
Part III

Advanced Topics



Chapter 12

Game Playing

12.1 Overview
Games hold an inexplicable fascirialiori for many people, and the notion that computers
might play games has existed at least as long as computers. Charles ttabhage, the
nineteenth-centurycomputer architect, thought about programming his Anal y t i cal En-

gine to play chess and later of building a machine to play tic-tac-toe [Bowden. 1951.
Two of the pioneers of the science of information and computing contributed to the
fledgling computer game-playing literature. Claude Shannon 19501 wrote a paper in
which he described mechanisms that could be used in a program to play chess. A few

years later. Alan Turing desrihrd a (hess-playing program, although he never built
it. (For a description see Bowden 11953 By the early 1960s, Arthur Sanitl had
succeeded in building the first significant, operational game-playing p rogram. His pro-

gram played checkers and, in addition to s nnply plavir'C the game, could learn from its

mistakes and improve its performance ISamuel. i;ni.
[here were two reasons that games appeared tc F' i good domain in which to explore

machine intelligence:

• They provide a structured task in which it i very easy to measure success ot

failure.

• ihe did not obviousl y require large amounts ofkiLowtcdgC. Ttr '. crc thought to

be solvable b y straightforward search uoin ih starting state to a winning position

The first of these reasons remains valid and accounts totcontinued interest in the
ajea of game playing by machine tlnforiutialcly. the second is not true for an y but the

aimplest games. For example. consider chess.

• The a'erage branching factor is around 35

In an average game. each player might make 50 moves

So in order to examine the complete game tree, we would have to exailuhie 35'"

positions.

30?
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Thus it is clear that a program that simply does a straightforward search of the game tree
will not be able to select even its first move during the lifetime of its opponent. Some
kind of heuristic search procedure is necessary.

One way of looking at all the search procedures we have discussed is that they
are essentially generate-and-test procedures in which the testing is done after varying
amounts of work by the generator. At one extreme, the generator generates entire
proposed solutions, which the tester then evaluates. At the other extreme, the generator
generates individual moves in the search space, each of which is then caivated by the
tester and the most promising one is chosen looked at this 'say, it is clear that to
improve the effectiveness of a search-based problern-solving progi sri two things can be
done

• Improve the generate procedure so that only good moves (or paths) are generated.

• Improve the test procedure so that the best moves (or paths) will be recognized
and explored first.

In game-playing programs, it is particularl y important that both these things be done.
Consider again the problem of playing chess. On the average, there are about 35 legal
moves available at each turn. If we use a simple legal-move generator, then the test
procedure (which probably uses some combination of search and a heuristic evaluation
function) will have to look at each of them. Because ilti- test procedure must look at
so many possibilities, it must be fast. So it probably cannot do a very accurate job.
Suppose, on the other hand, that instead of a legal-move generator. we use a plausible-
move generator in which only some small number of promising moves are generated.
As the number of legal moves available increases, it becomes increasingly important to
apply heuristics Co select only those that have some kind of promise. (So, for example,
it is extremely important in progiarns that play the game of go [Denson et al., 1979).)
With a more selective move generator, the test procedure can afford to spend more
time evaluating each of the moves it is given so it can produce a more reliable result.
Thus by incorporating heuristic knowledge into both the generator and the testem, the
performance of the overall system can be improved,

Of course, in game playing, as in other probs., ins, search is not the only
available technique. In some games. there are at least some times when more direct
techniques are appropriate. For example, in chess, both openings and codgames are often
highly sty lized, so they are best played by table lookup into a database of stored patterns.
To play an entire game then, we need to combine search -oriented and nonscarch-ortcnted
techniques.

The ideal way to use a seaieh procedure to find a solution to a problem is to
generate moves through the problem space until a goal state is reached. In the contest
of game-playing programs, a goal state is one in which we win. Unfortunately, for
interesting games such as chess, it is not usually possible, even with a good plausible-
move generator, to search until a goal state is found. The depth of the resulting tree
(or graph) and its branching factor are too great. In the amount of time available, it
is usually possible to search a tree only ten or twenty moves (called ply in the game-
playing literature) deep. Then, in order to choose the best move, the resulting board
positions must be compared to discover which is most advantageous. This is done
using a static evaluation function, which uses whatever information it has to evaluate
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that the best next move can be chosen But because of their adversarial nature. this

procedure is inadequate for two-person games such as chess. As values arc passed back
up, different assumptions must be made at levels whete the progio chooses the move
and at the alternating levels where the opponent chooses There ale several ways that
this can be done. The most commonly used method is the rnininia.s procedure, whiih

is ilesctihcd in the next section. An alternative approach is the B* algotithni (Berliner.

1 97qa1. which works on both standard problem-Solving trees and on game trees.

12.2 The Miriimax Search Procedure

The nh,,iifliar	 It pia edt, is a depth-lust, depth-hmited search procedure. It wal.
described briefly in Section 1.3.1. The idea k to stall at the current position and use the

the set of possible successor positions. Nowplausible-move generator to generate 
	 c

eati apply the static evaluation function to those positions and simply choose the best

.i'ie After doing so. we can hack that value up to the starting position to teprcseflt our

evaluation oft The startiilg position is exactly as good for us as the position generated
oy the best move we can make next. Ucie we assume that trie static evaluation function
returns large values in indicate good situatls for us. so our goal is to rnu.iirnJP the

value of the static cv al nation function of th next board position.
An example of ibis operation is shown in Figure 12.1. It assumes a static evaluation

function that reurns values ranging from - 10 to 10. with 10 indicating a win for us.

- 10 a 
win for the opponent. and 0 an even match Since cur rrial is to maximize the

'.alue of the heuristic function. we choose to move to B. Bac king B's value up to A, we

can conclude that As value is S. since we know we can move. to a position with a value

uI S.
t3ut since we know that the static evaluation function is not completely accurate, we

would like to carry the search farther ahead than one ply. This could be very iniponaril,

for example. in a chess game in which we arc in the middle of a piece exchange. After

our move, the situation ,uld appear to be very good. but, it we look one move ahead,
we will see that one of our pieces also gets captured and so the situation is not as
favorable as it seemed. So we would like to look ahead to see what will happen to each
of the new game positions at the next move which will be made by the opponent. Instead
of applying the static evaluation function to each of the positions that We lust generated,
we apply the plausible-move generator, generating a set of succescot positions to , cad,

position. If we wanted to stop here, at two-ply lookahead, we cuilld apply the static
evaluation function to each of these positions, as shown its Figure 12.2.
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Figure 123: Backing (Jo the ValUes of a 'Iwo- Pis Search

But now We must take into at_ mint tli.ii tilt' I II)pOiteFIt gets tim clitiose which successttl
moves to make and thus which cniiinal value should he hacked up to the next level.
Suppose we made move B. 'Ihem' die opponent must choose among moves F. F, and G.
The opponents goal is it , rmnnmn,i.:c the value of the evaluation function, so he or she can
be expected to choose move F. T'h,'i meart' that it we make move B, the 'actual posilic'n
in which we will end up one rnovv later is ver y had for us. This is true even though
a possible configuration mc that reptescoted b y node E. wnich is very good for us.
since at this level we ae not the ones to fl1IIV r, we wti lot get to clii 'osc it Fiurc I
shows the result of propagating the new values up the tree. At the level representing
the opponent's choice, the minimum value was chosen arid hacked up. At the level
representing our choice, the maximum value was chosen

Once the values from the second pl y are hacked up, it becomes clear that the correvI
move -for us to make at the rst level, gtvcn the information we have available. r,(
since there is nothin g the O0flCflb can do from there to produce a value worse than --2
This process can he repeated (or as mably ply as lilibe allows, and (Ire more accurate
evatuatit.its that are produced can be used to choose the correvt niuse at the top level.
The alternation of maximizing and minimizing at alternate ply when evaluations are
being pushed back up corresponds to the opposing viratetlies of the two players and
gives this method the name minimax.

Having dec'-bed informal)) ttiC spt.Ot. 	 the mininx procedure, we now
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describe it precisely, it is a straightforward recursive procedure that relics on two
auxiliary procedures that are specific to the game being played:

1. MOVEGEN(Posilion. Player) -The plausible-move generator, which returns t

list of nodes representing the moves that can be made by Pla yer in Position. We

call the two players PLAYER-ONE and l'LAYER-TWO: in a chess program, we
might use the names BLACK and WRITE instead.

2. S'IATIC(Position, Plaver)—The static evaluation function, which returns a rium-

her representing the goodness of Position from the s'andpeint of Player.'

As with any recursive program. a critical issue in the design of the MINIMAX
procedure is when to stop the recursion and simply cai the static evaluation function.
There are a variety of factors that may influence this decision. They include:

• Has one aide Woll?

• How many ply have we already explored?

• How promising is this path?

• I low much time is left?

• How stable is the configuration?

For the general MINIMAX proceditie discussed here, we appeal to a function,
DEEP-ENOUGH, which is assumed to evaluate all of these factors and to return 'FRI 1€
if the search should be stopped at the current level and FALSE otherwise. Our simple
implementation of DEEP-ENOUGH will take two parameters. Position and Depth.
It will ignore its Position parameter and simply return TRUE if its Depth parameter

exceeds a constant cutoff value.
One problem that arises in defining M1NIMAX as a recursive procedure that it

needs to return not one but two results:

• 'The baced-up value nt'thc pail It chooses.

• The path itself. We return the entire path even though probably only the first
element, representing the best move fioin the current position, is actually needed.

We assume that MINIMAX returns a structure containing both results and that we
have two functions. VALUE and PATH. that extract lhC separate components.

Since we define the MININ4AX procedure as a recursive function, we must also
specify how it is to be called initially. It takes three parameters. a board po

sition. the

current depth of the search, and the player to move. So the initial call to compute the
best move from the position CURRENT should be

Nis tray be a hit confusing, but it need nit be In all the csampies in ii ii s chapicr so tzir onJuding
12.2 and 12.3). we hase assumed that Al values of STATIC are from the point of vic of the initial

tll,,\lmi,inr) player. It turns out to be raster whet) de5n;ng the algonthm. though. to let STATIC alternate
'.o that 'at' do not need to srims' separate procedutec tot the two level'. It is easy to modify

ST,sl'l(' t'or this purpose. we merely compute the vitae oIPoc,riri.ej from PLAYER-ONEs perspectise then
insert the value ii' STATIC's par.imrier is PLAYER-TWO.
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MI191MAX(CURRENT, O PLAYER-ONE)

if PLAYER-ONE is to move, or

MINIMAX (CURRENT, 0, PLAYER-TWO)

if PLAYER TWO is to move.

Algorithm: MINIMAX) Position, Depth, Player)

If DEEP-ENOUCil1(Psiriofl. Depth then return the sLr'.wture

VALUE STATIC(Pcisuion, Pluvt'r):

PATH = nil
'ibis indicates that there is no path from this node and that its value is that
determined by the static evaluation function,

2. Otherwise, generate one more ply of the tree b3 calling the function MOVE
(;EN(position Pla yer) and setting St tCCLSSORS to the list it returns.

3. If SUCCESSORS is enipty. then there are no moves to tie rn:ide, so return the
same structure that would have been returned it DEEP-ENOUGH had ictuned
true.

4. If SUCCESSORS is not empty, then examine each clement in Rrn ad keep trac
of the best one. fhis is done as follows.

Initialize BEST-SCORE to the minimum value that STAIR' can return It will be
updated in reflect the best score that can be achievrd by an element of SUCCES-

SORS.

For each element SUCC of SUCCESSORS. do the following.

)a1 Set RESULT-SUCC to
MIN1MAX(SU('C, Depth + i OPPOSITE(P!aer))3

This recursive call to MINIMAX will actuall y carry out the exploration (it
s(jCC.

Ib) Set NF.W-VAI tiE to -VAL1JE(RESil.T-SUCC). ThiswilLi.aueittoretiec
the merits of the position from the oppos;tc t s-rWccli s e from that ot the next

lower level.

(c) If NFW-VALUE > BEST-SCORE, then we have found a succesxor that
better than any that have been examined so far. Record this by doing the
following:

i. Set BEST-SCORE to NEW-VALUE.

ii. The best known path is now from CURRENT to SUCC and then on to
the appropriate path down from SUCC as determined by the recursive
call to MINIMAX So set BEST-PATH to the result of attaching SUC('
to the front ofPATH(RESUIT-StICC;
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S Now that all the successors have been examined, we know the value of Position
as well as which path to take from it. So return the structure

VALUE BEST-SCORE
PATH = B EST- PATH

When the initial call to MINIMAX returns, the best move from CURRENT is the
first element on PATH. To see how this procedure works, you should trace its execution
for the game tree shown in Figure 12.2.

The MINIMAX procedure just described is very simple. But its performance can be
improved significantly with a few refinements Some of these we described in the next
few sections.

12.3 Adding Alpha-Beta Cutoffs

Recall that the minimax procedure is a depth-first process. One path is explored as far as
time allows, the static evaluation function is applied to the game positions at the last step
of the path, and the value can then be passed up the path one level at a time. One of the
good things about depth-first procedures is that their efficiency can often be improved by
using branch-and-bound techniques in which partial solutions that are clearly worse than
known solutions can be abandoned early. We described a straightforward application of
this technique to the irsveling salesman problem in Section 2.2.1. For that problem, all
that was required was storage of the length of the best path found so far. If a later partial
path outgrew that bound, it was abandoned. But just as it was necessary to modify
our search procedure slightly to handle both maximiz.ng and minimizing players, it Is
also necessary to modify the branch-and-hound strategy to include two bounds, one for
each of the players. This modified strategy is called alpha-beta pruning. It requires

the maintenance of two threshold values, one representing a lower bound on the value
that a maximizing node may ultimately be assigned (we call this alpha) and another

representing an upper bound on the value that a minimizing node may be assigned (thiv

we call beta).
To we how the alpha-beta procedure works, consider the example shown in Fig-

ure 12.4 .4 After examining node F. we know that the opponent is guaranteed a score

of —5 or less at C (inCc the opponent is the nhinim.z!ng player). But we also know that

we are guaranteed a score of 3 or greater at node A. which we can achieve if we move to
B. Any other move that produces a score of less than 3 is worse than the move to B. and
we can ignore it. After examining only F. we are sure that a move to C is worse (it will
be less than or equal to —5) regardless of the score of node Co. Thus we need not bother
to explore node 0 at all. Of course, cutting out one node may not appear to justify the
expense of keeping track of the limits and checking them, but if we were exploring this
tree to six ply. then we would have eliminated not a single node but sit entire tree three

ply deep.
To see how the two thresholds, alpha and beta, can both be used, consider the

example shown in Figure 12.5 In searching this tree, the entire subtree headed by B

V. searched, and we discover that at A 'e can expect a score of at least 3. When this

4 1n this figure. we return no the use of a single STATIC function from the point of view of the maximizing

player.
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Figure 12.4: An Alpha Cutoff

alpha value is passed down to F. it will enable us to skip the exploration of L. Let's see
why. After K is examined, we see that I is guaranteed a maximum score of 0, which
means that F is guaranteed a minimum of 0. But this is less than alpha's value of 3, %k-

no more branches of I need be considered. The maximizing player already knows not
to choose to move to C and then to I since, if that move is made, the resulting score

will be no better than 0 and a score of 3 can be achieved by moving to B instead. Nov,

let's see how the value of teta can be used A '5 er cutting off ftv'her exploration of I, .1
is examined. vieldiig . value of 5. which is assigned as the "tine of F (since it is the

maximum r'f :n.d This value become the value of beta at node C It indicate

that C is giiarauteed to get a S ni less. Nov- xe must cxpa& ' First M is examined

and it has a value •l 7, which is passed hack to CT as its tent.'itivc value. But now 7
compared to beta (5). It is greater, and the player whose turn it is at node C is try ing to

minimize So this player will not choose G. which would lead to a score of at least 7.
since there is in alternative move to I', which will lead to a score of S. Tho' it i s not

necessary to explore any of the other branches of G.
From this example, we see that at maximizing lcscls, wc tah our .ut a ifioVe ear

it becomes clear that its value will be less than the current threshold, while at rninmlzin

levels, search will be terminated if values that a re greater than the current threshold air

discovered But rulln out a possible rriovr by 	 maxiinul.ing player actually niean

cutting off th search at a minimizing level LooE again at the example to Figure t2.4
Once we determine that C is a bad move from A, we cannot bother to explore G. or arsy
other paths, at the minimizing level below C. So the way alpha and beta are
used is that search at a minimizing level can be tcrivtnated when a value less than alpha
is discovered, while a search at a mnaxiniizmg level can he terminated when a value
greater than beta has been found. Ciuttoig off search a a maximizing level when a high

value is found may seem counterintuiti ve it first, but if you keep in ;mnd that we
get to a particular node at a maximizing les e if the minimizing playet at the level abos c

chooses it, then it makes sense.
Having illustr'ted the operation of alpha-beta pruning with examples, we can now

exploit' how the MINIMAX procedure described in Section 112 can be modified tx
exploit this technique. Notice that at maximizing levels, onl y beta is used to determine

whether to cut off the search. and at minimiz i ng levels only alpha is used. But at

maximizing levels alpha must also be known since when a recursive call is madi
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Figure 125: Alpha and Beta Cutoffs

to MIN1MAX. a minimizing level is created, which needs access to alpha. So at
maximizing levels alpha must be known not so that it call used but so that it can be
passed down the tree. The same is true of minimizing levels with respect to beta. Each
level must receive both values, one to use and one to pass flown for the next level to use

The MINIMAX procedure as it stands does not need to treat maximizing and inini-
nhizing levels differently since it simply negates evaluations each time it changes levels.
It would be nice it a comparable technique for handling alpha and beta could be 1ounc
so that it would still not be necessary to write separate procedufcs for the two players.
This turns Out to he easy to do. Instead of referring to alpha and beta, MINTMAX uses
two values. USE THRESH and PASS-ThRESH. USE THRESH is used i compote
cutoffs PASS-THRESH is merely passed to the next level as its USE- IHRESH. Of
course. USE-TIIRESU must also be passed to the next level, but it will he passed as

1-ASS-THRESH so that it can be passed to the third lesci down as LJSE-TIIRESH again,

and so forth. Just a' values had to bc negated each time they were passed acro s s levels,

so too must these thresholds be negated. 'Ihi? Is necessary so that, regardless of the
level of the search, a test for greater than will determine whether a threshold has been
crossed. Now there need still be no difference between the code required at maximizing

levels and that required at minimizing ones.
We have now described how alpha and beta values are passed down the tree. in

addition, we must decide how they are to be set. To see how to do this, let's return first
to the simple example of Figure 12.4. At a maximizing level, such as that of node A,
alpha is set to be the value of the best successor that has yet been found (Notice that
although at maximizing levels it is beta that is used to determine cutoffs, it is alpha
whose new value can be computed. Thus at any level, USE-THRESH will be checked

for cutoffs and PASS-THRESH will be updated to be used later.) But if the maximizing
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node is not at the top of the tree, we must also consider the alpha value that was passed
down from a higher node. To see how this works, look again at Figure 12.5 and consider

what happens at node F. We assign the value 0 to node I on the basis of examining
node K. This is so far the best successor of F. But from an earlier exploration of the
subiree headed by B. alpha was set to 3 and passed dosn from A to F. Alpha should
not be reset to  on the basis of node I. It should stay as 3 to reflect the best move found
so far in the entire tree. Thus we see that at a rnaxiniii.iuig level, alpha should be set to

either the value it had at the next-highest maximizing level or the best value found at
this level, whichever is greater. 1tie corresponding statement can be made about hcta
at minimizing levels, in fact, what we want to say is that at any level. PASS-ThRESH

should always be the maximum of the value it inherits from above and the best move
found at it'. level. If PASS-THRESH is updated, the new value should be propagated
both down to tower levels and hack up to higher ones so that it always reflects the best

move found anywhere in the tree.
At this point, 'e notice that we are doing the same thing in computing PASS-

ThRESH that we did in M1NIMAX to compute BEST-SCORE. We might as well
eliminate BESlSCORE and let PASS THRESH serve in its place.

With these obscrations, we are in a position to describe the operation of the function
MINIMAX-A-B. which requires four argtInieiit. Position, Depth, Use-Thresh, and

Pacs . Thre.iA. The initial call, to choose a nove fm PLAYER-ONI- from the position

CURRENT. should he

Ml NIMAX-A-B(CURRENT
0,
PLAYER-ONE,
maximum value STATIC can compute
minmm,ir1 v alue STATIC can compuici

These initial values for L.s-Ti'esb and Poss-J'hs'e gh repre'.til! 'rr worst vaniesthill

.ach side could achieve

Algorithm: MINIM AX-A-B(Piisiiiofl. Depth, Ila%eI, Use.'l'hr*"ii, Pass-1 bresh)

If DEEP- ENOUCYI I(Position. Depth). then ium the sirucluic

VALUE = STATIC(Posilion, P/aver),
PATH =nil

2. Otherwise, generate one more ply of the tree by calling the Iunctioo S'iOU-
GEN(Position. Player) and setting SUCCESSORS to the list it returns.

3. II SUCCESSORS is empty, there are no moves tc he made: return the same
structure that would have been returned if DEEP-ENOUGH had returned TRUE

4. If SUCCESSORS is not empty, then go through it. examining each element ano
keeping track of the best one. This is done as follows.

For each element SUCC of SUCCESSORS:
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(a) Set RESUUSUCCto
MINIMAX-A-13(SUCC, Depth + I. OPPOSITE(P/awr).

—Pass-Thresh, -Use-Thresh).

(b) Set NEW-VALUE to —VALUE(RESULT.SUCC).

(c) If NEW-VALUE > Pass-Thresh, then we have found a successor that is
better than any that have been examined so far. Record this by doing the
following.

i. Set Pass- ihrcsh 10 NEW VALUE
H. The best known path is now from CURRENT to SUCC and then on to

the appropriate path from SUCC as determined by the recursive call to
MINIMAX-A-B. So set BEST-PATH to the result of attaching SUCC
to the front of PATH(RESULT-SVCC).

(d) If Pass-Thresh (reflecting the current best value) is not better than Use-
Thresh, then we should stop examining this branch. But both thresholds and
values have been inverted. So if Pass-Thresh >= (J.ce-Thresh, then return
immediately with the value

VALUE = Pass-Th,e.ch
PATH = REST-PATH

5 Return the structure
VALUE Pass-Thresh
PATI-! = BEST-PATH

The effectiveness of the alpha-beta procedure depends greatly on the order in which
paths are examined. If the worst paths are examined first, then no cutoffs at all will oCi. or
But, of course, if the best path were known in advance so that it could be guaranteed to
be examined first, we would not need to bother with the search process. If, however, we
knew how effective the pruning technique is in the perfect case, we would have an upper
bound on its performance in other situations. It is possible to prove that if the nodes are
perfectly ordered, then the number of terminal nodes considered by a search to depth d
using alpha-beta pruning is approximately equal to twice the number of terminal nodes
geiieoted by a search to depth d12 without alpha-beta [Knuth and Moore, 19751 A
doubling of the depth to which the search can be pursued is a significant gain. Even
though all of this improvement cannot typically be realized, the alpha-beta technique is
a significant improvement to the minimax search prvcedure. For a more detailed study
of the average branching factor of the alpha beta procedure, see Baudet [19781 and Pearl
119821.

The idea behind the alpha-beta procedure can be extended to cut off additional paths
that appear to be at best only slight improvements over paths that have already been
explored. In step 4(d), we cut off the search if the path we were exploring was not better
than other paths already found. But consider the situation shown in Figure 12.6. After
examining node G, we see that the best we can hope for if we make move C is a score
of 3.2. We know that if we make move B we are guaranteed a score of 3. Since 3.2 is
only very slightly better than 3, we should perhaps terminate our exploration of C now.
We could then devote more time to exploring other parts of the tree where there may be
more to gain. Terminating the exploration of a subtrec that offers little possibility for
improvement over other known paths is called afuxility cutoff.
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Figure 12.6- A Futility Cutoff
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12.4 Additional Retuiernents

In addition to alpha-beta pruning Ineit are a variety of osflrI minlihcauofl Irl the

minimax procedure that can also improve its performance. Four of them are discussed

briefl y in this section and si. discuss one other important modification in the next

section.

12,4.1 Waiting for Quiescence
\s we suggested abosc, one .f the factors that should sometimes be considered in

determining when to 'Lop going deeper in the search tree is whether the situation is
relatively stable. (:onsoter the lice shown in Figure 12.7. Suppose that when node B is
expanded one more lesel, the result is that shown in Figure 12.8. When we looked one
imvc ahead. our estimate of the worth of B changed drastically. This might happen. for
example, iri the niitklle of a piece exchange. The opponent has significantly improved
the immediate appearatice Of his or her position b' initialing a piece exchange. If we
stop exploring the tree at d'is lesel. e assign the value —4 to B and therefore decide

that [3 is not a good move.
To make sure that such short-term measures do not unduly influence our choice of

move, we should continue the search until no such drastic change occurs from one level
to the next. This is called wailing for quiescence. If we do that. we might get the
situation shown in Figure 12.9. in which the move to B again looks like a reasonable
move for us to make since the other half of the piece exchange has occurred. A very
general algorithm for quiescence can be found in Beal 119901.
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Maximizing ply

(2)

Minimizing py

Figure 12.8: The Beginning of an Exchange

Maximizing ply

(2)

Minimizing ply

Maximizing ply

Figure 12.9: ilic Situation Cairns Down

Waiting for quiescence helps in avoiding the horizon cjjec, in which an inevitable
had event can be delayed by various tactics until it does not appear in the portion of
the game tree that rninimax explores. The horizon eftect can also influence a program's
perception of good moves. Tue effect may make a move look good despite the fart
that the move might be better if delayed past the horizui. Even with quiescence. all
fixed-depth search programs are subject to subtle horizon effects

12.4.2 Secondary Search

One good way of combating the horizon effect is to double check a chosen move to
make sure that a hidden pitfall does not exist a few moves tatiher away than the original
search explored. Suppose we explore a game tree to an average depth of six ply and.
on the basis of that search, choose a particular move. Although it would have been too
expensve to have searched the entire tree to a depth of eight, it is not very expensive to
search the single chosen branch an additional two l.'v&s to make sure that it still looks
good. This technique is call& sçndarv meareh.
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One particularly successful form of secondary search is called 
singular t'itffl5iOfl

The idea behind singular extens ions is that if a leaf node is judged to he far superior to it'.

siblings and if the value of the entire search depends critically on the correctness of that
node's value, then the node is expanded one extra ply. This technique allows the search

program to concentrate on tactical, forcing combinatiO0 s It employ' a purely syntactic

criterion, choosing inrcstiflg lines of play without recourse to any ad
d itional domain

knowledge. The DEEP THOUGHT chess computer 1Ananthdr.1flta'i c 1990111,1

used singular extension s, to great advantage, finding midganw mating combination- 
a

tong as thirty-seven moves, an ipossibIe feat for tsed-dePth tntnimax.

12.4.3 Using Book Moses
For compiicatcd games taken a wholes, it is. of course. not feasible to select a me'
by slitiply looking up tie current game configuratiOn .n a ..ta.logUC ard extracting the
correct move. The catalogue would be imiriense and n one know., how to consIruc
it. But for Some segments of some games. this apprO3(i is reasonable, in chess. for
example, both opening sequences and cndgarfle sequences are highly stylized- 

III

situations, the performanc e of a program can often be considerably enhanced if it ts

provided with a list of moves (called book moves) that should he made. the ise of ty'ok

moves in the onening sequences and endgaiiies. combined w
i th the use ot the ,iiioinaa

search procedure for the M id game, provides a good exaiiiple of the way that knowledge

and scaich can be cornhincd in a single piograni to prducr more effective result" than

could edhci icclooqut on its own.

12.4.4 Alternatives to Minimax

Even with the refinements aba" ininmax still has soniC prohtei;iat%c axpci.' ror

instancc, it relies heavily on the assumption that the opponent wilt always cho
piirnal move. This assumption is acceptable in winning situations where a move thrt

.c 
guaranteed to be good to us can be found. But, as suggested in Berliner 119

4;	

it.

osing sfiuiatiil it might be better to take the nsk that the opponent will make a mistake
Suppose we n.s.hoose between two moves, both of which, if the opponent play'
perfectly. te'd to it:aliniis that are very had tor us, but one is slightly less bad than
mc other. But rurther suppose that the kss promising move could lead to a vey good

s ' ivaiiOfl lot i
s if the opponent makes a single mistake. Although the mini max procediiie

,vould choose the guaranteed bad move, we ought instead to choose the other one whici'

is prohanly slightly worse but possibly a tot better. A similar situation arises when one
.nove appears to be only slightly more advantageous than another, assuming that the
opponent plays perfectly. It might he better to choose the less advantageous move if
it could lead to a signifiaiitlY superior situation it the oppohent makes a mistake. in

make these decisions well, we must have access to a model of the 
i ndividual opponent

,laying style so that the likelihood of various mistakes can he estimated. But this is

very hard to provide.
As a mechanism for propagating estimates of position strengths up the game tree.

miflima stands on shaky theoretical grounds. Nau 119801 and Pearl (19831 base
demonstrated that for certain classes of game trees. e.g.. uniform trees with random

terminal values, the deeper the search, the poorer the result obtained by rmnimaxiflg
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Iteration 1.

A
Iteration 2.

Iteration 3.	 Iteration 4.

Figure 12.10: Iterative Deepening

This 'pathological" behavior of amplifying error-prone heuristic estimates has not been
observed in actual game-playing programs, however, it seems that game trees containing
won positions and nonrandom distributions of heuristic estimates provide environments

are cor1ducive in iiiuiiIIia,siri.

12.5 Iterative Deepening

A number of ideas for searching two-player game trees have led to new algnrithinc
for single-agent heuristic search, of the type described in Chapter 3. One such idea is
iterative deepening. originally used in a program calied CHESS 4.5 (Slate and Atkin,
19771. Rather than searching to a fixed depth in the game trc. CHESS 4.5 first searched
only a single ply, applying its static evaluation function to the result of each of its
possible moves. It then initiated a new nhiriiTnax search, this time to a depth of two ply.
This was followed by a three-ply search, then a four-ply search. etc. The name "iterative
deepening" derives from the fact that on each iteration, the tree is searched one level
deeper. Figure 12.10 depicts this process.

On the face of it. this process seems wasteful. Why should we be interested in any
iteration except the final one? There are several reasons. First, game-playing programs
are subject to time constraints For example, a chcss program may be required to
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complete all its moves wLthifl two hours. Since it Is impossible to know iii advance

how long a tix,d-deplh tree scarh will take (because of variations in pruning efficiency
and the need br selective search), a program may find itself running out of time. With
iterative deepening, the current snuch eali be aborted at any time and the best move
found by the previous iteration can be played. Perhaps moire irTpthiantly. previous
iterations can provide invaluable move--ordering constraint s- If one infive ws judged

to be superior to its siblings in a previous 1teration. it ctn be searched first in the

next iteration. With effective ordering, the alpha beta poccdure can pniie many moc
branches, and total search time can be decreased draticaflv 1'hi allows more timefor

deeper iterations.
Years after CHESS 4.5', sncces with iterative oecpci,ing. it was noticed 1Koi.

lVSSa] that the techn iquecould also be applied ei[eiively v' single-ageill search to sols e.
problems like the 8 pa1e. In Section 2.2.1, we compared two types of uninftmcc
search, depth first search and breadth-first search Depth-first search was efflciciir
terms of space but required some cutoff depth in order to force backtracking when a
solution was not found. Breadth-first search was guaranteed to find the z hortesl sobutiot'

path but required inordinate amounts of space because all leaf nodes had to he kept in
memory. An algorithm called depth-Inst iterative deepening (OFID 1, combine ,. the besi

aspects of depth-first and breadth-first search

lgorlthm: Depth-First lieratise Deepening

StSEARi'fl-DI'PTH

2 Conduct a depth-first search to a de pth uI SEARCFI-l)EPIH. It a SOIUiIOP path

:s found, then return it.

3, therwisc n, "-ment SEARCh-DEPTh1 by I ano go to step 2.

Clearl y. Di-t, witi find the shortest solution path to the goal state. Moreover, the
maximum amount of inernor' used by EM-iD is proportional to the number of nodes in

that S olution path. The only disturbing fact is that all iterations but the final one arc
e';entialIv wasted Itowever. this is noi a serious problem. The reason is that most of the
activity dur ng ans- given iteration occers at the leaf-node level. Assuming a complete

1.tree, we see that thcrc are as tnanv ]cat nu.'des at level i as there areiota) nodes in levels
thiough a. Thus, the work expended during the rub iteration is roughly equal to the
'turk expended during all previous iterations. This means that UFID is only slower than
depth-first search by a constant factor. The problem with depth-first search vt that there
is no way to know in advance how deep the solution lies in the search space. DFII)
.ivoids the problem of choosing cutoffs without sacrificing efficiency, and. in fact. DFID
is the optimal algorithm (in terms of space and time) for uninformed search

But what about informed, heuristic search? Iterative deepening can also be used in

improve the performance of the A* search algorithm [Korl, 1985a1. Since the major
practical difficuliy with A* is the large amount of memory it requires to maintain the
search node lists. Iterative deepening can be of considerable service.

.Igorithm: Iterative-Deepening-Al

i. Set THRESHOLD = the hcuristtc evaluation of the start state.
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2. Conduct a depth-first search, pruning any branch when its total Coat function
(g + W) exceeds TFRFSHOI.D. 1 If a solution path is found during the search,
return it.

3. Otherwise, increment THRESHOLD by the minimum amount it was exceeded
during the previous step, and then go to Step 2.

Like M, Iterative-Deepening-A l (DA') is guaraiii'cd to find an nptiiaal solution
provided that h' is an admissible heuristic. Because of its depth-first search technique,
IDA* is very efficient with respect to space. ll)A' was the first heuristic search algorithm
to find optimal solution paths for the 15-puzzle (a 4x4 version of the 8-puzzle) within
reasonable time and space constraints.

12.6 References on Specific Games

In this chapter we have discussed search-based techniques for game playing. W
discussed the basic minimax algorithm and then introduced a series of refinements to
it. But even with these refinements, it is still difficult to build good programs to play
difficult games Every game, like every Al task, requires a careful combination of search
and knowledge.

Chess

Research on computer chess actually predates the field we call artificial intelligence.
Shannon f 1950 was the first to propose a method for automating the game, and two
early chess programs were written by Greenblatt pg al 19671 and Newell and Simon
119721.

Chess provides a well-defined laboratory for studying the trade-off between knowi.
edge and search. The more knowledge a program has, the less search ; l uz it needs to do.
On the other hand, the deeper the search, the less knowledge is required. Human chess
players use a great deal of knowledge and very little search—the y typically investigate
only tOO branches or cr in deciding a move. A coiiiputci. on the other hand, is capahie
of evaluating millions of branches. Its chess knowledge is usually limited to a static
evaluation function. Deep-searching chess prograirr have been calibrated on exercise
problems in the chess literature and have even discovered errors in the official human
analyses of the problems.

A chess player, whether human or machine, carries a numerical rating that tells how
well it has performed in competition with other players. This rating lets us evaluate in
an absolute sense the relative trade-offs between search and knowledge in this domain.
The recent trend in chess-playing programs is clearly away from know ledge-and toward
faster brute force search. It turns out that deep. full-width search (with pruning) is
sufficient for competing at very high levels of chess. Two examples of highly rate(,
chess machines are HITECH [Berliner and Ebeling, 19891 and DEEP THOUGHT
lAnantharaman etal., 19901, both of which have beaten human grandmasters and both

Recall that g standc for the cost so far in reaching the current node, and h' stands for the heuristic esrim.ae. Ii'e dkiancr rrnm the node in the goal
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of which use custom-built parallel hardware to speed up legal Hiose generation o:.

heuristic evaluation.

Checkers

Work on computer checkers began with Samuel i I 1 )b. Santuel's prugi am Fad 
all

 learning component which allowed its pertonnance to m'rove sctth rxperitme

Ulitinaicly. the program was ahic to heat its atih' Wc iuk mute iu.! at the .srnni

mechanisms used b y Samuel in Chapter I

G 4
Go 1 s a Very difficult game to play by machine since the average hranchin factor ut

ihe game tree is very high. Brute force search. therefore. is not as efl 'ccti : as it is in

chess. Hunmrt go pla yers make up for thcr inability to search deep; by usrig a great
deal of knowledge about the game Ii is probable that go playing programa must also
be knowledge -based, since today's brute-force prugiaras cacinti a mpete with humans.

For a discussion of some of the issues i nvolved. sCC Wilct.vs

Backgamfllofl

Unlike chess. checkers, and co, a backga!flrllllIi j.rugiain tilusi eFoose its ntescs .sith

incomplete information about what ma y happen If alt the povrhLc dice rolls are

onsidercd, the number of altentatives at each level of the caRti is hiie. With ciirrcn
coiitpuiattomiid power it is inipos.sihk to search more than a few ph' ahcad. Sii.h

search will lit expose the strengths and wcalnesse" of co.. iplc hi ti*i çosiiIons.

so knowledge intertsive wthnd must be used. One program that uses such methods

is K( Rennet ( 1980!.BKG actually does no scaiching at all hut relies instead on

po - Itionat ur;dcrslan ng anti understanding ul how its goals should change for v.lriOuS
phases ol play. Like its chess-iayiflg cousins, BKG has reached high lesels ot
even,  beating a human NA urid champion in a short match.

SF1 1 OGAMMON [Tesaurs and Sejnuwski. 19891's another Interesting hat'kgttni

111011 pr.igitalll It is baset ito a 00110'.. ietwork model that learns ir(m experlent

NetiroaIl1mor, is one of the l'w con1p'!0"-e stitipc . playiflg pr'gral1is thai relies bets iv

on tiutomatis. learning.

()ttwflo

i)thetln is '.I popular lh,,lid guoc th at is played on an hmS grid tb bi-cotored pis' e'

Although computer programs have already achieved world-championship level pltiv
lRoscrthIoom. 1952: Lee and Mahajan. 19901. humans OntifluC to study the game ,alrl

inleniltiliotlttl tournaments are held regularly. Computers arc 501 permitted 10 onipetc

Ill these tournaments, but it is believed that the best programs are htronger than the best

humans. lligh.perfurmiiflCc Othello programs rely oil 	 brute-lorec search and table

The Othello esperietiec may shed some light oil the future of computCY che s s. Will

top human players in the future study chess games between World Champion comptitci'

in the same way that the y study classic human grndina'tcr matches toda y P'rh.ifl' it
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will turn out that the different search versus knowledge trade-offs made by humans and
computers will make it impossible for either of them to benefit from the experiences of
the other.

Others

Levy 11988) contains a number of classic papers on computer game playing. 'I Ile papers
cover the games listed above as cll as bridge, scrabble, dominoes, go-moku. hearts,
and poker.

12.7 Exercises

I. Consider the following game tree in which static scores are all from the first
player's point of view:

(7)	 (O)	 (8)	 5)	 (2)	 (3)	 (0)	 (-7	 (0,	 2	 (5)	 (S)	 (9 )	 (2)

suppose the first player is the maximizing player. What move shoild be chosen?

2. In the game tree shown in the previous problem, what nodes would not need to
ne examined using the alpha-beta pruriin' procedure?

3. Why does the search in game-playing p rograms aways proceed forsard from the
current position rather than backward from i goal state?

4. Is the minimax procedure a depth-first or breadth-first search procedure?

5. The imnima y algorithm we have described searches a game tree. But for some
game.;, it might be better to search a graph and to check, each time a Position
is generated, it it has been generated and evaluated belOTC. Under what cir-
cumtances would this he a good idea? Modify the minmax procedure to do
thjs

6. How would ihc mirurnax procedure have lo be modified to be used h' a program
olaving a three- or tour-person game rallier than a :so-person one?
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In the context
 of the search proccdurc JeSCrLbc1 in Scetion 1 2.3. does the o:

of the list of suCceS'ir posititum creaie 1 by MOVEGEN	 Why or why not?

If it does rnatter how iuuh does i t mailer (i.e.. how much effort is reasonab le or

ordering i t I?

Implement the alpha beta search procedure. Use II to play n simple game uh

tie -tac- toe.

Apply DFII) to the v.alei jug problem ot Seclon 
)!•



Chapter 13

Planning

In order to solve most noninvial problems. it is necessary to combine some of the basic
problem-solving strategies discussed in Chapter 3 with onc ot more of the knowledge
representation mechanisms that have just been presene1 It is often also useful to divide
the pa-oblern that must be solved into smaller pieces and to solve t;1ose pieces separately.
in the extent that that is posihle. In this chapter. we describe several e..hntqucs tot

doing this in ordej it) construct plans for solving hard problems.

13.1 Overview
In Chapter 2, we dscribcd the proces of problem solving as .s scents thiough a state
space in which each point corresponded to a situation that might arise. The search
started with an initial situation and pertc>rnied a sequence of allowable operations until
a situation corresponding to a goal was reached. Then, in Chapter 3, we described a
variety of ways of moving through such a search space in an attempt to find a solution
to a particular problem. For example. the A* algorithm provides a way of conducting

a best-first search through a graph representing a pr o ble m space. Each node that is

examined in the A algorithm represents a description of a complete problem state,

and each operator describes a wa y of changing the total state description. Fur simple
problems, such as. say. the9-puzzle. manipulating the complete state description at one

time is easy and reasonable.
However, for more coruplicaned rroblcmdomains, it becomes important to be able to

work on small pieces ol a problem separately and then to combine the partial solutions
at the end into a complete problem solution. Unless we can do this, the number of
combinations of the states of the components of a problem becomes too large to handk
in the amount of time available. There are two ways in which it is important to be able

to perform this decomposition.
First of all, we must avoid having to recompute the entire problem state when we

move from one state in the next. Instead, we want to consider only that part of the
state that may have changed. For example, if we move from one room to another, this
does not affect the locations of the doors and the windows in the two rooms. The frame

problem, which is the problem of how to determine which things change and which do

329
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not, becomes increasingly important as the complexity of the pmh'm state increases. It
is not difficult to figure out how the state of the 8-puzzle should change after every move,
nor is it a lot of work to record explicitly a new copy of the state with the appropriate
changes made. Our rules for moving from one state to another can simply describe how
one entire board position should be transformed Into inioulier.

But if we are considering the problem of guiding a robot around an ordinary house.
the situation is much more complex. The description of a single state is very large since
it must describe the location of each object in the house as well as that of the iobot. A
given action on the part of the robot will change only a small part of the total oate. If
the robot pushes it table across the room, then the locations 01 Ike table and all cf the
objects that were on it will change. But the locations of the other objects in th, house
wil l not_ lnstc.d of writing rules that describe transformations of one entire state into
another, we would like to write rules that describe only the affected pails of the state
description. The rest of the description can then be assumed to stay constant.

The second important way in which decomposition can make the solution of hard
problems easier is the division of a single difficult problem into several, hopefully easier,
subproblems. The AO* algorithm provides a way of doing this when it is possible to
decompose the original problem into completely scpai ate subproblems. Although this
is Sometimes possible, it often is nor, instead, many problems can be viewed as
nearly decomposable [Simon, 1981j, by which we mean t!i:ii they can be divided into
subproblems that have only a small amount of interaction. For example, suppose that
we want to move all the furniture out of a room. This pitibtem can be decomposed
into a set of smaller problems, each involving moving one piece of furniture out of
the room. Within each of the se subproblems, considerations such as removing drawers
can be addressed separately for each piece of furniture. But if there is a bookcase
behind a couch, then we must move the couch before we can move the bookcase. To
solve such nearly decomposable problems, we would like a method that enables us to
work on each subproblem separately, using techniques such as the ones we have already
studied, and then to record potential interactions among subproblems and to handle them
appropriately.

Several methods for doing these two kinds of decomposition have been proposed
and we invctigatc them in this diapter. These methods focus on ways 01 decomposing
the original problem into appropriate subparts and on ways of recording and handling
interactions among the subparts as they are d'tectd during the problem-solving process
The use of these methods is often called planning.

In everyday usage. the word planning refers to the process of computing several
steps of a problem-solving procedure before executing any of them. When we describe
computer problem-solving behavior, the distinction between planning and doing fades
a bit since rarely can the computer actually do much of anything besides plan. In
solving the 8-puzzle, for example, it cannot actually push any tiles around. So when
we discussed the computer solution of the 9-puzzle problem, what we were really doing
was outlining the way the computer might generate a plan for solving it. For problems
such as the 8-puzzle, the distinction between planning and doing is unimportant.

But in other situations, the distinction may be critical. Recall that in Chapter 2
one of the problem characteristics we discussed was whether solution steps could be
ignored or undone if they prove unwise. If they can, then the process of planning a
complete solution can proceed just as would ar' ettempt to find a sotet!on by actually
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If a dead-end path is dctc.,tctL then a ne s one can be explored
crying particular actions. 
by acktracklng to the last choice point. So, for example, in solving the s-puzzle, a
computer could took for a solution plan in the san-iC way as a person who was actually
crying to solve the problem by moving tiles on a board. If solution steps in the real world
cannot be ignored or undone. though, planning becomes extremely important Although
real world steps may be irrevocable, computer simulation of those steps is not. So we
can circumvent the constraints of the real world by looking for a complete solution ir,
a simulated world in which hacktraiig is allowt:d. A:ter we finsi s solution, we can

execute it in the real world
ihe success ot this approacn, however, hinges 01) aiiiti1ci Jla(a.teliSUC of a prob-

lem domain: Is its universe predictable? If we look fill a sol;itioii to a problem by
actually carrying out sequences of operations. then at any step of the process we can

he sure 4 ,f the outcome of th't sto: it is whatever happened. But in an unpredictable
universe, we cannot know the outcome of a solution step if we are only simulating it

by computer. At best, we call consider the set of possibk outcomes. p sshly in some

order according to the likelihood of ihe outcomes occurring. But then when we produce

a plan and atterup t to execute it, u-c must be prepared in case the actual outcome is not
what we expected It the plan included paths for all pusthlc outcomes of each step.

then we can simply traverse the paths ihit turn out to be appropriate. But often there are

a great many po5sible autcotOCs. most .51 which are highly unlikely In .Ch situations.

it would be a	 waste i effort o iormulate plans for all contingencies
lnstead, we have two choices We can just take things one step at a time and not

realty try to plan abeam, is the approach that i taken in rethtttC ss.StemS, which

we will describe in Section 13. 7 Our iuhei choice. is to produce a plan that is likely in

succeed. But then what should we do liii fails? One po.sibiliiy is simply to throw away

the rest of the plan and start the planning process over, using the cuirent situation as the

new initial state. Sometimes, this is a reasonable thing to do.
But often the unexpected consequence does not invalidate the entIr, rest of the plan.

Perhaps a small change. such as an additional step, is all that is necessary to make it
possible for the rest of the plait to be useful. Suppose. for example, that we have a plan
for baking an angel food cake. It involves separating some eggs. While carrying out
the plan. we turn out to be slightly clumsy and one of the egg yolks falls into the dish
of whites. We do not need to create a completely new plan (unless we decide to settle
tin some other kind of cakc. Instead, we simply redo the egg-separating step unil
we get it right and then continue with the rest of the plan. This is particularly true for
decomposable or nearly decomposable problems. It the final plan is really a composite
of many smaller plans for suvIitg a set of subproblems. then it one step of the plan fails,

the only part of the remaining plait that (diS he affected is the rest of the plan for solving

that subproblem. The rest of the plan is unrelated in that step. If the problem was only
partially decomposable, then any suhpians that interact with the affected one may also
be affected. So. just as it was important during the planning process to keep track of
interactions as they arise, it is important to record tntotinatiefl about interactions along
with the final plan so that if unexpected events occur at execution time. the interactions

can be considered during ieplanniiig.
Hardly any aspect of the real world is completely predictable. So we must always

be prepared to have plans fail. But, as we have just seen, it we have built our plan b
decomposing our problem into as many separate (or nearly separate) subproblem s as



332	 -	 CHAPTER 13. PLANNING

possible, then the impact on our plan of the failure of one particular step may be quite
local. Thus we have an additional argument in favor of the problem-decomposition
approach to problem solving in addition to reducing the combinatorial complexity of
the problem-solving prixess, it also reduces the complexity of the dynamic plan revision
process that may be required during the execution of a plan in an unpredictable world
(such as the one in which we live).

In order to make it easy to patch up plans if they go awry at execution time, we will
find that it is useful during the planning process not only to record th steps that are to
be performed but also to associate with each step the reasons why it n"ist be performed.
Then, ifa step fails. it is easy, using techniques for dependency-directed backtracking.
to determine which of the renlaining parts of the plan were dependent on it and so may
need Lu be changed. If the plan-generation process proceeds backward foii the desired
goal state, then it is easy to record this dependency information, if, on the othet hand,
it proceeded forward from the start state, determining the necessary dependencies may
be difficult. For this reason and because, for most problems, the branching factor is
smaller going backward, most planning systems work primarily in a goal-directed mode
in which they search backward from a goal state to an achievable initial state.

In the next several sections, a variety of planning techniques are presented. All
of them, except the last, are problem-solving methods that rely heavily on problem
decomposition. They deal (to varying degrees of success) with the inevitable interactions
among the components that they generate.

13.2 An Example Domain: The Blocks World

The techniques we are about to di scuss can be applied in a wide variety of task domains,
and they have been. But to make it easy to compare the variety of methods we consider,
we should find it useful to look at all of them in a single domain that is complex enough
that the need for each of the mecha,iisms is apparent yet simple enough that easy-to-
follow examples can be found. The blocks world is such a domain. There is a flat surface
on which blocks can be placed. There are a number of square blocks, all the same size.
They can be stacked one upon another. There is a robot arw that can manipulate the
hlocks. The actions it can perform include;include:

• UNSTACK(A. B)—Pick up block A from its current position on block B. The
arm must be empty and block A must have no blocks on top of it.

• STACK(A, B)—Place block A on block B. The ann must already be holding A
and the surface of B must be clear

• PICKUP(A) --Pick up block A from the table and hold it. The arm must be empty
and there must he nothing on top of block A.

• PUTDOWN(A) -Put block A down on the table. The arm must have been holding
block A

Notice that in the world we have described, the robot arm can hold only one block at
a time. Also, since all blocks arc the same size, each block can have at most one other
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block directly on top of it)
In order to specify both the conditions under which an operation may be performed

and the results of performing it, we need to use the following predicates

• ON(A, 8)—Block A is on block B

• ONTABLE(A)—B10Ck A is on the iabk

• CLEAR(A) Thei is nothing on top of block A.

• I IOLDLNG(A)--- The arm is holding block A.

• ARM EMPTY—The arm is holding nothing.

Various logical statcmcnts are tr. 	 this blocks world. For example,

A : HOLL)lNG(x) —* -.ARMEMPTY
V.x • ONTABLE(-s) - -' Rv : ON(x. ')
Vx	 : ON(v,.r)l - CLEAR(r)

The first of these statements says simply that if the arm is holding anything, then it
not crepty The second says that if a block is on the iah!c, then it ix not also on another

,ljck TI-c hrd ;av c that any block with no blocks on II is clear.

3. Components of a Planning System

In problem-solving systems based on the elementary techniques discussed in Chapter 3,,
it was necessary to perform each of the following functions:

• Choose the best rule to apply next based on the best available heuristic information.

• Apply the chosen rule to compute the new problem state that arises 1mm its
application.

• Detect when a solution has been found.

• Detect dead ends so that they can be abandoned and the system's effort direcLd
in more fruitful directions.

In the more complex systems we are about to explore, techniques for doing each of
these tasks are also required. in addition, a fifth operation is often important:

• Detect when an almost correct solution has been found and eniploy special tech-
niques to make it totally correct.

Before we discuss specific planning methods. we need it) look briefly at the way- ic

which each of these five things can be done.

'ActaIIv, by ca.&ehi altgnzneni, two blocs could	 pisced ,n lop of one. but we ignore that posubiiicy.
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A	 ON(A,B, SO) A
ONTABLE(B. SO) A

I B I 	 CLEAR(A, SO)

Figure 13.1: A Simple Blocks World Description

Choosing Rules to Apply

The most widely used technique for selecting appropriate r Icc to apply is first .'. solaic
a set of differences between the desired goal state and Cie current state and then to
identify those rules that are relevant to reducing those differences. If several rules are
found, a variety of other heuristic information can be exp"ited to choose among them.
This technique is based on the means-ends analysis method(recall Chapter 3). For
example, if our goal is to have a white fence around our yard and we currently have
a brown fence, we would select operators whose result involves a change of color of
an object. If, on the other hand, we currently have no fence, we must first consider
operators that involve constructing wooden objects.

Applying Rules

In the simple systems we have previously discussed, applying rules was easy. Each rule
simply specified the problem state that would result from its application. Now, however,
we must be able to deal with rules that specify only a small part of the complete problem
state. There are many ways of doing this.

One way is to describe, for each action, each of the changes it ma!'es to the state
description In addition, some statement that everything cisc remains unchanged is also
necessary. Arm example of this approach is described in Green [[969]. In this system.
a given slate was described by a set of predicates representing the facts that were Iru
in that state. Each distinct state was represented explicitly as part of the predicate. For
example, Figure 13.1 shows how a state, called SO, of a simple blocks world problem
could be represented.

The manipulation of these state descriptions was done using a rcsolution theorem
prover. So, for example. the effect of the operator UNS'l'ACK(.s.. ) could be described
by the following axiom. (In all the axioms given in this Se.t;ni' Ji variables are
universally quantified unless otherwise indicated)

ICLEAR(.t. s) ON(x, y , .$)]-4
IHOLDING(x, DO(iiN,STACKt.r, v), .c') 1'

CLEAR(V. DO(t NSTACK(t, v) c))I

Here, DO is a function that specifies. for a given state and a giser, amlion, the new
state Oiat results from the execution of the action. The axiom statc that if CLEAR(v)
and ON(i. 0 both hold in states. [lien HOLDING(s) and CL ! AR(v will hold in he
state that results from DOing an UNSTACK(x. 0. starting in state

If we execute 1JNSTACK(A, B) in state SO as defined above, then we can prove.
usiiig or assertions about SO and our axiom about CNSTACK. s isal mm' the State that
results from the unstacking'operation (we call this state SI
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ll(.)I.DlN(A. St t (I,F.AR(H.SI)

But what e!e do sic ki ;.,itnit the slMnion in state Si ? intuitively, 	 c

that B is still on the table. But with what we have sO tar, we cannot dense i. To enable

us to do so, we need also to provide a set of rules. culled frame axioms, that describe

components ol the state that are not affected by each operator So. for example, sce need

ICr say tFUit

ONTABLE( .5) -4 ONTARLE:. DO(UNSTACK( r . v). 5))

Fhis axiom says that the ONTABLE relation is ncvcraffccted tc Ui'STACK operator
We also need to say that the ON relation is only affected by the UNSTACK operator if

The blocks involved in the ON relation are the same ones invnlsed in the UNS1 A('K

operation. This can be said as

ION(ni. ii, ,)ts — EQUAl.(ni ..i)1 - ON(,n. a, DO(LJNSTACK(.r, v) c))

The advantage of this approach is that a single mechaflisal, resolution, can pertornl
dl the operations that are required on state descriptions. The price we pay for this.
however, is that the number of axioms that are required becomes very large it the
problem-slate descriptions are complex. l'or example, supp ose that we arc interested

not onl y in the positions of our blocks but also in their color. Then. for every operation

(except possibly PAINT). we would need an axioni such as the following.

COLOR(X, c. .$) —* COLOR(.r. c, l)O(UNSTACK(y, ;). .c))

To handle complex problem domains, we need a mechanism that does not require a
large number of explicit frame axioms. One such mechanism is that used 1w the early

robot problem-solving system STRIPS IFikes and Nilsson 19711 and its descendants
In this approach each operation is described by a list of new predicates that the operator
causes to become true and a list of old predicates that it -aiises to become lalse. These

Iwo lisis are called tIme ADD and DELETE lists, respectively A third list must also

he spec i fied for each Operator. This PRECONDITION list contains those preicatcs
that must be true for the operator to he applied. The fr:me axioms of Green's system
are specified implicitly in STRIPS. Any predicate not included on either the Al)l) or
DELETE list of an operator is assumed to be unaffected by tc. This means that, in
pccilying each operator. we need not consider aspects of the domain that are ,jnrelated

L0 
it Thus we need say nothing about the relationship of UNS1ACK to COLOR Of

course, this means that some iiieelianism uthr han simple theo r em proving nmiist be

used to compute complete state descriptions after operations have been performed.
STR (PS-style operators that correspond to the blocks world operations we has

been discussing are shown in Figure 13.2 Notice that for simple rules such as thest
the PRECONDITION list is often identical to the DELE1 E list. In o.-der to pick u
block, the robot arm must be empty: as soon as it picks up a block, it is no longer empty.
But preconditions arc not always deleted. For example. in order for the anti to pi ct, UI,

3 block. the block must ha v e no otber blocks tot top of it. After it us picked up. 11 iii
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STACK(X. y)
P: CLEAR(y) A HOLDIN(J(.r)
I): CLEAR(y) A HOLDING(x)
A: ARMEMPTY A ON(x,y)

UNSTACK(x, y)
P ON(x. y) A CLEAR(x) A ARMEMPTY
1): ON(x, y) A ARM EMPTY
A: HOLDING(x) A CLEAR(y)

PICKUP(X)
P: CLEAR(x) A ONTABI E(x) A AMFM}l'y
D: ONTABLE(x) A ARMEMPTY
A: HOLDING(x)

PUTDOWN)
P: HOLDING(x)
D: }IOLDINtJ(x)
A: ONTABLE(x) A ARMEMPTY

Figure 13.2: STRIPS-Style Operators for the Blocks World

has no blocks on top of it. This is the reason that the PRECONDITION and DELETE
lists must be specified separately.

By making the frame axioms implicit, we have greatly reduced the amount of
information that must be provided for each operator. This means, among other things,
that when a new ttribuce that objects might possess is introduced into the system, it is
not necessary to go back and add anew axiom for each of the existing operators. But how
can we actually achieve the effect of the use of the frame axioms in computing complete
state descn pttons? The first thing wc Outice is that for complex state descriptions, most
of the state remains unchanged after each operation. But if we represent the state as an
explicit part of each predicate, as was done in Green's systepi, then all that information
must be deduced all over again for each state. To avoid that, we can drop the explicit
state indicator from the individual predicates and instead simply update a siogle database
of predicates so that it always describes the current state of the sorld. For example, il
we start with the situation shown in Figure 13. 1, we would describe it as

ON(A, B) A ONTABI.E(13) A CLEAR(A)

After applying the operator UNSTACK(A, B), our description of the world would be

ONTARLE(B) A CLEAR(A) A CLEAR(B }fOLDING(A)

This is derived using the ADD and DELETE lists specified as part of the UNSTACK
operator.
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X

N(A

abase

NSTACK(A, B)

') 

at ihii point

ONTABLE(B) A
CLEAR(A) A
CLEAR(B) A
ONTABLEA)

Figure 13.3: ASimple Search Tree

Simply updating a single state description works well as a way of keeping track of
the effects of a given sequence of operators. But what happens during the process of
searching for the correct operator sequence? if one incorrect sequence is explored, it
must be possible to return to the original state 50 that a different one can he tried. But

this is possible even if the global database describes the problem state at the current
node of the search graph. All we need to do is record at each node the changes that

were made to the global database as we passed through the node. Then, if we backtrack
through that node, we can undo the changes. But the changes are described exactly
in the ADD and DELETE lists of the operators that have been applied to move from
one node to another. So we need only record, along each arc of the search graph, the

operator that was applied. Figure 13.3 shows a small example of such a search tree and
the corresponding global database. The initial state is the one shown in Figure 13.1
and described in STRIPS fonn above Notice that we must specify not just the operator
(eg-. IJNSTAC'K) but also its arguments in order to be able to undo the changes later.

Now suppose that we want to explore a path different from the one we have just
shown. First we backtrack through node 3 by adding each of the predicates in PUT-

DOWN's DELETE list to the global database and deleting each of the Jements of

PUTDOWN'S ADD list. After doing that, the database contains

ONTABLE(B) A CLEAR(A) A CLEAR(13) A HOLDING(A)

As we expected, this description is identical the one we previously computed a
the result of applying UNSTACK to the initial situation If we repeat this process using
the ADD and DELETE lists of UNSTACK we derive a description identical to the one

with which we started.
Because an implicit statement of the frame axioms is so important in complex

problem domains, all the techniques we look at cxploit STRIPS-style descriptions of the

available operators.
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etecting a Solution

A planning system has succeeded in finding a solution to a problem sstien it t 	 aind
sequence of operators that transforms the initial problem state into the goal sta'e

!few will it know when this has been done? fit problem-solving systems, this
qceon is easily answered by a straightforward match of the stale descritorts. But if
Ciltire states are 1101 represented explicitly but rather are described by a set of re!',w
properties, then this probiem hertnoe, more complex. [he way h can by solved JeiiJ'
on the way that stare descriptions aie represented. For any representational schm
that is used, It must he possible to reason with representations to discover whether one
-ri.iich's another. Recall that in Pan II we discussed a variety of ways that complex
oaJs'e;s could be represented as well as reasoning mechanisms fot each representation.
Any of those representations (oi some combination of them) coulit be used to describe
probleiri slates Then the corresponding reu.sonini mechanisms could be u.5ed to discover
when a solut i on had been found.

One representational technique has served as the basis for many of the planning
systems that have been built, It is pieticatc Jogic, which is appealing because of the
deductive mechanisms that it provides. Suppose 11 141. as part of our goal, we have the
rciicate P(x). To see whether P(-r) is sat isfi ed in some state, we ask whether we can

piose P(x) given the assertions that describe that state and the axioms that define the
world model (such as the fact that if the arm is holding something, then it is not empty)
0 We earl ('olistfijzt such a proof'. then the problem-solving process terminates. If we
cannot, then a sequence of operators that might solve the problem must be proposed.
['his sequence can then he testril in the same way as the initial state was by asking
whether P(x) can be proved from the axioms and the state description that was derivedderived
by applying the operators.

Detecting Dead Ends

As a planning system is searchinV, fr a sequence of Ilpetators to solve a particulaj
problem, it must be able to detect when it is exploring a path that call tend to a
solution (or at least appears unlikely to lead an wie). 'Pit' ;amc rcaomiing mechianisn!
that can lie used to detect a solution can often he used for detecting a dead end.

If the search process is reasoning forward from the initial state, it call any path
that leads to a state from which the goal state cannot be leached. For example., suppose
we have a fixed supply of paint: some white, sonic pink, and some red. We wan to
paint a room SO that it has light red walls arid .i white ceiling. We could produce tight
red paint by adding some white paint to the ted. But then we could not paint the ceiling

bite. So this approach should be abandoned in favor of mixing the pink and red paints
'ogether. We can also prune paths that, although they do not preclude a solution, appear
to he leading no closer to a solution than the place from which they started.

If the search process is reasoning backward from the goal sLate, it can also terminate
a path either because it is sure that the initial state cannot be reached or because Ijuir
r"o.cess is being made. In reasoning backwatd. each goal is decomposed into subgoals
Each of them, in turn, may lead ton set of additional subgoals. Sometimes it is ea
dek'4't that there is no way that all the subgoals in a given set can be sathetied at
For example, the robot ann cannot be both empty and holding a block. Anv path that
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attempting to make both of those goals true simultaflt0USl Y can be pruned immediately.

Other paths can be pruned because they Icad nowhete. For example, if, in trying to

satisfy goal A, the program eventually reduces its problem to the satisfaction of goal A
as well as goals B and C, it has made little progress. It has produced a problem even
harder than its original one, and the path leading to this problem should be abandoned.

Repairing an Almost Correct Solution.

Ihe kinds of techniques we art: are often usctul in solving neaPi decm-

pocable problems- One good way of solving such problems is to assume thai they are

completely decomposable, proceed to solve the . ihpiohlerfls separately, and then check

that when the subsolutiOnS are combined. they do in fact yield a solution to the original
problem. Of course. it they do, then nothing more need be done. If they do not. however.
there are a variety of things that we can do. The simplest is just to throw out the solution.
look for another one, and hope that it is better. Although th is is simple, it may lead to a

great deal of wasted effort.
A slightly better approach is to look at the situation that results when the sequence

of operations corresponding to the proposed solution is executed and to compare that
situation to the desired goal. In most cases, the ditTecnCe between the two will be
smaller than the difference between the initial state and the goal (assuming that the
solution we found did some useful things). Now the problem-solving system can be
called again and asked to find a way of eliminating this new difference. 

The first solution

can then be combined with this second one to form a solution v the original problem.

An even better way to patch up an almost correct solution is to appeal to specific

knowledge about 
whaL went wrong and then to apply a direct patch. For example.

suppose that the reason that the proposed so] Ut ion is inadequate is that one of its operators

cannot be applied because at the point it should have been invoked, its preconditions
were not satisfied. This might occur if the operator had Iwo Preconditions and the
sequence of operations that makes the second one true undid the iirvt One. But perhaps.

if an attempt were made to satisfy the precondition s in the opposite order, this problem

would 001 arise. up incomplete solutions is not really to patch them up at
A still better way to patch 

all but rather to leave them incompletely specified until th e last possible moment. Then

when as much information as possible is available, complete the spcciticatiofl in such

a way that no conflicts arise. This approach can be thought of as a 
least-CO it,nent

strategy. It can be applied in a variety of ways. One is to defer deciding on the
order in which operations will be performed. So, in our previous example, instead of

arbitrarily choosing one order in which to satisfy a set of preconditions we could leave
the order unspecified until the very end. Then we would look at the effects of each of

the subsolutiOflStO 
determine the dependencies that exist among them. At that an

ordering can be chosen.

13.4 Goal Stack Planning
One of the earliest techniques to be developed for solving compound goals that may
interact was the use of a goal stack. This was the approach used by 

STRIPS. In thi.
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start: ON(t3, A) A	 goat: ON(C, A) A
ONTABLE(A) A	 ON(R, D) A
ONTABLE(C) A	 ONTABLE(A) A
ONTAR[.E4D) A	 ONTADLE(D
ARMEMPIY

Figure 13.4: A Very Simple Blocks World Problem

method, the problem solver iiiakes use of a single stack that contains both goals and
O

p
erators that have been proposed to satisfy those goals. The problem solver also relies

on a database that describes the current situation and a set of operators described as
PRECONDITION ADD, and DELETE lists To see how this method works, let u'
carry it through for the -simple example shown in Figure 13.4.

