
Part II

Knowledge Representation

Chapter 4

Knowledge Representation
Issues

In Chapter 1, we discussed the role that knowledge plays in Al systems In suc-
ceeding chapters up until now, though, we have paid little attention to knowledge and
it% importance as we instead focused on basic frameworks for building search-based
problem-solving pmgrants. These methods are sufficiently general that we have been
able to discuss them without reference to how the knowledge they need is to be rep-
resented. For example, in discussing the best-first search algorithm, we hid all the
references to domain -specitic knowledge in the generation of succes.sors and the corn-
putation of the h' function. Although these methods are useful and form the skeleton
of many of the methods we are about to discuss, their problem-solving power Is limited

prcciet> because of their generality. As we look in more detail at ways of representing
knowledge, it becomes clear that particular knowledge representation models allow for
more specific. more powerful prohlemcolvingifleChafliSms that operate on them. In this
part of the book, we return to the topic of knowledge and examine specific techniques
that can be used for representing and manipulating knowledge within programs.

4.1 Rtpresentations and Mappings

lii LPi(1Ct in solve the complex problems encountered in artificial intelligence, one needs
both a large amount of knowledge and some mechanisms for manipulating that knowl-
edge to create solutions to new problems. A variety of ways of representing knowledge
(facts) have been exploited in Al programs. But before we can talk about them in-
divtdual!y, we must consider the following point that pertains in all discussions of
representation, namely that we are dealing with two different kinds of entities:

• Facts: truths in some relevant world These ace the things we want to represent.

• Representations of facts in some chosen formalism. 'fliesc are the things we will

actually be able to manipulate.

Oneway to think of structuring Ibese entities is as two levels:

106	 CHAPTER 4. KNOWLEDGE REPRESENTATION Is$uEs

Reasoning

Facts	 Internal	
programs

scntat ions

English	 Lnehsh
unders.anding	 generation

English
Representation

Figure 41: Mappings between Facts and Representations

• The knowledge level, at which facts (including each agent's behavi(-,r. and cuiient
goals) are described,

• The symbol level, at which representations of objects at the knowledge level are
defined in terms of symbols that can be manipulated by programs

See Newell 119921 for a detailed exposition of this view in the context of agents
and their goals nd behaviors. In the rest of our discussion here, we will follow a
model more like the one shown in Figure 4.1. Rather than thinking of one level on top
of another, we will focus on facts, on replesentations, and on the two-way mappings
that must exist between them. We will call these links Pepresénlat ion mappings. Theforward representatioc i mapping maps I'rorn facts to representations. The backward
representation mapping goes the other way, from representations to facts.

One representation of facts is so common that it deserves special mention: natural
language (particularly English) sentences. Regardless of the representation for facts that
we use in a program, we may also need to be concerned with an English representation
Of those facts in order to facilitate getting information into and out of the system. In thiscase, we IlluLil also hose mapping funLuoriM from Friglish sentences to the rt'pl-eenrauor
we are actually going to use arid fruits it hack to sentences. Figure

4 1 shows huw ihesc
three kinds of objects relate to each other

Let's look at a simple example using mathematical logic as the representational
formalism. Consider the English sentence-

Spot is a dog.

The fact represented by that English sentence can also be represented in logic as-

dog(Spot)

Suppose that we also have a logical representation of the fact that all dogs have tails:

dog(x) -# #tasfai!(x)

4.1 REPRFSF:WTATJONS AND M.4PPINGS	 107

Then, using the deductive mechanisms of logic, we may generate the new representation

object:

hnsiail(S pal)

Using an Appropriate backward mapping function, we could Ilicti generate the En-

glish setiteflCe

Spot has a tail.

Or we could make use of this representation of a new fact to cause us to take some
appropriate action or to derive representations of additional lads.

it is important to keep in mind that usually the available mapping functions we not
one-to-one. In fact, they are often not even functions but rather many . to-man y relations.
(in other words, each object in the domain may map to several elements in the range,
and several elements in the domain may map to the same element of the lange.) This
is particularly true of the mappings involving English representations 01 facts Fat
example, the two sentences "All dogs have tails" and "Every dog has a tail" could both
represent the same fact, namely that every dog has at least one tail. On the other hand,
the former could represent either the tact that every dog has at least onc tad or the fact
that each dog has several tails. The latter may irprexelit either the fact that every dug
has at least one tail or the fact that there is a tail that every dog has. As we will see
shortly, when we try to convert English sentences into some other representation. such

as logical propositions. we most first decide what facts the sentences represent and then

conveit those facts into th e ness representatioii.
The started links of Figure 4.1 are key components of the design of ari knowledge-

based program. To see why, we nird to undei stand the role that the internal representa-
tion of a fact plays in a program. What an Al program does is to manipulate the internal

representations of the facts it is given. This manipulation should result in new structures
that can also be interpreted as internal representations of facts. More pmecisdy. these
structures should be the internal representations of facts that correspond to the answer
its 	 problem described by the staiting set of facts.

Sonmetines, a good representation macs the operation of a reasoning program not
oiilv correct but trivial. A well-known example of this occurs in the context of the
mutilated checkerboard problem, which can be stated as follows.

The Mutilated Checkerboard Problem. Consider a normal checker board

from which two squares. in opposite corners, have been removed. The task
is to coser all the remaining squares exactly with dimiiimnoes, each of which
covers two squares. No overlapping. either of dominoes on top of each
other or of dominoes over the boundary of the mutilated board are allowed.

Can this task be done?

One way to solve this problem is to try to enumerate, exhaustively, all possible tiling,
to see if one works. But suppose one wants to be more clever. Figure 4.2 shows three

ways in which the mutilated checkerboard could be represented (to a person). The first

108	 CHAPTER 4. KNOWlFf(;j REPRESE,VT.4TION ISSUES

•••NNNNR	 a • . a NN.s.a...	 N U N U
a a • .UN......	 N N U UNUNUNNU.	 a a a. aElmU N N Na • a •UN.....	 • U U U

a)	
(h)	 I

Figure 4.2: Ubree Representations of a Mutilated Checkerboard

representation does not duecty suggest the answer to the problem. The second may:
the third does, when ,comhined with the single additional fact that each domino must
Covei exactly One white square and one black square.. Even for human problem solvers a
representation shift may rriale an enormous dttkrcncv in problem-solvirigeffectivcnes.,
Recall that we saw a slightly less dramatic version of this phenomenon with respect to a
problem solving program in Section 1.3.1. where we considered two different ways of
representing a he-tue-toe board, one of which was as a magic square

Figure 4.3 shows an expanded view of the starred part of Figure 4.1. The dotted
line across the top ropresents the abstract reasoning process that a program is intended
to model The solid line across the bc,ttoni repre.ents the concrete reasoning process
that a particular pro g ram pr:rtozrns. This program successfully models the abstract
process to the extent that, when the backward representation [napping is applied it)
the program's output, the appropriate final facts are actually generated. If either the
program's operation or one of the representation mappings is not faithful to the problem
that is being modeled, then true final facts will probably riot b the desired ones. The
key role that is played by the nature of the representation mapping is apparent from this
tgur. tf oo good toappitig '.n he defined for a problem, then no matter how good the
program to solve the problem is, it will nor be able to po .1 uce answers that correspondiii real aii 'wu.'rs to the robtera

It is i nteresnng,. to note that Figure 4.3 looks very much like the sort of figure that
might appear in a general programming hook as a description of the relationchipbetweeii
an abstract data type (such as a set) and a concrete implementation of that type (e.g
as a linked list of elements). There are some differences, though, between this figure
and the formulation usually used in programming texts (such as Aho et gil. [1983]). For
example, in data type design it is expected that the mapping that we are calling the
hackwaid iepresemaninn mapping is a function n e., every representation corresponds
to only one fact) and that it is onto (i.e., there is at least one representation for every
fact). Unfortunately, in many Al domains, It may not be possible (0 come up with such
a representation mapping, and we may have to live with one that gives less ideal results
But the main idea ol what we are doing is the same as what programmers always di),
namely to find concrete implementations of abstract concept',

42 APPROACHES r() KNt 'wLJDGE REPRESiMAI1ON	
I 09

.t rOflilig Final
Initial L_ - - - -- - - - - ' ficis
facts	 I	 I

forward	 backward
*	 epreseniation	 r.,presentation	 *

mapping	 niappitig

Inicrnal	 tiiierital
tattoo

Of initial facts

	

	 of filial tacN
iogJam

Figure 4.3: Representation of l-au1

4.2 Approaches to Knowledge Representation

A good system fur the representation of knowledge in a parttculaidOlflatfl should possess

the follow iou four propcll ics:

Representational Acqudcy —the ability tO r ewtiI all of the kinds of knowledge that

are needed in that domain

lnfieui ial Ailequecy— -lie ability 10 manipulate the representational structures in such

a way as to derive new structures corresponding to new knowledge inferred from

old

Inferential fflcieoL'y--th 'ability to incorporate into the knowledge structure addi-
tional information that can be used to focus the attention of the inference incch-

ntsms in the most promising djresjiofls.

sitioflal EthcienY—the ability to acquire newAcqui inlormatlon easily. The simplest

case involves direct insertion, by a peisoti. of new knowledge into the database
Ideally. the program itself would be able to control knowledge acquisition

Unfortunately. no single zv%tern that optimuiCS all of the capabilities for all kinds
of knowledge has yet been found. As a result, multiple techniques for knowledge

representatloit exist. Many programs IClV ott more than one technique. in the chapters

that follow, the most important of these techniques are described in detail. But iii this
sect ion. we provide a .sinipk. example-based introduction to the important ideas.

Simple Relational Knowledge

The simplr'.t way to represent declarative facts is as a set of relations of the same sort
used in database systems. Figure 4.4 shows an example of such a relational system.

110	 CHAPTER 4. KNOWLEDGE REPRESENTATION

L Player - height jjghr Bats-Thiuw
Hank Aaron 1öI 1 s fTght-Right

iiiiuie Mays r5 10	 170	 Right-Right

Figure 4.4: Simple Relational Knowledge

The Jeasun that this representation is simple is that standing alone it provides very weak
nterentiat capabilities But knowledge represented in this form may serve as the input

to more powerful inference engines. For example, given just the facts of Figure 4.4, it
is not possible even tu answer the simple question, "Who is the heaviest player?" But
if a procedure for f inding the heaviest player is provided, then these facts will enable
the procedure to Compute an answer. If, instead, we are provided with a set of rules
for deciding which hitter to put up against a given pitcher (based on right- and left-
handedness, sa y), then this same relation can provide at least sense of the information
required by those rules.

Providing support for relational knowledge is what database systems are designed
to do. Thus we donut need to discuss this kind of knowledge representation structure
further here. The practical issues that arise in linking a database system that provides
this kind ol support tria kiinwledgc representation scteni that provides some of the other
capabilities that we are about to discuss have already been solved in several commercial
products

Inheritable Knowledge

The retatiinii knowledge tf F'rgure 4,.1 C i-responds to a set or a c tributcs and associated
values that together describe the objects of the knowledge base. Knowledge about
objects, their attributes, and their values need not be as simple as that shown in our
example. In particular, it is	 .hle to augment the basic repre sentation with iiifeueiie
mechanisms that operate on the structure of the representation. For this to be effective,
the structure must be designed to correspoiid to the inference roechanisnis that are
desired. One of the most useful boos of inference is property i,ther,ance, in which
elemenis of specific classes inherit attributes and values from More gcnerl classes in
which they are included.

In order to s upport property inherita,uce, objects must be organizeti into cla.sse
and classes must be arranged in a generalization hierarchy. Figure 4.5 shows some
additional baseball knowledge inserted into a Structure that is so arranged. Lines
represent aitnhutes. Boxed nodes teprescrit ohrcts and values of attributes of objects
f'hst v etlues can also he viesed as objects with atirihutcs and values, and so on.
The arrows on the lines point from an object to its value along the Corresponding
attribute tine. The structure shown in the hpure is a .sI!-ad-filler structure. Ti may
also be called a scrnuafle network or a collection of Jrcune.c. In the latter case each
individual trame represents the collection of attributes and values associated with a
panicular nude. Fiurc 4,6 shows the node for haseh:ull player displayed as a fesme

42. APPROAC!115 TO KNOWLEDGE REPRESENTAI1ON
	

IF

equal to	 huL
4

handed

Per conJ—	fRii'ht

;

handed

duitX1a,'e	 hx1gh

mi

Ba.cehall-
P!avem

_.i.__nulEite

1
hatnmig-aim Q,i

7Ficldci inslancr

t	 141am

height

106

iI,,iOiiS e

Chic ii ^B lo('mihi I

.262

Pee - We(- F-	 Ri om(.'i -

Re 'e	 Vod'i .

F'iitire 4S ltilieiitahle Knowledge

Do not be put oil by the confusion in terminology here. There is so much flexibility
in the way that lhk and the other structures described in this section) callbe used 10

solve particular representation pronicms that it is difficult to reserve precise words for

paitiiului re1,resentalinns. (suafly the use of the term ,urtre vs/i'm implies somewhat

more structure on the attributes rind the irifeienmr mechanisms that arc available to appt,

to them than does the term .cernunni neni-ciiC
In Chapter 9 se discuss structures such as these in suhsianui.il detail But to get

dii idea of how these structures support inference using the knowledge they eontaiii
vc discuss then' brief) , here. All of the objects and most of the attribute, shown in
this example have been chosen to correspond to the baseball domain, and they have no
general sieniticisrice. The two excptions in this are the attribute isa, wInch '

ued to -Jitm class inclusion, and the attribute siotauc e. which i- being used to show
CitiSS membership. These Iwo specific .and generall y misctuh attributes provide the bmisi"
for propeny i nhenitant-e as an inference echnique Using this te&-liiique. the knowledge
h-.Lse can support reo-.--.a both of tiiIs that have been exolicitiv :iored md of facts that
can he derived Irom those that	 t"Itiy stiiicsj

An idealized form ot the properis irthe,itan - . inithni can he tated	 botlows

H2
	

Ch-AP? ;b' 4 kNOWLEDGE RFFRkSt.d ATk'N Il'FS

Baseball-Player
isa:	 Adult-Male
bars:	 (EQUAL handed)
/ieiht:	 6-1
batting-average:	 .252

Figute 4.6: Viewing a Node as a Frame

Algorithm: Property Inheritance

To retrieve a value I,' for attribute A of an instance object 0:

I. Find 0 in the knowledge base.

2. If there is a value there for the attribute A, report that value

3. Otherwise, see if there is a value for the attribute instance. If not, then fail.

4. Otherwise, move to the node corresponding to that value and look for a value for
the atirihuteA. If one is found, report it.

5. Otherwise, do until there is no value for the isa attribute or until an answer is
found:

(a) (let the value of the isa attribute and move to that node.

(b) See if there is value for the attribute A. If there is, repori it.

This procedure is simplistic. It does not say what we should do if there is more
than one value of the instance or isa attribute. But it does describe the basic mechanisni
of inheritance. We can apply this procedure to our example knowledge base to derive
answers to the following queries:

• ieam(Pee-Wee-Reese) = Bra yn-fladgers. This attribute had a value stored
explicitly in the knowledge base.

• batting -areragc(Three- F,ngrr-firown) = .106. Since there is no value for batting
average stored explicitly for Three Finger Brown, we follow the instance attribute
to Pitcher and extract the value stored there. Now we observe one (if the critk.aI
characteristics of piciperty inheritance, namely that it may produce default values
that are not guaranteed to be correct but th. represent 'best guesses" in the face
of a lack of more precise information. In fact, in 1906. Brown's batting average
was .204.

• heighf(Pee-Wee'Reese) = 6-1. This represents another detault inference. Notice
here that because we get to it first, the more specific tact about the height of
baseball players nverrides a more general fact about the height of adult males.

4.2 APPROACHES TO KNOWLEDGE REPRESENTAIION 	 113

Yx: Sall(x) A F!y(x) A Fair(x} A Infield-Caicha1e (x) A

(? tjpied-Base(FirSt) A O1cupied-IaseeCOnd) A (Outs < 2) A
Linc-Drive(.sl V Attempted-Ri (x)j

—i IrifzId-Flv(x)

Vs. s : Hatter(s) A boru'd(x, y) A Infield-Ftv(y) —* Ow(r)

Figure 4.7 Inferent i al Knowledge

• bats(Thr -I'inger-B'owr) =Right. To get a value for the attribute bats required

going up the isa hierarchy to the class Baseball -Pla)er. But what we found there

was not a value but a rule for toniptiting a value. This nile required another value

(that fot htArided) as input. So the entire process must be begun again recursively

to find a value for handed. This time, it is necessary to go all the way up to Person
to discover that the default value for handedness for people is Right. Now the rule

for hats can be applied, producing the result Right. in this case, that turns out to he

wrong, since Brown is a smitch hitter (i.e.. he cait hit both left and right-handed L

Inferential Knowledge

Property inheritance is a powerful form of inference, but it is not the only useful form.

Sometimes an the power of traditional logic tand sometimes even more than that) is
necessary to describe the inferences that are needed. Figure 4.7 shows two examples of
the use of first-order predicate logic to represent additional knowledge about baseball.

Of couise, this knowledge is useless unless there is also an inference procedure
that can exploit it (just as the default knowledge in the previous example would have
been useless without our algorithm tor moving thugh the knowledge structure). The
required inference procedure now is one that implements the standard logical rules of
inference There arc many such procedures, some of which reason forward from given
facts toconclusions, others of which mason backward from desired conclusions to given

facts. One of the nioSi commonly used of these procedures isirsoliataon, which exploits

a proof by contradiction strategy. Resolution is described in detail in Chapter 5.
Recall that we hinted at the need for something besides stored primitive values with

the /.as attribute of our previous example. Logic provides a powerful structure in which
to describe relationships among values. It is often useful to combine this, or sortie other
powerful description language, with an isa hierarchy. In general, in tact, all of the

techniques we are describing here should not be regarded as complete and incompatible
ways of representing knowledge. Instead, they should be viewed as building blocks of
a complete representational systen

Procedural Knowledge

So far, our examples of baseball knowledge have concentrated on relatively static
declarative facts But another, equally useful, kind of knowledge is operaiional. o-

procedural knowledge, that spemI— what !O do wiiev Focedural knowledge an he

114	 :HAJ'TFg .1 KNOV LiY;F RF:PR/Iv74rFi,s';.S.)Es

Ikisehaji . P/a ver
1.50	 Adult-Male

rIaxnbda (x)
(ping ()

I-I
cond ({caddr x) (retuni (raddr x)))

It (etq x (eva! (cadr x)))
(cond (x (go Li))

height:	 6-I	
U (return nil)))))))

l)UtIlPIg-ai'e; -uge: 	 .252

Figure 4.8: Using LISP Code to Define a Value

represented in programs in many ways. The most common way is simply as code (in
some programming language such as LISP) for doing something. The machine uses
the knowledge when It executes the code to perform a task. Unfortunately, this way
of representing procedural knowledge gets low scores with respect to the properties
of inferential adequacy (because it is very difficult to write a program that can reason
about another programs behavior) and acquisitional efficiency (because the process of
updating and debugging large pieces of code becomes unwieldy).

As an extreme example, compare the representation of the way to compute the value
of hats shown in Figure 4.6 to one in LISP shown in Figure 4.8. Although the LISP
one will work given a particular way of storing attributes and values in a list, it does not
lend itself to being reasoned about in the Sante straightforward way as the representation
of Figure 4.6 does. The LISP representation is slightly more powerful since it makes
explicit use of the name of the node whose value for handed is to be found. But if this
matters, the simpler representation can be augmented to do this as well.

Because ofihvi dtfhcu!ty to reasoning with LISP, attempts have been made to Find
other ways of representing procedural knowledge so that it can relatively easil y be
manipulated both by other programs and by people.

The most commonly used technique for representing pRedural knowledge in Al
Programs is the use of production rules. Figure 4.9 shows 4ri example of a production
rule that represents a piece of operational knowledge typically possessed by a baseball
player.

E'rodttction rules, particularly ones that are augmented with information on how they
are to be used, are more procedural than are the other representation methods discussed
in this chapter. But making a clean distinction between declarative and procedural
knowledge is difficult. Although at an intuitive level such a distinction makes some
sense, at a formal level it disappears as discussed in Section 6 I In fact,as you can see,
the structure of the declarative knowledge of Figure 4.7 is not substantially different
mm that of the operational knowledge of Figure 4.9. The important difference is in
i	 rite knowledge is used by the procedures that manipulate it.

4.3. ISSUES IN KNOWLEL)GE RIPRFSENTATION	 1 1-5

Ii	 ninth inning, and
score is close, and
less than 2 outs, and
first base is vacant, and
hatter is better hitter than next hatter.

'['hen.	 walk the hatter.

Figure 4.9: Procedural Knowledge na Rules

4.3 Issues in Knowledge Representation

Before embarking on a discussion of specific mcchsnisms that have been used to rep
resent various kinds of real world knowledge, we need briefly to discuss several issues
that cut across all of them

• Are any attributes of objects so basic that they occur in almost every problem
domain? If there are, we need to make sure that they are handled appropriately in
each of the IneL-hanisms we propose. If such attributes exist, what are they?

• Are there any important relationships that exist among attributes of objects?

• At what level should knowledge be represented? Is there a good set of priinirites
nil) which all knowledgecan be broken down? Is it helpful louse such primitives?

• How should sets of objects be represented?

• Given a large amount
of

knowledge stored in a database, how can relevant pans
be accessed when they arc needed?

We will talk about each 01 the.e questions briefly in the next five sections.

431 Important Attributes

There are t6o attrihu:es that are of very general significance, and we have sready seen
their use: i,oiunie and j .wi. These attributes we uinpoitant because they support property
inheritance. They are called a varier of things in Al systems. but the names do not
matter. What does matter is that they represent class membership and class inclusion
and that class inclusion Is transitive. In slot-and-tiller systems. such a those described
in Chapters 9 and ID. these attributes are usually represented explicitly in a way much
like that shown in Figures 4.5 and 4.6. In logic-based systems, these relationships may
be represented this way or they may be represented implicitly by a set of predicates
ulescrihiuig particular classes. See Section 5.2 for soitie examples oi this.

4.3.2 Relationships among Attributes

The attributes that we use to describe objects are themselves eni:lies that we represeui.
What properties do they have independent of the -pe'itic knowlcdpc they encode. Therc
.re four such properties that dese...e mention here

I	 .'',tT	 5 K. J"cl.h'!)GZRF: '.,.'F\'T .; ..

'Inverses

Existence in an isa hierarchy

• Techniques for reasoning about values

• Single-valued attributes

Inverses

Entities iii the world are rejated to each other in many different ways. But as 5001 as we
decide to describe those relationships as attributes, wconiniiI to a perspective in which
we focus on one object and look for binary relationships between it and others. Attributes
are those relationships. So, for example, in Figure 4.5, we used the attributes instance,
rsa, and team. Each of these was shown in the figure with a directed anow, originating
at the object that was being described and terminating at the object representing the
value of the specified attribute. But we could equally well have focused on the object
representing the value. If we do that, then there is still a relationship betwecu the two
entities, although it is a different one since the original relationship was not symmetric
(although some relationships, such as sibling, are). In many cases, it is important to
represent this other view of relationships. There are two good ways to do this.

The first is to represent both relationships in a single representation that ignores
focus. Logical representations are usually interpreted as doing this. For example, the
assertion:

zeam(Pee- Wee .Reese. Brooklyn-Dodgers)

can equally easily be interpreted as a statement about Pee Wee Reese or about he
Brooklyn Dodgers. How it is actually used depends on the other assertions that a system
contains.

The second approach is to use attributes that focus on a single entity but to use them
in pairs, one the inverse of the other. In this approach, we would represent the team
information with Iwo attributes:

• one associated with Pee Wee Reese:

ream = Brooklyn-Dodgers

• one associated with Brooklyn Dodgers:

team-members Pee-Wee-Reese,...

This is the approach that is taken in semantic net and frarrie-based systems. Wli&-ii
it is used, it is usually accompanied by a knowledge acquisition tool that guarantees the
consistency of inverse slots by forcing them to be declared and then checking each tinm
a value is added to one attribute that the corresponding value is added to the inverse

43. 1,3S(/ES iN KNOWLEDGE Rt,PRESFNFATION 	
17

An isa Hierarchy of Attributes

Just asthere are classes of objects and specialiaed subsets of those classes. there arc
attributes and specializations of attributes. Consider, for example, the attribute height.
It is actually a specialization of the more general attribute physical-sire which is, in

turn, a specialization of Physical attribute. These generalization-specialization rela-

tionships am important for attributes for the same reason that they are important for

other concepts .-they support inheritance. In the case of attributes. they support inherit
lag information about such things as constraints on the values that the attribute can have
and mechanisms for computing hn'e vatue

Techniques for Reasoning about Values

Sometimes values of attributes are specified expl idtly when a knowledge b.se is created.
We saw several exaiiipks of unit in the baseball example of Figure 4.5. But often the
reasoning system must reason about values it has not been given explicitly. Scveial
kinds of information can play a role in this reasoning. including:

• Information about the type of the value. For example., the value of height must be
a number measured in a unit of length.

• Constraints on the value, often stated in terms of related entitles. For example. the
age of a person cannot be greater than the age of either of that person's parents

• Rules for computing the value when it is needed. We showed an example of such

a rule in Figure 4.5 for the bats attribute. These rules are called backward rules.

Such rules have also been called if-needed rule'..

• Rules that describe actions that should be taken if a value ever becomes known

• Fhese rules are called forward rules, or sometimes if-added rules.

We discuss forward and backward rules again in Chapter 6, in the context of rule

based knowledge representation.

Single-Valued Attributes

A specific but very useful kind of attribute is one that is guaranteed to take a unique
value. For example, a baseball player can, at any one time. have only a single height
and be a member of only one Learn. If there is already a value present for one of these
attributes and a different value is asserted, then one of two things has happened. Either
a change has occurred in the world or there is now a contradiction in the knowledge
base that needs to be resolved. Knowledge- represeiltatiofl systems have taken several
different approaches to providing support for stogie-valued attributes, including:

• Introduce an explicit notation for temporal interval. If two different values are
ever asserted for the same temporal interval, signal a contradiction automatically.

• Assume that the only temporal interval that is of interest is now. S.o if a new value
is asserted. replace the old value,

18	 CI1FTER 4. KNOWLE/X,E REPRESEVJ ATI!)N 1S11

Provide no explicit support. Logic-based systems are in this category. l3ur in thcsc
systerils, kituwleilge-hase builders c:tjl add axioms Ihat stale th(if
has one value then it is known not to have all other valtics.

4.3.3 Choosing the 6ranularity of Representation
Regardless of the particular representation formalism we choose, ,t is necc.ar) to
answer the question "At what level of detail should the world be represented" A nother
way This question is often phrased is "What should be our primitives?' Should ihcre be
it small ituinber of low-kvd tines or should there be a larger number covering a range
of granularitie? A brief example illustrates the ijoblem. Suppose we are interested in
the following fact:

John spotted Sue.

We could represent this as

spoIte(J(a,Celtt(John),
()hJC(((3t4a'))

Such a representation would make it easy to answer questions such as:

Who spotted Sue!

But now suppose we want to know:

Did John see Sue?

The obvious answer is "yes, " but given only the one fact we have, we cannot discover
that answer. We could, of course, add other facts, such as

sp'irtcd(.v.	 —'+ saw(.i. ,$)

We could then infer the answer to tic question.
An alternative solution to this problem is to represent the tact that spotting is really

a special t ype of seeing explicitly in the representation of the fact. We might write
something such as

ca
()h,/e'ct(SJif,t,
1:rnespan(brleJlv))

]'hedry.uii and .bjmirc usually caltd (a sr5 t'hcn rcpmcm rules involved in the even(This
sernunic way ul analyzing sentences contrasts with the probably more familiar syntai.ttc approach in whk'h
^critcnccs have a surface subject. direct object. indirect object, and o forth. We will discuss (ase grammar
lFullmorr. 1968) and its u s e in natural language understanding in Station 1.3.2. For the moment. ' tu sati
safely assume that the cases mean what their nitrites susgesi.

43. ISSUES IN K.OWLEI)GF RFPRFSFNTItT!ON	 I

in this repre'entation, we have broken the tdea of /1Otofly ap:4r1 into more primitive

concepts of seeing and /incspan. Using this repre.eutaiion, the fact that John saw Sue
is immediately accessible. But the fact that he spotted her is more difficult to get W.

The major advantage of coflvciiiflg all statetTiei1t. into it representation in terms
of a small set of primitives is that the rules !hat are used to derive inferences from
that knowledge need be written only in terms of the primitives rather that] in terms of
the many ways 'n whicl; the knowledge Iria originally have appeared. Thus what is
really being argued for is sitnplv 5011K' sort Of cW10114 ii lortir Several Al piograms,
including those described by Schsuk and \belson 19 7 71 and Wilkv I . arc based
on knowledge bases described in terms oft small number of low-level primitives.

ihere are several arguments against the use 01 low level primitives. One is that
simple high-level facts may require a lot Of storage when broken dowii into primitives.
Much of that storage is really wstcd since the low-level rendition 01 a particular high-
level concept will appeal 111 -an times. once tr each time the high level concept is
referenced. For example, suppose that ariioii.s ire hL-irlg (epresented as combinations
of a small set of primitive actions. Then !he fact thin; John punched Maiy nilgIri be
represented as shown in Figure 4.10(u). The representation sa ys that there was physical
contact between John's fist and Mary. The contact was caused by John propelling his list
toward Mary, and in order to do that John first went to where Mar y was. 2 But suppose
we also know that Mary punched John. Then we must also:,lorc the structure shown in
Figure 4.lOsb) If. however, punching were represented simply as punching, then most
of the detail nt ht'ih stiuctumes could be nittitied horn the structures themselves. It could
instead be stored jsis once in a oniit,on reptesemal ion of the concept of punching.

A second but related problem is that if knowledge is initially presented to the svvteiti
in a relativel y high-level form, such as English, then substantial work must be done
to reduce the knowledge into primitive form. y et, for many purposes, this detailed
primitive representation may be unnecessary. Both tn understanding language and in
interpreting the world that we see, many things appear that later turn out to be irrelevant.
For the sake of efticiericy, it may be desirable to Store these things at a very high level
and their to analyze iii dclnil onl y (hose inputs ihai ;Ipjru1 to 1w irnoormant

A third problem with the use of low-level primitives is that in iriaiiy domains, it

is not at all clear what the primitives should be. And even in domains in Which there
may he all set of primitives, there may not be enough information present in
each use of the high-level constructs to enable theuti to he converted lillO their primitive
components. When this is true, there is no way to avoid representing facts at a variety
of granularilies.

flue classical esaniplc of this sort of situation is provided by kinship terminology
[Lindsay. 19631. There exists at least one obvious set ofpriinitives: itiothei. father. Sort.
daughter, and possibly brother and sister. But now suppose we are told that kla;-N is
Sue's cousin. An attempt to describe the COUsifl relationship in terms of the
could produce any of the following inierprc;itttonv

• Mary = dau,hte,1 brother Qnorhrt-(Sue)))

• Mary = daus'htci-(s?slertrnothi'rh Suet)

- lite rrpre'.niai	 n'SOn in I Is	 ';n p i	 .	 - •..
iii

120	 CHAPTER 4. KNOWLEDGE REPRESENJATU.J1V lS

P	 0	 D

	

John	 PROPEL	 fist
Poss-by ftPos.s-by

John 	 fs	 P1yson1ct John
John Mar'

Mary I I

	

John	 MOVE

Poss-by t"
John TT Fist

"John punched Mary."
Mary

(a)

P	 o	 D
Mary <)PROPEL 	 fist

Poss by	
Poss-by ft Th_____	 Mary

Mary	 -III> list	 Physcontact	 Mary John
	John	 4

II

	

Miry	 MOVE
.Poss-by t"Mary •> Fist

fD
	"Mary punched John."	 1	 4

John

(b

Figure 4.10: Redundant Representations

I.J. ISSUES IN KVOWLEIXJE REPRESENTATION 	 i 21

• Mar daughter(bm:her(a:hert Sue)))

• Mary daughwrsister(father(S uc)))

If we do 001 already know that Mary is female, then of course there arc four more
possibilities as well. Since in general we may have no way of choosing among these
represCfltatiofw, we have no choice but to reprcscnt the fact using the 000primitive
relation COUSIn.

The other way to solve this problem is to change our primitives. We could use the
set: parent, child, sibling male, and female. Then the fact that Mary is Sue's cousin
could be represented as

• Mary child(siblinporenf (Sue)))

But now the primitives ilicorporate some generalizations that may or may not be
appropriate. The main point to be learned from this example is that even in very simple
domains, the correct set of primitives is not obvious.

In less well-structured domains, even more problems arise. For example, given just
the fact

John broke the window.

a program would not be able to decide if John's actions consisted of the primitive
sequence:

I. Pick up a hard object.

2. Hurl the object through the window.

or the sequence:

I. Pick up a hard object.

2. Hold onto the object while causing it to crash into the window.

or the single action:

I. Cause hand (or foot) to move fast and crash into the window.

or the single action:

I. Shut the windoss so hard that the glass breaks.

As these examples have shown, the problem of choosing the correct graotj!arity of
representation for a particular body of knowledge is not easy. Clearly, the lower the
level we choose, the less inference required to reason with it in some cases. but the inure
inferenLe required to create the representation from English and the morc room it takes
L11 swre, since many inferences scill be represented many times The answer for any
particular task domain must c,n* to a large extent from the domain itself---lo what use
is the knowledge to be put'!

One way of looking at the.question of whether there exists a good set of low-level
primitives is that it is a question of the existence of a unique representation, Does there

122	 ..MP1IER 4. K?OWLEDGEREpRr.cEti;.tli(jAicuF.

exist a single. canonical way in which 'nrge bodies of knowledge can be repie.senreti
independently of how they wore originally stated? Another, closely related, U!.t.J inss
question asks whethri individualobjects can he represented uniquel y and independen:ly
of how they are described. This issue is raised in the following quotation hum Qe.nn
LJ961 land dISCUSSCd in Woods 11975 1:

The phrase Evening .Ol7 names a certain large physical iibecl cnfspherca
form, which is htu-tling ttir r iugh space some scores n! millions of miles from
here. The phrase .41 orriing Star names tine came thing. as was probably first
established by some observant Babylonian But the two phrases cannot
be regarded as having the same meaning, otherwise that Babylonian could
have dispensed with his ohscrvations and contented himself with refiectung
on the meaning of his words The meanings. then, being different from nra-
another, must he other than I he named object, which is one and the sante in
both case-s.

In order for a program to he able to reason as did the Babyloniats, it must be able to
handle several distinct representations that turn out to stand for the same onJect.

We discuss the question of the correct granularity of representation, as well as issues
involving redundant storage of imntijiintatmon, throughout the next several chapters, par-
ticularly in the section on conceptual dependency, since that theory explicitly pioposes
that a small set of low-level pnimitses tiould be used fn representing actions.

4.3.4 Representing Sets of Objects

It is importantm be able to represent sets of objects for several reasons. One is that
there are some properties that are true of sets that are not true of the individual members
ol a set. As examples, iunsider the assertions that are being made in the sentences
"There are more sheep than people in Australia" and English speakers can be found
all over the world. The only way to represent the facts described in these sentences is
to attach asset-lions to the sets repuesenting people, sheep. and English speakers, since.
for example, no single English speaker can be found all over the world. The other
reason that it is important to be able to represent sets of objects is that if a property
is true of all for even most) elements f a set. then it is more efficient to associate in
once with the set rather than to associate it explicitly with every element of the set. We
have already looked at ways of doing that. both in logical representations through the
USC of the universal quantifier and in slot-and-tiller structures, where we used node-.
to represent sets and inheritance to propagak set-level assertions down to individuals.
As we consider ways to represent sets, we w il . want to consider ls,tti of these uses of
set-level representations. We will also need to remember that the two uses must be kepr
distinct. Thus if we assert something like Iaegt&Eiephoiii). it must be clear wimetinci we
are asserting some propern) of the set itself (i.e.. that the set of elephant% is large; or
some property that holds for individual elements of the set ti c., that an y thing that is an
elephant is large).

There are three obvious ways in which sets may be represented. The simplest Is Just
by a name. This is essentially what we did in Section 4.2 when we used the node namer
&,sehall-PIaw, in our semantic net and when we used predicates such as Ball ansi

43. ISSUES IN KNOWLEDGE REPRESENTATION 	 B

Raiser in our logical representation. This 51m$e representation does make it possible to
associate predicates with sets. But it does not, by itself, provide any information about
the set it represents. It dncs not, for example, tell how to determine whether a particular

object is a member of the set or not:
There are two ways in state a definition of a set and its elements. The first is to list

11w members. Such it specification is called an exteosintal definition. The second is tx,
provide a rule that, when a particular object is evituait't1. returns true or false depending
on whether the object is in the set or not Such a rule is called an ,nptswna1 definition
for example, an extensional description of the set of our suns planets on which people

live is (LarthI An intensional description is

(a sun -plaretix) A human-inhahited(x

For simple sets, it niay not matter, except possibly with tespect to efficiency con
cerns, which representation is used But the two kinds of representations can function

differently in some cases
One way in which extensional and intensional representat ions differ is that they do

not necessarily correspond one-to-one with each other. For example, the extensionally

defined set J Earthl has many intensional definitions in addition to the One WC lust gave

Others include:

a: sun-p!anet(x) A nth-farthest-ftvm-sun(x. 3)
Ix Si4n-plaflet(V) A nth-hig.ue.ct(r, 5)

Thus, while it is trivial to determine whether two sets are identical if etensioival
descriptions are used, it ma y be very difficult to do so using intensional descriptions.

Intensional representations have two Important properties that extensional ones tack.
however. The first is that they can he used to describe infinite sets and sets not all of
whose elements are explicitly known. Thus we can describe intensionalls such sets as
prime numbers (of witich there are infinitely many) or kings of England (even though
we do not know who all of them are or even how many of them there have been). The
second thing we can do with intensoriaI descriptions is to allow them to depend on
parameters that can change, such as time or spatial location. If we Jo that, then the
actual set that is represented by the description wifi change as a function of the same of
those parameters 'l'o see the effect of this, consider the sentence, 'The president of the
United States used tobe a Democrat.' tittered when the current president is a Republican.
This sentence can mean iwd things. The first is that the specthc person who is now
president was once a Deriw'ci3t. This meaning can be captured straightforwardly with
an extensional representation of 'the president of the united Stes.' We Just specify

the individual. But there is a second meaning, namel y that there was curwe someone who

was the president and who was a Democrat. To represent the meaning iif"thc president
of the United States" given this interpretation requires an intensional description that
depends on time. Iiiuj we might write prrassknt(t). where president is some function

that maps instances o time onto instances of people. namely U.S presidents.

:.W,:JER	 A\0i47.G'ii NLpRF.i:	 .

4AS Finding the Right Structures as Needed

Recall that in Chapter 2. we briefly ;ouched on the problem of mak iuiug re ains
state descriptions during the problem-solvin g process. This same issrc floW tt5JS its
head with respect to locating appropriate knowcdge structures that tmvc hccrt stnird in
memory.

For example, suppose we have a sciipt (a description of a class ufvents in terms of
contexts, participants, and subeven!i that describes the t ypical sequence (if events its a

streaurant Tlmo, script would enable u ,.; L) take a te.t such a

John went to Stedk and Ale last night. He ordered a large rare steak,
his bill, and left.

and answer "yes' to the question

Did John cat dinner last night?

.Notice that nowhere in the story was Johns eating anything nienhioimd explicitly. But
the fact that when one goes to a restaurant one eats will be contained in the restaurant
script. If we know in advance to use the restaurant script, then we can answer the
question easily. But in order to be able to reason about a variety of things. a system
must have many scripts for everything from going to work to sailing around the world.
How will it select the appropriate one each time? For example. nowhere in our story
was the word 'restaurant" mentioned.

In fact, in order to have access to the right structure for describing a particular
situation, its Ileces.sary to solve all of the following problems.".

• How to perform an initial selection of the most appropriate structure.

• How to fill in appropriate details from the current situation.

• Flow to find a better structure if the one chosen initially turns out not to be
appropriate.

• What to do if none of the available structun.ss is apl)r(iprisIl-.

• When to create and remember a new structure.

Mere is no good, general purpose method for solving all these problems. Some
knowledge-representation techniques solve some of them. In this section we survey
sonic solutions to two of these problems: how to select an initial structure to consider
and how to find a better structure if that one turns Out not to be a good match.

Selecting an Initial Structure

Selectng candidate knowledge structures to match a particular problem-solving sit uatioru
is a hard problem: there are several ways in which it can be done. Three important
approaches are the' following -

'We discuss sacS a script in detail in Chapter 10,
4 ThIS list is taken 1mm Minsky It

4?. ISSUES IN KNOWLEDUt. kEF/E.Efs -TIQN 	 125

• index the ,struclurr directly b y itw' significant Engl ish words that can be used
to describe them. For cxaiii.ie let each rh have associated with t a sicture
that describes its rr1rining. This is the approach taken iii conceptual di,cr,.Jericv

theory, discussed in Chapter tO. Even for selec'inw. srnp)c structures, such as those
representing the mcanings of ind i vidual words, though this approach may TIOt be
adequate. since man y words may have several distinct meanings. For exampk.
the word 'ih' 'nasa different meaning in each of the following sentence';'

- .i:hn iks' to Ncw York. (He rock' in it plane from one place to another.

- 'oho hrs a kite. ilk held a kite that was up in the air.l

- John flew ticivn the street, tile moved very rapidly.)

John flew into a rage. (An idiom)

Another problem, with this approac! is that if is udy useful when there is an
English description of the problem ic. he solved.

• Cons
i
der each major concept as a pointer to all of the structures (such as scripts)

in which it might be ;nvoived This may produce several sets of prospective
structures. For example, the concept Steak might point to two scripts, one for
restaurant and one for s upermarket. The concept Hill imghi point to a restaurant
and a shopping script. Take the intersection of those sets to get the siructures),
preferahl .e prect.e)y one, that involves all the content soisIv Given the pointers
Just described and the story about John' ,, irip to Steak and Ale, the restaurant script
would be evoked. One important problem with this method is that if the problem
description contains any even slightly extraneous concepts, then the intersection
of their associated structures will be empty. This might occur if we had said, for
example. 'John rode his bicycle to Steak and Ale last night." Another problem is
that it may require a great deal of computation to compute all of the pos,sibii1ysets
and then to Intersect them. However, if computing such sets and intersecting them
could be done in parallel, then the time required to produce an answer would be
reasonable even if the total number of computations is large. For an exploration
of this parallel approach to clue intersection, see Fah]man 119791.

i Locate one major clue in the problem description and use it to select an initial
structure As other clues appear use theta to refine the initial se'tection or in
make a completely new one it necessary. For a discussion of this approach, see
Charniak 1 197(. The major problem with this method is that in some situations
there is not an easily identifiable major clue A second problem is that it is
necessary to anticipate which clues are going to be important and which are not
But the relative importance 'of clues can change dramaticall y from one situation
to another For example, in many contexts, the color of the objects involved is not
important. Rut if we are told "The light turned red," then the colo r of the light is
the most important feature to consider.

None of the,sc proposals seems to be the cuiriplete anss to the problem. It often turns
out, anfoflunately. that the more complex the knowiede srsrcLures are, the harder it is
to tell when a particular one is sppmp1'.us.

126	 CHAPTER 4. KNO WLEDGE REPRF EATATf,v iSSUE

Revising the Choke When Neccesary

Once we find' candidate knowledge structure, we must attempt to do a detailed match
of it to the problem at hand. IMpending da the representation we are using. the details
of the matchjn nocess will vai-y. Jt may require variables to he hound to objects. It
may require attributes to have their values compared. In any care, if values that satisfy
the required restrictions as imposed by the knowledge structure can be found, tiiy are
put into ihe,apprnpriate places in the structIre. If no appropriate values can be found.
then a new structure. must be selected. The way in which the attempt to instantiate this
first structure failed may provide useful caes as to which one to tr y next. If, on the
other hand, appropriate values can be found, then the current structure can be taken to
be appropriate for describing the current situation. But, of course, that situation may
change. Then infonnation about what happened (for example, we walked around the
room we were looking at) may be useful in selecting a new structure to describe the
revised situation.

As w1ggesIed above, the process of instantiating a structure in a particular
situation o1Tiesuoj proceed smoothly. When the process runs into a snag, though.
it is often .t It,.te abandon the effort and start over. Rather, there are a variety
of things thlJQpe.

• Select die ...mçqts of the current structure that ijvespond to the silunton
and match them against candidate alternatives. Cllodse the best match. if the
current structure was at all close to being appropriate, much of the work that has
been done to build substructures to fit into it will be preserved.

• Make an excuse for the current structure's failure and continue to use 1. For
example, a proposed chair with only three legs might simply be broken. Or there
might be another object in front of it which occludes one lee. Part of the structure
siuuki u.itaui iiifu:iiuuk,u a,,uut the 1CMUMN IVAwlo,.t, It o iiakc
excuses. Also, there are general heuristics, such as the fact that a structure is
more likely to be appropriate it a desired feature is missing (pernaps flecanse it
is hidden from view) than if an inappropriate feature is present. For example, a
person with one leg is more plausible than a person with a tail.

• Refer to specific stored links between structures to suggest ncw directions in
which to explore. An example of this sort of linking among a set of frames is
shown in the similarity network shown in Figure 4.11 .

• If the knowledge structure-, are stored in an isa hierarehy, traverse upward in it
until a structure is found that is sufficiently general thatit does not conflict wi th the
evidence. Either use this structure if it is specific enough to provide the required
knowledge or consider creating a ne'. structure Just below the matchng uric.

4.4 The Frame Problem

So far in this chapter, we have seen several methods for rcprrenhiiig Knowiedyc Lhdi
would allow us to form complex state descripi ions for a search program Anothr-,c-muc

'This erainptr u skc' fn -fr. Mmtisk)915J.

.a. I119 FRAME PROBLEM
	 127

too big, no back

TABLE

BENCH

CHAIR	
back, coo wide

too high. no back

STOOL

I

drawerms

SIDEBOARD

DESK

no knee room

Figure 4.11: A Similarity Net

concerns how to represent efficiently sequences of problem states that arise from a search

process. For complex ill-structured problems. this can be a serious matter.
Consider the world of a household robot. There are many objects and relationships in

the world, and a state descriotion must somehow include facts like out I-ianii2, Tahie34),

under(Tahk34, Windom-13), and in(Ta h1e34 , Roorn/5). One strategy is to store each '.Mate

i,i M (u't IIT what h.nrr,ic rne the nrnhkm-cntvini oroses

if each of those descriptions is very long? Most of the facts will not change from one
state to another, yet each fact will be represented once at every node, and we will quicki.
run out of memory. Furthermore, we will spend the majority of our time creating these
nodes and copying these facts—most of which do not change often—from one node
to another. For example. in the robot world, we could spend a lot of time recording

abote(Ceiling, Floor) at every node. All of this is, of course, in,addttion to the real

problem of figuring out which facts .shnuldtw different at each node.
This whole problem of representing the facts that change-as well as those that do

not is known as ihcframe problem [McCarthy and Hayes. 19691. In sonic domains, the

only hard part is representing all the facts. In others, though. figuring ont which ones
change is nontrivial. For xarnplc, in the robot world, there might be a table with a plant
on it under the window. Suppose we move the table to the center of the room. We must
also infer that the plant is now in the center of the room too but that the window is not.

To support this kind of reasoning, some systems make use of an explicit set of axioms
called frame axioms, which describe all the things that do not change when a particular

operator is applied in stale n to produce stale n + I. (The things that do change must

be mentioned as part of the operator itself.) Thus, in the robot domain, we might write

axioms such as

128	 t H,Ip71j 4. KNOWLFr)G, REPRL'.S1',N1141ION JSSi'

COj(,r(C . Y, S) .	 ''t '2) -_ U('i()r(_	 v, .,

which ian he read as, "lix has coior v instate s i and the operation of mc,vix appliciin slak S to produce 1"IeS2, hcn the color of x in s7. is still v " (infrnutiidy, ilL ans
complex domain, a huge number of these axiom', becomes necessary An a!ternaiiv
approach Is h make thc asxurnpn that the onl y things that char ie are the things that

By "must" here we mean ttiat i'ecliangt' is either required exp li citly by the axiom
that describe the operator or that it killows logicall y from some chance that is a-serte3explicitly. This idea of tircurnscri/"ng rIse set of unusual thnj o n N cry powerful one.it car, be used as a partial solution to the frame problem and as a way of rcasoning with
Incomplete knowledge. We return to i in Chapter 7

But now let's return briefl y to the problem of epresentIiitt a changing problem ie
n1We could do it by .piy starting with a dcriptio ol the initial state and then making

changes to that description as i i ldi c.Ved by the rules we apply. This Snive ', the prnbk-a:
Of the wasted pace and time 'olved in copying the information for each node. And
works fine .inttl the tirsi time the search has to backtrack. Then, unlcts all the chaiige
that were made can simply be ignored (as they couid be ,t for example, they were cinrlv
additions of new theorems). we are faced with the problem of hacking up Ic snlie
node. But how do we know what change'. in the probkrn state description need to be
undone? For example, what do we have tochar,c to undo the effect of moving the table
to the center of the rooni'? There are two ways this iohleni can be solved:

• Do not modify the initial slate description at all. At each node, store an indication
of the spccit-ic changes that should be made at this node. Whenever it is necessary
to refer to the description of the current problem state, look at the initial state
dese, lptton and also look back through all the nodes on the path front the start
state to the current slate. This is what we did in our solution to thc cryptarjthmtjc
problem in Section 3.5. 1'hisapproach makes backtracking very easy, but it makes
referring to the state description fairly complex

• Modtfy the intttal state description as apnropr ate, but also record at each node Jr.
indication of what to do to undo the move should it ever be necessar y to backtrack
through the node. Then, whenever it is necessary to backtrack, check each node
along the way and perform the indicated operations on the state descriptjon

Sometimes, even these solutions are not enough. We might warn to reniember, tom
example, in the robot world, that before the table was moved, it was under the window
and after being moved, it was in the center of the room. This can be handled by adding
to the representation of each fact a specific indication of.the time at which that fact sac
true. This indication is called a slate variable. But to apply the same technique to a
real-world problem, we need, for example. se parate facts to indicate all the times at
which the Statue of Liberty is in New York.

