Part 11

Knowledge Representation

Chapter 4

Knowledge Representation
Issues

In Chapter 1, we discussed he role that knowledge plays in Al systems In suc-
ceeding chapters up until now, though, we have paid Jitte attention to knowledge and
its importance as we instead focused on basic frameworks for building search-based
problem-solving programs. These methods are sufficiently general that we have been
able 1o discuss them without reference to how the knowiedge they need is to be rep-
resented. For example, in discussing the best-first search algorithm, we hid all the
references to domain-specific knowledge in the generation of successors and the com-
putation of the 4" function. Although these methods are useful and form the skeleton
of many of the methods we are about to discuss, their problem-solving power is limited
precisely because of their generality. As we look in more detail at ways of representing
knowledge, it becomes clear that particular know ledge representation models allow for
more specific, more powerful problem-solving mechamsms that operate on them. In this
part of the book, we retum to the topic of knowledge and examine specific techniques
that can be used for representing and manipulating knowledge within programs.

4.1 Representations and Mappings

In order 10 solve the complex problemis encountered in artificial intelligence, one needs
both a large amount of knowledge and some mechanisms for manipulating that knowl
edge to create solutions 1o new problems. A variety of ways of representing knowledge
(facts) have been exploited in Al programs. But before we can 1alk about them in-
dividually, we must consider the following point that periains to all discussions of
representation, namely that we are dealing with two different kinds of entities:

e Facts: truths in some relevant world. These are the things we want 10 represent.

e Representations of facts in some chosen formalisru. These are the things we will
actually be able to manipulate.

One way to think of structuring fhese entirics is as two levels:

ius

106 CHAPTER 4. KNOWLEDGE REPRESENTATION ISSUES

Reasoning
d Internal ’
e |
Focts Lo = Representations :’
English 1 English
undersianding generation

English
Representation

Figure 4.1: Mappings between Facts and Representations

® The knowledge level, at which facts (including each agent's behaviors and current
goals) are described,

The symbol level, at which representations of objects at the knowledge level are
defined in terms of symbols that can be manipulated by programs.

See Newell [1982] for a delailed exposition of this view in the context of agents
and their goals and behaviors. [n the rest of our discussion here, we will follow a
maodel more like the one shown in Figure 4.1, Rather than thinking of one level on top
of another, we will focus on facts, on Feprescatations, and on the two-way mappings
that must exist between them. We will call these links representation mappings., The
forward representaiion mapping maps from facts to represeniations. The backward
representation mapping goes the other way, from representations to facts.

One representation of facts is so common that it deserves special mention: natural
language (particularly English) sentences. Regardless of the representation for f; acts that
We use in a program, we may also need 1o be concerned with an English representation _
of those facts in order 1o facilitate getting information into and out of the system. In this
case. we must also have mapping funciions from English sentences (o the representatior
we are actually going 1o use and from it back 10 sentences. Figure 4.1 shows how these
three kinds of objects relate (o sach other -

Let’s look at a simple example using mathematical logic as the representational
formalism. Consider the English sentence

Spot is a dog.
The fact represented by that English sentence can also be represented in logic as:
dog(Spot) '
Suppose thai we also have a logical representation of the fact that all dogs have tails:

¥x : dog(x) — hastail(x)

41 REPRESENTATIONS AND MAPPINGS 107

Then, using the deductive mechanisms of logic, we may generale the new representation
object:

hastail(Spoi)

Using af appropriate backward mapping function, we could then generale the En-
glish sentence:

Spot has atail.

Or we could make use of this representation of a new fact to cause s to take some
appropriate action or o derive representations of additional facts.

It is important 10 keep in mind that usually the available mapping functions are not
one-to-one. In fact, they are often not even functions but rather many-to-many relations,
(In oiher words, each abject in the domain may map Lo several elements in the range,
and several elements in the domain may map lo the same element of the range.) This
is particularly true of the mappings involving English representations of facts For
exaniple, the two sentences “All dogs have tails” and “Every dog has a tail” could both
represent the same fact, namely that every dog has at least onc tail. On the other hand,
the former could represent either the fact that every dog has at least one tail or the fact
that each dog has several tails. The latier may represent cither the fact that every dog
has at least one tail or the fact that there is a 1ail that every dog has. As we will see
shortly. when we try to convert English sentences into some other representation, such
as logical propositions, we myst first decide what facts the sentences represent and then
convert those facts into the new representation.

The stacred links of Figure 4.1 are key components of the design of any knowledge-
based program. To see why, we need to understand the role that the internal representa-
tion of a fact plays in a program. What an Al program does is to manipulate the internal
representations of the facts itis given. This manipulation should result in new structures
that can also be interpreted as internal representations of facts. More precisely, these
structures should be the internal representations of facts that correspond 1o the answer
10 the problem described by the starting sel of facts.

Sometimes, # good representation makes the operution of a TEASONING Program not
only correct but trivial. A well-known example of this occurs in the conlext of the
mutilated checkerboard problem, which can be stated as follows.

The Mutilated Checkerboard Problem, Considera normal checker toard
from which two squares. in opposite comers, have been removed. The task
1s 10 cover all the remaining squares exactly with dominoes, each of which
covers two squares. No overlapping, either of dominoes on top of each
other or of dominoes over the boundary of the mutilated board are allowed.
Can this task be done?

One way tosolve this problem is to try [0 enumerate, exhaustively. all possible tilings
1o see if one works. But suppose one wanis to be more clever. Figure 4.2 shows three
ways in which the mutilated checkerboard could be represented (to a person). The first

108 CHAPTER 4. KNOWLEDGE REPRESENTATION ISSUES

Number of
black squares = 30

Number of
white squares = 37

ta) by ()
Figure 4.2: "Three Representations of a Mutilated Checkerboard

representation does not directly suggest the answer 1o the problem. The second may:
the third does, when combined with the single additional fact that cach domino must
cover exactly one white square and one black square. Fven for hurnan problem solvers a
representation shift may make an enormous differcnce in problem-solving effectiveness,
Recall that we saw a slightly less dramatic version of this phenomenon with respect o a
prablem-solving program n Section 1.3.1, where we considered two different ways of
representing a tic-tac-toc hoard, one of which was as a ngic square.

Figure 4.3 shows an expanded view of the starred part of Figure 4.1, The doited
line across the top represenis the abstract reasoning process that a program 1s intended
1o model. The solid line across the bottom represents the concrete reasoning process
that a particular program periorms. This program successfully models the abstract
Process 1o the extent that, when the backward representation mapping is applied to
the program’s output, the appropriate final facts are actually generated, If either the
program’s operation or one of the representation mappings is not faithful to the prablem
that is being modeled, then thc final facts will probably not be the desired ones, The
key role that 1s played by the nature of the representation mapping is apparent from this
figure. If no good mapping can be defined for a problem, then no matter how good the
program (o solve the problem is. it will not be able 10 piuduce answers that correspond
tu real answers ta the probleny,

It is interesting to note that Figure 4.3 looks very much like the sort of figure that
might appear in a general programming book as a description of the relationshipbetween
an abstract data type (such as a set) and a concrete implementation of that type (e.g.
as u linked list of elements). There are some differences, though, between this figure
and the formulation usually used in programming texts (such as Aho er al. [1983]). For
cxample, in data type design it is expected that the mapping that we are calling the
backwasd representation mapping is a function (i.e., every representation corresponds
to anly one fact) and that it is onto ¢i.e., there is at least one representation for every
fact). Unfortunately, in many Al domains, it may not be possible 10 come up with such
a representation mapping, and we may have 1o live with one that gives less ideal results
But the main idea of what we are doing is the same as what programmers always do.
namely 1o find concrele implementations of abstract concepts

42 APPROACHES 70O KNOWLEDGE REPRESENTATION 104

: desn=0 el rmasoning s
Initial b L o o g s e Final
facts facis

a
forward _ backward
* | pepresentation representation *
mapping mapping
1
Internal brtermal
representation - +| representation
of initial facts OpeELION of final tacts
ol program

Figure 4.3: Representation of Facts

4.2 Approaches to Knowledge Representation

A gond system for the representation of knowledge in a particular domain should possess
the follawing four properiics:

Represeniational Adeguacy _ the ability 10 revresent afl of the kinds of knowledge that
are needed in that domain

Inferential Adequacy—-the ability ton janipulate the representational structures in such
a way as o dertve new structures corresponding to new knowledge inferred from
old

inferential Efficiency-—th~ ability to incorporate into the knowledge structure addi-
tional information that can be used 1o focus the attention of the inference mecha-
nisms in the most promising directions.

Acquisitional Efficiency—the ability 1o acquire new information easily. The simplesi
case involves direct insertion, by a person, of new knowledge into the database
ldeally. the program itself would be able 10 control knowledge acquisition

Unfortunaiely, no single system that optimizes all of the capabilities for all kinds
of knowledge has yet been found. As 2 result, multiple technigues for knowledge
representation exast. Many programs rely on more than one technigue. In the chapters
that follow, the most important of these techniques are described in detail. But in this
section, we provide a simple, example-based introduction 1o the important ideas.

simple Relational Knowledge

The simplest way to represent declarative facts is as a set of relations of the same sort
used in database systems. Figure 4.4 shows an example of such a relational system.

10 CHAPTER 4. KNOWLEDGE REPRESENTATION ISS1/ES

Player | Height | Weight | Bais-Throws |
Hank Aaron | 6-0 180 | Right-Right |
Willie Mays | 5-10 170 | Right-Right
Babe Ruth 6-2 215 Lefi-Left |
Ted Williams | 63 205 | Lefi-Right

Figure 4.4: Simple Relational Knowledge

The reason that this representation is simple is that standing alone it provides very weak
interential capabilities But knowledge represented in this form may serve as the inpul
fo more powerful inference engines. For example, given just the facts of Figure 4.4, 01
is not possible even to answer the simple question, “Who is the heaviest player?” But
i a procedure for finding the heaviest player is provided, then these facts will enable
the procedure to compute an answer. If, instead, we are provided with a set of rules
for deciding which hitter 1o put up against a given pitcher (based on night- and left-
handedness, say), then this same relation can provide at least some of the information
required by those rules.

Providing support for relational knowledge is what database systems are designed
to do. Thus we do'not need to discuss this kind of knowledge representation strircture
further here. The practical issues that arise in linking a dalabase sysiem that provides
this kind of support 1o a knowledge representation system that provides some of the other
capabilities that we are about to discuss have already been solved in several commercial

products.

Inheritable Knowledge

The relational knowledge of Figure 4.4 corresponds 1o a set of attributes and associated
values that together describe the objects of the knowledge base. Knowledge about
objects, their attributes, and their values need not be as simple as that shown in our
example. In particular. it is possible to augment the basic representation with inference
mechanisms that operate on the structure of the represeqtation. For this to be effective,
the structure must be designed to correspond (o the inference mechanisms that are
desired. One of the most useful forms of inference is property inkeritance, in which
elements of specific classes inherit antributes and vatues from more general classes in
which they are included.

In order 10 support property inheritance, objects must be organized into classes
and classes must be arranged in a generalization hicrarchy. Figure 4.5 shows some
additional baseball knowledge inserted into & structure that is so arranged. Lines
represent attributes. Boxed nodes represent objects and values of attributes of objects,
These values can also be viewed as objects with auribuies and values, and so on.
The arrows on the lines point from an object 1o its value along the corresponding
aliribute line. The structure shown in the figure is a sior-and-filler structure. 1i may
also be called a semantic network or 2 collection of frames. In the latter case eack
individual frame represents the colicction of atiributes and values assovialed with a
particular node. Figure 4.6 shows the node for hasehall player displayed as a frame

42 APPROACHES TO KNOWLEDGE REPRESENTATION ill

Person

Adult- 510
Male heighe

equal 1o bats | Busehall-
handed Player batting-average

batting-average hatting-average
-' ———'l Ly Pitcher ! lF."eMcri ;@

) 4

. instance
rriafaric'e

e feam = team
Chivago- | Three-Finger- Pee-Wee- Broek!yn-

Cubs Bronn Reese Dodaers

Y

Figure 4.5; Inheritable Knowledge

Do not be put off by the confusion in terminology here. There is xo much fiexibility
in the way that this (and the other structures described in this section) can be used 1o
solve particular representation probiems that 11 1s difficull 1o reserve precise words for
particular representations. Usually the use of the term frame svstem implies somewhat
more struciure on the atinbutes and the inference mechanisms thatare avaitable to apply
10 them than does the term semantic network.

In Chapter 9 we discuss structures such as these 1 substantial detail - Bul to ger
an idea of how these structures support inference using the knowledge they contam
we discuss them bricfly here. Al of the objects and most of the attributes snown in
this example have been chosen to correspond Lo the baseball domain. and they huve no
general significance. The two exceplions 1o this are the atwribute isa. which is being
wsed 10 show class inclusion, and the atinibute instance. whigh is being used 10 show
K_'IHR& membership. These two specific (and gencrally useful)y atributes provide the basis
for property inheritance as an inference rechnique. Using this techmigue. the knowledge
base can suppor retri--=i hoth of fucts that huve been explicitiy stored and of acts that
can be denved from those that are explicitly stored

An idealized form of the propery inherttam e aigorithm can be stated a¢ follows

112

CHAP1~f 4 KNOWLEDGE REPRESENTATION [SSUES

Baseball-Player

isa: Aduli-Male
bats : (EQUAL handed)
height : 6-1

batting-average: 252

Figure 4.6: Viewing a Node as a Frame

Algorithm: Property Inheritance

To retrieve a value V for attribute A of an instance object (:

2.

. Find @ in the knowledge base.
If there is a value there for the attribule A, report that value.
. Otherwise, see if there is a value for the attribute instance, If not, then fail.,

. Otherwise, move to the node corresponding to that value and look for a value for
the attribute A. If one is found, report it.

. Otherwise, do until there is no value [or the isa altribule or until an answer is
found:

(a) Gel the value of the isa altribute and move to that node
(b) See if there is a value for the attribute A. If there is, report it

This procedure is simphstic. It does not say what we should do if there is more

than

one value of the insrance or isa attnibute. But it does describe the basic mechanism

of inheritance. We can apply this procedure to our example knowledge base to derive
answeis to the following queries:

s jeam(Pee-Wee-Reese) = Bro. yn-Dodgers. This attribute had a value stored

explicitly in the knowledge base.

e barting-average(Three-Finger-Brown) = .106. Since there is no value for batting

average stored explicitly for Three Finger Brown, we follow the instance attnbute
to Pitcher and extract the value stored there. Now we observe one of the critical
characteristics of property inheritance, namely that it may produce default values
that are nol guaraniced to be correct but thai represent “best guesses” in the face
of a lack of more precise information. In fact, in 1906, Brown's bauing average
was .204,

o height(Pee-Wee-Reese) = 6-1. This represents another default inference. Notice

here that because we get to it first, the more specific fact about the height of
baseball players overrides a more general fact about the height of adult males.

47 APPROACHES TO KNOWLEDGE REPRESENTATION 113

¥x = Ball(x) A Fly(x) A Fair(x) A Infield-C. atchalle (x) r
Occupied-Base(¥irst) A\ Occupied-BaselSecond) I (Outs < 2) A
~[Line-Drive(x) V Attempted-B1 ix)]

—» Imfield-Fv(x)

Vx,y : Banter(x) A barred{x, y) A Infield-Fiyy) — Oui(x)
Figure 4.7: Inferential Knowledge

o bats(Three-Finger-Brown) = Right. To get a vaiue for the attribute bats required
going up the isa hierarchy to the class Baseball-Player. But what we found there
wiis 1ot @ value but a rule for computing a value. This rule required another value
(that for handed) as input. So the entire process must be begun again recursively
1o find a value for handed. This time, it is necessary to go all the way up to Person
to discover that the default value for handedness for people is Right. Now the rule
for bats can be applied, producing the result Right. In this case, that turns out to be
wrong. since Brown is a switch hitter (i.¢.. he can hit both left and right-handed).

Inferential Knowledge

Property inheritance is a powerful form of inference, but 1t is not the only useful form.
Sometimes all the power of traditional logic (and sometimes even more than that) is
necessary to describe the inferences that are needed. Figure 4.7 shows two examples of
the use of first-order predicate logic to represent additional knowledge about bascball.

Of course. this knowledge is useless unless there is also an inference procedure
that can exploit it (just as the default knowledge in the previous example would have
been useless without our algotithm for moving lh@ugh the knowledge structure). The
required inference procedure now is one that implements the standard logcal rules of
inference. There are many such procedures, some of which reason forward from given
facts to conclusions, others of which reason backward from desired conclusions to given
facts. One of the most commonly used of these procedures 15 resolurion, which exploits
a proof by contradiction strategy. Resolution is described in detail in Chapter 5.

Recall that we hinted at the need for soumething besides stored primitive values with
the bats altribule of our previous example. Logic provides 2 powerful structure in which
10 describe relationships among values. It is ofien useful 1o combine this, or some other
powerful description language, with an tsa hierarchy. In general, in fact, all of the
techniques we are describing here should not be regarded as complete and incompatible
ways of representing knowledge. Instead, they should be viewed as building blocks of
a complete representational system.

Procedural Knowledge

So far, our examples of bascball knowledge have cancentrated on relatively static
declarative facts Bui another, equally useful. kind of knowledge is opcrational, or
procedural knowledge, that specifiss what 1o do wher Procedural knowledge can be

114 CHAPTER 4. KNOWLEDGE REPRESENTATICN ISSUES

Baseball-Plaver

156 Adule-Male
bats : ilambda (x)
{prog ()
L1
(cond ((caddr x) (return (caddr x)))
(t (selq » (eval (cadr x)))
{cond (x (go L1))
{t {returm nii)))))))
height : 6-1

batting-averuge : 252
Figure 4.8: Using LISP Code to Define a Value

represented in programs in many ways. The most common way s simply as code (in
some programming language such as LISP) for doing something. The machine uses
the knowledge when it executes the code to perform a task. Unfortunately, this way
of representing procedural knowledge gets low scores with respect to the properties
of inferential adequacy (because it is very difficult 1o write a program that can reason
about another program s behavior) and acquisitional efficiency (because the process of
updating and debugging large pieces of code becomes unwieldy).

As an extreme cxample. compare the representation of the way to compulte the value
of hats shown in Figure 4.6 10 onc in LISP shown in Figure 4.8, Although the LISP
one will work given a particular way of storing attributes and values in a list. it does not
lend itself to being reasoned about in the same strai ghtforward way as the representation
of Figure 4.6 dees. The LISP representation is slightly more powerful since it makes
explicit use of the namne of the node whose value for handed is 1o be found. But if this
matters, the simipler representation can be augmented to do this as well.

Because of this difficulty in reasoning with LISP, attempts have been made 10 find
other ways of representing procedural knowledge so that it can relatively easily be
manipulated both by other programs and by people.

The most commonly used technique for representing procedural knowledge in Al
programs is the use of production rules. Figure 49 shows an example of a production
rule that represents a piece of operational knowledge typically possessed by a baseball
player. :

Production rules, particularly ones that are augmented with information on how they
are 1o be used. are more procedural than are the other representation methods discussed
in this chapter. But making a clean distinction between déclarative and procedural
knowledge is difficult. Although at an intuitive level such # distinction makes some
sense, at a formal level it disappears, as discussed in Section 6 1. in fact,'as you can see.
the structure of the declarative knowledge of Figure 4.7 is not substantially different
from that of the operational knowledge of Figure 4.9. The important difference 15 in
iow the knowledge is used by the procedures that manipulate it,

4.3. ISSUES IN KNOWLEDGE REPRESENTATION 115

If: ninth inning, and

score 15 close, and

less than 2 outs, and

first base is vacam, and

batter 1s better hitter than next baiter,
Then: walk the baiter.

Figure 4.9: Procedural Knowledge as Rules

4.3 Issues in Knowledge Representation

Before embarking on a discussion of specific mechanisms that have been used 1o rep-
resent various kinds of real-world knowledye. we need briefly o discuss several issucs
that cut across all of them:

o Are any attributes of objects so busic that they occur n almost every problem
domain? If there are, we need to make sure that they are handled appropriately in
each of the mechanisms we propose. If such attributes exist, what are they?

o Are there any important relationships that exist among attributes of objects?

s At what level should knowledge be represented? Is there a good set of primirives
into which all knowledge can be broken down? Is it helpful lo use such primitives?

= How should sets of objects be represented?

+ Given a large amount of knowledge stored in a database, how can relevant parts
be accessed when they are needed?

We will talk about each of these questions briefly in the next five sections.

4.3.1 lmportant Atiributes

There are two attributes that are of very general significance. and we have already seen
their use: instance and 1se. These attributes are imponant because they support property
inheritance. They are called a variety of things in Al systems, but the mames do not
matter. What does marter 1s thar they represent class membership and class inchusion
and that ¢lass inclusion is transitive. In slot-and-filler systems, such as those described
in Chapters 9 and 10, these atinbutes are usually represented explicitly in a way much
like that shown in Figures 4.5 and 4.6. In logic-based sysiems. these relanonships may
be represenied this way or they may be represented implicitly by a set of predicates
deseribing particular classes. See Section 5.2 for some examples of this.

4.3.2 Relationships among Atiributes

The auributes thal we use 10 describe objects are themselves eniities thal we represeni.
What properties do they have independeni of the specific knowledge they encode? Theie
are four such properties that deserve mention here

ii6 CHAFTER 1 ENOWIEDGE RESTySENTATICON ISSUES

« Inverses
e Existence in an isa hicrarchy
e Techniques for reasoning about valves

= Single-valued attribules

Iinverses

Fntities in the world are reialed to cach other in many different ways. Bulas soon as we
decide to describe those relationships as atributes, we commil to a perspective in which
we focus on one object and look for binary relsionships between it and others. Autributes
are those relationships. So, for example, in Figure 4.5, we used the anributes insiance,
i5a, and ream. Each of these was shown in the figure with a directed arrow, originating
at the object that was being described and terminating at the object representing the
value of the specified attribute, But we could equally well have focused on the object
representing the value. If we do that, then there is still a relationship between the two
entities, although it is a different one since the original relationship was not symmetric
(although some relationships, such as sibling, are). In many cases, it is important (o
represent this other view of relationships. There are two good ways to do this.

The first is to represent both relationships in a single representation that ignores
focus. Logical representations are usually imerpreted as doing this. For example, the
asscrtion:

ream(Pee-Wee-Reese, Brooklyn-Dodgers)

can equally easily be interpreted as a statement about Pee Wee Reese or about the
Brooklyn Dodgers. How it is actually ysed depends on the other assertions that a system
contains,

The second approach is to use attributes that focus on a single entity but to use them
in pairs, one the inverse of the other. In this approach, we would represent the tcam
mformation with two attributes:

« one associated with Pee Wee Reese:
team = Brooklyn-Dodgers

» one associated with Brooklyn Dodgers:
team-members = Pee-Wee-Reese, . ..

This is the approach that is taken in semantic net and frame-based sysiems. When
it is used, it is usually accompanied by a knowledge acquisition tool that guarantees the
consistency of inverse siots by forcing them 1o be declared and then checking each time
a value is added 1o one attribute that the corresponding value is added to the inverse

4.3 ISSUES IN KNOWLEDGE REPRESENT, ATION 117

An Isa Hierarchy of Attributes

Just as there are classes of objects and specialized subsets of thosc classes, there aic
attributes and specializations of atiributes. Consider, for example, the attribute height.
It is actually a specialization of the more general attribute physical-size which is, in
tum, a specialization of physical -attribute. These generalization-specialization rela-
tionships are important for attributes for the same reason that they are important for
other concepts—they support inheritance. In the case of attributes, they suppost inherit
ing information ahout such things as constraints on the values that the attribute can have
and mechanisms for computing those values

Techniques for Reasoning about Values

Sometimes values of attributes are specified explicitly when 2 knowledge base is created.
We saw several examples of that in the basehall example of Figure 4.5. But often the
reasoning syslem must reason about values it has not been given explicitly. Several
kinds of information can play a role in this reasoning, including:

o Information about the type of the value. For example, the valuc of height must be
a number measured in a unit of length.

« Constraints on the value, often stated in terms of related entities. For example, the
age of a person cannot be greater than the age of either of that person’s parents

« Rules for computing the value when it is needed. We showed an example of such
a rule in Figure 4.5 for the bats attribute. These rules are called hackward rules.
Such rules have also been called if-needed rules.

« Rules thal describe actions that should be taken if a value ever becomes known
These rules are called forward rules, or sometimes if-added rules.

We discuss forward and backward rules again in Chapter 6, in the context of rule-
hased knowledge representation.

Single-Valued Attributes

A specific but very useful kind of attribute is one that is guaranieed 1o take a unigue
value. For example, a baseball player can, at any one time, have only a single height
and be a member of only one team. If there is already a value present for one of these
attributes and a different value is asserted, then one of two things has happened. Either
a change has occurred in the world or there is now a contradiction in the knowledge
base that needs to be resolved. Knowledge-representation systems have taken several
different approaches to providing support for single-valued attributes, including:

« Introduce an explicit notation for temporal interval. If two different values are
ever asserted for the same temporal interval. signal a contradiction automatically.

« Assume that the only temporal interval that is of interest is now. Sa if a new valuc
is asserted, replace the old value.

hig CHAPTER 4, KNOWLEDGE REPRESENIATION ISSUES

» Provide no explicit support. Logic-based systems are in this category. Butin these
systems, knowledge-hase builders can add axioms that state that if an aitribute
has one value then it is known not o have all other values.

4.3.3 Choosing the Granuiarity of Representation

Regardless of the particular represenfation formalism we choose, il is necessary o
answer the question At what level of detail should the world be represented?” Anather
way this question is often phrased is “What should be our primitives?” Should ihere be
a smali number of low-level ones or should there be a larger number covering a range
of granularities? A brief cxample (llustrates the problem. Suppose we are interested in
the following fact:

John spotted Sue.

We could represent this as'

spotted{agenttJohn),
object{Sue))

Such a representation would make it easy 1o answer questions such as:
Who spotied Sue?

But now suppose we want (o know:
Did John see Sue?

The abvious answer is “yes,” but given only the one fact we have, we cannat discover
that answer. We could, of course, add other facts, such as

sppotted(x. ¥} —+ sawlx. v)

We could then infer the answer (o the question,

An alternative solution to this problem is to represent the fact that spotting is really
a special type of seeing explicitly in the representation of the fact. We might write
something such as

saw(agent(John),
objecr(Sue),
tnmespan{bricfly))

'The arguments agenr and object are usually called cases They represent rules invoived in the event. This
semantic way of analyzing sentences contrasts with the probably more familiar syniactic approach in which
seatences have a surfuce subject. dircct object, indirect object, and so forth. We will discuss case grammar
|Fillmore, 1968] and its use in natural language understanding in Section 153 2. For the moment, you van
safcly assumc that the cases mean what their names sugges!.

43 ISSUES IN KNOWILEDGE REPRESENTATION i19

In this representation, we have broken the idea of sporiing apan into more primitive
concepts of seeing and timespan. Using this representation, the fact that John saw Sue
is immediately accessible, But the fact that he spotted her is more difficult to ger 10,

The major advantage of converting all statements Into a representalion in terms
of a small set of primitives is that the rules that are used to derive inferences from
that knowledge need be written only 1n terms of the primutives rather than in terms of
the many ways in which the knowledge may originally have appeared. Thus what is
really being argued for is simply some sort of canonival form Several Al programs,
including those described by Schank and Abelson [1977] and Wilks [1972], are based
on knowledge bases descnbed in terms of 4 small number of low-level primitives,

There are several arguments aganst the use of low-level primitives. One is that
simple high-level facts may require 4 lot of storage when broken down into primitives.
Much of that storage is really wasted since the low-level rendition of a pariicular high-
level concept will appear many times, once for each time the high-level cancept is
referenced. For example, suppose that actions are being represented as combinations
of a small set of primitive actions. Then the fact thai John punched Mary might be
represented as shown in Figure 4.10(u). The representarion says that there was physical
contact between John's fist and Mary, The contact was caused by John propeliing his fist
toward Mary, and in order to do that John first went to where Mary was.” But suppose
we also know that Mary punched John. Then we must also store the structure shown mn
Figure 4.10h). If, however, punching were represented simply s punching, then most
of the detail of both structures conld be amitted from the structures themselves. Itcould
instead be stored just once in a common representation of the concept of punching.

A segond but related problem is that if knowledge is initially presented 1o the system
in a relatively high-level form, such as English. then substantial work must be done
to redduce the knowledge into primitive form. Yet, for many purposes. this detailed
primitive representation may be unnecessury. Both in understanding language and in
interprering the world that we sce, many things appear that later tum oul to be irrelevant.
For the sake of cfficiency. it may be desirable to store these things at a very high level
and then 10 analyze in detail only those inputs that appear to be important.

A third problem with the use of low-level primitives is that in many domains. it
is not at all clear what the primitives should be. And even in domains in which there
may be an obvious sef of primitives, there may not be enough information present in
cach use of the high-level constructs to enable them to be converied inlo their primitive
components. When this is true. there is no way to avoid representing facts at a vanety
of granulanties.

The classical example of this sort of simation is provided by kinship terminology
{Lindsay, 1963]. There exists at least one obvious set of primitives: mother, father, son.
daughter, and possibly brother and sister. But now suppose we are (old that Mary is
Sue’s cousin, An attempt to describe the cousin relationship in terms of the primitives
could produce any of the following interprerations:

* Mary = daughteribrother(morker{Sue)))

« Mary = daughter{sisterimotheriSue)))

“The representabion shown in this example o calbed o o cntual depensfei v ol v diw o add aolet of e
Secood 1]

CHAPTER 4. KNOWLEDGE REFRESENTATION ISSUES

' o
John) PROPEL *— fist

Poss-by 'ﬂ"
Poss-by John

John ————) fist &= Physcontact fobhe Mo
”~ :

Mary
|

John € MOVE

Poss-by
John ——) Fist
D

‘John punched Mary. " Mary
(a)

o
Mary PROPEL"""' fist
Poss-by ﬂ‘

Mary

Muy :m € Physcontact Mary John

J'ol'm
I
Mary & MOVE

. Poss-bhy
Mary —) Fist
D
"Mary punched John."
John
(b)

Figure 4.10: Redundani Representations

#.4. ISSUES IN KNOWLEDGE REFRESENTATIUN 121

» Mary = daughter(brother{father(Sue)))
o Mary = daughter(sister(father(Sue)))

H we do not already know that Mary is female, then of course there are four more
possibilitics as well. Since in general we may have no way of choosing among these
representations, we have ne choice but to represent the fact using the nonprimitive
relation cousin.

The other way to solve this problem is to change our primitives. We could use the
set: parent, child, sibling, mate. and female. Then the fact that Mary is Sue’s cousin
could be represented as

e Mary = child(sibling(parent(Sue)))

But now the primitives incorporate some generalizations that may or may not be
appropriate. The main point to be leamed from this example is that even in very simple
domains, the correct set of primitives is not obvious.

In less well-structured domains, even more problems arise. For example, given just
the fact

John broke the window.

a program would not be able to decide if John's actions consisted of the primitive
sequence:

1. Pick up a hard object.

2. Hurl the object through the window.
or the sequence:

1. Pick up a hard object.

2. Hold onio the object while causing it to crash into the window.
or the single action:

I. Cause hand (or foot) 1o move fast and crash into the window.
or the single action:

1. Shut the window so hard that the glass breaks.

As these examples have shown. the problem of choosing the correct granularity of
representation for a pariicular body of knowledge is not easy. Clearly, the lower the
level we choose, the less inference required 1o reason with it in some cases, but the more
inference required to create the representation from English and the more room it takes
ta store, since many inferences will be represented many times The answer for any
particular task domain must come Lo a large extent from the domain itself-—{o what use
is the knowledge to be put?

One way of looking at the question of whether there exists a 200d set of low-leve!
primitives is that it is a question of the existence of s unique representation. Does there

12z CHAPTER 4. KNOWLEDGE REPRESENIATION ISS5U7F

exist a single. canonical way in which large bodies of knowledge can be represenien
independenily of how they were originally stated? Another, closely related, unigueness
question asks whether individual objects can be represented uniquely and independen: iv
of how they are described. This issue is raised in the following quotation from Quine
[1961] and discussed in Woods { 1975]:

The phrase Evening i names a centain large physical object of spherical
form, which is hurtling through space some scores of millions of miles from
here. The phrase Morning Siar names the same thing. as was probably first
established by some observant Babylonian. But the two phrases cannot
be regarded as having the same meaning, otherwise that Babylonian could
have dispensed with his observations and contented himself with reflecting
on the mmeaning of his words The meanings, then, being different from one
another, raust be other than the named object, which 1s one and the same in
both cases.

In order for a program to be abic to reason as did the Babylonian, it must be able to
handle several distinct representations that turn out to stand for the same object.

We discuss the question of the correct granularity of representation, as well as issues
mvolving redundant storage of informanion, throughout the next several chapiers, par-
ticularly in the section on conceptual dependency, since that theorv explicitly proposes
that a small set of low-level primitives should be used for representing actions.

434 Repr.esenling Sets of Objects

It is important 1o be able to represent sets of objects for several reasons. One is that
!l:ere are some properiies that are true of sets that are not true of the individual members
ol a sel. As examples, consider the assertions that arc being made in the semences
"There are more sheep than people in Australia” and “English speakers can be found
all over the world.” The only way to represent the facts described in these sentences is
1o artach assertions 1o the sets representing people, sheep, and English speakers, since.
for example, no single Enghish speaker can be found all over the world. The other
reason that it is important to be able to represent sels of objects is that if a property
is true of all {or even most) clements of a set, then it 1s more efficient 0 associate it
once with the set rather than to associate it explicitly with every element of the set. We
have already looked at ways of dong that. both in logical representations through the
usc of the universal quantifier and in slot-and-filler structures, where we used node.
io represent sets and inheritance to propagate set-level assertions down Lo individuals,
Ax we consider ways to represent sets, we wili want to consider both of these uses of
set-level representations. We will also need to remember thar the two uses must be kepr
distinct. Thus if we asseri something like largei Elephant). it must be clear whether we
are asserting some property of the set itself {i.e.. that the set of elephants i« large) or
some property that holds for individual elements of the set (i.c., that anything that is an
elephant is farge).

There are three obvious ways in which sets may be represented. The simplest is just
by a name. This is essentially what we did in Section 4.2 when we used the node named
Rasehall-Player in our scmantic net and when we used predicates such as Ball ana

.

4 3. ISSUES IN KNOWLEDGE REPRESENTATION bl

Batter in our logical representation. This simple represertation does make it possibie (o
associate predicates with sets. But it does not, by itseif, provide any information sbout
the set it represents. It does not, for example, tell how 1o determine whether a particular
object 1s a member of the set or not.

There are two ways 1o state a definition of a set and us elements. The first 1s to fist
the members. Such a specification is called an extensional definition. The second is te
provide a rule thai, when a particular object is evaluated, returns true or faise depending
on whether the object is in the set or not. Such a rule is called an intensional definition
For example, an extensional description of the set of our sun’s planets on which people
live is {Earth}. An imensional description is

{x's sun‘f:faner(.t-j A human-inhabited(x]}

For simple sets, il miy not matier, except possibly with respect 1o cfficiency con.
cerns, which representation is used. But the two kinds of representations can function
differently in some cases

One way in which extensional and intensional represeniations differ is that they do
not necessarily correspond one-to-one with each other. For example, the extensionally
defined set {Earth} has many intensional definitions in addition (o the one we just gave
Others include:

{x: sun-planet(x) A nth-farthesi-from-sunix. 3))
§x : sun-planet(x) A nth-biggesnx, 5)} -

Thus, while it is trivial to determine whether two sets are identical if extensional
descriptions are used, it may be very difficutt 1o do so using intensional descriptions.

Intensional representations have two important properties that extensional ones lack.,
however. The first is that they can be used to describe infinite sets and sets not all of
whose elements are explicitly known. Thus we can describe intensionally such sets as
prime numbers (of which there are infinitely many) or kings of England (even though
we do not know who all of them are or even how many of them there have been). The
second thing we can do with intensional descriptions is to allow them ta depend on
parameters that can change, such as time or spatial location. If we do thal. then the
actual set that is represented by the description will change as a function of the valve of
those parameters. To see the effect of this, consider the sentence, “The president of the
United States used to be a Democrat,” uttered when the current president is a Republican. -
This sentence can mean two things. The first is that the specific person who is now
president was once a Democrat. This meaning can be captured stranghtforwardly with
an extensional representation of “the president of the United States.” We just specify
the individual. But there is a second meaning, namely that there was once someone who
was the president and who was a Democrat. To represent the meaning of “the president
of the United States™ piven this interpretation requires an intensional descriptven thal
depends on time, Thus we might write presrdent(s), where president is some function
that maps instances of ime onto Instances of people. namely U.S. presidents.

124 LHAPTER 4. RNOWILEDGE REPRESI:)TATION 15808

43.5 Finding the Right Structures as Needed

Recall that m Chapter 2, we briefly touched on the problem of matching rules agannst
state descriptions during the problem-solving process. This same issite now rears its
hiead with respect 10 locating appropriate knowiedge structures that have been stored in
memory.

For example, suppose we have a script (a description of a class of evenis in terms of
comexts, participants, and subevents) that describes the typical sequence of events it a
restanrant.’ This script would enable us 10 take a text such us

John went to Steak and Ale fast night. He ordered a large rare steak, pard
his hill, and left.

and answer “yes” (o the question
Did John eat dinner last night?

Notice that nowhere in the story was John's eatng anything mentioned explicitly. But
the fact that when one goes to a restaurant one eats will be contained in the restaurant
scripl. If we know in advance 10 use the restaurant scripi, then we can answer the
question easily. Bul in order to be able to reason ahout a variety of things, a system
must have many scripts for everything from going to work to sailing around the world.
How will it select the appropriate one each time? For example, nowhere in our story
was the word "“restaurant”™ mentioned.

In fact, in order to have access to the right structure for describing a particular
situation, it is necessary 10 solve all of the following problems..

* How to perform an initial selection of the most appropriate structure.

* How to fill in appropriate details from the current situztion. _

e How (o find a better structure if the one chosen initially turns our not 1o be
appropriate.

= What 1o do if none of the available structures is appropriate.

* When to create and remember a new structure

There is no good, general purpose method for solving ail these problems. Some
knowledge-representation techniques solve some of them. In this section we survey
some solutions to two of these problems: how to select an initial structure to consider
and how to find a better structure if that one turms oul not 1o be a good match

Selecting an Initial Structure

Selecting candidate knowledge structures iomatch a particular problem-solving situation
15 a hard problem; there are several ways in which it can be done. Three important
approaches are the following:

*We discuss such a script in detail in Chapter 10
*This list is taken Trom Minsky [1975].

43 ISSUES IN KNOWLEDGE REFRESEN ATION 125

Index the structures dirccily by the sigmificant Bnglish words that can be used
to describe them. For example lez each verb have associated with it a structure
that describes its meaning, This is the approach taken in conceptual dependency
theory, discussed in Chapter 10. Even for selecting simple structures, suchas those
representing the meanings of individual words, though, this upproach may uos be
adequate, since many words may have scveral distinci meanings. For example,
the word “fiy " has a different meaning in each of the following sentences:

- John few to New York. (He rode in & plane from one place to another.)
— lehn tiow a kite. (He held a kite thar was up in the air.)

= John flew down the streer. (He moved very rapidly.)

— Jobn flew into a rage. (An idiom)

Another problem with this approach is that it is only useful when there is an
English deseription of the problem 16 be solved.

Consider each major concept as a pointer to all of the structures (such as scripts)
in which it mighi be invoived, This may produce several scts of prospective
structures. For example, the concept Steak might point 1o two scnipts, onre for
restaurant and one for supermarket. The concept Bili might point to a restaurunt
and a shopping script. Take the intersection of those seis to get the structure(s),
preferably precisely one, that invelves all the content words Given the pointers
Jjust described and the story about John's trip to Steak and Ale. the restaurant scnipt
would be evoked. One important problem with this method is that if the problem
description contains any even slightly extraneous concepis, then the intersection
of their associated structures will be empty. This might occur if we had said, for
cxample. “John rode his bicycle to Steak and Ale last night.” Another problem is
that it may require a great deal of computation te compute al! of the passibility sets
and then to intersect them. However, if computing such seis and intersecting them
could be dene in parallel, then the time required to produce an answer weuld be
reasonable even if the total number of computations is large. For an exploration
of this parallel approach to clue intersection, see Fahlman [1579].

Locate one major clue in the problem description and usc il to select an initiat
structure, As other clues appear, use them to refine the initial seection or to
make a completely new one it necessary. For a discussion of this approach, see
Charniak [1978]. The major problem with this method is that in some situations
there is not an easily identifiable major clue. A second probiem is that it is
necessary (o anticipate which clues are going 10 be important and which are not.
But the relative imponance of clues can change dramatically from one situation
to another. For example. in many contexts, the color of the abjects involved is not
important. But if we are told “The light tummed red,” then the color of the light is
the most imporiant feature to consider.

Nooe of these proposals seems 1o be the compleie answ ¢+ 1o the problem. 1t ofien turns
out, unfortunately, that the more complex the knowledgs struciures are, the harder it is
to tell when a particular one is appropriate.

126 - CHAPTER 4. *"KNOWLEDGE REPRESENTAT)% {SSUE -

Revising the Choice When Necessary

Once we find"a candidate knowledge structure, we must attempt to do a detailed match
of it to the problem et hand.. Bépending On the representation we are using. the details
of the matching process will vary. Jt may sequire variables to be bound to objects. It
may require attributes to have their values compared. In any case, if valves that satisfy
the required restrictions as imposed by, the knowledge structure can be found, they are
put into the,sppropriate places in the structare, If no appropriate values can be found,
then a new structure must be selected. The way in which the attempt to instantiate this
first structure failed may provide useful cues as to which one to try next. If, on the
other hand, appropriate values can be found, then the current structure cen be taken io
be appropriate for describing the current situation. But, of course, that situation may
change. Then information about what happened (for example, we walked around the
room we were looking at) may be useful in selecting a new structure fo descrihe the
revised situation.
As wat yiggesied above, the process of instantiating a structure in a parcular
situation offgmpes oy proceed smoothly. When the process runs into & snag, though,
it is often not Easmmbary to abandon the effort and start over. Rather, there are a variety
of things (HGBPWFione.
® Select the w gments of the current structure thay wotrvespond o the situation
and match them against candidate alternatives, Chodse the besi maich. if the
current structure was al all close to being appropriate, much of the work thar has
been done to build substructures (o fil into it will be preserved.

® Make an excuse for the cument structure’s failure and continue to use it. For
example, a proposed chair with only three legs might simply be broken. Or there
might hg mmhnrn}gm in front of it which occludes one leg. Part of the structure
sHouit mnll 1 mivnneiion abvui e feaiuies Toi windh i s au.l.puu“. W ARG
excuses. Also, there are general heuristics, such as the fact tha a structure is
more likely to be appropnate 1f a desired feature i1s missing (pernaps because it
is hidden from view) than if an inappropriate feature is present. For example, &
person with one leg is more plausible than a person with a tail.

* Refer to specific stored links between structures 1o suggesi ncw- directions in
which to explore. An example of this sort of linking among a set of frames is
shown in the similarity network shown in Figure 4.11.°

» If the knowledge structures are stored in an isa hicrarchy, traverse upward in it
until a structure is found that is sufficiently general that it does not conflict with the
evidence. Either use this structure if it is specific enough 1o provide the required
knowledge or consider creating a new structure just helow the matchiig one.

4.4 The Frame Problem

So far in this chapter, we have seen several methods for representing hnowiedge that
would allow us to form complex state descriptions for a search program. Another issie

“This exampie 1s iaken frem Minsky {1574).

4. THE FRAME PROBLEM 127

BENCH
/ﬁ— no back, 100 wide
CHAIR
h /‘ \T 100 high. no back
100 big, no back
STOOL

TABLE

drawers

SIDEBOARD
DESK

no knee room
Figured.11: A Sim-ilarily Net

concems how to represent cfficienily sequences of problem states thal arise from 2 search
process. For complex ill-structured problems, this can be a serious matier.

Consider the world of a houschold robot. There are many objects and relationships in
the world, and a state description must somehow mclude tacts ike on Pianti 2, Tabie3d),
under(Table34, Window!3),and in(Table34, Room|5). Onestrategy isto store each state
description ac o liet of ench facts. Bur what happens during the problem-solviae process
if each of those descniptions is very long? Most of the facts will not change from one
state to another, yet each fact will be represented once at every node, and we will quicki:
run out of memory. Furthermore., we wifl spend the majority of our time creating these
nodes and copying these facts—most of which do not change often—from one node
to another. For example, in the robot world, we could spend a ot of time recording
above(Ceiling, Floor) at every node. All of this is, of course, in addition o the real
problem of figuring out which facts should be different at each node.

This whole problem of representing the facts that change.as well as those that do
not is known as the frame problem [McCarthy and Hayes, 1969). In some domains, the
only hard part is representing all the facts. In others, though, figuring out which ones
change is nontrivial. For zxample, in the robot worid, there might be a 1able with a plant
on it under the window. Suppose we move the table to the center of the room. We must
also infer that the plant is now in the center of the room too but that the window is nol.

To support this kind of reasoning, some systems make use of an explicit set of axioms
called frame axioms, which describe all the things that do not change when a particular
«operator is applied in state 2 to produce state # + 1. (The things that do change must
be.mentioned as par: of the operatar itself.) Thus, in the robot domain, we might write
axioms such us

128 CHAPTER 4. KNOWLEDGE REPRESENTATION 1551 /s

celor(c, y, 5y) A move(x, 81y 82) = codon{x, v, 57)

which can be read as, “If x has coior v in state 41 and the operation of moving x is applica
in state s1 to produce state s,. then the color of xin s is still v Unfortunately, in any
complex domain. a huge number of these axioms becomes necessary. An alternative
approach is 17 make the assumprion that the only things that change are the things that
musi. By “must” here we mean that the clrunge is either required exp! icitly by the axioms
that describe the operator or thai fuliows logically from some change that is usserted
explicitly. This idea of circumserihing the set of unusual things is a very powerful one.,
it can be used as a partial solution (0 the frame problem and as a way of reasoning with
incomplete knowledge. We return 1o it in Chapier 7.
But now let’s retumn briefly to the problem of representing a changing problem sioce

We could do it by simply starti ng with 4 description of the initial staze and then making
changes to that description as indicated by the rules we apply. This soives the probicm
of the wasted space and time involved in copying the information for each node. And i:
works fine until the tirst time the search has to backtrack. Then, unless all the changes
that were made can simply be ignored (as they could be if. forexample, they were simply
additions of new theorems), we are faced with the problem of backing up to sere eariier
node. Bul how do we know what changes in the problem staie description need 10 be
undone? For example, what do we have to change to undo the effect of moving the tabje
to the center of the room? There are two ways this problem can be solved:

® Do not modify the initial state description at all. At each node, stors an indication
of the specific changes that should be made at this node. Whenever it is necessary
to refer to the description of the current problem state, look at the initial state
description and also look back through all the nodes on the path from the stan
state to the current state. This is what we did in our solution to the cryprarithmeiic
prablem in Section 3.5, Thisapproach makes backirack Ing very easy, but it makes
referring 10 the state description fairly complex, ;

* Modify the initial state description as appropriate, but also record at each node an
indication of what to do to undo the move should it ever be necessary to backtrack
through the node. Then, whenever it is necessary Lo backtrack, check each node
along the way and perform the indicated operations on the staie descripuon.

Sometimes, even these solutions are not enough. We might want to remember. for
example, in the robot world, that before the table was moved, it was under the window
and after being moved, it was in the center of the room. This can be handled by adding
1o the represeniation of each fact a specific indication of the time a1 which that fact was
true. This indication is called a state variable. But to apply the same technique to a
real-world problem, we need, for example, separate facts (o indicate ail the times at
which the Siatue of Liberty is in New York.

