the way
constraints may validly be propagated and rules that SUggest guesses when guesses are
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Problem:
SEND
+MORE
MONEY
Initial State:

No two letters have the same value.

The sums of the digits must be as shown in
" the problem

Figure 3.13: A Cryptarithmetic Problem

necessary. It is worth noting, though, that in some problem domains guessing may
not be required.  For example, the Waltz algorithm for propagating line labels in a
picture, which is described in Chapter 14, is a version of this constraint satisfaction
algorithm with the guessing step eliminated. In general, the more powerful the rules for
propagating constraints, the less need there is for guessing.

To see how this algorithm works, consider the cryptanithmetic problem shown in
Figure 3.13. The goal state is a problem state in which ail letters have been assigned a
digit in such a way that all the mitial constraints are satisfied.

The solution process proceeds in cycles. At cach cycle, two significant things are
done {corresponding to steps | and 4 of this algorithm):

I. Constraints are propagated by using rules that correspond to the properties of
arithmetic,

2. A value is guessed for some letier whose value is not yer determined.

In the first step, it does not usually matter a greal deal what order the propagation is
done in, since all available propagations will be performed before the step ends. In the
second step, though, the order in which guesses are tried may have a substantial impact
on the degree of scarch that is necessary. A few useful heuristics can help to select the
best guess 1o try first. For example, if there is a letter that has only two possible values
and anuther with six possible values, there is a better chance of guessing right on the first
than on the second. Another useful heuristic is that if there is a letter that participates
in many constraints then it is a good idea 10 prefer if 1o a letter that panicipates in a
féw. A guess on such a highly constrained leter wili usually lead quickly either to a
contradiction (if it is wrong) or to the generation of many additional constraints {if it is
right). A guess on 2 less coasirained lerter. on the other hand, provides less information.

7 The "”‘l“‘fm first few cyeles of processing this example is shown in Figure 3.14.
Since constraints nevey disappear at lower levels. only the ones being added are shown
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for each level. It will not be much harder for the problem solver 1o access the consiraints
as a set of lists than as one long list, and this approach is efficient both in tenns of storage
space and the case of backtracking. Another reasonable approach for this problem would
be 1o store all the constraints in one central database and also to record at cach node
the changes that must be undone during backtracking. C1, C2, C3, and C4 indicate the
carry bits out of the columns, numbering from the right,

Initially, rules for propagating constraints generate the following additional con-
straints:

* M= |, since two single-digit numbers plus a carry cannol total more than 19

® S=8or9, since S + M+C3>9¢togenaatel]ncarry}amlm=l.S+l+C3>
9,505 +C3 > 8 and C3 isat most |,

e O=0,since S + M(1)+ C3 (<= 1) must be at least 10 to generate a carry and it
can be at most 11. But M is already 1, so O must be 0.

e N=EorE + I, depending on the value of C2. But N cannot have the same value
asE. SON=E+landC2is .

« In order for C2 to be 1, the sum of N + R + C1 must be greater than 9, so N + R
must be greater than 8.

® N+ R cannot be greater than 18, even with a carry in, so E cannot be 9,

At this point, let us assume that no more constraints can be generated. Then, to
make progress from here, we must guess. Suppose F is assigned the value 2. (We chose
to guess a value for E because it occurs three times and thus interacts highly with the
other letlers.) Now the next cycle begins.

The constraint propagator now observes that;

e N=3.sinceN=E+ |.

® R=RBor9 since R+ N (3)+C1{lor0)=2or 12. Buisince N is already 3, the
sum of these nonnegative numbers cannol be less than 3. Thus R + 3+ (D or 1) =
12and R=8or9.

e 2+D=Yor2+D=10+Y,fromthe sum in the rightmost column.

Again, assuming no further consiraints can be generated, a guess is required. Sup-
pose C1 is chosen 1o guess a value for. If we try the value 1, then we eveniually reach
dead ends, as shown in the figure. When this happens, the process will backtrack and
wy Cl=0.

A couple of observations are worth making on this process. Notice that all that is
required of the constraint propagation rules is that they not infer spurious constraints,
They do not have to infer all legal ones. For example, we could have reasoned through
to the result that C1 equals 0. We could have done so by observing that for Cl v be
1, the following must hold: 2 + D = 10 + Y. For this to be the case, D would have 1o
be 8 or 9. But both S and R must be either 8 or 9 and three letters cannot share two
values. So Cl cannot be 1. 1f we had realized this initially, some search could have been
avoided. But since the'constraint propagation rules we used were not that sophisticated.
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Initial State | ] SEND
— +MORE

MONEY
M=I
S=80r9
O=00r1—=*=0=0
N=FEor E+1== N=E+|
Ci=1
N+R>8
E<9
/ E=2
N=13
R=8or9
24D =Y or 2+D = 10+Y
2+D=Y 24D = 10+Y
N+4R = IHE D=8+Y
R=9 D=8or9
S=8
_ \):9
Y=0 Y=1
Conflict Conflict

Figure 2.14: Selving a Cryptarithmetic Problem
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it took some search. Whether the search route takes more or less actual time than docs
the constraint propagation route depends on how long it takes to perform the reasoning
reqeired for constraint propagation.