When we begin solving this problem, the goal stack is simply

ON(C, A) A ON(B, D) A ONTABLE(A) A ONTABLE(D)

But we want to separate this problem into four subproblems, one br each coltjlx,jiefll
Of the original goal. Two of the subproblems , ONTAJ3LE(A) and ONTABLE(D) arealready true in the initial stdle. So we will work on only the remaining two. Depending
on the order in which we want to tackle the subproblems, there are two goal stacks that
could be created as our first step, where each line represents one goal on the stack and
OTAD is an abbreviation for ONTARLE(A) A ONTABLE(D):

ON(C,A)	 ON(13,1))
ON(H,fl)	 ON(C,A)
ON(C, A) A ON(B, D) A OTAD ON(C, A) A ON(B, D) A OTAD

II)	 121
At each succeeding step of th.. problem-solving process, the top goal on the stack

will be pursued When a sequence of operators that satisfies it is found, that sequence is
applied to the state de.'cription, yielding a new description. Next, the goal that is then
at the top of the stack is explored and an attempt is made to satisfy it, starting from the
Situation that was produced as a result of satisfying the first goal. This process continues
until the goal stack is empty. Then, as one last check, the original goal is compared to
the final state derived from the application of the chosen operators. If any components
Of the goal are not satisfied in that state (which they might not he if they were achieved
at one point and then undone later), then those unsolved parts of the goal are reinserted
onto the stack and the process resumed.

To continue with the example we started above, let us assume that we choose first
to explore alternative 1. Alternative 2 will also lead to a solution. In fact, it finds one
so trivially that it is not very interesting. Exploring alternative 1, we first check to see
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whether ON(C. A) is true in the current state. Since it is not, we check for operators that

could cause it to be true. Of the four operators we are considering, thiie is only one.
STACK, and it would have to be called with C and A. So we place STACK(C. A) or

the stack in place of ON(C, A). yielding

STACK(C, A)
ON(B, D)
ON(C, A) A ON(B, D) A OTAD

STACK(C. A) replaced ON(C. A) because after performing the STACK we are guar-
anteed that ON(C, A) will hold. But in order to apply STACK(C. A), its preconditions
must hold, so we must establish them as subgoals. Again we must separ a compound

goal

CLEAR(A) A HOLDING(C)

into its components and choose an order in which to work on them. At this point, it Is

useful to exploit some heuristic knowledge. HOLDING(x) is very easy to achieve. At
most, it is necessary to put down something else and then to pick up the de.stred object.
But HOLDING is also very easy to undo. In order to do almost anything else, the robot
will need to use the arm. So if we achieve HOLDING first and then try to do something
else, we will most likely end up with HOLDING no longer true. So we exploit the
heuristic that if HOLDING is one of several goals to be achieved at once, it should be

tackled last. This produces the new goal stack

CLEAR(A)
HOLDING(C)
CLEAR(A) A HOLDING(C)
STACK(C, A)
ON(B, D)
ON(C, A) A ON(B. D) A OrAL)

This kind of heuristic information could be contained in the precondition list itself
by stating the predicates in the order in which they should be achieved.

Next we check to see if CLEAR(A) is true. It is not. The only operator that could
make it true is UNSTACK(B. A). So we will attempt to apply it. This produces the goal
stack

ON(B, A)
CLEAR(B)
ARMEMVTY
ON(B, A) A CLEAR(B) A ARMEMPTY
L'NSTACKB, A)
HOLDING(C)
CLEAR(A) A HOLDINGtC)
STACK(C, A)
ON(B, D)
ON(C. A) A 0N(3. D) A UTAL)
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This lime, whii we compare the top ckoicnt of te goal stacK. ON(, A). to me
world model we ec that it is satisfied. So we pop it off and consider the next goal.
CLEAR(B). It. too, is alrrad true in the world model. although it was not stated
explicitly as one of the initial predicates But from the initial predicates and the hkics
world axiom that says that an y block with no blocks on it is clear, a theorem prove,
could derive CLEARB). So ;hat goal, toe. can be popped from the stack. The third
precondition for UNSIACK(B, A) remains. It i ARMEMVFY, and it is also true in the
current world model, so it can be popped off the stack. I'he next element on the s tark
is the combined goal rcpic.scriting all of the prccondiiions for W'JSTACK(B, A). We
check to make '.uie it is satisfied to the wijild model. it will be unless we undid one of
its components in attempting to satisfy another, lit this case, there is no problem and the
combined goal can he popped from the stack.

Now the top element of the stack is the operator L. JNSTACK(B, A). We are now
guaranteed that its preconditions are satisfied, so it can be applied to produce a new
world model from which the rest of the problem solving process can continue. This is
done using the ADD and DELETE lists specified for UNSTACK. Meanwhile we record
that IJNSTA('K(fl, A) is the first operator of the proposed solution sequence. At this
point, the database corresponding to the world model is

ONTABLE(A) A ONTABLE(C) A ONTABLE(D) A
HOLDING(B) A CLEAR(A)

The goal stack now is

HOLDING(C)
CLEARtA) i\ HOLDING(C)
STACK(C, A)
ON(B, D)
ON(C. A) A ON(B, I)) A OTAD

We now attempt to satisfy the goal HOLDING(C'). There are two operators that
might make HOLDING(C) ttue: PICKUP(C) and [!NSTA('K(C. s). where x could be
any block from which C could be unstacked. Withcin! looking ahead, we talluitit tell
which of these operators is appropriate, so we create two branches of the search tree,
corresponding to the following goal stacks:

ONTABLE(C)
CLEAR(C)
ARMEMPTY
'.)NTABI.E(C) A CLEAR(C) A

ARMEMVfl'
PICKUP(C)
CLEAR(A) A IIOLDING(C)
STACK(C, A)
ON(B, D)
ONC. A) A ON(B, D) A OTAD

ON(C. x)
CLEAR(C)
ARMEMPTY
ON(C. .r) A CLEAR(C) A

ARMEMPTY
U!SSTACK(C, x)
CLEAR(A) A HOLDING(C)
S1'ACK(C, A)
ON(B, 1))
ON(C, A) A ON(B, D) A OrAD

(II	 121
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Notice that for alternatIve?, the goal stack now coOians a variahie . which al)eaJS
in three places Although any block could be substituted for x, it is irnpciitant that the

same one he matched o each of the fs. Thus it is i niportarli that each time a variable

is introduced into the goal stack, it be givert a name distinct from an y other variables

already in the stack And whenever a candidate object is chosen to match a variable, the
binding must be recorded so that other occurrences of the same variable will be hound

to the same obtect.
How should our program choose now between alternative 1 and alternative 2? We

can tell that picking up (. (alternative t) is better than unstacking it because it is ot
currently on anything. So to ustack it. we would first have to stack it. Although this

could be done, it would be a waste of effort. But how could a program know that.
Suppose we decided to pursue alternative 2 first. To satisfy ON(C, x). we would have

to STACK C onto some block x. The goal stack would then be

CLEAR(x)
HOLDING(C)
CLEAR(N) A HOLDINGISC)
STACK(C, i)
CLEAR(C)
ARMF.MPTY
ON(C. x) I' CLEAR(C) A ARMEMPTY
UNSTACK(C, x)
CLEAR(A) t HOLDING(C)

STACK(C, A)
ON(B, Di
ON (C, A) A ON (B. rn c.. OTAI)

But now notice that one of the preconditions of SiCK is HOLDING(C). This is
what we were trying to achieve by ipphying (JNSTACK, which required us to apply
SlACK so that the precondition ON(C .i) would he satisfied. So we are back to our
original goal. In fact, we now have additional goals as well since other predicates have

also been added to the stack. At this point, this path can be iemiiirated as unproductive.

If, however. block C had been on another block in the current state. ON(C, c) would

have been satisfied immediately with no need to do a STACK and this path would have

led to a good solution.
Now we must return to alternative I. which used PICKUP to get the arm holding .

The top element on the goal stack is ONTABLEC), which is already satisfied, so

we pop it oil. The next element is CL.EAR(C), whic h is also satisfied, so we pop it

off. The remaining precondition of PICKUP(C) is ARMEMVTY. which is not satisfied
since FIOLDING(B) is trite. There are two operators that could be applied to make

RMEMPTY true STACK(B .x) and PU1'DOWN(B). In other words, we can eihc"

put B on the table or we cin put it on another block. Which should we chcosc It i'

look ahead a hit, we see that we ultimatel y want to get B unto D. 11 would be rnt's

efficient simply to put it there now. Our program could figure this our by comparing LIe'
elements of the ADO lists of the competing operators to the i ct of :he goal stack. If ont.

'f the operators has the fortuitous effect of maKing any of those goab. it houhd be

chosen. So we choose to appl y STACKi B 0) b y binding D to irs the STArK operator

This makes the goal stack
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CLEAR(D)
HOLDING(B)
CLEARD) Is HOLDING(B)
STACK(B, D)
ONTABLE(C) A CLEAR(C) A ARMEMPTY
PICK UPC)
CLEAR(A) A HOLDING(C)
STACK(C,A)
ON(B, D)
ON(C, A) r ON(B, I)) A OrAD

CLEAR(D) and HOLDING(B) are both true. Now the operation STACK(B. Dl can be
perfonmd, producing the world model

ONTABLE(A) A ONTABI FJC) A ONTABLE(D) A

ONB, D) A ARMEMPTY

All of the preconditions for PICKUP(C) arc now satisfied SO it, too, can be executed.
Den all of the preconditions of STACK(('. A) are true, so it can be executed.

Now we can begin work on the second part of our original goal. ON(B, I)). But it has
already been satisfied by the operations that were used to satisfy the first subgoal. This
happened because when we had a choice of ways to get rid of the arm holding B. we
scanned back down the goal stack to see if one of the operators would have other useful
side effects and we found that one did. So we now pop ON(B. D) off the goal stack. We
then do one last check of the combined goat ON(C. A) A ON (B. D) A ONTABLE(A) A
ONTABLE(D) to make sure that all four paris still hold, which, of course, they do here.
The problem solver can now halt and retool as its answer the plan

I. {JNSTACK([4 Al
2. STACK(B.D)
3. PICKUP(C)
4. STACK(C,A)

In this simple example, we saw a way in which heuristic information can he applied
to guide the search process, a way in which an unprofitable path could be detected, and
a way in which considering some interaction among goals could help produce a good
overall solution. But for problems more difficult than this one, these methods are not
adequate.

To see why this method may fail to find a good solution, we attempt to solve the
problem shown in Figure 13.5. ?  There are two ways that we could begin solving this
1;johiem. corresponding to the goal stacks

	

ON(A.B)	 ON(B.C)

	

ON(B.C)	 ON(A,B)
ON(A, B) I. ON(B, C  ON(A. B) A ONB, C)

	I I I	 [2)

Fhi p'oSem is often called the S14jw4Antn.zaJr. becaUse It W2S carefully sLudled in Sussman f1975)-
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ri	 ri

riri

slart. ON(C,A) A	 goal: ON(A, B) A
ONTABLE(A) A	 ON(B, C)

ONTAItLE(B) A
ARM EMPTY

Figure 13.5: A Slightly Haider Blocks Problem

ON (C, A)
CLEAR(C)
ARMEMPTY
ONC, A) A CL.FAR(C) A ARMEMPTY
UNSTACK(C, A)
ARMEMPTY
CLEAR(A) A ARMEMP1Y
PICKUP(A)
CLEAR(B) A F1OLD1NG(A'
STACK(A, B)
ON (B, C)
ON(A. Wi A ()r'J(B, C)

Figure 13.0 A Goal Stack

Suppose that we choose alternative I and begin flying to get A on B \Vi will
eventually produce the goal stack shown in Figure 13.6.

We can then pop off the stack goals that have alread y been satisfied, ur.r' 1 we reach the
ARMEMPTY rrecondiiion of PICKUP(A). To satisf y it, we need to PUTDOWN(C)
Then we can continue popping until the goal stack is

ON(B. C)
ON(A. B) A Or(B, C)

Then the current state is

ONTABLE(Wi A
ON(A,B)A	 H
ONTABLE(C) A	 [1
ARMEMPTY

The sequence of operators applied solar '.
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1. UNSTACK(C, A)
2. PUTDOWN(C)
3. PECKUP(A
4. STACK(A.k3)

Now we can begin to work on satisfying ON(B, C) Without going through all the
detail, we can sec that our algorithm will attempt to achieve this goal by stacking B
on C. But to do that, it has to unstuck A from B. By the time we have achieved the goal
ON(B. C) and popped it 	 the stack, we will havc vxerulrd the fnllcrwng additional
sequence of operators:

5. VNSTACK(A, Bj
6. PUTDOWN(A)
7. PICKUP(B)
8. STACK(B, C)

The problem state. will he

ON(B, C) A
ONTABLE.A)A	 B

ONTABLE(Ct'	 C f]
AR MEMPTY

But now when we check the remaining goal on the stack,

ON(A. B) A ON(8. C 

we discovrr that it is not satisfied. We have undone ON(A. B) in the process of achieving
ON(B. C) The difference between the goal and the current state is ON(A, B), which
is now added to the stack so that it can be achieved again. This time, the sequence of
operators

9 PICKUP(A)
10. .STACK(A. B)

i fourd. Now the combined goal is again checked, and this time it i s ';iiisfid The
complete plan that has been discovered is

I. UNSTACKC. A)	 fi. PUTDOWN(A)
2. P1TTDOWN(C)	 7. PICKUP(B)
3. PICKUP(A)	 8. STACK(B.0
4. STACK(A,Efl	 9. PICKUP(At
5. UNSTACK(A,B)	 tO. STACK(A.B)

Although this plan will achieve the desired goal, it does not do so very efficiently.
A similar situation ould have occurred if we had examined the two major subgoals in
the opposite order. The itiethod we are using is not capable of finding an efficient way
of solving this problem.

There are two approaches we can take to the question of how a good plan can be
found. One is to look at ways to repair the plan we already have to make it more
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efficient. In this case, that is fairly easy to do. We can look for places in the pian where
we perform an operation and then immediately undo it. Uwe find any such places, we
can eliminate both the doing and the undoing steps from the plan. Applying thiN rule to
our plan, we eliminate steps 4 and 5. Once we ilu that, we can also eliminate steps 3
and 6. The resulting plan

L UNSTACK(C,A)	 4.STACK(B.C)
2. PLJTIX)WN(C)	 5. PICKUP( A
3. PICKUP(B)	 6. STACK(A. B)

cc,ntains, in fact, the minimum number of operators needed to solve this problem. But
for more complex tasks, the interfering operations may be farther apart in the plan and
thus much more difficult to deject. Iii addition, we wasted a good deal of problem'
solving effort producing all the steps that were later eliriiinated It would be better if
there were a plan-finding procedure that could construct efficient plans directly. In the
next section, we present a technique for doing this

13.5 Nonlinear Planning Using Constraint Posting

The goal-stack planning method attacks problems involving conjoined goals by solving
the goals one at a Lime, in order. A plan generated by this method contains a sequence
Of operators for attaining the first goal, followed by a complete sequence for the second
goal, etc. Bu t as we have seen, difficult problems cause goal interactions. The operators
used to solve one subproblem ma y interfere with the solution to a previous subprobleni.
Most problems require an intertwined plan in which multiple subproblems are worked
onsimultaiieously Such a plan is called a nonlinear plan because it is not composed of
a linear sequence of complete suhplans.

As an example of the need for a nonlinear plan. let us return to the Sussman anomaly
described in Figure 13.5. A good plan for the solution of this problem is the following

I. Begin work on the goal ON(A. B) by clearing A. ilitis putting C oil 	 table.

2. Achieve,- the goal ON,B, Cj by stacking B oil

3. Complete the tool ON(A. B) hs stackine A on B

This section explores some heuristici and algorithms for tackling non linear problems
such as this one.

Many ideas about nonlinear planning were present in HACKER ISussman. 19751.
an automatic programming system. The first true nonlinear planner. though. was NOAH
Saccrdoti, 19751. NOAH was further improved upon by the NONLIN program ITale.
1977] The goat stack algorithm of STRIPS was transformed tnto a goat set algorithm
by Nilsson [1980]. Subsequent planning systems, such as MOLGEN [Stetik, 1981h)
and TWEAK tChapman 19871. used constraint po.snng as a central technique.

The idea of constraint posting is to buildup a plan by incrementally liypothesizng
operators, partial orderings between operators, and bindings of variables within opet-
ators. At any given time in the problem-solving process, we may have a set of useful
operators but perhaps no cki.r idea of how those operators should he ordered with respect
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State Space Search

ri

IaJ

Moves in the space:
Modify world state vio operator

Model of time:
Depth of node in search space

Plait stored iii:

Series of state transitions

Constraint Posting Search

Plan1

Plan

DEl	

Plan,

1D1

Moves in the space:
• Add operators
• Order operators
• Rind variables
• Or othcrwisc consira in plan

Model of time:
• Partially ordered set of operators

Plan tinted in:
Single node

Figure l3.7: Constraint Pusi ini, versus State Space Search

to each other As.o.1 uton is a partially ordered, partially instantiated sel ol operators;
0 generate an actual plan, we convert the partial order into &rsy of a number of total

orders. Figure 13.7 shows the difference between the constraint posting method and the
planning methods discussed in earlier sections.

We now examine several operations for nonlinear planning in a con Straint- post ing
environment, although many of the operations themselves predate the use of the tech-
nique in planning

Let's incrementally generate a nonlinear plan to solve the Sussman anomaly problem.
We begin with the null plan, i.e., a plan with no steps. Next we look at the goal slate
and posit steps for achieving that goal. Means-ends analysis tells us to choose two steps
with respective posteonditions ON(A, B) and ON(J3. C):



LI S NONliNEAR PLANNING USING CONSTRAINT t'i)SlING 	 '49

1. Step Addi ti on--Creating new steps for a plan

2. p10 ,ojow_.Constraimng one step to come before another in a final plan.

3. one (possibly new) step s2 between two old steps s t and

53. such that s, reasserts sonic precondition of that was negated &or "clobbered")

by s.

4. Simple Establishment ---Assigning a value to a variable, no order to ensure the

preconditions of some step.

5. Separation—Preventing the assignment of certain values to a variable.

Figure 13.8: Heuristics for Planning Using Constraint Posting (TWEAK)

CLEAR(B)	 CLEARiC)
* 1101 .DtNGA)	 HOLDING(13)

STACK(A, B)	 STACK(B. C)

ARMEMPVY	 ARMEMPTY

ON(A, 13)	 ON(B, C)

CLEAR(B)	 -CLEARtC)
-HOLDING(A)	 -.HOLDING(B)

Each step is written with its preconditions above it and itS postconditions below it.
Delete poatconditionsare marked with a ncgation symbol (-'). Notice that, at this point.
the steps are not ordered with respect to each other. All we know is that we want to
execute both of them eventually Neither can be executed right away because come
of their preconditions are not satisfied. An unachieved precondition is marked with a
star (). Both of the'HOLDING preconditions are unachieved because the arm

nothing in the initial problem stale
Introducing new steps to achieve coals or preconditions is called step addition, and

it is one of the heuristics we will use in generating nonlinear plans. Step addition is
a very basic method dating back to GPS INewell and Simon. 19631, where means-
ends analysis was used to pick operators with postconditioris corresponding to desired
states. Figure 13.8 lists step adcbtiou along with other heuristics we use throughout this

c sample.
To achieve the preconditions of the two steps above we can use step addition again.
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• CLEAR(A)
ONTABLE( A)

• ARMEMITY

PICKUP(A)

-'ONlA BLE(A)
--'ARMEMPTY

HOLDING( A)

CLEAR(B)
ONTABLE(H)

* AtMEMPTY

PICKUP( B)

--'ONTABIE(B)
-'ARMEMVFY
HOLDING(B)

Adding these PICKUP steps is not enough It, satisfy the *HOLDING precondition
of the STACK steps. This is because there are no ordering constraints present among
the steps. If, in the esentual plan, the PICKUP steps were to follow the STACK steps.
then the HOLDING preconditions would need to be satisfied by some other set of
steps. We solve this problem by introducing ordering constraints whenever we employ
step addition. In this case, we want to say that each PICKUP step should precede its
corresponding STACK step:

PICKUP(A; - STACK(A, B)
PICKUP(B) - STACK(B, C)

We now have four (partially ordered) steps in our plan and four unachieved pre-
conditions. *CLEAR(A ) is unachieved because block A is not clear in the initial state,
*CLE1 R(B ) is unachieved because although 13 is clear in the initial slate, there ex-
ists a step S I'ACK(A. B) sith postcondition -CLEARtBl, and that step might precede
the step with *CLR(B) as a precondition. To achieve precondition CLFAR(R), we
use a secnncl heuristic knosn as pruinofiwt. Promotion, first used by Sussman in his
HACKER program [Sussman, 19751, amounts to posting a constraint that one step must
precede another in the eventual olan. We can achieve CLEAR(B) by stating that the
PICK UP(B) step must come before the STACK(A, B) step:

}'ICKIJP(B) - STACK(A, B)

Let s now turn to the two unachieved *ARMFMPTY preconditions 1we deal with
'CLEAR(A) a little later). While, the initial state has an empty arm, each of the two
pickup operators contain -'ARMEMPTY postconditions. Either operator could prevent
the other from executing. We can use promotion to achieve at least one of the two
preconitions

PIC'KUP(B) i— PICKUP{A)

Since the initial situation contains an empty arm, and no step preceding PIC'KUP(B
could make it unempty. the preconditions of PICKUP(B) are all satisfied.

A third heuristic, called dedo/bei-inq, can help achieve the *ARMEMPTY precon-
dition in the PICKUP(A) step. PICKUP(B) asserts --'ARMEMPTY. but if we can insert

1 S 1 -. S means thai step S 1 must precede step S2 in [he eventual plan
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another step between PICKUF(B) and PICKUP(A) to reassert ARMEMPTY, then the
precondition will be achieved. The STACK(B, C) does the trick. so  we post another

constraint:

PICKUP(B) - STACKAB, C) '- PICKUP(A)

The step PICKUP(B) is said to "clohher" PICK UP(A)'s preNsndition STACK(13, C)
is said to "declobber" it. Declobbermg was first used in the NOAH planner (Sacerdoti.
19751. and then in NONLIN. NOAH was the first nonlinear planner io make use of
the heuristics we arc discussing here. NOAH also used many other heuristics and
was able to solve a number of difficult nonlinear planning problems. Still, there were
onse tiatural problems that NOAH could not solve In particular, NOAIIs inability to

backtrack prevented it from finding many solutions. The NONLIN program included
backtracking. but it also failed to solve many hard problems.

Back in our example, the only unachieved precondition left is *CLEAR(A). from
the PICKUP(A) step. We can use step addi,ton to achieve It:

*ON(r A)
* CLEAR(x)
* ARMEMPTY

UNSTACK(x. A)

-ARMEMVt'Y
CLEAR(A)
HOLDINU'A i

- ON(x, A)

We introduce the variable x because the only postcondition we are interested in is
CLEAR(A). Whatever block is on top of A is irrelevant. Constraint posting allows us
to create plans that are incomplete with respect to the order of the steps. Variables .x)low
us to avoid committing to particular instantiations of operators.

Unfortunately, we now have three new unachieved preconditions. We can achieve
ONx. A) easily by constraining the value of x to be block C. This works because
block C is on block A in the initial state. This heuristic is called simple establishment,
and in its most general mi-rn, it allows us to state that two different propositions must be
ultimately instantiated to the same proposition. In our case:

.sC instep UNSTACK(.iA)

There are still steps that deny the preconditions CLEAR(C) and ARMEMVFY, but w
can use promotion to take care of thm:

UNSTACK(x, A) - STACK(B, C)
UNSTACK(x, A) - PICKUP(A)
IJNSTACK(x, A) - PICKUP(B)
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Among the heuristics we have looked at so far, adding a new step is the n't
problematic because we must always check if the new step clobbers some precondition
of a later, already existing step. This has actually happened in our example. The step
PICKUP( B) requires ARMEMPTY, but this is denied by the new UNSTACI< (x, A) step.
One way to solve this problem is to add a new declobbering step to the plan:

HOLDENG(C)

PUTDOWN(C)

-'HOLDING(C)
ONTABLE(x)
ARMEMPTY

ordered as:

UNSTACK(x, A) +— PUTDOWN(C) i-- PICKUP(B)

Notice that we have seen two types of declobbering, one in which an existing step
is used to dedobber another, and one in which a new dectobbering step is introduced.
Fortunately, the precondition of our newest PUTDOWN step is satisfied. In fact,-all
preconditions of au steps are satisfied, so we are done. All that remains is to use the
plait ordering and variable binding constraints to build a concrete plans

i:NSTACK(C,A)
2. PUTDOWN(C)
3. PICKUP(B)
4 STACK(B,C)
. PICKUP(A)

6. STACK(A, B)

This is the same p lan we found at the end of Section 13.4. We used four dif-
ferent heuristics to synthesize it: step addition, promotion, declobbering, and simple
establishment. (mese are sometimes called plan modification operations.) Arc these
four operations, applied in the correct order, enough to solve any nonlinear plannin,
problem Almost. We require one more, called separation. Separation is like simple
establishment, in that it concerns variable bindings, but it is used in a dedobbeting lash.
ion. Suppose step Ci possibly precedes step ('2 and Cl possibly denies a precondition
( C?.. We say "possibl y" because the propositions may contain variables. Separation

allows us to state a constraint that the two propositions must not be instantiated in the
same way in the eventual plan.

Work on the TWEAK planner presented formal definitions of the five plan modifica-
tion operations and proved that they were sufficient for solving any solvable nonlinear
Manning problem. In this manner, TWEAK cleaned up the somewhat ad hoc, heuristic
results it i nonlinear planning research. The algorithm to exploit the plan modification
operations is quite simple



13.5 NONLINEAR PL41'INWG iSi tOPii'RA!W1POSTThG

Algorithm: Nonlinear Planning (TWEAK)

I. Initialize S to be the set of propositions in the goal state.

2. Remove some unachieved proposition P from S

3. Achieve P by using step addition, promol inn, detlobbering, simple esiablistiment.
or separation.

4. Review all the steps in the plan, including any new steps introduced by step
addition, to see ii any of then' preconditions are unachieved. Add to S the new set
of unachieved preconditions.

5.if  is empty, complete the plais by converting the partial order of steps into a total.
order, and iilstanhiate any variables as necessary.

6. Otherwise, go to step 2.

Of course, not every scquei1e of plan modification operations leads to a solution.
For instance, we could use step addition ad infinitum without ever converging to a useful
plan. The nondeterminism of steps 2 and 3 must be implemented as some sort of search
procedure. This search can be guided by heuristics for example, if promotion and step
addition will both do the job, it is piobably better to try prontion first. TWEAK uses
breadth-first dependency-directed backtracking. as well as ordering heuristics.

The example above used most of the plan modification operations, but not in theit
full generality. We will now be more specific about these operations and how they relate
to finding correct plans. The core notion is one of maidng a proposition necessarily true

in some state. The modal truth criterion tells us exactly when a proposition is trite.

The Modal Truth Criterion. A proposition P is necessarily true in a state
S if and only if tsso conditions hold: There is a stale T equal or necessarily
previous to Sin which P is necessarily asserted: and for every step C pussibPy
Wore S and every proposition Q possibly codesi gnating 4 with P which C
denies, there is a step W necessarily between C and S wh:ch asserts H. a
proposition such that R and P codesignate whenever P and Q codesignate.

Roughly, this means that P has to be asserted in the initial stale or by some previous
step and that there can be no clobbering steps without corresponding declobbcnng steps
to save the day. l'hc relationship between the modal truth criterion and the five plan
modification operations is shown in Figure 13.9. The figure is simply a logical parse
tree of the criterion, from which we can see how the plan ril0dification uperalioilS air
used to enforce the truth of various parts of the criterion In the figure, the expression

C l -< C2 means step (or state) C 1 necessarily precedes step (or state) C The expression
P Q means P and Q codesignale.

The development of a provably correct planner was a noteworthy achievement in the
formal (or "neat") style of Al. It cleaned up the complicated, ill-defined planning notions
that preceded it and made available a reliable (if not efficient) planner. Now, however,
a new round of more infomiai (or "scruffy") research must follow, conceni rating on

4Tiwo propositions eoeestnafr if they can he unified,  riven the current constraints on variables.
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the weaknesses of such planners. Efficienc y is of critical concern in large systems—
assured correctness is nice, but a stow planner can be less useful than an mc eL'i
one Typically, search-based programs can be made faster through the use of heuristic
knowledge Another efficiency issue has to do with the,Iength isf the plans produced by
n planner. Current planners can, unfortunately, generate highly inefficient plans.

Representational issues are just as important as efficiency ISSUCS, end the two are
closely intertwined. The representation of operators and plans used by TWu,K is at
the same time too powerful and too weak. Chapman [1987} proved that even with
simple STRIPS-style operators. planning in general is not even decidable, although it
is sernidecidable: If there is a plan that solves a problem, a planner can find it. but if
there is no such plan, the planner may never bait, NP-completeness results suggest that
planning is exponentially hard. But ills ot no use to look for a simpler representation
that might allow for more efficient plan construction—if anything, most domains cern
to require operators that are much more complex than the operators used b y TWEAK.
For example, it is natural to express many preconditions using quantifiers and embedded
negation and also to have postconditions with different effects depending on the state
of the world. Figure 13.10 depicts a more complex operator structure, of the type
used in the PRODIGY planning system [Minion ci al., 19891. As our representation
becomes more expressive, the idea of a provably correct, efficient, domain-independent
planner becomes more unlikely, and we must again turn to knowledge- intensive heuristic
methods.

13.6 Hierarchical Planning

In order to solve hard problems, a problem solver may have to generate long plans. An
order to do that efficiently, it is important to be able to eliminate some of the details of
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(OPERATOR
(PRECONDITIONS

(and ( ... )
(forall (iv ...
(not

(exists .
(or ......)))

POS ICONL)fliONS
(ADD(...))
(DELETE...))
"arid(.

(DELETE (,.. (...))))))

F'gure 13.1() A Complex Operator

the problem until a solution that addresses the main issues is found. Then an attempt
can be made to till in the appropriate details. Early attempts to do this involved the
use of macro-operators, in which larger operators were built from smaller ones Fikes
and Niisson. 19711. But iii this approach, no details were eliminated from the actual
de'.criptins of the operators. A better approach n developed in the ABSTRIPS
svstcni [Sacerdoti, 1974), which actually planned in a hierarchy of abstraction spaces.
in each of which preconditions at a lower level of abstraction were ignored.

As an example. suppose you want to visit a IT1LrI(I in Europe, but you have a limited
amount of cash to spend. It makes sense to check air fares first, since finding an
affordable flight will be the most difficult part of the task. You should not worry about
getting out of ) our Inveway, planning a route to the airport, or parking your car until
you are sure you have a iiiglic.

Thu ,'I.BSTRIPS approach to problem solving is as follows: First solve the problem
completely, considering onl y preconditions whose criticality value is the highest possi-
ble. These values reflect the expected difficulty of satisf y ing the precondition. To do

this, do exactl y what STRIPS did, but simply ignore preconditions of lower than peak
criticajit) Once this is done, use the constructed plan as the outline of a complete plan
and consider preconditions at the next-lowest criticality level. Augment the plan wiili
operators that satisfy those preconditions. Again, in choosing operators, ignore all pr-
conditions whose criticality is less than the level now being considered. Continue this
process of considering less and less critical precoflditions Until all of the preconditions
of the original rules have been considered. Because this process explores entire plans
at one level of detail before it looks at the lv,er-k' . ei details of any one of them. it has'

been called length-first search.
Clearly. the assignment of appropriate criticality valises is crucial to the success of

this hierarchical planning method. Those preconditions that no operators can satisfy are
clearly the most critical. Foi example. if we are trying to solve a problem involving a
robot moving around in a house and we are considering the operator PUSH-THROUGU
DOOR, the precondition that there exist a door big enough for the robot to get through
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is of high criticality since there is (in the normal situation) nothing we can do about it if
it is nor true, But the precondition that the dour be open is of lower criticality if we have
the operator OPEN-DOOR. In order for a hierarchical planning system to work with
STRIPS-like rule, it must be told, in addition to the rules themselves, the appropriaic
criticality value for each term that may occur in a precondition. Given these values, the
basic rvk nccss can function in very much the same way that nonhierarchical planititig
does But effort will not be wasted tilling in the details of plans that do not even come
ciot f o solving the problem.

13.7 Reactive Systems

o fat, we have described a deliberative planning process, in which a plan for completing
.n entire task is constructed prior to action. There is a vet-s different wa y, though, that we
'ould approach the problem of deciding what to do. The idea of reauri ye sys1rn Brooks.186: 'sgre and Chapman, 1987: Kaebling, 19871 is to avoid planning altogether, and
ostead use the observable situation as a clue to which one can simply react.

A reactive system must have access to a knowledge base of some sort that describes
what actions should be taken under what circumstances. A reactive system is very
lifl'erent from the other kinds of planning systems we have discussed because it chooses
c!kns one at a time: it does not anticipate and select an entire action sequence before

II iocs the first thing.

One of the very simplest reactive systems is a thermostat. The job of a thermostat
to keep the temperature constant inside a room. One might imagine a solution to

this problem that requires significant amounts of planning, taking into account how the
external temperature rises and falls during the day, how heat flows from room to room.

so forth. But a real thermostat uses the simple pair of situation action rules:

lithe temperature in the room is k degrees above the desired temperature, then
turn the air conditioner on

2. If the temperature in the room is k degrees below the desired temperature, then
turn the air conditioner off

It lums out that reactive systems are capable of surprisingly complex behaviors,
especially in real world tasks such as robot navigation. We discuss robot tasks in
bore detail in Chapter 21. The main advantage reactive systems have over traditional
planners is that they operate robustly in domains that a re difficult to model completely
and accurately. Reactive systems dispense with modeling altogether and base their
actions directly on their perception of the world. In complex and unpredictable domains,
the ab,lit y to plan an exact sequence of steps ahead of r ime is of questionable value
Another advantage of reactive systems is that they are extremely responsive, since they
avoid the combinatorial explosion involved in deliberative planning. This makes them
1;tractive for real time tasks like driving and walking.

Of course, many Al tasks do require significant deliberation, which is usually imple.
menie.d as internal search. Since reactive systems maintain no model of the world and
no !xpiicit goal structures, their performance in these tasks is limited. For example, it
seems unlikely that a purely rea.cfive system could P, ,er play expert chess It is oosshto
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to provide a reactive system with rudimentary planning capability, but onl y ty explCtrlv

noring whole plans along with the situations that should Iriggci th-m. Deliberative
planners need not rely on pre stored plans; they can construct a new plan for each new

rtohlem.
Neverthle.cs. inquiry into reactive systems has served to illulrate many of toe

sportuomings of traditional planncr For one thing, it is vital to i nterleave p.mnifl

and plan execution. Planning is important. but so is action. An intelligent s ystem witr,

limited resources must decide when to start thinking, when to stop thinking, and whci
to act, Also, goals arise naturally when tile systeill ioicactS wiiji the cnv;ronment
Some mechanism for suspending plan execution is needed so that the system can turn its
attention to high priority goals. Finally, some situations require immediate attention and
rapid action. For this reason, some deliberative planners [Mitchell. 19901 coniplIc ot
eaclive subsystems (i.e.. sets of situation-action rules) based on their problem-solving

experiences. Such sytenis learn to be reactive over time

13.8 Other Planning Techniques

Other planning techniques that we have no discussed include ibe following

• Triangle Tables [Fikes ci o!.. 1972; Nilsson. 19801 —Pro
videa way of recording

ihe goals that each operator is expected to satisfy as well as the goals that must

be true for it to execute. correctly. If something unexpected happens during the
execution of a plan, the table provides the information required to patch the plan.

• Metaplarming IStefik. 1981 a) — A technique for reasoning not u SI about the prob-

lem being solved but also about the planning process itself.

• Macro -operators [Fikes and Nilsson. 19711—Allow a planner to build new oper

ators that represent commonly used sequences of operators. See Ch'i'tcr 17 for

more details.

• Case-Based Planning Iflamniond. 19861—Re-uses old plans to wake ness ones.
We return to case-based planning in Chapter 19.

13.9 Exercises

1. Consider the following blocks world problem.

IlL
start: ON(C, H) A

ON(D,M A
ONTABLEB) A
ONTABLEtA1 A
ARMEMPT'I

F1FL
coat: ON(C.B) \

ON(D. A) A
ON1ABLE(B) A
ONTABLEIA,
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(a) Show how STRIPS would solve this problem.

(b) Show how TWEAK would solve this problem.

(c) Did these processes produce optimal plans? If not. could the y he modified
to do so?

2. Consider the problem of devising a plan for cleaning the kitchen.

taj Write  set of STRIPS-styleoperamrs that might be used. When y ou describe
the operators, take into account such considerations its:

• Cleaning the stove or the refrigerator will get the floor dirty.

• To clean the oven, it is necessary to apply oven cleaner and then to
remove the cleaner.

• Before the floor can be washed, it must be swept.

• Befnie the floor can be swept, the garbage must be taken out

• Cleaning the refrigerator generates garbage and messes up the counters.

• Washing the coutiteis or the floor gets the sink dirty.

(b) Write a description of a likely initial state of a kitchen in need of cleaning.
Also write a description of a desirable (but perhaps rarel y obtained) gnat
state.

(c) Show how the technique of planning using a goal stack could be used to solve
this problem. (Hint—you ma y want to modify the definition of an AD!)
condition so that when a condition is added to the database, its negation is
automatically deleted if present.)

3. In Section 13.4, we showed an example of a situation in which a search path
could be terminated because it led back to one of its earlier goals. Describe a
mechanism by which a program could detect this situation.

4. Consider the problem of swapping the contents of two registers. A and B. Suppose
that there is as'aitabe the single operator ASSIGNX. v, Is, or), which assigns the

value v, which is stored in locatou lv, to location x. which previously contained
the value or:

ASSIGN( r. V. Iv, or)
P: CONTAINS(/v, i') CONTAINS(x, or)
1): CONTAINS(., os)

A: CONTAINS(s, v

Assume that there is at least one additional register. C. available.

(a) What would STRIPS do with this problem?

(b) What would TWEAK do with this problem?

cc How might you design a program to solve this problem?



Chapter 14

Understanding

14.1 What Is Understanding?

To u,derstand something is to transform it front representation into another. where
this seio:id representation has been chosen to correspond to a Set of available act tons

that could be perfoniied and wOee the mapping has been designed so that lix each event.

an appropriate action will be perfonned. There is very little absolute in the notion of
understanding. If you say to an airline database system 1 need to go to New York

as soon as possible," the system will have understood" it ' it Uttik the first available

Iaric to New York. If you say the same thing to your best friend. who knows that your
family lives in New York, she will have "understood" if she realiies that there may

be a problem in your family and you may need some emotional support. As we talk
about understatiditig, it is important to keep in mind that the success or failure of an
"understanding" program can jajeiv he measured in an absolute sense but must instead
he measured with respect to a particular task to he performed. This is true both of

language- understanding programs and also of onderstatiders in other domains, such as

vision.
For people, understanding applies to inputs from all the senses. Conipiitei under-

standing has so far been applied primaril y to Images, speech, and typed language. In
this chapter we discuss issues that cut across all of these modalities- In Chapter 15, we

-..tlore the problem of typed natural language in more detatl. and in Chapter 21, we
look at speech and vision problems. Although we have defined understanding above as
the process of mapping into appropriate oi lions, we arc not precluding a vicw of under-
standing in which inputs are simply interpreted and stored for later. In such a system.
the appropriate action is to store the proper representation. This view of understanding
describes what occurs in most image understanding programs and some language un-
derstanding programs. Taking direct action describes what happens in systems in which
language. either typed or spoken, is used in the interface between user and computer.

359
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Figure 14 I The Conceptual Dependency Representation of a Paragraph

14.2 What Makes Understanding Hard?

There are four major factors that contribute to the difficulty of an understanding problem.

1. The complexity of the target representation inio which the matching is being done

2. The type of the mapping: one-one, many-one, one-many, or many-many

3. The level of interaction of the components of the source representation

4. The presence of noise in the input to the understander

A few examples will illustrate the importance of each of these factois.

Complexity of the Target Representation

Suppose English sentences are being used for communication with a keyword-baserl
data retrieval system. Then the sentence

I want to read all about the last Presidential election.

would need to be translated into a representation such as

(SEARCH KEYWORDS - ELECTION & PRESIDENT)

But now suppose that English sentences are being used to provide input to a prograzt
that records events so that it can answer a variety of questions about those events an
their relationships. For example. ions,der the toflowing story:
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Bali told Mary he would not go to the movies with hex.
Her feelings were hurt.

The result of understanding this story could be tcpresenicd, using the conceptuat
dependency modd that we discussed in Chapter 10, as shown in Figure 14.1. This
representation is considerably more complex than that for the simple query. All other
things being equal, constructing such a coriipkx re'presentaliorl is more difficult than
constructing a simple one since more information must he extracted from the input
sentences. Extracting that information often requires the use 01 additional knowledge
about the world described by the sentences.

Type of Mapping

Recall  that irndrrstanding is the process of mapping an input from its original form
to a more useful one. The simpiest kind of mapping to deal with is one-to-one (i.e.,
each different statement maps to a single target representation that is different from that
arising from any other statement). Very few input systems arc totally One-iLOflC. But
as an example of an almost one-to-one mapping. consider the language of arithmetic
..xprcssions in many programming languages. in such a language, a mapping sucha'
the following might occur:

A

.4:B+C!) 

Although one-to-one mappings are, in general, the simplest to perform, they are
rare in interesting input systems for several reasons One important reason is that in
Immany domains, inputs must be interpreted not absolutely, but relatively, with respect
to some reference point. For example, when images are being interpreted, size and
perspective will change as a function of the viewing position. Thus a singk object will
look diflerent in different images. To see this, look at Figure 14.2, which shows two
line drawings representing the same scene, one of which corresponds to a picture taken
close to the scene and one of which represents a picture taken from farther away. A
similar phenomenon occurs in English. The word 'tall" specifies one height range in
the phrase "a tall giraffe" and a different one in the phrase "a tall poodle."

A second reason that many-to-one mappings are frequent is that free variation is often
allowed, either because of the physical limitations of the system that produces the inputs
or because such variation simply makes the task of generating the inputs manageable.
Both of these factors help to explain why natural languages, both in their spoken and
their written forms, require many-to-one mappings. Examples from speech abound. No
two people speak identically. In fact, one person does not always say a given word the
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Figure 14.2: Relative Differences in Pictures of the Same Scene

same way. Figure 14 3 illustrates this problem. It shows a spectrogram produced by
the beginning of the utterance "Alpha gets alpha minus beta.' A spectrogram shows
how the sound energy is distributed over the auditory frequency range as a function of
time. In this example, you can see two different patterns, each produced by the word
"alpha." Even when we ignore the variability of the speech signal, natural languages
admit variability because of their richness. This is particularly iioticeahle when mapping
from a natural language (with its richness of structure and vocabulary) in a small, simple
target representation. So, for example, we might find many-to-one mappings. such as
the following one. occurring in the English front end to a keyword data retrieval system:

Tell me all about the
last presidential
election.

(SEARCH
Fd like to sec all the	 KEYWORDS

stories on the last	 ELECTION
presidential election.	 &

PRESIDENT)
I am interested in the

last presidential 	 —5

election.

Many-to-one mappings require that the understanding system know about all the
ways that a target representation can be expressed in the source language. As a result,
they typically require a structured analysis of the input rather than a simple, exact pattern
match. But they often do not rcqunc much other knowledge.

One-to-many mappings, on the other hand, often require a great deal of domain
knowledge ( in addition to the input itself) in c"ler to make the correct choice among the
available target representations. An example of such a mapping (in which the input can
1" said to be ambiguous) is the following sentence:
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-* (They are
(flying airplanes))

-	 (They (arc flying)
airplanes)

'l'hey are fl,irig planes.
—s (rheya.re

(flying planing-tools))

-	 (They (are tlyuig)
planing-tools)

Notice that although this sentence. taken in isolation, is ambiguous, it would usually
not be interpreted as being antbguous by a human listener in a specific context. Cities
both from previous sentences and from the physical context in which the sentence occurs.
usually make one of these interpretations appear to be correct. The problem, though,
from a processing standpoint, is how to encode this contextual information and how to
exploit it white processing each new sentence.

Notice that English, in all its glory, has the properties of both of these last two

examples: it involves a many-to-many mapping, in which there are many ways to say
the same thing and a gisen statement may have many meanings
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Figure 144; Little Interaction among Components

.evet of Interaction among Components

tu most interesting understanding contexts, each input is composed f several com-
ponents lmes. words, symbols, or whatever) The mapping process is the simplest
if each component can be mapped without concern for the other components of the
statement. Otherwise, as the number of intcmct i ons increases, co does the complex-3y
of the mapping.

Pugranuning languages provide good examples of languages in which there is very
little interaction among the components of an input. For example. Figure 14.4 shows
how changing one word of a statement requires only a single change to one node of the
corresponding parse tree.

in many natural language sentences, on the other hand, changing a single word can
altcT not just a single node of the interpretation, but rather its entire structure An example
of this is shown in Figure 14.5. (The triangles in the figure indicate substructures whose
further decomposition is not important.) As these examples show, the component. ,, of aii
English sentence typically interact more heavily with each other than do the components
of artificial languages, such as programming languages, that have been designed, iunong

rher things, to facilitate processing by computer.
Nonlocality can be a problem at all levels of in understanding process. In the
in the park example, the problem is in how to group phrases together. But in

..i*erstanding tasks, this same problem may make it difficult even to decide
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S

NP	 VP

John	 V	 NP	 PP

Saul	 I)ET N	 PP with a telescope

the boy in the park

John saw the boy in the park with a tckspe.
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the boy in the part	 with a dog

John saw the boy in the park with a dog.

S
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John	 V	 NP

NOW	 DET N	 PPI . IZ
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with a statue

John saw the boy in the park with a statue.

Figure 14.5: More Interaction among Components
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Figure 14: A Spccch Waveform

on what the basic constituentsare. Figuic 14.6 shosasiniplIedatflplC fromLspCh

understanding. Assuming that the sounds shown in the ligule have hccn identified, the
prohleni is to group them into words. But the correct grouping cannot he determined
Without looking at the larger context in which the sounds occurred. Either of the
groupings shown is possible, as can be seen from the two sentences in the hgwc.
Figure 14.7 shows an actual speech waveform, in which the lack of local ciue, cver. for
.segmcnhiuig into individual sounds, can be seen.

In image-understanding-problems as well, a similar problem involvin g loca! iridc
tersninacy arise.. Consider the situation shown in Figure 14.8. At this point. tines h,*sc
been extracted from the original figure and the next task is to separate the ligute iiitc
object'. But suppose we start at the left and identity the object labeled A. Does it end

at the \ertia me'! It is not possible Co tell without looking past the vertical object in

Sec if there is n extension	 hieh. ir this case, there is.
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Fiie 14	 •\ Li,: i)rawifl' with Local Arnbiuity

uise in the Input

Inderstanding is the process of in at input and assigning it meamng. linfortu-
narely, in many understanding situations the input to which meaning should be assigned
is not always the input that is presented to the understander. Because of the corri7lex
environment in which understanding usually occurs, other things often interfere with
the basic input before it reaches the understander. In perceptual tasks such as speech

and image tmderstanilirig, this protilem is common. We rarely have the opportunity to
listen to -acli other against a background of silence. 'thus ve must take an input signal
and separate the speech component from the background noise component in order to
understand the speech. The same problem occurs in image understanding. if you look

.-)kjt of your car window in search of a particular store sign, the image you will see of the

tgn may be interfered with by many things, such as your windshield wipers or the trees
alongside the road. Although typed language is less susceptible to noise than is spoken
language, noise is still a problem. For example, typing errors are common, particularly
if language is being used interactively to corniiiuiiicate with a computer system-

Concl usion

The point of this section has been twofold. On the one hand, it has attempted to
deseribe the sources of complexity in understanding tasks, in order to help you analyi.e
new understanding tasks for tractability On the other, it has tried to point out speciflc
unlerstandirig tasks that turn out, unforturlailY, to be hard sucii as natural language
understanding) but that are nevertheless important jr, the sense that it would be useful
if we could perform them. It is to these under standing tasks that we will need tudevoe

ubstatitial research effort.

14.3 understanding as Constraint Satisfaction

On the hasi of a superficial analysis (such as tIlt one in the last section. many ',nder-
standing tasks appear impossibly complex. The iiumher of interpretat i ons that can be

assigned to individual components of an input is lisgc, and the number of combinations
of those components is enormous. But a closer anal)sis often reveals that mcn el the
combinations cannot actually occur. These natural constraints can be exploited in the
understanding process to reduce the complexity from unrninageahIe to tractable There
arc two important steps in the use of constraints in problem solving:
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Figure 14.9: A Line Drawing

1. Analyze the problem domain to determine what the constraints are.

2. Solve the problem by applying a constraint satisfact ion algorithm that effectivel'
uses the constraints from step I to control the search. Recall that we presented
such an algorithm in Section 3.5,

In the rest of this section, we look at one example of the use o; this approach. ili.' Waltz
algorithm for labeling hue drawings. In Chapter 15 we then look tn depth at the, pi)bkn
of natural language understanding and see how it too can be viewed as a coro.trairn

satisfaction process.
Consider the drawing shown in Figure 14.9. Assume either tila y you have beef'!

given this drawing as the input or that lower-level routines have al ready operated uv
extract these lines from an input photograph. The next step in the anaiyIs !)rtx.c5S Is tn
determine the objects described by the lines. To do this, we nezd first to identify each
of the lines in the figure &s representing either:

• An Obscuring Edge–.-A boundary between objects. or between objects and the
background

• A Concave Edge—An edge between two face', IaI itirin an acute angle wcn
viewed from outside the object

• A Convex Edge—An edge between two faces that form an obtuse angle when
viewed from outside the object

For more complex figures, other edge types, such as cracks between coplanar faces
and shadow edges between shadows and the background, would also be required. flw
approach we describe here has, in fact, been extended to handle these other edge type
lint to make the explanation straightforward, we consider only these thiec iii fact, w
:on!,idcr only figures composed exclusively of trihedral vertices, which are verti(cs at
which exactly three planes come together. Figure 14.10 show am plr fit rrihedrai
fiurcs. Figure 14.11 shows eampks of nontrihedral figures.
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10. Some TrihedrA Fiie

Figertl4 11: Some N011TTihe1rl Figures

Convex line

-	 Concave line

•	 Boundary line itli interior to the ngh I (cIown

Boundary tine with iiterior to the right (up)

Figure 14.12: Line -I_alling ('ortCn1tnn'

Figure 14 13: An E¼.AmpIe of Ltrt I.ibc1tng
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FORK

ARROW

I
Figure 1414: The Four Trihedral Vertex Types

Determining the Constraints

The problem we are trying to solve is how to recognize individual ohjecs in a figure.
To do that, we intend first to label all the lines in the ligure so that we know which ones,
correspond to boundaries between objects. We use the three line types given above
For boundary Lines, we also need to indicate a direction, telling which side of the ilr:c
corresponds to the object and which to the background. This produces a set of low labei'
that can be attached to a given line. We use the conventions shown in Figure 14 12
show line labelings. To illustrate these labelings. Figure 14.13 shows th.t drawing o
Figure 14.9 with each of its lines correctly labeled.

Assuming these four Line types, we can calculate that the number ot ways of labeling
a figure composed of N lines is 4t• Flow can we find the correct one? The critical
observation here is that every line must meet other lines at a vertex at each of its ends.
For the trihedrai figures we are considering, there are only four conflirmaiions that
describe all the possible vertices. These four configurations are shown in Figure 14.14
The rotational position of the vertex is not significant. nor are the sizes of the angles
it contains, except that the distinction between acute angles (< 90 degrees) and obtuse
angles (> 90 degrees) is important to distinguish between a FORK and an ARROW. It
there turn out to be constraints on the kinds of vertices that can occur, then there would
be corresponding constraints on the lines entering the vertices and thus the number ot
possible line labeliiigs would he reduced.

To begin looking for such vertex constraints, we first consider the maximum number
of ways that each of the four types of lines might combine with other lines at a vertex
Since an L vertex involves two lines: each of which can have four labels, there must be
sixteen ways it could be formed. FORKs. Ts. and ARROW ,; involve three lines, so they
could be formed in sixty-four ways each. Thus there are 208 ways to form a trhcdral
ve'tex. But, in fact, only a very small number of these labeling!, can actually occur
in line drawings representing real physical objects. To see this, consider the planes on
which the faces that form a ve'tex of a trihedral figure lie. These three planes must
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Figure 14.15: A Figure Occupying One Octant

divide 3-space into eight parts (called octants) since each individual face divrnes th

space in half and none of the faces can be coplanar. Trihedral figures may differ in the

number o
f octants thai they fill and in the position (which must h one of 

t
he Unfilled

octants) front which they are viewed. Any vertex that can occur in a trihcdial figuic
must correspond to such a division of space with sonie number (between one and eight)
of octants filled, which is viewed from one ill the unfilled octants. So to find all the

vertex labeling" that aii occur, we need only consider all the ways of lilting the octants

mid each of the way^ of viewing those fillings, and then record the types nt the vertices.

that we find.
To illustrate this process, consider the drawing shown in Figure 14.15. which occu

pi es one of the eight oclants formed by the intersection of the planes corresponding to

the laces of vertex A Imagine vicwing this figure from each of the remaining seven
octants and recording the configuration and the labeling of vertex A. Figure 14.16(a)

,;how,, the results of this. When we take ihse seven descriptions and eliminate rota-
tional and angular variations, we see that unly three distinct ones remain, as -riown in

Figure 1 t 16(h). If we continue this process for objects filling up to seven octajits (there
can he no ertices if all eight octants are tilled), we get a complete list of the possihk
tnhedral verncec and their iabclings (equivalent to that developed by Clowes 119711)
This list is shown in Figure 14.17. Notice that of the 208 labctings mat we said writ
theoretically possible, only eighteen are physically possible. Thus we have found a

sesere cnnsiriinl on the way that lines in drawings corresponding to real ngttres can b.

labeled
Of course, at this point we have only found a coiistraint Oij Me ways in which simp;

uihedrai vertices can be labeled. Many figures, such as LhosC shown in Figure 14.11
contain nontrihedral vertices. In addition, many figure, contain shadow areas. whic

car. be of great use in analyzing the scene that is being portrayed When these sali.i

tiOfls are considered, there do beconie more than eighteen a]1owaic vertex fabet;gs
But when these variations are allowed, the numhei of theoretically possible labelitigs
becomes much larger than 208, and, in fact, the ratio of physically allowable vertices to

theoretically possible ones becomes eveti smaller than 18/208. Thus not only can this
approach be extended to larger domains. it must be.
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Figure 14.16: The Vertices of a Figure Occupying Om Octan!

As a result of this analysis, we have been able to articulate one class of constraInts
that will be needed by a line-labeling procedure. These constraints are static (since the
physical rules thcy are based on never change), and so they do not need to be represented
explicitly as pan of a problem state. They can be encoded directly into the line-labeling
algorithm. The other class of constraints we will need contains the dynamic ones that
describe the current options foi the labeling of each vertex. These constraints will be
represented and manipulated explicitly by the tine-labeling algorithm.

Applying Constraints in Analysis Problems

Hog anatycd the domain in which we are working and extracted a set ot constra:n',-
that ject in the domain must satisfy, we need next to apply those constraints to the
probieni of anaiyzing inpjs the domain. To do this, we use a loriti of the constraint

satisfaction piocethire iescrbed in Section 3.5. It t1rns our that for this prohkrn it is
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Figure 14,l7 The Eighteen Ph ysically Possible TrhedialVertiCt

not necessary to use the second part Of aur constraint satisfaction procedure uhe one

that makes guesses and results in search). The domain provides ',ufficietitly powerful
constraints that it is not necessary to resort to search. Thus the Waltz alaorirhrn fWah.

1975), which we present here, omits that step entirely.
To label line drawings of the Sort we are considering, we first pick one vertex and

find all the labelitigs that arc possible for it. Then we move to an adjacent vertex and
find all of its possible lahelings. The line that we followed to get from the first vertex

to the second must end up with only one label, and that label must be consistent with
the two vertices it enters. So any tabelings for either of the two vertices that require the
line to be labeled in a way that is inconsistent with the other vertex can be eliminated
Now another vertex, adjacent to one of the first two, can be labeled. New constraints
will arise from this labeling and these constraints can be propagated back to vertices that
have already been labeled, so the set of possible label ings for therti is further reduced.
This process proceeds until all the veclICCs in the figure have been labeled.

As an example, conside: the simple d.awiitg shown in Figure 14.18(a). We can

begin by labeling all the boundary edges, as shown in Figure 1418(b). Suppose we

then begin labeling vertices at vertex I. The only vertex label that is consistent with
the known line labels is 13. At vertex 2, the only consistent label is 6. At each of the
remaining boundary vertices, there is also only one labeling choice. These labelings
are shown in parentheses in Figure 14.18(c). Now consider vertex 7. Just looking at

vertex 7 itself, it would appear that any of the five FORK labelings is possible. But
from the only labeling we found for vertex 2, we know that the line between vertices 2
and 7 must be labeled +, This makes sense since it obviously represents a COflVCA edge.

Using this fact, we can eliminate four of the possible FORK labels. Only label 8 i.,
now possible. The complete labeling just computed is shown in Figure 14i8d. Thu

we see that by exploiting constraints on vertex labelings. we have correctly identified

vSrtex 7 as being formed by three conve y edees.
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(a)

(13)	 6i

fni

IJ	 (6)

(c)

(13)	 '6)

1 3)ff^6

Figure 14.18: A Simple Example of the Labeling Proem

We can now specify in more detail this particular version of constraint propagation.

Algorithm: Waltz

1. Find the lines at the border of the scene boundary and label them. These lines can
be found by finding an outline such that no vertices are outside it. We do this first
!iecau.sc this labeling will impose additional constraints on the other labelings in
the figure.

2. Number the vertices of the figure to be analyzed. Theae numbers will correspond
to the order in which the vertices will be visited during the labeling process. Ti'
decide on a numbering, do the following:

(a) Start at any vertex on the boundary of the figure. Since boundary lines are
known, the vertices involving them are more highly constrained than are
interior ones.

(b) Move from the vertex along the boundary to an adjacent unnumbered vertex
and continue until all boundary vertices have been numbered.

(c) Number interior vertices by movirw fcom a numbered vertex to .ume ad-
jacent unnumbered one. By alway seIing a vertex next to one ih:it has
already been labeled, maximum use can be niate of the constra!r..

Visit each vertex V io order and attempt to label it by 1oiig the hlLnw:i.



14.4. SUMMARY

(a) Using the set of possible vertex labelings given in Figure 14.17. attach to V
a list of its possible labelings.

(b) See whether some of these labelings can be eliminated on the basis of local
constraints. To do this, examine each vertex A that is adjacent to V and that

has already been visited. Check to see that for each proposed labeling for V

there is a wa y to label the line between V and A in such a way that at least

one of the labelings listed for A is still possible. Eliminate from V's list any

labeling for which this i snot the case.

(c) Use thc set of labelings just attached to %• to constrain the labeling'; at

vertices adjacent to V. For each vertex .4 that was visited in the last step, do

the following:

i. Eliminate all labelings of A that are not consistent with at least one

labeling of V-

ii. If an y labclings were eliminated, continue constraint propagation by
examining the vertices adjacent to A and checking for consistency with
the restricted set of labelings now attached to A.

ii;. Continue to propagate until there are no adjacent labeled vertices or
until there is no change made to the existing set of labcitngs.

Thi s algorithm will always find the unique, correct figure labeling if one exists. If a
figure is ambiguous, however, the ilgorithm will terminate with at least one vertex still

i iaving more than one labeling attached to it.
Actually, this algorithm, as described by Waltz, was applied to a larger class of

figures in which cracks and shadows might occur. But the operation of the algorithm
is the same regardless of the size of the table of allowable vertex labelings that it uses.
In fact, as suggested in the last section. the usefulness of the algorithm increases as the
size of the domain increases and thus the ratio of physically possible to theoretically
possible vertices decreases. Walii's program. for example. used shadow information,
which appears in the figure locally as shadow lines, as a way of exploiting a global
constraint, namely that a single source of light produces consistent shadows.

14.4 Summary

In this chapter we outlined the major difficulties that confront programs designed to
perform perceptual tasks. We also described the use of the constraint satisfaction
procedure as one way of surmounting some of those difficulties.

Sometimes the problems of speech and image understanding are important in the
construction of stand-alone programs to solve one particular task But they also play
an important role in the larger held of robotics, which has as its goal the construction

of intelligent robots capable of functioning with 
some degree of autonomy. For such

robots, perceptual abilities are essential. We will return to these issues in Chapter 21
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14.5 Exercises

I. One of the reasons that understanding complex perceptual patterns is difficult is
that if the patiern is composed of more than one object, a variety of difficult-
to-predict phenomena may occur at the junctions beiwccti objects. For example.
when the phrase "Could you go?" is spoken, aj sound appears between the woidc
'could" and 'you." Give another example of boundary interference in speech
Also give one example at it in vision

2 Which of the following Iigtircs are trihedral'?

(a)	 (h)	 (c)	 (d;

3. In Section 14.3, we analyzed all the ways that a vertex of a trihedral object that
occupies one octant of the space formed by the intersection of its planes could be
labeled. Complete this analysis for vertices of objects that occupy Iwo through
even ociint',

4 For each ut live drawint's in Figure 14.10, show how the Waltz algorithni would
produce  labeling.

5. In our decription of the Waltz al gorithm, we first assigned to each series V ;111 Flit'
lahelin gs that iiithI be attached to it. Then we looked at all adjacent vertices in
an attempt In constrain the set of lahelings associated with I. And then we went
back to each adjacent vertex A to see if the knowledge about V could be used to
further colistrain ilic lalwlingN for A. Why could we not simply viSit each adjacni
vertex once and pet hint! built these steps then?

fi. (jive an example of an anihiguoris Eigure for which the Waltz ilgoriibtii would not
find a unique labeling.



Chapter 15

Natural Language Processing

Language is meant for communicating about the world. By studying language, we
can come to understand more about the world. We can test our theories about the
world by how well they support our attempt to understand language. And. if we can
succeed at building a computational model of language, we will have a powerful tool
for communicating about the world. In this chapter. we look at how we can exploit
knowledge about the world, in combination with linguistic facts, to build Computational
natural language systems.

Throughout this discussion, it is going to be important to keep in mimi that the
difficulties we will encounter do not exist 001 of perversit y on the part of some diabolical
designer. Instead, what we see as difficulties when we try to analyze language are fUst
the flip sides of the very properties that make language so powerful. Figure 15.1 shows
some examples of this. As we pursue our discussion of language processing, it i
niportant to keep the good sides in mind since it is because of them that language issign I ticant enough a phenume1iori to be worth all tIle t i C ILIbIC

By far the largest part of human linguistic Communication occur '  as speech Wiiitrn
anguage is a fairly recent invention and still plays a less central role than speech in

most activities. But processsng written language (as3uriI,ng it is written in unambiguous
characters) is easier, in some ways, than processing speech. For e.saiiiple, to build
a program that understands spoken language, we need all the facilities of a v,rjttCn
anguage understander as well as enough additional knowledge to handle all the noise

and ambiguities of the audio signal 	 Thus it is useful to divide the en;iiC language
processing problem into two tasks:

• Processing written test, using lexical, s y ntactic, and semantic knowledge of tIe
language as well a the required real world information

• Processing spoken language, using all the information needed above plus adcJi.
tiorial knowledge about phonology as well as enough added information to hand!
the further ambiguities that arise in speech

Actually, in uia'er5iandin5 pukn, language sie take alsanuage of elucs. such as and he
Presence ( pauses, to sch we do not have access when we read We cain make the task of a speechundeistariding prograji, easier by allowing ii, too, to use these cues. but to ic' -'c' si rTiusi knO'a eflc'Ulh ak,u,hem to iflCOrpouie into the program knowledge (if h'sw to use them

37-,
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The Problem: English sentences are incomplete descriptions of the information that

they are intended to convey:

Some dogs are outside.	 I called Lynda to ask her
to the movies.

She said shed love to go.

Some dogs are on the lawn.	 She was home when I called.

Three dogs are on the lawn. 	 She answered the phone.

Rovrr. Tripp. and Spot arc on the lawn. I actually asked her.

The Good Side: Language allows speakers to be as vague or as precise as they like. It
also allows speakers to leave out things they believe their hearers already know.

The Problem: The sane expression means different things in different contexts.

Where's the water? (in a chemistry lab, it must he pure)
Where's the water? (when you are thirsty. ii must be potable)
Where's the water? (dealing with a leaky roof, it can be uilthy

The Good Side: Language lets us communicate about an infinite world using a finite

(and thus learnable) number of symbols.

The Problem: No natural language program can be complete because new words.

expres.iuns, and meanings can be generated quite freely:

!'ll fax it to you.

The Good Side: Language can evolve as the experiences that we want Co communicate

about evolve.

The Problem: There are lots of ways to Say the same thing:

Mary was born on October 11.
Mary's biribday is October ii.

The Good Side: When you know a lot, facts imply each other. Language is intended to

be used by agents who know a lot.

Figure 15.1: Features of Language That Make It Both Difficult and Useful
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In Chapter 14 we described some of the issues that arise in speech understanding, and in
Section 21.2.2 we return to them in more detail. In this chapter, though, we concentrate

on written language processing (usually called simply natural language processing)
Throughout this discussion of natural language processing. the focus is on English.

This happens to be convenient and turns out to be where much of the work in the field
has occurred. But the major issues we address are common to alt natural Iangu 1 ca. In

fact, the techniques we di scuss are Particularly important in the task of translating from

one natural language to anoihet
Natural language processing includes both understanding and generation. as well as

other tasks such as multilingual translation. In this chapter we focus on understanding.
although in Section 15.5 we will provide some references to work in these other areas

15.1 Introduction

Recall that in the last chapter we defined understanding as the process oi mapping from

an input form into a more immediately useful form. It is this view of understanding
ihat we pursue throughout this chapter. But it is useful to point out here that there is
a foniial cerise in which a language can be defined simply as a set of strings without
reference to any world being described or task to be performed. Although some of the
ideas that have come out of this formal study of languages can be exploited in parts of
the understanding process, they are only the beginning. To get the overall picture, we

need to think of language as a pair (source  language. target representation) together with

1 mapping between elements of each to the other. The target represeutaon will have

neen chosen Co be appropriate for the task at hand. Often, if the task has clearly been
agreed on and the details of the target representation are not important in a particular
discussion, we talk just about the language itself, but the other half of the pair is really

ilways present.
One of the great philosophical debates throughout the centuries has centered around

the question of what a sentence means. We-do not claim to have found the definitive
answer to that question. But once we realize that understanding a piece of language
involves mapping it into some representation appropriate to a particular situation, it

becomes easy to see why the questions "What is language understanding" " anti "What

does a sentence mean?" have proved to be so difficult to answer. Wc use language
in such a wide variety of situations that no single definition of understanding is able
to account for them all. As we set about the tack of building computer programs that
understand natural language. one of the first things we have to do is define precisely
what the underlying task is and what the target representation should look like. In thc
rest of this chapter. we assume that our goal is to he able to reason with the knowledge
.:oritained in the linguistic expressions, and we exploit a frame language as our tareet

'epresentatiun

ISA.! Steps in the Process

before we go into detail on the several coinponeiiI of the natural language understanding
process, it is useful to survey all of them and see how they fit together. Roughly. we can

break the process down into the foitov. int
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• Morphological Analysis —Individual words are analyzed into their components,
and nonword tokens, such as punctuation, are separated from the words.