There is no simple answer either to the question 01 knowledge reprcceiiialiii or If
the frame problem. Each of them is dIscussed in greater depth later in the context of
sp'ttfic problems. But it is Important to keep these questions in mind when considering
search strategies, since the representation of knowledge and the eeieeh process depør'd
hea,ev on each other.

J.

4.5 Summary

The purposc of tIL4 chapter has beets lo O.I.fe (lie need for kiowkte iv

programs and 10 s1Irve' issues that innr t ,iLJre'srd in the design &i a gtd kitowledge-
r.p1esentaIi011 5truCiUt Of couNe wr not covered everything, In the chapterc
that follow, ve describe snme specific representations and look at their relative strengths

and weaknesses.
The following cohiectionc aii contain further discussions oh the tundamcntal issues

in knowledge representation, along with spccilic techniques to address th i ssues: BO-

brow tI97SL Wino g rad [uQ/hfI, Rrahmn and I .cvesqw' [19R5 I. and Halpen
For especially clear discussions of speci fic iccues iii the iopii of knowledge representa-

tion and use ec Woods 119751 and Br'hman 1, 195J.

Chapter 5

Using Predicate Logic

ln thic chapter. we begin exploring one priieular war of reprccnt!ng t;s.t—the la'-
giiagc of logic Other representational formalisms are dtscusSd in later ch.tpIer. The
logicai lormalisni is appealing because it itnriiediaIey suggests a powerful way of dc
riving new knowledge from old_-mathematical deduction. in this formali'rr., we call

conclude that a new statement is true by 11iuving that it tothiw twin the statements that
are already known. Thus the idea of a proof, as dcc eloped in niathcmatic as a rigorOU

way of demonstrating the truth of an already believed proposition. can be extended to
includr deduction as a way of deriving answers to questions and solutions to prohlern.

One of the early domains in which Al techniques were explored was in the
orem proving, by which was meant proving statements in various areas of mill lie" iatic'.

For example. the Logic Theorist (Newell (1 at, 19631 proved theorems from the Inst

chapter of Whitehead and Russell's P)intipia Mathemalica 119501. Another theomeni

prover tGelcrntei et al.. 19631 proved thetwenis in geometry. Mathematical theorem
proving is stilt an active area of Al research. (See. for example. Wos eral. I 19S4).) But.

as we show in this chapter, the usefulness of c,n1e IlIaLtieniat i cat. techo iquesext
end ',

well beyond the traditional scope of mathematics. It turns out that mathematics is no
different from any other complex intellectual endeavor its requiring both reliable deduc-
tive mechanisms and ,i mass of heuristic knowledge to control what would otherwise be

a completely intractable search probleiti
At this point, readers who are unfamiliar with propositional and predicate logic may

want to consult a good i ntroductory logic text befute reading the rest of this chapter.
Readers who want a more complete and formal presentation ut the material in this
chapter should uor,sult Chang and Lee 119731. Throughout the chapter. we usc the

tollow ing siandud logic symbols: -- (niaterUl! mp!tia!i(n) (mitt. "V' (On. "A'

(iJGd). "v (for all), and "T' (thrie e.tist.c)

5.1 Representing Simple Facts in Logic

Lttc lust explore the use of propositional lo g ic as a w.iy of i cprecntiig the sort

of world knowledge that an Al system might need. Propositiona l logic is appealing

because it is simple to deal with and a decision procedure for it exists. We can easily

132	
CHAPTERS USING PRE1)ICA y Lo(;k

It is r:iir.n.
RN lIViNG

lt!ssunny.
SUNNY

It is windy.
WiNfly

If it i s raining, then it is not sunny.
RAINING -, SUNNY

Figure 5.1: Some Simple Facts in Propo.citioaJ logic

represent real-world facts asswritlenas
in Propositional logic as shown in Figure 5.1. Using these P

ropositi ons. we could, for
example, conclude from the fact that it is raining the fact that it is not sunny. Hut "cry
quickly we run up against the limitations of propositional logic. Suppose we want torepresent the Obvious fact stated by the classical sentence

Socrates is a man.

We could write.

SOCRATESMAN

But if we also wanted to represent

Plato i s a man.

we would have to write something such as:

PLA TOMAJ.J

which would be a totally separate assertion, and we would not be able to draw any
conclusions about similaj-,ties between Socrates and Plato. It would be much better torepresent these facts as:

MAN(SOCRATES)
MAN(PLATO)

since now the structure of the representation reflects the structure
of the knowletj.

itself But to do that, we need to be able to use predicates applied to arguments. We are
in even more difficLitt y if we try to represent the equally classic sentence

51. REPRESENTING SIMPLE FACT'S IN LOGIC

All men are mortal.

We could represent this as:

fURTALMAI'1

Out tnt faji g to capture the relationship between ans mdiv .oaal being a man and that

individual being a mortal. 1O do thu , we riatiy need vwahles and tuantthcai ion unless

we are wilting to write separate statements about the mtaliiy f evi-ry known roan
So we appeal to be forced to move to first-order predicate logic (or just predicate

logic, since we do not discuss higher order theories in this chapter) as a wa of repre-
senting knowledge because it permits representations of things that cannot ieasonably

be represented in propositional logic. In predicate logic, we can represent real-world

facts as .cIatenienzs written as wtT's.
But a major motivation for choosing to use logic at all is that it we use logical

statements as a way of representing knowledge, then we have available a rood way of

reasoning with that knowledge. Determining the validity of a proposition in proposi
tional logic is straightforward, although ii may be computationaily hard. So before we
adopt predicate logic as a good medium for representing knowledge, we need to ask
whether it also provides a good way of reasoning with the knowledge At first glance.
the answer is yes. It provides a way of deducing new statements from old ones. Unfor-
tunately. however, unlike propositional logic, it does not possess a decision procedure,
even an exponential one. There do exist procedures that will find a proof of a proposed
theorem if indeed it is a theorem. But these procedures are not guaranteed to halt If
the proposed statement is not a theorem. in other words, although first-order predicate
logic is not decidable, it is semidecidable. A simple such procedure LS to use the rules of

inference to generate theorems from the axioms in some orderly fashion, testing each to
see if it is the one for which a proof is sought. This method is not particularly efficient,
however, and we will want to try to find a better one.

Although negative results, such as the fact that there can exist no decision procedure
for predicate logic, generally have little direct effect in a science such as Al, which seeks
positive methods for doing things, this particular negative result is helpful -ince it tells
us that in our search for an efficient proof procedure, we should be content if we find one
that will prove theorems, even if it is not guaranteed to halt if given a nontheorem. And
the fact that there cannot exist a decision procedure that halts on all possible inputs does
not mean that there cannot exist one that will halt on almost all the inputs it would see in

the process 01 trying to solve real problems. So despite the theoretical undccidahulity of
predicate logic, it can still serve as a useful way of representing and manipulating some
of the kinds of knowledge that an Al 'ysern might nçed

I ct's now explore the use of predicate logic as a way of representing knowledge by
booking at a specific example. Consider the following set of sentences:

ChAPTER 5. UIr(; PREL)KITL Luc;Fc'

I. Marcus was a man.

Marcus was a Pompeian.
.i. All Pompeitins were Romans.
4. Caesar was a ruler.
S, All Romans were either loyal to Csar or hated him
6. Everyone is loyal to sorileune.
7. People onl y try to assassinate rulers they are not hival to
8. Marcus tried to assassinate Caesar.

'ftc facts described by these sentences can be represented as a set o wit S in pres1!'ate
logic as follows.

I. Marcus was a riIjJi

,nan(Mv cus)

This representation captures the critical tact of Marcus being a man. It tails to
capture some of the information in the English scntcncc. namely the notion oipast
tense. Whether this omission is acceptable or 1101 depends on the misc to which we
intend to put the knowledge. For this simple example, it will be all right

2. Marcus was a Pompeian.

PonpeiaPlMarcus)

3. All Punipeians were Romans.

Pompeian(x) --'+ Rornun(t)

4. Caesar was a ruler.

ruie:Caesai)

here we Ignore the tact that proper names are often not references to unique
individuals, since many people share the same name. Sometimes deciding which
of several people of the sartic name is being referred to in a particular statement
may require a Fair amount of knowledge amid reasoning.

5. All Romans were either loyal to Caesar or hated him.

Roman(x) — Ioya/to(,s Caesar) V hate(.i , Caesar)

In English. the word "or" sometimes means the logical inclusive-or and some-
times means the logical eAc-/us,ve-or (XOR) Here we have used the inclusive
mnterprelation. Some people will ar'uc. howcvcr, that this English sentence is
really stating an exelucive-or. Tcsexpress that, we would have to write:

- t(/o yalrol,x,Ci:esar) V huu'(r. Cuesar)) A
-'(lovalm(x. Cursor) A hale(. . Caesar))]

6. Everyone is loyal to someone.

Vx : 3v !oyalto(r. v)

A major problem that arte'.'hen trying to convert English sentences into k,ticai
statements is the scope olquaraiticrs. Does this sentence bay. as we have assumed
in writing the logical formula above, that for each person there cxmst someone it,

s.!. gFPESFNTING S1MP1I M(T J, Ln'I

.vhoni be or she is loyaL pocohy a d;Ttcrenl someone' 	 ."r)':ie? O de. i

say that there exists someone to whom everyone is lo yal is hich would be wi'ttofl

as	 : h,w1Po s. v))? Often only one of the two ilaterpeta; ions seems ! els-.

so people tend to favor it.

7. People only try to assassinate oilers they are not has a) to

V	 pei 	 .. ri.Iei (y) .\ rva caasi,;1iIs(. v — —.?teiko , .t .')

[his sentence, too, is ambiguous. Does it mean that the onl y rulers that peopk

try to assassinate are those to whom they are not loyal Ithe interpretalion used
here), or does it mean that the only thing people try to do is to assassinate rulers
to whom they are not loyal?

In representing this sentet ice the way we did, we have chosen to write "try to
assassinate" as a single predicate. This gives a fairly simple representation with
whieh we can reason about iryilig to assassinate. But using this representation,
the connections between trying to assassinate and trying to do other things and
between trying to assassinate and actually assassinating could not he made eas-
ily. If such connections were necessar,'. we would need to choose a different
representation.

8. Marcus tried to assassinate Caesar

jrwJ.r s 5 jSciflU!('(Mar(us, Caesar)

From this brief attempt to convert English sentences into logical statements. It should
be clear how difficult the task is. For a good description of many issues involved in this
process. see Reichenhach 1l947J.

Now suppose that we want to use these statements to answer the question

Was Marcus loyal to Caesar?

It seems that using 7 and 8, we should be able to prove that Marcus was not loyal to
Caesar (again ignoring the distinction between past and piesent tense). Now let's try to
produce a formal proof. reasrnhii;g backward tomi the desired goal:

'la/iii(Mai	 Caesui)

In order to prose the goal. we need to use the rules of inference to transform it
into another goal (or possibly a set of goals) that can in turn be transformed. and so
on, until there arc no unsatistied goals remaining. This process may require the search

of an AND-OR graph 4 as described in Section 3.4 1 when there are alternative ways of

satisfying individual soals. Here. for '.;mplciiy. we show only a single path. Figure 5.2
shows an attempt to produce a proof of the goal b y reducing the set of necessary hut as

yet unattained goals to the empty '.e. The attempt tails, however, since there is no wa
to satisfy the goal pe;'nn.%lreu.v) with the statement' se base available.

The problem is thai. although we know that Marco, was a man, we do not have arts
way to conclude from that that Marcus was a person. Wc need in aid the representation
of another fact to our system, namely:

136	 (.UAFI'M .5. USING PRJ)i(4''7 W(IC

-'Ioyaho(Marcus, Caesar)

(7, substitution)

person(Marcus) A
,uh'iiCaesar) A
lrvassassjniJ/e(Marcuc Caesar)

1'	 (4)

person(Marcus)
tryassassinare(Marcus, Caesar)

person(Marcus

Figure 5.2: Art Attempt to Prove -1oyaIra(Maruu.c,Cae.sar)

9. All men are people.

Vx : man(x) . person(x)

Now we can satisfy the last goal and produce a proof that Marcus was not loyal to
Caesar.

From this simple example, we see that three important issues must be addressed in
the process of converting English sentences into logical statements and then using those
statements to deduce new ones:

• Many English sentences are ambiguous t. for example, 5, 6, and 7 above). Choosing
the correct interpretation may be difficult.

• There is often a choice of how to represent the knowledge (as discussed in
connection with I and 7 above). Simple repre.sentations are desirable, but they
may preclude certain kinds 01 reasoning. The expedient representation for a
particular set of sentences depends on the use to which the knowedge .'onm.i!,ecI

in the sentences will be put.

• Even in very simple situations, a set of sentences is unlikely to contain all the
information necessary to reason about the topic at hand. In order to be able to use
a set of statements effectively, it is usually necessary to have access to another
set of statements thatrepresent facts that people consider too obvious to mention.
We discuts this issue further in Section 10.3.

An additional problem arises in situations '.s here we do not know in advance which
statements to deduce. in the example just presented, the object was to answer the
question "Was Marcus loyal to Caesar?' How would a program decide whether it
should try to prove

/oya/to(Murru., Caesar)

of

S2 REPRESENTiNG INS	
r k&'j,i's'5.."PS

-ioyatto(MarcUs. Caesar)

Thete are several -things it could do. It could abandon the strategy we have outlined
of reasoning backward from a proposed truth to the axioms and instead try to reason
forward and see which answer it gets to. The problem ith this approach is that, in

general, the branching factor going forward from the axioms is so great that it would

probably not get to either aii;wer in any reasonable aniourt of tine. A seond thing it
could do is use some sort of heuristic rules for deciding which answer is more likel y and

then try to prove that one first. If it fails to find a proof after some reasonable amount of

effort, it can try the other answer. This not ion of limited effort is important, since any
proof procedure we use may Out halt if given a noiiiheurem. Another thing it could do is
simply try to prove both answers simultaneously and stop when one effort is successful.
Even here, however, if there is not enough information available to answer the question
with certainty, the programmay never halt. Yet a fourth strategy is to try both to prove
one answer and to disprove it, and to use information gained in one of the processes to

guide the other.

52 Representing Instance and isa Relationships

In Chapter 4, we discussed the specific attribtttes instance and ira and described the

important role they play in a particularly useful form of reasoning, property inheritance.

But it we look back at the way we just represented our knowledge about Marcus and

Caesar. we do not appear to have used these attributes at all. We certainly have not used
predicates with those names Why not? The answer is that although we have not used

the predicates jnso:nce and isa explicitly, we have captured the relationships they are

used to express, namely class membership and class inclusion.
Figure 5.3 shows the first five sentences of the last section represented in logic in

three different ways. The first part of the figure contains the representations we have
already discussed. In these representations class membership is represented with unary

predicates (such as Roman), each of which corresponds to a class. Asserting that P(x}

is true is equivalent to asserting that s is an instance (or element) of P The second

part of the figure contains representations that use the instance predicate explicitly. The

predicate instance is a binary one. whose first argument is an object and whose second
argument is a class to which the object belongs. But these representations do not use an

explicit isa predicate Instead, subclass relationships, such as that between Pompeians

and Romans, are described as shown in sentence 3. the implication rule there states that

it an object is an instance of the subclass Pompeian then it is an instance of the superclass

Roman. Note that this rule is equivalent to the standard set-theoretic definition of the
subclass-superclass relationship. The third part contains representations that use both

the instance and isa predicates explicitly The use of the isa predicate simplifies the

representation of sentence 3, but it requires that one additional axiom (shown here as
number 6) be provided. This additional axiom de

scribes how an instance relation and

an isa relation can be combined to derive a new instance relation. This one additional

axiom is general, though. and does not need to be provided separately for additional isa

relations.

I 3S	 CHAPTER 5. USING PREDIcATh LOGIC

I. man(Marus)
2. Pompeian(Mw-1'-u3)
3. Vx Pümt,eian(x) -4 Ronun(x)
4. ruler(Caesar)
5. V.t- Roman(-) - Iovalto(s-, Caesar) V hatex, Caesar)

1. instancet Marcus.nLan)
2	 instant e(Mw('u Pc'/np'iafl)
3. VA . !nr(an(-e(x Pompeian) —* instane -e(A, Roman)
4. in.rtiince(C 5 jr, ruler)
5. Vx : in.stance(x, Roraatr - Io)alio(x, Caesar) V hale(x.Cacsar)

I. insfance(Marcuc man)
2. in.s:ancc{Ma,-cps Pompeian)
3. La(Pompeia p , Roman)
4.	 instuncj'(('aj,- ruler)
5. Vx: instance, Roman) — IiiyaIto(x, Caesar) V hatex, Caesar)
6. Vx :Vy : Vz : instancex. y) A isa(y. 1) -4 instance(x. z)

Figure 5.3: Three Ways of Representing Class Membership

These examples illustrate two points. The first is fairly specitic . It is that, although
class and superclass memberships are Important Fact.s that need to be represented, those
iticinberships need hot be represented with predicates labeled instance and isa. In fact,
in a logical framework it is usually unwieldy to dri that, and instead unary predicates
corresponding to the classes are often used. The sxsnd point is more general There
are usually several dilleleilt ways Of representing a given fact within a particular rep-
resentational framework, be it logic or anything else. Ihe choice depends partly on
which deductions need to be supported most efficiently and partly on taste. The only
Important thing is that within a particular knowledge base consistency of representation
is critical Since any particular inference rule is designed to work on one paiiktitar fono
of representation, it is necessary that all the knowledge to which that rule is intended t'
apply be in the form that the rule demands, Many errors in the reasoning performed by
knowledge-based prograrus are the result of inconsistent representation decisions. The
moral is simply to be careful.

There is one additional point that needs to be made here on the subject of the use
of isa lt,crarches in logic-based ystems. The reason that these hierarchies are so
important is not that they ncirnii the infejence of superclass membership. It is tha;
by Permittin g the inference of superclass membership, they permit the inference o
other properties associated with membership in that superclass. So, for example. in our
sample knowledge base it is important to be able to COISCJLIIJC that Marcus is a Roman

we have some relevant knowledge about Roman iie1y that they etther ha--

3 . ' .'Lfl'L'TABLE FUNCTION.4ND PKEI)UJ,1TF'

.'acsai or are loyal to him. But recall that in the baseball example of Chapter 4, we were
able to asocIatc knowledge with su clases that could then be overridden by more
specific knowledge associaied either with individual instaircc or with .uixlase. It,
other words. we recorded default values that could be acces sed whene er na:cesxary. h'r
example, there was a height associated with adult males and a different height associated
with baseoall players. Our procedure for manipulating the isa hierarchy guaranteed that
we always found the correct (i.e., most specific) value for any attribute. Unfortunately.
reproducing this result in logic is difficult.

Suppose. for example. that, in addition to the facts we already have, we adi the

following.'

Pompeian(Paulus)
-'j kiyalto(Paulus. Caesar) V haie(Paulus , Caesar) I

In other words, suppose we want to make Paulus an exception to the general role
about Romans and their feelings toward Caesar. Unfortunately, we cannot simply add
these facts to our existing knowledge base the way we could Just add ncv nodes into
a semantic net. The difficulty is that if the old assertions are left unchanged, then the
addition of the new assertions makes the knowledge base inconsistent in order to restore
consiStenc), it is necessary to modify the original assertion to which an exception is
being made. So our original sentence 5 must become:

Vx = Roinan(x) t '-eqs,Pau1us) - lovaI:ox.Caesar) s/ haie(x,Caesar)

In this framework, every exception to a general rule must be stated twice. once in a
particular statement and once in an exception list that forms part of the general rule.
This makes the use of general rules iii thit ftaruiework less convenient and less efficient
when there are exceptions than is the use of general rules in a semantic net.

A further problem arises when information is incomplete and it is not possible to
prove that no exceptions apply in a particular instance. But we defer considefatiori of
this problem until Chapter 7.

5.3 Computable Functions and Predicates

In the example we explored in the last section, all the simple facts were expressed as
combinations of individual predicates, such as:

rryassassinare(Marcus, Caesar)

This is fine if the number of facts is not very large or if the facts themselves are
sufficiently unstructured that there is little alternative. But suppose we want to express
simple facts, such as the following greater-than and less-than relationships:

For eunventetice. we now return to OUI onginal notation using unary predicaics to denote dAss reIttons

140	 CHAPrLR 5. USING PREDIC'ATL Lo(J-IC

gI(l.0) 10, 1)
gt(2,1)	 11(1,2)
gt(3.2)	 11(2.3)

Clearly we do not want to have to write out the representation of each of these
facts individually. For one thing. there are infinitel y many of them. But even if we
only consider the finite number of them that can be represented, say, using a single
machine word per number, it would be extremely inefficient to store explicitly a large
set of statements when we could, instead, so easily compute each one as we need it.
Thus it becomes useful to augment our representation by these computable predicates.
Whatever proof procedure we use, when it conies upon one of these predicates, instead of
searching for it explicitl y in the database or attempting to deduce it by further reasoning,
we can simply invoke a procedure, which we will specify in addition in our regular
rules, that will evaluate it and return true or false.

It is often also useful to have computable functions as well as computable predicates
Thus we might want to be able to evaluate the truth of

gt(2+3, I)

Todo so requires that we firsicompute the value of the plus function given the arguitients
2 and 3, and then send the arguments 5 and I to go.

The next example shows how these ideas of computable functions and predicates
can be useful. It also makes use of the notion of equality and allows equal objects to be
substituted for each other whenever it appears helpful to do so during a proof.

Consider the following set of facts, again involving Marcus:

1. Marcus was a man.

man(Marcus)

Again we ignore the irki.w of tense.

2 Marcus was a Pompeian.

Pomperoni Mur Lit]

. Marcus was boni in 40 A.D.

horn(Marcus, 40)

For simpIicit, we will not represent A.D. explicitl y, just as we normally omit it
in everyday discussions. If we ever need to represent dates B.C., then we will
have to decide on a way to do that. such as by using negative numbers. Notice
that the reprc.enta1ion of a sentence does not have to look like the sentence itself
as long as there is a way to convert back and forth between them, This allows us
to choose a representation, such as positive and negative numbers, that is easy for
a program in work with

A . Ali men are mortal

mant.d	 mortal(r)

5.. COMPUIABLE FtiNCI7ON ,tN) IRE1)!CATES	 .:

All Purnpcians died when the volcano erupted in 79 Al)

erz4pteJ(vokuno.79) A V.t : (l'ompewn(X) —s d:ed(x. 79)1

This sentence clearly asserts the two facts represented above. It may also ass.fl
another that we have not shown, namely that the eruption of the volcano caused
the death of the Pornpeiafls. People often assume causality tetween concurrent

events if such causality scents plausible.

Another problem that arises in interpreting this sentence is that ot determining the
referent of the phrase "the volcano." There is more than one volcano in the world.
Clearly the one referred to here is Vesuvius, which is near Pompeii and erupted
in 79 A.D. In general, resolving references such as these caji require both a lot of
reasoning and a lot Of additional knowledge.

6. No mortal lives longer than 150 years.

Vt 1	: mortal(i) A born(x, 'i) A gtz	 ii. ISO) -s th'ad(s, 12)

There are several ways that the content of this sentence could be expressed. For
example. we could introduce a function age and assert that its value is never

greater than 150. The representation shown above is simpler. though. and it will

suffice for this example.

7. It is now 1991.

now = 1991

Here we will exploit the idea 01 equal quantities that can be substituted for eath

other.

Now suppose we want to answer the question "Is Marcus alive?' A quick glance
through the staLerriciliS we have suggests that there may be two ways of deducing ;ui
answer. Either we can show that Marcus is dead because he was killed by the volcano or
we can show that he must be dead because he would otherwise be more than 150 years
old, which we know is not possible. As soon as we attempt to follow either of those
paths rigorously, however, we discover, just as we did in the Last example, that we need
some additional knowledge. For example, our statements talk about dying. but they say
nothing that relates to being alive, which is what the question is asking. So we add the

following facts:

. Alive means not dead.

Vx	 lithrr) v. n -	 kad(.s. 01 r'. I -dead(x, r) '-s alive(.x. t)]

This is not strictly correct. since —dead implies alive imly for animate objects

(Chairs can be neither dead nor alive.) Again, we will ignore this for now. This is

an example of the fact that rarely do two expressions have truly identical meanings

in all circumstances.

9. If someone dies, then he is dead at all later times

Vx	 died(x. 1 0 A gfli r,) •- deadCt. r2)

This representation says that one is dead in all years after the one in which orir
died. It ignore. the question of whether one is dead in the year in which one died.

142	 CH4P7ER 3. USING PREDICATE LOG/C

I.	 PflLlfl(Mijr(')

2. Pompeian(Marcus)
.1. bor,i(Man us. 40)
4. Vs rnan(x) —+ mortal(s)
.. Vx : Pnmpeian(s) —* d;ed(i 79)
6. erupted(iofearin 7)
7. Vi :	 V, morfa/(x) A horn(.x, 11) A g'('2	 1	 50)	 de(Id(A ')
8. now= 1991
9. Vs : Vt: la1:,e(x,t) - -'dead(x, 1)) A [-'dead(x,l) -4 Q/,s'e(r. i)j

tO.	 Vx Vt : Vt? : died(x, t1) A gr(12 . t1) —s dead(x. t2)

Figure 5.4: A Sec of Facts about Marcus

lo answer that requires breaking time up into smaller units than years. It we 'to
that, we can then add rules that say such things as "One is dead at '/mt'(vear/.
monh/il) if one died during tvearI. rnonih2) and rnanih2 precedes nurnth/." We
can extend this to days, hours, etc., as nesary. But we do not want to reduce
all time statements to that level of detail, which is unnecessary and otten not
available.

A summary of all the facts we have now represented is given in Figure 5.4. (The
numbering is changed slightly because sentence 5 has been split into two pans.) Now
let's attempt to answer the question "Is Marcus alive?" by proving:

'C2lire(McJrcuv. now)

Two such proofs are shown in Figures 5.5 and 5.6. The term nil at the end of each proof
indicates that the list of conditions remaining to be proved is empty and so the proof has
succeeded. Notice in those proofs that whenever a statement of the form:

a A ha -4 C

was used, a and ha were set up as independent .uhgoals. In one sense they are, hut in
another sense thy are not if they share the same bound vaiiahles, since, in that case,
consistent substitutions must be made in each of them. For example, in Figure 5.6 look
at the step justified by statement 3. We can satisfy the goal

born(Mar(us, 'i)

using statement 3 by rminding i l to 40, but then we most also bind Ii to 40 in

gt(now .- m 1 . 150)

since the two i's were the same vañab+e in statement 4. from which the :.vo goals
came A good computational proof procedure has to include both a way of cleterininir.?

5.4 RESOLUTION
	 43

'alive(ma) cuS IIOII

1	 (9, substituou)

th'wIMau as, now)

I	 i II). stibstitutton)

JiciI(AlaJiiic. 1) A gt(li1t

'T'	 substituti(n)

Pontpt'ian(Mii u.) A !(now. 79)

1	 (2)

79)

1	 (8, substitute equals)

gg 1991 79)

T	 (compute gt)

nil

Figure '.: One way 0 Prov i ng Thai Marcus Is Pc-,ad

that a match exits and a 	 ol guaranteeing umforni suhstitutiiinsthroughciul a prool

Mechanisms for duitig both thosc things ,ire discussed below.
From looking at liv' proofs we have j ust shown, two things should be clear:

Even very simple conclusions can require nially steps to prove

• A s arwty (it processes, such as matching. sibstilutior.. md application ol n,otlu.c

j frIiet?V aic inolvcd int h pruituctin of a proof. fbi', is true even for the sitnplo
statemcnt.s AC -an: using it would be worse if we had implication, with more than
a single term on the right or with complicated expressions involving and and ol.s

iii the left.

fbi' ir' of 1110e oh.crs'at ions SU!'-v'SK that if we ss aFit to be able iv do ituntris 'ii

easoning. we are goli,i g to iced some statements that allow us to take bigger steps along

!he wa y . i'hese should re p rcscOt the facts that people gradually acquire .15 they become

experts. how to get computers to acqutte them is it limbicin to which iii vet
tiood answer is known.

The second cjhser.s'atjosis:'":sts that actually wilding a program to do what people
.do in -0('aeIrlg proofs such as these may not be easy. In the next'.' non, we introduce
a proof Procedire called sfuiin that redues some ot the contple t because it
opciaws on 0 .(1 WOl th-c have first ber onvertetj t a sot ele i - anon cal 170T111.

5.4 Resolution

.\ks we suggest above, it wouid be uschul iroin a c,inptttm-)tlai point I viev it we tad a
proof procedure chat earned Out in a siimgh' oneratlon thc -ii el ot fu)Cc5S." O.ih'tl

44	 (IL4FrER S 'SING PREDICATE LOGIC

-'ia!,ve(Mari-uc. now)

1	 (9, substitution)

dei'd(Marcus, flow)

1'	 (7, substitution)

mortal(Marcus) A
ho,njI4a, eu., Ii) A
gt(now - 1; 150)

1	 4, substitu.ion)

man(Marcus) A
born(Marcus,t) A
gt(now - r 1 , 150)

1	 (1)

born(Marcus. 1,) A
gt(now	 150)

I	 3)

gt(now 40,150)

1	 (8)

:(l99l	 40, 150)

I	 (compute minus)

gt(1951, ISO)

T	 (compute go

54)

Figure 5.6: Another Way of Proving That Marcus Is Dead

in reasoning with statements in predicate logic. Resolution is such a procedure, which
gains its efficiency from the fact that it operates on statements that have been converted
to a very convenient standard form, which is described below.

Resolution produces prools by refutation. In other words, to prove a statement tic.,
show thdt it is valid). resolution attempts to show that the negation of the statement
produces a contradiction with the known statements (i.e.. that it is unsatisfiable). ['his
approach contrasts with the technique that we havc been using to generate proofs b
chaining backward from the theorem to be proved to the aion1s. Further discussion of
how resolution operates will be much more strtightforwaid after we have discussed the
standard form in which statements will be represented, so we defer it until then.

14.
5.4. RESOLUTiON

5.4.1 Conversion to Clause Form

Suppose we know that all Rontans who knoss Marcus either hate Caesar or think that

anyone who hates an yone is crazy. We could represent that iii the following wff.

Vx [Roman(X) A know(x. Marctisi] -

[hare(x. Caesar) V (V),	 Ii1t'tv.	 ih,sik

To Use this fi'miu iii a p100t requires a co;npkx matching proce. Then. has o

matched one piece of it, such as '/iinktra:v(v , it is necessary to do the right t1iiii

w i th the rest of the tomiula including the piccs'fl which the matched part is embedded
and those in which it is not. If the foriiiula wore iii a simpler turin, this process would

be IFn Icl I easier. The foiimmula would be easier to work with if

• It were flatter, i.e.. there was less cmbeddint of components.

• The quantifiers were separated from the re't of the formula so that they did not

need to be considered.

Co11jt4?i&timT normal—fu—In
[Davis and Putnam, 1960i has both of these properties.

For example. the fimnoula given above for the feelings of Romans who know Marcus

ssould he t epreselited in conjunctive normal form as

-,Rootan(.') V knosi'(X. %1s21 (us) V

hare(x,CaeSariVU'tY	 V thinkira:y(.r.)

Since there exists an algorithm for converting an wit into conjunctive normal form,
we lose no gencratY if we emplO) a proof procedure (such as rcsoltttiofl) 	

rate

only on wff's iii this form. I t, fact, for resolution to work. we need to goo ume step further

We need to reduce a set of wff's to a set ofut-loses, where a C!SUSC is defined to be a wif

in conjunctive normal form hut with mi instances of ths' connector A. We call this
by first converting each ssff into conjunctive normal form aid then breaking apart each
stab expression into clauses, one for each conjunct. All the con junCis will be considered
to be conjoined together as the proof procedure operates lb convert a wfi into clause

form, perform the following sequence of steps.

%Ivrithrm. Cnert to Clause Furnu

I Eliminate —s. using the tact that a - h is equms atent to-"'- I'. terformilg this

transt'ormatiofl oil 	 wff given above yields

Vs : ._.[f(fl(xl A k,irss'(, !feus) I V

lhote(.i. (i'aesc$r) V (Vv -'3: : hcztt'(y. :11 V ill inkcrav(X. v)1

2 Reduce the scope of each 	
to a single term. using the fact that t p)	 P.

deMorgan's laws [which say that (o A hi	 a V —h and (a V b) = 'a A -'bf.

and the standard correspondences between quantifiers (—'six . 	 3%.

and -1	 s 1 Pi s). porfamunitig this transformation on the wft' fr..mvii

step I yields

I -'Roman(X) V -'knois'(x. Mart us i I V

Lluite(x, Caesar) V (Vy	 -'hate's'.) V !Ju,, '.?aZt.':. etfi

146	 CHAP/EH.) USING FREDFCA 11. ,QQJi

I Standardize vaiuIes so that cacti quantifier binds a unique Yariable. mci'
variables are just dumm y names, this process cannot affect the truth value of the
wif. For example, the formuia

Vx : P1, v) V V.v : (1(x)

ssouh,l be converted to

PO) VVy

This step is in preparation for the next.

4. Move all quantifiers to the left of the formula without changing their relative orster.
This is possible since there is no conflict among vat jaNe names. Performing this
operation on the lormula of step 2, we get

V.v	 [-'Romun(x) V -'know(.r, Mar.u.c)1 V
thate(x. Caesar) V (-'hate(y, z) V lhiaki'ra:y(x. v))J

At ibis point, the formula is in what is known as preaex nornwlfornt. It consists
of a prefix of quantifiers followed by a maim, which is quantifier-free.

5. Eliminate existential quantifiers. A formula that contains an existentially quan
tilled variable asserts that there is a value that can be substitutcd for the variable
that makes the formula true. We can eliminate the quantifier by ubsiiuting for
the variable a reference to a function that produces the desired value. Since we
do not necessarily know how to produce the value, we must create it new function
Elaine for every such replacement. We make no assertions about these functions
except that they must exist. So, for example, the tormula

President(Y)

can be transformed into the formula

P,esith iit(SI)

where Si is a function with no arguments that somehow produces a value that
satisfies ?rimdrnt

If existential quantifiers occur within the scope of universal quantifiers, then the
value that satisfies the predicate iiia depend on the values of the wiiversall',
quantified variables. For example, in the formula

f(,iher ofli .

the value of' v	 atthat satisfies (other of depends on the particular value of m,
we must generate functions with the same number of arguments as the number
of universal quantifiers in whose scope the expression Occurs. So this exampk'
would be transformed into

father oflS2Lv). sit

'l'hesc generated functions are called SkoIcmfun'tw,is. Sometimes ones with no
arguments are called Skim/em con.swnt.v.

(Drop the prefix. At thispoint, all remaining variables are univer-sallyquanrifled. so
the prefix can just be dropped and any proof procedure we use can simpl y assume

IEVJ
5.4. RFOUJT!ON

that any variable it sees is universally quantified. Now the formula produced in

step 4 appears as

(-Roman(x) V -'know(x. Marcus)]
[,'ia:e'(x.Caesar) V (-'haIc(y.:) V thinki'ra:y(x.y))l

7. Convert the matrix into a conjunction of disjuncts. In the case of our example.

since there are no and's, it is only necessary to exploit the associative property of

or (i.e., a V h V c) =(cz V b) V c'l and simply remove the parentheses. giving

-Ronwfl(c) V -know(x, Marcus) V
hate(x, Caesar) V -haie(v. :) V t ifl.&cro:vt.'

However, it is also frequently necessary to exploit the distributive properly I i.c..

(a A h)V c = (a V c) A (bV c)J . For example. the formula

(winter A wearingboots) V (summer A wearingsandals)

becomes, after one application of the rule

winter V summer A wearzngsaidals))
A I wearinghoofs V (summer A wearingsandal.$)]

and then, after a second application, required since there are still conjuncta joined

by OR's.

(winter V summer) ;'.
(winter V weoringsandIs) A
1wearinghOots V summer) A
(wearingho ins V wearing sandals)

8 Create a separate clause corresponding to each conjunct. in order for a wif to be
true, all the clauses that are generated from it must be true. If we are going to be
working with several wf'f's, all the clauses generated by each of them can now be
combined to represent the same set of facts as were represented by the original

wif's.

4. Standardize apart the variables in the set of clauses generated in step 8. By this
we mean rename the variables so that no two clauses make reference to the same
variable, in making this transfonnation, we rely on the fact that

(Vx : P(r) A Q(t)) = Vx: P(X) A Vx Q(x)

Thus since each clause is a separate conjunct and since all the variables are
universally quantihed, there need be no relationship between the variables of two
clauses, even if they were generated from the same wif.

Pertorming this final step of standardization is important because during the resolu-
tion procedure it is sometimes necessary to instantiate a universally quantified variable

(i.e.. substitute for it a particular value). But, in general, we waist to keep clauses in

their most general form as long as possible. So when a variable is instantiated, we want
to know the minimum number of substitutions that must be made to preserve the truth

value of the system.
After applying this entire procedure to a set of wif's, we will have a set of clauses,

each of which is a disjunction of literals These clauses can now be exploited by the

resolution procedure to generate proofs.

148	 ('HAI-'7E!? 5. 1 SIN . PRLDfC. IL Li'l(jjf

5.4.2 The Basis of R.soiutioI)

flle resolution procedure is a simple iterative process: at cacti si&p. t wo clauses, died
he parent douses, are compared (resolved). yielding a new clause that has been inferred

;roni them. The new clause represents ways that the two patent clauses interact with
each other. Suppose thu there are two clauses in he system:

winter V summer
- -winter V cold

Recall that this means that both clauses must be true (i.e . thc clauses. although they
look independent, are really conjoined).

Now we observe that precisely one of winter and winrc'r will be true at any point.
If winter is true, then cold must be true to guarantee tile truth of the second clause. 11

wihter is true, then summer must be trite to guarantee the truth of the first clause. Thus
we see that from these two clauses we can deduce

summer 'J cold

This is the deduction that the resolution procedure will make. Resolution operates by
taking two clauses that each contain the same literal, in this example, winter. The literal
must occur in positive form in one clause and in negative form in the other. The resolvent
is obtained by combining all of the literals of the two parent clauses except the ones that
cancel.

If the clause that is produced is the empty clause, then a contradiction has been
found. For example. the two clauses

Winter
'winter

will produce the empty clause. If a contradiction exists, then eventually it will be found.
Of course, if no contradiction exists, it is possible that the procedure will never terminate.
akliough as we '.vi!! see, there are often ways of detecting that no contradiction exists.

So far, we have discussed only resolution in propositional logic. In predicate logic,
the situation is more complicated since we must consider all possible ways of substituting
values for the variables. The theoretical basis ot the re'olution procedure in predicate
logic is Herbrand's theorem (Chang and Lee. 1973. which tells us the followimg:

• To show that a set of clauses S is unsatisfiable, it is necessary to consider onI'
interpretations over a particular set, called the Hrbrond universe of S.

• A set of clauses S is unsatisfiable if and only if finite subset of ground instances
(in which all bound variables have had a value substituted for them) of S is
unsatisfiable.

I he second part of the theorem is important if there is in exist any computational
procedure for proving unsatishability, since in a finite amount of time no procedure will
he able to examine an infinite set. The first part suggests that one way to go about
finding a contradiction is to try systematically the possible substitutions and see if each

5,4 RESOLUTION	 149

produces a contradiction But that is highly inefficient The resolution princ;ple, fist
introduced by Robinson [1965], provides a way of tiniling contradictions by trying a
minimum number of substitutions.]'he idea is to kce 1, clauses in their general form as
long as possible and only introduce spcciic substitutions when they are required. For
more details on different kinds of resolution, see Stickel 11988).

5.4.3 Resolution in Propositional Logic

In order to makc it clear how resolution work , we first present the resolution procedure
for propositional logic. We then expand it t. include predicatc logic

In propositional logic, the procedure for producing a proot by resolution of propo
sition P with respect to a .et of axioms ".is the following.

Algorithm: Propositional Resolution

1. Convert all the propositions of F to clause form,

2. Negate P and convert the result to clause form. Add it to the set of Clauses
obtained in step I

3. Repeat until either a contrad'ction is found 01110 progress can be made;

(a) Select Iwo clauses. Call these the parent clauses.

(h) Resolve them together. [lie resulting clause, called the rcsolve?U, will he
the disunctton o all of the literals of both of the parent clauses with the
following exception: It there arc any pairs of literals L and -iL such that one
of the parent clauses contains I. and the other contains -1 then select one
such pair and eliminate both 1. and -L from the resolvent -

(c) If the resolveiu is the empty clause, then a contradiction has been found. If
it is uoi, then add it to the set of clauses available to the procedure.

Let's look at a simple example. Sup1msc we are given the axioms shown in the hrsr
column of Figute 5.7 and we want to prove R. First we convert tie axioms to clause
form, as shown in the second column of the figure Then we negate R. producing -'R,
whici is already in clause form. Then we begin selecting pairs ol	 Ases to resolve

igcther. Although any pair of clauses can be reoivcd, onl y thoss pairs that Contain
complementary literals will produce a resolvent that is likely to lead to the goal of

producing the empty clause (shown as a l'ox). We might, for ecmple, generate the
sequence of resolvents shown in Figure 5.. We begin by resolving with the clause -'k
since that is one fth eta5 ihat must be involved in the contradiction we are trying
to find.

One way of viewing the resolution process is that it takes a set ot clauses that arc
all assumed to be true and, based on information provided by the others, it generates
new clauses that ropresent restrictions on the way each of those original clauses can be
made true. A contradiction occurs when a clause heroines so testricied that tlir,te is no
way it can be true. This is indicated by the generation of the empty clause. To see how
this works, let's look again at the example. In order for proposition 2 to be true, one of
three things must be true: -P, -Q. or R. But we are as';umin g that -R is true. Giver

150	 CHAPTER 5 dSING FREDICATh LOGIC

Given Axioms ('onvcrted to Clause Form

P	 1'	 (1)
(PAQ)-*R	 -'PV--QvR	 (2
(SVT)---*Q	 -SvQ	 (3)

-.TVQ	 (4)
T	 T	 i 5)

Figure 53: A Few Facts in Propositions' 1.gic

-PV-'QvR

-'P V Q

-TvQ

T

Figure 5.8: Resolution in Propositional Logic

- that, the only way for proposition 2 to be true is for one of Iwo things to be true: -'P
or -Q. That is what the first resolvent clause says. But proposition I says that P is true.
which means that -'P cannot be true, which leaves only one way for proposition 2 to be
true, namely for -Q to he true (as shown in the second resolvent clause). Proposition 4
can be true if either - T or Q is true. But since we now know that -'Q must be true,
the only way for proposition 4 to be true is for -T to be true (the third resolvent). But
proposition 5 'says that 1' is true. Thus there is no way for all of these clauses to be true
in a single interpretation. This is indicated by the empty clause (the last resolvent).

5.4.4 The Unification Algorithm

In propositional logic, it is easy to determine that two literals cannot both be true at the
same time. Simply look for L and -'L. In predicate logic, this matching process is more
complicated since the arguments of the predicates must be considered. For example,
man(John) and -'man(John) is a contradiction, while man(John) and -'man{Spot) is
not. Thus, in order to determine contradictions, we need a matching procedure that

5.4. RESOLUTION	
151

compares two literals and discovers whether there exists a se of substitutions that makes
them identical. There is a straightforward resIrsrvc prncednrC, called the unificaiwn

algorrtkni, that does just this
The basic idea of unification is VCFY simple. To attempt to unify two literals, we first

check if their initial predicate symbols are the same. It so. we can proceed. Otherwise,
there is no way they can he unified, regardless of their arguments. For example, the two

literals

:rvassassinej tf(AlarcilS. Caesar)

hate(MarCUS Caesar)

cannot be unified. If the predicate syribols matdi, then we must check the arguments
one pair at a time, lithe first matches, we can continue with the second, and so on.
To test each argument pair, we can simply call the unification procedure recursively.
The matching rules are simple. Different constants or predicates cannot match; identical
ones can. A variable can match another variable, any constant, or a predicate expression
with the restriction that the predicate expression most not contain any instances of the

variable being matched.
lire only complication in this procedure is that we must turd a single, consistent

substitution for the entire literal, not separate ones for each piece of it. To do this, we

must take each substilution that we find and apply it to the remainder of the literals
before we continue trying to unify them. For example. SUPPOSe we want to unify the

expressions

P(.r, x
P(y.:)

Te two instances of P match line. Next we compare x and y, and decide that if we

substitute y for t, they could match. We will write that substitution as

)-IX

(We could, of course, have decided instead to substitutes for v, since they are both Just
diinmiy varrabk 9ames. The algorithm wil simply pick ore of tlh two substttut ions,)
But now, if we simply continue and match s and r, we produce the srihsiitutk'a z/s. But

we cannot siihstilritc both v arid for r, .O WC h;ivc 'ce produced a consistent substitution.

What we need to do alter finding the first substitution %,/. k is to make that substitution

throughout the literals. giving

Pl y . y)

Now we can attempt to unify arguments
I and :, which succeeds with the substitution

;/v. The entire unification process has iiow succeeded with a substitution that is the
COmpoSiliOli of the two substitutions we found. We write the c1iTii1itsitiOfl as

152	 CHAPTER 5, (]51M; PRTG.F(ATE LOGIC

following standard ::ctauon for f 'ction composition. in genera;. 	 ' subst;lutioo
(a l/a) , 17 3/.d4Xh,ib,, 15,1. /h4 . rieans to apply all the schslitun c, olthc right
most hst, then take the result and appl y ail the ones of the next list, and so forth. until
all substitutions have been applied.

The ohccl of the unification procedure is to discovei at lcsst one 51 slilt;iiim that
calists two literals Co match. Usually f thc'c s tule 'cwli N1 ibsijiiiijun I lltic are
For example. the literals

Juiiet t. y)

hare(Matrus, z)

could he unified with any of the following substitutions:

(Marcus/x, :/y)
(Marcus/x, v/:)
(Marcus/x. Caesar/y. Caesar/:)
(Marcus/x, Polonius/y, Polonzz&c/:)

The first two of these are equivalent except for leaical variaiion. But the second Iwo.
although they produce a match, also produce a substitution that is more restrictive than
absolutely necessary for the match. Because the final substitution produced by the
unification process will be used by the resolution procedure, it is useful to generate the
most general unifier possible. The algorithm shown below will do that.

Having explained the operation Of the unification algorithm, we can now state it
concisely. We describe a procedure Uuifv(Ll. L2). which returns as its value a list
representing the composition of the sijhstituiions that wei e performed during tbe match.
The empty list, NIL, indicates that a match was found without any substitutions. The
list consisting of the single value FAIL indicates that the unification procedure failed.

Algorithm: IJnify(I.l L2)

1. 11/.1 or /2 are both variables or constants, then.

(a) If 1.1 and L2 are identical, then return NIL.

(h) Else if 1.1 is a variable, then if LI occurs in L2 then return {lAl14, else
return (L21Ll).

(c) Else if /.2 is a variable then if L2 occurs in L then return {FAILJ, else
return (LIJL2)

(d) Else return {FAIL}

2. If the initial predicate symbols in LI and L2 are not identical, then return(FAIL,'.

3. IfLl and L2 have a different number of arguments, then return ftAlL).

4. Set SIJBST to NIL. (At the end of this procedure. SUBST will contain all the
substitutions used to unify 1.1 and 1.1)

5. For;	 I to number of arguments in LI

5 4. RESOLUTION

	 153

(a) ('all Unify with the ith argument of LI and tli' ith argument of L2, putting

result in S.

(b) If contains FAIL. then return If bAt!.

(c) if is not equal to NIL then:

i. Apply S to the remainder of both L and L2.

ii. SUBST APPF.ND(S. Sf1851).

6. Ret uris SI7BST.

The only pail of this algorithm that we have not yet discussed is the check in steps
Rb) and lie) to make sure that an exprc'.ion involving a given variable is not unified
with that variable. Suppose we were attempting to unify the expressions

AX, X)
g(x), g(x))

If we accepted X(x as a substitution for x. then we would have to substitute it for a in
The remainder of the expressions. But this leads to infinite rectrsion since it will never

be possible to eliminate a.
Unification has deep mathematical roots and is a usful operation iii many Al

programs. for example theorem provers and natural language parsers. As a result,
efficient data structures and algorithms for unification have been developed. For an
introduction to these techniques and applications. see Knight 119891.

5.43 Resolution in Predicate Logic

We now have an easy way of determining that two literals are contradictory—they are

J one of them can be unified with the negation of the other. So, for example. man(s)

and –.man(Spot) are contradictory. since man(r) and rnnn(Spoi) can be unified This

corresponds to the intuitiniithal says that man(a) cannot be true for all x if there is known

to be some i, say Spot, for which man(s) is false. Thus in order to use resolution for

expressions in the predicate logic, we use the unification algorithm to locate pairs of

literals that cancel Out
We also need to use the unifier produced by the unification algorithm to generate the

resolvent clause. For example. suppose we want to resolve two clauses.

man(Mareus)
1. -.man(x1) V mortal(x1)

The bteral man(Marcus)can be unified with the literal ntan(.v t) with the substitutii'

Marc us! u. telling us that for x 1 - Marcus. -man(Marcus) is false. But we cannot

simply cancel out the to man literals as we did to propositional logic and generate the

resolvent morwl(x 1). Clause 2 says that for a given .v. either - .man(xi) or n,ortoltat).

So for it to be true, we can now conclude only that njrki/(tilW I itS) iiflit be true. It is

not necessary that mo,tai(xu) be true for all ii, since for som e values of x 1 , -'nian('i)

might be true, making moriui(s 1) irrelevant to the truth of the complete clause. So

the resolsmt generated by clauses I and 2 must be morta!(Marcus .), which we ge by

applying me result of the unification process to the resolvent The resolutiOn process can

154	 CIIAPTFR S. IIS/N(PREDI(ATE LOGIC

then proceed from there to discove- wiiether mortal(M.ircasi leads to a
with other available clauses

This example illustrates the im portance of standardizing variables apart during the
process of converting expressions to clause form. Given that that standardization ha
i)ecn done, it is easy to determine how the uttitici mu s t he used to perform substitjjtton:;
to crea:e the resolvent. If two insiances of the same v:4riah!c occo, then tr.cy most -c
Over ' identical substitutions

We can now state the resolut
i
on Jgorithin forpredicate logic as follow'. assunlill.