There is no simple answer either 1o the question of knowledge representation or 1o
the frame problem. Each of them is discussed in greater depth later in the context of
specific problems. But it is important to keep these questions in mind when considering
search sirategies, since the represeniation of knowledge and the sewrch process depemd
heavily on each other, g

43, SUMMARY 129

4.5 Summary

The purpose of this chapter has been to oudhine the need for knowledge in icasoning
programs and to survey issues that must be addressed inthe design of a good knowledge-
representation structure Of course. we have nol covered everything. In the chapters
that follow, we describe some specific represeniations and look at their relative streagths
and weaknesses.

The following colisctions ail contwin further discussions ol the fundamental 1ssucs
1n knowledge representation. along with specific techniques to address these issues: Bo-
brow [1975], Winograd [1978], Brachman and Levesque [1984], and Haipern [1086]
For especially clear discussions of specific issues on the topic of knowledge representa-
tion and use see Woods [1973] and Brachman [1985].

Chapter 5

Using Predicate Logic

In this chapter, we begin exploring one particular way of representing facis—the lan-
puage of logic. Other representational formahsms are discussed in later chapters. The
iogicai formalism 1s appealing hecause it immediately suggests a powerful way of de-
riving new knowledge from old—mathematical deduction, In this formalism, we can
conclude that a new statement 15 true by proving that it follows from the statements that
are already known, Thus the idea of a proof, as developed in mathematics as a rigorous
way of demonstrating the truth of an already believed proposition, can be extended o
include deduction as a way of deriving answers to questions and solutions to problems.

One of the early domains in which Al techniques were explored was mechanical the-
orem proving, by which was meanl proving statements in various arcas of mathematics.
For example, the Logic Theoris! [{Newell er al., 1963] proved theorems from the hrst
chapter of Whitehead and Russell's Principia Mathematica 1950}, Another theorem
prover [Gelemter ef al., 1963] proved theorems in geometry. Mathematicd theorem
proving is still an active area of Al research. (See, for example, Wos eral. | 1984].) But,
as we show in this chapter, the usefulness of some mathematical technigues extends
well beyond the traditional scope of mathematics. 1t turns out that mathcmatics 18 no
different from any other complex intellectual endeavor in requiring both reliable deduc-
tive mechanisms and a mass of heuristic knowledge to control what would otherwise be
a completely intractable search problem.

At this point, readers who are unfamiliar with propositional and predicate logic may
want to consult 8 good ntroductory logic text before reading the rest of this chapter.
Readers who want a more complete and formal presentation of the material in this
chapier should consult Chang and Lee [1973]. Throughout the chapter. we usc the
following standard logic symbols: “—" (material implication),” =" (net). " o). A"
{and). %" (for all), and “3" (there exists)

5.1 Representing Simple Facts in Logic
Let's first explore the use of propositional logic as a way of representing the sort

of world knowledge that an Al system might need. Propositional logic is appealing
because it is simple to deal with and a decision procedure for it exists. We can easily

131

132 CHAPTER 5 USING PREDICATE: LG
It is raining,
RAINING

It is sunny.
SUNNY

It is windy,
WINDY

If it is raining, then it is not sunny.
RAINING — - SUNNY

Figure 5.1: Some Simple Facts in Propositional Logic

represent real-world facts as logical propositions written as well-formed formulas {wif's)
in propesitional logic, as shown in Figure 5.1. Using these propasitions, we could, for
example, conclude from the fact that it is raining the fact that it is not sunny. But very
quickly we run up against the limitations of propositional logic. Suppose we want o
represent the obvious fact stated by the classical sentence

Socrates is a man.
We could write:

SOCRATESMAN
But if we aiso wanted to represent

Plaw is a man
we would have to write sumething such as:

PLATOMAN
which would be a totaliy separate assertion, and we would not be able (o draw any

conclusions about similarities between Socrates and Plato, It would be much better 10
represent these facts as:

MAN(SOCRATES)
MAN(PLATO)

itself. But to do that, we need 10 be able 10 use predicates applied 1o arguments. We are

o
i

5.1. REPRESENTING SIMPLE FACTS IN LOGIC

All men are mortal.
We conld represent this as:
MORTALMAN

But that faile 10 capture the relationship between any individual being a man and that
individual being a mortal. To do tha, we really need vasiables and guantificaiion unless
we are willing 1o write separate statements about the mentality of every known man.

So we appear to be forced to move to first-order predicate logic (or just predicate
logic, since we do not discuss higher order theories w this chapter) s a way of repre-
senting knowledge becanse il permits representations of things that cannot reasonably
be represented in propositional logic. In predicate logic, we can represent real-world
facts as sratements written as Wff's,

But a major motivation for choosing 10 use logic al all 15 that if we use logical
statements as a way of representing knowledge, then we have available a good way of
reasoning with that knowledge. Determining the validity of a proposition in proposi-
tional logic is straightforward. although it may be computationaily hard. So before we
adopt predicate logic as a good medium for representing knowledge, we need 1o ask
whether it also provides a good way of reasoning with the knowledge. At tirst glance.
the answer is yes. It provides a way of deducing new statemenis from old ones. Unfor-
winately, however, unlike propositional logic, it does not possess a decision procedure,
even an exponential one. There do cxist procedures that will find a proof of a proposed
theorem if indeed it is a theorem. But these procedures are not guaranteed to halt if
the proposed statement is not a thearem. In other words, although first-order predicate
logic is not decidable, it is semidecidable, A simple such procedure is to use the rules of
inference 10 generate theoremis from the axioms in some orderly fashion, testing each to
see if it is the one for which a proof is sought. This method is not particularly efficient,
however, and we will want to try to find a better one.

Although negative results. such as the fact that there can exist no decision procedure
for predicate logic, generally have littledirect effect on a science such as Al which seeks
positive methods for doing things, this particular negative result is helpful since it tells
us that in our search for an efficient proof procedure, we should be content if we find one
that will prove theorems, even if it is not guaranteed (o halt if given a nontheorem. And
the fact that there cannot exist a decision procedure that halts on all possible inputs does
not mean that there cannol cxist one that will halt on almost all the inputs it would sec in
the process of trying ta solve real problems. So despite the theoretical undecidabilily of
predicate logic, it can still serve as a useful way of representing and manipulating some
of the kinds of knowledge that an Al system might nged.

Let’s now explore the use of predicate logic as a way of representing knowledge by
looking a1 a specific example. Consider the following set of sentences:

134 CHAPTER 5. USING PREDNCATE LOGIC

—

Marcus was a man,

Marcus was a Pompeian.

All Pompeians were Romans,

Cacsar was a ruler.

All Romans were cither loyal to Caesar or hated him
Everyone is loyal (o someone.

People only try 1o assassinate rulers they are not loyal 1o
Marcus tried to assassinate Caesar.

® NP

The facts described by these sentences can be represented as a set of Wi s in predicate
logic as follows.

1. Marcus was a man.
man{Marcus)
This representation captures the critical fact of Marcus being a man. It fails 10
capture some of the information in the English sentence. namely the notion of past
tense. Whether this omission is acceptable or not depends on the use 1o which we
intend to put the knowledge. For this simple example, it will be all right.
2. Marcus was a Pompeian.
Pompeian(iMarcus)

3. All Pompeians were Romans.

Vx 1 Pompeian(x) — Roman(x)

4. Caesar was a ruler.
rufer{Caesar)
Here we ignore the fact that proper names are often not references to unigue
individuals, since many people share the same name. Sometimes deciding which

of several people of the same name is being referred 10 in a particular statement
may require a fair amouni of knowledge und reasoning.

5. Ali Romans were either loyal 1o Caesar or hated him,
Y : Roman(x) - loyaito(x.Caesar) V hate(x,Caesar)

In English. the word “or” sometimes means the logical incliesive-or and some-
times means the logical exclusive-or (XOR). Here we have used the inclusive
interpretation. Some people will argue, however, that this English senience is
really stating an exclusive-or. Toexpress that, we would have 1o wrile:

Y Roman(y) = [(loyattolx, Caesary V hate(x. Caesar)) A
—(loyalio(x. Carsar) A hate(x. Caesar))]
6. Everyone is loyal to someone.
¥ : 3y : loyaltolx, y)

A major problem that arises when trying to convent Enghsh sentences into jogics)
statements is the scope of quantifiers. Does this senlence say. as we have assumed
in writing the logical formula above, that for each person there exists someone 1o

5.1. REPRESENTING SIMPLE FACTS IN LG RE

whom he or she is loyal, possibly a dirferent someone fos everyene? Or dosi 1t
say that there exists someone whom everyone is loyal (which wouid be written
as 3y * ¥ : loyaitox.¥))7 Often only one of the two mterpretations seems lkely,
so people tend to favor it

7. People only try to assassinate rulers they are not foyal o
Va @ Wy : person(y) ~ ruler(y) A iryassassinate(x. y) — =lovalioin. ¥)

This sentence, two, is ambiguous, Does it mean that the only rulers that people
try to assassinate are those to whom they are not loyal (the interpreiation used
here), or does it mean that the only thing people try to do is Lo assassinate rulers
to whom they are not loyal?

In representing this sentence the way we did, we have chosen to write “iry 10
assassinate” as a single predicate. This gives a fairly simple representation with
which we can reason about trying 1o assassinate. But using this representation,
the connections between Irying 1o assassinate and trying to do other things and
between trying (o assassinate and actually assassinating could not be madc cas-
ily, 1f such connections were nccessary, we would need to choose a different
represeniation.

8. Marcus tried to assassinate Cacsar

trvassassinare{Marcus, Caesar)

From this brief attempt to convert English sentences mio logical statements. ot should
be clear how difficult the task is. For a good description of many issues involved in this
process. see Reichenbach [1947].

Now suppose that we wanl to use these statements to answer the quest ion

Was Marcus loyal to Caesar?

1t seems that using 7 and 8. we should be able to prove that Marcus was not loyal 1@
Caesar (again ignoring the distinction between past and present tense). Now let's iy 10
produce a formal proof. reasoning backward from the desired poal:

~loyaliotMarcus, Caesar)

In order 10 prove the goal, we need (@ use the rules of inference to transform it
into another goal (or possibly a set of goals) thal can in turn be transformed. and so
on. until there are no unsatistied goals remaining. This process may require the search
of an AND-OR graph (as described in Section 3.4) wheni there are alternative ways of
satisfying individual goals. Here. for simplicity, we show only a single path. Figure 5.2
shows an attempt to produce a proof of the goal by reducing the set of necessary but as
yel unattained goals 1o the smpty sei. The attempt fails, however. since there is no wiy
1o satisfy the goal persomMarciesi with the statements we have available.

The problem is that, although we know that Marcus was i man, we do not have any
way 10 conclude from that that Marcus was & person. We noed 1o add the representation
of another fact to our system, namely: '

136 CHAPTER 5. USING PREDICATT LOGIC

~loyafio(Marcus, Caesar)
T (7, substitution)

person(Marcus) A
ruter{iCaesar) A
tryassassinate{Marcus, Caesar)

T @

person{Marcus)
fryassassinate(Marcus, Caesar)

T ®

person{Marcus)

Figure 5.2: An Attempt 10 Prove ~loyalto(Marcus, Caesar)

9. All men are people.
Yx : man(x) — person(x)

Now we can satisfy the last goal and produce a proof that Marcus was not loyal to
Caesar,

From this simple example, we see that three important issues must be addressed in
the process of converting English sentences into logical statements and then using those
statements 10 deduce new ones:

+ Many Englishsentences are ambiguous (forexample, 5, 5, and 7 above). Choosing
the correct interpretation may be difficult,

* There is often a choice of how 1o represemt the knowledge (as discussed in
connection with 1 and 7 above). Simple representations are desirable, but they
may preclude certain kinds of reasoning. The expedient representation for a
particular set of sentences depends on the use to which the knowledge contained
in the sentences will be put.

e Even in very simple situations, a set of sentences is unlikely to contain all the
information necessary fo reason about the topic at hand. In order 1o be able to use
a set of statements effectively, 1t is usually necessary to have access to another
set of statements that represent facts that people consider too obvious to mention.
We discuss this issue further in Section 10.3.

An additional problem arises in situations where we do not know in advance which
statements to deduce. In the example just presented, the object was (0 answer the
question “Was Marcus loyal 1o Caesar?”” How would a program decide whether it
should try 10 prove

loyalioiMurcus, Caesar)

o1

5.2 REPRESENTING INSTANCE ANE 154 RELAICWSHIPS 132

—layalio{Marcus,Caesar)

There are several things it could do. It could ahandom the strategy we have outlined
of reasoning backward from a proposed truth to the axioms and instend try Lo reason
forward and see which answer it gets to. The problem with this approach is that, in
general, the branching factor going forward from the axioms is so great that it would
probably not get Lo either answer in any reasonable amount of time. A second ihing it
could do is use some sort of heuristic rules for deciding which answer is more likely and
then try to prove that one first. 1it fails to find a proof after some reasonablc amount of
effort, it can try the other answer. This notion of limited effort is important, since any
proof procedurc we use may not halt if given a nontheorem. Another thing it could dois
simply try to prove both answers simultaneously and stop when one effort is successful.
Even here, however, if there 1S notvcnough information available to answer the guestion
with certainty, the program may never halt. Vet a fourth strategy is to try both to prove
one answer and to disprove it, and to use information gained in one of the processes 1o
guide the other.

5.2 Representing Instance and Isa Relationships

n Chapter 4, we discussed the specific attribytes instance and isa and described the
important role they play in a particularly useful form of reasoning, property inheritance.
But if we look back at the way we just represented our knowledge about Marcus and
Cacsar, we do not appear to have used these attnbutes at all. We certainty have not used
predicates with those names. Why not? The answer is that although we have not used
the predicates instance and isa explicitly, we have captured the relationships they are
used 10 express, namely class membership and class inclusion.

Figure 5.3 shows the first five sentences of the last section represented in logic in
three different ways. The first part of the figure contains the representations we have
already discussed. In these representations, class membership is represented with unary
predicates (such as Roman), cach of which corresponds 10 a class. Asserting that P(x)
is truc is equivalent to asserting that x 15 an instance (or element) of P. The second
part of the figure contains representations that use the insiance predicate explicitly. The
predicate instance is a binary one, whose first argument is an object and whose second
argument is a class to which the object belongs. But these representations do not use an
explicit isa predicate, Insiead, subclass relationships, such as that between Pompeians
and Romans, are described as shown in sentence 3. The implication rule there states that
if an object is an instance of the subclass Pompeian then it is an instance of the superclass
Roman. Note that this rule is equivalent to the standard set-theoretic definition of the
subclass-superclass relationship. The third part contains representations that use both
the instance and isa predicates explicitly. The use of the isa predicate simplifies the
representation of sentence 3, but it requires that one additional axiom {shown here as
number 6) be provided. This additional axiom describes how an instance relation and
an isa relation can be combined to derive a new instance relation. This one additional
axiom is general, though, and does not need to be provided separaiely for additional 1sa
relations.

138 CHAPTER 5. USING PREDICATE LOGIC

man(Marcus)

Pompeian{Marcus)

Vx : Pompeian(x) — Ronan(x)

ruler(Caesar)

Yx : Roman(x) — loyalto(x, Caesar) V hate(x, Caesar)

bt

instance{Marcus. man)

instance{Marcus, Pomprian)

Vx ©instance(x, Pompeian) = instancelx, Roman)
instance(Caesar, rufer)

Yx o instance(x, Roman} — loyalto(x, Caesar) V hate(x. Caesar)

B 0 I e

iastance(Marcus, man)

instance(Marcus, Pompeian)

tsal Pompeian, Roman)

insiance(Caesar, ruler)

Vx © instance(x, Roman) — foyalio(x, Caesar) V hate(x, Caesar)
Vx i ¥y : ¥z :instancetx. y) A isaly. 2) - instance(x, 2)

o ol

Figure 5.3: Three Ways of Representing Class Membership

These examples illustrate two points. The first is fairly specific. It is that, although
class and superciass men iberships are important facts that need 1o be represented, those
memberships need not be represented with predicates labeled instance and isa, In fact,
in a logical framework it is usually unwieldy to do that, and instead unary predicaies
corresponding to the classes are often used. The secand point is more general. There
are usuaiiy several differeni ways of representing a given fact within & particular rep-
resentational framework, be it logic or anything else. The choice depends partly on
which deductions need to be supported most cfficiently and partly on taste. The only
important thing is that within a particular knowiedge basc consistency of representation
iscritical. Since any particular inference rule is designed to work on one particular form
of representation, it is necessary that all the knowledge 10 which that rule is intended 1o
apply be in the form that the rule demands. Many errors in the reasoning performed by
knowledge-based programs are the result of inconsistent representalion decisions. The
moral is simply to be careful,

There is one additionai point that needs to be made here on the subject of the use
of isa hicrarchies in logic-based systems. The reason that these hicrarchies are so
important is not that they permit the inference of superclass membership. It is tha
by permitting the inference of superclass membership, they permit the inference of
other properties associated with membersip in that superclass. So, for example, in our
sample knowledge base it is important 10 be able to conclude that Marcus is a Roman
because we have some relevant knowledge aboit Romans navely that they either hai>

5 3. COMPUTABLE FUNCTIONS AND PREDICATES i3y

{acsar or ere loyal to him. But recall that in the baseball example of Chapter 4, we were
able 1o associate knowledge with superclasses that could then be overnidden by more
specific knowledge associated either with individual instances or with subclasses. I
ather words, we recorded default values that could be accessed whenever necessary. For
example, there was a height associated with adult males and a different height associaied
with baseball players. Our procedure for manipulating the 1sa hierarchy guaranteed that
we always found the correct (i.e., most specific) value for any attnbute, Unfortunately.
reproducing ihis result in logic is difficull.

Suppose. for example. that, in addition ta the facts we already have, we add the
following.!

Pompeian(Paulus)
=[loyaltotPaulus, Caesar) V hate{Paulus, Caesar))

In other words, suppose we want 1o make Paulus an excepiion to the general rule
about Romans and their feelings toward Caesar. Unfortunately, we cunnot simply add
these facts to our exisung knowledge base the way we could just add new nodes into
a semantic net. The difficulty is that if the old assertions are left unchanged. then the
additionof the new assertions makes the knowledge base inconsistent. In order to festore
consistency, it is necessary fo modify the original assertion o which an exception is
being made. So our original senience 5 musi become:

Y : Roman(x) A —egx, Paulus) — loyalrotx, Caesar) v hate(x, Caesar)

In this framework, cvery exception 1o & general rule’ must be stated twice, once in a
particular stalement and once in an exception st that forms part of the general rule.
This makes the use of general rules in this framework less convenient and less efficient
when there are exceptions than 1s the use of general rules in & semantic net.

A further problem arises when information is incomplete and it is not possible 1o
prove that no exceptions apply in a particular instance. But we defer consideration of
this problem until Chapter 7.

5.3 Computable Functions and Predicates

In the example we explored in the last section, all the simple facts were expressed as
combinations of individual predicates, such as:

tryassassinate(Marcus. Caesar)

This is fine if the number of facts is not very large or if the facts themselves are
sufficiently unstruciured that there is little allternative. Butl suppose we wani fo express
simple facts, such as the following greater-than and less-than relationships:

' For convenience, we now retumn 1o our original notanon using unary predicaies to denote class relations

140 CHAPTER 5. USING PREDICATE LOGIC

gi(1.0) in0, 1)
g2, 1) In1,2)
gt(3.2) 2,3)

Clearly we do not want to have to write out the representation of each of these
facts individually. For one thing, there are infinitely many of them. But even if we
only consider the finite number of them that can be represented, say, using a single
machine word per number, it would be extremely inefficient to store explicitly a large
set of statements when we could, instead, so casily compute each one as we need il,
Thus it becomes useful to augment our representation by these compuiable predicaies.
Whatever prool procedure we use, when it comes upon one of these predicates, instead of
searching for itexplicitly in the database or atiempting to deduce it by further reasoni ng,
we can simply invoke a procedure, which we will specify in addition 10 our regular
rules, that will evaluate it and return true or false,

Itis often also useful to huve computable functions as well as computable predicates.
Thus we might want to be able to evaluate the truth of

g2+3,1)

Todo so requires that we first compute the value of the plus function given the Argianents
2 and 3, and then send the arguments S and 1 10 gr.

The next example shows how these ideas of computable functions and predicares
can be useful. It also makes use of the notion of equality and allows equal objects 1o be
substituted for each other whenever it appears helpful to do so during a proof.

Consider the following set of facts, again involving Marcus:

|. Marcus was a man.
man{Marcus)

Again we ignore the iscue of tense.

)

. Marcus was a Pompeian,
PompetaniMarcus)

3. Marcus was bom in 40 A.D.
born{Marcus, 40)

For simplicity, we will not represent A.D. explicitly, just as we normally omit it
1n everyday discussions. If we ever need to represent dates B.C., then we will
have to decide on a way 1o do that, such as by using negative numbers. Notice
that the representation of a sentence does not have to look like the sentence itself
#s long as there is a way (o convert back and forth between them. This allows us
10 choose a representation, such as positive and negative numbers, that is easy for
4 program (o werk with

4. Ali men are mortal.

Vx : man{x} - mortal(x)

Sy COMPUTABLE FUNCITONS AND PREDICATES 4

5. All Pompeians dicd when the voicano erupted in 79 A.D.
erupted(volcano, 79) A Yx [Pompeian(x) — died(x 79}]

This sentence clearly asserts the two facts represented above. It may also assen
another that we have not shown, namely that the eruption of the volcanc caused
the death of the Pompeians. People often assume causality between concurrent
events if such causality seems plausible.

Another problem that arises in interprehing this sentence is that of determining the
referent of the phrasc “the volcano.” There is more than one volcana in the world.
Clearly the one referred to here is Vesavius, which is near Pompeii and erupted
in 79 AD. In general, resolving references such s these can require both a lot of
reasoning and a lot of additional knowledge.

6. No mortal lives longer than 150 years.
Wx o ¥y 1 Yt 2 mortal(x) A boralx, t1) A gt — 1y, 150) - dead(x,t;)

There are several ways that the content of this sentence could be expressed. For
example. we could introduce a function age and assert that its value is never
greater than 15(0. The representation shown above is simpler. though. and it will
suffice for this example.

7. Tiis now 1991,
aow = 1991

Here we will exploit the idea of equal quantities that can be substituted for each
other.

Now supposc we want to answer the question "Is Marcus alive”” A quick glance
through the siatements we have suggests that there may be two ways of deducing an
answer. Either we can show that Marcus is dead because he was killed by the volcano or
we can show that he must be dead because he would otherwise be more than 150 years
old. which we know is not possible. As soon as we altempt 10 follow either of those
paths rigorously, however, we discover. just as we did in the last example, that we need
some additional knowledge. For exampie, our statcments talk about dying, but they say
nothing that relates to being alive, which is what the question is asking. So we add the
following facts:

% Alive means not dead.

W - e lalive(x. 1) = ~dead(x.)] A [=dead(x.t) — alive(x.t)]

This is not strictly correct, since —ead implies alive only for animate objects
(Chairs can be neither dead nor alive.) Again, we will ignore this for now. This is
an example of the fact that rarely do two expressions have truly ident ical meanings
in all circumstances.

9_ If someone dies, then he is dead at all later imes

Yx o Vi Vip o died(x.n) A g n) dead(x.14)

This representation says that one is dead in all years after the one in which one
died. Tt ignores ihe guestion of whether one 15 dead in the year in which one died.

142 CHAPTER 5. USING PREDICATE LOGIC

man{Marcus)

PompeianiMarcus)

born(Marcus, 40)

¥ @ man(x). — mortal(x)

Vix : Pampeian(x) — diedix. 79)

erupted(volcana. 79)

¥x 0 ¥y 2 Vit mortal(x) A born(x, 1) A g1 — 1y, 1500 = dead(a. 17)
now = |99]

Vx o Vi 2 lalive(x, 1) = —deadx, NN [~dead(x, 1) — alive(x.1)]

Vx ¥y o Vi died(e) A gty 1)) — dead(x.t;)

SorNpns -

Figure 5.4: A Set of Facts about Marcus

To answer thal requires breaking time up into smaller units than years. If we do
that, we can then add rules that say such things as “One is dead at time(yearl,
monthl) if one died during (vear!, month2) and month? precedes monthl.” We
can extend this to days, hours, etc,, as neggssary. But we do not want 1o reduce
all time statements to that level of detail, which is unnecessary and often not
available.

A summary of all the facts we have now represented is given in Figure 54. (The
numbering is changed slightly because sentence 5 has been split into two parts.) Now
let's attempt to answer the question “Is Marcus alive?” by proving:

~alive(Marcus, now)
Two such proofs are shown in Figures 5.5 and 5.6, The term nif at the end of each prouf
indicates that the list of conditions remaining to be proved is empty and so the proof has
succeeded. Notice in those proofs that whenever a statement of the form:

alAb—=r
was used, a and b were set up as independent subgoals. In one sense they are, but in
another sense they are not if they share the same bound variables, since. in that case.
consistent substitutions must be made in each of them. For example, in Figure 5.6 look
at the step justified by statement 3. We can satisfy the goal

bhorn{iMarcus, 1,)
using statement 3 by binding 1, 1040, but then we must also bind 1, to 40 in

ginow — 1. 150)

since the two £,'s were the same variable in statement 4, from which the two goals
came. A good compuiational proof procedure has to include both a way of determining

54. RESOLUTION 143

~ahivelMarcus, now)
T (9, substitution)
dead(Marcus, now)
T (10, substitution)
diediMarcus.) A gtinow by}
] 5, substiturson)
PompeianiMurcus) A giinow,79)
T @
gtinow, 79)
i (8, substitute equals)
pr(1991_79)
s (compute gt)

nil
Figure 5.5; One Way of Proving That Marcus Is Dead

i
that a match exists and a way of guaraniceing uniform substitutions throughout a proot
Mechanisms for domng both those things are discissed below.

From looking at the proofs we have just shown, two things should be cle.lr

e Even very simplc conclusions can require many steps 1o prove,

e A variely of processes, such as matching, subsitution. and application of nodies
poneny are involved in the production of & proof. This is true even for the simple
stalements we are using. [t would be worse if we had implications with more than
a single teem on the right or with complicated expressions involving arids and ors
on the left,

The fiest of these observations sugaesis that if we want (o be able e do nontrival
peasoning, we dre going to need some statements that allow us 1o take bigger steps along
the way. These should represent the facts that people gradually acquire as they becomu
experts. How to get computers to acquire them is a hard problem for which no very
good answer 1s known,

The second observation sugeests that actually building a program 1o do what people
o in procucing proots such as these may not be easy, In the next section, we introduce
a proof procedure called resoluriom that reduces some of the complexity because it
fperates on sElements that have first been converted (o 4 single canonical form.

5.4 Resolution

As we suggesl above, 1 would be usetul from a computational point ¢f viev 1f we bad o
proof procedure that camed out ina vingle operation the variety of processes involved

144 CHAPTER 5. USING PREDICATE LOGIC

—alive(Maruvus, now)

T (9, substitution)
decd{Marcus, now)

T (7, substitution)

mortal(Marcus) A
born(Marcus, 1) A
gilnow — 1y, 150)

T (4, substituiion)

man{iMarcus) A\
born(Marcus, ;) A
gilnow — 1, 150)

G |

born{Marcus, t)) /
gf(now — t;, 150)

T
2l now — 40, 150)
oW

g(1991 - 40, 150)
T (compute minus)
er(1951,150)
,
I (compuie gl)

nid

Figure 5.6: Another Way of Proving That Marcus ls Dead

in reasoning with statements in predicate logic. Resolution is such a procedure, which
gains its efficiency from the fact that it operates on statements that have been converted
to 2 very convenient standard form, which is described below

Resolution produces proofs by refutation. In other words, 1o prove a statement (i e,
show that it is valid). resolution attempts to show that the negation of the statement
produces a contradiction with the known siatements (i.e., that 11 is vnsatisfiable), This
approach contrasts with the technique that we have been using 10 generaie proofs by
chaining backward from the theorem 1o be proved to the axioms. Further discussion of
how resolution operates will be much more straightforward after we have discussed the
standard form in which statements will be represented, so we defer it until then.

54. RESOLUTION 145

5.4.1 Conversion to Clause Form

Suppose we know that all Romans who know Marcus either hate Caesar or think that
anyone who hates anyone is crazy. We could represent that in the following wiT:

¥x : [Roman(x) A Lnowi{x, Marcusil —
[hatelx. Caesar) V (Vy: 3z : hately.2) — thinkorazs(x. y)i)

To use this formulan a proof requires 4 complex matching process. Then, having
matched one picce of it, such as thinkerazy(x. ¥), it is necessary 10 dJo the right thing
with the rest of the formula including the picces in which the matched part is embedded
and those in which it is not. If the formula were in a simpler form, this process would
be much easier. The formula would be easier to work with if

o 1t were flaiter, 1.e., there was less embedding of components.

o The quantifiers were separated from the rest of the formula so that they did not
need to be considered.

Conjunctive normal form [Davis and Putnam, 1960] has both of these properties.
For cxample, the formula given above for the feelings of Romans who know Marcus
would be represented in conjunctive normal form as

—Roman(x) vV —~knowlx. Marcus) V
hatelx. Caesar) v ~hate(y.)V thinkerazytx. 2

Since there exists an algonthm for converting any wil into conjunctive normal form.
we lose no generality if we employ a proof procedure (such as resolution) that uperates
only on wif's in this form. In fact, for resolution to work, we need 1o go one step further
We need 10 reduce a set of wif's to a set of clauses. where a clause is defined to be a wif
in conjunctive normal form but with no instances of the connector A. We can do this
hy first converting each wif into conjunctive normal form and then breaking apart each
such expression into clauses, one for each conjunct. Allthe conjuncts will be considered
{0 be conjoined together as the proof procedure operates. To convert a wit into clause
form, perform the foliowing sequence of steps.

Algorithm: Convert to Clause Form

{. Eliminate —, using the factthata — b is equivalent to —~a V' b. Performing this
transformation on the wif given above yields

Y : —[Roman(x) A kinowl v, Marcus)| vV
[hate(x.CaesaryV (¥y i ~(3: hatetv. 20V thenkerazy (e, ¥

2 Reduce the scope of each to u single term. using the fact that ~(p) = /2
deMorgan's laws [which say that =~(a A b) = ~a V —hand ~{aV b)=~a A —bl.
and the standard correspondences between quantifiers [—¥x - P(x) = 3x * ~F(x)
and ~3¢ : PL) = ¥x : ~P(v)). Performing this iransformation on the wif frum
step 1 yields

¥x : [~Roman(x) vV ~know{x, Marc us)] v
{hare(x, Caesar) Vv (¥y : ¥1 1 ~hatety. 2}V thinkcrazyis. vl

146

CHAPTER 3 USING FREDICATE "0GIC

3. Standardize variables so that cach quantifier binds a uniquz vanable. -ince

variables are just dummy names, this process cannot affect the wruth value of the
wil. For example, the formula

WV : Plx) v ¥r: Qix)
waould be converted to
Yx: PO VVy: Q)
This step is in preparation for the next.

. Move all quantifiers to the left of the formula without changing their relative order.

This is possible since there is no conflict among variable names. Performing this
operation on the formula of step 2, we get
Vx @ Vy:Vz:[~Roman(x)V ~know(x, Marcus)] vV
Lhate(x. Caesar) V (—hate(y, z) V thinkcrazy(x, ¥))]
Al this point, the formula is in what is known as prenex normal form. 1t consists
of a prefix of quantifiers followed by a marrix, which is quantifier-free,

- Eliminate existential quantifiers. A formula that contains an existentially quan-

tified variable asserts that there is a value that can be substituted for the variable
that makes the formula true. We can eliminate the quantificr by substituting for
the variable a reference 1o a function that produces the desired value. Since we
do not necessarily know how to produce the value, we must create a new function
name for every such replacement. We make no assertions about these functions
except that they must exist. So. for example, the formula

Sy : Presideni(y)
can be transformed into the formula

President(S1) .
where 51 is a function with no arguments that somehow produces a valde that
satisfies President.

If existential quantifiers occur within the scope of untversal quantifiers, then the
value that satisfies the predicate may depend on the values of the umvermlll,
quantified variables, For example, in the formula

Y : 3y : father-ofiy. x)
the value of v that satisties father-of depends on the particular value of «. Thus
we must generate functions with the same number of arguments as the number

of universal quantifiers in whose scope the expression oceurs. So this example
would be transformed into

Y : father-ofiS2(x), 1))

These generated functions are called Skolem functions. Sumetimes ones with no
arguments arc called Skolem constants.

. Dropthe prefix. At thispoint, all remaining variables are universally quantified. so

the prefix can just be dropped and any proof procedure we use can simply assume

54. RESOLUTION 147

that any variable it sees is universally quantified. Now the formula produced in
step 4 appears as
[—Roman(x) V —know(x, Marcus)] V
[hate(x. Caesar) V (—~hate(y, 2}V thinkerazy(x. y)l

7. Convert the matrix into a conjunction of disjuncts. In the case of our example,
since there are no and’s, it is only necessary to exploit the associative property of
orlie.avibvey=1aVh Vel and simply remove the parentheses, giving

—Roman(x) vV —~know(x, Marcus) V
hatelx, Caesar) ¥ —hate(y, 2) V thinkcrazyx. y)

However, it i¢ also frequently necessary to exploit the distributive property lie.
tah BV c=(aVe)AlbV)l Forexample. the formula

{winter A\ wearingboots)V (summer /\ wearingsandals)
becomes, after one application of the rule

[winter V (summer A wearin gsandals))
A [weartngboots V (summer A wearingsandals)]

and then, after a second application, required since there are still conjuncts joined
by OR's,

(winter V summer)

(winter ' wearingsandals) A

(wearingboots V' summer) A\

(wearingboots \ wearingsandals)

8 Create a separate clause corresponding to each conjunct. [n order for a wif to be
true, all the clauses that are gencrated from it must be true. If we are going to be
working with several wif's, all the clauses generated by each of them can now be
combined to represent the same set of facts as were represented by the onginal
wit’s.

9, Standardize apart the variables in the set of clauses geaerated in step 8. By this
we mean rename the variables so that no two clauses make reference to the same
variable. In making this transformation, we rely on the fact that

(Vx : P(x) A Q{x)) = ¥ : P(x) A Vx 2 QLx)
Thus since each clause is & separate conjunct and since all the variables are

universally quaniified, there need be no relationship between the variables of two
clauses, even if they were generated from the same wit.

Performing this final step of standardization is imjrortant because during the resolu-
tion procedure it is sometimes necessary to insiantiaic a universally quantified variable
(i.c.. substitute for it a particular value). But, in general, we want 10 keep clauses 1n
their most general form as long as possible. So when a variable is instantiated, we want
to know the minimum number of substitutions that must be made to preserve the truth
value of the system.

After applying this entire procedure 10 a sel of wif's, we will have a set of clauses,
cach of which is a disjunction of literals These clauses can now be exploiied by the
resolution procedure 1o gencraic proofs.

148 CHAPTER 5. L'SING. PREDICATE LOGIC

54.2 The Basis of Resolution

The resolution procedure is « simpie ilerative process: @t cach step, two clauses, called
the parent clauses, are compared (resolved), yielding a new clause that has been inferred
trom them. The new clause represents ways that the two parent clavses interact with
each other. Suppose that there are two clauses in the system:

winler v summer
—winter V cold

Recall that this means that both clauses must be true (i.c., the clauses, although they
look independent, are really conjoined).

Now we observe that precisely one of winter and ~winter will be true at any point.
If winter is true, then cold must be true to guaranice the truth of the second clause. 1If
Twiltter is true, then simmer must be true to guarantee the truth of the first clause. Thus
we see that from these two clauses we can deduce

summer \ cold

This is the deduction that the resolution procedure will make. Resolution operates by
iaking two clauses that each contain the same literal, in this example, winrer. The literal
must oceur in positive form in one clause and in negative form in the other. The resolveni
is abtained by combining all of the literals of the two parent clauses except the ones that
cancel.

If the clause that is produced is the empty clause, then a coniradiction has been
found. For example, the twu clauses

winter
~“winter

will produce the empty clause, 1fa contradiction exists, then eventually it will be found.
Of course, if no contradiction exists, itis possible that the procedure will never terminate,
aithough as we will see, there are often ways of detecting that no contradiction exists.

So far, we have discussed only resolution in propositional logic. In predicate fogic,
the situationis more complicated since we must consider all possible ways of substituting
values for the variables. The theoretical basis of the resolution procedure in predicate
logic is Herbrand's theorem [Chang and Lee, 1973], which tells us the following:

* To show that a set of clauses § is unsatisfiable, 1t is necessary to consider only
interpretations over a particular set, called the Herbrand universe of §.

* A set of clauses § is unsatisfiable if and only if a finite subset of ground instances
(in which all bound vanables have had a value substituied for themj of § is
unsatisfiable.

The second part of the theorem is important if there is to exist any computational
procedure for proving unsatisfiability, since in a finite amount of time no procedure will
be able to examine an infinite set. The first part suggests that one way o go about
finding a contradiction is to try systematically the possible substitutions and see if each

54. RESOLUTION 149

produces u contradiction. But that is highly inefficient. The resolution principle, first
introduced by Robinson [1965], provides a way of finding contradictions by trying a
minimum number of substitutions. The 1dea is to keep clauses in their general form as
long as possible and only introduce specific substitutions when they are required. For
more details on different kinds of resolution, see Stickel [1988).

5.4.3 Resolution in Propositiona! Logic

In order 1o make it clear how resolution work:, we first present the resolution procedure
for propositional logic. We then expand it to include predicate logic

in propositional logic, the procedure for producing a proot by resolution of propo-
sition P with respect to a set of axioms £.is the following,

Algorithm: Propositional Resolution
1. Convert all the propositions of F 1o clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses
obtained in step 1.

3. Repeat until either a contradiction is found or no progress can be made:

{a) Select two clauses. Call these the parent clauses.

{b) Resolve them together. The resulting clause, called the resolvent, will be
the disjunction of all of the literals of both of the parem clauses with the
following exception: If there are any pairs of literals L and —1. such that ane
of the parent clauses contains L and the other contains =/, then select one
such pair and eliminate both £. and —L fram the resolvent.

{c) If the resolvent is the empty clause, then a contradiction has been found. If
it is not, then add it to the set of clauses available to the procedure.

Let’s look at a simple example. Suppose we are given the axioms shown in the first
column of Figure 5.7 and we want to prove R, First we convert the axioms 1o clause
form, as shown in the second column of the figure Then we negate R, producing —K,
whick is already in clause form. Then we begin selecting pairs of 18es to resolve
together. Although any pair of clauses cun be resoived, only those pairs that contain
complementary lterals will produce a resolvent that is likely to lead to the goal of
producing the empty clause (shown as a box). We might, for example, generate the
sequence of resolvents shown in Figure 5.8. We begin by resolving with the clause -R
since that is one uf the ~lauses that must be involved i the contradiction we are trying
to find.

One way of viewing the resolution process is that it takes a set of clauses that arc
ali assumed 1o be true and, based on information provided by the others, it generates
new clauses that represent restrictions on'the way cach of those original clauses can be
made true. A contradiction occurs when 2 clause becomes so restricied that there is no
way it can be truc. This is indicated by the peneration of the empiy clause. To see how
this works, let's look again at the example. In order for proposition 2 1o be true, one of
three things must be true: =P, -0, or R. But we are assuming that -R is true. Given

150 CHAPTER 5 USING FREDICATE LOGIC

Given Axioms Converted to Clause Form

P F 4y
PAQ)—oK =PV (VR {2)
SvND—-0Q -SvQ (3)

-TvQ (4)
T T i5)

Figure 5.7: A Few Facts in Propositiona! Logic

“PV-QVR -R
~PV -0 P
\‘\._./
~TvQ ~Q
iy P
"_\/
=T T

Figure 5.8: Resolution in Propositional Logic

_. that, the only way for proposition 2 to be true is for one of two things to be true: —F
or —=. That is what the first resolvent clause says. But proposition | says that P is true,
which means that —P cannot be true, which leaves only one way for proposition 2 io be
true, namely for ~(to be true (as shown in the second resolvent clause). Proposition 4
can be true if cither =T or Q is true. But since we now know that - must be true,
the only way for proposition 4 to be true is for =T to be true (the third resolvent). But
proposition 5 says that T is true. Thus there is no way for all of these clauses to be true
in a single interpretation. This is indicated by the empty clause (the last resolvent).

5.4.4 The Unification Aigorithm

In propositional logic, it is easy to determine that two literals cannot both be true at the
same time. Simply look for L and L. In predicate logic, this matching process is more
complicated since the arguments of the predicates must be considered. For example,
man(John) and ~man(John) is a contradiction, while man(John) and —man(Spot) is
not. Thus, in order to determine contradictions, we need a matching procedure that

5.4. RESOLUTION 151

compares two literals and discovers whether there exists a set af substitutions that makes
them identical, There is a straightforward recursive procedure, called the unification
algorithm, that does just this

The basic idea of unification 1s very simple. To attempt to unify two literals, we first
check if their initial predicate symbols are the same. If so, we can proceed. Otherwisc,
there is no way they can be unified, regardless of their arguments. For example. the two
literals

tryassassinate(Marcus, Caesar)
hate(Marcus, Caesar)

cannot be unified. 1 the predicate symbols maich, then we musi check the arguments
one pair at a time, If the first matches, we can continue with the second, and so on.
To test each argument pair, we can simply call the unification procedure recursively.
The matching rules are simple. Different constants or predicates cannot match; identical
ones can. A variable can match another variable, any constant, ora predicate expression,
with the restriction that the predicate expression must not contain any instances of the
variable being matched,

The only complication in this procedure is thal we must find a single, consistenl
substitution for the entire literal, not scparate oncs for cach piece of it. To do this, we
must take each substitution that we find and apply it o the remainder of the lilerals
before we continue trying to unify them. For example, suppose we want to unify the
expressions

Pix, x)
Py, 2)

The two instances of P match fine. Next we compare x and y, and decide that il we
substitute y for v, they could match. We will write that substitution as

y/x

(We could, of course. have decided instead to substitute x for ¥, since they are both just
dummy variable names. The algorithm will simply pick ope of these fwo substitutions.}
But now, if we simply continue and match x and =, we produce the sbstitution z/x. Bul
we cannot substitute both yand = for 1, so we have not produced a consistent substitution.

What we need 1o do after finding the first substitution y/.x is 1o make that substirution
throughout the lilerals, giving

Piy.y)
P(y.2)
Now we can attemp! to unify arguments » and =, which succeeds with the substitution

z/y. The entire unification process has now succeeded with a substitution that is the
composition of the two substitutions we found. We write the compusition as

G

152 CHAPTER 5. USING PREGICATE LOGIC

following standard :ictation for unction composition. Ia generai, e substilution
(aifar.axfay,..)by bs By fba,. .) ... meansio apply all the substitunions of the right
most list, then take the result and apply ail the ones of the next list. and so forth, untii
all substitutions have been applied.

The object of the unification procedure is to discover at least ane substitution that
causes two literals to match. Usually, if there is one such substitution there are many
For example, the literals

hatel v, v)
hate(Marcus, z)

could be unified with any of the following substitutions:

(Marcus/x, z[y)

(Marcus/x, y/z)

(Marcus/x, Caesar/y, Caesar/z)
(Marcus/x, Polonius/y, Polonius |/ z)

The first two of these are cquivalent except for lexical variation. But the second two,
although they produce a match, also produce a substitution that is more restrictive than
absolutely necessary for the match. Because the final substitution produced by the
unification: process will be used by the resolution procedure, it is useful to generate the
most general unifier possible. The algorithm shown below will do that,

. Having cxplained the opcration of the unification algorithm, we can now state it
concisely, We describe a procedure Unify(L1, L2), which returns as its value a list
representing the composition of the substitutions that were performed during the match.
The empty list, NIL, indicates that a match was found without any substitutions. The
list consisting of the single value FAIL indicates that the unification procedure failed.

Algorithm: Unify(L1, L2)
1. 1T L1 or 1.2 are both variables or constants, then:

(a) If L1 and L2 are identical, then return NIL.

- (b) Else if L) is a variable, then if L1 occurs in L2 then return {FAIL}, else
return (L2/L1).

(¢) Else if L2 is a variable then if L2 occurs in L1 then return {FAIL}. else
return (L1/0.2).

(d) Else retun {FAIL)

b

. If the initial predicate symbols in L1 and L2 are not identical, then return {FAIL}.
3. L1 and L2 have a different number of arguments, then return {FAIL).

4. Set SUBST to NIL. (At the end of this procedure. SUBST will contain all the
substitutions used to unify L1 and 1.2)

3. For i « | 1o number of arguinents inL1;

54. RESOLUTION 153

(a) Call Unify with the ith argument of L1 and the jth argument of L2, putting
result in 5.

(b) If § contains FAIL then return {FAIL]

(c) If § is not equal 1o NIL then:
i. Apply S 1o the remainder of both L1 and L2,
ii. SUBST .~ APPEND(S, SUBST).

6. Return SUBST.

The only part of this algorithm that we have not yel discussed 1s the check in steps
(k) and 1{c) 1o make sure that an expression involving a given variable is not unified
with that variable. Suppose we were attcimpting to unify the expressions

fix,x)
falx), glx))

If we accepted g(x) as a substitution for x, then we would have to substitute it for 1 n
the remainder of the expressions. But this leads to infinite recursion since il will never
be possible to eliminate A.

Unification has deep mathematical roots and is a us=ful operation in many Al
programs, for example. theorem provers and natural language parsers. As a result,
efficient data structures and algorithms for unification have been developed. For an
introduction 10 these techniques and applications, see Knight [1989].

54.5 Resolution in Predicate Logic

We now have an easy way of determining that two literals are contradictory—they are
.f one of them can be unified with the negation of the other. So, for example, man(x)
and —~man(Spot) arc contradictory. since man(x) and man{Spor) can be unified This
corresponds to the intuitionthal says that man(x) cannot be true for all x if there is known
to be some 1, say Spot, for which man(x) is false. Thus in order to use resolution for
expressions in the predicate logic, we use the unification algorithm to locate pairs of
literals that cancel out.

‘We also need 10 use the unifier produced by the unification algorithm 1o generate the
resolvent clause. For example, suppose we want (o resolve two clauses:

t man{Marcus)
2. —man(x) ¥V mortal(x,)

The literal man(Marcus) can be unified with the literal man(x;) with the substitutio
Marcus/xy, telling us that for v; = Marcus, ~man{Marcus)y is false. Bul we cannot
simply cance! out the two man literals as we did in propositional logic and generate the
resolvent mortal(x;). Clausce 2 says that for a given xy, cither —man(x;) or mortal(x1).
So for it 10 be true, we can now conclude only that mortal(Marcus) must be true. It is
not necessary that mortal(x} be true for all x,. since for some values of x;, "man(x)
might be true, making mortal(x)) irrelevant 1o the truth of the complete clause. 5o
the resolvent generated by clauses 1 and 2 must be mortal{Marcus), which we get by
applying (e result of the unification process to the resolven!. The reselution process ¢an

154 . CHAPTER 5. USING PREDICATE LOGIC

then procecd from there io discover whether moral(Mareus) leads 16 & contradiction
with other available clauses.

This example illustrates the importance of standardizing varables apart duning the
process of converting expressions to clause form. Given that that standardization has
pect: done, it is easy 10 determine how the unifier must be used to perform substitutions
to ureate the resolvent. If two instances of the same variable occur, then they mist be
given identical substitutions

We can now state the resoliution algorithin for predicare logic as follows, assuming
a sef of given statements £ and a staicment 1o he praved P

Algorithm: Resolution
1. Convert all the statements of F to clause form,

2. Negate P and convert the result to clause form. Add it to the set of clauses
obtained in |.

3. Repeat until either a contradiction is found. no progress can be made. or a prede-
termined amount of effort has been expended,

(a) Select two clauses. Call these the paremt clauses.