• Syntactic Analysis—Linear  sequences of words are transformed into structures
that show how the words relate to each other. Some word sequences may be
rejected if they violate the language's rules for how words may be combined. For
example, an English syntactic analyzer would reject the sentence "Boy the go the
to store."

• Semantic Analysis —The structures created by the syntactic analyzer are assigned
meanings. In other words, a mapping is made between the syntactic structures and
objects in the task domain. Structures for which no such mapping is possible may
be rejected. For example, in most universes, the sentence "Colorless green ideas
sleep furiously" [Chonisky. 1957) would he rejetied as semanth oily u,urniab,us

• Discourse Integration—The meaning of an individual sentence may depend on
the sentences that precede it and may influence the meanings of the sentences that
follow it. For example, the word "it" in the sentence, "John wanted it," depends
on the prior discourse context, while the word "John" may influence the meaning
of later sentences (such as. "Ile always had.")

• Pragmatic Analysis—The Structure representing what Was said is reinterpreted to
determine what was actually meant. For example, the sentence "Do you know
what time it is?' should be interpreted as a request to be told the time.

I'tic boundaries between these fise phases are ufteti very fuzzy. The phases ale
:ometimes performed in sequence, and they are sometimes performed all at once. If
they are performed in sequence, one may need to appeal for assistance to another. For
exanipie, part of the process of performing the syntactic analysis of the sentence "Is
the glass jar peanut butter'?" is deciding how to form two noun phrases out of the four
nouns at the end of the sentence giving a sentence of the form "Is the . y'['t. All of
the follo . ing constituents are syntactically possible: glass, glass jar, glass jar peanut,
jar peanut butter, peanut huuer. butter A syntactic processor on its own has no way to
chouse aiiloisg these, and so any decision must be made by appealina to some model
of the world in which .ome of these phrases make sense and others do not. If we rio
this, then we get a syntactic structure in which the constituents "glass jar" and "peanut
butter" appear. Thus although his often useful to separate these live processing phases
to some extent, they can all interact in a variety of ways, making a complete separation
impossible.

Specifically, to make the overall language understanding problem tractable, it sill
help if we distinguish between the following two ways of decomposing a program:

• The processes and the knowledge required to perform the task

• The global control structure that is imposed on those processes

In this chapter. we focus primarily on the first of these issues. It is the one that has
received the most attention from people working on this problem We do not completely
ignore the second issue, although considet ably less of substance is known about it. For
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an example of this kind of discussion that talks about interleaving syntactic and semantic
processing, we Lytinen 119861-

With that cavcat, let's consider an example to see how the individual processes work
In this ezaniple, we assume that the processes happen sequentially. Suppose we have
Sri English interface to an operating .ystem anti the following Sentence is typed:

I want IC' print Bill's [nit file

MorphoIoWal snulysis

Mpnotgie:d analysis rOust do the following things:

, PuP apart the word "Bill's" into the proper noun "Bill" and the possessive suffix

Recognize the sequence ".Inii"as a file extension that is functioning as an adjective
ii the sentence

in addition, this process will usually assign syntactic categories to all the words in the
sentence. This is usually done now because interpretations for affixes (prefixes and
suffixes) may depend on the syntactic category of the complete word. For example.
consider the word "prints" This word is either a plutal noun (with the "-s" marking
plurafl or a thud person singular verb (as in "he prints"), in which case the"-v.- indicates
both siniilai and third pcison. If this step is done now, then in our exampic, there will
I aniliiguiI since "ssaiii,' "print' ann "file" cart all function as more than one syntactic
category.

S y ntactic Analysis

Syntactic analysis must exploit the iesultsol' morphological anal y sis to build a structural
description of the sentence. The goal of this piocess. called pa, sing, is to conveil the.
flat list of words that forms the sentence into a structure that defines the units that are
rcpresen;ed by that flat lisi. For our example sentence, the result of parsing is shown
in Figure 15.2. The details of this representation are not particularly significant: we
describe alternative versions of them in Section l'.2. What is important here is that
a flat sentence has been converted into a hierarchical structure and that that structure.
has been designed to correspond to sentence units (such as noun phrases) that will
correspond to meaning units when semantic Situ) si. is lsormed. One useful thing
we have done here, although not all syntactic systems do, is create a set of entities we
call reference markers. 'lTuey are shown in parentheses in the parse tree. Each one
corresponds to some entity that has been mentioned in the sentence. These refe"ence
markers are useful later since they provide a place in which to accumulate information
about the entities as we get it. Thus although we have not tried to do semantic analysis
i.e,. assign meaning) at this point, we have designed our syntactic anal y sis p ri'ces -.c•

that It will find citnstituer"s i which nieinin Ca" he sssigrie
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.inhl	 file

Figure 15.2: The Result of Syntactic Analysis of "I want In print Bill's.init file.

Semantic Analysis

Semantic anal ysis must do two important things:

• It must map individual words into appropriate objects in the knowledge base or
database.

• it must create the correct structures In correspond to the way the meanings of the
individual words combine with each other

For this example, suppose that we have a frame-based knowledge base that contains
the Units shown in Figure 15.3. Then we can generate a partial meaning, with respect to
that knowledge base, as shown in Figure 15.4. Reference marker RAIl corresponds to
the top-level event of the sentence. It is a wanting event in which the speaker (denoted
by "1") wants a printing event to occur in which the same speaker prints a file whose
extension is ".init" and whose owner is Bill.

Discourse Integration

At this poini, we have figured out what kinds of things this sentence is about. But we
do not yet know which specific individuals are being referred to. Specifically, we do
not know to whom the pronoun "1" or the proper noun "Bill" refers. To pin down thsc
references requires an appeal to a model of the current discourse context, from which
we can learn that the current user (who typed the word "I") is Use&68 and that the only
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Figure 15.3: A Knowledge Base Fragment
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RMJ	 {the whole sentence}
instance:	 Wanting
agent:	 RM2	 {l}
object:	 RM3	 (a printing event

RM2	 {l)

RM3	 4a printing event
instance:	 Printing
agent:	 RM2	 {l)
object :	 RM4	 (BiI!'s .init file)

R.Pi14	 (Bulrs mit file)
lnt(JflUe	 File-S truC
extension :	 , infl
owner:	 RM0	 {Bill)

RM5	 JLBilIJ
Instance:	 Person
fir.c:-nwni': Bill

Figure 15.4: A Partial Meaning for a Sentence

person named"Bill" about whom we could he talking is 11ve))073. Once tile correct
relercnt for Bill is know-n, we can :i?sodelerrniiie exactly which file isbeing referred to:
Fl is tIu niil y tile with the extension '.init" that is owned by Bill.

Pragmatic Analysis

We now have a coriip!etc description, in tse len pFLIViIJcd by our knowledge h:' . ", of
what was said. The final step toward effective understanding is us dscide what to do as
a result. One possible thing to do is to record what was said as a fact and be done with
it. For some sentences, whose intended effect is clearly declarative, that is precisely the
correct thing to do. But for other sentences, including this one, the intended effect is
different. We can discover this intended effect by applying a set of rules that characterize
cooperative dialogues. In this example, we use the fact that when the user claitris ij
want something that the system is capable of peurming, then the system should go
ahead and do it. This produces the final meaning shown in Figure 15.5.

The final step in pragmatic processing is to translate, when necessary, from the
knowledge-based representation to a command to be executed by the system. In this
case, this step is necessary, and we see that the finat result of the understanding process
is

tpr /wsmith/stuff.jnit
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Meaning
instance:
agent:
performer
object:

P27
instance:
agent:
object:

Commanding
UserO68
This-System
P27

Printing
This-System
F!

Figure 15.5: Representing the Intended Meaning

herc 1pr is the operating system's tile print command.

summary

At this pomi, we have seen the results of each of the main processes that combine
to loon it language system. In a complete sysiem, all of these processes are
necessary in some form. For example. it may have seemed that we could have skipped
the Lnoslcdc-hased representation of the meaning of the sentence since the tinJ
output of the understanding system bore no relationship to ii. But it is that inteniiedia.e
knowledge-based representation to which we usually attach the knowledge that cupportr.
he creation of the final answer.

All o the processes we has e described are important in a complete natural language
understanding system. But not all programs are written with exactly these components.
Sometimes two or more of them are collapsed, as we will sec in several sections later in
this chapter Doing that usually results in a system that is easier to build for restricted
uhsts or Eii!i 'h but one thu is hardet to extend to wider coverage. In the rest of this

chapter we describe the major processes in more detail and talk about some of the ways

n wh'ch ihol can be put together to form a complete system.

15.2 Syntactic Processing

Syntactic processing is the step it, which a hat input sentence is converted into a
hierarchical structure that corresponds to the units of meaning in the sentence. This

process is called parsing. Although there are natural language understanding systems

that skip this step (for example. see- Section 15.3.3). it plays an important role in many

natural language understanding systems for two reasons:

• Semantic processing must operate on sentence constituents. If there is no syntactic
parsing step, then the semantics system roust decide on Its own constituents- If
parsing is done, on the other hand, it constrains the number of constituents that
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Semantics can consider. Syntactic pal-sing IS computationally IcNs expensive than
is semantic processing (which may require substantial inference). Thus it can
play a significant role in reducing overall system complexity.

• Although it is often possible to extract the meaning of a sentence without using
grammatical facts, it is not always possible to do so. Consider, for example, the
sentences

- The satellite orbited Mars.

- Mars orbited the satellite.

In the second sentence, syntactic facts demand an interpretation in which a planet
(Mars) revolves around a satellite, despite the apparent improbability of such a
scenario.

Although there are many ways to produce a parse. almost all the systems that are
actually used have two main components:

• A declarative representation, called a grammar, of the syntactic facts about the
language

• A procedure, called a parser, that compares the grammar against input sentences
to produce parsed structures

15.2,1 Grammars and Parsers

The most common way to represent grammars is as a set of production rules. Although
details of the forms that are allowed in the rules vary, the basic idea remains the same
and is illustrated in Figure 15.6, which shows a simple context-free, phrase structurç
grammar for English. Read the first rule as, "A sentence is composed of a noun phrase
followed by a verb phrase." In this grammar, the vertical bar should be read as "or.
The r denotes the empty string. Symbols that arc further expanded by rules are caller
nnntprniinal symbols. Symbols that correspond directly to strings that must be found irl
an input sentence are called termni-:al symbols.

Grammar formalisms such as this one underlie many linguistic theories, Which
in turn provide the basis for many natural language understanding systems. Modern
linguistic theories include: the government binding theory of Chomsky [1981; 1986].
(iPSO [Gazdar et al., 1985]. LFG [Bresnan, 19821, and categoria] grammar [Ades and
Stecslman, 1982: Oehrle et al-, 1987]. The first three 3f these arc also discussed in Sells
[1986]. We should point out here that there is general agreement that pure, context-
free grammars are not effective for describing nai•:ral languages. 2 As a result, natural
language processing systems have less in common with computer language processing
systems (such as compilers) than you might expect.

Regardless of the theoretical basis of the grammar, the parsing process takes the
rules of the grammar and compares them against the input sentence. Each rule that
matches adds something to the complete structure that is being built for the sentence.

'Tbertis. however, still some debeic on whetwrconlexi-freegrunmanare tunnally adequate for descob-
ing n*iweJ languages (e.g.. Oazdar 119821.)
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S —'NPVP
NP -* the NP!
NP --t. PRO
NP PN
NP - NP!
NPI -4 AV)JS N
ADJS - t 1 MJJ ADIS
VP -4 V
VP - V NP
N - fileI printer
PN -* Bill
PRO -41
ADJ -* short I Ltmg I fast
V - printed i created I want

Figure 15.6: A Simple Grammar for a Fragment of Enghsh

The sttnplest structure to build is a parse tree, which simpl y records the rules and

how they are matched. Figure 15.7 slviws the parse tree that would be produced for
the sentence 'Bill printed the file" using this gram1na- Figure 15.2 contained another
example of a parse tree, although some additions to this grammar would be required to

produce it.
Notice that every node of the parse tree corresponds either to an input word or 

to it

nontermiflal in our gra ,iar. Each level in the parse tree corresponds to the applicaiioIr 
of one grammar rule. As a result, it should he clear that a grammar specifies two things

about a language:

• Its weak generative capacity, by which we mean the set of sentences that at*-

contained within the language. This set (called the set of 
gramfltatlrOl sentences)

is made up of precisely those sentences that can be conipletelY matched by a series

of rules ir. the urammar.

• Its sLross (
;iteraIiVe capacity, by which we mean the structure br possibly struc-

• tures) to be assigned to each grammatical sentence of the language.

So far, we have shown the result of parsing to be exactly a trace of the rules that
were applied during it. This is not always the case. though. Some grammars contain
additional information that describes the structure that should be built. We present au

example of such agranunar in Section 15.2.2.

But first we need to look at two important iSSUeS that define the space of possible

parsers that can exploit the grammars we write

lop-Down versus Bottom-Up Parsing

To parse a sentence, it 
is necessary to find a way in which that sentence could have been

generated from the start symbol. There are two ways that this can be done:
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NP	 VP

PN	 NP

Bill	 Printed the	 NPj

zl'\
ADJS	 N

€	 tile
Figure 157: A Parse Tree for a Sentence

• Thp'Down Par.crng_ 
-Begin with the start symbol and apply 

thegramm uttesforward until the symbols at the terminals of the tree
correspond to the componentsOf the sentence being parsed,

Bottom Lip Par.on(BegJ n with the SCflICBCC to be parsed and apply the grammarrules hackw,d until a single tree whose terminals are the words of the sents-niyand whose top node is the start symbol has been produced

'Ilie choice between these two approachesis siniilij- to 
[he ctioi between forwareand backward reasoning in other Prohlerncolving tasks. 

The	 a.most i mportant considerlion is the branching factor is it gre
ater going backward or furward' Another importantissue is the availability of good heuristics for evaluating progress. Can partial infornmlion be used to rule out paths early? 

Sometimes these two approaches are combinedinto a single method called boit on-up parsing with top -down fi
ltering In this methodparsing proceeds essential 	 A.

But using tables that have'y bottom-up (i.e.. the grammar rulx are applied hackwariJ
been precomputed for a particular grammar, the parser canimmediately eliminate Constitije fl Ic that can never he combined into useful higher-teveiSitiICIU

Finding One In terpretation or Finding Many
As several of the examples above have shown, the piocess of understanding a senrefleis a search process in which a large universe of possible interpretations must be explored
to find One that meets all the constraints imposed by a particular sentence. As for any
search process, we must decide 

whether to explore all possible paths or, instead, to
explore only a single mostlikely one and to produce only the result of that one 

pa:h asthe answer.

Suppo5, for example that a sentence prOccSSnr looks at the words of an inputsentence one at a time S front left 10 right, and suppose that so far, it has seen:
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"Have the students who missed the e,an--

There are two paths that the processor could be following at this point:

• "have" is the main verb of an imperative sentence, such as

"Have the students who missed the exam take it today."

• "Have' is an auxiliary verb of an iiitcrrogalive sentence, such as

"Have the students who missed the exam taken it today?"

['here are tour ways of handling sentences such as these:

• All Paths—Follow all possible paths and build all the possible intermediate com-
ponents. Many of the components will later be ignored because the other inputs
required to use them will not appear. For example, lithe auxiliary verb tnterpeta
lion of "have" in the previous example is built. it will be discarded if no participle.
such as "taken." ever appears. The major disadvantage of this approach is that,
because it results in many spurious constituents being built and many deadend
paths being followed, it can be very inefficient.

• Best Path with Backtracking —Follow only one path at a time, but record, at every
choice point, Lite information that is necessary to make another choice it the chosen
path fails to lead to a complete interpretation of the scntence, 

In thisthis example.

it'the auxiliary verb interpretation of "have" were chosen first and the end of the
st'flIeIiC&' appt':ii'e(t with no main verb haviuug been seen, the uriderstander would
detect failure and backtrack to try some oilier path. There are two important
drawbacks to ibis approach. The first is that a good deal of time may be wasted
saving state descriptions at each choice point, even though backtracking will occur
to only a few of those points. rhe second is that often the same constituent may
be analyzed many times. In our example. it the wrong interpretation is selected
for the word "have," it will not be detected until after the phrase "the students
who missed the exam" has been rt'cogniied O,ice the error is detected, a simple
backtracking mechanism will undo everything that was dune after the incot reel
interpretation of "have" was chosen, and the noun phrase will be reinterpreted
(idenlicaliy) after the second interpretation of "have" has been selected. This-
problem can he avoided using some form of dependency-directed backtracking,
but then the implementation of the parser is more complex.

• Best Path with Patihup—Foll only one path atat a time, but when an error is

detected, explicitly shuffle around the components that have already been forn'icd
Again, using the same example, if the auxiliary verb interpretation of "have" were

chosen first, then the noun phrase "the students who missed the exam" would
be interpreted and recorded as the subject of the sentence. If the word "taken"
appears ncxt, this path can simply be continued. But it "take" occurs next, the
understander can simply shift components into different slots,, "Have" becomes

the main verb. The noun phrase that was marked as the subject of the sentence
becomes the subject of the embedded sentence "The students who missed lIre
exam take it today." And the subject of the main sentence can be filled in .r'
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"you," the default subject for impetative sentences. This approach is usually
more efficient than the previous two techniques. its major disadvantage is that
it requires interactions among the rules of the grammar to be made explicit in
the rules for moving components from one place to another The interpreter
often becomes ad hoc, rather than being simple and driven exclusively from the
grammar.

4t and ,Se—Folloss only one path. but rather thaji making decisions about
the function of each component as it is encountered, procrastinate the decision
until enough information is available to make the decision correctly. Using this
approach, when the word "have" of our example is encountered, it would be
recorded as some kind of verb whose function is, as yet, unknown. The following
noun phrase would then be interpreted and recorded simply as a noun phrase.
Then, when the next word is encountered, a decision can be made about how all
the constituents encountered so far should be combined. Although several parsers
have used some fnirn of wait-and-sec strategy, one, PARSIFAL [Marcus, 19801,
relies on it exclusively. It uses a small, fixed-size buffer in which constituents
can be stored until their purpose can be decided upon. This approach is very
efficient, but it does have the drawback that if the amount of Jookahcad that is
necessary is greater than the size of the buffer, then the interpreter will fail. But
the sentences on which it fails are exactly those on which people have trouble,
apparently because they choose one interpretation, which proves to be wrong. A
classic example of this phenomenon, called the garden path sentence, is

The horse raced past the barn fell down.

.'though the problems of deciding which paths to follow and how to handle back-
tracking are common to all search proce.sses, they are complicated in the case of language
understanding by the existence of genuinely ambiguous sentenccs, such as our earlier
example "They are flying planes." If it is important that not just one interpretation but
rather all possible ones be found, then either all possible paths must be followed (which
is scry expensive since most of them will die out before the end of the sentence) or
backtracking must be breed (which is also expensive because of duplicated cotopimia-
lions). Many practical systems are content to find a single plausible interpretation. It
that interpretation is later rejected, possibly for semantic or pragmatic reasons, then a
new attempt to find different interpretation can be made

Parser Summary

As this discussion suggests, there are many ditft;ent kinds of parsing s ystems. There
are three that have been used fairly extensively in natural language systems:

• Chart parsers [Winograd. 1983], which provide a way of avoiding backup by
storing intermediate constituents so that they can be reused along alternative
parsing paths.

• Definite clause grammars [Pereira and Warren. 19801. in which grammar rules
re written as PROLOG clauses and the PROLOG interpreter is used to perform

top-down, depth-first parsing.
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• Augmented transition networks (or ATNs) [Woods, 19701, in which the parsing
process is described as the transition from a start state to a tmal state in a transition
network that corresponds to a grammar of English.

We do not have space here to go into all these methOdS, in the next sectioll. -
illustrate the main ideas involved in parsing by working through an example with an
ATN. After this, we loolcas one way of parsing with a more declarative representation

I 5.22 Augmented Transition Networks

An augmented transition network (A!'N) is a top-down parsing procedure that ahlow\
various kinds of knowledge to be incorporated into the parsing system so it can operate
efficiently. Since the early use of the ATh in the LUNAR system [Woods, 19711. which
provided access to a large database of iriforniatron on lunar geology, the mechanism has
been exploited in mans' ianguage-understanding systems. The ATN is similar to a finite
state machine in which the class of labels that can be attached to the arcs that define
transitions between states has been augmented Arcs may be labeled with an arbitrary

combination of the following:

• Specific words, such as "in."

• Word categories, such as "noun."

• Pushes to other networks that recogni/e gnificant i oniponents of a Seflienci
For example, a network designed to recognize a prepositional phi ase (PP) ni
include an arc that asks for ("pushes for") a noun phrase (NP).

• Piocedures that perform arbitrary its on both the current input and on sentence
components that have already been ideiti lied.

• Procedures that build structures that will form part of the final par-Figur

e 15.8 shows an exa
mp

le Li t an ATN iii graphical notation Figure 1.9 shoP."

the top level ATN of that example in a notation that a prograiii could read To see how
an Al N works, let us trace the execution of this ATN a it parses the fotlowing sentence

The tong tile has printed.

rhic execution proceeds as follows.

beg' a in state S

2. Push to

3. Do a category ¶C5I 4	 "the" is  deLcriiii:

4. This test ,uceeeds. SO SCI otw 1't'JEKMINER i'j5tCi it'. )Li-kNl1h,'- arm el

state Q6

Do a ca.-gory test to ace 1 "lon g' 1. ei adjective.
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Adj PP

GNP 	 Det	 N

z::::Zz 

(^)

POP
Figore 15.8: An ATh Netwo* for a Fragment of English

6. This test sicceeds, so append "long" to the list contained in the ADJS rester
!1I5 !St was previously empty.) Stay in state Q6.

1. Do a category test to see if "file" is an adjective. This test f&ls

8. Do a category lest to see if "file" is a noun. This test succeeds, so set the NOUN
register to "file" and go to state Q7.

9. Push to PP

10. Do a category test to see if"has" is a preposition. This test fails, so pop ant ignaJ
failure,

II - There is nothing else that can be done from state Q7. so pop and etuln the structure

(NP (FILE (LONG) DEFINITE))

The return causes the machine to be in state QI. with the SUBJ register set to the
aructure just returned and the [YPE register s. - )CL.

12. Do a category test to see it "has" is a verb. This teal succeeds, so set the AUX
icgiscr to NIL and set the V register to "has," Go to state Q4.

13. Push to state NP. Since the next word. "printed." is riot a determiner or a prc per
noun, NP will pop and return failure.

14. The only other thing to do in staie Q4 is to halt. Ru: bore input remains, so a
complete parse has not beer f;u'4 Backtracking is now rquirnd.
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PUSH NP/ T
Sh!k SUB) *)

(SETR I'YI'E (QUOTE X'L.))
(TOQI)'

(CAT AUX T
(SETR AUX
(SEI'R TYPE (QUOTE Q))
(TO Q2)))

(QI (CAFVT
(SETR AUX NIL)
(SETh V *)
(TO Q4))

(CAT AUX T
(sErR AUX *)
(TO Q3)))

(Q2 P(SH NP/T
SLTR SUBJ )

(TO Q3')
(Q3 (CAT V T

(SEFR V *)
(TO Q4)))

(Q4 (POP (BUILDQ(S + + + (VP +))
lYPE SUB) AUX V) T

(PUSH NP/T
(SETR VP tBUILDQ VP (V .) *) V)
1'O Q5))

(Q5 (POP (BUILL)Q (S + + + +
TYPE St 1111 AUX VV)

 PP/ T
SEiR VP (APPEND (GETR VP) (LIST
10 Q5))

Figure 15 9 An ATN (irammar in I it Ftrm
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15. llhL 1at choice point was at state Q o rcturi tF,ere. [he registers AUX and V
.ousl b unset

16 Do a category test to see if "has" is an auxiliary. This teat ue.eeda. so set the
AUX register to "has" and go to state Q3.

17. Do a category test to see if "printed" I; a verb. Tiii'. test succeeds, io set the V
register to "printed." Go to state Q4.

18. Now, since the input is eIiausird, Q4 is an acceptable final state. Pop and return
the structure

(S DCL (NP (FILE (LONG) DEFINITE))
HAS
(VP PRINTED))

This structure is the oitput of the parse.

This example grammar illustrates several Interesting points about ti le use of ATNs.
A single subnetwork need only occur otiet' even though it is used in more than one place.
A network can be called recursively. Any number of internal registers may be used to
contain the result of the parse. The result of it network can be built, using the funetior
RUILDQ. out of vahies contained in the various system registers. A single state tna
be both a final s:ate, in which a complete sentence has been found, and an intermediate
state. in which only a part of a sentence has becri recognized And. fitially, the uontrnic
01 3 register can be modified at any time.

In addition, there are ,s variety of ways kri 'which .I'Ns e an he used whicn are W.O.

shniA ii in this example.

The contents of legisicis can he sappcd. For example. iI ti'1eo.or vcrc
xparrded to recognize passive sentences then at the point that the passive was

detected, the current contents of the SUBJ register would be transferred to an
OBJ register and the object of the preposition "by' would be placed in the SEmi
register. Thus the final interpretation l the following two erittiice , ould h' the
sarn'

- Bill printed the file.

- The tile wrinired by Bill.

Arb:trar, c.St can b--placed on the ao' lii each of the aSLM in thi' r,tr,r,t'
test 4'..pec ed suinpi) a	 (always true ,,. But 0'IIS need not be 'he case	 ut'io.
thrit wi: hc li rsi NP is found, its number is determined and recorded in.. rctCi
called .' LMlWR Then the arcs labeled \' coukl have an iddittoitri test placed on
,hem that checked that the number of the particular verb that was round is equal
to he value stored in NUMBER. More sophisticated tests. ..,irtviiii semantic
riarkers o: other cenaiitic features, can also be peiforn;c

152.3 tnitkation Grammars

AIN grammars have substantial 1rocdund components. The gr4ntrnar describes the
order i n shtcr .'r,astituents must be built. Van:o"es are ex plicitl y given s'dues, and
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they must already have been assigned a valuet>--fore they can be jeletenced. Thi'.
procedurality limits the effectiveness of ATN grammars in some cases. for example: it

speech proces sing where some later parts of the sentence may have been recogmied
1early while earlirr pans are still unknown (for example suppose we had heard, The

l
ong . $ file printed."), or in systems that want to use the same gramni;r in support

both understanding and geueratiun (e.g.. Appelt 1198';]. Shieber I1988 40(1 Barnett Ci

o:. jl9V01). Although there isno clear distinctiofl'Detwcen declarative and procedural
;epICSCntatiOflS as we '.aw in Section (.1). there iN a speetilnn and it often turn', out that

more declarative representations are more flexible than more procedural ones are. So in

his section we describe a declarative approach to represeiitni giaiinhia
When a parser applies giamlnar rules to a sentence, it performs two major kinds of

operations-

* Matching kof sentence consliluents to grammar rules)

. Buildin g
 structure (corresponding to the result of combining constituents)

No think back to the unification operation that we described in Section 5.4.4 as part
of our theoie;'l-pros ing discussion. Matching and Structure building are operations that
unilicatlon pertornis naturally. So an obvious candidate for representing grammars. is
some structure on which we can define a unification operator. Directed acyclic graphs

(DAUs) can do exactly that.
Each DA(; represents a set of attribute-value pairs. For example. the graphs curie-

sponding to the words "the' and "lil&' are:

UAT: NCAL DET	
LEX: tileI.EX. the]	
NUMBER: SINGI

Both words have a lexical category (c),vr) and a lexical entry. In addition, the word
"file" has a value (SING) for the NUMBER attribute ftc tesult of combining these

w r
' words to forma simple NP can also be dsciihed as a graph.

F NP 'Dt'T the
hEAD: file
NUMBER: SINGII

'iw ue tia foi;is iVi j ,
 new constituent can also be represented as a graph. but to

do ss se need to introduce a nt w notation. Until now, all our graphs have actually been
tior. to JL,cribe graphs thai uc not trees, we need a way to label a pit-CC 0f ;J graph

iini 'he;; poini to that piece elsewhere in the graph. So let {n) for any value Of F7 he

abel, which is to he interpreted as a label for the next constitUCfll following it in the

graph Sometimes, the constituent is empty (i e . theme is not yet any structure that is
known to till that piece of the graph). In that case, the label functions very much like a
variable and will be treated like one by the unification operation. It is this degenerate
kind of a label that we need in order to describe the NP rule:

NP -DETN

We can wñte this rule as the following graph:
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[CONSTITUENT1: ICAT: DET
LEX: {l}l

CONSTITUENT2: [CAT: N
LEX: 121
NUMBER: (3)1

BUILD: INP: [DET: { I
HEAD: 2}
NUMBER: {3}])1

This rule :'.hould bc read as follows: Two constituents, dcsci ibed in the subgrapiv labeled
CONSFITUENT1 anclCONSTITUENT2,are to be con.hiiietl. The first musk be of CAl
DEl'. We do not care what its lexical entry is, but whatever it is will be bound to the
label (11. The second constituent must be of CAl' N. Its lexical entry will bound to
the label {2}, and its number will be bound to the label {3}. The result of combining
these two Constituents is described in the subgraph labeled BUILD. This result will be a
graph corresponding to an NP.with three attributes: DET, HEAD. and N!JMBIR. Th4
values for all these attributes arc to be taken from the appropriate piec cF the graphs
that are being combined by the rule.

Now we need to define a unification operator that can be applied to the graphs
have just described. It will he very similar to logical unification. Two araph.N unity if,
recursively, all their suhgraplLs unify. The result of a successful uninciiiur' 's 4 graph
that is composed of the union of the subgraphs of the two inputs, with alt hoidings made
as indicated. This process bottoms out when a subgraph is not an at:rthie value pair
but is just a value for an attribute. At that point, wc must define what ii iCaus fo:
two values to unify. Identical values unify. Anything unifies with a variable ka lab&
with no attached structure) and produces a binding fir the label. The simplest thins
to do is then to say that any other situation results in failure. But it riia be usefu:
to be more flexible So some systems allow a value to match with .s ncon: general
one (e.g., PROPER-NOt.N matches NOUN). Others allow values that are disjunctions
e.g.. (MASCULINE V FEMININE), in which ease unification succeeds whenecr the

intersection of the two values is not empty.
there is one other important difference betweet' Iogicat tin it', 	ansi graph uriiri

cation. The inputs to logical unification are treated .ss logical form Order matters,
since, for example. f(u), h(h)) is a different formula than fth(h). gh. The inputs to
grap!, unifi.'.atioii, on the other hand. must b' treated as sets, since the oruer in which
atiribute-vrsiue pairs are stated	 not matter. For example, it a rule describe.,; a
constituent as

[('Al: DFI'
LEX: I 11

we want to he bk to maidi a uonstituent such as

[!.EX: the
(;AT: !)fT1

Algorithm; Graph-Luffy

I. It C'lhcr (	 c;r (,2 is an attribute that is not itself an attribute -value pair then:
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(Ai If the sttribute.s conflict (as defined above), then fail

(b) If either is a variable, then bind it to the value of the other and return that

value.
(c Otherwise, return the most general value that is consistent with both the

original values. Specifically, if disjunction is allowed, then return the

section of the values.

2. Otherwise. do

(a) Set variable NEW to empty.

(b) For each attribute  that is present the top level) in either G  
Or G2 do

i. If .4 is not present at the top level in the other input, then add A and its

value to NEW.

ii. If it is, then call Graph-Unify with the two values for A. If that tails,

then fail. Otherwise, take the new value of A to be the result of that

unification and add A with its value to NEW.

c) If there are any labels attached to G  or G2, then bind them to NEW and

return NEW.

A simple parser can use this algorithm to apply a grammar rule by unifying CON-

'li'l'l ! ENTI with a proposed first constituent. If that succeeds, then CONSTITUENT2

i unified with a pwposcd second constituent. If that also succeeds, then a new con-
Oituent corresponding to the value of RI ILD is produced. If there are variables in the
value of BUILD that were bound durrig the matching of the constitUentS, then those
hitidings will be used to build the new constitUCflt.

There are many possible variations on the notation we have described here. There
also a variety of ways ot using it to represent dictionary entries and grariimar rule'..

'ice Shietier j 19861 and Knight [1989I tor discussions (if some of them.
%ithough we have presented unification here as a technique for doing syntactic

iislycis. it has also been use([ .is a basis for semantic interpretation. In fact, there are
arguments for using it as a uniform representation for all phases of natural language

oderst:ciidco.r. there are also arguments against doing so, primarily involving system
os.'dularity. the noncompositiOfl"liiY of language in some respects ( see Section 15.3.4).

.irid 
the riced to invoKe substantial domain reasoning. We will not sy any rnoe about

hc-- hi1' . rc hv this idea could work, see Allen [1959].

15.3 Semantic Analysis

trrC 1 flg .i ..sntactic parse 01 a sentence is only lie first step inward understanding

ii. We must still produce a representation of the meaning of the sentence. Because
understanding is a mapping process, we must first define the language into which we are
trying to map. There is no single, definitive language in which all sentence meanings
can be described. All of the knowledge representation systems that were described in

Part 11 are candidates, and having selected one of more of them. we still need to define

the vocabulary (i.e.. the predicates. frames, or whatever) that will be used on top of the
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structure. In the rest of this chapter, we call the final meaning representation langua>te,
including both the representational framework and the specific meaning vocabulary, the
target language. The choice of a target language for any particular natural languag '

-understanding program must depend on what is to be done with the meanings once ;hey
are constructed. There are two broad families of target languages that are used in NI
systems, depending on the role that the natural language system is playing in a 151 wi:

system (if any).
When natural language is being considered as a phenomenon on its own, as, fol

example. when one builds a program whose goal is to read text and then nsse
questions about it. a target language can be designed specifically to support lan,uage
processing. In this case, one typically looks for primitives that correspond to distinctions
that are usually made in language. Of course, selecting the right set of primitives is not
easy. We discussed this issue briefly in Section 4.3.3, and in Chapter 10 we loc,I!i e
two proposals for a set of primitives, conceptual dependency and CYC.

When natural language is being used as an interface language to another progrart.
(such as a database query system or an expert system), then the target Language most
be a legal input to that other program. Thus the design of the target language is driven
by the backend program. l'his was the case in the simple example we discussed to
Section l.11 But even in this case. it is usefu l , as ... showed in that example i..
use an intermediate knowledge-based representation ti guide the overall process So,
in the rest of this secTion, we assume that the target language we ate building Is 4

knowledge-based one.
Although the main purpose of semantic processing is the creation of a target language

representation of a sentence's meaning, there is anoMer important role that it plays it
imposes constraints on the representations that can be constructed, and, because of the
structural connections that most exist between the syntactic structure and the semaitic
one, it also provides a way of selecting among competing syntactic analyses. Scmantis
processing can impose constraints because it hits access to knowledge about what naks
sense in the world. We already mentioned one example of this, the sente rwe. 'l the

glass j ar peanut buttrr There are other examples in the rest of this section.

lexical Processing

The first step in any semantic processing system is to took up the individual words in
a dictionar (or inr..ird and extract their iiieanings. Unfortunately, many words have
several meanings, and it may not be.po'.sible to choose the correct one just by looking
at the word itself For example. the word 'diamond" might have t he following set of

meanings

• A geometrical shape with four equal sides

• A baseball field

• An extremely hard anti valuabli- gemstone

To select the correct meaning for the word "duaniund in the sentence.

Joan saw Susan's diamond shimmering from across the room.
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it is necessary to know that neither geometrical shapes nor baseball lieldshs- mmer.

whereas gemstones do. 
Unfortunately. if we view English understanding as mapping from English words

into objects in a specific knowledge base, lexical ambiguity is often greater than it seems
in everyday Faiglish. For, exauipk, consider the word "mean." This word is ambiguous
in at least three ways: it can be a verb meaning "to signify"; it call an adjective
meaning "unpleasant" or "cheap"; and it can be a noun meaning ".statistical average."
But now imagine that we have a knowledge base that describes a Statistics program and
its operation. There might be at least two distinct objects in that knowledge base, both
of which correspond to the "statistical average" meaning of "mean.' One object is the
statistical concept of a mean: the other is the particular function that computes the mean
in this program. To understand the word "mean" we need to map it into some concept in

our knowledge base. But to do that, we must decide which of these concepts is meant.

Because of cases like this, lexical ambiguity is a serious problem, even when tlie.domain

of discourse is severely constrained.
The process of determining the correct meaning of an individual word is called wo,d

rence disambiguation or lexical dtsumheuanon. It is done by associating, with each

word in the lexicon, information about the contexts in which each of the word's senses
may appear. Each of the words in a sentence can serve as part of the context in which
the mcaiiings of the other words must he determined.

Sometimes only very straightforward information about each word sense is neces-
sary. For example, the baseball field interpretation of "diamond" could be marked as
a LOCAtiON. Then the correct meaning of "diamond" in the sentence "I'll meet you
at the diamond" could easily be detennined if the fact that at requires a TIME or a
LOCATION a.s its object were recorded as part of the lexical entry for at. Such simple

properties of word senses are called semantic markers, Other useful semantic markers

are

• PHYSICAL-OBJEC'l'

• ANIMATE OBJECT

• ABSTRACT-OBJECT

Using these markers, the correct meaning of "diamond" in the sentence "I dropped
my diamond" can be computed. As part of its lexical entry, the verb "drop" will specify
that its object must be a PHYSICAL-OBJECT. The gemstone meaning of "diamond"
will be marked as a PHYSICAL OBJECT. So it will be selected as the appropriate

meaning in this context.
This technique has been extended by Wilks 11972: 1975a: 1975b in his preference

semanth:s, which relies on the notion that requirements. such as the one described above
for an object that is a 1.0—CATION. are rarely hard-and-fast demands. Rather, they can
best be described as preferences. For example, we might say that verbs such as "hate"
prefer a subject that is animaL? Thus we have no difficulty in undersi anding the sentence

Pop hates the cold,

	

as describing the feelings of a man and not those .f scti' frmnk U .t	 ')nj4' k

sentence
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My lawn hates the cold

Now there is no animate subject available, and so the metaphorical use of lawn act4sas an animate object should be accepted.
Unfortunately, to solve the lexical disambiguation problem completely, it becomenecessary to introduce more and morn finely grained semantic' markers. For exampeto interpret the sentence about Susan's diamond correctly, 

we must

	

d iamond as SHIMMERABLE while the other Iwo are marke4	
maik oneNen.so, 01

NONSH1MMERABAs the number of such markers grows, the size of the lexicon becomes unmanageable.In addition, each new entry 
into the lexicon may require that a new marker be added to

each of the existing entries. The breakdown of the semantic marker 
approach when henumber of words and word senses becomes large has led to the 

development of other
ways in which correct senses can be chosen We return to this issue in Sect ion 15.3.4

Sentence-Level Processing

Several approaches to the problem of creating a semantic 
representation of ahave been developed, including tt 'Jkwing:

	

• Semantic grammars, which combine syntactic, semantic 	 pragmatic knowl.andedge into a single set of rules in the formof a grammar . Th result of parsing
sentence	

ewith such a grammar is a semantic, rather than just a 
syntactic, descrip tion of a

• Case gra
mmars, in which the siniriure that is built by the parser contains sonic

semantic information, although further interpretation may also be necessary.

• Conceptual parsing, in w hich syntactic and semantic k nowledge are combinedinto a single interpretat i on system that is driven by the sethis approach syntactic parsing is subordinated to semanti mantic knowledige In
c interpretation whichis usually used to set up strong expectations for particular sentence strictures.

• Approximately compositional semantic interpretation,in which semantic pro-cessing is applied to the result of performing a 
Syntactic parse. This can be doneeither incrementally, as Constituents arc built, or all at once, when a structurecorresponding to a complete sentence has been built

In the following sections, we discuss each of these approaches.

153.1 Semantic Grammars
A semantic grammar [Burton, 1976; Hendrix er al., 1978; Hendrix and Lewis, 19811is a context-free grammar in which the choice of 

nonternlinals and production rulesis g
o

v
erned by semantic as well as syntactic function In addition there is usually a

semantic action associated with each grammar rule. The result 
ofall the associated semantic actions	 parsing and appyirtg

designed arou	

is the meaning of the sentence,	 is close Couplingof semantic actions to grammar rul 	 This
es works because the gra	 ar rulesdes rJ key semantic concepts	 themselves ale
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S -* what is FILE-PROPERTY of FILE?
(query FILE.FILE-PROPERTY

S'—* I want tocON
(command ACTION

FILE-PROPERTY -* the FILE-PROP
{FILE-PROP}

FILE-PROP --4 extension I protection I creation date I owner

{value}
1-ILE - FILENAME I FILE 

vaiue
HLEI USER's FILE2

{FILE2.owncr : USER
FILEt —F1I.F1

{FILE2)
FILE2 -4 EXT file

{instance: file-struct
extension: EXT}

EXT - mit I.txt I isp I .tor I ps I .mss
value

ACTION -4 print FILE
(instance: printing

object: FILE}
AC! ION -4 print FILE on PRINTER

(instance: printing
object: FILE
printer: PRINTER

USER -4 Bill I Susan
(value}

Figure 15.10: A Semantic Grammar

An example of a fragment of a semantic grammar is shown in Figure 15.10. This
grammar defines part of a simple interface to an operating system. Shown in braces
under each rule is the semantic action that is taken when the rule is applied. The term
'value" is used to refer to the value that is matched by the right-hand side of the nile

The dotted notation x.y should be read as the y attribute of the unit x. The result of a

successful parse using this grammar will be either a command or a query.
A semantic grammar can be used by a parsing system in exactly the same ways in

which a strictly syntactic grammar could be used. Several existing systems that have

used semantic grammars have been built around an ArN parsing system, since it offers

a great deal of flexibility.
Figure 15.11 shows the result of applying this semantic grammar to the sentence

I warn to print Bills mit file



I	 want	 to	 print	 Bills
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LcOii.maiid: I instance: printing
object: instance: file-struct

extension; mit
owner: Bill

ACTION
e: printing
(Instance: file-stnjci
extension Anil
owner: Bill

/41"LE

FuEl
[instance: file-sinict
extension: .init
owner: Bill

FtLE2
//jinrLancc: file sn-tic!

extension: .jflit
owner: Billl!

EXT

.Iflil	 file.

Figure 15.11: The Result of Parsing with a Semantic Grammar
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Notice that in this approach, we have combined into a single process all five steps
of Section 15. 1.1 with the exception of the final part of pragmatic processing in which

the conversion to the systems command syntax is done.
The principal advantages of semantic grammars are the following:

• When the parse is complete, the result can be used immediately without the
additional s(agc of processing that would be required if a semantic interpretation

had not already been performed during the parse

• Many arnhiguiiicsllial would arise during a strictly syntautic parse can be avoided

since some of the interpretations do not make sense semantically and thus cannot
be generated by a semantic grammar. Consider, for example, the sentence "I
want to print stuff .txt on printer3." During a strictly syntactic parse, it would not
be possible to decide whether the prepositional phrase, "on printer3" modified
"want" or 'print." But using our semantic grammar. there is no general notion of
a prepositional phrase and there iz, no attachment ambiguity.

• Syntactic issues that do not affect me semantics can be ignored. For example,
using the grammar shown above, the sentence, "What is the extension of .lisp
file?" would be parsed  and accepted as correct.

There are, however, genie drawbacks to the use of semantic grammars:

• The number of rules required can become very large since many syntactic getter

alizations are missed.

• Because the number of grammar rules may be very large, the parsing process ma)

be expensive

After many experiments with the use of 
semantic grammars in a variety of domains,

the conclusion appears. to be that for producing restricted natural language interfaces

quickly, the y can be very useful. But as an overall solution to the problem of lan-
guage understanding they are doomed by their failure to capture important linguist:.

generalizations.

15.3.2 Case Grammars

Case grammar! IFtilmore. 1968: Bruce, 19751 provide a different approach to the
problem of how syntactic and semantic interpretation can be combined. Grammar rules
are written to describe syntactic rather than semantic regularities. But the structures the
rules produce correspond to semantic relations rather than to strictly syntactic ones. As
an example, consider the two sentences and the simplified foi ins of their conventional

parse trees shown in Figure 15.12.
Although the semantic roles of "Susan" and "the file" are identical in these two

sentences, their syntactic roles are reversed. Each is the subject in one sentence and the
object in another.

Using a case grammar, the interpretations of the two s,ntenccs would both be

(printed (agent Susan)
(object File))
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S

NP	 VP

V	 NP

I A
Susan punted the file

S

NP	 VP

A
V	 PP

I\ A	 A
The file was printed b y Susan.

Figure 15.12: Syntactic Parses of an Active and a Passive Sentence

S

NP	 VP

V	 PP

Mother baked for three hours.

S

NP	 VP

A
Il	 V	 PP

I :f^
The pie	 baked for three hours.

Figure 15.13: Syntactic Parses of Two Similar Sentences

Now consider the two sentences shown in Figure 15.13.
The syntactic structures of these two sentences are almost identical. In one case,

"Mother" is the subject of "baked," while in the other "the pie" is the subject. But the

relationship between Mother and baking is very diffri-ciii from that between the pie and
baking. A case gramma analysis of these two sentences reflects this difference. The

first sentence would be interpreted as

(baked (agent Mother)
(timeperiod 3-hours))

The second would be interpreted as

(baked (object Pie)
(tirneperiod 3-hours))

In these representations, the semantic roles of "mother" and "the pie" are made explicit.

It is interesting to note that this semantic information actually does intrude into the

syntax of the language. While it is allowed to conjoin two parallel sentences (e.g., "the

pie baked" and "the cake baked" become "the pie and the cake baked"), this is only

possible if the conjoined noun phrases are in the same case relation to the verb. This

accounts for the fact that we do not say. "Mother and the pie baked."

Notice that the cases used by a case grammar describe relationships between verbs

and their arguments. This contrasts with the grammatical notion of surface case, as
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exhibited, for example, in English, by the distinction between 'I" (nominative case and
"me" (objective case). A given grammatical, or surface case can indicate a variety of

semantic, or deep, cases.
There is no clear agreement on exactly what the correct set of deep cases ought to

be, but some obvious ones are the following:

• (A) Agent_Instigator of the action (typically animate)

• j. i instrument Cause of the event or object used in causing the event (typically

inanimate)

• (D) Dative—Entity affected by the action (typically arurriale)

• (F) Factitive—Object or being resulting from the event

• (L) Locative—Place of the event

• S) Source --Place from which something moves

• ((,v) Goal---Place to which something moves

• (B) Beneficiary—Being on whose behalf the event occiii l ed (typically animate)

• (T) Time—Time at which the event occurred

• (0) Object—Entity that is acted upon or that changes, the- most general case

The process of parsing into a case representation is hcavilv directed by the lexical
entries associated with each verb Figiiie 15.14 slrnws examples of a few such entries.

Optional cases arc indicated in parentheses
Languages  have rules for mapping from underlying case structures to surface syn-

tactic forms. For example. in English. the "unmarked subject" e- generally chosen by

the tollowin g rule:

If A is present. it is the subject. Otherwise, it I is present, it is the subject.

Else the subject Is O.

These rules can he applied in reverse by a parser to mleieriiiin.e the underlying case

structure from the superficial syntax.
Parsing using a case grammar is usually c'apecatit'n-41)i"en. Once the verb of the

sentence has been located, it can he used to predict the noun phrases that will occur and

to determine the relationship 01 those phrases to the rest oh the sentence.
ATNc prvidr :m good iructure for case grammar parsing. Unlike traditional parsing

algoriihnisin which ilieoutput structrircaiways n,iirroisthe sinictiiierd the 'i ammar rule.'
that created it. ATNs allow output structures of arbitrary form. For an exampl e of theit

use. see Simmons [I97, which describes a system that uses an A1'N parser to translate
English sentences into a semantic net representing the case structures of sentences.
These semantic nets can then be used to answer questions about the sentences.

'The unmarked subject is the one that is used by dcfiutt: it signaic no special focus or empha'is in u
sentence
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open I_0(I)(A)J
The door opened.
John opened the door.
The wind opened the door.
John opened the door with a chisel.

die	 LD1
John died.

kill	 [. - D(l) Al
Bill killed John.
Bill killed John with a knife.

run	 1. Al
John ran.

want l-AO1
John wanted some ice cream.
John wanted Mary to go to the store.

Figure 15.14: Some Verb Case Frames

The result of parsing in a case representation is usually not a complete semantic
description of a sentence. For example, the constituents that fill the case slots may still
be English words rather than true semantic descriptions stated in the target representation.
To go the rest of the way toward building a meaning representation, we still require many
of the steps that arc described in Section 15.3.4.

15_.3 i'irncepttial Parsing

Cnncepneal parsing, like semantic grammars, is a strategy for finding both the structure
and the meaning of a sentence in one step. Conceptual parsing is driven by dictionary
that describes the meanings of words as conceptual dependency (CD) structures.

Parsing a sentence into a conceptual dependency representation is similar to the
process of parsing using a case grammar. In both systems, the parsing process is heavily
driven by a set of expectations chat are set up on the basis at the sentence's main verb. But
because the representation of  verb in CD is at a lower level than that of  verb in a case
grammar (in which the representation is often identical to the English word that is used),
CD usually provides a greater degree of predictive power. The first step in mapping a
senlence 11110 its Cl) representation involves a syntactic processor that extracts the main
noun and verb. It also determines the syntactic category and aspectual class of the verb
(i.e., stative, transitive, or intransitive). The conceptual processor then takes over. It
makes use of a verb- ACT dictionary, which contains an entry for each environment in
which a verb can appear. Figure 15.15 (taken from Schank 19731) shows the dictionary
entries associated with the verb "want." These three entries correspond to the three
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II ef

S	 1)lCl\C4i

ill ransitice CI	 here

y t > PTRANS -a--- 
Y --	 hirnan	 human

litci
pleased

Figure 15 15: The Verb-ACT Dictionary

Cl
0

Mary PTRANS - Mars
IOC

John	 pka'.cd

Figure 15.16: ACD Structure

KIOdS r

• Wanting something to happen

• Wanting an object

• Wanting a person

Once the correct dictionar y entry is chosen, the conceptual processor analyzes the
oi the sentence looking for components that will lit into the empty clots ot the. verb

structure. For example. if the 'tative form ot"want" has been found, then the concCptLlal
processor will look for ZI conccptuahzaton that call be inserted into The structure. So. ii
the sentence being piiicescd were

John wanted Miry to go to the store.

the structure shown in Figure 15.16 woul Oe built.
the conceptual piocessor examines possibic Interpretations in a well-defined order.

amnIc if a pI'rase of the form "with PP" (rrrall that 1 PP is P picture prodiccri
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occurs, it could indicate any of the following relationships between the PP and the

conceptualization of which it is a part

I. Object of the instrumental case

2. Additional actor of the main ACT

3. Attribute of the PP just pnceding it

4. Attribute of the actor of the conceptualization

Suppose that the conceptual processor were attempting to interpret the prepositionai
phrase in the sentence	 - -

John went to the park with the girl.

First, the system's immediate memory would be checked to see if a park with a girl
has been mentioned. If so, a reference to that particular object is generated and the
process terminates. Otherwise, the four possibilities outlined above are investigated in
the order in which they arc presented. Can 'the girl" be an instrument of the main ACI
PTRANS) of thissentence? The answer is no, because only MOVE and PROPEL can

be instruments of a PTRANS and their objects must be either body parts or vehicles.
"Girl" is neither of these. So we move on to consider the second possibility. In ordet
for "girl" to be an additional actor of the main AC'!'. it must be animate. It is. So this
interpretation is chosen and the process terminates. If, however, the sentence had beer-Toll-i

 n went to the park with the fountain.

the process winikt not have stopped since a fountain is inanimate and cannot niuve.
Then the third possibility would have been considered. Since parks can have fountam.
it would be accepted and the process would terminate there. For a inure detailed
description of the way a conceptual processor based on CD works, see Schank 119731.
Riegci 197,)j, and Ricsbck 19751.

This example illustratc both the strengths and the weaknesses of this approach to
sentence understanding. Because a great deal of semantic information is exploited in
the understanding process. sentences that would be ambiguous to a purely syntactic
parser can be assigned a unique interpretation. Uuifoitnnaicly. the amount of scniajiIi.
information that is required to do this job perfectly is itlilnense All simple rules have
exceptions. For example, suppose the conceptual processor described above were given
the sentence

;ufln went to the park with the peacocks.

Since peacocks are animate, they would be acceptable as additional actors of the
main verb. "went." Thus, the interpretation that would be produced would be that
shown in Figure 1.17t.a;. while the more likely interpretation, in which John went u
a park containing peacocks. is shown in Figure 15.17(h). But if the possible roles for
a prepositional phrase introduced by "with" were considered in the order necessary for
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D	
park - spcciflc

John ') MANS - John
A

peacocks

t
specific

John went to the pa,k With the peacocks

(a)

p
h1in ) MANS 4— John	

park - with peacocks

John went to the park with the peacocks.

(h)

Figure 15.17: Two CD Interpretations of a Sentence

this sentence to be interpreted correctly, then the previousexainPic involving the phrase,

"with Mary," would have been misunderstood.
l'he problem is that the simple check for the property ANIMATE is not sufficient

to determine jicceptability as ar, additional actor of a PTRANS. Additional knosledge
is necessary. Some more knowledge can be inserted within the framework we have
described for a conceptual protessol. But to do a very good job of producing correct
semantic interpretations of sentences requires knowledge of the larger context in which
the sentence appears- Techniques for exploiting such knowledge are discussed in the

next section.

15.3.4 Approximately Compositional Semantic Interpretation

The final approach to semantics that we consider here is one in which syntactic parsi n

-and semantic interpretation are treated as separate steps. although they must mirror each
other in well-defined ways. This is the approach to semantics that we looked at briefly
in Section 15. 1.1 when we worked through the example sentence "I want to print Bill's

intl tile."
If a strictly syntactic parse of a sentence has been produced. then a straightforward

way to generate a semantic interpretation is the following:

I. Look up each word in a lexicon that contains one or more definitions for the wool,
each stated in terms of the chosen target representation. These definitions must
describe how the idea that corresponds to the word is to be represented. and they
may also describe how the idea represented by this word may combine with hue

ideas represented by other words in the sentence

2. Use the structure information contained in the output of the parser to provide addi
t-onal constraints, beyond those extracted from the leu, icon nn the way individuat
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words may combine to form larger meaning units.

We have already discussed the first of these steps (in Section 15.3). In the rest
this section, we discuss the second.

Montague Semantics

Recall that we argued in Section 15.1.1 that the reason syntactic parsing was a good
idea was that it produces structures that correspond to the structures that should result
fumi semantic processing. if we investigate this idea more closely, we airise at a
¶IOtIOfl called compositional semantics. The main idea behind compositional semantics
is that, for every step in the syntactic parsing process. there is a corresponding step
to serriantic interpretation. Each time syntactic constituents are combined to form a
alger syntactic unit, their corresponding semantic interpretations can be combined to

korm a larger semantic unit. The necessary rules for combining semantic structures
41C associated with the corresponding rules for combining syntactic structures. We use
he word "compositional" to describe this approach because it defines the meaning of

each sentence constituent to be a composition of the meanings of its constituems with
the meaning of the rule that was used to create it. The main theoretical basis for this
approach is modem (i.e., post-Fregean) logic: the clearest linguistic application is the
work of Montague [Dowty el al., 1981; Thomason. 1974.

As an example of this approach to semantic interpretation, let's return to the example
that we began in Section 15.1 .1. The sentence is

I weit to print Bill's .init fllc

The output of the syntactic parsing process was shown in Figure 15.2, and a fragment of
the knowledge base that is being used to define the target representation was shown in
Figurc 15.3 The result of semantic interpretation was also shown there in Figure 15.4.
Although the exact form of semantic mapping rules in this approach depends on the way
that the syniactic gi autmat is defined, we iPustratc :hc idea 01 compositional semantic
rules in Figure I'i 	 .

The first two —Wes are examples of verb-mapping rules. Read these rules assaying
that they map from a partial syntactic structure containing a verb, its subject, and its
object, to some unit with the attributes Instance, agent, and object. These rules do two
things. They describe the meaning of the verbs ("want" or "print") themselves in terms
of events in the knowledge base. They also state how the syntactic arguments of the
verbs (their subjects and objects) map into attributes of those events. By the way, do not
ct confused by the use of the term "object" in two different senses here. The syntactic

of a sentence and its semantic object are two different things. For historical
reasons (including the standard usage in case grammars as described in Section 15.3.2),
they are often called the same thing, although this problem is sometimes avoided by
using some other name, such as affected-entii'y, for the semantic object. Alternatively,
in some knowledge bases, much more specialized names, such as prin?ed-ihin, are
sometimes used as atiiibute flanse.S.

The third and fourth rules are examples of modifier rules. Like the verb rules, they
too must specify both their own constituent's contribution to meaning as well as how it
combines with the meaning of the noun phrase or phrases to which it is attached
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"want"	 -	 Unit

cubject: RM,	 instance: Wanting
object: RM,	 agent: RM1

object: RM,

"print'	 -4	 Unit
subject: RM	 instance: Printing
object: RM	 agent: RM,

object: RM,

"jolt"	 —* Unit for NP 1 plus
modifying NP 1	 extension: .init

possessive marker	 —ì 11nit for NP2 plus

NP 1 's NP2	 owner: NP1

"file"	 - Unit
instance: File-Siruct

'Bill'	 Urn;
instance: Person
first-name: Bill

Figure 15.18: Some Semantic Interpretation Rules

The last two rules are simpler. They define the meanings of nouns. Since nouns
do not usually take arguments, these rOleS specify only single-word meanings: they do

not need to describe floss the meanings of larger constituents are derived from their

components.
One important thing to remember about these rules is that since they define mappings

from words into a knowledge base, they implicitly make available to the semantic pro-
cessing system all the information contained in the knowledge base itself- For example.
Figure 15.19 contains a description of the semantic information that is associated with
the word "want" after applying the semantic rule associated with the verb and retrieving
semantic constraints associated with wanting events in the knowledge base. Notice that
we now know where to pick up the agent for the wanting ( RMI) and we know some

property that the agent must have. The semantic interpretation routine will reject any

interpretation that does not satisfy all these constraints.
This compositional approach to defining semantic interpretation has proved to be a

very powerful idea. (See, for example. the Absity system described in Hirst (19871.)
Unfortunately, there are some linguistic constructions that cannot be accountod for
naturally in a strictly cnmpositioral system. Quantified expressiosis have this property

Consider, for example. the sentence

Every student who hadn't declared a major took an Fn1iSh



412	 'MFThk 0. NA7VRAL 1.41sGUAGEPROCL,SSJNG

(lift
instance:	 Wanting
agent:	 RM,

must be <animate>
object:	 RM1

must be <state or event>

Figure 15.19: Combining Mapping Knowledge with the Knowledge Base

There are several ways in which the relative scopes of the quantifiers in this sentence
can be assigned. In the most likely, both existential quantifiers are within the scope of
the universal quantifier. But, in other readings, they are not. These include readings
corresponding to. "There is a major such that every student who had not declared it took
an English class." and "There is an Englial' class such that evely student who had not
declared some major took it." In order to generate these meanings compositionally from
the parse, it is necessary to produce a separate parse for each scope assignment. But
there is no syntactic reason to do that, and it requires substantial additionai effort. An
alternative is to generate a single parse and then to use a noncompositional algorithm to
generate as many alternative scopes as desired.

As a second example, consider the sentence, "John only eats meat on Friday and
Mary does too." The syntactic analysis of this sentence must include the verb phrase
constituent. "only eats meat on Friday," since that is the constituent that is picked up by
the elliptical expression 'does too," But the meaning of the first clause has a structure
nore like

onty(meat, {x t John eats x (in

whk i can be read as, "Meat is the only thing that John eats on Friday."

Extended Reasoning with a Knowledge Base

A signincant amount of world knosledge may be necessary in order to do semantic
Interpretation (and thus, sometimes, to get the correct syntactic parse). Sometimes the
knowledge is needed to enable the system to choose among competing interpretations.
Consider, for esainple, the sentences

I. John made a huge wedding cake with chocolate icing.

2. John made a huge wedding cake with Bill's mixer.

3. John made a huge wedding cake with a giant tower covered with roses.

4. John made a cherry pie with a giant tower coverod with roses.

Let's concentrate on the problem of deciding to which constituent the prepositional
phrase should be attached and of assigning a meaning to the preposition "with." We
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have two main choices. either the phrase attaches to the action of making the cake and
with" indicates the insirument relation, or the prepositional phrase attaches to the noun
phrase describing the dessert that was made, in which case 'with" describes an additional
component of the dessert. The first two sentences are relatively straightforward if we
imagine that our knowledge base contains the following facts:

• Foods can be components of other foods.

• Mixers are used to make many kinds of desserts.

But now consider the third sentence. A giant tower is neither a food nor a mixer. So it
is not a likely candidate for either role. What is required here is the much -ore specific
(and culturally dependent) fact that

• Wedding cakes often have towers and statues and bridges and flowers on them.

The highly specific nature of this knowledge is illustrated by the fact that the last of
these sentences does not make much sense to us since we can find no appropriate role
for the tower, either as part of a pie or as an instrument used during pie making.

Another use for knowledge is to enable the system to accept meanings that it has not
been explicitly told about. Consider the following sentences as examples:

I. Sue likes to read Joyce.

2 Washington hacked out of the sumittit talks.

3. The stranded explorer ate S&ltiTIS.

Suppose our system baN only the following meanings for the words "Joyce," "Wash
,ngtun." and "squirrel" (actually we give only the relevant paris of the meanings):

I. Joyce--instance: Author; last-name: Joyce

2. Washington--instance City; name: Wu.hington

3. squirrel—isa: Rodent;...

But suppose that we also have only the following meanings for the verbs 1,, these

sentences:

- read—isa: Menual-Event object: must he <prLnted-tflatcrial>

2. back out isa: Menial-Event; agent: must be <animate-entity>

3. eat—isa: Ingestion-Event; object: must be <food>

The problem is that it is not possible to construct coherent interpretations for any of
these sentences with these definitions. An author is not a <printed-material>. A city is
001 an <animate-entity>. A rodent is not a <food>. One solution is to create additionfli
dictionary entries for the nouns: Joyce as a set of literary works, Washington as the
people who run the U.S. government, and a squirrel as a food. But a better solution is to
use general knowledge to derive these meanings when they are needed. By better, here
we mean that since less knowledge must be entered by hand, the resulting system will
be less brittle. The general knowledge that is necessary to handle these exarnple
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• The name of a person can iie used to refer to things the person creates. ;o rn
is a kind of creating.

• 'Ihe name of a place can be. used to stand for an organization headquartered it
that piece if the association between die organization and the place is salient in
the context. An organization can in turn stand for the people who run it. The
headquarters of the U.S. government is in Washington.

• hod (meat) can be made out of almost any animal. Usuall y the word for the
animal can be used to reter to the meat made from the animal.

Of course, this problem can become arbitrarily complex . For example, metaphors
are a rich source for linguistic expressions [Lakoff and Johnson, 1 9801. And the
problem becomes even more complex when we move beyond single sentences and
attempt to extract meaning from texts and dialogues. We delve briefl y into those issues
in Section 15.4

1 he Interaction between Syntax and Semantics

It we take a compositional approach to semantics, then we apply semantic interpretation
rules in each syntactic constituent, eventually producing an interpretatioii for an entire

iltence. But making a commtrncnr about what to do implies no specific commitment
about when In do it. To implement a system, however, we must make some decision
mi how eunuol will be passed back and forth between the syntactic and the semarrije
processors. Two extreme positions arc:

• Every tl1Iit a sYMactic c:(mstlrlieni is formed, apply semantic interpretation to it
immediately.

• Wai until the entire sentence has been parsed, and then Interpret the whole thing.

Thew are arguments in favor oteach approach. The theme of most of the arguments
iN search control and the opportunit y to prune dead-end paths. Applying semantic
Processing to each constmtaent as soon as it is produced allows semantics to rule nut right
away those Constiluents that are syntactically valid but that make no sense. Syntactic
Processing can then be informed that it should riot go any further with those constituents.
I'hts approach would pay off, for exanipk'. br the sentence, "is the glass jar peanut
butter?" But this approach Cain be costly when syntactic processing builds constituents
that it will eventuall y reject as being wntactically unacceptable, regardless of their
semantic accepiabiIits The sentence, "The horse raced past the barn fell down," is
ail 	 of this. Thcrs' is no point in doing a semantic analysts of the sentence

he horse raced past the barn." since that consliiuenl will not end up being part of
an y complete syntactic parse. There are also additional arguments for waiting until a
complete sentence has been parsed to do at least stone parts of semantic interpretation
These arguments involve the need for large constituents to serve as the basis of those
semantic actions, such as the ones we discussed in Section 15.3.4. that are hard to define
eonnptetely composi!iortally. There is no magic solution to this problem. Most sycln'm
use one of these n v.o extremes or a heuristically driven compromise position.
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15.4 Discourse and Pragmatic Processing

To understand even a .iigle sentence, it is necessary to consider the discourse and
pragmatic context in which the sentence was uttered (as we saw in Section 15.1.1)
These issues become even more important when we want to understand texts and
dialogues, so in this section we broaden our conce rn to these larger linguistic units
There are a number of important relationships that may hold between phrases and parts
of their discourse contexts, including:

• Identical entities. Consider the text

- Bill had a red balloon.

- John wanted it.

The word	 should be ,&lctiitlied as referring to the red balloon. Referenci" such
as this are called anaphoric references or anaphora.

• Parts of etititics. Consider the text

- Sue opened the book she just bought.

- The title page was torn.

The phrase "the title page" should be recognized as being part of the hook that
was Just boughi

• Parts of actions. Consider the test

- John went on a business trip in New York.

- He left on an early morning flight.

'faking a flight should be recognized as part t going on a trip.

• Entities involved in actions. Consider the text

- My house was broken into last week.

They took the TV and the stereo.

The pronoun "they ' should be recognized as referring to the burglars who broke
into the house.

• Elements of sets. Consider the text

- The decals we have in stock are stars, the moon. item and ii flag
- I'll take two moons.

The moons in the second sentence should be understood to be some of thc moons
mentioned in the first sentence. Notice that to understand the second sentence a
all requires that we use the context of the first sentence to establish that the wo:"
"moons" means moon decals.
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• Names of individuals. Consider the text

- Dave went to the movies.