­1 of given staicnittils F and a tacmcnl to he pr;ved P

Algorithm: Resolution

I. Convert all the statements of F to clause oriii.

2. Negate P and convert the result to clauac lorn. Add it ro the-set of clause.
obtained in I.

3. Repeat until either a contradiction is found. no progress can be made, or a pick
ternitned amount of effort has been expended.

(a) Select two clauses. Call these the parent clauses.

(h) Resolve them together. The resolvent will be the disjunction of all the literals
of both parent clauses with appiopriatc substitutions performed and with the
following exception: If there is one pair of litcrals TI and -T2 such that
one of the parent clauses i'ootaiiis Ti and the other contains 12 and if 11
and 72 are unifiable, then neither i'l nor 12 should appear in the resolvent.
We call Ti and 72 c ontplementary h:e,-aI.s. Use the substitution produced
by the unilicatton to create the resolvent, If there is more than one pair of
complementary literals. only one pair should he omitted from the resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been found. If
it is not, then add it to the set of c1ausc. available !o the procedure,

lithe choice of clauses to resolve togethcrat each step is made in certain systematic
ways, then the resolution procedun, "ill find a contradiction it one exists. E1;rssever, it
may take a very long lime. There exist strategies for making the choice that can speed
tip the process considerably

• Only resolve pairs of clauses that contain complementary literals. since only such
resolutions produce new clauses that are harder to satisfy than their parents. To
facilitate this, index clauses by the predicates they contain. combined with an
indication of whether the predicate is negated Then, given a particular clause,
possible resolvenis that contain a complementary occurrence of one of its predi-
cates can be located direct lv.

• Eliminate certain clauses as soon as they are generated so that they cannot partic
ipate in later resolutions. Two kinds of clauses should be eliminated: tautotoiies
(which can never be unsatisfied) and clauses that are subsumed by other clauses
i.e.. they are easier to satisfy. For example, P V Q is subsumed by P.

55
5.4, RESOLUTION

• Whenever possible, resolve either with one of- the clauses that is part of the
statement we are trying to refute or with a clause generated by a resolution with

such a clause- This is called the act-of-support szi'ategv and correspond-s to the

• intuition that the contiadiction we are looking for must involve the Statement

we are trying to prove. Any other contradiction would say that the previously

believed statements were inconsistent.

• Whenever possible. resolve with clauses that have a single literal. Such resolutions
generate new clauses with fewer literals than the larger of their parent clauses and

thus are probably loscr to the goal of a resolvent with zero terms. This method

is called the unii-prejercflee .uralcgy.

1.1's now return to our discussiOn of Marcus and show how resolution can be used
to prove new things about him. Let's first consider the set of statements introduced
in Section S.l To use them in resolution proofs, we must convert them to cunise
form as described in S-ikrn 5.4.1 Figure 59(a) shows the results of that couvCrslofl.

Figure 5.9h) shows a resolution proof of the statement

hatc(ti-foF' us, Caesar)

Of course, many more resolvents could have been generated than we have shown
but we used the heuristics described above to guide the search. Notice that what we

have done here essentially is to reason baikward fwm the statement we waist to show

is a contradiction through a set of intermediate conclusions to the final conclusion of

inconsistency.
Suppose our actual goal in proving the assertion

hate(Marcus - Caesar)

was to answer the question "Duct M;uctis haic Caesar?" In that case, we might just as

easily have attempted to prove the statement

-'hate(MarLuS. (Tuz.sai)

lo do sO. we would have added

hare(.fai ' u.s. (.'au'cOr)

to the set of available clauses and begun the resolution process- But immediately we
notice that there are noclausc that contain a literal involving --hole. Since the resoluit

process can oniy generate sew clauses that are composed of combinations of literals
from already existing clauses, we know that no such clause can be generated and thus

we conclude that ha:e(Maucus.Caesait will not produce a contradiction with the known

statements. This is an example of the kind of situation in which the resolution procedure
can detect that no contradiction exists. Sorneutnies this, siluatiofl is detected not at the
beginning of a proof, but part way through. as shown in the example in Figure 5.10(a).

based on the axioms gis ri in Figure 5.9.
But suppose our knowledge base contained the two additional statements

CHAPTER 5. USING PREPICATE LOG/C

Axioms in clause form:
1. man(Marcus)
2 P1Pnpeian(Marcris)
3. 'Ponipeianx) V Roman(s)
4. , Or. Carsa,
5. '-'Roman(x2) V Iyaiw(x, Carsar) V hatc.t, Caesar)
6. /oyau(x,fi(x,..
7. -.man(x) V -'nder(vi) V	 yi) V Ioyalto(r4,y1)
8. tryassassjnate(Mart- ps. Caesar)

(a)

	

Prove; hate(Morcus, Caesar) 	 'hate (Marcus, Caesar) 	 5

._.--- Marrus/x,

	

3	 -.Ronwn(Marcus) V Ioyalw(Marciss, Caesar)

Marcus/x

	

-Pompeian(Marcus) V Ioyalto(Marcus Caesa'-) 	 2

7	 kya1to(4farcu, Cue ;ar)

Caesar/y,

-man(Marcus) V -'ruler(Caesar) V -'(rvassassinate(Marcu.c. Caesar)

-'rulr(Caestjr) V -rvasyax5i,wge(MLJr4j, Caesar) 	 4

-'Fryassassjnale(Marcu.c. Caesar) 	 8

(b)

Figure 5.9: A Rtsu1iit ion Proof

5.4. RESOLUTION

Prove: loya!to(MWCI1s. Caesar)

.k,Ya1tcy(/i1aTCUS Caesar)

Morcas/ss

3	 Rornan(MflT(US) V hare'(MarCUS.0 aesfTr)

_-	 Marcu.c/x

—Pompean(MarcUS) V haret%farcUS CaeSar) 	 2

haz#Marrus, Caesar)

a)

hate(MarcuS, Caesar)	 ID
-

-....	 Marciis/xv,. Caesar/ya

pereciiJe(CaeSur. Marcus) 	 9

marcusIx.j, Caesar/y

hato,Marcus. Caesar)

(b)

Figure 510 An Unsuccessful Attempt at Resolution

9. persecure(x y) -# ha:e(y , x)

tO. haie(x, y) -9 perxeCuie(V, x)

Converting to clause form, we gel

9. -'pe:setite(xsy) V hae(y r)

10. h,e(x6,3)VpersecUte(yt.X6)

These statements enable the proof of Figure 5.10(a) to continue as shown in Fig-

ure 5.10(b). Now to detect that there is no contradiction we must discover that the only
resolvents that can be generated have been generated befocc In other words, Although
we can generate resci1vents, we can generate no new ones.

15	 p"j	 yfp; Pf)/''' LOiC

s V

ti.e.,fa!ne'tt, tI -,	 ,or
2. -vi,other(t. y) 1 wonionly..

(i.e.. morher(.z. ' --) wu,r. 'ar)
i ,notJisrChris. Man)

RMI

-if/crc. Y)'/ --rnc;ie ' . v}

—f'oIi(I'liri. Mart

Figure	 1: ra± Need to Standardize Variables

Recall that the final step of the process of converting a set of formulas to clause form
was to siandardi,e apart the variables that aprai in the f 'tal clauses. Now that wc hasc
discussed the resolution procedure, we can see clearl y why this step is so inipvrlanc
Figure 5.11 show an example 01 the difficulty that ma arise if standardization is i1O

done. Because the variable y occurs in horn clause I and clause 2, the suhstittcio L at the
second resolution step produces a clause that is too restricted and so does not lead ti the
contradiction that is present in the database. !f, instead, the clause

'fitht'r(Chriv, v)

had been produced, the contradiction with clause 4 would have emerged. This 'ouId
have happened ifclause 2 had been rewritten as

Ifl(ther(a. h) V Hcman(a)

In its pure form. resolution requires all the knowledge it uses to be rcprescr.ted in
the lorto of clauses. But as we pointed out in Section 5.3. it is ul'tii more efficient t
represent certain kinds of information in the form of coniputabte function .-, computable
predicates, and cqua!ily relat i onships. It is not hard to augment resolution c handle this
soil of knoviedge Figure 5 I .' shows a resolution proof of the statement

-'aIive(Ma#i'.c, row)

.	 (IT/ON

Axioms tu clue tI)mt

1. pitM.'.

2.

3. bJIr 1lla 11, . 401

* 74

Iiapecdo r'? 	 1).79

-	 rV	 t)5'/dtid . '

-= I9!

9a	 -. aIiie.* . r) V - 'deadL_. i

'b.	 ko,I *;c, 14 V ahii. *4

O.	 - iJ(.*&. 15) V	 gI	 $) I	 (.:•

Pro * ; uIi v .''ifurcu

• *'fai, ui. ,**1I•1

War? JAr1' V4 *1*1W/I.

-'JeaJi(Maru. *11W)	 I

-. .-	 Mur**. /1. lieu !îñ
. -

V - ((r0 * .. 15 1

.P * napeiank t1*' i ils) 1	 f(fli).i. •19)

	

-	 ..u ps(jtUte eq*i;ilr

	

-' P *,npian(A 4a1(ILI) v -.	 I 1)1)	 7(J)

-P1 flJ/*t'Ul?7(1i4*jtt Ut I	 -

12- Using Re.suu;i*,i* w*ih Equ3)lty and Red%!s .

160	 LIPISP'TER . USING PREL)ICA1F LOGIC

based on the statenicnt given in Section 5.3. We have added t'.o	 iaaerating
new clauses, in addition to the resohtion rule:

a Substitution of one value for another to which it is equal.

Reduction of computable predicates. If the predicate evaluates to FALSE, i can
simpl y be dropped, since adding V FALSE to a disjunction cannot change its truth
value, lithe predicate evaluates toTRUE, then the generated clause is a tautology
and cannot lead to a contradiction,

5.4.6 The Need to Try Several Substitutions

Resolution provides a very good way of finding a refutation proof without actually trying
all the substitutions that llerbrand's theorem suggests might be occessary. But it d&ie
not always eliminate the necessity of trying more thaii one substitution. For example.
suppose we know, in addition to the statements iii Section 5.1, that

ha:e(Marcu.s, Paulus)
hate(Marcus, Julian)

Now if we want to prove that Marcus hates some ruler, we would be likely to
try each substitution shown in Figure 5.13(a) arid (b) before finding the contradiction
shown in (c). Sometimes there is no way short of very good luck to avoid trying several
substitutions.

5.4.7 Question Answering

Very early in the history of Al it was realized that theorem-proving techniques could
be applied to the problem of answering questions. As we have already suggested,
this seems natural since both deriving theorems from axioms and deriving new facts
(answers) from old facts employ the process of deduction. We have already shown
how resolution can be used to answer yes-no questions, such as "Is Marcus alive?" In
this section, we show how resolution can be used to arisver fll!-in-the-blank questions,
such as "When did Marcus die?" or 'Who tried to assassinate a ruler?' Answering
these questions involves finding a known statement that matches the terms given in the
question and then tesponding with another piece of that same statement that fills the
slot demanded by the question. For example, to answer the question 'When did Marcus
die?" we need a statement of the form

died(Moreus, ?)

with '? actually tilled in by some particular year. So, since we can prove the statement

died(Marcus, 79)

•

we can respond with the answer 79.
It turns out that the resolution procedure provides an easy way of locating just the

statement we need and finding a proof for it. Let's continue with the example questior,

5.4 REOLUTJON
	 161

Pruve:	 #Iafr(MQrLUS,X) I ruCt1
)nateV	 -'it h' e(Marcus.x)'Uie

(cIusity').	 -hau'(MaTes4s.x) V -'r'er(

-'hai'(Miii u.'x) V -,m.rtt)	 hiiie(Marcu. Pauu.i

-	 Pauiiis/ r

-','4le,(Pa4,!I1.c)

(a)

—haIe(Marc!ic.*) V -.ru1er(.s	 hate(MarcusJu!W'T.I

-JuIian/

-hafr(Mai t us. X) V --.,idei (.o	 haieMw t ws. Caesar)

—ruIer(Caesar)	 ru!eriCaesai}

(C)

Figure 5.13: Trying Several Substitutions

162	 CHAPTER 5. USING PREDJCATF LOGIC

"When did Marcus die?" In order to be able to answer this question, it must first be true
that Marcus died. Thus it must be the case that

z: died(Marc-ust)

A reasonable first step iheti might be to try to prove this. To do so using resolution, we
attempt to show that

died(Mnrc u.c. 1)

produces a contradiction. What does it mean for that statement to produce a contradic
tion? Either it conflicts with a statement of the form

Vt - died(Muj)-cuy t)

where t is a variable, in which case we can either answer the question by reporting that
there are many times at which Marcus died, or we can simply pick one such tone and
respond with it. The other possibility is that we produce a contradiction with one or
more specific statements of the form

(!ifd(MIIrUUS date)

tor some specific value of doze. Whatever value of date we use in producing that
contradiction is the answer we want. The value that proves that there is a value (and
thus the inconsistency of the statement that there is no such value) is exactl y the value
we want.

Figure 5. 14(a) shows how the resolution process finds the statement for which we are
looking, the answer to the quest ion can then be derived from the chain of unifications
that lead back to the starting clause. We can eliminate the necessity for this final step
by addin g an additional expression to the one we are going to use to tr y to find a
contradiction. This new expression will simply be the one we ar trying to prove true
(i.e., it will be the negation of the expression that is actuall y used in iihe resolution). We
can tag it with a special marker so that it will not interfere with the resolution process,
un the figure, it is underlined.) It will just get carried along. but each time unification
is done, the variables in this dummy expression will be bOLJIICt jn't as are the ones in the
clauses that are actively being used. Instead of terminating on reaching the nil clause, the
resolution procedure will terminate when all that is left is the dummy expression. The
bitdings of its variables at that point provide the answer to the question. Figure 5.14(h)
shows how this process produces an answer to our question.

Unfortunately, given a particular representation of the facts in a system, there will
usuall y be some questions that cannot be answered using this mechanism. For example.
suppose that we want to answer the question "What happened in 79 Al) '' using
the statements in Section 5.3. lit order to answer the. question. we teed to prove that
something happened in 79. We need to prove

x: evenr(x, 79)

5.4. RESOLUTiON
	 163

-it: died(MarCu51) -.thrd(Manu.fl

-' P.ip'tan(.i) v ied(ii. Ni	 J;ed(.%1cocis, r

- 79/:. M)-r4/

Po, 1 tj.,t{Mo 4S)

(o)

- Po.'np'iun(it V died(xi. 79)

-..	 -	 79/,.Marci4i/x

-Pornpeian(%lai cust V dii'd(Mwcu3, 79

/

thed(Marcus. 79)

(ii,)

Figure 5.14: Answer Extraction Usin g Resolution

and to discover a value for t But we do not have any statements of the form event(x. v).
We can, howcvci, alower the question if we change our representation. Inste-id of

say in?

er:ipted(volcano , 79)

we can cay

event(erupred(valcaiio). 79:

Then the simple proof shown in Figure 5.15 enables us to answer the question.
This new representation has the drawback that it is more complex than the old one.

And it still does not make it possible to answer all conceivable questions. In general.

it is necessary to decide on the kinds of questions
that will be asked and to design a

representation appropriate for those questions

CHAPTER 5. USING PREDIC4Tb. LOGf(

'-'even1i. 79 V event(x, 79)	 t i'entru,,Ied(i .'ilc a,w). 79

erupleil(tokanhi)/.s

eietit(erupted(iolco,io,_79))

Figure 5.15: Using the New Representation

Of course, yes-no and fill-in-the-blank questions are not the only kinds one could
ask. For example. we might ask how to do something. So we have not yet completely
solved the problem of question answering. In later chapters, we discuss some other
methods for answering a variety of questions. Some of them exploit resolution; others
do not.

55 Natural Deduction

In the last section, we introduced resolution as an easily impleroentsblc proof proce-
dure that relies for its simplicity on a uniform representation of the statements it uses.
unfortunately, uniformit y has its price— everything looks the same. Since everything
looks the same, there is no easy way to select those statements that are the most likely to
be useful in solving a particular problem. In converting everything to clause form, we
often lose valuable heuristic information that is contained in the original representation
of the facts. For example. suppose we believe that all judges who are not crooked are
well-educated, which can be represented as

Vs : judge(r) A -'crooked(x) -4 educated(x)

In this form, the statement suggests a way of dedi.icng that someone is educated. But
when the sante statement is converted to clause form.

-judge(s) V t-rooked(4 V edwuzed(x)

it appears also to be a way of deducing that someone is not a judge by showing that he
is not crooked and not educated. Of course, in a logical sense, it is. But it is almost
certainly not the best way, or even a very good way, to go about showing that someone
is not a Judge. The heuristic information contained in the original statement has been
lost in the transformation.

Another problem with the use of resolution as the basis 'f a theorem-proving system
is that people do not think in resolution. ilius it is very difficult for a person to interact
with a resolution theorem prover, either to give it advice or to be given advice by it. Since
proving very hard things is something that computers still do poorly, it is important from
a practical standpoint that such interaction be possible. To facilitate it, we arc foiced to
look for a way of doing machine theorem proving that corresponds more closely to the

6 SuMMARY

processes used in human thcorciu prostg We re tiius led I L I wli.ii w' cal, irrostlY t'

definition, natural dvduciioti.
Natural deduction is not a precise term. Rather it deccribcS a melange of techniques.

used in combination to solve problems that tie 'tOt tracd,le by any one method alone
One common technique is to arrange knoledgc. not by prdiates, a we base bcct
doing but rather by the objects involvcd in the predt. i's. Some techniques or doing
this are iiesciibesl in Chapter cl. Anotlte technique is i. a ser of r'WI lie rule:. tiit(

not onl y deserthe l,gied I mpi teat ions but :uiso suggest the way that tinise
I rnpttetu i ions

can be CXpIOIZed in proofs.
For a good sut'y of the variety of lcch'uiqucs that can he e'ploited in a natural

deduction system. see Bledsoe19771. Althoigh the empaSis in that papet is on
proving mathematical theorems. many of tli ideas in it can he applied to a varietY
of domains in which it is necessar) to deduce ri,.'w statements from known ones. For
another discussion of thenieni proving using natural mechanisms. see Boyer and Moore
119881, which describes a system lot reasoning about programs In places particular
emphasis on the use-of mathematical induction as a proof techniqut.

5.6 Summary
In this chapter we showed how prcdicate logic can be used as the basis ol a technique tor
kiio hedge reptesentation. We also discussed a problem-solving technique, resolution.
that can be applied when knowledge is represented in this wa y. The resolution procedilic

is not guaranteed to halt if given a nontheorern to prove. But is it gtianantec(l in halt
and find a contradiction if one exists! This is called the completeness question. In the

form in which we have presented the algorithm. the answer to this question is no. Some
small changes, usually not implemented in theorem proving systems. .iiusl be made to
guarantee completeness. But, l'roni a computational point of view, completeness is not
the only important question instead, we must ask whether a proof can be found in the
limited amount of tinie that is available. 'there are two ways to approach achieving
this computational goal. The first is to search for good heuristics that can inform a
theorem-proving program. Current theorem-proving research attempts to do this. The
other approach is to change not the program but the data given to the program. In this
approach. we recognize that a knowledge base that is just a list of logical assertions
possesses no structure. Suppose an information bearing structure could be imposed on
such a knowledge base. Then that additional Inlorniattoii could be used to guide the
program that uses the knowledge. such a progreuti may not look lot like a theorem
plover. although it will still be a knowledge-based problem s1ver. We discuss this idea

further in Chapter 9.
A second difficulty with the use of theorem proving in Al s'stC1os is that there are

some kinds of information that are not easily represented in predicate logic. Consider

the following examples:

• "It is very hot today' How can relative degrees of 11c,11 be tepreseiited?

• "Blond-haired people often have blue eyes." How can the amount of certainty be

represented?

166	 CHAPTER 5 USING PREI)!CATE I.O(1/C

• "If there is no evidence to the contrary, assume that any adult you med koo.s
how to read." how can we represent that one fact should he inferrdtl fiuni the
absence of another?

• it's better to have more pieces on the board than the opponent has." Hov an we
represent this kind of heuristic information?

• "I know Bill thinks the Giants will win, but I think they are going to lose.' Flow
can several different belief systems be represented at once?

These examples suggest issues in knowledge representation th3t Ae have not yet
satisfactorily addressed. T hey dent primarily with the need to make do with a knowledge
base that is incomplete, although other problems also exist, such as the difficulty of
representing continuous phenomena in a discrete system. Some solutions to these
problems are presented in the remaining chapters in this part of the hook.

5.7 Exercises.

1. Using facts I 9 of Section 5. 1, answer the question, "Did Marcus hate Caesar?'

2. In Section 5.3, we showed that given our facts, there were two ways to prove the
statement 'alis'e(Marcus, now). In Figure 5.12 a resolution proof corresponding
to one of those methods is shown. Use resolution to derive anothei proof of th
statement using the other chain of reasoning.

3. Trace the operation of the unification algorithm on each of the following pairs of
literals:

(a) f(P.hrco.r) andj((.'aesar)

(b) f(x) and J(y))

(c) f(Mnrcus, g(-x, y)) andfix, g(Carsar, Alan us))

4. Consider the following sentences:

• John likes all kinds of food.

• Apples are food.

• Chicken is food.

• Anything anyone eats and isn't killed by is food.

• Bill eats peanuts and is still alive.

• Sue cats everything Bill eats.

(a) Translate these sentences into formular in predicate logic.

(b) Prove that John likes peanuts using backward chaining.

fc) Convert the formulas of pars a into clause form.

(d) Prove that John likes peanuts using resolution.

167
5.7. EXERCISES

(c)
Use resolution to answer tcquestion, "What food does Sue eat?

5. Consider the following facts:

• The members of the Elm St, Bridge Club are Joe. Sally, Bill, and Ellen.

• Joe is married to Sally.

• 1II1 i s Ellen's brother.

• The SpOUSe of every irtairied person i n the club is also in the club.

• The last meeting of the club was at Joe's houe.

(a) Represent these facts in predicate logic.

(b) From the facts given above, most people would he ab te to decide on the

truth of the following additional statements:

• The last meeting of the club was at Sally's house.

• Ellen is not married.

Can you construct resolution proofs to demonstrate the truth of cacti of these
statements given the five facts listed above? Do so if possible. Otherwise.
add the facts you need and then con struck the proofs.

6, Assume the following facts:

• Steve only likes easy courses.

• Science courses are hard.

• All the COUISCS in the basketweavifig department are easy.

• BK30I is a hasketweavilig course.

Use resolution to answer the question, 'What, course would Steve like?"

7. in Section 5.4.7. we answered the question. "When did Marcus die?" by using
resolution to show that there was a time when Marcus died. Using the facts given

in Figure 5.4, and the additional fact

dead(.z.ti) -	 : gt(ti.r:) Adtd(X.ti)

there is another way to show that there wa a tone when Marcus died.

(a) Do a resolution proof of this other chain of reasoning.

(b) What answer will this proof give to the question. "When did Marcus die?"

8. Suppose that we are attempting to resolve the following clauses

doves(futher(a). a)
Ioves(y. v) V Ioves(.s. v)

(a) What will be the result of the unification algorithm when applied to clause

I and the first term of clause 2?

(b) What must be generated as a rult of resolving these two clauses'

168
CHAPTER 5. USING PREI)JCTE LOGIC

(c) What does this example show about the order in which the SUhStjtULOnS
determined by the unification procedure must be performed?

9. Suppose you are given the following facts:
Vx, y , z : t(r. y) A gi(y, z) —f gf r. z)
1a.h :wcc(a,h)—,((ab)
Vt : -'gz(r,x)

You want to prove that

gl(5,2)

Consider the following attempt at a resolution proof:

-'05, 2)	 -'gl(xy) V gf(y,z) V gzjx.z)

5/.r, 21z

1945 , y) V -'gs(y. 2)	 'SuCc(a, 1') V gi(a, h)

y/a,2/b

-'910 y) V -'succ(y,2)	 -'gt(x.y) V -'gr(y. z) V 81(1,)

t. v/!

-gi(, y) V -'g((y , y) V -'succv.2)

I

(a) What went wrong?

(h) What p rs to be added to the resolution procedure to make sure that thisdoes not happen?

10. the answer to the last problem sugpests that the unification procedure could
ne simplified by omitting the check that prevents r and fix) from being unitiedtogether (the occur check). Thiashould be possible since no two clauses will ever
snare v ariables If x occurs in one, f(x) cannot occur in another. But suppose
the unification procedure is given the follov.ng two clausc (n the notation ofSection 5.4.4):

p(.r,fix))
p(Aa), a)

Trace the execution of the procedure. What doe, ihs example Thow about the
need for the occur check?

Il What is wrong with the following argumcnt Illenle. 1965j?

• Men are widely distributed over the earth.
e Socrates is a man.

5 . 7 . EXERCISF,S
	 169

. Therefore Socrates is widely distributed over the earTh.

how should the facts represented by thcse sentences be rcp:cserited in logic so

that this problem does not anse

12. Consider all the facts about baseball that are represented in the slot -and-tilier

stlucturr of Figure 4.5. Repicsent those same facts as a set of assertions in
predicate logic. Slìov how the iritererices that were deiiveil front that knowledge
in Section 4.2 can be derived using logical dtdu.tion.

13. What problems would he encountered in attempting to represent the following
,tatemcnts in predicate logic! It shouhO be possible to deduce ',ti 1iah statement

horn the others.

• John only likes to see French movies. 	 -

• It's safe to assume a movie is American unless explicitly told otherwise

•The Playhouse rarely shows foreign films.

• People don't do things that will cause them to be in situations that they don't

like.

• John doesn't go to the Playhouse very often.

Chapter 6

Representing Knowledge Using

Rules

In this chaplet. *e discuss the usc of rules to encode know ledge. This a particularly
important vowe siiicc tuk-based reasoning systems have pla yed a very important role

in the evolut ion of Al from it purely laboratory science into it commercially significant

one as Vve see later in Chapter 20.
We have already talked about rules as the basis for a search pn.igtam. But we gvc

little consideration to the way knowledge about the world was represented in the rules
(although we can sec a simple example of this in Section 4.2). in pariLCillar, we
beeti assunilog that search control knowledge was maintained completely separately
from the rules heiiiselses We will now relax that assumption and consider a set of
rules to represent both knowledge about relationships in the world, as well as knowledge
about how to solve problems using the content of the rules

6.1 Procedural versus Declarative Knowledge

Since our discuissioti of knowledge representation ha concentrated s o fat on the use

of logical assertions, we use logic as a starting point in our discussion of rule based

systems.
In the previous chapter, we viewed logical assertions as declarative representations

of knowledge. A th'darahrue reprcsentuif 1cm is one in which knowledge is specified.

but the use to A hich that knowledge is to be put is not given. To use a dclaraiie
representation, we must augment it with a program that specifies what is to be done
to the knowledge and how. For example, a set of logical assertions can be combined
with a resolution theorem prover to give a complete program for solving problems.
There is a different way. though, in which logical asseiluons can he viewed, namely as

a program. i ather than as data to a program. In this view, the implication statements

define ti le legitimate reasoning paths and the atomic assertions provide the starting
points (or. if we reason backward, the ending points) of those paths These reasnniiug
paths define tlue possible execution paths of the program in much the same way that

traditional control constricts, such as ;f_then-cLue. detinc the excuItiofl paths through

172	 CHAPTER 6. REPRESENTING KNOV'LEDGF USING RULES

traditional programs. In other words, we could view logical asser!ot1s as procedural
representations of knowledge. A procedural representation is one in vhich the control
information that is necessary to use the knowledge is considered to be embedded in the
tuiowledgc itself. To use a procedural representation, we need in augment it with an
interpreter that follows the instructions given iii the knowledge

Actually, viewing logical assertion, ev, crick is not a very radical idea, given th4J all
prograiris are really data to other programs that interpret (or compile) and execute them.
The real difference between the declaratise and the prueeilurai views of krinvlcdgc ites
in where control information resides. For example, consider the knowledge base:

,non(Mw (-us)
man(Cuear)
person(Cleopatra)
Vx : man(x) -4 person(x)

Now consider try ing to extract from this knowledge base the answer to the question

Jy : person(y)

We want to bind y to a particular value for which person is true. Our knowler1 ge base
justifies any of the following answers:

y Marcus
y = Caesar
y = Cleopatra

Because there is more than one value that satisfies the predicate. but only one value is
needed, the answer to the quostion will depend on the order in which the assertions are
examined during the search for a response. If we view the assertions as declarative,
then they do not themselves ciy anything about how they will be examined. If we view
them as procedural, then they do. Of course, normdeterministc programs are pusibIe-
fom example, the concurrent and parallel programming constructs described in lJijkstra
11976], Hoare Ll98j, and Chandy and Misral 19891. So, we could vtew these assertions
as a nondetermimstic program whose output is rmmphy not defined, If we do this, then
we have a "procedural' representation that actually contains no more information Ihamm
does the "declarative" form. But nlost.systen's that vw knowl.c as procedural do
not do this. The reason for this is that. at lcsi ii the procedure is to execute on arty
sequential or on mitost existing parallel machines, some decision must öe made about
the order in which the assertions will be examined. There is no hardware support for
randomness. So if the Interpreter must nave a way of deciding, there is no real reason
not to specify it as part of the definition of the language and thus to define the meaning of
any particular program in the language. For example, we might spccfy that assertions
Will be xarnincd in the order in which they appear in the program and that search will

proceed depth-first. by which we mean that if a new subgoal is established men it will
be pursued immediately and othm paths will only be examined if the new one fails. if
we do that, then the assertions we gave above descirbe a program that will answer our
question with

6.2. WGIC PROGRAMMING
	

17.•

y = Cleopatra

To see clearly the d i fference between declarative and puicedural reprcsertatiOfl:,

consider the following assertions.

man(Marcus)
man(Caesar)
VI man Is I , per.sont .$)
per."ont Cleopatra)

Viewed declaratively, this is the same knowledge base that we had before. All the
same answets are supported by the s ystem and no one of them is explicitly selecteel.
But viewed procedurally, and using the control model we used to get Cleopatma as our
answer before, this is a different Lnowledgc base since now the answer to our qustiotI
is Marcus. This happens because the first statement that can achieve the person goat is

the inference rule V.r ,nun(.e) - pr.'rsan(r). 'l'his rule sets up a subgoal to hid a man.
Again the statements ate examined front the beginning and now Marcus is found to
satisfy the subgoal and thus also the goal. Si) Marcus is reported as the answer.

Ii is important to keep in mind that although we have said that a procedural rep-
resentation encodes control information in the knowledge base, it does so only to the
extent that the interpreter for the knowledge base recognizes that control tntoiiiiattoji.
So we could have gotten a different answer to the prison question by leaving ouioriginal
knowledge base intact and changing the iiitemprelrr so that it examines statements from
last to first (but still pursuing depth-first search). Following this control regime, we
report Caesar as our ai)SWeI.

There has been a great deal of controversy in Al over whether declarative or proce-
duiai knowledge representation frameworks are better. l'herc is no clearcut answer to
the question. As you can see from this discussion, the distinction between the two fnrtns
is often very fuzzy. Rather than try to answer the question iif which approach is better.
what we do in the rest of this chapter is to describe ways iii which rule formalisms and
interpreters can be combined to solve J)rohleinS. We begin with a mechanism called ki'u
prnramm:ng. and then we consider more flexible structures for rule-based systems

6.2 Logic Programming

Logic programming is a prugrammng language paradigm in which logical assertions
are viewed as programs, as described in the previous section There are several logic
programming system.,; ir, use today, the most popular of which is PROLOG ICtocksin
and Mellish. 1984, Braiko, 19861 A PROLOG program is described as a series of
logical assertions, each of which is a Horn clause.' A l4orn clause s a clause as defined
in Section 5.4. 1) that has at most one positive literal. 'ihus p. —p V q. and p - q are
all Horn clause.. The last of these does not took like a clause and it appears to have
two positive literals. But recall from Section 5.4.1 that an	 oss liicat explession can be
converted to clause form. 11 we do that for this esample. the resulting clause is -p '\l q

4 Pmgrarns riticn in pure PROLO(ai OT.mpucell only of Horn cIaucs. I'ROI.(Xi. zs an a'rnat

;rwlrnhiit binuait. however. :lIinws Jtp:Inhlfe (mm Hon. ClaIisC.I. In lie rçst of mho aetien, c iimtm ou.
discus'-.on 10 pure PROLOG

174	 CI IAPTER ó. REPRESENTiNG KNOWLEDGE LISIW; RUiXS

pet(.t) A small(x) -* apar1rne,trpeE(.)
Vx : cat(x) v dog(x) -* pet(x)
Vx : poodle(x) -> dog(x)1 srnall(x)
pr)Odh(flUJJv)

A Representation in Logic

api-rtrnentpet (XI	 - pot (X)	 1(X)
pet(X)	 '-ar(X).
pet IX) :- dug (X).
dog(X) :- poocii(X(
small(X) :- poodle(X):
c.d1o(f11ufy)

A Representation in PROLOG

Figure 6.1: A Declarative and a Procedura Representation

which is a well formed Horn clause. As we w11 see below, when Horn clauses are
Written in PROLOG programs, they actually look more like the form we started with (an
implication with at most one literal on the right of the implication sign) than the clause
loon we just produced. Sonic examples of PROLOG Horn clauses appear below.

The fact that PROLOG piugrLirns are citiii1ioscd only of Horn clauses and not of
arbitrary logical expressions has two oliportatu consequences. The first is that because
of the uniform representation a s rn p lc and thcierit interpreter can be written Ttic
second consequence is even more important. The logic of Horn clause sv:;telns is
dr'ciclahle unlike that of full first order predicate logic.

The control structure that is imposed on a PROLOG program by the PROLO(i
ituerpi-eter is the same one we used at the be g inning of this chapter to find the :tiswers
Cleopatra and Marcus. The Input to it program is a goal t:' be proved. Backward
reasoning is applied to try to prove the goal given he asse y 6on, in the piogitni The
program is read top to bottom, left to right and search is performed depth-first with
backtracking.

Figure 6.1 shows an example of a simple kr'wlcdge base represented in stiiiLirt1
ogical notation and then in PROLOG. Both of these representations contain two types

of statements, fatIs, which contain only constants (i.e.. no variablel and ,ules, which
do contain variables. Fiwls represent statemc;oc about specific objects. Rules represent
statements about classes of objects.

Notice that there are several superfictal, syntactic diflercnces between the logic and
the PROLOG representations, including:

I. In logic, vanables are explicitly quantified. In PROLOG, quantification is pro-
vided implicitly by the way the variables are interpreted (see below). '[be dioinc
tion betweer' eariables and constants-is made in PROLOG by hasine all variables

175
ct.2. W,i pRO(X4MMIN(3

begin with upper caselett ers and all constants begin with lowet case letters or

numbers.

2. In logic, there are explicit symbols for and A) and or M. In PROLOC, the re is

an explicit symbol for and U. but there is none for or. Instead, disjunction must

be represented as a list of alternative staten1eflt any one of which may provide

thi. hasis for," coItcltISiCiil

3. Lii lueic inip1t:a('0fls Of the tornip imptiesq" ale written s p) q. In PROLOC.,

the same implication is written 'backward.' as o This form is natura'

in PROLO(i because the interpreter alway s works tadward. from a goal. and

miS
form causes every rule to begin with the component that must therefore I-c

matched first This first component is cllcd he head of the rule.

The first two of these differences arise naturally from the fact that PROLOG programs

are actually sets of Horn clauses that have been transformed as toIlowS

1.
If the horn clause contains ito negative literals (i r.. it contains a single literal

which is nositive, then leave it as it is.

2.
Otherwise, rewrite the Horn clause as an implication, combining all of the negative
literals into the antecedent of the implication and leaving the single positi

v
e literal

(if there is one) as the consequent.

This procedure causes a clause, which originally consisted of a disjunction of literal'.

(all bitt one of whit.). were negative), to be transfonned into a single
implication whose

antecedent is a conjunction of (what are now positive) literals. Further, recall that in
a clause, all variabIcs are implicitly universally quantified. But, when we appl this

transformation (which essentially inverts several steps ot the procedure we gave in

Section 5.4.1 for converting to clause fo rm). any variables that occurred in negative

literals and so now occur in the antecedent become existentially quantified, while the
variables in the consequent 0he head) are still universally quantified Fin example. the

PRQI.Ofl clause

c (':)	 :- Q(x, y)

is equivalent Lu the logical exp;essiO'

Q(r. y)

A key djference between iogic and the PPOLOG reprecentaitO r' ,that tli PRO[-06

interpreter has a fixed control strategy, and so the assert ions in the PROLOG program
define a particular search path to an answer to an question. to contrast the 10g4 al
assertions define only the set of answers that they justily; they thcmscIVeS say nothing
about how to choose among those answers if there are more than one

The basic PROLOG control strategy outlined above is simple. Begin with a probknl
statement, which is viewed as a goal to be proved. Look tot assertiOflS that can prove
the goal. Consider facts, which prove the goal directly, and also c,,nsider any rule
whose head matches the goal. To decide whether a fact or a rule can be applied to the

176	 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

current problem, invoice a standard unification procedure (recall Section 5.4.4). Reason
backward from that goal until a path is found that terminates with assertions in the
program. Consider paths using a depth-first search strategy and rising backtracking. At
each choice point, consider options in the order in which they appear in thepiogram.
If a goal has more than one conjunctive part, prove the parts in the order in which they
appear, propagating variable bindings as they are determined during unification. We
can illustrate this strategy with a simple example.

Suppose the problem we are given is to find a value of X that satisfies the predicate
r p nt pt (X). We state this goal to PROLOG as

- apartinertcet (X)

Think 01 this as the input to the program. The PROLOG, interpreter begins looking
for a fact with the predicate apartnientpet or a rule with that predicate a its head.
Usually PROLOG programs arc written with the facts containing a given predicate
coining before the rules for that predicate so that the facts can be used inirncdiaiely
if they are appropriate and the rules will only be used when the desired fact is not
immediatel y available. In this example, there are no facts with this predicate, though, so
the one rule there is must be used. Since the rule ' ill succeed if both of the clauses on
its right-hand side can be satisfied, the next thing tne oteipreter does is to try to prove
each of them. They will be tried in the order in which they appear. There are no facts
with the predicate pet but again there are rules with it on the right-hand side. But this
time there are two such rules, rather than one. All that is necessar y for a proof though is
that one of them succeed. They will be tried in the order in which they occur. The first
will fail because there are no assertions about the predicate ca in the progiani. The
second will eventually lead to success, usinf- the rule about dogs and poodles and using
the fact poodi (fluffy). This results in the variable X being bound to fluffy
Now the second ciause small (X) of the initial rule must be checked. Since X is now
bound to fluffy. the more specific goal. sniall (floffy). must he proved. This too
can be done by reasoning backward to the assertion ocdle (fluffy) The program
then halts with the result dp.r-c!r.rf p-. N .ffy)

Logical negation -) cannot be represented esplicitly in pure PROI.OJ. So, for
c'. ample, it is not possible to encode directly the logical assertion

dog(x) > —cat(x)

Instead, negation is represented implicitly by the lack of an nSscrtion. This !c.ids to
the prohlem-solving strategy called negathni osfc,thire [Clark. 1978]. If the PROI_(X
program of Figure 6.1 were given the goal

?- Cat(fluffy)

it would return FALSE because it is unable to prove that Fluffy is a cat. Unfortunately,
this program returns the same answer when given the goal

63. FORWARD VER(JS BACKWARD REASONING 	 171

even though the program knows nothing about Mittens and specifically knows nothing
that might prevent Mittens from being a cat. Negation by failure requires that we

make what is called the closed world ac.curnption. which states that all relevant. true

assertions arc contained in our knowledge base or are derivable from assernons that are

so contained. Any as
sertion that is not present can therefore be asSUiflC(l to ix false

This assumption, while olten Justificd, can cause serious problems when knowledge
bases are incomplete. We discuss this issue fini thor in (7h;nptci 7.

There is mach tosa'. on 'hetcipic ""PR(versus liSP-style pi inanffluir.

A great advantage (if lo gic progratTiriling is that the programmer need only SPL'CmI\ rute

iid facts since a search engine s built dir
ectlyinto the language. l'he di .adv a ntage is

hat the search scotrol is hat .Attf'otigh it is possible to write PROLOG, cd that use'

search strategies other than depth-first with backtracking. it 15 difficult it, do so. It is

even mor' difficult to 4,k, domain knowledge to eonstrdir a search. PROLOG'!ov,
allow for rudimentary control of search through a non-logical operator called cut. A cut

can be inserted into a rule to specify a Is n ili l that may not be backtracked over.

More generally, the fact thai PROLOG progranis must he conipossid of a restricted set
of logical inperalins cant he viewcJ as a limitation of the expressiveness of the language.
Tui the other side of the coin is that it is possible to build PROLOG compilers that

produce very efficient code.
in the rest of this chapten. we retain the rule-based nature of PROJ .00. but wt'

relax a number of PROLOG's dcsign constraints, leading to more flexible ru[e-hase

architectures,

6.3 Forward versus Backward Reasoning

The object ot' a search procedure is to discos er a path tl'rorigh a problem space front

initial configuration to a goat state. While PROLOG only seatches from .1 goal state

there are actually two directions in which such a search could proceei.

• Forward, troni the Start states

• Backward, front thc goal states

lIne production s"stein niodel of the search process provides on eas y way o f vii' log

forward anti hacf ward reasoning as ymmetrnc proces' es. Consider the i l ' leui of

solving a particular instance of the 8-pu/Lie. The rules to he used for sl rigthe puzzle

00 writtcfl as shown in I : igu 6.2. ('sing those niles we c'c.uld atten;rt to solve the

lu/	 sh nwn hack in Figure 2.12 ut one ol two ways

• Reason fn'nn'uiil finn; tint' in,toal .nt$tc's. Begin huililu g a nee oh move sequences

that might be solutions by starting with the initial c iitguration(s) at the root of

the tree. Gcneratc the next level of the tree b y finding all the rules whose left sides

match the root node and using their right sides to create the new configurations.
Ocoeraic the next level by taking each node generated at the previous level
and applying to it all of the rules whose left sides match it. Continue until a
configuration that matches the goal slate is generated

178	 CHAPTER 6, REPRESENTING KNOWLEDGE USING RULES

Assume the area.s of the tray are numbered:

U
Square I empty and Square 2 contains tile ,	 -9

Square 2 empty and Square I contains tiiC U

Square I empt y and Square i contains tile n
Square 4 empty and Square I contains tile n

Square 2 empty and Square I contains tih. n
Square I empty and Square 2 contains tile n

Figure 6.2: A Sample of the Rules for Solving the 8 Puzzle

• Reason backward from the goal states. Begin building a tree of move sequences
that might be solutions by starting with the goal configuration(s) at the root of the
tree. Generate the next level of the tree by finding all the rules whose right sides
rnalcn the root node. These are all the rules that, if only could apply theta,
would generate the state we want. Use the left side' of the rules to generate the
nodes at this second level of the tree. Generate the next level of the tree by takiii1
each node at the previous level and finding all the rules whose right sides inath
it. Then use the corresponding left sides to generate the new nodes. Continue
until a node that matches the initial state is generated. This method of reasoning
backward from the desired final state is often called gooi-dc:-dreasn:nj.

Notice that the same rules can be used both to reason forward from the initial state
and to reason backward from the goal state. To reason forward, the left sides (the
prccond'tions) are matched against the current state and the rignt sides (the esu Its) are
used to generate new nodes null the goal is reached. To reason backward, the right
sides are matched against the current node ant i the left sides sic used to generate new
nodes representing new goal states to be achieved. This continues until one of these
goal states is matched by an initial stale.

In the case of the 8-puzzle, it does not make much difference whether we reason
forward or backward: about the same number of paths will be explored in either case
But this is not always true. Depending on the topology of the problem space, it may be
significantly more efficient to search in one direction rather than the other.

Four factors influence the question of whether it is better to reason forward 01
backward:

• Are there more possible start stares or goal states? We would like to move from
the smaller set of stales In the largei (arid thus easier to find) act

63. FORWARD VERSUS BACKWARD RE.4SONING	
179

• Iii which direction is the. branching factor (i.e.. the average number of nodes that
can be reached directly from a single node) greater? We would like to proceed in

the direction with the tower branching factor.

• Will the program be asked to justify its reasoning process to a user? 11 so. it is

important to proceed in the direction that corresponds more dosely with the way

the user will think.

• What kind of event is going to trigger a problem-solving episode? If it is the
arrival of a new fact, forward reasoning makes sense. if it is a query to which a

response is desired, backward reasoning, is more natural.

A few examples make these issues clearer. It seems easier to drive from an unfamiliar
place home than from home to an unfamiliar place. Why is this? The branching factor is
roughly the same in both directions (unless one-way streets are laid out very strangely).
But for the purpose of finding our way around, there are many more locations that count
as being home than there are locations that count as the unfamiliar target place. Any
place from which we know how to get home can be considered as equivalent to home.
If we can get to any such place. we can get home easily. But in order to find a route from
where we are loan wmfar,iiliar place. we pretty much have to be already at the unfamiliar
place. So in going toward the unfamiliar place, we are aiming at a much smaller target
than in going home. This suggests that if our starting position is home and our goal
position is the unfamiliar place. we should plan our route by reasoning backward from

the unlamiliar place.
On the other hand, consider the problem of symbolic integration. The problem

•pace is the set of formulas, some of which contain integral expressions. The start state
is a particular formula containing some integral expression. The desired goal stale is
a formula that is equivalent to the initial one and that does not contain any integral
expressions. So we begin with a single easily identified start state and a huge number
of possible goal states. Thus to solve this problem. it is better to reason forward using
the rules for integration to try to generate an integral-tree expression than to start with
arbitrary integral-free expressions, use the rules for differentiation, and try to generate
the panicular integral we are trying to solve. Again we want to head toward the largest

target. this time that means chaining forward.
These two examples have illustrated the iriiportatwe f the mei.:ve number of start

states to goal states in determining the optimal direction iii which in cearch whon the
branching factor is approximately the same in both directions. V.ben the hrar.ching

factor is not the same, however, it must also be taker. into i court.
Consider again the problem of proving theorems in sortie partieilar domain ot

mathematics. Our goal state is the particular theorem to be proved. Our initial states
are normally a small set of axioms. Neither of these sets is significantly bigger than the
other. But consider the branching factor in each of the two directions. From a small

set of axioms we can deri
ve a very large number of theorems. On the other hand, this

large number of theorems must go back to the small set of axioms. So the branching

factor is significantly greater going forward from the axioms to the theorems than it is
going backward from theorems to axioms. This suggests that it would be much better
to reason backward when trying to prove theorems. Mathematicians have long realized

this [Polya, 1957. as have the desirners of theorem-proving programs.

180	 (:HAP'TER 6. REPRESENTING KNOWLEDGE USING Rtjjp

The third factor that determines the direction in which search should proceed is the
need to generate coherent justifications of the reasoning process as it proceeds. This is
often crucial for the acceptance of programs for the performance of very important tasks.
For example, doctors are unwilling to accept the advice of a diagnostic program that
cannot explain its reasoning to the doctors' satisfaction. This issue was of concern to the
designers of MYCIN [Shortliffe, 1976]. a program that diagnoses infectious diseases.
It reasons backward from its goal of determining the cause of a patient's illness. To
do that, it uses rules that tell it such things as "If the organism has the following set of
characteristics as determined by the lab results, then it is l ikely that it is organisni i."
By reasonin g backward using such rules, the program con arcwer quertions ike "Why
should I perform that test you just asked for?" with such answers as "Because it would
help to c!ctermine whether organism x is piesent" (For i dkcussicin - F the explanation
capabilities of MYCIN, see Chapter 20.)

Most of the search techniques described in Chapter 3 can be used iii search either
forward or backward. By desciihing the search process as the application of a set of
production rules, it is easy to describe the specific search algorithms without reference
to the direction of the search .2

We can also search both forward from the start state and backward from the goal
simultaneously until two paths meet somewhere in between. This strategy is called
bidirectional search. It seems appealing if the number of nodes at each step grows
exponentially with the number of steps that have been taken. Empirical results [Pohl.
1971] suggest that for blind seich, this divide-ond-conquer strategy is indeed effective.
Unfortunately, oilier lesUlts [Pohl, 1971: de Chainpeaux and Sint, 19771 suggest that
for inforn-Led, heuristic search it is much less likely to be so. Figure 6.3 shows why
bidirectional search may be ineffective. The two searches may pass ea :h other, resulting
in more work than it would have taken for one of them, on is own, to have finished.
However, if individual forward and backward steps are performed as specified by a
program that has been caiclully constructed to exploit each in exactly those situations
where it can be the most profitable, the results can be more encouraging In fact,
many successful Al applications have been written using a combination of forward and
backward reasoning, and most Al programming environments provide explicit support
for such hybrid reasoning.

Although in principle the same set of rules can be used for both forward and backward
reasoning, in practice it has proved useful to define two classes of rules, each of which
encodes a particular kind of knowledge.

Forward rules, which encode knowledge about how to respond to certain irupui
configurations.

• Backward rules, which encode knowledge about how to achieve particular goals.

By separating rules into these two classes, we essentially add to each rule an addi-
tional piece of information, namely how it should be used in problem solving. In the
neat three Sections, we describe in more detail the two kinds of rule systems and how
they can be combined

^OTIe escepl,un to this us the means-ends analysis technique, described in Section 11. which proceeds aoL
by making successive steps in a single direction Ni by reducing differences heiween the current and the goalstate-. and, as a result, sometimes reasoning backward and sorneuliles forwarul.

6J. FORWAkI) VERSUS BACKWARD RASO'.'IN(r 	
181

Stan State,
epiored

Figure 6.3: A Bad Use of Heuristic Bidirectional Search

63.1 Backward-Chaining Rule Systems

Backward-chaining rule sytems, of which PROLOG is an example, are good for goal

directed problem solving. For example. a query system would probably use backward
chaining to reason about and answer user questions.