(b) Resolve them together. The resolvent will be the disjunction of all the literals
of both parent clauses with appropriate substitutions performed and with the
following exception: If there is onc pair of litcrals 71 and —~72 such that
one of the parent clauses contains Tl and the other contains 72 and if T
and 72 arc unifiable. then neither 71 nor T2 should appear in the resoivent.
We call T1 and T2 complementary literals. Use the substitution produced
by the unification to create the resolvent. If there is more than one pair of
complementary literals. only one pair should be omitted from the resolvent,

(e

-

If the resolvent is the empty clause, then a contradiction has been found. If
it is not, then add it to the sei of clauses availahle to the procedure,

IT the choice of clauses to resolve logether at each step is made in certain systematic
ways, then the resolution procedure will find a contradiction if one exists, However, it
may take a very long time. There exist strategics for making the choice that can speed
up the process considerably:

» Only resolve pairs of clauses that contain complementary literals, since only such
resolutions produce new clauses that are harder 1o satisfy than their parents. To
facilitate this, index clauses by the predicates they contain, combined with an
indication of whether the predicate is ncgated Then, given a particular clause,
possible resolvents that contain a complementary occurrence of one of its predi-
cates can be located dircetly. '

« Eliminate certain tlauses as soon as they are generated so that they cannal partic-
ipaie in later resolutions. Two kinds of clauses should be chminated: tautologies
(which can never be unsarisfied) and Clauses that are subsumed by other clauses
(1.e., they are easier to satisfy. For example, PV @ is subsumed by P.}

54. RESOLUTION 155

o Whenever possible, resolve either with one of the clauscs that is part of the
stalement we are trying (o refute or with a clause generated by a resolution with
such a clause. This is called the set-of-support strategy and comesponds to the
intuition that the contradiction we are looking for must involve the statemenl
we are trying to prove. Any other contradiction would say that the previously
believed stalements were inconsistent.

« Whenever possible, resolve with clauses that have a singleliteral. Such resolutions
generate new clauses with fewer literzls than the larger of their parent clauses and
thus are probably closer to the goul of a resotvent with zero terms, This method
is called the unit-preference stratcgy.

Lat's now return to our discussion of Marcus and show how resolution can be used
lo prove new things about him. Let’s first consider the set of statements introduced
in Section 5.1. To use them in resolution proofs. we must convert them Lo Clause
form as described in Section 5.4.1. Figure 5.9(a) shows the results of that conversion.
Figure 5.9¢h) shows a resolution proof of the statement

hate{Marcus, Caesar)

Of course, many more resolvents could have been generated than we have shown.
but we used the heunstics described above 10 suide the scarch. Notice thai what we
have done here essentially is to reason buckward from the statement we wani to show
is a contradiction through a set of intermediate conclusions to the final conclusion of
INconsistency.

Suppose our actual goal n proving the assertion

hatetMarcus. Caesar)

was to answer the question “Did Marcus hate Caesar™" In that case, we might just as
easily have attempted to prove the statement

—hate{Marcus. Caesar)
To do sa. we would have ndded
hatetMaiius, Carsar)

(o the st of available clauses and begun the resolution process. But immediately we
notice that there are noclauses that contain a literal involving —hare. Since the resolution
process can only generate new clauses that are composed of combinations of literals
from already existing clauses, we know that no such clause can be generated and thus
we conclude that hare(tMarcus. Caesar) will not produce a contradictian with the known
statements. This is an example of the kind of situationin which the resolution procedure
can detect that no contradiction exists. Sometimes this situation is detected not at the
beginning of a proof, but pan way through. as shown i the example in Figure 5.10(a),
based on the axioms given in Figure 5.9,
But suppose our knowledge base contained the two additional statements

156 CHAPTER 5. USING PREDICATE LOGIC

Axioms in clause form;

|, man{Marcus)
2. PompeianiMarcus)
3. ~Pompeiantx;) Vv Roman(x,)
4. rwferiCaesar’
5, “Roman(xs) V loyalto(x,, Carsar) V hatetxs, Caesar)
6. loyatio(xs, fi(x:))
1. =man(xs) V =ruler(yi) V ~tryassassinote(xy. yid V loyaltoirs, vy)
8. tryassassinare{Marcus, Caesar)
(@)
Prove: hate(Marcus, Caesar) ~hate(Marcus, Caesar) 5

o
\/ Marcus[x

~Roman(Marcus) V loyalio(Marcus, Coesar)

\ ///;fdrcusf X

—Pompeian(Marcus)V loyalioiMarcus, Caesar) 2
"‘--\//
7 layalio{Marcus, Caesar)
“‘--.H_\ Marcus|xa, Caesarfy,
1 “man{Marcus) V —ruler{Caesar)V —tryassassinate(iMarcus,Caesar)
“-\\\////‘
—ruler(Caesar) v ~tryassassinaie(Marcus, Caesar) 4
_/
—tryassassinate{Marcus, Caesar) B

\\M
il

(B)

Figure 5.9: A Resolution Proof

54. RESOLUTION 157

Prove: loyalto(Marcus, Caesur)

~loyaltoiMarcus, Caesar) s
\/;Jarm /22
3 —Roman{Marcus) V hare(Marcus, C aesar)
et -

I'f arcusjx,
M 5iX
\x"‘-._//

—Pompeian{MarcusiV hate{Marcus,Cazsar) 2
: H\\\// :
hat#(Marcus, Caesar)
(a)
hate{Marcus, Caesar) 10
\\\ - M C /
,_‘\/ arcus/ s, Caesar/ys
persecute{Caesar Murcus) 9

_ / Marcus/xy, Caesar[y:

hate\Marcus, Caesar)

(b)
Figure 5.10: An Unsuccessful Antempt at Resolution

9. persecute{x, y) — hare(y x)

10, hare(x,y) — persecute(y, X)
Converting to clause form, we gef

G, —persecute(xs,y,) V hate(yz, rs)

10. ~hate(xs, y3) V persecute(yy, Xg)

These statements enable the proof of Figure 5.10(a) 1o continue as shown m Fig-
ure 5.10(b). Now (o detect that there is no contradiction we must discover that the only
resolvents that can be generated have been generated before. in other words, although
we can generale retolvents, we Can generate no new ones.

158 CHAPTER 5, USINTG PREDICATE LOGIC

Given:

L =fatherix vi v ~womanix)
(Le., famerix, y) — —wor an(r))
X smother(y.¥) V womanix}
(L.e.. mother(x,) — wom wn{ 0)}
. mother(Chris, Mary)
< fether(Chric, Bill

-

1

“\,_.‘-_ o
p

S

~fatheris. y) ¥ —maotheriz.y)

\\/.- = Thris{x,Mary/y

foiher(Chris Mary)

-

Figure 5.1 1: The Need (o Standardize Vanables

L3
Recall that the final step of the process of converting a set of formulas ta clausc form
was to standardize apan the variables thar appear in the fnal clauses. Now that we have
discussed the resolution procedure, we can see clearly why this step is so imporiant
Figure 5.11 shows an example of the difficulty that may arise if standardization is not
done. Because the variable y occurs in both clause 1 and clause 2, the substitutior at the
second resolution step produces a clause that 1s too restricted and so does not lead 1o (he

contradiction that is present in the database. If, instead. the clause

—father{Chris, y)

had been produced, the contradiction with clause 4 would have emerged. This would
have happened if clause 2 had been rewritten as

—motheri{a.b) V womania)

In its pure form, resolution requires afl the knowledge it uses 10 be represented in
the torm of clauses. But as we pointed out in Section 5.3, it is often more efficient 1o
represent certain kinds ol information in the form of computable functions, computable
predicates, and equality relationships. It 1s not hard 1o augment resolution (o handie this
sort of knowledge. Figure 5.12 shows a resolution proof of the statement

—alive(Marcus, now)

Y4. RESOLUTION 154

Axioms in clause form

maaiMur usd
Povmperani Mo sre
horimtMar et 40
e) Y mortclicg
“Psmpeiamz) Vo dedie. TH
crigrtedi pleg o, 79
enoraltan v =horates HV ety = 0 VSV deadin s 102
. o = 1991
Qa. —alivelxs. 1) Y ~dead(vi. 1)
O, deadixs. ty) v aliveyry, t)
10, —ddied(xy, is) W =gi(f, 1)V deadive, f2)

el ol

Prove: salivetMarcus, now)

wliveiMarous, nawl Ya
"-._‘_\\ -
e Marcus/xe aow it
‘M“"_/ u }r '3 il
dead(Marcus. now) 14

T~ P
M =7 Marcus g tew [T
5 adeadiMarvus, () v =giirow, 1s)
e /'ﬁm': wnfxz T

-

e

<Fompeigni Marcus) Vv —gHaow, T

AR
*\\\) .~ substitute equals

e

~

-

~PompeianiMarcis) v —gn(1991.7%9)

2
e . " reduce

Figure 5.12- Using Resvlution with Equahity and Redu «

160 CHAPTER 5. USING PREDICATE LOGIC

based on the stalements given in Section 5.3. We have added 1w0 vay: of wegerating
new clauses, in addition to the resolution rule:

* Substitution of one value for another to which it is equal.

+ Reduction of computable predicates. If the predicate evaluates 1o FALSE, it can
simply be dropped, since adding \/ FALSE 1o 4 disjunction cannot change its truth
value. If the predicate evaluates o TRUE, then the generared clause is a tautology
and cannot lead to a contradiction.

5.4.6 The Need to Try Several Substitutions

Resolution provides a very good way of finding a refutation proof without actually trying
ali the substitutions that Herbrand's theorem suggests might be necessary. But it dues
not always eliminate the necessity of trying more than one substitution. For exarnpie.
suppose we know, in addition to the statements in Section 5.1, that

hate(Marcus, Paulus)
hate(Marcus, Julian)

Now if we want to prove that Marcus hates some ruler, we would be likely 10
try each substitution shown in Figure 5.13(a) and (b) before finding the contradiction
shown in (). Sometimes there is no way short of very good luck to avoid trying several
substitutions,

54.7 Question Answering

Very early in the history of Al it was realized that theorem-proving lechniques could
be applied 10 the problem of answering questions. As we have already suggested,
this seems natural since both deriving theorems from axioms and deriving new facts
(answers) from old facts employ the process of deduction. We have already shown
how resolution can be used 1o answer yes-no questions, such as “Is Marcus alive?” In
this section, we show how resolution can be used io answer fill-in-the-blank questions,
such as “When did Marcus die? or “Who tried 1o assassinate a ruler?” Answering
these questions involves finding a known statement thar matches the terms given in the
question and then responding with another piece of that same statement that fills the
slot demanded by the question. For example, to answer the guestion “When did Marcus
die?” we need a statement of the form

died{Marcus, 77

with 77 actually filled in by some parricular year. So, since we can prove the statement
died(Marcus, 79

we can respond with the answer 79,

It tums out that the resolution procedure provides an easy way of locating juss the
statement we need and finding a proof for it. Let’s continue with the exampie question

RESOLUTION
Prove: 3 hareiMarcas, x) £oraderia)
(ncgate): ~4x : hate(tMarcus, xj ~ ruler(sy
(clausify). =hawe(Marcus, x) V ~rueral
—hate{Mairis,x) V —riler{t) haie{Marcus, Paulus)
s i’
M"“\-‘..,,‘_ /-/’ Paulus/x
=ruler(Paulus)
(a)
—~hatetMarcus, x) V —ruler(x) hateiMarcus Julian)
e "
= ;
\.f—" - Julianfx
sruler{Julian)
(h)
~hateiMarcus.)V —ruder(c) hate{Marcus, Caesar)
/’?ar.mr x
—ruler(Caesar) ruler{Caesar)
\\"-‘. /'/

e "l
()

Figure 5.13: Trying Several Substitutions

161

162 CHAPTER 5. USING PREDICATE LOGIC

“When did Marcus die?” In order 1o be able o answer this question, it must first be true
that Marcus died. Thus it must be the case that

dt : died(Marcus 1)

A reasonable first step then might be 10 try 1o prove this. To do so using resolution, we
attempt to show that

—3r : died(Marcus. 1)

produces a contradiction. What does it mean for that statement to produce a contradic
tion? Either it conflicts with a statement of the form

Vit : dird(Mah'us N

where 7 is a variable, in which case we can either answer the question by reporting that
there are many times at which Marcus died, or we can simply pick one such time and
respond with il. The other possibility is that we produce a contradiction with one or
more specific statements of the form

died{Marcus, daie)

for some specific value of date. Whaiever value of date we use in producing that
contradiction is the answer we want. The value that proves that there is a value (and
thus the inconsistency of the statement that there is no such value) is exactly the value
we want.

Figure 5.14({a) shows how the resolution process finds the statement for which we are
lookimg. The answer to the question can then be derived from the chain of unifications
that lead back to the starting clause. We can eliminate the necessity for this final step
by adding an additional expression to the one we are going to use to ry to find a
contradiction. This new expression will simply be the one we are trving to prove true
(i.e., it will be the negauon of the expression that 1s actually used in the resolution), We
can tag it with a special marker so that it will not interfere with the resolution process,
{In the figure, it is underlined.) It will just get carried along. but each time unification
is done, the variables in this dummy expression will be bound just as are the ones in the
clauses that are actively being used. Instead of terminating on reaching the nil clause, the
resoiution procedure will terminate when all that is left is the dummy expression. The
bindings of its variables at that point provide the answer 1o the question. Figure §, I4(bl
shows how this process produces an answer to our question,

Unfortunately, given a particular representation of the facts in a system, there will
usually be some questions that cannot be answered using this mechanism. For example,
suppose that we want to answer the question “What happened in 79 A.D.?" using
the statements in Section 5.3. In order to answer the question, we need (o prove that
something happened in 79. We need to prove

Fx : evear(x, 79)

54. RESOLUTION 163

-3¢ = died(Marcus, 1} = ~diediMarcus.f)

~Pompeian{x) ¥ digd(q, T9) ~died{Marcus,

=3 "'/',:n Marc .
M 9/t Marcus/x:

Pompeian(Marcss) ~PompeiantMareus)
“-\._‘_‘-\ /'
~_ -

-

T

ia)

~Pompeian() V died(xi. 79 ~died{Marcus, 1) v diedMarcus, 1}
L, o '
=" " 79/1, Marcus/x

= -

i
=PompeianiMarcus) v died(Marcus, 79

f
/

f

i

o /
s

died{Marcus,79)

PompeianiMar cus)

oy

L)
Figure 5.14: Answer Extraction Using Resolution

and to discover a value for r. But we do not have any statemenis of the form evenr(x.).
We can, however. answer the question if we change our representation. Instead of
saying

erupred(volcann, 79)
we Can say
event(erupred(volcano). 1)
Then the simple proof shown in Figure 5.15 enables us to answer the question.
This new representation has the drawback that it is more complex than the old one.
And it still does not make it possible 1o answer all conceivable questions. In general,

it is necessary to decide on the kinds of questions thai will be asked and to design a
representation appropriate for those questions.

164 CHAPTER 5. USING PREDICATE LOGIC

—event(x, 79) evenrx, 79) eventlerupted(volcans). 79,

\\‘ ‘//"/fcrup.wd(volcano)fx

S

—c

cvenilerumedivolcanno, 79))

Figure 5.15: Using the New Representation

Of course, yes-no and fill-in-the-blank questions are not the only kinds one could
ask. For example, we might ask how to do something. So we have not yel completely
solved the problem of question answering. In later chapters, we discuss some other
methods for answering a variety of questions, Some of them exploit resolution; others
do not.

5.5 Natural Deduction

In the last section, we introduced resolution as an easily implementable proof proce-
dure that relies for its simplicity on a uniform representation of the statements it uses.
Unfortunately, uniformity has its price—everything looks the same. Since everything
looks the same, there is no easy way 1o select those statements that are the most likely to
be useful in solving a particular problem. In converting everything to clause form, we
often iose valuable heuristic information that is contained in the original representation
of the facts. For example, suppose we believe that all judges who are not crooked are
well-educated, which can be represented as

Vx : judge(x) N ~crooked(x) = educared(x)

In this form, the statemeni suggests a way of deducing that somcone is educated, But
when the same statemnent is converted 1o clause form.

~vudge(x) V crooked(x) V educated(x)

it appears also to be a way of deducing that someone is not a judge by showing that he
is not crooked and not educated. Of course, in a logical sense, it is. But it is almost
certainly not the best way, or even a very good way, to go about showing that someone
is not a judge. The heuristic information contained in the original statement has been
lost in the transformation.

Another problem with the use of resolution as the basis »f a theorem-proving system
is that people do not think in resolution. Thus it is very difficult for a persor. 1o interact
with a resolution theorem prover, either to give itadvice or to be given advice by it. Since
proving very hard things is something that computers still do poorly, it is imporant from
a practical standpoint that such interaction be possible. To facilitate it, we are forced to
look for a way of doing machine theorem proving that corresponds more closely to the

56 SUMMARY 165

used in human theoremn proving We zre thus led 1o what we call, nostly by
definition, netural deduction.

Natural deduction is not a precise term. Ratherif describes a melange of techniques.
used in combination 1o solve problems that are not tractzble hy any one method alone
One common technique is 1o amange knowledge, not by predicates, as we have been
doing. but rather by the objects involved in the predicates. Some techniques for downg
this are described in Chapter 9. Anothe techiique is to use 2 sel of rewrite rules that
pot only descnibe logical implications but also suggest the way that those imphications
can be exploitad i proofs.

For a good survey of the variety of fechniques that can be exploited in a natural
deduction system, see Bledsoe [1977]. Altheugh the emphasis in thal paper is on
proving mathematical theorenis. many of the ideas in 1t can he applied 1o a variety
of domains in which it is necessary to deduce now stalements from known oncs. For
another discussion of thearem proving using natural mechanisms, see Boyer and Moore
[1988], which describes a system fo1 reasoning sbout programs. It places particular
emphasis on the userof mathematical induction as a proof technigue

5.6 Summary

In this chapter we showed how predicate logic can be used as the basis of a technique for
knowledge representation. We also discussed a problem-solving techmque, resolution,
that can be applied when knowledge is represented in this way. The resolution procedurc
is not guaranteed to halt if given a nontheorem to prove. But is it guaranteed (0 hall
and find a contradiction if one exists? This is called the compleieness question. In the
form in which we have presented the algorithm, the answer (o this question 1s no. Some
small changes, usually not impiemented in theorem-proving systems. musi be made to
guarantce completeness. But, from a computational point of view, completeness 15 not
the only important question Instead, we must ask whether a proof can be found 1n the
limited amount of time that is available. There are two ways (o approach achieving
this computational goal. The first is 1o search for good heuristics that can inform a
theorem-proving program. Current theorem-proving research attempts to do this. The
other approach is to change not the program but the data given 10 the program. In this
approach. we recognize that a knowledge base that is just a list of logical assertions
possesses 1o siructure. Suppose an information-bearing structure could be imposed on
such a knowledge basc. Then that additional information could be used to guide the
program that uses the knowledge. Such a program may not look s lot like a theorem
prover, although it will still be a knowledge-based problem solver. We discuss this idea
further in Chapter 9.

A second difficulty with the use of theorem proving in Al systems is that there are
some kinds of information that are not easily represented in predicate logic. Consider
the following examples:

o “It is very hot today.”” How can relative degrees of heat be represented?

« “Blond-haired people often have blue eyes.” How can the amount of cerainty be
represented?

166

CHAPTER 5. USING PREDICATE LOGIC

“If there is no cvidence to the contrary, assume that any adult you meet knows
how to read.” How can we represent that one fact should be inferred from the
absence of another?

“It’s berter to have more pieces on the board than the opponent has.” How can we
represent this kind of heuristic information?

“1 know Bill thinks the Giants will win, but I think they are going o lose.” How
can scveral different belief systems be represented at once?

These examples suggest issues in knowledge representation that we have not yet
satisfactorily addressed. They deal primarily with the need to make do with a knowledge
base that is incomplete, although other problems alse exist, such as the difficulty of
representing continuous phenomena in a discrete system. Some solutions 1o these
problems are presented in the remaining chapters in this part of the book.

5.7

1.

2.

Exercises.
Using facts 1-9 of Section 5.1, answer the question, "Did Marcus hate Cacsar?"

In Section 5.3, we showed that given our facts, there were two ways to prove the
statement ~alive(Marcus, now). In Figure 5.12 a resolution proof corresponding
to one of those methods is shown. Use resolution to derive another prool of the
statement using the other chain of reasoning,

. Trace the operation of the unification algorithm on each of the following pairs of

literals:

(a) fiMarcus)and fiCaesar)

(b) fix) and flz(y)
(c) fiMarcus, g(x,) and fix, g(Caesar, Marcus))

. Consider the following sentences:

¢ John likes all kinds of food.

Apples are food.

& Chicken is food.

e Anything anyone eats and 1sn’t killed by is food.
+ Bill eats peanuts and is still alive.

« Sue eats everything Bill eats.

(a) Translate these sentences into formulas in predicate logic.
{b) Prove that John likes peanuts using backward chaining.
(e) Convert the formulas of part a into clause form,

{d) Prove thal John likes peanuts using resolution.

5.7. EXERCISES 167

(e) Use resolution Lo 8nswer the question, " What food does Sue eat””’

5. Consider the following facts:

« The members of the Elm 5t. Bndge Club are Joe, Sally, Bill, and Ellen.
« Joe is married to Sally.

e Billis Ellen’s brother.

s The spouse of every married person in the club is also in the club.

o The last meeting of the club was at Joe's house.

(a) Represent these facts in predicate logic.

(b) From the facts given above, most people would be able to decide on the
truth of the following additional staiements:

e The last meeting of the club was at Sally’s house.
o Ellen is not married.

Can you construct resolution proofs (o demonstrate the truth of esch of these
statements given the five facts listed above? Do so if possible. Otherwise,
add the facts you need and then construci the proofs.

6. Assume the following facts:

» Steve only likes easy courses.

« Science courses arc hard.

« All the courses in the basketweaving department are easy.
e BK301 is a basketweaving course.

Use resolution to answer the question, “What course would Steve like?”

7. In Section 5.4.7. we answered the question, “When did Marcus die?" by using
resolution to show that there was a time when Marcus died. Using the facts given
in Figure 5.4, and the additional fact

V- ¥y« dead(x, 1)) =3 3y : gty 120 A died(x.12)
there is another way to show thal there was a hine when Marcus died.

(a) Do a resolution proof of this other chain of reasoning.

(b) What answer will this proof give 10 the question, “When did Marcus die?"
8. Suppose that we are attempling to resolve the following clauses:

loves{father(a).a))

— lovesty. x) V loves(x. y)

(a) What will be the result of the unification algorithm when applied to clause

1 and the first term of clause 27
(b) What must be gencrated as a result of resolving these two clauses?

168

CHAPTER 5. USING PREDICATE LOGIC

(¢) What does this example show about the order in which the substitutions
determined by the unification procedure must be performed?

9. Suppose you are given the following facts:

Vx,y.z: g y) A gily. z) — #i(r,2)
Yea. b : suce(a, b) — gtla b)
Yo @ =gi(x, x)

You want 1o prove that
£1(5,2)
Consider the following attempt at a resolution proof:

—gn5,2) ﬂg!(x,y}\f—l.ﬂ'f(,'zlv.el“{l:.ﬂ

\/5)'1- 2/z

—grS, V)V =gy, 2) =suce{a, b) V gi(a, b)

\/fy"{"' 2/b

g5, ¥}V —suce(y, 2) RHx, Y)W =gy, 2) V grx, 2)
\"“-\.. // 3/ vz

. ==

i
U5, V)V =gy, ¥) V —sueeiy. 2)

(2) What went wrong?

{b) What needs 10 be added to the resolution procedure 1o make sure that this
does not happen?

10. The answer to the last problem sugpests that the unification procedure could

i

o¢ simplified by omitting the check that prevents x and f{x) from being unified
together (the occur check). This should be possible since no two clauses will ever
share variables. If x occurs in one, fx) cannot oceur in another. But suppose
the unification procedure is given the following two clauses (in the notation of
Section 5.4.4): '

plx, fix))
p{fta), a)

Trace the execution of the procedure. What does this example show about the

need for the occur check?
What is wrong with the following argument [Henle, 1965]7

@ Men are widely distributed over the earth,
o Socrates is a man.

5.7. EXERCISES 16%

« Therefore, Socrates is widely distributed over the earth

How should the facts represented by these sentences be represented in logic s0
that this problem does not anse?

. Consider all the facts about baseball that are represcnted in the slot-and-filler

structure of Figure 4.5 Represent those same facts as a set of assertions in
predicate logic. Show how the inferences that were derived from that knowledge
in Secrion 4.2 can be derived using logical deduction.

. What problems would be encountered in attempling 10 represent the following

statements in predicate logic? 1t should be possible to deduce the final statement
trom the others.

« John only likes to see French movies.
 It's safe 10 assume a movie is American unless explicitly 10ld otherwise

e The Playhouse rarely shows foreign films.

o People don't do things that will cause them to be in situations that they don’t
like.

» John doesn’t go to the Playhouse very ofien.

Chapter 6

Representing Knowledge Using
Rules

In this chapter, we discuss the use of rules to encode knowledge. This is a particularly
important issue since rule-based reasoning systems have played a very important role
in the evolution of Al from a purely laboratory science into a commercially sigmficant
one, as e see later in Chapter 20.

We have already talked about rules as the basis for a search program. But we gave
little consideration 1o the way knowledge about the world was represented in the rules
{although we can see a simple example of this in Section 4.2). In panticular, we have
been assuming that scarch control knowledge was maintained completely separately
from the rules themselves, We will now rclax that assumption and consider a set of
rules to represent both knowledge sbout relationships in the world, as well as knowledge
about how to salve problems using the content of the rules.

6.1 Procedural versus Declarative Knowledge

Since our discussion of knowledge representation has concentrated so far on the use
of logical assertions, we use logic as a starting point in our discussion of rule-based
systems.

In the previous chapter, we viewed logical assertions as declarative representations
of knowledge. A declarative representation is one in which knowledge is specified,
hut the use 10 which that knowledge is to be put is not given. To use a declarative
representation, we must augment it with & program that specifies what is 10 be done
to the knowledge and how. For example, a set of logical assertions can be combined
with a resolution theorem prover lo give a complele program for solving problems.
There is a different way. though, in which logical assertions can be viewed, namely as
a program. rather than as data 1o a program. In this view, the implication slalements
define the legitimate reasoning paths and the atomic assertions provide the starting
points (or. if we reasen backward, the ending points) of those paths. These reasoning
paths define the possible execution paths of the program in much the same way that
traditional control constructs, such as if-then-eise. definc the execution paths through

171

172 CHAPTER 6. REPRESENTING KNOW LEDGF. USING RULES

traditional programs. In other words, we could view logical assertions as procedural
representations of knowledge. A procedural representation is one in which the control
information that is necessary to use the kriowledge is considered to be embedded in the
knowledge itself. To use a procedural representation, we need 1o augment it with an
interpreter that follows the instructions given in the knowledge.

Actually, viewing logical assertions as code is not a very radical idea, given thaf all
programs are really data to other programs that interpret (or compile) and execute them.
The real difference between the declarative and the procedural views of knowledge lics
in where control information resides. For example, consider the knowledge basc:

man(Marcus)
man(Caesar)

person Cleoparra)

Vx : man(x) — person(x)

Now consider trying to extract from this knowledge base the answer to the question
Jdy : person(y)

We want to bind y to a particular value for which person is true. Our knowledge base
justifies any of the following answers:

v=Marcus
y = Caesar
y = Cleopatra

Because there is more than one value that satisfies the predicate, but cnly one value is
needed, the answer to the guestion will depend on the order in which the assertions are
examined during the search for a response. If we view the assertions as declarative,
then they do not themselves say anything aboul how they will be examined. If we view
them as procedural, then they do. Of course, nondeterministic programs are possible—
for examiple, the concurrent and parallel programming constructs described in Dijksira
[1976), Hoare [1985}, and Chandy and Misra| 1989]. So, we could view these assertions
48 a nondelerministic program whose output is simply not defined. If we do this, then
we have a “procedural” represcntation that aciually contains no more information than
does the “declarative”™ form. But most systems that vicew knowlcige as procedural do
noi do this. The reason for this is that, at least il the procedure is 10 execule on any
sequential or on most existing parallel machines, some decision must e made aboui
the order in which the assertions will be examined. There is no hardware support for
randomness. So if the interpreter must have a way of deciding, there is no real reason
not to specify it as part of the definition of the language and thus o define the meaning of
any particular program in the language. For example, we might specify that assertions
will be examined in the ordes in which they appear in the program and that search will
proceed depth-first, by which we mean that if a new subgoal is established then it will
be pursuced immediately and other paths will only be examined if the new one fails. If
we do that, then the assertions we gave above describe a program that will answer our
question with

52. LOGIC PROGRAMMING [|75

y = Cleopatra

To see clearly the diffcrence between declarative and procesfural representations,
consider the following assertions:

man(Marcus)
man{Caexar)

Y : man{x) —» personix}
personCleopatra)

Viewed declaratively, this is the same knowledge base that we had before. All the
same answers are supported by the system and no one of them is explicitly selected.
But viewed procedurally, and using the control model we used to get Cleapatra as ows
answer before, this is a different knowledge basc since now the answer to our guestion
1s Marcus. This happens because the first siatement that can achieve the person goal is
the inference rule Vx : man{y) — personix). This rule sets up a subgoal 1o find a man.-
Again the statements are examined from the beginning, and now Marcus is found to
satisfy the subgoal and thus also the goal. So Marcus is reported as the answer.

It is important to keep in mind that although we have said that a procedural rep-
resentation encodes conirol information in the knowledge base, it does so only to the
extent that the interpreter for the knowledge base recognizes that control information
So we could have gotten adiffcrent answer to the person question by leaving our original
knowledge base intact and changing the interpreter so that it examines slalements from
last to first (but still pursuing depth-first scarch). Following this control regime, we
report Caesar as our answer.

There has been a great deal of controversy tn Al over whether declarative or proce-
dura! knowledge representation frameworks are better. There is no clearcut answer to
the question. As you can sce from this discussion, the distinction between the twao forms
is often very fuzzy. Rather than try to answer the question of which approach is better,
what we do in the rest of this chapter is to describe ways 1n which rule formalisms and
interpreters can be combined 10 solve problems, We beginwitha mechanism called logic
programming, and then we consider more flexible structures for rule-based systems.

6.2 Logic Programming

Logic programming is & programming language paradigm in which logical assertions
are viewed as programs. as described in the previous section. There are several logic
programming systems in use today, the most popular of which is PROLOG [Clocksin
and Mcllish, 1984, Braiko, 1986]. A PROLOG program is described as a series of
logical assertions, each of which is 2 Horn clause.! A Horn clause is a clause (asdefined
in Section 5.4.1; that has al most one positive literal. Thus p, =p V g, and p — g are
all Hom clauses. The last of these does not look like a clause and it appears o have
two paositive literals. Bul recall from Section 5.4.1 that any logical expression can be
converted 1o clause form. If we do that for this example, the resulting clause is —p 'V g,

¥ + writien in pure PROLOG arc composed only of Hom clauses. PROLOG, 25 an actual pro-
ssmming language, however, allows depantyres from Hom clauses. In the rgst of this section. we it our
discussion to pure PROLOG

174 CHAPTER 6. REPRESENTING KNOWLEDGE USING RUIES

Y @ pet(x) A small(x) — apartmentpet(x)
¥x : car(x) V dog(x) — pet(x)
Yx : poodle(x) - dog(x) A small(x)

poodie(fluffy)

A Representation in Logic
apartmentpet (X) - per(X), small(X)
pet(X) := ecar(X).
pet(X) ;- dog(¥X).
dog(X) :- poodle (X).
small (X} :- poodle(X):

poodle (Eluffy) .

A Representation in PROLOG

Figure 6.1: A Declarative and a Procedural Representation

which is a well-formed Homn clause. As we will see below, when Horn clauses are
written in PROLOG programs, they actually look more like the form we started with (an
implication with at most one literal on the right of the implication sign) than the clause
form we just produced. Some examples of PROLOG Hom clauses appear below.

The fact that PROLOG programs are composed only of Horn clauses and not of
arbitrary logical expressions has two imiportant consequences. The first is that because
of the uniform representation a simple and efficient interpreter can be written. The
second consequence is even more important. The logic of Horn clause svsteins is
decidable (unlike that of full first order predicate logic).

The control structure that is imposed on a PROLOG program by the PROLOG
interpreter is the same one we used at the hbeginning of this chapier to find the answers
Cleopatra and Marcus. The input 10 a4 program is a goal 10 be proved. Backward
reasoning is applied to try 10 prove the poal given the assertions in the program. The
program is read top to bottom, left to right and search is performed depth-first with
backtracking. -

Figure 6.1 shows an example of a simple krowledge base represented in standard
logical notation and then in PROLOG. Both of these representations contain two types
of statements, facts, which contain only constants (i'e.. no variables) and rules, which
do contain variables. Facts represent statements about specific objects. Rules represent
statements aboul classes of ubjects.

Notice that there are several superficial, syniactic differences between the logic and
the PROLOG represemations, including:

I. In logic, variables are eaplicitly guantified. In PROLOG, quantification 1s pro-
vided implicitly by the way the variabies are interpreted (see below). The distinc-
tion betweer variables and constanis Ts made in PROLOG by having all variables

8.2, LOGIC PROGRAMMING 175

begin with upper case letters and all constants begin with lower case letters 0
numbers.

2. In logc. there are explicit symbols for and () and or (V). In PROLOG. there is
an explicit symbol for and (), but there is none for or. Instead, disjunction must
be represented as a list of alternative statements, any one of which may provide
the hasis for a conclusion.

3. Inlogic, imphications of the form™p implies ¢~ are wninenasp = 4. In PROLOG,
the same implication is wrilien vhackward.” as g ;- ©. This form is natura
in PROLOG because the interpreter always works backwards from a goal, and
tnis form causes cvery rule Lo begin with the component that must therefore ke
matched first. This first component is called the head of the rule.

The first two of these differences arise natu rally from the fact that PROLOG programs
are actually sets of Horn clauses that have been transformed as foHows:

1. If the Homn clause contains no negative literals (i.e., it contains a single literal
which is positive), then leave it as itis.

2 Otherwise, rewrite the Hom clause as an implication, combining all of the negative
literals into the antecedent of the implication and leaving the single positive literal
(if there is one) as the consequent.

This procedure causes a clause, which originally consisted of 2 disjunction of literals
{all but one of which were negative), to be ransformed into a single implication whose
antecedent is a conjunction of (whal are now positive) literals. Further, recall that in
2 clause, all variables are implicitly universally quantified. But, when we apply’ this
iransformation (which essentially inverts several steps of the procedure we gave in
Section 5.4.1 for converting to clause form). any variables that occurred in negative
literals and 50 now occur in the antecedent become existentially quantified. while the
variables in the consequent (the head) are still universally quantified. For example, the
PROLOG clause

Pix) 1= Qix, ¥)
is equivalent tu the logical expression
¥x:3y: Qlasy) = Pix)

A key difference between logic and the PROLOG representalion is that the PROLOG
interpreter has a fixed control strategy, and so the assertions in the PROLOG program
define a particular search path to an answer to any quesnon. in contrast, the logical
assertions define only the set of answers that they justify; they themselves say nothing
about how to choose among those answers if there are morc than one

The basic PROLOG control strategy outlined above is simple. Begin witha problem
statement, which is viewed as a goal to be proved. Look for assertions that can prove
the goal. Consider facts, which prove the goal directly, and also consider any rule
whose head maiches the goal. To decide whether a facl or a rule can be applied to the

176 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

current problem, invoke a standard unification procedure (recall Section 5.4.4). Reason
backward from that goal until a path is found that terminates with assertions in the
program. Consider paths using a depth-first search strategy and using backiracking. At
each choice point, consider options in the order in which they appear in the program.
If a goal has more than one conjunctive part, prove the parts in the order in which they
appear, propagating variable bindings as they are determined during unification. We
can illustrate this strategy with a simple example.

Suppose the problem we are given is to find a value of X that satisfies the predicate
apartmentpet (X). We siate this goal to PROLOG as

?- apartmentpet (X) .

Think of this as the input to the program. The PROLOG interpreter begins looking
for a fact with the predicate apartmentpet or a rule with thal predicate as its head.
Usually PROLOG programs arc writien with the facts containing a given predicate
coming before the rules for that predicate so that the facts can be used immediately
if they are appropriate and thic rules will only be used when the desired fact is not
immediately available, In this example, there are no facts with this predicate, though, so
the one rule there is must be used. Since the rule will succeed if both of the clauses on
its right-hand side can be satisfied, the next thing tne \aterpreter does is to iry to prove
cach of them, They will be tried in the order in which they appear. There are no facts
with the predicate pet but again there are rules with it on the right-hand side. But this
time there are two such rules, rather than one. All that is necessary for a proof though is
that one of them succeed. They will be tried in the order in which they occur, The first
will fail because there are na assertions about the predicate cat in the program. The
second will eventually lead 10 success, using the rule about dogs and poodles and using
the fact poocdle (£luffy), This results in the vanable X being bound 1o fluffy
Now the second clause small (X) of the initial rule must be checked. Since X is now
bound to fluffy, the more specific goal, small (£1uffy), must be proved, This oo
can be done by reasoning backward to the assertion poodle (fluffy) . The program
then halts with the result apartmentpet (Fluffy).

Logical negation (~) cannot be represented explicitly in pure PROLOG. So, for
example, i! is not possible 1o encode directly the logical assertion

9x : dog(x) - —cat(x)
Instead. negation is represented implicitly by the lack of an assertion. This leads to
the problem-solving strategy called negation as failure [Clark, 1978). If the PROLOC
program of Figure 6.1 were given the goal

?- cat (fluffy).

it would return FALSE because it is unable to prove that Fluffy is a cat, Unfortunately
this program returns the same answer when given the goal

6.3. FORWARD VERSUS BACKWARD REASONING 177

even though the program knows nothing about Mittens and specifically knows nothing
that might prevent Mittens from being a cat. Negation by failure requires that we
make what is called the closed world assumption. which stales that all relevant. true
assertions are contained in our know!edge base or are denivable from assertions that are
s0 contained, Any assertion that 1s nol present can therefore be assumed 1o be false
This assumption, while often justificd, can causc serious problems when knowledge
bases nre incomplete. We discuss this 1ssue further in Chapter 7.

There is much 10 say on the topic of PROLOG-style versus LISP-style programming.
A great advantage of logic programming is that the programmer need only specily rules
and facts since a search engine is built directly into the language, The disadvantage 15
that the search coatrol is fixed, Alikough it is possible to wnte PROLOG code that uses
search strategies other than depth-first with backtracking, it is difficult w do so. It is
even more difficult to appiy domain knowledge to constrain a search. PROLOG does
allow for rudimentary control of search througha non-logical operator called cur. A cut
can be inserted into a rule to specify a puint thal miy not be backtracked over.

More generally, the fact that PROLOG programs must be composed of a restricicd sel
af logical uperators can be viewed as a limitation of the expressiveness of the language.
Rut the other side of the coin is that it is possible to build PROLOG compilers thal
produce very efficient code.

In the rest of this chapter, we retain the rule-hased nature of PROIOG, but wr
relax a number of PROLOG's design constraints, leading to more flexible rule-based
archatectures.

6.3 Forward versus Backward Reasoning

The object of a search procedure is to discover a path through a problem space from an
initial configuration to a goal state. While PROLOG only searches from a poal stute
there are actually two directions in which such a scarch could procesd:

« Forward, from the starn states

« Backward. from the goal states

The production svstem model of the search process provides an casy way of viewing
forward and backward reasoning as symmelric procestes, Consider the problem of
solving a particular instance of the §-puzzle. The rules to be used for solving the puzzle
can be written as shown in Figure 6.2 Using those rules we could antempt to solve the
puzzle shown back in Figure 2.12 in one of lwo ways:

o Reason forward fiom the initial states. Begin building a tree of move sequences
that might be solutions by starting with the initial configuration(s) at the roct of
the trec. Generate the next level of the tree by finding all the rules whose fefr sides
match the root node and using their right sides 1o create the new configurations.
Genesate the next level by taking each node generated at the previous level
and applying to it all of the rules whose left sides match it. Continue unti! 2
configuration that matches the goal state is generated

178 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

Assume the areas of the tray are numbered:

112)3
41516
7189

Square | empty and Square 2 contains til= n -
Square 2 empty and Square | contains tile n

Square | empty and Square 4 contains tile i -
Square 4 empty and Square | contains tile »

Square 2 empty and Square 1 contains til. n -
Square | empty and Square 2 contains tile n

Figure 6.2: A Sample of the Rules for Solving the §-Puzzle

* Reason backward from the goal states. Begin building a tree of move sequences
that might be solutions by starting with the goal configuration(s) at the root of the
tree. Generate the next level of the tree by finding all the rules whose right sides
malch the root node. These are all the rules that, if only we could apply them,
would generate the state we want. Use the left sides of the rules to generate the
nodes at this second level of the tree. Generate the next leve) of the tree by taking
each node at the previous level and finding all the rules whose right sides match
it. Then use the corresponding left sides to generate the new nodes. Continue
until & node that matches the initial state is generated. This method of reasoning
backward from the desired final state is ofien calied goal-directed reasoning.

Notice that the same rules can be used both to reason forward from the initial state
and 1o reason backward from the goal state. To reason forward, the left sides (the
preconditions) arc matched against the current statc and the rignt sides (the resulis) are
used 10 generate new nodes until the goal is reached. To reason backward, the right
sides are matched against the current node and the left sides arc used to gencrate new
nodes representing new goal states 1o be achieved. This continues until one of these
goal states is matched by an initial state,

In the case of the 8-puzzle, it does not make much difterence whether we reason
forward or backward: about the same number of paths will be explored in either case
But this is not always true. Depending on the topology of the problem space, it may be
significantly more efficient to search in one direction rather than the other.

Four factors influence the question of whether it is better to reason forward or
backward:

® Are there more possible start states or goal states? We would like to move from
the smaller set of states (o the larger (and thus easier te find) sei of <taizs

63. FORWARD VERSUS BACKWARD REASONING 179

e In which direction is the branching factor (i.e., the average number of nodes that
can be reached directly from 3 single node) greater? We would like to proceed in
the direction with the lower branching factor.

« 'Will the program be asked to justity s reasoning process (0 a user? If so. 118
important (o proceed in the dircction that corresponds more closely with the way
the user will think.

e What kind of event is going (o trigger a problem-solving episode? 1f it is the
arrival of & new fact, forward reasoning makes sense. If itis a query 1o which a
response is desired, backward reasoning is more natural,

A few examples make these issues clearer. Tt seems easier todrive from an unfamiliar
place home than from home to an unfamiliar place. Why is this? The branching facior is
roughly the same in both directions (unless one-way streets are laid out very strangely).
But for the purpose of finding our way around, there are many more locations that count
as being home than there are locations that count as the unfamiliar target placc. Any
place from which we know how 1o get home can be considered as equivalent to home.
If we can get to any such place, we can gcl hoine easily. But in order to find a route from
where we are to an unfamiliar place, we pretly imuch have to be already at the unfamiliar
place. So in going toward the unfamiliar place, we are aiming ata much smaller target
than in going home. This suggests that if our starting position is home and our goal
position is the unfamiliar place, we should plan our route by reasoning backward from
the unfamiliar place.

On the other hand, consider the problem of symbolic intcgration. The problem
space is the set of formulas, some of which centain integral expressions. The stan stale
is a particular formula confaining some integral expression. The desired goal state is
a formula that is equivalent to the initial one and that does not contain any integral
expressions. So we begin with a single casily identified start state and a huge number
of possible goal states. Thus 10 salve this problem, it is betler (o reason forward using
the rules for integration to (ry lo gencraie an integral-free expression than to start with
arbitrary integral-frec expressions, use the rules for differentiation, and Lry to gencraie
the particular integral we arc trying to solve. Again we want to head toward the largest
target; this time that means chaining forward.

These two examples have illustrated the importance of the selative number of start
states to goal states in determining the opiimal direction in which 10 cgarch when the
branching factor is approximately the same in both directions. When the branching
factor is not the same, however, 1t must also be taken 1nto sccount

Consider again the problem of proving theorems in some particular domamn of
mathematics. Our goal state is the particular theorem to be proved. Our initial states
are normally a small set of axioms. Neither of these sets is significantly bigger than the
other. But consider the branching factor in each of the two directions. From a small
set of axioms we can derive a very large number of theorems. On the other hand, this
farge number of theorems must go back 1o the small set of axioms. So the branching
factor is significantly greater going forward from the axioms to the theorems than it is
going backward from theorems 10 axioms. This suggests that it would be much better
to reason backward when trying to prove theorems. Mathematicians have long realized
this [Polya, 1957], as have the designers of theorem-proving programs.

180 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

The third factor that determines the direction in which search should proceed is the
need (o generate coherent justifications of the reasoning process as it proceeds, This is
ofien crucial for the acceptance of programs for the performance of very important tasks.
For example, doctors are unwilling to accept the advice of a diagnostic program that
cannot explain i1s reasoning to the doctors’ satisfaction. This issue was of concern to the
designers of MYCIN [Shortliffe, 1976). a program that diagnoses infectious dscases.
It reasons backward from its goal of determining the cause of a patient’s illness. To
do that, it uses rules that tell it such things as “If the organism iias the following set of
characteristics as determined by the lab results, then it is likely that it is organism x."
By reasoning backward using such rules, the Program can arswer questions like “Why
should [perform that test you just asked for?” with such answers as “Because it would
help to determine whether organism x is present.” (For a discussion of the cxplanation
capabilities of MYCIN, see Chapter 20.)

Most of the search techniques described in Chapter 3 can be used to search either
forward or backward. By descri bing the search process as the application of 1 set of
production rules, it is easy to describe the specific search algorithms without reference
to the direction of the search.?

We can also search both forward from the start state and backward from the goal
simultaneously until iwo paths meet somewhere in between. This strategy is called
bidirectional search. It seems appealing if the number of nodes at each siep grows
cxponentially with the number of steps that have been taken. Empirical results [Pohl,
1971] suggest that for blind search, this divide-and-conquer strategy is indeed effective.
Unfortunately, other results [Pohl, 1971: de Champeaux and Sint, 1977) suggest that
for informed, heurisiic search it is much less likely o be so. Figure 6.3 shows why
bidirectional search may be ineffective. The two searches may pass ea-h other, resulting
in more work than it would have taken for one of them, on iis own, to have finished.
However, if individual forward and backward steps arc performed as specified by a
program that has been carefully constructed to exploit cach in exactly those situations
where it can be the most profitable, the results can be more encouraging. In fact,
many successful Al applications have been written using a combination of forward and
backward reasoning, and most Al programming environments provide explicit support
for such hybrid reasoning.

Althoughiin principle the same set of rules can be used for both forward and backward
reasoning, in practice it has proved useful to define two classes of ruies, each of which
encodes a particular kind of knowledge.

e Forward rules, which encode knowledge about how to respond fo certain inpu;
configurations.

 Backward rules, which encode knowledge about how to achieve particular goals,

By separating rules into these two classes, we essentially add to each rule an addi-
tional piece of information, namely how it should be used in problem solving. In the
next three sections, we describe in more detail the two kinds of rule systems and how
they can be combined

?One excepiion 1o this is the means-crids analysis iechnique, described in Section 3.6, which proceeds not
hynﬂhgmmsﬁnmhaﬁshdhwﬁwhﬂbymbdqdihwhmmemmmum
lw.w.uum&mmsmhlhxtwwmmm. "

6.3. FORWARD VERSUS BACKWARD REASONING 181

<

Backward search asilh

explored hffl/-...-
' Goal Sies

Start States

Figure 6 3: A Bad Use of Heuristic Bidirectional Search

6.3.1 Backward-Chaining Rule Systems

Rackward-chaining rule systems, of which PROLOG is an example, are good for goal
directed problem solving. For example, a query system would probably use backward
chaining 10 reason about und answer user questions.