Dave should be understood to be some person named Dave. Although there are
many, the speaker had one particular one in mind and the discourse context should
tell us which.

• Causal chains. Consider the text

- There was a big snow storm yesterday.

- The schools were closed today.

The snow should be recognized as the reason that the schools were closed.

• Planning sequences. Consider the text

- Salty wanted a new car,

- She decided to get a job.

Sally's sudden interest in a job should be recognized as arising out of her desire
for a new car and thus for the money to buy one.

Illocutionary force. Consider the sentence

- It sure is cold in here.

In many circumstances, this sentence should be recognized as having, as its
intended effect, that the hearer should do something like close the window or nim
up the thermostat.

• Implicit presuppositions. Consider the query

- Did Joe rat lCSjOl?

The speaker's presuppositions, including the fact that CS 101 is a valid course.
that Joe is a student, and that Joe took CS 101, should be recognized so that if any
of them is not satisfied, the speaker can be informed.

In order to he able to recognize these kinds of relationships among sentences. .i
great deal of knowledge about the world being discussed is required. Prograiris that
can do multiple-sentence understanding rely either on large knowledge bases oron
strong constraints on the domain of discourse so that only a more limited knowledge
5ase is necessary. The way this knowledge is organized is critical to the success of
the understanding program. In the rest of this section. we discuss briefly how some of
the knowledge representations described in Chapters 9 and lO can be exploited by a
language-understanding program. In particular, we focus on the use of the following
kinds of knowledge:

The current focus of the dialogue
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• A model of each participant's current beliefs

• The goal-driven character of dialogue

• The rules of conversation shared by all participants

Although these issues are complex, we discuss thni only briefly here. Most of the
hard problems are not peculiar to natural language processing. They involve reasoning
about objects, events, goals, plans. intentions, beliefs, and likelihoods, and we have
discussed all these issues in some detail elsewhere. Our goal in this section is to lie

I 	 reasoning mechanisiiis into the process of natural language understanding.

15.4.1 Using Focus in Understanding

There arc two important parts of the process of using knowledge to facilitate under-

standing:

• F'ocus on the relevant part(s) of the available knowledge

• Use that knowledge to resolve ambiguities and to wake connections among things

that were said.

The first of these is critical if t"e amount of knowledge available is laige. Some
techniques for handling this were outlined in Section 4..5. since the problem arise'.
whenever knowledge structures are to he used.

The linguistic properties of coherent discourse, however, provide soiiw additional
mechanisms for focusing. For example, the structure of taskorienteci discouises typ-
ically mirrors the structure of the task. Consider the following sequence of (highl
simplified) instructions:

To make the torte, first make the cake, then, while the cake is hav tog, make
the tilling. To make the cake, combine all ingredients. Pour them into the
pans, and bake for O minutes. To make the filling, combine the ingredients.
Mix until light and fluffy. When the cake is done, alternate layers of cake

and filling.

This task decomposes into three 'ujbtasks: making the cake, making the tilling, and

combining the two components. The structureof the paragiaph of instructions is: overall
kcich of the task. instructions for step I. instructions for step 2. and then instructions

for step 3
A second pruperty of coherent discourse is that dramatic changes of focus are

usually signaled espliciily with phrases such as "on the other hand." 'to reritrir to an

earlier topic." or "a second issue is."
Assumng that all this knowledge has been raced successfully to focus on the rel"van

part(s) of the knowledge base, the second issue is how It, use the focused knowledge

to help in understanding. There are as many ways of doing this as there are discourse
phenomena that require it. In the last section, we presented a sample list of those
phenomena To give one example. consider the problem of finding the meaning of
definite noun phrases. Definite noun phrases are ones that refer to specific individual
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objects, for example, the first noun phrase in the sentence. "The title page was torn
The title page in question is assumed to be one that is related to an object that is currently
in focus. So the procedure for finding a meaning for it involves searching for ways in
which a title page could be related to a focused object. Of course, in some sense, almost
any object in a knowledge base relates somehow to almost any other. But some relations
are far more salient than others, and they should be considered first. Highly salient
relations include physical-parr-of. terizporal-part-of, and element-of. In this example,
physical-part-of relates the title page to the book that is in focus as a result of its mention
in the previous sentence.

Other ways of using focused information also exist. We examine some o them in
the remaining parts of this section.

15.4.2 Modeling Beliefs

In order for a program to be able to participate intelligently in a dialogue, it must be able
represent not only its own beliefs about the world, but also its knowledge of the other

dialogue participant's beliefs about the world, that person's beliefs about the computer's
beliefs, and so forth. The remark "She knew I knew she knew I knew she knew" may
be a hit extreme, but we do that kind of thinking all the time. To make computational
models of belief, it is useful to divide the issue into two pans: those beliefs that can
be assumed to be shared among all the participants in a linguistic event and those that
cannot.

Modeling Shared Beliefs

Shared beliefs can be modeled without any explicit notion of belief in the knowledge
base. All we need to do is represent the shared beliefs as facts, and they will be accessed
whenever knowledge about anyone's beliefs is needed. We have already discussed
techniques for doing this. For example. much of the knowledge described in Chapter 10
IS exactly the soil that people preslinle is shared by ether people they are communicating
vi;h Scripts, in particular, have been used extensively to aid in natural language
understanding. ReaU that set ipts record comrooniy occurring sequences of event-
there are two steps in the process of using a script to aid in language understanding:

• Select the appropriate script(s) from memory.

• Use the script(s) to till in unspecified parts of the text to be understood.

Both of these aspeets of reasoning with scripts have already been discussed in See-
(ion 10.2. The story- understanding program SAM Cullingford, 19811 demonstrated
the usefulness of such reasoning with scripts in natural language understanding. To
understand a story, SAM hrsl employed a parser that translated the English scntencc
into their conceptual dependency representation. Then it built a representation of the
entire text using the relationships indicated by the relevant scripts.

'From Kingsley Arnn' JoSe's Thins.
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Modeling Individual Beliers

As soon as we decide to represent individual beliefs, we need to introduce some explicit
predicate(s) to indicate that a fact is believed. Up until now, belief has been indicated
only by the presence or absence of assertions in the knowledge base. To model belief, we
need to move to a logic that supports reasoning about belief propositions. The standard

approach is to use a mudal logic such as that defined in llintikka 119621. Logic, c-

,.classical** logic, deals with the inith or 1alsetud ofifTere.nt statements as they are
Modal logic, on the other hand, concerns itself with the different "modes" in which
a statement may be true. Modal logics allow us to talk about the truth of a set ol

propositions not only in the current state of the real world, but also about their truth or
falsehood in the past or the future (these are called temporal Io,u':u), and about their

inith or falsehood wider circumstances that might have been, but were not (these are

sometimes called crnditionallogiCc). We have already used one idea from modal logic.
namely the notion necessarily true. We used it in Section 13.5, when we talked about

nonlinear planning in TWEAK.
Modal logics also allow us to talk of the truth or falsehood of statements concerning

the beliefs, knowledge, desires, intentions, and obligations of people and robots, which
may, in fact he, respectively, false, unjustified, unsatisfiable, irrational, or mutually
contradictoi y. Modal logics thus provide a set of powerful tools for understanding natural
language utterances, which often involve reference to other times and circumstances,

and to the mental states of people.
In particular. to model individual belief we define a modal operator BELIEVE, that

enables us to make assertions of the form BELIEVE(A, P). which is tnie whenever A

believes .? to be true. Notice that this can occur even if P is believed by someone else

to be false or even if P is false.
Another useful modal operator is KNOW:

BELIEVE(A. P) A P ..-+ KNOW(A, P

A third useful modal operator is KNOW-WHAT(A. P), which is true if A knows the

,,aloe of the function P. For example, we might say that A knows the value of his age.

An alternative way to represent individual beliefs is to use the idea of knowledge
base partitioning that we discussed in Section 9.1. Partitioning enables us to do two

things

I. Represent efficiently the large set of beliefs shared by the participants. We

discussed one way of doing this above.

2. Represent accurately the smaller set of beliefs that are not shared.

Requirement I makes it imperative that shared beliefs not be duplicated in th
representation. This suggcsts that a single knowledge base must be used to represent ths
beliefs of all the participants. But requirement 2 demands that it be possible to separate
the beliefs of one person from those of another. One way to do this is to use Dartitiofle(t
semantic nets. Figure 15.20 shows an example of a partitioned belief spaux.

Three different belief spaces are shown:

a S  believes that Mary hit Bill
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Figure 1i.20: A Partitioned Semantic Net Showing Three Belief Spaces

• S2 believes that Sue hit Bill.

• S3 believes that someone hit Bill. It is important to be able to handle incomplete
beliefs of this kind, since they frequently serve as the basis for questions. such as,
in this case. "Who hit Bill?"

15.4.3 Using Goals and Plans for Understanding

Consider the text

John was anxious to get his daughter's new bike put together before Christ-
mas Eve. He looked high and low for a screwdriver.

To understand this story, we need to recognize that John had

I. A goal, getting the bike put together.

2. A plan, which involves putting together the various subparts until the bike is
complete. At least one of the resulting subplans involves using a screwdriver to
screw two parts together.

Some of ihe common goals that can be identified in stories of all sorts (including
children's stones, newspaper reports, and history books) are

• Saisfactinn goals. such as sleep, fo4xJ, and water.

• Enjoymenr goals. such as entertainment and compelil ion.

• Achicvemen goals. such as possession, power, dJId status.
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. Preservation goals, such as health and possessions.

• Pleasing goals, which involve satisfying some other kind of goal for someone

else.

• instrumental goals, which enable preconditions for other, higher-level goals.

Th echiev..- their goals, people exploit plans. In Chapter 13. we talked about several
computational representations of plans. These representations can be used to support
natural I Lnguag€ processing, particularly if they are combined with a knowledgebase 01
operatn's and stored plans that describe the ways that people often accomplish common
goals. These stored operators and plans enable an understanding system to form a
coherent representation of a text even when steps have been omitted, since they specify
things that must have occurred in the complete story. For example, to understand this
simple text about John, we need to make use of the fact that John was exploiting the

operator USE (by A of P to perform G), which can be described as.

US E(.4, P. G):
precondition: KNOW-WHAT(A, LOCATION(P))

NEAR(A, F)
HAS-CONTROL-OF(A, F)

READY(P)
prttcondition: DONE(G)

In other words, for . to use P to perform G, A must know the location of P. A must

be near F, A must have control of P (for example, I cannot use a screwdriver that yosi

are holding and refuse to give to me), and P must be ready for ue (for xarnple. I cannot

use a broken screwdriver).
In our story. John's plan for constructing the bike includes using s screwdriver. So

he needs to establish the preconditions for that use. In particular, he needs to know the
location of the screwdriver. To find that out, he makes use of the operator LOOK-FOR.

LOOK-FOR(A F):
precondition: CANRECOGNlZF(A. P)

postcondition: KNOW . WFl AT(A. 1 O('A' 11ON(1))

A story understanding prograin can connect the goal of putting to, 	 er the bike

with the activity of looking for a screwdriver by recognizing that John is I 	 ng for a

screwdriver so that he can use it as pars of putting the hike together.
Often there are alternative operators or plans for achieving the same goal. For

exan'plc. to find out where the screwdriver was. John could have asked someone. Thus
the problem of constructing a coherent interpretation of a text or a discourse may involve

considering many partial plans and operators.
Plait recognition has served as the basis for many understanding programs. PAM

[Wilensky, 19811 is an early example: it translated stories into a Cl) representation.
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Another such program was BORIS [Dyer, 1983]. BORIS used a memory structure called
the Thematic Abstraction Unit to organize knowledge about plans, goals, interpersonal
relationships, and emotions. For other examples. see Allen and Perrault 11980] and
Sidner I1951.

15.4.4 Speech Acts

Language is a form of bchavor, We use it as one way to accomplish our goals. In
essence, we make communicative plans in much the same sense that we make plans for
anything else [Austin, 1962]. In fact, as we just saw in the example above, John could
have achieved his goal of locating a screwdriver by asking someone where it was rather
than by looking for it. The elements of communicative plans are called speech acts
[Searle, 1969]. We can axiomatize speech acts just as we axiomatized other operators in
the previous section, except that we need to make use of modal op..ralors that describe
states of belief, knowledge wanting, etc For example, we can define the basic speech
act A INFORM B of P as follows:

INFORM(A,fl,p)
precondition BELIEVE(A. P)

KNOW-Wl-IAT(A, LOCATION(B))
postcondiiion: BELIEVE(B. BEL.IEVE(A, P))

}WLIEVEi-IN(8, A) * BELIEVE(B. P)

To execute this operation. A mu s
t believe P and A muss know here B is. The result

of this operator is that B believes that A believes P. and if B believes in the truth of
A says, then B also believes P.

We can define other speech acts similarly. For example, we can define ASK-WHAT
(in which .4 asks Il the value of some predicate P):

.SKWlfAT(A, 13. I'):
r)rccnnditjon: KNOW-WI IAT(A. LOCATION(Ril

KNOW-WHAT(ff, P)
WILI.f NG . TO- PERFORM

113, INFORMI/1, .4, P))
"ctc"nd p 'on: KNOW . SVHAT(A, P)

Thisis the action that John could (ave performed u: an u I 1emat,e wa of tindi p ii s
screwdriver.

c.: 'XIs' .rti: ',ther .pt.ech a'ts, such as A REQUEST 13 to perform R.

Ri'QUESI1,'5,
prcond':ic . KNOW-WHAl 1 4. LOCAflONR'

LA4F'ERFORM(B R,



15.4. DISCOL'RS1 AND PRAGMAJIC PkOCE ySINL,	 423

WlLU',G-TO-PERFORM(B, R
pnstcondition: Wll.l .(PERFORM(B, R))

15.4.5 Conversational Postulates

I lnfortunalely. this analysis of language is complicated by the fact that we do not always
say exactly what we mean. Instead, we often use indirect speech acts. such as "[)o you
know what time it is?" or "It sure is cold in here." Searle [197j ptcscnt a linguistic
theory of such indirect speech acts. Computational treatments of this phenomenon
usually rely on models of the speaker's goals and of ways that those goals might
reasonably be achieved by using language. See, for example, Cohen and Perrault
11979j.

Fortunately, there is a certain amount of regularity in people's goals and in the way
language can be used to achieve them. This regularity gives rise to a set of cons'erat,onal
postulates, which are rules about conversation that are shared by all speakers. Usually
these rules are followed. Sometimes they are not, but when this happens, the violation
of the rules communicates something in itself. Some of these conversational postulates
are:

• Sincerity Conditions - Fora request by A of B to do R to be sincere. A must want B
to do R. A must assume B can do R. A must assume B is willing to do 1?, and A
must believe that B would not have done R anyway. If A attempts to verify one
of these conditions by asking a question of B, that question should nonnaliv be
interpreted by B as equivalent to the request R. For example.

A: Can you open the door?

• Reasonableness Conditions—For a request by A of B to do R to be reasonable.
A must have a reason for wanting R done. A must have a reason for assuming
that B can do R. A must have a reacur for assuming that H is willing to do R,

and A must have a reason for as .umng that B was not already planning to do
H. Reasonableness csnditions often pros ide the basis for challenging a request.
Together with the sincerity conditions described above, they account for the
coherence of the following interchange:

A: Can you open the door?
B: Why do you want it open?

• Appropriateness Conditions--- Fora statement to be 4ppropnale, it must provide
the correct amount of information, it must accurately reflect the speaker's beliefs,
it must be concise and unambiguous, and it must he polite. These conditions
account for A's response in the following interchange:

A: Who won the race?
B. Someone with long, dark hair.
A: I thought you knew all the runners. 	 -

A inferred from B's incomplete response that B did not know who Won the race,
because if  had known she would have provided a name.
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Of course, sometimes people "cop out" of these conventions. In the following
dialogue. B is explicitly copping out:

A: Who is going to be nominated for the position?
B: I'm sorry, I cannot answer that question.

But in the absence of such a cop out, and assuming a cooperative relationship between
the parties to a dialogue, the shared assumption of these postulates greatly facilitates
communication. For a more detailed discussion of conversational postulates, see Grice
[19751 and Gordon and Lakoft 119751.

can axiomatize these conversational po.'ulaics by augmenting the preconditions
For the speech acts that we have already defined. For exaniple, we can describe the sin-
cerity conditions by adding the following clauses to the precondition for RF.QUF.ST (A.
B, R:

WANT(A, PERFORM(B, R))
BEUF.VE(A, CAN-PERFORM(B, RYI
BELIEVE(A, WILLING-TO-PERFORM(B, R))
BEL1EVE(A. W1LL(PERFORM(B, R;))

If we assume that each participant in a dialogue is following these conventions, then
it is possible to inter facts about the participants belief states from what they say. Those
facts can then be used as a basis for constructing a coherent interpretation of  discourse
as a whole.

To summarize, we havejusi described several techniques for representing knowledge
about how people act and talk. This knowledge plays an important role in text and
discourse understanding, since it enables an understander to fill in the gaps left by the
original writer or speaker. It turns out that many of these same mechanisms, in particular
those that allow us to represent explicitly the goals and beliefs of multiple agents, will
also turn out to be useful in constructing distributed reasoning syste&m, in which several
(at least partially independent) agents Interact to achieve a single goal. We come hack
to this topic in Section 16..

15.5 Summary

In this chapter. we presented it introduction to the suririsingl hard p roblem of
lan g uage understanding. Recall that in Chapter 14, we showed that at least one under
standing problem line labeling, could el firtivel y be viewed is 8 COnstraint satisfaction
problem. One Interesting way to summarize the natural language understanding prob-
lem that we have described in this chapter is to view it too as a constraint satisfaction
problem. Unfortunately, man y more kinds of constraints must be considered, and even
when they are all exploited, it is usually not possible to avoid the guess and search
part of the constraint satisfaction proeedure But constraint satisfaction does provide a
reasonable framework in which to view the whole collection of steps that together create
a meaning For a sentence Essentially each of the steps described iu this chapter exploits
a particular kind of knowledge that contributes a specific set of constraims that must be
satisfied by air' orrect fina l interpretation of a sentence.



SUMMARY

Syntactic processing contributes a set at constraints derived from the grammar Of

the language. i t imposes constraints such as:

• Word order, which rules out, for example, the constituent. 'manager the key," in
the sentence, "1 gave the apartment manager the key."

• Number agreement, which keeps "trial run" from being interpieted as a sentence

in "The first trial run was a failure."

• Case agreement, which rules, out, for example, the con'.tiluent, "me and Susan
gave one to Bob," in the sentence, "Mike gave he program to Alan and me and

Susan gave one to Bob."

Semantic processing contributes an additional set of constraints derived from the
knowledge it has about entities that can exist in the world. It imposes constraints such

as:

• Specific kinds of actions involve specific classes of participants. We thus rule
out the baseball field meaning of the word "diamond" in the sentence, "John saw

Susan's diamond shimmering from across the room."

• Objects have properties that can take on values from a limited set. We thus rule
out Bill's mixer as a component of the cake in the sentence, "John made a huge

wedding cake with Bill's mixerS'

Discourse processing contributes a further set of constraints that arise from the

structure of coherent discourses. These include:

• The entities involved in the sentence must either have been introduced explicitly
or they must be related to entities that weje. Thus the word "it " in the discourse

"John had a cold. Bill caught it," must refer to John's cold. This constraint can
propagate through other constraints. For example, in this case, it can be used to
determine the meaning of the word "caught" in this discourse. in contrast to its
meaning in the discourse, "John threw the ball. Bill caught it."

• The overall discourse must be coherent. Thus, in the discourse, "I needed to
deposit some money, so I went down to the hank," we would choose the financial
institution reading of bank over the river bank reading. Thi'. requirement can even
cause a later sentence to impose a constraint on the interpietatoii of an earlier

one, as in the discouru,"l went down to the bank. The river had just flooded.

and I wanted to see how bad things were."

And finally, pragmatic processing contributes yet another set of constraints. For

example,

• The meaning of the sentence must be consistent with the known goals of the
speaker. So, for example. in the sentence, "Mary was anxious to get the bill
passed this session, so she moved to table it," we are forced to choose the (normally
British) meaning of table (to put it on the table for discussion) over the (normally
American) meaning (to set it aside for later).
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There are many important issues in natural language processing that we have barely
touched on here. To learn more about the overall problem, see Allen [1987], Cullingford
[I986], Dowty etal. 119851. and Gross etal. 119861. For more information on syntactic
processing, see Winograd [1983] and King [1983]. See Joshi ci al. 119811 for more
discussion of the issues involved in discourse understanding. Also, we have restricted
our discussion to natural language understanding. It is often useful to be able to go
the other way as well, that i. to begin with a logical description and render it intu
English. For discussions of natuial language gelueralioll systems, sec McKeown and
Swartout 119971 and McDonald and Bole 1 1988). By combining understanding and
generation systems, it is possible to attack the problem of machine translation, by which
we understand text written in one language and then generate it in another language. See
Slocurn [1988). Nirenburg [l987], Lehrberger and Bonrbeau 119881. and Nagao 119891
for discussions of a variety of approaches to this problem.

15.6 Exercises

1. Consider the sentence

The old man's glasses were tilled with sherry.

What information is necessary to choose the correct meaning for the word
'glasses"? What information suggests the iiicorrecr meaning?

2. For each of the t ollowing sentences, show a parse tree. For each of them. explain
what knowledge in addition to the grammar of English, is necessary to produce
the correct parse, Expand the grammar of Figure 15.6 as necessary to do this

• John wanted to go to the movie with Sally.

• John wanted to go to the movie with Robert Redford.

• I heard the story listening to the radio,

• I heard the kids listening to the radio.

• All books and magazines that deal with controversial topics have been
removed from the shelves.

• All books and magazines that come out quarterly have been removed from
the shelves.

3. In the following paragraph. show the antecedents for each of the pronouns. What
knowledge is necessary to deierrviiue each?

John went to the store to buy a shirt. The salesclerk asked him if he
could help him. He said he wanted a blue shirt. The salesclerk found
one and he tried it on. He paid for it and left.

4 Consider the following sentence:

Put the red block on the blue block on the table.

a Show all the syntactically valid parses of this .Sefltencc. Assume any stajidajil
grammatical formalism you like.
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(b) How could semantic inlormation w&u world vnowledge be used to select tht
appropriate meaning of this command in a particular situation?

After you have done this, you might want to look at the discussion of this problem
in Church and Patil 119821.

5. Each of the following sentences is ambiguous in at (east two ways. Because otthc-
type of knowledge represented by each sentence, different large; languages may
be useful to characterize the different meanings. For each of the -entencc.s, choose

an appropriate target language and show how the different meanings would he

represented:

• Everyone doesn't know everything.

• John saw Mary and the boy with a telescope.

• John flew to New York.

6. Write an ATN grammar that recognizes verb phrases involving auxiliary verbs.
T'hc grammar should handle such phrases as

• "went"

• "should have gone"

• "had been going"

• "would have been going"

• "would go"

Do not expect to produce an ATN that can handle all possible verb phrases. But do
design one with a reasonable structure that handles most common ones, including
the ones above. The granirnar should create structures that reflect the structures
of the input verb phrases.

7. Show how the ATh of Figures 15.8 and 15.9 could be modified to handle passive
sentences.

8. Write therule"S - NP VP" in the graph notation that we defined in Section 15.2.3.
Show how unification can be used to enforce number agreement between the
subject and the verb.

9. Consider the problem of providing an English interface to a database of employee
recorØs.

(a) Write a semantic grammar to define a language for this task.

(b) Show a parse, using your grammar. of each of the two sentences
What is Smith's salary?
Tell me who Smith's manager is.

(c) Show parses of the two sentences of part (b) using a standard syntactic
grammar of English. Show the fragment of the grammar that you use.

(d) How do the parses of parts (b) and (c) differ? What do these differeices say
about the differences between syntactic and semantic grammars?
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10. How would the following sentences be represented in a case structure:

(a) The planeflew above the clouds.

(b) John flew to New York.

(C) The co-pilot flew the plane.

Ii. Both case grammar and conceptual dependency produce representations of sen-
tences in which noun phrases are described in terms of their semantic relationships
to the verb. In what ways are the two approaches similar? In what ways are they
different? Is one a more general version of the other? As an example. compare
the representation of the sentence

John broke the window with a hammer.

in the two formalisms.

12. Use compositional semantics and a knowledge base to construct a semantic inter-
pre;atioii of each of the following sentences:

(a) A student deleted my file.

(b) John asked Mary to print the file.

To do this, you will need to do all the following things:

• Define the necessary knowledge base objects.

• Decide what the output of your parser will be assumed to be.

• Write the necessary semantic interpretation rules.

• Show how She process proceeds.

13. Show how conversational postulates can be used to get to the most common.
coherent interpretation of each of the following discourses:

(s) A: Do you have a comb?

(b) A: Would Jones make a good programmer?
B; He's a great guy. Everyone likes him.

(C) A (in a store): Do you have any money?
B (A's friend): What do you want to buy?

14. Winograd and Flores 119861 present an argument that it is wrong to attempt to
make computers understand language. Analyze their arguments in light of what
was said in this chapter.



Chapter 16

Parallel and Distributed Al

years have seen significant advances in parallel computation aiid distributed
systems. What are the implications of these advances for Al ? There are three main areas
in which parallel and distribtitj architectures can contribute to the study of intelligent
systems:

• Psychological modeling

• Improving efficiency

• Helping to organize systems in a modular fashion

These areas are often overlapping and complement,y. For example, consider
the production system model that we described in Chapter 2. The ideas of short-
term and long-term memory, Independently Operating productions, matching, and so
forth first arose in the psychological literature. When researchers began building Al
systems based on these principles, they realized that parallel c tnp ters might be used to
Increase signif1c gly the speed at which the systems could run Even on single proccs'.oi
systems, howevcr, the production system architecture turned out to have many benefits
over conventional Programming. One benefit is better modularity. When rules operate
more or less independently, it is easy to add, delete, or modify them without changing
the structure of the entire program. In this chapter, we discuss all these issues. First we
briefl y discuss psychological modeling. Then, in the tollowing two sections we present
some specific techniques that can be exploited in constructing parallel and distributed
reasoning systems.

6.1 Psychological Modeling

The production system was originally proposed as a model of human information pro
ceasing, and it continues to play a role in psychological modeling. Some production
system models stress the sequential nature of production systems, i.e., the manner in
which short-term memory is modified over time by the rules. Other models stress the
parallel aspect, in which all productions match and fire simultaxteously, no matter how
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marry there are. Both t ypes of models have been used to explain timing data from
experiments on human problem solving.

SOAR [Laird et al., 19871 is the production system architecture that we mentioned ift

Chapter 6. SOAR has a dual mission. On the one hand, it is intended as an architecture
or building integrated Al systems; on the other hand, it is intended as a model si

human intelligence [Newell. 19911. SOAR .icorporates both sequential and parallel
aspects of production systems by operating in cycles- In the rlabratinn phase of the
Processing cycle, productions fire in parallel. In the th'dsicoz phase. operators and
slates are chosen, and working memory is modified, thus setting the stage for anothr
elaboration phase. By tying these pha.es to particular timings. SOAR accounts for
number of psychological phenomena.

Another approach to psychological modeling draws Its inspiration from the physical
organisation it the human brain iisclf. While individual neurons are quite slow Corn-
pared to digital computer Circuit. iheic arc vast numbers of these richly interconnected
components, and they all operate concurrently. If we wish to model the brain or USC ii

as a source of ideas for Al, we must consider the powers and constraints imposed by the
brain's architecture at the neural level. Unfortunately, we do not understand very well
how neurons are wired in the brain, so modeling at this level is difficult. But we return
to this idea in Chapter IS, where we describe the use of neural networks as a way of
representing and using knowledge.

16.2 Parallelism in Reasoning Systems

Al programs consume significant time and space resources. It is therefore important
that Al algorithms make use of advances in parallel computation. In this section, we
describe several ways of doing this without substantially changing the programs that we
wilte. Then, in the next section. we explore ways in which techniques from parallel and
distributed computing can be tiseil in the overall design of Al systems.

16.2.1 Parallelizing Al Architectures

As we mentioned above, production systems have both sequential and parallel aspects.
The question arises, how much speedup can we expect from parallel processing? There
are several sources of parallel speedup in production systems:

• Match level parallelism, in which multiple processors are used to speed up the
handling of individual match- resolve-act cycles

- Production-level parallelism, in which all of the productions match them-
selves against working memory in parallel

Condition -level parallelism, in which all of the conditions of a single pro-
duction are matched in parallel

Action-level parallelism, in which all of the actions of a single production
are executed in parallel

• Task-level parallelism, in which several cycles arc executed simultaneously
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The amount of wk-level parallelism available is completely dependent on the riau,e
of the task. In a medical diagnosis system, for example, each production bring might be
dependent on the previous production firing, thus enabling a long, sequential chain of
reasoning to occur. However, if the system were diagnosing five patients aimultaneousl s,
productions involving different patients would not interact with one roothel and could

be executed in parallel.
Match-level parallelism is more widely applicable. Since production systems spend

nearl y all of their time in the tnaiehi;ig phase, it was expected earl y on that match-level

parallelism would lead to vast speedups. In a system with a thousand productions,
for example. one processor could be signed to ever, production, possibly sg.eedin

up every match cycle b y a factor of a thousand. Howe'.'er, as Gupta [1985] showed.

having n processors does not lead to an ofold speedup. Some reasons for this eflcct

are:

I. Only a few productions are affected by each change in working memory. With
some bookkeeping to save state information, sequential implementations such
as RETE [Forgy. 19821 (Section 6.4.2) can avoid processing large numbers of
productions. Parallel i nip] ementationsmust he judged withre

spect tothe ..petdups
they offer over efficient sequentiil algorithms, not inefficient ones.

2. Some productions are very expensive to match, while others are cheap. ThL\
means that many processors may sit idle waiting for otheis to finish. When
processors are idle, the speedup available from parallel processing diminishes.

3. Overhead resulting from communication costs among multiple processors caji
furthei reduce the benefits of parallelism.

Other architectures behave differently with respect to parallel implementation. Th
brain-style architectures mentioned above are naturally parallel; in fact, simulating therii
on sequential machines is oftrii prohibitive because of the high degree of paralleInl
they assume. In Section 16.3. we discuss some other parallel Al architectures.

16.2.2 Paral lelizing Al Programming Languages

In the last section. we discussed the benefits of parallelizing a particular kindof program.
namely a production syslen. interpreter. () ,her frequently used interpreters in Al include

those for the programming language. LISP and PROLOG.
Writing parallel programs is a duffiLult task for humans, and there is some hope ifiat

parallel implementations of these lan g uages (perhaps augmented with parallel prograuui-
ming constructs) will make effective siecdups more practical. Paraflel LISP models
include Multihisp [Halstead, 19881. QLISP [Gabriel and McCarthy, 19881, and the Par
alation Model [Sabot. 19881. Parallel PROLOG models include Concurrent PROLOG
(Shapiro. 19871, PARLOG (Clark and Gregory. 19861. and Guarded Horn Clauses ]Ucd,i.
1985).

Research into parallel logic programming languages was an important focus of the

Japanese Fifth Generation project (ICOT, 19841. Languages like PROLOG immediatel
suggest two types ofaralleIism. In OR.per'f'.'!ism, multiple paths to the same goal jre
taken in parallel. For eaaniple, cuppo:e we ha.e II-.- foll—ne Clauses:
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uncle (X,Y) :- mother (Z,Y, sibling (X,Z)
uncle (X, y )	 father (7,Y), sibling (X,Z)

Then the query

?- uncl€ohn,BslJ)

could be satisfied in two different ways since John could be the si6ling of Bill's mother
or of Rill's father. A sequential impicmenwtion would try to satisfy the first condition
and then, if that failed, try the second condition. There is no reaso., howeer, why these
two paths could not be pursued in parallel.'

In AND-parallelism, the portions of a conjunctive goal arc pursued in para:iel.
Consider the clause:

ntis-df]yrx) :- fly(X).. infleiricdtchdblC(X),
occupiedbase(first), outs(zero)

Here, the four conditions can be checked in parallel, possibly leading to a four-fold
speedup in processing i rif ieidf ly queries. Such AND-parallelism is not so straight-
forward when variables are shared across goals, as in:

uncle(X,Y) :- mother(Z, y ), sibing(X,Z}.

The mother (Z, 1) and sibling (X, Z) conditions cannot be satisfied iridepen-
dently, since they must instantiate the variable Z in the same manner.

Research on parallel logic progranimir hares the same goal as that on paralte;
production .ystcms: to permit the efficient execution of high-level, easily written code
for Al systems.

16.2.3 Parallelizing At Algorithms

Some problems are more amenable to parallel solittions than others White flute authors
ma he able to 'rite a hook much faster than one author (it they each write separate
Ll1 j ?C ). iinc omen cannot hear a cMd any fac. Ie r than one van. l.ikewtse. throwing
more piocessors at ,n Al problem ma', not bong the dced hetichis. One example 0t an
inherently sequential problem in Al is unification (recall Section 5.4.4). While multiple
procr.M)rs can help st-nncwhai fVitteu and Sitiin,is, I9S61, ior'.ial a rgumcn,s jDwork et
al - 1941 show thai yaM speedups in the unilIcation of large terms are nut osihlc,

Many problems can be solved efflcier.tly by parallel methods, but it is not alway
a simple matter to convert a sequential algorithm into an efficient parallel one. Some
Al algorithms whose parallel aspects have been studied are best-first search [Kumar et
iL. 19811. alpha-beta pruning [Hsu, 1989. constraint saitsfact:on (Kasit. 19861. natural
language parsing [fliompson, 19891, resolution theorem proving [Chcng and Juang.
19871. and property inheritance [Fahlnian. 19791.

In PROLOG. elau'.es ,uue nuuiihed .cquciu!uaIIy ibm hip to bouom. If PROLOG programmem wnle code
that dcpcnit- on hi	 ii in. OR-pana!iiicm may yield undecired nesulis.
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16.2.4 Custom Parallel Hardware

Finally, we must ask how these parallel algorithms can he implemented in hardware. One
approach is to code an algorithm in a programming language supported by a general-
purpose parallel computer. Another appoatch is 10 build custom parallel hardware
that directly implements a single algorithm. This last approach has led to striking
performance increases, as demonstrated in the SPHINX [Lee and Hon, 1988 speech
recognition sysem where real-tinic performance was achieved through the use of a
beam search accelerator IBisiuni el al., 19891, and in the DEEP THOUGHT chess
machine ]Hsu. 19891. which uses a parallel tree-search algorithm for searching game

trecs.

16.3 Distributed Reasoning Systems

In all of our discussions of problem-sol v ing systems until now, we have focused on the
de.sign of single systems. In this section, we expand our view, and look at distributed

,s'osonwg systems. We define a distributed reasoning system to be one that is composed
ot a set of separate modules (often called ogrnt.c since each module is usuall y expected

to act as a pin l)leifl .SOlVirIg entity in its own right and a set of coinmuflicatitln paths
between them This definition is intentionally very vague. It admits systems everywhere
along :i pectwm that ranges frotnhlgl1tly coupled systems in which there is acoropletely
centralized control mechanism and a shared knowledge base to ones in which both
control and knowledge are tully di:,trihuted. In fact, of course. most real distributed
reasoning systems lic somewhere its the middle. This definition also includes systems
that are distributed at varying levels of granularity, although we do not intend it to
include systems with vey tine granularity (such as coiiflCcti011ist systems in which the
individual nodes do not perform reasoning in the same sense that we have been using

the term).
For many kinds of applications, distribu'd reasoning systems have significant ad-

vantages over large monolithic systems. These advantages can include:

I. System Modularity—It is easier to build and maintain a collection of quasi-
independent modules thn one huge one}

2. Eflieiettcy— ot all knowledge is needed for all tasks. By modularii.imig II.

gain the ability to focus the prohlcm-olving sysicill's effoils in ways that we most

likely to pay ott.

3 Fast Computer Architectures As problem solvers get more conrnlcx, they need
more and mote cycles. Althuh machines conttnue to get taster, the tech peed

Lips arc beginning to come not from a single pr.cessnr, with a huge associated

memory, but from clusters of smaller prOCCSSOrS each with its own memory.
Distribuicd systeimic arc better able to exploit such aichiicm.tiircs.

4 hlcmeruige.iieous Reasum'ing- - The problem-solving tectiniLjue s and knowlcd?e mel)-

resentation formalisms that are best for wrkingon one p4rt of a problem may not

be the best for working on another part

• tn itims rspcci rrasvminc 	 nfl'.'. i'm' i oditIe".i r.--. '. r':r	 i..'' p'.".iis Diik'u-. 47'l.



434	 CHAPTER JO. e-'AJ?IILEL ANL' b15iRI/IL/ThD A]

5. Multiple Perspectives—Thc knowledge required to solve a problem may not
reside in the bead of a single person. It is very difficult to get many diverse
people to build a single, coherent knowledge base, and sometimes it is impossible
because their models of the domain are actually inconsistent.

6. Distributed Problems Some problems are inherently distributed. For example,
there may be different data available in each of several distinct physical locations

7. Reliability-11'a problem is distributed across agents on different systems, prob-
1cm solving can continue even if one system fails.

An architecture for distributed reasoning must provide

I. A mechanism for ensuring that the activities ot the various agents in the system
are coordinated so that the overall problem-solving system achieves its goal(s).

2. A communication structure that enables information to be passed back and forth
among agents.

3. Distributed versions of the necessary reasoning techniques. These mechanisms
are likely to (lifter from their monolithic counterparis since th's will he presumed
to operate on a set of local knowledge bases rather than on a global one that can
be assumed to possess a set of global properties (such as consistency).

In the rest of this section, we address each of these iSSUeS.

16.3.1 Coordination and Cooperation

'The biggest issue that needs o he faced in the desigc of an y distributed reasoning system
is how the actions of the individual agents can be coordinated so that they work together
effectively. There are a variet y of approaches that can be taken here, including the
following

• One agent is iii charge. Thai master agent ijiakos a plan and oisiiibutcs pieces
of the plan to other 'slave ageor. who then do as they ate told and report back
their results. they may also communicate with other slave agents if necessary to
accomplish their goals

• One agutil is in charge and that agent decomposes the problem into subproblems,
hu then negotiation occurs to decide what agents will take responsibility for
which suhtasks.

• No one agent is in charge, although there is a single shared goal among all the
agents. They must cooperate both in forming a plan and in executing it.

• No one agent is in charge, and there is no guarantee that a single goal will be
shared among all the agents. They may even compete with each other.



163 DISTRIBUTEL) REASONING SYSTEMS	 43

Although these approaches differ considerably, there is one niodilication to a simple,
single agent view of reasoning that is necessary to supporl all of them in anything other

than a trivial way. We need i way to rc-prcscnt models of agents. including what
they know, what they can do. and what their goals are Fortunately, what we need is
exactly the se of mechanisms that we introduced in Section 13,4. But now, instead
of using modal operators and predicates (such as BELIEVE, KNOW. KNOW-WHAT.

CAN-PERFOR M. and W1LLING-TOPERF0) to model ssriters and speakcr, we

use them to 1nfd agents in a distributed system. Using such operators, it is possible
for each agent to build a model of both itself and the other agents with which it must

interact 11w selidescflptiVC model is nec:sary to enable tlw .gent to know when it

should get help from others and to allow i, to renr"serit itstlf ac.aratly to other agents

who may wish toget help from it. The model of other agents is n.cess'' to enable

agent to know how best to get help froti t'i

Planning for Multi-agent Execution

The least distributed form of distributed r a.onhiig is tht :1 ssheh a single agent:

1. 1)eccrnp0'S the goal intosubgoals. aral

2. Assigns the ._bgoalS to the va ri ous other agents

This kind of reasoning is usually called rnuIt-i:gentpIO'ith1l,. The hrst step, problem

decomposition. is essentially the same as it is for singk . agetil pliutnitig stemS. Ideally,
the decomposition results in a set of subproblems that are mutually independent. This is

o[tCn not possible. however. so varlotiSOf the techniques that wt described in Chapter 13

ii;ust be exploited
Onee 0. 	 1,1s been produced. the subproblems IflUSI be allocated to the

available agents for execution At this tiulni. distributed planning differs from single

agent planning in he following Important ways:

t niess all the slave agents are identical, the master agent must have access to
models ot LhC capabilities of the various slaves. These models make it possible to

allocate tasks to the agents ihat are best able to perform them.

• Even if all the slave agents are identicaL the maser mus' do load balancing (0

lsvure that the overall goal is completed as soon as po.sible-

• Once the tasks have been distributed, s ynchronization ainolig the stases is nec

casazy unless all the tasks are com p letel' ndependcnt. in singleageiit planning,

dependencies are usually handled at plan cr -ation time In a multiple agent sys-
tem. it is not usually possible to do that, since any such static scheme will be
defe1d if the various agents take unpredictable amoun s of time to perform their

tasks.

Let's consider this last issue in a bit more detail. Suppose ibe task is to do spelling
correction oil document with several chapters, and then to print It. We can distribute

this among several spelling correcting agents and one printing agent. But to get the
desired result, we need to ensure that the printing agent does not begin printing any
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chapter until spelling correction on that chapter is complete. ihtrihuted reasoning
systems exploit a wide variety of synchronization techniques to guarantee this, rasigirig
from simple ones (e.g.. in which the printing process doe not begin until all the spelling
correctors are done and have so informed the master) to more sophisteated ones in which
the slave processes communicate directly with each other (e.g.. the spelling correctors
each inform the printer when they have finished). These more sophisticated techniques
require that each slave agent be told some information about the other slaves at ie time
that it is given its task.

For relatively simple tasks, such as the one we just described, the various agents can
communicate effectively with each other just by announcing when operations t'a'.c been
completed. For other kinds of tasks, though, it is not enough to know when an agent has
completed its task. It may also be necessary to know what slate the system is in during
task execution. For example. suppose that there is a single t esource that the various
agents share, such as an input or output device. Then one agent may want to know
whether any other is currently using the device. To support this kind of interaction, it
is useful to introduce a state-based model, such as thai described b y Georgeff I 1493
19841. In this kind of a model, each available action is characterized as a seouenc" of
state changes that it effects. The various agents may share a single model. which they
all update as necessary, or they may each have their own modei, in vJoch Cas. tlav must
also inform all other relevant agents whenever Ih v make a uh;igc 10 het: c p tcnml state
that could be important externally.

Planning and Negotiation: Contract Nets

A slightly more distributed kind of reasoning occurs when a singi" agent performs the
problem decomposition bin then negotiates with the other agents iii ictcrmine who will
take on which subtaskc. The ('nP-.Ei net mechanism I1)avi and Smith. 19831 supports
this kind of interaction. In a contract imet, there are two ruks that the .igemils can assume:

I. Managet. who decomposes a problem, ouk tor (ontractors to attack pieces of
the problem, and monimors the problem's execulion.

2. Contractor. who executes a suhta.sk, possiblyhy actuaf ly doing the )ob and possibly
by recursively becoming a manager amid .tibciritracting subpaits of the job to other
contractors.

Managers and contractors find each other through a process ot h1ing:

1. A manager announces a task.

2. Contractors evaluate the task with rc'pect to their own abilities and the resource
requirements necessary to accomplish it.

3. Contractors make bids to the manager.

4. The manager chooses a single contractor and waits for the result.

Thus managers and contractors select each other by communicating in a completely
distributed fashion. A node can be both a manager and a contractor simultaneously;
rather than sit idle, waiting for results from its contractors, a manager can take on work
in the meantime.
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Distributed Control and Communication
So far, we have focused on systems in which there is a single agent who maintains

control of the overall 110hni's0l0g process. In this section, we look at the piohiem
in hch there is no such centrali,.cd controller, in the extreme

form of such systems. we can make no assumptions about how the various agents will
tTUCt probIemsO1viRg

behave. But wItIuiUt any such assurnPIi0il. it is impossible to co 
algorithms. So we start by assuming that each .igflt is ration ! We can define rationality

iL ' 1o1lOVS.

An 'gent is rutii'IUJ1 if it behaves in a eianner that is oplim it with rcpL'ct

to its goals.

tJnfortuflate l
v. in a compUx world, isa cnt inay not have enough processing power

to behave optinially iThis leads to a sfihtly weaker. but more useful, notion of bounded

rationality [Simon, 19571:

Bounded ratio ntilily 
is a property of an agent that behaves lit a manner that

is as nearly optimal with respect to its Its	
as its resources allow.

Bounded rationality is akin it) 
the notion of salisticing that we discussed in Chapter 2

Using these ideas, we can dei1e technique s that an individua! agent can use to attain

its goals, taking into account what will probably happen as a result of what the other
ronfllcflt are likely ic do. Sometimes, the uthei agents are cooperating

agents in its ens 
to achieve the same goal. Soroclimes they are working on thei goals, which ma

al. We consider two classes of approaelies to this
be competiti ve or siriiply orthogon 

problem:

• Planning with cornmtiniCallofl

• Planning ithoul communication

The first approach is one in which the agents can communicate freely with.each other
during prblerfl solving In this case. the agents can each create their ossn plans, which

are composed both of problenis.' 1 ' Ill' 
'ctioilS and of eomrnuulCatlOit .iLtloIts of the sort

we described in Section 15.4. SometlioCs the communication actions are addrcssett to a

.5pccihc other agent lic is
 believed to be able to sic f, a request (either toT intormat0fl

or in perform some other task). ft. other s y stems, the aelli5 do not know rx1sticitly

.,huut each other instead, each agent can broa.kdst to a shared memory structure, which
othet agent' caii be counted r, to read. Each agent can iht,i reply to those ii'esages ho

which it choose' to pay ittCiltI(fl . We d:scrtDc one specific wy of inpiementing suet'

a broadcast strucufT :s bit ta 'art' stem in Section Ib.3.2
'

icallflgOne spectiic technique that several  ae;1ts can use is called tliefufle
iwnally accurate, eooperatfl FA/CI approach ILesser and Corkthl. 19811 to distributed

problem solsing Each agent begins by forming a tentalive, 
incomplete plan These

plans are then shared among the agents, ss ho are :ihlc to help refine each other's plans by

adding information that they posscss. Ideally, the entire system converges on a complete

plan.
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Figure 16.1 A Payoff Matrix for Two Agents and Two Actions

The second approach is one in which we assume that the agents cannot communicate.
This may seem to he a very serious restriction, but it is useful to consider it both because
it does sometimes arise in the extreme (perhaps because the agents are geographically
isolated)and because it often arises at small granularity levels where the cost of constant
communication may come to dominate the cost of actual problem solving.

If we assume that the agents cannot communicate and that they are all mational. then
WC can use many of mite standard notions of game theory to describe how each of them
should act. The most basic technique is that of a payoff matrix, such as the ene shown
n Figure 16.1 We assume that there are onl y two agents. P and Q. and that there are

onl y two actioii that each of them can perform ta and h for P. and c and d For QL Then
the matrjxshows the payoff for each of them for each of the possible butt actions. The
rr:ber in the lower left of each bo:% ttv payoff tar F': the r.hcr in the uoper right
i s the payoff for Q. Each agent's goal is to ma mlze its own oyof. for ei.aiis:lr, P
comes out best if it makes move I, aiid Q makes rn',vi' I. On the oilier html, Q comes
out best if P jiiaks move a and Q makes move ".

Of course, no one of the agents can force such a dual move. Each roust make its
own decision independently. In this case, for example, P should choose move n frather
than !i, even though the best case fc'i P includ,-d isove h). Why? The ancwc, is that
P should assume that Q will behave rationally. In this matrix, the c column dominates
the d column for Q. by which we mean that in every row, the payoff for Q is higher in
the r column than in the d column. Thus Q can be predicted to choose and P should
plan accordingl y. Given that Q will choose c. P sees that it does better choose rmne
a than move 6.

We can now view our discussion of game-playing programs f aapter 1 2i irim a
different perspective, that of noncommunicating agents trying to su,vc their own gnais
Both payoff matrices and tree-search algorithms can be generalized to more than two
players (e.g., Korf J I999J). but there are some important difference'. In board game..
jilayers usually take turns making iiiovcs, whereas payoff matrices model the kind of
simultaneous decision making common in the real world. Also, games are usually
zer)-sum. meaning that one player's gain is another player's loss. Payoff matrices are
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sometimes zero sum, but need not he. See (jenescreth ci ui [l97 and Rosenscheifl

ntial diSCUSSiOnS of operations on pa y off zitatu ices.
and Breese 119891 for more substa 

16.3.2 Comrnunieation Blackboards and Messages

The specilic coomtufliCOfl architectures that have been proposed to supporl distributed
reasoning fall into two classes with respect to communication structure

• R1ckhocrd cycfrmnS. in which coninluTliCatiOfl takes parc through a shared kn w1-

edge structure called a ltf,ickhoaid. Moduics cui pt I tems on the btzskboard,

and they can read and -ict on messages that arc pos'd by other 'todules.

• Mc.csage-PaSSi.." systems, 
in which one reasoning module sends messages (both

requests for services and information as well as replies to soch rCquests) to one 
ut

more other modules whose names are explicitly known.

Although on the surface. these two techniques appear quite difleucnt, they turn nut 
in

practice to offer essentially the same support for distributed reasoning. In fact. the y can

1k' 
used to simulate each other, its we sec below. to the rest of this section. we descrihe

examples of each approach.

Blackboard Systems

The blackboard approach to the organiLati uil ot large i\l progran was first developed
ject tErmati etal., l9bl.

in the context of the IJEARSAYII spccch.under5ta1idin pro 
The idea behind the blackboard approach is simple. The entire system consists of;

• A set of independent modules, called knowledge sotirces (or KSc). that contain

the system's doniainspecifiC knowledge

• A blackboard. which is the shared data stuu&'uIC tliiough which the knowledge

sources communicate with each other

• A control system, which determine s the order in which knowledge sources 

operate Iifl the entries on the blackboard

To see how ihesc pieces work together. lci' took at the 11EARSAY-11 systeni
Here, the KSs correspond to the jesels of knowledge about speech. language (syllables.
words phtasL's, and scuiteticcsi. and tnc task being dtscus'ed- the blackboard centa;n

hypotheses about i t;terpre(aliOiis at c:i Ii of thesc levels. Control performed h a

specJli7-eLt knowledge source that ;:acoits ihoffi such '. <W1 s hs cost of cCCUtlOfl and

11kelhood of achieving u result.
When a KS is activated I as descrihei1 hctCW. it esamufleS the curlent contents of

the p lackboard and applies its knowledge etiher (it c:cate	 j? 	 and write

oil t;laikboard ni to ioodfy an cxting one i\ihoug the execut;Ofl o the entire

HEARSAY-11 svsten; co uis5L5 
of th asynchronouS execution of a collection of KSs.

the executiOn oh an individual KS is seqlleni:àl pro'-ss Once a KS is actisated. it

executes without being interrupted until it is
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F!gLIIc 16.2: A Snapshot of a hEARSAY-11 Blackboard

The hypotheses on the blackboard are arranged along two dimensions: level (from
small, low-level hypotheses about individual sounds to atge. high-level hypuiliees
about the meaning of an entire sentence) and lime (corresponding to periods of the
utt- ncc being analyzed). The goal of the system is to creIt a single hypothesis
that represents a solution to a problem. For I IEARSAY-li. such s1utioo would be an
acceptable interpretation of art ciii ire utterance. Figures 16.2 and 16.3 show a snapshot of
a I IEARSAY I! blackboard Figure 16.2 shows the lowest three levels of the blackboard.
and Figure 16.3 shows the top three. The levels are the following:

a. The waveform corresponding to the sentence "Are an y by Feigenbaum and Feld
rnanT'

h. The correct words shown just for reference

c. The sound segments

d. The syllable classes

e. The words as created by one word KS

f. The words as created by a second word KS

g. Word sequences

h. Phrases
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Figure 16.3: The Rest of a HEARSAY it Blackboard
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Associated with each KS is a set of triggers that specify conditions under which the
KS should be activated. These triggers are an example of the general idea of a demon,
which is, conceptually, a procedure that watches for some condition to become true and
then activates an associated process.'

When a trigger fires, it creates an activation record describing the KS that should be
activated and the specific event that tired the trigger. This latter information can be used
to rocus the attention of the KS when it is actually activated. Of cource, a single event.
such as the atidition of a particular kind of hypothe.si to the blackboard. could 1a0sc
several tri gger t the at 00CC, causing several activation records to be created. The KS
that caused the triggering event to occur need not know about an5 of these subsequent
activations. The actual determination of which KS should be activated next is done
by a s pecial KS, ca l led the srhedu1r, on the basis of its knowledge about how best to
conduct the search in the particular domain. The scheduler 'l '.cs ratings suppliccito t by
each of the independent Ks. If the scheduler ever discovers that there are no activation
records pending, then the system's execution terminates. For more information on the
HEARSAY-11 scheduler, see Hayes-Roth and Lesser 11977].

The techniques developed in HEARSAY-Il have since been generalized in several
multipurpose blackboard systems, including HEARSAY-ill [Balzer etal., 1980; Erman
cial.. 19811, (IBB [Corkili etal., 19871. and BBI [Hayes-Roth. l985 Hayes-Roth and
Hewett. 19891. For example, the use of time as an explicit dimension on the blackboard
is not appropriate in all domains, so it has been removed from these more general
systems.

But these new blackboard systems also provide facilities that HEARSAY-I! lacked
In HEARSAY-11, control was data-diivcn. This worked well for speech understanding.
But for other kinds of problem solving, other kinds of control are more appropriate.
Examples include control that is driven either by goals or by plans. The newer blackboard
systems provide explicit support for these other cistitrol mechanisms. One important
way iii which they do that is to allow the use &.4 ndiple blackboards. Although this
idea can also be exploited as a way to modularize domain reasoning, one of its important
uses is to explcit one blackboard for reasoning in the problem domain and another (or
controlling that reasoning. In addition, these systems provtde a goal-ctnictured agenda
mechanism that can be used in the control space to allow problem solving to be driven
by an explicit goal structure. See Englemore and Morgan [1989] and iagannathan etal.
I 19891 for further descriptions of these systems and some applications that have been
built on lop of them.

Message-Passing Systems

Message-passing systems provide an alternative way foragents in a distributed reasoning
system to communicate with each other. In such a framework, the agr:;s lc;:d to know
more about each other than they do in a blackboard system. This knowledge enables them
to direct their messages to those agents who arc most likely to be able to do what needs
to be done. As an example of a message-passing distributed s y stem, we describe MACE
[Gasser er 'i!., 1987], which provides a general architecture for distributed reasoning

3 0f course, demons usually are not actually implemented as processes that watch for things, hut rather the

things They we watching for are set up to activate their when appropriate
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systems (in the same sense that systems such as BR I provide a general architecture for

blackboard systems). A MACE system is composed of live kinds of components

1. problem-solving agents, which are specialized 10 a problem domain

2 System agents, which provide such facilities as command interpretaUOfl, cr101

handling, tracing

3. Facilities, which are bout-in functinicihat agents can use forsuch things as pattern

matching and simulation

4. A description database, which naintaits descriptions of the agents

5. Kernels, of which there is one for each processor, which handle such functions

message routing and 110 tran.fers

A MACE problem-solving agent maintains models of other agents. A model that an

agent P has of some other agent A contains the following information:

I. Name: A's name

2. Class: A's class

3. Address: A's location

4 Role: A's relationship to P. This relationship can be identity. creator, or member

of an organizatior.

5. Skills: P', knowtet,-e. about what A can do

6. Goals. P's '.diets about A's goals

7.	 " s bctiets abuit A s plans for acliev:nf its goals

This arcliitecti.t supports rnany of the Kinds of distributed reasoning systenis that

we have been discussing. Lets consider a few.
suppose we want to butid a system in which a controlling '!c'eut will dccornposc

the problem and then negotiate with other agents to perform suhtasks using a contract
net mechanism. Then each of the agents cm be reprsetd as a problem-solving agent
in MACE The manager decomposes  the problem. It then sends requests for bids to
all the other agents, about which it knows nothing except their ddrsses. As the other
agents re:pond. the manager can build up its model or them. Using that model, it can
choose the agents to whom it wishes to award bids The chosen agents perform their

tasks and then send repIN messages to the manager.
At another extreme. sUppOSC c want to build a system that is composed olcompetiug

agents We ca ll UHMICI such a cys!eIll in a MACE architecture, again by building a set

1 problem-solving agents. bu t this time their models of each other must be more

sophisticated. In particular, it will be neces s ary to mode l cacti other's goals and plans.

Although MACE directl y supports a message-passing communication protocol, it
can be used to simulate a blackboard system. A single problem-solving ageto. or a co!
lection of them, can be used to simulate each htaclhoan'l knowledge 

source. Additional
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agents can simulate the blackboard itself. Agents scndm.:ssocs the hlackoard.
which in turn routes the messages 0) the tither agents that should be triggered as a result
of the posting.

As this example suggests, there really is no dichotomy between hlackboaij and
message-passing systems so much as there is a continuum. At one extrenie, an agent
can do nothing but broadcast its message to everyone. At the other, all can do
nothing except send its message to a specific other agent. l here are many in-between
positions that call ver y useful. For example, an agent may not know cxa1ly which
other agent should receive its message, but it may know that it is some agent belonging
to a particular class. In a message-passing architecture, this can he irnpien'i.eniect by
arranging agents into a hierarchy of classes and allowing messages to he sent to class
and thus delivered to all members of the Jass. In a blackboard system, this same
capability can be implemented by creating a t ype hierarchy for hlackboar'l elenier's.
Then each KS is marked with the types of elements that will be conidcred as triggering
events. When an clement is posted, only those KSs that are defined for elements of that
type will be given a chance to trigger on it.

16.3.3 Distributed Reasoning Algorithms

So far we have discussed various issues that arise when planning and plan execution are
distributed across multiple agents. But we have not considered any modifications to am.
other reasoning algorithms. We have implicitly assumed that such standard procedures

matching and inheritance would work in a distributed system just as they do in a
single-agent system. In many cases they do. But there are some reasoning algorithms,
particularly ones that operate globally on a knowledge base, that need to be redesigned
to support distributed reasoning. We consider one example of such an algot thin here.

Consider again the justification basedtruth maintenance system (JTMS) that we
described in Section 7.5.2. The JIMS works by considering an entire knowledge base
and labeling the nodes in the knowledge base so th.. iii? labeling is consistent and
well-founded. Both of these are global properties. But consider a distributed reasoning
system in which there are several agents, each of which has its own knowledge base.
Although we expect that each of these knowledge bases will he hicaiiy consistent, we
do not want to insist that, taken together, they be globally consistent. This is impuriani,
since one of the benefits of a distributed system is tiiat agents that represent different
points of view and positions can interact. So what does it mean to label the nodes in
such art 	 knowledge base?

A second question arises when we extend the notion of a JTrs1S to a distributed
system. In a single-agent system, a justification is created as part of the reasoning
process. It stays with the resulting node and can be used to update the belief status of the
node if any of the assumptions on which the reasoning depended ever Change. But what
if one agent does the reasoning and then communicates its result to another! Ti may
not make sense to communicate the justification, since it may involve knowledge-base
objects that the receiver of the result knows nothing about. This will often happen if
one agent asks another in solve a problem about which it knows very little.

Both of these problems can be solved by introducing the idea of a distributed
truth maintenance system. In this system, interagent justifications work as follows.
Assume A I solves a problem and reports the result to 42. Then Al also reports II)
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42 a justification that says "Because Al says so." This justification is treated by A2

essentilI y like a preislise jusli lication. But Al must also remember the justification, and

it must remember that it sent this justification to A2. If the justification ever becomes

invalid in Al, then Al must send a message to 42 saying that Al no longer says so. At

that point, the conclusion must go OUT in 42 unless there exists sonic other justification

that is stilt valid.
Node labeling in the distributed truth maintenance system works similarly to node

labeling in a single-agent system except that we need to redcUn consistency- Rather
than insisting oii global consistency, we instead insist on extended local consistency.
by which we mean that the labels within the knowledge base of a single agent must
he consistent and the labels that are attached to nodes that have been explicitly shared
among agents must be consistent across agents. But we do not insist that the labels
attached to nodes that have not been explicitly shared 'uc toiisisicrit across agents. For
more information on how to do this, see Bridgcland and lluhns [19901. For a similar
discussion of ways to create a distributed assumption-bused truth maintenance system,

see Mason and Johnson L1991.

16.4 Summary

ii- this chapter, we discussed parallel and distrioutea aspects of Al. We examined
svcoiogia! factors as well as efficiency concerns The last 

section described the

ssues that arise when we attempt in extend the pcihleinn-solving mechanisms of earlici
ilauters in (listrihule(l reasoning systems. We have by no means covered all of them.

'mo'c information in this area, see the the following collections: Hubris 119871.

WOW and Gasrr [19881, and Gasser and }-luhns [1989]
Before we end this chapter. we should point out that as distributed systems become
e cornpi.x, it becomes harder to see how best to organize them. One thing that

hs proved promising is to look rr analogies in the organization of other complex
'ostenis One of the most promising sources of such analogies is the struct ure of

uvtan org:rra/.atinns, such a societies aiid corporations A team or a corporation or a

,rt .vrru rnest is. after all, a di.trihuted goal-oriented system. We have already seen rae
exemple of this ica. naiileiy the bidding that is exploited in tie contract net framework.

3e Fox (1981], Malonc j i9fl 	 m,nd Koleldand Hewitt 119811 for further discussion

ni this tdea.
Another source it ideas is the way a single human brain functions. The hook. lht'

.Y.cfcty of Pq ind [Minsk y. 19851 explores the notion thet single nliOOs are also distributed

qscms, Composed 11f coiktitiiixO heterogeneous agen's that s imultaneously cooperate

,iiI coflipete.

16.5 Exercises

Consdcr a s ituation in s hicn one agent Al requests help from a second agent 42
to help find a movie ii would like. Al knows what it likes and .42 knows about

movies.
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a Using the belief and communication operators that we have defined (plus
any others that you find it useful to define), write a plan that could be used
hyAL

(h) Write a similar plan for A2.

2. Consider the following payoff matrix.

Q

If Q assumes P is rational, what move should Q make?

3. Show how the HEARSAY-I1 blackboard system could be extended to support ne
whole natural language understanding process thai we described in Chapter 15.

4 Show how a speech understanding system could be built using a MACE-stylc
architecture.



Chapter 17

Learning

17.1 What Is Learning?

One of the most often heard criticism', of Al is that machines cannot bc called intelligent
until they are able to learn to do new things and to adapt to new situations, rather than
simply doing as they are told to do. There can be little qrie'litrit that the ability to
adapt to new surroundings and to solve new problems is an important characteristic of
intelligent entities. Can we expect to see such abilities in programs? Ada Augusta, one
ot'the earliest philosophers of computing. wrote that

The Analytical Engine has no pretensions whatever to originate anything.
It can do whatever we brow how to order it to perform. [Lovelace, 1961

This remark has been interpreted by several Al critics as saying that computers
cannot learn. In fact, it does not say that at all Nothing prevents us from telling
a computer how to interpret its inputs in such a way that its performance gradually

improves.
Rather than asking iii advance whether it is possible for computers to 'learn." it is

much more enlightening to try to describe exactly what activities we mean when we say
"leanling" arid what mechanisms could be used to enable us to perform those activities.
Simon f 19831 has proposed that learning denotes

• .changes in the system that are adaptive in the sense that they enable the
system to do the same task or tasks drawn from the same population wore
efficiently and more effectively the next time.

As thus defined, learning c3vcrs a side range of phenumt'rra. At one end of the

pectnIm is skill refinement. People get better at many tasks simply by practicing. The
more you ride a bicycle or pla y tennis, the better you get. At the other end of ihe

spectrum lies knowledgtacriuisi(ion. As we have seen, marry Al programs draw heavily
on knowledge as their source of power. Knowledge is generally acquired through
experience, and such acquisition is the focus of this chapter.

Knowledge acquisition itself includes marry different activities. Simple stonng 01

computed information, or rote learning. is the most ha-ac learning activity. Many

447
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computer programs, e.g., database systems, can be said to "learn" in this sense, although
most people would not call such simple storage learning. However, many Al programs
are able to improve their performance substantially through rote-learning techniques.
and we will look at one example in depth, the checker-playing program of Samuel
[19631.

Another way we learn is through taking advice from others. Advice taking is similar
to rote learning, but high-level advice may not be in a form simple enough for a program
to use directly in problem solving. The advice may need to be first 0pI7fltOflUliCd, a
process explored in Section 11.3.

People also learn through their own probicni-soF i.ng experience. After solvirin a
complex problem. we remember the structure of the problem and the methods we uscd En

solve it. The next time we see the piohlcni, we can solve it more efficiently. Moreover,
we can geoera!ize from our experience to solve related .ccbems more eastl, In contrast
to advice taking, learning from problem-solving experience does not usually involve
gathering new knowledge that was previously unavailable to the learning program.
That is. the program remembers its experiences and generaliies from Oicm, but does
not add to the transitive closure t of its knowledge, in the sense that an advice-taking
program would, i.e., by receiving stimuli from the outside world. In large problem
spaces, however, efficiency gains are critical. Practically speak i ng, learning can mean
the difference between solving a problem rapidly and not solving it at alt. In addition,
programs that learn through problem-solving experience ma y be able to come up with
uualitativcly better solutions in the future.

Another form ofof learning that does involve stimuli from the outside is Iearn:iigJiorn
evampies. We often learn classify things in the world without being giveil explicit
rules. For example, adults can differentiate between cats and dogs, but small children
often cannot. Somewhere along the line, we induce a method for ;elling cats from dogs
based on seeing numerous examples of each. Learning from examples usually involves
.i teacher who helps us classify things by correcting us when we are wrong. Sometimes,
however, a program call 	 things without the aid of a teacher.

Al researchers have proposed many mechanisms br doing the kinds of leamin
descni'oed above. lit th :; chapter, we discuss several of ;hem. But keep in mind
throuahoui this discussion that learning is itself a problrni-snlviiig process. In fact, it
is very difficult to formulate a precise detli. '-; f le:riiing that distinguishes it from
other problem-solving tasks. Thus it should come as no surprise that. throughout this
chapter, we will make extensive use 01 both the prohler-s d y ing mechanism'; aid the
knowledge representation techniques that were pre sented in Parts I and 11.