A second thing to notice is that there are often two kinds of constraints. The
first kind are simple; (hey just list possible values for a single object. The second
kind are more complex; they describe relationships between or among objects. Both
kinds of constrainis play the same role in the constraint satisfaction process, and in the
cryplarithmetic example they were treated identically. For some problems, however, it
may be useful to represent the two kinds of constraints diffcrently. The simple, value-
listing constraints are always dynamic, and 50 must always be represented explicitly
in each problem state, The more complicated, relationship-expressing constraints are
dynamic in the cryptarithmetic domain since they are different for cach cryptarithmetic
problem. But in many other domains they are static. For example, in the Waltz line
labeling algorithm, the only binary constraints arise from the nature of the physical
wvorld, in which surfaces can meet in only a fixed number of possible ways, These
ways are the same for all pictures that that algorithm may see. Whenever the binary
constraints are static, it may be computationally efficient not to represent them explicitly
in the state description but rather to encode them in the algorithm directly. When this is
done, the only things that get propagated arc possible values. But the essential algorithm
15 the same in both cases.

So far, we have described a fairly simple algorithm for constraint satisfaction in
which chronological backiracking is used when guessing leads to an inconsistent set of
constraints. An alternative is to use a more sophisticated scheme in which the specific
cause of the inconsistency 15 identified and only constgaints that depend on that culprit
are undone. Others, even though they may have been generated after the culprit, are
left alone if they are independent of the problem and its cause. This approach is called
dependency-directed backtracking (DDB), It is described in detail in Section 7.5.1.

3.6 Means-Ends Analysis

So far, we have presented a collection of search strategics that can reason cither forward
or backward, but for a given problem, one direction or the other must be chosen, Often.
however, a mixture of the two directions is appropriate. Such a mixed strategy would
make it possible to solve the major parts of a problem first and then g0 back and solve
the small problems that arise in “gluing™ the big pieces logether. A technigue known as
means-ends analysis allows us 1o do that.

The means-ends analysis process centers around the detection of differences between
the current state and the goal state. Once such a difference is isolated. un operator that
can reduce the difference must be found. But perhaps that operator cannot be applied
to the current state. So we set up a subproblem of getting to a statc in which 1t can
be applied. The kind of backward chaining in which operatars are selected and then
subgoals are set up to establish the preconditions of the operators is called operaror
subgoaling. But maybe the operator does not produce exactly the goal state we want,
fhen we have a second subproblem of getting from the state it does produce (0 the
goal. Bul if the difference was chosen correctly and if the operator is really effective
at reducing the difference then the two subproblems should he easicr 10 solve than the
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Operator Precondiftons Nesults
FUSH(oby, loc) at(robot, obj) A at(obj, loc) A
large(obj) A at{robot, loc?
clear(obi) A
anmempty
CARRY(obj, loc) at(robot, obj) A atiob), loc) A
small(obj) at{robot, loc)
WALK(loc) none at(robot, loc)
PICKUP{obj) ai(robot, obj) holding(ob))
PUTDOWN(obj) holding(obj) = holding(ob))
PLACE(objl, obj2) at{robot. 0bj2) A on(objl, obj2)

holdinglobj!)
Figure 3.15: The Robot's Operators

eriginal problem. The means-ends analysis process can then be applied recursively. In
order to focus the system'’s altention on the big problems first, the differences can be
assigned priority levels Differences of higher priority can then be considered before
lower priority ones. ,

The first Al program 1o exploit means-ends analysis was the General Problem Solver
(GPS) [Newell and Simon, 1963: Ernst and Newell, 1969]. Irs design was motivated by
the observation that people often use this technique when they solve problems. But GPS
provides a good example of the fuzziness of the boundary between building programs
that simulate what people do and building programs that simply solve a problem any
way they can.

Just like the ather problem-solving techniques we have discussed, means-ends anal
ysis relies on a set of rules that can transform one problem state ito anot her. These rules
are usually not represented with complete state descriptions on cach side. Instead, they
are represented as a left side that describes the conditions that must be me1 for the rule
1o be applicable (these conditions arc culled the rule’s preconditions) and a right side
that describes those aspects of the problem state that will be changed by the appiication
of the rule. A separate data structure called a difference rable indexes the rules by the
differences that they can be used 1o reduce.