In PROLOG, rules are restricted to Horn clauses. This allows for rapid indexing
because all of the rules for deducing a given fact share the same rule head. Rules are
matched with the unification procedure. Unification tries 1o find a set of bindings for
variables to equate u (sub)goal with the head of some rule. Rulesina PROLOG program
are matched in the order in which they appear.

Other backward-chaining systems allow for more compiex rules. In MYCIN, for
example, rules can be augmented with probabilistic certainty factors to refiect the fact
that some rules are more reliable than others. We discuss this in more detail in Chapter 8.

6.3.2 Forward-Chaining Rule Systems

Instead of being directed by goals, we sometimes wani (o be directed by incoming data.
For example, suppose you sense searing heat near your hand. You are likely lo jerk your
hand away. While this could be construed as goal-directed behavior, it is modeied more
naturally by the recognize-act cycle churactenistic of forward-chaining rule systems. In
forward-chaining systems, left sides of rules are matched against the state descripuion.
Rules that match dump their right-hand side assertions into the state, and the process
repeats.

Matching is typically more complex for forward-chaining sysiems than backward
ones. For example, consider rule that checks for some condition in the state description
and then adds an assertion. After the rule fires, its conditions ure probably still valid,
so it could fire again immediately. However, we will need some miechanism to prevent
repeated firings, especially if the state remains unchanged

While simple matching and control strategics arc possible, most forward-chaining
systems (c.g., OPS5 [Brownston ef al., 1985]) implement highly efficient matchers and
supply several mechanisms for preferring one rule over another. We discuss matching
in more detail in the next section.

182 CHAPTER 6. REPRESENTING KNOWIEDGE USING RULES

6.3.3 Combining Forward and Backward Reasoning

Sometimes certain aspects of a problem are best handled via forward chaining and other
aspects by backward chaining. Consider a forward-chaining medical di 4gnosis program,
It might accept twenty or so facts about a patient’s condition, then forward chain on
those facts to try to deduce the nature and/or cause of the disease. Now suppose that
al some point, the left side of a rule was nearly satislicd—say, ninc out of ten of its
preconditions were met. [t might be efficient to apply backward reasoning to satisfy the
tenth precondition in a directed manner, rather than wait for forward chaining to supply
the fact by accident. Or perhaps the tenth condition requires further medical iests. In
that case, backward chaining can be used to query the user.

Whether it is possible to use the same rules for both forward-and backward reasoning
also depends on the form of the rules themselves. Ifboth left sides and right sides contain
pure assertions, then forward chaining can match assertions on the left side of a rule and
add to the statc description the assertions on the right side, But if arbitrary procedures
arc allowed as the right sides of riles. then the rules will not be reversible. Some
production languages allow only reversible rules; others do not. When irreversible rules
are used, then & commitment to the direction of the search must be made at the time the
rules are written. But, as we suggested above, this is often a useful thing to do anyway
because it allows the rule writer to add control knowledge 1o the rules themselves.

6.4 Matching

So far, we have described the process of using search 1o solve problems as the application
of appropriate rules 1o individual problem states 1o generaie now siales to which the rules
can then be applied, and so forth, until a soluticn is found. We have suggested thai clever
search involves choosing from among the rules that can be applied a1 a particular point,
the ones that are most likely to lead to a solution. But we have said little about how we
extract from the entire collection of rules those that can be applied at a given polnt. To
do so requires some kind of matching between the current state and the preconditions of
the rules. How should this be done? The answer to this question can be critical to the
success of a rule-based system. We discuss a few proposals below

6.4.1 Indexing

One way to select applicable rules is todo asimple seurch throughall the rules, comparing
each one's preconditions Lo the current state and extracting all the ones that maich, But
there are two problems with this. simple solution:

¢ In order 10 solve very interesting problems, it will be necessary 10 use a large
number of rules. Scanning through all of them at every step of the search would
be hopelessly ineflicient

e Itis not always immediately obvious whether a rule’s preconditions are satisfied
by a particular state.

Somctimes there are easy ways to deal with the first of these problems. Instead of
scarching through the rules, usc the current state as an index into the rules and select the

0.4. MATCHING 183

o[l 8w eialk H[alklvvaax
(212224222 2/2/2]122 221
4 s | bid]
3 e N

(RIRR|R|R[R[R(R RIA[RIR] [AIAIA
[EIHARDILIIL] DIERTARIIL

White White
Figure 6.4: One Legal Chess Move

While pawn at
Square(file e, rank 2)

ARD move pawn from
i k 3)
Sﬂu:::e:::e e oot - Square{file e, rank 2)
E:I::QD to Square(tile e, rank 4)
Square(file ¢, rank 4)
is emipty

Figure 6.5: Another Way 10 Describe Chess Moves

malching ones immediately. For example, consider the legal-move generation rule for
chess shown in in Figure 6.4, To be able to access the appropriatc rules immediately,
all we need do is assign an mdex to each board position. This can be done simply
by treating the bourd Jescription as a large number. Any reasonable hashing function
can then be used to treat that pumber as an index into the rules All the rules thn
describe a given board position will be stored under the same key and so will be found
together. Unfortunately, this simple indexing scheme only works because preconditions
of rules match exact board configurations. Thus the matching process is easy but af
the prige of complete lack of generality in the statement of the rules. As discussed o
Section 2.1, it is often better to write rules in a morc general form. such as thai shown
in Figure 6.5, When this is done, such simple indexing 1s not possible In fact, thew
s often a trade-off between the ease of writing mifes (which is mereased by the use of
high-level descriptions) and the simplicity of the matching process (which is decrea-ed
by such descriptions).

Al of thisdoes not mean that indexing cannot be helptuleven when the precondibons
of rules are stated as fairly high-level predicates. In PROLOG and many theorem-
proving sysiems, for example, rules are indexed by the predicates they contain, so all the
rules that could be applicable to proving a particular fact can be accessed fanrly quickly.

184 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

In the chess example, rules can be indexcd by picces and their positions. Despite some
limitations of this approach, indexing in some form is very important in the efficieni
operation of rule-hased systems.

6.4.2 Matching with Variables

The problem of selecting applicable rules is made more difficult when preconditions are
itol stated as exact descriptions of particular situations bui rather describe properties {of
varying complexity) that the situations must have. [t often turms out that discovering
whether there is a match between a particular situation and the preconditions of a given
rule must itself involve a significant search process.

If we want 1o match a single condition against a single element in a state description,
then the unification procedure of Section 5.4.4 will suffice. However, in many rule-
based systems, we need 1o compute the whole set of rules that match the currenl state
description. Backward-chaining systems usually use depth-first backtracking to select
individual rules, but forward-chaining systems generally employ sophisticated conflicr
resolution strategies \o choose among the applicable rules.’ While it is possible to apply
unification repeatedly over the cross product of preconditions and state description
clements, it is more efficient to consider the many-many maich problem, in which many
rules are maiched against many elements in the state description sumultaneonsty.

One efficient many-many match algorithm is RETE, which gains efficiency from
three major sources:

» The temporal nature of data. Rules usually do not alier the state descripnion
radically. Instead, a rule will typically add one or iwo elements, or perhaps delete
one or two, but most of the state description remains the same. (Recall our
discussion of this as part of our treatment of the frame problem in Section 4.4.) If
a rule did not maich in the previous cycle, it will most likely fail to apply in the
current cycle. RETE maintains a network of rule conditions, and il uses changes
in the state description to determine which new rules might apply (and which
rules might no longer applv). Full matching 1s only pursued for candidates that
could be affected hy incoming or outgoing data

e Struciural similarity in rules. Different rules may share a large number of pre-
conditions. For example, consider rules for identifying wild animals. One rule
concludes jaguar(x) if mammal(x), feline(x), <armivorous(x), and has-spots(x).
Another rule concludes riger(x) and is identical to the first rule except that it
replaces figs-spots with has-stripes. 1f we match the two rules independently, we
will repeat a lot of work unnecessarily. RETE stares the rules so that they share
structures in memory: sets of conditions that appear in several rules are matched
(at most) once per cycle.

e Persistence of variable binding consistency. While all the individual preconditions
of a rule might be met, there may be variable binding conflicts that prevent the
rule from firing. For example, suppose we know the facts son{Mary. Joe) and
son(Bill. Bob). The individual preconditions of the rule

*Conflict resolution is discussed in the next section

44, MATCHING 8

son(x,y) A sonly,z) = grandparentis. 2)

can be matched, but not in a manner that satisfies the constraint imposed by the
variable y. Fortunately, it is not necessary 10 compute binding consistency from
scratch every time a new condition is satisfied. RETE remembers its previous
calculations and is able to merge new binding information efficiently.

For more details about the RETE match algorithm. see Forgy [1982]. Other matching
algorithms (e.2.. Miranker [1987] and Oftazer [1987]) take different stands on how much
time to spend on saving stale information between cycles. They can be more or less
~fficient than RETE. depending on the types of rules written for the doman and on the
degree of hardware parallelism available.

6.4.3 Complex and Approximate Matching

A more complex malching process is required when the preconditions of a rule specity
requited propertics that arc not stated explicitly in the description of the current state.
In this case, a separate set of rules must be wsed to describe how some properties can be
inferred from others.

An even more complex matching process is required if rules should be applied if
their preconditions approvimately match the current situation. This 1s often the case
in situations involving physical descriptions of the world. For example, a speech-
understanding program must contain rules that map from a description of a physical
waveform to phones (instances of English phonemes, such as p or d). There is so much
variability in the physical signal, as a result of hackground noise, differences in the
way individuals speak, and so forth, that one can hope 1o find only an approximate
maich between 1he rule that describes an ideal scund and the input that describes an
unideal world. Approximate matching is particularly difficult to deal with because as we
increase the tolerance allowed in the match, we also increase the number of rules that will
match, thus increasing the size of the main search process. But approximate matching
1« nevertheless superior 1o exact matching in situations such ax speech understanding,
where gxact matching may often result in no rules being matched and the search process
coming to & grinding halt. Although symbolic techniques for approximate matching
exist. there is another, very different approach that can be used to solve this problem.
We discuss it in detail in Chapter 18 where we describe connectionist systems (also
called .ieural nets), -

For some problems, almost all the action is in the matching of the rules to the
problem state. Once that 15 done. so few rules apply that the remaining search is irivial
This was the case, for example, in ELIZA [Weizenbaum, 1966}, an early Al program
that simulated the behavior of a Rogerian therapist. A fragment of a dialogue between

“ELIZA and a user is shown in Figure 6.6, ELIZA’s knowledge about both English and
psychology was coded in a set of simple rules. Figurc 6.7 shows some ELIZA like
rules.,

ELIZA operated by maiching the left sides of the rules against the user’s last sentence
and using the appropriate right side to generale a response For example, if the user
typed “My brother 1s mean to me,” ELIZA might respond, “*Who else in your family
is mean to you?" or “Tell me more about your family.” The rules were indexed by
keywords so only a few had actually to he matched against a particular scatence. Some

186 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

Person: Men are all alike.

ELIZA: In what way?

Person: They're always bugging us about something or other.
ELIZA: Can you think of a specific example?

Person: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here.

Person: He says I'm depressed much of the time.

ELIZA: Tam sorry 1o hear you are depressed,

Person: Its true. I am unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?
Person: 1 need some help, that much seems certain,

ELIZA: What would it mean to you if you got some help?
Person: Perhaps 1 could leamn to get along with my mother.
ELIZA: Tell me more about your family.

Figure 6.6: A Bit of a Dialogue with ELIZA

(X me Y)

(I remember X)

(My {family-member} is Y)
(X {family-member} Y)

— (XyouY)

— {Why do remember X just now?)
= (Who else in your family is Y?)
— (Tell me more about your family)

Figure 6.7: Some ELIZA-like rules

of the rules had no lefi side, so the rulc could apply anywhere. These rules were used
i nn other rules matched and they generated replies such as “Tell me more about that.”
Notice that the rules themselves cause a form of approximate matching to occur. The
patterns ask about specific words in the user’s sentence. They do not need 1o match
entire sentences. Thus a preat variety of sentences can be maiched by a single rule, and
the grammatical complexity of English is preity much ignored. This accounts both for
ELIZA's major strength, its ability to say something fairly reasanable almest all of the
time, and its major weakness, the superficiality of its understanding and its ability to be
led completely astray. Approximate maiching can easily lead to both these results.

As if the matching process were not already complicated enough, recall the frame
problem mentioned in Chapter 4. One way of dealing with the frame problem is to avoid
storing entire state descriptions at each node but instead 1o store only the changes from
the previous node. If this is done, the matching process will have to be modified to scan
backward from a node through its predecessors. looking for the required objects.

0.4. MATCHING ! 187

6.4.4 Conflict Resolution

The result of the matching process is a list of rules whose antecedents have matched the
current state description along with whatever variable bindings were generated by the
matching process. It is the job of the search method to decide on the order in which
rules will be applied. But sometimes it is useful to incorporate some of that decision
making into the matching process. This phase of the matching process is then called
conflict resolution.

There are three basic approaches the problem of conflict resolution in a production
system’

s Assign a preference based on the rule that matched.
o Assign a preference based on the objects that maiched.

« Assign a preference based on the action that the matched rule would perform.

Preferences Based on Rules

There are two common ways of assigning a preference based on the rules themselves.
The first, and simplest, is 1o consider the rules 10 have been specified in a particular
order, such as the physical order in which they are presented 1o the system. Then
priofity is given to the rules in the order in which they appear. This is the scheme used
in PROLOG.

The other common rule-directed preference scheme is 10 give priority (o special case
rules over rules that are more general. We ran across this in Chapter 2, in the case of
the water jug problem of Figure 2.3. Recall that rules 11 and 12 were special cases of
rules 9 and 5, respectively. The purpose of such specific rules is to allow for the kind of
knowledge that expert problem solvers use when they solve problems directly, without
search. If we consider all rules that maich, then the addition of such special-purpose
rules will increase the size of the search rather than decrease it. In order to prevent that,
we build the matcher so that it rejects rules that are more general than other rules that
also match, How can the matcher decide that onc rule is more general than another?
There are a few easy ways:

o If the set of preconditions of one rule contains all the pfecondniom of another
(plus some others), then the second rule is more gencral than the first.

s If the preconditions of one rule are the same as those of another except that in the
first case variables are specified where in the second there are constants, then the
first rule is more general than the second.

Preferences Based on Objects

Another way in which the matching process can ease the burden on the search mechanisin
istootdermcnmdzsitﬁndahasadontheimpmwmofm:nbjmsthatmmudul.
There are a variety of ways this can happen. Consider again ELIZA, which matched
pwwqim:m'smmiuorﬂatoﬁndnmlemgmauply.ﬂnpmm
looked for specific combinations of important keywords. Often an input sentence

188 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

contained several of the keywords that ELIZA knew, If that happened, then ELIZA
made usc of the fact that some keywords had been marked as being more significant
than others. The pattern matcher returned the match involving the highest priority
keyword. For example, ELIZA knew the word “I” as a keyword. Matching the input
sentence “1 know everybody laughed at me” by the keyword “I" would have enabled
i1 1o respond, “You say you know everybody laughed at you." But ELIZA also knew
the word “everybody™ as a keyword. Because “everybody™ occurs more rarely than *1,”*
ELIZA knows it to be more semantically significant and thus 10 be the clue 10 which
it should respond. So it will produce a response such as “Who in particular are you
thinking of?" Notice that priority matching such as this is particularly important if only
one of the choices will ever be tried. This was true for ELIZA and would also be true.
say, for a person who, when leaving a fast-buming roon. must choose between ruming
off the lights (normally a good thing to do) and grabbing the baby (2 mere unportant
thing to do).

Another form of priority matching can occur as a function of the position of the
matchable objects in the current state description. For example. suppose we want to
model the behavior of human short-term memory (STM). Rules can be matched against
the current contents of STM and then used to generate actions, such as producing output
to the environment or storing something in long-term memory. In this situation, we
might like to have the matcher first ry lo malch against the objects that have mosi
recently entered STM and only compare against older clements if (he newer elements
do not trigger a match. For a discussion of this method 1s a conflict resolution strategy
in a production system, see Newell [1973].

Preferences Based on States

Suppose that there are several rules waiting to fire. One way of selecting among them is
to fire all of them temporarily and to examine the resulis of cach. Then, using a hewristic
function that can evaluate each of the resulting states, compare the merits of the results,
and select the preferred one. Throw away (or maybe keep for later it necessary) the
remaining ones.

This approach should look familiar—it is identical 1o the best-first search procedure
we saw in Chapter 3. Although conceptually this approach can be thought of as a
conflict resolution strategy, it is usually implemented as a search control technique that
operates on top of the states generated by rule applications. The drawback to this design
is that LISP-coded search control knowledge is procedural and therefore difficult 1o
modify. Many Al search programs, especially ones that leam from their experience,
represent their control strategies declaratively. The next section describes some methods
for capturing knowledge about control using rules.

6.5 Control Knowledge

A major theme of this book is that while intelligent programs require search, search is
computationally intractable unless it is constrained by knowledge about the world. In
large knowledge bases that conlain thousands of rules, the intractability of search is an
overriding concern. When there are many possible paths of reasoning, it 1s critical that

43, CONTROL KNOWLEDGE 189

Under condinons A and B,
Rules that do {not} mention X
{ar all,
in their lefi-hand side
in their right-hand side }
will
{definitely be useless,
probably be useless

probably be especially useful
definitely be especially useful }

Figure 6.8; Syntax fora Conirol Rule [Davis, 1980]

fruitless ones not be pursued. Knowledge about which paths are most likely to lead
quickly to a goal state is often called search control knowiedge. It can take many forms:

1. Knowledge about which states are more preferable to others.

"~

. Knowledge about which rule 10 apply in a given situation.
3. Knowledge about the order in which to pursue subgoals.
4. Knowledge about useful sequences of rules to apply.

In Chapter 3. we saw how the first type of knowledge could be represented with
heuristic evaluation functions. There are many ways of representing the other types
of control knowledge. For example, rules can be labeled and partitioned. A medical
diagnosis system might have one set of rules for reasoning aboul bacteriological diseases
and another set for immunological diseases. If the system is trying 1o prove a particular
fact by backward chaining, it can probably climinate one of the two rule sets. depending
on what the fact is. Another method |Etzioni, 1989] is to assign cost and probability-
of-success measures to rules. The problem solver can then use probabilistic decision
analysis to choose a cost effective allernative at ezch point in the search.

By now it should be clear that we are discussing how to represent knowledge
about knowledge. For this reason, search control knowledge is sometimes called meta-
knowledge. Davis [1980] first pointed out the need for meta-knowledge, and suggested
that it be represented declaratively using rules. The syntax for one type of control rule
is shown in Figure 6.8. :

A nember of Al systems represent their control knowledge with rules. We look
briefly at two such systems, SOAR and PRODIGY. i

SOAR [Laird et al., 1987] is a general architecture for building intelligent systems.
SOAR is based on a sct of specific, cognitively motivated hypotheses about the structure
of human problem solving. These hypotheses are derived from what we know about
short-term memory, practice effects, etc. In SOAR:

1. Long-term memory is stored as a set of productions (or. rules).

190 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

2. Shor-term memory (also called working memory) is a buffer that is affected
by perceptions and serves as a storage area for facts deduced by rules in long-
term memory. Working memory is analogous to the state description in problem
solving.

3. All problem-solvin gactivity takes place as state space traversal. There are several
classes of problem-solving activities, including reasoning about which states 10
explore, which rules to apply in a given situation, and what effects thosc rules
will have.

4. Allintermediate and final resulis of problem solving are remembered (or, chunked)
for future reference.?

The third feature is of most interest to us here When SOAR is given a stant state
and a goal state, it sets up an initial problem space. In order to take rhe first step in that
space, it must choose a rule from the set of applicable ones. Instead of employing a
fixed conflict resolution strategy, SOAR considers that choice of rules 1o be a substantial
problem in its own right, and it actually sets up another, auxiliary problem space. The
rules that apply in this space look something like the rule shown in Figure 6.8, Operator
preference rules may be very general, such as the ones described in the previous section
on conflict resolution, or they may coniain domain-specific knowledge.

SOAR also has rules for expressing a preference for applying a whole sequence af
rules in a given situation. In leaming mode, SOAR can take useful sequences and build
from them more complex productions that it can apply in the future,

We can also write rules based on preferences for some states over others. Such rules
can be used to implement the basic search stralegies we studied in Chapters 2 and 3.
For example, if we always prefer to work from the state we generated last, we will get
depth-first behavior. On the other hand, if we prefer states that werz generaied earlier in
time, we will get breadth-first behavior. If we prefer any state that looks Belter than the
current state (according to some heuristic function), we will get il climbing. Best-first
scarch results when state preference rules prefer the state with the highest heuristic
score. Thus we see that all of the weak methods are subsumed by an architecture that
reasons with explicit search control knowledge. Different methods may be employed
for different problems, and specific domain knowledge can override the more general
strategies.

PRODIGY [Minton er al., 1989] is a general-purpose problem-solving system that
incorporates several different leaming mechanisms. A good deal of the leamning in
PRODIGY is directed at automatically constructing a set of control rules to improve
search ina particular domain. We return to PRODIGY 's learning methods in Chapter 17,
but we mention here a few facts that bear on the issue of search cotrol rules. PRODIGY
can acquire control rules in a number of ways:

» Through hand coding by programmers.

¢ Through a static analysis of the domain’s opcralors.

* Through looking at traces of its own problem-solving hehavios.
*We reiuzn 10 chunking in Chapter 17.

43, CONTROL KNOWLEDGE ' 161

PRODIGY leamns control rules from its experience, but unlike SOAR it also leams
from its failures. 1f PRODIGY pursues an unfruitful path, it will try to come up with
an explanation of why that path failed. It will then use that explanation to build control
knowledge that will help it avoid fruitless search paths in the future.

One reason why a path may lead to difficulties is that subgoals can interact with one
another. In the process of solving one subgoal, we may undo our selution of a previous
subgoal. Search control knowledge can tell us something about the order in which we
should pursuc our subgoals. Suppose we are faced with the problem of building a piece
of wooden fumiture. The problem specifies that the wood must be sanded, sealed, and
painted. Which of the three goals do we pursue first? To humans who have knowledge
about this sort of thing, the answer is clear. An Al program, however, might decide
to try painting first, since any physical object can be painted, regardless of whether it
has been sanded. However, as the program plans further, it will realize that one of the
effects of the sanding process is to remove the paint. The program will then be forced 1o
plan a repainting step or else backtrack and try working on another subgoal firsi. Proper
search control knowledge can prevent this wasted computational effort. Rules we might
consider include:

 If a problem's subgoals include sanding and painting, then we should solve the
sanding subgoal first

 If subgoals include sealing and painting, then consider whal the object is made
of. If the object is made of wood, then we should seal it before painting it.

Before closing this section, we should touch on a couple of seemingly paradoxical
issues concerning control rules. The first issue is called the wiility problem [Minton,
1988]. As we add more and more control knowledge to a system, the system is able to
search more judiciously. This cuts down on the number of nodes it expands. However, in
deliberating about which sicp to take next in the search space, the system must consider
all the control rules. If there are many control rules, simply matching them all can be
very lime-consuming. 1 is easy 10 reach a situadon (especially in sysiems that generate
control knowledge automatically) in which the system’s problem-solving efficiency, as
measured in CPU cycles, is worse with the control rules than without them, Different
systems handle this problem in different ways. as demonstrated in Section 17.4.4.

‘The second issue concerns the complexity of the production system interpieter. As
this chapter has progressed, we have seen a trend toward explicitly representing more
and more knowledge about how scarch should proceed. We have found it useful to
create meta-rules that talk about when to apply other rules. Now, a production system
interpreter must know how to apply various rules and meia-rules, so we should expect
that our interpreters will have to become more complex as we progress away from
simple backward-chaining systems like PROLOG. And yel, moving to a declarative
representation for control knowledge means that previously hand coded LISP functions
can be eliminated from the interpreter. In this sense. the interpreter becomes more
sircamlined.

192 CHAPTER 6. REPRESENTING KNOWLEDGE USING RULES

6.6 Summary

In this chapter, we have seen how to represent knowledge declaratively in rule-based
systems and how to reason with that knowledge. We began with a simple mechanism.
logic programming, and progressed to more complex production system models that
can reason both forward and backward, apply sophisticated and efficient matching
techniques, and represent their search control knowledge in rules,

In later chapters, we expand further on rule-hased systems. In Chapter 7, we describe
the use of rules that allow default reasoning to occur in the absence of specific counter
evidence. In Chapter 8, we introduce the idea of aitaching probabilistic measures to
rules. And, in Chapter 20, we look at how rule-based sysiems are being used (o solve
complex, real-world problems.

The book Pattern-Directed Inference Systems [Watcrman and Hayes Roth, 1978] is
a collection of papers describing the 'wide variety of uscs to which production sysiems
have been putin Al Its introductionprovidesa good overview of the subject. Brownston
ef al. [1985] is an introduction to programming in productien rules, with an emphasis
on the OPSS5 programming language.

6.7 Exercises

I. Consider the following knowledge base:
Vx : ¥y : cat(x) A fish(y) — likes — to — eat(x, y)
Vx : calico(x) — cat(x)
Wx : tuna(x) — fishix)
tuna(Charlie)
tuna(Herb)
calicolPusr)

{a) Convert these wif's into Horn clauses

(b) Convert the Hom clauses into a PROLOG program.

(c) Write a PROLOG query corresponding to the guestion, “What does Puss
like to eat”" and show how it will be answered by your program,

(d) Write another PROL.OG program thai corresponde 1o the same set of wif's
but returns a differeni answer 1o the same guery,

2. A problem-solving scarch can proceed cither forward (from a known start state to
a desired goal state) or backward (from a goal state 10 4 stan staie). 'What factors
determine the choice of direction for a particular problem?

3. If a problem-solving scarch program were to be written 1o solve each of the fol-
lowing types of problems, determine whether the search should proceed forward
or backward:

{(a) water jug problem
(b) blocks world
(c) natural language understanding

6.7. EXERCISES 193

4. Program the interpreter for a production system. You will need to build a table
that holds the rules and a matcher that compares the current state to the left sides
of the rules. You will also need to provide an appropriate control strategy to select
among competing rules. Use your interpreter as the basis of a program that solves
water jug problems.

Chapter 7

Symbolic Reasoning under
Uncertainty

So far, we have described techniques for reasoning with a complete, consistent, and
unchanging model of the world, Unfortunately, in many problem domains it is not
possible to create such models. In this chapter and the next, we explore techniques for
solving problems with incomplete and uncertain models.

7.1 Introduction to Nonmonotonic Reasoning

In theirbook, The Web of Belief, Quine and Ullian [1978] provide an excellent discusston
of technigues that can be used to reason cffectively even when a complete, consistent,
and constant model of the world is not available. One of their examples, which we call
the ABC Murder story, clearly illustrates many of the main issues that such techniques
must deal with. Quoting Quine and Ullian [1978]:

Let Abbott, Babbitt, and Cabot be suspects in a murder case. Abbott has
an alibi, in the register of a respectable hotel in Albany. Babbitt also
has an alibi, for his brother-in-law testified that Babbitt was visiting him
in Brooklyn at the time. Cabot pleads alibi toc, ciaiming to have been
watching a ski meet in the Catskills, but we have only his word for that. So
we believe

(1) That Abbott did not commit the crime,
(2) That Babbitt did not,
(3) That Abbott or Babbitt or Cabol did.

But presently Cabot documents his alibi—he had the good luck to have
been caught by television in the sidelines at the ski meet. A new belief is
thus thrust upon us:

(4) That Cabot did not.

|16&

196 CHAPTER 7. SYMBOLIC REASONING UNDLF UNCERTAINI

Our belicfs (1) through (4) are inconsistent, so we must choose one for
rejection. Which has the weakest evidence? The basis for (1) in the hotel
register is good, since it is a fine old hotel. The basis for (2) is weaker,
since Babbitt's brother-in-law might be lying. The basis for (3) 1s perhaps
twofold: that there is no sign of burglary and that only Abbott, Babbtt,
and Cabot seem to have stood to gain from the murder apart from burglary.
This exclusion of burglary seems conclusive, but the other consideration
does not; there could be some fourth heneficiary. For (4), finally, the basis
is conclusive: the evidence from television, Thus (2) and (3) are the weak
points. To resolve the inconsistency of (1) through (4) we should reject (2)
or (3. thus either incriminating Babbitt or widening our net for some new
suspect.

See also how the revision progresses downward. I we reject (2), we also
revise our previous underlying belief, however tentative, that the brother-in-
law was telling the truth and Babbitt was in Brooklyn. If instead we reject
{3). we also revise our previous underlying belief that none but Abbott,
Babbitt. and Cabot stood 1o gain from the murder apart from burglary.

Finally a certain arbitrariness should be noted in the organization of this
analysis. The inconsistent beliefs (1) through (4) were singled out, and then
various further beliefs were accorded a subordinate status as underlying
evidence: a beiief about a hotel register, a belief about the prestige of the
hotel, a belief about the television, a perhaps unwarranted belief about the
veracity of the brother-in-law, and so on. We could insiead have listed
this full dozen of beliefs on an equal footing, appreciated that they were in
contradiction, and proceeded lo restore consistency by weeding them oul
in various ways. But the organization lightened our task. It focused our
artention on four prominent beliefs among which lo drop one, and then it
ranged the other beliefs under these four as mere aids to choosing which of
the four 1o drop.

The strategy illustrated would seem in general to be a3 good one: di-
vide and conquer. When a sci of beliefs has accumulated 1o the puint of
contradiction, find the smallest selection of them you can that still involves
contradiction; for instance, (1) through (4). For we can be sure that we are
going to have 1o drop some of the beliefs in thal subset, whatever else we
do. In reviewing and comparing the evidence for the beliefs in the subset.
then, we will find ourselves led down in a rather systematic way to other
belicts of the set. Eventually we find ourselves dropping some of them too

In probing the evidence, where do we stop? In probing the evidence
for (1) through (4) we dredged up various underlying beliefs, but we could
have probed further, seeking evidence in i for them. In practice, the
probing stops when we are satisfied how best to restore consistency: which
ones (o discard among the beliefs we have canvassed.

This story illustrates some of the problems posed by uncenain, fuzzy, and often
changing knowledge. A variety of logical frameworks and computational methods have
been proposed for handling such problems. In this chapter and the next, we discuss two
approaches:

7.1. INTRODUCTION TO NONMONOTONIC REASONING 197

« Nonmonotonic reasoning, in which the axinms andjor the rules of infercnce are
extended to make it possible to reason with mcomplete information. These
systems preserve, however, the property that, at any given moment, a staterment
is either believed to be true, believed to be false, or not believed to be either.

o Statistical reasoning, in which the representation is extended to allow some kind
of numeric measure of certainty (rather than simply TRUE or FALSE) to be
associated with each statement.

Other approaches to these issues have also been proposed and used in systems. Foi
example, it is sometimes the case that there is not a single knowledge base that captures
the beliefs of all the agents involved in solving a problem. This would happen in our
murder scenario if we were to attempt to model the reasoning of Abbott, Babbiti, and
Cabot, as well as that of the police investigator. To be able to do this reasoning, we would
require a technique for maintaining several paraliel belief spaces, each of which would
correspond 1o the beliefs of one agent. Such techniques are complicated by the fact that
the belief spaces of the various agents, although not identical, are sufficiently similar
that it is unacceptably inefficient 10 represent them as completely separate knowledge
bases. In Section 15.4.2 we rctum bricfly to this issue. Meanwhile, in the rest of this
chapter. we describe techniques for nonmonotonic reasoning.

Conventional reasoning systems, such Frst-order predicate logic, are designed 10
work with information that has three important properties:

o It is complete with respect 1o the demain of interest. In other words, all the facts
that are necessary o sulve a problem are present in the system or can be derived
from those that are by the conventional rules of first-order logic.

+ It is consistent.

» ‘Theonly way it can change isthat new facts can be added as they become available.
If these new facts are consisient with all the other facts that have already been
asserted, then nothing will ever be retracted from the set of facts that are known
to be true: This property is called monotonicity.

Unfortunately. if any of these propertics is not satisfied, conventional logic-based
reasoning sysiems become inadequate. Nonmonotonic reasoning systems, on the ather
hand, arc designed to be able to solve problems in which all of these properties may be
missing.

In order to do this. we must address several key issues, including the following.

I. How can the knowledge buse be extended to allow inferences to he made on the
basis of lack of knowledge as well as on the presence of it? For example, we
would like to be able to say things like, “If you have no reason (o suspect that a
particular person committed a crime, then assume he didn't,” or “If you have no
reason 10 believe that someone is not getting along with her relatives, then assume
that the relatives will try 1o protect her.” Specifically, we need o make clear the
distinction between:

» It is known that =P

198 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

& 1t 1s not known whether P.

First-order predicate logic allows reasoning 1o be based on the first of these, We
need an extended system that allows reasoning to be based on the second us well,
In our new system, we call any inference that depends on the lack of some picce
of knowledge a nonmonoionic inference.'

Allowing such reasoning has a sigmificant impact on a knowledge base. Non-
monotonic reasoming systems derive their name from the fact that because ol
inferences that depend on lack of knowledge, knowledge bases may not grow
menotonically as new assertions are made. Adding a new assertion may inval-
idate an inference that depended on the absence of thar assertion, First-order
predicate logic systems, on the other hand, are monotonic in this respect. As
new axioms are asseried, new wil's may become provable, but no old proofs ever
become invalid.

In other words, if some set of axioms T entails the truth of some statement w, then T’
combined with another set of axioms N also entails w. Because nonmonotonic
reasoning docs not share this property, itis also called defeasible: a nonmonotonic
inference may be defeated (rendered invalid) by the addition of new information
that violates assumptions that were made during the original reasoning process.
It wrns out, as we show below, that making this one change has a dramatic impact
on the structure of the logical system itself. In particular, most of our ideas of
whal it means 10 find a proof will have to be reevaluated.

2. How can the knowledge base be updated properly when a new fact is added 1o the
system (or when an old one is removed)? In particular, in nonmonotonic systems,
since the addition of a fact can cause previously discevered proofs to be become
invalid, how can those proofs, and all the conclusions that depend on them be
found? The usual solution to this problem is to keep track of proofs, which are
often called jusrificarions. This makes it possible 1o find all the jusiifications
that depended on the absence of the new fact, and those proofs can be marked
as invalid. Interestingly, such a recording mechanism also makes it possible
1o support conventional. monotenic reasomng in the case where axioms must
occasionally be retracted to refiect changes 1n the world that is being modeled.
Forexample, it may be the case that Abbott is in town this week and so is available
to testify, but if we wait until next weck, he may be out of town. As a resuit,
when we discuss techniques for maintaining valid sets of justifications, we talk
both about nonmonotonic reasoning and about monoionic reasoning in a changing
world.

3. How can knowledge be used io help resofve conflicts when there are several in
consistent nonmonotonic inferences that could be drawn? It turns out that when
inferences can be based on the lack of knowledge as well as on its presence.
contradiciions are much more likely to occur than they were in conventional log-
ical systems in which the only possible contradictions were those that depended

"Recall that in Section 2.4, we also made a monotonic/nonmonotonic distinction, There the fssue was
classes of production systems. Although we are applying the distinction to differcnl eniitics here. 0 is
essentially the same distinction in both cases, since it distinguishes between systems that never shrink as a
result of an action (monotonic ones) and ones that can (nonmonatonic ones),

72 LOGICS FOR NONMONOTONIC REASONING Y

on facts that were explicitly asserted 10 be true. In particular. in nonmonotonic
systems, there are often portions of the knowledge basc that are iocally consis-
tent but mutually (globally) inconsistent. As we show below, many technigues
for reasoning nonmonotonically are able (o define the alternatives that could be
believed, but most of them provide no way to choose among the opticns when not
all of them can be believed at once.

To do this, we require additional methods fur resolving such conflicis in ways thaare
mast appropriate for the particular prublem that is being solved. For example, a8 soo: as
we conclude thai Abbott, Babbitt, and Cabot all claim that they didn’t commii a erirw,
vyet we conciude that one of (hem must have since there's no one ¢lse who is believed (¢
have had a motive, we have a contradiction, which we want to resolve in some particuiar
way based on other knowledge that we have. In this case, for example, we choose 1o
resolve the conflict by finding the person with the weakest alibi and believing that he
committed the crime (which involyes helieving other things, such as that the chosen
suspect lied).

The rest of this chapier is divided into five parts. In the first, we present several
logical formalisms that provide mechanisms for performing NeNMONOLONIC TEASONINE.
In the last four, we discuss approaches to the implementation of such reasoning in
problem-solving programs. For more detailed descriptions of many of these systems,
see the papers in Ginsberg [19871,

7.2 Logics for Nonmonotonic Reasoning

Because monotonicity is fundamental to the definition of first-order pradicate logic, we
4re forced 1o find some alternative to support nonmonotonic reasoning. In this section,
we look at several formal approaches to doing this, We examine several because no
single formalism with all the desired propertics has yet emerged {althoughthere are some
attempts, e.g.. Shoham [1987] and Konotige [1987]. to present a unifying framework
{or these several theories). In particular, we would like to find a formalism that does all
of the following things:

« Defines the set of possible worlds that could exist given the facts that we do have.
More precisely, we will define an interpretation of a sci of wff’s to be a domain
(a set of objects) D, together with a function that assigns: 10 each predicate. a
relation (of corresponding arity); to each n-ary function, an operator thal maps
from D" into D: and to each constant, an element of . A model of a set of wif's
is an interpretation that satisfies them. Now we can be moie precise about this
requirement. We require a mechanism for defining the set of models of any set of
wif's we are given.

« Provides a way 10 say that we prefer to believe in some models rather than others.
e Provides the basis for a practical implementation of this kind of reasoning.

e Comresponts to our intuitions about how this kind of reasoning works. In other
words, we do mot want vagaries of syntax lo have a significant impact on the
conclusions that can be drawn within our system

200 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Figure 7.1: Models, Wff’s, and Nonmonotonic Reasoning

As we examine each of the theories below, we need 1o evaluate how well they
perform each of these tasks. For a more detailed discussion of these theories and some
comparisons among them, see Reiter [1987a], Eiherington [1988), and Genesercth and
Nilsson [1987].

Before we go into specific theories in detail, let's consider Figure 7.1, which shows
one way of visualizing how nenmonotonic reasoning works in all of them, The box
labeled A corresponds to an original set of wff’s. The large circle contains all the models
of A. When we add some nonmonotonic reasoning capabilities 1o 4, we pet a new set of
wit's, which we've labeled B2 B (usually) contains more information than A does, As
a result, fewer models satisfy B than A. The set of models corresponding to B is shown
at the lower right of the large circle. Now suppose we add some new wif's (representing
new information) to A. We represent A with these additions as the box €. A difficulty
may arise, however, if the set of models corresponding 1o C is as shown in the smaller,
interior circle, since it is disjoint with the models for B. In order 1o find a new set of
models that satisfy C, we need 1o accept models that had previously been rejected. To
do that, we need 1) eliminate the wif's that were responsible for those models being
thrown away. This is the essence of nonmonotonic reasoning.

7.2.1 Default Reasoning

We want to use nonmonotonic reasoning to perform what is commonly called defauls
reasoning. We want to draw conclusions based on what is most likely to be true. In this
section, we discuss two approaches to doing this.

2 As we will see below, some technigues add inference rules, which then generate wit's, while others add
wif's direcity, We'll ignore that difference for the moment.

7.2. LOGICS FOR NONMONOTONIC REASONING a0

« Nonmonetonic Logic’
e Default Logic

‘We then describe two common kinds of nonmonotonic reasoning that can be defined
in those logics:

s Abduction

e Inheritiance

Nonmonotonic Logic

One system that provides a basie for default rcasonung 1s Aanmovoranic Logie - NMLY
[McDermott and Doyle, 1980], in which the language of first-order predicate logic is
augmented with a modal operator M, which can be read as “is consistent.” For cxample,
the formula

Yx,y: Related(x ¥) AM GetAlong(x.v) — WiliDefend(x,y)

should be read as, “For all x and v, if x and y are related and if the fact that x geis
along with v is consistent with everything else that is believed. then conclude that v wiil
defend v."

Onee we augment our theory to allow siatements of this form, one imporant issue
must be resolved if we want our theory to-be even semidecidable. (Recall that even in
a standard firsi-order theory, the question of theoremhood is undecidable, so semide-
cidability is the best we can hope for.) We must define what “is consistent” means.
Because consistency in this system, as in first-order predicate logic, is undecidable,
we need some approximation. The one that 1s usually used 1s the PROLOG notion of
negation as failure, or some variant ot it. In othcer words, to show that P is consistent,
we attempt to prove P, If we fail, then we assume —P 10 be false and we call P con-
sistent. Unfortunately, this definition does not completely solve our problein. Negation
as failure works in pure PROLOG because, if we restrict the rest of our language 1o
Hom clauses, we have a decidable theory. So failure to prove something means that it is
not entailed by our theory. If, on the other hand, we start with full first-order predicate
~ logic as our base language, we have no such guarantee. So, as a practical matter, it
may be necessary to define consistency on some heuristic basis, such as fallure to provec
inconsistency within some fixed level of effort.

A second problem that anses in this approach (and others, as we explain below)
is what 10 do when multiple nonmonotonic statemenis, taken alone, suggest ways ot
uugmenting our knowledge that if taken together would be inconsistent. For example,
consider the foliowing set of assertions:

Yy : Republican(x) A M =Pacifisi(x) = =Pacifist(x)
Va: Quaker(x) A M Pacifisnx) — Pacifisr(x)
Republican(Dick)

Quaker(Dick)

"ﬁyuﬂngﬂmnbommm. ‘e are using the terms “nonmonoionic reasoning ~ and “defaull
reasoning” gencrically to describe a kind of reasoning. The terms “Nonmonotonic Logic” and *Defauh Logic™
are, on the other hand, being used to refer 1o specific formal theories.

202 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

The definition of NML that we have given supports two distinct ways of augmenting
this knowledge base. In one, we first apply the first assertion, which allows us 1o
conclude —Pacifist(Dick). Having done that, the second assertion cannot apply. since
it is not consistent to assume Pacifist(Dick). The other thing we could do, however,
is apply the second assertion first. This results in the conclusion Pacifist(Dick), which
prevents the first one from applying. So what conclusion does the theory actually
support?

The answer is that NML defines the set of theorems that can he derived from a set of
wff's A 1o be the intersection of the sets of theorems that result from the various ways
in which the wff’s of A nught be combined. So, in our example, no conclusion about
Dick's pacifism can be derived, This theory thus 1akes a very conservative approach to
theoremhood. .

it is worth pointing out here that although assertions such as the ones we used to
reason about Dick’s pacifism look like rules, they are, in this theory, just ordinary wit's
which can be manipulated by the standard rules for combining logical expressions. So,
for example, given

AAMB - B
-AAMB - B

we can derive the expression
MB—-B

In the original formulation of NML, the semantics of the modal operator M, which
is self-referential, were unclear. A more recent system, Awoepistemic Logic [Moore,
1985] is very similar, but solves some of these problems.

Default Logic

An alternative logic for performing defanii-based reasoning is Reiter's Default Logic
(DL) [Reiter, 1980], in which a new class of inference rules is introduced. In this
approach, we allow inference rules of the form®

A: B

C

Such a rule should be read as, “If A is provable and it is consistent to assume B
then conclude C." As you can see, this is very similar in intent to the nonmonotonic
expressions that we used in NML, There are some important differences between the
two theories, however. The first is that in DL the new inference rules are used as a
basis for computing a set of plausible extensions to the knowledge base. Each extension
corresponds 10 one maximal consistent augmentation of the knowledge base.” The logic

*Reiter’s original notation had “:M" in place of ", but since il conveysno additional informaton, the M
is usually omitted.

SWhat we mean by the expression “maximal consistent augmentation™ i that no additional default rules
can be applied without violating consistency. But it is imporiant to note that only expressions generated by
the application of the stated inference rules to the original knowledge are aliowed in an extension. Gratuitous
additions are not permitted.

7.2. LOGICS FOR NONMONOTONIC REASONING 203

then admits as a thcorem any expression that is valid in any extension. If 2 decision
among the extensions is necessary o support problem solving, some other mechanism
must be provided. So, for example, if we return 1o the case of Dick the Republican,
we can cOmpuie Iwo extensions, one corresponding to his being a pacifist and one
corresponding to his not being a pacifist, The theory of DL does not say anything about
how to choose between the two. But see Reiter and Criscuolo {19811, Touretzky | 1986],
and Rich [1983 for discussions of this issue.

A second important difference between these two theeries 1s thet. DL. the non-
monotonic expressions are rules of inference rather than expressions in the language.
Thus they cannet be manipulated by the other rules of inference. This leads to somie
unexpected results. For exainpie, given the two rules

A: B “A: B
B B
and no assertion about A, no conclusion sbout B will be drawn, since neither inference

rule applies.

Abduction
Standard logic performs deduction. Given iwo axioms:

Yx 1 A(x) — B(x)
A(C)

we can conclude B(C) using deduction. But what about applying the implication i
everse? For example, suppose the axiom we have is

Vx : Measles(x) — Spots(x)

The axiom says that having measles implies having spots. But suppose we notice spots.
We might like to conclude measles, Such a conclusion is not licensed by the rules of
standard logic and it may be wrong, but it may be the best guess we can make about
what is going on. Deriving conclusions in this way is thus another form of default
reasoning. We call this specific form abductive reasoring. More precisely, the process
of abductive reasoning can be described as, “Given two wif's (A = B) and (B), for any
¢xpressions A and B, if it is consistent (o assume A, do 80."

In maay doains, abductive reasoning is particularly useful if some measure of
certainty is attached to the resulling expressions These certainty measures quantify the
risk that the abductive reasoning process is wrong, which it will be whenever there were
other antecedents besides A thai could have prodvoed B. We discuss ways of doing this
wn Chapter 8.

Abductive reasoning is not a kind of logic in the sense that DL and NML are. In
fact. it can be described in either of them. But it is a very useful kind of nonmonotonic
reasoning, and so we mentioned it explicitly here.

inheritance

One very common use of nonmonotonic reasoning is as a basis for inheriting airibute
salues from a prototype description of a class to the individual entities that belong 1o

204 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINT]

the class. We considered one example of this kind of reasoning in Chapter 4, when
we discussed the baseball knowledge base. Recall that we presented there an algorithm
for implementing inheritance. We can describe informally what that algorithm does by
saying, “An object inherits attribute values from all the classes of which it 1s a membes
unless doing so leads to a contradiction, in which case a value from a more restricied
class has precedence over a value from a broader class.” Can the logical ideas we have
Jjust been discussing provide a basis for describing this idea more formally? The answer
is yes. To see how, let’s return 1o the baseball example (as shown in Figure 4.5) and trv
to write its inheritable knowledge as rules in DL.

We can write a rule to account for the inheritance of 2 defaui: value for the height of
a baseball player as:

Basehall-Player(v) : heightix,6-1)
heighr(x.6-1)

Now suppose we assert Pircher{Three-tinger-Brown). Since this enables vs 1o
conclude that Three-Finger-Brown is a bascball player, our rule allows us to conclude
that his heightis 6- 1, If, on the other hand, we had asserted a conflicting value for Three
Finger's height, and if we had an axiom like

Vx, 3.z : height(x, v} A height{x,z) - y =2,

which prohibits someone from hav.ng more than onc height, then we would not be able
to apply the default rule. Thus an explicitly stated value will block the inheritance of
a default value, which is exactly what we want. (We'lbignore here the order in which
the assertions and the rules occur. As a logieal frnework, default logic does not care.
We'll just assumne that somehow it settles oisi 1o a consistent state in which no defaults
that conflict with explicit assertions have been asseried. In Section 7.5.1 we look at
issues that arise in creating an impiementation that assures that.)