In PROLOG, rules are restricted to Horn clauses. This allows for rapid indexing
because all of the rules for deducing a given fact share the same rule head. Rules are

matched with the unification procedure. Unification tries to find a set of bindings for

variables to equate i t (siib)goai with the head 01 some rule. Rules in a PROLOG program

are matched in the order in which they appear.
Other back ward- chain ia g systems allow for more complex rules. In MYCIN, for

example. rules can be augmented with probabilistic certainty factors to reflect the fact
that some rules are more reliable than others. We discuss this in more detail in Chapter 8.

6.3.2 Forward-Chaining Rule Systems

States

Instead of being dir-ctc-d by goals, we sometimes want to be directed by incornng data.
For exatliple, suppose you seiisc scaring heat near your hand. You are likely to jerk your
hand away. While this could be construed as goal-directed behavior, it is modeled more
naturally by the recognize-act cycle characteristic of forwardcha'ning rule systems. In

forward-chaining systems, left sides of rules are matched against the state description.
Rules that match dump their right-haid side assertions Into the state, and the prOceSS

repeats.
Matching is typically more coniptes for forward-chaining systems than backward

ones. Forexanip!e. consider a rule that checks for some condition in the state description
and then adds an assertion. After the rule fires, its conditions are probably still valid.

so it could fire again immediately. However, we will need some mechanism to prevent
repeated firings, especially if the state remains unchanged

While simple matching and control strategies arc possible, most forward-chaining

systems (e.g.. OPS5 [Brownston et al.. I 9f51) implement highly efficient niatchers and
supply several mechanisms for preferring one rule over another. We discuss matching

in more detail in the next seclion.

182	 CHAPTER 6. REPRF.SFNTING KNOWIEDE USING RULES

6.3.3 Combining Forward and Backward Reasoning

Sometimes certain aspects of a problem are best handled via forward chaining and other
aspects by backward chaining. Consider a forward-chaining medical diagnosis program.
It might accept twenty or so facts about a patient's condition, then forward chain on
those facts to try to deduce the nature and/or cause of the disease. Now suppose that
at some point, the left side of a rule was nearh' satisfied sa y, nine out of ten of its
preconditions were met. It might he efficient to apply backward reasoning to satisfythe
tenth peconditton in a directed manner, rather than wait fot forward chaining to supply
the fact by accident. Or perhaps the ienth condition requires further medical tests. Iii
that case, backward chaining can he used to query the uset.

Whether it is possible to use the same rules for both forward-and backward reasoning
also depends on the [unit of the rules themselves. If both left sides and ri ght sides contain
pure assertions, then forward chaining can match assertions on the left side of a rule and
add to the state description the assertions on the right side. But if arbitrary procedures
are allowed as the right sides of rules, then the rules will not be reversible. Some
production languages allow only reversible niles others do tint. When irreversible rules
are used, iheo a commitment to the direction of the search must be made at the time the
rules are written. But, as we suggested above, this is often a useful thing to do anyway
because it allows the rule writer to add control knowledge to the ruler , themselves.

6.4 Matching

So far, we have described the process otusing search to 'Oi e problems as the application
of appropriate rules to individual problem states to generate 'w slate. to which the rules
can then be applied, and so forth, until a solution is found. We have suggested that clever
search involves choosing from among the rules that can be applied at a particular point,
the ones that are most likel y to lead to a solution But we have said little about how we
extract from the entire collection of rules those that can be applied at a given point. To
do so requires some kind of matching between the current state and the preconditions of
the tuks. Uow should this be done? The answer In this q uestion can be critical to the
success of i t iule•bas'd system We discuss a few puonsals below

6.4.1 Indexing

One way to select apptitahlerulcs i'.toiloasimpk searh through all the rules, comparing
each one's preconditions to the urrcnt state and extracting all the ones that match. But
theic are two problems with tlis dmplc ototiOP

• In order to solve ver y interesting problems, it will be necessary to use a large
number of rules. Seaiiing through all of ilucuil at every step of the search would
be hopelessly inefticien'

• It is not always immediately obvious whether a rule's preconditions are satisfied
by a particular slate.

Sometimes there are easy ways to deal with the first of these problems. Instead of
searching through the rules, use the current state as an index into the rules and select the

a	 b c d	 e	 q	 S	 a

White
Figure 64: One Legal Chess Move

d	 e	 I	 U	 ti

White

Black
Black

A

6

5

4

3

6.4. MATCHING
183

white pawn at
Square(li!e e, rank 2)

AND
Suare(filc e, rank 3	

OVC pawn from

is empi)	
-	 Squaretlte e, rank 2)

to Square(fite c, rimk 4)
AI)

Squarc(6le c. ratik 4
is euliptv

Figure 6.5: Another Way it, Describe Chess Moves

matching DOeS immediately. For example, consider the legal-move generation rule for
chess shown in in Figure 6.4. To be able to access thc appropriate rules immediately,
all we need do is assign an mdcs to each board position. This car. be done simply

hr Ircalaig the board description as a large tiunibes. Aiiy reasuinihie hashing function
can then be used to treat that riunther as aniridr-x into the ruler All the rides that

describe a given board positii)i1 will be 5tored under the sam e- key and so will be found

togethet I 1ihitiLIIIately. this simple indesing scheme onl y works h_cau-e preconditions

oh rules iriattli exact board configurations. Thus the matching process is easy but
the price of complete lack of generality in the statement o the rules. As discu.s-.cJ

Section 2.1. it is often better to write rules in a rnorc genril form, such as that s1ius ii

in Figure h.. When this is done, such simple indexing is not ,c,s-,ihl. In tact, then'

is often a trade-off between the ease of writing 0111's (wfiih is ncrejsc(i by the use of

high-level descriptions) and the simplicity of the matching process (which is Llecre,t'-ed

by such descriptions)
All of thjisdoes not mean that indexiogcanno be heipi ult's CR WOOl tile precondition,

of rules are stated as fairy high-level predicates. In l'R{.)LOQ and many theoreim

proving systems, for example. rules are indexed b y the preilicatcs the) contain, so all the

ruhe c that could he applicable to proving a partietilas ¶,si Call be accessed family qiuicki>.

184	 CHAPTER 6. REPRESEN1 ING KNOWLEDGE USING R(./LE,S

In the chess example, rules can be indexed by pieces and their positions. Despite some
limitations of this approach, indexing in some form it very important in time eflicirrmi
operation of rule-based systems.

6.4.2 Matching with Variables

The problem of selecting applicable rules is made more difficult whe r t preconditions are
mint stated as exact (Jesci iptions of particular situations but rather describe properue, of
varying complexity) that the situations must have. It often turns out that discovering
whether there is a match between a particular situation and the preconditions of a given
rule must itself involve a significant search process.

If we want to match a single condition against a single clement in a stair description,
then the tmnificatiom i predume of Section 5.4 .4 will suffice. Howevr, in many rule-
based systems, we neel to compute the whole set of rules that march the current state
description. Backward-chaining systems usually use depth-first backtracking to select
individual rules, but forward-chaining systems generally emplo y sophisticated ianflrc:
•csnlutwn strategies to choose among the applicable rules.' While it is possible to apply
unification repeatedly over the cross product of preconditions and state description
elements, it is more efficient to consider the ma,rv-man y match problem, in which litany
rules are matched against many Clements iii the state description simoltartawt,y

One efficient many-many iriaiim algorithm is RETE. which gains efficiency from
three major sources:

The temporal nature of data. Rules usually do not jlirr the stale description
radically. Instead, a rule will typicall y add one om two elements, or perhaps delete
one or two, but most of the state description remains the same. (Recall our
discussion of this as part of our treatment of the frame problem in Section 4.4.1 If
a rule did not match in the previous cycle, it will most likely fail to apply in the
current c)cfe. REIT maintains a network of rule conditions, and it uses changes
in the state description to determine which new rules might apply (and which
rules n!!g!l! no longer apply) Full m;michina is onl y pursued for candidates that
could be affected by incoming or outgoing data

Structural simmiartis in rules. Different rules may share a large number of pre-
conditions. For example. consider rules for identifying wild animals. One rule
concludes /ai'uar(,() if rnammal(.u), fclmne(.r), carnlvorous(A), and has.Spols(x).
Another rule concludes tiger(s) and is identical to the first rule except that it
replaces /as-spots with ha.c-sttipes. If we match the two rules independently, we
will repeat a lot of work unnecessarily. RETE stores the rules so that they share
strut. (tires in memory: sets of conditions that appear in several rules are matched
(at most) once per cycle.

Persistence of variablebinding consistency. While all the individual preconditions
of a rule might be met, (here may be variable binding conflicts that prevent the
rule from firing. For example. Suppose we know the facts .son(Maiy .Joe) and
son(fJi/f, B(ib). The individual preconditions of the rule

Conflwt resolution is discussed in the "c', section

.4. MATCHING

.son(x,) A son(y.:) ---p grandparenh.k.)

can be matched, but not in a mannel that satisfies the constraint imposed h the

variable s'. Fortunately, it is riot necessary to compute binding consistency from
scratch every time a new condition is satisfied. RETE remembers its previous
calculations and is able to merge new binding information efficiently.

lor more details aboul the RETF. match algorithm. sCC l'Orgy 119821 . Other matching

algorthnis(e g . Mirai'kci[l97i alit1 Otla,cr 1l9871)take different stands on how much

time to spend oil saviii state irtforniatioii between c ycles. They can be more or less

tlicienit than RETE, depending on the t ypes of rules written for the domain and on the

degree of hardware parallelism available.

6.4.3 Complex and Approximate Matching

A more comples matching process is required when the preconditions of a rule specify
required propertcs that are not stated csplicitly iii the description of the current state.
In this case, a separate set of rules iiiusi he used to describe how SOIUC properties can he

inferred from others.
An even more complex matching process is required it rules should be applied if

theii preconditions apf)rOXtfliate)Y match the current situation This is often the case

in situations involving physical descriptions of the world. l'or example. a speech-
understanding program must contain rules that map Iron' a description of a physical

wavetorrfl to phones (instances of English phonemes, such as p or 1). There is so much

variability in the physical signal. as ;m result of background noise, differences in the
way individuals speak, and so forth, that one can hope to find only an approxtrnate
imiich between the rule that describes an ideal scund and the input that describes an
uniideitl world Approximate matching is particularly difficult to deal with because as we
jflcreasc the tolerance allowed in the match. we also inerca.w the number of rules th at will

match, thus increasing the site of the main search process. But appiosintate rn.miclung

mc nevertheless superior to exact matching in situations such as speech unders(anding.

where-exact matching may otteii result iii no rules being matched and the search process
coming to a grinding halt. Although symbolic techniques for approximate matching

exi st. there is another, very different approach that can be used to solve this problem.

We ,tiscmiss it iii detail in Chapter IS where we describe conriccitoflist systeiits false

called teural nets).	 -
for some problems, almost all the action is in the matching of the ruts to 11w

problem state. Once that is done, so few rules appl) that time rcniaiiimitg scam cli is iris mat

This was the case, for example. in EL.IZA tWeiiciihalim, 19661, an early Al program

thin 's;mulatcd the behavior of a Rogerian therapist. A fragment 01 a dialogue between

ELIZA and a user is shown in Figure 6.6. ELIZA's knowledge about both English and

psychology was coded in a set of simple rules. Figure 67 shows setTle ELIZA like

rLi-s.
ELIZA operated by matching the left sides of the rules against the users last 5CiiieFiLc

and using the appropriate right side to generate a response For example. if the user

typed "My brother is mean to me,' ELIZA might iespiid. "Vtmo else in sour famil)

is mean to you?" or "Tell me more about :o r fannil) . The iles were indexed by

keywords so only a few had actually io he matched against a particular sentence. Sonic

186	 CHAPTER 6 REPRESENTING KNOWLEDGE USING RULES

Person:	 Men are all alike.

ELIZA: in what way?
Person: They're always hugging us about something or other.
EL1ZA: Can you think of a specific example?
Person: Well, my boyfriend made me come hee.
El .17,A:	 'inhI hny friui made you come here
Person:	 He says I'm depressed much of the time.
FJ.IZA: I am sorry to hear you are depressed.
Person:	 It's true. I am unhappy.

EL1ZA: Do you think coming here will help you not to be unhappy?
Person:	 I need some help, that much seems certain.

ELIZA: What would it mean to you if you got some help?
Person:	 Perhaps I could learn to gel along with my mother.
I'LIZA: Tell inc more about your family.

Figure 6.6: A Bit of a Dialogue with ELIZA

kX inc Y)	 —f IX you Y)
(I remember X)	 —5 (Why do remember X just now?)
(My (family-member) is Y) -	 (Who else in your family s Y?)
(X family-member} '1)	 -	 (Tel! me more about your family)

Figure 6.7: Some EL(ZA-tike rules

of the rules had no left side, so the rule could apply an y where. These rules were used
if no other i tiles matched and they generated rcplic : ich as "Tell me more about that."
Notice that the rule thcnst-krs arise a form of approximate matching to occur. The
patterns ask about specific words In the user's sentence. lucy do not need to iiiatch
entire sentences. flitic a great variety of sentences cn be matched by a singic rule, and
the grammatical complexity of English is pretty much ignored. This accounts both for
ELILA\ major strength. its ability to say something fairly reantble almct all of the
timc. and its major weakness, the superficialily of its understanding and its ability to he
led completely astray. Approximate matchitie can easily lead to both these results.

As if the matching process were not already complicated enough, recall the franit
problem mentioned in Cliapter4. One way of dealing with tlw frame problem is to avoid
..toring entire state descriptions at each node but instead to store only the changes from
the previous node. If this is done, the matching process will have to be modified to scan
backward from a node through its predecessors. looking for the required objects.

i-i.4. MATCHiNG

6.4.4 Conflict Resolutiok.
The result of the matching process is ii list of rules whose antecedents have matched the
current state description along with whatever variable bindings were generated by the
matching process. It is the job of the search method to decide on the order in which
rules will be applied- But sometimes it is useful to incorporate some of that dcciion
making into the matching process. Ibis phase of the matching process is then called

conflict rCSo(UtiOfl.
There are three bask approaches to tire problem rift c.niliici n'solut!'!i in a production

system.

• Assign a preference based on the rule that matched.

• Assign a preference based on the objects that matched.

• Assign a 1*efrrrnce based out the action that the matched nile would perform.

Preferences Based on Rules

There are two common ways of assigning a preference based on the rules themselves.
The first. and sirimplesi. is u consider the rules to have been specified in a particular
order, such as the physical order in which they are presented to the system. Then
priority is given to the rules in the order in which they appear. This is the scheme used

in PROLOG.
The other coinmumi rule-directed preference scheme is to give priority to special case

rules over rules that are more general. We ran across this in Chapter 2, in the case of
the water jug problem of Figure 2.3. Recall that rules 11 and 12 were special cases of

rules 9 and 5. respectivel y Th purpose of such specific rules is to allow for the kind of
knowledge that expert problem solvers use when they solve problems directly, without
search If we consider all rule" that match, then the addition of such special-purpose
rules will increase the size of the search rather than decrease it. In order to prevent that,

we build the matcher so that it rejects rules that are more general than other rules that
also match. How can the matcher decide that one rule is more general than another?

1 here are a Few easy ways:

• if the set of preconditions of one rule contains all the preconditions of another
(plus some others), then the second rule is more general than the first.

• If the preconditions of one rule are the same as those of another excepi that ill the
first case variables are specified where in the second there are constants, then the

first rule is more general than the second

Preferences Based on Objects

Another way in which the matching process can ease the burden on the search mechanism
is to order the matches it finds based on the importance of the objects that are matched.

There axe a variety of ways this can happen. Consider again ELIZA. which matched
patterns against a user's sentence in order to find a rule to generate a reply. The patterns
looked for specific combinations of important keywords. Often an input sentence

188	 CHAPTER 6. REPRESENTING KNOWLEDGE (SING RULES

contained several of the keywords that ELI/A knew. If that happened, then ELIZA
made USC of the fact that some keywords had been marked as being more significant
than others. The pattern matcher returned the match involving the highest priority
ke ywoid. Fot example, FU7.A knew the word "I" as a keyword. Matching the input
sentence 'I know everybody laughed at me" by the keyword "I" would have enabled
it to respond, 'You say you know everybody laughed at you.' But EIiZA also knew
the word "everybody" as a keyword. Because "everybody" occurs more rarely than 1."
ELIZA knows it to he more semantically aignificaiit and thu, to be the clue to which
it should respond. So it will produce a response such as "Who in particular are you
thinking of?" Notice that priority matching such as this is particularly important it only
one of the choices will ever he tried. This was true for LLI/.A and would also be true.
say, for .i person who, when leaving a fast-hunting ro'ir, 111ut chow,- h e iween turr'ing
off the lights (normally a good thing to do) and grabbing the baby (a intie important
thing to do).

Another form of priority matching can occur as a function of the position of the
matchable objects in the current state description. For example. suppose we W331t to
model the behavior ot human short-term memory (S -IM), Rules can be matched against
the current contents of STM and then used to generate actions, such as producing output
to the environment or storing something in long-term meinoi-v. In this situation, we
might like to have the matcher first try to match against the objects that have most
recently entered STM and only compare against older elements if the newer elements
do not trigger a match, For a discussion of this method a conflict resolution strategy
in a production system, see Newell 1973].

Preferences Based on States

Suppose that there are several rules waiting to tire. Ont way of sclertmrmg unoiig them is
to tire all of them temporarily and to examine the results of each. Then, using a heuristic
function that can evaluate each of the resulting stales, compare the merits of the results.
and select the preferred one. Throw away (or maybe keep for later it necessary) the
remaining ones.

This approach should look familiar--it is identical to the best-first search procedure
we saw iii Chapter 3. Although conceptually this approach can he thought of as a
conflict resolution strategy. ml is usually inlplelllerite(I as a search control technique that
operates on top of the states generated by rule applications. The drawback to this design
is that LISP-coded search control knowledge is procedural and therefore difficult to
modify. Many Al search programs, especially ones that learn from their experience,
represant their control strategies declaratively. The next section describes some method,,,,
for capturing knowledge about control using rules.

63 Control Knowledge

A major theme of this book is that while intelligent programs require search, search is
computationally intractable unless it is constrained by knowledge about the world In
large knowledge bases that contain thousands of rules, the intractability of search is an
overriding concern. When there are many possible paths of reasoning, if is critical that

'. ..OiYTkOL ANOWLFDGE
	 IN

Under COdIL10flS f find B.
Rules that do {not I mention X

at all.
in their leli-hand side
in their right-hand side

will
{deliIteiy be usek.
probably be useless

probably be especiall y usefal
defin i tel y be especially useful}

Figure 6.8: Svriiax for a Control Rule (Davis, 19801

fruitless ones not be pursued- Knowledge about which paths are most likely to lead
quickly to a goal state is often called search control knowledge. It can take man y forms.

- Knowledge about which states are more preferable to others.

2. Knowledge about which rule to apply in a given situation.

3. Knowledge about the order in which to pursue subgoals.

4. Knowledge about useful sequences of rules to apply.

In Chapter 3. we saw how the first type of knowledge could be represented with
heuristic evaluation functions. There are many ways of representing the other types
of control knowledge For exampl, rules can be labeled and partitioned. A medical
diagnosis system might have one Set of rules for reasoning about bacteriological diseases
and another set for immunological diseases. If the system is trying to prove a particular
fact by backward chaining, it can probably eliminate one of the two rule sets, depending
on what the fact is. Another method IEtzioni. 19891 is to assign cost and probability-
of-success measures to rules. The problem solver caii then use probabilistic decision
analysis to choose a cos: effective alteniative at enJi point in the search.

By now it should he clear that we are discussing how to represent knowledge
about knowledge. For this reason. search control knowledge is sometimes called mew-

knowledge. Davis 119801 first pointed out the need for meta-knowledge. and suggested
thid it be represented declaratively using rules. The syntax for one type of control rule

is shown in Figure 6.8.
A number of Al systems represent their control knowledge with rules. We look

briefly at two such systems. SOAR and PRODIGY.
SOAR [Laud eral.. 19871 is a general architecture for building intelligent systems.

SOAR is based on a set of specific, cognitively motivated hypotheses about the structure
of human problem solving. These hypotheses are derived from what we know about
short-term merry, practice effects, etc. In SOAR:

I. Long-term memory is stored as a set of productions (or. rules).

190	 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

2. Short-term memory (also called working memory) is a buffer that is affected
by perceptions and serves as a storage area for facts deduced by rules in long-
term memory. Working memory is analogous to the state description in problem
solving.

3. All prohlern-solv ing activity takes place as state space traversal. There are several
clas

ses of problem-solving activities, including reasoning about which states to
explore, which rules to apply in a given situation, and what effects those rules
will have.

4. All Intermediate and final results of problem solving are remembered (or, chu,zked
for future reference.4

The third feature is of most interest to us here When SOAR is given a start state
and a goal state, it Sets up an initial problem space. In order to take the first step in that
space, it must choose a rule from the set of applicable ones. Instead of employing a
fixed conflict resolution strategy, SOAR considers that choiceof rules to be a substantial
problem in its own right, and it actually sets up another, auxiliary problem space The
rules that apply in this space look something like the rule shown in Figure &S Operator
preference rules may be very general, such as the ones described In the previous section
on conflict resolution, or they may contain domain-specific knowledge.

SOAR also has rules for expressing a preference for applying a whole eqicnce of
rules in a given situation. In learning mode, SOAR can take useful sequences and build
from them more complex productions that it can apply in the futurc.

We can also write rules based on preference.s for some states over others. Such rules
can be used to trnpkrient the basic search strategies we studied iii Chapters 2 and 3.
For example, if we always prefer to work from the stale we generated last, we will get
depth-first behavior. On the other hand, if we prefer states that wei2 generated earlier in
time, we will get breadth-first behavior, 11 we prefer any state that looks better than the
current state (actording to some heuristic function), we will get hill climbing. Best-first
seach results when state pre ference rules prefer the state with the highest heuristic
score. Thus we ace that all of the weak methods arc subsumed by an architecture that
reason- with explicit search control knowledge. Different methods may be employed
for different problems, and specific domain knowledge can override [he more general
strategies.

PRODIGY [Minion et al, 19891 is a gene rat .purpose problem-solving system that
Incorporates several different learning mechanisms A good deal of the learning in
PRODIGY is directed at automatically constructing a set of control rules to improve
search in a particular domain We return to PRO[1M(JY's learning methods in Chapter 17.
but we mention here a few facts that bear on the issue of search cc,ntrol rules. PRODIGY
can acquire control rules in a number of ways:

• Through hand coding by programmers.

• Through a static analysis of the domain's operators.

• Through looking at traces of its own problem-solving behavior.

'W Mum 	 in Chapter I?.

ói. CONTROL KNOWLEDGE

PRODIGY learns control rules fium its experience. but unlike SOAR it also learns
fiom its failures. If PRODIGY pursues an unfruitful path, it will try to come up with
an explanation of why that path failed. It will then use that explanation to build control
knowledge that will help it avoid fruitless search paths in the future.

One reason why a path may lead to difficulties is that ntbgoals can interact with one
another. In the process of solving one subgoal. we may undo our solution of a previous
subgoal. Search control knowledge can tell us something about the oidcr in which we
should pursue our subgoals. Suppose we are faced with the problem of building a piece
of wooden furniture. The problem specifies that the wood mur be sanded, sealed, and
painted. Which of the three goals do wL pursuc first? To humans who have knowledge
about this sort of thing, the answer is clear. An Al program, however, might decide
to try painting first, since an physical object can be painted, regardless of whether it
has been sanded. However, as the program plans further, it will realize that one of the
effects olihe sanding process is to remove the paint. The program will then be forced to
plan a repainting step or else backtrack and try working on another subgoal first. Proper
search control kiiowlrdgr rwi prevent this wasted computational effort. Rules we might
consider include

• If a problem's subgoals include sanding and painting, then we should solve the
sanding subgoal first

• If subgoals include scaling and painting, then consider what the object is made
of. If the object is made of wood, then we Fhould seal it before painting it.

Before closing this section. we should touch on a couple of seemingly paradoxical
issues concerning control rules. The first issue is called the utility problem [Minion,
1988]. As we add more and more control knowledge to a system, the system is able to
search more judiciously. This curs down on the number of nodes it expands. However, in
deliberating about which step to take next in the search space, the system must consider
all the control rules. If there are many control rules., simply rnatchmg them all can be
very time-consuming. It is easy to reach a situation (especially in systems that generate
control knowledge automatically) in which the system's problem-solving efficiency, as
measured in CPU cycles, is worse with the control rules than without them. Different
systems handle this problem in different ways. as demonstrated in Section 11.4.4.

The second issue concerns the complexity of the production system inrerpieter. A
this chapter has progressed. we have seen a trend toward explicitly representing more
and more knowledge about how search should proceed. We have found it useful to
create meta-rules that talk about when to apply other ituks Now. d production system
interpreter must know how to apply various rules and meta -rules, so we should expect
that our interpreters will have to become more complex as we progress away from
simple backward-chaining systems like PROLOG. And yet, moving to a declarative
representation for control knowledge means that previously hand coded LISP functions
can be eliminated from the interpreter. In this sense, the interpreter becomes more
streamlined.

192	 CHAPTER 6. REPRESLNTIN(, KNOWLEDGE USItV(, RULES

6.6 Summary

In this chapter, we have seen how to represent knowledge declaratively in rule-based
systems and how to reason with that knowledge. We began with a simple mechanism.
logic programming, and progressed to more complex production system models that
can reason both forward and backward, apply sophisticated and efficient matching
te.hntques, and represent their search control knowledge in rules.

In later chapters, we expand further on r.nlr-based systems. In Chapter 7, we describe
the use of rules that allow default reasoning to occur in the absence of specific counter
evidence. In Chapter 9, we introduce the idea of atta.hing probabilistic measures to
rules. And, in Chapter 20, we look at how rule-based systems are being used lo solve
complex, real-world problems.

The book Pattern Directed Inference Systems [Watrrninn and Ilayc:. Roth. 19781 is
a collection of papers describing the wide variety of uses to which 1,rodiietinn sys:ems
have been put in Al. Its introduction prov ides a good overview of the subject. Brownston
et al. [1985J is an introduction to programming in production rules, with an emphasis
on the OPS5 programming language.

6.7 Exercises

Consider the following knowledge base:
Vx: Vy : cat(x) A ftshf'y) - likes - to - eat(x,y)
Yx: calico(s) —* cal(x)
Vi: tuna(x) --+ fish(s)
tuna(Charlie)
luna(f-Ierh)
calico(Pus.)

(a) Convert these wif's into Horn clauses.

(b) Convert 'he Horn ciaubcb into a PROLO(i program.

(c) Write a PROLOG query corresponding to the question, "What does PUSS
like to eat?" and show how it will be answeresl by your program.

(d) Write another PROLOG progazn that correspond' to the same set of .vff's
but returns a different answer to the same qery.

2. A problem-solving search can proceed either forward (from a known Start state to
a desired goal state) or backward (from a goal stale to a start state). What factors
determine the choice of direction for a particular problem?

3. If a problem-solving search program were to be written to solve each of the fol-
lowing types of problems, determine whether the search should proceed forward
or backward:

(a) water jug problem

(b) blocks world

(C) natural language understanding

6. 77 EXERCISES
	

93

Program the interpreter for a production system. You will need to build a table
that holds the rules and a matcher that compares the current state to the left sides
of the rules. You will also need to provide an appropriate control strategy to select
among competing rules. Use your interpreter as the basis of a program that solves

water jug problems.

Chapter 7

Symbolic Reasoning under
Uncertainty

So far, we have described techniques for reasoning vith a complete, consistent, and
unchanging model of the world. Unfortunately, in many problem domains It is not
possible to create such models. In this chapter and the next, we explore techniques for
solving problems with incomplete and uncertain mcidcts.

7.1 Introduction to Nonmonotonic Reasoning

lii theirbook. The Web of Beltef, Quineand UI]ian [1978 providean excellent discussion

01 techniques that can be used to reason effectively even when a complete, consistent.
and constant model of the world is not available. One of their examples, which we call
the ABC Murder story, cleArly illustrates many of the main issues that such techniques
must deal with. Quoting Qtuine and till ian [19781:

Let Abbott. Babbitt, and Cabot be suspects in a murder case. Abbott has
an alibi, in the register of a respectable hotel in Albany. Babbitt also
has an alibi, for his brother-in-law testified that Babbitt wai. visiting him
in Brooklyn at the time. Cabot pleads alibi toe, cLuming to have been
watching a ski meet in the Catskills, but we have only his word for that. Sc'

we believe

(1) That Abbott &d not commit the crime,

(2) That Babbitt did not.

(3) That Abbott or Babbitt Or Cabot did.

But presently Cabot documents his alibi—he had the good luck to have
been caught by television in the sidelines at the ski meet. A new belief is

thus thrust upon us:

(4) That Cabot did not.

tO'

196	 CHAPTER 7 SYMBOLIC REASONING 1JPDLP (iNCER1Altvi

Our beliefs (I) through (4) are inconsistent, so we must choose one for
rejection. Which has the weakest evidence? The basis for (I) in the hotel
register is good, since it is a fine old hotel. The basis for (2) is weaker,
since Babbitt's brother-in-law might be lying. The basis for (3) is perIiap
twofold; that there is no sign of burglary and that only Abbott. Babbitt
and Cabot seem to have stood to gain from the murder apart from burglary.
This exclusion of burglary seems conclusive, but the other consideration
does not: there could be some fourth beneficiary. For (4), finally, the bask
is conclusive: the evidence from television. Thus (2) and (3) are the weak
points. To resolve the inconsistency of I) through (4) we should reject (2)
or (3. thus either iric'nrnhllating Babbitt or widening our net for some new
suspect.

Sec also how the iuvision progresses downward. It we reject (2), we also
revise our previous underlying belief, however tentative, that the brother- in-
law was telling the truth and Babbitt was in Brooklyn. If instead we reed
(3. we also revise our previous underlying belief that none but Abbott.
Babbitt, and Cabot stoM In gain from the murder apart from burglary.

Finally a certain arbitrariness should be noted in the organization of this
analysis. The inconsistent beliefs (I) through (4) were singled out, and then
various further beliefs were accorded a subordinate status as underlying
evidence: a beitel about a hotel register, a belief about the prestige of the
hotel, a belief about the television, a perhaps unwarranted belief about the
veracity of the brother-in-law, and so on. We could instead have listed
this full dozen of beliefs on an equal footing. appreciated that they were in
contradiction, and proceeded to restore consistency by weeding them out
in various ways. But the organization lightened our task, it focused our
attention on four prominent beliefs among which to drop one. and then it
ranged the other beliefs under these four as mere aids to choosing which
the tour to drop.

The strategy illustrated would seem in general to be 3 good one. cli-

vide and conquer. Wiiii . sc; of beliefs has accumulated to the point of
contradiction, find the smallest selection of them you can that still involves
contradiction: for instance, (I) through (4). For we can be sure that we are
going to have to drop some of the beliefs in that subset, whatever else we
do. In reviewing and comparing the evidence for the beliefs in the subset.
then, we will hnd ourselves led down in a rather systematic way to other
beliefs of the set. Eventually we find ourselves dropping some of them too

In probing the evidence, where do we stop? In probing the evidence
for (1) thiough (4) we dredged ull various underlying beliefs, but we could
have probed further, seeking evidence in turn for them. In practice, the
probing stops when we are satisfied how best to restore consistency: which
ones to discard amcr'.g the beliefs we have canvassed.

This story illustrates some of the problems posed by uncertain, fuzzy, and often
changing knowledge. A variety of logical frameworks and computational methods have
been proposed for handling such problems. In this chapter and the nest, we discuss two
approaches:

7.1. INTRODUCTION TO NONMONOTONIC REASONING 	 197

• Nonmonolonic reasoning. in which thir ax 0015 aiid/or the rules of infcrcncL are
extended to make it possible to reason with incomplete information. These

systems preserve, however, the property that, at any given moment, a statement
is either believed to be true, believed to he false, or not believed to he either.

• Statistical reasoning. tit the representation is extended to allow some kind
of numeric measure of certainty (rather than simply TRUE or FALSEt to be

associated ssith each statement.

Other approaches to these issues have ul.o bcr proposed and used in systems. lw

ecamplc, it is sometimes the case that there is not a sin g le knowledge base that captures

the beliefs of all the agents involved in solving it problem. This would happen in our

viurder scenario if we were to attempt to iiiodel the reasoning of Abbott. Babbitt, and

Cabot. as well as that of the police iiivestigalOr. To be able to do this reasoning, we would

require a technique for maintaining several parallel belief spaces, each of which would

correspond to the beliefs of one agent. Such techniques are complicated by the fact that
the belief spaces of the various agents, although not identical, are sufficiently similar
that it is unacceptably inefficient to represent them as completely separate knowledge
bases. In Section 15.4.2 we return briefly to this issue. Meanwhile, in the rest of this
chapter. we describe techniques for nonmonotonic reasoning.

Conventional reasoning vysI':ms. &uh trL-order predicate logic, are designed to
work with information that has three important properties:

• it is complete with respect to the d(-main of interest. In other words, all the facts

bit sic necessary to solve a problem _re pme'cnt i ll the ssLern or can be derived

from those that are by the conventional rules of first-order logic.

• It is consistent.

• the only way it can change is that new facts can he added as they become available.
If these new facts are consistent with all the other facts that have already been
asserted, then nothing 'sill ever be retracted from the Set of facts that are known

to be true. This property is called mont,ionicrtv.

lJnfortunaicly, if any of these properties is not satisfied, conventional]ogichascd
reasoning systems become inadequate. ronmonotonic reasoning systems, on the other

hand, are designed to be able to solve problems tit all of these properties may he

missing.
lit order to do this, we must address several key issues, including the following.

How c on the knowledge base he e rtt',iel to a!lo'.i irifeaent'es to he made on the
basis of lack of knowledge as well as on the pre.cene oft,? For example. we

would like to be able to say things like. "If you have no reason to suspect that a
particular person committed a crime, then assume he didn't." or "if you have no
reason to believe that someone is not getting along with her relatives, then assume
that the relatives will try to protect her." Specifically. we need to make clear the

distinction between:

• It is known that -'P

198	 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

. It is not known whether P.

First-order predicate logic allows reasoning to be based on the first of these. We
need an extended system that allows reasoning to be based on the second as well.
In our new system, we call any inference that depends on the lack of some piece
of knowledge a iinnmowIontc inference.

Allowing such reasoning has a significant impact on a knowledge base. Non-
monotonic ur:in -.Nsterns derive their name from the fact that because ol
inferences that depend on lack of knowkdgc. I.nowledge bases may not grow
monotonically as new assertions are math' Adding a new aSsertion may inval-
idate an inference that depended on the absence of that assertion. First-order
predicate logic system'. on the other hand, are monotonic in this respect. As
new axioms are asserteel. new wff's may become provable, but 00 old proofs ever
become invalid.

In other words, if some set of axioms Teniails the truth of some statement w, then T
combined with another set of axioms N also entails w. Because rroiimonotonic
reasoning dock not share this property, it is also called defeasthie: a nonnionotOflic
inference may be defeated (rendered invalid) by the addition of new information
that violates assumptions that were made during the original reasoning process.
It turns out, as we show below, that making this one change has a dramatic impact
om the structure of the logical System itself. In particular, most of our ideas of
what it means to find a proof will have to be reevaluated.

flow can the h,iowkde-e base he npdaicdproperlv vi hen a new fact is added to The

system (or when an old one is removed)? In particular, in 000monotonic systems,
since the addition of a fact can cause previously discovered proofs to be become
invalid, how can those proofs, and all the conclusions that depend on them be
found? The usual solution to this problem is to keep track of proofs. which are
often called just,hcadtin.c. This makes it possible to find all the tuctifications
that depended on the absence of the new fact, and those proofs can he marked
as invalid. Interestingly, such a recording mechanism also makes it possible
to support conventional. monotonic reasoning in the case wimeic axioms must
occasionally be retracted to reflect changes in the world that is being modeled.
Foresarrtple, it may be the case that Abbot , is in town this week and so is available
to testify, but if we wait until next week, he may he out cit town. As a result,
when we discuss techniques for maintaining valid sets of justifications, we tall,
both about nonmonoronic reasoning and about monotonic reasoning iii a changing
world.

3. How can knowledge he used 10 help resolve conflicts When there are several in
(Oflsisfrflt flonfluinriton Is - inferences that could be drawn? It turns out that when
inferences can be based on the lack of knowledge as well as on its presence.
contradictions are much more likely to occur than they were in conventional log-
ical systems in which the only possible contradictions were those that depended

'Recall that in Section 2.4. we aicci made a monoionic/nonmonolonk distinction. There the issue was
classes or production systems. Although we are applying the disinction to different cniitIcs here. U

essentially the saint distinction in hoih rases, 5111cc it disiinguishes between s ysienls that never shrink as a
result of an acion (monotonic ones) and ones that can (nunmoilutonic Onci).

7 LOGICS FOR NONMONOTONIC REASONING	 1. 99

on facts that were explicitly asserted to be true. In particular. in nonmonotoflic
systems, there are often portions of the knowledge base that are locally consic
tent but mutually (globally) inconsistent. As we show below, many techniques
fin reasoning nonmonotonkally are able to define the alieiaiivcs that could be
believed, but most of them provide no way to choose among the oticnS whcn not
all of them cart be believed at oce.

To do this. we icquile additional iteiliods liii recolvtnn such conflicts in w'vs that are
most appropriate for the particular problem that is being solved. For exampie. as sot'
we conclude that Abbott, Babbitt, and Cabot all claim that they didn't conirrii a crime.
yet we conciude that one of ahem must have since there s no one else who is believed lv;
have had a motive, we have a contradiction, which we want to resolve in some parti.ular
way based on other knowledge that we have. In this cas", for eximple, we choose to
resolve the conflict by finding the person with the weakest alibi and belies rig that he
committed the crime (which involves believing other things, such as that the chosen

suspect lied).
The rest of this chapter is divided into live parts. In the first, we present several

logical formalisms that provide mechar,r'ans for performing nonmonotontc easoniiig.
In the last tour, we discuss approaches to the implementation of such reasoning in
problem-solving programs. For more detailed descriptions of many of these systems.

see the papers in Ginsberg 119871.

7.2 Logics for Noninonotonic Reasoning

Because ,nonotonicii y is fundamental to the definition of first-order predka1c logic, we
are forced to find some alternative to support nonmonotonic reasoning, to tlis Section,
we look at several formal approaches to doing this. We examine several because no
single formalism withal] the desired properties has yet emerged (although there are sonIC
attempts, e.g.. Shoham 119871 and Kor.otige (19871. to present a unifying Framework
ur these several theories). In particular, we would like to find a t'oitnalisni that does all

of the following things:

Defines the set of possible worlds that could exist given the facts that we do have.
More precisely. we will define an jitter/n etatin of a cc, of wff's to 1w a domain

(a set of objects) D. Iot'et l ie r with a function that assigns: to each predicate, a
relation (of cormsp;rnding arity); to each n-ary function, an operator that maps

from D into D and to each constant, an clement of D A model of a set of wtf's

is an interpretation that atislies them. Now we can be mote precise about this
requirement. We require a mechanism for defining the set of models of any set of

wff's we are given.

• Provides a way to say that we prefer to believe in sonic models ratliei than others.

• Provides the basis for a practical implementation of this kind of reasoning.

• Corresponds to our intuitions about how this kind of reasoning works. In other
words, we do trot want vagaries of syntax to have a significant impact on the
ronIus ions that can be drawn within our system

20)	 CHAPTFR 7 SYMBOLIC REASONING UNDER UNCER1AIPT71

I	 I

B.
C

Figure 7.1: Models. Wif's. and Nonmonouinic Reasoning

Ac we examine each of the theories below, we need to evaluate how well they
perform each of these tasks. Fora more detailed discussion of these theories and some
comparisons among them, see Reiler{1987a1. Ethringion 11 9881, and Genesereth and
Nilsson 119871.

Before we go into specific theories in detat!, let's consider Figure 7. I. which shows
one way of visualizing how floninonolonic reasultitig works in all of them. The box
labeled A corresponds to an original set of wif's. The large circle Contains all the models
of A. When we add some nonmonotonic reasoning capabilities to .4, we get a new set of
wiT's, which we've labeled 8•2 B (usua!!y) contains more information than A does. As
a result, fewer models satisfy B than A. The set of models corresponding to B is shown
at the lower right of the large circle. Now suppose we add some new v.ff's (representing
new information) to A. We represent A with these additions as the box C. A difficulty
may arise, however, if the set of models eon esjxmding to C is as shown in the smaller.
interior circle, since it is disjoint with the models for B. In order to find a new set of
models that satisfy C, we need to accept models that had previously been rejected. To
do that, we need t' eliminate the wif's that were responsible for those models being
thrown away. This is the essence of nonmonotonic reasoning.

7.2.1 Default Reasoning

We want to use nonmonolonic reasoning to perform what is conumnonly called default
reasoning. We want to draw conclusions based on what is most likely to be true. In this
section, we discuss two approaches to doing this.

2 As WV will see below, sonic techniques add infcg ncc rules, which then generate wiT's, while others add
wiT's directly. Well ignore that difference for the moment

72. LOGICS FOR NONMONOTONIC REASONING

• Nonmonotonic Logic

• Default Logic

We then describe two common kinds olnonmonotonic reasoning that can be defined
in those logics:

• Abduction

• lnhert:jnce

Noi.nniiotontc Logi

One system that provides it ha,si': for default ieamirig Is 1.mtn, •- .1011' Ioh NML)
lMcl)errnott and Doyle, I qgOJ, in which the language of tirst-order predicate logic is
augmented with a modal operator M, which can be read as "IS consistent." i-or example,
the formula

Vi, y Related(x,r) A M GctAIong(x. ') —+ trVi!IDefend(x,y)

should be read as, "For all x and v, if x and y are related and if the fact that x gets
along with y is consistent with everything else t hat is believcd, then conclude that i will
defend v."

Once we augment our theory to allow statements of tiis form, one moortant issue
must be resolved if we want our theory In be even semidecidable. (Recall that even in
a standard first-order theory, the question of theoremhood is undecidable, so srnidc-
cidability is the best we can hope for.) We must define what 'is consistent" means.
Because consistency in this system, as in first-order predicate logic, is undecidable,
we need some approximation. The one that is usually used is the PROLOG notion of
negation as failure, or some variant 0! it. In other words, to show that P is consistent,
we attempt to prove P. If we fail, then we assume -P to be false and we call P con-
sistent. Unfortunately, this definition duxs not completely solve our probJeut. Negation
as failure work', in pure PROLOG because, if we restrict the rest of our language to
I-torn clauses, we have a decidable theory. So failure to prove something means that ills
not entailed by our theory. If. on the other hand, we start w i th full first-order predicate
logic as our hsc language, we have no such guarantee. So. as a practical matter. in
may be necessary to defir,e consistency on some heuristic basis, such as failure to prove
inconsistency within some fixed level of effort.

A second problem that arises iii this apprusacli (amid other'., a we explain below)
is what to do sliein multiple noumoiio(unic statements, taken alone, suggest ways of

augmenting our knowledge that if taken together would be inconsistent. For example,
consider the following set of assertions:

V.v.- Repuhlican(x) A M —tPactfist(r) -, -Pacifist(r)
Vi. Quaker(x) A M Pacifi.cu'(x) -+ PaciJisr(x)
Republican(Dick)
Quaker(Dick)

tm Try not 10 get coefused about natTier here. We are using the lensus 'nonmOflOiOflmC reasoning' and "dcIauII

reasoning" generically to describe a kind of reasoning. The terms "Nonmonoonic Logic" arid "Detauh Logic"
are. nn the other hand, being used to meter to specific formal theories.

202	 CHAPTER 7. SYMBOLJ REASO WING UNDER I !NLLRMINTY

The definition of NML that we have given support-, two distinct ways tit nJ!t7lCti1I!Ig

this kaiowledge. base In one, we first apply the first assertion, which allows us to
conclude -'Pat'ifisz(Dick). Having done that, the second assertion cannot apply. since
it is not consistent to assume Pacsflsz(Dick). The other thing we could do, however,
is apply the second assertion first. This results in the conclusion Pacifrcz(Dzek). which
prevents the first one from applying. So what conclusion does the theory actually
support?

The answer is that T"JMI. delines the set of Ihenietus ihai San be deiivd fiotni 5 set of
wif's .4 to he the intersection of the sets of theorertis that iesuli front the various ways
in which the wff's of A might be combined. So, in our example, no conclusion about
Dick's pacifism can be derived. This theor y thus lakes a very conservative approach to
theoremhood.

It is worth pointing out here that although assertions such as the ones we used to
reason about Dick's pacifism look like rules, they are, in this theory, just ordinary wif's
which can be manipulated by the standard rules for combining logical expressions. So,
for example, given

AAMB -sB
-'.4 A M B -, B

we can derive the expression

MR --+B

In the original formulation of NML, the sernatifles of the modal operator M. which
is self-referential, were unclear. A more recent system. Autoepis1en:c Logic [Moore,
19851 is very simtlar, but solves some of these problems-

Default Logic

Ali alternative logic for performing defauit-ha'.ed meusoluilig .s Rc'.tc' . !k/thi!!
(DL) [Reiter, 1980], in which a new class of inference rules is inttoduced. In this
approach, we allow inference rules of the form

A: B
C

Such a rule should be read as, "If A is provable and it is consistent to assume B
then conclude C" As you can see, this is very similar in intent to the nonmonotonic
expressions that we used in NML. There are some important differences between the
two theories, however. The first is that in DL the new inference rules are used as a
basis for computing a set of plausible eXtenSionS to the knowledge base. Each extension
corresponds to one maximal consistent augmentation of the knowledge base. The logic

4 Reiter's original notation had ":M" in piece al":'. but since it coiweysno additional infoTmatiun. the
is usually omitted.

t Whai we mean by the expression "maximal consistent augmentation' is that no additional default rules
can be applied without violating consisiciwy. But it is important to note that only expressions generated by
he application of the slated inference rules In the original knowledge air allowed in an extension. Gratuitous

additions are not permitted.

72. LOGICS FOR NONMON010NIC REASONING 	 203

then admits as a theorem any expression that is valid in any extension. If a decision
among the extensions is necessary to support problem solving, some other mechanism
must be provided. So, for example, if we return to the case of Dick the Republican,
we can compute two extensions, one corresponding to his being a pacifist and one
corresponding to his not being a pacifist. The theory of DL does riot say anything about
how to choose between the two. But see Reiter and Criscoolui 19)41 . '1 nurct'.ky 19861.
and Rich [19831 for discussions of this issue.

A second important diffe.r'rnce between theso two theories is nut. o' 0. . the non-
mouuotonic expressions are rules of inference rather than expressions in the language.
Thus they tannu.: be manipulakd by the other rules of irferenur 1 l iis leads vi sonic

unexpected results lor exanpie. given the two rules

A:B	 -'A:R
B	 B

and no assertion about A, no conclusion about B will be drawn, since neither inference

rule applies.

Abduction

Standard logic performs deduction. Given two axioms:

Vx : 4(x) - BV)
A(C)

we can conclude B(C) using deduction. But what about applying the implication in
-everse? For example, suppose the axiom we have n

Vx: Measles(x) —+ Spors(.r)

The axiom says that having nieasies implies having spots. But suppose we notice spots
We might like to conclude measles. Such a conclusion is nor licensed by the rules of
standard logic and it may be wrong, but it may be the best guess we can make about
what is going on. Deriving conclusions in this way is thus another form of default
reasoning. We call this specific tono andacuve rca coring. More precisely, the process

of abductive reasoning can be described as, "Given two wif 's (A -+ B) and (B) for any

.,.prcssions A and 8, if it is consistent to assume A. do so."
In ma.iy do,oains, atuductive reasoning is .oticuIar!y useful if some mezisurc of

cerl-unty is a'ached to the n'suling expirssicms ' hese certainty measures ivantify the
risk that the abductive reasooiiig process is wrong, which it will be whenever there were
other antecedents besides A thaI could have prod u ced B. We discuss ways of doing this

in Chapter 8.
Abductive reasoning is not a kind of logic in the sense that DL and NML are. In

p act. it can be described in either of them. But it us a very useful kind of nonmonotonic

eaconing. and so we mentioned it explicitly here.

inheritance

One very common use of nonmonotoflie reasoning is as a basis for inheriting attribute
'ilues from a prototype description of a class to the individual entities that belong to

204	 CHAPTER 7. SYMBOLIC REASONING tINDER UNCER7"JN

the class. We considered one example of this kind of reasoning in Chapter 4, when
we discussed the baseball knowledge base. Recall that we presented there an algorithm.
for implementing inheritance. We car describe informally what that algorithm doe h
saying, "An object inherits attribute values from all the classes of which it is a niembet
unless doiti so leads to a contradiction, in which case a value from a more restricted
class has precedence over a value from a broader class." Can the logical ideas we have
just been discussing provide a basis for describing this iilcu iisre fomially The answer
is yes. To see how, let's return to the baseball example (as shown in 1-igure 4.5) and try
to write its inheritable knowledge as rules in DL.

We can write a rule to account ibr the inheritance of a defaul valu for the height of
a baseball player as:

Baseball-[-'layer(.t i : beighttx, 6 1)
ht'ight(.r. 6 . I)

Now suppose we assert Pitt her(Thr'e-1ingcr-Brosi'n). Since this enables its to
conclude that lhre'-Finger-Brown is a baseball player, our rule allows us to conclude
that his height is 6-I. If, on the other hand, we had asserted a conflicting value for Three
Finger's height, and if we had an axiom like

Vs : y.Z	 l'i:liFIt,v t' !u'igd:!(i,:	 -4 V =.

which prohibits someone from hav.ng more thait one height, then we would not he able
to apply the default rule. Thus an explicitly stated value will black the inheritance of
a default value, which is exactly what we want. i Wc'll'ignure here, the order j il which
the assertions and the rules occur. As a logical fr'',;ework. default logic does not care.
We'll just avsiriie that somehow it settles o:r to a consistent state in which no defaults
that conflict with explicit assertions have been asserted. In Section 1.5.1 we look at
issues that arise in creating an implementation that assures that.)