17.2 Rote Learning

A hen a computer stores a piece uI data. it is performing :i rudimentany fejin ot !earniing.
After all, this act of storage presumably allows tho program to perform better in the
future (otherwise, why bother?). In the case of data caching, we store computed values
so that we do not have to recompute them later. When computation is more expensive
than recall, this strategy can save a significant amount 0 time. Caching has been used

T̀he .n wive closure of a pmram's knowledge ic th:,m kwtedge pt'! S - . .vcYer ihe pregralm( .,i.
logically deduce frum it.
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Figure 17.1: Storing Backed-Up Values

in Al programs to produce some surprising performance improvements. Such caching

i s known as rote /eni'Ii1n.
In Chapter 12. we mentioned one of the earliestgame-playing programs, Samuel's

checkers program I Samuel. 1963 1. This program learned to play checkers well enough

to beai iLS creator. It cpioited two kinds of learning: rote learning, which we look at
now, and parameter (or coefficient) adiusiment. which is described in Section 17.4.1.
Samuel's program used the tliiliim,Ix search pioedure to explore checkers game trec
As is the case with all such programs, time crmsLu ..riils 1 iemsucted it to search Oft, a few

levels in the tree. (The exact number varied depending on the situat;on.) When it could

search no deeper. it applied its static evaluation function to the board posiii',ii and used

that score to continue its search of the game tree. When it finished searching the tree

and propagating the values backward, it had a score for the position represented by the
root of the tree It could then choose the best move and makc it. But it also recorded the
board position at the root of the tree and tIre backed up score that had just been computed
for it. This situation is shown in Figure 17. 1(a).
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Now suppose that in a later game, the situation shown in Figure 17.1(b) were to arise.
Instead of using the static evaluation function to compute a score for position A, the
stored value for A can be used. This creates the effect of having searched an additional
several ply since the stored value for A was computed by backing up values from exactly
such a search.

Rote learning of this son is very simple. It does not appear to involve any sophis-
ticated problem-solving capabilities. But even it shows the need for some capabilities
that will become increasingly important in more complex learning systems. These
capabilities include:

• Organized Storage of Information—In order for it to be faster to use a stored value
than it would be to recompute it. there must be a way to access the appropriate
stored value quickly. In Samuel's program this was dc by indexing board
positions by a few important characteristics, ucli as the number ofpicec But as
the complexity of the stored information increases, more sophisticated techniques
are necessary.

• Generalization— The number of distinct objects that might potentially be stored
can be very large. To keep the number of stored objects down to a manageable
level, some kind of generalization is necessary. In Samuel's program, for example,
the number of distinct objects that could he stored was equal to the number of
different board positions that can arise in a game. Only a few simple forms of
generalization were used in Samuel's program to cut down that number. All
positions are stored as though White is to move. This cuts the number of stored
positions in hitif. When possible, rotations along the diagonal are also combined.
Again, though, as the complexity of the learning process increases, so too does
the need for generalization.

At this point, we have begun to see one way in which learning is similar to other
kinds of problem solving. Its success depends on a good organizational structure for its
knowledge base.

17.3 Learning by Taking Advice

A computer can do very little without a proiam for it to run. When a programmer
writes a .crics of instructions into a computer, a rudimenkary kind of learning is taking
place: The programmer is a sort teacher, and the computer is a son of student.
After being programmed, the computer is now able to do sorrthing it previously could
nut. Pxecuting the program may not be such a simple matter, hossever. Suppose the
program is written in a high-level language like LISP. Some irnerpreteror compiler must
Intervene to change the teacher's instructions into code that the machine can execute
directly.

People process advice in an analogous way. In chess, the advice "fight for control of
the center of the hoard" is useless unless the player can translate the advice into concrete
moves and plans. A computer program might make use of the advice by adjusting its
static evaluation function in ircItde a factor based on the number of center squares
attacked by its own pieces.
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Mostow 119831 describes a program called FOO, which accepts advice for piayin1
hearts, a card game. A human user first translates the advice from English into a
representation that P00 can understand. For example 'Avoid taking point' becomes.

(avoid (take-points me ) (trick))

F00 must operatiorwlize this advice by turning it into an expression that contains
concepts and actions P00 can use when playing thc game of hearts. One Strategy F00
can follow is to UNFOLD an expression by rc,lacing scnc term by its definition. By
UNFOLDing the definition of avoid. P00 cimc up with:

(achieve (not (during (trick) (take-points me)))

FOO considers the iv-. 	 io the player called "me." Next. FO0 UNFOLPc

the definition of trick:

(achieve (not (during
(scenario

each li I (players) (play-card p 
(take-trick (trick-winner)))

(take-points me))))

lii other words, the player should avoid taking points during thescenajio consisting

of (1) players pla y ing cards and (2) one player taking the trick. P00 then uses case

analysis to determine which steps could cause one to take points. It rules out step I on
the basis that it knows of no intersection  of the concepts take-points and play-card But
step 2 could affect taking points, so FO0 UNFOL Ds the definition of take-points:

(achieve (hot (there-exists c  cards-piaycd)
(ilicie-exists c2 (point-cards)

(during (take (trick-winner) C

(Lake me

i'h,s advice says tlat thc player should avoid taking poin t -cards during the process of

he trick-winner i ::g ie 'rick. The question ior P00 now is: Under what conditions

does take me c2) occur during (take (trick-winner) ci Y! By using a technique called

prtiaf nia,*. P00 hypothesizes that points will be taken if mc = trick-winner and c2

= Ci. It transforms the advice into:

(achieve (1101 (and (have-points (cards-played))
(= (trick-winner) me))))

This means "Do not win a trick that has points." W have not traveled very far

conceptuall y from "avoid taking points." but it is important to note that the current
vocabulary is one that P00 can understand in terms of actually playing the game of

hearts. Through a tiumber of other transformations. P00 eventually settles on:

(achieve (>= (and (in-suit-led (card-of me))
(possible (trick-has-points)))

(low (card-of me)l)
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In other words, when playing a card that is the same suit as the card that was played
first, if the trick possibly contains points, then play a low card. At last. FO -0 hac
translated the rather vague advice "avoid taking points" into a specific, usable heuristic.
FOO is able to play a better game of hearts after receiving this advice. A human can
watch FOO play, detect new mistakes, and cor^ect them through yet more advice, such
as "play high cards when it is safe to do so." The ability to operationalize knowledge is
critical for systems that learn from a teacher's act', ice. It is also an important component
of explanation-based learning. another form of karning discussed in Sectiut, I 7.6.

17.4 Learning in Problem Solving

lii the Iasi saczion, we saw ho a problem solvei could improve its pertorni:aCe h
takin g advice from a teacher. Can a program get better without the aid of a teacher'! It
can, by generalizing from Its own experiences.

17.4.1 Learning by Parameter Adjustment

Many progisnis rely onan evaluation procedure that combines inforixatirm from ,cveral
sources into a single summary statistic. Game-playing programs do this in their static
evaluation functions, in which a variety of factors, such as piece advantage and mobility,
are combined into a single score reflecting the desirability of a particular board position.
Pattern classification programs often combine several features to determine the correct
category into which a given stimulus should be placed. In designing uch programs. it

is often difficult to know a priori how much weight should be attached to each feature
being used. One way of finding the correct weights is Iii begin with surne estimate of
the correct settings and then to let the program modify the settings on the basis of its
experience. Features that appear to he good predictors of overall success will have their
weights increased, while those that do not will have their weights decreased, perhaps
even to the point of being dropped entirely.

Samuel's checkers program [Samuel, 1963expIoited this kindof learning in addition
to the rote learning described above, and Itprovides a good example of its use. As it
static evaluation function, the program used a polynomial of the form

('111 0 C2 1 2 I	 +CI(,lib

The t terms are the values of the sixteen features that contribute to the evaluation.
The u terms are the coefficients (weights) that are attached to each 01 these values. As
learning progresses, the t' values will change.

The most important question in the design of a learning program based on parameter
adjustment is "When should the value of  coefficient be increased and when should it he
decreased?" The second question to be answered is then "B) how much should the value
be changed?" The simple answer In the first question is that the netficienis of terms
that predicted the final outcome accurately should be increased, white the coellicienis
of poor predictors should be decreased. In some domains, this is easy to do. If a patient
classification program uses its evaluation function to classify an input and it gets th
right answer, then all the terms that predicted that answer should have theit weights
increased. But in game-playing programs, the problem is more dff:cuh 1e prograrr
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does not get any concrete feedback fion' indvidital !fl.WC It tioc'. not find out fat sure

until the end of the game whether it has 'son. But many moves have contributed to that
final outcome. Even if the progi am wins, it may have made some bad moves along the
way. 'l'he problem of appropriately assigning n'vponsibility to each of the steps that led
to a single outcome is known as the crilf assignmeizt problem.

Samuel's program exploits one tccnnique. albeit imperfect. for solving this problem.

Acsatie that the initial valucs chosen for the coefficLents are good enough that the total

evaluation fl 'nchsm pcJuees '.:lcs 'ho .ir iitrl. ri.eoinahle oieasLlrrc o t the unrcee

score even if they are not as accurate as we hope to get them. Then this evaliiatioti
function can be used to provide feedback to itself. Move sequences that lead to positions
with higher values can be considered giod (and the terms in the evaluat i on function that

suggested them can be reinforced,.
Because of the limitations of tlli "' .'. 1 .. vevcr. Samuel's program did two

other things. one of which privided an additional teSt that progress was being made and
the other of which generated additior.al  nudges to keep tie process out of a rut:

• When the program was in learning mode, it played against another copy of itself
Only one of the copies altered its scoring function during the game; the other
remained fixed. At the end of the game, if rite copy with the modified function
won, then the modified function was acccptcil. Othcr'sise, the old one v,'as
retained. If, however. this happened very many times, then sonic drastic change

was made to the function in al l auc.npt to get the process going in a more prolit'sbie

direction.

• Periodically, ore teon in the scor::g tunc!otf was eliminated and replaced by
another. This was possible because. although the program used only Sixteen
features at any one lime, it actually kne aiw':ii thirty-eight. This replacement
differed from the lest of the learning protcdiiir since it created a sudden change

in the scoring function rather than a gradual shift to i t- weights.

This process of learning by successive modifications to the weights of terms in a
scoring function has many limitations. mostly arising out of its lack of exploitation

of any knowledge about the structure of the problem with which it is dealing and the

logical relationshipsaniong the prr'eri"c components. In addition, because the learning
procedure is a variety of hill climbing. it suffers from the same difficulties as do other
hill-climbing programs. Parameter adjustment is certainly not a solution to the overall
learning problem But it is often a useful technique. either in situations where very
little additional knowledge is available or in programs in which it is combined with
mote knowledge-intensive method' We have ionic in say about this type of learning in

Chapter 18.

17.4.2 Learning with Macro-Operators

We saw in Section 17.2 how rote learning was used in the Context of a checker-playing
program. Similar techniques can be used in more general problem-solving programs.
The idea is the same: to avoid expensive recomputation. For example. suppose you
are faced with the problem of getting to the downtown post office. Your solution may
involve getting in your car, starting it, and driving along 21 certain route. Substantial
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planning may go into choosing the appi opriate route, but) ou need not plan about how to
go about starting your cat. You are free to treat START-CAR as an atomic action, even
though it really consists of several actions: sitting down, adjusting the mirror, inserting
the key, and turning the key. Sequences of actions that can be treated as a whole are

called macro-operators.
Macro-operators were used in the early problem-solving system STRIPS lFiLes

and Nilsson, 1971; Fikes etal.. 19721: We discussed the operator and goal structure'

of STRIPS iii Section 13.2. but STRIPS also ha s a icarsung component. After each

problem-solving episode, the learning compoiient takes the computed plan and stores
it away as a macro-operator, or MACROP. A MACROP is ut lic a regular operator
except that it consists of a sequence of actions. 1101 just a siigie ore. A MACROP"

preconditions are the initial conditions of the problem just solved, and its postconditioris
correspond to the goal just achieved. In its simplest kim, the caching of pr"viously

computed plans is similar to rote learning.
Suppose we are given an initial blocks world ,luatn in which ON(C, Band ON(A,

Table) are both true. STRIPS can achieve the goal ON(A. Et) by devising a plali with
the four steps UNS'rACK(C, B,PUTDOWN(C). PICKtIP(A), STACKIA. B. STRIPS
now builds a MACROP with preconditionsON(C. H)Th J. ((A,Tahlc) and postcondition'i

ON(C, Table). ON(A, B). The body of the MACROP consists ot the foui steps dust

mentioned. In future planning, STRIPS is free to use this complex macro-Operator juSt

as it would use any other operator.
But rarely will STRIPS see the exact same problem twice. New problems will differ

from previous problems. We would still like the problem soIvtr to make efficient use
of the knowledge it gained from Its previous experiences. By genera!iin MACROPs

before storing them, STRIPS is able to accomplish this The simplest idea for gener-
alization is to replace all of the constants in the macro-operator by vaichles 1nsted
of storing the MACROP described in the previous paragraph. STRIPS can geilcuil-

ize the plan to consist of the steps tJ'NSTACK(x,. .t), PUTE)OWN(x i ). PICKUP(xa),

STACK0 3 . 12). where r 1 , x. and X 3 are variables. This plan can then be stored with

preconditions ON(x 1 . ii), ON(x1 , Table) and postconditions ON(x 1 , ' fahIe). ()N(x 2 , 11).

Such a MACROP can now apply in a variety of situdiiOn;.
Generalization is not so easy. however. Sometimes constants must retain their

specitic values. Suppose ourdomain included an operatorcalled STACK-ON-B(s). with

preconditions that both x and B be clear, and with po'icondiion ON(i, B). Consider the

same problem as above:

r1	 ri
t1iL	 Bti:i

sian: ON(C,B)	 goal ON(A.B)

STRIPS might come up with the plan UNSTACKIC. B), PITDOWN(C). STACK-
ON-B(A). Let's generalize this plan and store it a.s a MACROP The precondition

becomes ON( s3. X7), the postconditiori becomes ON i . x and the plan itself becomes
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UNSIACK(x. 0, PUTDOWN00. SLACK-ON B(x). Now, suppose we fmcounter

a slightly different problem:

	

mrii	 PA [D]
ir1rt

	

.r.n- O(T C)	 goal: ()NA, C)

ON(D. B

The generalized MACROF' we j.t stored seems well-suited to solv:ng this problem

if we let s = A. x2 = C. and 13 = F. Its precor.:liticiris are satisfied, so we construct
the plan UNSTACK(E. C), PUTDOWN(E). STACK-ON-B(A). But this plan does not
work. The problem is that the postcondition of the MACROP is overgeneralized. This
operation is only useful for stacking blocks onto B, which is not what we need in this new
example. In this case, this difficulty will be discovered when the last step is attempted.
Although we cleared C. which is where we wanted to put A, we failed to clear B, which

is were the MACROP is going to try to put it. Since B is not clear, STACK-ON-B
cannot be executed. If B had ha 1 ,1,cii(:d to he clear, the .m ACROP would have executed

to completion, but it would not have accomplished the stated goal.
In reality. STRIPS uses a more complex generalization procedure. F

i
rst. all constants

are replaced by variables. Then, for each operator in the parameterized plan. STRIPS
reevaluates Its preconditions. In our example, ihe preconditions of steps I and 2 are

satistied. but the only way to enure that B s cleir for step 3 is to assume that block
.i. which was cleared by the UNSTACK operator. is actually block B. Through "re-
proving" iliat the generalized plan works, STRIPS locates constraints of this kind.

More resent work on macro-operators appears in Korf 11955bJ. l turns out that
the set of problems for which macro-operators are critical are exactly those problems

with nonseric.th:ohli' subgoals. Nonserializability means that working on one subgoal
w'Il necessarily interfere with the previous solution to another subgoal. Recall that we
discussed such problems ; :-ncction with nonlinear planning (S ection 1.5). Macro

operators, can he useful in such cases, since one macro-operator can produce a small
gohal change iii the world, even ihotih 1ht iislivILlilal opetatois that make it up producc

many undesirable local changes.
For example, consider the 8-puzzle. Once a prugra:n has correctly placed the lust

four tiles, it is difficult to place the fifth tile without disturbing the first four. Because
disturbing previously solved subgoals is detected as a had thing by heuri

s tic scoring

functions, it is strongly resisted. For many problems. includingthe 8-puzzle and Ruhik's
cube, weak methods based on heuristic scoring ale therefore insufficient. Hence, wc
either need domain -specific know ledge. or else a n&' weak niethod. Fortunaicly. we can

learn the domain-specific knowledge se need in the torn of inauro-riperators. Thus,
macro-operators can be viewed as a weak method for learning. In the 8-pirtzk. foi
example. we might have a macro -a complex, prestored sequence of operators—for
placing the fifth tile without disturbing any of the first tour tiles externally (although
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in fact they are disturbed within the macro itself). Korf [1985h] gives an algorithm

for learning a complete set of macro-operators. This approach contrasts with STRIPS.
which learned its MACROPs gradually, from experience. KOrf'S algonihin runs in time
proportional to the time it takes to solve a single problem without macro-opertOis.

17.4.3 Learning by Chunking

Chunking is a process similar in flavor to ivacio-operi.tiir. [lie idc c tuokin_ coie

from the psychological literature on memory ai;d j nhiu sohing. Its computational
basis is in production systems, of the type studied in (liapici' Ci, Recall that in that
chapter we described the SOAR systeirs aud discussed i ts use of corn!ol kno ledge.

SOAR also exploits chunking (Laird s'i al., 19861 so that its performance can increase
with experience. In fact, the designers of SOAP !iputhesize that chunking is a univcral
learning method, i.e., it can account for all typc.s of learning in intelligent systenis.

SOAR solves problems by fi ring productions, which are stored in long term memory.
Some of those firings turn out to be inure useful than others. When SOAR detects 1

useful sequence of production firings, it creates a chunk, which is esrotioIly a large
production that does time work of an entire sequence of smaller ones. As in MACROPs

chunks are generalized before they are stored.
Recall from Section 6.5 that SOAR is a tjr,itorrn processing architecture. Problems

like choosing which subgoals to tackle and which operators to try (i.e., search control
problems) are solved with the same mechanisms as problems in the original problem
space. Because the problem solving is uniform, chunking can be used to learn general
search control knowledge in addition to operator scqeet1cr'. For example, if SOAR Iries
several different operators, but only one leads to a useful path iii the search space, then
SOAR builds productions that help it choose operators more wisely in the iut'ire.

SOAR has used chunking to replicate the macic . operator result described iii the

last section. Jr, solving the 8-puzzle. for example, SOAR learns how to place a given
tile without permanently disturbing the previously placed tiles. U, the wa thai
SOAR learns, several chunks may encode a single macro-operator. and one chunk
may participate in a number of macro sciuencec. Chunk' air generally applicable
inward any goal state. This contrasts with macro tables, which are stmuctured toward
reaching a particular goal state trom any initial stale. Also. chunking emphasize s h.'sc

learning can occur during problem solving while macro tabhts are usually built during
a preprocessing stage. As a result. SOAR is able to Icarn within trials as well as across
trials. Chunks learned duringilie initial stages of solving a problem are apçiicahle in the
later stages of the same problem-solving episode. After a'olutmoms is found, the chunks
remain in memory, ready for use in the next problem.

The price that SOAR pays for this generality and flexibility is speed. At present.
chunking is inadequate tor duplicating the contents o large. direct] y-cOnulliJied m1iIcm0

operator tables.

17.4.4 The Utility Problem
PRODIGY [Minton et al., 19891, Which we described in Section 6.5, also acquires
control knciwkdge automatiC3lIV. PRODIGY employs several learning mechanisms.

One mechanism	 c.xplanalwn 5ased learning (EBL). a learning uicthod we discuss
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in Section 17.6. PRODIGY can examine a trace of its own problem-solving behavior

and fly to explain why certain paths failed. The program uses those cxplonution to

forit it , jai e control i aics that help the problem solver avoid those paths in the luture So
white SOAR Icanis primsi ily from examples of successful problem solving, PRODIGY

also learns troni its failures.
A major contribution of the work on EBL in PRODIGY [Minton, 1988 was the

identification o the uiih" prnhicnt in learning systems. While new search cuinrol

kncicdgc can he ot great bcncht in soivi;ig future problem.,, eflicently, there are also

some rawbcs. The learned control rules can take up large amounts of memory and

he sc,ruh 1)rrigraiii must take the time LO consider each rule at each step during problem
solving. Coitsideririga cootrul rule ar000Il'.S to seeing it its postcondiions arc desirable
and seeing if its preconditions are satisfied Ibis is a time-consuming process. So wliilr'
learned rules may reduce problem-solving time by ( l irectilig the search more carefully,

they may also increase problem-solving time by forcing the problem solver to consider
them. II we only want to minimize the number of node expansions in the search space,
then the more control rules we learn, the better. But if we want to minimize the total
CPU time required to solve a problem, we must consider this trade-off.

PRODIGY niainlains a utility iiieasurc for each contiol rule. This measure takes
into account the average savings provided by the rule, the frequency of its application.
and the cost of matching it. If a proposed rule has a negative utilit), it is discarded
(or "forgotten'). If riot, it is placed in long-term memory with the other rules. It
is then monitored during subsequent problem solving. If its utility falls, the rule is
discarded. Empirical experiments have demonstrated the effectiveness of keeping only

those control rules with high utility. Utility considerations apply to a wide range of
learning systems. For exauiple, for a discussion of how to deal with large, expensive
chunks in SOAR, see Tanibe and Rosenblooin 119891.

17.5 Learning from Examples: Induction

('tas.stjliwtoi is the process of assigning. to a particular input, the name of a class to
which it belongs. The classes from which the classification procedure can choose can
be described in a variety of ways Thr'ii definition will depend on the use to which they

will be put.
Classification is ai'important component of many problem-solving t,Lsks. ii its

simplest form, it is prescntd as a straightforward recognition task. An example of this
is the question "What letter ot the alphabet is this?" But often classification is embedded
inside anotheroperatiofl. To see how this can happen. consider ti problem solving system

that contains the following piniluction rule.

It: thc current gout ia to get trorn place A to place L4 , and
there is a WALL separtinç the two p1aes

the::: iock for a LXX,iWAY in the WALL and qo throuqh it-

To use this rule successfully, the system's matching routine must be able to identity
an object as a wail. Without this, the nile can never tie invoked. Then, to apply the ruic,

the system must be able to recognize a doorway.
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Before classification can be done, the classes it will use must be defined. This can
be done in a variety of ways, including:

• Isolate a set of features that are relevant to the task domain. Define each class
by a weighted sum of values of these features. Each class is then defined by
a scoring function that looks very similar to the scoring functions often used in
other situations, such as game playing. Such a function has the form:

Cut 4- C-t2 +c3 t3 + -

Each z corresponds to a value of a relevant parameter. and each r represents the
weight to be attached to the corresponding i. Negative weights can be used to
indicate features whose presence usually constitutes negative evidence fora given
class.

For example, if the task is weather prediction, the parameters can be such measure-
ments as rainfall and location of cold fronts, Different functions can be wntten to
combine these parameters to predict sunny, cloody, rainy, or snowy weather.

• !sotate a set of features that are relevant to the task domain. Define eact cia.sx as
• a structure composed of those features.

For example, if tire task is to identify animals, the body of each type of animal can
be stored as a structure, with various features repre:enting such things as color,
length of neck, and feathers.

There are advantages and disadvantages tc- each of these general approaches. The
•statistia1 approach taken by the first scheme presented here is often more- efficient than
the structural appioach taken by the second. But the second 7 s more flexible and more
exten jhle

Regardless of the way that classes are to be descrbe1, it is often difficult tu construct,
by hand, good class definitions, This is particularly true in domains that are not well
understood or that change rapidly. Thus the idea of producing a classification program
that can evolve its own class dehnitions is appealin g . This task of constructing Class

definitions is called concept !earnin. or induction. The techniques used for this task
must, of course, depend on the way that r tases (concepts) are described. if classes are
described by scoring funi:iions, then concept learning can be done using the technique
of coefficient adjustment described in Section 17.4.1. It. however, we want to define
classes structurally, some other technique for learning ch'ss definitions is necessary. In
this section, we present three such techniques.

17.5.1 Winston's Learning Program

Winston 119751 describes an early structural concept learning program. This program
operated in a simple blocks world domain. Its goal was to construct representations ot
the definitions of concepts in the Hocks domain. For example, it learned the concept'
House, Tent, and Arch shown in Figure 17.2. The figure also slio',s,, an example of anciir
miss for each concept. A near miss is an object that is not an instance of the concept in
question but that is very similar to such instances.
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Figure 17.2: Some Blocks World Corscept

The program st arted with it line drawing of a blocks world structure. It used
procedures such as the one described in Section 14.3 to analyze the drawing and construct
a semantic net representation of the structural description of the objcct(s). This structural
description was then provided as input to the leamiig program. An example of such a

structural description for the House of Figure 17.2 is shown in Figure 17.3(a). Node A

represents the entire structure which is composed of two parts: node B, a Wedge, and

node C, a Bri(k. Figures 17.3(h) and 173(c) show descriptionsof the two Arch structures

of Figure 17.2. These descriptions are identical except for the types of the objects on the

top; one is  Brick while the other is a Wed,'r. Notice that the two suppoilitig objects are

related not only by left-of and right-of links, but also by a cloes-ut,t-,na'fl link, which

says that the two object s do not marry. Two objects man if they have faces that touch

and they ha ve a common edge. The marry relation is critical in the definition of an

Art 	 It is the difference between the first arch structure and the near miss arch structute

shown in Figure 17.2.
The basic approach that Winston's program took to the problem of concept formation

can be described as follows:

I Beg in with a structural description of one known instance of the concept. Call
that description the concept definition.

2. Examine descriptions of other known instances of the concept. Generalize the

definition to include them.

3. Examine descriptions of near misses of the concept. Restrict the definition to

exclude these.

Steps 2 and 3 of this procedure can be interleaved.
Steps 2 and 3 of this procedure rely heavily on a comparison process by which

similarities and differences between structures can be detectix?. This process must
function in much the same way as does any other matching process, such as one to
determine whether a given production rule can be applied to a particular problem state.
Because differences as well as similarities must be found, the procedure must perform
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Figure 17.3: Structural Descriptions
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Figure 1 7.4: The Comparison of Two Arches

:!tt just literal but also approximae matching. The output of the comparison procedure
i s a skeleton structure describing the commonalities between the two input structurt,
fl is annotated with a set of comparison notes that describe specific similarities and
differences between the inputs.

To see how this approach works, we trace it through the process of learning what
an arch is. Suppose that the arch description of Figure 17 3(b) is presented first It then
becomes the definition of the concept Arch Then suppose that the arch description of
Figure 17(c) is presented. The comparison routine will retuen a structure similar to
the two input structures except that it will note that the objects represented by the nodes
labeled C are not identical. This structure is shown as Figure 17.4. The c-note link
from node C describes the difference found by the comparison routine. It notes that t.c
ditference occurred in the rca link, and that in the first structure the isa link pointed 10
Brick, and in the second it pointed to Wedge It also notes that if we were to fellow iiu
links from BiirA and Wedge, these links would eventually merge. Al this point, a new
description of the concept Arch can be generated. This description could say simply
that node C must be either a Brick or a Wedge. But since this particular disjunction has
no previously known significance, it is probably better to trace up the isa hierarchies of
Brick and Wedge until they merge. Assuming that that happens at the node Object, the
Arch definition shown in Figure, 17.5 can be built.
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IM	 isa

Hrik	 Brick
d ' r.c -nat -marry

Figure I 7.3 The Arch Description after Two Enplcs

Next, suppose that the near miss arch shown in Figure 7.'-, is presen;cc. Ihu time,
the comparison routine will note thi,' 'tic onl y dlflcrenLc Itivecit die current definition
and the near miss is in the does-n(, - ,arm link betwe,i, codes Ii and L). But since Ihi
is a near miss, we do not warr in hioacjeii the iitfiiutior, ii) lilCilIlle it Insieati. we Want
to restrict the definition so that it is specifically excluded. To do this. we modify the
iink does-noz-,narrv, which may simply he recording something thiat has happened by
chance to be true of the sntall number of examples that hae been presented. Ii must
now say must -nor-marry. The A,-'h description at this point is shown in hgure 17.6.
Actually. rnust-rnn-marry should not be a completely new link. There must be some
structure among link types to reflect the relationship between nia, rs. doecnur-marr,
and must -nat -ma ri-v

Notice how the problem-solving and knowledge representation techniques we cov-
ered in earlier chapters are brought to bear on the problem of learning. Semantic
networks were used to describe block SUUCtUICS, and an isa hierarchy was used to de-
scribe relationships among alread y known objects. A matching process was used to
detect similarities and differences between structures, and hill climbing allowed the
program to evolve a more and more accurate concept dfinitiori

This approach to structural concept learning is not without its problems. One major
problem is [hat a teacher must guide the learning program iliiuugh a carefully chosen
sequence of examples. In the next section, we explore a learning technique that is
insensitive to the order in which examples are presentcJ.

7.5-2 Version Spaces

siChcll 11977. 1978J describes another approach to concept learning called vt-r'wn
•:pa- The goal is the same: to produce a description 'hat is consistent with all positive
example- hut no negative examples in the training set. Ru! while Winston's system
ct,1 th 1-s volviiig a s ingle --.oncepi drscrintini - sercion spes work by maintaining a
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rigure 1 7.6: The Arch Description after a Near Miss

Car023
gin :	 Japa:i

:nani4( ic !u Iu r Honda
olor:	 Blue

decade:	 /970

ripe	 Econooiv

F;cijre 177: Ail Example of the Concept Car

set of possible descriptions and evolvin g that set as new examples nd near misses are
presented. As in the previous section, we need some sort of representation language for
examples so that we can describe exactly w ht the system sees in an example. For now
we assume a simple frame-based language, although version spaces can he constructed
for more general rcpiesentaiion languages. Consider Figure 177, a frame representing
an individual car.

Now. suppose that each slot may contain only the discrete values shown in Fig-
ure 17.8. The choice of features and values is called the bias of the learning system. B
being embedded in a particular program and by using particular representations, every
learning system is biased, because it learns some things more easily than others. to our
example, the bias is fairly simple---e.g_ we can learn concepts that have to do with car
uui:uiufactuurers. hut not car owners. In more complex ss stems, the bias is less obvious
A clear statement of the bias of  learning system is very inipoulant to its eaivaton.

Concept descriptions, as cscll as training examples, can be stated in terms of these
clots and values. For example, the concept "Japanese economy car" can be represented
as in Figure 17.9. The names x 1 . ,r1 , and r 1 are variables, The prcscncc ot .s, for
example, indicates that the color ola car is not relevant to wtiethi'r the	 ', .i Japanese



464	 IHAP1ER 1,'. Li4RNlNG

origta	 E (Japan, USA. Britain, Germany, Italy)
manufactu rer € {Hondu, Toyota, Ford, Chrysler, Jaguar. BMW. Fiat
color	 C {Blue, Green, Red, White)
decade	 41950. 1960, 1970, 1980. 1990,2000)
type	 c (Feonomy. Luxury. Sports)

Figure 7.8: Rcprcscntat ion Language for (Thr,

O!ixi fl. 	 Japan
manufacturer:
color	 A2

decade
type :	 Economy

Figure 17.9: The Concept "Japanese economy car"

economy car. Now the learning problem is: Given a representation language such
as in Figure 17.8, and given positive and negative training examples such is those in
Figure 177, how can we produce a concept description such as that in Figure 17.9 that
is consistent with all the training esamples?

Before we proceed to the version space algorithm, we should make some obciva.
lions about the representation. Some descriptions are itiore general than others. For
example, the description in Figure 17.9 is more general than the one in Figure 17.7. In
fact, the representation language defines a partial ordering of descriptions. A portion of
that partial ordering is shown in Figure 17.10.

The entire partial ordering is called the concept space, and can be depicted as in
Figure 17.11. At the top of the concept space is the null description, consisting only
of variables, and at the bottom are all the possible training instances, which contain no
variables. Before we receive any training examples. we knew that the taiget cOI11,L
lies somewhere in the concept space For example, if every possible description is an
instance of the intended concept, then the null description is the concept definition since
it matches everything. On the other hand, if the target concept includes only a single
example, iheti one of the descriptions at the bottom of the concept space is the desired
concept definition. Most target concept', of course, lie somewhere in between these twc
extremes.

As we process training examples, we want to reline our notion of where the target
concept might lie Our current hypothesis can be represented as a subset of the concept
space called the version space. The version space is the largest collection of descriptions
that is consistent with all the training examples seen so for

How can we represent the version space? The version space istmplya set of
descriptions, so at) initial idea is to keep an explicit list of those descriptions. Unfor-
tunately, the number of descriptions in the concept space is exponential in the number
of features and values. So enumerating them is prohibitive. Howcvej. it turns out that
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nitin:	 &i
mfr:
color :
decade
type:

ongm : Japan	 origin
,nfr :	 X,	 'nfr =
co/or:	 color :
decade:	 decade ..4
t ype :	 V,	 1 .11 Pe :	 Econr,niv

o1gin
mfr:
color
decade
type

Origin.
nifr
cOil;'

decade
t%pe

Japan

I'

Economy

Japan
Honda
White
1981
Economy

origin :	 USA
nzfr
color: Arl

decade:
t ype :	 Ero!rLIl r

origin:	 USA
,nf,	 Chiv.c/er
color 7	 Green
decade: 1970
type :	 Lconotn

Figure 17.10: Partial Ordering of Concepts Specified by the Representation Languag
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Null Flypothcsis

Trainine hainple

Figure 11.1 I: Concept and Version Spaces

the version space has a concise representation. It consists of two subsets of the concept
space. One subset, called G, contains the most general descriptions Consistent with
the training examples seen so far; the other subset, called S. contains the most specific
decripiions consistent with the training examples. The version space is the set of all
descriptions that lie between some element of G and some element of S in the partial
order of the concept space.

This representation of mc version space is not only efficient for storage, hut also fre
modification. trituiiively, each time wc receive a positive training example, we want
to make the S set more general Negative training examples serve to make the G set
more specific. If the S and G sets converge, our range of hypotheses will narrow to a
'.,ogic concept iecription. The algorithm for nairow)nR the version space is called the
citiclidiiti' eliminawn algorithm.

Algorithm: Candidate Elimination

Given: A representation language and it set of positive and negative eimrtipk.

expressed in that language.
Compute: A concept description that is consistent with all the positive examples

and none of the negative examples.

1. Initial izeG to contain one eiement: the null description tall features are variables

2. Initialize S to contain one element: the first positive example.

I. Accept a new training example.

If it is a positive example, first remove from 0 any descriptions that do not covet
the exairtple. Then, update he S set to contain the most specific set of descri ptains
in the version space that cover the example and the current elements of the S set
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origin:	 Japan	 origin:	 Japan	 origin:	 Japan

mfr:	 Honda	 rnfr:	 Toyota	 rnfr:	 Toyota

color:	 Blue	 color :	 Green	 color:	 Blue

de ,, udc : 1980	 decade: 1970	 decade: 1990

type:	 Economy	 type:	 Sports	 type:	 Economy

(4)	 1—)	 (4)

£5.4	 origin :	 Jo;'cui

,nfr:	 Chrysler	 mfr:	 Honda

color	 Red	 Color:	 While

de ode	 1980	 decade	 1990 

tspe :	 Er morn v	 lipe :	 i'.i i)nmy

f—i

Figure 17.12: Positive and Negative Examples of the Concept "Japanese economy car"

That is, generalize the elements of  as little as possible so that they cover the new

tr:iining example.

II it is  negative example. first remove fro"' S 111v
ilcse'ripiions that cove[ ilie

e'.ampie. Then, update the G set to contain the most general set of descriptions in
the version space that do not cover the example. That is, specialize the elements
of (, as little as possible SO that the negative example is no longer covered by any
of the elements of (5.

4. IfSand G are both singleton sets, then if they are identical, output their value and
halt. If they .jie both singleton sets but they are different. then the training cases
wore incoiisisient . Output this result and halt. Otherwise, go tei step

Let us trace the operation of the candidate elimination aiirithm. Suppose we \sanL
to learn the concept of "Japanese economy car" from the examples in Figure 17.12. G

and S both Start out as singleton sets. G contains the null description (see Figure 17.11).

and S contains the first positive training example. The veision space now contains all
descriptions thai are consistent with this first example 

U = ( 011. 1. A1. .v,.

S = (Japan, Honda. Blue. 1990, Economsi}

Now we are read y to process the second example. The U set must be specialized

in such a way that the negative example is no longer in the version space. in our rep-
resentation language, specialization involves replacing variables with constants. (Note
The U set must be spocialized only to descriptions that are within the current version
space, not outside of it.) Here are the available specializations -

2 11 10 make this example concise, we skip Slot names in the deseriptions. We just list stol values in the onic

in which the slots have been shown in the preceding hgures
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G	 {(x, Honda, 13. X4, x), (x I, 12, Blue. Y,, rs),
(11,12, 53. 19O, .v5). (1,12,12.14, Economy))

The S set is unaffected by the negative example. Now we come to the third example,
a positive one. The first order of business is to remove from the G set any descriptions
that are Inconsistent with the positive example. Our new G set i'

{(x 1 . .c, Blue. 14,	 (XI .12.12. X.S. Eco,iony))

We must now generalize the S set to include the new example. This involves
replacing constants with variables. Here is the new S set:

S = {(Japan, 12, Blue, 14, Economy)}

At this point, the Sand C sets specify a version space (a space of candidate descrip-
tions) that can be translated roughl y into English as: "The target concept may be as
specific as 'Japanese, blue econom y car,' ot as general as either blue car' or 'economy
car.

Next, we get another negative example, a car whose arixin is (JA. The S set is
unaffected, but the C set must be specialized to avoid covering the new example. The
new Cxci is:

C = It (JUlio/f, t, fl/ar, . 121. (Japan, 14, V. ; • ..V, Economy))

We now know that the car must be Japanese, because all of the descriptions in the
version space contain Japan as origin. Our final example is a positive one. We first
remove from the C set any descriptions that are inconsistent with it, leaving:

G {(Japan, 12, Xj, X4, Economy))

We Ehen generalize thc S set to include the new example

S = {(Japan, 12. X. 14, Economy))

S and (1 are both singletons, so the algorithm has converged on the target concept. No
more examples arc needed.

There are several things to note about the candidate elimination algorithm. First, it
is a !east - nmnrgtment algorithm. The version space is pruned as little as possible at each
step. Thus, even if all the positive traiiiingex.i;ples are Japanese cars, the algorithm will
not reject the possibility that the target concept may include cars of other origin—until
it receives a negative example that forces the rejection. This means that if the training
data are sparse, the S and C sets may never converge to a single description: the system
may learn only partially specified concepts. Second. the algorithm involves exhaustive,
breadth-first seatch through the version space. We can see this in the algorithm for

'It could be the case that our target concept is "not Chrysler," but we will ignore this possibility because
our crp(eccntaiu;n idogliage i, not powerful enough to express negation and disjunction,
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updating the G set. Contrast this with the depth-first behavior of Winston's learning
program. Third, in our simple representation language, the S set always contains exactly
one element, because any two positive examples always have exactly one generalization.
Other representation languages may not share this property.

The version space approach can be applied to a wide variety of learning tasks and
representation languages. [lie algorithm above cars he extended to handle continuously
valued features arid hierarchical knowledge (see Exercises). However, version spaces
have several deflciencies. One is the large qeicc i ct 1 uiitiflCiit5 of the exhaust  e, breadth-
iirSt search mentioned above. Another is that inconsistent data, also called noise, can

cause the candidate elimination algonthm to prune the target concept from the version
space prematurel y. In the car example above, if the third training instance had been
mislabeled (—) instead of fi). the target concept of "Japanese economy car" would
never be reached. Alsc, given enough erroneous negative examples, the G set can be
specialized so far that the version space becomes empty. In that case, the algorithm
concludes that no concept its the training examples.

One solution to this problem [Mitchell, 119781 is to maintain several G and S Sets.
One C set is consistent with all the training instances, another is consistent with all but
one, another with all but two. etc. (and the same for the S set). When in inconsistency

arkcs. the algorithm switches to C and S sets that are cor,istent with most, hut not all, of
che training cxaniple&. Maintaining multiple version spaces can be costly, however, and
the S and C sei are t y pically very, arge If we assume bounded invflsistertc y, i.e., that
inctances close o the targci concept houndary are the cc-oct likely to be misclassified,
then more efficient solutions are possible. Hirsh 119901 presents an algorithm that
runs as follows. t-or each instance, we form a version space consistent with that
instance plus other nearby instances (for some suible definition of nearby). This
version space is then intersected with the one created for all previous instances. W
keep accepting instances until the version space is reduced to a small set of candidate
concept descriptions. (Because of inconsistency, it is unlikely that the version spae
will converge to a singleton.) We then match each of the concept descriptions against
the entire data set. and choose the one that classifies the instances most accurately.

Another problem with the candidate elimination algorithm is the learning of dis-
junctive concepts. Suppose we wanted to learn the concept of "European car," which.
irs our representation, means either a German. British, or Italian car. Given positive
examples of each, the candidate elimination algorithm will generalize to cars of any
origin. Given such • t generalization, a negative instance say, a Japanese car) will only
cause an inconsistency of the type mentioned above.

Of Course, we could simply extend the representation language to include disjunc
lions. Thus, the concept space would hold descriptions such as "Blue car of German or
British origin" and "Italian sports car or German luxury car." This approach has two
drawbacks. First, the concept space becomes much larger and specialization becomes
intractable. Second, generalization can easily degenerate to the point where the S set

contains simply one large disjunction of all positive instances. We must somehow force
generalization while allowing for the iniruduction of disjunctive descriptions. ,Mitchell
19781 gives an iterative approach that involves several passes through the training data.

On each pass, the algorithm builds a concept that covers the largest number of positive
training instances without covering any negative training instances. At the end of the
Pas, . the positive training instances covered b y the new concept are removed from the
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Figure 1713: A Decision Tree

training set, and the new concept then becomes one disjunct in the eventual disjunctive
concept description. When all positive training instances have been removed, we are
left with a disjunctive concept that covers all of them without covering any negative
instances.

There are a number of other complexities, including the way in which features
interact with one another. For example. if the origin of a car is Japan, then the
manufin tare, caiintst he Chrysler. The version space algorithm as described above
makes no use ol such information. Also in our example, it would be more natural to
replace the det -ode slot with a continuously valued year field. We would have to change
our procedures for updating the S and G sets to account for this kind of ituniericat data.

17.5.3 Decision T-ees

A third approach to concept teaming is the induction of dci isiun trees, as exemplified
by the 11)3 

'
pro g ram of Quinlan 119861. 11)3 uses a tree representation for concepts.

such as the one shown in Figure 17.13. To classify a particular input, we start at the
top of the tree and answer questions until we reach a leaf, where the cla.ssiflcatn is
stored. Figure 17.13 represents the familiar concept 'Japanese econom y car." 1D3 is a
program that builds decision trees automatically, given positive and negative instances
of a concept .

11)3 uses an iterative method to build tip decision trees, preferring simple trees over
complex ones, on the theory that simple trees are more accurate classifiers of future
inputs. It begins by choosing a random subset of the training examples. This subset
is called the window. The algorithm builds a des.ision tree that correctly classifies all
examples in the window. The tree is then tested on the training examples outside the
window. If all the examples are classified correctly, the algorithm halts. Otherwise, it
adds a number of training examples to the window and the process repeats. Empirical
evidence indicates that the iterative strategy is more efficient than considering the whole
training set at once.

AciiaIIy, the decision rrre represeuilailon is more general: l.caves cao depole iuiyof a t'umbcr ofcla.'ses,
not just pmiti"c and negative.
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So how does 1D3 actually construct decision trees? Building a node means choosing
some attribute to test. At a given point in the tree, some attributes will yield more
information than others. For example, testing the attribute co/or is useless if the color of
a car does not help us to classify it correctly. Ideally, an attribute will separate tiaining
instances into subsets whose members share a common label (e.g.. positive or negative).
In that case, branching is terminated, and the leaf nodes are labeled.

There are many variations on this basic algorithm. For example, when we add a test
that has more than two branches, it is possible that uric branch has no corresponding
training instances. In that case, we call leave the node unlabeled, or we can attempt
to guess a label based on statistical properties ot'the set of ,its[aitcrs being tested at ihat
point in the tree. Noisy input is another issue. One way of handling noisy input i s to
avoid building new branches tithe information gained is very slight. In other words, we
do not want to overcomplicate the tree to account for isolated noisy instances. Another
source of uncertainty is that attribute values may be unknown. For example a patient's
medical record may he incomplete. One solution is to guess the correct branch to take:
another solution is to build special "unknown" branches at each node during learning.

When the concept space is very large. decision tree learning algorithms run more
quickly than their version space cousins. Also, disjunction is intire straightforward.
For example, we can easily modify Figure 17.13 to represent the disjunctive concept
"American car or Japanese economy car." simply by changing one of the negative (—)
leaf labels to positive (. One drawback to the 1D3 approach is that large, complex
decisio,i trees can be difficult for humans to understand, and so a decision tree system
may has p a hard time explaining the teasoris for its classifications.

17.6 Explanation-Based Learning

The previous section illustrated how ssc can induce concept descriptions from positive
and negative examples. Learning complex concepts using these procedures typically
requires a substantial number of training instances. But people seem to be able to learn
quite a bit from single examples. Consider a chess, player who, as Black, has reached the
position shown in Figure 17.14. The position is called a "fork" because the white knight
attacks both the black king and the black queen. Black must mose the king, thereby
leaving the queen open to capture. From this single experience, Black is able to leant
quite a bit about the fork trap: the idea is that if any piece .r attacks both the opponent's
king and another piece Y. then piece Y will be lost. We don't need to see dozens of
positive and negative examples of fork positions in order to draw these conclusions
From just one experience, we can learn to avoid this trap in the future and perhaps to
use it to our own advantage.

What makes such single-example learning possible? The answer, not surprisingly,
is knowledge. The chess player has plenty of domain-specific knowledge that can be
brought to bear, including the rules of chess anti any previously acquired strategies.
That knowledge can be used to identify the critical aspects of the training example- In
the case of the fork, we know that the double simultaneous attack is Important while the
precise position and type ol the attacking piece is not.

Much of the recent work in machine learning has tnoed away from the enpiri
cal, data-intensive approach described iii the last section toward this more analytical.
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Figure 17.14 A Fork Position in Chess

know ledge- intensive approach. A number of independent studies led to the character-
ization of this approach as explanation-based learning. An EBL system attempts to
learn from a single example x by explaining why x is an example of the target concept
The explanation is then generalized, and the systems performance is improved through
the availability of this knowledge.

Mitchell etal. [I 9861 and Deiong arid Mooney jI 9861 both describe general frame-
works for EBL programs and give general learning algorithms. We can think of EBL
programs as accepting the following as input

• A Training Example—What the learning program "sees" in the world, e.g.. the
car of Figure 171

• A Goal Concepi—A high-level description of what the program is supposed to
learn

• An Operattonality Criterion—A description of which concepts are usable

• A Domain Theory--A set of rules that describe relationships between objects and
actions in a domain

From this. EBL computes a generalization of the training example that is sufficient to
describe the goal concept, and also satisfies the.opertionality criterion.

Lcts look more closely at this specification. The training example is a familiai
input—it is the same thing as the example in the version space algorithm. The goal
concept is also familiar, but in previous seiioris we have viewed the goal concept as an
output of the program, not an input. The assrn,p6nn here is that the goal concept is not
operational, just like the high-kvrl cant-playing advice described in Section 17.3, An
EBI program seeks to operationalize the goal concept by expressing it in ternts that a
problem-olving program can understand. These terms are given by the operationality
criterion. In the chess example. the goal concept might be something like "bad position
for Black." and the oçcrationalizcd concept would be a generalized description of
situations similar to the training cxampie. given in teims of pieces and their relative
positions The lact input to an ERL program is a domain theory, in our case, the rules o
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chess. Without such knowledge, it is impossible to come up with a correct generalization

of the training example.
Explanation-based generalization (EBO) is an algorithm for EBL described in

Mitchell 't al. (1986]. It has two steps: (I) explain and (2) generalize. During the
first step, the domain theory is usrd to prune away all the unimportant aspects of the
training example with respect to the goal concept. What is left is an explanation of why
the training example is an instance of the goal concept. This explanation is expressed
in terms that satisfy the onerationalitv criterion. The next step is to generalize the
explanation as tar as possible while still describing the goal concept Following our
chess example. the first EBL step chooses to ignore White's pawns, k

i
ng, and rook.

-and constructs an explanation consisting of White's knight. Black's king, and Black's
queen, each in their specific positions. Operationality is ensured: all chess-playing
programs understand the basic concepts of piece and position. Next, the explanation
is generalized. Using domain knowledge, we find that moving the pieces to a different
part of the board is still bad for Black. We can also determine that other pieces besides
knights and queens can participate in fork attacks.

In reality, current EEL methods run into difficulties in domains as complex as chess,
so we will not pursue this example further. Instead, let's look at a simpler ease. Consider
the problem of learning the concept Cup [Mitchell etal.. 19861. Unlike the arch-learning
program of Section 17.5.1, we want to be able to generalize from a single example of a
,up. Suppose the example is:

• Training Example:

owner(Ohjet123, Ralph) .'.. has .part(Object23, Concavity! 2) A
lSObJ(si23, Light) A co!ortOhject23, Brawn) A

Clearly, some of the features ot Uhiect23 are more relevant to Its being a cup than
others. So far iii this chapter. we have seen several methods for isoliiiing relevant
features. These methods all require many positive and negative examples.' In EBL. we
instead rely on domain knowledge, such as

• Domain Knowledge:

isIs. Lighri A has-pa r:(x, y) A isalj, handle) - /tfraMe(x)
has-part(.s, y) A isa( y . Bottom) A is(, Flat) - .ciable(x)
ha.c-parr(x. v) A isa(v, Concav it y) A is(v. Upward-Pointing) - open-vessel(x)

We also need a goal concept to operaiionahze:

Goal Concept: Cup

is a Cup i if .r is liftable, stable, and open-vessel.

• OperatiunalityCnteriun: Concept delinitii,nniust beexpressed in purely structural
terms (e.g.. Light, F/ar. etc.).

Given a training example and a functional description, we want to build a general
structural description of a cup. The first step is to explain why Ohject2i is a cup. W*
do this by constructing a liroof. as shown in 1-igure 1'.15 Standard theorem-ptovrri
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Cup(Object23)

1
lifiahle(Obfrcr23)

I
	 open-ves.s'l(Ohject23)

I stahleObie(-03)	 I
is(Oh/ecr23, Light)	 Juis-pwt(Object23. Concavityl2)

has-pori(Objeci23, hand/d6) 	 i.ca(Con(ovirvl2, C'micavitv)
,sa(I!andlelO, Handle) 	 is(Concavirv12. Upward.Pninrthg)

has-part(Ohjeu2J, liuom19)
sa(Botimnl9, Bottom)

is(Bo11(iml9, Flat)

Figure 17.15: An Explanation

techniques caii be used to find such a proof- Notice that the proof isolates the relevant
features of the training example: nowhere in the proof do the predicates owner and color
appear. The prooF also serves as a basis for a valid generalization. If we gather up all
the assumptions and replace constants with variables, we get the following description
of a cup:

has'pai Ox, v) A ro(v, Concavuy) A isy, llpward . Painti;ig) A
has-part(x. :) A 1.50(2, Bottom) A ,s(2. Flat) A
hu.s-pari(.i, w) A isa(v, Handle) A is(, Light)

This detiriiiion caustics the operatürnality criterion and could be used by a robot to
classify objects.

Simply replacing constants by variables worked in this example. hut in some cases
it is necessary to retain certain constants. To catch these cases, we rniisi reprove the
goal. This process, which we saw earlier in our discussion of learning in STRIPS, is
called ,goal 1lgri. O(Pfl.

As we have seen, FRI. depends strongly on a domain theory. Given such a theory,
why are examples needed at au? We could have operaiionalizcd the goal concept
( 'uj without reference to an exampit. '.Ini ': ihe Jumaiii llieoiy contains all of the
requisite information. The answer is thai e.4mpies help in focus the learning on
relevant operationaluzations. Without an example cup. F.BL is faced with the task of
characterizing the entire riuige of objects tt.it satisfy the ialoncept. Most of these
objects will never he encountered in the real world, and so the result will be overly
general.

Providing a tractable domain theory is a difficult task. There is evidence that
humans do not learn with very primitive relations. Instead they create incomplete and
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inconsistent domain theories. For example, returning to chess. such a theory might
include concepts like 'weak pawn structure." fietting EBL to work in ill-structured
domain theories is an active area of research (see. e.g., Tadepafli [I89P.

EBL shares many features of all the learning methods described or earlier sections.
Like concept learning. EBL begins with a positive example of some concept. As in
learning by advice taking. the goal is to operatiorialize some piece of knowledge. And
FBI, techniques, like the techniques of chunking and macro operators. are often used
to improve the p-rfnrmance cif problem-solvin g engines. The major difference between

EBL and other learning methods is that FRL programs are built to take advantage of
domain knowledge Since learning is just another kind of 1ruhlein solving. it 'should
come as no surprise that there is leverage to be found in kruiwlertge.

17.7 Discovery

Learning is the pu.css by which one entity acquires knowledge. Usually that knowledge
is already possessed by some number of other entities who may serve as teachers.

Docovery is a restricted form of learning in which one entity acquires knowledge
without the help of a teacher. In this section, we look at three types of automated

discovery systems.

17.7.1 AM: Theory-Driven Discovery

Discovery is certainly learning. But it is also, perhaps more clearl y than other kinds of

learning, problem solving. Suppose that we want to build a program to discover things,
for example. in mathematics. We expect that such a program would have to rely heavily
on the problem-solving techniques we have discussed. In fact, one such program was
written by Lenat 1977: 1921. It was called AM. and it worked from a few basic
concepts of set theory to discover a good deal of standard number theory.

AM exploited a variety 01 general-purpose Al techniques. It used a frame system
in represent mathematical concepts. One of the major activities of AM is to create ness
concepts and hit in their slots. An example ofan AM concept is shown in Figure 17.16
AM also uses heuristic search. guided by a cci of 250 heuristic rules representing hints
about activities that are like] to lead to "interesting" discoveries. Examples of the kind
of heuristics AM used are shown in Figure 17.17. Generate-and-te st is used to form

hypotheses on the basis of a small tmurnber of examples and then to test the hypotheses
on a larger set to see if the y still appear to hold. Finall y, an agenda controls the entire

discovery pess Wheii the heimi ictics suggest a task, It is placed on a central agenda.ri 
along with the reason that it was stiggcsrt'd and the strength with which it Was suggeste1

AM operates in cycles, each time choosing the most primmisulig task from the agenda

and performing it.
In oil,- run. AM discovered the concept of prime numbers. How did it do that

having stumbled onto the nmm.ral numbers. AM explored operations such as addition,
multiplication, and their inverses. It created the concept of d i visibility and noticed that
some numbers had very few divisors. AM has a built-in heuristic that tells it to explore

'Smfleiirne'. there is nu one in the world who hay the knn ' kde we seek In that case, the kind ot ariaw'

we aiu$I Like is called ,ui.'nn/mc dseow1
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name: Prime-Numb,,
definitions;

Origin: Nunthrr.o,f.4g vjsor -ofl.ri 2
predicaie.cakul	 Prime(m)	 x ' (.t = I	 z
sterat,v: VaTs> I): For i from 2 to vrx,s!x

examples: 2,3,5,7.11,13.17
boundary: 2,3
boundary-failures: 0. I
failr4'' I 13

generalizations Nvmbtr, numbers s oh an e,en ruimber of dsvi.iorj
cprializnriois' Odd priniet, prime pairy , prime unique ly addai,les
canjecs: UniqMrfac,arr (1 o0 . Gsldbat-h'5 conjecture, extrenla of number.of-vi,irsof
intus: A metaphor to the effer , that primcc are the building Works of all numbert
analogies:
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Factor a non simple group Into simple groups

i nterest': Conjeezure.c rwjii pirmel to ;Un,.i. to diiitor ,j ' to relatrdnprrr,i,,
i yirth: 800

Figure I7.16 An AM Concept: Prime Number

• 1ff is a function from A to B and B is ordered, then consider the elements of A
that are mapped into extrernal elements of B. Create a new concept representing
this subset of A.

• If smite (bit lInt Irlost) esainples of some concept X ire al Lm examples of another
concept Y, create a new concept representing the intersection of X and V.

• If very few examples of a concept X are found, then add to the agenda the task of
finding a generalization of X.

Figure 17.17: Some AM Ifeuristirs

e.streme cases. It attempted to list all numbers with zero divisors f finding none). One
divisor (finding one: I), and two divisors. AM was instructed to call the last concept
"primes." Before pursuing this concept, AM went on to list numbers ss ith three divisors,
such as 49. AM tried to relate this property with other properties of 49, such as its being
odd and a perfect square. AM generated other odd numbers and other perfect squares
to test its h ypotheses. A side effect of determinipg the equivalence of perfect squares
with numbers-with three divisors was to boost the "nterestingness' rating of the divisor
concept. This led AM to investigate wa r' ich a number could be broken down
into factors. AM then noticed that uhere wis onl y one way to break a number down into
prime factors (known as the Unique Factorization i'heorcm.

Since breaking down numbers Into multtpiicatisc components turned out to be
interesting, AM decided, by analogy, to pursue additive components as well. It made
several uninteresting cotijecrures such as that Os cry number could be expressed as a
sum of I's. It also found more interesting phenomena, such as that many numbers
were expressible as the stint ;tf t'.vj primes B listIit ..isrs. .M determined that all
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even numbers greater than 2 seemed to have this property. This conjecture, known as
Cioldbach's Conjecture, is widely believed to be true, but a proof of it has yet to be found
in mathematics.

AM contains a great many general purpose heuristics such as the ones it used in
this example. Often different heuristics point in the same place. For example, while
AM discovered prime numbers using a heuristic that involved looking at extreme cases,
another way to derive prime numbers is to use the following two rules:

• if there is a strong analogy between A and B but there is a conjecture about A
that does not hold for all elements of B. define a new concept that includes the
elements of B for which it does hold.

• If there is a set whose complement is much rarer than itself, then create a new
concept representing the complement.

There is a strong analogy between addition and multiplication of natural numbers.
But that analogy breaks down when we observe that all natural numbers greater than I
can he expressed as the sum of two smaller natural numbers (excluding the ideality).
This is not hue for multiplication. So the first heuristic described above suggests the
creation of a new concept representing the set of composite numbers. Then the second
heuristic suggests creating a concept representing the complement of that, namely the
set of prime numbers.

Two major questions came out of the work on AM. One question was: "Why was
AM ever turned off?" That is, wh didn't AM simply keep discovering new interesting
facts about numbers, possibly facts unknown to human mathematics? Lenat (193b]
contends that AM's performance was limited b y the static nature of its heuristics. As
the program progressed, the concepts with which it was working evolved away from the
initial ones, while the heuristics that were available to work oil concepts stayed the
same. To remedy this problem. it was suggested that heuristics be treated as full-fledged
concepts that could be created and modified by the same sorts of processes (such as
generalization. specialization, and analogy ) as are concepts in the task domain. In other
words, AM would run in discovery mode in the domain of "Heuretics." the study of
heuristics themselves as well as in the domain of number theory. An extension of AM
called ELIRISKO [Lenai 1983a] was designed with this goal in mind.

The other question was: "Why did AM work as well as it did?" One source of power
or AM was its huge collection of heuristics about what constitute interesting things.
But AM had another less obvious source of power, namely, the natural relationship
between number theoretical concepts and their compact representations in AM [ls'nat
and Brown, 1983. AM worked by syntactically rnuating old concept dhni1iofls-
stored essentiall y as short LiSP programs—in the hopes of finding new, interesting
concepts. It turns out that a mutation in a small LISP program very likely results in
another well-formed, meaningful LISP program. This accounts for AM's ability to
generate so many novel concepts. But while human ,, interpret AM as exploring number
theory, it was actually exploring the space of small LISP programs. AM siiccecdec'
in large part because of this intimate relationship between number theory and LISP
programs. When AM and EURISKO were applied to other domains. including the
study of heuristics themselves, problems arose. Concepts in these domains were larger
and more complex than number theor y concepts, and the syntax of the representation
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n T p	 V	 PV pV/T pV/nT
1 300T1Thj 24.96-
1 300 200 12.48
I 300 300	 8.32	 2496

310	 2579.2
1 320	 I 2662.4	 8.32
2 320	 16.64H 3.2liuJ_j24.96!8.32

Figure 17.18: BACON Discovering the ldcal Gas Law

language no longer closely mirrored the semantics of the domain. As a result, syntactic
mutation of a concept definition almost always resulted in an ill-formed or useless
concept, severely hampering the discovers procedure.

Perhaps the moral of AM is that learning is a tricky business. We must be careful
how we interpret what our Al programs are doing [Ritchie and Hanna. 19841. AM
had an implicit Was toward learning concepts in number theory. Only after that bias
was explicitly recognized was it possible to understand why AM performed well in one
dc.najn and poorly in another.

17.7.2 BACON: Data-Driven Discovery

AM showed how discovery might occur in a theoretical setting. Empirical scientists see
things somewhat differently. They are confronted with data from the world and must
make sense of it. They make hypotheses. and in order to validate them, they design and
execute cxpeririieiits Scientific discovery has inspired a number of computer models.
Langley etal. [198181 present a model of data-driven scientific discovery that has been
implemented as a program called BACON, named after Sir Francis Bacon, an early
philosopher of science.

BACON begins with a set of vaiiaWc, lot a problem. i-or example, in the stud y of
the behavior of gases, some variables are p, the pressure on the gas. V. the volume of
the gas, a. the amount of gas in moles, and T. the temperature of the gas. Physicists
have long known a law, called the ideal ga.c law, that relates these variables BACON is
able to derive this law on its own First, BACON holds the variables ti and Tconstant,
performing experiments at different pressures p i , , and P3 , BACON notices that as the
pressure increases, the volume V decreases. Therefore, it creates a theoretical term pV.
This term is constant BACON systematicall-i moves on to vary the other variables. It
tries an esperimcni with different values of T, soil rinds that pV changes. The two terms
arc linearly related with an intercept of 0. so BACON creates a new term pV/T. Finally.
BACON varies the term  and finds another linear relation between n andpV/T. For all
values of n, p, V, and T. ji/nr 8 32 This •s. in fact, me ideal gas law. Figure 17.18
shows BACON's reasoning in a tabulai iorTr,aI.

BACON has been used todiicoer a wide variety of scientific laws, such as Keplers
third law, Ohm's law, the conservation of momentum, and Joule's law The heuristics
BACON uses to discover the ideal gas law include noting constancics. finding linear
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relations, and defining theoretical tenus. Othet tteuri.tics ,illow BACON to postulate
intrinsic properties of objects and to rcason by analogy. For example. if BACON finds
a regularity in one set of parameters, it will attempt to generate the sane regularity in
a similar set of p:rameters. Since BACON's discovery procedure is state-space search.
these heuristics allow it to reach solutions while visiting only a stnall portion of the
search spacc. lii the gas example, BACON comes up with the ideal gas law using a
minimal number of experiments.

A beticr understanding of the science of niifi.t discovery may lead One d.y to

programs that display true creativity. Much more work must be done in areas of science
that BACON does not model, such as determining what data to gather. choosing (or
creating) instruments to measure the data, and using analogies to previously understood
phenomena. For a thorough discussion of scientific discovery programs. see Langley et

al [1987]

17.73 Clustering

A third type of discovery, called clustering, is very similar to induction, as we described

it in Section 17.5. In inductive learning. 4 program learns to classify objects based on
the labelings provided by a teacher. In clustering, no class label ings are provided. The
program must discover for itself the natural classes that exist for the objects, in addition
to a method for classifying instances.

AUTOCLASS [Chccseman et a1.. 19881 is one program that accepts a number of
cases and hypothesizes a set of classes- For any given case. the program

provider, a set of probabilities that predict into which class(es) the case is likely to
fall. In one application, AUTOCLASS found meaningful new classes of stars from
their infrared spectral data. This was an instance of true discovery by computer, since
the facts it discovered were previously uri.iiown to astronomy. AUTOCLASS uses

statistical Ba yesian reasoning el the type discussed in Chapter &

17.8 Analogy

.\na]ogy is a powerful inference too!. Our language and reasoning are laden with
analogies. Consider the following sentences:

• List month. the stock market was a roltcu coaster.

• Bill is like a fire engine.

• Problems in electromagnetism are just like problems in fluid flow.

Underlying each of these examples is a complicated mapping between what appear
to be dissimilar concepts. For example, to understand the first sentence above, it is
necessary to do two things: (I) pick out one key property of a roller coaster, namely that
it travels up and down rapidly and (2) realize chat physical travel is itself an analogy for
numerical fluctuations (in stock prices). This is no easy trick. The space of possible
analogies is very large. We do not want to entertain possibilities such as "the stock
market is like aroller coaster because it is made of metal."



480
	

CHAPTER 17 LEARNING

Ne Previous]),

btert. F- ? Solved
Problem

Solution I	 I Solution
to New	 Ii	 -I to Old
Problem I	 Iranstorm	 I Problem

Figure 17.19; Transformational Analogy

Lakoff and Johnson [19801 make the case that everyday language is hued with such
analogies and metaphors. An Al program that is unable to grasp analogy will be difficult
to talk to and, consequclitly, difficult to teach. Thus, analogical reasoning is an important
factor in learning by advice taking. It is also important to learning iii pic'blem solving.

Humans often solve problems by making analogies to things they already understand
how to do. 'Ibis process is more complex than storing macro-operators (as discussed in
Section 17.4.2) because the old problem might be quite different from the new problem
on the surface. The difficulty comes in determining what things are similar and what
things are not. Two methods of analogical problem solving that have been studied in Al
are transformational and der,vaiunui! analogy.

17.8.1 Transformational Analogy

Suppose you are asked to prove a theorem in plane geometry. You might look for a
previous theorem that is very similar and "copy" its proof, making substitutions when
necessary. The idea is to transform a solution to a previous problem into a solution for
the rllrrent problem. Figure 17.19 shows this process.

An example of transformational analogy is shown in Figure I 1.21) jAitderson and
Kline, 19791. The program has seen proofs about points and line segments: forexamplc.
it knows a proof that the line segment RN is exactly a.s long as the line segment OY
given that RO is exactly as long as NY The program is now asked to prove a theorem
about angles, namely that the angle BD is equivalent to the angle CE. given that angles
BC and DE are equivalent. The proof about line segments is retrieved and transformed
into a proof about angles by substituting the notion of line for point, angle for line
segment. AB for R. AC for 0. AD for N. and AF tot

Carbonell [1983] describes one method for transforming old solutions into new
solutions. Whole solutions are viewed as stairs in a problem space called T-space. T-
operarors prescribe the methods of transforming solutions (states) into other solutions
Reasoning by analogy becomes search in 1-space: starting with an old solution, we use
means-ends analysis or some other method to find a solution to the current problem.
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Old Proof.

RO = NY	 (given)
ON = ON	 (reflexive)
RO + ON = ON + NY (additive)
RN = OY	 (transitive)

New Proof:

RACrDAE
CAD CAD
B AC + CAD ,r CA!) + DAE
HAD = CAE

C

Figure 17.20: Solving a Problem by Transfonnational Analogy
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to New-	 to Old
Problem
	 Problem

Figure 17.21: Derivational Analogy

17.8.2 Derivational Analogy

Notice that transformational analogy does not look at hov the old problem was solved.
it only looks at the, Final solution. Often the twists and turns involved in solving an
old problem are relevant to solving a new problem. The detailed history of a problem-
solving episode is called its derivation. Analogical reasoning that takes these histories
into account is called derivational analogy (sec Figure 17.21).