But now, let’s encoede the default rule for the height of adult males in generals I we
pattern it after the one for baseball players. we gel

.:'ldul.r—Mafrﬂx) - heighi(x. 5-10)
height(x,5-10)

Unfostunately, this rule does not work as we would like, In particelar, if we again
‘assert Pircher(Three-Finger-Brown), then the resulting theory contains two extensions:
one in which our first rule fires and Brown’s height is 6-1 and one in which this nev rule
applies and Brown's height is 5-10. Neither of these extensions is preferred. In order to
state that we prefer to get a value from the more specific category, baseball player, we
could rewrite the default rule for adult males in general as:

Adult-Male(x) : ~Baseball-Player(x) A\ heighi(x, S_I_ 0_) i
height(x 5-10)

This effectively blocks the application of the default knowledge about adult males
in the case that more specific information from the class of baseball players is available.

Unfortunately, this approach can become unwieldy as the set of cxceptions 1o the
general rule increases. For éxample. we could end up with a rule like:

7.2. LOGICS FOR NONMONOTONIC REASONING 205

Adult-Male(x) : —~Baseball-Player(x) A ~Midget(x) A ~Jockey(x) A height(x.5-10)
heighr(x, 5-10)

What we have done here is to clutter our knowledge about the general class of adult
males with a list of all the known exceptions with respect to heighi. A clearer approach
is to say something like, “Adult males typically have a height of 5-10 unless they arc
abnormal in some way.” We can then essociate with other classes the information that
they are abnormal in one or another way. So we could wnite, for ex ample:

Yy : Adult-Male(x) A ~AB(x, asperil) = height(x,5-10)
¥ : Baseball-Player(x) » AB(x aspectl)

Wx : Midgef(x) - AB(x, aspectl)

¥ 1 Jockey(x) = AB(x, aspectl)

Then, if we add the single default rule:

1 ~ABX, y)
—AB(x.y)

we get the desired resull

7.2.2 Minimalist Reasoning

So far, we have talked about general methods that provide ways of describing things
that are generally true. In this section we describe methods for saying a very specific
and highly useful class of things that arc generally true. These methods are based on
some variant of the idea of 2 minimal model. Recall from the beginning of this section
that a model of a set of formalas is an interpretation that sansfies them. Although there
are several distinct definitions of what constitutes a minimal model, for our purposes,
we will define a model 1o be minimal if there are no other models in which fewer things
are true. (As you can probably imagine, there are technical difficulties in making this
precise, many of which involve the treatment of sentences with negation.) The idea
behind using minimal 1nodels as a basis for nonmonotonic reasoning about the world is
the following: “There are many fewer true statements than false ones. If something is
true and relevant it makes sense 1o assume thze it has been entered into our knowledge
base. Therefore, assume that the only truc statements are those that necessarily must
be true in order lo maintain the consistency of the knowledge base.” We have aiready

_mentioned (in Section 6.2) one kind of reasoning based on this idea, the PROLOG
concept of negation as failure, which provides an implementation of the idea for Hom
clause-based systems. In the rest of this section we look at some logicul issues that anise
when we remove the Horn clause limiation.

The Closed World Assumption

A simple kind of minimalist reasoning is suggested by the Clesed World Assumption or
CWA [Reiter, 1978]. The CWA says that the only objects that satisfy any predicate P
are those that must. The CWA is particularly powerful as a hasis for reasoning with

206 L HAPTER 7. SYMBOLIC REASONING UNDER UNCERITAINTY

databases. which are assumed to be complete with respect to the properties they describe.
For cxample, a personnel database can safely be assumed to list all of the company’s
employees. If someone asks whether Smith works for the company, we should reply
“no” unless he is explicitly listed as an employee. Similarly, an airline database can be
assumed to contain a compiete list of all the routes flown by that airline. So if Task «#
there is a direct flight from Oshkosh io El Paso, the answer should be “no™ if none caa
e found in the database. The CWA is also useful as a way to deal with A8 predicates,
of the sort we introduced in Section 7.2.1. since we want 1o take as abnormal unly those
things that are asserted to be so.

Although the CWA is both simple and powei ful, it can fail to produce an appropriaie
answer for either of two reasons, The first is that its assumptions are not always irue in
the world; some parts of the world are not realistically “closable.” We saw this problem
in the murder story example. There were facts that were relevant to the investigation
that had not yet been uncovered and so were not present in the knowledge base. The
CWA will yield appropriate results exactly to the extent that the assumption that all the
relevant positive facts arc present in the knowledge base is true.

The second kind of problem that plagues the CWA arises from the fact that it is a
purely syntactic reasoning process. Thus, as you would expect, its results depend on
the form of the assertions that are provided. Let’s look at two specific examples of this
problem. '

Consider a knowledge base that consisls of just a single statemert:

Aldoe) V BlJoe)
The CWA allows us to conclude both —A(Joe) and =B(fo¢), since neither A nor B musi
necessarily be true of Joe. Unfortunately, the resulong extended knowledge base

AlJoe) v B(Joey
-A(Joe)
—B(loe)

15 inconsistent.

The problem is that we have assigned a special staius {0 positive instances of
predicates, as opposed 1o negative ones. Specificaily. the CWA forces completion of a
knowledge base by adding the negative assertion =¥ whenever it 18 consistent 1o do so.
But the assignment of a real world propenty to some predicate P and its complement to
the negation of P may be arbitrary. For example, suppose we define a predicate Single
and create the following knowledge base

Single(John)
Single(Mary)

Then, if we ask about Jane, the CWA will yield the answer —Single(Jane). But now
suppose we had chosen instead 1o use the predicate Married rather than Single. Then
the corresponding knowledge base would he

—~Married(John)
~Married(Mary)

72. LOGICS FOR NONMONOTONIC REASONING 207

If we now ask about Jane, the CWA will vield the vesault =Marriedt lare)

Circumscription

Although the CWA captures part of the idea that anything that nwst not necessarily be
true should be assumed to be false, it does not caprure all of it. It has two essential
limitations:

o It operates on individual predicates without considering the interactions among
predicates that are defined in the knowledge base. We saw an example of ihus
above when we considered the statement A(Joe) Vv BlJce).

e It assumes that all predicates have all of their instances listed, Although in many
database applications this is true, in many knowledge based systems it is not.
Some predicates can reasonably be assumed (o be completely defined (ie., the
pan of the world they describe is closed), but others cannot (i.e., the pan of
the world they describe is open). For example, the predicate has-a-green-shire
should probably be considered open since in most situations it would not be safe
1o assume that one has been told all the details of everyone else’s wardrobe.

Several theories of circumscription {e.g., McCarthy [1980], MzCarthy [1986). and
Lifschitz [1985]) have been proposed to deal with these problems. In all of these
theories, new axioms are added to the existing knowledge base. The effect of thesc
axioms is to force a minimal interpretation on a selected portion of the knowledge base,
In particular, each specific axiom describes a way that the set of values for which a
particular axiom of the original theory is true is to be delimired (i.c., circumscribed).

As an example, suppose we have the simple assertion

Vx o Aduli(x) A —~AB(x, aspect]) — Literate(x)

We would like 1o circumseribe A8, since we would like it 1o apply only to those
individuals to which it applies. In essence, what we want to do is to say something
about what the predicate AB must be (since at this point we have no idea what it is:
all we know is its name). To know what it is, we need to know for what values it is
true, Even though we may know a few values for which it 1s true (if any individuals
havc been asserted 1o be abnormal in this way), there arc many different predicates that
would be consistent with what we know so far. Imagine this universe of possible binary
predicates. We might ask, which of these predicates could be AB? We want to say that
AB can only be one of the predicates that is true only for those objects that we know it
must be true for. We can do this by adding a (second order) ax1om that says that AB is
the smallest predicate that is consistent with our existing knowledge base.

In this simple example, circumscription yields the same result as does the CWA
since there are no other assenions in the knowledge base with which a minimization
of A8 must be consistent. In both cases, the only models that are admitted are ones in
which there are no individuals who are abnormal in aspeci/. In other words. AR must
be the predicate FALSE.

But, now lef’s retumn 1o the example knowledge base

208 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

A(Jae) V B(Joe)

If we circumscribe only A, then this assertion describes exactly those models in
which A is true of no one and B is true of at least Joe. Similarly, if we circumseribe
only B, then we will accept exactly those models in which B is true of no one and A is
truc of at least Joe. If we circumscribe A and 8 together, then we will admit only those
models in which A is true of only Joe and B is true of no one or those in which B 1s true
of only Joe and A is true of no one. Thus, unlike the CWA, circumiscopton allows us to
describe the logical relationship between A and 8. z

7.3 Implementation Issues

Although the logical frameworks that we have just discussed take us pant of the way
toward a basis for implementing nonmonotonic reasoning in problem-solving programs,
they are not enough. As we have seen, they all have some weaknesses as logical systems,
In addition, they fail to deal with four important problems that arise in real systems.

The first is how to derive exactly those nonmonotonic conclusions that are relevant
1o solving the problem at hand while not wasting time on those that, while they may be
licensed by the logic, are not necessary and are not worth spending time on.

The second problem is how to update our knowledge incrementally as problem-
solving progresses. The definitions of the logical sysiems tell us how to decide on
the truth status of a proposition with respect 1o a given truth status of the rest of the
knowledge basc. Since the procedure for doing thisis a global one (relying on some form
of consistency or minimality). any change to the knowledge base may have far-reaching
consequences. It would be computationally intractable to handie this problem by starting
over with just the facts that are explicitly stated and reapplying the various nonmonotonic
reasoning steps that were used before, this time denving possibly different results.

‘The third problem is that in nonmonotonic reasoning systems, it often happens that
more than onc interpretation of the known facts is licensed by ihe available interence
rules. In Rei‘er's terminology, a given nonmonotonic system may (and often doces)
have several extensions at the moment, even though many of them will eventually be
eliminated as rew knowledge becomes available. Thus some kind of search process iy
necessary. How should it be managed?

The final problem is that, in genersl, these theories are not computationally effective,
None of them is decidable. Some are semidecidable, but only in their propositional
formis. And none is efficient.

In the rest of this chapter, we discuss several computational solutions to these
problems. In all of these systems, the reasoning process is separated into two paris: a
problem solver that uses whatever mechanism it happens to have to draw conclusions
as necessary and a truth maintenance system whose job 15 just to do the bookkeeping
required to provide a solution 10 our second problem. The various logical issues we
have been discussing, as well as the heuristic ones we have raised here are issues in
the design of the problem solver. We discuss these issues in Section 7.4, Then in the
following sections, we describe techniques for tracking nonmonotonic inferences so that
changes to the knowledge base afe handled properly. Technigues for doing this can be
divided into two classes, determined by thieir approach to the seurch control problem:

74. AUGMENTING A PROBLEM SOLVEK 209

« Depth-first, in which we follow a single, most likely path uniil some new piece of
information comes in that forces us 1o give up this path and find another.

o Breadth-first, in which we consider all the possibilities as equally likely. We
consider them as a group, climinating some of them as new facts become av atiable.
Eventually. it may kappen that only one (or a small number) tum out to be
consistent with everyihing we come 1o know

It is important to keep in mindhroughout the est of thiy discusston thit there is no
exact correspondence between any of the logics that we have described and any of the
implementations that we will present. Unfortunately, the details of how the two ran be
brought together are still unknown.

7.4 Augmenting a Problem Solver -

So far, we have described a variety of logical formalisms, all of which describe the
theorems that can be derived from a set of axioms. We have said nothing about how we
might write a program that solves problemns using those axioms. In this section, we do
that. ;

As we have already discussed several times, problem solving can be done using
either forward or backward reasoning. Problem solving using uncertain knowledge 15
no exception. As a result, there are Lwo bhasic approaches to this kind of problem solving
(as well as a variety of hybrids):

« Reason forward from what 1s known. Treat nonmonotonically derivable conclu-
sions the same way monotonically derivable ones are handled. Nonmonotonic
reasoning systems that support this kind of reasoning allow standard forward-
chaining rules to be augmented with unless clauses. which introduce a basis for
reasoning by default. Control (including deciding wh ich default interpretation to
choose) is handled in the same way that all other control decisions in the systen.
are made (whatever that may be, for example, via rule ordering or the use of
metarules).

o Reason backward to determine whether some expression P is true (or perhaps o
find a sct of bindings for its variables that make it true). Nonmonolonic reasoning
systems that support this kind of reasoning may do either or both of the following
two things:

— Allow default (unless) clauses in backward rules. Resolve conflicts among
defaults using the same control sirategy that is used for other kinds of
reasoning (usuatly rule ordering).

-~ Support a kind of debate in which an atempt s made 1o construct arguments
both in favor of P and opposed to it. Then some additional knowledge is
applied to the arguments (o determine which side has the stronger case.

Let's ook at backward reasoning first. We will begin with the simple case. of
backward reasoning in which we attempt to prove (and possibly to find bindings for)

210 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect(x) « Beneficiary(x)
UNLESS Alibi(x)

Alibi(x) « SomewhereElse(x)

SomewhereElse(x) « RegisteredHotel(x, y) and FarAway(y)
UNLESS ForgedRegister(y)

Alibi(x) ¢~ Defends(x, y)
UNLESS Liesty)

SomewhereElse(x) « PictureOf(x, y) and FurAway(y)

Conmradiction() « TRUE
UNLESS dx Suspect(x)

Beneficiary(Abbort)
Beneficiary(Babbitr)
Beneficiary(Cabor)

Figure 7.2: Backward Rules Using UNLESS

an expression P. Suppose that we have a knowledge base that consists of the backward
rules shown in Figure 7.2.

Assume that the problem solver that is using this knowledge base uses the usual
PROLOG-style control structure in which rules are matched top to bottom, left to right.
Then if we ask the question 7Suspect(x), the program will first try Abbott, who 15 a fine
suspect given what we know now, so it will return Abbott as its answer. If we had also
included the facts

RegisteredHotel(Abbott, Albany)
FardAway(Albany)

then. the program would have failed to conclude that Abbolt was a suspect and it would
instead have located Babbitt.

As an alternative to this approach, consider the idea of a debate. In debating systems,
an attempt is made to find multiple answers. Inthe ABC Murder story case, for example,
all three possible suspects would be considered. Then some atterupt to choose among
the arguments would be made. 1a this case, for example, we might want lo have a
choice rule that says that it is more likely that people wiil lie to defend themselves than
to defend others. We might have a second rule that says that we prefer to believe hotel
registers rather than people. Using these two rules, a problem solver would conclude
that the most likely suspect is Cabot.

Backward rules work exactly as we have described if all of the required facts are
present when the rules are invoked. But what if we begin with the situation shown
in Figure 7.2 and conclude that Abbott is our suspect. Later. we are told that he was

7.5. IMPLEMENTATION: DEPTH-FIRST SEARCH 211

If: Beneficiary(x),
UNLESS Alibi(x).
then Suspeci(x)

If: Somewhereklse(x),
then Alibi(x)

If: Registeredloiel(x, v), and
Farawayiv),
UNLESS ForgedRegister(y).
then SomewhereElse(x)

If Defends(x, v),
UNLESS Lies(y),
then Alibilx)

If PictureOf(x, ¥). and
FarAwawy),
then Somewhereblsz()

If TRUE,
UNLESS dx: -Suspeci(s)
then Contradiction()

Beneficiary(Abbail)
Beneficiary(Babbitr)
Beneficiary(Cabot)

Figure 7.3: Forward Rules Using UNLESS

registered at a hotel in Albany. Backward rules will never notice that anything has
changed. To make our system data-driven, we need to use forward rules. Figure 7.3
shows how the same knowledge could be represented as forward rules, Of course, what
we probably want is a system that can exploit both. In such a system, we could use a
backward rule whose goal is to find a suspect, coupled with forward rules that fire as
new facts that are relevant 1o finding a suspect appear.

7.5 Implementation: Depth-First Search

7.5.1 Dependency-Directed Backtracking

If we take a depth-first approach to nonmonotonic reasoning, then the foliowing sce-
nario is likely to occur ofien: We need to know a fact, F, which cannot be derived
mnwmicaﬂyhmwha;wealmﬁyknow.unwhidlmbedqivedhynuhn;mmc
assumption A which seems plausible. So we make assumption A, derive F, and then

212 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

derive some additional facts G and H from F. We later derive some other facts M and N,
but they are completely independent of A and F. A little while later, a new fact comes
in that invalidates A. We need to rescind our proof of F, and also our proofs of G and H
since they depended on F. But what about M and N? They didn't depend on F, so there
is no logical need 10 invalidate them. But if we use a conventional backtracking scheme,
we have to back up past conclusions in the order in which we derived them. So we have
to backup past M and N, thus undoing them, in order 1o get back 10 F, G, Hand A. To
get around this problem, we need a stightly different notion of backtracking, one that
1s based on logical dependencies rather than the chronological order in which decisions
were made. We call this new method dependency-directed backtracking [Stallman and
Sussman, 1977], in contrast w chronological backiracking, which we have been using
up until now.,

Before we go into detail on how dependency-directed backtracking works, it is worth
pointing out that although one of the big motivations for it is in handling nonmonotonic
reasoning, it turns out to be useful for conventional search programs as well. This is not
too surprising when you consider that what any depth-first search program does is 1o
“make a guess” at something, thus creating a branch in the search space. If that branch
eventually dies out, then we know that at least one guess that led to it must be wrong. It
could be any guess along the branch. In chronological backtracking we have to assume
it was the most recent guess and back up there to try an altemative. Sometimes, though,
we have additional information that tells us which guess caused he problem. We'd like
to retract only that guess and the work that explicitly depended on it, lcaving everything
else that has happened in the meantime intact. This is exactly what dependency-directed
backtracking does.

As an example, suppose we want to build a program that generates a solution to &
fairly simple problem, such as-finding a time at which three busy people can all attend
a meeting. One way to solve such a problem is first o make an assumption that the
meeting will be held on some particular day, say Wednesday, add 1o the database an
assertion to that effect, suitably 1agged as an assumption, and then proceed 10 find a
time, checking along the way for any inconsistencies in people’s schedules. If a conflict
arises, the statement representing the assumption must be discarded and replaced by
another, hopefully noncontradictory, one. But, of course, any statements that have been
generated along the way that depend on the now-discarded assumption must also be
discarded.

Of course, this kind of situation can be handled by a straightforward tree search
with chronological backtracking. All assumptions, as well as the inferences drawn from
them, are recorded at the search node that created them. When 2 node is determined o
represent a contradiction, simply backirack to the next node from which there remain
unexplored paths. The assumptions and their inferences will disappear automatically.
The drawback to this approach is illustrated in Figure 7.4, which shows part of the search
tree of a program that is trying to schedule a meeting. To do so, the program must solve
a constraint satisfaction problem to find a day and time at which none of the participants
1§ busy and at which there is a sufficiently large room available.

In order to solve the problem, the system must try 1o satisfy one constraint at a lime.
Initially, there is little reason to choose one alternative over another, so it decides to
schedule the meeting on Wednesday, That creates a new constraint that must be met by
the rest of the solution. The assumption that the meeting will be held on Wednesday

75. IMPLEMENTATION: DEPTH-FIRST SEARCH 213

Try day = Wednesday Try day = Tuesday

Repeat same time-finding
process and again decide
on 2 p.m. for all of the
SAME reasons.

After many steps,
conclude that the
only time all people
arc available is 2 p.m.

Try to find a room Try to find a room

FAIL SUCCEED
(A special conference
has all the rooms
booked on Wednesday.)

Figure 7.4: Nondependency-Directed Backtracking

is stored at the node it generated. Next the program tries to select a time at which all
participants are available. Among them, they have regularly scheduled daily meetings
at all times except 2:00. So 2:00 is chosen as the meeting time. But it would not
have mattered which day was chosen. Then the program discovers that on Wednesday
there are no rooms available. So it backtracks past the assumption that the day would be
Wednesday and tries another day, Tucsday. Now it must duplicate the chain of reasoning
that led it to choose 2:00 as the time because that reasoning was lost when it backtracked
1o redo the choice of day, This occurred even though that reasoning did not depend in any
way on the assumption that the day would be Wednesday. By withdrawing statements
based on the order in which they were generaled by the search process rather than on
the basis of responsibility for incansistency, we may waste a great deal of effort.

If we want to use dependency-directed backtracking instead, so that we do not waste
this effort. then we need to do the following things:

« Associate with each node one or more justifications. Each justification corre-
sponds 1o a derivation process that led to the node. (Since it is possible to derive
the same node in several different ways. we want to allow for the possibility of
multiple justifications.) Each justification must contain a list of all the nodes
(Facts, rules, assumptions) on which its derivation depended.

 Provide a mechanism that, when given a contradiction node and its justification,
computes the “no-good” set of assumptions that underlie the justification. The
no-good set is defined to be the minimal set of assumptions such that if you
remove any clement from the set. the justification will no ionger be valid and the
inconsistent node will no longer be believed.

214° CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

¢ Provide a mechanism for considering a no-good set and choosing an assumption
to retract.

* Provide a mechanism for propagating the result of retracting an assumption. This
mechanism must cause all of the justifications that depended, however indirectly,
on the retracted assumption to become invalid.

tn the next two sections, we will describe two approaches to providing such a system,

7.5.2 Justification-Based Truth Maintenance Systems

The idea of atruth maintenance system or TMS [Doyle, 1979] arose as a way of providing
the ability to do dependency-directed backiracking and so to support nonmonotonic
reasoning. There was a later attempt to rename it to Reason Maintenance System (a bit
less pretentious), but since the old name has stuck, we use it here,

A TMS allows assertions 1o be connected via a spreadsheet-like network of depen-
dencies. In this scction, . we describe a simple form of truth maintenance system, a
Justification-based truth mainienance system (or TTMS). In a JTMS (or just TMS for the
rest of this section), the TMS itself does not know anything about the structure of the
assertions themselves. (As a result, in our examples, we use an English-like shorthand
for representing the contents of nodes.) The TMS s only role is 1o serve as a bookkeeper
for a separate problem-solving system, which in tum provides it with both assertions
and dependencics among assertions.

To see how a TMS works, let’s return to the ABC Murder story. Initially, we might
believe that Abbott is the primary suspect because he was a beneficiary of the deceased
and he had no alibi. There are three assertions here, a specific combination of which
we now believe, although we may change our beliefs later. We can represent these
assertions in shorthand as follows:

e Suspect Abboti (Abbolt is the primary murder suspect.)
» Beneficiary Abbort (Abbott is a beneficiary of the victim.)
e Alibi Abbort (Abbott was at an Albany hotel at the time.)

Our reason for possible belief that Abbott is the murderer is nonmonotonic. In the
notation of Default Logic, we can state the rule that produced it as

Beneficiarv(x) : —Alibi(x)
Suspect(x)

Of we can wrile it as a backward rule as we did in Section 7 4.

If we currently believe that he is a beneficiary and we have no reason to believe he
has a valid alibi, then we will believe that he is our suspect. But if later we come to
believe that he does have a valid alibi, we will no longer believe Abbott is a suspect.

~ But how should belief be represented and how should this change in belicf be
enforced? There are various ad hoc ways we might do this in a rule-based system. But
they would all require a developer to construct rules carefully for each possible change
in belief. For instance, we would have 1o have a rule that said that if Abboti ever gets

75. IMPLEMENTATION: DEPTH-FIRST SEARCH 215

sinspeci Abbolt :] supported belief
,"/ justification
s
Reneficiary Abboi & ite Abbori
L j l I
IN-list OUT-Jist

Figur= 7.5 A Justification

an alibi. then we should erase from the database the belicf that Abbott 15 a suspect.
But suppose that we later fire a rule that erases belief in Abbott's alibi. Then we need
another rule that would reconclude that Abbott is a suspect. The task of creating a ruic
sel that consistently maintains belicfs when new assertions are added to the databasz
quickly becomes unmanageable. In contrast, a TMS dependency network offers a purely
syntactic, domain-independent way 10 represent belief and change it consistently.

Figure 7.5 shows how these three facts would be represented in a dependency
network, which can be created as a result of applying the first rule of cither Figure 7.2
or Figure 7.3, The assertion Suspect Abbott has an associated TMS Justification. Each
justification consists of two parts: an IN-listand an OUT-list. In the figure, the assertions
on the IN-list arc connected to the justification by “+" links, those on the OUT-list by
*_" links. The justification is connecied by an armow to the assertion that it supports.
tn the justification shown, there is exactly one assertion in each list. Beneficiary Abbott
is in the IN-list and Alihi Abbort is in the OUT-list. Such a justification says that Abbott
should be a suspact just when it is believed that he is a beneficiary and it is not believed
that he has an alibi.

More generally, assertions (usually called nodes) in a TMS dependency network
arc believed when they have a valid justification. A justification is valid if every
assertion in the IN-list is believed and none of those in the OUT-list 1s. A justification
is nonmonotonic if its OUT-list is not empty, or, recursively, if any assertion in its IN-
list has a nonmonotonic justification. Otherwise, it is monotenic. In a TMS network,
nodes are labeled with a belief sratus. 1f the assertion comresponding to the node should
be believed, then in the TMS 1t is labeled IN. If there is no good reason 1o believe
the assertion, then it is labeled OUT. What does it mean that an assertion “should be
befieved” or has no “good™ reason for belicf?

A TMS answers these questions for a dependency network in a way thal is inde
pendent of any interpretation of the assertions associated with the nodes. The laheling
task of a TMS is to label each node so that two criteria about the dependency network

216 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect Afburr [IN]

Beneficiary Abbont [IN}] Alibi Abbont |OUT)

!

Figure 7.6: Labeled Nodes with Premise lustification

structure are met. The first criterion is consistency: every node labeled IN is supported
by ai least one valid justification and all other nodes are labeled OUT. More speci‘ically
than before. a justification is valid if every node in its IN-list is labeled IN and every
node in its OUT-list is labeled OUT. Notice that in Figure 7.5. all of the assertions
would have to be labeled OUT 1o be consistent. Alibi Abbort has no justification at all,
much less a valid one, and so must be labeled OUT. But the same is true for Beneficiary
Abbott, 5o it must be OUT as well. Then the justification for Suspect Abboir is invalid
because an element of its IN-list is labeled OUT. Suspect Abborr would then be labeled
OUT as well. Thus status labels correspond to our belief or lack of it in assertions, and
justificarions correspond to our reasons for such belief, with valid justifications being
our “good” reasons. Notice that the label OUT may indicate that we have specific reason
10 believe that a node represents an assertion that is not true, or il may mean simply that
we have no information one way or the other.

But the state of affairs in Figure 7.5 is incomplete. We are told that Abbott is a
beneficiary. We have no further justification for this fact; we must simply accept it. For
such facts, we give a premise justification: a justification with empty IN- and OUT-lists.
Premise justifications are always valid. Figure 7.6 shows such a justification added to
the network and a consistent labeling for that network, which shows Suspect Abbott
labeled IN.

That Abbot is the pnmary suspect represents an initial state of the murder investi-
gation, Subsequently, the detective establishes that Abboit is listed on the register of a
good Albany hotel on the day of the inurder. This provides a valid reason 1o believe
Abbott’s alibi. Figure 7.7 shows the effect of adding such a justification to the network
assuming that we have used forward (dala-driven) rules as shown in Figure 7.3 for
all of our reasoning except possibly cstablishing the top-level geal. That Abbott was
registered at the hotel, Registered Abbort, was 10ld to us and has a premuse justification
and so is labeled IN. That the hotel is far away is also asseried as a premise The
register might have been forged, but we have no good reason (o believe it was. Thus

7.5. IMPLEMENTATION: DEPTH-FIR>. ~EARCH 217

Suspect Abbort [OUT]

Beaeficiary Abbort [IN] Aliln Abboit [IN]

!

Registered Abbatr [IN]
1 Far Away |IN|

I Register Forged [OUT]
Figure 7.7: Changed Labeiing

Register Forged lacks any justification and is labeled OUT. That Abbott was on the
segister of a far away hotel and the lack of belief that the register was forged will cause
the appropriate forward rule to fire and create a justihcation for Alihi Abbott. which is
shus labeled IN. This means that Suspect Abboti no longer has a valid justification and
must be labeled OUT. Abbottis no longer a suspect.

Notice that such a TMS labeling carefully avoids saying that the register definitely
was nor forged, I only says that there is currently no good reason 1o believe that it
was. Just like our original reason for believing that Abbott was a suspect, this is
nonmonotonic justification. Later, if we find that Abboti was sccretly married 1o the
desk clerk, we might add to this network a justification that would reverse some ol
the labeling. Babbitt will have a similar justification based upon lack of belicl that hix
brother-in-law lied as shown in Figure 7.8 (where B-I-L stands for *'Brother-In-Law™}.

Abbott’s changing statc showed how consistency was maintained. There is anot her
criterion that the TMS must meet in labeling 2 dependency network: well-foundedness
(i.c.. the proper grounding of a chain of justifications on a set of nodes that do not
themselves depend on the nodes they support). To illustrate this, consider poor Cubot.
Not only does he have fewer bs and 1s in his name, he also lacks a valid justhication for
his alibi that he was at a ski show. We have only ms word that he was. Ignoring the
more complicated representation of lying, the simple dependency network 1 Figure 7.9
illustrates the fact that the only support for the alibi of attending the ski show is thai
Cabot is telling the truth about being there. The only support for his telling the truth
would be if we knew he was at the ski show. But this is a circular argument. Part of
the 1ask of a TMS is to disallow such arguments. In particular, if the support for a node
only depends on an unbroken chain of positive links (IN-list links) leading back 1o itsclf

218 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect Babbirr [OUT]

+*
Beneficiary Babbitt [IN] Alibt Babbint [IN]
+
-~ \
Says So B-I-L |[INT Lies B-[-L [OUT]

!

Figure 7.8: Babbitt's Justification

then that node must be labeled OUT if the labeling is to be well-founded.

The TMS 1ask of ensuring 2 consistent, well-founded labeling has now been outlined.
The other major task of a TMS is resolving contradictions. In a TMS, a coniradiction
node does not represent a logical contradiction but rather a state of the database explicitly
declared to be undesirable. (In the next section, we descnbe a slightly different kind of
TMS in which this is not the case.) In our example, we have a contradiction if we do
not have at least one murder suspect. Thus a contradiction might have the justification
shown in Figure 7.10, where the node Other Suspecis means that there are suspects
other than Abbott, Babbilt, and Cabot. This is one way of explicitly representing an
instance of the closed world assumption. Later, if we discover a long-lost relative,
this will provide a valid justification for Other Suspects. But for now, it has none and
must be labeled OUT. Fortunately, even though Abbott and Babbitt are not suspects,
Suspect Cabot is |abeled. IN, invalidating the justification for the contradiction. While
the contradiction is labeled QUT, there is no contradiction (o resolve.

Now we learn that Cabol was seen-on television attending the ski tourmameni.
Adding this to the dependency network first illustrates the fact that niodes can have more
than one justification as shown in Figure 7.11. Not only does Cabot say he was at the
vki slopes, but he was seen there on television, and we have no reason 0 believe that
this was an elaborate forgery. This new valid justification of Alibi Cabor causes it to
bhe labeled IN (which also causes Tells Truth Cabot w come IN). This change in state
propagates to Suspect Cabot, which goes OUT. Now we have a probiem

The justification for the contradiction is now valid and the contradiction is IN. The
job of the TMS at this point is to determine how the contradiction can be made OUT
apain. In a TMS network, a node can be made OUT by causing all of its justifications

7.5. IMPLEMENTATION: DEPTH-FIRST SEARCH 21y

Suspect Cabot [IN]

Beneficiary Cabot |IN] Alibi Cabor |OUT]

!

Tells Truth Cabot [OUT]

Figure 7.9: Cabot’s Justification

Contradiction

Other Suspecls

Suspect Abbont Suspect Babbit Suspect Cabot

Figure 7.10: A Contradiction

to become invalid. Monotonic justifications cannot be made invalid without retracting
explicit assertions that have been made to the network. Nonmeonotonic justifications
can. however, be invalidated by asserting some fact whose absence is required by the
justification. We call assertions with nonmonotonic justifications asswmptions. An
assumption can be retracted by making IN some element of its justification’s OUT-lisi
{or recursively in some element of the OUT-list of the justification of some element in
its IN-list). Unfortunately, there may be many such assumplions in a large dependency
network Fortunately, the network gives us a way to identfy those that are relevan:
to ihe contradiction at hand. Dependency-directed backtracking algorithms. of the sort
we described in Section 7.5.1. can use the dependency links to determine an AND/OR
tree of assumptions that might be retracted and ways to retract them by justifving other
beliefs.

In Figure 7.10, we see that the contradiction itseif is an assumption wheneve: its
justification is valid. We might retract it by believing there were other suspects or
by finding a way to believe again that either Abbott, Babbitt, or Cabot was a suspect.
Each of the last three could be believed if we disbelieved their alibis, which in tum

220 CHAPTER 7. SYMBOLIC REASONING UNDER UNCERTAINTY

Suspect Cabot [OUT)

+ -
+
Beneficiary Cabot [IN] Alibi Cabor [IN] —4[
L
Tells Truth Cabot [IN]
4
Caboi Seen [IN] TV Forgery [OUT]

!

Figure 7.11: A Second Justificatuon

are assumptions. So if we believed that the hotel register was a forgery. that Babbut’s
brother-in-law lied, or that the television pictures were faked, we would have a suspect
again and the contradiction would go back OUT. So there are four things we might
believe to resolve the contradiction. That ts as far as DDB will take us. Ut reports there
is an OR tree with four nodes. What should we do?

A TMS has no answer for this question. Early TMSs picked an answer @ randem
More recent architectures take the more reasonable position that this choice was a
problem for the same problem-solving agent that created the dependencies in the first
place. But suppose we do pick one. Suppose, in particular, that we choose to believe
that Babbitt's brother-in-law lied. What should be the justification for that belief? If we
believe it just because not believing it leads to a contradiction, then we should install a
justification that should be valid only as long as it needs to be. If later we find another
way that the contradiction can be labeled OUT, we will not want fo continue in our
abductive belief.

For instance, suppose that we believe that the brother-in-law lied, but later we
discover that a long-lost relative, jilted by the family, was in town the day of the murdes
We would no longer have 1o believe the brother-in-law lied just to avoid a contradiction
A TMS may also have algorithms to create such justifications, which we call abductive
since they are created using abductive reasoning. If they have the property that they
are not unnecessarily valid, they are said 1o be complere. Figure 7.12 shows a complete
abductive justification for the belief that Babhitt's brother-in-law lied. If we come 10

7.5, IMPLEMENIATION: DEPTH-FIRST SEARCH 220

Lies B-I-L

Other Suspects

Says So B-I-L Suspect Abbott Siuspect Cabot
Figure 7.12: A Complete Abductive Justification

believe that Abbott or Cabot is a suspect, or we find a long-lost relative, or we somehow
come 1o believe that Babbitt's brother-in-law didn’t really say Babbitt was at his house,
then this justification for lying will become invalid.

At this point, we have described the key reasoning operations that are performed by
a JTMS:

« consistent labeling

« contradiction resolution

We have also described a set of important rcasoning operations that a JTMS does
not perform, including:

s applying rules to derive conclusions

s creating justifications for the results of applying rules (although justifications are
created as part of contradiction resolution)

o choosing among alterative ways of resolving a contradiction

« detecting contradictions

All of these operations must be performed by the problem-solving program that is
using the JTMS. In the next section, we describe 2 slightly different kind of TMS,
in which, although the first three of these operations must still be performed by the
problem-solving system, the last can be performed by the TMS.

7.5.3 Logic-Based Truth Maintenance Systems

A logic-based rruth maintenance system (LTMS) [McAllester, 1980] ts very similarto a
FTMS. Tt differs in one important way. In a JTMS, the nodes in the network are treated
as atoms by the TMS, which assumes no relationships among them except the ones that
are explicitly stated in the justifications. In particular. a JTMS has no problem simulta-
meously labeling both P and ~P IN. For example, we could have represented exphicitly
both Lies B-I-L and Not Lies B-I-L and labeled both of them IN. No contradiction will
be detected automatically. In an LTMS, on the other hand, a contradiction would be
asserted automatically in such a case. If we had constructed the ABC example in an

222 CHAPTER 7 SYMBOLIC REASONING UNDER UNCERTAINTY

LTMS system, we would not have created an explicit contradiction corresponding to the
assertion that there was no suspect. Instead we would replace the contradiction node by
one that asserted something like No Suspecr. Then we would assert Suspect. When No
Suspect came IN, it would cause a contradiction to be asserted automatically.

7.6 Implementation: Beewdth-First Search

The assumprion-based trurh mainteriance svstem (ATMS) [de Kleer, 1986) is an alterna-
tive way of implementing nonmonolonic reasoning. In both JTTMS and LTMS systems,
a single line of reasoning is pursued at a time, and dependency-diracied backtracking
occurs whenever it is necessary to change the system's assumptions. In an ATMS,
alternative paths are maintained in parallel. Backtracking is avoided gt the expense
of maintaining multiple contexts, cach of which comresponds to a set of consistent as-
sumptions. As reasoning proceeds in an ATMS-based system, the universe of consistent
contexts is pruned as contradictions are discovered. The remaining consistent contexts
are used 1o label assertions, thus indicating the contexts in which each assertion has a
valid justification. Assentions that do not have a valid jutification in any consistent
context can be pruned from consideration by the problem solver. As the set of consistent
contexis gets smaller, so 100 docs the set of assertions that can consistently be believed
by the problem solver. Essentially, an ATMS system works breadih-first, considering
all possible cantexts at once, while both JTMS and LTMS systems operate depth-first.

The ATMS, like the JTMS. is designed to be used in conjunction with a separate
problem solver. The problem solver's job is to:

¢ Create nodes that correspond to assertions (both thosc that are given as axioms
and those that are derived by the problem solver).

Associate with each such node one or more justifications, each of which describes
2 reasoning chain that led to the node.

« Inform the ATMS of inconsistent contexts.

Notice that this is identical to the role of the problem solver that uses a JTMS, vawe 2
that no explicit choices among paths to follow need be made as reasoning proceeds
Some decision may be niecessary at the end, though, if more than one nessibie solution
still has a consistent context.

The role of the ATMS system is then to:

& Prapagate inconsistencies, thus ruling out contexis that include subcontexis (sets
of assertions) that are known to be inconsistent

e Label each problem solver node with the contexts in which it has a valid jusnfi-
cation. This is done by combining contexts that correspond (o the compenents
a justification. In particular, given a justification of the form

AlAA2ZA - AAR—>SC

assign as a context for the node corresponding to C the intersection of the comex:
corresponding [o the nodes A1 through A

76. IMPLEMENTATION : BREADTH-FIRST SEARCH 223

{Al, A2, A3, Ad]

P B

141,A2,A3) A1, A2, A4) |A1,A3, A4] [A2. A3, A4|
-
(A1, A2 {AL,A3] {AL A4 |A2.A2) [A2: A4) A3, A4
(A1l [A2) [A3) 1A4]

\\H///

Figure 7.13: A Context Lattice

Qx5 gt climinated as a result of the problem solver asserting inconsistencies and the
ATMS propagating them. Nodes get creaied by the problem solver to represent possible
components of a problem solution. They may then get pruned from eonsideration if
all their context labels get pruned. Thus a choice among possible solution components
gradual ly evolves in a process very much like the constraint satisfaction procedure that '
we examined in Section 3.5,

One problem with this approach is that given a sct of n assumptions. the number ol
possible contexts thai may have to be considered is 2%, Fortunately, in many problem-
solving scenarios, most of them can be pruned without ever looking at them. Further,
the ATMS exploits an efficient labeling sysiem that makes it possible 1o encode a set of
contexts as a single context that delimits the set. To see how both of these things work,
il is necessary to think of the set of contexts that are defined by a set of assumptions as
tforming a lattice, as siown for a simple example wiih four assumptions in Figure 7.13.
Lines going upward indicate 2 subset relationship.

The first thing this lattice does for us is 1o illustrate a simple mechanism by which
-ontradictions (inconsistent contexts) can be propagated so that large parts of the space
of 27 contexts can be eliminated. Suppose that the context labeled [A2, A3) is asserted
1 be inconsistent. Then all contexts that include it (i.c., t.ose that are above it) must
dso be inconsistent.

Now consider how a node can be labeled with all the contexis in which it has a valid
justification. Suppose its justification depends on assumption Al. Then the context
labeled {A1} and all the contexis that include it are acceptable. But this can be indicated
just by saying {A1}. It is not necessary to enumerale its supersets. In general. each
node will be labeled with the greatest lower bounds of the conrexts in which it should
be believed.

224 CHAPTER 7. SYMBOLIC REASONING UNDER INCERTAINTY

Clearly, it is important that this lattice not be built explicitly but oniy used as an
implicit structure as the ATMS proceeds.

As an example of how an ATMS-based problem solver works, iet’s Tetun Lo the
ABC Murder story. Again, our goal is to find a primary suspect. We neerd (al lcast) the
following assumptions:

* Al. Hotel register was forged.

e AZ. Hotel register was not forged.

e A3. Babbitt's brother-in-law lied.

e A4. Babbitt’s brother-in-law did not lie.

s AS5. Cabot lied.

+ A6, Cabot did not lie.

* A7. Abbott, Babbitt, and Cabot are the only possible suspects,
* AB. Abbott, Babbilt, and Cabot are not the only suspects

The problem solver could then generate the nodes and associated justtfications shown
in the first two columns of Figure 7.14. In the figure, the justification for a node that
corresponds 1o a decision to make assumption N is shown as {N} Justifications for
nodes that correspond to the result of applying reasoning rules are shown #s the rule
involved. Then the ATMS can assign labels to the nodes as shown in the second two
columns. The first shows the label that would be generated for each justification taken
by itself. The second shows the label (possibly containing muitiple contexts) thar =
actually assigned to the node given all its current justifications. These columns are
identical in simple cases, but they may differ in more complex situations as we sec for
nodes 12, 13, and 14 of our example.

There are several things to notice about this example:

e Nodes may have scveral justifications if there are several possible reasons for
belicving them. This is the case for nodes 12, 13, and 14.

e Recall that when we were using a JTMS, a node was labeled IN if it had ar least
one valid justification. Using an ATMS, a node will end up being labeled with a
consistent context i it has at least one justification that can occur in a consistent
context.

* The label assignment process is sometimes complicated. We describe it in more
detail below.

Suppose that a problem-solving program first created nodes | through 14, repre-
senting the various dependencies among them without committing to which of them
it currently believes. 1t can indicate known contradictions by marking as no good the
context: '

® A, B, C arc the only suspecis; 4. 8, C are not the only suspects: {A?.AB]'

7.6. IMPLEMENTATION: BREADTH-FIRST SEARCH 225

Nodes Justifications Node
Labels
[1] Register was noi forged {a2} {A2} {A2}
{2) Abbot at hotel (=12 {42} {a2}
*[3] BlLdidn'tlie {4} {Ad) {A4}
{4] BabbinaiBJ-L 31— 14 {ad} {4}
[5] Cabotdidn't lic {6) {A6} {A6}
{6] Cabotat skishow (51— (6 {A6} {A6}
{71 A,B, Conly suspccis {A?} 1A7} AT}
(8] Prime Suspect Abbon [T1 A (13) A L14] — [B] {A7,A4, A6} {A7,A4, A6}
(9] Prime Suspect Babbitt MAl2)Al14] >8] {A7.A2,48] (A7,A2,A6]
[10] Prime Suspect Cabot (T A D2 A (1313 [10] {A7,A2,44} {A7,A2.44}
{111 A,B.C notonly suspecis (AR} {A8} (A8}
[12] Not prime suspect Abbat (2] - [12] {A2} {A2},{A8}
(1] — 112 {A8}
91— (12) {AT7,AZ,A6)
[10] = (12} {A7,42,A4)
[13] Not prime suspact Babbine [4] = [13] {A4} A4}, {AB)
(11— [13] {A8}
8] = 113] {A7.A4.A6}
[10] =3 [13) {A7,A4,A2}
[14] Not prime suspect Cabot 6] = [14] {A6} {A6}, {AB}
n— (4] {AB}
(81— 114] {AT,A4, 46
(9] — (141 {A7.A2 A6}

Figure 7.14; Nodes and Their Justifications and Labels

‘I'he ATMS would then assign the labels shown in the figure. Let’s consider the case
of node 12. We generate four possible labels, one for each justification. But we want 1o
assign to the node a label that contains just the greatest lower bounds of all the contexts
in which it can aceur, since they implicitly encode the supersel contexts. The label {A2}
is the greaiest lower bound of the first, third, and fourth labcl, and {AR) is the same for
the second label. Thus those two contexts are all that are required as the label for the
node. Now let's consider labeling node 8. Its Jabel must be the union of the labels of
nodes 7, 13, and 14. But nodes 13 and 14 have complex labels representing alternative
justifications, So we must consider all ways of combining the labels of all three nodes.
Vortunately. some of these combinations, name ly those that contain both A7 and AB, can
bhe eliminated because they are already known Lo be contradictory. Thus we are left with
a single label as shown.

Now suppose ihe problem-solving program labels the contexi {A2} as no good.
meaning thal the assumption it contains (namely that the hotel register was not forged)
conflicts with what it knows. Then many of the labels that we had disappear since they
are now inconsistent. In particular, the labels for nodes 1, 2.9, 10, and 12 dis"pnear.
At this point, the only suspect node that has a label is node 8. But node 12 {¥r nme
suspect Abbott) also still has a label that corresponds to the assumption that A obott,
Babbitt, and Cabet are not the only suspects. If this assumption is made, then Abbott
would not be a clear suspect even if the hotel register were forged. Further information
or some choice process is still necessary to choose between these remaining nodes

226 CHAPTER 7. SYMBOLIC REASONING UNDER U/NCERTAINTY

7.7 Summary

In this chapter we have discussed several logical systems that provide a basis for
nonmonotonic reasoning, including nonmonotonic logic, default logic, abduction, in-
heritance, the closed world assumption, and circumscription. We have also described
way in which the kind of rules that we discussed in Chapter 6 conld be augmented 1
support nonmonotonic reasoning.

We then presented three kinds of TMS systems, all of which provide a basis for
implementing nonmonotonic reasoning. We have considered two dimensions along
which TMS systems can vary: whether thcy automatically detect logical conradictions
and whether they maintain single or multiplc contexts, The following 1al)e summarize
this discussion:

| TMS Kinds [single context | multiple context
nonlogical [JTMS ATMS |
logical LTMS T

As can be seen in this table, there is currently no TMS with logical contradictions
and multiple contexts.

These various TMS systems each have advantages and disadvantages with respect
1o each other. The major issues that distinguish JTMS and ATMS systems are:

* The JTMS is often better when only a single solution is desired since 1t does not
" need to consider altematives: the ATMS is usuail y more efficient if all solutions
are eventually going 1o be needed.

® To create the contéxt lattice. the ATMS performs a global operation in which
it considers all possible combinations of assumptions. As a resuli, either ail
assumptions must be known at the outset of problem solving or an expensive,
recompilation process musi occur whenever an assumpticn 1s added In the
JTMS, on the other hand, the gradual addition of new assumptions poses no
problem.

® The JTMS may spend a lot of time switching contexts when backiracking i«
necessary. Context switching does not happen in the ATMS

¢ In an ATMS, inconsistent contexts disappear from consideration, If the initial
problem description was overconstrained, then all nodes will end up with empty
labeis and there will be no problem solving trace that can serve as a basis for
relaxing one or mere of the constraints. In a JTMS. on the other hand, the
Justification shat is attached 10 a contradiction: node provides exactly such a trace.

The ATMS provides a natural way to answer questions of the form, “In what
CORtexts is A true?” The only way lo answer such questions using a JTMS is to
try all the alternatives and record the ones in which A is labeled IN.

One way 10 get the best of both of these worlds is to combine an ATMS and a JTMS
(or LTMS), letting each handle the part of the problem-solving process to which ir is
best suited.