Consider a simple household robot domain. The available operators are shown in
Figure 3.15, along with their preconditions and results. Figure 3.16 shows the difference
table that describes when each of the operators is appropriate. Notice that sometimes
there may be more than one operator that can reduce a given difference and that a given
operalor may be able 1o reduce more than one difference.

Suppose that the robot in this domain were given the problem of moving a desk with
two things on it from one room to another. The objects on 1op must also be moved. The
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Push [ Carry | Walk | Pickup | Putdown | Placc |
Maove object * - |
Move robot . S —
Clear object .
Get object on object B
Get arm empry * #
Be holding object P ' T p——

Figure 3,16: A Difference Table

A B C D

]

Push
Star Goal

Figure 3.17: The Progress of the Mcans-Ends Analysis Method

main difference between the start state and the goal state would be the location of the
desk. To reduce this difference, either PUSH or CARRY could be chosen. If CARRY
is chosen first, its preconditions must be met. This results in two more differences that
must be reduced: the location of the robot and the size of the desk, The location of the
robot can be handled_by applying WALK, but there are no operators than can change
the size of an object (since we did not include SAW-APART). So this path leads to a
dead-end. Following the other branch, we attemps 1o apply PUSH. Figurc 3.17 shows
the problem solver's progress at this point. It has found a way of doing something
useful. But it is not yet in a position to do that thing. And the thing does not get it quite
1o the goal state. So now the differences between A and B and between C and D must
be reduced.

PUSH has four preconditions, two of which produce differences between the start
and the goal statcs: the robot must be at the desk, and the desk must be clear. Since
the desk is already large, and the robot's arm is empty. those two preconditions can be
ignored. The robot can be brought to the correct location by using WALK. And the
surface of the desk can be cleared by 1wo uses of PICKUP. But after one PICKUP,
an attempt to do the second results in anoiher difference—the arm must be empty,
PUTDOWN can be used to reduce that difference.

Once PUSH is performed, the problem state is ciose to the goal state, but not quite.
The objects must be placed back on the desk. PLACE will pul them there. But it cannot
be applied immediately. Another difference must be eliminated, since the robot must
be holding the objects. The progress of the problem solver at this poini is shown in
Figure 3.18.

The final difference between C and E can be reduced by using WALK 1o get the
robot back 10 the objecis, followed by PICK UP and CARRY.

The process we have just illustrated (which we call MEA for short) can be summa-
rized as follows:
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A B c E D
| | 1 | - - l ' {
l?l‘il Pick np]Pm down I Pick up | Put dawn | Push ! Place

Start Goal

Figure 3.18: More Progress of the Means-Fnds Method

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

1. Compare CURRENT to GOAL. If there are no differences between them then
returm.

2. Otherwise, select the most important difference and reduce it by doing the foi-
lowing until success or failure is signaled:

(a) Select an as yet untried operator O that is applicable to the current difference.
If there are no such operators, then signal failure.

(b) Attempt 10 apply O 10 CURRENT. Generate descriptions of two slates:
O-START. a state in which O’s preconditions are sausfied and O-RESULT,
the state that would result if O were applied in O-START.

(cy If
(FIRST-PART «— MEA(CURRENT. O-START))
and
(LAST-PART « MEA(O-RESULT, GOAL))
are successful, then signal success and return the result of concatenating
FIRST-PART, O, and LAST-PART.

Many of the details of this process have been omitted in this discussion. In particular,
the order in which differences are considered can be critical It is important that
significant differences be reduced before less critical ones. If this is not done, a great
dea! of effurt may be wasted on situations that take care of themselves once the main
parts of the problem are solved.

The simple process we have described is usually not adequate for solving complex
problemis, The number of permutations of differences may get 100 large. Working on
one difference may interfere with the pian for reducing another,, And in complex worlds.
the required difference tables would be immense. in Chapter 13 we look ai some ways
in which the basic means-ends analysis approach can be extended 1o tackle some of
these problems.

3.7 Summary

In Chapter 2. we listed four steps that musi be taken (o design 2 program to solve an Al
problem. The first two steps were,

1. Define the problem precisely. Speci(y the problem space. the operators for moving
within the space, and the starting and goal state(s).
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2. Analyze the problem to determine where it falls with FESpect 1o seven imponant
issues,

The other two Sleps were 10 isolate and represent the task knowledge required, and 1o
choose problem solving techniques and apply them to the problem. In this chapter, we
began our discussion of the last step of this process by presenting some general- purpose,
problem-solving methods, There sre several impartant ways in which these algorithms
differ, including:

. ® What the staies in the search Space(s) represent. Sometimes the states represent
complete potential solutions (as in hill climbing).  Sometimes they represent
solutions that are partially specified (as in constraint satisfaction),

* How, at each stage of the search process. a state is selected for Expansion.