Carbonell [19861 claims thai derivational analogs is a necessary component in the
transfer of skills in complex domains. For example, suppose you have coded an efficient
sorting routine in Pascal. and then you are asked to recode the routine iii LISP. A line-
by-line translation is not appropriate, but you will reuse the major structural and Wrilrol
decisions you made when you constructed the Pascal program. One way to model this
behavior is to have a problem-solver 'replay" the previous derivation and modify it when
necessary. If the original reasons and assumptions for a step 's existence still hold in the
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new problem, the %tcr, is ,icd over. If some assumption is no !onger valid, another
assumption must be found. It one cannot be lounL then we can try to find justification
for some alternaivc stored in the derivation of the original problem. Or perhaps we
can try some step markerl as leading to search failure in the original derivation, if the
reasons tor failure conditions are not valid in the LuiLcifl ilejivation

Analogy in problem solving is a very open aicia of iesearch. For a survey of recent
work, see Hall (1989).

17.9 Format Learning Theory

Like many other Al problems, learning has attracted the attention of mathematicians
and theoretical computer scientists. Inductive learning iii particular has received con-
siderable attention. Valiant [19841 describes a "theory of the learnable" which classifies
problems by how difficult they are to learn. Formally, a device learns a concept if it can.
given positive and negative examples, produce an algorithm that will classify future
examples correctly with probability I/h. The complexity of learning a concept is a
function of three factors: the error tolerance (Ii), the number of binar y features present
in the examples (t), and the size of the rule necessary to make the discrimination (f) If
the number of training examples required is polynomial in h. r, andf. then the concept
is said to be learnable.

Some interesting results have been demonstrated for concept learning. Consider
the problem of learning conjunctive feature descriptions. For example, from the list of
positive and negatic examples of elephants shown in Figure 17.22, we want to induce
the description "gray. mammal, large," It has been shown that in conjunctive learning
the number of randomly chosen training examples is proportional to the logarithm of the
total number of features [Ilaussler. 1988: Linlestone, 19881.t Since very few training
examples are needed to solve this induction problem, it is cilled /earna(m' Even if we
restrict the learner to positive examples suily, conjunctive learning can be achieved when
the number of examples is linearly proportional to the number of attributes [Ehrenfeuchi
et al.. 19891. Learning from positive examples only is a phenomenon not modeled
by least-commitment inductive techniques ucli AS crsion pacee. The tntrodi'tiii
of the error tolerance It makes this possible: After all, even ii' all the elephants in our
training set are gray, we may later encounter a genuine elephant that happens to be white.
Fortunately, we can extend the size of our randomly sampled training set to ensure that
the probability of misclassifying an elephant as something else (itcli as a polar bear) is
an arbitrarily small I/h.

Formal techniques have been applied to a number of other learning problems. For
example. given positive and negative example of strings in some regular language, can
we efficiently induce the finite automaton that pm .>duces all and only the strings in that
language? The answer is no; all number of computational steps is required
[Kearns and Valiant, 1989]. However, if we allow the learner to make specific queries
(e.g., "Is string x in the language?"), then the problem is learnable [Angluin, 19871.

6 However, the number of examples must be ii,tear in the number ut reIevQnt aunbutes, i.e., the number of

simbuics that appcar in the kamedeonjianction.
7 7he proof of ih,s result rests on some unproven hypotheses about the complexity of ccrlamn numb,-.

theoretic functions.
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Figure 1722: Six Posilive and Negative Examples of the Concept Elephant

It is difficult to tell how such mathematical studies of learning will affect the way
in which we solve Al problems in practice. After all, people are able to solve many
exponentially hard problems by using knowledge to constrain the space of possible
solutions. Perhaps mathematical theory will one day be used to quantity the use 01 smich
knowledge, but this prospect seems far off For a critique of formal learning theory
as well as some of the inductive techniques described in Secfioii 17.5, see Arristerdan'
[1988].

17.10 Neural Net Learning and Genetic Learning

The very first etToris in machine learning tried to mimic animal learning at a neural
level. These efforts were quite different from the symbolic manipulation methods we
have seen so far in this chapter. Collections of idealized neurons were presented with
stimuli and prodded into changin g their behavior via forms of reward and punishment
Researchers hoped that by imitating the learning mechanisms of animals, they might
build learning machines from very simple parts. Such hopes proved elusive. However.
(lie field of neural network learning has seen a resurgence in recent years, partly as a
result of the discovery of powerful new learning algorithms Chapter 18 describes these
algorithms in detail.

While neural network models are based on a computational "brain met aphot." a
number of other learning techniques make use of a metaphor based on evolution. In this
work, learning occurs through a selection process that begins with a large population
of random programs. Learning algorithms inspired by evolution are called R enctic

al'orithms[Holland. 1975; de Jong. 1988; Goldberg. 19891

17.11 Summary

The most important thing to conclude from our study of automated learning is that
learning itself is a problem-solving proce

ss. We can cast various learning strategies in
iernis of the methods of Chapters 2 and 3.

• Learning by taking advice

- Initial slate: high-level advice
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- Final state: an operational ruk

- Operators unfolding definitions. LdSe anah'-us. uatehiii. Cii.

• Learning from examples

- Initial stale: collection of positie and negative examples

— Final state: concept dcsci-iption

- Search algorithms: candidate elimination,i,ii, ii idui til)ii of dci I si ii ii

• Learning in problem solving

- Initial state: solution traces to example problems

- Final state; new heiscics for solving new problems efficiently

- Heuristics for search: generalization. explanation-based learning. Lit:lit
considerations

• Discovery

- initial s l ate: some environment

- Final slate: unknown

- Heuristics for search: interestingness. analogy. etc.

A learning machine is the dream system of Al. As we have seen in previous
chapters, the key to intelligent behavior is having a lot of knowledge Getting all of that
knowledge into a computer is a staggering task. One hope of sidestepping the task is
to let computers acquire knowledge independently, as people do. We do not yet have
programs that can extend themselves indefinitely. But we have discovered some of the
reasons for our failure to create such systems. If we look at actual learning programs, we
find that the more knowledge a program starts with, the more it can learn. This finding
is satisfying, in the sense that it corroborates our othei discoveries about the power of
knowledge. But it is also unpleasant, because it seems that fully sctf"cxtcnding systems
are, for the present, still out of reach

Research in machine learning has gone through several cycles of popularity. Timing
is always an important consideration. A learning program needs [0 acquire new knowt
edge and new prublenisolving abilities, but knowledge and problem-solving are topics
still under intensive ,;tud y. If we Jo not understand the nature ot the thing we waist
to learn, learning is difficult. Not surprisingl y, the most successful learning programs
update iii fairl' well-understood areas (like planning.). and not in les well-under.stootl
areas (like natural language understanding[

17.12 Exercises

I, Would it be reasi,ridm',ic to appl y Samuel's rote-learning procedure to chess'? Why
(riot)?
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	2. Implement the candidate elirninanon algoritnni fui 	 on spaces. Choose a

concept space with several features (for example, the space of books, computers.
animals, etc.) Pick a concept and demonstrate learning by presenting positive and
negative examples of the concept.

-• In Section 17.5.2. the concept "Japanese economy car" was learned through the
presentation of five positive and negative examples. Give a sequence of few
examples that accomplishes the same goal. In general, what properties of a
positive example make it most useful? What makes a negativt cxaiimpk most

useful?

4. Recall the prnhleui of learning disjunctive concepts in version spaces. We dis-
cussed learning a concept like "European car," where a European car was defined

as a car whose origin was either Germans'. Itah', or Britain. Suppose we expand

the number of discrete values the slot origin might take in include the values

Europe and Imported. Suppose further that we have the following i.ca hierarch

at our disposal:

II

Imported	 (JS.4

1 lope	 Japan

Ge, trianv	 I1o/.	 1,iJip,

The diagram reflects facts such as "Japanese cars are a subset of imported cars
and "ltaliimi cars are a subset of European cars." How could we modify the
candidate elimination algorithm in take advantage of this knowledge? Propose
new methods of updating me sets G and S that would allow us to learn the concepT
"Eriropeaii car" in one pass through a set of adequate training examples.

5. AM exploited a set of 250 heutistics designed to guide AM's behavior lowarO
interesting mathematical concepts. A classic work by Polya 119571 describes
a set of heuristics for solving mathematical problems. Unfomtunaiely. Poiya's
heuristics are not specified in enough detail to make them iniplementahie in a
program. In particul, they lack precise descriptions of the situations in which
they are appropriate(i.e.. the left sides if they are viewed as productions). Examinc
sonic of Polya's rules and refine theni so that they could be implemented in
problem-solving program sith a structure similar to AM's.

6. Consider qje problem of building a program to learn a grammar for a languag
such as English. Assume that such a program would be provided, as input, with a
set of pairs. each consisting of a sentence and a representation of the invaninE of
the sentence. This is analogous to the experience of  child who hears a sentence
and .S:' something at the same time. How could such a program be built using
the techniques discussed in this chapter'



Chapter 18

Connectionist Models

In our quest to build intelligent machines, we have but one naturally occurring model:
the human brain. One obvious idea for Al, then, is to simulate the functioning 

of

the brain directly on a computer. Indeed, the idea of building an intelligent machine
out of 'artificial neurons has been around for quite some time. Sonic early results
on brainlike mechanisms were achieved by McCulloch and Pins 119431. and other
researchers pursued this notion through the next two decades, e.g.. Ashby- 11952].
Minsky [19541, Minsky and Selfridge 11961], Block 119621, and Rosenblatt (1962)
Research in neural networks came to virlual halt in the 1970s. however, when the
networks under study were shown to he very weak computationally. Recently. there
has been a resurgence of interest in neural networks. [here are several reasons for
this, including the appearance of fa ster digital computers on which to simulate larger

networks, the intciest in building massivel y parallel computers. and, most important,
the discovery of new neural network architectures and powerful learning algorithms.

The new neural network architectures have been dubbed "connect icii iist " 'trcliitec-
lures. For the irtUsi part, these aidiitecrures are not meant to duplicate the operation of
the human brain, but rather to reLcise inspiration from known facts about how the brain
works. They are characterized by having:

• A large number oI'very simple neuronlike processing elements.

• A large number of wcihted connections between the elements. The weights oii
the connections encode the knowledge of a network.

• Highly parallel, distributed control.

• An emphasis on learning internal representat i on ,., automatically.

Connectionist researchers conjecture thal thinkin g about computat i on in ICrins of

the "brain metaphor" rather than the digital computer metaphor" will lead to insights
into the nature of intelligent behavior.

Computers are capable of amazing feats. '[hey can effortlessly store vast quantities
of information, Their circuits operate in nanoseconds. They can perform extensive
arithmetic calculations without error. Humans cannot approach these capabilities. On
the other hand, humans routinely perform "simple" tasks such as walking, talking. and
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commonserist' reasoning Cur-rent Al systems cautiot do any of these things better than
humans can. Why not? Perhaps the structure of the brain is somehow suited to these
tasks and not suited to tasks such as high-speed arithmetic calculation, Working under
constraints similar to those of the brain may make traditional computation more difficult,
hut it may lead Ia solutions to Al problems that would otherwise be overlooked

What constraints, then, does the brain offer us? First ()fall.  individual neurons are
eireiiiely slow devices wheti compared to therrcouiiterparts iii digital computers. Neu-
rons operate it ' the millisecond range. an eternity to a VLSI desigrici. Yet. liiiiiiaiis vair
perform extremely complex tasks such as interpreting a visual scene or understanding
a sentence, in Just a tenth of a second. In other words, we tin in about a hundred steps
what current computers cannot do i l l 10 million steps. How can this he possible? Un-
like a convcllri()rlal computer, the brain contains a huge number of processing elements
t hat act in parallel. This suggests that in our search for solutions, we should look lor
nias'ively parallel algorithms that require no more than 100 time steps [Feldman and
Bathird, 195].

neurons are failure-prone devices. They are constantly dying i . you have
er;aitily lost a few since you began reading this chapter, and their tiring patterns arc

irregular. Components in digital computers, on the other hand, must operate perfectly.
Wh , 0 Such cornpsscnts store bits of intorniation that are available nowhere else in the
computer: the failure of one component means a loss of information. Suppose that we
hutli Al programs that were not sensitive in the failure of a few components, perhaps
by ii5Jtir redtinidaiicy and ditribiii ing information across a wide range of components0
This would open up the possibility of very large-scale implementations. With current
technology, it is far caster to build a billion-component integrated circuit in which 95
percent of the components work correctly than it is to build a million-compone,irrnachine
that functions perfectly IFahimah and Hinton, 19871,

Another thing people seem to he able to do better than computers is handle fuzzy
situations We have very large memories of visual, auditory, and problem-solving
episodes. and one ke y operation ii; solving new prubleitis is finding closest matches to

id situations. Approximate matching is something brain-style models seem to be good
at, because of the diffuse and fluid way iii which knowledge is represencd.

The idea behind conneciioni5rn. then. is that we may see significant advances in Al it'
we approach problems front the point of view of brain- style computation. Conneclionist
Al is quite different from the symbolic approach covered in the other chapters of this
hook. At the end (if this chapter, we discuss the relationship bet wcen the two approaches.

18.1 Introduction: Hopfield Networks

Hit: history of At i ,, curious. The first problems attacked by Al researeets were
problems such as chcs and theorem pro v ing, because they were thought to require the
essence of intelligence. Vision and language un;lc rstanding-__processcs easily mastcrcsi
by tive'yrar olds---were riot thought to be difficult. These days. we have expert chess
programs tind expen medical diagnosis prograrris, but no programs that can match the
basic perceptual skills of a child. Neural network researchers contend that there is a
basic mismatch between standard computer information processing technology and the
ochtiologs ii' rd by the brain
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In addition to these perceptual tasks. Al is just starting to grapple with the funds
mental piohiems of memory and commonsense reasoning. Computers are notorious
for their lack of common sense. Many people believe that common sense derives from
our massive store of knowledge and, more important, our ability to access relevant
knowledge ciuickly, effortlessly, and at the right time.

When we read the description "gray, large, mammal." we automatically think of
elephants and their associated features. We access our memories by content. in tradi-
tiotial uii 1 ,feiueiitations, access bv content invoivcs expensive scarchtn and tnatchtii
procedures. Massively parallel networks suggest it more efficient method.

Hopfleld 119821 introduced a neural net woi K that lie proposed as a theory of memory.
A Hoptield network has the following interesting features.

• Distributed Represeatatioti—A nienioty is stored as a pattern of acttvattoL across
a set of processing elements. Furthermore, memories can he superimposed on one
another; different memories are represented b different patterns over the wine
set of processing elements.

• Distributed, Asynchronous Control—Each processing element makes decisions
based only on its own local situation. All these local actions add up to a global
solution.

• Content-Addressable Memory--A number of patterns call he stored in a net-
work. To retrieve .i pattern, we need only specify a portion of it. The network
automatically finds the closest match.

• Fault Tolerance—if a few processing elements misbehave or fail completely, the
network will still function properly.

How are these features achieved? A simple E-loptield net is shown in Figure 18.1.
Processing elements, or units. are always in one of two states, active or inactive. In
the figure, units colored black are active and units colored white are inactive. Units are
connected to each other with wcigliietl, symmetric connections. A positively weighted
connection indicates that the two units tend to aCti Vale each other. A rIgattve connection
allows an active unit to deactivate a neighboring unit.

The network operates as follows, A random unit is chosen. if any of its neighbors
are active, the unit computes the sum of the weights on the connections to those active
neighbors. If the sum is positive, the unit becomes active, otherwise it becomes inactive.
Another random unit is chosen, and the process repeats until the network reaches a stable
state, i.e., until no more units can change state. This process is called paraUe/relaxatwn.
If the network starts in the state shown in Figure 18.1. the unit in the lower left corner
will tend to activate the unit above it. This unit, in turn, will alteitipt to activate the unit
above it, but the inhibitory connection from the upper-right unit will foil this attempt.
and so on.

This network has only four distinct stable states, which are shown in Figure 18.2.
(liven any initial state, the network will necessarily settle into one of these four
configurations.' The network can be thought of a; "storing" the patterns 'in Figure
Hopheld's major contribution was to show that given any set of weights and any initial

The '.i.ibtc' stare in wttich jil units are ina'is e 	 be reached it it is al so the initial aisle.
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Figure IS. 1: A Simple Hopfield Network

slate, his parallel relaxation algorithm would eventually steer the network into astable
state. There can be no divergence or oscillation.

The tietwurk can be used as a content-addressable memory by setting the activities
of the units to correspond to a partial pattern. To retrieve a pattern, we need only supply
a portion of it. The network will then settle into the stable state that best matches the
partial pattern. An example is shown in Figure 18.3.

Parallel relaxation is nothing more than search, albeit of a different style than the
search described in the early chapters of this book. it is useful to think of the various
states of a network as forming a search space, :1:: iii Figure 18.4 A randomly chosen
slate will transform itself tihurnatchy into one of the bral minima, namely the nearest
stable stale. This is how we get the content-addressable behavior.2 We also get error
correcting behavior. Suppose we read the description, "gray, large, fish, eats plankton."
We Imagine a whale, even though we know that a whale is a manitnal, not a fish. Even if
the initial state contains inconsistencies. a Hopheld network will settle into the solution
that violates the fewest constraints offered by the inputs. Traditional match-and.retrieve
procedures are less toreiving.

Now. supnose a ililit occasionally fails, say, by becoming active or inactive when it

should 1101. This causes no major problem: surrounditic units will quickly set it straight
again. It would take the unlikel y concerted effort of many errant units to push the network
into the wrong stable state. In networks of thousands of more highly interconnected
units, such fault tolerance Is even more apparent--units and connections can disappear
completel y without adversely affecting the overall behavior of the network.

So parallel networks of simple elements can compute ii ilciesting things The next
important question Is: What is the relationship between the weights oil network's
connections and the local minima it settles into? In other wordif the weightscncode the
knowledge of a particular network, then how is that knowledge acquired? In Chapter I'?
we saw several ways to acquire symbolic structures and descriptions. Such acquisition
was quite difficult. One feature of connectionist architectures is that their method
of* representation (namely, real-valued connection weights) lends itself very nicel y to

in Figure I5.4. slate B is depicted as being lower ihn slate A becauw fewer constrainis are siolareci. A
'onslrdiIlI 1, v totaled, for nramplc. wtren two lOwe units are cnnincted by a ni'garlvelv wel thied ci'nnecilor,
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Figure 18.2: The Four Stable Sues of a Particular Hopfield Net

Figure 18.3: A Hoplield Net as a Model of Content-Addressab1C Mcmor
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Figure 18.4: A Siriiplilled View of What aHopfield Net Computes

automatic learning.

In the next section. we look closely at learning in several neural network models,
including percepirons, back- propagation networks, and Boltzmann madijites, a variation
of Hopfield networks. After this, wc investigate some applications of connecttcmism.
Then we see how networks willi feedback Can deal with temporal processes anti how
distributed representations can he made efficient.

18.2 Learning in Neural Networks

18.2.1 Percep trons

The perception, an invention of Rosenblatt 11962j, was one of the earliest iieurai
network models. A perceptron models a neuron by taking a weighted sum of its inputs
and sending the output I if the sum is gieater than some udustable Ihrcshol value
(otherwise it sends U). Figure 1 8.5 shows the device. Notice that in a perceptron, unlike
a Ilopheld network, connections are unidirectional.

The inputs (r1 .x ... . t,) and connect ion weights ("i . ........,,)in the figure are
typically real values, both positive and iiegaiive. lithe presence of some feature v, tends
to cause the perceptron to lire, the weight t, will be positive; if the feature .r. inhibits the
perceptron, the weight w, will be negative. The perceptron itself consists of the weights,
the summation processor, and the adjustable theshold processor. Learning is a process
of modifying the values of the weights and the ihre told. It is convenient to implement
the threshold as Just another weight w0, as in Figure 18.6. This weilit can be thought
of as the propensity of the perceron to fire irrespective of its iriput. The perceptroil
of Figure 18.6 tires if the weighted sum is greater than zero.

A perceptron ctirnputesa binary function of its input Several perceptrons can he
combined to compute more complex functions, as shown in Figure 18.7.

Such a group of perceptrons can be trained on sample input-output pairs until it
earns to compute the correct funct ion - the amazing property of perceptron !r.aniin
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Figure 8.7: A Perceptron with Many Inputs and Many Outputs

is this: %Vhate.cr a perceptron can compute, it can learn to compute! We demonstrate
this in a moment. At the time perceptions were invented, many people speculated that
intelligent systems could be constructed out of perceptrons (see Figure 8.8).

Since the perceptrons of Figure 18.7 ai e independent of one another, they can he
separately trained. So let us concentrate on what a single perceptron can learn to do.
Consider the pattern classification problem shown in Figure 18.9. This problem is
linear/v sepwihie. hccauc we cen draw a line that separates one class from another.
Given values for.i 1 and x,, we want to train a perceptron to output I if it thinks the input
belnngsto lheticss of while dots and () if it thmkstlie input belongs lo the class ufblack
dots. Pattern classification is very similar to :oneep, learning, which was discussed in
Chapter 17. We have no explicit rule to guide us; we must induce a rule from a set of
traininInstances. We now see how perceptrons can learn to solve such problems.

First, it is necessary to take a close look at what the perceptron computes. Let A' be
an input vector ta1,.i . .. ... .....). Notice that the wcightcd summation function g(x) and
the output function 4.0 can be defined as.

= [ I
	 if '(r) .> 0

0 if g(x) ': 0

Consider the case wt ere we have only two inputs las in Figure 189i. 1Thci
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Figure 18.8: An Early Notion of an Intelligent System Built from TrainableTrainable Pcrceptrons

If g(x) is exactly iem, the perepiron cannot decide whether to fire. A slight change
in inputs could cause the device to go either way. If we solve the equation g(x) 0. we
get the equation for a line:

w i  w0

= --.i - -1.2

The location o(1 Ile,  line is completely determined by the weights w. w, and w. It, an
input vector lies on one side of the line, the perceptron will output I; ifit lies on the other
side, the perceptron will output 0. A line that correctly separates the training instances
corresponds to a perfectly functioning perceptron. Sucn a line is called a decision
.cu,Jacc. In perceptrons with many inputs, the decision surface will be a hyperplane
through the multidimensional space of possible input vectors. The pioblein of lewn,og
is one of locating an appropriate decision surface.

We present a formal learning algorithm lser. For now, consider the informal rule

If the perceptron fires when it should not fire, make each i' smaller by an
amount proportional to i,. If the perceptron fails to fire when ji should tire
make each wi larger by a similar amount.

Suppose we want to train a three-input petcepiron to lire only when its first inpci i
on. If the perceptmn fails tn fire in the presence of an active i t , we will increase a
and we mas' increase other weights). If the perceptron fires incorrectly, we will end

up decreasing weights that are not w 1 . ( We will never decrease w 1 because undesired
firings only occur when . is 0. which forces the proportional change in w also to be
0.) In addition. w will find a value based on the total number of incorrect firings VCNUs

incorrect nsislinngs. Soon, w will become large enough to overpower w 1 w, while *' and
wi will not be powerful enough to fire the perceptron, even in the presence of both .1:

and is.
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Figure 18.9: A Linearly Separable Pattern Classiii;:ation Problem

Now let us return to the functions g(x) and i(x). While the sign of gt..$) is criIica
I,. determining whether the perceptron will fire. the magnitude is also important. Th
absolute value of g(x) tells how far a give-n input vector I lies from the dedsion surface.

gives us a way of characterizing how good a set of weights s Let iW, be the weight
ector (w(, w 1 ...w), and let X be the subset of training instances misclassified ty the

current 5et of weights Then define the perceptron criterion function. J(0). to be the
sum of the distances of the misclassified input vectors from the decision surface:

= >1 :E:	 = > 2 ii
TEN

Jo create a better set of weights than the current set, we would like to reduce
Ultimately, if all inputs are classified correctly, J(i)

How do we go about minim,7in /(I i")? We cait use a form of local-search hill
climbing known as gradient deswiz. We have already seen in Chapter 3 how we can
use hill-climbing strategies in symbolic Al systems. For our current purposes, think of
J() as defining a surface in the space of all possible weights. Such a surface might
look like the one in Figure 18.10.

In the figure, weight w 1 should be part of the weight space but is omitted here because
It is easier to visualize J in onlyonly three dirricrisions Now, some of the weight vectors
constitute solutions, in that a perceptron with such a weight vector will classif y all its
inputs correctly. Note that there are an infinite number of solution vectors. For any
solution vector we know that J() = 0. Suppose we begin with a randori1 weighi
vector i that is not a solution sector. We want to slide down the J surface. l'hcre is
a mathematical method for doing this—we compute the gradient of the function J(iV.
Before we derive the gradient function. we refoiTnutate the perceptron criterion functei
lo renove the absolute value sin

ifi is misclassified as a negative exampk

'	 - if i is misci:tscified :i a positive example
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Figure IS 10: Adjusting the Weights by Gradient Descent, Minimizing Js)

Recall that X is the set of misciassilied Input vectors.
NOW, here is VJ, the gradient of Ai") with respect to the weight space:

-	
1 • if is ririsciassified as a negative example-- -
	 1 -- if' is misclasiflecl as a positive example

The gradient is a vector that tells us the dircuton to move ii the weight space in
order to reduce J(i). In order to find a solution weight vedor, we simply change the
weights in the direction of the gradient, recompute J(, recompute the new graoient,

and iterate u:rtil./(i .i 0 The rule for updating the weights at time 	 I is:

VI+ si V J

Or iii expanded form:

-	 J	 if i' is misclassified as a negative example
 1 — iifsis misclassified as a positive example

n is a scale tactor that tells us how far to move in the direction of the gradient.
small ri will lead to slower learning. but a large TI riray cause a move through weigh;
space that "overshoots" the solution vector Taking q to he a constant gives us whit
usually called the 'fixed-iiicremeni perceptron learning algorithm

Algorithm: Fixed-Increment Perceptron Learning

Given: A classification problem with ii input features (x I . s ... s,,) and tso oupo

classes.
Compute: A set of weights (w11 . w 1 . ............) that will cause a perceptron to tire

whenever the input falls into the first output class.
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I Create a perceptron with n + I inputs and a + I weights, where the extra input in
is always set tot.

2. Initialize the weights (K0. WI ,...,is') to random real values.

3. berate through the training set. collecting all examples mist lassified by the current
set of weights.

4. If all examples arc classified correctly, output the weights and quit.

S. Otherwise, coiripute the vector sum S of' the misclassified input vectors, where
each vector has the form (.10.1 ...,v). In creating the sum, add to S a vector .i
if.i is an input for which the perceptron incorrectlyfai/.c to fire, but add vector - I
if, ' is an input for which the perceptron iiicorrectlyfiis's. Multiply the sum by a
scale factor r.

6. Modify the weights (wo,w1 .......) by adding the elements of the vector .S to
them. Go to step 3.

The perceptron learning algorithm is a search algorithm. It begins in a random initial
state and finds a solution state. The search space is simply all possible assignments of
real values to the weights of the perceptron, and the search strategy is gradient descent.
Gradient descent is identical to the hiIl -clirnbingstrategy described in Chapter 3, except
that we view good as "do u" rather than "up."

So far, we have seen two search methods employed by neural networks, gradient
descent in perceptions and parallel re/oration in I-lnpficld networks. it is important
to understand the relation between the two. Parallel relaxation is a probtca-solving
strategy, analogous to state space search in symbolic Al. Gradient descent is a teaming
srratey, analogous to techniques such as version spaces. In both symbolic and Conriec-
tionist Al. learning is viewed as a type of problem solving, and this is why search is
useful in learning. But the ultimate goal of learning is to get a system into a position
where it can solve problems better. Do not confuse learning algorithms with others.

[he pen ept'on (onvergePwe theorem, due to Rosenblatt 1I962j. guarantees that the
perceptron will find a solution state, i.e.. it will learn to classify any linearly separable
set of inputs. In other words, the theorem shows that in the weight space, there are
no local minima that do not correspond to the global minimum. Figure 18.11 shows a
perceptron learning to classify the instances of Figure 18.9. Remember that every set of
weights specifies some decision surface, in this case some two-dimensional line. In the
figure, k is the number of passes through the training daia, i.e. the number of iterations
of steps .3 through 6 of the fixed- increment perceptron learning algorithm.

The introduction of perceptrons in the late 1950screated a great deal of excitement-
Here was a des ice that strongly resembled a neuron and br which well-defined learning
algorithms were avallable. There was much speculation about how intelligent systems
could be corisintuted fjoin piceptron building blocks. In their book Perc'epr:uos
Minsky and Papers 119691 put aft end to such speculation by analyzing thecomputationail
capabilnmc of the devices. They noticed that while the coimvrrgence theorem guarantee(
r'urreel cfassificntmon i linearly separable data. most problems do not supply such nkc
d,ita. lrnkt'd. the ercprun is incapable of learning tosolve some very simpkprchicrns.
fine c' ,nnuite E tvi. bs vtrosky jind Papt'i't is the exclusive-or tXQK pubkr.	 iven
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Figure 19.11: A Perceptron l.eaniing to Solve a Classification Problem

two binary inputs, output I if exactly one of the inputs is on and output 0 otherwise. We
can view XOR as a pattern classification problem in which there are four patterns and

two possible outputs (see Figure 18.12).
The perceptron cannot learn a linear decision surface to separate these different

outputs, because no such decision surface exists. No single line can separate the I
outputs from the 0 outputs. Minsky and Papert gave a number of problems with this
property including telling whether a line drawing is connected, and separating figure
from ground in a picture. Notice that the deficiency here is not in the perceptron learning
algorithm, but in the way the perceptron represents knowledge.

If we could draw an elliptical decision surface, we could eneircic the two I" outputs
in the XOR space. However. perccptrons are incapable of modeling such surfaces.
Another idea is to employ two separate line-drawing stages. We couhl draw one line

to isolate the point 0 I = I..t 2 I) and then another line to divide the remaining three

points 11110 two categories. Using this idea, we can construct a 'multilayer" perceptron
(a series of perceptions) to solve the problem. Such a device is shown in Figure 18.13.

Note how the output of the first perceptron serves as one of the inputs to the second
perceptron. with a large, negatively weighted connection. If the first perccptrofl sees

input (Ai	 . = U. it will send a massive inhibitory pulse to the second perception.
causing that unit to output 0 regardless of its other inputs. If eiihcr of the inputs is 0, the
second perceptron gets no inhibition from the first perceptron. and it outputs I if either

of Ole inputs is 1.
The use of multilayer perceptrons. then, solves our knowledge representation prob-

lem. However, it introduces a serious learning problem: the convergence theorem does
not extend to multilayer perceptrons. The perceptron learning algorithm can correctly
adjust weights between inputs and outputs, but it cannot adjust weights between percep-
tions. In Figure 18.13. the inhibitory weight " . 9.0" was hand-coded, not learned. At

the time Percept rims was published, no one knew how multilayer perceptions could be

tirade to learn In fact, Minsky and Paper! speculated:
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Figure I  12: A Classification Problem. XOR, That Is Not Lin.arly Separable

X1	 1.0

Figure 18.13: A Multilayef Perccptrofl That Solves the XOR Problem

The perceptiul) . . . has many features that attract attention: its lineanty,
its intriguing learning theorem . . . there is no reason to suppose that any

of these virtues carry over to the many-layered version. Nevertheless, we
consider it to be an important research problem to elucidate (or reject' our
intuitive judgement that the extension is sterile.

Despite the identification of this "important research problem," actual research in
perceptron learning came to a halt in the 1970s. The field saw little interest until
Lhe 1980s, when several learning procedures for multilayer perceptroflS—also called

multi layer netorkS—'ere proposed. The next few sections are devoted to such learning

procedures.

18,2.2 Backpropagatiofl Networks

As suggested by Figure 18.8 and the Percept rons critique, the ability to train iriultila'.

iciworks is an important step in the direction of building intelligent machines fro'.

neuronlike component tot', reflec t for a moment on why thi. is s'



18 1. LEARNING IN Nk(JRAL NE] WORKS	
SW

take a relatively amorphous mass of neuronlike elements and (each ii to perform useful
tasks. We would like it to be fast and resistant to damage. We would like it to generai'Le
from the inputs it sees We would like to build these neural masses on a very large scale,
and we would like them to be able to learn efficiently. Percepirons got us part of the
way there, but we sa that they were too weak computationally. So wc turn to more

-umplex, multilayer networks.
What can a multiliycr network compute? The simple answer is: onvihrng' Giveii

set of inputs we can use summation-thrrshiild unit. as .iTipIC AN D, OR. and NOT

gates by appropriately setting the threshold and connection weights. We know that we
Carl build an' arbitrary combinational circuit out of those basic logical units. In fact, it
we are allowed to use feedback loops, we can build a general-purpose computer with

The major problem is learning. The knowledge representation system employed

by neural nets is quite opaque: the nets must learn their own representations because

programming them by hand is impossible. Perceptions had the nice property that
whatever they could compute, they could learn to compute. Does this property extend
to multilayer networks? The answer is yes, sort of. BackpropagatiOfl is a step in that

direction.
It will be useful to deal first with a subclass of muttilayer networks, namely Jul/v

connected, layered, feedforwurd networks. A sample of such a network is shown in

Figure 18.14. lii this figure. x,. h,, and o, represent unit activation levels of input.

hidden, and output units. Weights on connections between the input and hidden !ayeT

are denoted here by wi 1 , while weights on connections between the hidden and outpu

layers are denoted by w2. 'Ibis network has three layers, although it is possible and
sometimes useful to have more. Each unit in one layer is connected in the forward

direction to every unit in the next layer. Activations flow from the input layer through
the hidden layer, then on to the output layer. As usual, the knowledge of the network
is encoded in the weights on connections between units. In contrast to the parallel
relaxation method used by Flopficld nets, backpropagatiOfl networks perform a simpler
computation. Because activations flow in only one direction, there is no need for
an iterative relaxation proce-ss. The activation levels of the units in the output layer

determine the output of the network.
['he existence of hidden units allows the network to develop complex feature de

Sectors, or internal representations. Figure 18. 1 S ShOWS the application of a three layer

network to the problem of recognizing digits. The two-dimensional grid containing the

numeral '7" forms the input layer. A single hidden unit might be strongly activated

by a horizontal line in the input, or perhaps a diagonal. The important thing to note
is that the behavior of these hidden units is automatically learned, not preprogrammed.
In Figure 18.15, the input grid appears to be laid out in two dimensions, but the fully
connected network is unaware of this 2-I) structure. Because this structure can be im-
porlailt, many networks permit their hidden units to maintain only local connections to
the input layer (e.g.. a different 4 by 4 suhgrid for each hidden unit).

The hope in attacking problems like handwritten character recognition is that the

neural network will not onl y learn to classify the inputs it is trained on but that it

will ,generalize and be able to classify inputs that it has not yet seen. We return to

generalization in the next section.
A reasonable question at this point is: "All neural nets seem to be able to do
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Figure 18 .14-- A Multilayer Network

is classification. Hard Al problems such as planning, natural language parsing, and
theorem proving are not simply classification tasks, so how do connectiurtist models
address these problems?" Most of the problems we see in this chapter are incteed
classification problems, because these are the problems that neural networks are best
suited to handle at present. A major limitation of current network formalisms is how
they deal with phenomena that involve time. This limitation is lifted to some degree in
work on recurrent networks (see Section 1 t.4), but the problems are still severe. Hence.
we concentrate on classification problems for now.

Let's now return to backpropagation networks. The unit in a hackpropagation
network requires a slightly different activation function from the perceptron. Both
functions are shown in Figure 19. 16- A backpropagation unit still sums up its weighted
inputs, but unlike the perception, it produces a real value between 0 and I as output,
based on a sigmoid (or S-shaped) function, which is continuous and differentiable, as
required by the backpropagation algorithm. Let sum be the weighted sum of the inputs
to a unit. The equation for the unit's Output It given by:

output = 
I +e

Notice that if the sum is 0, the output is 0.5 (in contrast to the perceptron, where IT must
be either U or I). As the sum gets larger, the output approaches 1. As the sum gets
smaller, on the other hand, the output approaches 0.



& L/NiNG fro EURLtET.4'('Nl

output 0000000000

hidder, 00000000000

\N,09 •••••O0000•c
000•oO

Input

\000•000
\oo•0000
oo•000d

Figure 18.1 Using a Multilayer Network to Learn to Classify Handwritten Digits

1)

Figure 18.16 The Stepwise. Activation Function of the Perceptron (left) and the Sigmoid
Activation Function of the Backpropagation unit (right)
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Like a pet-ccptron, a backpropagation network typically Starts out with a random
set of weights. The network adjusts its weights each time it sees an input-output pair.
Each pair requires two stages: a forward pass and a backward pass. The forward pass
involves presenting a sample input to the network and letting activations flow until they
reach the Output layer. During the backward pass, the network's, actual output (from the
forward pass) is compared with the target output and error estimates are computed for
the output units the weights connected to the output units can be adjusted in order to
redliLe thu.'t. en,rs. Wc can then u'e the error estimates of the output units to derive
error estimates for the units in the hidden layers. Finally, errors are propagated back to
the connections stemming from the input units.

Unlike the perceptron learning algorithm of the last section, the hackpropagat ion
algorithm usuall y updates its weights Incrementally, alter seeing each input-output pair.
Aftei it has seen all the input-output pairs (and adjusted its weights that many times),
we say that one epffi-h has been completed. Training a hackpropagujon network usually
requires many epochs.

Refer back to Figure 18.14 for the basic structure on which the following algorithm
is based.

Algorithm: Backpropagation

Given: A set of input-output vector pairs.
Compute: A set of weights for a three-layer network that maps inputs onto corre-

sponding output---

I. Let A be the number of units in the input layer, as determined by the length of
the training input vectors. Let C be the number of units in the output iayer Nov
choose B. the number of units in the hidden layer. 3 As shown in Figure 18.14, the
input and hidden layers each have an extra unit used for thresholdir ig; therefore,
the units in these layers will sometimes be indexed by the ranges (0,.. A) and(0.... . B). We denote the activation levels of the Units in the input layer by .r,,
in the hidden layer by h, and in the output layer by o. Wright ,; connecting the
Input layer to the hidden layer are denoted by wl, where the subscript i indexesthe )flpOi units andj indexes the hidden units. Likewise, weights connecting the
hiddcn layer to the Output layer are denoted by w2, 1 , with r indexing to hidden
units andj indexing output units.

2. Initialize the weights in the network. Each weight should be set randomly to .i
number between ..t,) ] and 0 I.

al,. = #widon,(—Q. IM.l) for all i	 0.... .'A. i=

= ' a Iu/o,n(—O101) for aft' I = 0.... . B, j = 1, .

Initialize the aLl z,, ions uIthc thresholding units. The value,softhese thresholding
units should never change.

Sue(YcsfUt Iarge . 'atc ncnsurs have used topologics like 20380.26 J Swjnowski and Rosenberg 9871,960-4$ lPomcrkau. 19891. and 459 24 731 lTraaruan,tSejnowsk 19891 /s larger hiddett iayrrecutrsin a mOre poa rf,I niwnrk hui io uch poer may iw ia' l 'cirahie j;ee Satim IS,2
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'(I	 I 0

-=	 I)

4. (høose an input- output pair. Suppose the input sector is .v, and the tare .' output
vector I' V. Asten activation !vrli i,i the i nput unIts

s . Propagate the activations 1roi the units in the pu la yer to the ui -,tt in the liJcko
layer using the iutivalion function of Figure 18.1c):

	

/i - --	 for all j - 1

Note that i ranges from 0 to A. w1u, is the thresholding weight for hidden 111111

Ills propensity to fire irrespective of its inputs). n is alwitvs 1(1.

6. Propagate the activations from the units in the hidden layer to the units in the
output layer.

for :III	 ,I	 ....(
1+

Again, the thresholding weight ic2 1 , for output Unit / plays a rote in the V, etghtcd
unirnatiori. ho is .ilways 0.

7. Crniipiite the error ,,' of the units in the nItpul las-er. denoted 2,. Ferur' euv based
OP tlicrietssiirk	 ,i y iU,tI eitput	 nu he t:ireI	 ii!pui (Y I

g . Compute the errors of the units in the hidden layer, denoted ö I.

81,	 -	 w21	 for all j

l. Adjust the weights bctwen the hidden layer and output iayer. 5 The learning ratc
Is denoted rl. its unction is the same as in perceptron learning. A reasonable
value of il i0.35.

"The error formulu is rtatcd to the deits 1/ liv- activation functin. ihe rnattimat	 i
behind tht batkprot,aatsnfl learning algorithm is besoM ite copc 01 Ihrt txik

tAin. wc 010,1 the dtaits of the dcivaii,n. Tie bacic hlCi It thai ai ii hid,ier Wilt lrc-s to fl1'.
tC111— of ilui flhli Uhi Its he ihich ii vflrhecic
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Aw2 =ii & 2j h, for all 10,.., 8 '	 ..	 I

tO. Adjust the we ; gl'us between the input laye r and the hidden laye

Asi • l,1 =Tl	 81 • X 	 for all	 i =0.-,.. A.

II. Go to step 4 and repeal. When all the input-output pairs have been presented to
the network. one epoch has been completed. Repeat steps I to tO for as many
epochs as desired.

The algorithm generalizes straightforwardly to networks of more than three laet.'
For each extra hidden layer, insert a forward propagation step between steps 6 and 7,
an error computation step between steps 8 and 9, amid a weight adjustment step between
steps tO and II. Etror computation for hidden units should use the equation in step 8.
but with r ranging imvem the units in the next la yer, not necessarily the output layer.

The speed of learning can be increased by modifying the weight modification -pS

9 and 10 to include a momentum term a. The weight update formulas becunie:

Aw2(t + I) =	 62 /, a- cc A w2,,(1)

Awl/t+ 1) =11 81.xa-aAw11(ii

where I; t,. 8 I, and ö2, are measured at time r + I A n(t) is the change the weight

experienced during the previous forward-backward pass. If & is set to 0.9 or so. learning

.peed is improved.7
Recall that the au e:ton function has a sigmoid shape. Since infinite weights would

ic required for the a tual outputs of the network to each 0.0 and 1.0, binamy target
outputs (the Y, 's of c )s 4 and 7 above) are usually grven as 0.1 and 0.9 instead. The
stgtnoid is required by t,ackpropagatbon because the derivation of the weight update rule

requires that the activation tunction be continuous and differentiable.
The derivata aof the weight update rule is more complex than the derivation of the

fixed-incremetu apdate mule for percepiroos, but the idea is much the same. There LS

an error function 1hat defimie- a surface over weight space, and the weights are modified

in the direction of the gr3dmenm of the surface. Sec Rumelhart Cr al. I 19S61 for details.

Interestingly, the error surface for muttilayer nets is more complex than the error surface
for perceptrons. One notable difference is the existence of local minima. Recall the

bowl-shaped space we iscd to epl*in perceptron learning (Figure 18.10). As we

oA network *ith .ne h;dde. I. 'sen compute any fur.mx,n ih.t a uci"omt w ith many hiddeniayerr can

compute: with an io.pernenlo! nun- r of hidden units, one tierm co&'i be assigned to every possible input

piai'rfl. ttwecr. :amnin, is wmetinries f.s er with mnuttplc hidden layers. especially it the Input is htgh1

nonlinear, i.e., hard 10 separate -ith a sea-len of tTamgtlt lanes.
7 Fmpinicalty. b . tceutts haecomne ftomn ienin '7 a for the nZ few trintng panes, then inccessung

it to 0.9 For the nest of training. This proccs first sives the aigoninin s'mie lime to find a goodgenenadaecttntn.
md then mn 'vec 1 it that direction with cosneesira speed.
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modified weights. we moved in the direction of the bottom of the bowl, eventuaii', we
reached it. A backproPagatior. network, howeser, may slide down the error surface into

a set of weights that does not solve the problem It Is being trained on. If that set of

weights is at a local minimum, the network will never reach the optimal set of weighs.
Thus, we have no analogue of the perceptron convergence theorem for hackpropagatiOfl

networks.
There are several methods of overcoming t;e 1irtthIn of locti 111:nini.s. The

mentuns factor o, which icnds to keep the weight charges moving in the same direction,

allows the algorithm to skip over small minima 5/,niiiateda1i'ti11g discussed later iu

Section 18.2.4. is also usciul. hnally, adjusting the shape of a unit". a-tvution function

can have an effect on the nctork's ..usccptihility to local mintifla.
Furiunalrly, hackprfipafaiLofl networks rarely slip into locai minima, it tunis 

001

that, especially in larger netwoiks, the highdiuoeiisl0u1iit weight space provides plenty of
degrees of freedom for the algorithm The lack of a convergence theorciti is not a problem
in practice. However, this pleasant feature of hackpropagatiofl was not discovered until
recently. when digital computers became fast enough to support large-scale simulations
of neural networks. The baekpropagatiofl algorithm was actually derived independently

by a number of researchers in the past, hut it was discarded as many times because oi
the potential prolilenis with local minima. In the days before fast digital computers,
researchers could only judge their icIra, by proving theorems about them, and they had
no idea that local minima would turn out to he rare iii practice. The modtii fonji o

hackpropagatiofl is often credited to Werhos 19 741. LeCun I 109.51. Parker [l95. and

Rumeihati ci at II
BackpropagatiOti networks are not without real problems, however, with the most

serious being the slow speed of learning. Even simple tasks require extensive training

perioi.ts. The XOR 1 rohe1n. for esample, involve only live units and nine weights,
but it cati require nianty. many passes through the foui training cases before the weights
converge, especially if the learning parameters are not carefully tuned. Also, simple

backpropagatioii does not scale up ver y we]l. The number of training example s required

is superlinear in the size of the network.
parallel, distributed algorithm, the idea ofSince back propagation is inherently a 

improving speed by building special-purpose backpropagatiofl hardssare is attractive
However, fast new variations of backpropagatlOfl and other learning algorithms appear

frequently in the literature. e.g.. Fahltii.m I l 98 ] . By the tinie an algorithm is transformed

into hardware and embedded in a computer system. the algorithm is likely to be obsolete

18.2.3 Gencrali7atiofl

If all possible inputs and outputs are shown to a hackpropagatl on network. the network
will (probably. eventually) find a set of weights that naps the inputs onto the outputs.

For many Al problems, however, it is impossible to give all possible input ,,. Consider

face recognition and character recognitmoim. There are an infinite number of orientations

and expressions to a face, and an infinite number of fonts anti sires for a character, yet

humans learn to classify these objects easily from only a few examples. We would hope
that our networks would do the same. And, in fact, backpropagation shows promise as
a generalization mechanism. If we work in a domain (such as the classification domains
just discussed) where similar inputs get mapped onto sirn:lr outputs, backpropagatlofl



508	 CHAPTER 18 CONNECTJON1STM

training
cci

testing
set

Training Time -

Figure 18.17: A Common Generalization Effect in Neural Network Learning

will interpolate when given inputs it has never seen before. For example, after learning
:o distinguish a few different sized As from a few different sized lis, a network will
usua!v be able to distinguish any sized A from an y sized B Alsr,, generalization will
help overcome any undesirable noise in the inputs.

There are some pitfalls, however. Figure 18.17 shows the common generalization
effect during a long training period. During the first part of the training, performance on
the training set improves as the network adjusts its weights through hackpropaation.
i'er1orniaiice on the test set (examples that the network is not allowed to learn on) also
irnprovc . . although it is never quite as good as the training set. After a while. nct'vork
performance reaches a plateau as the weights shift around, looking for a path to further
improvement. Ultimately, such i t path is found, and performance on the training set
improves again. But performance on the test set gets worse Why? The network has
begun to memorize the individual input-output pairs rather than settling for weights that
gcncra1l describe the napping for all cases. With thousaads of real-valued weights at
its disposal. backpropagation is theoretically capable of storing entire training sets; with
enough hidden units, the algorithm could learn to assign a hidden unit to every distinct
input pattern in the training set. It is a testament to the power of back propagation that
the, actually happens in plactii'c.

Ot' course, that much power is undesirable. There are several ways to prevent
nackpropagation front to a table lookup scheme, One way is to stop training
when a plateau has been reached, on the assumption that an y other improvement will
come through cheating. Another way is to add deliberately small amounts of noise to
the (raining inputs. The noise should be enough to p revent memorization, but it should
not be so much that it confuses the classifier. A thud way to help generalization is to
educe the number of hidden units in the network, creating a bottleneck between the

input and output layers. Confronted with a bottleneck, the network will he forced to
rne up with compact internal representations of its inputs.

F:natly. ther? is the issue of exceptions. In many domains, there are general rules,
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but there are also exceptions to the rules. For example, we can generally make the past
tense of an English verb b y adding "-ed" to it, but this is not true of verbs like "sing."
"think." and "cat." When we show many present and past ten.w  pairs to a network, we
would like itto generalize in spite of the exceptions_-hut not in generalize so tar that th.
esceptions are lo.. Backpropagaiion performs fairly well in this regard, as di) simple
per, cptrofls. as -r ported in Runielhart and McClelland (1986a).

18.24 Boltzmann Machines

A Boliimanrt machine is  variation on the idea of a Hopfield network. Recall that pairs
Of units in a Hoptield net arc connected by symmetric weights. Units update their states
asynchronously by looking at their local connections to other units.

In addition to serving as content-addressable memories. Hopfield networks can solve
a wide variety of constraint satisfaction problems. The idea is to view each unit as a
"hypothesis." and to place positive weights on connections between units representing
compatible or mutually supporting hypotheses, and negative weights on connections
between units representing incompatible hypotheses. As the Hoplield net settles into
a stable state, it attempts to assign truth and i'lsitv to the various hypotheses while
violating as Few constraints as possible. We see examples of how neural networks attack
real-world cniislmaint sal mslai.tiori 1irobvmts in Section 18.3.

The main problem with Hoplield networks is thai the y settle Into local minima.
Having man y local minima is good for building content-addressable memories, but for
constraint satisfaction tasks, we need to find the global/v optimal state of the network.
This state corresponds to an interpretation that satisfies as man y interacting constraints
as possible. Unforiunatcls. lloptiekl networks cannot find global solutions because they
settle into stable states via a completely distributed alguriilimir. If a network reaches a
stable state bk- state 4 in bierire 18 4, iheri no single unit is willing Lu change its stats' in
order to move uphill, t.o the network will never reach globall y optimal state B. If several

units decided to charge state irnultanccusl y, the network might be able to scale the hill
and slip into state B. We need a wa y to push networks into globall y optimal stares while

maintaining our distributed approach.
At about the same time that Iloptield networks were developed, a new . ch tech

nique, called simulated annealing, appeared in the litcu ant mc. Sirnulaied annealing.
described in Chapter 3, is a technique for finding globally optimal solutions to com-
binatorial problems. Hinton and Senowski 11986 combined Hoptield networks and
simulated annealing to produce networks called R,1t:marni ,rzaehmes.

To understand how annealing applies, go hack to Figure l.4 and imagine it as a
black box. Imagine further a ball rolling around in the hex. If we could not sec into
the black box, how could we coax the ball into the deepest valley'! By shaking the box,
of course. Now, if we shake too violently, the hull will h&iuiice from valley to valley an
randoiii That is, if the ball were in valleS A, it might jump to valley B but if the ball
were in valley B. it might jump to valley .4. If we shake too softly, however, the ball
might find itself in salley .4, unable to jump out. The answer suggested by annealing
is to shake the box violentl y at flra, then gradually stow down. At some point, the
probabitiiy ot the ball jumping from A to 8 will be larger than the probability ofjurnping
from B to A. The ball will very likely find its way to valley B, and as the shaking
becomes softet, it will be unable to escape. This is what we want
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how is this idea impleniertled in a neural network? Units in Boltzmann machines
update their individual binary states by a swrho.sic rather than deterministic rule. The
probability that any given unit will be active is given by p:

where E is the sum of the unit's active input lines and T is the 'temperature" of the
network. Stochastic updating of units is very similar to updating in llopfleld nets, ex.epI
for the temperature factor. At high temperatures, units display random behavior, while
at very low temperatures, units behave as in Hopfield nets. Annealing is the process of
gradually moving from a high temperature down to a low temperature. The randomness
added by the temperature helps the network escape from local minima.

There is a learning procedure for Boltzmann machines, i.e.. a procedure that assigns
weights to connections between units given a training set of initial states and final
states. We do not go into the algorithm here; interested readers should see Hinton and
Sejnowski (1986). Boltzmann learning is more time-consuming than backpropagatinri.5
because of the complex annealing process, but it has some advantages. For one thing, it
is easier to use Boltzmann machines to solve constraint satisfaction problems. Unlike
backpropagation networks, Boltzmann machines do not make a clear division between
'input" and "output." For example, a Boltzmann machine might have three Important
sets of units, any two of which could have their values "clamped." or fixed like the input
layer of a backpropagation net--activations in the third set of umi ms would be iI.'i mined
by parallel relaxation.

If the annealing.is carried out properly. Boltzmann machines can avoid local minima
and learn to compute an y computable func t ion of tixcd-sizcd inputs and outputs.

18.2.5 Reinforcement Learning

What if we train our networks not with sample outputs but with punishment and reward
instead'? This process is certainly suffic i ent to train animals it, pci form relatively
interesting tasks. Barto 119851 describes a network which learns as fillows (1) the
network is presented with a sample input from the training set, (2) the network computes
what it thinks should be the sample output. (3) the network is supplied with a real-
valued judgment by the teacher, (4) the network adjusts its weights, and the process
repeats. A positive 'value in step 3 indicates good performance, while a negative value
i idicates bad performance, The network seeks a set of weights that will prevent negative
reinforcement in the future, much as an experimental rat seeks behaviors that will prevent
electric shocks.

18.2.6 Unsupervised Learning

What if a neural network is given no feedback for its outputs, not even a real-valued
reinforcement ? Can the network learn anything useful? The unintu p tive answer is yes.

deuTmtnis(je arIat,on of BoIt,inann lcarnir.g (Peterson nd Anderson. 19t71 promses in be more
efficient.
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Figure 1l.i g : Data for Unsupervised learning

This form of learning is called uroupen sed /t'tirnlog because no teacher is i equired.
Utveo a set of input data, the network is allowed to play with it to try to discove'
regularities and relationships between the different parts of the input.

Learning is often made possible filrough sonic notion of which features in the input
set are important. But often we do riot know in advance which features are important
and asking a learning system to deal with raw input data can be computationdll y expert

sive. Unsupervised learning can be used as a "feature discovery" module that precedes

supervised learning.
Consider the data in Figure I.18. The group of ten animals, each described hV it

own set of features, breaks down risiurally into three groups: malTilnals, reptiles, and
birds. We would hike to build a neisi,ork thii can learn which group a paniculai anini:d
belongs to, and to generalize so that it can identif y animals it has not vet seen.

can easily accomplish this with a six-input, three-output hackpropagation network. \c
simply present the network with an input, observe its output, and update its wctgho
based on the errors it makes Without a teacher, however, the error canrio' he computed,

so we must seek other itiethods.
Our first problem is to ensure that only one of the three output units becomes active

for any given input One solution to this problem is to jet the netork settle, find the

output unit with the highest level of activation. and st" that unit to I and all tither output

units to 0. in c,e! scords, the output unit with the highest activation is the only ,o- ss'
consider to he active. A more neural-like solution is to have the output units fight among
nernsclves for control of an input vcet'ir. The scheme is shown in Fuguur' I. l'-. The
input units are directly connected to the output units, as in the perceptro., bun the output
units are also connected to each other via prewured negative, or inhibitory. connections
'the output unit with the most activation aiong !ts input lures tnttiudi , will most srrongI

'One 4na1oue of iinsuprs if Iraming in syintx,lir At is Soc'nvrv (Sect;(' U 7.
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Figure 18.19: A Competitive Learning Network

dampen its competitors. As a result, the competitors will become weaker, losing their
power of inhibition over the stronger output unit. The stronger unit then becomes ever,
stronger, and its inhibiting effect on the other output units hecomr.s overwhelming
Soon, the other output units are all completely inactive This type of mutual rnhibiton
is called winner-take-al! behavior. One popular unsupervised learning scheme based on
this behavior is known as competitive learning.

In competitive learning, output units tight for control over portions of the input
space. A simple competitive learning algorithm is the following:

1. Present an input vector.

2. Calculate the initial activation for each output Unit.

3. Let the output units fight until only one is active.

4 Increase the weights on connections between the active output Unit and active
input units. This makes it more likel y that the output unit will he active next time
the pattern is repeated.

One problem with this algorithm is that one output unit may learn lobe active all the
time—it may claim all the space of inputs for itself. For example, if all the weights on
4 units input lines are large, it will tend to bully the other out put units into submission
Learning will only further increase those weights.

The solution, originally due to Rosenblatt (and described in Rumelha.rt and Zipser
11 9861), is to ration the weights. The sum of the weights on a unit's input lines is limited
to 1. lncieasing the weight of one connection requires that we decrease the weight qf
some other connection. Here is the learning algorithm.
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Algorithm: Competitive Learning

Given: A network consisting of a binary-valued input units directly connected to

any number of output units.
Produce: A act of weights such that the output units become active according to

some natural division of the inputs.

1. Present an input vector, denoted (.e, x2. .. -,

2. Calculate the initial activation for each output unit by computing a weighted sum
of its tflj)UtS.

3. Let the output units tight until only one is active,'

4. Adjust the weights on the input lines that lead to the single active output unit.

LWj r T! 	 iii	 torah I	 I ,.... a

where w1 is the weight on the connection from input uni;j to the active output unit,
x, is the value of the 1ih input bit. en is the number of input units that are active in

the input vector that was chosen in step I. and 11 is the learning rate (some small
constant). It is easy *0 show thu if the weights on the connections feeding into
an output unit sum to I before the wcieht change. then the y will still sum to I

afterward.

5. Repeat steps I 104 for all input patterns for many epochs

'I he weight update rule in step 4 make.,; the output Unit more prone to lire when
it sees the same input again. 11 the same input is presented over arid over. the output
unit will eventually adjust its weights for maximum acttvalion on that input. Because
input vectors arrivc in a nwxed fashion, however, output units never settle on a perfect
set of weights. The hope is that each will find a natural group of input vectors and
gravitate toward it, that is, toward high activations when presented with those inputs.
The algorithm halts when the weight changes become very small.

The competitive learning algorithm works well in many casca, but it has some
problems. Sometimes, one output unit will always win, despite the existence of more
than one cluster of input vectors. If two clusters are close together, one output unit
may learn weight', that give it a high les el of activatinti when presented with in input
from oither cluster. In other words, It mav oscillate between the twu clusters Noiiitahiy.
another output unit will win occasionally and move to elain one of the two clusters.
However, if the other output units are completel y unexcitable by the, isput vectors, they

may never will the competition D.ie sotution, called "leaky learning." is to change

There is no reason to pass the weighted suit through a sigzncrd turtctiufl. as we did with t.wkpropaarion.
because wc inly t.alcutatc acu.a)c-s level s Icr the purposc 01 singtmg out the must highis aciis'sicd output
unit

' t As mentioned ejitier. atty method tot dr!rminusu tiiv hunt trihiy ek ivaied output unit is 'ufiKicOt.
's ii'ivIuo.'s utinen in a serial progr1hr.mm2 language ma> dusper.se with Ilt, ,','.t?i c'rçiuhii"t 3od

'or'r aurvat.ous tveti to find the maximum
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the weighs belonging to relativet y inactive output units as well as the most active
one. The weight update rule for losing output units is the same as in the algorithm
above, except that they move their weights with a much smaller i (learning rate). An
alternative solution is to adjust the sensitivity of an output unit through the use of a bias,
or adjustable threshold. Recall that this bias mechanism was used in perceptrons and
eorresponded to the propensity of a unit to fire irrespective of its inputs. Output,ufltts
that seldom win in the competitive learning process can be given larger biases. In effect,
they are given control over a larger portion of the input Space. In this way, units that
consistently lose are eventually given a chance to win and adjust their weights in the
direction of a pat ticular cluster.

18.3 Applications of Neural Networks

('onnectiontst models can be divided [Touretzky, 1989b1 into the following categories
based on the comi cxity of the problem and the network's behavior:

• Pattern recognizers and associative memories

• Pattern transformers

• Dynamic inferencers

Most of the examples we have seen so far fail into the first category. In thi'.
section, we also see networks that fall into the second category. General inlerencing in
cunricctionist networks is still at a primitive stage.

18.3.1 Connectionist Speech

Speech recognition is a difficult perceptual task (as we see in Chapter 21). Connectionist
networks have been applied to a number of problems in speech recognition; for a survey,
see Lippmann [19891. Figure 18,20 shows how a three-layer backpropagation network
can be trained to discriminate bctwcn different vowel sounds. 1 he network is trained to
output one of ten vowels, given a pair of frequencies taken from the speech waveform.
Note the nonlinear decision surfaces created by backpropagalion learning.

Speech production—the problem of translating text into speech rather than vice
versa--has also been attacked with neural networks. Speech production is easier than
speech recognition, and high performance programs are available. NETtalk (Sejnowskt
and Rosenberg. 19871, a network that learns to pronounce English text, was one of tti
first systems to demonstrate that connectionist methods could be applied to real-world
tasks.

Linguists have long studied the rules governing the translation of text into speech
units called phonemes. For example, the letter "x" is usually pronounced with a "ks'
sound, as in "box" and "axe." A traditional approach to the problem would be to write
all these rules down and use a production system to apply them. Unfortunately, most of
the rules have exceptions—consider "xylophone" --and these exceptions must also be
programmed in. Also, the rules may interact with one another in unpleasant, unforeseen
ways. A conneclionist approach is simply to present a network with words and their
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Figure 18.20. A Network That Learns to Di.tinguish Vwei

pronunciations. 1nd hope thai the network wiI discover the reu r 1 ies and rcin'rcdi

the exceptions. NETtalk succeeds fairly well at this task with a hap'Pagat1On tetiii k

of the t ype described in Section I82..
We ' ran think of NETtalk as an exercise in exIensIclflal progrulilmirit! i&,tirei

el cit. 1987 1. Thete ecists sonic complex relationship between text and speech, ar

we program that re itionsp into the crnputcr h\ 'howing it example s from the rent

world Contrast :"is with traditional. 'jntculstOflJl 1)Iocjammlng. in which we tc
rules or specialized algorithms without reference to any particular examples. In the

former case, we hope that the network geiieialiies to transl ate ness words correctly, in

the latter case, we hope that the algorithm is geneia enough to handle whatever word'.

it rceise. Extensional programming. is a powerful technique because it drastically

cuts down nit knowledge acquisition time, a major bottleneck in the cnnstructiuil of
Al systems. However, current learning methods are not adequate for the extcnsiofl&
programming of very complex tasks, such as the translation of English sentences tnt"

Japanese.

18.3.2 Connectionist Vision

Humans achieve signtticant visual prowess with untied visual i ,urciw,ire. Only the

center of the retina maintains iznod spatial resolution; as a icsult. we must onstantl'
shift our attention among various points of irRWO41. Each snapsh(4 lasts only about two
hundred milliseconds Since individual neural bring rates uaually lie in the millisecond

intert,reted in abowt a hundred computational cleps. Torange, each 'teona mLuT h 

compound the problem, each interpretation must be rapidly integrated with prevotIs
tntcrpctlatiofls to enable the construction of a stahle three-dtmenSiO l model of she
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world. These severe timing constraints strongly suggest that human visiuui is h ighly
parallel, Corinectionism offers many methods for studying ixitlu the engineering and
biological aspects of massively parallel vision.

Parallel relaxation plays an important role ill c.innccuionisi "151011' steins [Ballard rI
al. 1983; Ballard, 19841. Recall ourdiscussion 01' parallel relaxation search in 1-lopticld
networks and Boltzmann machines, In a typical system, some neural units receive their
initial activation levels irouiu a video camera and then these activations ' ire ilerativeis
modified based on the influences of nearby units. One use for relaxation i
edges If many units think they are located on an edge bordci, they cauu override any
dissenters. The relaxaton process settles on the most likely set of , edges in the scene
While traditional vision programs running on serial computing engines must rea:011
about which regions of' a scene require edge detection processing, the cnnnectioni,st
approach simply assumes m	 anassively parallel machinery [Fahlman d Hinton, 19871.

Visual Interpretation also requires the integration of many constraint sources Fun
example. if two adjacent areas in the scene have the same color and lexture, lheil they
are probably part of the same object. It these constraints can be encoded in a network
struu'lure, then parallel relaxation i an attractive technique for combining thcm, Because
relaxation treats constraints as "soft"—i.e., it will violate one constraint if necessary to
saLisfy the other.—it achieves a global best-fit interpretation even in the presence of
local ambiguit y or noise,

I8.3.3 CorntjnatriaJ Problems

Parallel relaxation can also be used to solve many other constraint satisfaction problems.
Hoplield .tnd 'I'aruk 1198i shoA how a Hoplield network can heprogrammed to come
ujs with approximate solutions to the traveling salesunwi problem. The system employs
a neural units, where it is the number of cities to be toured. Figure 18.21 shows
how tout I; themselves are represented. Fac'ku row stands for one city. The tour proceeds
horizontally across the columns. The starting city is marked by the active unit in column
1. the next city b y column 2. etc. The tour shown in Figure 18.21 goes through cities D.
B. F. H. G. F C. A and back to D

Like all Hoptield networks, this a by ,i array .onlauiis a number of weighted con-
nections. The convection weights are initialized to reFleci exactly the constraints of a
particular problem instance. t2 Firs

t of all, every unit is connected with a negative weight
to every ether unit in Its column, because only one city at a time can be visited. Second.
every unit inhibits every other unit in its ron'. because each city can only he visited
once. Third, units in adjacent columns inhibit each other in proportion to the distances
between cities represented by their rows. For example. it' city 1) is far f'ioun cit y 0, then
the fourth unit in column 3 will strongly inhibit the seventh units in columns") and 4.
There is some global excitation, so in the absence of strong inhibition, individual units
will prefer to be active.

Notice that each unit represents some hypothesis about the position of a particular
city in a short tour. To find that tour, we start out by giving our units random activation
values. Once all time weights are set, the UflilS update themselves asynchuuiiiitislv -

ItNo that ihese connccuiuri weighuc ste hand-coded. licit learned
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Figure 18.21: The Representation of a Tiaveling Salesman Tour in a Hoplield Network

according to Iric rule described in Section 18.1.13 This updating continues until a stable
state is reached. Stable states of the network correspond to short tours because conflicts
between constraints are niitimal. liophcld and Tank 119851 have used these network-!-
to come up with quick. approximate solutions to traveling salesman prohern.s (but "cc
Wilson and Pawley [19881 for a critique of their results). Many other combinatorial
problems, such as graph-coloring, can he cast as constraint satisfaction pvciblerns and
solved with parallel relaxation networks.

