Part III

Advanced Topics



Chapter 12

Game Playing

12.1 Overview

Games hold an inexplicable fascination for many people. and the notion that computers
might play games has existed at least as long as computers. Charles Babbage, the
nineteenth-century computer architect, thought about programming his Anal ytical En-
gine to play chess and later of building a machine to play tic-tac-toe [Bowden, 1953].
Two of the pioneers of the science of information and computing contributed 1o the
fledgling computer game-playing literaturc. Claude Shannon [1950] wrote a paper in
which he described mechanisms that could be vsed in a program Lo play chess. A few
vears later, Alan Turing described a chess-playing program, although he never built
it. (For a description, see Bowden [1953]) By the early 1960s, Arthur Samue!| had
succeeded in building the first significant, operational game-playing program. His pro-
gram played checkers and, in addition to simply playing the game, could learn from ils
mistakes and improve its performance {Samuel, 1903

Ihere were two reasons that games appeared to bea zood domain in which 1o explore
machine intelligence: '

¢ They provide a structured task in which it 1s very easy to measure success oi

failure.

« [hey did not obviously require large amounts of knowledge. They were thought to
be solvable by straightforward search fiom the starting state 10 a winning position

The firss of these reasons remains valid and accounts for continued interest in the
area of game playing by machine. Unfortunately. the second is not true for any but the
simplest games. For example, consider chess.

e The average branching factor is around 35
» Tn an average game, cach player might make 50 moves

e So in order 1o examine the complete game tree, we would have to examme 35"

positions.
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Thus it is clear that a program that simply does a straightforward scarch of the game tree
will not be able to select even its first move during the lifetime of its opponent. Some
kind of heuristic search procedure is necessary.

One way of looking at all the search procedures we have discussed is that (hey
are essenfially gencrate-and-test procedures in which the testing is done after varying
amounts of work by the generator. At one extreme, the generator generales entire
proposed solutions, which the tester then evaluates. At the other extreme, the generator
generates individual moves in the search space, each of which is then evaiuated by the
tester and the most promising one is chosen. Looked at this way, it is clear that to
improve the effectiveness of a search-based problem-solving program two things can be
done:

= Improve the generate procedure so that only good moves (or paths) are generated.

& Improve the test procedure so that the best moves (or paths) will be recognized
and explored first.

In game-playing programs, it is particularly important that both these things be done.
Consider again the problem of playing chess. On the average, there are aboul 35 legal
moves available at each tum. If we use a simple legal-move generator, then the test
procedure (which probably uses some combination of search and a heuristic evaluaiion
function) will have to look at each of them. Because the test procedure must look at
s0 many possibilities, it must be fast. So it probably cannot do a very accurate job.
Suppose, on the other hand, that instead of a legal-move generator, we use a plausible-
move generator in which only some small number of promising moves are generated.
As the number of legal moves available increases, it becomes increasingly important to
apply heunistics to select only those that have some kind of promise. (So, for example,
it is extremely important in programs that play the game of go [Benson ef al., 1979).)
With a more selective move generator, the test procedure can afford to spend more
time evaluating each of the moves it is given so it can produce a more reliable result.
Thus by incorporating heuristic knowledge into both the generator and the testes, the
performance of the overall system can be improved.

Of course, in game playing, as in other probleia Jomains, search is not the only
available technique. In some games, there are at least some times when more direct
techniques are appropriate. For example, in chess, both openingsand endgames are often
highly stylized, so they are best played by 1able lookup into a database of stored patterns,
Toplay an entire game then, we need (o combine search-oriented and nonsearch-oriented
techniques.

The ideal way 10 use a search procedure to find a solution to a problem is to
generate moves through the problem space until a goal state is reached. In the context
of game-playing programs, a goal statc is one in which we win, Unforunately, for
interesting games such as chess, it 1s not usually possible, even with a good plausible-
move generator, 10 search until a goal state is found. The depth of the resulting tree
(or graph) and its branching factor are 1oo great. In the amount of time available, it
is usually possible to search a tree only ten or twenty moves (called ply in the game.
playing hterature) deep. Then, in order to choose the best move, the resulting board
positions must be compared to discover which is most advaniageous. This is done
using a static evaluation function, which uses whatever information it has to evaluate
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Figure 12.1: One-Ply Search

<o that the best next move can be chosen. But because of their adversanal uature, this
procedure is inadequate for Iwo-person games such as chess. As values are passed back
up, differcnt assumptions must be made at levels where the program chooses the move
and at the allernating levels where the opponent chooses. There are several ways that
this can be done, The most commonly used method is the minimax procedure, which
i described in the next section. An alternative approach is the B* algorithm [Berliner,
1979a)]. which works on both standard problem-solving trecs and on game trees.

12.2 The Minimax Search Procedure

The minimax search procedure is a depth-first, depth-limited search procedure. 1t was
described briefly in Section 1.3.1. The idea is 10 start at the current position and use the
plausible-move generator 1o generate the set of possible successor positions. Now we
can apply the stauc evaluation function to those positions and simply choose the best
ane. After doing so. we can back that value up 10 the starting position (o represent our
cvaluation of it. The starting position is exactly as good for us as the position generated
py the best move we can make next. Here we assume that the static evaluation function
returns large values to indicate good situations for us. so our goal is to maximize the
value of the static evaluation function of the nexl board position.