¢ How operators 10 be applied 1o that node are selected.

¢ Whether an optimal solution can be guaranteed.

® Whether a given state may end up being considered more than once.

* How many state descriptions must be maintained throughout the search process,
* Under what circumstances should a particular search path be abandoned.

In the chapters that follow, we 1alk about ways that knowledge about task domains
can be encoded in problem-solving programy and we discuss techniques for combip-
ing problem-solving techniques with knowledge 1o solve several important classes of

3.8 Exercises

I When would best-first search be worse than simple breadth-firsi search?

k2

- Suppose we have a problem that we intend 16 solve using a heunsiic besi-firsy
search procedure. We need 1o decide whether to implement if as 4 tree search or
as a graph search. Suppose thut we know that. on the average, each distinet node
will be generated N times during the search process. We also know that if we use
a graph, it will take, on the average. the same amount of time 1o check a node 1o
see if it has already been generated as it takes to process M nodes 1 no checking
1s done. How can we decide whether 10 use 4 tree of a graph? In addition to the
parameters N and M, what other assumptions must be made?

k8 Consider trying to solve the 8-puzzle using hill climbing. Can you find a heuristic
function that makes this work? Make sure it works on the following example:

Start Goal
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4. Describe the behavior of a revised version of the steepest ascenl hll chimbing
algorithm in which step 2(c) is replaced by “set current state to best successor.”

5. Suppose that the first step of the operation of the best-first search algorithm results
in the following situation (@ + b means that the value of & at a node is @ and the
value of g is b):

E {4+1) (3+1)

D] (442)

{2) What node will be expanded at the nexi step?
(b) Can we guarantee that the best solution will be found?

6. Why must the A* aigorithm work properly on graphs containing cycles? Cycies
could be prevented if when & new path is generated 1o an existing node, that path
were simply thrown away if it is no better than the existing recorded one. If
¢ 1s nonnegarive, a cyclic path can never be better than the same path with the
cycle omitted. For example, consider the first graph shown below, in which the
nodes were generated in alphabetical order. The fact that node D is a successor
of node F could simply not be recorded since the path through node F is longe:
than the one through node B. This same reasoning would also prevent us fron
recording node E as a successor of node F. if such was the case. But what would
happen in the situation shown in the second graph below if the path from node G
1o node F were not recorded and, at the nexi siep, it were discovered that node G
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is a successor of node C?

7. Formalize the Graceful Decay of Admissibility Corol lary and prove that it is irue

of the A* algorithm.

- In step 2(a) of the AO* algorithm, a random state at the end of the current best

path is chosen for expansion. But there are heuristics that can be used to influence
this choice. For example, it may make sense to choose the state whose current
cost estimate is the lowest. The argument for this is that for such nodes, only a
few steps are required before cither a solution is found or a revised cost estimate
is produced. With nodes whose current cost estimate is large, on the other hand,
many steps may be required before any new information is obtained. How would
the algorithm have 1o be changed to implement this state-selection heuristic?

- The backward cusi propagation step 2(c) of the AO* algonthmmust be guaranteed

1o terminate even on graphs containing cycles. How can we guarantee that it docs?
To help answer this question, consider w hat happens for the following two graphs,
assuming in each case that node F is expanded next and that its only successor
is A:
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10.

13.

Also consider what happens in the following graph if the cost of node Cischange:
ol

©)-

(5)

The AO* algorithm, in step 2(c)i, requires that a node with no descendants in § be
selected from S, if possible. How should the manipu.ation of § be implemented so
that such a node can be chosen cfficiently? Make sure that your technigue works
correctly on the following graph, if the cost of node E is changed:

_ Consider again the AO* algorithm. Under what circumstances will it happen that

there are nodes in § but there are no nodes in § that have no descendants also in 57

 “Trace the constraim satisfaction procedure solving the following cryptarithmetic

problem:

CROSS
+ROADS

OANGER

The constraint satisfaction procedure we have described performs depth-first
scarch whenever some kind of search is necessary. But depth-first is not the
only way to conduct such a search ( aithough it is perhaps the simplest).

{a) Rewrite the constraint sutisfaction procedure to usc breadth-first search,

{b) Rewrite the constraint satisfaction procedure to use best-first search.

. Show how means-ends analysis could be used to solve the problem of getting

from one place 1o anothcr. Assume that the available operators arc walk, drive,
take the bus, lake a cab, and fiy.