18.3.4 Other Applications

Other tasks successfully tackled by neural networks include learning to play hackgani
mon ITesauro and Sejnowski. 19891. to classify sonar signals [Gormari and Sejnowski.
19881. to compress images [Coitrell Ct af, 1987J, and to drive a vehicle along a road
[Pomerleau. 19891. While there are other techniques for attacking all lhse problems.
learning-based connectlonlst systems can often he built more quickly and with less
expertise than their traditional counterparts.

18.4 Recurrent Networks

One clear deficiency of neural network models compared to symbolic models is the
difficulty in getting neural network models to deal with temporal Al tasks such as
olanning and natural language parsing. Recurrent networks, or networks with loops. are
n attempt to remedy this situation.

Consider trying to teach a network how to shoot a basketball through a hoop. We can
present the network with an input situation (distance and height of hoop, initial sitk'n

'Aeivaily, the tinits used by Hoçficld and Tank [1985j ta5r on real aiis-ation value dei,!rynipe(i by a
utgmod curve 004 buwy vaus. By ehanpmg the shape of the siznoid during pmc:ssng. the nc:work
achieves sOffle of the sarnc results as does simulated anneaiing
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Figure 18.22: A Jordan Network

of muscles), but we need more than a single output vector. We need a series of output
vectors- first move the muscles this way, then this way, then this way, etc. Jordan [1986]
has invented a network that can do something like this. It is shown in Figure 18.22.
The network's plan units stay constant. They correspond to an instruction like "shoot
a basket." The state units encode the current Stali of the network. The output units
simultaneously give commands (e.g., move arm to position y) and update the state
units. The network never settles into a stable state; instead it changes at each time step.

Recurrent networks can be trained with the backprnpagation algorithm. At each step,
we compare the activations of the output units with the desired activations and propagate
errors backward through the network. When training is completed, the network will
be capable of performing a sequence of actions. Features of back propagat i on, such as
automatic gcncraliiation, also hold for recurrent networks. A few modifications are
useful, however. First of all, we would like the state units to change smoothly. For
exarnplr, we would not like to move from a crouched position to a jumping position
instantaneously. Smoothness can be implemented as a change in the weight update
rule; essentially, the "error" of an output becomes a combination of real error and the
magnitude of the change in the state units. Enforcing the smoothness constraint turns
out to be very important in fast learning, as it removes many of the weight-manipulation
options available to back propagation.

A major problem in supervised learning systems lies in correcting the network's
behavior. If enough training data can be amassed, then target outputs can be provided
for many input vectors. Recurrent networks have special training problems, however,
because it is difficult to specify completely a series of target outputs. In shooting
basketballs, for example, the feedback comes from the external world (i.e.. where the
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Figure 18.23: A Recurrent Network with a Mental Model

basketball lands), not from a teacher showing how to move each muscle lo get wound

this difitcul ty. we ca ll  a irientul model, a mapping thai relates the network's outputs
to events in the world. Once such it model is known, the system can learn sequential

tasks by backpropagating the errors it sees in the real world So ii is necessary to learn
two different things: the relationship between the plan and the network's output, and
the relationship between the network's output and the real wurld

Networks of this type are described by Jordan [1988]. Figure 18.23 shows such a
network. which is essentiall y the same as a Jordan net except for the addition of Iwo
more layers: another hidden layer and a layer representing results as seen in the world.
First, the latter portion of the network is trained (using hackpropagation) on various
pairs of outputs and targets until the network gets a good feel br how its outputs affect
the real world. After these rough weights are established, the whole network is trained
using real-world feedback until it is able to perform accurately

Another type of recurrent network is described in Elman [1990] In this model,
activation levels are explicitly copied from hidden units to state units. Networks of this
kind have been used iii a number of application', including natural language parsing.
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18.5 Distributed Representations

As we have seen, the tong-term knowledge of a connecuonis. ,ierwork is stored its
a set of weights on conncctions between units. This general scheme admits many
kinds of representations, just as the basic slot-and-filler structure left room for all the
representations discussed in Chapters 9 and 10. ('onnectionist networks can be divided
roughly into two classes: those that use beaUs: representations and those that use
(j,.clrihuted representations.

NETL l:Fahlman , 19791 is a highly parallel system that employs a locaiist represen-
tation. Each node in a NETL network stands for one concept in a semantic network
For example, there is a node for "elephant," a node for "gray," etc. When the network
is considering an elephant, the elephant unit becomes active. This unit then activates
neighboring units, such as units for gray, large, and mammal. The reverse process works
nicely as a content-addressable memory.

Distributed representations IHinton et al., 1986], on the other hand, do not use
individual units to represent concepts; they use patterns of activations over many units.
We have already seen one example of how this works: A Hopfield network provides a
distributed representation for a content-addressable memory, in which each structure is
stored as a collection of active units. One might be tempted to say that digital computers
also use distributed representations. After ill, a small integer is stored in a distributed
fashion, as a pattern of activation over eight storage locations, each of which represents
one bit of data. An extreme localist approach, on the other hand, would be to use 256
bits per integer, only one of which could be active at any given time. However, besides
stoting objects as patterns across many units, distributed representations have another
important property, namely that stored objects may be superimposed on one another
One set of units can thus store many different objects. It is clearly impossible 1,1 store
two 8-bit integers in one 8-bit place-holder, so we do not view such an encoding as a
truly distributed representation.

Distributed representations have several advantages over localist ones. For one
thing, they are more resistant to damage. If NETL loses its "elephant" unit somehow,
then it immediately loses all ability to reason or remember about elephants. This fragility
is undesirable it our goal is to build very large systems from unrc!othle parts. Also, it
does not conform to what we know about human and animal memory. Lashley [19291
performed a number of classic experiments concerning memories in rats. Lashley
wanted to find Out in which part of its brain a rat stores its knowledge of how to run a
particular ma/e. In the experiments, rats' brains were lesioned in many different places.
Performance degraded in all rats in proportion to the size of the lesion, but the location
of the lesion had no special effect on performance. Lashley concluded that the memory
of how to run the maze was somehow stored in a distributed fashion across the entire
rat cortex. Such a memory organization has been described using a hologram metaphor.
in reference to the holographic storage medium, which allows the reconstruction of the
entire image from just a portion of the recording (although the reconstructed image may
be of poorer quality than the original). Work on distributed representations brings this
metaphor down to an implementational level.

In addition to being more robust than localist representations, distributed represen-
tations can also be more efficient. Consider the problem of describing the locations of
objects on a two-dimensional 'S by 8 grid [Hinton etal., 19861. In a symbolic mmuplemen-
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Figure 18.24. A Localist Representation of Location (2 3) on an 
8 hs 8 Grid

tation. this task is eas y : A location can be stored simply as a list of two num)crS. e.g

2 3. Multiple object locations can he stored easily in this riotauuil, as a list 
oh lists'

((2 3) (6 5) (7 I)) How can we accomplish the same task with ncuronlike units? The
lc unit for every possible

beaust approach is to maintain an array of sixty-tour units, oi 
location (see Figure 18.24). A more efficient approach would be to use a group of eight

ht units forunits for the x-axis and another group of eig rite Y-axis. as m Figure 18.25.

To represeOt the location (2 3. we activate two 
uflhis. th second unit of ii e s-axiS

group and the third unit of the y-axis group. The other 14 unIts remain inactive. This

method is not very damage resistant, however, and it 
will not support the tepresefltauiofl

of multiple nbjet'l locations. To represent both (2 3) and (6 5) would require turtling on

two v-axis units and two v-axis units. But then we get the following 
binding problem:

it is impossible to tell which of the fourx- y pairs (23). (25). (63), and (65) correspond

to actual object locations.
There is a distributed representation for solving this problem ---it is called 

coarse

.'oding 
In coarse coding, we divide the space of possible object locations into a number

)f taige, overlapping, circular zones. See. for example. Figure 
19 . 20, to which units

ire depicted as small dots and their receptive fields as large circles A unit hecome
active if any object is located within its receptive held. - There is a unit associated

with each	
iv,one—the zone is called the unit's recepte . t,id . i4 Whenever an object is

located in a unit's receptive field, the unit be active. By looking at a single aefls

unit. we cannot tel l
 with any accuracy where an object is located, but by looking

e pattern of activity across all the units, we can actually be quite precis Consider
that the intersection of several circular zones associated with a group ot .nits may 

be sthe 

' 4 The term recepO%c held comes fr
om 

the study of vision A receptive lick) of a retinal c-It is an area of

si- retina that the rti' t n'.,pirntibk fur. Thc ccli is tngjccrcd by light in thai area.
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Figure 18.2: A More Efficient Representation. Requiring Only 16 Units. but Unable
to Store Multiple I x:at tons

very small area—if only those units are active, we can be fairly precise about where the
object is located. In fact, as the receptive fields become larger, i.e., as the individual units
become less discriminating about object locations, the whole representation becomes
more accurate, because the regions of intersection become smaller. Iii the end, we can
represent multiple objects with some precision without paying the price of the localist
eprr.sent:iliuri scheme.

One drawback to distributed representations is that they cannot store many densely
packed objects. A localist or symbolic system could easily represent the three distinct
objects at (44), (45). and (54). but a distributed scheme would be confounded by the loss
of information caused by the eftct of many objects on a single Unit's receptive field. On
the other hand, psychological experiment ,; have shown that a similar inteiference effect
is very likely acause of forgetting in human memory [Gleitman, 1981]. A more serious
defi-:tency concerning distributed representations lies in the difficulty of interpreting,
acquiring, and modifying them by hand. Thus, they are usually used in conjunction with
automatic learning mechanisms of the type discussed in Section 18.2.

18.6 Connectionist Al and Symbolic Al

The cnIuit'clionisl approach to Al i quite different from the traditional symbolic ap-
proach. Both approaches are certainly joined at the problem; both try to address difficult
issues in search, knowledge representation. and learning. Let's list some of the methods
used by both:
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Figure 18.26: Distributed Repiesentation Using Coarse Coding

1. Connectionist

• Search—Parallel relaxation.

• Knowledge Repteseniatiin--Vcry large number of rcalvaIued ..onflectlon
strengths. Structures often stored :% distributed patterns of activation.

• L,arnkng—BackpropagatIoi1. Bolizmann machines, reinforcr.me,iI learning.
unsupervised learning.

Syiiilxdic

• Search —State space traversal.

• Knowledge Representation- -Piedicate logic, semantic networks	 'ones.
scripts.

• Learning--Macro-operators. version spaces, explanati(in-based learning.
discover).

he approaches have different strengths and weaknesses One Itwior allure
connectiullist systems is that the y employ knowledge representations that seem to be
more learnable than their symbolic counterparts. Nearly all connectiortist system'. have
a ,irony. learning component. however, neural network learning algorithms usually
ir,'.olve a large number of tiaining examples and long training periods compared to
their s y mbolic cousins. Also, after a network has learned to perform a difficult ta'k.
its kno . lede is usuall y oUItC opauur an impenetrable mass of connection weights
Getting the network 0) :s!l3tfl its rn'	 'hp, is difficult Of course, this may !.t
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be a bad thing. Humans, for exunpk, appear to have little access to the procedures the
use for many tasks such as speech recognition and vision. It is no accident that the most
promising uses for neural networks are in these areas of low-level perception.

Connect ion ist knowledge representation offers other advantages bCS1LICS learnahi lily.
rouretzky and Geva [19871 discuss the fluidity and richness of coniicctionist rcpresen-
tattoos. In c000ectjonisl models, concepts are represented as feature vectors, sets of
activation values over groups of units Similar concepts are given similar feature vector
representations, In symbolic models, on the other hand, concepts art- rirniIly given
atomic labels that bear no surface relation to each other, such as Car and Poise/u'. Links
(like isa) are used to descnbe relationships between concepts. When the relationships
become more fuzzy than isa, however, symbolic systems have difficulty doing match
log. For example, consider the phrases "mouth of a bird" and "nose of a bird." People
have no trouble mapping these phrases onto the concept Beak. A connectionist system
could perform this fuzzy match by considering that Nose, Mouth, and Beak have similar
feature value representations. Moreover, symbolic systems do not handle multiple, re-
lated shades of meaning very well. Consider the sentence, "The newspaper changed its
format," Usually, the word "newspaper" is inteipreted either as (1) something made of
black and white papcI or (2) a group of people in charge of producing a daily periodical.
In the sentence above, however, it is impossible to choose between the two readings. In
symbolic systems, different word senses are represented as independent atomic objects.
Connectionist models offer several ways of maintaining multiple meanings: the simul-
Laneous activations of different units (localist), the superposition of activity patterns
(distributed), and the choice of intermediate feature vectors. The thud method involves
choosing a representation that shares some features of one meaning and some feature of
another, but the intermediate representation itself has no single, corresponding symbolic
ancepI.

A major part of this book has been devoted to the study of search in symbolic systems.
It is difficult to see how conneetionist systems will tackle difficult problems that state-
space search addresses e.g., chess, theorem-proving, and planning). Parallel relaxation
earcjj, however, does have some advantages over symbolic search. First of all, it maps

fullufall y onto highly parallel hardware. When such hardware becomes widely available,
aralleI relaxation methods will he extremely efficient. More importantly, parallel

"taxation search may prove even mote efficient because it makes use of states that have
.uialogues in symbolic search We saw this phenomenon briefly in Section 1.3.3

5-neri we considered a lJopfield network that comes up with short traveling salesman
toots in the roccss of .ettIing into a solution state, the network enters and exits many
'npo'sible' states, such as ones in which a city is visited twice, or ones in which the
tiaveler is in two places at the same time. Eventually, a valid solution state falls out
of the relaxation process. In contrast, a symbolic system can only expand new search
nodes that correspond to valid, possible states of the world.

A good deal of conimeccmonist research concerns itself with modeling human mental
processes.  Neural networks seem to display many psychologically and biologically
plausible features such a: content-addressable memory, fault tolerance, distributed rep-
resentations, and automatic generalization. Can we integrate these desirable properties
into symbolic Al systems? Certainly, high level theories of cognition can incorporate
such features as new psychological primitives. Practically speaking. we may want to use
connectionist architectures for low-level tasks such as vision, speech recognition, and
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memory, feeding results from these modules into symbolic Al programs. Another idea
is to take a symbolic notion and implement it in a coonectionist framework. Touieii.ky
and Hinton 10881 dest nbc a coilrieciioiiist production system. and Derilijek [lQ8
describes a corinectionist semantic network.

A third idea is to program a symbolic s ystem with the basic principles that aie
necessary to perform a task and then use the symbolic system to guide the pertirmance
of a neural network, which refines its behavior as it acquires experience. An example
of this approach is described by ilandelman etal. i 9891, who describe 4 ro bot anti that
can throw a hail at a target. Initially. a symbolic system guides the behavior of the arm
Each throw produces a training case, which is fed to a neural network. The s:iibolic
system monitors the progress of the network, which is acquiring the fine motor control
that the symbolic system lacks. When the network's behavior exceeds a set criterion,
control of the arm is turned over to it.

Ultimately. i.onnectiofliStS would like to see symbolic structures "emerge" naturally
from complex interactions among simple units, in the same way that"wetness" emerges
from the combination of hydrogen and oxygen, although it is an intrinsic property of
neither

Most ol the promising advantages of conr.ccnioniisi systems described in his section
arc just tha': oromising. A great deal of work remains to be done to turn these promises
into results. Only time will tell how influential coninectionist models will be in the
evolution of Al research. In any cni.sL, connectionists .an at least point to the brain as an
existence proof that neural neissork'., in sonic form. arc capable of exhibiting intelligent
behavior.

18.7 Exercises

1. Consider a Hoplield net with the symmetric, weighted connections of Figure 18.1.
Walt the units are initially active, which of the four states in Figure 18.2 will the
network settle into?

1mplcnicnr the fixcd . iiicrcment perceptron learning algorithm. Invent a three-
fiai tire linearly separable classification problem on which to test your program.

3. Implement the backpropagation learning algorithm for a fully connected three
layer network. Be sure to include parameters for layer sizes, learning rate (n), and
number of training epochs. Feat your implementation first on the OR problem:

Input Vector - iIrget Output Vector
(0.0,

	

—6—.01
	 (0.1

	

0.0. I Ui	 ((1.9)

	

1.0.0.0)	 (09)
(II). ID)

l'hen on the XOR probem:
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Input '/euo	 Target Output Vector
(0.1)

	

0,	 (0.9)

	

(1.0,0.0)	 (0.9)

	

(1.0, 1.0)	 (0.1)

lnivally. use two hidden units, set i = 0.35, and run for 60)0 training epochs
(Each epoch consists of forward and backward propagation of each of tilt- frtiii
training examples.) Modify your program to use the momentum factor ix
09. Did adding momentum significantly decrease the number of training epochs
required for learning?

4. Here is a toy problem for testing generalization in network. Suppose that there
are eight political issues on which every political party must dccidc, and suppose
further that those decisions are binary (for example, to legalize gambling or not,
to increase military spending or not, etc.). We can then represent the platform of
a political Patt y as a veclo, a! eight ones and zeros. Individuals who belong to
political panics may have beliefs that differ slightly from their parlys platform.
Your job is to frairi a backpropagaiion network to compute the political platform
of the party that most closely matches a given individual's beliefs.

Generate four random 8-bit vectors to represent the platforms of four political
parties. For each party, generate nine individuals who belong to that part y. The
beliefs of an individual, like those of a party, are mepresented as an 8-bit voctol.
One 11f : he time individuals should agree entirely with the party platform, and the
tither eight should differ on exactly one issue it bit). Now generate 36 inpw.
output pairs, by juxtaposing individuals with the platforms of their resper1v
otilitical parties Each input is 8 bits, and each output is 8 bits.

InputVeciom Target Output Vectom

	

individual:	 party

	

individual,	 party,

	

ind,vidua!,,	 party,

	

individual,,	 party

	

individiiai,,	 pany,

	

individtiai,,,	 par1y

mdidual	 party4

Nest, remove five of the input-output pairs. These five will make up the "testing
set"; the other 31 will make tip the "trioing set.' Create a backpropagation
network ss uth eight input units, eight hidden units, and eight output units. Train
the network on the 31 vectors in the training set until performance is very high.
Now test the network on the five input-output pairs it has never seen before. How
well does it perform? Expet umneni with the different sizes of Lestilig and training
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sets, as weti 3. nidden layers of different sizes. Finally, how does the network
perform when given individuals whose beliefs are not so close to one of the butt
parties

Many people consider coitnecilonisln to be irrelevant to Al, because it studie s

intelligence at such a low level. i'hey argue that intelligence should be modeled
at a higher, more abstract level. They often relate CoIitiecttorIisrn to symhoiic
Al v.ith a oft ware metaphor that runs: "It you want to slUdy the behavini of
a complex LISP program. then 'you should inspect its input and outputs. u.s
functions, is data. Its general how of control. but you should not be concerned
about the particular hardware the program happens to be running on. The s,IUIC
goes for ttte study of intelligence." Read both Broadbent 985] and Riinielhart
and McClelland I l96h. and continent on this line of reasoning.

6. In contrast to those who view connecttoiiism merely as an iniplemcntatiuria
theory, others believe that conncctionrst models are too abstract and thu c
should look more closely at the organization of the brain for clues about hos to
organize artificial netorks. Consider the following facts about the brain Crk-k
and Asanuma, 19(h Roseniweig and Leinian. I921. and continent ttii fins'
they might affect current conncctIoiiit model ,., of memory, learning. aiid prehJei
sols'inr.

• Neurons excite ant inhibit one attacher, but art individual neuron is either
Mir. n'scitatiiry or purely inhibitory. Neuron A cannot excite neuron

hilt' inhibiting neuron C.

• "r'i,r(,nS communicate through their tiring taics, hich range from a
spikes per second to perhaps 500 spikes per second. Neuron hiing is asyrn-
chronous; there appears to he no global clock there are two types of neural
summation I I spatial suflhin:itiort, in which the effects of various con-
necting ucuinils are added together and (2) teinporal summation, in which
asyncitronousl y arriving iilnpulscs are likely it) cause a neuron to tire when
thc all amve closel y together in time. As a cotollary of (21, one neuron
can have a very great effect on another b y bring very rapidly.

• Some behavioral tuntions, such as vision and language, appear to be local-
ized in the brain. Destruction of small portions of the brain Cliii result in the
complete inability to perform certain cognitive tasks.

• [he human brain has at least 150 billion rtearons and probably ltX)() to
10.000 connections per neuron. The brain of a rat is 700 Limes smaller. The
propunton of the brain taken up by the Cortex is much larger in humans than
jin rats.

• Neurons are not connected symmetrically: it the axon of neuron A leads to
neuron B. then the axuit of neuron B probably does not lead back to neuron
A.

• There are flatly different types of neuron.. Some types do not piojec! out
of their local area of the brain, while the axons of other 1^ pe'. travel lon
distances,
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7. Life is a one-player game invented by John Conway. The game is played on an
infinite two-dimensional grid of square cells. At any given time, a cell is either
living or dead. Patterns of cells transform thenisc1vs according to a simple set

.f rules.

If a cell is living, it continues in live if surrounded by exactly two or three
living cells. it it is surrounded by more than three living cells, it dies of

ovrrerowding; if less than two of its neighbors is alive, it dies 01 loneliness.

If a cell is dead, it becomes living only if it is surr4iIiIded by cacil three

living cells. Otherwise, it remains dead.

mr example:

0	 -4 cell becomes dead

F
—p cell stays dead

t-	 -]

T
0 . "j—.

o	 cill stays living

__4 ced b i1res living

(a) Create input-output pairs for every possible configuration (j;' a cell and its
eight neighbors. There will he 51? t,.''t diflerertt input vrt211 ul S Associatco

with each input vector will be one output bit: II it the flext state of the cell is

dead, I if living. Use the rules above to compote the proper output for each

input vector.

(b) Tiain a three-layer back DroflagatnlI network to learn the behavior of a Life

cell. Use two hidden units.

(c) Print out the set of weights and biases learned by the netwoik. Now derive a

set of (symbolic) rules that concisely describes how the network is actuall'i
computing its output. Focus on the behaviors of the two hidden units- —how
do they respond to their inputs, and what effects do they have on the eventual

outI)ut

(d) Compare the rules ou derived in part 	 with the rules you teied to create

the data in pail (a).



Chapter 19

Common Sense

Coitiptiters have an entirtly desc ed reputation for lacking common sense. Anyone

who has c ,.er received it for So . t)(1 frow an accounting program can attest to this
fact An Al program may possess more knowledge than an accounting program, but it
still compdiet using primitives that it knows nothing about. For example, consider the
following interaction between a medical diagnosis system and a human (adapted from

t.enat and (juha (19901):

Svtenu How old is the patient?
Human (looking at his 1957 Cht'vmh't): 33.

Svsteui: Are there any spots on the patient's body'!
Human (noticing rust 5p015): Yes.

System. What color are the spots?

Human: Reddish-brown
System: The patient has nit-asks (probability 0.9).

Obviously, the system does not really know what measles ore, what spots arc, or
what the difference between cars and people is. Even within its specialty, the system is

unass are of fundamental facts, for exam p le, that humans have two arms. Clearly, what

the system lacks is knowledge. So far in this book, we have seen number of techniques
that can be used to enable an Al program to represent and rea q k with comnton.Sense

knowledge For c-sample, in predicate logic, one can state facts such as "if you die.

you are dead at all later limes." Frames can describe everyday objects, and scripts
can describe the typical sequences of events. Nonmonototlic logics cart support default
reasoning, an important aspect of romnon sense.

As of yet, however. ro program can match the Comnnionsense reasoning powers of a
eve-year-old child. This is due, in part. to he laige amount of knowledge reqiiircLl fin

common sense. lii Section lO t , we discussed the CYC program, one attempt to codify

this information in a large knowledge base. In this chapter, we look more closely at the
kiiids of knowledge such a system must pOSSeSS. In particular, we investigate how to

understand and predict ph) sical processes. how to model the behavior of materials. and
how to reason about time and space. Memory is another ke y aspect to common sense.

We look at how a rnertiory can orgaii. experiences. gcnera1i" them, and use them to

solve new problems.

529
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1(f 
0

(a)

	

	 b)	 (c)

Figure 191 Thee Ph ysical Situations

19.1 Qualitative Physics

People know a great deal about the how the ptissicul world works. Consider the three
situations shown in Figure 19.1.

Anyone can predict what will h4ppcn in he.sc ccnar;s. In situation 'a), the hail
will probably bounce on the ground eserat tunes, then come to rest. In situation( b).
the hail will travel upward and to the right, then donwauiI iii sitwitiuri ( the ball
will swing repeatedly from left to right. finall y coming to rest in the middle. Now. how

can we build a computer program to do this kind of reasoning?
The obvious answer is to program to the equations gosernitig the physical motion of

uhjvct' These equations date hack to classical physics and appear in ever' introductory
physics textbook, For example. if he initial velocity of the ball in Figure 19.1tb) is v1,

and the angle of its departure from the giound is e. then the ball's position : seconds
alter being launched is gisen by:

height =	 vuitt
dSTJnCP	 'o I

We L5fl do the sense thing for Figures l'fl(a) and tc For Figure 19.1(a), we need
•o kn. mhc ccscPIcirr%t of elasticity. and for Figure 19,1(c), we need to know the length
of the string, she initial velocity of the hail, and its original horizontal displacement.

There are two problems with thls approach. First. uIt'l people do not know these
equations, yet they are perfectly capable of predicting what will happen in physical
sItuAlL'rns A;so, unlike equations, people do not rcc(le)ac. numerical measures. They
ncesi x ii .y .jaulitativedescripions. such as theories given at the heginningof this Section.
People seem to reason morc abstractly than the equations would indicate. The goal of
qualitative lsyics's us 11, 111iCT%land how to build and reason with abstract, numberless
representations

One might object to qualitative physics on the grouiicts that computers are actually
well suited to model physical processes with numerical equations After all, a com-
puter s ability to solve siniultaneouc equations far outstrips that of a human. However.
we cannot escape common sense so easily. Equations themselves say nothing about
when they should be used: this is usually left up to a human physicist The common-
sense knowledge employed by the physicist is part of what we must model. White
some sort ofqualiiaiise physics seenis necessary for automating the solution of physics
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problems, it is not sufficient by itself. The goat of qualitative physics is not to relauc
traditional physics but rather to provide a foundation for poiglairis ihat can reason about
the physical world. One such program might be a physics expert system.

As a further illustration of ihi' need for qualitative models, consider a scene in which
a glass of water leans precariously against a book on top of a cluttered desk. When the
book is moved, the glass begins to tip over. At present, no set of* differentiat equations
can accurately model exactl y how the sptlttig water will flow across the desk. Even if
ueb a model existed, it would be impossible to measure the initial condiiionsaccwately

enough to make an accurate prediction. Yet anyone ri iris sit'uatioiu can immediately
.'tsueluze what is likely to happen and take rtpil action to prevent it.

19.1.1 Representing Qualitativt. Information

Qualitative physics seeks to understand physical processes by building models of them.
"s model is an abstract representation that eliminates irrelevant details. For example,

we want to predict the motion ri a ball, we may want to consider its mass and
Ciociiv, but probably not its culu,r. Traditional physical models are bull. up mutt real-

v alued variables, rates of change, expressions, equations, and states. Qualitative physics
provides similar building blocks, ones which are more abstract and nonnumeric,

• Variables—In traditional physics. real-valued variables are used to represent lea
tures of objects. such as OSitlofl, velocity, angle, and temperature. Qualitative
physics retains this notion, but restricts each variable to a small finite set of pos-
sible values. For example, the amount of water in a pot might he represented as
one of {eerpts, berween.full}. and its temperature as jfia:en , between, hoitin,'}.

• Quantity Spaces— A small set of discrete values for a variable is called a quart: its'
space. The elements of a quantity space are usually ordered with respect to each
other sri that one value can be said to be smaller than another'

• Rates of Change—Variables take on different values at different times. A real
valued rate of change (*/dl) can be modeled qualitatively with the quantiyacc
decreasing, steady, increasing}.

• Expressions—Variables can be combined to form expressions. Consider repre
senting the volume of water in a glas as enrptv. /rerweeri. fill}. If s"e pour the
contents of one glass into another, how much water will the second glass contru n
We can add two qualitative values with the following chart

eP7trny 5- empt y - enipfs
empic + hmta'rpn = between
empty + full rful
between + between	 !erween,fuliJ
between +fu/I full overt/ow
full + full = J u/i + os'e,ilow

Notice that qualitative addition differs from its quantitative counterpart, in part
because the result oiqualitative addition may b ambiguous. For example, if both

in !io,ne vanttlonn lRaoTian,
 

1961,tjs posibIc 10 star 'hat .r- -"tue	 - t5e than moth-, -
that two '.ilues arc unequal bu t very dose it' one am''--
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glasses are between empty and full, it is Impossible to know whether coTflblJUitg

them will result in a full glass or not.

Equaliuns—EXPrCSSIOns and variables can be linked to one another via equations.

The simplest equation states that variable .r increases as variable y increases. This

gives us an abstract representation of the actual function rclating.v and y (it may

be linear, quadratic, or logarithmic, for example).

Statess--Traditional physics models a process as a set uf sariahies whose values
evolve over Lime. A state is a single snapshot in which etch variable posse "ses one

value. Within qualitative physics, there are scverz dtlTn..rent ways of formulating

state information. One idea Ide Kleer. I t)791 is to combine qualitative state

variables with symbolic descriptions. For e\antple, the state of Figure 19.1(a)
might be represented as (BALL-I. IN-AIR, DOWN). lii order to predict the
behavior of devices. de Klcer and Brown 119841 represent a state as a network of

connected components. Forhirs F i 9841 presents a state organization centered on

processes and their influences.

19.1.2 Reasoning with Qualitative Information

No matter how state.s are rcpresente(i, we need some way to reason about the informa-

tion contained in lbem .s inmon reasoning method it, qualitative phyics is called

quail lame simstiadnht 
(Kurpers. 19861. The idea is to oosiruct a sequence of discrete

episodes' that )ccur as qualitative sanables change values. Slates aie linked to other

srzt;es h 4ualitatt vc rult's Some rules are '.cry general. For example, one simulation
'tile - thci vat iahle reach closer nlirrs before reachtn further ones. atiI another

rule slates that chanrn' u-orn one value to aintiille, ousumc:, some finite affl000t Ill
time Other rules such as the rules governing the motion of obiccis throush the ,sir. ae

more specific
!n systems that contain more than one ohiect, rules must . ip)Iy to all t thject ennui

t.nl s For example, consider an electrical device with many components. Because

t*com ,n	 t:ponenls are connected. the y lluflcC ou another The çnnsuraunl sarisfaCtue'i

lit oaique (Chapters 3 and 1 4 .- is op t: 	 w ay Nt propagating a change in

ccmponient to other nearby components.
Since combining qualitative values can lead to ambiguity, a qual i tative simulation

muSt sometimes split into two or more possible paths. A network of all possible statc

arid transitions for a qualitative system is called an eflL'usionnlen(. Figure 19.2 shows

an cnvisioliulieflt of the bouncing ball system of Figure 19.1(0) This network allows
a computer in reason about the behavior of the ball ss ithout recourse to numerical
simulation. There are often many paths through an cnvisionment. Each path is ialled a

Ii isnrr.
Envisionmeflt\ are useful in a number of applications. Most importantly, envision-

ments provide explanations for physical systems. and those explanations can he used to
predict future behavior. In addition, if a system is an artificial one, such as a mechanical
device, envisionmetitS can be used to diagnose problems that occur when components
fail to behave correctly. Envisionments can also be used to represent and/or repair mac
curate mental models that people may have. For more information about envisuonrnefltx

and qualitative simulation, see Weld and de Klecr 119881.
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ball-I I in 	 I down

ball-1 I oti gFt-uriLl I down

ball-I I on ground I	 rest I	 I ball-] I in air I up

Figure I9.2 An Envisioismenl

In order to write programs that automatically construct envisionments, we must
represent qualitative knowledge about the behavior of particular kinds of processes,
substances, spaces. devices, and so on. In the next section, we look at how to codily
some of this knowledge.

19.2 Commonsense Ontologies

A computer program that inleitets ith the real world ni'.ist be abic to reason about
things like time, space, and materials. AN fundamental and common sell s!ca! as these

concepts may be, modeling them rums out to present sonic thorny problems.

19.2.1 Time

While ph ysicists and philosophers still debate the true nature of tinle, we all manage to
get by oil fiw basic commonsense notions. These notions help us to decide when to
nhtiate actions, how to rcaon about others' actions, and how to dctciinine rclutionships
between events. For instance, if we know that the Franco-Prussian War preccdcd World
War I and that the Battle of Verdun occurred durin g World War I, then we can easily
inter that the Battle of Verdun must time occurred sometime after the t-raneo-Pnt'.sian
War. A commonensc theory of time must account for reasoning of this kind.

The most basic notion of time is that it is occupied by events. These events occur
during intervals, coIttilwoIis spaces of time. What kinds of things might we want to say
about an interval? An interval has a slatting point and an ending point, and a duration
defined by these points. Intervals can be related to other intet yala, as we saw in the last

paragraph. It turns out that there are exactl y thirteen way in shich two non-empty time
intervals can relate to one another. Figure 19.3 shows these relationships. As is clear
from the figure, there axe actually onl y seven distinct relationships, the relationship of
equality plus six other relationships that have their own Inverses.

Now we can state iu lcy for drawing inferences about time intervals. For exampie.
common sense tells us that the IS-BEFORE relation is transitive. That is, if event o
occurred before event ti and if event h occurred before event r. then event a must have
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.-J
I	 j.

It	 /

/ If

/

I IS-BEFORE

I MEETS 

OVERLAPS 

i STARTSJ

i IS-DURINGj

ENDS)

I IS- AFTER 3

: IS-MET-BY,

I IS -OVER LAPPED-Dy J

I IS-STAR FED-BY1

CONTAINS)

I IS-ENDED-BY

/ EQUALS 

J

Figure 19.3: Thirteen Possible Relationships between Two Time Intervals

occurred before event e% how many such axioms will we need before we capture all of
our basic cummonsense notions of time? We can greatly simplify matters if we define
some interval relationships in terms of other more basic ones. In fact, we can reduce all
the relations in Figure 19.3 to the single relation MFFTS. Here is the definition of the
wlatiori IS-BEFORE:

i IS-BEFOREJ	 : (I MEETS k) (A- MEETS))

in other words, ifilS-BEFORE), then there r.lust be some kin between that MEETS
both i and j. When the rest of the relations are defined similarly. MEETS becomes the
only primitive relation, and we can write all c.iir commonsense axioms in terms of it.
Our first axiom states that points where intervals MEET are unique:

,.j: (JL : (i MEETS A) A If MEETS A)) —*
(VI: i:i MEETS!) - JMEETS T)

In other words, I and j cannot MEET A at different points in time, so every event
has a unique starling linie. We can write a similar axiom to state that every event has a
unique ending time. Next, we state that given two places where intervals meet, exactly
one of the following three conditions must hold: the places are the same, the first place
precedes the second, or the second precedes the first.2

'Inthisfunpul.
(p A q A —r) V (-'p A —q A '.
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Vi, i,k.I: (i MEETS ,) A (A MEETS 1) -
(i MEETS I)
3m: (t MEETS rn) cm MEETS 1;
3m (/c MEETS rn) Aim MEEl'Sj)

There are two ionic .-i.sir.ii'. One states that their are always inii'rvals sun iiuinliiig
any given interval. This adorfl turns Out to be useful, although it prohthitsany reasoning
about infinite time interval,.

Vi 3j.(	 i MEETS ii '•. I' MLFrs kc

Finatly, we can state that for any two intervals that MEET, there exists a continuous
interval that is the union of the two:

V;./: (,MEETSj)-
:ci,b,(i 4-j)

co MEETS il P lj MEETS h) A
(0 MFETS ii +j)) ((, -t-J; MEETS h)

These axioms encode a rich commonsence theory of time. They allow us to derive
many facts, such as the trant.inivity of the IS-BEFORE relation. Suppose we know that
o IS BEFORE hand that b IS BEFORE c. B y the definition of IS-BEFORE. there must

be some interval J that lies between o and h,i.e., q MEETS J and d MEETS h. By the

union axiom, we can deduce the existence of an interval (/ -r hi such that there is an

n that MEETS hi + l;t and a that IS- MET-BY (LI +'h). By the uni q ueness of starting

points, we can conclude That a ako meets W+ h) Since It IS-BEFOR F r, tht'uc' must be

.in e between [hem. We can now construct another union interval fo + h + e, which we

can prove MEETS  and IS-MET-BY o. Thenefore a is BEFORE
Ibis may seem like a roundabout wa y of doing things, and ills There is nothing oil

he axioms themselves that dictates how they should be used i n real pro grams In tam

efficient implementations represent all thirteen temporal relations explicitly. makin g use
precompiled tables that record how the wiationsran iniciact. Constraint satislaclion is

a nscful technique Iorrnaking inferences about these relations I KaUIL. 10561 The logical
statements above are just a concise way of writing down one particular comnlonseflse
theory of time.

19.2.2 Space

In this book, we have often used examples from the blocks world. Primitives in this
world ittclude block tiaomcs. actions like PICKUP anti S [ACK and predicate' lik
()Nit. s). These primitives constitute a useful ahstraciion. but event tall y ste olliq break

them down. If we want it reSi robot to achieve ON ( . t, vi. then that robot had better kruost
what ON realty means, where i and rare located, how big tht' are how the are hapeo,
how to align on top of v so ttit .t .son t tall oft, and u forth These requurenuenh
become more apparent if we want in issuc cnmmmmds Luke "place Nock .i near block s'
or "lean block .r-up against hiork v' Consrnor,sensc notions of space are crittca] t
living  iii the real wu ir il
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Objects have spatial extent, while events have temporal extent. We might therefore
try to expand our commonsense theory of time into a cnntinOflScilSc theory of space.

Because space i s three-dimensional. There are far more than thirteen possible spatial
relationships between two objects. For instance, consider one block perfecily aligned
on top of another. The objects are EQUAL in the length and width dimensions, white
they MEET in the height dimension. If the top block is smaller than the bottom one but
still centered on top of it, then they still MEET in the height dimension, but we must use
the spatial equivalent of IS-DURING to describe the length and width rclation.ships. The
main pioblem with this approach is that it generates a vast number of relattnts (namely

2197). litany of which are not very commonsensical. Moreover, a number of

.nterestiflg spatial tetations, such as "x curves around y.' are not included. So we must

nsider another approach.
In our discussion of qualitative physics, we saw how to build abstract models by

transforming real-valued variables into discrete quantity spaces. We can also view
objects and spaces at various levels of abstraction For instance, we can view a three-
diritensitinal piece of paper as a two dimensional sheet. similarly, we can view a three-
dimensional highway as a one-dimensional curve. Hobbs 119851 proposed one very
general mechanism for creating and maritpul ating abstract models. With this ruieclianism,
we start out with a full-blown theory of the world, and then we construct a simpler. more
abstract model by extracting a set of ,elevwit properties. We then group objects into
classes whose members are indistinguishable from each other as tar as their relevant
properties go. For example. as we drive along a highway, our major relevant property

mi ght be DISTANCE-TO-GOAL. This property effectively reduces the bits of concrete
in the three-dimensional highway into a one-dimensional curve, where each point on
the curve has a unique DISTANCE-TO-GOAL value. In a similar fashion, we can map
teal Time intervals onto discrete time steps. spatial coordinates onto a rwo.diniensicioal
grid, and so on. Choosing a set of relevant properties amounts to viewing the world at a
particular level of granularity. Since different granularitics are systematically related to
each other, we can reason in a simplified model with iclative assurance that our actions
.e i hc i'tplementable in the real world.

The idea of granularity can be used to build a commonsense model of space

Kautz, 19851. The basic idea is to define relations over spaces. The first relation
is INSIDE(.v, y_ q). where andare spaces occupied by particular objects and g is the

level of granularity at which those objects are viewed. For example. watci is lNSlDI a
1s., ii the three-dimensional space taketi up by the water is cortiplciely contained wiihin

Tile three-dimeri,ional space taken up by the glass If we view .i highway as a three-
dinicnsiiinal slab of concrete. then a car driving along the highway would he considered
ADJACENT to the highway. but not INSIDE of it. i-{awever, if some granularity g views
the highway as a .me-dimensional curve, then the relation INSIDE(Cnr. Hagha'av. )

ltotls for as long as the ear stays on the road. l'nn. is because the car and its position on
he road are indistinguishable at that level of granularity'.

We can now define a number of useful ptupe.rties for curves, lines, surfaces, planes.
and volumes. For example. here is the definition of a terminal point p of a curve c:
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Figure 19.4: Two Ribbons (vi and )'2) and Two Curves (-x i and .t7

TERMINAL(p ri
1NSIDEV. ) A
Vc;	 1NSlD11 u) A INSIDP(c2 e)

A INS1DEIp. C1) A INSIDE(P. (2)

- INSLDE(c ('2) V INSIDEIr. UO

In other words. ji IsalERMINAI. Oil if. wlicnevet two subcurves of  both include

p one must be a suhcurvc 01 tie other. We can similarl y dctiite cLJrst Sep 1lIVfl is. tduiiiig

curves. loops, and forks. Another useful class to define is that 0 a RIBBON:

RJIBON(ohjecf. side 1 . side,)

A ribbon is essentially a curve viewed at a Loarser lcvl Oi granularity, resulting

In a iwodnietisional ribbonlike shape. Our world coniain man) objects that are
usefully viewed as ribbons. e.g.. rivers and bridges (Figure 19.4). We can define several
properties of curves as they relate to ribbons. For example.

AI.ONG(.r,v)	 CURVE(x) 1' RIBBON( v....c) I.

V:: INSIDE(: vt - ADJACENT(:. v)

ACROSSC. yl	 CURVE() A RIBRON(v. s. ) A

PF.RPEND1CVLAR((. AXIS(' .s . A

ADJACENT(  0 . ADJACENT(.. s) A

ADJACENT(is')

These definitions assume that we have defined the terms PERPENDICULAR. AXIS.
and ADJACENT. and that we have supplied the commonsense axiom thai an ihjl . 1 is

.A DJACENT to an object v if any part of i is ADJACENT it.) v.

A robot could use the Al ONG iclation to plot a course down the river's edge. It
could sinila:l use the ACROSS relaiion o navigate to the Ether side of the nver

Unfortunately, the ACROSS relatino is not crough, as the robot might try to cross the
river without using the bridge. The robot is still mi

ssing one tact: You can't kA u

'"ater. 1 hat' omrnon sCflSC
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19.2.3 Materials

Why can't you walk on water? What happen s if- you turn a glass of water ipsidc down
What happens when you pour water into the soil of a potted plant'!

Liquids present a particularly inteicsiiiig and challenging domain to fonnalie.
Hayes 119951 presented one attempt to describe them. Before we can write down
any properties tit liquids, we must decide what kinds of objects those properties will
:lescribe. In the last section. we defined spatial relations in terms of the spaces occupied
by nhjeci, not in tCrrns of the objects themselves. It is particularly useful to take this
point of stew, with liquids, siiice liquia "oh cci" can be split and merged 'o eact
1or example, ii we irsnsider R i is or to be a piece of liquid, then what happens to the
river when the !iquid flews out iiii.1 the occart? Instead of continually changing oui
characterization oi the river, it is more convenient to view the river as a fixed spice
occupied h' writer.

Containcr, pa all Iniportani role in the world of liquids Since we do not want n
iefer to liquid objects. we must have another way of stating how much liquid is in a
container. We can define a CAPACITY function to hound the amount of liquid I that a
space scan hold. The space is FULL when the AMOUNT equals the CAPACITY.

CAPACITY(s) > AMOUNT(l, ,$) > none
Ft(l.i.(s)	 AMOIJNT(I. c) CAPACITY(s)

We can also define an AMOUNT function:

AMO1 NT Rater. (lusc) > none

This st.rtc!onl iaeaw,, "There is water in the glass." Here. 14i,crrefersiotlie generic
concept of wat(r and Glass refers to the space enclosed ha particular glass.

Spaces have a number of other properties hesidcs CAPACITY and FULL. Recall
;h,ii spaces an he linked to one another b y iii;' INSIDE relation In add,iksir. a space
.;lit 	 /ir' in ii it. A space is free if' it is not wholly contaned inside a solid object. In

ii Fr. space is bounded on all sides by a set of two-dimnesional regions. called
Imes. Ii :t Ice face (one not part of a solid object) separafes t5 0 free spaces. Iris called
a Jim iol. I iquids can flow from uric free space to another via a portal. Two objects are
said I;' be	 if the' share a common face To suinmiru,e:

FIR EFI%f '	 . SOLlD(;)AlNSlDE(s a)
[is 'amine 2-D bounding region of

PORTAI.lJ(	 is 1 .s S FACF(1. c, A FACEtJI Sf A

FREE(s i ) A FRFFA,s	 FRI1E(fl
JOINEUP', t , - . 1) FACEJ. (>;) A FACEJ o)

We can now define a closed container as a hollow object with no portals:

CLOSED-CONTAINER(c)
(2 : lNSll)E(.c. ) 1'. FREE(0) A

1-3s1 INSIDE(s. ii A JOINEDI c.f) A -PORTAL(f'q

An open container hs (at least) one portal mt die top:
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OPEN-C'ONTAINER(')
INSIDE(.s,) t I'RE[i(s)l A

(Vs,f: INSIDE(.s. r) A JOTNF[)(s. ft

f= TOP(i) A =PORTAL(/))

Liquids make things wet. la model Wetness, we will find it useful to imagine a solid
object as being surrounded by a very thin free space. This space is broken sip into it

of thin outer spaces corresponding to the various faces of the object. ()hiccts that touch
share these outer spaces.

SURROUNDol thin space surounding object o
IREE(SURROUNDO))

OUTERd, (,,)	 : EACE(J. 0) and ti is the thin free space just outside)

TOUCHING(oi 02)	 d. IJ1JTERId, of  A OL'TER(d. 0')

'cd. n : OUTER(d. o) - INSIDE(d. SURROIJND(u))

	

a,o: FREE()A INSIDE(P. )	 INSIDE(SURROUND(o).$)

The last two facts state that SURROUND(o) contains all its outer spaces, and that any
'rger, free space containing object o also contains SURROUND(o). Now we can define
ketncss as a relation between art outer space d and some generic liquid I:

WET-BY(d.I) CAPACITY(d) > AMOUNT(/,d) > flOPii

IS-WETo	 *1,1 OUTER(d.o) WET-BY(d,l)
IS WET-ALL-OVER(o) 	 : O1TER(do) —> 31: WET-BY(d./)

Suppose our iokii encounters a ronia with sic inches of water on the floor. What
%k i ll happen if the robot touches the floor? By the definition of TOUCHING, we have.

OUTER(d 1 . Robot) A OUTER(/ 1 Ffupi)

Since the floor only has one face, d, we can conclude:

OUTER(d. Robot) A OUTER(J, Floor)

Combining the first clause with the fact WET-BY(d, Wier) gives us IS-WET(Rohot).
In other words, the robot will get wet. Recall that at the end of the last section, our robot
was about to try crossing a river without uung a bridge. It might find this fact useful:

INSIDE(,s 1 ,s ' ) A FRfEs ..) A FULL(s:. /) ---i, FL)LL(s .1)

It is straightforward to show that if the robot is submerged, it will be wet .11
ever. Predicting that the rob,t "ill become submerged in the first place requires collie
envisionment. We need a rule that says one dense solid object must be supponed by
another solid object, or else it will tend to move downw.t:d. One pioperty of liquids
that theN do not support dense solid objects.

We also need gencral rules describing how liquid.' themselves behave over time.

	

".nsider all the possible fury' 'ha: - 	 ;; 
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distinguishes between "lazy. soil' liquids, lazy, moving" liquids and 'energetic, mo v -

ing" liquids. Energetic: moving liquids are liquudsbcirig propelled by some active force.
for example, oil being pumped through a pipeline. Lazy liquids are liquids in their nat

ural state. Sometimes they are mo"ing, as in river waLe arid tarn, and sometimes they

are still. Liquids in an y of these forms can also be either hulk or divided. Most of the
time we deal with bulk liquid, but sometimes we cnco.ntcr mist, dew, or lain. Finally,
liquids can he either unupporicd, on a surfac ,% or in a container.

What happens In these types ot liquids? Figure 19.5 shows, ive envisionments for
lazy. hulk liquids. A containnwnr eveut can become a falling event if the container tips.
The falling event becomes a wetting eveat ar'd then a spradnng uric. Depending on
where the spreading takes place. further falhng or flowing events may ensue. When
all the liquid has left the container, the prcading will top, and sometime afterward. a

drying event will begin.
Other materials behave differently. Solids can be rigid or flexible. A string can he

used to pull an ob1ect but not to push it. Solids can also be adiculate (like sand. in
which case they share many of the same behaviors as liquids. Cases are also similar to
liquids. Also, some solids soak up liquid (sponges, dirt), while others are watertight.

We can see that commonsense knowledge representation ha: a s:rongly taxonomic
flavor. A lot of work has tweri done in these and other areas, lint much more also remains

to be worked out.

19.3 Memory Organization

Memory is central to commonsenIs behavior. Hum, ni meniror contains an immense
amount of knowledge about the world. So far, we base oniN discussed a tin y traction
of that knowledge. Memory is anso the basis for learning. A systeni that cannot learn

cannot, in practice. possess common sense.
A complete theory of human memory has riot yet been rhscovered, but sse do havL

a number of facts at our disposal. Somc ot these lads come from neurobiology (e.g..
lKandel and Schwartz. 195. whileo t her, are psychological in nature. Computer
models of neural memory (such as the Huplield network of Chapter 18 i ace neterestrng.

but they do not serve as theories about hero merinjr s . ised in, cervday. commonsense
reasoning. Psychology and Al seek LO address i.ese Issilt's.

Psychological studies suggest several d isti nctioris inhuman memory. One distinction
is heweeri short-term memory (SIN) and long-term memory (LTM). We know that a
person can only hold a few items at a time in SIN. but t he capacity of ITM is very large.
'JFM storage is also fairly permancnl The production system is one computer model of
the STM LTM structure. Perceptual infumalion is stored directly in S'l'M. also called
working memory. Production rules, stored in 1.TM, match themselves against items in

STM. Productions lire, modify STM. and repeat.
LTM is often divided into episodicmemori , and enw urn menrory. Episi idic memory

contains information about past personal experiences, usually stored from an autobio-
graphical point of view. For example, a college graduation. a wedding, or a concert may
all form episodic memories. Semantic memory. on the other hand, contains facts like
"Birds fly." These facts are no longer connected with personal experiences.

Work on modeling semantic memory began with Quillian 119691. This model soon
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developed loin the idea 01 sctnaffljc networks and from there into (lie other lotand-
lillet structures we saw in Chapicis 9 and M. Semantic memory is especially useful iii
programs that understand natural language.

Models for episodic memory grew out of reseatch on scripts. Recall that a script is
a stereotyped sequence of events, such as those involved in going to the dentist. One
obvious question to ask is: How are scripts acquired? Surely they are acquired through
personal experience. But a particular experience often includes details that we do not
wart to include in a script, for example, just because we once saw Thc New Yorker
magazine in a dentist's waiting room, that doesn't mean that The New Ycker should be
part or the dentist script Theproblem is that if a script contain' too mar , - details, it wilt
not be matched and retrieved correctly when new, sin iilar situations arise.

In general, it is difficult to know which script to retrieve (as we discussed in Sec-
tion 4.3.5). One reason for this is that scripts are too monolithic. It is hard to do
any kind of partial mutching. It is also hard to modify 'a script. More recent work
reduces scripts to individual o'enrv, sshich can be shared across multiple structures.
Stereotypical sequences of scenes arc strung together into memory organization packets
(MOP,,) ISchank, 19771. Usually, three distin.i MOPs encode knowledge about an
event sequence One MOP represents tltt 'Imysical sequence of events, such as enleming
a dentist's office, sitting in the waifing room, reading a magazine. silting irt the dentist's
chair, etc. Another MOP represents the set of social events that take plae*. These are
events that involve personalinteraction!;. A third MOP revolves around the goals oh the
person in the particmilarenisode. Any of these MOPs maybe important forunderstanding
new situations.

MOPs organize scenes. and they themselves are further organized n10 higher-level
MOPs. For example. the MOP for visiting the office of a professional ma y contain i
sequence of abstract general scenes, such as talk un Lu an assistant, waiting. md tweting.

High-level MOP,, contain no actual iremorics,' where do they come from?
New MOPs are created u pon the failure of expectations When we use scripts for

story understanding. we are able to locate interesting parts oh the aory b y noticing plces

where events do not s'ontorrn to the scripts expectations. In a MOP-based system, if
an cxpetamioii is m'qJcaidl.' violated, then the MOP is generalized or split. Eventually,
episodic memories can fade away, leaving only a set oh generalized MOPs. fhesc MOPS
look something like scripts. except that the y share scenes with uric ar,uithci'.

Let's look at an example. The first time you go to t he dcn'mst, you lOust determine

how things work from scratch since you have no prior experien ce. In doing so, you
store detailed accounts of each scene and strirw :hem together into a MOP. The next
time you visit the dentist, that MOP provides certain expectations, which are mostly
met. You are able to deal with the siwation easily and make inferences that you could
not make the first time. If any expectation fails, this provides grounds for modifying
the MOP Now, suppose you later visit a doctor's office. As you begin to store episodic
scenes, you notice imilariiies between these scenes and scenes from the dentist MOP
Such similarities provide a basis for using the dentist MOP to generate expectations.
Multiple trips to the doctor will result in a doctor MOP that is slightly different from
the dentist MOP. Later experiences with visiting lawyers and government officials will
result in other MOPS. Ultimately, the structures shared by all of these MOPs will cause
a generalized MOP to appear. Whenever you -visit a professional's office in the future,
you can use the generalized MOP to provide expectations.
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With MOPs. memory is both a toustructi v e and recurIsEiu..UVe poai.csr; it is COfl-

'ititictivO because new experiences create new memory structures. it is reconstructive
bcr.ausc even ilihe details of a particular episode are lost, the MOP provides information
about what was likely to have happened. The ahi!ity to do ihis kind of reconstruction is

X1 important feature of human memory.
l'heie are several MOP-based computes programs. CYRUS (Kotodner. 19841 is a

program that contains episodes taken from the life ol a :articular individual. C's RUS
cati answer questions that require significant amounts of memory reconstru.tioi'. The
IPP prograni ll.cbo wit?, 19831 accepts stories about terrorist attacks and stores them Hi

an episodic memory As it mJiiLr iiiiiiaciiies in the stories. it creates general :Cflio,\
structures. These structu"5 imprve its .tb.l.ty to unilersiand. MOPTRANS Lytinen.
l984 uses a MOP-based meiflOt) to understand sentences in one lairguage and tiatislate

them into another

19.4 Case-Based Reasoning

We nox turn in the role of rnieIfloiy in gerieial problem solving. Most Al programs
solve problems by reasoning from first principles. They can explain their reasoning
n-, reporting the string of deductions that led from the input data to the conclusion
With human experts, however, we often observe a different type of explanation- An
expert encountering a new problem is usually reminded of similar cases seen in the
past remembering the results of those cases and perhaps the reasoning behind those
results New problems are solved by analogy with old ones and the explanations art
often couched in terms of prior experiences. Medical expertise, for example. seems t
follow this pattern, and legal education is also case-oriented-

Computer systems that solve new problems by analogy with old ones are often called

ase-haseci ,era.somii (CBR) systems. A CBR system draws its power from a large case

ibrar,, rather than from a set of first principles. In order to be successful. CBR systems

ni Ist answer the following questions:

I How are cases organized in memory?

2. How are relevant cases retrieved from memory!

3. llow can previous cases be adapted to new problems!

4. How are cases originally acquired?

The memory srucIures we discussed in the previous section are clearly relevant to
CBR. Those structures were used primarily in text understanding applications, however.
Now we look at general memory-based  problem solving.

To use a memory effectively, we must have a rich indexing mechanism. When we
are presented with a problem, we should be reminded of ielcvant past experiences, but
not be inundated with a lot of useless memories l'he obvious idea is to index past
episodes by the features present in them. For example, any experience having to do

with a car would be filed under Car, as well as under other indices. But we must have

some scheme for distinguishing important indices from unimportant ones. Otherwise,
everything will remind us of everything else, and we will be unable to focus on memories
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that will best help us to solve our current problem. But important features are not always
,he most obvious ones. Here is an example from Schank 119771. called the "steak and
haircut" story:

X described how his wife would never cook his steak as rare as he liked it.
When X told this to Y. Y was reminded of a time, 30 years earlier, when
he cried 10 get his hair cut in England and the barber just wouldn't cut it as

_,F'oft as he wanted it.

y, the indices Steak, Wife, and Rare are insufficient to remind Y of the harbcnzip
efiisode We need more general indices, such as Pri,id- .Service, Refusal. and Ettre,ne,
Dyer 119831 also takes up this theme. embodied in a program that deduces adages and
morals from narratives.

Some features are only important in certain contexts. For example, suppose it is
cloudy. If your problem is in plan a picnic, you might ssant to retrieve other episodes
involving cloudy days. But if your problem is to write a computer program. then the (act
that it is cloudy is prolably incidental. Because important features vaiy from domain
to domain, a general CBR system must be able to learn a proper set of indices from
experience. Both the inductive and explanation-based learning techniques described in
Chapter 17 have been used for this task.

Recall that in our discussion of product ion systems, we talked about how rules
and stares could he organized into a RFTE network for efficient matching We also
nlLs(:ueect matching frames and scripts in Section 4.3.5 Something similar is i.ouiie41
for CHR, since the number of cases can be very large. The data structure for the -asc
itself is also important. A case is usually stored as a monolithic structure, although in
some variations, cases can be stored piecemeal. The former strategy is effluent when
it is possible to obtain almost-pei-tect matches; the latter strategy is better in complex
problem-solving domains.

The result of the retrieval process is usually set of The next step is to take
the best case and adapt i tto the current situation. One method forchoosing the best case
is the use of preference heuristics IKolodner, 1991. Here are some examples:

• Goal- Directed Preference—Prefer cases that involve the same goaJ as the current
Situation.

• Salient-Feature Preference—Prefer cases that match the most important features,
or those that match the largest number of important features.

• Specificity Preference Prefer cases that match features exactly over those that
match features generally.

• Frequence Preference—Prefer frequently matched eases

• Recency Preference—Prefer recently marched cases.

• Ease-of-Adaptation Preference—Prefer cases with features that are easily adapted
to new situations.
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to be adapted. At the simplest level, this iiisolvCS mapgiii new object'. onto old one

te.g., Siea onto Hair, arid Rw' onto Short). Wheo old rises represent cntir,

solving episodes, adaptation can he quite complex. CHEF IFlaiiiclln ' 1 hhl is art

example of a case-based planner, ,I 
whose cases are actually mpletr' pian

for solviiig problems in the doinaiti of cooking. CHEFs case !ibrar '. augitiott'd wit'
a pIartrncidthc Ion lihiary indexesi by plan Ispes and change types CHI.L irst looks
at the retrieved plan and sees il ii satkics thc current goals. If an '.ol is unsatisfied.
then the :lan-modiliCaIiOfl librars' k uiisiiltrd. The library may siget a list of steps

to he added to the plan, deleted tiom the plan. 	 5 uhtltuicd for e,is[ing steps. 	 his

modification process is not	 iranteed 10 suced, howevei, and o CLIFF includes

plan repair module that uses	
main knowledge to explain why the new plan fails, if it

does Otice a complete. working plan is created, it is execui .'d and then slot ed iii the

case library lot futnir ieference.
We have said nothing yet about how cases arc acquired originally. In fact, 111055

('BR .-,vsterns draw on a small library of vases that are entered b y hand. Of course, w.

'Ill eventually be able to transform large bodies of on-line texts, such as legal JsC.

into large case libraries. Another approach is to bootstrap giatlually from rule base

sirch into CBR The idea is 	
uto tart solving problems with a heuristic search engine

Iach Lime a problem is solved, it is automatically stored ill case library. As the librar

grows. it beconies possible to solve some new problems b y analogy with old ones. 'Pit'

idea is 
very similar to soniC of the learning techniques we saw in Section 17.4—th

acquisition of search control rules. for example. 'rhis brings up the issue of whether it
is better to store whole cases in memory or to store smaller bits of control knowledge
instead. There are a number of trade-offs involsed First is the case of modification
Central to case-based reasoning is the idea that stored eases can be adapLed and modified.
Search control rules are more procedural. Once learned, they are hard to rniidtfy. If it

search control nile starts to perform badly. it is usually (Meted in toto. Another trade-off

!nvolves indexing S,arcli control rules are full y indexed: they apply in exactly the

5ituatiofls to which they are relevant. ('aces, on the other hand, are usually indexed
heuristically, as sse saw above. Finally, search control rules are explicitly generalii.ed at
storage time, in ('BR, generalization occurs over time as a iiy-product of the retrieval
and adaptation process. Aggressive generalization makes it easy to solve new problems
quickly, hill in less complete domains, where proper gererahizatiot.'.

 are unknown. an

aggressive sirate!y can be inefficient and cvCfl incorrect.

19.	 Exercises
I Consider a toy balloon hooked up to a htttlt' of conipiessed air. As the .nr

is released, the balloon expands. Using qualitative measures, list the quantity

Spaces of variables and rate s of change in this system. ConstrUu an envisionment

for the system. and write down one possible history.

2. Express alt the temporal rclatiot' it , Fig-c- i9.. ii' terms of the single relatTh

MEETS.

3. Suppose you know the following lads:
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• Th Franco-Prussian War took place before World War I.

• The Battle of Verdun look place during World War 1.

Convert these facts into logical statements in tecnis of 1hr MEFTS relaion. Use
the commonsense axilmis ofriimie givuti in Section 19.2,1 to show that the Franc
Prussjaim War must h;ivu occurred before the Battle of Verdun.

4. Using the axioms in Section 19.2.2. shim that a robot submerged undcr ssatcr wilt
be wet all over.

5. Case-based rea.orilng shares many ot the same ,dea\ of trarmmirig irk aiiaJag.
(Suction 17,8j. F3neflv discuss boss trarsf,niiotin t I and derivational analogy
could apply in case based reasoning systems.

6. Forgetting is one aspect of human memor y that is not astrally modeled in computer
s ystems, tinder whai circumstances mi g ht a ease- based reasoning syslern benefit
from the ability to lorgel-



Chapter 20

Expert Systems

Expert systems solve problems such as the ones in Figure I .1 itha t are nortrait y solved

by human 'experts-' lb solve expert-level problems. expert systems need aCCCSS to a

substantial domain knowledge base, which must he built as efl1cieriil as possible. They
also need to exploit one or more reasotting mechanisms to apply then kiiiwledge to

the probleTus they are given. Then they reed it mechanism for espIainiri what they

have done to the users who iely on them. One way to look at expert system'- is that

they represent applied Al in it very broad sense. They tend to tag several scars behnisl
research advances but because they are tackling harder and harder problems. they will
eventually be able to make use of all of the kinds of results that we have described
throughout this book So this chapter is in some ways it teview of much of what we

have already discussed.
The problems that expert systems deal with are highly diverse. There are some

general issues that a, se at ross these varying domains- But it also turns out that there
arc powerful techniques that cart he defined for specihc classes of problems. Recall thai
in Section 2 3.S we tntroduced the notion of problem classification and We (lescilbed

some classes into which problenits can he orgaiiicd. Throughout this chapter we have
')ccasiorb to return to this idea, and we see how some key problem charactcristic" play

in ulpol tant rote in- the design of problem-solvin systems. For example. it

now clear that tools that are developed to support one classification or diagnosis task
are often useful for another, while different tools are ucttil for solving various kinds of

ie',i p n 1545

20.1 Representing and Using Duniain Knowledge

Fxpert sy stems are cor.plcx Al programs. Altilost all the techniques liai we desc'nihco

in Parts ' [ and II have been exploited iii at least one expert system Howev -. the

most widely used way of representing domain krrowedge in expert systents i' ds a

set of production rules, which are often coupled with a frame system thai defines the
objects that occur in the rules. In Section 82. we saw (Inc example of an expert sstrn
rule, which was taken from the MYCIN sy stem Let's look at a few additional examples

drawn from some other representative expert systems. All the iulcs we show are English

47
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versions of the actual rules that the systems use. Differences among these rules illustrate
some of the important differences in the way'i That expert systems operate.

RI [McDermott, 1982; McDermott, 19841 (some(imes also called XCObJ) is a
program that configures DEC VAX systems Its rules look1rk.this:

It: the cost cccrcrit active context is thztrihstinci
masabus devices, and

there is a single-port dtsk drive that has pot been
assigned to a iassbus, and

	

there dr	 r.....i&sssgrud dual-port disk drives, and
the number of devices That 'ach rnasshu should
support. is known and

there is a rnassbus that has been assigned at leas:
one disk drive and that should support addiLional
disk drives,

and the type of cable needed tç connect the disk drive
to the previous device on the massbus is known

then: dasigri the disk drive to the rnassbus.

Notice that RI 's rules, unlike MYCIN 's, contain no numeric measures of certainty.
In the task domain with which RI deals, it is possible to state exactly the correct thing
to he done in each particular set of circumstances (although it may require a relativel>
complex set of antecedents in do so). Due ieasou for 

t hi s is that there exists a good
deal of human cxp&llise in this area Another is that since RI is dtitnga design tack (in
contrast to the diagnosis task performed by MYCIN), it is not necessary to consider all
possible alternatives; one good one is enough. As a result, probabilistic information is
not necessary in RI.

PROSPECTOR IDuda et al. 1979; Hurt ci al., 1971 is a program that provides
advice on mineral exploration. Its rules took like this

If: rn,qnr. t fe or pyrite i': dhtseminaced or veirilet torm is
pie ue;It.

	

-1	 ths:e	 . is'.'crdbl s	 ma i	 urn .-uritl r exr ure

for the propyiitc stage.

In PROSPECTOR, each rule contains two confidence estimates. The first indicates
the extent to which the presence of the evidence described in the condition part of the
rule suggests the validity of the rules.conclusion, in the PROSPECTOR rule shown
above, the number 2 indicates that the çrescncc of the evidence is mildly cncouragin.
The second confidence estimate measures the extent to which the evidence is ncccssar
to the validity of the conilusion, or stated jiioiher way. the cstetii to which the lack of
the evidence indicates that [lie conc'ucion is not valid. in the example rule shown above.
the number -4 indicates that the absence of the evidence ts slrcngly discouraginc foi
the conclusion.