But now, let's encode the default rule for th height of adult males in general.' If we
pattern it after the one for baseball players. we get

.4dt411-Mali'(.'.) . height(s. 5-10)
hL'ight(A, 5 10)

Unfotunately, this rule does not work as we would like. In paflilar, ii we aeair
assert Pit(,her(flrree-Finer-B,'own). then the resulting theory contains twit extensions:
one in which our first rule tires and Brown's height is 6-1 and one in which this tier. , rule
applies and Brown's height is 5-10. Neither of these extensions is preferred. In order to
stale that we prefer to get a value from the more specific category, baseball player, we
could rewrlie the default rule for adult males in general as

Adult Mal4x) : Baseball-Player(.v)Aherglit(x. 510)
heighz(x 5-10)

This effectively blocks the application of the default knowledge about adult males
in the case that more specific information from the class of baseball players is available

Unfortunately, this approach can become unwieldy as the set of exceptions to the
general rule increases. For example. we could end up with a rule like

72. LOGICS FOR NONMONOJONIC REASONING 	 205

Adult-Male(x) -.Baseball-PIQYCr(X) A -.Midget(x)A-Jockey(x) A heighr(x. 5-10)
-	

height(x. 5-10)

What we have done here is to clutter our knowledge about the general class of adult
males with a list of all the known exceptions with respect to height. A clearer approach

'S to say something like. Adult males typically have a height of 5-1(1 unless they arc

abnormal in some way." We can then associate is oh other classes the information that
they are abnormal in one or another way. .So we could write, for esaruple:

Vi : Adult Mole(s) A -AB(.t. aspect I) - In'i . 'ht(v, 5- 10)
Ba.ccball-l/aertx)	 AB(.r. aspect!

Vs Micigt't(x)	 18(.v. aspect 1)
Vx locke(s) - AB(.;:, apec (1)

Then, ifwe add the single delault nile:

-'AB(x,)')

-AU(v.y)

we get the desired result

7.2.2 Minimalist Reasoning

So far, we have talked about general methods that provide wa ys of describing things
that are generally true. In this section we describe methods for saying a very specific
and highly useful class of things that arc generally true. These methods arc based on
some variant of the idea of :i minimal model. Recall front the beginning of this section
that a model of a set of foiiiolas is an inlerpretation that satisfies them. Although there
are several distinct definitions of what constitutes a nsiitiinal model, for our pur)scs,
we will define a model to be minimal if there are no other models in which fewer things
are true. (As you can probably imagine, there are technical difficulties in making this
precise. many of which involve the treatment of sentences with negation.) The idea
behind using minimal models as a basis for nonmonotonic reasoning about the world is
the following: "There are many fewer true statements than false ones. If something is

true and relevaiit it makes sense to aSSLLTTe th:r, it has been entered into our knowledge
base. Therefore, assume that the only true statements are those that neeessarly must
be true in order to maintain the consistency of the knowledge base." We have aready

- mentioned in Section 6.2) one kind of reasoning based on this idea, the PROLOG
concept of negation as failure, which provides an implementation ol the idea for Horn
clause-based ssTcms. In the rest of this scction we look at s'ine loicj issues that arise
when we remove the Horn clause limnation.

The Closed World Assumption

A simple kind of minimalist reasoning is suggested by the Cksed World Assumption or

CWA ERciler, 19781. The CWA says that the only ob jects that satisfy any predicate P
are those that must. The CWA is particularly posserful as a basis for reasoning with

206	 HAPTbR 7 .SYMLI.)Lk REA,ONlt5(i tJ.1)LR UN',"FR lAIN/I

databases, which are assumed to be complete with respect to the properties they describe.
[or example. a personnel database can safely be assumed to list all of the culiipany's

i1)htyces If someone asks whether Smith woiks for the company. we should reply

'no oriless he is explicitly listed as an employee. Similarly, an airline, database can be
assumed to contain a complete list of all the routes flown by that airline. So if I ask
there is a direct night from Oshkosh io El Paso. rise answer should be "no" if none Ji

c found in the database. The CWA is also useful as a way to deal with AB picdicatcs.

of the sort we introduced in Section 72.! since we want to take as abnormal on ly those

things that are asserted to be so.
.hIhough the MA i both simpk and powet ful. it can fail in piodmicu arm appropriale

,sncv.cr fr either f two reasons. The Irsi is that its aSstlfl.)tiOri are not ale ay true i'm
th world; some parts of the world are not realistically "closable.' We saw this problem
in the murdr story example. There were facts that were relevant to the investigation
hat had not yet been uncovered and so were not present in the knowedg base. The

('WA will yield appropriate results exactly to the extent that the assumption that all the
relevant positive facts are present in the knowledge base is true.

The second kind of problem that plagues the CWA arises from the fact that it is a
purely syntactic reasoning process. Thus, as you would expect, its results depend on
the form of the assert ions that are provided. Let's look at two specific examples of this

problem.
Consider a knowledge base that consists of just a single statement:

A(Joe) V !3(Joe)

The CWA allows us to conclude both -A(Joe) and -'R(loe). since neither A nor II 111ul

necessarily be true of Joe. Unfortunately, the re ,,r .ng extended knowle'ge base

4(Joe) V ll(Joe
'A(Joe)

-'13(Joe)

is inconsistent.
The problem is that we have assigned a special status to positive tnstr,ces of

predicates, as opposed to negative ones. Specut'cally. the CWA forces completion of a
knowledge base by adding the negative assertion -P whenever it is consistent to do so.

But the assignment of a real world properly to some ptcdica tc /' art,! its coniplerriemit to

the negation of P may be arbitrary. For example, suppose e define a predicate Single
and create the following knowledge bas"

Sin gle(John)
Sin gle(Mary)

Their, if we ask about Jane, the (2WA will yield the answer -Single(Jane). But now

suppose we had chosen instead to use the predicate Married rather than Single. Then

the corresponding knowledge base would be

'-'Married(John)
Married(Mary)

72. LOGICS FOR NONMONOTONI(RL4SONING 	 207

If we now ask about Jane. the CWA will yelrI il'r 'eMil! -Mcjr, #&' /on'.)

Circumscription

Although the CWA captures part 01 the idea that anything that nmst not necessarily be
true should be assumed to be false, it does not capture all of it. it has two essential
limitations:

• It operates on individual predicates without considering the interactions among
predicates that are defined in the knowledge hjse. We saw an example of this
above when we considered the stalenlcrst A(Joe V 11(Jce).

It assumes that all predicates have all of their instances listed. Although in many
database applications this is true, in many knowledge- hased systems it is not.
Some predicates can reasonably be assumed to be completely defined (i.e.. the
part of the world they describe is closed), but others cannot (i.e., the part of
the world they describe is open). For example, the predicate has a.green-shirr
should probably be considered open since in Iliosi situations It would not be safe
to assume that one has been told all the details of everyone eke's wardrobe.

Several theories of cii'curnsurzptiun (e.g.. McCarthy 11 9801. MCartliy 119861, and
Lifchitz (1951) have been proposed to deal with these problems. In all of these
theories, new axioms are added to the existing knowledge base. The effect of these
axioms is to force a minimal interpretation on a selected portion of the knoss ledge base.
In particular, each specific axiom describes a way that the set of values hr which a
particular axiom of the original theory is true is to be- delimited (i.e.. circumscribed)

As an esample, suppose we have the simple assertion

1 I . .4duli(i) i' -'A R(, , aspect 1) —* Lit era te(r)

We would like to circumscribe .48, since we would like it to apply only to those
individuals to which it applies. In essence, what we uant to do is to say something
about what the predicate AR must be (since at this point we have no idea what it :
all we know is its name). To know what it is, we need to know for what values it is
true. Even though we may know a few values for which it is true (if any individuals
have been asset ted to be abnormal in this way), there are many different predicates that
would he consistent with what we know so far. Imagine this uniserse of possible binary
predicates. We might ask. sshich of these predicates could be AR? We want to say that
AB can only be one of the predicates that s true only for those objects that we know it
must he true for. We can do this by adding a (second order) axiom that says that AR is
the smallest predicate that is consistent with ourexisting knowledge base.

In this simple example. circumscription yields the same result as does the ('WA
since there are no other assertions in the knowledge base with which a mirlimilat ion
of AB must be consistent. In both cases, the onl y models ticit are admitted are one4 in
which there are no individuals who are abnormal in apeuI. In other words. .48 must
be the predicate FALSE.

But, now let's return to the example knowledge base

208	 CHAPTER 7. SYMBOLIC REASONING L/NDLR UNCERTAINTY

A(Joe) V B(Joe

If we circumscribe only A, then this assertion describes exactly those models in
which A is true of no one and B is true of at least Joe. Similarly, if we circumscribe
only 8, then we will accept exactly those models in which B is true of no one and A is
true of at least Joe. If we circumscribe A and H together. then we will admit only those
models in which A is true of only Joe and B is true of no one or those in which B is true
of only Joe and A is true ol no one, Thus, unlike the CWA. circuilisLi 1111100 ,diows us to
describe the logical relationship between A and B.

7.3 Implementation Issues

Although the logical frameworks that we have just discused tnkc oc part of the way
toward a basis for implementing nonmonotonic reasoning in problem -solving programs,
they are not enough. As we have seen, they all have some weakitesses as logical systems.
In addition, they fail to deal with four important problems that arise in real systems.

The first is how to derive exactly those nonmonotonic conclusions that are relevant
to solving the problem at Iiaiicl while not wasting time on those that, while they may be
licensed by the logic, are not necessary and are not worth spending time on.

The second problem is how to update our knowledge incrementally as problem-
solving progresses. The definitions of the logical systems tell us how to decide on
the truth status of a proposition with respect to a given truth status of the rest of the
knowledge base. Since the procedure for doing this is global one &relyingon some form
of consistency or minimality), any change to the knowledge base may have far-reaching
consequences. It would be computationally intractable to handle this problem by starting
over with just the facts that are explicitly stated and reapplying the various nonmonotonic
reasoning steps that were used before, this lime deriving possibly different results.

The third problem is that in nonmonotonic reasoning systems, it often happens that
more than on; interpretation of the known facts is licensed by the available inference
101cc In Reicr's erm i nology. a given nonmonotonic system may (and often does)
have several extensions at the moment, even though many of them will eventually be
eliminated as eew knowledge becomes available. Thus some kind of search process is
necessary. How should it be managed?

The final problem is that, in general, these theories are net computationally effective.
None of them is decidable. Some are semidecidable, but only in their propositional
forms. And none is efficient.

In the rest of this chapter, we discuss several computational solutions to these
problems. In al of these systems, the reasoning process is separated into two pans: a
problem solver that uses whatever mechanism it happens to have to draw conclusions
as necessary and a truth maintenance system whose job is just to do the bookkeeping
required to provide a solution to our second problem. The various logical issues we
have been discussing, as well as the heuristic ones we have raised here are issues in
the design of the problem solver. We discuss these issues in Section 7.4. Then in the
following sections, we describe techniques for tracking nonm000tonic inferences so that
chanees to the knowledge base ate handled properly. Techniques for doing this can be
divided into two classes, determined by their approach to the search control problem:

.4. AUGMENTING A PROBLFM 'Ol.VEf 	
209

• Depth-first, in which we follow a single. rOost likely path until some new piece of

IflfOmatiOfl comes in that forces 19s ii, give tip this path and find mother.

• Breadth-first, in which we consider all the possibilities as equally
	

We
coniderthem asagroup, elimlriatiiigsollie id mens as new fa.ts becottic aauabIc.
Fvcnivatly. it flay luippen Omt only ,'ne lo, .t sniall iiuht um out to be

COOSISICOI with e' krVt'ijrrg we conic to kiiuk

It is important to keep in mind iliroughout rite rei ul thi. discusiuii that there is no

exact cli1ieSpOitdi1iCt' bctwcen ally of the logics that Wl have described and ,iit nt the

implementations that we well present Onfortuiiatelv. lfic details of how the two art be
brought together are still unknown.

7.4 Augmenting a Problem Solver

So far, we have described a variety of logical formalisms, all of which describe the
theorems that can be derived front a set of axioms. We have said nothing about how we
might write a program that solves problems using those axioms lii this sectk,ti, we chl

that.
As we have already discussed several times, problem solving can be done using

Other forward or backward reasoning. Problem solving using uncertain knowledge is
noexeeption. As a result, there are two basic approaches tothis kind of problem solving

(as well as a variety of hybrids):

• Reason forward froni what is known. Treat nonmorioionmcally derivable conclu-
sions the same way monotonically derivable ones are handled. NonmonotoniC
reasoning systems that support this kind of reasoning allow standard forward
chaining rules to be augmented with unless clauses, which introduce a basis for
reasoning by default. Control (including deciding which default interpretation to
choose) is handled in the same way that all oilier control dccismons in the systen.
are made (whalcver that may be, for example, via rule ordering or the use of

nactarules).

• Reason backward to determine whether some expression P is true (or perhaps to

timid a set of bindings for its variables that make it true). PonrnOnOtoniu reasontflr
systems that support this kind of reasoning may do either or both of the following

two things:

- Allow default (unless) clauses in backward rules. Resolve conflicts among
defaults using the same control strategy that is used for other kinds of

reasoning (usually rule ordering).

- Support a kind of debate iii which an attempt is made to construct arguments

both in favor of P and opposed to it. Then some additional knowledge is
applied to the arguments to determine which side has the stronger case.

Let's look at backward reasonin g lust. We will begin with the simple case. of

backward reasoning in which we attempt to prove (and possibly to find bindings for)

210	 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect(x) 4— Th'pieficiary(x)
UNLFSS Ai.hi(x)

Alibi(x) - SomewhereEisc(.r)

SomewhereElse(x) - RegiseredHotei(x, y) and FarAwuv(y)
UNLESS ForcdRegiste(v)

Alibi(x) - Dejends(x, v)
UNLESS Lies(y)

Sot ewlieic'E!se(.v) - P nu-eOf(.r. y) and Ea,Aav(v)

Contradietion() 4— TRUE
UNLESS ac Suspect(x)

Beneficiary(Abboll)
Beneficiary(Bahbiri)
Beneficiarv(Caboi)

Figure 7.2: Backward Rules Using UNLESS

an expression P. Suppose that we have a knowledge base that consists of the backward

rules shown in Figure 7.2.
Assume that the problem solver that is using this knowledge base uses the usual

PROLOG-style control structure in which rules are matched top to bottom, left to right.

'flien if we ask the question ?Suspec1(x), the prograrn will lust try Abbott, who is a fine
suspect given what we know now, so it will return Abbott as its answer. Tf we had also

inchided the facts

RegisicredHotei(Abbotl, Albany)
FarAway(Aihanv)

then. the program would have failed to conclude that Abbott was a suspect and it would

instead have located Babbitt.
As an alternative to this approach, consider the idea of a debate. In debating systems,

an attempt is made to find multiple answers. In the ABC Mut dr-i story case, for example,
all three possible suspects would be considered. Then some attempt to choose among
the aguments would be made. In this case. for example, we might want to have a
choice rule that says that it is more likely that people iil lie to defend themselves than
to defend others. We might have a second rule that says that we prefer to believe hotel
registers rather than people. Using these two rules, a problem solver would coricude

that the most likely suspect is Cabot.
Backward rules work exactly as we have described if all of the required lads are

present when the rules are invoked. But what if we begin with the situation shown
in Figure '.2 and conclude that Abbott is our suspect. Later, we are told that he was

73. IMPLEMENTATION: DEPTHFIRST.cl4RCH	 211

If: &-.ficiaryt;
UNLESS Alibi(r).

Ehcn Suspect(x)

If: ,S0t'I,e11SC(. I

then /tlibit.r

If: Registeredlfole!(.i.). and
)ar/sway(v),

IJNI FSS ForgedRt,ister(y).
then

If Defcnds(x, v)
UNLESS Lies(y).

then Alibi(x)

If Pie turcOf (x, v), and
FarAwatY),

then So,ncwhcrcL/sc(d

If TRUE,
UNLESS a:wcpec((A

then ('n,?trathction

Beneficiary(Abbott)
&'ne'u'ia1y(Babbitt)
Beneficiary(Cabot)

Figure 7.3: Forward Rules Using UNLESS

registered at a hotel in Albany. Backward rules will never notice that anything has

changed. To make our system data-driven, we need to use forward rules. Figure 7.3
shows how the same knowledge could be represented as forward rules. Of course, wIui
we probably want is a system that can exploit both. In such a system, we could use a
backward rule whose goal is to find a suspect, coupled with forward rules that fire as

new facts that are relevant to finding a suspect appear.

7.5 Implementation: Depth-First Search

7.5.1 Dependency-Directed Backtracking

If we take a depth-first approach to norimonotonic reasoning, then the following sce-
nario is likely to occur often: We need to know a fact, F. which cannot be derived
monotonically from what we already know, but which can be derived by making some
assumption A which seems plausible. So we make assumption A, derive F, and then

212	 CHAPTER 7. SYMBOliC REASONING UNDER UNCERTAINTY

derive some additional facts G and H from F. We later derive some other facts M and N,
but they are completely independent of A and F. A little while later, a new fact comes
in that invalidates A. We need to rescind our proof of F, and also our proofs of G and H
since they depended on F. But what about M and N? They didn't depend on F, so there
is no logical need to invalidate them. But if we use a conventional backtracking scheme.
we have to back up past conclusions in the order in which we derived them. So we have
to backup past M and N, thus undoing them, in order w eel hack to F. G. H and A. To
get around this problem, we need a slightly different notion of backtracking, one thai
is based on logical dependencies rather than the chronological or&.r in which decisions
were math. We call this new method dependency-directed hackt rack!ng [Stallman and
Sussman, 19771, in contrast to chronological backtracking, which we have been using
up until now.

Before we go into dci all on how dependency-directed backtracking works, it is worth
pointing out that although one of the big motivations for it is in handling nonmonotonic
reasoning, it turns out to be useful for conventional search programs as well. This is not
too surprising when you consider that what any depth-first search program does is to
"make a guess" at something, thus creating a branch in the search space. If that branch
eventually dies out, then we know that at least one guess that led to it must be wrong. It
could be any guess along the branch. In chronological backtracking we have to assume
it was the most recent guess and back up there to try an alternative. Sometimes, though,
we have additional information that tells us which guess caused the problem We'd like
to retract only that guess and the work that explicitly depended on it, leaving everything
else that has happened in the meantime intact. This is exactly what dependency-directed
backtracking does.

As an example, suppose we want to build a program that generates a solution to a
fairly simple problem, such a,sfinding a time at which three busy people can all attend
a meeting. One way to solve such a problem is first to make an assumption that the
meeting will be held on some particular day, say Wednesday, add to the database an
assertion to that effect, suitably tagged as an assumption, and then proceed mu bud a
time, checking along the way for any inconsistencies in people's schedules. If a conflict
arises, the statement representing the assumption must be discarded and replaced by
another, hopefully noncontradicory, one. But, of course, any statements that have been
generated along the way that depend on the now-discarded assumption must also he
discarded.

Of course, this kind of situation can be handled by a straightforward tree search
with chronological backtracking. All assumptions, as well as the inferences drawn from
them, are recorded at the search node that created them. When a node is determined to
represent a contradiction, simply backtrack to the next node from which there remain
unexplored paths. The assumptions and their inferences will disappear automatically.
The drawback to this approach is illustrated in Figure 7.4, which shows part of the search
tree of a program that is trying to schedule a meeting. To do so, the program must solve
a constraint satisfaction problem to find a day and time at which none of the participants
is busy and at which there is a sufficiently large room available.

In order to solve the problem, the system must try to satisfy one constraint at a time.
Initially, there is little reason to choose one alternative over another, so it decides to
schedule the meeting on Wednesday. That creates a new constraint that must be met by
the rest of the solution. The assumption that the meeting will be held on Wednesday

1 IMPLEMENTATION DEPTH-FIRST SEARCH	 213
3

Try day Wednesday	 'Pry day = Tuesday

After many step'. 	 Repeat same time-finding

conclude that the 	 process and again decide

only time all people	 on 2 pm. for all of the

are available is 2 p.m.	 same reasons.

Try to find a room
f	

Try to find a room

FAIL	 SUCCEED

(A special conference
has all the rooms
booked on Wcdncsday.)

Figure 7,4: NondependenCy-DireCted Backtracking

is stored at the node it generated Next the program tries to select a time at which all
participants arc available. Among them, they have regularly scheduled daily meetings
at all times except 2:00. So 2:00 is chosen as the meeting time. But it would not
have mattered which day was chosen. Then the program discovers that on Wednesday
there are no rooms available. So it backtracks past the assumption that the day would be
Wednesday and tries another day, Tuesday. Nov. it must duplicate the chain of reasoning

that led it to choose 2:01) LS the time because that reasoning was lost when it backtracked
to redo the choice of day. This occurred even though that reasoning did not depend in any
way on the assumption that the day would be Wednesday. By withdrawing statement,-
based on the order in which they were generated by the search process rather than on
the basis of responsibility for inconsistency, we may waste a great deal of effort.

li we want to use dependency-directed backtracking instead, so that we do not waste

this effort, then we need to do the following things:

• Associate with each node one or more justifications. Each justification corre-
sponds to a derivation process that led to the node. (Since it is possible to derive
the same node in several different ways, we warn to allow for the possibility of
multiple justifications.) Each justification must contain a list of all the nodes
(facts, rules, assumptions) on which its derivation depended.

• Provide a mechanism that, when given a contradiction node and its justification,
computes the "no-good" set of assumptions that underlie the justification. The
no-good set is defined to be the minimal set of assumptions such that if you
remove any clement from the set, the justification will no longer be valid and the

inconsistent node will no longer be bclietved.

214	 CHAPTER 7. SYMBOL/C REASONING UNDER UNCERTAINTY

Provide a mechanisTn for considering a no-good set and choosing an assumption
to retract.

• Provide a mechanism for propagating the result of retracting an assumption. This
mechanism must cause all of the justifications that depended, however indirectly,
on the retracted assumption to become invalid.

In the next twc .e::tions, we wilt describe two approaches to providing such a system.

7.5.2 Justification-Based Truth Maintenance Systems

The idea ofatruth maintenance system orTMS [Doyle, 1979] arose as a way of providing
the ability to do dependency-directed backtracking and so to support nonmonotonic
reasoning. There was a later attempt to rename it to Reason Maintenance System (a hit
less pretentious), but since the old name has stuck, we use it here.

A TMS allows assertions to be connected via a spreadshcct-like network of depen-
dencics. In this section, - we describe a simple form of truth maintenance system, a
justification-based truth maintenance system (or JTMS). In a JTMS (or just 1'MS for the
rest of this section), the TMS itself does not know anything about the strucliuie of the
assertions themselves. (As a result, in our examples, we use an English-like shorthand
for representing the contents of nodes.) The TM S's only role is to serve as a bookkeeper
for a separate problem-solving system, which in turn provides it with both assertions
and dependencies among assertions.

To sec how a TMS works, let's return to the ABC Murder story. Initially, we might
bel,.ve that Abbott is the primary suspect because he was a beneficiary of the deceased
and he had no alibi. There are three assertions here, a specific combination of which
we now believe, although we may change our beliefs later. We can represent these
assertions in shorthand as follows:

• Suspect Abbott (Abbott is the primary murder suspect.)

• Beneftciary Abbot: (Abbou is a beneficiary of the victim.)

• Alibi Abbott (Abbott was at an Albany hotel at the time.)

Our reason for possible belief that Abbott is the murderer is nonmonotonic. In the
notation of Default Logic, we can state the rule that produced it as

tknc/iciary(x) : ­Alibi(x)
Suspect(x)

or we can write it as a backward rule as we did in Section 7.4.
If we currently believe that he is a beneficiary and we have no reason to believe he

has a valid alibi, then we will believe that he is our suspect. But if later we come to
believe that he does have a valid alibi, we will no longer believe Abbott is a suspect.

But how should belief be represented and how should this change in belief be
enforced? There are various ad hoc ways we might do this in a rule-based system. But
they would all require a developer to construct rules carefully for each possible change
in belief. For instance, we would have to have a rule that said that if Abbott ever gets

7-5. IMPLEMENTATION: DEPTH -FIRST SEARCij

• i, wel A hhl	 supported belief

S I it IC a' On

Beerejh'tnr' Abboir 	 -iib, Ah/u

IN list

	

	 OUT-list

Fiiuirr 7 S: A Justification

an alibi, then we should erase from the database the beli1 that Abbott is a suspect.
But suppose that we later fire a rule that erases belief in Abbott's alibi. Then we iieed
another rule that would resonclnde that Abbott is a suspect. The task of creating a rule
set that consistently maintains beliefs when new assertions are added to the database
quickly becomes unmanageable. In contrast, a TMS dependency network offers a purely
syntactic domain-independent way to represent belief and change it consistently.

Figuie 7.5 shows how these three fads would be represented in a dependency
network, which can be created as a result of applying the first rule of either Figure 7.2
or Figure 73. The assertion Suspect Abbott has an associated 1'MS ju.ctifi cation. Each

justification consistsof two parts: an IN-list and an OU7lLst. In the figure. the assertions
on the IN-list are connected to the justification by "+" links, those on the OUT-list by

-"links. The justification is connected by an arrow to the assertion that it supports.
In the juctilication shown, there is exactly one assertion in each list. Beneficiary Abbott
is in the IN-list and Alibi Abbott is in the OUT-list. Such a justification says that Abbott
should be a suspect just when it is believed that he is a beneficiary and it is not believed

that he has aii alibi.
More general[), assertions (usually called nodes) in a TMS dependency network

alt believed when they have a valid justification. A justification is valid if every

assertion in the IN-list is believed and none of those in the OUT list is. A justification
is nonmonotonic if its OUT-list is not empty, or, recursively, if any assertion in its IN-
list has a nonmonotonic justification. Otherwise, it is morltonic. In a TMS network.
nodes are labeled with a belief status. If the assertion corresponding to the node should
be believed, then in the TMS it is labeled IN. If there is rio good reason to believe
the assertion, then it is labeled OUT. What does it mean that an assertioji "should be

believed" or has no "good" reason for belief?
A TMS answers these questions for a dependency network in a way that is mdc

pendent of any interpretalion of the assertions associated with the nodes. The labeling
task of a TMS is to label each node so that two criteria about the dependenc y network

216	 CHAPTER 7 SYMBOLIC REASONING UNDER UNCERTAINTY

suspect Abbot, 111N)

Renefzcia,v Abbot, [INJ	 ,4!ihi .4kbe;ti LOUTJ

Figure 7.6: Labeled Nodes with Premise Justification

structure are met. The first criterion is consistency: ever y node labeled IN is supported
by at least one valid justification and all other nodes are labeled OUT. More speci'ca1ly
than before a justification is valid if every node in its IN-list is labeled IN and every
node in its OUT-list is labeled OUT. Notice that in Figure 7.5, all of the asert,orts
would have to be labeled OUT to be consistent. Alibi Abbott h'is no justification at all.
much less a valid one, and so must be labeled OUT. But the same is true for lfrncficiars'
Abbott, it must be OUT as well. Then the justification for Suspect Abbott is invalid
because an element of its IN-list is labeled OUT. Suspect Abbott would then be labeled
OUT as well Thus status labels correspond to our belief or lack of it in assertions, and
justifications correspond to our reasons for such belief, with valid justifications being
OUT 'good" reasons. Notice that the label OUT may indicate that we have specific reason
to believe that a node represents an assertion that is not true, or it may mean simply that
we have no information one way or the other.

But the state of affairs in Figure 7.5 is incomplete. Wc UTC told that Abbott is a
beneficiary. We have no further justihcation for this fact; we must simply accept it. For
such facts, we give apremise justification: ajustilication with empty IN and OUT-hsts.
Premise justilicalions are always valid. Figure 7.6 shows such a justiflcaiior added to
the network and a consistent labeling for that network, which shows Suspect Abbott
labeled IN.

That Abbot is the primary suspect represents an initial slate of the murder investi-
gation. Subsequently, the detective establishes that Abbott is listed on the register of a
good Albany hotel on the day of the murder. This provides a valid reason to believe
Abbott's alibi. Figure 7.7 shows the effect of adding such ajustifIation to the net work.
assuming that we have used forward (data-driven) rules as shown ;n Figure 7.3 for
All of our reasoning except possibly establishing the top-level goal. That Abbott was
rcgistered at the hotel. Registered Abbott, was told to us and has a premise justification
and so is labeled IN. That the hotel is far away is also asserted a a premise rht
register might have been forged, but we have no good seasoit to believe it was. Thus

75. lMPLEMlNTA7'1ON: DEIl -FIR,s .,/RCH	 211

Suspect Abbott (OUT

b wJzctarv Ahbot ill"	 ?/t Abbo'i I

+

Registered Abbott 1NI

FarAway tIN

Rey isrer For,ii'd IOU II

Figure 7.7: Changed l,abcinig

!gi.sri'l Forged l acks any justification and is labeled OUT. That Abbott was on the
-egister of a far away hotel and the lack of belief that the register was forged will cause

the appropriate forward rule to fire and create a justification for Alibi Abbott. which is

hus labeled IN. This means that Suspect Abbott no longer has a valid justification and

must be labeled OU1. Abbott is no longer a suspect.
Notice that such a 1'MS labeling carefully avoids saying that the register definitcl

was not forged. It only says that thete is currently no good reason to believe that it
was. Just like our original reason for believing that Abbott was a suspect, this i s Li

noitnloru)tonic justification. Later, if we find that Abbott was secretly married to the
desk clerk, we might add to this network a Justification that would reverse some ot
the labeling. Babbitt will have a similar justification based upon lack of belief that hi'
brother-in-law lied as shown in Figure 7.8 (where IJ•I-L stands for "Brother-In-Law').

Abbott's changing state showed how consistency was itiainiainerf There is another

criterion that the TMS must meet in labeling a dependency network
(i.e.. the proper grounding of a chain of justifications on a set of nodes that do not
themselves depend on the nodes they support). To illustrate this, consider poor Cabot.
Not only does he have fewer hs and is iii his name, he also lacks a vand .111 i,trcatton for

his alibi that he was at a ski show We have only his word that he was. Ignoring the

more complicated representation of lying, the simple dependency network to i iguic 7.

illustrates the fact that the only support for the alibi of atteiidirtg the skL show is that

Cabot is telling the truth about being there. The only support for his tellinp the truth
would be if we knew he was at the ski show But this is a circular argument. Part of
the task of a TMS is top such arguments. In particular, it ' the support for a node

only depends on an unbroken chain of positive links (IN-list link';) leading back to ttst I

218	 CHAPTER 7. SYMBOUC REASONING UNDER UNCERTA!Nfl

Suspect Babbitt [01111

Benefii'iarv Bobbin [IN) 	 Alibi Babbitt [IN]

Says So B-l-L lP4	 ties B . f-L [OUT)

Figure 7.8: Babbitts Justification

then that node must be labeled OUT if the labeling is to be well-founded.
The TMS task of ensuring a consitent, well-founded labeling has now been outlined.

The other major task of a TMS is resolving contradict ions. in a [MS. a contradicirtm
node does not represent a logical contradiction but rather a state of the database explicitly
declared to be undesirable. (In the next section, we describe a slightly different kind of
TMS in which this is not the case.) In our example, we have a contradiction if we do
not have at leat one murder suspect. Thus a contradiction might have the justilication

shown in Figure 7.10, where the node Othe, Suspects means that there arc suspects
other than Abbott. Babbitt, and Cabot. This is one way of explicitly representing an
instance of the closed world assumption. Later. if we discover a Long-lost relative.
this will provide a valid justification for Other Suspects. But for now, it has none anci
must be labeled OUT. Fortunately, even though Abbott and Babbitt are not suspects.
Suspect Cabot is labeled IN, invalidating the justification br the contradiction. While

the contradiction is labeled OUT. the re is no contradiction to resolve.
Now we learn that Cabot was seen on television attending the ski tournament.

Ad.ing this to the dependency network first illustrates the fact that :o4cs can have more
than one justification as shown in Figure 7.11. Not only does Cabot say he wa at the

ski slopes, but he was seer there on television, and we have no reason to believe that
this was an elaborate forgery This new valid justification of Alibi Cabot causes it to

he labeled IN (which also causes Tells Truth Cabot 14:' COriiC K. This change in slate

propagates to Suspect Cabot, which goes OUT. Now we have a problem
The justification for the contradiction is now valid arid the contradiction is IN."Inc

Job of the TMS at this point is to determine how the contradiction ..m be made OUT
aajri, In a TMS network, a node can be made OUT by causing all of its justifications

7.5. lMpuMN'jAT/ON. DEPFH-HRST SEARCH	 19

Suspect Cabot UN]

Bcncficiarv Cal;! IN 	 Alibi Cabot OUTj

Tells Truth Cabot '[OUT 1

rigure 7.9: Cabot' s Justification

Contradiction

Othr Suspects

Suspect Abbott	 Suspect Babbitt	 Suspect Cabot

Figure 7.10: A Contradiction

to become invalid. Monotonic justifications cannot be made invalid without retracting
explicit assertions that have been madc to the network. Nonmoriotonic justifications

can. however, be invalidated b y eserting some fact whose absence is required by the

justification. We call assertions with n(minonoionic justifications ussivripiions An

assumption can be retracted by niakiiig IN some element of its justification' ,, OUT-list

(or w-causively in sonic clement of the OUT-list of the justification of some element in
its IN-iistt. Unfortunately, there may be many such assumptions in a large dependency

twork Fortunately, the nctvvork gives us a way to idcnt'ty those that are relevan'

to the contradiction at hand. Dependency-directed backtracking aLgorithms, of the sort
we described in Section 7.51. can use the dependency links to deteiminc an AND/OR
tree of assumptions that might be retracted and ways to retract them by jusifying other

beliefs.
In Figure 7.10. we see that the contradiction itself is an assumption whcneve: its

justification is valid. We might retract it by believing there were other suspects or
by finding a way to believe again that either Abbott, Babbitt, or Cabot was a suspect.
Each of the last three could be believed if we disbelieved their alibis, which in turn

220	 ChAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect Cabot LOUT]

Beneficiar y Cab 't [IN]	 Alibi Cab! I IN] -_____________

LTells Truth Cabot [IN]

Cabot Seen [IN]	 TV Forery fOUTI

Figure 7.11: A Second Justification

are assumptions. So if we believed that the hotel register was a forgery. that Babbitt's
brother-in-law bed, or that the television pictures were faked, we would have a sucpct
again and the contradiction would go back OUT. So there are four things we might
believe to resolve the contradiction. That is as far as DDB will take us. it re ports there
IS 110 OR tree with four nodes. What should we do?

A TMS has no anwcr for this question. Early TMSs . picked an sn,,vc;io randco
More recent architectuws take the more reasonable position that this choice was it

problem for the same problem-solving agent that created the dependencies in the first
place. But suppose we do pick one. Suppose, in pailicular, that we choose to believe
that Babbitt's brother-in-law lied. What should be the justification for that belf7 If we
believe it just because not believing it leads to a contradiction, then we should install a
justification that should be valid only as long as it needs to be. if later we find another
way that the contradiction can be labeled OUT, we will not want ¶0 continUe in our
abductive belief.

For instance. suppose that we believe that the brother-in-law lied, but thtrr we
discover that a long lost relative, jilted by the family, was in town the day at the murder
We would no longer have to believe the brother-in-law lied just to avoid a contradiction.
A TMS may also have algonthms to create such justifications. which we call abductive
since they are created using abductivc reasoning. If they have the property that the
are not unnecessarily valid, they are said to be complete. Figure 7.12 shows a complete
abductive justification for the belief that Babbitt's brother-in-law lied. If we come to

7j, 1MPLEM.N1ATWN flFPIH-FIRST SEARCh

Lies B-I-L

Other Suspects

S'avs So B-I-L	 Suspect Abbott 	 Saspeet Cabot
Figure 7.12. A Complete Abductive Justification

believe that Abbott or Cabot is a suspect, or we find a long-lost relative, or we somehow
come to believe that Babbitt's brother-in-law didn't reall y say Babbitt was at his house,

then this justdicaiion for lying will become invalid.
At this point, we have described the key reasoning operations that are performed by

aJTMS:

• consistent labeling

• contradiction resolution

We have also described a set of important reasoning operations that a JTMS does

not perform, including:

• applying rules to derive conclusions

ci eating justifications for the results of applying rules (although justifications are
created as part of contradiction resolution)

• choosing among alternative ways of resolving a contradiction

• detecting contradictions

All of these operations must be performed by the problem-solving program that is
using the JTMS. In the next section, we describe a slightly different kind of TMS,
in vhich, although the first three of these operations must still be performed b y the

problem-solving system the last can be performed by the TMS.

7.5.3 Logic-Based Truth Maintenance Systems

A loicbased truth maintenance s ystem (LTMS) [McAlkster. 19801 is very similar to a
JIMS. It differs in one important way. In a JTMS, the nodes ill the network are treated

as atoms by the TMS, which assumes no relationships among them except the ones that
are explicitly stated in the justifications. In particular. a JTMS has no problem simulta-

ieousIy labeling both P and -'P IN. For example, we could have represented explicitly

both Lies B-1-L and Not Lies B-I-L and labeled both of them IN. No contradiction will
be detected automatically. In an L1'MS, on the other hand, a contradiction would be
asserted automatically in such a case. If we had constructed the ABC example in an

222	 CHAPTER.' SYMBOLIC REASONING UNDER UNCERTAIP'TT'.'

LTMS system, we would not have created an explicit contradiction corresponding to the
assertion that there was no suspect. Instead we would replace the contradiction node by
one that asserted something like No Suspect. Then ¼v.' would assert Suspect. When No
Suspect came IN, It would cause a contradiction to °c asserted automatically.

7.6 Implementation: llrdth-First Search

The a.vsutnptioi-ha.sedtruth ,fl)jrJre,ft,t('esvsten1 (ATl1S) ide Meer. 1 q86) is an aiterria-
tive way of implementing nonmonotunic reasoning. In both JTMS and LTMS systems,
a single line of reasoning is pursued at a time, and dependency-dirctc1 backtracking
occurs whenever it is necessary to change the system's assumptions. In an ATMS,
alternative paths are maintained in parallel. Backtracking is avoided the expense
of maintaining multiple contexts, each of which corresponds to a set of consistent as-
sumprioris As reasoning proceeds in an ATMS-based system, the universe of consistent
contexts is pruned as contradictions are discovered. The remaining consistent cisthcs!
are used to label assertions, thus indicating the contexts in which each assertion has a
valid justification. Assertions that do not have a valid ju tification in any consistent
context can be pruned from consideration by the problem solver. As the set of consistent
contexts gets smaller, so too does the set of assertions that can consistently be believed
by the problem solver. Essentially. an ATMS system works breadth-first, considering
all possible contexts at once, while both J1 MS and LIMS systems operate depth-first.

The ATMS, like th': JTMS, is designed to be used in conjunction with a separate
problem solver. The prohkm solver's job is to:

• Create nodes that correspond to assertions (both those that are given as axion1s
and those that are derived by the problem solver).

• Associate with each such node one or more justifications, each of which describes
reasoning chain that led to the node

• Inform the ATMS of inconsistent contexts

Notice that this is identical to the role of the problem solver mat uscs a JTMS. ¼AC

that no explicit choices among paths to follow need be made as reasoning proceeds
Some decision may be necessary at the end, though. it more thn one nesibc soluden
still has a consistent context.

The role of the ATMS system is then to

• Propagate inconsistencies, thus ruling out coiltexo, thai include .suhcontesrs (sets
of assertions) that are known to be inconsistent

• Label each problem solver node with the contexts in which it ha a valid ju il4 ti-

cation. This is done by combining contexts that correspond to the componens
a justification. In particular, given a justification of the form

Al/A2AA.4n—C

assign as a context for the node corresponding to C the intersection of the corne'
corresponding in the nodes Al through An

7.6. IMPLEMENTATION: BREADTH-FIRST SEARCH 	 223

fAl.A2.A3,A4)

fAt. t2, A.I	 IA), fl2. A41	 IAI, A3. A41	 (A2, Al A31

IA1..t21	 jA 1, A3	 I A k.A4I	 IA2.AI	 fA2,A41	 !A,A'*

JAII	 IA21	 1.411	 1.441

Figure 7.13: A Context Lattice

djorex is get eliminated as a result of the problem solver asserting inconsistencies and the
•FMS propagating them. Nodes get creacd by the problem solver to represent possible
components of a problem solution. They may thert get pruned from considetation if
all their context labels get pruned. Thus a choice among possible solution components
gradually evolves in a process very much like the constraint satisfaction procedure that
we examined in Section 3.5.

One problem with this approach is that given a set of it assumptions, the number of

pssible contest that may have to be considered. is 2. Fortunately, in many problem-
olving scenarios, most of them can be pruned without ever looking it them. Further,

the ATMS exploits an efficient labeling system that makes it possible to encode a set of
contexts as a single context that delimits the set. To see how both of these things work,

i t is necessary to think of the set of contexts that are defined by a set of assumptions as
forming a lattice, as shown for a simple example wih tour assumptions in Figure 7.13.
Lines going upward indicate a subset relationship.

h first thing this lattict does for 'is is to illustrate a simple mechan i sm h'y which1
:onlraoiCiOflS (inconsistent contexts', can he propagated so that large parts of the s1acC

,-it 2' c(,nteSts can he eliminated. Suppose that the context labeled {A2. .431 is asserted

to be Inconsistent- Then all contexts that include it (i.e.. t.ose that are ahose it) must

.4so Le inconsistent.
Now consider how a node can he labeled with all the contexts in which it has a valid

ustification. Suppose its justification depends on assumption Al. Then the context
labeled (Al) and all the contexts that include it are acceptable. But this can be indicated
just by caving {A1}. It is not necessary to enumerate its supersets In general. each
node will be labeled with the greatest lower bounds of the contexts m which it should
be believed.

224	 CHAPTER 7. SYMBOLiC REASONING tINDER 'JNCERT4INTY

Clearly, it is important that this lattice not be built explicitl y but only used as an
implicit structure as the ATMS proceeds.

As an example of how an ATMS-based problem solver works, let's retuin to the
ABC Murder story. Again, our goal is to find a primary suspect. We need (at least) ti lc

 assumptions:

• Al. Hotel register was forged.

• A2. Hotel register was not forged.

• A3. Babbitt's brother-in-law tied.

• A4. Babbitt's brother-in-law did not lie.

• AS. Cabot lied.

• A6. Cabot did not lie.

• A7. Abbott, Babbitt, and Cabot are the only possible suspects.

• A8. Abbott. Babbitt, and Cabot are not the only suspects

The problem solver could then generate the nodes and associated justifications shown
in the hrst two columns of Figure 7.14. In the figure. the justification for a node that
corresponds to a dec i sion to make assumption N is shown as {N} Justification.-; for
nodes that correspond to the result of applying reasoning rules are shown :s the rule
involved. Then tile tfMS can assign labels to the nodes as shown in the second two
columns The first shows the label that would be generated for each justification taker,
by itself. The second shows the Label (possibly containing multiple contexts) that i'
actually assigned to the node given all its current justification'. These columns are
identical in simple cases, but they may differ in more complex situations as we see for
nodes 12, 13. and 14 of our example.

There are several things to notice about this example:

• Nodes may have several justifications if there are several possible reasons for
believing iiiem. This is thc Lase for nodes 12. 13, and 34.

• Recall that when we were using a JTMS, a node was labeled IN if it had at least
one valid justification. Using an ATMS, a node will end up being labeled with a
consistent context f it has at least one justification that can occur in a consistent
context.

• The label assignment process is sometimes complicated. We describe it in more
detail below.

Suppose that a problem-solving program ho.i created nodes I through 14. repre-
senting the various dependencies among them without committing to which of them
it currently believes. It can indicate known contradictions by marking as no good the
context:

• A. B. C are the only suspects; A. B.0 are not the only suspects: {A7. ,48}

7.6. !MPLEMFRFA77ON: BREADTH-F IRST SEARCH	 225

Nodes	 Justifications	 Node
Labels

[11 Register was li0t forged	 (A2)	 {A2}	 {A2}

121	 Abbott at 	 [I] -9 I1	 (.42)	 {A2}

131	 n-i-i didn't lie	 (41	 (A4)	 (A4}

[41	 Babbitt at B-1- 1.	 (3) -.4 [4)	 {A4}	 (.44)

(SI	 Cabot didn't hC	 {61	 {A6)	 (.46)

j61	 Cabot at ski show	 (51---) (61	 {A6}	 (A6)

A. B. C only sacpccls	 1A7 }	 (A7

181	 Prime Suspect Abbon	 171A1131AU41—)18]	 (A7,A4,')	 (A7,A4,.46}

[9]	 Prime Suspect babbitt 	 [7); [121 A)14)) [9)	 {A7, A2, 46)	 (.47, A2, A6

(10)	 Prime Suspect Cabot	 U71 112.' A [13) -4 11(1)	 {.47.A2.A3l	 A7,A2.A4}

Itt]	 s, B. C not only suspects	 (AK)	 (A8}	 (AK)

12) Not prune suspect Abbott	 12 -4 (1 ')	 lA2}	 {A2}. (48)
(1I]—*)12)	 (AS)
(91-112]	 (.47A2.A6)
[101-41121	 (.47.A2,A4(

(13]	 Not prune su.p' Babbitt)4) -4 1131	 (.44)	 (.44) (.48)
[111-41131	 (.48)
181	 1131	 jA7.A4.A15)
(101-9 1131	 {.47,A4A2}

[14)	 Not prime suspect Cabot	 161 -4 [14]	 {A6}	 (.46)
111) -4 	 {Atl}
81 -+ (14)	 (A7,A4..46)
I01-1141	 {A7.A2.A6'

Figure 7.14: Nodes and Their Justifications and Labels

(he VIMS would then assign the labels shown in the figure. Lets consider the case

Of node 12. We generate four possible labels, one for each justihealioti But we want to
assign to the node a label that contains just the greatest lower bounds of all the contests

in which it ciit occur, since (he y implicitly encode the superset contexts. The label A2

is the greatest lower bound of the first, third, and fourth labs: L and (.48) is the same for
the second label. Thus those two contexts are all that are required as the label for the
node Now let's consider labeling node 8. Its label roust he the union of the labels of

nodes 1.
13. and 14 But no:. 13 and 14 have complex labels representing alternative

,justifications So we must consider all ways of combining the labels of all three nodes.
lortunately. some of these c)mbinalons, namely those that contain both 47 and A8, can
Ix- 'Iiminatetl because the\ are already known to he contradictory. Thus we are left with

a single label as show n-
Now suppose the problem-solving program label'. the context {A2} as no good.

meaning that the assumption it contains (namel y that the hotel register was not forged)

conflicts with .,hat it knows. Then many of the labels that we had disappear since they

are now i nconsistent In particular, the labels for nodes 1, 2.9. 10. and 12 d'-ear.
At this point. the only suspect node that has a label is node 8. But node 12 (amc
suspect Abbott) also still has a label that corresponds to the assumption that .,c-.'J*M(.

Babbitt, and Cabot are not the only suspects. If this assumption is made, then Abbott

would not be a clear suspect even if the hotel register were forged. Further information
or some choice process s still nec.essary to choose between these remaining nodes

226	 "HAPTER 7. SYMBOUC REASONING UNDER (!NCERTA1''fl

7.7 Summary

In this chapter we have discussed several logical systems that provide a basis for
nonmonotonic reasoning, including nonmonotonic logic, defatili logic, abduction, in-
heritance, the closed world assumption, and circumscription. We have also descrtheo a
way in which the kind of rules that we discussed in Chapter 6 could he augmented t
upport nonmonotonic reasoning.

We then presented three kinds of TMS systems, all of which provide a basis f'
i mplementing nonmonotonic reasoning. We have considered two dimensions aloiig
which TMS systems can vary: whether they automatically detect logical cot Itra,lic! loll
and whether they maintain single or multiple contexts. The following lab1 sI1muiarze.
this discussion:

[IMSKIIIdS singleitext multiple context]
nonlogical	 JTMS	 ATMS
logical	 LThIS	 ?

As can be seen in this table, there is currently no TMS with logical contradictions
and multiple contexts.

These various TMS systems each have advantages and disadvantages with respect
to each other. The major issues that distinguish JTMS and kTMS systems are:

• The JTMS is often better when only a single solution is desired since it does not
need to consider alternatives: the ATMS is usuaily more efficient if all solutions
are eventually going to be needed.

• To create the context lattice, tht A1'MS pertornis a giohal operation iii which
it considers all possible combinations of assumptions. As a result, either ail
assumptions must be known at the outset of problem solving or an espensive,
lecumpllation process must occur whenever an assumpncn is added In the
JTMS, on the other hand, the gradual addition of sew assumptions po.s'
problem.

• The JTMS may spend a lot of time switching contexts when backtracking it.
necessary. Context switching does not happen in the ATMS

• In an ATMS. mt n-insistent contexts disappear from consideration. It the initta
problem description was overconstrained, then all nodes will end up with empty
labels and there will be no problem solving trace that can serve as a basis for
relaxing one or more of the constraints. In a JTMS, on the other hand, the
justification that is attached so a contianlictior; node provides exactly such a trace.

• The ATMS provides a natural wa to answer questions of the form. "In what
contexts is A true?" The univ s'. ay to answer such questions using a JTMS is to
try all the alternatives and record the ones in which A is labeled IN.

One way to get the best of both of these worlds is to combine an ATMS and a JTMS
(or LTMS), letting each handle the part of the problem-solving process to which it is
best suited,

22'?
7.8. EXERCISES

The various nonrnoflOtofliC systems that we have described in this chapter have
served as a basis for a variety of applications. One area of particular significance -
diagnosis (for example, of faults in a physical device) (Reiter, 1987h: de Kfeer an.i
Williams. 19871. Diagnosis is a natural application area for minimalist reasoning n
particular, since one way to describe the diagnostic task is. "Find the smallest .et
of abnormally behaving components that would account for the observed behavior
A second application area is reasoning about action, with a particular emphasis or,
add ...i'ngihc haute problem tllans and McDcrrnOtt. 191161. The frame problem
is also riattual for this kind of reasoning since It can he described as, "Assume that
everything stays the same alter an action except the things that necessarily change.'