7.8. EXERCISES 227

The various nonmonotonic systems that we have described in this chapter have
served as a basis for a variety of applications. One area of particular significance i
diagnosis (for example, of faults in a physical device) [Reiter, 1947b; de Kleer ana
Williams, 1987]. Diagnosis is a patural application area for minimalist reasoning in
particular, since one way 10 describe the diagnostic task is, “Find the smallest et
of abnormally behaving components that would account for the observed behavior
A second application arca is reasoning about action, with a particuiar emphasis on
addressing—the frame problem [Tlanks and McDermott, 1986]. The frame problem
is also natural for this kind of reasoning since it can be described as, “Assume that
everything siays the same after an action except the things that neccssarily change.”
A third application area is design [Steele e al., 1989]. Here, nonmonolonic reasoning
provides a basis for using common design principles 10 find a promising path quickly
even in a huge design space while preserving {he option to consider alternatives later
if necessary. And yet another application area is in extracting intent from English
expressions (sce Chapter 15.)

In all the systems that we have discussed, we have assumed that belief status is a
binary function. An assertion must eventually be either believed or not. Sometimes,
this is too strong an assumption. In the next chapter, we present techniques for dealing
with uncertairity without making that assumption. Instead, we allow for varying degrees
of belief,

7.8 Exercises

1. Try to formulate the ABC Murder story in predi.ate logic and see how far you
can get.

) The classic example of nonmonotonic reasoning involves birds and flying. In
narticular, consider the following facts:
« Most things do not fiy.
« Most birds do fly, unless they are too young of dead or have a broken wing
» Penguins and ostriches do not fly.
o Magical ostriches fly.
o Tweety is a bird.
e« Chirpy is cither a penguin or an ostrich,
s Feathers is a magical ostrich.
I se one or more of (he nonmonatonic reasoning systems we hive discussed to
answer the following questions:
e Does Tweety fiy?
» Dwoes Chirpy fly?
» Does Feathers fiy?
» Does Paul fly”?

228 CHAPTER 7. SYMBOLIC REASONING UNDER [INCERTAING

3. Consider the missionaries and cannibals problem of Seciion 2.6. Whep you solved
that problem, you used the CWA several times (probably withour thinking ahou
it). List some of the ways in which you used it.

4. A big technical problem that arises in defining circumscription precisely (s the
definition of a minimal model. Consider again the problem of Dick, the Quaker
and Republican, which we can rewrite using 3 slightly different kind of A8
predicate as;

Yx : Republican(x) —~ABL(x) = —Parifisi{2; |
Y : Quaker(x) A ~AB2(x) —» Pacifist(x)
Republican(x)

Quaker(x)

(a) Write down the smallest models you can thar describe the two sxtensions
that we computed for that knowledge base.

(b) Does it make sense to say that either is smaller than the other?

(c) Prioritized circumecription [McCarthy, 1986] attempls to solve this problem
by ranking predicates by the order in which they should be minimized. How
could you use this idea to indicate a preference as 11 whica extension to
prefer?

5. Consider the problem of finding clothes 10 wear in the moming, To solve this
problem, it is necessary 1o use knowledge such as:
® Wear jeans unless cither they are dirty or you have a job interview today.
* Wear a sweater if it's cold.
» It's usually coid in the winter.
* Wear sandals if it's warm,
o It's usually warm in the summer.

(a) Build a JTMS-style database of the neLensary [acts 10 solve this probiem.

(b} Show how the problem can be solved and how the solution changes 5 the
relevant facts (such as time of year and dirtiness of jeans) change.

6. Show how a JTMS could be used in medical diagnosis. Consider rules such as,
“If you have a runny nuse. assume you have a cold unless it is alergy season.”

7. Soive the same medical reasoning problem with an ATMS

8. Show how a JTMS could be used to select a TV program 1o watch, Consider rules
such as, “If it is 6:00, then watch the news on channel 2 unless there is a football
game still going on.”

9. TMSs are useful wools in solving constraint satisfaction problems since they ta-

cilitate the nonmonotonic reasoning that occurs during the search for a complete
solution.

7.8. EXERCISES 229

(a) Show how a JTMS could be used to solve the cryptarithmetic problems of
Chapter 2.
(b) Show how an ATMS would solve the same problem.

10. We desurihed informally the JTMS labeling process. Wrile a formal description
of that algorithm.

11. Work through the details of the ATMS node labeling process whase results are
shown in Figure 7.14.

Chapter 8

Statistical Reasoning

So far, we have described several represeniation techniques that can be used to model
belief systems in which, at any given point, a particular fact is believed to be true,
believed 1o be false, or not considered one way or the other. For some kinds of problem
solving, though, it is uscful 10 be able to describe beliefs that are not certain but for
which there is some supporting evidence. Let’s consider two classes of such problems.

The first class contains problems in which there is genuine randomness in the worid.
Playing card games such as bridge and blackjack is a good example of this chass
Although in these problems it is not possible to predict the world with cerainty, some
knowledge about the likelihood of various outcomes is available, and we would like 0
be able to exploit il.

The second class contains problems that could. in principle, be modeled using the
techniques we described in the last chapter. In these problems, the relevant world is not
random: it behaves “normally” unless there is some kind of cxception. The difficulty i=
that there are many more possible exceptions than we care 1o enumerate ex phicitly {(using
techniques such as A8 and UNLESS). Many common sense tasks fall ino this category.
as do many expert reasoning tasks such as medical diagnosis. For problems like this
statistical measures may serve a very useful function as summaries of the world; rather
than enumerating all the possible exceptions, we can usea numerical summary that tells
us how often an exception of some sort can be expected to OcCuT.

In this chapter we explore several techniques that can be used to augment knowledge
representation techniques with statistical measures that describe levels of evidence and
belief.

8.1 Probability and Bayes’ Theorem
An important goal for many problem-solving systems is to collect evidence as the
system goes along and to modify its behavior on the basis of the evidence. To model this

behavior, we need a statisticai theory of evidence. Bayesian statistics is such a theory
The fundamental notion of Bayesian statistics is that of conditional probability:

P(HIE)

23!

232 CHAPTER 8. STATISTICAL REASONING

Read this expression as the probability of hypothesis # given that we have observed
cvidence £. To compute this, we need to take into account the prior probability of
H (the prohability that we would assign to /7 if we had no evidence) and the extent to
which £ provides evidence of H. To do this, we need 1o define a universe that contains an
exhaustive, mutually exclusive set of H;'s, among which we are trying to discriminate.
Then, let

PiH;|E) =the probabilily that hypothesis H, is true given evidence £

P(E|M;) =the probability that we will observe evidence £ given that hypothesis
iis true

P(H,) =the a priori probability that hypothesis i is true in the absence of any
specific evidence. These probabilities are called prior probabilities
or priars.

k =the number of possible hypotheses

Bayes® theorein then states that

PEIH) - P(H))
S PEIH,) P(H,)

Suppose, for example, that we are interested in examining the geological evidence
at a particular location to determine whether that would be a good place to dig to find
a desired mineral. If we know the prior probabilities of finding cach of the various
minerals and we know the probabilities that if a mineral is present then certain physical
characteristics will be abserved, then we can use Bayes' formula to compute, from the
evidence we collect, how likely it is that the various minerals are present. Thisis, in Fact,
what is done by the PROSPECTOR program [{Duda er af., 1979], which has been used
successfully to help locate deposits of several minerals, including copper and uraniurm.

The key to using Bayes™ theorem as a basis for uncertain reasoning is to recognize
exactly what it says. Specifically, when we say P(A|B), we are describing the conditional
probability of A given that the only evidence we have is . Il ihere is also other relevant
evidence, then it too muist be considered. Suppose, for example, that we are solving a
medical diagnosis problem. Consider the following assertions:

P{H:|E) =

S: patient has spots
M: patient has measles
F: patient has high fever

Without any additional evidence, the presence of spots serves as evidence in favor
of measles. It also serves as evidence of fever since measles would cause fever. But
suppose we already know that the patient has measles. Then the additional evidence that
he has spots actually tells us nothing about the likelihood of fever. Alternatively, either
spots alone or fever alone would constitute evidence in favor of measles. If both are
present, we need to take both into account in determining the total weight of cvidence.
But, since spots and fever are not independent events, we cannot just sum their effects,
Instead, we need 1o represent explicitly the conditional probability that arises from their
conjunction. In general, given a prior body of evidence ¢ and some new observation £,
we need 1o compute

8.2. CERTAINTY FACTORS AND RULE-BASED SYSTEMS 233

P(Ei F‘ H)
PlelE)

Unfortunately, in an arbitrarily complex world. the size of the set of joint probabilities
that we require in order to compute this function grows as 2" if there are A different
propositions being considered. This makes vsing Bayes'® theorem intractable for several
reasons:

P(HIE.e) = PUHIE) -

¢ The knowledge acquisition problem is insurmountable; oo many probabilities
havc 1o be provided. In addition, there is substantial empirical evidence (e.g.,
Tversky and Kahneman [1974] and Kahneman ef al. [1982]) that people are very
poor probability estimators.

e The space that would be required to storc all the probabilities is too large.
o The time required to compute the probabilities is too large.

Despite these problems, though, Bayesian statistics prov ide an attractive hasis for
an uncertain reasoning system. As a result, several mechanisms for exploiting its power
while at the same Lime making it tractable have been developed. In the rest of this
Chapter, we cxplore three of these:

o Attaching cerainty factors to rules
» Bayesian networks
e Dempster-Shaler theory

We also mention one very different numerical approach 10 uncertainty, fuzzy logic.

There has been an active, sirident debate for many years on the question of whether
pure Bayesian statistics are adequate as a basis for the development of reasoning pro-
grams. (See. for example, Cheeseman {1985] for arguments that it is and Buchanan
and Shortliffe [1984] for arguments thal it is not * On the onc hand, non-Bayesian
approaches have been shown [0 work well for some kinds of applications (as we sce
below).- On the other hand, there are clear limitations to all known techniques. In
essence, the jury is still out. So we sidestep the issue as much as possibie and simply
describe & set of methods and their characteristics

82 Certainty Factors and Rule-Based Systems

In this section we describe one practical way of couprumising o & pure Bayesian
system. The approach we discuss was pioneered in the MYCIN system [Shortliffe.
1976; Buchanan and Shortliffe, 1984; Shortliffe and Buchanan, 1975), which attempts
to recommend appropriate therapics for patients with bacterial infections. It interacts
with the physician o acquire the clinical data it needs. MYCIN is an example of an
mxﬂsyﬂm.simeitpqﬁmnsnmknomﬂlymwnhumupm. Here we
concentrate on the usc of probabilistic reasoning; Ch!ptﬂ'mpmvidesahoaduview
of expert systems.

234 CHAPTER 8. STATISTICAL REASONING

MYCIN represents most of its diagnostic knowledge as a set of rules. Fach rulc
has associated with it a certainty factor, which is a measure of the extent 1o which the
cvidence that is described by the antecedent of the rule supports the conclusion that is
given in the rule’s consequent. A typical MYCIN rule looks like:

If: (1) the stain of the organism is gram-positive, and
(2) the morphology of the organism is coccus, and
(3) the growth conformaticon of the organism is clumps,
then there is suggestive evidence (0.7) that
the identity of the organism is staphylococcus,

This is the form in which the rules are stated to the user, They are actually represented
internally in an easy-to-manipulate LISP list structure. The rule we Just saw would be
represented intemally as

PREMISE: ($AND (SAME CNTXT GRAM GRAMPOS)
(SAME CNTXT MORPH COCCUS)
(SAME CNTXT CONFORM CLUMPS))
ACTION: (CONCLUDE CNTXT IDENT STAPHYLOCOCCUS TALLY 0.7)

MYCIN uses these rules to reason backward 1o the clinical data available from s
goal of finding significant disease-causing organisms. Once it finds the identities of such
organisms, it then attempts to select a therapy by which the discase(s) may be treated,
In order to understand how MYCIN exploits uncertain information, we need answers to
two questions: “What do certainty factors mean?" and “How does MYCIN combine the
estimates of certainty in each of its rules to produce a final estimate of the certainty of its
conclusions?” A further question that we need 10 answer, given our observations about
the intractability of pure Bayesian reasoning, is, “What compromises does the MYCIN
technique make and what risks are associated with those compromises?” In the resl of
this section we answer all these questions.

Let's stant first with a simple answer to the first question (1o which we return with
a more detailed answer later). A certainty factor (CFA, e]) is defined in terms of two

components:

& MB[h, e]—a measure (between O and 1) of belief in hypothesis A given the evi-
dence e. MB measures the exient to which the evidence supports the hypothesis.
It is zero if the evidence fails to support the hypothesis.

* MD[h, e]—a measure (between 0 and 1) of disbelief in hypothesis & given the
evidence e. MD measures the extent to which the evidence supports the negation
of the hypothesis. It is zero if the evidence supports the hypothesis.

From these two measures, we can define the certainty factor as
CFlh, e] = MB[h,e] — MDl[h, e]
Since any particular piece of evidence cither supports or denies a hypothesis (but
not both), and since each MYCIN rule corresponds to one piece of evidence (although it

mbeammpmdpieaeofevidqm}.uingknmwerwfﬁm for each rule to define
both the MB and MD and thus the CF.

82. CERTAINTY FACTORS AND RULE-BASED SYSTEMS 235

®
e O® ®

C

(a) b) (c)

Figure 8.1: Combining Uncertain Rules

The CF's of MYCIN's rules are provided by the experts who write the rules. They
reflect the experts’ assessments of the strength of the evidence in support of the hy-
pothesis. As MYCIN reasons, however, these CF’s need to be combined to reflect the
aperation of multiple picces of evidence and multiple rules applicd to a problem. Fig-
wie 8.1 illustrates three combination scenarios that we need 1o consider. In Figure 8.1(a),
several rules all provide evidence that relates to a single hypothesis. In Figure 8.1(6).
we need to consider our belief in a collection of several propositions taken together. In
Figure 8.1(c), the output of one rule provides the input 1o another. i

What formulas should be used to perform these combinations? Before we answer
that question, we need first o describe some properties that we would like the combining
functions to satisfy:

« Siace the order in which evidence is collected is arbitrary, the combiuing functions
should be commutative and associative.

« Until certainty is reached, additional confirming evidence should increase MB
(and similarly for disconfirming cvidence and MD).

« If uncertain inferences ase chained together, then the result should be less certain
than either uf the inferences alone.

Having sccepted the desirability of these properties, let's hirst consider the scenario
in Figure 8.1(a), in which several pieces of evidence are combined to determine the
CF of onc hypothesis. The measures of belicf and disbelief of a hypothesis given two
observations s; and y; are computed from:

Jo of MDA, 5, Asz] =1
MBI o A} = { MBLh.s)] + MBh, 52)-(1 = MBI <.) otherwise

_ 0 if MBLA. 5y Asa) =1
MDA % A 51] = { MDA, 5,1+ MD{h. 5:]-(1 — MDIE 5D ntherwise

236 CHAPTER . STATISTICAL REASONING

One way 1o state these formulas in English is that the measure of belief i is
0 if & is disbelieved with cenainty. Otherwise, the measure of belief in h given two
observations is the measure of belief given only one observation plus some increment
for the second observation. This increment is computed by first taking the difference
between | (certainty) and the belief given only the first observation. This difference is
the most that can be added by the second observation. The difference is then scaled
by the belicl in h given only the second observation. A corresponding explanation can
be given, then, for the formula for computing dishelief. From MR and MD, CF can
be computed. Notice that if several sources of comroborating evidence are pooled, the
absolute value of CF will increase. if conflicting evidence is introduced, the absoluie
value of CF will decrease.

A simple example shows how these functions operate. Suppose we make an initial
observation that confirms our belief in & with M8 = 0.3, 'Then MD[h, 5] = 0 and
CFlh,s,} = 0.3. Now we make a second observation, which also confirms k. with
MBih, 52] =0.2. Now:

MB[h,si Asz] =0.3+0.2-0.7
=044

MDLh, s Asy] =00

CF[’I. 5 A J;] =0.44

You can see from this example how slight confirmatory evidence can accumulate to
produce increasingly larger certainty factors.

Next let's consider the scenario of Figure 8.1(b), in which we need to corupute the
certainty factor of a combination of hypotheses. In particular, this is necessary when we
need to know the certainty factor of a rule antecedent that contains several clauses (as,
for example. in the staphylococcus rule given above). The combination certainty factor
can be computed from its MB and MD. The formulas MYCIN uses for the MB of the
conjunction and the disjunction of two hypotheses are;

MB(hy A by, e} = min(MBk, .e], MBlhy, ¢])

MB[h, V hy. e} = max(MBIh,, e], MB[h,, el)

MD can be compuicd analogously.

Finally, we need to consider the scenario in Figure 8 1(c), in which rules are chained
together with the result thar the uncertain outcome of one rule must provide the input 1o
another. Our solution to this problem will also handle the case in which we must assign
4 measure of uncertainty to initial inputs. This could easily happen in situations where
the evidence is the outcorie of an experiment or a laboratory test whose results are not
completely accurate. In such a case, the certainty factor of the hypothesis must take
into account both the strength with which the evidence suggests the hypothesis ani! the
level of confidence in the evidence. MYCIN provides a chaining rule that is defined as
follows. Let MB’[k, 5] be the measure of belief in A given that we are absolutely sure of
the validity of 5. Let € be the evidence that led us to believe in s (for example, the actual
readings of the laboratory instruments or the results of appiying other rules). Then:

8.2. CERTAINTY FACTORS AND RULE-BASED SYSTEMS 237

MBIk, 5] = MB'(h,s] - max (0, CF[s.e])

Since initial CF’s in MYCIN are estimates that are given by experts who write the ruies,
it is not really necessary to state a more precise definitinn of what a CF means than the
one we have already given. The original work did, however, provide onc hy defining
MB (which can be thought of as a proportionate decrease in disbelief in h as a result
of €) as:

A - .
max(Pihie) PHI- PRy erwise
=Pk

similarly, the MD is the proportionate decrease in belief in h as a result of e:

| if Pt =1
MBlh,¢) =

| ifP(=0
MDLh e) = { mmtm._i.- ;:;(}M]--Pm_j - e

[t turns out that these definitionsare incompatible with a Bayesian view of conditional
probability. Small changes to them. however, make them compatible |Heckerman.
1986]. In particular, we can redefine MB as

— } if P(h} =1
el = max|Pikje) PAI|—Fh) -
nLn‘;n-i‘tFlc_;_ £ oeberwac

The definition of MD must also be changed similarly.

With these reinterpretations, there ceases 10 be any fundamenital conflict between
MYCIN's techniques and those suggested by Bayesian statistics. We argucd at the end
of the last section that pure Bayesian statistics usually leads to intractable systems. But
MYCIN works [Buchanan and Shortliffe. 1984). Why?

Each CF in a MYCIN rule represents the contribution of an individual rule 10
MYCIN’s belief in a hypothesis. In some sense then, it represents a conditional prob-
ability, P(H|E). But recall that in a pure Bayesian system, P(H\E) describes the con-
ditional probability of H given that the only relevant evidence is £. If there is other
evidence, joint probabilities need 1o be considered. This is where MYCIN diverges
from a pure Bayesian system. with the result that 1t is easier to write and more cfficient
1o exccute, but with the corresponding risk that its behavior will be counterintuitive In
particular, the MYCIN formulas for all three combination scenarios of Figure §.1 make
{he assumption that all rules are independent. The burden of guaranteeing independence
(at lcast to the extent that it matters) is on the rule writer. Each of the combination
scenarios i§ vulnerable when this independence assumption is violated.

Let's first consider the scenano in Figure 8.1(a). D example rule has three an-
tecedents with a single CF rather than three separale rules: this makes the combination
rules unnecessary. The rule writer did this because the {hree aniccedents are not inde-
pendent. To see how much difference MYCIN's independence assumption can make,

238 CHAPTER 8. STAIISTICAL REASONING

suppuse for a moment that we had instead had three scparatc rules and that the CF of
each was 0.6. This could happen and still be consistent with the combined CF of 0.7 if
the three conditions overlap substantially. If we apply the MYCIN combination formula
to the three separate rules, we get

MBlh,s| A 55) =06+(0.6-04)
=0.84

MBLA, (51 A 52) A 53] = 0.84 + (0.6 - 0.16)
=0.936

This isa substantially different result than the true value, as expressed by the expert, of
0.7,

Now let’s consider what happens when independence assumptions are violated in
the scenario of Figure 8.1(¢). Let's consider a concrele example in which:

§: sprinkler was on last night

W: grass is wet

R: it rained last night
We can write MYCIN-style rules that describe predictive relationships among these
three events:

1f: the sprinkler was on last nisht
then there is suggestive evidence (0.5) that
the grass will be wet this morning

Taken alone, this rule may accurately describe the world. Bul now consider a second
rule:

1f: the grass is wet this morning
then there 1s suggestive evidence {0.8) that
it rained last night

Taken alone, this rule makes sense when rain is the maost common source of water on
the grass. But if the two rules are applied 1ogether, using MYCIN s role for chaining,
we get i

MBIW,S]1=0.8 {sprinkier suggests wet}
MBIR, W) =08-09=072 {wet suggests rains)

In other words, we believe that it rained because we believe the sprinkler was on.
We get this despite the fact that if the sprinkler is known 1o have been on and to be the
cause of the grass being wet, then there is actually almost no evidence for rain (because
the wet grass has been explained some other way). One of the major advantages of
the modularity of the MYCIN rule system is that it allows us to consider individual
antecedent/consequent relationships independently of others. In particular, it lets us
talk about the implications of a proposition without going back and considering the
evidence that supported ir. Unfortunately, this example shows that there is a danger
in this approach whenever the Justifications of a belief are important 1o determining its

&.3. BAYESIAN NETWORKS 239

consequences. In this case, we need to know why we believe the grass is wet (e.g..
because we observed it to be wet as opposed 1o because we knovs the sprinkler was on)
in order to determine whether the wet grass is evidence for it having just rained.

It is worth pointing out here that this example illustrates one specifie rule structure
that almost always causes trouble and should be avoided. Notice that our first rule
describes a causal relationshup (sprinkler causes wet grass). The second rule, although it
looks the same, actually describes an inverse causality relationship (wet grass is caused
by rain and thus is evidence for its cavse). Although one can derive evidence for a
symptom from its cause and for a cause from observing its symptom, it is important that
evidence that is derived one way not be used again to go back the other way with no new
information. To avoid this problem, many rule-based systems either iimit their rules to
one structure or clearly partition the two kinds so that they cannot interfere with each
other. When we discuss Bayesian networks in the next section, we describe a systematic
solution to this problem

We can summarize this discussion ol certainty factors and rule-based systems as
follows. The approach makes strong independence assumptions that make it relatively
easy 1o use; al the same time assumptions create dangers if rules are not written carefully
so that important dependencies arc captured. The approach can serve as the basis of
practical application programs. It did so in MYCIN. It has done so0 in a broad array of
other systems that have been butlt on the EMYCIN platform [van Melle er al., 1981],
which is a generalization (ofren called a sheil) of MYCIN with all the domain-specific
rules stripped out. One reason that this framework is useful, despite its limitations, is
thal it appears that in an otherwise robust system the exact numbers that are used do not
matter very much. The other reason is that the rules were carefully designed 1o avoid the
major pitfalls we have just described. One other inicresting thing about this approusch
is that it appears to mimic quite well [Shultz ¢1 al | 1939] the way people manipulate
cenainties.

8.3 Bayesian Networks

In the last section, we described CF's as a mechunism lor veducing the complexity of
a Baycsian reasoning system by making some approximations (0 the formahsm In
this section, we describe’ an alternative approach, Bayesian nerworks |Pearl. |9588),
in which we preserve the formalism and rely instead on the modularity of the world
we are (rying to model. The main idea is that to describe the real world. it is not

ssary 1o use a huge joint probabilility table in which we list the probabilities of all
Kﬁivable combinations of events. Most events are conditionally independent of most
othir ones, so their interactions need not be considered. lInstead, we can use a more
locl representation in which we will describe clusters of events that interact
ecall that in Figure 8.1 we used a network notation to describe the various kinds of
wannison kkelihoodsthat propositionscan have on each other. The idea of constraint
OIRS lums-out 1o be very powerful. We expand on it in this section as a way to
sent interactions among events; we also return to it later in Sections 11.3.1 and 143,
“‘here we takk aboul other ways of representing knowledge as scts of constraints.

Let’s return to the example of the sprinkler, rain, and grass that we introguced in the
iast section. Figure 8.2(a) shows the fiow of constraints we described in MY CIN-style

240 CHAPTER 8. STATISTICAL REASONING

—
Rainy Season

(a) ()
Figure 8.2: Representing Causality Uniformly

rules. But recall that the problem that we encountered with that examplc was that the
constraints flowed incorrectly from “sprinkler on™ to “rained last night." The problem
was that we failed to make a distinction that tumed out to be critical. There are two
different ways that propositions can influence the likelihoad of each other. The first
is that causes influence the likelihood of their symptoms; the second is that observing
a symptom affects the likelihood of all of its possible causes. The idea behind the
Bayesian network structure is to make a clear distinction between these two, kinds of
influence.

Specifically, we construct a directed acyclic graph (DAG) that represents causality
relationships among variables. The idea of a causality graph (or network) has proved 1o
be very useful in several systems, particularly medica! diagnosis systems such as CAS-
NET [Weiss etal., 1978] and INTERNIST/CADUCEUS [Pople, 1982]. The variables in
such a graph may be propositional (in which case they can take on the values TRUE and
FALSE) or they may be variables that take on values of some other type (e.g., a specific
disease, a body 1emperaiute, or a reading taken by some other diagnostic device). In
Figure 8.2(b), we show a causality graph for the wet grass example. In addition 1o the
three nodes we have been talking about, the graph contains a new node corresponding
to the propositional variable that tells us whether it is currently the rainy season

A DAG, such as the one we have just drawn, illustrates the causality relationships
that occur among the nodes it contains. In order 1o use it as a basis for probabilistic
reasoning, however, we need more information. In particular, we need to know, for
each value of a parent node, what evidence is provided about the values that the child
node can take on. We can state this in a table in which the conditional probabilities arc
provided. We show such a table for our example in Figure 8.3, For example, from the
table we see that the prior probability of the rainy season is 0.5, Then, if it is the rainy
season, the probability of rain on a given night is 0.9; if it is not, the probability is only
0.1.

To be useful as a basis for problem solving, we need a mechanism for compuling
the influence of any arbitrary node on any other. For example, suppose that we have
observed that it rained last night. What does that tell us about the probabiliry that it is the

8.3. BAYESIAN NETWORKS 241

Attribute Prohabffifll
p(Wer|Sprinkler,Rain) 0.95
p(WeﬂSpn'nﬂe ,—Rain) 09
p(Wer|—Sprinkler,Rain) 08
pl Werl—Sprinkler —~Rain) 0.1

p(SprinkieriRainySeasen) 0.0
{ piSprirkier|~RainySeason) 1.0

piRa.n|RainySeason) 0o
M Rain!—RainySeason) 0l
. p(Rainydeason) 05 4

Figure § 7 Conditional Probabilities for a Bayesian Network

rainy scason? To answer (s question requires that the initial DAG be converted to an
undirected graph in which the arcs can be used to transmit probabilitiesin either direction
depending on where the evidence 1s coming from, We also icquire a mechanism fos
using the graph thal guarantees that probabilities are transmitted cormect ly. For exampie,
while it is tTue that ohserving wet grass may be evidence for rain, and observing rain is
evidence for wet grass, we must guarantee that no cycle is ever traversed 1n such a way
that wet grass is evidence for rain, which is then taken as evidence for wel grass, and ¢
forth.

There arc three broad classes of algorithins for domy these COMPULALIONS: @ INEssaye:
passing method [Pearl, 1988], a clique tniaugulal ion method |Lauritzen and Spicgelhal-
ter, 1988], and a variety of stochastic algorithms, The idea behind these methods is 1o
take advantage of the fact that nodes have limited domains of infiuence. Thus, although
in principle the task of updaling probabilities consistently throughout the network i
intractable, in practice it may not be. In the clique triangulation method, for example,
explicit arcs are introduced between pairs of nodes that share a common descendeni.
For the case shown in Figure £.2(b). a link would be introduced between Sprinkler and
Rain. This explicit link supports assessing (he impact of the observation Sg»inkler on
the hypathesis Rain, This is important since wel grass could be evidence of either ol
them, but wet grass plus one of its ¢auses is not evidence for the compeling cause since
an alternative explanation for the observed phenomenon already exists.

The message-passing approach is hased on the observation that 1o compute the
probability of a node A given what is known abuul uther nodes in the network, 1t is
necessary 10 know three things:

o 7 - the total support arnving al A from its parent nodes ¢ which represent its causes).
o) - the toial support armiving at A from j1s children (which represent its sympioms)

o The entry in the hxed coidinonal probability matris that relates A 1o its causes

242 CHAPTER & STATISTICAL REASONING

Several methods for propagating = and A messages and updating the probabilities at
the nodes have been developed. The structure of the network determines vhat approach
can be used. For example, in singly connected networks {those in which there is only
a single path between every pair of nodes), a simpler aigorithm cun be used then in the
case of multiply connected ones. For details, sce Pearl [1988].

Finally, there are stochastic. or randomized algorithms for updatng belicf networks.
One such algorithm [Chavez, 1989] transforms an arbitcary network into a Markov
chain. The idea is 1o shicld a given node probabilistically from mest of the other nodes
in the network. Stochastic algorithms run fast in practice, but may not yield absolutely
correct results.

8.4 Dempster-Shafer Theory

So far, we have described several techniques, ail of which consider individual proposi-
tions and assign to each of them a point estimate (i.c., a single number) of the degree of
belief that is warranicd given the evidence. In this section, we consider an alternative
technique, called Dempster-Shafer theory [Dempster, 1968; Shafer, 1976]. This new
approach considers sets of propositions and assigns to each of them an interval

[Belief . Plausibifity)

in which the degree of belief must lie. Belicf (usvally denoted Bel) measures the strength
of the evidence in favor of a set of propositions. Itranges (rom 0 (indicating no evidence)
to | (denoting certainty).

Plausibility (P]) is defined to be

Pl(s) = 1 — Bel(—s)

It also ranges from 0 to | and measures the cxtent 1o which evidence in favor of s
leaves room for belief in 5. In particular, if we have certain evidence in favor of -s.
then Bel{—s) will be 1 and Pi(s) will be 0. This tells us that the only possible value for
Bel(s) is also 0.

The belicf-plausibility interval we have just defined measures not only our ievel of
belief in some propositions, but also the amount of information we have. Suppose that
we are currently considering three competing hypotheses: A, B, and C If we have no
information, we represent that by saying, for cach of them, that the true likelihood is in
the range [0, 1]. As evidence is accumulated. this interval can be expected to shrink,
representing increased confidence that we know how likely each hypothesis is. Note
that this contrasts with a pure Bayesian approach, in which we would probably begin
by distributing the prior probability equally among the hypotheses and thus assert for
each that P(h) = 0.33. The interval approach makes it clear that we have no information
when we star. The Bayesian approach does not, since we could end up with the same
probability values if we collected volumes of evidence, which taken together suggest
that the three values occur equally often. This difference can matter if one of the
decisions that our program needs to make is whether 1o collect more evidence or 1o act
on the basis of the evidence it already has.

So far, we have talked intuitively about Bel as a measure of our belief in some
hypothesis given some evidence. Let's now define it more precisely. Todothis. we need

84 DEMPSTER-SHAFER THEORY 243

1o start, just as with Bayes® theorem, with an exhaustive universe of mutually exclusive
hypotheses. We'll call this the frame of discernment and we'll writeitas @ Forexample,
in a simplified diagnosis problem, & might consist of the set {All, Flu,Cold, Preu}:

All: allergy

Flu: flu

Cold: cold

Prew: pneumeonia

Our goal is to aftach some measure of belief 1o elements of &. However, not
all cvidence is directly supportive of individual elements. Often it supports sets of
elements (i.c., subsets of @). For example, in our diagnosis problem, fever might suppoit
|Flu,Coid, Preu}. In addition, since the elements of @ are mutually exclusive, evidence
in favor of some may have an affect on our belief in the others. In a purely Bayesian
system, we can handle both of these phenomena by listing all of the combinations of
conditional probabilities. But our goal is not to have to do that. Dempster-Shafer theory
jets us handle interactions by manipulating sets of hypotheses directly.

The key function we usc is a probahility density function, which we denote as m. The
function m is defined not just for clements of © but forall subsets of it (including singleton
subsets, which correspond to individual elements). The quantity m(p) measures the
amount of belief that is currently assigned to exactly the set p of hypotheses. If ©
contains n elements, then there are 2" subsets of ©. We must assign m so that the sum
of all the m values assigned to the subsets of & is 1. Although dealing with 2" values
may appear infractabie, it usually tumns out that many of the subsets will never need o
be considered because they have no significance in the problem domain (and so their
assaciated value of m will be 0).

Let's see_ how m works for our disgnosis problem. Assume that we have no infor-
mation abouft how 10 choose among the four hypotheses when we start the diagnosis
1ask. Then'we define m as:

(e} 1m

All other valucs of m are thus 0. Although this means that the actual value must be some
one element All, Flu, Cold, or Preu, we do not have any information that allows us 10
assign belicf in any other way than to say that we are sure the answer 1§ somewhere i1t .
the whole set. Now suppose we acquire & piece of evidence that suggests (at a level o1
0.€) that the correct diagnosis is in the set {Flu,Cold, Pneu}. Fever might be such a
piece of evidence. We update m as follows:

{Fﬁl.c{!:‘d,Pﬂﬂl} (0.6)
{8} (0.4)

At this point, we have assigned lo the set {Flu,Cold,Pneu} the appropnate be-
fief. The remainder of our belief still resides in the larger set ©. Notice that we do
not make the commutment that the remainder must be assigned to the complement of
{Flu,Cold, Pneu}.

Having defined m, we can now define Bel(p) for a set © as the sum of the values of m
ior p and for all of its subsets. Thus Rel(p) is our overall belief that the correct answer

HAA CHAPTER 8. STATISTICAL REASONING

fics somewhere in the set p.

In order 1o be able 1o use m (and thus Bel and P/) in reasomng programs, we need
to define functions that cnable us to combine m's that arise from multiple sources of
evidence.

Recall that in our discussion of CF's, we considered three combination scenanos,
which we illustrated in Figure 8.1. When we use Dempster-Shafer theory, on the other
hand, we do not need an explicit combining function for the scenario in Figure 8.1(8)
since we have that capability already in our ability to assign & valuc of m to a st
of hypotheses. But we do aced a mechanism for performing the combinations of
scenarios (a) and (¢). Dempster’s rule of combination serves both these ‘unctions.
it allows us to combine any Iwo belief functions (whether they represent multiple
sources of evidence for a single hypothesis or multiple sources of evidence for different
hypotheses).

‘Suppose we are given two belief functions m; and m;. Let X be the set of subsets of
© to which m, assigns a nonzero value and let ¥ be the comresponding set for my. We
define the combination my of m; and ma to be

Exnrq: my(X) - ma(Y)

myZ) = =3 xar-g miX) - ma(Y)

This gives us a new belief function that we can apply to any subset Z of &. We can
describe what this formula is doing by looking first at the simple case in which all ways
of intersecting elements of X and elements of ¥ generate nonempty sets, For example.
suppose 1) corresponds to our helief after observing fever:

|Fliu.Cold, Pnen) (0.6)
] {0.4)

Suppose m; corresponds to our belief after cbserving a runny nose:
{AIl Fiu,Cold} (0.8}
a (0.2)

Then we can compute their combination rm; using the following table {in which we
further abbreviate disease names), which we can derive using the numerator of the
combination rule:

AF.C] (08 & (03
{F.C,P} (06 | {F.C] (048 {F,C,P} (0.12)
e (04) | {A,F.C} (032) & (0.08)

The four sets that are generated by taking all ways of intersecting an element of X and
an element of ¥ are shown in the body of the table. The valuc of m; that the combination
rule associates with each of them is computed by multiplying the values of m; and m;
associated with the elements from which they were derived. Although it did not happen
in this simple case, it is possible for the same set 10 be derived in more than one way
during this intersection process. If that does occur, then 1o compute 7 {or that set, it is

84. DEMPSTER-SHAFER THEORY 245

necessary to compute the sum of all the individual values that are generated for all the
distinct ways in which the set is produced (thus the summation sign in the numerator of
the combimation formula).

A slightly more complex situation arises when some of the subsets created by
the intersection operation are empty. Notice that we are guaranteed by the way we
computc m; that the sum of all its individual values is 1 (assuming that the sums of all
the valves of m; and mt, are 1). 1f some empty subsets are created, though. then some
of m., will be assigned to them, But from the fact that we assumed that & is exhaustive,
we know thai the true value of the hypothesis must be contained in some nonempty
subset of @. So we need (o redistribuic any helief that ends up in the empty subsel
proportionately across the nonempty ones. We do that with the scaling factorslown in
the denominator of the combination forrula. If no nonempty subsets arc created, the
scaling factor is 1, so we were able 12 ignore it in our first example. But to sce how 1t
works, let’s add a new piece of evidence to our example. As a resuit of applying m and
nta, we produced m:

{Flu, Cold} (0.48)
{All. Flu,Cold} (0.32)
{Flu,Cold,Pneu} (0.12)
(2] (0.08)

Now. letmy correspond to our belief given just the evidence that the problem goes
away when the patient goes on a trip:
{All} (0.9
e 0.1)

We can apply the numerator of the combination rule to produce (where @ denotes the
empty set).

D 2) (0.1)
[F€) (a0 0332) {F.C} (0.048)
{A.F.C} (032)|{A.F.C) (0288) {A.F.C} (0032)
{F.C.P} (0.12) |0 (0.108) {F.C.P} (2012
o oo ooz e oo

But there is now a total belief of .54 associaled with @; only 0.45 is associated with
outcomes that are in fact possible. So we need to scale the remaining values by the
factor | — 0.54 = 0.46. If we do this, and alsn combine alternative ways of generating
the set {All, Flu. Cold), then we get the final combined belief function, ms:

{Flu,Cold) {0.104)
{All Flu,Cold) 10.696)
{Flu,Cold,Pneu} (0.026)
{Ali) (0.157)
e (0.017)

246 CHAPTER 8. STATISTICAL REASONING

height height

{a} Fuzzy Membership (k) Tonventional Membership

Figure 8.4: Fuzzy versus Conventional Set Membership

In this example, the percentage of ms that was initially assigned to the empty sel
was large (over half). This happens whenever there is confliciing evidence (as in this
case berween m, and my).

8.5 Fuzzy Logic

In the techniques we have discussed so far, we have hot modified the mathematical
underpinnings provided by set theory and logic. We have instead augmented those ideas
with additional constructs provided by probability theory. In this section, we take a
different approach and briefly consider what happens if we make fundamental changes
to our idea of set membership and corresponding changes to our definitions of logical
cperations,

The motivation for fuzzy sets 1s provided by the need to represent such propositions
as;

John is very tall.

Mary is slightly ill.

Sue and Linda are close fnends.

Exceptions to the rule are nearly impossible.
Most Frenchmen are not very tall.

While traditional set theory defines set membership as a boolean predicate, fuzzy
set theory allows us 1o represent set membership as a possibility distribution, such as
the ones shown in Figure 8.4{a) for the set of tall people and the set of very tall people.
Notice how this contrasts with the standard boolean definition for tall people shown in
Figure 8 4(b). In the latter. onc is either tall or not and there must be a specific height
that defines the boundary. The same is true for very tall, In the former, one's tallness
increases with one’s height until the value of 1 is reached.

Once set membership has been redefined in this way, it is possible to define a
reasoning system based on techniques for combining distributions [Zadeh, 1979] (or see

8.6. SUMMARY 297

the papers in the journal Fuzzy Sets and Systems). Such reasoners have been applied in
control systems for devices as diverse as trains and washing machines,

8.6 Summary

1n this chapter we have shown that Bayesian statistics provide a good basis for reasoning
ander various kinds of uncertainty. We have also, though, talked about its weaknesse:
in complex real tasks, and so we have talked about ways in which it can be modified 19
work in practical domains. The thing that all of these modifications have in common is
that they substitute, for the hage joint probability matrix that 2 pure Payesian approacu
requires, a more structured representation of the facts that are relevant 10 4 particular
problem. They typically do this by combining probabilistic information with knowledge
that is represented using one or more other representational mechanisms, such as rules
or constraint networks.

Comparing these approaches for use in a particular problem-solving program is not
always straightforward, since they differ along several dimensions, for example:

o They provide different mechanisins for describing the ways in which propositions
arc not independent of each other.

» They provide different techniques for representing ignorance.

& They differ substantially in the ease with which systems that use them can be buit
and in the computational complexity that the resulting systems exhibil.

We have also presented fuzzy logic as an alternative for representing some kinds of
uncertain knowledge. Although there reinain many arguments about the relative overall
merits of the Bayesian and the fuzzy approaches, there 1s come evidence that they may
both be useful in capturing different kinds of information. As an example, consider th
Proposition

John was pretty surc that Mary was serionsly ill

Bayesian approaches naturally capiure John’s degree of cenainty, while fuzzy techniques
an describe the degree of Mary's illness

Throughout all of this discussion, il 15 impoani to keep in mind the fact thal
although we have been discussing techmyues for representing knowledge, there is
another perspective from which what we have really been doing is describing ways of
representing lack of knowledge. In this sense, the techmgues we have described in this
chapter are fundamentally different from the ones we talked about earlier. For example,
the truth values that we manipulate in a logical sysiem characterize the formulas that
we wrile; certainty measures. on the other hand, describe the exceplions—the facts thai
do not appear anywhere in the formulas that we have writien. The consequences of
this distinction show up in the ways that we can interpret and manipulate the formula:
that we write. The most important differcnce is that logical formulas can be treatec
as though they represent independent propositions. As we have seen throughout this
~hapler, uncertain assertions cannol. As a result, for example. while implication

248 CHAPTER &. STATISTICAL REASONING

transitive in logical systemss, we often get into trouble in unceriain systems if we treal it
as though it were (as we saw in our first treatment of the sprinkler and grass example).
Another difference is that in logical sysiems it is necessary to find only a single proof
{o be able to assert the truth value of a proposition. All other proofs, if there are any,
can safely be ignored. In uncertain systems. on the other hand, computing belief in a
proposition requires that ail available reasoning paths be followed and combined.

One final comment is in order before we end this discussion. You may have noticed
throughowt this chapter that we have not maintained a clear distinction among such
concepts as probability, certainty, and belief. This is because slthough there has been a
great deal of philosophical debate over the meaning of these various terms, there is no
clear argrecinent on how best to interpret them if our goal is to create working programs.
Although the idea that probability should be viewed as a measure of belief rather than
as a summary of past experience i1s now quite widely held, we have chosen to avoid the
debate in this presentation. Instead, we have used all those words with their everyday,
undifferentiated meaning, and we have concentrated on providing simple descriptions of
how several algorithms actually work. If you are interested in the philosophical issues,
see, for example, Shafer [1976] and Pear] [1988]

Unfortunately, although in the last two chapters we have presented several important
approaches to the problem of uncertainty management, we have barely scraped the
surface of this area. For more information, see Kanal and Lemmer [1986], Kanal and
Lemmer [1988], Kanal er o/, [1989], Shafer and Pearl [1990], Clark [1990]. In particular,
our list of specific techniques is by no means completc. For example, you may wish
to look into probabilistic logic [Nilsson, 1986; Halpern. 1989], in which probahility
theory is combined with logic so that the truth value of a formula s a probability value
{between (1 and 1) rather than a boolean valne (TRUE or FALSE). Or you may wish to
ask not what statistics can do for Al bul rather what Al can do for statistics. In that case.
see Gale [1986).

8.7 Exercises
I. Consider the following puzzle

A pea is placed under one of three shells. and the shells are then
manipulated in such a fashioa that all three appear 1 be equaily likely
10 contain the pea. Nevertheless, you win a prize if you guess the
correct shell, so you make a guess. The person running the game does
know the correct shell, however. and uncovers one of the shells that
you did not choose and that is empty. Thus, what remains are two
shells: one you chose and one you did not choose. Furthermore, since
the uncovered shell did not contain the pea, one of the two remaining
shells does contain it. You are offered the opportunity to change your
selection to the other shell. Should you?

Work through the conditional probabilities mentioned in this problem using Bayes'
theorem. What do the resulis tell about what you should do?

8.7. EXERCISES 2149

2. Using MYCIN’s rules for inexact reasoning, compute CF. MB, and MD of k
given three observations where

C.F(’I‘,CI]:] = 05
CFlh,0) = 03
CF(hy,00) = =0.2

3. Show that MYCIN's combining rules satisfy the three properties we gave for
them.

4. Consider the tollowing set of proposiions;

patient has spots

patient has measles

patient has high fever

patient has Rocky Mountain Spotted Fever

patient has previously been innoculated against measles
paticnt was recently bitten by a tick

patient has an allergy

(a) Create a network that defines the causal connections among these nodes.

{b) Make it a Bayesian network by constructing the necessary conditional prah.
ability matrix.

5. Consider the same propositions again, and assume our task 15 to dentily the
patient’s disease using Dempster-Shafer theory.

(a) What is 87

(h) Define a set of m functions that describe the dependencies among sources of
evidence and elements of 8.

(c) Suppose we have observed spots, fever, and a tick bite. In that case, what is
our Bel({RockyMountainSportedFever })?

6. Deline fuzzy seis thatcan be used 10 represent the list of propositions that we gave
at the beginning of Section 8.5. :

7. Consider again the ABC Murder story from Chapier 7. In our discussion of it
there, we focused on the use of symbolic techniques for representing and using
uncentain knowledge. Let's now explore the use of numeric techniques to solve the
same problem. For each part below, show how knowledge could be represented.
Whenever possible, show how it can be combined to produce a prediction of who
committed the murder given at least one possible configuration of the evidence.

(a) Use MYCIN-style rules and CF's. Example rules might include:

If (1) relative (x,vy), and
(2) on speaking terms (x,y),

then there is suggestive =vidence (0.7) that
will=-1lie-for (x,y)

250

CHAPTER 8. STATISTICAL REASONING

(b) Use Bayesian networks. Represent as nodes such proposilions as brother:
in-law-lied, Cabot-at-ski-meet, and so forth.

(c) Use Dempster-Shafer theory. Examples of m's might be:

my= {Abbon, Babbin} (0.8) {beneficiaries inwill}
C] (0.2)

ma= {Abbott,Cabot) (0.7) {inline for his job}
e (0.3)

(d) Use fuzzy logic. For example, you might want to define such fuzzy sets as
honest people or greedy people and describe Abbott, Babbitt, and Cabot’s
memberships in those sets.

(e) What kinds of information are easiest (and hardest) to represent in each of
these frameworks?

Chapter 9

Weak Slot-and-Filler Structures

In this chapter, we continue the discussior we began in Chapter 4 of slot-and-filler
structures. Recall that we originally introduced them as a device to support property
inheritance along isa and instance links. This is an impoitant aspect of these structures.
Monotonic inheritance can be performed substantially more ef ficiently with such struc-
tures than with pure logic, and nonmonotenic inheritance is easily supported. The reason
that inheritance is easy is that the knowledge in slot-and-filler systems is structured as &
set of entities and their attributes. This structure turns out to be a useful one for other
reasons besides the support of inheritance, though, including:

o It indexes assertions by the entities they describe. More formally, it indexes
binary predicates [such as tean(Three Finger-Brown, Chicago-Cubs)) by their
first argument. As a result, retrieving the value for an attribute of an entity is fast.

o It makes it easy 1o describe properties of relations. To do this in a purely logical
system requires some higher-order mechanisms

e It is o form of object-oriented programming and Has the advantages that such
systems normally have, including modularity rnd ease of viewing by people.

We describe two views of this kind of structure: semantic nets and frames. We
talk about the representations themselves and about techniques for reasoning with them.
We do not say much, though, about the specific knowledge that the structures siould
contain. We call these “knowledge-poor” structures “wesk,” by analogy with the weak
methods for problem solving that we Jiscussed in Chepter 3. In the next chapter, we
expand this discussion 1o include “strong” slot-and-filler structures, in which specific
commitments 1o the content of the representation are made.