DESIGN ADVISOR (Sleek et a/., 1989J is a sytetii that critiques chip desi gns. Its
rules look like:

If: the sequer:l	 u	 JevPj cnulrr of ELENFNT ................:..
UNLESS the signal of ELEMENT is resett i

rh.':; critique for pour reetabily
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DEFHiT pool resetablitY of ELEMENT
1 1 le u: seqslefltia l level couflt ot ELEMENT greater than 2

by: ELENT is directly resetable

Thi. DESIGN ADVISOR gives advice to a chip designer. who can accept or reject

the advice If the advice is rejected. the systei., cart exploit a usttlicattoit-bat truth

maintenance system to revise its model of the circuit The first rule shown here says

that an element should be criticized for PO'-'r 
resetahility Its scLlucOti.il IcVcl count is

greater than two, unless its signal is currently believed to be rcsetbIe. ResetahilitY 
Is

a fairly common condition, so it is mentioned explicitly in this tirst rule. But there is

also it 
much less common condition, called direct resetability. The DESIGN ADVISOR

does not even bother to consider that condition unless it gets in trouble with its advice.
At that point, it can exploit the second of the rules shown above. Specifically, if thc
chip designer rejects a critique about resetability and if that critique was based on a hiph

level count, then the system
will attempt to discover (possibly by asking the dcsmgner

whether the element is directly resetable. If it is, then the original nile is defeated and

the conclusion withdrawn.

Reasoning with the Knowledge

As these example rules have shown, expert systems exploit many of the rcprcsentation
and reasoning niechanisniS that we have discussed. Because these programs are usually
written primarily as iulc-hased systems, forward chaining, backward chaining, or some
combination of the two, is usually used. For example, MYC1N used backward chaining

to discover what organisms were present; then it 
uscd forward chaining to reason from

the organisms to a treatmcnt regime. RI, on the othei hand, used forward chaining. As

the held of expert systems matures. more system s that exploit other kinds of reasoning

mechanisms are being developed. The DESIGN ADVISOR is tot example of such a
system; in addition to exploiting rules, it makes extensive use of a justification-based

truth maintenance system.

20.2 Expert System Shells

Initiall y
, each expert system that was built wascreated from sciatch, usually in LISP. nut,

after several systemits had been hoili this way, it became clear that these systems often had
a lot in common. in particular, since the systems were constructed as a Set of declarativc
representations (mostly rules) comnhimied with an interpreter for tLuse representation's. 

it

was possible to separate the interpreter from the doinainSPectfic knowledge and thus
to create a System that could be used to construct new expert systems 

bN addirtt nev.

knowledge corresponding to the new problem domain. The resulting interpreters are

called shi4h. 
One influential example of such a shell is l.MY('IN (tot Empty MYCIN)

IBuchanan and Shnrtliffe, 184, which was derived front MYCIN
There are now several commercially available shells that serve as the basis for many

of the expert systems currently being built. These shells provide much greater flexibility
in representing knowledge and in reasoning with it than MYC1N did. They typically
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support rules, frames, truth maintenance systems, and a variety of other reasoning
mechanisms.

Early expert system shells provided mechanisms for knowledge reprcscntation, rca-
soning. and explanation. Later, tools for knowledge acquisition were added, as we
see in Section 20.4. But ax experience with using these systems to solve real world
problems grew, it became clear that expert systerii shells needed to do something else
as well. They needed to make it easy to integrate expert systems with other kinds of
programs. Expert systems u,anhiot operate in a vacuum, any mole than Iticil liuntan
Counterparts can. They need access to Corporate databases, arid access to them needs to
be controlled just as it does for other systems. They are often embedded within larger
application programs that use primarily consentional programming techniques. So one
of the important features that a shell must provide is an easy-to-use interlace between
an expert system that is written with the shell and a larger, probably more conventional,
programming environment.

20.3 Explanation

In order for an expert system to be an effect i v e tool, people must be ahic to interact with
it easily. To facilitate this interaction. ihe expert system must have the following two
capabilities in addition to (lie ability to perform its underlying task:

Explain its reasoning. In many of the domains in which expert systems operate.
people will not accept results unless they have been convinced of the accuracy
of the reasoning process thu produced those results. This is pariictitirly true.
for example, in medicine, where a doctor must accept ultimate responsibility for
a diagnosis, even if that diagnosis was arrived at with considerable help from a
pro!rarn. Thus it is imporant that the reasoning process used in such programs
nirocced in understandable steps and that enough meta-knowledge (knowledge
about the reasoning process) be available so he explanations of those steps i,ni
be generated.

Acquire new kuinwiedge and modifications of old knowledge Since cxpcn s >' s
-tents derive their power from the richness of the knowledge bases they esploil, ii is

extremely important that those knowledge bases be as complete and as accurate as
possible. But often there exists no standard codification of that knowledge: rather
it exists onl y inside the heads of human experts. One way to get this knUwie4CC
into a program is through interaction with the human expert. Another wa y is t
have the program learn expert behavior from raw data.

TEIRESIAS IDavus. 1982: Davis, 14771 was thc first program to support explanation
and knowledge acquisition. TEIRESIAS served as a front-end for the MYCIN expert
system. A fragment of a TEIRES1AS-MYCIN conversation with a u%ei ia docinr is
shown ri Figure 20.1. The program has asked for a piece of information that it needs
in order to continue its reasoning. The doctor wants to know why the program wants
the information, and later asks how the program arrived at a .cmclusion that it claimed
it had reached.
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Is the patient's illners with ORGANISM-1 a )iospii-acqJrrPd

infection?
WHY

[i.e., WHY is it important to determine whether or not the

infection with ORGANISM-1 was acquirer) while the patient

was hospitalized?)

2.,) This will aid in determining the :ategory of

ORGANISM-1. it has already been established chat

2. I the gram stain of OPGANIiM-1 in qromnoq, and

E2.21 the nicrphology ci uRGANlSr4- 	 rcd, and

[2.31 this aerobicity of ORAN1SM- is facultative

Therefor', if

[2.41 the infection wiLh C)P.aAN1SM-1 was not acquired

while the parienl. was hospitalized, t.hert

:here is strongly suggestive evidence (.8) that the

.tc-gor' of ORGANISM-1 is enterobateraaceae

ALSO: there is weakly suggestive evidence 1.1) that

the Identity of ORGANISM-1 is pseudomcnae-acruqinossl

[Pu LEo 37)

HOW ['.

i.e., HOW was iL p stibIish pd that 1-he RerhiCity of

i)RGANISM-1 is facu1tatve?[

The following were used:
3.i RULE027 indicated there is strongly suqqeotive

evidence (.) that the aercbict.v of ORCAN]SH-

facuirative.

13.21 PJ 1 LE033 indicated there is weakly suggestive

Qv!denco (.2) that the aerobic:ty of O}SUANJSt'l-i

is not facul tat iva

Since this gave a cumulative CF of (.t) for fa:c)t it vw

the evidence indicates that the aerobicily :.,l ORGANISM-1

in facultative.

Figure 20.1: A Portion of a Dialogue with TEIRESIAS

— An important premise underlying fEIRESIASs approach to explanation is that the
behavior of a program can be cptained simply by referring to a trace of the program's
execution. There are wav% in which this assumption limits the kinds of explanations
that can be produced, hut it does minimize the overhead involved in gcneiaiiiig each
explanation. To understand how TETRF.SIAS generates cxplari.utons of MYCIN's
behavior, we need to know how that behavior is structured.

MYCIN attempts to solve its goal of recommending a therapy for a particular patient
by First finding the cause of the patient's illness. It uses its production rules to reason
backward from goals to clinical observations. ía solve the top-lesel diagnostic goal. it
Looks tor rules whose right sides suggest diseases. It then uses the left sides of those
rules (the preconditions) to set up subgoals whose success would enable the rules to
be invoked. These subgoals are again matched against rules, and their preconditions
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are used to set up additional subgoals. Whenever a pi-econaltlori describes a specific
piece of clinical evidence, MYCIN uses that evidence if it already has access to it.
Otherwise, it asks the user to provide the infumiaiion. In order that MYCIN's requests
for information will appear coherent to the user, the actual goals that MYCIN sets up
are often more general than they need be to satisfy the preconditions of an individual
ruk. For example, if a precondition specifies that the identity of an organism is X,
MYCftJ will set up the goal "infer identity." This approach also means that if another
rule mentions the organism's identity, no further work will be required, since the identity
will be known.

We can now return to the trace OfTEIRESIAS-MYCIN's behavior shown in Fig-
ore 20.1. The first question that the user asks is a "WHY" question, which is assumed
to mean "why do you need to know that?" Particularly for clinical tests that are either
expensive or dangerous, it is important for the doctor to be convinced that the infor-
mation is really needed before ordering the test. (Requests for sensitive or confidential
inforniatiori present similar difficulties.) Because MYCIN is reasoning backward, the
question can easily be answered by examining the goal tree. Doing so provides two
kinds of information:

What higher-level question might the s ystem be able to answer if it had the
requested piece of information? (In this case, it could help determine the category
of OR(ANJSM- 1.)

• What other information does the system already have that makes it think that the
requested piece of knowledge would help? (lii this ease. facts 1111 to [2.41.)

When TEIRESIAS provides the answer to the first of these questions, the user may
be satisfied or may watit to follow the reasoning process back even furthcr. The user
can do that by asking additii.ircil "WHY' qitesoohls

When TEIRESIAS pros ides the answer to the second of these questions and tells
ibm: user what it already believes, the user may wart to know the basis for those beliefs.
The user can ask this with a HOW  question, which TEIRESIAS will interpret as
Hiss d:d you know Uiai?" '1 his question ahc: can be .n:;s'.'eted by looking at the goal

tree and chaining backward from the stated fs't to the es iderice that allowed a rule that
dtcnniiieil tlit- fact ill lire. Thus we Sec lh:tt by reasoning backward from its top level
goal and by keeping track of the entire tree that it liaverses in the process. TEIRF.SIAS-
MYCIN can do a fairly good job of justifying Its reasoning to a Fiuntait user. 1- ui more
details of this process, as well as a discussion of some of irs limitations see Davis

1982 1.

The production system model is very general, and without some restrictions. j i
hard to support all the kinds of explanations that a human might want. If u.e focus ot, a
particular t ype of problem solving, we can ask more probing questions. For exampic.
SALT [.Marcus and McDermott, 19891 is a knowledge acquisition progiam ucd to buiki
expert systems that design artifacts through a propose-and-;t-m.se strategy. SALT is'
capable of answering questions like WHY-NOT ("wh) didn't you assign value .s to this
parameter'!") and WIIA'I' IF ("what would happen if you did?"). A human might ask
these questions in order to locate incorrect or missing knowledge in the system as
precursor to correcting it. We now turn to ways in which a pmrrsm such as SALT e't'
suppoil the t triicess of building and refining knowledge.
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20.4 Knowledge Acquisition

How arc expert 
systems hult? Typically, a knowledge engineer I niersiews a domair

expert to elucidate expert knowlCdg', which is then translated into rules. Alter the

initial system is built. it 
thust be iteratively refined until it approximates expert-level

perforTnanle. This prnces is expensive and in ie.COnSumiflg, so it is worthwhile to

look for more automatic ways of constructing expert knowledge bases. While no totally
automatic knowledge acquisition systems yet exist, there are ninny programs that intera'.
with domain experts to extract expert knowledge efficiently. These programs povide

. iippoft for the following activittes

• Entering knowledge

• Maintaining knowledge base consistency

• Ensuring knowledge base eompleteriCS

The most 
useful knowledge acquisition programs are those that are restricted to a

particular problem SOlFlflg paradigm, e.g. diagnosis or design. It is important to be

able to enumerate the roles that knowledge can play in the problem solving process.
For example, if the paradigm is diagnosis, then the program can structure its knowledge
base around siitptOinS, hypotheses, and causes. It can identify symptoms for which

the expert has not yet provided causes. Since ore sym
ptom may have multiple causes,

the program can ask for knowledge about how to decide when one hypothesis is better
than anothei. If we move to another type of problem solving, say designing artifacts.
then these acquisition strategies no longet apply, and we must look for other ways
of profitably interacting with an expert. We now examine two knowledge acquisition

systems in detail.Esheliiiafl, 19881 is a knowledge acquisition system for heuristic classItiCa-
MOLElion problems such as diagnosing diseases. In panicular, it is used in conjunction with

the cover-and differentiate 
prohlcmSOlViflg method. An expert system produced by

MOLE accepts input data comes up with a set of candidate explanations 
01 classifica-

jiOUS 
that cover (or explain) the data. then uses dfferentifltiflg knowledge to determine

which one is best. The process is iterative, stalcc explanation s must themselves he

j ustilled. until ultimate causes are ascertained.
MOLE interacts with a domain expe

rt to produce a k ii c iwlcdgc base that a systen'
m 

called MOLE-p (for MOLEPcrfOt'1tutce) uses to solve problems. The acquisition

proceeds through several steps:

1. Initial knowledge base coristrUCt0n. MOLE asks the expert to list common
symptoms or complaints that might require diagnosis. For each symptom. MOLE
prompts for a lit of posihlC explanations. MOLE then iteratively seeks out
higher level explanations until it comes up with a set of ultimate causes. During
this process. MOLE builds an influence network similar to the belief networks we

saw in Chapter .

Whenever an event has multiple explanation s. MOLE tries to determine the

conditions under which one explanation is correct. The expert provides 
covering

knowledge, that is, the knowledge that a hypothesized event might be the cause
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of a certain symptom. MOLE then tries to infer anhicipai'oJy knowledge. which
says that if the hypothesized event does occur, then the symptom will definitely
appear. This knowledge allows the system to rule out certain hypotheses on the
basis that specific symptoms are absent.

2 Refinement of the knowledge base. MOLE now tiles to identify the weaknesses
of the knowledge base. One approach is tO find holes and prompt the expert to flit
them. It is difficult, in general, to know whether a knowledge base is complete so
Instead MOLE lets the expert watch MOLE-p solving sample problems. When-
ever MOl..E-p makes an incorrect diagnosis, the expert adds new knowledge.
There ae several ways in which MOLE p can re.ch  the wrong conclusion. It
may incorrectly reject a hypothesis because it does not feel that the hypothesis is
needed toexptatn any syrnorn, It may advanc;' a hypothesis because it is needed
to explain some otherwise inexplicable hypothesis. Or it may lack differentiating
knowledge for choosing between alternative hypotheses.

For example, suppose we have a patient with symptoms A and F. Further suppose
that Symptom A could be caused by events X and Y, and that symptom B can be
caused by Y and Z. MOLE-p might conclude Y, since it explains both A and B.

expert indicates that this decision was incorrect, then MOLE will ask what
evidence should be used to prefer X and/or Z over Y.

MOLE has been used to build systems that diagnose problems with car engines.
Problems in steel-rolling mills, Al!" iriellisiencies iii coal-burning power plains. For
MOLE to be applicable, however, it must be possible to preenurnerate solutions or
classifications, It must also be practical to encode the knowledge in terms of covering
and differentiating.

But suppose our task is to design an artifact, for example, aii elevatot system. It
is no longer possible to preenuinerate all solutions. Instead, v.e must assign valucs to
a large number of parameters, such as the width of the platform, th t'pe of door. the
cable weight, and the cable strength These parameters must be consistent with each
other, and they must result in a design that satisfies external constraints Imposed by cost
factors, the type of " ' 'd* " iocdved, amid expeLled paykada.

One problem-solving method useful for design tasks is called pmpo.ce-anrl-rrv,c,
Propose-and-revise systems buildup solutions incrementally. First, the system proposes
an extension to the current design. Then it checks whether the extension violates any
global or local Constraints. Constraint violations are then fixed, and the process repeats.
It turns out that domain experts are good at listing overall design constraints and at
providing local constraints on individual parameters, but not so good at explaining
how to arrive al global sniulions. The SALT program [Marcus and McDermott. 1989]
nrovides mechanisms for elucidating this knowledge from the expert.

Like MOLE, SALT builds a dependency network as it converses with the expert.
Each node stands for a value of a parameter that must be acquired or generated. There
are three kinds of links: r'ontribtaes.to. constrains. and suggests-re vision-of. Associatedwith the first type of link are procedures that allow SALT to generate a value for one
parameter based on the value of another. The second type of link, constrains, rules out
certain parameter values. The third link, suggesfs .P-t jsjonof, points to ways in which
a constraint violation can be fixed SALT uses the following heuri elics to guide theacquisition process:
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1. Every noninput node in the network needs at least one con:rthures-:o link coming
into it. If links arc missing, the expert is prompted to fill them in.

2. No contributes-ro loops are allowed in the network. Witnoi,t a value for at least
one parameter in the ioop, it is impossible to comput values for any parameter in
that loop. If a loop exists. SALT tries to transform one of the contributes-to links

into a constrains link.

3. Constraining links should havc .suggests-ievirzunf links associated with them.
These include constrains li.iks thst are created when dependency loops are broken.

Control knowledge is also important. It is critical that the system propose extensions
nd revisions that lead toward a design solution. SALT allows the exçert to talc rcvisions

in terms nt how much trouble they tend to produce.
SALT compiles its dependency iiework into set of production iule As with

MOLE, an expert can watch the production system solve problems and ca oveinde the
system's decision. At that point, the knowledge base can be changed or the override can
be logged for future inspect ion.

[he process of interviewing a human expert to extract expertise presents a number of
difficulties, regardless of whether the interview is conducted by a human or by a machine.
Experts are surprisingly inarticulate when it cornea to how they solve problems. They
do not seeni to have access to the ow-level details of what they do and are especially
inadequate suppliers of any type of statistical information. There is, therefore, a great
deal of interest in building systems that autoinatial!y induce their own rules by looking
at sample problems and solutions. With inductive tec$hniques, an expert needs only to
provide the conceptual framework for a problem and a set of useful examples.

For cxarnple. consider a bank's problem in deciding whether to approve a loan. One
.ppioach to automating this task is to interview loan officers in an attempt to extract
iheir -J&;rnii p knowledge. A'other approach is to Inspect the record of loans the bank
has made iii the past and then try to generate automatically rules that will inaxiriize the
number of good loans and minimize the number of bad ones in the future.

\IElA-DENDRAL I Mitchell, 1978j was the first program to use learning techniques
o cun.'truCt rules for an expert system automatically. It built rules to be used by DEN-
DRAL. whose job was to determine the structure of complex chemical compounds.
MFTA-l)FNDRAL was able to induce its rules based on a set of mass spectrome-
try data; it was then able to identify molecular st,uclurcs with very high accuracy.
META-DENDRAL used the version space learning algoritorn. which we discussed in
Chapter 17. Another popular method for atfomatically constructing expert systems is
the induction of decision trees, data structures we described in Section 17.5.3. De-
cision tree expert systems have been but for assessing consumer credit applications,
analyzing h>pothyroid conditions, and diagnosing soybean diseases, among many other
application,.,.

Statistical techniques. such as multivariate aiialy SIS. provide an alternative approach
to building experi-level systems. Unfortunately, statistical methods do not produce
concise rules that humans can understand. Therefore it is difficult for them to explain
their decisions.

For highly structured problems that require deep causal chains of reasoning, learning
techniques are presently inadequate. There is. however, a great deal of research activit"
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in this area, as we saw in Chapter 17.

20.5 Summary

Since the mid- 19f,Us. when work began on the earliest of what are now called expert
systems, much progress has been made in the construction of such programs. Experience
gained in these efforts suggests the following conclusions:

• These systems derive their power from a great deal of domain -specific knowledge,
rather than from a single powerful technique.

• In successful systems, the required knowledge is about a particular area and is
well defined. This contrasts with the kind of broad, hacJ-to-ocLne know!edge
that we call common sense. If is easier to u I lri expert systems than ones wft
common sense.

• An expert system is usually built with the aid of one or mote epens, who must
be willing to spend a great deal of eftoit tuanslei ring their expel use to the system

• Transfer of knowledge takes place gradually through many interactions between
the expert and the system. The expert will never get the knowledge right or
complete the first time

• The amount of knowledge that is required depends o:i the task. Ti may range frrrt
tami y rules to thousands.

• The choice of control stiuc-muic for a particular system depends or. specific chat-
acleristics of the system.

• If is possible to extract the itomitioma 	 pecilu narts lm existing expert systems
and use them as tools to building new systems in new domains.

Four major problems facing current expect systcrrs are:

Brittleness—Because expert .cyster:is only have aCCeSS to highl y specific domain
knowledge. they cannot fail back or, more general knowledge hen the need
arises. For example, suppose that we make a mistake in entering data for a
medical expert s y stem, and we describe a patient who is 130 years old and weighs
40 pounds. Most systems would not be able to guess that we may have teversed
the two fields since the values aren't sery plausible. The CYC system, which
we discussed in Section 10.3. represents one attempt to remedy this problem
by providing a substrate of commonsense knowledge on whicn specific expert
systems can be built.

• Lack of Meta-Knowledge—Expert systems do not have very sophisticated knowl-
edge about their own operation. They typically cannot reason about their own
scope and limitations, making it even more difficult to deal with the brittleness
problem.
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• Knowledge Acquisition—Despite the development of the tools that we described

in Section 20.4, acquis i ti on still remains a major bottleneck in applying expert

Systems technology to new domains.

•	 ,daion_McaxUriflg the performance of an expert s ystem is itithcult because

Jo not know how to quantify the use ot knowlcdge Certainly it IS Ii'lpOSSlblL

to present formal proofs of orrcc!fle55 for expect sy1enIs. I)nL' ihog we can do

k pit thc'c sys:ernc a p a j ost huivao experts on real-world prahlcnis. For example.

MYCIN participated in a panel of experts in evalu.ttiig ten selected mcniiigitS
cases, .cnIing higher than ally ni its liuiiian oiopetnors IBtchan.n. P1821

There we many issueS in the desigit and implementation of expert ss'c Iiis that we

hae tio cosered For exaniple here has been a substailual amount of work done In

the aica of real-time expert systems Itfey ti al.. 19981. For more information on the

,,,,hole area of 
expert ystCmS and to get a helter fccl for the kinds of applications that

exist. kik at Wcis and KullkowSkl l9-11. Hanrion anJ King 119851. Rauch-Hindtn

I (8, I	 9861. and Prerau 119901

Lxercses

L Riil-tced sssterns often contalO rules with sever conditions in their cli sti;S,

Why is this (Tue in M YC1N

(hi Why is this true in RI!

2 Contrast expert systems and neural networks (Chapter IS) iii terms of knowletig
rCpieSefltatiOfl knowledge acquisition, and explanation. Give one domain ii,
which the expert ysIem approach would he more proniixing and one domain ii,
which the neural network approach would be more promising.



Chapter 21

Perception and Action

lii the lust chapter of t his book. we pri2poscd a definition of Al huscd on tIc: n,tturt' of ih

pniberus 
it tackles, namely those for which humans currently oulperlorit) computer"

So far, we have discussed primarily cognitive tasks, but there arc many other tasks that
also fall within this realm. In basic perceptual and motor skills, even tower animals

possess phenomenal capabilities compared to computers
Perception involves interpreting sights, sounds, smells, and touch. Action includes

the ability to nas igate through the odd and manipulate objects. In order to build robots
that live in the worLd, we must come to understand these processes. Figure 21.1 shows a
design for a complete autonomous robot. Most of Al is concerned only with cognition.

the idea being that when intelligent programs are dcvcloped, we wi!l simpl
y add censr'i's

and effectors to them But piohienis i ll perception and action are 5uhstantial in thei

own right and are being tackled b y ecearchers in the field of robotics.

In the past. robotics and At have been largely itideperidenil endeavors, and they have

developed different techniques to solve different problems. We attempt to chaiactei i

the tieud 
of robotics at the end of this chapter, but for now, we shjuld note one ky

difference between Al programs and robots: \\bile
 Al programs usually operate in

conr ipuier-siflitilaienl wnIds, robots must operate in the physical 'ortd. As an example.

consider makin, a move in chro..	 n Al program can search millions of itodes in a

game tree without ever havirg to setse ui totiels anything in the real world A complete

ches s-play ing robot, on the other hand. must he capable of giasping pieces.
inteipreting hoard positions, and earring on a host of other action".

The distinction between real and simulated worlds has sev" 	 inplicatnOl)S-

• The input to an Al program is symbolic in form. e., all 8..punk: configuration

or a t yped English sentence. The input to a robot is yptcally an aimnlnig ighil

such as a wo-diinemtsiOIial video image or a speech s; ,iveform

• Robots require special hardware for perceiving and attectmng the world. wnitLe Al
proglititis iequiTe only general-purpose computers.

• Robot sensors are inaccurate, and their efletttis ate limited in precision. ''hcrc
is always some degree of uncertainty about exactly wheic the rc+",K is Ic ateil,

559
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Figure 21 I A Design for an Autonomous Robot

and where objects and obstacles stand in relation to it Robot effectors arc also

limited in precision.

• Many robots must react in real time. A robot tighter plane, for example, cannot
afford to search optimally or to stop monitoring the world during a LISP garbage

collection.

• The real world is unpredictable, dynamic, and uncertain. A robot cannot hope to
maintain a corret and complete description of the world. This means that a robot
must consider the trade-off between devising and executing plans- This trade-off
has several aspects. For one thing. a robot may not possess enough inforinatinit
about the world for it to do any useful planning. In that case, it must first engage
in information gathering activity- F'jrtherniore. once it begins executing a plan,
the robot must continually monitor thT results of its actions. If the results are

unexpected. then re-placinmg may be necessary.

Consider the pibblem of traveling across town. We might decide to take a bus,
but without a bus scheduk, it is impossible to complete the plan. So we make a
plan for acquiring a schedule and execute it in the world. Now we can plan our
route. The bus we want to take may be scheduled to arrive at 5:22 pm., but the
probability of it coming at exactly 5:22 pan. is actually very small. We should
stick to our plan and wail, even if the bus is late. After a while, if the bus still has

not come, we must make a new plan.

• Because robots must operate in the real world, searching and backtracking can
be costly. Consider the problem of moving furniture Into a room. Operating in a
simulated world with full information, an Al program can come up with an optimal

plan by best- tlrst search. Preconditionspfoperatora can be checked quickly. and
if an operator fails to apply, another can be tried. Checking preconditions in
the real world, however, can be time-consuming if the robot does lot have full
information. For examplc, one operator may require that an object weigh lest
than fifty pounds. Navigating to the object and applying a force to it may take the
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robot several minutes. At that rate, it is impossible to traverse and backtrack over
a large search space. Worse still, it may be impossible to evaluate a projected
arrangement Of furniture without actually moving the pieces first.

Recent years have seers efforts to integrate research in robotics and Al. The old idea
of simply attaching sensors and effectors to cxtst!flg Al programs has given way to a

serious rethinki ng
 of basic Al algorithms in light of the problems involved in dealing

with the physical world. Rcscarch in roboticS is likcwse affected 
l, Al techniquesSinLe

reasoning about goals and plans is essential for c itapi1ig percepin in s oiIIo approp ll.flr

actions. In this chapter. we explore the interface between roboltLs.ind Al We do 
1101

delve too deeply into purely robotic issues, ITut instead focus on how the Al techniques
we have seen in this hook can be used aid/or modified to handle probleniS that at ise in

dealing with the physical world.
At this point, one might ask whether physical robots are necessary for research

purposes. Since current At programs already operate in simulated worlds. whynot

build niote ieahstic clinulation s , which hetit model the real woi Id? Such sitlilililiflts

do exist, for example, Carbonell and Hood 1 1 9861 and Langley eral. 11981b1. There

are several advantages 10 
usiii a simulated world: Experiments can be conducted seiy

rapidly. conditions can easily be replicated. programs can return to pres inus states t no
a

cost, and sensory input can be treated let a high level fashion. Futthcrrnorc simUlatol'

require no fragile expensive r iicehanic,Il Paris. The major drawback to simulators is

tigurin out exactly which factors to build in. Experience with real robots Conttuues

to expose tough problems iii :0 do not ansi' eveii in the ii osl sopl sin atd si I Ito I .t ors.

The world t
urnsout--not surprtsinglYto he an excellent model o. itself. and a readily

as:tilahle rifle.

21.1 Real-Time Search

We now turn to heuristic search, as exemplihed in At by the A 5 algorithm- While A is

guaranteed to 
find all pa!II froj li the nulls1 slate to the goal state, the algorithm

has a nuir,bcr of limitations in the real world. For one, the exponential complexity of .'\
limits the size of problems it can realistically salve, and forces us o consider a limited
search horizon. Also, having incomplete information about the world can further limit

that s
earch horizon. For example. consider the task of navigating front one room to

another in an unfamiliar building . The 5carch horizon is limited to how tar one ca

(literally) 5CC at any gisen time. It is necessary to take steps in the physical world
in order to we beyond the hon/on, despite the fact that the teps may he Ilonot)ttuiial

ones Finally, real-time tasks like driviuig require cufltiflUOUS inoni(ortlig and reacting

Because heuristic search is time.COi)SUIiiiflg. we cannot afford to work out opiinial

solutions ahead of tune.
There is a variation of A 5 that addresse: the ce i"sues It is Lalled Real- lime-A5

4RTA 4 ) IKort. 19881 This algorithm comutits to a real-world action every k seconds.

svhcrc k 
is some cotstant that depends on the depth of the search horizon. Each time

RTA carries out an action it icstarts the search haiti that point. Thus. Ri A 
is able

o make progress tnwaFO a goal
state without has ing to plan a complete sequence 01

solution step r advance PTA* was inspired to -i deoree 
by work on computer games
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As we mentioned in Chapter 12, game-playing programs must commit to irrevocable
'oves because of time constraints.

lgorithrn: Real,TimeA*

1. Set NODE to be the start state.

7. ',enerate the successors of NODE. If any of the successors is a goal stale, then
quit.

3. Estimate the value of each successor by performing a fixed depth search starting
at that successor. Use depth-first search. Evaluate all leaf nodes using the A*
heuristic function f= g + h', where g is the distance to the leaf node and h' is the
predicted distance to the goal. Pass heuristic estimates up the search tree in such
a way that thef value of each internal node is set In the minimum of the values
of j Ls children.'

4. Set NODE to the successor with the lowest score, and take the corresponding
action in the wo'rld. Store the old NODE in a table along with the heuristic score
of the second-best successor. (With this strategy, we can never enter into a fixed
.loop. because we never make the same decision at the same node twice,) If this
node is ever generated again in step 2, simply look up the heuristic estimate in the
table instead of redoing the fixed-depth search of step 3

5. Ciotostep2.

We can adju:t the depth to which we search in step 3. depending on how much time
we want to speed planning versus executing actions in the world. Provided that every
part of the search space is accessible front other part. RTA* is guaranteed to find a
path to a solution state if one exists The path may not be an optimal one, however. The
deeper we search in step 3, the shorter our average solution paths will be, Of course.
the task dcclf may impo'.e. limits on how deep we can search, as a result of incomplete
information.

RTA is just one example of a limi led- horizon.search algorithm. Another algorithm,
due to Haiisson and Mayer 119891, uses Bayesian inference. Dean and Boddy (1988)
define a related notion, the anytime algorithm. An anytime algorithm is one that can be
interrupted and queried at any point during its computation. The longer the algorithm
runs, the more accurate its answer is.

Now we turn to more specific techniques aimed at various perceptual and motor
problems. Later, we investigate architectures for integrating perception, action, and
cognitior.. It should be noted that this is only a brief survey of a very large and active
field of research. Those interested in investigating these issues more deeply should
consult robotics texts such as Brady 119821 and Craig [l985.

It is possible to prune the search tree using a technique called alpha prunhli. a single-agent analogue of

alpha-WA pruning. Alpha pruning is a branch.and .bouadieChflKltiC of the type we encounirred m Chapter 2
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21.2 Perception

We perceive our environilteilt through many channels: sight, sound. touch. smell. taste.
Many animals possess these same perceptual capabilities, and others are able to monitor

entirely different channels. Robots, too, can process visual and auditor y information,

and they can al'o be eulppctl with imec cs twserisors. such as laser rangetinders,

speedometers. and radar.
Two uxtienicly important sensory chano lum itWilaliS arc vsioit arid spoken la:

guage. It is through these two faculties that we gather alirio.t all of the knosvlcdgc that

dris es our problem-solving behaviors.

21.2.1 Vision
Accurate machine vision opens up a new realm of compute! applications. These at'-
plications include mobile robot navigation, complex manufacturing tasks. analysts of
satellite Images. and rrwdtcal image processing. In this section. we investigate how we
can transform raw camera images into useful information about the world.

A video camera provides a computer with an image represented as a two-dimensional

grid of intensity Levels. Each grid element, or pLse?, may store a single bit of information

(that is, black/white) or many bits (perhaps a real-valued intensity measure and coliY
information). A visual image is composed of thousands of pixels. What kinds of things
might we want to do with such an image? Here arc touroperations. in Order ofincrea.Siflg

ctiniplexily-

1. Signal Processing--Enhanc hg tie n.Ige. "it hi f4,1  rintiI I (:oirsuiiiptiOfl or a'.

input to another piograni.

2 Measurement Analysis- For manes coni.'iT:ing a aele oblect. deLermirling the

two-dimensional extent of the object depicted

3 Pattern Recognition - For single-object images. Jassitying the ob)e.t into a cat
egory drawn from a finite set of posshtlitres.

4 Image Understanding—Fur im;rges corirallirrig many objects. locating the objc.

in the image. classify ing them, and building a three-dir,iensioflal model of tb

scene.

See Niblack t 1986 fOT algorithms that perform the first two operations. The thur,

operation, pattern recognition, vanes in its difficulty. It is possible to classify Iwo -

dimensional (2-D) objects, such as machine parts coming down it conveyor belt, 'u

classifying 3-D cshects is harder because of the large number of possible onentat.o
for each object. Image understanding is the most difficult visual task, and it has been
the subject of the most study in Al. While some aspects of image understanding reduc'
to measurement analysis and pattern recognition, the entire probkrn remains iinSolveml
because of difficulties that include the following:

• Art image is two-dimensional, whik the world i riree .tiroWnsICM1itl. Some imifor.

niauon is necessaril y Inst when air image is r
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Figure 212: An Ambiguous Image

• One image may contain several objects, and some objects may partially occlude
others, as we saw earlier in Figure 14.8.

• The value of a single pixel is affected by many different phenomena, including the
color of the object, the source of the light, the angle and distance of the camera,
the pollution in the air, etc. It is hard to disentangle these effects.

As a result, 2-D images are highly ambiguous. Given a single image, we could
construct any number of 3-D worlds that would give rise to the image. For example,
consider the ambiguous image of Figure 21.2. It is impossible to decide what 3 .D solid
it portrays. In order to determine the most likely interpretation of a scene, we have to
appis several types of knowledge.

'or example. we may invoke knnwlede about low-level image features, such as
shadows and iCxtOrs. Ftgiir 21.3 shows how such knowledge can help to disambiguate
the image. Having multiple images of the salile object can also be useful for recovering
3-1) structure. Th use of two or more cameras to acquire multiple simultaneous
views of an object is called stereo vision Moving objects or moving cameras) also
'upp!y multiple views. Of course, we must also possess knowledge about how motion
affects images that get produced. Still more information can be gathered with a laser
rangefinder, a device that returns an array of distance measures much like sonar does.
While rangefinders are still somewhat expensive, integration of visual and range data
will soon become commonplace Integrating (litierent sense inodiitic Is coiled scnsor
fusion. Other image factors we might want to consider include shading, color, and
reflectance.

High-level knowledge is also important for interpreting visual data. For example,
consider the ambiguous object at the center of Figure 21.4(a). While no low-level
image features can tell us what the object is. the object's surroundings provide us with
top-down expectations. Expectations are critical for interpreting visual scenes, but
resolving expectations can be lucky. Consider the scene shown in Figure 21.4(b). All
objects in this scene are ambiguous; the same shapes might be interpreted elsewhere, as
an amoeba, logs in a fireplace, and a basketball. As a result, there are no clear-cut top-
down expectations. But the preferred interpretations of egg, bacon, and plate reinforce
each other mutually, providing the necessary expectations.

So how can we bring all of this knowledge to bear in an organized fashion? One
possible architecture for vision is shown in Figure 21.5. The very first step is to convert
the analog video signal into a digital image. The next step is to extract image features
like edges and regions. Edges can be detected by algorithms that look for sets of adjacent
pixels with differing values. Since pixel values are affected by m,iiw factors, '.niall edges
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with similar orientations must be grouped into larger ones [Ballard and Brown, 1982).
Regions, on the other hand. are found by grouping similar pixels together. Edge and
t-egiori detect ion are computationally intensive processes, but ones that can be readily
mapped onto parallel hardware. The next step is to infer 3-D orientations for the various
regions. Texture, illumination, and range data are all useful for this task Assumptions
about the kinds of objects that are portrayed can also be valuable, as we saw in the
Waltz labeling algorithm (Section 14.3). Next, surfaces are collected into 3-D solids.
Small solids arc combined Into larger, composite objects. At this point, the scene is
segmented into discrete entities. The final step involves matching these entities against a
knowledge base in orderto pick the most likely interpretations for them. Organizing such
a knowledge base of objects is difficult, though the knowledge-structuring techniques
we studied in Part II are useful. As we demonstrated above, it may be impossible to
interpret objects in isolation. Therefore, higher-level modules can pass hypotheses back
down to lower level modules, which check for predictions made by the hypotheses.

This is only one way of structuring an image understanding program. It highlights
the spectri.im of low- to high-level knowledge required for 3-D vision As with other
Al tasks, the success of a vision program depends critically on the wa it represents and
applies knowledge. For more information on computer vision, see Marr 11982!. Ballard
and Brown (1982J, and Horn [19861.

21.2.2 Speech Recognition

Natural langusec undeistandiag sstcire ' usoaUv accept ped Irloul, bill for a iiumber
of applications this iF not acceptable. Spoken language is a more natural form oi
cnmmuni.ation in many human computer interfaces Speech recognition systems have
been available for sonic iimc, but their limitations have prevented widespread use. Belo w
are live major design issues in speech s y stems. These issues also provide dimension^
along which systems can be compared with one another.

• Speaker Dependence versus Speaker Independence—A speaker-independent sys
tern can listen to any speaker arid translate the sounds into written text. Speaker
independence is hard to achieve because of the wide variations in pitch and accent.
It is easier to build a speaker-dependent system, which can be trained on the voice
patterns of a single speaker. The system will only work for that one speak

e
r. Ii

can be retrained on another voice, but then it will no longer work for the original
speaker.

Continuous versus Isolated-Word Speech—Interpreting isolated-word speech, in
which the speaker pauses between each word, is easier than interpreting con-
tinuous speech. This is because boundary effects cause ' words to he pronounced
differently in different contexts. For example. the spoken phrase "could you" con-
tains aj sound, and despite the fact it contains two words, there is no empty space
between them in the speech wave. The ability to recognize continuous speech is
very important, however. since humans have di1,culty speaking in isolated words.

• Real Time vei sus Oftilne Processing--I lighty interacti sc applications require that
a sentence be translated into text as it is being spoken, while in other situations.
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Figure 21.5: One Possible Achitecture to , Image Understanding

It is permissible to spend minutes in computation. Real time speeds are hard to
achieve, especially when higher ievel knowledge is involved.

• Large versus Small Vocabulary--Recognizing utterances that are cofltiiwd te

small vocabularies (e.g.. 20 words) is easier than working with laic vocabularies

Leg.. 20.000 wcnds. A small vocabu l ar l helps to limit the number of word

candidates fora given'speech segment.

Broad versus Narrow Grrnin.n --An example ol a nariow gralaiTlir is thC one tor
phone numbers: S - X.XX XXXX. where X is any nunbcr between zero and
nine. Syntactic and semantic constrrs tot unrestricted English are much hardci
to represent, as we saw in Chapter iS. !h.. 	 ih I'rinl.0 .s he S!T.1Ie

the search space for recogn i tion wII hi-
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Existing speech systems make various compromises. Early systems, like DRAGON
[Baker, 19751, HEARSAY (Lesser et al., 1975). and HARPY ILowerre, 19761 dealt
with single-user, continuous speech, and vocabularies up to a thousand words. They
achieved word accuracy rates of 84 (097 percent TANGORA [IBM speech recognition
group. 1985)  moved to speaker independence and a large, 20,000-word vocabulary, but
sacriticed continuous speech. TANGORA is 97 percent accurate. One system built at
Bell Labs for rccognh/irlg continuous, speaker-independent digit recognition (for phone
umbers)has, also produied 97 pcircent accuracy (Rahine.ri', ci.. I9R1. SPHINX

and Hon, 1989i is the first ',teni to achieve high accuracy (96 perrcnt) or rcat-timr.
speaker independent, contincus speech with a vocabulary of 1000 words.

What techniques Jo these sy stems use! HEARSAY used a blackboard architecture,
of the kind we discussed in Chapter 16. Using this method, various knowledge sources
enter positive and negatuse evidence for different hypotheses, and the blackboard inte-
grates all the evidence. Low-level phonemic knowledge sources piovide information
that high-level knowledge sources can u se to make hypotheses about what words appeau
in the input. The high-level knowledge Sources can then generate expectations that can
be checked by the low-level ones.

The HARPY system also used knowledge to direct its reoning, but it precompiled
all that knowledge into a very large network of phonemes. In the network model, an
interpreter tries to find the path through the network that best matches the spoken input.
This path can be found with any number of heuristic search techniques, for example.
beam search. I IARPY was much faster than HEARSAY, but the blackboard architecture
that HEARSAY used was more general and easily extensible

Most modern speech systems are Learning systems. In oilier words, they accept
sample inputs and interpretations, and modify themselves appropriately until they are
able to transform speech waveforms into written words. So far, statistical learning
methods have pioveru most useful for learning this type of transformation. The statistical
method used in the SPHINX system is called hidden Morkou modeling. A hidden
Markov model (1-1MM) is a collection of states and transitions. Each transition leaving a
state is rui,imked with lIt the probability with which that transition is taken, (2) alt output
symbol. and () the probability that the output s y mbol is emitted when the transition is
taken. The ptu{lt:IuL of decoding a speech waveform turns into the problem of finding
the must likely path (set of transitions) through an appropriate HMM. It is possible
to tune the probabilities of an HMM automaticall y so that these paths correspond to
correct interpretations of the savcform. The technique for doing this is called the
fo, it WL/-ba(A usa,d olto,r,thni.

('onuectiorust systeuuls also show promise as a learning mechanism for speech recog
ninon. One problem with eonnectionist models is that they do not deal very well with
time-varying data. New types of networks, such as recurrent and time-delay networks
[Waubel et al., 1989], are being employed to overcome these difficulties.

In our discussion of vision in Section 21.2.1, we saw that higher-level sources of
knowled ge can he used to manage uncertaint) at lower levels. Speech recognition
also has sources of higher-level knowledge. We have already studied some of these in
Chapter 15. Syntactic knowledge can be used to identify constituent phrases, semantic
knowledge to disambiguate word senses, discourse knowledge to dereference pronouns,
and so fotTh. Earl y speech recognition systems sought to make use of this higher-leve!
knowledge in order to constrain he interpretation at the lower levels. As we saw in
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Chapter 14, a speech system thai cant;o Locide betweeal"the cat 'a cares are few" and

"the cat scares are few" can invoke high-level knowledge to choose one alternative over

the other.
However, modern speech systems perform fairly well without any sophisticated

syntactic or semantic models of language. instead, simple staimuical models are used.
Formaple. SPHINX uses t word 'air. ':'ntr, which tells it SVIILCIi words can legally

.ppear a.paceitt t) One another int,c r,-. 1 kNCO Q A uses a:: ;gam rirnniar. which,

given the previous two words in the iripul. yields the proPabtltty that a given word will

occul next.
Still, no speech system is 100 r'cent accurate. There has recently been renewed

interest in integrating speech recognition and natural language processing in order to
overcome the final hurdle. For example, ATNs and unification-based graniiitais can be

used to constrain the hypotheses made b y a speech system. Thus far. inlegratmn has

proved difficult, because natural language grammars do not offer much in the way of

constraints.
In the speech recognition literature, there is a quantitative measure of grammar.

called perplexity. Perplexity measures the number of words that can legally appear next

,it input (on axelage). The telcphne number recognition task has a perple' y of

0. because at any decision point, there are tell alternatives. On a sanipte 1000-word
English task, a word-pair grammar ma y reduce the perplexity from 1(X)) down to 60. A

bigram grammar may reduce it fur t her, perhaps to 20 fLee and Hon. 1981.
While natural language grammars accurately prc'iict w&'r&l categories !such as r.orr

and verb), they sa y nothtng about which words withir, a c-ate r arc Irkek' to shs'ss

n The inpUt. FOr example, gisen the word "the. ' a itramm!Ia r mtghr hvpoth'caizc that

lie ne'i sst,rd is either air al jectise oi a 015111. Bitt thi, k wrdge does us little good

when there are thousands of possible adjectives and noi;ris io clio&'.e from Thus, it is
ait itral to turn statistical, or co I beat ional , Jets about Ian guae. For e sample. if the
word "doctor" is recognized, then one might expect to hear the word 'nurse" later in the
input, but not 'Norse' Cullocational dais, unlike more complex s yntactic and semantic

structures, can be extracted automatically from Large on-line bodies of text. Ultimately.
we want to substitute semantic and discourse information for statistical data. If we know
the conversation is about doctors, and if we know that rloctom sand nurses t ypically work

together, then we should be able In generate time properexpectatlons. Such ii strategy will
require large knowledge bases and a deeper understanding of semantics and discourse

21.3 Action

hilbl.4y and inrelligemee scent to has cvuived together. hmiuinohmlc creatures have liuk
use lot intelligence, while It is imttelligeitct.' that put rr:,.iii1 ii y to effective use. In this
section, we investigate the nature of mobilit y in ter- , 'f how rnbnts navigate through

the world and manipulate objects

21.3.1 Navigation

Navig ittieti mean5 moving around toe w( 'rtd: piasning roiile\ reihtng de ;ired dcsu

nations ' . 'bout hutnpiiug iruti ' uruInpc	,' forth I :5' vuc' on and speech recognnuor
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this is something humans do fairly easily.
Man y classic Al planning problems involve navigation. 'lhe STRIPS s ystem, for

example, gave high-level instructions to a robot moving through a set of rooms, carrying
objects front one to anothei. Plans to solve goals like "move box A Into room X"
contained operators like MDVE(Y, X), meaning "move from worn Y to room X." The
planner did not concern itself with how this movement was to be realized in the world.
twin itt, perspective, the manner of movement was something akin to teleportatum. A
real robot, however, must consider the low-level details involved in getting from here
to there.

Navigational problems are surprisingly complex. For example, suppose that there
we obstacles in the robot's path, as in Figure 21.6. 1hc problem of path planning is to
plot a continuous set of points connecting the initial position of the tobot to its desired
position.

If the robot is so small as to be considered a point, the problem can be solved
straightforwardly by constructing a visibil ity graph. Let .S be the set consisting of the
initial and final positions as well as the vertices of all obstacles. to form the visibility
graph. we connect every pair of points in S that are visible from one another, as shown
in Figure 71.7. We tan then search the graph (perhaps using the A* algorithm Yoe find
an optimal path for the robot.

Most robots have bulky extent, however, and we must take thic into account whiu w
plan paths. Consider the problem shown in Figure 21 g, where the robot has a pentagonal
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shape. Fortunately, we can reduce this problem to the previous path-planning problem.
The algorithm is as follows: First choose a point P on the surface of the robot. then

increase the size of the obstacles so that they cover all points that P Cannot enter, because
of the physical size and shape of the robot. Now, simply construct and search a visibility

graph based on P and the vertices of the new obstacles, as in Figure 21.9. The basic

idea is to reduce the robot to a point P and do path planning in an artificially constructed

space, known as confi . ura1wnspu(P. or c-space [Lozano-Perez el al., 19841.
If we want to allow rotations, we can represent the robot as a combination of point P

and some angle of rotation 0. The robot can now hi: considered as a point moving through

three-dimensional space (x. v. 0) . Obstacles can be transformed intothree-dimensional
c-space objects, and a visibility graph can again be created arid searched.

Av alternative appruacli to obstacle avoidance is the use of potentuilfields I Khai,h.

19861. With this technique, the direction of a moving robot is continually recomputed
as a function of its current position relative to obstacles and its destination. The

robot is essentially repelled by obstacles and attracted to the destination point. This
approach is especially useful br correcting positioning errors that accumulate during
a robot's journey and for dealing with unexpected obstacles. It can be combined with
configuration space path planning Loeriahie robust navigation [Krogh and Thorpe, 1986].

Roudfollowiog is another navigational task that has received a great deal 01 attention.
The object of road following is to steer a moving vehicle so that it stays centered on a
road and avoids obstacles. Much of the problem comes in locating the edges of the road
despite varying light, weather, and ground conditions. At present, this control task is
feasible only for fairly slow-moving vehicles [Shafer and Whittaker, 39891. Increases
in speed demand more reactivity and thus more real-time computation.

21.3.2 Manipulation

Robots have found numerous applications in industrial settings. Robot manipulators
are able to perform simple repetitive tasks, such as bolting and fitting automobile parts,
but these robots are highly task-specific. It is a long-standing goal in robotics to build
robots that can be programmed to carry out a wide variety of tasks.

A manipulator is composed of a series of links and joints, usually terminating in an
end-effector. which can take the form of a two-pronged gripper, a humanlike hand, or

any of a vajiel y of tools. One general manipulation problem is called ,JO I-at;d-pkui e.
in which a robot must grasp an object and move 1110 a specific location For example,

consider Figure 21. 10, where the goal is to place a peg in a hole.
There are two main subtasks here. The first i to design a robot motion that ends
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Figure 21.10: A Pick-and-Place Task

with the object stably grasped between the two fingers of the robot. Clearly some form
of path planning, as discussed above, can be used to move the arm toward the object,
but we need to modify the technique when it comes to the fine motion involved in the
grasp itself. 1-Itie, uncertainty is a critical problem. Even with the vision techniques of
Section 21.2.1, a robot can never he sure of the precise location of the peg or the arm.
Therefore it would be a mistake to plan a grasp motion in which the gripper is spread
only wide enough to permit the peg to pass, as in Figuie 2 I .11(a). A better strategy
is to open the gripper wide, then close gradually as the gripper gets near the peg. as
in Figure 21.11(h). That way, tithe peg turns out to be located some small distance
away from where we thought it was, the grasp will still succeed. Although this strategy
depends ks' on precise vision, it requires some tactile sensitivity in order to termhiatc
the grasp Unless we take special care in designing grasping motions. uncertainty can
lead to disasters. For exaniple, should the left side of the gripper touch the peg one
second before the right side dues, the peg may fall, thus foiling the grasp. Brost 11988]
and Mason eta) 119881 give robust algorithms for grasping a wide variety of objects.

After the peg is stab]) grasped, the robot must place it in the hole. This suhiask
resembles the path-planning problem, although it is complicated by the fact that moving
the peg through 3-D space requires careful orcl. -tiation at the arm's joints. Also, we
must seriously consider the problems introduced by uncertainty. Figure 21 12tat shows
a naive strategy for placing the peg. FiLilkuv will result 1mm even a slight positioning
error, because the peg will jam flatly on thc outer sitrftce A better strategy is shown
to Figure 21.12(h). We slide the peg along the surface, applying downward pressure
so lhal the peg enters the hole at an angle. After this happens, we straighten the peg
7radually and push it down into the hole.

ih, t ype of motion, which reacts to forces generated by the world, is called romp/i-
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ant motion. Compliant motion is very robust in the Face 01 uncertainty. Humans emplo
compliant motion in a wide variety of activities, such as writing on chalkboards.

So given a pick-and-place problem. how can we automatically generate a sequence
of compliant motions'.' One approach [Lozano-Perei ci al.. 19841 is to USC the familiar

prohlem -solvitig. process of backwaid chaining. Our mural and goal slates for the peg-tn-
hole prohirm are represented as poinis in configuration space, as shown in Figure 21.13.
Firct, we compute the set of points in c-space from which we are guaranteed to reach
the goal stale in a single compliant motion, assuming -a certain degree of uncertainly in
initial position and direction of movement and certain facts about relative friction. This
set of points is called the goal states strong pre-irnui,'e. In Figure 21.13. the strong
pre-image of the goal state is shown in gray. Now we use backward chaining to design
a set of motions that is guaianteed to get us from the initial state to some point in the
goal stale's strong pre-image. Recursively applying this procediiie will eveiiivally yield
a set of motions that, while individuall y uncertain, combine to form a guaranteed plan.

21.4 Robot Architectures

Now let us turn to what happens when we put it all together--perception, cognition, and
action. There are man y ilccisitiiis involved in designing an architecture that integrates
all these capabilities, among them:

• What range of tasks is supported by the architecture?

• What type of environment (e.g.. indoor, outdoor. space) is supported?

• How are complex behaviors turned into sequences of low-level actiolis

• Is control centralized or distributed?

2'The set at points from which it is pasuthh' to reach the siatc is U irngk t,uIi5fl is called the stale ' s W,0

pre-jPprax.
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• How are numeric and symbolic representations merged'

• How does the architecture represent the slate of the world?

• How quickly can the architecture react to changes in the environment?

• How does the architecture decide when to plan and when to act?

With these issues in mind, let's look briefly at a few existing robot architectures.
CODGER [Shafer et al.. 1986) is an architecture for controlling vehicles in outdoor

toad-following tasks. CODGER uses a blackboard structure to organize incoming
perceptual data. The System's control is centralized and hierarchical—all numerical
data from sensors are fused in order to build up a consistent model of the world. This
model is represented symbolically. CODGER has been used to build a system for
driving the experimental NAVLAB [Shafer and Whittaker. 19891 vehicle, a commercial
van that has been altered for computer control via electric and hydraulic servos. The
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NAVLAB i s completely self-contained, with room for sevetat on-board computers and

researchers.
Brooks 119861 describes the sithsurnjition architecture for building autonomous

robots for indoor navigation and manipulation. Behaviors are built up from layers
of simple, numeric linit-state machines. Bottom layers consist of reactive, instinctual
behaviors such as obstacle avoidance and wandering. Upper layers consist ofbehaviors
like object identification and reasoning about object motions. The various behaviors
operate in a decentralized fashion, computing independently, and suppressing or inferni-
ing one another. Such an organization encourages reactivity—for example, high-level

navigation behavior is suppressed abruptl y when an obstacle moves to block a robot's

oath. In fact. the subsumption architecture takes reactivity to the extreme. Separate
modules moiiitiir onl y the sensors that affect their behavior, and there are no explicit
goak, plans, or world models in these systems. They simply react to the situation at
hand. For example, the task of one such robot is to wander the halls, picking up soda
cans and depositing them in a bin. When the robot locates a can, several modules steer
the robot toward it. Modules governing the robot arm continuously monitor the physical
wheels of the robot. When the wheels stop. the arm extends to grasp the can. Notice
that all these motions are decentralized and reactive; nowhere in the robot is there any
explicit plan lot how to pick up the soda can, or how to pick up soda cans in general.

Tis kind of oreanization presents a perspective (in problem solving similar to the
one we described in Section 13.7. Advantages of the subsurnption architecture include
simplicity and speed, since programs for controlling such robots are simple enough that
they can be rendered easily into hardware. Also, modeling the real world is a very
difficult task, one that the subsumption architecture avoids. On the other hand. it is
not clear that the subsumption architecture will scale up to complex planning problems.
Suhsumptioii robots tend to lack the flexibility that traditional problem solvers display in
being able to reason about a wide sariety of tasks Also, they lack the ability to ieflect on
their own actions. For example, if the wheels of he soda can robot should stop turning
because of a loose connection. the robot arm wit! mindlessly extend forward in search of a
nonexistent can. While the CODGER architecture emphasizes data fusion, subsuntptiofl
robots emphasize data fission. A series of subsumplion robots have been built, and they
demonstrate how reactive systems arc capable of much more interesting and varied
behavior than was previously thought. It is u,iknown whether these architectures are
capable of achieving 'tasks that seem to require significant amounts of plaitning

TCA ISimmons and Mitchell, 19891 is an architecture that combines the idea of
reactive systems with traditional Al planning. TCA is a distributed system with cen-
tralized control, designed to control autonomous robots for long periods in unstructured
environments, such as the surface of Mars. ICA particularly addresses issues that arise
in the Context of multiple goals and limited resources. The architecture provides mech-

anisms fot hierarchical task management and allows action based on incomplete plans.
Because robots rather new infoiniation by moving through the world. 1A permits
plans to be terminated early should higher-priority goals arise. Some situations require
highly reactive behavior. TCA achieves high-speed response by parallelizing planning
and execution whenever possible. For example, in designing walking motions over
rough terrain, 1CA plans one step, initiates it. and then begins to plan the next step
Won: the leg motion has been completed.
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Another program for combining heuristic problem solving with reactivity is called
TIIEO-Agent [Mitchell, 19901. THEO-Agent contains two subsystems, a reactive
engine and a general problem solver (called Ti-lEO (Mitchell el al. 19891). When the
reactive subsystem fails to suggest a course of action, the problem solver creates a plan
for the robot. As it executes the plan, the robot uses explanation-based learning to create
new reactive modules. Thus, the robot becomes increasingly reactive with experience.
Robo-SOAR [Laird etal.. 19891, an extension of the SOAR problem-solving system, is
another learning robot architecture.

PRS [Georgeff and Lansky, 1987] is a symbolic robot planning system that inter-
leaves planning and execution. lot goals represent robot behaviors, not world slates.
PRS contains procedures for turning goals into subgoals or iterations thereof. A proce-
dure can be invoked by either the presence of a goal or the presence of some sensory
input. Thus, the robot is capable of goal-directed behavior but can also react when the
world changes or when plans fail. Goals and procedures are represented symbolically.
and a central reasoner uses a stack to oversee the Invocation of procedures.

21.5 Summary

The field of robotics is often described as the subfield of Al that i' concerned with
perceptual and motor tasks. As Figure 21.1 suggests, the tables can easily be turned,
and Al could well be the subfield of robotics that deals with cognition. Indeed, Brady
19851 has proposed a definition of tobotics with this flavor:

Robotics is the intelligent connection of perception to action.

Another definition, suggested by Grossman. 3 reads as follows:

A robot is anything that is surprisingly animate.

The word "surprisingly" suggests a moving-target definition. It should be noted that
the first automatic dishwashing machines were called robots by their designers. But
after a while, it became less surprising that a machine could wash dishes, and dic tctuti
"robot" fell away. This characteriiation of robotics is similar to the our we proposed for
Al in Chapter 1. There, we characterized Al as the study of problems in which humans
currently perform better than computers. As a result, programs that solve calculus
problems are no longer considered artificial intelligence.'

These moving-target definitions accuratel y differentiate actual Al work and robotics
work. Al tends to focus on uniquely human capabilities, while robotics aims to produce
physical, animate behaviors. As we have seen in this chapter. however, many interesting
problems lie at the intersection of Al and robotics, and only by combining techniques
from both fields will we be able to design intelligent robots that live in the world

5 1)avid Grossman, after-dunner speech delivered at the 7th NSF Grantees Cunfcrcnce, Ithaca, NY. 1979.
4 We must be careful here. When movable type pnnuing was first introduced, it was called ailificiaiwrüing,

.ecausc it seemed lobe automating what scribes had been doing for previous centuries Of course. Isniuig
rnty automates a small portion of the writing process. It is often more enlightening to view Al programs and

as tools for enhancing human capabilitics, rather than as independent. autoumoinous agents [Hill. 1989
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21.6 Exercises

I. Describe scenarios in which the following feature ' are critical:

(a) Reactivity—The robot must react quickly to a changing environment.

(b) Robustness—The robot must act appropriately. in spite of incomplete or

inexact sensory data.

(c) Recoverability—When a plan tails to bring about expected results, the robot
must find another way to achieve its goal.

Why aren't the planning techniques described in Chapter 13 sufficient to ensure
these characteristics?

2. Describe three different ways of combining speech recognition with a natural
language understanding system. Compare and contrast them in terms of expected
performance and ease of implementation.

3. Say each of the following phrases very slowly, and write down the sounds you
USC. Then gradually speed up, and continue to write down the sounds. Finally,
say them the way you would in ordinary speech. How do the sounds change as
you move through each series? What are the implications of these changes for
continuous speech recognition'

(a) could you

(b) boy's school

(c) the store, the elevator

(d) sharp point

(e) Stop it

(U want to go

4. Create a search graph, labeled with heuristic estimates, -that shows the RTAt
algorithm entering the same node twice. Explain what would happen ifRTA t did

not keep track of previously visited states.

5 In Section 211. we said that thc RTA* algorithm is guaranteed to tind a path
to a solution state if such a path exists and if every part of the search space is
accessible from every other part. Why is this second qiiahtication necessary?
Give an example in which, without it, a solution will not be found.
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6. Consider the following variation on the peg-in-hole problem:

0
xptaiii, using the concept of a strong pre-image, why this problem is easier than

the standard peg-in-hole problem of Figure 21.10.



Chapter 22

Conclusion

22.1 Components of an Al Program

We have now surveyed the major techniques of artificial intelligence. From our
sion of them, it should be clear that there arc two important classes of Al techniques:

• Methods for representing and asing knols

• Methods for conducting heunstic se.rch

These two aspects.interact heasil ) with each othet Thc chc. c of a knvtco
epresentation framework dtcriun tte kind of problem soi. .o rc'hoos that can be
applied. For example, it knowledge is represented a tormule t?re4; : OIC. tfleri
res:)lu!on can be used to derive ric-A tni ;c1Ics. If. on the other hand. )r'.wled
is represented in selitaritic nets, then neiork search ,ouljnes;eist be us. 	 r. i

knowledge is represented as a set of weigls in it neural ncwor., [lien sonic toon (if
network search (e.g.. relaxation or forware propagation) must be explo;ted.

If there is one single message that this book has tried to conve y , it is the crucsl par
that knowledge plays in Al programs Although much of the book has been devote.i
to other topics. particularl y to search techniques. it is important to keep in mind that
the power of those techniques lies in their ability to use knowledge effectively to solve
particular problems. Because of the importance of the role of knowledge in problem

solving programs, it is worth reviewing beic whai that role is.
Knowledge serves two important functions in Al programs. The first is to define

what can be done to solve a problem and to specify what ii means to have solved the
problem. We can call knowledge that doe this essential tnowedi'. The second is !c,
provide advice on how best to go about solving a problem efficiently- We can call siih
knowledge heurzaiu kriciwledee.

The goal of this book has been n ay e:.e 1rh aboni he se cf knowledge in problem
.i! ing programs to enahie you te 611d or.e (to r3.a it- And h.ave fur.

519
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CHAPTER 22 CONCLUSION-

22.2 Exercises

1. What do you think is the main result to come out of Al research in the last 20
years? Give a brief justification of your ansser

2. Why are table-driven programs so important in AI'

3. What is the role of matching in Al programs (jive severL.l cxamplas of itc use.

4. How do the topics ot knowledge representation and problem solving ctirqL4s
interact with each other? Give examples.

5. Dreyfus [1972] presents a criticism of Al in which it is argued that Al i no
posib1e. Read through it, and using the material piesenied in this book, refute
the arguments.

. Using what you have learned in this book, comment briefly on each line below.
Feel free to augment your answer with diagrams or illustrations.

Question. flow many Al people does it take to change a tightbulh?

Answer. At least 67.

The Problem Space Group

One to definc the goal state
One to define the operators
One to describe the universal problem solver
One to hack the production system
One to indicate about how it is a model of human lighthulb-changing behavior

The Logical Formalism Group (12)
One to figure out how to describe !ightbulb changing in predicate logic
One to show the adequacy of predicate logic
One to show the inadequacy of predicate logic
One to show that lighibulb logic is nonmollotoniu
One to show that it isn't nonmor,otonic
One to incorporate nonmonotonicimy into predicate logic
One to determine the bindings for the variables
One t' show the completeness of the solution
One to show the consisLncy of the solution
One to hack a theorem prover for lightbulb resolution
One to indicate how it is a description of human lightbulb-changing behavior
One to call the electrician

The Statistical Group (1)

One to point out that, in the real world, a hightbulb is never "on" or
"otT." but usually somewhere in between
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The Planning Group (4,
One to define STRIPS-style operators for light bulb changing
One to show that linear planning t' not adequate
One to show that nonlinear planning is adequate
One to show that people dont pt,-.n; they si!r ! 'Y react to lightbuIb

The Rnboti Grup (7)

One to build a vision syi!m to recognize the dead bulb
One to build a vision system to locate a new bulb
One to figure out how to grasp the tighthuth without breaking it
One to figure out the arm solutions that will get the arm to the socket
One to organize the construction Icarus
One to hack the planning sysrer.i
One to indicate how the robot roitnics human motor behavior ;n lightboltichanging

The Knowlede,e Engineering Groin

One to study electricians changing lightbulhs
One to arrange for the purchase of the Lisp machines
One in assurc the customer that this is a hard prohlcui and that great

aelliluplIshniclits in iheiu v will conic from sppi r1 of th is effort

The same one cart negotiate the project budget
One to studv related research
One to indicate how it is a description of human !ughtbulh-changing betiavia ii
one to call the Lisp hackers

Fhe Lisp i1ike'i (7

One to bring up the network
One to Order the Chinese food
Four to hack on the i_Isp debugger, comp iler, witidow ssIem and mucrocodi

One to write the ligti thulbchanglng Program

The Connei (1 1)11 lit (n)u,) (6)

One to claim that lightbulbchangiiig can oniy be achieved through
massive parallelism

One to build a backpiopagation netwott- to direct the robot arm
One to a'sign initial randoin weights to the conuicutIOriS in the ruiuvork

One to jiäIri the network by showiri' t how to change a hghtbulh
(training shall i)flSit of 50)fX0 i eau e&t epochs)

OIC u.w icli the IflediLi !ti;ut the network harris'tust likt a human does'
One to compare the perfomianc of the resulting system with that of

traditional symbolic ap at-hcs foptionali
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The Natural Language Group (5)

One to collect sample utterances from the lighthulb domain
One to build an English understanding program for the lightbulb-changing robot
One to build a speech recognition system
One to tell lightbulb jokes to the robot in between bulb-changing tasks
One to build a language generation component so that the robot

can make up its own lighrbuih jokes

The Learning Group (4)

One to collect twenty lightbtilbs
One to collect twenty "near misses"
One to write a concept learning program that learns to identify lighthulbs
One to show that the program found a local maximum in the space of

lightbulb descriptions

Ihe Game-Playing Group (5)

One to design a two-player game tree with the robot as one player and the
lighthulb as the other

One to write a minimax search algorithm that assumes optimal play
on the part of the lightbulb

One to build special-purpose hardsare to enable 24 plysearch
One to enter the robot in a human lightbulh-changing tournament
One to state categorically that lightbulbch.snging is "no longer considered Al"

The Psv hulogi al Group 5t

One to build an apparatus which will time lightbulh-changing performance
One to gather and run suhjcIc
One to mathematically model the behavior
One to call the expert systems group
One to adjust the resulting system, so that it drops the right number of bulbs