A third application area is design [Steele Pt of, l9?.91. Here, nonmoruotOflie reasoning

provides a basis for using common design principles to find a pjomising path quickly
even in a huge design space while preserving he option to consider alternatives later
if necessary. And yet another application area is in extracting intent from English

expressions (see Chapter 15.)
In all the systems that we have discussed, we have assumed that belief status is a

binary function. An assertion must eventually be either believed or not. Sometimes,
this is too strong an assumption. In the next chapter, we present techniques for dealing

with uncertainty without making that assumptio n. Instead, we allow for varying degrees

of belief.

7.8 Exercises

' fry to formulate the ABC Murder story in predi.dte logic and see how far you

can gel.

The classic example of nonmonotofliC reasoning involves birds and flying. In

Darticular. consider the following facts:

• Most things do not fly.
• Most birds do fly. unless they are too young or dead or have a broken wing

• Penguins and ostriches do not fly.

• Magical ostriches fly.

• Tweeiy is bird.

• Chirpy is either a penguin or an ostrich.

• Feathers is a magical ostrich.

se one or more or the nolimofloloflic reasoning systcm. v.e h .e discussed t'

ancwer the following questions:

• i)oes Tweety fly?

11'oes Chirpy fly'.'

Does Feathers fly?

• Does Paul fly)

228	 CHAPTER 7. SYMROJJC REASONING UN)) ER UNCERT4I,v1

3. Consider the missionaries and cannibals problem of See iton 2.6. Wbu .iu .c
that problem, you used the CWA several times (probably without thinking .shoi,i
i t). List some of the ways in which you used it

4. A big technical problem that arises in defining circumscription ciseI' is the
definition of a minimal model. Consider again the problem of Dick, the Quaker
and Republican, which we can rewrite usin ' i s

lightly different kind 'i .11?
predicate as:

Vx : Repub/ican(x) A -AR 1(x) > -'Pac;fist(.:.
Vx : Quaker(x) A -'A82(-k)	 Pacijisiyx)
Republican(x)
Quaker(x)

(a) Write down the smallest models you can that dcsnhe the two xIensions
that we computed for that knowledge base.

(h) Does it make sense to say that either is smaller than the other?

(c) Prioritized circumscription (McCarthy, 19861 attempts to solve this problem
by ranking p"edicates by the order in which they should be minimized. How
could you use this idea to indicate a preference as to whic q extension to
prefer?

5. Consider the problem of finding clothes to wear in the morning. To solve this
Problem. it is necessary to use knowledge such as:

• Wear jeans un	 ayless either they are dirty or you have a . h interview tcxta)
• Wear a sweater if it's cold.

• It's usually cold in the winter,

• Wear sandals if it's warm.

• ft's usually warm in the summer.

(a) Build a JTMS-style database of the nce:try iacts to solve 111j, w
(b) Show how the problem cart he solved and how the solution chancc 'be

relevant facts (such as time of year and dirtiness of leans) change

6. Show how a JTMS could be used in medical diagnosis. Coiiidt-i rules such as,
"If you have a runny nose, assume you have a cold unless it is allergy season."

7. Sol ve the same medical reasor.ing problem with an ATMS

8. Show how a JTMS could be iiscsl to select a TV program to watch. Consider roles
such as. "If it is 6:00, then wtth the news on channel 2 unless there is a football
game still going on."

9. TMSs are useful tools in so!s tog constraint satisfaction problems since they fa
cilitate the nonmonotonic reasoning that occurs during the search for a omplete
solution.

229
7.8. EXERCISES

(a)
Show how a JTMS could be used to solve the cryptarithmetlC problems of

Chapter 2.

(b) Show how an ATMS would solve the same problem.

10. We	 informally the JTMS labeling prnces'. Write a formal description

of that algoriUun.

[I. Work through the details of the ATMS node labchng process vhc'.c rrs1It are

shown in Figure 7.14.

Chapter 8

Statistical Reasoning

So far, we have described several representation techniques that can be used to model
belief systems in which at any given point, a particular fact is believed to be true,
believed to be false, or not considered one way or the other. For some kinds of problem
solving, though. it is useful to be able to describe beliefs that are not certain but for
which there is some supporting evidence Let's consider two classes of such problems.

The first class contains problems in which there is genuine randomness in the worl(i.
Playing card gsines such as bridge and blackjack is good example of this class
Although in these problems it is not possible to predict the world with certainty, some
knowledge about the likelihood of various outcomes is available, and we would like to

be able to exploit it-
The second class contains problems that could. in principle, be modeled using the

techniques we described in the last chapter. In these probIcms the rcicvant world t not

random: it behaves "normally" unless there is some kind of cxccpton. Inc difficulty
thattliere are many more possible exceptiousthan we care Iii enumerate explicitly iusIg

techniques such as AR and UNLESS) Many common sense tasks fall into this categ'.'ry.

as do many expert reasoning tasks such as medical diagnosis. For problems like this
statistical measures may serve a very useful function as summaries of the world; rather
than enumerating all the possible exceptions, we can use a numerical summary that tells
us how often an exception of some sort can be expected to occur.

In this chapter we explore several techniques that can be used to augment knowlcde

repreSefltit 1011 techniques with statistical nir'asurrs that describe levels of evidence arid

belief.

8.t Probability and Bayes' Theorem

An important goal for many problem-solving s stcilis is to collect evidence as the
system goes along and to modify its behavior on the basis of the evidence. To model this
behavior, we need a statistical theory of evidence. Bayesian statistics is SUCh a theory
The fundamental notion of Bayesian statistics is that of conditional probability-

P(HE)

23

232	 CHAPTER 8. STATISTICAL REASONiNG

Read this expression as the probability of hypothesis H given that we have observed
evidence F. To compute this, we need to take into account the prior probability of
/1 (the probabiLity that we would assign to H if we had no evidence) and the extent to
wl-iich £ providesevidenee of H To do this, we need to define a uiiiversetliat coniain an
exhaustive, mutually exclusive set of H,'s, among which we are trying to discriminate.
Then, let

P(HdL.) =the piobability that hypothesis H 4 is true given cvidcne £
P(E! II) =the probability that we will observe evidence E given that hypothcsi

i is true

P(I-I,) =the a Prim i probability that hypothesis its true in the absence ol any
specific evidence. These probabilities are called prior probabilities
or psioi s.

A =the number of possible hypotheses

Ba yes' theorein then states that

P(HE) =	 P(LH,)P(I-1)
E.1 PEIl1	 P(11)

Suppose, for example, that we are interested in examining the geological evidence
at a particular location to determine whether that would be a good place to dig to find
a desired mineral. 11 we know the prior probabilities of finding each of the various
minerals and we know the probabilities that if a mineral is present then certain physical
characteristics will be observed, then we can usc }ayes' formula to compute, from the
evidence we collect, how likely it is that the various minerals are present. This is, in fact,
what is done by the PROSPECTOR program [Duda er at., 19791, which has been used
successfully to help locate deposits of several minerals, including copper and uranium.

The key to using Bayes' theorem as a basis for uncertain reasoning is to recognize
esacily what it says. Specifically, when we say P(A IS), we are describing the conditional
probability of A given that the only evidence we have is B. If theme is alSO other relevant
evidence, then it too must be considered. Suppose, for example, that we are solving a
medical diagnosis problem. Consider the following assertions:

.S patient has spots
M: patient has measles
F. patient has high fever

Without any additional evidence, the presence of spots serves as evidence in favor
of measles. It also serves as evidence of fever since measles would cause fever. But
suppose we already know that the patient has measles. Then the additional evidence that
he has spots actually tells us nothing about the likelihood of fever. Alternatively, either
'pots alone or fever alone would constitute evidence in favor of measles. If both are
present, we need to take both into account in determining the total weight of evidence.
But, since spots and fever are not independent events, we cannot just sum their effects.
Instead, we need to represent explicitly the conditional probability that arises from their
conjunction. In general, given a prior body of evidence e and some new observation F,
we need to compute

8.2. CERTAINTY FACTORS AND RULE-BASED SYSTEMS	
233

P(eE, 11)
P(HIE,e) P(HIE)

Unfortunately, in arbitrarily complex world. the size of the set of joint probabilities

that we require in order to compute this function grows as 2 if there are it different

propositions being considered. This makes using Bayes' theorem intractable for several

reasons:

• The knowledge acquisition problem is insunnouruable; too many probabilities

have to be provided. In addition,addition, there is substantial empirical evidence (e.g.,

Tvet 'k and Kahncmafl [19741 and Kahnemafl etal. [19821) that people are very

poor probability estimators.

• The space that would be required to store all the probabilities is too large.

• Thr. time requiied to compute the probabilities is too large.

Despite these problems. though, Bayesian statistics provide an attractive basis for
an uncertain reasoning system. As a result, several mechanisms for exploiting its power
while at the same time making it tractable have been developed. In the rest of this

chapter, we explore three of these:

• Attaching certainly factors to rules

• Bayesian networks

• Dempster-Shafer theory

We also mention one very different numerical approach to uncertainty, fuzzy logic.
There has been an active, strident debate for many years on the question of whether

pure Bayesian statistics are adequate as a basis for the development of reasoning pro-

grams (See. for exampl e , ('heeseman [19851 for arguments that it is and Buchanan

and Shortliffe 119841 for arguments that it is tiol On the one hand, non-Bayesian
approaches have been shown to work well for some kinds of applications (as we see
below). On the other hand, there are clear limitations to all known techniques. In
essence, the jury is still out. So we sidestep the issue as much as possible and simply

describe a set of methods and their ch'sacleristk'

8.2 Certainty Factors and Rule-Based Systems

In this section we describe one practical way of oitpiumiSng on 0 pure Bayesian
system. The approach we discuss was pioneered in the MYCIN system [Shortliffe.

1976; Buchanan and Shortliffe, 1984; Shortliffe and Buchanan, 1975), which attempts
to recommend appropriate therapies for patients with bacterial infections. It interacts
with the physician to acquire the clinical data it needs. MYCIN is an example of an

r.spert system. since it performs a task normally done by a human expert. Here we

concentrate on the use
of probabilistic reasoning; Chapter 20 provides a broader view

of experl systems.

234	 CHAP! ER 8. SlAT IS1JCAL REASONING

MYCIN represents most of its diagnostic knowledge as a set of rules. F.ach rulL
has associated with it a certainty factor, which is a measure of the extent to which the
evidence that is described by the antecedent of the rule supports the conclusion that is
gisen in the rule's consequent A typical MYCIN rule looks like:

It: .I) the stain of the organism is grarnpositive,	 r.d
(2) the morphology of the organism is coccus, and
(3) the growth cc'nforisatiurj of the organism is Clumps,

then there is suggestive evidence (0.7) that
the identity uf the urq.snism in srspryiococcus.

This is the form in which the rules are stated to the user. They are actually represented
internally in an easy-to manipulate LISP 1151 structure. The rule we just saw would he
represented internally as

PREMISE: ($AND (SAME CNTXT CRAM GRAMPOS(

(SAME CNTXT MORPH Coccus)
(SAME CNTXT CONFORM CLUMPS))

ACTION: (CONCLUDE CNTXT !DENT STAPHYLOCOCCUS TAtLY 0,7)

MYCIN uses these rules to reason backward to the clinical data available from Its

goal of finding significant disease-causing organisms. Once it finds the identities of such
organisms, it then attempts to select a therapy by which the disease(s) may be treated.
In order to understand how MYCIN exploits uncertain information, we need answers to
two questions: "What do certainty factors Incas?" and "flow does MYCN combine the
estimates of certainty in each of its rules to produce a final estimate of the certainl y of its
conclusions?" A further question that we need to answer, given our observations about
the intractability of pure Bayesian reasoning, is. "What compromises does the MYCIN
technique make and what risks are associated A , iih those compromises?' In the rest of
this section we answer all these questions.

Let's start with a simple answer to the first question (to which we return with
a more detailed answer later). A certainty factor (CF[/i , e]) is defined in terms of two
components:

• MB[h,eJ—.-a measure (between 0 and 1) of belief in hypothesis h given the cvi.
dence e. MB measures the extent to which the evidence supports the hypothesis.
It is zero if the evidence fails to suppoil the hypothesis.

• MD[h, el—a measure (between 0 and 1) of disbelief in hypothesis /i given the
evidence e. MD measures the extent to which the evidence supports the negation
of the hypothesis. It is zero if the evidence supports the hypothesis.

From these two measures, we can define the certainty factor as

CF[h, e l = MBEIi,el - MDEh.ej

Since any particular piece of evidence either supports or denies a hypothesis (but
not both), and since each MYCIN rule corresponds to one piece of evidence (although it
may be a compound piece of evidence), a single number suffices for each rule to define
both the MB and MD and thus the CF.

82 CERTAINTY FACTORS AND RULE-BASED SYSTEMS	
235

GAO	 B

(a)	 (b)	 (c)

Figure 8.1: Combining Uncertain Rules

The CF's of MYCIN's rules are provided by the experts who write the rules. They
reflect the experts' assessments of the strength of the evidence in support of the hy-

pothesis. As MYCIN reasons, however, these CF's need to be combined to reflect the

operation of multiple pieces of evidence and multiple rules applied to a problem. Fig-

we 8 1 i llustrates three combination scenarios that we need to consider. In Figure 8.1 (a),
several tules all provide evidence that relates to a single hypothesis. In Figure 8.1(b),
we need to conder our belief in a collection of several propo!..tiOiiS taken together. In
Figure 8.1(c), the output of one rule provides the input to another-

What formulas should be used to perform these combinations? Before we answer

T at question, we nce 1 first odescribe some properties that we would like the combining

functions to satisfy:

• Since the order in which evidence is collected is arbitrary, the combii ting functions

should be commutative and associative.

• Until certainty is reached, additional confirming evidence should Increase MB
(and similarly for disconlirniing evidence and MD).

It uncertain inferences are chained together, then the result should be less certadi

than either ulthe iiferences aliuiie.

l-laving accepted the desirability of these properttes, let's first consider the scenario

in Figure 8.11a). in which several pieces 0* evidence are c. rnbined to determine the

CF of one hypothesis. The rncasures of belief and disbeFef of a hypothesis given two

observations s l and s2 are computed from:

0	 tfML)lh.5IAs?1	 I

MB [h , Li A sj	 MBIIi. s,] + MB(h. .c) Cl - ,klBi ;i . .	 otherwise

0	 ifMBth.'1A521= I
MDIh.s i A sI { MDh. s1 + MD[h.52}(I - WDI h S	 'therwise

236	 CHAPTER N. YJA11577C4! REAcON,N(;

One way to state these formulas in English is ttia: the mcasliie of belief III Ii is
o if F, is disbelieves] with certainly. Otherwise, the measure of belief in Ii given two
observations is the measure of belief given only one observation plus some increment
for the second observation. This increment is computed by first taking the difference
t)etween I (certainly) and the belief given only the first observation. This difference is
the most that can be added by the second observation. The difference is then scaled
by the belief in It given only the second observation. A corresponding ex planation can
be given, then, for the formula for c(irnpiiting dkbelief From MR a,id MD. CF C:T

be computed. Notice that if several sources of corroborating evidence are pooled, the
absolute value of CF will increase. If conflicting evidence is introduced, the absolute
value of CF will decrease.

A simple example shows how these functions operate. Suppose we make an initial
observation that confirms our belief in h with MB = 0.3. then MD[h,s,I = () and
Cb(h,s 1 J = 0.3. Now we make a second observation, which also confirms h. with
Mill/i, 521 0.2. Now:

MB[h,s i As2 j — 0.3+0.2 0.7
= (1.44

1D[h,s,As2]	 0.0
CFL h ,si As2]	 '0.44

You can see from this example how slight confirmatory evidence can accumulate to
produce increasingly larger certainty factors.

Next let's consider the scenario of Figure 8.1(b), in which we need to compute the
certainty factor of a combination of hypotheses. In particular. this is necessary when we
need to know the certainty factor of a rule antecedent that contains several clauses as,
for example, in the staphylococcus rule given above). The combination certainty facto;
can be computed from its MB and MD. The formulas MYCIN uses for the MB of the
conjunction and the disjunction of two hypotheses are:

!IfB(h 1 A h2 , el min(MB[h i. el, MR[h2el)

MBEh 1 V	 max(MBth.ejMB[h,el)

MD can be computed analogously.
Finally, we need to consider the scenario ri Figure 8.1(c), in which rules are chained

together with the result that the uncertain outcome of one rule must provide the input to
another. Our solution to this problem will also handle the case in which we must assign
a measure of uncertainty to initial inputs. This could easily happen in situations where
the evidence is the outcome of an experiment or a laboratory test whose results are not
completely accurate. In such a case, the certainty factor of the hypothesis must take
into account both the strength with which the 'evidence suggests the hypothesis an:! the
level of confidence in the evidence. MYCIN provides a chaining rule that is defined as
fellows. Let MB'jh, sj be the measure of belief in h given that we are absolutely sure of
the validity of s. Let e be the evidence that led us to believe ins (for example, the actual
readings of the laboratory instruments or the results of applying other rules). Then:

8.2. CER1AJNIY FAcIORS AND RULE-BASED SYSTEMS 	
237

MBIII , S 1 =MB'[h,sl max(O.CFIS.eI)

Since initial CF's in MYCIN are estimates that are given by experts who write the rules,

it is not really necessary to state a more precise d.tinit iflfl nI what a CF means than the

one we have already given. The original work did, however, provide one by defining

MB (which can be thought of as a proportionate decrease in dsbeIief in as a result

at ñ as;

I	 ifI'(/i)
MBI h , el - •	 otherwise

1-rh

Similarly, the VD is the proportionate deuease in belief in h as a result of e:

I I	 jfP(h)=O
MDjh. ci =minlPtotherwise

It turns out that these definitions are incompatible with a Bayesian view of conditional
probability. Small changes to them, however, make them compatible tHeckerman.

I961. In parficul;ir, we can redefine MB as

if P(h) = I
MBIFt,eI =

- P4 h)iP	
otherwise

(P.Ir

The definition of ML) must also he changed similarly.
With these reinterprctatioflS, there ceases to be any fundamental conflict between

MYCINs techniques and those suggested by Bayesian statistics. We argued at the end
tics usually leads to intractable systems. Butof the last section that pure Bayesian statis

MYCIN works lBuchiinan and Shortliffe. 19841. Why?

Each CF in a MYCIN rule represents the contribution of in individual rule to
MYCIN's belief in a hypothesis. to stone sense them it represents a conditional prob-

ability. P(/flE). But recal! that in a pure Bayesian s y stem, P(HL) describes the con

ditional probability of H given that the only relevani evidence is E. It there is other

evidence. joint probabilities need to be considered. This k where MYCIN diveiges

from a pure Bayesian ss'stcm. with the result that it is easier to write and more efficient
to execute, but wiih the corresponding risk that its behavior will be courtterintuiit"e In

particular, the MYCtN lorinulas for all thc.c combination scenarios of Figure 8 t itiakt'

the assumption that all rules are independent The burden of guaranteeing independence
(at least to the extent that it matters) is on the rule writer. Each of the combination
scenarios is sulncrable when this i ndependence t c.iimpt ion is ioiated.

Let's first consider the scenario in Figure 5. Iia ,);,% example rule has three an-

tecederits with a single CF rather than three separate rules ,,this makes the combination

rules ur.necescary. The rule writer did this because the three antecedents are not inde-

pendent To see how much difference MYCIN\ i ndependence assumption can make,

238	
CI-(AP7LR 8. SIAIL!1CA1. REASONING

suppusc for a moment that we had instead had three separate rules and that the CF ofeach was 0.6. This could happen and still be consistent with the combined CF of 0.7 if
the three conditions overlap substantially. If wc apply the MYCEN combination formula
to the three separate rules, we get

MB[h,s 1 AS, J	 =0.6+(0.6.0.4)
0.84

MB[h.(, /\.s?)A sj 084 '(0.6 0.16)
= 0.936

This is a substantiall y different result than the true value, as expressed by the expert, of
0.7.

Now let's consider what happens when independence assumptions are violated in
the scenario of Figure 8.1(c), Let's consider a concrcIe example in which:

S: sprinkler was on last night
grass is wet

R: it rained last night

We can write MYCIN-style rules thai desejibe predictive relationships among thee
three events:

the sprinkler woo on la.5L n

then 'he rk is suggestive 'videncr . ',) .) thaL
t11 grass will be wet this rnoriina

Taken alone, this rule may accurately describe the world. But now consider a second
rule:

It: the grasu is wet hi .r.:ng
then there is suggesLive evidence (UB) that

jr rained last night

Taken alone, this rule makes sense when rain is the most cnnhrnon source of water on
the grass. But if the two rules are applied iogeti,er, using MYCIN5 rule for chaining,
we get	 .

MB(W,SI = 0.8	 {spnnkier suggests wet}
MB[R, Wi 0 8 . 0.9 0 72 {wet suggests rains}

In other words, we believe that it rained because we believe the sprinkler was on.
We get this despite the fact that if the sprinkler is known to have been on and to be the
cause of the grass being wet. then there is actually almost no evidence for rain (because
the wet grass has been explained some other way). One of the major advantages of
the modulasity of the MYCIN rule system is that it allows us to consider individual
antecedent/conuent relationships independently of others. In particular, it lets us
talk about the implications of a proposition without going back and considering the
evidence that supported it. Unfortunately, this example shows that there is a danger
in this approach whenever the justifications of a belief are important to determining its

83. RAYESIAN NEIWORKS	 239

consequences. In this case, we need to know why we believe the grass is wet (e.g.,
becausc we observed it to be wet as opposed to because we know the sprinkler was on)
in order to determine whether the wet grass is evidence for it having just rained.

It is worth pointing out here that this example illustrates one specifi. , rule structure
that almost always causes trouble and should be avoided. Notice that our flim rule
describes a causal uelauioushipt'.pruriklcr causes wet grass). The second rule, although it
looks the same, actually describes art inverse Lausa]ity relationship (wet grass is caused
by rain and thus is evidence toi its cause). lkilhou .eh one can derive evidence for a
symptom from its cause and for a cause from observing its s y mptom, it is important that
videiice that is derived one way not br used again to go back he other way with no new

information. to avoid this problem, many ruic-based systems cithier iiunit their iules to
one structure or clearly partitiou the tss kinds so that they cannot interfere with each
other. When we discuss Bayesi-in networks fit the nrst cctiop , we describe a systematic
solution to this problem

We can summarize this discussion of certainty factors and rule based systems its
follows. The approach makes strong independence assumptions that make it relatively
easy to use: at the same time assumptions create dangers if rules are not written carefull)
so that important dependencies arc captured. The approah can serve as the basis of
practical application programs. It did so in MYCIN. It has done so in a broad array of
other systems that have beer. built on the EMYCIN platform Ivan Melle es al., 19811,
which is a generalization (ofeiu called a cheU) of MYCIN with all the domain-specific
rules stripped out. One reason that this framework is useful, despite its limitations, is
that it appears that in an otherwise robust system the exact numbers that are used do not
matter scr much. The othcu reason is that the rules were carefully designed to avoid the
major pitfalls we have just described. One other incresIing thing about this approach
is that it appears to mimic quite well [Shultz to al, 1391 the way people manipulate
certainties

8.3 Bayesian Networks

In the last section, we described CF's as a rnochanisrn tot ieducing the t 'implesui of
a Bayesian reasoning system hy making sonic approximations to the fumialusm In
this section. we describe an alternative approach. Raves,an '7esi'ork5 jPearl. 19881.
in which we preserve the formalism and rely instead on the modularity of the world
we are trying to model. The main idea is that to describe the real world, it is not
rs.scessary to use a huge joint probahilulity table in which we list the probabilities of till
co'ceivahle combinations of events. Most evcns are conditionally independent of most
Whir ones, so their Interactions need not be considered. Instead, we can use a more
loc4l representation in which we skill describe clusters of events that interact.

1Recall that in Figure 8.1 we used a network notation to describe the various kinds of
CU ,IdUiISOfl kkelihoodsi hat propocitionscan have on each other. The idea ofconstraint
IOIKS 11.11­1 ­18-0411 to he very powerful We cxpa1R on it in this section as a way to
r present interactions among events: we also return to it later in Sections 11.3.1 and 143.

'here we talk about other ways of representing knowledge as sets of constraints.
Let's return to the example of the sprinkler, rain, and grass that we tntrooueed in the

iasI section. Figure 8.2(a) sliews the how ofeonstrairits we described in MYCIN-siyk

240	 CHAPTER 8. S'TA7iSTiCL REASONiNG

Rainy Seo.son

Sprinkler	 Rain6nk!er	 ZRin

Wei	 Wett Z.-
(a)	 (b)

Figure 8.2: Representing Causality Uniformly

rules. But recall that the problem that we encountered with that example wa.s that the
constraints flowed incorrectly from "sprinkler on" to 'rained last night." The problem
was that we failed to make a distinction that turned out to be critical. There are two
different way s that propositions can influence the likelihoi of each other. The first
is that causes influence the likelihood of their symptoms: the second is that observing
a symptom affects the likelihood of all of its possible causes. The idea behind the
Bayesian network structure is to make a clear distinction between these two , kinds of
influence.

Specifically, we construct a directed acyclic graph (DAG) that represents causality
relationships among variables. The idea of a causality graph (, or network) has proved to
be very useful in several systems, particularly medica! diagr.osi'. systems such as CAS.
NET [Weiss eral., 19781 and INTERNIST CA DUCEUS (Pople, 19821. The variables in
such a graph may be propositional (in which case they can take on the values TRUE and
FALSE) or they may be variables that take on values of some other type (e.g., a specific
disease, a body icinpetatuic, (Pi a rcadr.g taken by some other diagnostic device). In
Figure 8.2(b), we show a causality graph for the wet grass example. In addition to the
three nodes we have been talking about, the graph contain., a new node corresponding
to the propositional variable that tells us s.hethr it is currently the rainy se;on

A DAG, such as the one we have just drawn, illustrates the causality rdationshmps
that occur among the nodes it contains. In order to use it as a basi:. for probabilistic
reasoning, however, we need more information. In particular. we need to know, for
each value of a parent node, what evidence is provided about the values that the child
node can take on. We can stale this in a table in which the conditional probabilities arc
provided. We show such a table for our example in Figure 8.3. For example, from the
table we see that the prior probability of the rainy season is 0.5. Then, iflt is the rainy
season, the probability of rain on a given night is 0.9; if it is not, the probability is only
0.1.

To be useful as a basis for problem solving, we need a mechanism for computing
the influence of any arbitrary node on any other. For example, suppose that we have
observed that it rained last night. 'What does that tell us about the prhsb i if ' that it is the

83. BAYES/APi NE1WORKS
	 Z4 1

Attribute	 Probability
We,ISprinkler,Rau17)	 0.95

p(WetSprinkleT, -'Rain)	 0.9
p(WetjSpriflklei',RaHl)	 0,
p(Weti —.Soriflkh'r. --'Ruin	 0,1

p(Sprink1etIRaitlYSCaSo>i) 	 0,0
1,0

p(Ra.nlRQWYSeasoIfl 	 0.9
p(RaiflhRmPiYSe0.SO) 	 0 1

'p(Rnea.tOfl' -	 OS

i ('tidilional Probabilities for a Bayesian Network

rainy season? 'tO anseE this question requires that the initial DAG he converted to an

undirected graph in which the arcs can he used to transmit probabilitiesirteither direction
depending on where the evidence i, coming from. We also jcquire a mechanism for
using the goipli that guirantees that probabilities are transmitted correctly. For example.
while it is true that obseiving wet glass may be evidence for rain, and observing rain is
evidence for wet grass, we must guarantee that no cycle is ever traversed in such a way
that wet grass is evidence for rain, which is then i,,k"ti asevidence for wet grass, and 'r

forth.
There are three broad classes of algorith!ns tor doing these computations: a nessage.-

passing method IPearl. 1988]. a clique triaogulation method Lauritzen and Spicgcllial'

tel, I988, and a variety of LochatiC algoritl'nis. The idea behind these illethods, is to

take advantage of the fact that nodes have limited domains of influence. Thus, although
in principle the task of uipdaiiiig probabilities consistently throughout the network s
intractable, in practice it may not be. In the clique riiangulatiofl method, for exampic.
e'cplicit arcs are introduced between pairs of nodes that sll:"e a common descendent.

For the case shown in Figure 8.2ib, a link would he introduced between Sprinkler and

Rain This explicit ink supports assess i ng the i mpact of the observation Spi 1,,kler on

the h ypothesis Rain. This is important since wet grass could be evidence of either of

them, but wet giass plus one of its causes is not evidence for the competing cause 'in

an alternative explanation l'or the obseived ptienqmc000 already exists
The message-passing appi(_,ach is based on the observation that to compute the

probability of a node A given what is knossn :bouii other nodes in the network, it is

necessary to know three things'

• r - the total support arnvingat .4 Iwo' its pit cm nodes which represent its Causes).

• ,\ the total support arriving at A trom its children twhich represent its symptoms)

• The enir in T he hxed 'ci,ci:tioral probability r,intr\ th t re lates .4 to its causes

242	 CHAPTER 8 STATISTICAL REASONING

Several methods for propagating 77 and .\ messages and updating the orohahilitiec at
the nodes have been developed. The structure of the network determ i ne q what approach
can be used. For example. in singly onnectcd netsvorks iihose n wh i ch mere is only
a single path between every pair of nodes). a simpler ai,)rIthJ1I Lafl b, st ili::' in the
case of multiply connected ones. For details, see. Pearl I k98l4.

Finally, there are stochastic, or 1anilotnized algiirithim for updating bencf networks.
One such algorithm (Chavez, 19891 transforms an arbitrary network into a Markov
chain. The idea is to shield a given nude probabiltctici! f rom most of the other niies
in the network. Stochastic algorithms run fast in practice, but may not yield absolutely
correct results.

84 Dempster-Shafer Theory

So far, we have described ,cveial techniques. all of which consider individual propo.'i-
(ions and assign to each of them a point estimate (i.e., a single number) of the degree ci
belief that is warranted given the evidence In this section, we consider an alternatice
technique, called Denip.crer-Slrafer theory [Dempster, 196 Shafer. 19761. This new
approach considers sets of propositions and assigns to each of them an interval

[Be1ief. Pious ihilirv]

in which the degree of belief must lie. I3etiei(usnallQ denoted Bel) meaaures the strength
of the evidence in favor of a set of propositions It ranges from 0(iridicating no evidence)
to I (denoting certainty).

Plausibility (P1) is defined to be

P1(s) = I -- Be?(-s

It also ranges from 0 to I and measures the extent to which evidence in favor of -'s
leaves room for belief in a. In parliculai, if we have certain evidence in favor of -'s.
then Bel-'s) will be I and P1(s) will be 0. This tells us that the only possible value for
Hel(s) h. also 0.

The belief-plausibility interval we have just defined measures not only our level of
belief in some propositions, but also the aisiount of information we have. .Suppose that
we are currentl y considering three competing hypotheses: A. B, and C If we have no
information, we represent that by "sing, for each ot them, that the true likelihood is its
the range 10. I] . As evidence is accujitulated, this interval can be expected to shrink,
representing increased confidence that we know how likely each hypothesis is. Note
that this contrasts with a pure Bayesian approach. in which we would probably begin
by dn,tributing the prior probability equall y among the hypotheses and thus assert fo
each that P(h) = 033. The interval approach makes it clear that we have no informatiuni
when we start. The Bayesian approach does not, since we could end up with the came
probabilit y values if we collected volumes of evidence, which taken together suggest
that the three values occur equally often. This difference can matter if one of the
decisions that our program needs to make is whether to collect more evidence or to act
on the basis of the evidence it already has.

So far, we have talked intuitively about Be! as a measure (it our belief in some
hypothesis given some evidence. l..et's iow define it more precisely. To do tIii'. we need

8.4 DEMPSTER-SHAtEJ THEORY	
243

to staft, just as with Bayes' theorem. with an exhaustive uni vers
e o mutually exclusive

hypotheses. We'll call this the frame oftiiscernrieflZ and we'll write it as (9 For example.

in a simplified diagnos is problem. (9 might consist of the set jAil, Flu, Cold, Pneu 'I

AU: allergy
Flu: flu
Cold: cold
?neu: pneumonia

Our goal is to attach some measure of belief to elements of t. However, not

all .vidence is directly supportive of individual elements. Often 11 supports sets of

elements (i.e., subsets of (9). For example. in our diagnosis probleit, fever might support

Flu. Cold, Priem). in addition, since the elements of 0 arc mutually exclusive, evidence

in favor of some may have an affect on our belief in the others. hi a purely iayesian
system, we can handle both of these phenomena by listing all of the combinations of
conditional probabilities But our goal is not to have to do that. Dempster-Shafer theory

lets us handle interactions by manipulating sets of hypotheses directly.

The key function we use is a probability density function. which we denote as m. The

function in is defined not just for eLements of (9 but for all subsets of it (including singleton
subsets, which correspond to individual elements). The quantity ,n(p) measures the
smount ot belief that is currently assigned to exactly the set p of hypotheses. if 19

contains n elements, then there are 2" subsets of (9. We must assign m so that the sum

of all the in values assigned to the subsets of (9 is I. Although dealing with 2" values

may appear intractable. it usually turns out that many of the subsets will never need to

be considered because they have no significance in the problem domain (and so. their

associated value of m will be 0)
Let's see how m works fo r our diagnosis problem. Assume that we have no infor

mation abodt how to choose aiwmg the tour hypotheses when we start the diagnosis

task. Then we define m as:

((9)	 (1.0)

All other values ofm are thus 0. Although this means that the actual value must be stim':
one element All. Flu, Cold, or Pnu. we do not have any information that allows us to
assign belief in any other way than to say that we are sure the answer is somewhere in
the whole set. Now suppose we acquire a piece of evidence that suggests (at a level ot

0.0 that the correct diagnosis is in the set {Flu, Culd, Priem). Fcvn might be such a

piece of evidence. We update rn as follows:

Flu, Cold, Pneu} (0.6)
(0.4)

At this point, we have assigned to the set {1'lu.Cold,Pflt' U) the appropriate be-

lief. The remainder of our belief still resides in the larger set 0. Notice that we do

not make the cornrmment that the remainder itiusi be assigned to the complement of
(Flit, Cold, Pneu}.

Having defined m, we can now define iiel(p) for a set p ss the sum of the values of in

,or 17 and for all of its subsets. Thus Rel(p) is our over'ill belief that the COITCCI answer

,1	 CHAPTER. STATISTiCAL REASONIN6

lies somewhere in the set p.
In order to be able to use m (and thus Be! and Pb jr reasoning pwgtaiits, we need

to define functions that enable us to combine m's that arise from multiple sources of
evidence

Recall that in our discussion of CE's, we considered three combination .scenanos,
wtiich we illustrated in Figure 8.1. When we use Dempster-Shafer theory, on the other
hand, we do not need an explicit combining function for the scenario in Figure 8.1(h)
since we have that capahiiity already in our ability to assign a value of 'ii to it set
of hypotheses. But we do need a mechanism for performing the comfnntoos of
scenarios (a) and Ic). I)cmpsters rule of comtnation serves both these 'uflcLlOflS.

It allows us to cninhjrie any two belief functions (whether they represent multiple
sources of evidence for a sngle hypothesis or rnuluplc source:; of evidence for different
hypotheses).

Suppose we are given two belief functions m and in2. Let X be the set of subsets of

H to which in1 assigns a nonzero value and let Y be the corresponding set fur in2. We
define the combination m of in 1 and M2 to be

mt(Z) -
	 inr=zi(X) m2(Y)

- I LX,mm2(

This give s us a new belief function that we can apply to any subset 2 of . We can
dexciibe what this formula is doing by looking first at the simple case in which all ways
of intersecting elements of X and elements of Y generate nonempty sets. For example.
suppose in1 corresponds to our belief after observing fever:

Flu. Cold. Pneu) (0.6)
8

Suppose in2 corresponds to our belief after observing a runny nose:

{Aii. Flu, Cold} (O.R
(0.2)

Then we can compute their combination m3 using the following table (in which we
further abbreviate disease names), which we can derive using the numerator of the
combination rile:

A, F, C	 (0.8)
IF, Cj5} (076) 4F,C}	 (0.48) IF, C,P} (0.12)
&	 (0.4Jj4,F,C} (0.32) &	 (0.08)

The four sets that are generdied by taking all ways of intersecting an element of X and
an element of Y are shown in the body of the table. The value of in3 that the combination
rule associates with each of them is computed by multiplying the values of in 1 and inl
associated with the elements from which they were derived. Although it did not happen
in this simple case, it is possible for the same set to be derived in more than one way
during this iritersction process. If that does occur, then to compute m3 for that set it is

R 4. DEMPSTER-SHAFER THEORY	 245

necessary to compute the sum of all the individual values that are generated for all the
distinct ways in which the set is produced (thus the summation sign in the numerator of

the combination formula).
A slightly more complex situation arises when some of the subsets created by

the intersection operation are empty. Notice that we are guaranteed by the way we

compute 013 that the sum of all its individual values is 1 (assuming that the sums of all

the values of m i and rn, are i). II some emy subsets are created, though, then some

of rn will be as'igned to them. But from the fact that we assumed that 0 is exhaustive,
we knoo, thai the title value of the hypothesis must be contained in some nonempty
subset of 3. So we need to redi.siribuc any belief thai ends up in the empty subset
proportionately across the tonempty ones. We do that with the scaling facior,s1wn in
the denominator of the combination formula. TI no nonempt y subsets are created. the
scaling factor is I. 'o we were able ignore it in our first example. But to how it
works, let's add a new piece of evidence to our example. As a resuil of applying m 1 and

pm, we produced m:

(Flu, Cold}	 (0.48)
(All. Flu, Cold 1	(0,32)
(Flu, Cold, Pneu} (0.12)
A	 (0.Og)

Now, let m4 correspond to our belief given just the evidence that the protsiem izs

away when the patient goes on a tr i p -

JAI/)	 (0.9)
(0.1)

We can apply the numerator of the combination rule to produce (where 0 denotes the

empty se):

Fi

(A)	 (0.1

.C)	 (0.48)	 (0432) (F.C}	 (0.048)1

(A. F, C)	 (0.32)1A.F.C}	 (0.28)	 A,F,C)	 (0.032)

r,c,P)	 (0.12)	 (0.101	 {F.C.?)	 (0l?)

L_	 .O8)) A)	 E0'2) e(0.008)

But there is now a total belief of 0.54 asoiated with tl; only 0.45 is associated with
outcomes that are in fact possible. So we need to scale the remaining values by the

factor I - 0.54 = 0.46. if ve do this, and z!sn combine alternative ways of generating

the set (All, Flu. ('old), then we get the iiiat combined belief function, rn:

{FluCold)	 (0.104)
(Al!. Flu, Cold)	 (0.696)
(Flu. Cold, Pneu}	 0G26)
(Au)	 (01157)
&	 (0.017)

246	 CHAPTER 8. ST4TISTILAL !1.sSi)NJN(

height	 height

(a) Ful7y Membership	 (h) Conventional Membership

Figure 8.4 Fuzzy versus Conventional Set Membership

In this example, the peiceritage ui in5 that was initially assigned to the empty set
was large (over halt) This happens whenever there i conflicting evidence (as in this
case between m 1 and in4).

8.5 Fuzzy Logic

In the techniques we have discussed so far, we have hot modified the mathematical
uuderpiinirigs provided by set theory and logic. We have instead augmented those ideas
with additional constructs provided by probability theory. In this section, we lake a
different approach and briefly consider what happens if we make fundamental changes
to our idea of set membership and corresponding changes to our definitions of logical
operations.

The motivation for fuzz y sets is provided by the need to represent such propositions
as:

John is very tall.
Mary is slightly ill.
Sue and Linda are close mends.
Exceptions to the rule are nearly impossible.
Most Frenchmen are not very tall.

While traditional set theory defines set membership as a boolean predicate, fuzzy
set theory allows us to represent set membership as a possibility distribution, such as
the ones shown in Figure 8.4(a) for the set of tall people and the set of very tall people.
Notice how this contrasts with the standard boolcan definition for tall people shown in
Figure 8 4(o). In the latter, one is either tall or not and there must be a specific height
that deliies the boundary. The same is true for very tall. In the former, one's tallness
increases with one's height until the value of l is reached.

(nice set membership has been redefined in this way, it is possible UI define a
reasoning system based on techniques for combining distributions [Zadeh. 1979] (or see

8.6. SUMMARY	
24?

the papers in the journal Fuzzy Sets and Systrrns). Such reasoliers have been applied in

control systems for devices as diverse as hams and washing machines.

8.6 Summary
lii this chapter we have shown that Bayesian Statistics provide a good basis for reasoning
under various kinds of uncertainty. We have also, though, talked about its wcaknesac.
in eompkx real tasks, and so we have talked about ways in which it can be modified in
work in practical domains. 'ftc thing that all of these modifi"ations have in common is

that the,, stibstitule, for the hage joint prot'ability matrix that 2 pure Faycsian apps'oac.i
requires, a more structured representation of the facts that are relevant to a particular
problem. They typically do this by combining probabilistic information with knowledge
that is represented u,iing one or more other representational mechanisms. such as rules

or constraint networks
Comparing these approaches for use in a particular problem-solving program is not

always straightforward. since they differ along several dimensions, for example

They provide different mechanisms for describing the ways in which propositions
arc not independent of each other.

. They provide different technique' for representing ignorance.

• They differ suhstnnally in the ease with which systems that use them can be oust
and in the computational complexit y that the resulting systems exhibit.

We have also prescitted 1iiy logic as an alternative for representing some kinds n
uncertain knowledge. Although there renain many arguments about the relative overall
merits of the Bayesian and Ow approaches, there is -ome evidence that they may
both be useful in capturing ditferent kinds of information. As an example. onside :..

proposition

John was pretty sure that Mary was ss'rlOi)sly ill

Bayesian approaches natural lycapture John's degree ofceriatrity, while fuzzy tecnnIquc
i'sn describe the degree of Mary 's ilnes.

Throughout all of this discussion, ii r; important to keep in mind the fact that
although we have been discussing iechnuqtics For representing knowledge, there is
another perspective from which what we have really been doing is describing ways of

representing lack of knowledge. inthis sense, the technique. ,, we have described in this
chapter are fundamentally differeiti from the ones we talked about earlier. For example,
the truth values that we manipulate in a logical system characterize the formulas that
we write: certainty measures on the other hand, de'cribe the exceptions—the facts that
do not appear anywhere in the forriuilas that we have written. [he consequences ni
this distinction show up in the ways that we can interpret and manipulate the formula.-
that we write. The most important difference is that logical formulas can be treater
as though they represent independent propositions As we have seen throughout thi'
'haptci. uncertain assertions cannot. As a result, for example, while imp!ic.tun

248	 CHAPTER . S7AflSTJCAL R!ASON1NG

transitive in logical systems, we often get into trouble in uncertain systems if we heat it
as though it were (as we saw in our first treatment of the sprinkler and grass example).
Another difference is that in logical systems it is nccc'sarv to find only a sir,Ic proof
to be able to assert the truth value of a proposition. All other proofs, if there are any,
an safely be ignored, in uncertain systems, on the other hand, computing belief - in a

proposition requires that all available rcasoning paths be followed and combined.
One final comment is in order before we end this discussion. You may have noticed

thro&ihoii: this chapter that we have not maintained a clear distinctirm iTncm ,' such
concepts as probability, certainty, and belief. This is because although there has tictt a
great deal of philosophical debate over the meaning of these various terms, there is no
clear argreement on how best to interpret them if our goal is to create working programs.
Although the idea that probability should he viewed as a measure of belief rather than
as a summary of past experience is now quite A idely held, we have chosen to avoid the
debate in this presentation. Instead, we havc used all those words with their everyday.
undifferentiated meaning, and we have concentrated on providing simple descriptiorisof
how several algorithms actually work. If you are intCresieti iii the philosophical issues,
sec. for example, Shafer F19761 and Pearl [19881

Unfortunately, although in the last two chapters we have presented several important
approaches to the problem of uncertainty management, we have barely scraped the
surface of this area. For more information, see Kanal and Lemmer 119861, Kanat and
Lemmer [1988]. Kanal etal. I 19891. Shafer and Pearl [19901. Clark 11990). In particular,
our list of specific techniques is by no means complete. For example, you may wish
to look into probabilistic logic (Nilssnn, 1986; Halpern. 19891, in which probability
theory is combined with logic so that the truth value of a formula is a probabilit y value
(between 0 and I) rather than a boolean va'ie (TRUE or FALSE). Or you may wish to
ask not what statistics can do for Al but rather what Al can do for statistics. In that case.
see Gale [1986).

8.7 Exercises

I. Consider he following puzzle'

A pea is placed under one at tnrce shells, and the shells are then
manipulated in such a fashion that all three appe;s iii be ctially l;kels
to contain the pea. Nevertheless, on win a prize if you guess the
correct shell, so you make a guess. Thm , person running the game does
know the correct shell, however, and uncovers one of the shells that
you did not choose and that is empty. 'l'hus, what remains ate two
shells; one you chose and one you did not choose. Furthennore, since
the uncovered shell did not contain the pea. one of the two remaining
shells does contain ii. You are offered the opportunity to change your
selection to the other shell. Should you?

Work through the conditional probabilities mentioned in this problem using Bayes
tke&rern. What do the results tell about what you ShOtil(l do?

8.7. EXERCISES
	 29

1 Using MYCIN's rules fin inexact reasoning. compute CF. MB. and MI) of h
given three observations where

CFh 1 ,o) =	 05
CF0 1 ,02) =	 0.3
CFh 1 ,m)	 —0.2

3. Show that MYCIN\ combining rules satisfy the three properties we gave for

them.

4. (:onsider the tollowing set cf propositions:

patielit hc spots
patient has isLm
patient has high fever
patient has Rocky Mountain Spotted Fever
patient has previously been innoculated against measles
patient was recently bitten by a tick
patient has an allergy

(a) Create a network that defines the causal connections among these nodes.

(hi Make i z, a Bayes i an network by constructing the necessary conditional 1irnh
ability matrix.

5. Consider the same propositions again, and assume our task is to identity the
pat iclit \ di cease using Demps(erShafei theory.

is) What is

(ii) Define a set of in functions that describe the dependencies among sources of
evidence and elements of e:

(c) Suppose we have observed spots, fcver, and a tick bite. In that case, what is

our 1(el({Roc.yMounIuinSpoFtrdFevc:} Y'

6. Define fuzzy sets that can be used to represent the list of pioposittons that we gave
at the beginning of Section 8.5.

7 Consider again the ABC Murder story from Chapter 7. In our discussion Of it
there, we focused on the use of symbolic techniques for representing and using

uncertain knowledge. Let ' , now explore the use of numeric techniques to solve the

same problem. Eor each part below, show how knowledge could be represented.
Wiienevcr possible. show how it can be combined to produce a prediction of who
committed the murder given at least one possible configuration of the evidence.

(a) Use MYCIN-style rules and ('Es. Example rules might include:

If (1) relative (x,y), and
(2) on speaking terms lxy),

then there is sucjgstiv. '	 "dcrii-	 (07) that
iI1-1r.'-tor (x,y)

250	 C!1/tPTER R. STAT(S7JCAL REASONING

(b) Use Bayesian networks. Represent as nodes such propositions as hrothe
in-law lied, Cabot-at-ski-meet, and so forth.

(c) Use Dempster-Shafer theory. Examples of in's might be:

in 1	 (Abbot:. Bahhi::J (0.8) {henefwiarie in will)
((0,2)

or, = {AhhouCahot}	 (03) fin linefor his job)
(-J	 (0.3)

(d) Use fuzzy logic. For example, you might want to define such fuzzy sets as
'oiIest people or greedy people and describe Abbott, Babbitt, and Cabot's

memberships in those Sets.

(e) What kinds of information are easiest (and hardest) to represent in cach of
these frameworks?

Chapter 9

Weak Slot-and-Filler Structures

In this chapter, we conhinuc the dsc'issic' 'e be,-an in Chapter 4 of slot-arid-filler

structures. Recall that we originally introduced them as a device to support property

inheritance along isa and instance hii'.s. This is an important aspect of these structures.
Monotonic inheritance can be performed substantially more efficiently with such struc-
tures than with pure logic, and nonmonotofliC inheritance is easily supported. The reason
that inheritance is easy is that the knowledge in slot-and-biter systems is structured as a
set of entities and their attributes. This structure turns out to be a useful one for other
reasons besides the support of inhcntar.:c, though, including:

• It indexes assertions by the entities they describe. More formally, it indexes
binary predicates Isuch as rea,n(Threc Finger-Brown. Chicago-CuMl by their

first argument. As a result, retrieving the value for an attribute of an entity is fast.

• It makes it easy to describe properties of relations. To do this in a purely logical
system requires some higher-order mechanisms

• It is a form of object-oriented programming and has the advantages that such
systems normally have, including modularity 'nd ease of viewing by people.

We describe two views of this kind of structure: semantic nets and frames We
talk about the representations themselves and about techniques for reasoning with them.
We do not say much, though, about the specific knowledge that the structures siauld
contain. We call these "knowledge-poor" tructures "weak," by analogy with the weak

methods for problem solving that we Jiscussed in Ch pntei 3. In the next chapter, we

expand this discussion to include "c'rong" slot-and-filler structures. in which specific

commitments to the content of the representation are made.

9.1 Semantic Nets

The main idea behind semantic nets is that the mening of a concept comesJrom the
ways in which it is connected to other concepts. in a semantic net, information is
epresented as a set of nodes connected to each other by a set of labeled arcs, which

25i

252	 ChAPTER 9. WEAK SLOT-AND-FIlLER STRUCTUR.E,

Mammal

MM

has .J)Ot

Person	 Nose

uniform	 instance
color______________________________

Blue	 Pee Wee-Reese

Figure 9.1: A Semantic Network

cpresent relationships among the nodes. A fragment of a typical semantic net is shown
in Figure 9.1.