9.1 Semantic Nets

The main idea behind semantic nets is that the meaning of a concept comes. from the
ways in which it is connected to other concepis. In a semantic net, information is
represented as a sel of nodes connected to each other by a set of labeled arcs, which

25%

252 CHAPTER 9. WEAK SLOT-AND-FIlLER STRUCTURES

Mammal
: isa
has-part
Person ™ Nase
uniform- instance
color teant
Blue [Pee-Wee-Reese #| Brookiyn-Dadgers

Figure 9.1: A Semantic Network

represent relationships among the nodes. A fragment of a typical semantic net is shown
in Figure 9.1.

This network contains examples of both the isa and instance relations, as well as
some other, more domain-specific relations like feam and uniform-color. In this network,
we could use inheritance to derive the additional relation

has-part(Pee-Wee-Reese, Nose)

9.1.1 [Intersection Search

One of the early ways that semantic nets were used was to find relationships among
objects by spreading activation out from each of two nodes and seeing where the
aclivation met. This process is called intersection search [Quillian, 1968]. Using this
process, it is possible to use the network of Figure 9.1 to answer guestions such as “What
is the connection between the Brooklyn Dodgers and blue?™' This kind of reasoning
expioits one of the important advantages that slot-and-filler structures have over purely
logical representations becausc it takes advantage of the entity-based organization of
knowledge that slot-and-filler representations provide.

To answer more structured questions, however, requires networks that are themselves
more highly structured. In the next few sections we expand and refing our notion of a
network in order to support more sophisticated reasoning.

9.1.2 Representing Nonbinary Predicates

Semantic nets are a natural way to represent relationships that would appear as ground
instances of binary predicates in predicate logic. For example, some of the arcs from
Figure 9.1 could be represented in logic as

| Actually. to do this we need to assume that the inverses of the links we have shown also cxist,

9.1. SEMANTIC NETS 253

Game l

viSIIRE- b isa
learm score
Cubs - G23 ™ 53
home-icam
Dodgers

Figure 9.2: A Semantic Net for an n-Place Predicate

isa(Person, Mammal)

instancel Pee-Wee-Reese , Person)

team(Pee-Wee-Reese, Brooklyn-Dodgers)
uniform-col or\Pec-Wee-Reese. Blue)

But the knowledge cxpressed by predicates of other arities can also be expressed in
semantic nets. We have already scen that many unary predicates in logic can be thought
of as binary predicates using some very general-purpose predicates. such as isa and
instance. So, for example,

man(Marcus)
could be rewritten as
instance(Marcus, Man)

thereby making it easy 10 represent in a semantic net.

Three or more place predicates can also be converted 1o a binary form by creating
one new object representing the entire predicate statement and then introducing binary
predicates todescribe the relationshipto this new object of each of the original arguments
For example. suppose we know thaf

score(Cubs, Dodgers, 5-3)

This can be represented in a semantic net by creating a node to represent the specific
game and then relating each of the three picces of mformation (o it. Doing this produces
the network shown in Figure 9.2.

This techniquc is particularly useful for representing the contents of a typical deciar-
ative sentence that describes several aspects of a particular event. The senfrnce -

John gave the book 1o Mary

254 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

Give Book
* Instance 1 instance
agen! object
John i EV7 ™ BK24
F beneficiary
Mary

Figure 9.3: A Semantic Net Representing a Sentence

could be represented by the network shown in Figure 9.3. In fact, several of the earliest
uses of semantic nets were in English-understanding programs.

9.1.3 Making Some Important Distinctions

In the networks we have described so far, we have glossed over some distinctions that
are important in reasoning. For example, there should be a difference between a link
that defines a new entity and one that relates two existing entities. Consider the net

height
John . 72

Both nodes represent objects that exist independently of their relationship to each
other. But now suppose we want 1o represent the fact that John is taller than Bill, using
the net

John Bill
height height
i greater-than L
Hl > H2

The nodes 711 and H2 are new concepts representing John's height and Bill's height,
respeciively. They are defined by their relationships to the nodes John and Bill. Us-
ing these defined concepls, it is possible to represent such facts as that John's height
increased, which we could not do before, (The number 72 increased?)

Sometimes it is useful to introduce the arc value to make this distinction clear, 'I‘hns
we might use the following net to represent the fact that John is 6 feet tall and that he is

The node labeled BK23 represents the particular book that was referred 10 by the phrase “the book ™
Discovering which particular book was meant by that phrase is similar to the problem of deciding on the
correct referent for a pronoun, and it can be a very hard problem. These issues are discussed in Section 154

9.1. SEMANTIC NETS 255

taller than Bili:

John Bill
height + height
grearer-rhan
HI - H2
value
72

The procedures that operate on nets such as this can exploit the fact that some arcs,
such as height, define new entities, while others, such as greater-than and value, merely
describe relationships among existing entities.

Another example of an important distinction we have missed is the difference be-
tween the properties of a node itself and the properties that a node simply holds and
passes on to its nstances. For example, it is a property of the node Person that it is &
subclass of the node Mammal. But the node Person does not have as one of 115 parts a
aose. Instances of the node Person do, and we want them to inherit it

It i< difficult to capture these distinctions without assigning more structure 1o our
notions of node, link, and value. In the next section. when we talk about frame systems,
we do that, But first, we discuss & network-oriented solution to a simpler problem.
this solution illustrates what can be done in the network model but at what price in
complexity.

9.1.4 Partitioned Semantic Nets

Suppose we want 10 represent simple quantified expressions in semantic nets. One way
1o do this is to partition the semantic net infoa hierarchical set of spaces, each of which
corresponds to the scope of one or more variables [Hendrix, 1977). To see how this
works, consider first the simple net shown in Figure 9.4(a). This net corresponds o the
statement

The dog bu the mail carrier.
The nodes Dogs, Bite, and Mail-Carrier represent the classes of dogs. bitings. and mail
carriers, respectively, while the nodes d. b, and m represent a particular dog. a particular
biting, and a particular mail carrier. This fact can easily be represented by a single nel
with no partitioning.
But now suppose that we want to represent the fact

Every dog has bitten a mail carrier.

or, in logic:

256 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

SA

:j [: Mail-
gop e carrier

assailamt victim assallanr victim

(a) (b)

SA - - —=1 S5A
| Dogs] Bite | |Mail-carrier
Dogs | [Bute | [Constabies | [n_} JE
isa isa}{ x1t
0gs X

A isa
I o2 d b victim L
assailant

isq
iot“‘ isa .
ﬂ _m-_{_ } v form
v assailant GS isa ﬂ

(c) (d)
Figure 9.4: Using Partitioned Semantic Nets

Wx : Dog(x) — 3y : Mail-Carrier(y) A Bite(x, y)

To represent this fact, it is necessary to encode the scope of the universally quantified
variable x. This can be done using partitioning as shown in Figure 9.4(b). The node g
stands {or the assertion given ahove. Node g is an instance of the special class GS of
general statements about the world (i.c., those with universal quantifiers). Every clement
of (S has at least two artributes: a form, which states the relation that is being asserted,
and one or more ¥ connections, one for each of the universally quantified variables
In this example, there is only one such variable d, which can stand for any element of
the class Dogs. The other two variables in the form, b and m, arc understood to be
existentially quantified. In other words, for every dog d, there exists a biting event b,
and a mail carrier m. such that 4 is the assailant of b and m is the victim.

To see how partitioning makes variable quantification explicit, consider next the
similar sentence:

Every dog in town has bitten the constable.

The representation of this sentence is shown in Figure 9.4(c). In this net, the node ¢
representing the victim lies outside the form of the general statement. Thus it is not
viewed as an existentially quantified variable whose value may depend on the value
of d. Instead it is interpreted as standing for a specific entity (in this case, a particular

9.7. FRAMES 257

constable), just as do other nodes in & standard, nonpartitioned net.
Figurc 9.4(d) shows how yel another similar sentence:

Every dog has bitten every mail carrier.

would be mpl‘esﬂﬂlell. In this case, g has two ¥ linka, one pointing lo 4, winch sepreseita
any dog, and one pointing (o m. representing any mail carrier.

‘I'ne spaces of a partitioned semantic net are related to cach other by an inclusion
hicrarchy. For example, in Figure 9.4(d), space S1 is included in spacc SA. Whenever
a scarch process operates in a partitioned semantic net, it can explore nodes and arcs 1n
the space from which it starts and in other snaces that contain the starting point, but it
cannol go downward, except in special circumstances, such as when a form arc is being
traversed. So. retuming to Figure 9.4(d) from node d it can be determined that d must
be & dog. But if we were (o start al the node Dogs nd search for all known instances
of dogs by traversing isa links, we would not find d since it and the link to it are in
the space S1. which is at a lower level than space S4, which contains Dogs. This is
important, since d does not stand for a particular dog; 11 is merely a variable that can be
instantiated with a value that represents @ dog.

9.1.5 The Evolution into Frames

The idea of a serantic net started out simply as a way to represent labeled conmections
arnong entities. But, as we have just seen, as we cxpand the range of problem-solving
tasks that the representation must suppott, the representation itself necessarily bepins
10 beeome more complex. In particular, it becoimes useful to assign more structure to
nodes as well as to links. Although there is no cleer distinction between a semantic
net and a frame system, the more structure the system has, the more likely it is to be
termed a frame system. In the next section we continue our discussion of structured
slot-and-filler representations by describing some of the most important capabilities that
frame systems offer.

92 Frames

A frame is a collection of attributes (usually calied slots) and associated values (and
possibly constraints on values) that describe some entity in the world. Sometimes a
frame describes an eniily in somc ahsolute sense: sometimes it represents the entity
from a particular point of view (as it did in the vision system proposal |Minsky, 1975]in
which the term frame was first introduced). A single frame taken alone is rarely useful.
Instead, we build frame sysiems out of collections of frantes that are connected 10 each
other by virtue of the fact that the value of an attribute of one frame may be another
frame. In the rest of this section, we expand on this simple definition and cxplore ways
that frame systems can be used to encode knowledge and support reasoning.

258 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

9.2.1 Frames as Sets and Instances

Set theary provides a good basis for understanding frame systems. Although not all

systems are defined this way, we do so here. In this view, each frame repre-
sents either a class (a set) or an instance (an element of a class). To see how this
works,, consider the frame system shown in Figure 9.5, which is a slightly modified
form of the network we showed in Figure 4.5. In this example, the frames Person,
Adule-Male, ML-Baseball Player (corresponding to major league baseball players}),
Pitcher, and ML-Baseball-Team (for major league baseball tcam) are all classes. ‘The
frames Pee-Wee-Reese and Brooklyn-Dodgers are instances.

The isa relation that we have been using without a precise definition is in fact the
Subset relation. The set of adult males is a subset of the set of people. The set of major
league baseball players is a subset of the set of adult males, and so fosth. Our insiance
relation corresponds to the relation elemenr-of. Pee Wee Reese is an element of the
set of fielders. Thus he is also an element of all of the supersets of fielders, including
major league baseball players and people.- The transitivity of isa that we have taken for
granted in our description of property inheritance follows directly from the transitiv ity
of the subset relation.

Both the isa and instance relations have inverse attributes, which we call sub ‘lasses
and all-instances. We do not bother to write them explicitly in our examples unless we
need to refer to them. We assume that the frame system maintains them automatically,
either explicitly or by computing them if necessary.

Because a class represents a set, there are two kinds of attributes that can be as
sociated with it. There are attributes about the set itsclf, and there arc attributes that
are to be inherited by cach element of the set. We indicate the difference between
these two by prefixing the latter with an asterisk (*). For example, consider the class
ML-Baseball-Player. We have shown only two propesties of it as a set: It is a subset
of the set of adult males. And it has cardinality 624 (i.e., there are 624 major league
baseball players). We have listed five properties that all major league baseball players
have (height, bats, batting-average, team, and uniform-color), and we have specified
default values for the first three of them. By providing both kinds of slots, we allow a
class both to define a set of objects and to describe a prototypical object of the set.

Sometimes, the distinction between a set and an individual instance may not seem
clear. For example, the team Brooklyn-Dodgers, which we have described as an instance
of the class of major league baseball teams, could be thought of as a se1 of players. in
fact, notice that the value of the slot players is a set. Suppose, instead, that we want (o
represent the Dodgers as a class instead of an instance. Then its instances would be the
individual players. It cannot stay where it is in the isa hierarchy; it cannot be a subclass
of ML-Baseball-Team, because if it were, then its elements, namely the players, would
also, by the transitivity of subclass, be elements of M1 -Baselall-Team, which is not what
we want to say. We have to put it somewhere clse in the isa hierarchy. For example,
we could make it a subclass of major league baseball players. Then its elements, the
players, are also elements of ML-Baseball-Player, Aduli-Male, and Person. That is
acceptable, But if we do that, we lose the ability to inherit properties of the Dodgers
from general information about baseball teams. We can still inherit attributes for the
clements.of the team, but we cannot inherit propertics of the team as a whole, i.c., of the
set of players. For example, we might like to know what the default size of the team is

92. FRAMES

Person

isa:
cardinality:
* handed -

Aduli-Male
isa:
cardinality :
* height :

ML-Baseball-Player
isa:
cardinality :
* height :
* hais .

* batling-average :

* team :
* uniform-color :

Fielder
isa
cardinalirty :

* batting-average .

Pee-Wee-Reese
instance :
height:
bats :
batting-average :
team
wuniform-color :

ML-Baseball-Team
isa:
cardinaliry :
¥ team-size .

* manager :

Braokiyn-Dodgers
instance .
ream-size :
manager :
players

Mammal
6.000,000.000
Right

Persan
2,000,000,000
5-10

Adult-Male
624

6-1

equal to handed
252

ML-Baseball-Player
376 -
262

Fielder

5-10

Right

309
Brooklyn-Dodgers
Blue

Team
26
24

ML-Baseball-Team
24

Leo-Durocher
{Pee-Wee-Reese, ...}

Figurs 6.5 A Simplified Frame System

260 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

that it has a manager, and so on. The easiest way to allow for this is to go back 10 the
idea of the Dodgers as an instance of ML-Baseball-Team, with the set of playcrs given
as a slof value.

But what we have encountered here is an example of a more general problem, A
class is a set, and we want to be able to talk about properties that its elements possess.
We want to use inheritance to infer those properties from general knowledge about the
set. But a class is also an entity in itself, It may possess properties thal belong not to the
individual instances but rather to the class as a whole. In the case of Brookiyn-Dodgers,
such properties included team size and the existence of a manager. We may even want
to inherit some of these properties from a more general kind of set, For example, ihe
Dodgers can inherit a default team size from the set of all major league bascball teams.
To support this, we need to view a class as two things simultaneously: a subset (isa) of
a larger class that also contains its elemients and an instance (instance) of a class of sets,
from which it inherits its set-level properties.

To make this distinction clear, it is useful 1o distinguish between regular classes,
whose elements are individual entities, and metaclasses, which are speciel classes whose
elements are themselves classes. A class is now an element of (instance) some class (or
classes) as well as a subclass (isa) of one or more classes. ‘A class inherits propertics
from the class of which it is an instance, just as any instance does. In addition, a class
passes inheritable properties down from its superclasses 1o its instances.

Let's consider an example. Figure 9.6 shows how we could represent teams as
classes using this distinction. Figure 9.7 shows a graphic view of the same classes. The
maost basic metaclass is the class Class. It represents the set of all classes. All classes
are instances of it, cither directly or through one of its subclasses, In the example, Team
is a subclass (subset) of Class and ML-Baseball-Team is a subclass of Team. The class
Class introduces the attribute cardinality, which is to be inherited by all instances of
Class (including itself). This makes sense since all the instances of Class are sets and
all sets have a cardinality.

Team represents a subsct of the set of all sets, namely those whose elements are sets
of players on a team. It inherits the property of having a cardinality from Class. Team
introduces the gtribute ream-size, which all its elements possess. Notice that team-size
is like q.unﬁ:ur_v in that it measures the size of a set. But it applies to something
different: careifiaiity applies 10 sets of sets and is inherited by all elements of Class.
The slot ream-size applies to the elements of those sets that happen 1o be teams. Those
clemenis are sets of individuals.

ML-Baseball-Team is also an instance of Class, since it is a set. It inherits the
property of having a cardinality from the set of which it is an instance, namely Class.
But itis a subset of Teamn. Allof its instances will have the property of having a team-size
since they are also instances of the superclass Team. We have added a1 this level the
additional fact that the default team size is 24, so all instances of ML-Baseball-Team
will inherit that as well. In addition, we have added the inheritable slot manager.

Brooklyn-Dodgers is an instance of a ML-Basebali-Team. 1t is not an instance of
Class because its elements are individuals, not sets. Brooklyn-Dodgers is a subclass of
ML-Baseball-Player since all of its elements are also elements of that set. Since it is
an instance of a Ml1.-Basebail-Team, it inherits the properties team-size and magdager, as
well as their default values. Jt specifies a new attribute uniform-color, which is to be
inherited by all of its instances (who will be individual players).

9.2. FRAMES

Class
instance -
5
« cardivaliny

Team
nstan e -
154
cardinality .
* team-5I¢

M1-Raseball Team
instance -
15 -
cardinaliry
% ream-size
* manager .

Brooklyn-Dodgers
instance
i85
tecn-S1e
manager
* uniform-color:

Pee-Wee-Reese
HINFANCE |
instance
uniform color .
haiting-average .

26!

(Class
(‘n‘u_\s

Clasx

Class

{ihe number of 1zanms that exist}
{each tcam has a size]

Class

Team:

26 {the number of baseball teams that cxst |
24 tdcfault 24 playerson a team |

ML-Baseball-Team
M{.-Basehall-Plaver
24

Lee-Durocher

Blue

Brooklyn-Dodgets
Fieldcr

Blue

A4

Figure 9.6; Representing the Class of All Teams as a Metaclass

262 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

h.-\-. .__‘1
ML-Baseball-Team T
Team

) Class (set of sats)

ML-Baseball-Player Brookiva-Dodgers

Pee-Wee-Reese }

Figure 9.7: Classes and Metaclasses

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him also,
by transitivity up isa links, an instance of ML-Baseball-Flayer. But recall that in our
earlier example we also used the class Fielder, to which we attached the fact that fielders
have above-average batting averages. To allow that here, we simply make Pee Wee an
instance of Fielder as well. He will thus inherit properties from both Brooklyn-Dodgers
and frem Frelder, as well as from the classes above these. We need to guarantee that
when multiple inheritance occurs, as it does here, that it works comrectly. Specilically,
in this case. we need to assure that baning-average geis inherited from Fielder and
nol from ML-Baseball-Player through Brooklyn-Dodgers. We return 1o this issue in
Section 9.2.5.

In all the frame systems we illustrate, all classes are instances of the metaciass Class.
As a resuit. they all have the atiribute cardinality. We leave the class Class, the isa
links to 1t. and the attribute cardinality out of our descriptions of our examples, though,
unless there is some particular reason to include them.

Every class isa set. But notevery set should be described as aclass. A class describes
a set of entities that share significant properties. In particular, the default information
associated with a class can be used as a basis for inferring values for the properties of
its individual elements. So there is an advantage (o representing as a class those sets
for which membership serves as a basis for nonmonotonic inheritance. Typically, these
are sets in which membership is not highly ephemeral. Instead, membership is based
on some fundamental structural or functional propertics. To see the difference, consider
the following sets:

. People
s People who are major league baseball players

9.2. FRAMES 263

« People who are on my plane (o New York

The first two sets can be advantagcously represented as classes, with which a sab-
stantial number of inheritable atinibutes can be associated. The last, though, is different
The only propenies that all the elements of that set probably share are the definition of the
set itself and some Other properties that follow from the definition (e.g., they are being
transported from one place to ancther). A simpie set, with some associated assertions,
is adequate to represent these facts; nonmonctoiic inheritance 15 not necessary.

9.2.2 Other Ways of Relating Classes to Each Other

We have talked up to this point about two ways in which classes (sets) can be related t©
each other. Class; can be a subset of Classy, Ov if Classz 1s a metaclass, then Class,
can be an instance of Classy. But there are other ways that classes can be related to each
other, corresponding to ways that sets of vbjects in the world can be related.

One such relationship is mutually-di sjeint-with, which relates a class to one or more
other classes that are guaranteed 10 have no elements in common with it. Another
important relationship is is-covered-hy. which relates a class to a set of subclasses, the
union of which is equal 1o 1t 1f aclass is-covered-by 8 set § of mutually disjoint classes.
then § is called a partition of the class.

For examples of these relat ionships. consider the classes shown in Figure 9.8, which
represent (wo orthagonal ways of decomposing the class of major league baseball
players, Everyone is either a pitcher, & catcher, or a fielder (and no one is more than onc
of these). In addition, everyone plays in etther the National League or the American
League, but not both.

92.3 Slots as Full-Fiedged Objects

So far, we have provided a way 10 describe sets of objects and individual objects, both
in terms of attributes and values Thus we have rnade cxtensive use of attributes, which
we have represent=d as slots autached 1o frames But it turns out that there are several
reasons why we would like 10 be able to represent attributes explicitly and describe their
properties. Some of the properiies we would like 1o be able 1o represent and use i
reasoning include:

« The classes to which the attribute can be attached, i.e., for what classes does it
make sense? For example, weight makes sense for physical objects but not for
conceptual ones (except in sorne meliaphorical sense).

e Constraints on either the type or the value of the attribute. For example, the age
of a person must be a pumeric quantity measured in some time frame, and it must
be less than the ages of the person’s biological parents.

e A value that all instances of a class must have by the definition of the class.
a A default value for the attribute.

« Rules for inheriting values for the attribute “The usual rule is 10 inherit down
isa and instance links. But some atiributes inherit in other ways. For sxample,
Jast-name inherits down the child-of link.

I ML-Baseball-Player I

CHAPTER Y. WEAK SLOT-AND-FILLER STRUCTURES

American-
leaguer

15a
isa isa isa
Fielder

instance

Three-Finger-Brown

ML-Baseball-Player
is-covered-by :

Pitcher
isa:

mutually-disfoint-with:

Catcher
isa

mutval!v-disioint-with:

Fielder
i

nmfm:!ry- disjaint-with-

American-Leaguer
isa

National-Leaguer
isd ;

mutually-disjoint-wirh:

Three-Finger-Brown
instance :
instance :

Figure 9.8: Representing Relationships among Classes

mutually-disjoint-with:

{Pitcher, Catcher, Fielder),

Narional-
Leaguer

{American-Leaguer, National-Leaguer}

ML-Baseball-Player
{Catcher, Fielder)

ML-Baseball-Piayer
{Pitcher, Fielder)

ML-Beseball-Player
{Pitcher, Catcher}

ML-Baseball-Piaver
{Narional-Leaguer)

ML-Baseball-Player
{American-Leaguer)

Pitcher
National-Leaguer

92. FRAMES 265

+ Rules for computing a value separately from inheritance. One extreme form of
such a rule is a procedure written in some procedural programming language such
as LISP.

« An inverse attribute.
« Whether the slot 1s single-valued or multivalued.

In order 1o be able to reprosent these altributes of aributes, we need 10 describe
attributes (slots) as frames. These frames will be orgunized into an fsa hierarchy. just
as any other frames are. and that hierarchy can then be used to support inheritance of
values for attributes of slots. Before we can describe such a hicrarchy in detail, we neec.
1o formalize our notion of a slot.

A slot is a relation. It maps from elements of its domain (the classes for which it
makes sense) to clements of its range (its possible values), A relation is a set of ordered
pairs, Thus it makes sensc 10 say that one relation (R)) is a subset of another (R2). In
that case, R, is a specialization of R,. so in our terminology isa(Ry. R;). Since aslot is
a set. the set of all slots, which we will call Slot, is & metaclass. Its instances are slots.
which may have subslots.

Figures 9.9 and 9.10 illusirate sev eral examples of slots represented as frames. Sior
is a metaclass. Its instances are slots (each of which is a set of ordered pairs). Associated
with the metaclass are attributes that each instance (i.e., each actual slot} will inheru
Each slot, since it is a relation, has a domain and a range. We represent the domain in
the slot labeled domain. We break up the representation of the range ino two pans’
range gives the class of which elements of the range-must be elements; range-constrai i
contains a logical expression thal further constrains the range to be elements of rang:
that also satisfy the constraint. If 7un ge-constraint is absent. itis taken to be TRUE. The
advantage to breaking the description apart into these two pieces 1s that type checking
is much cheaper than is arbitrary constraint checking, so it is useful 1o be able to do 1t
separately and carly during some reasoning processes.

The other slots do what you would expect from their names. [f there is a valuc for
definition, it must be propagated 1o all instances of the slot. 1f there is a value for default
that value is inherited to all instances of the slot unless there is an overriding value. The
attribute transfers-through lists other slots from which values for this slot can be derivea
through inheritance. The ro-compure slot contains a procedure for deriving its value
‘The inverse attribute contains the inverse of the slot. Alihoughin principleall slots have
inverses. sometimes they are not useful enough in reasoning (o be worth representing.
And single-valued is used 10 mark the special cases in which the slot is a function and
so van have only one value,

OF course, there is no advantage 1o represenling these properties of slots if there is
no reasoning mechanism thal exploits thern. In the rest of our discussion, we assume
that the frame_system interpreter knows how to reason with all of these slots of slots as
part of its built-in reasoning capability In particular, we assume that it is capable of
performing the following reasoning actions:

« Consistency checking to verify that when a slot value is added 1o a frame

— The slot makes sense for the frame. This relies on the domain attribute of
the slot.

CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

/”—.ﬁ\ \
manager color
mym; nager M's

(uniform-color Siot
———

Ciass (set of sets)

L%

Pee-Wee-Reese Blue } :
- Pee-Wee-Reese Right

Smokey-The-Bear Brown

Slot
isa: Class
instance : Class
* domain :
* range :
* range-consiraini ;
* definition
* default :
* transfers-through :
* to-compute :
* inverse :
* single-valued :

manager
instance : Slot
domain ML-Baseball-Team
range Person
range-constraint : Ax (baseball-experience x.manager)
defauls :
inverse : manager-of
single-valued : TRUE

Figure 9.9: Representing Slots as Frames, |

¢2. FRAMES

my-manager
Inslance :
domain .
range

range-consiraini ©

fo-compute
single-valued

color
instance -
domain .
range
rransfers-rhrough
visual-salience -
single-valued -

uniform-color
insfance
i8d .
domain :
range

ranee constrain!

visual-salience .
single-valued :

hats
fasiance :
domain .
range
fu-compitce
single-valued *

Stot
Mi.-Buseball-Player
Persor

\x (haseball-experience x.my-manager)

Ax (X.feam) manager
TRUE

Slot
Physical-Ohiec
Colar-Sei
rop-level-part-of
High

FALSE

Sior

colerr
team-player
Codor-Set
not Pink’
High
FALSE

Slot
ML-Baseball-Player
{Left. Right, Switch]
Ax X.handed

TRUE

»

Figure 9.10° Representing Slots as Frames. i

w67

268 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

— The value is a legal value for the slot. This relies on the range and
range-constraints altributes.

& Maintenance of consistency between the values for slots and their inverses when
ever one is updated. '

* Propagation of definirion valucs along isa and instance links.
« Inheritance of default values along isa and tnstance links.

+ Computation of a value of a slot as needed. This reli=s on ihe ro-compute and
transfers-through auribuics.

« Checking that only a single value is asserted for sing'e-valued slots. Thisis usually
done by replacing an old value by the new one when it 1s asserted. An altemative
is to force explicit retraction of the old value and to signal a contradiction if a new
vilue is asserted when another is already there.

There is something slightly counterintuitive about this way of defining slots. We
have defined the propertics range-constraint and default as parts of a slot. But we ofters#
think of themn as being properties of a slot associated witha particular class. Forexample,
mn Figure 9.5, we listed two defaults for the barting-average slot, one associated with
rnajor league baseball players and one associated with fielders. Figure 9.11 shows how
this can be represented correctly, by creating a specialization of baiting-average that can
be associated with a specialization of ML-Baseball-Player 1o represent the more specific
information that is known about the specialized class.” This scems cumbersome. It is
natural, though, given our definition of a slot as a relation. There are really two relations
here, one”a specialization of the other. And below we will define inhenitance so that it
locks for values of either the slot it is given or any of that slot’s generalizations.

Unfortunarely, although this model of slots is simple and it is internally consistent,
it is nol easy 10 use. So we introduce some notational shorthand that allows the four
most important properties of a slot (domain, range, definition. and defawit) to be defined
implicitly by hiow the slot is used in the definitions of the classes in its domain, We
describe the domain impiicitly o be the class where (he slot appears. We describe the
range and any range constraints with the clausc MUST BE, as the value of an inhenited
siot, Figure 9.12 shows an example of this notation. And we describe the definition
and the default. if they are present, by inserting them as the vaiue of the slot when it
appears, The two will be distinguished by prefixing a definitional value with an asterisk
(*). We then let the underlying bookkeeping of the frame system create the frames that
represent slots as they are needed

Now let's look at examples of how these siots can be wsed. The slots bars and
my-manager illustratc the use of the to-compure attribute of ¢ slot, The variable x will
be bound io the frame to which the slot is atiached. We use the dot notation w specify
the value of a slot of a frame. Specifically, x.y describes the vaiue(s) of the y slot of
frame x. So we know that 1o compute a frame’s value for my-marnager tris necessary o
find the frame’s value for rem, then find the resulting team’s manager. We have simply
composed two slots 1o form a new one.’ Computing the value of the hats slot is even
simpler. Just go get the value of the handed slot.

¥Notice that since shots are relations rather than functions, their composition may return a 31 37 values.

92. FRAMES 269

batting-average
instance : Slor
domain : ML-Baseball-Ptayer
range : Number
range-constraint : Ax (0 < x.range-constraint < 1}
default : 252
single-valued : TRUE

fielder-batting-averege

instance ' Slo;

isa: batting-uverage

domain : Fielder

range - Number

range-constraint : Ax (0 < x.range-constrainr < 1)
default 262

vingle-valued : TRUE

Figure 9.11: Associating Defaults with Slots

ML-Buseball-Player
bats : MUST BE {Left, Right, Switch}

Figure 9.12: A Shorthand Notation for Slot-Range Specification

The manager slot illustrates the use of a range constraint. It is stated in terms of
a variable x, which is bound to the frame whose manager slot is being descnbed. Tt
requires that any manager be not only a person but someone wilh baseball experience.
It relies on the domain-specific function baseball-cxperience, which must be defined
somewhere in the system.

The siots rolar und uniform-colar llustrate the arrangement G siots in an ¢sa hi-
erarchy. The relation cele 15 u fairly general one that holds between physical objects
and colors. The atiribute uniform-color is a restricted form of color that applics only
between team plavers and the colors that arc allowed foi team uniforins (anything but
pink) Arranging slots in a hierarchy is useful for the same reason that arranging any-
thing else in a hierarchy is: it supports inheritance. Ir this example, the general slot
eolor is known to have high visual salience. The more specific siot uniform-color then
inherits this property, so it too is known to have high visual salience.

The slot color also illustrates the use of the fransfers-through slot, which defines 2
way of computing a slot's value by retrieving it from the same slot of a related object.
In this example. we used transfers-through to capture the fact that if you take an object
and chop it up into several 1op level pans (in other words, parts that are not contained
inside each other), then they will all be the same color. For example, the arm of a sofa is
the same color as the sofa. Formally, what transfers-through means in this example is

270 CHAPTER 9. WEAK SLOT-AND-FILLER STRUCTURES

John
height : 72

Biit
height : '

Figure 9.13: Representing Slot-Values

color(x, y) A top-level-pari-of(z, x) = color(z, y)

In addition to these domain-independent slot attributes, slots may have domain-
specific properties that support problem solving in a particular domain. Since these slots
are not treated explicitly by the frame-system interpreter, they will be useful precisely
to the extent that the domain problem solver exploits them.

924 Slot-Values as Objects

In the last section, we reified the notion of a slot by making it an explicit object that we
could make assertions about. In some sense this was not necessary. A finite relation
can be cumpletely described by listing its elements. But in practical knowledge-based
systems one often does not have that list. So it can be very important to be able to make
assertions about the list without knowing all of its elements. Reification gave us a way
to do this.

The next 5 aiong this path is to do the same thing 10 a particular attribute-value
(an insssnce of a relation) that we did to the relation itself. We can reify it and make it
an object about which assertions can be made. To see why we might want 1o do this,
let us returmn to the example of John and Bill's height that we discussed in Section 9,1.3,
Figure 9.13 shows s frame-based representation of some of the facts. We could easily
record Bill's height if we knew it. Suppose, though, that we do not know it. All we
know is that John is taller than Bill. We need a way to make an assertion about the valte
of a slot without knowing what that value is. To do that, we need o view the slot and
its value as an objecs - "

We could attempr to do this the same way we made slots themselves into objects,
namely by representing them explicitly as frames. There seems litile advantage to doing
that in this case, though, because the main advantage of frames does not apply 1o slot
values: frames are organized into an isa hicrarchy and thus support inheritance. There
is no basis for such an organization of slot values. So instead, we angment ous value
representation language to allow the value of a slot to be stated as either or both of-

¢ A value of the type required by the slot,

¢ A logical constraint on the value. This constraint may refate the slot's value to
the values of other slots or 1o domain constants.

‘92 FRAMES . 27N
John
height : 72: Ax (X.heighr > Bill height)
Bilf
hereht Ax (xherght < Johnheighn

riguic 9. 14: Representing §lot-Values with Lumbda Notation

1f we do ths 1o the trames of Figure 9.13:then we get the trames of Figure 9.14. We
again use the lumbda notation as 4 way to pick up the name of the frame that is being
described

9.2.5 [Inheritance Revisited

In Chapter 4. we presented a simple algorithm for inheritance. But that algorithm
assumed that the fsa hierarchy was a tree. This is often not the case. To support flexible
representations of knowledge about the world, it is necessary o allow the herarchy to
be an arbitrary directed acyclic graph (DAG; We know tha acyelic graphs are adequats
bhecause isa corresponds (o the subset relation. Hierarchies that are not trees are called
raneled ierarchies, Tangled hierarchies require a new nheritance algorithm, In the rest
of this section, we discuss an algorithm for inheriting ¥ atues for single-valued slots in @
tangled hierarchy. We leave the problem of inheriting multivalued slots as an exercise.

Consider the two examples shown in Figure 0,15 (in which we retum 1o a nerwork
potation to make it casy to visualize the isa structure). In Figure 9.15(u), we want 10
decide whether Fifi can fly. The correct answer is no. Although birds in general can
0y, the subsel of birds. ostriches. does not. Although the class Per-Bird provides a path
from Fifi 10 Bird and thus io the answer that Fifi can fly. it provides no informauion
that conflicts with the special case knowledge associated with the the class Ostrich
<o it should have no affect on the answer. To handle this case correctly, we need an
algonthm for traversing the isa hicrarchy that guarantees that specific knowledge will

- always dominate more general facts. '

In Figure 9.15th). we return 1o a problem we discussed in Section 7.2.1. namely
determining whether Dick is a pacifist. Again, we must traverse multiple fnstance links
and more than one answer can be found along the paths, But in this case. there ix
no well-founded basis for choosing onc snswer over the other. The classes that are
associated with the candidate answers are incommensurate w ith each other in the partial
ordering that is defined by the DAG formed by the isq hierarchy. Just s we found that
in Default Logic this theory hud 1wo extensions and there was no principled basis lor
choosing between them, what we need here is an inheritance algorithm that reporis the
ambiguity: we do not want an algerithm that finds one answer tachitrarily) and stops
without noticing the other.

One possible basis for a new inheritance algorithm 15 path lengih. This can b
implemented by executing a breadth-first search. starting with the frame Yor which .
slot value is needed. Follow its instonce linka. then follow 75 links upward. i s
path produces a value 31 can be terminated. as cun all other paths once (hair length

272 CHAPTER Y. WEAK SLOT-AND-FILLER STRUCTURES

Bird
fly © yes
isa \rm
Galrisk Pet-Bird
fy - no
instane \ Aﬁam‘e
Fifi
fy:?
(@)
Quuker Republican
pacifist ;. true pacifist : false
.f'.'mr_r_r!z‘_:\ Aﬂamr
Dick
parifist : ?
(h)

Figure 9.15: Tangied Hierarchies

92. FRAMES m

Bird
My yes
isd /
Osirah "
My e
i :
Jlsrl\ I Pet Bird
Plumed- | Republican
Osirich pacifist . false
T!m
s Quuaker Conservative-
pacifist © irue Republican

instance \ instance \ / instance

Fifi Dick
fy: ? pacifist ;7
(«) (h)

Figure 9.16: Morc Tangled Iherarchics

exceeds that of the successiul path. This algorithm works for both of the examples in
Figure 9.15. In (a), it finds a value at Osirich. Tt continues the other path to the same
length (Pet-Bird), fails to find any other answers, and then halts. In the case of (b), it
finds two competing answers at the same level, so it can report the contradiction.

But now consider the examples shown in Figure 9.16. In the case of {a), our new
algorithm reaches Bird (via Pet-Bird) before it reaches Ostrich. So it reports that Fift
can fly. In the case of (b), the algonithnt reaches Quaker and stops without noticing
a contradiction. The problem is that path length does not always correspond to the
level of generality of a class. Sometimes what it really corresponds 1o is the degree of
elaboration of classes in the knowledge base. If some regions of the knowledge base
have been elaborated more fully than others, then their paths will tend to be longer.
But this should not influence the result of inheritance if no new information about the
desired attribute has been added.

The solution to this problem is to base our inheritance algorithm not on path length

but on the notion of inferential distance (Touretzky. 19861, which can be defined as
follows:

274 CHAPTER 9. WEAK SLOT-AND-#11LIER STRUCTURES

Classy iscloser to Classy than to Classs if and only if Class; has an inference
path through Class to Ciassy (in other words, Classs s between Class,
and Classs).

Notice that inferential disiance defines only a partial ordering. Some classes are incom-

mensurate with each other under it.

) We can now define the resulr of inheritance as follows: The set of competing values
for a slot § in a ltwne £ contains all those valucs that

¢ Can be derived from some trame X that is above F in the isa hicrarchy

* Are not contradicted by some frame ¥ that has a shorter inferential distance 10 F
than X does

Notice that under this definition competing values that are derived from incommensuraie
frames continue to compete. '

Using rhis definition, let us return to our examples. For Figure 9.15(a), we had two
candidate classes from which 10 get an answer. But Ostrich has a shorter inferential
distance to Fifi than Bird does, so we get the single answer no. For Figure 9.15(b), we
get two answers, and neither is closer io Dick than the other, so we correctly identify a
contradiction. For Figure 9.16{a), we get two answers, but again Ostrich has a shorter
inferential distance to Fiff than Hird does. The significant thing aboul the way we have
defined inferential distance is that as long as Ostrich 1s a subclass of Bird, it will be
closer to all its instances than Bird is. no matter how many other classes are added 1o
the system. For Figure 9.16(h), we again get two answers and again neither is closer to
Dick than the other.

There are several ways that this definirion can be implemented as an inheritance
algorithm. We present a simple one. -It can be made more efficient by caching paths in
the hierarchy, but we do not do that here.

Algorithm: Property Inheritance
To retrieve a value V for slot § of an instance F do:

1. Set CANDIDATES to empty.

2. Do breadth-first or depth-first search up the isa hierarchy from F, foliowing ail
instance and isa links. Ateach step, see if a value for § or one of its generalizations
15 stored.

(a) If a value is found, add it to CANDIDATES and terminate that branch of the
scarch.
(b) If no value is found but there are instance or isa links upward, follow them.

(c) Otherwise, terminate the branch.
3. For each element C of CANDIDATES do:

(a) See if there is uny other element of CANDIDATES thal was derived from u
class closer to F than the class from which C came.

93. EXERCISES - 215

(b) If there is, then, remove C from CANDIDATES.
4. Check the cardinality of CANDIDATES:

(ay If it is 0, then report that no valuc was found.
(b) Ifitis 1, then retum the single element of CANDIDATES as V.
{c) If itis greater than 1, reporta contradiction.

This algorithm is guaranteed to terminate because the ise hierarchy is represented as an
acveliv graph.

926 Frame Languages

The idea of a frame system as a way lo represcnt declarative knowledge has been
encapsulated in 4 series of frame-oriented knowledge representation languages, whose
features have evolved and been driven by an increased understanding of the sort of
representation issues we have been discussing. Examples of such languages include KRL
{Bobrow and Winograd, 1977], FRL [Roberts and Goldstein. 1977), RLL {Greiner and
Lenat, 19%0], KL ONE [Brachman, 1979; Brachman and Schmolze, 1985], KRYPTON
[Brachman et al., 1985], NIKL [Kaczmarek et al., 1986], CYCL [Lenat and Guha,
1990}, conceptual graphs [Sowa, 1984], THEO [Mitchell er af.. 1989, and FRAMEKIT
[Nyberg, 1988] Although not all of these systems support all of the capabilitics that
we have discussed, the more modem of these systems permit elaborate and efficient
representation of many kinds of knowledge. Their reasoning methods include most of
the ones described here, plus many more, including subsumption checking, automatic
classification, and various methods for consistency maintenance.

9.3 Exercises ;
1. Construct semantic net representations for the following:

(a) Pompeian(Marcus), Blacksmith{iMarcus)
ib) Mary gave the green flowered vase 1o her favorite cousin.

2. Suppose we wanl to usc a semantic net 1o discover relationships that could help
in disambiguating the word “bank™ in the sentence

John went downtown to deposit his money in the bank
The financial inctitution meaning for bank should be preferred oves the fiver bank
meaning.
(a) Counstruct a semantic net that contains ~=presentations for ihe relevant con-
cepis.

(b) Show how intersection search could be used to find the connection between
the correct meaning for bank and the rest of the sentence more easily than 1
can find a connection with the incomect meaning.

276

‘i

6.

CHAPTER 9. WEAK SLOT-AND-FILLER STRUICTHRES

- Construct partitioned semantic net representations for the following:

(a) Every batter hit a ball
(b) All the batters like the pitcher.

- Construct one consistent frame representation of all the basebali knowledge thai

was described in this chapter. You will need 1o choose between the (wo represen-
talions fur team that we considered.

. Modify the property inheritance algorithm of Section 9.2 1o work for muktiple-

valued attributes, such as the attribute believes-in-principles, defined as follows:

believes-in-principles

instance Slot
domain Person
range Philosophical-Principles

single-valued: FALSE

Define the value of a multiple-valued slot § of class C to be the union of the
vlues that are found for S and all its generalizations at ¢ and all its generaliza-
tions. Modify your technique w allow a class to exclude specific values that are
associated with one or more of its superclasses.

Pick a problem area and represent some knowledge about it the way we represented
bascball knowledge in this chapter.

Chapter 10

Strong Slot-and-Filier
Structures

I'he slot-and-filler structures described in the previous chapter are very general. Indi-
vidual semantic networks and frame systems may hsve specialized links and inference
procedures, but there arc no hard and fast rules about what kinds of objects and links are
good in general for knowledge representation. Such Jecisions are left up to the builder
of the semantic network or frame system.

The three structures discussed in this chapter, can eptual dependency, scripts, and
CYC. on the other hand, cmbody specific notions of what types of objects and relations
are permitied. They stand for powerful theories of haw Al programs can represent and
use knowledge about common situations

10.1 Conceptual Dependency

Conceptual dependency (often nicknamed CDj is a theory of how to represent the kind
of knowledge about events that is nsually conlained in natural language sentences. The
poal is to represent the knowledge in a way that

e Facilitates drawing inferences from the scatenccs.

 Is independent of the language in which the sentences were onginally stated.

Because of the two concems jusi mentioned, the CD representation of a sentence is
built not out of primitives corresponding to the words used in the sentence, but rather
out of conceptual primitives that can be combined to form the meanings of words in anv
particular language. The theory was first descnbed in Schank [1973] and was further
developed in Schank [1975]. It has since been implemented in a varicty of programs
that read and undersiand natural language text. Unlike semanltic nets, which provide
only a structure into which nodes representing information at any level can be placed.
conceptual dependency provides both a structure and a specific ser of primitives, al
a particular level of granulanity. out of which representations of particular pieces of
information can be constructed ;

217

274 CHAPTER 10. STRONG SLOT-AND-FIl1ER SIRUCTUREN

(4]
p—ge [T]AI

from
———

P o R
I & ATRANS “*— hook o

where the symbols have the following meanings:
* Arrows indicate direction of dependency.
¢ Double arrow indicates two way link between actor and action
+ p indicates past lense.

» ATRANS s one of the primitive acts used by the theory. It indicates transfer ot
possession,

& o indicates the object case velation

* R indicaies the recipient case relation.
Figure 10.1: A Simple Conceptual Dependency Represeitation

As a simple example of the way knowledge is represented in CD. the event repre-
sented by the sentence

| gave the man a book

would be represented as shown in Figure 10.1.

In CD. representations of actions arc built from a set of primitive acts. Although
there are slight differences in the exact set of primitive actions provided in the various
sources on CD, a typical set is the following. taken from Schank and Abelson [19771

ATRANS Transfer of an abstract relationship (c.g.. give)

PTRANS Transfer of the physical location of an object (¢.g.. go)
PROPEL Application of physical force to an object (e.g.. push)

MOVE Movement of a body part by its owner (e.g.. kick)

GRASP Grasping of an object by an actor (e.g., clutch)

INGEST Ingestion of an abject by an animal (e.g., eat)

EXPEL Expulsion of something from the body of an animal (e.g., cry)
MTRANS Transfer of mental information (c.g., 1ell}

MBUILD Building new information out of old (e.g.. decide)

SPEAK Production of sounds (e.g , say}

ATTEND Focusing of a sense organ toward s stimulus {e.g.. listen)

10.1. CONCEPTUAL DEPENDENCY 279

A second set of CD building blocks is the set of allowable dependenties among
the conceptualizations described in a sentence. There are four primilive concepiual
categories from which dependency structures can be built. These ave

ACTs Actions

PP Ohjects (picture producers)

AAs Modifiers of actions tacton aiders)
PAs Maddifiers of PPs (piciure aiders)

in addition, dependency struciures are themselves concepualizations and can serve
a5 components of larger dependency struciures.

The dependencics among conceptualizations correspond 19 semaniic relatons among
ihe underlying concepts. Figure 10.2 lists the most important ones allowed by C B!
The first column contains the rules; the second contains examples of their use, and the
‘rued contains an English version of cach example.. The rules shown in the figure can be
iterpreted as follows:

o Rule | describes the relationship between an actor and the event he or she causes.
This is a two-way dependency since neither actor nor event can be considered
primary. The letter p above the dependency link indicates past tense

« Rule 2 describes the relationship between a PP and a PA. that is being asserted
+ describe it. Many state descriptions, such as height, are represenied in CD
auineric scaies.

+ Rule * describes the relationship between two PPs, one of which belongs to the
set defined by the other,

o Rule 4 describes the relationship between i PP and an attribule that has already
heen predicated of it. The direction of the arrow is toward the PP being described.

« Rulc 5 describes the relationship between two PPs, one of which provides o
parhicular kind of information about the other. The ihrec most commaon 1yp<s
of information to be provided in this way arc possession (shown as POSS-BY.
incation (shown as LOC), and physical containment (shown as CONTY. The
direction of the arrow is again toward the concept being described.

o Rule 6 deseribes the relationship between an ACT and the PP that s the object ol
that ACT. The direction of the arrow is toward the ACT sincg the context of the
specific ACT determines the meaning of the ohject relation.