This network contains examples of both the isa and instance relations, as well as
some other, more domain-specific relations like team and uniform-color. In this network,
we could use inheritance to derive the additional nlation

has-part(Pee- Wee-Reese. Nose)

9.1.1 Intersection Search

One of the early ways that semantic nets wetc used was to find relationships among
OhcCtS by spreading activation out from each of two nodes and seeing where the
activation met. This process is called intersection search [Quillian, 19681. Using this
process, it is possible to use the network of Figure 9.1 to answer questions such as "What
is the connection between the Brooklyn Dodgers and blue?" This kind of reasoning
expionts one of the important advantages that slot-and-filler structures have over purely
logical representations because it takes advantage of the entity-based organization of
knowledge that slot-and-filler representations provide.

To answer more structured questions however. reqin res networks that are themselves
more highly structured. In the next few sections we expand and reline our notion of a
network in order to support more sophisticated reasoning.

9,1.2 Representing Non binary Predicates

Semantic nets are a natural way to represent relationships that would appear as ground
instances of binary predicates in predicate logic For example, some of the arcs from
Figure 9.1 could be represented in logic as

'Actually. to do this we need to assume thE the inverces of the links we have shown also exist.

253
91. SEMANTIC NETS

Game

rSUFFg-

home

Dodgers

Figure 9.2: A Semantic Net tot aa n-Place Predicate

isa(Persofl, 4rnmaI)
instance(Pee-WeeR . '. Person)
team(Pep- Wee-Reese. Brooklyn- Dodgers)
uniform co/or?ecWee-Pees e . Blue)

But the knowledge expressed by predicates of other antiCs can also be expressed in
semantic nets. We have already seen that many unary predicates in logic can be thought

of as binary predicates using some very general-purpose predicates. such as isa and

instance. So, for example.

man(Marcus)

could he rewritten as

instant e(Marrus. Man)

thereby making it easy to represent in a semantic net.
Three or more place predicates can also be converted to a binary form by crealitig

one new object representing the entire predicate statement and then introducing binary
riredicates to describe the relationship to this new object of each of the original arguments

For example, suppose we know that

score(CuhS. Dodger. 5 3)

This can be represented in a semantic net by creating a node to represent the specific
game and then relating each of the thice pieces of information to it. Doing this produces

the network shown in Figure 9.2.
This technique is particularly useful for representing the contents ot a typical declar-

ative scnicnce that describes several aspects of a particulat event. The see .e

John gave the book 10 Mary

254	 CHAPTER 9. WEAK SLOT-AND-FILLER STRVC7URLc

Give	 I	 I Book

stance	 Tinstance
agent ri object	 i

John I'*	 I	 EV7	 i	
10 I 11K23

he;u'j'rc:riry

Mary

Figure 9.3: A Semantic Net Representing a Sentence

could be represented by the network shown in Figure 9.3 .2 In fact, several of the earliest
uses of semantic nets were in English-understandng programs.

9.1.3 Making Some Important Distinctions

In the networks we have described so far, we hae glossed over some distinctions that
are important in reasoning. For example, there should be a difference between a link
that defines a new entity and one that relates two existing entities. Consider the net

I JohnJ
herght

•'f 72

Bosh nodes represent objects that exist independently of their relationship to each
other. But now suppose we want to represent the fact that John is taller than Bill, using
the ne'

John	 j	 J	 Bill

4height	 height

HI	 H2

Pic nodes HI and 112 are new concepts representing John's height and Bill's height,
tespeclively. They are defined by their relationships to the nodes John and Hill. Us-
ing these defined concepts, it is possible to represent such facts as that John's height
increased, which we could not do before. (The number 72 increased?)

Sometimes it is useful to introduce the are value to make this distinction clear. Thus
we might use the following net to represent the fact that John is 6 feet tall and that he is

2The node labeled BK23 represents the pamular book that was referred to by the phrase 'the book'
Discovering which paimular book was meant by that phrase is similar to the problem of deciding on the
correct referent for a pronoun, and it can be a very hard problem These issues are discussed in Sec'iOn 1 14.

9.1 SEMANTIC NETS
	 255

taller than Bill

John	 Bill

hei	 Te,,eh

nine

72

The procedures that operate on nets such as this can exploit the tact that some arcs,

such as height, defiric new entities. hile others, such as gieater-than and value, merely

describe relationships among existing entities-
Another example of an important distinction we have missed is the difference be-

tween the properties of a node itself and the properties that a node simply holds and
passes on to its instances. For example. it is a property of the node Person that it is a

subclass of the node Mammal. But the node Person does not have as one of its parts a

tuse Instances of the node Pr) son do. and we wartt them to inherit it.

Ii is difficult to capture thesC distinctions without assigning more structure to our

notions of node, link, and value. In the next section. when we talk about frame systems.
we do chat. But first, we discuss a network-oriented solution to a simpler problem.
this solution illustrates what can he done in the network model but at what price in

complexity.

9.1.4 Partitioned Semantic Nets
Suppose we want to represent simple quantified expressions in semantic nets. One wa

to do this is to pat illicit? the semantic net into a hierarchical set of spaces, each of whicii

corresponds to the scope of one or more variables IHendrix. i9771. To see how this
works, considet lust the simple net shown in Figure 9.4a). This net corresponds to the

statement

The do hit the mail carrier.

The nodes ()oi.s. Bite, and Mc,il-Carrier represeni the classes of dogs, bitmgs. and mail

carriers. rcspec?iely. while the nodes a'. h, and rn represent a particular dog. a particular

hmting. and a particular mail carrier. l'his fact 	 easily he represented by a single net

with no partitioning.
But now suppose that we want to represent the lad

Every dog has bitten a mail carrier.

or. in logic:

(b)

Bite I R-711-131-4-11-1SA

vicri
sailant

(a)

256
	

CHAPTER 9. WEAK SLOT-A Nfl-FilLER STRUCTURES

F j/. 1

n

c

tsaisa^ isa

a.aiIanr	 vktirn

GS	 Dogs	 Bite	 Man'-	 SA

ar ie,-

isa

assaikrnt	 %ir:tirn	
]

(c)	 (d)

Figure 9.4: Using Partitioned Semantic Nets

Vs : Dog(x) - 3y : Mail-Carrier(y) A Rite(x, y)

To iepresenl this fact, it is necessary to encode the scope of the universally quantified
vaiiabk i This can be done using partitioning as shown in Figure 9.4(b). The node g
siujids thc assertion given above- Node g is an instance of the special class GS of
general statements about the world(i.c.. those with universal quantifiers). Ever, clement
of GS has at least two attributes: aform, which states the relation that is being asserted,
and one or more V connections, one for each of the universall y quantified variables
In this example, there is only one SUCh variable d, which can stand tor any element of
the class Dogs. The other two variables in the forns, h and nt. are undersiood to he
existentially quantified. In other words, for every dog d, there exists a biting event h,
and a mail carrier ,n. such that d is the assailant of 1 and m is the victim.

To see how partitioning makes variable quantification explicit, consider next th'

similar sentence:

Every dog in town has bitten the constable.

The representation of this sentence is shown in Figure 9.4(r). In this net, the node c
representing the victim lies outside the form of the general statement Thus it is not
viewed as an existentially quantified variable whose value may depend on the value
of d. Instead it is interpreted as standing Ic; a spetiflc entity (in this case, a particular

257
9. 7. FRAML

constable), just s do other nodes in a standard.
11 c,11 parfitioned net.

Figure 9.4(d) Sws how yet another similar senteiteC

Every dog has bitten every malt earner.

would be represented. In this case, g has two linka.one pointing to d, which eesk o,s

any dog, and one pointing to ,iz. representing any mail earner.
'the spaces of a partitioned semantic id ac related to each other by an intluston

hierarchy. For example. in Figure 9.4((f). space S is tflclLdCd in space SA. Whenever

is search process operates in a partitionee semantic net, it ­41. explore nodes and arcs in

the space from which it starts and in oher ,aces that contain the starting point, but it

cannot go downward, except in special circumstanC", such as when aform arc is being

traversed. So. returning to Figure 9.4d(fro;i node 4 it can be determined that d must

be a dog. But if we were to star, at the node Dogs nd search for all known instances

of dogs by traversing isa links, we would not find 4 since it and the link to it are in
he space SI. which is at a lower level thaii space 54, which contains Dogs. This is

;mporttsnt. since 4 does not sta
nd forfor a particular dog; it is merely a variable that can be

instantiated with a value that represents a dog.

.1.5 The Evolution into Frames
iThe idea of a semantic net sianed out simplY as a way to represent labeled connections

among COhiSICS.
But, as we have just seen, as we cxpand the range of problem-solving

tasks that the representation must suppuit, the representation tisctt necessarily begins
to become more complex In particular, it becomes useful to assign more structure to

nodes as well as to links. Although there is no ck.'r distincti on between a semantic

net and a frame system, the more structure the system has, the inUre likely it is to be
termed a frame system. In the next section we continue our discussion of structured
slot-and-fillet represeniatiolis by describing some of the most impoi tant capabilities thai

frame systems offer.

9.2 Frames

A frame is a collection of attributes (usually called slots) and associated values (and
possibly constraintS on values) that describe some entity in the v.orld. Soinctinue a
frame describes an entity in some absolute sense: sometimes it represents the entity
from a particular point of view (as it did in the vision system proposal Minsky, 1975 in

which the term frame was first introduced) A single frame taken alone is rarely useful.
Instead, we build frame systems out of collec1iors of frames that are connected to each

other by virtue of the f. (that the value of an attribute of one frame may he another

frame. in the rest of this section. we expand on this simple definitluil and explore ways
that frame systems can be used to encode knowledge and support reasoning.

258	 CHAPTER 9. WEAK SL07 .AJJ9-F/LLLR STRL/C TURES

91.1 Frames as Sets and Instances

Set theory provides a good basis for understanding frame systems. Although not all
frame systems are defined this way, we do so here. In this view, each frame repre-
sents either a class (a set) or an instance (an element of a class). To see how this
works, consider the frame system shown in Figure 9.5, which is a lightly modified
form of the network we showed in Figure 4.5. In This example, the frames Person.
Adult-Male, ML-Baseball Player (corresponding to major league baseball players),
Pitcher, and ML-Baseball-Team (for major league baseball team) are all classes. 'I he
frames Pee-Wee-Reese and Brooklyn-Dodgers are instances.

The isa relation that we have been using without a precise definition is in fact the
subset relation. The set of adult males is a subset of the set of people. The set of major
league baseball players is a subset of the set of adult males, and so forth. Our inn ance
relation corresponds to the relation element-of. Pee Wee Reese is an element of the
set of fielders. Thus he is also an element of all of the supersets of fielders, including
major league baseball players and people • The transitivity of isa that we have taken for
granted in our description of property inheritance follows directly from the transitivity
of the subset relation.

Roth the isa and instance relations have inverse attributes, which we call subclasses
and all-instances. We do not bother to write them explicitly in our examples unless we
need to refer to them. We assume that the frame system maintains then automatically,
either explicitly or by computing them if necessary.

Because a class rcprescnts a set, there are two kind; of attributes that can be as-
sociated with it. There are attributes about the set itself, and there are attributes that
are to be inherited-by each element of the set. We indicate the difference between
these two by prefixing the latter with an asterisk (*). For example, consider the class
ML-Basebalf-Player. We have shown only two properties of it as a set: It is a subset
of the set of adult males. And it has cardinality 624 (i.e., there are 624 major league
baseball players). We have listed five properties that all major league baseball players
have (height, bats, haarng-a vet-age, team, and uniform-color), and we have specified
default values for the first three of them. By providing both kinds of slots, we allow a
class both to define a set of objects and to describe a prototypical object of the set.

Sometimes, the distinction between a set and an individual instance may not seen
clear. For example, the team Brooklyn-Dodgers which we have described as an instanct'
of the class of major league baseball teams, could be thought of as a set of players. In
fact, notice that the value of the slot players is a set. Suppose, instead, that we want to
represent the Dodgers as a class instead of an instance. Then its instances would be the
i ndividual players. It cannot stay where it is in the isa hierarchy; it cannot be a subclass
of A'fL-BaseballTeam. because if it were, then its elements, namely the players, would
also, by the transitivity of subclass, be elements of Mt -Rase:ali.Team. which is not what
we want 10 say. We have to put it somewhere else in the isa hierarchy. For example,
we could make it a subclass of major league baseball players. Then its elements, the
players, are also elements of ML Baseball-Player, Adult-Male, and Person. That is
acceptable. But if we do that, we lose the ability to inherit propeilies of the Dodgers
from general information about baseball teams. We can still inherit attributes for the
elements of the team, but we cannot inherit properties of the team as a whole, i.e., of thIL
set of players. For example - we might like to kiucw what the default size of the cea m is

92. FRAMES
259

Person
isa:
cardina!Ity

hapided:

Adult-Male
isa
cardinal ity
* height:

ML.Fiaseba!l-PIOYeT
ISU

cardi,ality:
•
• bats:
• batting-average
* team
* un:form-color:

Fielder
isa
cardinality:
* batting-average

Pee- Wee-Reese
instance:
height:

bats
batting -average
team:
uniform-color:

MLBase1,all-Team
isa:
carthnafity:
S tearn-size

n1anag(

Brooklyn-Dodgers
instance
team-size
manager:
players

Momma!
6.000.000.000
Right

Person
2,000.000,000
5-10

Adult-Male
624
6-i
equal to handed
.252

UL-Baseball-Player
376
.262

Fielder
5-10
Right
.309
Brooklyn Dodgers
Blue

Team
26
24

ML.P.aseball-Tean1
24
Leo-Duroc her

Pee-Wee-Reese, ..,)

Figure 9.5 Simplified Frame Sytcm

260	 CHAPTER 9 . WEAK SLOT-AND-FILLER STRUCTURES

that it has a manager, and so on. The easiest way to allow for this is to go back to the
idea of the Dodgers as an instance of ML-Baseball- Team, with the set of playcrs given
as a slot value.

But what we have encountered here is an example of a mole general problem. A
class is a set, and we want to be able to talk about properties that its elements poe-s
We want to use inheritance to infer those properties from general knowledge about the
set. But a class is also an entity in itself. It may possess properties that belong not to the
incIvjdual instances but rather to the class as a whole. In the case of Brooklvn-l)oderc,
such properties included team size and the existence of a manager. We may even wat
to inherit some of these properties from a niorc general kind of set. For example. if.-

Dodgers can inherit a default team siir' from the set of all major league baseball teajns.
To support this, we need to view a class as two things simultaneously: a subset (isa) of
a larger class that also contains its elenent and an instance (instance) cia class ci s,
from which it inherits its set-level properties.

To make this distinction clear, it is useful to distinguish between regular classes,
whose elements are individual entities, and ,netaclasses, which arc special classes whose
elements are themselves classes. A class is now an element of (instance) some class (or
classes) as well as a subclass (isa) of one or more classes. A class inherits propertics
front the class of which it is an instance, just as any instance does. In addition, a class
passes inheritable properties down from its superciasses to its instances.

Lcr's consider an example. Figure 9.6 shows how we could represent teams as
classes using this distinction. Figure 9.7 shows a graphic view of the same classes. The
most basic Inetaclass is the class Class. Ii represents the set of all classes. All classes
are iritarii:e of it, either directly or through one of its subclasses. In. the example. Team
is a subclass (subset) of Class and ML-Baseball-Team is a subclass of Team. The class
Clams introduces the attribute cardina!izy, which is to be inherited by all instances of
('lass I including itself) This makes sense since all the instances of Class are sets and
all sets have a cardinality.

Team represents a subset of the set of all sets, namely those whose elements are sets
of players on a team. It inherits the property of having a cardina1ty Iron, Class. Team

nrtbutc tcam-sizr, which a!! itt elements possess Notice, that team-size
is like ca inality in that it measures the size of a set. But it applies to something
difterent: cardfia/,,v applies to sets of sets and is inherited by all elements 'f Class.
The slot team size applies to the elements of those sets that happen to be teams. Those
elements are sets of individuals.

M/.-Ra,sehaj(7'am is also an instance of Class, since it is a set. It inherits the
property of having a cardinality from the set of which it is an instance, namely Class.
Bitt it is a subset of l'a,n. All of its instances will have the propertyof havinga team size
since they are also instances of the ctipercass Team. We has c added at this level the
additional fact that the default Learn size is 24, so all instances of PtlL.Bosebulf-l'cczm
will inherit that as well. In addition, we have added the inheritable slot manage?.

Brook! rn-I) odger.c is an instance of a Ml.-Ba.ceball-Team. It is not an instance of
Class because its elements are individuals, not sets. Brooklyn-Dodgers is a subclass of
ML-Baseball -Player since all of its elements are also elements of that set. Since it is
sit instance of a ML-flo ceball-Team, it inherits the properties ream-size and manager, as
well as their default values. It specifies a new attribute uniform-color, which is to be
inherited by all of its instances (who will be individual players).

Qi. FRAMES

CIas
(05(0 II CC

i''4
*)Id'iiil(iIIi\

Team
in.cfaur I

I.10:

ea iili ,ii/i t

* (Ca P?l-51C

t.-Baseha1 kill".

jJ?s!O1ICC

isa:
1 a,dinoh '

ream-si:C
*

CIcLs.v

the number of tean is that C\ ISI

each learn has a size)

(J'io'
lean
26 the nurt5crof baseball iearn': that Cxtsl 1

24 default 24 players on a earn)

B,5ynJv1i_f)der

a

n?auid'Cl

un,Joini-((/01

Pee-Wee-Reee
11i5(tlfl(C

1,1.5100 C
(4,'I •1 H1' S

hats its	 leru

MLI3asehoflT't1fh
t4LBaseha11-P/U 'er

24
Le- Duisht''

Blat'

b'rr)0JV1lfl1'.i'C (S

Field,

40q

Figure Q .6 . Reprcenh1flg the ('lass Of All Teanns as a Mctactas'

262	 CHAPTER 9. WEAK SLOT-AND-FILLER S'TR(JCTLJRES

ML Baseball Pla et	 firooii/' n-L)od, ri

Pee-Wee-Reese

Figure 9.7: Classes and Metaclasces

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him also,
by transitivity up isa links, an instance of ML-Baseball-Player. But recall that in our
earlier example we also used the class Fielder, to which we attached the fact that fielders
have abtwe-average batting averages. To allow that here, we simply mac Pee Wee an
instance of Fielder as well. He will thus inherit properties from both Brooklyn-Dodgers
and fretn Fielder, as well as from the classes above these. We need to guarantee that
when multiple inheritance occurs, as it does here, that it works correctly. Specifically,
in this case, we need to assure that batting- average gets inherited from Fielder and
no(frorn %1L-Baseball-Player through Brooklyn-Dodgers. We return to this issue in
Section 9.2.5.

In all the frame systems we illustrate, all classes are instances of the mesaciass Class.
As a result, they all have the attribute cardinality. We leave the class Class, the isa
links to it. and the attribute cardinalizy out of our descriptions of our examples, though,
unless there is some particular reason to include them.

Every class is a set. But not every set should be described as a ehss. A class describes
a set of entities that share significant properties. In particula1-. the default information
associated with a class can be used as a basis for inferring values for the properties of
its individual elements. So there is an advantage to representing as a class those sets
for which membership serves as a basis for nonmonotonic inheritance. Typically, these
are sets in which membership is not highly ephemeral. Instead, membership is based
on some fundamental structural or functional properties. To see the diffcicnce, consider
the followiii Sets:

• People

• reople whu are major league basehill players

92. F1MMES	
263

• People who are on my plane to New York

The first two sets can be advantageously represented as classes, with which a
stantial number of inheritable aitribiites can be associated. The last, though, is different
The only properties that all the elements of that set probably share are the definition of the
set itself and some other properties that follow from the definition (e.g.. they are being

transported from one place to another). A ;mpt set, vith some associated assertions,

is adequate to represent these facts; nonmOuieic'iilC irthertanCC is not neCeSS3Si•

9.2.2 Other Ways of Relating Classes to Each Other

We have talked up to this point about two ways in which clascs (sets) can be related to

each other. Class1 can be a subset of (1U552. OF, if C!ass2 is a mctaclass. then ('lass,

can bean instance of Class 2 . But then' iie 'tIer ways that cIas'ei. can be related to each

other, corresponding to ways that sets of objects in Inc world can be related.

One such relationship is wlch relates a class to one or more

other classes that are guaranteed to have no elements in common with it. Another

important relationship is iso orerrd-hy. which relates a class to a set of subclasses, the

union of which is equal to it. It a class isc vredhv a.-,et 5 of mutually disjoint classes.

then S is called apartinon of the class.
For examples ,if these relationships. ci,nxider the classes shown in Figure 9.8, which

represent two orthogonal ways of decomposing the class of major league baseball
players. Everyone is either a pitcher, a catcher. or a fielder (and tin one i5 more than on.--

of these). In addition, everyone plays iii ctther the Nati on al. League or the American

League, but not both.

9.2.3 Slots as Full-Fledged Objects

So tar, we have providc.J a way to describe sets of objects and individual objects, boti"
in terms of attrihuies and values Thus we have made extensive use of attributes, which
..have represeiltrtl as skits attaches! to frames Rut it turns out that there are several

reasons why we would likc to be able to represent attributes explicitly and describe their

propeflies. Some of the properties we would like to be able to represent and use In

reasoning include

• The classes to which the attribute can be attached, i.e.. for what classes does it
make sense? For example, weight makes sense for physical objects but not (or

conceptual ones (except in somesonic me;aphortcal sense).

• Constraints on either the type or the s alue of the attribute. For example, the age

of a person must he a numeric quantity measured in some time frame, and it must

be less than the ages of the person's biological parents.

• .\ aiue that all instances of a class must have by the definition of the class.

• A default value for the attribute.

• Rules for inheriting values for the attribute The usfll rule is to inherit down

isa and lnsIancc links. But some attributes inherit in other ways. For esample.

Iast . name inherits down the child-of link.

264
	

CHAPTER 9. WEAK SLOT-AND -FILLER STRVCTURFS

[ML-Rasthall.Player

isa

? 1is,
:Pintrher	 Catcher[fielder I

instance

1•50

American i 	 National-
leaguer	 Leigucr

instance

Three-Finger-Brown

ML-Baseball-Player
is-covered-by:

Pitcher
isa
Mutually-disjoint-with

Catcher
isa
rnutuallv-disj,jnt with

Fielder

rnul'wi/ty-disjoint.w,th

American-League?
.50.

'nutnallv-disjoint- with

National-Leaguer

mutually-dtjiini'ixh

Three-Finger. Brown
instance:
instance:

(Pitcher, Catcher, Fielder},
(American-Leaguer, National-Lauer)

Mt-Baseball-Player
(C'atcher, Fielder}

ML-Baseha!I-Player
{Pitcher, Fielder)

ML-Bccebaft-Player
(Pitcher, Catcher

Player
(National-Leaguer}

ML-Baseball-Player
(America.-Leaguer }

Pitcher
National-Leaguer

Figure 9.8: Representing Relationships among Claws

26
V.2 FRAMES

• Rules for computing a value separately troni inheritault;e. One extreme form Of

such a rule ts a procedure written in some procedural progr Jilluog language. such

as LISP

• An inverse attribute.

• Whether the slot is single-valued or ntultivalued.

lii mdci to be able to rcprscrit these attributc. of aitribute, e need to diit
attributes (slots) as frames. These fiaires will he organized into an isa hierarchy. just
as any other frames are and that hierarchy can then bc used to support inheritance

01

values for attributes of sloi c . Before we C.111
de.scnbe such a iicrarchy in detail. we nee..

to formalize our notion of a slut.
A slot is a relation. It maps frc:n elements of its duinaiii (the classes for which it

makes sense) to elements of its range (its possible values). A relation is a set of oidereri

pairs. Thus it makes sense to say that one relation (R 1) is a subset of anoihet (R2) In

that case R 1 is a specialization of R. so in out terminology isa(R,. R2). Since a slot is

a set, the set of all slots, which we \\ ill call Slot, is a ;nc.tajass. Its instances are slots.

which may have subslots.
Figures 9.9 and 9W illustrate several exaviples of slots represented as lrams. Slor

is a metaclass. Its instances are slots teach of which is a set of ordered pairs). Assoclatol
with the nietaclass are attributes that each instance (i.e.. each ;utiiial slot) will tnheri
Each slot, since it is a relation, has a domain and a range. We represent the domain in

thr slot labeled domain. We break up the representation of the range otto two pr

range gives the class of which elements of the rangciflUSt be elements; range 00500 'i

contains a logical expression that further constrains the range to be elements of raa

that also satisfy the constraint lf.-ore-cOfliUatflt is absent. it is taken to be TRUE. 1114.

advantage to breaking the descripn apart into these two pieces is that type checkin

is much cheaper than is arbitrary constraint checking. so it is useful to be able to do it

separately and early during some reasoning processes.
The other slots do what Vol! would expect from their names. If there is a value fo'

definilion. it must be propagated to all instances of the slot. If there is a value for default

that value is inherited to all instances of the slot unless there is an overriding value. The

attribute ,ran.Ti.litrVUlli listS other slots from which values for this slot can be deriveu

ihrough inheritance The t.'npi' slot contains a procedure for deriving its value

The inverse attribute contains the inverse of the Slot. Although in principle ail slots have
inverses, sometimes they are not useful enough in reasoning to be worth representing.

And single-valued 's used to mark the special cases in which the slot is a function and

so can have only one value
Of course, there is no advantage to representing these properties of slots if there is

no reasoning mechanism that exploits them. In the rest of our discussion, we assume
that the frame-system interpreter knows how to reason with all of these slots of slots as
part of its built-in reasoning capability In particular, we assume that it is capable of

performing the following reasoning actions:

• Consistency checking to verify that when a slot value is added to a frame

- The slot makes sense for the frame. This relics on the domain attribute of

the slot

266
	

CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

(H	manager	 color
.

,ny-manager	 hats

(unifo rm -color
Slot

Pee-Wee-Reese 	 Blue

(Smokev-The-Bear Brown

Slot
isa :	 Class
instance:	 Class
* domain:
* range:
* range-constraint:
* definition;
* default:

transfers-through:
* to-compule
* inverse
* single-valued:

Class (:c1 of .sets)

Pee-Wee-Reese Right

manager
instance:
domain:
range
range-constraint
default:
inverse
single-valued:

Slot
ML-Base ball Team
Person
)x (baseball-experience x.manager)

manager-of
TRUE

Figure 9.9: Representing Slots as Frames, I

9.2. FRAMES

mvmafla ger

d;,nain
' ungo , -
range-cur strain Y

re:
single-valued

co/or
instance
jorna:n
range

vi ual-s(.ilte?lte
single inlued

J4!l11411fl1tU/O'

inS filPIC'

ISO

domain:
t-afii:e
! ane ,flS1I(Ji

heirs
It-Ian.

domai,I

- valiit-d

ball-player
l,'roi'
.\x lhaseha!l-experience x.m-minager)
.' (x.ieWfl) maflQp'r
TRUE

Slot
Ph ysical-Objet i

top-level-purr- Of
high
FALSE

Slot
4 o IT

Yearn -player
Color-Set
not Pink
High
FALSE

S/al

LejI. Right, Switch}
\x x.hznth'd
TRUE

F i gure 9.10 Represent ing SIuc as f-raiiies. It

268	 CHAPTER 9. WEAK SLOTAND-FILLER STRUCTURE

- The value is a legal value for the slot. This relies on the range and

range-con St raints attributes.

• Maintenance of consistency between the values for slots and their inverses whe'
ever one is updated.

• Propagation of definition values along isa and instance links.

• I nheritance of default values along isa and instance links.

• Computation of a value of a slot as needed. This rcli's on he hi-compute and

transfers-through attributes.

• Checking that only a single value is asserted forsin,i"'- valued slots. This is usually
done by replacing an old value by the new one when it is asserted. An ilternative
is to force explicit retraction of the old value and to signal a contradiction if a new
value is asserted when another is already there.

1 here is something slightly counterintuitive about this way of defining slots. We
have defined the properties range-constraint and default as parts of -a slot. But we ottci
think of them as being properties of a slot associated with a particular class. For example.
in Figure 9,5. we listed two defaults for the baiting-average slot, one 8ssoelatcii v,-iih

Major league baseball players and one associated with fielders. Figure 9.11 shows how
this can be represented correctly, by creating a specialization of hawn-a se rage that can

be associated with a specialization of ML-Bao-ba/!-Plaver to represent the more specific
information that is knowis about the specialized class.' This seems cumbersome. his
natural, though, given our definition of a slot as a relation. Thee are really two relations
here. ozrea specialization of the other. And below we will define inheritance so that it
looks for values of either the slot it is given or any of that slot's gerlerahi/4cions.

Unfortunately, afihougli this model of slots is simple and it is internally Consistent,

it is ,1OL easy to use. So we iiiitoduce sonic notational shorthand that allows the four
most important properties of a slot (domain, range. detinition, and default) to be defined
implicitly by how the slot is used in the definitions of the classes in its domain. We
describe the domain implicitly to be the class whete the slot appears. We describe the

range and any range ccnstraints with the claus. MJS I' 13E, as the value of an inherited

510! Figure 9.12 shows an example of this notation. And we describe the definition
arid the default, if they are present, by inserting them as the vajue of the slot when it
appears. The two will be distinguished by prefixing a definitional value with an asterisk
(*) We then let the underlying bookkeeping of the fr4me system create the frames that

represent slots as they are needed
Now let's hook at examples of how these -itiis can be used. The slots hats and

my-manager illustrate the use of the to-compute aunhuic of a 511 g . The variable .i. will

be bound to the frame to which the slot is attached. We use the dot r.otatlon to specify
the value of a slot of a frame. Specifically, r.r describes the value(s) of the y slot of

frame x. So we know that to compute a frame's value for m -rnang4'r it is necessary to

find the frame's value for team, then find the resulting team 's manager. We have simply

composed two slots to form a new oite ('ornputiite rhc '-aloe of the bats slot is even

simpler. Just go get the value of the handed slot.

3 Noice ihat since skits are rctaiiocic rathrr th gri tuttci .°n'-. rii	 r' IIs'SiilLn tn3y return a srr 1 1 vj1us

92. FRAMES
	 269

baiting-average
instance:	 Slot
domain:	 ML-Baseball-Player
range:	 Number
range-constraint: 	 Ax (0 K x.ran ge-constraint <
default:	 .252

xin.le-a!ued	 TRUE

fielder-baning-u vera.cP
instance:	 c,0

isa :	 hsitting -nera*
domain :	 helder
tange:	 Number
range-consfraint:	 Ax (0 < x.raoge-constratnt < 1)

default:	 .202
sc ' h-valued:	 TRUE

Figure 9.11: Associating Defaults with Slots

ML-Baseball-Player
hats:	 MUST BE (I.eft. R.ght, Switch)

Figure 912: A shorthand Notation for Slot-Range Specification

The ,nanw'er slot illustrates the use of a rang: constraint. It is stated in terms of

a variable x, which is hound to thr frame whose ucanuger slot is being descnbed. It
requires that any manager be not only a person but someone with baseball experience.
It relies on the domain-specific function baseball-cç'erience. which must be defined

somewhere in the syem.
The siols colar nd uniform-color illustrate the arrangement o f slots in an isa hi

erarch y. The relation -ohn Is it fairl y general one that holds between physical objects

and color The autibute unifo,rn-color i a rciricted forTY1 of color that applies only

between team players and the colors that ate allowed fot !cam uniforms (anything but
pink) Arranging slots in a hierarchy is useful for the sariic reason that arranging any-
thing else in a hierarchy is: it supports inheritance. In this example, the general slot

rob, is known to have high visual salience. The more specific slot uniform-color then

inherits this property. so It too is known to have high visual salience.
The slot color also illustrates the use of the ,ran.s-Jers-thinugh slot, which defines a

way of computing a slot's value by retrieving it from the same slot of a related object.
In this example. we used irun..ti, -throu Ii to capture the fact that if you take an object
and chop it up into several top level pans (in other words, parts that are not contained
inside each other). then they will all be the same color. For example, the arm of sofa is
the same color as the sofa. Formally. what oansfers-thmueh means in this example is

270	 CHAPTER 9. WEAK SWI1-A!'.V HLLL'1? SI RLJCTj1RL'S

John
height:	 72

Bill
height:

Figure 9.13: Representing Slot-Values

co!or(x, y) A top . leve!-part-pf(:, .t) -4 (olor(z, y)

In addition to these domain-indepcndcnt slot attributes, slots may have domain-
specific properties that support problem solving in a particular domain. Since these slots
are not treated explicitly by the frame-system interpreter, they will be useful precisely
to the extent that the domain problem solver exploits them.

9.2.4 Slot-Values as Objects

In the last section, we reified the notion of a slot by making it an explicit object that we
could make assertions about. In some sense this was not necessary. A finite relation
can be urnletet y described by listing iii elements. But in practical knowledge-based
systems oil(- often does not have that list. So it can be very important to be able to make
assertions about the list without knowing all of its elements. RcIicaiion gave us a way
to do this.

The next along this path is to do the same thing to a particular attribute-value
(an insance of a relation) that we did to the relation itself. We can reify it and make it
an object about which assertions can be made. To see why we might want to do this,
let us return to the example of John and Bill's height that we discussed in Section 9.1.3.
Fi gure 9.13 shows a frame-based representation of some of the facts. We could easily
record Bill's height if we knew it. Suppose, though, that we do not know it. All we
know is that John is tallei than Bill. We riced a way to make an assertion about the value
of a slot wiiho,l! knowing what that value is. To do 'hat, we need to view the slot and
its value as an

We could attempt to do this the same way we made slots themselves into objects,
namely by representing them explicitly as frames. There seems little advantage to doing
that in this case, though, because the main advantage of frames does not apply to slot
values: frames are organized into an isa hierarchy and thus support inheritance. There
is no basis for such an organization of slot values. So instead, we augment Ut;: value
representation language to allow the value of a slot to he slated as either or both of.

. A 'value of the type required by the slot.

A logical constraint on the value. This constraint may relate the slot's value to
the values of other slots or in domain constants.

In
02 FRAMES

.,oJin
height:	 72: \x (s.heiht - Bil/heti#tli

811
!tt'iç'Jtt	 Ax (x.he:ghl < J thu ./i'i' itt

icuic 9.14: lcpresenting Slot-Valurs with Lambda Notation

If we do thi' to the irames 01 Figure 9.1 . then we get the tratnes ol hgurc 9.14. 	 c

use the lambda notation as a wa y to pick up the name of the frame that is being

dceiihed

9.2.5 Inheritance Reisited
lii Chapter . we presented a simple algorithm for nilientance. But that algorithm

assumed that the ira h craichy w as i tree. This Is ,I in i no l I it.- case To sii jrpill t ties II.'k

representttiOn 5 Of know ledge JNAI t the world. ii is tlicessary to allow the hicraicity to

he an ,rhitraiy ditcted ac yclic graph IDA(.L We know tha t ac yclic gt.iphs arc adC&luat

because iso I:Orrcsponds to the 5uhset rctatii,n. Ilteraichics that are not trees arc called

iunith'd Iiiei ui iiies. Tangled hierarchies require a new inheritance algorithm. in the rest

ot this section. we discuss an atgori'.hin tor inheriting alue' Icr single-valued
.icrs in it

tangled hierarchy We leave the problem of inherit mi inultivalucd slots as an exercise.

Consider the Iwo examples shown in Figure IS (in which we return to it tiniwuik

notation to make it easy to visualize the !.ni structiiee). In Figure 9. 1u1. 'an 553111 to

decide whether Fifi can ti). The uriiCt iOssscr is ito Although buds in ir@ner.it can

fly, the subset oft). irds, ostriches, does riot. Alihuugti the class Pc, 8,iul provide s a p,ith

front Fill to Uf,-rI wW thus to the :iits\5 er that I if? Lan tt. it provides no intormatii)n

that conflicts with the special case knowledge associated with the the class ON11-ii It

so it should have no affect on the answer. lit handle this case correctly, we need an

algorithm for traversing the isa hicrarth> that cuiarantces that specific knowledge will

• alway s dominate more general facts.
In Figure 9 15th). we return to a prnttleiii we disucsed in Section 7.?. I. nanscl

determining whethet Dick is it pacifist. Again we must traverse multiple ,,,snuutI t' links

and tin ire than one answer van he found alone the paths. But to this case. there is

rio well-founded basic for cItoosinti one inswer over the other. The classes that Are

associated with the candidate answers. re incommensurate witheach other in the partzii

ordering that is defined by the DAG forineuf h the so hierarch y. Just as we found that

in Default Lo g ic this theor y had two extensions and there was no principled bsi.s for

choosing between them. what we need here is an inheritance , t lgorttlttn that reports tli

ambiguity: we do not want a't algorithm that finds one answer (arbitrarily) ond stops

without noticing the other.
One possible basis for a rev, inheritance al gorithm i path length. This can be

impteniented b y executing a breadth-fi rst s ijch stattittO with the frame for which

slot value k rk'ecled. Follow its in.r?rpiie t:nL. thci' tallow' 150 links ugw ard. it

path produces a vaji'c it can he terminated as cur' all other r lat l j, .,re 'h..:rt length

(/IAPILl? 9. WMKSLOTAND-FILLEk SMUC7UREs

Bird
fl y	ve.c

flv. no

(a)

Quaker	 j Repulilieiin

pa(afL3t true	 I	 /,aczfi.ct false

.VtQfl(C

flu k

17a(-JJct

()

Figure 9.15: Tangled Hierarchies

273
9.2. FRAMES

Per frd

tih
rii

L___.T___J	 [hi -i

[j

is
Instance	 Quaker	 ConNer tilrivf'-A =e

whim PI-1
Ostrich	 I

instance/	 CiFi I(IY1(/inslance

Dick 1
fly	 [_wtisj

(a)	
(b)

Figure 916: More Tangled HierarchiS

exceeds that of the s'ce"sIul path. This algot ithm woiks for both of the examples ill

Figure 9.15. In (a), it finds a value at Os, riih. It continues the other path to the same

length (Pr's-Bird), fail,; in hod any other answers, and then halts- In the case of (/4, it

finds two competing answers at the ;ame level, so it can report the contradiction.
But now consider the examples shown in 1-igure 9.16. In the case ot ha), our new

algorithm reaches Bird (via Pet-Bird) bcrc it reaches Osoich. So It reports that Fiji

can fly. In the case of (ht, the algorithnT reaches Quaker and stops without noticing

a contradiction The problem c that pathi length does not always correspond to the

level of generality of a class. Sometimes what it really corresponds to is the degree of
elaboration of classes in the knowledge base. If some regions of the knowledge base
have been elaborated more fully than others, then their paths will tend to be longer.
But this should not influence the result of inheritance if no new information about the

desired ditribule has been added.
The solution to this problem is to base our inheritance algorithm not on path length

but on the noüoii of inferential dissarne tTouret 7. ' . 19961, which can be defined a

follows

374	 ('HAPTFR 9. WFAK SlOT-AND-b iLL)!? i'k11t7Iik!-.3

Clo.s 1 is ..IOSL'F to C/ass 2jhan to Class 3 ifand only ifCluss i has an i,ifcrcncc
path through Clas.c 2 to Classs (in other words. Class- is between Class
and Class).

Notice that inferential distance defines only a partial ordering. Some classes are incom-
mensurate with each other under it.

We can now define the result of inheritance as follows: The Set of competing values
for a slot S in a hattie F contains all those values that

Can be derived from some tranie X that is above F in the isa hierarchy

• Are hot contradicted by some frame Y that has a shorter inferential distance to F
than X does

Notice i hat under this definition competing values that are derived front incommensurate
frames continue tO compete.

Using this definition, let us return to our examples. For Figure 9.15(a). we had two
candidate classes from which to get an answer. But Ostrich has a shorter inferential
distance to Ftf, than Bird does, so we get the single answer no. For Figure 9.15(b). we
get two answers, and neither is closer tO Di; k than the other, so we correctly identify a
contradiction. For Figure 9.16(a). we get two answers, but again Oiricl, has a shorter
inferential d i stance to lifi than Bird does. The significant thins about the way we have
defined inferential distance is that as tong as OJ it-h is a subclass of Bird. it will be
closer to all its Instances than Bird is, no matter how many other classes are added to
the system. For Figure 9.16(h), we again get two answers anti again neither is closer to
Dick than the other.

There are several ways that this definition can he implemented as an inheritance
.ilgorithm. We present a simple one. -Ii can be made more efficient by .. lichihuf paths in
the hierarchy. but we do not do that here.

Algorithm: Property Inheritance

To ictrieve a value V for slot Sot an instance F do:

I Set CANDIDATES to empty.

2. Do breadth-first or depth-first search up the isa hierarchy from F, following all
.instance and isa links. At each step, see if a value forS or one of its generalizations
is 'stored.

(a) If a value is found, add it to CANDIDATES and terminate that branch of the
search.

(h) If no value is found but there are instance or isa links upward, follow them.

(C) Otherwise, terminate the branch.

3. For each element C of CANDIDATES do:

(a) See if there is any other element of CANDIDATES that was derived from a
class closer to F than the class from which C came.

3. EXERCISES
	 275

(b) If there is, then, remove C from CANDIDATES

4. Check the cardLnality 0ICANDII)A1ES;

(a) If it is 0. then report that no value was found.

b) if it is 1, then return the single element of CANDIDATES as V.

ci It it is greater than I, report a contradiction.

Th i s algorithm is guaranteed to terminate because the i.cc, hierarchy is represented as an

scvJ.. graph.

9.2.6 Frame Languages

idea L ,!, a iiailie system as a way to represent declaictive knowledge has been

encapsulated in a senr.s of frame-oriented knowledge representation languages. whose
features have evolved and been driven by an increased understanding of the sort of
representation issues we have been discussing. Examples of such languages include KRL
Bohrow and Winograd, 1977], FRL]Roberts and Goldstein, 1977], RILL lOrdlier and

L.enat, 1980). KL ONE [Bruchinan. 1979: Brachman and Schtnolze, 985I. KRYPTON

[Brachnian et a!, 19851, NIKL [Kacamarek et al., 19861. CYCL (Lenat and Guha.

19901, conceptual graphs [Sowa, 19841, TI lEO [Mitchell et at., I 991. and FRAMEKIf

(Nyberg. 19881 Alihunigh not all of these systems support all of the capabilities that
we have discussed, the more modern of these systems peinfit elaborate and efficient
representation of many kinds of knowledge. Their reasoning inethtxI include most of
the ones described here, plus many more, including subsumption checking. automatic
classification, and various methods for consistency maintenance.

9.3 Exercises

1. Construct semantic net representations fur the following:

a) !-'uuipeian(Man'us). i3lacksrnuth(Mw'cUs)

(b) Mary gave the green flowered vase in her favorite cousin.

2 Suppose we want to use a semantic net to discover relationships that could help
in disambiguating the word "bank" in the sentence

John went downtown to deposit his rnoiie in the bank

The financial inetituliOli meaning for bank should be preferred ove! the river bank

meaning.

(a) Construct a cernanii.-, net that cnnlain -uresenIation s for the ttcvaflt Con-

cept s.

(b) Show how intersection search could be used to find the connection between
the correct meaning for hank and the rest of the sentence more easdy than m
can find a connection with the incorrect meaning.

276	 CHAPTER Q .WEAK SLOT-AND-F/lJER STRUCTURES

3. Construct parIrmnd semantic net representations for the foilowin'.

(a) Every batter hit a ball

(h) All the hatters like the pitcher.

4 Construct one consistent frame representation of all the baseball knowledge [liar
w.is described in this chapter. You will need to choose between the Iwo represen-
UIton I to Leant that we considered.

Modify the property irihcritar,ce algorithm of Section 9.2 to work for multiple
alued attributes, such .is the attribute helieve.-in-prtheip/es defined as follows:

h'heies-n-pnniph..c
Instance	 Slot
do,najn	 Person
rtInxe
	

PI:lusp/iic/-Principlet
single- ia/ued
	

FALSE

(t Define the value of a multiple-valued slot S of class C to be the union of the
values that are found for S and all it generalizations at C and all its generaliza-
tions. Modify your technique to allow a class to exclude specific values that are

sociated with one or more of its superciasses.

7 Pick a problem area and represent some knowledge about it the way we represented
baseball knowledge in 1 ,.I is chapter.

Chapter 10

Strong Slot-and-Filler
Structures

he slot-and-filler struciuIe de.settbed ill ill(' pres 0)11' Jiapter are very gencial mdi

vidual semantic networks and frame vstems ma y have spceialiicd links and inference

procedures, but there are no hard and fast rulec about what knds of objects and links arc
good in general for knowledge represefltatOfl. Such dcci-ioiis aR: left up to the builder

of the semantic network or frame system.
The three stniciures discucsed in this chapter. ((flU ep!w;I 1 ,'nthn v, scripts, and

C'(% on the other hand, embody specific notion ' of what types ol objects and relations

.*re permitted They stand for pow criul thcotics Ot
hw Al program can represent and

use knowledge about common situations.

10.1 Conceptual Dependency

i.'onci'jiival drprtide'ncv (often nicknamed CD) is a theory' of how to represent the kind
of knowledge about events that is usually contained in natural language sentences. The

goal is to represent the knowledge in a way that

• Facilitates drawing inferences from the sentences.

• Is independent of the language in which the sentences were originally stated.

Because of the two concerns just mentioned, the Cl) representation of a
sentence is

built not out of primitives corresponding to the words used in the sentence, but rather
out of conceptual primitives that can be combined to form the meatnings of words in tin"
particular language. The theory was first described in Schank 119 7 1I and was turthes

developed in Schank 119751 . It has since been implemented in a '.ariet) of programs

that read and understand natural language text. Unlike semantic nets, which provide
only a structure into which nodes representing information at any level can be placed.
conceptual dependency provides both a structure and a specific sc' of primitives, iii

a particular level of granularity out of which representations of rnacticular pieces o

iriturniatuori i.an be consrwcted

e'.YIAP7ER it). STRONG SLOT-ANI) .FI1JLR s/ h,CrliR1s

to

I	 .\TRANS'— hook
__^_L

where the symbols have the following meanings:

• Arrows indicate direction of dependency.

• Double arrow indicates two way link between actor and action

• p indicates past tense,

• ATRANS is one of the primitive du! used by the theory. It indicates transfer 01
pOS5C.S ion.

• o indicates the iihjei.I case relation

• R indicsies the recipient case relation

Figure Jo. I: A Simple Conceptual Dependency Representation

As a simple esainpie of ihe way knowledge is repiesenied in CD, the event repre-
sented by the seolence

I gave the man a hook

would he represented as shown in Figure 10.1.
In CD. representations of actions are built from a set of primitive ac.ts. Although

there are slight differences in the exact '.i of primitive actions provided in the various
'sources on CD, a typical set is the following, taken froin Schank and Abeis;n F 19771

ATIANS

PTRANS

PROPEL

MOVE

GRASP

INGEST

EXPEL

MTR ANS

MB U! LD

SPEAK

ATTEND

Iransfer of an abstract relationship (e.g., give)

Transfer of the physico location ofan object (e.g.. go

Application of physical force to an object (e.g. poshi
Movement of a body part by its owner (e.g.. kick)
Grasping of an object by an actor (e.g.. clutch)

Ingestion of an obieci by an animal (e.g., eat)

Expulsion of something from the booy of an animal (e.g.. cr'y

Transfer of mental information (e.g., id1)

Building new irifonnat ion out of old (e.g., decide)

Production of sounds (e.g , say)

Focusing of a sense organ toward a stimulus (e.g., listen)

10.1. CONCEPTUAL DEPENDENCY
	 279

A second set of CD budding blocks is the set of allowable tiependenuics among

the conceptua l iat101 described in a sentence. There are tour primitive ermeeptuat
categories from which dependency stnIctUre' car, he built. These .i

ACTS	 Actions

PPs.	 Ohjecls (picture producis)

A As	
Mirditiels of act urns (action ardcrs

PAs s1oditiers of P1's p:ctute aiders)

In addition. dependency stiuL tunes are tt it' nniselsr' i utio'ptiIittlLatiOiiS a nd an I SIV.

_o. components of larger dependency stTUCtti1LS.
The dependencies aniong conceptuaii.ationscorresP 0nd t . semantic relations among

the underline concepts Fiure 10.2 lists the most import.tnt ones allowed h CD.

The tirsi column contains the nutes the second contain ,, examples of their use, and Ih

.;rd,rItarns an English sersion of each examplc.Thc rules shown in the figure can be

11Cr rcterl as toltows.

• Rule I describes the relationship between all and the event he or SbC causes.

This is a two-wa y deperukricy since neither actor nor event can be considereC
primarY ilic letter p above the dependency ltnk nudicales past tense.

• Rule 2 describes the nelationiship between a PP and a PA that is bein g asserted

describe it. Many stale descriptions, such as height, are represented in ('D
:urflcric sCaicS.

• Rule ' describes the retar iOn hip between two Pt's, one of which belongs to the

set dcnncd by the other.

• R ink 4 il&'stitbt's I he relat mush ip tiet weemi a PP and an alt i three iltat has already
been predicated of It. The direction of the arrow is inward the PP being described.

• RuIc 5 describes the relationship between Iwo PPs, one of which provides a

particular kind of information about the other. The itir cc most common types

of intonnation to be provided in this was are possession (shown as POSSBY).
location (shown as LOC), and physical containment shown as CONT). 'I he
dii ccl ii in, of tIre an mw is again unw aid the concept ICllltg described

• Rule (describe, the relationship hetecfl an ACT and the Pl I that is the object oh

that AC I The direction of the arrow is toward the ACT since the context et the
speetlic ACT determines the meaning of the object relation.

• Rule 7 describes the retationshipbetssecn an ACT and the sOUICC aind the nccmpicnmt

of the ACT

• Rule N describes the relationship between an ACT and time mush intend w ill' s huh
it is perlonned. The instrument must always he a lull conceptualization inc it
inu'.n contain art ACT), no l. just a singk Ph ys i cal object.

Use iat'iC sh" fl in Lhe fig, urcnsidtpIl I rI	 IIh!,.'s . 5, ,,,r i I 1 ii I

280
	

CHAPTER 10. STRONG SLOi-A'J)-FilR STRUCTURES

nfl

john .n.II

John

A.noI.

h** 4o.