« Rule 7 describes the relationship between an ACT and the source and the recipient
of the ACT.

o Rule X describes the relationship between un ACT and the insrument with which
it is performed. The instrument must always be a full conceptualizaiion (ie. n
must contain an ACT). not just a single physical object

" e tablc shiren in the figure is adapted trom coerat tables i Schank 11971

1=

CHAPTER 10, STRONG SLOT-AND-Fil.L.ER STRUCTURES

2
P CD ac 1o) PTRANS v

G — 1o €D weight 1> wverager o ol
X — X7 subn D ocrer Tt 1+ 3 descten

Lad oy
4 A ruct e
T t ’
PA nilce
g dog
ﬂ ﬂ Pty Bubnn 5 S,
123 Jokn
P
ACT +— ¥ b G PROPEL &2 can “okn bt
he e
PP P ® Yoy
L]
ACT on € ATRANS ‘—|_‘ i o
rp ta < Mary sutast
Book
P John
1 indm me ke
ACT e 3 o €= ks - O} o
o do & apam
WF Cremn 1 L]
il
= " '] o feld Joby et e d
"t { ta €= rians o
Pe - g
fermtirer
PA g
Lad [b plasts e
A Wz =

222 3

Y — P — il G PROPEL e butics ;{:r-‘- Rill ko B

ﬂ ﬂ healihi- 101
=, e,

yesieriday
ok

M
L=
I yesjenin
S D
T
&~

" 0 e e
i @’“ANS."_I._L = Wil puing
1 i

R P
| D MIRANS 2 rm.-'—E
. -
“heand & fivg

({:}b émam.—ﬂ- lm_p.iEi: +3-40 e

kome, |
5 ".‘f

Figure 10.2: The Dependencics of 1)

10.1.

CONCEPTUAL DEPENDENCY 281

Rule 9 describes the relationship between an ACT and its physical source and
destination,

Rule 10 represents the relationship between a PP and a state in which it started
and another wn which it ended.

Rule 11 describes the relationship between one conceptualization and another that
causes il. Notice that the arrows indicate dependency of one conceptualization on
another-and so point in the opposite direction of the implication arrows. The two
forms of the rule describe the cause of an action and the cause of a state change.

Rule 12 describes the relationship between a conceptualization and the time at
which the event it describes occurred.

Rule ! 3 describes the relationship between one conceptualization and another that
is the time of the first. The example for this rule also shows how CD explaoits
& model of the human information processing system, see is represenied as the
transfer of information between the eyes and the conscious processor.

Rule 14 describes the relationship between a conceptualization and the place al
which it occurred,

Conceptualizations representing events can he modihed in a variety of ways 1o
supply information normally indicated in language by the tensc, mood, or aspect of a
verh form. The use of the modifier p to indicate past 1ense has already been shown. The
set of conceptual tenses proposed by Schank [1973] includes

p Past

f Future

| Transition

K, Stan transition
iy Finished transition
k Continuing

2 Interrogative

/ Negative

nil Present

delta Timeless

¢ Conditional

As an example of the use of these tenses, consider the CD representation shown in
Figure 10,3 (taken from Schank | [973]) of the sentence

Since smoking can kill you, [stopped.

The vertical causality link indicates that smoking kills one. Since it is marked ¢,

however, we know only that smoking can kill one. not that it necessanily does. The
horizontal causality link indicates that it is that first causality that made me stop smoking
The qualificanion 1, attached 10 the dependency between | and INGEST indicates that
the smoking (an instance of INGESTING . bus siopped and that the stopping happened

n the past.

282 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

= R [O
one &—p INGEST w— smoke -—{
< cigarelie

gﬁ ‘o pa——
INGEST <—— smoke —

dead
P alive

Figure 10.3: Using Conceptual Tenses

C

< cigarelle

There are three important ways in which representing knowledge using the concep-
tual dependency model facilitates reasoning with the knowledge:

l. Fewer inference rules are needed than would be rcquii'ed if knowledge were not
broken down into primitives.

2. Many inferences are already contarned in the representation iself.

3. The initial structure that is built to represent the information contained in one
sentence will have holes thal need to be filled. These holes can serve as an
attention focuser for the program that must understand ensuing sentences.

Each of these points ments further discussion.

The first argument in favor of representing knowledge in derms of CD primitives
rather than in the higher-level terms in which it is normally described is that using the
primitives mak£s il easier 1o describe the inference rules by which the knowledge can be
manipulated. Rules rnzed only be represented once for each pnmitive ACT raiher than
once for every word that describes that ACT. For example, all of the following verbs
involve a transfer of ownership of an object:

s Give
o Take
* Steal
e Donate

It any of them occurs, then inferences about who now has the object and who once
had the object (and thus who may know something about it) may be important. fn a
CD representation, those possible inferences can be siated once and associated with the
primitive ACT ATRANS.

A second argument in favor of the use of CD representation is that to construct i,
we must use nol only the information that is stated explicitly in a sentence but also a set

10.1. CONCEPTUAL DEPENDENCY , 23

John Bill
i Poss-by
Bill nos¢ & John
P
Bill & MTRANS d—r-‘—-ﬂeiﬂ
m; do, broken
u
John & believe -q—-i
John &= do,
:fm.
Bill & du,

]

nose € broken

Poss-by ﬂ

John

Figure 10.4; The CD Representation of a Threat

of inference rules associated with the specific information. Having applied these rules
once, we store these results as part of the representation and they can be used repealedly
without the rules being reapplied. For example, consider the sentence

Bill threatened John with a broken nose.

he CD representation of the information contained in this sentence is shown in Fig-
ure 10.4. (For simplicity, befieve is shown as a single unit. In fact, it must be represented
in terms of primitive ACTs and a model of the human information processing system.)
1t says that Bill informed John that he (Bill) will do something to break John's nose.
Bill did this so that John will believe that if he (John) does some other thing (different
from what Bill will do 1o break his nose), then Bill will break John's nose. In this
representation, the word “helieve™ has been used to simplify the example. Bui the idea
hehind helieve can be represented in CD as an MTRANS of a tact into John’s memory.
The actions doy and doy are dummy placeholders that refer to some as yet unspecified
actions.

A third argument for the use of the CD representation is that unspecified clements of
the representation of one prece of informationcan be used as a focus forthe undersianding
of later events as they are encountered. So. for example, after hearing that

284 CHAFPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

Bill threatened John with a broken nose.

we might expect to find out what action Bill was trying to prevent John from performing.
That action could then be substituted for the dummy action represented in Figure 10,4
as doy. The presence of such dummy objects provides clues as 1o what other events or
objects are important for the understanding of the known event.

Of course, there are also arguments against the use of CD) as a representation
formalism. For one thing, it reguires that all knowledge be decomposed into faiily low
level primitives. In Section 4.3.3 we discussed how this may be inefficient or perhaps
even impossible in some situations. As Schank and Owens [1987] put it

CD s a theory of representing fairly simple actions. To express, for exam-
ple, “John bet Sam fifty dollars that the Mets would win the World Series”
takes about two pages of CD forms. This does not seem reasonable.

Thus, although there are several arguments in favor of the use of CD as a model for
representing events, it is not always completely appropriate to do so, and it may be
worthwhile to seek oul higher-level primitives,

Another difficulty with the theory of conceptual dependency as a general model for
the representation of knowledge is that it is only a theory of the representation of cvents.
But to represent all the information that a complex program may need, it must be able
to represent other things besides events, There have been attempis io define a set of
primitives, similar to those of CD for actions. that can be used to describe other kinds
of knowledge. For example, physical objects, which in CD are simply represented
as atomic units, have been analyzed in Lehnert [1978]. A similar analysis of social
actions is provided in Schank and Carbonell [1979]. These theories continue the style
of representation pioneered by CD, but they have not yet been subjected to the sarnc
amount of empirical investigation (i.e., use in real programs) as CD.

We have discussed the theory of conceptual dependency in some detail in order 1o
illustrate the behavior of a knowledge representation system built around a fairly smail
sel of specific primitive elements. But CD is not the only such theory to have been
developed and used in Al programs. For another example of a primitive-based 5\ ~tem.
see Wilks [1972].

10.2 Seripts

€D is a mechanism for representing and reasoning about events, But rarely do evenis
occur in isolation. In this section, we present a mechanism for representing know ledge
about common sequences of events.

A script is a structure that describes a stereotyped sequence of events in a particulas
context. A script consists of a set of slots. Associated with cach slot may be some
information about what kinds of values it may contain as well as a default value to
be used if no other information is available. So far, this definition of a script looks
very similar to that of a frame given in Section 9.2, and a1 this level of detail, the twe
structures are identical. But now, because of the specialized role to be played by a scrip
we can make some more precise statements about its structure,

102. SCRIPTS 285

Figure 10.5 shows part of a typical script, the restaurant script (taken from Schank
and Abelson [19771). 1t illustrates the important components of a script:

Entry conditions Conditions that must, in general. be satisfied before the events de-
scribed in the script can occur.

Resuli Conditions that will, in general, be true after the events described i
the script have occurred.

Props Slots representing objects that are involved in the events described
in the script. The presence of these ohjects can be inferred even it
they are not mentioned explicitly.

Roles Slots representing people who are involved in the events described
in the script. The presence of these people, too, can be inferred
even if they are not mentioned explicitly. If specific individuals are
mentioned, they can be inserted into the appropriate slois,

Track The specific varianon on a more general pattern that is represented
by this particular script. Different tracks of the same script will
share many but not all components

Scenes The actual sequences of events that occur. The events are repre-
sented in conceptual dependency formalism.

Scripts are useful because, in the real world, there are pattems o the occurrence of
events. These patterns arise because of causal relationships between events. Agents
will perform one action so that they will then be able to perform another. The events
described in a scnpt form a giant causal chain. The beginning of the chain is the set
of entry conditions which enable the first events of the script to occur. The end of the
chain is the set of results which may enable later events or event sequences (possibly
described by other scripis) to occur Within the chain, events are connected both 1o
earlier events that make them possible and (o later events that they enable.

If a particular script is known to be appropriate in a given situation, then itcan be very
useful in predicting the occurrence of events that were not explicitly mentioned. Scripts
can also be useful by indicating how events that were mentioned relate to each other.
For example. what is the connection between someone’s ordering steak and someone’s
eating steak? But before a particular script can be applied, it must be activated (1.e.. It
must be selected as appropriate to the current situation). There are two ways in which it
may be useful to activate a script, depending on how important the script is likely 10 be:

e For fleeting scripts (ones that are mentioned briefly and may be referred to again
but are not central to the situation), it may be sufficient merely to store a puinter to
the script so that it can be accessed later if necessary. This wouldbe an appropridie
strategy to take with respect to the restaurant script when confronted with a story
such as

Susan passed her favorite restaurant on her way 10 the museum. She
really enjoyed the new Picasso exhibit.

» For nonfleeting scripts it is appropriate to activate the script fully and to attempr (0
fill in its slots with particular objects and people involved in the current situatior.

CHAPTER 10. STRONG SLOT-AND-FILLER STRUUTURES

Script: RESTAURANT
Props: Tables
F = Food

Maoney

Roles: S = Customer

Scene |: Entering

S PTRANS § into restaurant
S ATTEND eyes to tables

S MBUILD where to si

5 PTRANS § to mble

5 MOVE § 1o sitiing position

Scene 2: Ordering

(Menw on table) (W brings menu) (S asks (or menu)
S PTRANS menuio S 5 MTRANS signal to W

VL Wiy W PTRANS W to table
C=C 5 MTRANS ‘need menut' 1o W
W Chahler W PTRANS W 1o meny
Q = Owner L
W PTRANS W 10 1ahle
W ATR;NS menu (o S
S MTRANS W 1o table
+ 5 MBUILD choice of F
S MTRANS signal to W
W PTRANS W 10 lable
§ MTRANS 'l want F 1o W
S
W PTRANS Win ¢
Entry conditions: W MTRANS (ATRANS F) o C
C MIRANS o FiaW = R
8 isTuagey. W PTRANS Wio § C DO (prepare F scrips)
5 has moncy. W MTRANS 0 F 1o to Scene 3
(g0 back to *) or
Renobe: (g0 1o Scene 4 ut no pay path)
S has less money. Scene 3: Eating
O by more money. CATRANSFoW ,
§ is not hungry. WATRANS Fio S o
S INGEST F

S is pleased (optinnat),

(Option: Retum 10 Scene 2 1o onder more,
otherwise, go to Scene 4)

Scene 4: Exiting =i
S MTRANS 10 W

-~
W MOVE (write check) (W ATRANS check 105

WPTRANS W §
W ATRANS check to €
S ATRANS tip 10 W
SPTRANS Sto M
S ATRANS money to M
(No pay patn) S PTRANS § 10 out of restaurant

Figure 10.5: The Restaurant Script

102. SCRIPTS) 2%

The headers of a script (its precondirions, its preferred locations, its props, its
rolcs, and its events) can all serve as indicators that the script should be activated
In order to cut down on the number of 1imes a Spurious scrips is activated, 1t has
proved useful to requirc that a situation contain at least two of a script’s headers
before the script will be activated

Once a script has been activated, there are, as we have already suggesied, a variety ol
ways in which it can be useful in interpreting a particular situation. The most impaortant
of these is the ability 10 predict events that have not explicitly been observed. Suppose.
for example, that you are told the following slory:

John went out to a restanrant last night. He ordered stcak. When he paid
for it, he noticed that he was running out of money. He hurried home since
it had started to rain.

1f you were then asked the question
Did John eat dinner last night?

you would almost certainly respond that he did. even though you were not told so
explicitly. By using the restaurant script. a compuier guestion-answerer would also be
able 1o infer that John ate dinner, since the restaurant script could have been activaied.
Since all of the events in the story correspond to the sequence of events predicted by the
script, the program could infer that the entire scquence predicted by the script occurred
pormatly. Thus it could conclude, in particular, that John ate. In their ability to predict
unobserved events, scripts are similar to frames and to other knowledge structures that
represent stereotyped situations. Once one of these structures is activated in a particular
situation. many predictions can be made.

A second important use of scripts is to provide a way of building a single coherent
interpretation from a colicction of observations. Recall that a script can be viewed as &
giant causal chain. Thys it provides information about how evenls are related to each
other. Consider, for example, the following story:

Susan went out to lunch, She sat down #t 4 wibile and called the waitress
The waitress brought her menu and she ordered a hamburger.

" Now consider the question
Why did the waitress bring Susan a menu’?

The script provides (wo possible answers (o fhat yuestion:

« Because Susan asked her to. (This answer is gotten by going backward in the
causal chain to find out what caused her to do it.)

o So that Susan could decide what she wanted to eat. (This answer is potien by
going forward in the causal chain to find out what event her action enables.)

A third way in which a seript is useful is that it focuses attention on unusual events
Consider the following story-

#

288 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

John went 10 a restaurant. He was shown to his table. He ordered o large
steak. He sat there and waited for a long time. He got mad and lefi

The important part of this story is the place in which it deparis from the expected
sequence of events in a restaurant. John did not get mad because he was shown to his
table. He did get mad because he had to wait to be served. Once the typical sequence
of events is interrupted, the script can no longer be used to predict other events. So, for
example, in this story, we should not infer that Joha paid his bill, But we can infer that
he saw a menu, since reading the menu would have occurred before the interruption,
Par a discussion of SAM. a program thar uses scripts to perform this kind of reasoning,
see Cullingford [1981].

From these examples, we can see how information about typical sequences of cvents,
as represented in scripts, can be useful in interpreting a particular, obscrved sequence of
events. The usefulness of a seript in some of these examples. such as the oge in which
unobserved cvents were predicted, is similar to the usefulness of other knowledge
structures, such as frames. In other examples, we have relied on specific properties of
the information stored in a script, such as the causal chain represented by the events
it contains. Thus although scripts are iess general struciures than are frames, and so
are not suitable for representing ail kinds of knnwledge, they can be very effective for
representing the specific kinds of knowledge for which they were designed

103 CYC

CYC [Lenat and Guha, 1550] is a very large knowledge base project aimed at capturing
human commensense knowledge. Recall that in Section 5.1, our first attemplt (o prove
that Marcus was not loyal 1o Caesar failed because we were missi ng the simple fact that
all men are people. The goai of CYCis 1o encode the large body of knowledge that is so
obvious that it is easy to forget to state 1t explicitly, Such a knowledge base could then
be combined with specialized knowledge bases to produce systems that are less brittle
than most of the ones available today.

Like CD, CYC represents a specific theory of how to describe the world, and like CD,
it can be used for Al tasks such as natural language undeistanding. CYC, however, is
more comprehensive; while CD provided a specific theory of representation for events,
CYC contains representations of events, objects, attitudes, and so forth. In addition,
CYC s particularly concerned with issues of scale, that is, what happens when we build
knowledge hascs that contain millions of objects.

10.3.1 Motivations

Why should we want to build large knowledge buses at all? There are many reasons,
among them:

* Brittlencss—Specialized knowledge-based systems are brittle. They cannot cope
with navel situations, and their performance degradation is not graceful, Programs
built on 1op of deep, commonsense knowledge about the world should rest on
firmer foundations.

103. CYeC TRG

« Form and Content—The techniques we have seen so far for representing and using
knowledge miay or may not be sufficient for the purposes of Al. One good way
to find out is to start coding large amounts of commonsense knowledge and sec
where the difficulties crop up. In other words, one strategy is 10 focus temporarily
on the content of knowledge bases rather than on their form

o Shared Knowledge—Small knowledge-based systems must make stmplifying
assumptions about how 1o represent things ke space, time, motion, and structure
If these things can be represented once at a very high level. then domain-specitic
systems can gain leverage cheaply. Also, sysiems that share (he same primitives
can communicate easily with one another.

Building an immense knowledge base is 4 staggering 1ask, however. We should ask
whether there are any methods for acquiring this knowledge automatically. Here are
two possibilities:

1. Machine Learning—In Chapter 17, we discuss some techniques for automated
learning. However, current techniques permit only modest extensions of a pro-
gram’s knowledge. In order for a system to learn a great deal, it must already
know a great deal. In particular, systems with a lot of knowledge will be able to
employ powerful analogical reasoning.

2. Natural Language Understanding—Humans extend theirown knowledge by read-
ing books and talking with other humans. Since we now have on-line versions of
encyclopedias and dictionaries, why not feed these texts into an Al program and
have it assimilate all the information automatically? Although there are many
techniques for building language understanding systems (sec Chapter 15), these
methods are themselves verv knowledge-intensive. For example, when we hea
the sentence

John went 1o the bank and withdrew $50.

we casily decide that ""bank” mezns a fimancial institution, and not a nver bank.
To do this, we apply fairly deep knowledge about what a financial institution is,
what it means to withdraw money, cte. Unfortunately, for a program to assimilate
the knowledge containcd in an encyclopedia, that program must already know
quite a bit about the world.

The approach taken by CYC s 1o hand-code (wha its designers consider to be) the
ten million or so facts that make up commonsense knowledge. It may then be possible
to bootstrap into more automatic methods.

1032 CYCL

CYC’s knowledge is encoded in a representation language called CYCL. CYCL is a
frame-based system thal incorporates most of the techniques described in Chapter 9 (mul-
tiple inheritance, stots as full-fledged objects, transfers-through, mutually-disjoint-with,
etc). CYCL generalizes the notion of inheritance so that properties can be inherited along
any link, not just isa and instance. Consider the (wo statements:

290 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

Mary v
likes: 72
constraints: {Lisplonstraint)

LispConstraint
slotConstrained: (likes)
slotValueSubsumes:
(TheSetOf X (Person alllnstances)
(And (programsin X Lisplanguage}
(Not (ThereExists Y (Languages alllnstances)
(And (Not (Equal Y LispLanguage))
(programsTn X Y)1))))

propagationirection: furward
Bob
programsln: (Lisplangquage)
Jane
programsin: (LispLanguage CLanguage)

Figure 10.6. Frames and Constraint Expressions in CYC

1. All birds have iwo legs.
2. .All of Mary's friends speak Spanish

We can easily encode the first fact using standard inheritance—any frame with Bind
on its instance slot inherits the value 2 on s Jegs slot, The second fact can be encoded
in a similar fashion if we allow inheriiance to proceed along the friend relation—any
frame with Mary on its friend slot inherits the value Spanish on its languagesSpoken
slot. CYC further generalizes inheritance 1o apply to 2 chain of relations, allowing us to
express facts like, "All the parents of Mary’s friends are rich.” where the value Rich is
inherited through a composition of the friend and perentOf links.

In addition to frames. CYCL contains a constraint language that allows the expres-
sion of arbitrary first-order logical cxpressions. For example, Figure 10.6 shows how
we can express the fact “Mary likes people who pragram solely in Lisp.” Mary hus a
constraint called lispCensiraint, which restricts the values of her likes slot. The slorVal-
ueSubsumes anribute of lispConsiraint ensures that Mary's /ikes slot will be filled with |
at least those individuals that satisfy the logical condition, namely that they program in
LispLanguage and no others.

The time at which thc default reasoning is actually performed is determined by the
direction of the slotValueSubsumes rules. I the direction is backward, the tule is an
if-needed rule, and it is invoked whenever someone inquires as to the value of Mary's
likes slot. (In this case, the rule infers that Mary likes Bob but not Jane.) If the direction
is forward, the rule is an if-added rule, and additions are automatically propagated to
Mary’s likes slot. For example, after we place LISP on Bob's programsin slot, then
the system quickly places Bob on Mary’s /ikes slot for us, A truth maintenance system

103. CYC 291

(see Chapter 7) ensures that if Bob ceases 1o be a Lisp programmer (or if he starts using
Pascal). then he will also cease (0 appear on Mary's likes slot.

While forward rules can be very useful, they can also require substantial time and
space to propagate their values. If a rule is entered as backward, then the system defers
reasoning unii}-the information is specificaily requested. CYC maintains a separate
background process for accomplishing forward propagations. A knowledge engineer
can continue entering knowledge while its effects are propagated during idle keyboard
ame.” d

Now let us return to the constraint language itself. Recall that it allows for the
expression of facts as arbitrary logical expressions. Since first-order logic is much more
powerful than CYC's frame language. why does CYC maintain both? The reason is that
frame-based infersnce is very efficient, while general logical reasoning is computation-
ally hard. CYC actually supports abou iwenty types of efficient inference mechanisms
(including inheritance and transfers-through), each with its own truth maintenance fa-
cility. The constraint language allows for the expression of facts that are 1o complex
for any of these mechanisms to handle. et

The constraint language also provides an elegant, abstract Jayer of representation. In
reality, CYC maintains two levels of representation: the epistemological level (EL) and
the hewristic level (HL). The EL contains facts stated in the logical constraint language.
while the HL contains the same facis stored using efficicnt inferency templates. There
is a translation program for automatically converting an Fl. statement into an cfficient
HIL representation. The EL provides & clean, simple functional interface to CYC se
that users and computer programs can easily insert and retrieve information from the
knowledge, hase. The EL/HL distinction represents one way of combining the formal
neatness of logic with the computational efficiency of frames.

In addition to frames, inference mechanisms, and the constrairit language, CYCL
performs consistency checking (e.g., delecting when an illegal value is placed on a slot}
and conflict resolution (e.g., handling cases where multiple inference procedures assign
incompatible values to a slot).

10.3.3 Control and Meta-Knowledge

Recall our discussion of control knowledge in Chapter 6, whert we saw how 1o take
information about control out of a production system interpreter and represent it declar-
atively using rules. CYCL sirives 10 accomplish the same thing with frames. We have
already seen how 10 specify whether a fact is propagated in the forward or backward
direction—this is a 1ype of control information Associated with cach slot is a set of
inference mechanisms that can be used to compute values for it. Forany given problem.
CYC's reasoning is constrimned 10 3 small range of relevant, efficient procedures. A
query in CYCL. can be tagged with a level of effort. At the lowest level of effort, CYC
merely checks whether the fact s stored in the knowledge base. At higher levels, cyC
will invoke backward reasoning and cyen eniertain metaphorical chains of inference
As the knowledge hase grows, it will become necessary [0 USe control knowledge 10
restrict reasoning to the most relevant portions of the knowledge base. This control
knowledge can, of course, be stored in frames

? Another idea is 10 have the sysiem do forwand propagation of know ledge during penods of infrequent
use, such as at night.

292 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

Inthetraditionof its predecessor RLL (Representation Language Language) [Greiner
and Lenat, 1980], many of the inference mechanisms used by CYC are stored explicitly
as EL templates in the knowledge base. These templates can be modificd Like any other
frames, and a user can create a new inference template by copying and editing an old
one. CYC generates LISP code to handle the various aspects of an-Emmwnce iemplae”
These aspects include recognizing when an EL statement can be wamsformed i
instance of the template, storing justifications of facts that ure deduced iand retm®Ting
those facts when the justifications disappear), and applying the inference mcchanism
efficiently. As with production systems, we can build 3 more fiexible. reflective svsiem
by moving inference procedures inio a declarative representation.

It should be clear that many of the same control issues exist for frames and rules,
Unlike,numerical heuristic evaluation functions, control knowledge often has a com-
monsense, “knowledge about the world” fiavorto it. It therefore begins 1o bridge the gap
between two usually disparate types of knowledge: knowledge that is typically used for
search control and knowledge that is typicaily used for natural language disambiguation.

10.34 Global Ontology

Oniology is the philosophical study of what exists. In the Al context, ontology is
concerned with which categories we can usefully quantify over and how those calegories
relate 10 each other All knowledge-hased systems refer to entities in (he wor id, bur
in order to capturc the breadth of human knowledge, we need 4 well-designed global
ontology that specifies at a very high level what kinds of things exist and what their
general properties are. As mentioned above, such a global ontology should provide a
more solid foundation for domain-specific Al programs and should also allow them to
communicate with each other.

The highest level concept in CYC is called Thing. Everything is an instance of
Thing. Below this top-level concept, CYC mukes several distinctions, includmg:

® IndividualObjeci versus Coflection—The CYCL concept Collection corresponds
to the class CLASS described in Chapter 9. Here are some examples of frames
that are instances of Collection: Person, Nation, Nose. Some instances of in-
dividualObject arc Fred, Greece, Fred'sNose. These two sets share no cummon
instances, and any instance of Thing must be an instance of one of the WO sels.
Anything that is an instance of Collection is a subset of Thing. Only Collections
may have supersets and subsets; only IndividualObjects may have parts.

o Intangible, Tangibie, and C. omposite—Instances of Infangible are things without
mass, e.g., sets, numbers, laws, and events. Instances of TangibleObject are things
with mass that have no intangible aspect, ¢.z., 2 person's body. an orange, and
dirt. Every instance of TangibleObject is also an instance of IndividualObjecr
since sets have no mass. Instances of C ompositeObject have two key slots,
physicalExtent and intangibleExient, For exampie, a person is a CompositeOhject
whose physicalExrent is his body and whose intangibleExtent is his mind.

¢ Substance—Supstance is a subelass of IndividualObject. Any subclass of Sub.
stance is something that retains its properties when it is cut up into smailer picces.

Nt
k]
o

105. Crc

For example, Wood is a Substance.” A concept like labled4 can be an instance of
both Wood (a8 Substapce) and Table (an Individual Object),

o Intrinsicversus Extrinsic properties— A property is intrinsic if when an object has
that property all parts of the object also have that properiy. For example, color
is an intrinsic property. Objects tend 1o inherit their intrimsic properties from
Substances. Extrinsic properties include things like nuniber-of legs. Objects tend
r0 inherit their extrinsic properties from fndividualOhjects.

s Event and Process—An Fvent is anything with temporal extent, ¢.g.. Walking.
Process is a subclass of Evenr. If every temporal slice of an Event is essentially
the same as the entire Evenr, then that Evenr is also a Process. For example.
Walking is a Process, but WalkingTwoMiles is not. This relationship is analogous
to Substance and IndividualOhjeci.

e Slors—Slor is a subclass of Intangible. There arc many types of Sior. Book-
keepingSiots record such information as when a frame was created and by whom.
DefiningSiots refer not 1o properties of the frame but to propertics of the object
represented by the frame. DefiningSlors are turther divided into intenstonal, tax-
vaomic, and extensional categories, QuantitativeSlors are those which take on i
scalar range of values, c.g., keighr, as opposed o gender.

& Time—Fyents can have lemporal properties. such as duration and starisBefore.
CYC deuls with rwo basic types of temporal measures: intervals, and sets of
intervals. A number of basic interval propertics, such as endsDuring, are defined
tron: (he property before, which apphes 1o starting and ending times for events.
Sets of intervals are built up from basic intervals through operations like union
and intersection. Thus, it is possible to stare facts like "John goes to the movies
ay three v'clock every Sundav ™

~ Agent—An imponant subset of CompayiteOigect s Agent, the collection of in
relligent beings. Apenss can be collective (e.g . corporations) ovindividual (e.g.
people). Agents have a number of propertics. one of which is heliefs. Agents often
ascribe their own beliefs to other agents in order o facilitate communication. An
ageni's belicfs may be incorreet. so CYf must be able to distinguish between
facts in its own knowledge base (CYC’s beliefs) and “facts™ that are possibly
inconsistent with the knowledge base

These are but a few of the ontological decisions that the builders of a large knowi-
edge base must make. Other problems arise in the representation of space. causality.
structures, and the persisience of objects throughtime. We returnto some of these i1ssues
. Chaprer 19

.

i0.3.5 Tools

CYC s a multi-user system that provides euch knowledge enterer with a fextual and
graphical interface to the knowledge base, Users’ modifications to the knowledge base

'Of course. if we cut @ substance up foo fincly. it ceases 1o be the same substance. For cach substance
wvoe. UYC stores nis pramule size. e.v_. Wood aranule = PlamCell. Crowd eranale = Perwon . cle

294 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTLRES

are transmitted (o a central server, where they are checked and then propagated 1o oither
USCES.

We do not yet have much experience with lht engineering problems ol hutlding and
maintaining very large knowledge bases. In the future, it will be necessary 1o have ooy
that check consistency in the knowledge base, point out areas f meomipleieness, and
ensure that users do not step on each others' toes.

10.4 KExercises

1. Show a conceptual dependency representation of the senience
John begged Mary for o pencil.
How doces this representation make it possible t answer the question
Did John talk to Mary?

&

- One difficulty with representations that rely on a small set of semantic primitives,
such as conceptual dependency, is that it is often difficult 1o represent distine-
fions between fine shades of meaning. Write CD representations for each of the
following sentences. Try 1o capture the differences in meaning between the two
sentences of each pair,

John slapped Bill.
John punched Bill

Bill drank his Coke
Ball slurped his Coke.

Sue likes Dickens.
Sue aderes Dickens,

3. Construct a script for going to a movie from the viewpoint of the movie puer

4. Consider the following paragraph:

Jane was extremely hungry, She thought about going 1o her fuvorite
restaurant for dinner, but it was the day belore pavday. So instead
she decided 10 go home and pop a frozen pizza in the oven. On the
way. though. she ran into her friend, Judy, Judy invited Jane 10 go out
to dinner with her and Jane instantly agreed. When they got to their
favorite place. they found a good table and relaxed over their meal,

How could the restaurant script be invoked by the contents of this story? Trace
the process throughout the story. Might any other scripts also be invoked? For
example, how would you answer the question, "Did Jane pay for her dinner?™

5. Would conceptual dependency be a good way to represent the contents of a typical
issue of National Geographic?

104 EXERCISES 29+

. State wheres n thie CYC omology tollowstg concepts stunidd fabl

e cal

® court case

e New York Times
» France

e glass of water

Chapter 11

Knowiedge Representation
Summary

In this chapter, we review the representational schemes that have been discussed so 1ar
and we mention briefly some additional representational techniques that are someiimnes
pscful. You may find it useful at this point to reread Chapter 4 for a review of the
knowledge representation issues that we outlined there.

11.1 Syntactic-Semantic Spectrum of Representation

One way to review the representational schemes we have just described is (0 consider
an important dimension along which they can be charucterized. At one extreme are
purely syatactic systems, in which no concem is given to the meaning of the knowledge
that is being represented. Such systems have simple, uniform rules for manipulating
the representation. They do not care what information the representation contains. AL
the other extreme are purely semantic systems, in which there is no unified form. Every
aspect of the represeniation corresponds (o a different piece of information, and the
inference rules are correspondingly complicaied.

So.far, we have discussed eight declarative structures n which knowledge can be
vepresented:

+ Predicate logic

s Production ruies

« Nonmonotonic systems

o Statisnical reasoning systems
* Semantic nets

* Frames

Conceptual dependency

297

298 CHAPTER 11. KNOWLEDGE REPRESENTATION SUMMARY

® Scripts
s CYC

Of these, the logical representations (predicate logic and the nonmonotonic systems
and the statistical ones are the most purely syntactic. Their rules of inference are strictly
syntactic procedures that operate on well-formed formulas (wff) regardless of what
those formuias represent, Production rule systems are primarily syntactic also. The
interpreters for these systems nsually use only syntactic information (such as the form
of the pattern on the left side, the positionof the rule in the knowledge base, or the position
of the maiched object in short-term memory) to decide which rules to fire. Again here
we see the similarity between legic and production rules as ways of representing and
using knowledge. But it is possible to build production-rule systems that have more
semantics embedded in them. For example, in EMYCIN and other systems that provide
explicit support for certainty factors, the semantics of certainty factors are used by the
rule interpreter Lo guide its behavior.

Slot-and-filler structures are typically more scmantically oriented, although they span
a good distance in this spectrum. Semantic nets, as their name implies, are designed
tu capture semantic relationships among entitics, and they are usually employed with a
set of inference rules that have been specially designed to handle correctly the specific
types of arcs present in the network. (For example, isa links are treated differently from
most other kinds of links,) Frame systems are typically more highly structured than
are semantic nets, and they contain an even larger sel of specialized inference rules,
including those that implement a whole array of default inheritance rutes, as well as
other procedures such as consistency checking.

Conceptual dependency moves even further toward being a semantic rather than a
syntactic representation. It provides not only the abstract structure of a representation
but also a specific indication of what components the representation should coniain
(such as the primitive ACTs and the dependency relationships). Thus, although CD
representations can be thought of as instances of semantic nets, they can be used by
more powerful inference mechanisms that exploit specific knowledge about what they
contain, And although scripts appear very similar to frames, they are frames in which
the slots have heen carefully chosen 1o represent the information that 1s useful when
reasoning about situations. This makes it possible for script manipulation procedures
10 exploit knowledge about what they are working with in order to solve problems,
more efficiently. CYC uses both frames and logic (depending on the level at which
we view the knowledge) to encode specific types of knowledge and inference aimed ai
commonsense reasoning. CYC is the most semantic of the systems we have described,
since it provides the most built-in knowledge of how to manipulate specific kinds
of knowledge structures. It also contains a comprehensive ontology into which new
knowledge can be put.

In general, syntactic representations are 1o knowledge representation what the weuk
methods of Chapter 3 are to problem-solving. They are, in principle, adequate for any
problem. But for hard problems, their generality ofien means that-answers cannot be
found quickly. Stronger, more semantically oriented approaches make it possible to
use knowledge more cffectively to guide search. This does not mean that there is no
place for weak or syntactic methods. Sometimes they are adequate, and their simplicity
makes a formal analysis of programs that use them much mere straightforward than a

112. LOGIC AND SLOT-AND-FILLER STRUCTURES 294

comparable analysis of a program based on semantic metheds. But powerful programs

<~depend on powerful knowledge, some of which is typically embedded in their problem-
solving procedures and some of which is embedded in their knowledge representation
mechanisms. In fact, as we have seen throughout Part 11 of this book, it is not usually
possible to separate the two facets cleanly. _

However, as we have seen in the last few chapters, knowledge representation systems
can play the role of support systems that underly specific problem-solving programs.
The knowledge representation system is typically expected not just to hold knowledge
but also to provide a set of basic inference procedures, such as property inheritance
or truth maintenance, that are defined on the knowledge. Specific problem-solving
procedures can then be implemented as a level on top of that.

When knowledge representation systems are viewed as modules that arc going to
be incorporated as black boxes into larger programs, a good argument can be made
[Brachman and Levesque, 1984] that their functionality should be restricted 10 purely
syntactic operations about which very precise statcments can be made. Essentially, this
argument follows standard software engineering principles. To usc a module effectively,
one must have access 1o precise functional specifications of that module. If a knowledge
representation system performs operations that are highly semantic in nature, itisdifficult
or impossible to write such a set of specifications. Among the kinds of operations that
pose difficulties in this regard are the following:

s Operstions whose result is defined to be the first or the best object satisfying some
set of specifications, One example of such an operation is the resolution of a
contradiction in a default-reasoning system. These operations require heuristics
{0 define first or best and thus cannot usually be described in a straightforwaid
way without appealing to the heurislics.

« Operations that are given resource limitations and whose output depends on
how effectivély those resources can be used. One common example of such an
operatton is default reasoning, when itis stated in a form such as, “Assume x unless

-y can be shown within = inference steps.” The semantics of these operations
then depend on how the resources happen to be exploited.

Of course, we are not saying that operations with these properties should not be
done in reasoning programs, They are necessary. We are only saying that they should
be within the control of some domain-specific problem solver rather than hidden within
a general-purposé black box -3

11.2 Logicand Slot-and-¥iller Structures

Slot-and-filler structures have proven very valuable in the efficient stonng and retneving
of knowledge for Al programs. They are usually poor, however, when it comes 10
rrpre'seuling rule-like assertions of the form “If x, y,and z, then conclude w.” Predicate
logic, on the other hand, does a reasonable job of representing such assertions, although
general reasoning using these assertions is inefficient. Slot-and-filler represent arions are
usually more semantic, meaning that their reasoning procedures are more varied, more
efficient, and tied more closely to specific.types of knowledge.

300 CHAPTER 11. KNOWLEDGE REPRESENTATION SUMMARY

Hayes [1973] and Nilsson [1980] have shown how slot-and-filler structures can be
transiated into predicate logic. Concepts become one-place predicates. ¢.g., dog(x), and
slots become two-place predicates, e.g.. color(canary, yetlow). Inference mechanisms
like property inheritance can be expressed in logical notation, as a series of logical impli-
cations, which can then be manipulated with resolution, Working through a translation
of a slot-and-filler structure to logic helps clear up what are often imprecisely specified
reasoning methods in these structures. In practical terms. however, moving to logic
means losing efficiency. For example, a typical slot-and-filler systcm has procedures
for doing property inheritance that are much faster than doing property inheritance via
resolution-based theorem proving. Part of the inefficiency of general reasoning methods
like resolution can be overcome by intelligent indexing schemes, bui the more heavily
cross-indexed predicate logic clauses are, the more they come to resemble slot-and-filler
structures.,

On the otherhand, it is difficult 1o express assertions more complex than inheritance
in slot-and-filler structures. Is it possible to create a hybrid representational structure
that combines the advantages of slot-and-filler structures with the advantages of pred-
icate logic? We have already seen one system (CYC) that maintains both a logical
(epistemological level) and frame-based (heuristic level) version of each fact. Another
system, called KRYPTON [Brachman e al., 1985], divides its knowledge into two dis-
unct repositories, called the TBox and the ABox. The TBox is a slot-and-filler strcturc
that contains ferminological information. In it arc conceprs like “person,” “car,” and
“person with three children.” The ABox contains logical assertions, such as “Every
person with three children owns a car.” The atomic predicates used in ABox asscrtions
refer to concepts defined in the TBox.

In logic-based systems, predicates such as friangle and polygon are primitive notions
These primitives are tied to one another via assertions, e.g., isa(triangle, polygon) and
isa(rectangle, polygon). KRYPTON relates concepts like triangle and polygon lermino-
logically, in the TBox, rather than assertionally. Thus we can do efficient terminological
reasoning in the TBox and more .general reasoning in the ABox. Terminological rea-
soning involvcs answering questions about subsumption and inheritance, such as “Can
something be both a triangle and a rectangle?” .

Cousider a resolution theorem prover munning with assertions in the ABox. A
standard operation in Tesolution is determining when pairs of literals such as f(x) and
~f(x) are inconsistent. Standard resolution requires that the literals be texmally unifiable
(except for the negation sign). KRYPTON exiends the idea of textual inconsistency to
terminological inconsistency in order to make the theorem prover more efficient. The
TBox can tell thal the two assertions triang/e(x) and rectangle(x) are inconsistent and can
thus be resolved against each other. The TBox can also determine the inconsistency of
triangle(x) and —polygon(x); moreover, the two assertions —vectangle(x) and polygon(x)
can be resolved against each other as long as we add to the resolvent the fact that x must
have an angle which is not 90 degrees. If TBox computations are very efficient, then
ABox proofs will be generated much faster than they would be ina pure logic framework.

1

11.3. OTHER REPRESENTATIONAL [ECHNIQUAS)

11.3 Other Representational Techniques

In the last several chapters, we have described various techniques that can be used 1o
represent knowledge. But our survey is by no means complete. There are other ways of
representing know}=dge; some of them are quite similar to the ones we have discussed
and some are quite different. In this section we briefly discuss three additional methods.
constraints, simulation models, and subsymbolic systems. Keep in mind throughout
this discussion that it is not always the case that these various representational systems
are mutually inconsistent. They often overlap, either in the way they use component
representational mechanisms, the reasoning algorithms they support, or the problem-
solving tasks for which they are appropriate.

11.3.1 Representing Knowledge as Constraints

Much of what we know about the world can be represented as sets of constraints. We
talked in Section 3.5 about a very simple problem, cryptarithmetic, that can be described
this way. But constraint-based representations are also useful in more complex problems.
For example, we can describe an clectronic circuit as a set of constraints that the states
of various components of the circuit impose on the states of other components by virtue
of being connected together. If the state of onc of these components changes, we can
propagate the effect of the change throughout the circuit by using the constraints. As a
" second example, consider the problem of interpreting visual scenes. We can wrile down
a set of constraints ‘hat characterize the set of interpretations that can make seasc in our
physical world. For example, a single edge must be interpreted consistently, at both of
its ends, as either a convex or a concave boundary. Finally, as we saw in Section 8.3,
there are several kinds of relationships that can be represented as sets of constrainis on
the likelihoods that we can assign to collecticns of interdependent events.
fn some sense, everything we write in any representational system is a constraint
on the world models or problem solutions that we want our program 1o accept. For
example. a wif [e.g., Yr : man(x} = mortal(x)] constrains the set of consistent models
1o those that do not include any man who is not mortal. But there is a very specific
<ense in which it is useful to talk about a specific class of techniques as constraint-based.
Recall that it Section 1.5 we presented an algorithm for constraint satisfaction that
was based on the notion of propagating constraints throughout a system until a final
qtute was reached. This algorithm 1s particularly effective precisely when knowledge
is represented in & wav that makes it efficient to propagate constraints. This will be
truc whenever it is casy lo locate the objects that a given object influences. This occurs
when the objects 1n the system are represented as a network whose links correspond to
constraints among the objects, We considered one example of this when we talked about
Buvesian networks in Section 8.3, We consider other examples later in this book. Eor
example, we return to the problem of simulating physical processes, such as electronic
circuits, in Section 19.1. We present in Section 14.3 a constraint-propagation solution
(known as the Waltz algorithm) to a simple vision problem. And in Section 15.5 we
outline a view of natural language understanding as a constraint satisfaction task

302 CHAPTER 11. KNOWLEDGE REPRESENTATION SUMMARY

11.3.2 Models and Model-Based Reasoning

For many kinds of problem-solving tasks, it is necessary to model the behavior of some
object or sysiem. To diagnose faulls in physical devices, such as electronic circuits o7
electric motors, 1t 15 necessary 1o mode! the behavior of both the correctly functioning
device and some number of ill-functioning variants of it. To evaluaie potential designs
of such devices requires the same capability. Of course, as soon as we begin 1o think
about modeling such complex entities, it becomes clear that the best we will be able to
do is create an approximate model There are various techniques that we can use to do
that.

When we think about constructing a model of some entity in the world, the issue of
what we-mean by a model soon arises. To what extent should the structure of the model
mirror the structure of the object being modeled? Some representational technigues
tend 10 support models whose structure is very different from the structure of the objects
being modeled. For example. in predicate logic we write wff's such as Vx . raven(r) —
black(x). In the real world, though, this single fact has no single realization; it is
distributed across all known ravens. At the other extreme are representations, such as
causal networks, in which the physical structure of the world is closely modeled in the
structure of the representation.

There are arguments in favor of both ends of this spectrum (and many points in the
middie). Forexample. if the knowledge structure closely matches the problem structure,
then the frame problem may be easier to solve. Suppose, for example, that we have a
robot-planning program and we want to know if we move a table into another room,
what other objects also change location. A model that closely maiches the siructure
of the world (as shown in Figure 11i.1¢a)) will make answering this question easy,
while alternative representations (such as the one shown in Figure 11.1(4)} will not
For more on this issue. see Johnson-Laird [1983], There are, however, arguments for
representalions whose siruciures do not closely model the world. For cxample, such
representations typically do a better job of capturing gencralizations and thus of making
predictions about some kinds of novel situations.

11.3.3 Subsymbolic Systems

So far, all of the representations that we have discussed are symbolic, in the sense we
defined in Section 1.2. There are alternative represeniations, many of them based on
a neural model paueméd after the human brain. These systems are ofien called neura!
nets or connectionist systems. We discuss such systems in Chapter 18,

11.4 Summary of the Role of Knowledge

Inthe last several chapiers we have focused on the kinds of knowledge that may be useful
to programs and on ways of representing and using that knowledge within programs.
To sum up. for now, our treatment of knowledge within Al programs, let us returmn to &
brief discussion of the two roles that knowledge can play in those programs.

+ It may define the search space and the criteria for defermining & solution 1o &
problem. We call this knowledge essential knowledge.

115. EXERCISES

‘(Livingroomi:

contains:
(Tablel:
made-of . Wood
has-om: (Vasel:
made-of: Glass)
(Lampl: ... D
(Table2:
has-on: (Mase2: ...)))

(a)

in{Table!, Livingroom)
made-of (Tablel, Wood)
on(Vasel , Tablel)
made-of(Vasel, Glass)
on{Vase2, Table2)
on{Lampl, Tablel)

(b)

Figure 11.1: Capturing Structure in Models

e ltmay improve the efficiency of areasoning procedure by informing that procedure
of the best places to look for a solution. We call that knowledge hewrisric

Lnowledge.

o formal tasks,

such #s theorem proving and game playing, there is only a small

ametni of =ssennial knowledge and the need for a large amount of heuristic knowledge
way be challenged by several brute force programs thai perform quite successfully
{v.2.. the chess programs HITECH [Berliner and Ebeling, 1989] and DEEP THOUGHT
{ vnantharaman et «l., 1990]). The real knowledge challenge arises when we tackle
nwerally occurming problems. such ns medical diagnosis, natural janguage PIOCESSINg.
ur engineering design. In those domains. substantial bodies of both essential and
nenristic knowledge are absolutely necessary.

11.5 Exercises

1. Antificial intelligence systems employ a vanety of formahisms for representing
knowledge and reasoning with it. For each of the following sets of sentences.
indicate the formalism that besi facilitates the representation of the knowledge
gives in the statements in order to answer the question thet is posed. Explain your
choice briefly. Show how the statements would be encoded in the formalism yeu
have selected, Then show how the question could be answered.

304 CHAPTER 11. KNOWLEDGE REPRESENTATION SUMMARY

John likes fruit.
Kumgquats are fruit.
People cat what they like.
Does John eat kumqguats?

Assume that candy contains sugar unless you know
specifically that it is dietetic.
M&M’s are candy.
Diabetics should not eat sugar.
Bill is a diabetic.
' Should Bill cat M&M’'s?

Most people like candy.

Most people who give parties like to serve food that
their guests like.

Tom is giving a party.

What might Tom like to serve?

When you go to a movie theatre, you usually buy a ticket,
hand the ticket to the ticket taker, and then go and
find a seat.

Sometimes you buy popcorn before going to your seat.

When the movie is over, you leave the theatre.

John went 1o the movies.

Did Iohn buy a ticket?

2. Give five examples of facts that are difficult 10 represent and manipulate in
predicate logic.

3. Suppose you had a predicate Jogic-based system in which you had represented
the information in Figure 4.5. What additionat ki.owledge would you have to
include in order to cause propertics ta be inherited downward in the hierarchy?
For cxample, how could you answer the question of how tall a pitcher is?

4. Fmpcnj inheritance is a very common form of default reasoning. Consider the
semantic net

Mammal
/ I _ burth-mode
sa
Cow Platypus Live

(a) How could the information in this network be represented in a JTMS?

(b) What will happen when the additional fact that the platypus lays eggs is
inserted into this system?