1ohn pn..hnd
The tnt

Join, noR he
Pooh rn.,, hiOrn

John ne pt
coon sib

JH,p kn,hpd
he Johl

8,0 'ho. 8oi.

aie ioini

heoJ •

2	 pp	 Jo.
PP	 Juhr.	 dIo.

pp
t

pp

pp

FROPPI

	

-LQ ::
	

JnI,n	 ATIANA

%(1 +—	 Aho	 II.I5T -

pp

PA

PA

•tI-TflW	 p

•	 •,	 ,	 ,	 PROP	 hUIn

PrRANS

£

tsler,I.h

4— I

Irp .___[*

%4IRRNc,—_

Figure 10.2: The Dependencies CD

10 CONCEPTUAL DEPENDENCY
	

281

• Rule 9 describes the relationship between an ,cr and Its physical source and
destination.

• Rule 10 represents the relationship between a PP and a state in which it started
and another in which it ended.

• Rule Ii describes the relationshiphetween one en	 i,di,aiion and another that
causes it. Notice that the arrows indicate dependenc y of one conceptualization on
srii,theratstl so pohrd if] the opposite direction of the implication arrows. The Iwo

or'ns of the rule describe the cause o f an action and the cause o f a tnte change.

• Rule 12 describes the relationship between a conceptualization and the time at
which the event it describes occurred.

o Rule ! 3 describes the relation between one conceptualization and another that
is the time of the hirsi. The cxantpic for this rule also shows how CL) exploits
a model of the human information processing s)tein. see is represented as the
transfer of information between the e y es and the conscious processor.

• Rule 14 detciitx-s the relaciontiip between a conceptualization and the place 31

Which it ciccuned.

Conceptualizations representing events can be modified in a variety of ways to
cuppls information normally indicated in language by the tense, mood. or aspect of a
serb him The use of the modifier pits indicate past tense has alread y been sliuwii The
sct of conceptual tenses proposed b y Schaiik 119731 includes

p	 Past
I	 Future
I	 Transition
t,	 Start transition

if	 Finished transition
k	 Continuing
?	 Interroe tire
I
	

Negative
nil	 Present
delta Timeless
c	 Conditional

As an example ol the use of these tenses, consider the (1) representation shown iii
hgure 10.3 (taken from Schank 1973) of the sentence

Since smoking can kill you. I stopped.

The vertical causality link indicates thai smoking kills one. Since it is marked c,
however, we know on1v that smoking can kill ('tie, not that it necessarily does. The
horizontal causality link indicates that it isihat first causality that made me stop smoking
The qualihcaiion t,, atiachd to the dependenc y between I and INGEST iiiilie,itec that
the smoking (an instance of INOESTIN L. sioOocd and ihai the sioppin g happened
in the past.

CHAPTER JO STRONG SLOT-AND-FILLER ST1(iC1 tIRES

lie
0

one	 INGEST - smoke --[_<
cigarette

-	
R

INGES1 - smoke	
' j _< cigarette

dead

One,	
alive

Figure 10.3: Using Conceptual Tenses

There are three important ways in which representing knowledge using the eori-ep-
tual dependency model facilitates reasoning with the knowledge:

I. Fewer inference rules are needed than would be required if knowledge were not
broken down into primitives.

2. Many inferences are already contained in the representation itself.

3. The initial structure that is built to represent the information contained in one
sentence will have holes that need to he filled. These holes Can serve as an
attention focuser for the program that must understand ensuing sentences

Each of these points nients further discussion.
The first argument in favor of representing knowledge in AermS of CD primitives

rather than in the higher-level terms in which it is normally described is that using the
primitives makes it easier to describe the inference rules by which the knowledge can be
manipulated. Rules r.ed only be represented once Ear each primitive ACT railiel (tiara
(111CC for every word that describes that ACT. For example, all of the follow : ng verh
involve a transfer of ownership of an object

• Give

• Take

• Steal

• Donate

It any of them occurs, then inferences about who now has the oect and who once
had the object (and thus who may know something about it) may be important In s
CD representation, those possible inferences can he stated once and associated with the
primitive ACT ATRANS.

A second argument in favor of the use of CD representation is that to construct it.
we must use not only the information that is stated explicitl y in a sentence but also a set

10.1. CONCEPTUAL DEPENDENCY
	 21.3

John	 Bill

I	 Poss-by
V	 Dill	 nosc	 - John

tsiIt	 !tTPANS	 I
do	 broken

John	 beIiee

	

John	 do,

cu

Bill <:) dii1it
	nose	 broken

[kiss-by

John

Figure 10.4: The CD Representation of a Threat

of inference rules associated with the, pecific infoinialion. Having applicu these rules

once, we store these results as part of the representati
on and they can be used repeatedly

without the rules being reapplied. For example, consider the sentence

Bill thre.itcned John witha broken nose.

fhe Cl) represent atioI of the information contained in this sentence is shown in Fig-

Lie 111.4. (For simplicity. hplicie is shown as i single unit. In fact. it must be represented
in terms of primitive ACTs and a modelof the human information processing system.)
It sass that Bill informed John that he (Bill) will do something to break John's nose.
Bill did this so that John will believe that if he (John) does some other thing (different

from what Bill s . ill do to break his nose), then Bill will break Johns nose In this
representation, the word "believe" has been used to simplify the example. But the idea

behind hei eve can be represented in CD as an MTRAt'S of a tact into Johns memory

The actions do 1 and do, are dummy placeholders that refer to some as yet unspecified

actions.
A third argument for the use of the CD representation is that unspecified elements of

the representation of one piece of inforniationcan be used as a focus for the understandstig
of later events as they arc encountered. So. for example, after hearing that

284	 L'HAJ-'JER 10. STRONG SLUT-AND'F!LLER 'TRL'CT1.1RKS

Bill threatened John with at broken nose.

we might expect to find out what action Bill was trying to prevent John from performing.
That action could then be substituted for the dummy action represented iii Figriie 10.4
as do2 . The presence of such dummy objects provides clues as to what other events or
objects are impohtant for the understanding of the known event.

Of course, there are also rryuments against the use of CL) as a representation
furnsatism. For one thing. it requires that all knowledge be decomposed into fairly low
level primitives. In Section 43.3 we discussed how this may be inefficient or perhap,
even impossible in .corne situations. As Schank and Owens [I 9871 put it.

('D is a theory of representing fairly simple actions. To express, for exam-
ple, "John bet Saun fifty dollars that the Mets would win the World Series"
takes about two pages of CD fonns. This does not seem reasonable.

Thus, although there are several arguments in favor of the use of CD as -,I model lot
representing events, it is not always completely appropriate to do so. and it may be
worthwhile to seek out higher-level primitives.

Another difficulty with the theory of conceptual dependency as a general model for
the representation of knowledge is that it is only a theory of the representation of events.
But to represent all the information that a complex program may ircd. it must be able
to represent other things besides events. There have been attempts to define a set of
primitives, similar to those of CD for action,,,, that can be used to describe other kinds
of knowledge. For example, physical objects, which in CI) are simply represented
as atomic units, have been analyzed in Lchnert 119791. A similar analysis of social
actions is provided in Schank iutd Carbonell [1979J. These theories continue the style
of representation pioneered by CD, but they have not yet been subjected to the samoc
amount of empirical investigation (i.e.. use in real programs) as CD.

We have discussed the theory of conceptual dependency in some detail in order k
illustrate the behavior of a knowledge representation system built around a fairly sriiail
si of spes6r primitive elements. But CD is not the only such theory to have been
developed and used 1i Al programs. For another example of a primitive-hati..
see Wilks (19721.

10.2 Scripts

Cl) is a mechanism for representing and reasoning about events. But rarely do evChhIs

occur in isolation. In this section, we present a mechanism for representing knowledge
about common sequences of events.

A script is a structure that describes a stereotyped sequence of events in a partieulai
context. A script consists of a set of slots. Associated with each slot may be some
information about what kinds of values it may contain as well as a default value to
be used if no other information is available. So far, this definition of a script looks
very similar to that of a frame given in Section 9.2, and at this level of detail, the twe
structures are identical. But now, because of the specialized role to be played by a script
we can make some more precise statements about its structure,

10.2. SCRIPTS	 285

Figure 10.5 shows part of a typical script, the restaurant script (taken from Schan

and Abelson 119771). it illustrates the important components of a script:

Entry conditions Conditions that must, in general. be satisfied before the events dc-

scribed In the script can occur.

Result	 Condit ionisthat will, in general. be true alter the events described in
the script have occurred.

Props Slots representing objects that are involved in the events described
in the script. tue presence of these objects can be interred even U

they are not mentioned explicitly.

Role, Slots representing people who arc involved in the events described
in the script. The presence of these people, too. can be inferred
even if they are not mentioned explicitly. If specific individuals are
menitond, they can be inserted into the appropriate slots.

frack The specific s:triatlon on a more general pattern that is represented
by this particular script. Different tracks of the same script will
share niianv but not all comp;nents.

Scenes	 The actual sequences of events that occur. The events are repre-
sented in conceptual dependency formalism.

Scripts are useful because. in the real world, there are patterns to the occurrence of
events. These patterns arise because of causal relationships between events. Agents
will perrorni one action so that they will then be able to perform another. The events
described in a script form a giant causal chain. 'Ihe beginning of the chain is the set
of entry conditions which enable the first events of the script to occur. The end of the
chain is the set of results which may enable later events or event sequences (possibly
described by other sci plc) to occur. Within the chain, events are connected both to
earlier evenis that make them possible and to later events that they enable.

If a particular script is known tobe appropriate in a given situation, then it can he very
.rueful in predicting the occurrence of events that were not explicitly mentioned. Scripts
can al-c be useful b y indicating how events that were mentioned relate to each other.
For example. what is the connection between someone's ordering steak and someone's
eatitig steak? But before a particular script cn be applied, it mu't be activated (i.e., it

must be selected as appropriate to the cuner.t situation). There are two ways in which it

may be useful to activate a script, depending on hovk important the script is likely to be:

• For fleeting scripts (ones that are mentioned briefly and may he referred to again
but are not central to the situation), it may be sufficient merely to store a pointer to
the script so that it can be accessed later if necessary. This would be an appropriate
strategy to take with respect to the restaurant script when confronted with a story

such as

Susan passed her favorite restaurant on her way to IN museum She
really enjoyed the new Picasso exhibit.

• For nonfleeting scripts it is appropriate to activate the script fully and to attempT t

fill in itkuts with parIiLlltarobJsa.-ts rund people involved in the current situatirir

286
	

cHAPrEF? w STRoM, SLOT.AND-HLLLR

Fnts conditions

S is hungry
S has monc

Rcsujlis:

S has less money.
0 ha, moic money.
S is not hungry.
S us pleased t.sptioaali

Scene I: Entering

S PTRANS S into re.'4aurant
S A17END eyes to tables
S MBIJILD where to sit
S PTRANS S to table
S MOVE S to siuing position

Scene 2: Ordering

(Meiiu on tabl-1 (W brings menu) (S asks (or menu)
S VrRANS menu in S	 S MTRANS signal to

W PTRANS Wto table
S MTRANS need mertu soW

\	
WVrRANSWto nests

W FIRANS IN table
\ V. ATRANS menu to S

i MTRANS Wto table
S MBUJLI) choice of F
S MThANS signal to
W PTRANS W to table
S MTRANS 1 want F tow

W PTRANS Wt(
W MTRANS (ATRANS F) to C

C MTRANS 'ito F to W
WPTR.\NSWLOS	 CDOtpr,,parePscriptj

WM1RANS'noFtoS	 it, Scene 3

(go back to * 1 or
Igo to Scene 4 at no pay path)

Scene 3 Eating
C ATRANS F to W
W,STR.kNSFruS
S INGEST F
(Option Return to Scene 2 toors)es more:

otherwise, go to Scene 4)

Scene 4: Eitinui \
SMTRANStoW

W MOVE (write
check) 1W ATRANS check is' S1

WPI'RANSWroS
W STRANS cheek to '
S A TR A.'stS tip to W
S PTRANS S to M
S ATRANS monei to .M

(Nopaypathu S PTRANS S to out of restaurant

Script. RESTAURANT
Trai.k Coffee Shop
Props: Tables

Menu
F— Food
Check
Mnney

Roles: S = Customer
W = Waiter
C = Cook
M = Cashtr
0 = flwner

Figure 10.5: The Restaurant Script

!0.2. SCRIPTS

The headers of a script (its precon1iiions, its prefeTed locattons. it S. PrOPS, its

roles, and its events) Can all sent as indicatois that the script should be activated

In order to cut down on the number of times a spurious script is activated. it ha
proved useful to require that a situation contain at least two of a script's headers
before the script will be acliv;itclf

Once a script has been activated. there are, as we have already suggested, a variety 01

ways in which it can be useful in interpreting a particular situation. The most important

Of these is the ability to predict events that have not explicitly been obsers ed. Suppose.

for example, that you are told the following story.

John went out to a restatrant last night. He ordered sti ek When he paid
for it, he noticed that he was running out of money. He hurried home since

it had started to rain.

If you were then asked the question

Did John eat dinner last nigh'

you would almost certainly respond that he did, even though you were not told so
explicitly. By using the restaurant script, a computer t iestion-answerer would also he

able to infer that John ate dinner. since the restaurant script could have been activated.
Since all of the events in the story correspond to the sequence of events predicted by the
script, the program could infer that the entire sequence predicted by the script occurred
nortnafly. Thus it could oncfiide. in pailicular, that John ate. In their ability to predict
unobserved events, scripts are similar to frames and in other knowledge structures that
represent stereotyped situations. Once one of these structures is activated in a particulaT

situation, man y predictions can be made.
A second important use of scripts is to provide a way of building a single Loheieni

interpretation front a collection of observations. Recall that a script can be v iewed as

giant calisal chain. Thus it provides information about how events are related to each

other. Consider, for example. the following story:

Susan Went out to lunch. Site sal down at a ,.ljle and called the waitrcss
The waitress brought her a menu and she ordereu a hamburger.

Now consider the question

Why did the waitress bring Susan a meni?

1-he script provides two possible answers to thai question.

• Because Susan asked her to. tThis answer is gotten by going backward in the
causal chain to find out what caused her to do it.)

• So that Susan could decide what she wanted to eat. This answer is gotten h'.
going forward in the causal chain to find out what event her action enables.)

A third way in which a script is useful is that it focuses attention on unusual events.

Consider the following siory

28	 CHAPTER 10. STRONG SLOT-AND-FILLER STRUC7 (1RE.5

John went to a restaurant. He was shown to his table. He ordered a large
steak He sat there and waned for a long time. He got mad and left.

The important part of this story is the place in which it departs from the expected
sequence of events in a restaurant. John did not get mad because he was shown to his
table. He did get mad because he had to wait Co be served. Once the typical sequence
of events is interrupted, the script can no longer be used to predict other events. So, fos
example. in this stoty, we should no t irilci that Julio paid his bill. But we can infer that
he saw a menu, since reading the menu would have occurred before the interruption.
For a di scussion of SAM, a program that uses scripts to perform ths kind of reasoning.
see Cull ingford[l981j.

From these examples, we can see how information about t y pical sequences of events,
as represented in scripts, can he useful in interpreting a particular, observed sequence of
events. The usefulness of a script in some of these examples, such a the one in which
unobserved events were predicted, is similar to the usefulness o! other knowledge
structures, such as frames. In other examples, we have relied on specific properties of
the information stored in a script, such as the causal chain epresented by the events
it contains. Thus although scripts arc less general Structures than are frames, and so
are not suitable for representing all kinds of knnwledge, they can be very effective for
representing the specific kinds of knowledge for which they were designed.

10.3 CYC

('YC (Lenat and Guha. . is a very large knowledge base project aimed at capturing
human commonsense knowledge. Recall that in Section 5. 1, our first attempt to prove
that Marcus was not loyal to Caesar failed because we were missing the simple fact that
all men are people. The goal it CYC is to encode the large body of knowledge that s so
obvious that it is easy !o forget to stare it cxplici:iy. such a knowledge base could then
be combined with spcualizcd knowledge bases to produce systems that are lcs brittle
than most of the ones available today.

Like CD, CYC replesenis a spe ' rtic theory of how to describe the world, and like CD,it
call used for Al tasks such as natural language undanding. C 19 C. however. is

more comprehensive; while CD provided a specific theory of representation for events.
CYC contains representations of events, objects, attitudes, and so forth. In addition,
CYC is particularly concerned with issues of scale, that is, what happens when we hu*!
knowledge bases that contain millions of objects.

10.3.1 Motivations

Why should we wani to build large knuwledgi' bases at all? There are many reasons,
among them:

• Brittleness—Specialized knowledge-based systems are brittle . They cannot cope
with novel situations, and theirperformance degradation is not graceful. Programs
built on top of deep, commonsense knowledge about the world should rest on
firmer foundations.

103. dC
	 1st.

• Form and Content—The techniques we heve seen so far for represenhing and usint.
knowledge i!wy or may not he sufficient for the purposes of Al. One good wa'

to find out is to start codin g large amounts of commonscrise snowledge and sec

where the difficulties crop up. In other words, one strategy is to focus temporarily

on the content of knowledge bases rather than on their form

• Shared Knowledge—Small knowledge-based systems must make simplifying

assumptions d 1bout how to represent thing' like space. time. mot'on, and structure
If these things can be represented once at a very lugli level, then doinain'spccitic
systems can gain leverage cheaply. AlSO, systems that share tue 'arne prliliiti\eS

can communicate easily with one another.

Building an immense knowledge base is i staggering task, however. We should ask

whether there are an'1 methods for acquiring this knowledge automatically. here are

two possibilities:

I. Machine Learning—In Chapter 17, we discuss ',uinc techniques for automated
learning. However, current techniques pernot only modest extetislorts of a pro-
granfs knowledge. In order for a system to learn a great deal. it joust already

know a great deal. In particular. systems with a lot of knowledge will be able to
e-"plos powerful analogical reasoning.

2. Nalursl Language Urideisianding- Humans extend their own knowledge b y read

trig hooks and talking with other humans Since we now have on-line versions of
encyclopedias and dictionaries, why not feed these text , into an Al program and

have it assimilate all the information automatically'? Although there are many
techniques for building language understanding systems (see Chapter 15), these
methods are themselves very knowledge- intcP.sve. For example, when we hea'

the sentence

John went to the bank and withdrew $50.

we easily decide that "bank" ineims a tinaneial institlitloiL and not a river bank.
To do this. we apply fairly deep knowledge about what a financial institution is,
what it means to withdraw money, etc. Untoriunately. for a program to assimilatt
the knowledge contained iii an enyclooedia. that program must already know

quite a hit about the world.

ftc approach taken by CYC is to hand- code kwhai its designers consider to be) the
ten million ot so facts that make up commonsense knowledge. It may then be possible

to bootstrdp into more automatic methods,.

10.3.2 CYCL
CYC's knowledge is encoded in a representation language called CYCL. CYCL is a
frame-based system that incorporates most of the techniques de%cribed in Chapter 9 (mul-

tiple inheritance, slots as full-hedged objects, rr'ansfrrs.ihriugh, n,utuully-disjoint-with,
etc). CYCLgeneralizcs the notion of inheritance so that properties can he inherited along

any link, not just isa and instance. Consider the two staten'ients:

290	 CHAPTER 10. STRONG SLOT-AND-FiLLER ST/?(CTURES

Mary
likc'c:
constraints:	 LspConstrant)

LispConst.rdint
sloLConst.rajned:	 (likes)
slot ValueSubsurnes;

(TheSetCif X (['ersO 31Ir3tances)
(And (programs-In X LispLanguage)

(Not (ThereExiats Y (Lanquager alllnstances(
(And (Not (Equal I Lis'pLanguage(:

(programsin X Y))))))
p.r opaq.it. jonfl i r*cc ion: 	 furw-tzd

Bob
proqrarnsln:	 (Lssplunquage)

Jane
prograinsin:	 (LsspLanguage CLanguage)

Figure 10.6. Frames and Constraint Expressions in CYC

I. All birds have two legs.

2. All of Mary 's friends speak Spanish

We can easily encode the first fact using standard inheritance- -any frame with /3ini
on its ius:arice loi inherits the value 2 on its frg.s sTo. The .second fact can he encoded
In a similar fashion if we allow inheirianco Lu proceed along the friend relation—any
frame with Mary on Its friend slot inherits the value Spanish on its IariuiigesSpoken
clot. CYC further generalizes inherii3nee to apply to a chain o relations, allowing us to
express (adis ijkc. "Afl the parents of Mary 's frienii are rich." where the value Rich is
inherited through a composition of thefrond and porenrof links.

In addition to frames, CYCL contains a constraint language that allows the expres-
sion of arbitrary first-orcici logical expressions. For example, Figure lOt') shows how
we rio espress the fact "Mary like' people who program solely ill lisp' Mar

'
has a

constraint called iispCunsiraini, which restricts the values of her likes slot. The .closUil.
ueSuhsumes attribute of lispConsrraint ensures that Mary's likes slot will be filled with
at least those individuals that satisfy the logical condition, namely that they program in
LispLanguage and no others.

The time at which the default reasoning is actuall y performed is determined by the
direction of the loilalut'Sjii>sumes rules. lithe direction is backward, the tule is an
if-needed rule, and it is invoked whenevet son-one inquires as to the value of Mary's
likes slot. (In this case, the nile infers that Mary likes Bribhiit not Jane.) If ihe direction
isfo,ward, the rule is an if-added rule, arid additions are automatically propagated to
Mary's likes slot. For cxarnple, after we place LISP on Bob's programsin slot, then
the aystem quickly placer Bob on Mary's likes slot for us. A truth maintenance system

291
10 3. CYC

(see Chapter 7) ensures that if Bob ceases to be a Lisp programmer (or if he starts uscig
Pascal). tI'ti he will also cease to appear on Mary's I,ka'.r slot.

While torward rules can be very useful, the y can also require substantial time and
space to propagate their values. If a rule is entered as backward, then the system defers
reasoning un44.4c infotination is sps.i1ieady requested. CYC maintains a separate
background process for accomplishing forward propagations. A knowledge engineer
can continue entering knowledge while its effects are propagated during idle keyboard

tithe.
Now let us return to the constraint language itself. Recall bat it allows to: the

expression of facts as arbitrary logical expressions. Since hrst order logic is much more
powerful than CYC's frame Language, why does CYC maintain both? The reason is that
frame-based infer-nee is very f.ficient, while general logical reasoning is computation-
ally hard. CYC actually supports about twenty types of efficient inference mechanisms
(including inheritance and transfers . through). each with its own truth maintenance fa-
cility. The constraint language allows for the expression of facts that are too complex

for an y of these mechanisms to handle. 	 -- - -
The constraint language also provides an elegant, abstract layer of representation. In

realit y. ('YC maintains two levels of representation: the epnste,no!OgzCallei'el (EL) and

the heunism level (I-lU. The EL cijinalIss facts stated in the logical constraint Language.
while the HE. contains the same facts stored using efficient inferencç templates. There
is a translation program for automatically converting an El. statement into an efficient
ILL rcprescnlation. The EL provides a clean, simple functional interface to CYC so
that users and computer programs can easily insert and retrieve informat ion from the

know ledge,haw The EL/11L distinction represents one way of combining the formal
neatness of logic with the computational efficiency of frames.

In addition to frames, inference mechanisms, and the constraint language. CYCL
Performs consistency checking (e.g., detecting when an illegal value is placed on a slot
and conflict resolution (e.g.. handling cases where multiple inference procedure, assign
incompatible vulus to a .slotl.

10,3.3 Control and Meta- Knowkdge
Recall our discussion of control ':nowtedge in Chapter b. ssherc we saw how to take
information about tunti iif out of a production system interpreter and represent it dccliii -
atisely using rules CYCL strives to accomplish the same thing with frames. We havt
already seen hm to specify whetlien a fact is propagated in the forward or backward
direction--this is a type of control information Associated with each slot is a Set of
inference mecharnsnrn that can be used to compute x'aliies for ii. lot any given problem.

('YC's reasoning is constrained to a small range of releani. efficient procedures. A

query in ('YCI. can be tagged with a level of effort. At the lowest leveLof effort. Cy(.'

merely checks whether the fact is stored in the knowledge base. At higher levels. CYC'

will invoke backward reasoning and even entertain metaphorical chains of inference
As the knowledge base grows. it will become necessary to use control knowledge to
restrict reasoning to the most relevant portions of the knowledge base. This control
knowledge can, of course, be stored in frames

- ' Another idea is to have the tvemdn ters,t1 prop anca, of knowledge during pvnods of infrequev'I

use. such as.. night.

292	 CHAPTER JO. STRONG SLOT-AND . FlljjR .c7RU(1uR

In the tradition of its predecessor RLL (Representation Language Language) ICireiner
and Lenat, 19801, many of the inference mechanisms used by CYC are stored explicitly
as EL templates in the knowledge base. These templates can be moclitiu.t i: any other
frames, and a user can create a new inference template by cop) ii soil 'di toe an ol
one. CYC generates LISP code to handle the various aspects ol I

arrae iempIa'
These aspects include recognizing when an EL statement can be I.raslorniest
instance of the template, storing justifications of facts that are deduced i ur.i retr
those facts when the justifications disappear). aiid applvio hc nfu-ce 	 hMon;
efficiently. As with production systems, we can build a more flexible. reflective system
by moving inference procedures into a declarative representation.

It should be clear that many of the same control issues exist for frames arid niles.
Vnlikeiumcnc& heuristic evaluation functions, control knowledge (}ltcn has a corn-
monscnsc, "knowledge about the world" flavor to it. It therefore begins to bridge the gap
between two usually ilisparaic types of knowledge: knowledge that is typically used for
search control and knowledge that s typicall y used for natural language disambiguation

10.3.4 Global Ontology

Ontology is the philosophical stud y of what exists. In the AL context, onology is
concerned with which categories we can usefull y quantify over and how those calegt inca
relate to each other, All knowledge-based systems refer to entities ill I lle wold. bur
in order to cap;urc the breadth of human kncwtr-dge. we need a wel I-designed global
ontology that specifies at a very high level what kinds of things exist and what their
general properties arc. As mentioned above, such a global ontology should provide a
more solid f'uitdation for domain-specific Al programs and should also allow them to
communicate with each other.

The highest level concept in cc is called Thing. Everything is an instance A
Thing. Below this top-level concept, CYC makes several distinctions, including

• JnditiduaIO/ject versus Col/ecrwn--. Thc ('Yt 'L concept Colletion cot icsponds
to the class CLASS described in Chapter 9. Here are some examples of frames
that are instances of (oPer.o ,! Nt/ pt, N,cp Some instances of l,z.
dividualObjec, are Fred, G,eere. IredNose. These two scts stmaw no common
Instances. and any instance of Timing must he an instance of one of the two sets.
Anything that Is an instance of Collection is a subset of Thing. Only Collet-lion
may have supersets and subsets; only individualObjecis may have parts.

• Intangible, Tan grhic, and Composite ---instances of Intangible are things without
mass, e.g., sets, numbers, laws, and events. Instances of TangibleObjee, are things
with mass that have no intangible aspect, e.g. a person's body, an orange, and
dirt. Every instance of Tan gibleObjeci is also an instance of lndividualQhje('f
since sets hvc no mass. Instances of ('onrposiieObjei r have two key shot',.
ph'.ivalEur'ni and i,rg mihfrEtj,,'ptt. Forexample, a person is a Composi,eQbj'(.r
whose phvsicalEvtent is his body and whose inia'igihleExten: is his mind.

• Sub c:ance_—Sairs,ance is a subclass of Indim'idualOhject. Any subclass of Sub-
sanee is something that retains its properties when it is Cut up into smaller pieces

lU:l. CY(
	 29 1

Por example. Wood is a Suhszance.' A concept iie iobk'34 can be an instance ol'

both Wool (a Subrio pee) and ThhIe (an !ndivjdua/Objccf).

hurin.cicversus Extrinsic properties-- A properly is Intrinsic it when an ohect ha.,
that property all parts of the object also have that properly. I-or esailiple, color
is an intrinsic property. Objects tend to inherit their intrinsic propetlie" front

Substances. Extrinsic properties include things like ,iumht'r-oJ leic. Objects tend

'o inherit their extrinsic properties from Ind,v,thwUThjei.r.

* Et'e,ii and Process—An E%'L'flt is anything with temporal extent. e.g.. Wa!ki'i.

Process is a subclass of Event. It every ternpurid slice of an Ei ent is e'.scntIallv

the same as the entire Event, then that Event i, also a For example.

Walking is a Process, but WalkiiitTisoMi/t't is not. This relationship is unatugI)u'.

to Substanc c and !ni/itidualOh;eri.

• Slots—Slot is a siibclas.'. of /t:to,i ,tibIr There arc niany t y pes of Slot. &?OL

LeepingS/ols record such inftirrivifion as when a frame was çrcaLed and whom.

Defininç'S!o!s refer not to properties of the Iranis' hut it) p1 opertics of the obtcct

represented by the frame. DtjtningS/."fs are terther divided Into intctisioil,il. Lix-

000mic, and extensional categories. Quon;iiatiteS lots are those which take oti a

selar range of values, e.g.. height. a opposed ti

line- 3r':i., & an have temporal properties. suert as duration and sfa,i.c8i70rc.
CYC de::h, wiih io btLSIC types of temporal measures: intervals, and et of
iniers als. A number of basic interval properties. stich as r',,dcOuiing. are defined

iron: the propert y hefin-e, shih applies to 'ariing and ending times for r%ents.

kts 01 intervals are built up from basic inte''. alt, through operations like union
.'irid intersection. 'Thus, it is possible to state facts like 'John goes to the movies

it three o'n lock eve, Sunda'.

-, .'ttF -An important sunset of Citrnp.i ' iie fq t is Agent. the collection ot in
heing, AgentT can tic collective (e.g . corporations) or mdi'. idual (e.g..

people) .,4'nt.i have a iiumnocrof properties. one of which ishie//m-t.c . Agents often
he their own beliefs v' other aeiit- ,tnler to facilitat' communicat i on. Art

igetticrieliefN may be incorrect. '.0 CYI ruist be able to distinguish between

(acts in i is own nhiWled)e base (C)IC's LL)cl l c!Ni and "facts that are possihI

inconsistent with the knot i eime base,

These .iii but a few of the ontological decisions that the builders of a large knowl
edge base must make- Other piobleins arise in the representation of space. ausaltty.
structures. arid the persistence ofotijeers through rime. We ettirfl to some oh these is-1-
1'. (haprt"r 1(1

10.3.5	 tools

CYC is a multi-user system that provides each knowledge enterer with a textual and
graphical interface to the knowledge base. Users' modifications to the knowledge base

O1 cutw. if we cut a suhOance up ssm hnct. it cease" to he the ',jrflr sut,siance. rot CSCS '.u5*t.tflt

mvDe. Cst.. Mores it'. ('rQflj,i, '.ti. C Q. WstS ewnuir Plutimer!/ ('rt't.I v/un,,! '	.	 etc

294	 CHAPTER 10. STRONG .SLOT. AND: F/1 LER /'RUC'r'..5

are transmitted to a central server, where they are checked and then propagaickl to other
users.

We do not yet have much experience with the engineering problems ot hutldiiig a's
maintaining very large knowledge bases. In the future, it will he nece.ssars to havc loolsn
that check consistency in the knowledge base, point out a!ea' d inoiiipkseriess, oid
ensure that users do not step on each others' Loes.

10.4 Exercises

1. Show a conceptual dct:idene y ieprescntatioii of the selIICOCC

John begged Mary for a pencil.

How does this representation itakc it 7ocsOsle to answei the question

Did John talk to Mary?

2. One difficulty with representations [hat rely on a small Se! of Semantic primitives,
such as conceptual dependenc y, is that it is often dithcult to represent distinc-
tions between fine shades ot nicaiting. Write CD rcplcseniations for eadi of the
following sentences. Fry to capture th differences in n- leaning btweii the two
sentences of each pair.

John slapped Bill.
John punched 13111

Bill drank his Coke
Bill slurped his Coke

Sue likes Dickens.
Sue adce.s Dickens,

Construct a Script for going to a movie front the viewpoint of the it i uvic guci

4. Consider the following paragraph:

Jane was extremel y hungry. She thought ahour going to her forite
restaurant for dinner, but it was the day before pa yday. So instead
she decided to go home and pop a froLen pizza in the oven. On the
way, though. she ran into her friend. Judy. Judy invited Jane to go out
to dinner with her and Jane instantly agreed. When they got to their
favorite place. they found a good cabt and relaxed over their meal.

Ilow could the lestaurant script be invoked by the contents of this story? Trace
the process throughout the story. Might any other scripts also be invoked?
example, how would you answer the question. "Did Jane pay for her dinner?"

5. Would conceptual dependency be a good way to represent the Contents of a typical
i'-ue of I'valWn(J(Geogi op/tic?

l0 j- EXERCISES

Stc he"' in hr ('YC &iuoLog	 .

• cat

• court cSe

• New York limes

• France

• gIi of water

Chapter ii

Knowledge Representation
Summary

In this chapter, we review the representational schenic' that have been discussed so iar
and we mention briefly some additional representational techniques that are sometimes
uefu1. You may find it useful at this point to reread Chapter 4 for a rev!cA of the
knowledge representation issues that we outitned there.

11.1 Syntactic-Semantic Spectrum of Representation

One way to review the representational schemes we have just kscribed is to consider
an important dimension along which they can be characterized. At one extreme are
purel y syntactic systems, in which no concern is given to the meaning of the knowledge
that is being represented. Such systerin have 5implc, uniform rules for manipulating
the representation. They do not care what information the representation contains. At
the other extreme are purely .cv,nanlie systems, in which there is no unified form. Every
aspect of the representation corresponds to a different piece of information, and the
inference rules are correspondingly complicated.

So. far. we have discussed eight declarative structures in s.hch knowledge can be
ipresented:

• Predicate logic

• Prolctioti rules

• Noumonotonic systems
D

• Smatisneal rea.sonilig systti.u'.

• Semantic net

• Frames

• Conceptual dependency

297

298	 CHAPTER II. KNOWLEDGE REPRESENTATION SUMMARY

• Scripts

• cyc

Of these, the logical representations (predicate logic and the nonmonotonc systems
and the statistical ones are the most purely syntactic. Their rules of inference are strictly
syntactic procedures that operate on well-formed formulas (wif) regardless of what
those formulas represent. Production rule systems are primarily syntactic also. The
interpreters for these systems usually use only syntactic information (such as the form
of the pattern on the left side, the position of the rule in the know ledge base, or the position
of the niatched object in short-term memory) to decide which rules to fire. Again here
we see the similarity between logic and production rules as ways of representing and
using knowledge. But it is possible to build production-rule systems that have more
emantics embedded in them. For example, in EMYCIN and other systems that provide

explic i t support for certainly factors, the semantics of certainty factors are used by the
rule interpreter to guide its behavior.

Slo-and-fihlerstructures are typically more semantically oriented, although they pao
a good distance in this spectrum. Semantic nets, as their name implies, are designed
to capture semantic relationships among entities, and they are usually employed with a
set of inference rules that have been specialty designed to handle correctly the specific
types of arcs present in the network. (For example, isa links are treated differently from
most other kinds of links.) Frame systems are typically more highly structured than
are semantic nets, and they contain an even larger set of specialized Inference rules,
including those that implement a whole array of default inheritance nit.s, as well as
other procedures such as consistency checking.

Conceptual dependency moves even further toward being a semantic rather than a
syntactic representation. it provides not only the abstract structure of representation
but also a specific indication of what components the representation should contain
(such as the primitive ACTS and the dependency relationships). Thus, although CD
representations can be thought of as instances of semantic nets, they can be used by
more powerful inference mechanisms that exploit specific knowledge about what they
contain.. And althouh scripLs appear very similar to frames, they are frames in which
the slots have heco carefully chosen to represent the information that is useful when
reasoning about situations. This makes it possible for script manipulation procedures
to exploit knowledge about what they are working with in order to solve problem.,
more efficiently. CYC uses both frames and logic (depending on the level at which
we view the knowledge) to encode specific types of knowledge and inference aimed at
commonscnse reasoning. CYC is the most semantic of the systems we have described,
since it provides the most built-in knowledge of how to manipulate specific kinds
of knowledge structures. It also contains a comprehensive ontology into which new
knowledge can be put.

In general, syntactic representations are to knowledge representation what the weak
methods of Chapter 3 are to problem-solving. They are, in principle, adequate for any
problem. But for hard problems, their generality often means that answers cannot be
found quickly. Stronger, more semantically oriented approaches make it possible to
use knowledge more effectively to guide search. This does not mean that there is no
place for weak or syntactic methods. Sometimes they are adequate, and their simplicity
makes a formal analysis of programs that use them much me straightforward than a

11.2. LOGIC AND SWTAND-FJLLER STRUL)(JR t.	 2%

comparable analysis of a program based on semantic methods. But powerful programs
-.dcpend on powerful knowledge, some of which is tpically embedded in their problem-

solving procedures and some of which is embedded in their knowledge representation
mechanisms. In fact, as we have seen throughout Part IT of this book, it is not usually

possible to separate the two facets cleanly.
However, as we have seen in the last few chapters, knowledge representation systems

can play the role of support systems that underly specific problem-solving programs.
The knowledge representation sysien, is typically expected not just to hold knowledge

but al so to provide a set of basic inference procedures. such as property inheritance
or truth maintenance, that are defined on the knowledge. Specific piobIernsolVing
procedures can then he implemented as a level on top of that.

When knowledge representation systems are viewed as modules that are going to
be incorporated as black boxes into larger programs, a good argument can be made
[Brachman and Levesque, 1984] that their functionality should be restricted to purely
syntactic operations about which very precise statcments can be made. Essentially, this
argument follows standard software engineering pi inciples. To use a module effectively.

one must have access to precise functional specifications of that module. if a knowledge

representation system performs operations that are highly semantic in nature it is difficult

or impossible to write such a set of specifications. Among the kinds of operations that

pose difficulties in this regard are the tollowing:

• Operations whose result is defined lobe the first or the best object satisfying some
set of specifications. One example of such an operation is the resolution of a
contradiction in adefault-reasoning system. These operations require heuristics,
to define first or best and thus cannot usually be described in a straightforward

way without appealing to the heuristics.

• Operations that arc given resource limitations and whose output depends on
how effectively those resources can be used. One common example of such an
operation is default reasoning, when it is stated iii a form such as, "AssumC .r unless

v can be shown within inference steps." The semantics of these operations
then depend on how the resources happen to be exploited.

Of course- ssc are not saying that operations with these properties should not be

done in i easonln g programs. They are necessary. We are only saying that they should

be within the . ontrul of some domain-specific problem solver rather than hidden within

a general-purpn't hlacI box

1 1.2 Logic and Slot-and-Filler Structures

Slot and-filler structures have proven very valuable in the efficient storing and retrieving
of knowledge for Al programs. They are usually poor, however, when it comes to
representing ruie-Like assertions of the form "If x, Y. and ;. then conclude ." Predicate

logic, on the other hand, does areaonable job of representing such assertions, although
general reasoning using these assertions is inefficient. Slotand.flllerrepreSentaons are
usually more semantic, meaning that their reasoning procedures are more varied, more

I PC5 of knowledgeefficient, and tied more closely tospeciflc

300	 CHAPTER II. KNOWLEDGE REPRESENTATION SUMMARY

Hayes [19731 and Nilsson [19801 have shown how slot-and-filler structures can be
translated into predicate logic. Concepts become one-place predicates, e.g., dog(x). and

slots become two-place predicates, e.g.. color(uanary. yellow). Inference mechanisms
like property inheritance can be expressed in logical notation, as a series of logical impli-
cations. which can then be manipulated with resolution. Working through a translation
of a slotand-hlier structure to logic helps clear up what are often imprecisely specified
reasoning methods in these structures. in practical terms. however, moving to logic
means losing efficiency. For example, a typical slot-and-tillcr systcm has procedures
for doing properly inheritance that arc much faster than doing property inheritance via
esol ution-based theorem proving. Part the inefficiency of general reasoning methods

like resolution can be overcome by intelligent indexing schemes, but the more heavily
cross-indexed predicate logic clauses are, the more they come to resemble slot-and-filler
structures.

On the other-hand, it is difficult to express assertions more complex than inheritance
in slot-and-filler structures. Is it possible to create a hybrid representational structure
that combines the advantages of slot-and-filler structures with the advantages of pred-
icate logic? We have already seen one system (CYC) that maintains both a logical
epistemological level) and frame-baseJ (heuristic level) version of each fAct. Another

system, called KRYPTON lBrachman eta!, 19851, divides its knowledge into two dis-
tinct repositories, called the TBox and the ABox. The TBoa is a slot-and-tiller strOcturv

that contains rerrninoThgica! information. In it arc concepts 111cc "person,' "car," and

'person with three children." The ABox contains logical assertions, such as "Every
person with three children owns a car." The atomic predicates used in AI3ox assertions
refer to concepts defined in the TBox.

In logic-based systems, predicates such as triangle and polygon are primitive notions

These primitives are tied to one another via assertions, e.g.. isa(irzangle, polygon) and

isa(re tangle, pol ygon). KRYPTON relates concepts like triangle and polygon termino-

logicall y, in the TBox, rather than assertionally. Thus we can do efficient terrninological
reasoning in the TUox and more general reasoning in the ABox. Terminological ma-
soning involves answering questions about subsumption and inheritance, such as "Can

something be both a triangle aiid a rectangle?"
Consider it resolution theorem prover running with assertions in the ABox. A

standard operation in rc'olution is deteriniuiiig when pairs of literals such asf(x) and

-'f() are inconsistent. Standard resolution requires that the literals be textually unifiable
(except for the negation sign). KRYPTON extends the idea of textual inconsistency to

terminological inconsistency in order to make the theorem prover more efficient. The

TBox can tell that the two assertions :rtangiex) and rectangle(v) are inconsistent and can
thus be resolved against each other. The TRox can also determine the inconsistency of

zriangle(,r) and -'polygon(s); moreover, the two assertions - 'rectangk(x) and polygon(x)

can be resolved against each other as long as we add to the resolvent the fact that .c must

have an angle which is not 90 degrees. If TBox computations are very efficient. then
ABox proofs will be generated much faster than they would be in a pure logic framework.

Iii. OTHER REPRESENTATIONAL £l .iViQ

11.3 Other Representational Techniques

In the last several chapters, we have described various techniques that can be used to
represent knowledge. BLit our survey is by no means complete. There are other ways of
representing knowledge; some of them are quite similar to the ones we have discussed
and some are quite different. In this section we briefly discuss thiee additional methods.
constraints, simulation models, and subsymbohc systems. Keep in mind throughout
this discussion that it is not always the ease that these various representational systems
are mutually inconsistent. They often overlap, either in the way they use component
representational mechanisms, the reasoning algorithms they support, or the problem-
solving tasks for which they are appropriate.

11.3.1 Representing Knowledge as Constraints

Much of what we know about the world can be represented as sets of constraints. We
talked in Section 3.5 about a very simple problem, cryptarithmetic, that can be described
thi sway. But constraint-based representations are also useful in more complex problems.
For example, we can describe an electronic circuit as a set of constraints that the states
of various components of the circuit impose on the states of other components by virtue
of being connected together If the state of one of these components changes, we can
propagate the effect of the change throughout the rilcitil by using the constraints. As a
second example, consider the problem of interpreting visual scenes. We can write down

a set of constraint,,! hat characterize the set of interpretatiotis that can make sense in our
physical world. For example. a single edge must be interpreted consistently, at both of
its ends, as either a convex or a concave boundary. Finally, as we saw in Section 8.3,
there are several kinds of relationships that can be represented as sets of constraints on
the likelihoods that we can assign to collectit ns of interdependent events.

In some sense, everything we write in any representational system is a constraint
on the world models or problem solutions that we warn our program to accept. For
example. a wff [e.g.. Vt ,non(x) -4 ,norta/(x)1 constrains the set of consistent models
iii those that do not include any man who is not mortal. But there is a very specifli

nsc in which it is useful to talk about a specific class of techniques as constraint-based.
ecail that in Ssctmon 3.6 we presented an algorithm for constraint satisfaction that

was based on the notion of propagating constraints throughout a system until a final
state was reached. This algorithm is particularly effective precisely when knowledge

is represented in a that makes it efficient to propagate constraints. This will be
true whenever it is easy to locate the objects that a given object influences. This (CU1S

,shcn the objects in the system are represented as a network whose links correspond to
ct.'c\traIItt' ailamog the objects. We considered one example of this when we talked about
B4vesiamt networks in Section 83. We consider other exaniples later in this book. For
e'ampte, we return to the problem of simulating physical processes, such as electronic
circuits, in Section 19.1. We present in Section 14.3 a constraint-propagation solution
(known as the Waltz algorithm) 10 a simple vision problem And in Section 15.5 wt
outline a stew of natural language understanding as a constraint satisfaction task

302	 CHAPTER II. KNOWLEDGE REPRESENTATION SLMM,4.R

113.2 Models and Model-Based Reasoning

For many kinds of problem-solving tasks, it is necessary to model the behavior of some
object or s3 stem. To diagnose faults in physical devices, such as electronic circuits or
electric motors, it is necessary to model the behavior of both the correctly functioning
device and some number of ill-functioning variants of It. To evaluate potential design'
of .such devices requires the same capability. Of course, as soon as we begin to think
about modeling such complex entities, it becomes clear that the best we will be able to
do is create an approximate model There are various techniques that we can use to do
that.

When we think about constructing a model of some entit y in the world, the issue of
what we-mean by a model soon arises. To what extent should the structure of the model
minor the structure of the object being modeled! Sonic representational techniques
tend t support models whose structure is very different from the structure of the objects
being modeled. For example. in predicate logic we write wff's SUCh as Vi : ,uien(.u)
hlack(x). In the real world, though, this single fact has no single realization; it is
distributed across all known ravens. At the other extreme are representations, such as
causal networks, in which the physical structure of the world is closel y modeled in the
structure of the representation.

[here are arguments in favor or both ends of this spectrum (and many points in the
middle). For example, if the knowledge structure closely matches the problem structure,
then the frame problem may be easier to solve. Suppose, for example. that we have a
robot-planning 1 iroiaai and we want to knLlss if we move a table into another room,
what other objects also change location. A model that closely matches the structure
of the world (as shown in Figure 11.1(a)) will make answering this question easy,
while alternative representations (such as the one shown in Figure 11.1(b)) will not,
For more on this issue, see Johnson- Laird 119851. There are, however, arguments for
representations whose structures do not closel y model the world- For example, such
rcprcscntations typically do a better job of capturing generalizations and thus of making
predictions about some kinds of novel siluat,.na.

113.3 Subsymbulic Systems

So far, all of the representations that we have discussed are symbolic, in the sense we
defined in Section 1.2. There are alternative representations, many of them based on
a neural model ,atteméd after the human brain. 'these systems are often called neural

etS orcunncclionist s ystems. We discuss such systems in Chapter IS,

11.4 Summary of the Role of Knowledge

In the last several chapters we have focused on the kinds of knowledge that may be useful
to programs and on ways of representing and using that knowledge within programs.
To sum up. for now, our treatment of knowledge within Al programs, let us return to a
bncl discussion of the two roles that knowledge can pla y in those programs.

• It may define the search space and the criteria for determining a solution to
r'blem. We call this knowledge e.csefltiCf Arrow/edge.

Ii 5. EXERCISES
	 303

(LtvingrVOmi

contains:
(Table]:

made-of: Wood
has-on: (Vase!:

made-of: Glass)
(Lamp!: ...

(Tahk'2:
has-on: (Vasc2: ..)))

(a)

ia(TahleI. Livin groom)
made-of(TahleJ, Wood)
on(Vase!, Table!)
made-of(Vase!, Glass)
on(Vase2. Tahle2)
on(L.ampI. Table!)

(h)

Figure 11.1: Capturing Structure i n Models

• It itiay irnplovc (he efficiency ofareasonhiigprocedure h) irIlornl!flgthai procedure
i the best places, to look for a solution. We call that knowledge heuristic

I now/edge.

.n fnrinal tasks, such as tlworeni proving and game playing, there is only a small
anwuniof sem,al knowledge and the need for a large amount of heuristic knowledge
trn be challenged by several brute force pograms thatperform quite successfully

(.. the chc.ss programs HITEC'H fBerlinciand Ebeling. 1 9891 and DEEP THOUGHT
'nmcharaman ci al., 1 94)0I). the real knowledge challenge arises when we tackle

ii aurally occurring problems. such rN medical diagnosis, natural ianguage piocessing.
engineering design. In those domains substantial bodies of both essential and

icuristic knowledge are ab5oliitrly necessary.

11.5 Exercises

• Anliticial intelligence systems employ a variety of tormalisn ' for representing

knowledge and reasoning with it. For each of the following sets of sentences.
indicate the formalism that best facilitates the representation ot the knowledge
given in the statements in order to answer the question tlit is posed. Explain your
choice hi-icIly. Show how the statements would be encoded in the formalism you

have selected, Then show how the question could be answered.

304	 CHAPTER ii. KNOWLEDGE REPRESENTATION SUMMARY

John likes fruit.
Kumquats are fruit.
People eat what they like.
Does John eat kumquats?

Assume that candy contains sugai unless you know
specifically that it is dietetic.

M&M's are candy.
Diabetics should not eat sugar.
Bill is a diabetic.
Should Bill eat M&M's?

Most people like candy.
Most people who give parties like to serve food that

their guests like.
Tom is giving a party.
What might Tom like to serve?

When you go to a movie theatre, you usually buy a ticket,
hand the ticket to the ticket taker, and then go and
find a seat.

Sometimes you buy popcorn before going to your seat.
When the movie is over, you leave the theatre.
John went to the movies.
Did John buy a ticket?

2. Give live examples of facts that are difficult to represent and manipulate in
predicate logic.

3. Suppose you had a predicate logic-based system in which you had represented
the information in Figure 45. What additioiiat k...'Jedge would you have to
include in order to cause prnperties to be inherited downward in the hierarchy?
For example, how could you answer the question of how tall a pitcher is?

4. Property inheritance is a very common form of default reasoning. Consider the
semantic net

Manuna

Cow
	 P1aiyJ	 Live

(a) How could the information in this network be renrescnted in a JTMS

(b) What will happen when the additional fact that the platypus lays eggs is
inserted into this system?