An example of (his operation is shown in Figure 12.1. It assumes a static evaluation
function that returns values ranging from — 10 to 10, with 10 indicating a win for us,
~ {0 & win for the opponent, and 0 an even match. Since our goal is 1o maximize the
value of the heuristic function, we choose to move 10 B. Racking B's value up 1o A, we
can conclude that A's value is 8, since we know we can move 10 a position with a value
of 8.

Bul since we know that the static evaluation function is not completely accurale, we
would like to carry the search farther ahead than one ply. This could be very important,
for example, in a chess game in which we are i the middie of a piece exchange. After
our move, the situation would appear 1o be very good. but, 1f we look one move ahead,
we will sce that one of our pieces also gets captured and so the situation is not as
favorable as it seemed. So we would like to look ahead lo see what will happen to each
of the new game positions at the next move which will be made by the opponent. Instead
of applying the static evaluation function 1o each of the positions that we just generated,
we apply the plausible-move generalor, generating a set of successor positions for cach
position. [f we wanted to stop here, at two-ply lookahead, we could apply the static
evaluation function to each of these positions, as shown in Figure 12.2



12.2. THE MINIMAX SEARCH PROCEDURE 3

@ (-6) (O 0; -2} -4) -3
Figure 12.2: Two-Ply Search
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Figure 12.3: Backing Up the values of a Two- Ply Search

But now we must take into account that the opponent gets to choose which successon
' moves 0 make and thus which terminal vaiue should be backed up to the nexi level.
Suppose we made move B. Then ihe opponent must choose among moves E, F, and G.
The opponent’s goal is 1o runtmize the value of the evaluation function, so he or she can
be expected to choose move F. This means that if we make move B. the actual positon
in which we will end up ene move later is very bad for us. This is true even though
a possible configuration is that represented by node E. which 1s very good for us. Bul
since at this level we are not the ones to move, we wili not get to choose it Figure 12,3
shows the result of propagating the new values up the tree. At the level representing
the opponent’s choice, the minimum value was chosen and backed up. At the level
representing our choice, the maximum value was chosen

Once the values from the second plv are backed up, it becomes clear thal the corredt
move for us to make at the first level, given the information we have available, 15 C
since there is nothing the opponent can do from there to produce a value worse than --2
This process can be repeaied for as many ply as time allows, and the more accurate
evaluations that are produced can be used 10 choose the comrect move at the top level.
The alternation of maximizing and minimizing at aliernate ply when evaluations are
being pushed back up corresponds to the opposing strategies of the two players and
gives this method the name minimax.

Having described informally the operation of the minimas pracedure, we now
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describe it precisely. It is a straightforward recursive procedure thai relies on two
auxiliary procedures that are specific to the ganic being played:

I. MOVEGEN(Position, Player) -The plausible-move generator, which returns a
list of nodes representing the moves that can be made by Player in Position. We
call the two players PLAYER-ONE and PLAYER-TWO; in a chess program, we
might use the names BLACK and WHITE instead.

2

. STATIC(Puosition, Player)—The static evaluation function, which returns a num
ber representing the goodness of Position from the standpo int of Player.’

As with any recursive program. a critical issue in the design of the MINIMAX
procedure is when 1o stop the recursion and simply cal! the static evaluation function,
There are a variety of factors that may influence this decision. They include:

e Has one side won?

« How many ply have we already explored?
e How promising is this path?

» How much time is left?

« How stable is the configuration?

For the general MINIMAX procedure discussed here. we appeal to a function,
DEEP-ENOUGH, which is assumed to evaluate all of these factors and to return TRUE
if the search should be stopped at the current level and FALSE otherwise. Our simple
implementation of DEEP-ENOUGH will take (wo parameters, Position and Deptly.
It will ignore its Position parameter and simply return TRUE if its Depth parameter
exceeds a constant cutoff value.

One problem that arises in defining MINIMAX as a recursive procedure is that it
needs Lo return not one but two results:

» The bacged-up value of the paih ii chooses.

» The path itself. We return the entire path even though probably only the first
element, representing the best move from the current position, is actually needed.

We assume (hat MINIMAX returns a structure containing bath results and that we
have two functions, VALUE and PATH. that extract the separate componenis.

Since we define the MINIMAX procedure as a recursive function, we must also
specify how it is to be called initially. I takes three parameters. a board position, the
current depth of the search, and the player to move. So the initial call to compute the
best move from the position CURRENT should be

"This ray be a bit confusing. but it need not be. 1n all the examples in this chapter so far (including
Figures 12.2 and 12,3}, we have assumed that ull values of STATIC are from the point of view of the innial
imanimizmg) player. It twms out to be eavier when defining the atgorithm. though. to let STATIC alternue
perspectives s thar we do not need 10 write separme procedures for the two levels. 1L s easy 10 modify
STATIC for this purpuse. we merely compute the value of Posirion from PLAYER-ONE's perspective. then
invert the vilue it STATIC' parameter is PLAYER-TWO.
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MINIMAXY {(CURRENT, 0, PLAYER-ONE)
if PLAYER-ONE is to move, or
MINIMAX (CURRENT, 0, PLAYER-TWO)

if PLAYER -TWO is to move,

Algorithm: MINIMAX(Position, Depth, Player)

1. If DEEP-ENOUGH(Position, Depth’ then retumn the structure
VALUE = STATIC(Posirion, Player),
PATH = nil

This indicates that there is no path from this node and that its value is that
determined by the static evaluation function.

2. Otherwise, generate one more ply of ihe tree by calling the function MOVE
GEN(Position Player) and setting SUCCESSORS to the list it returns.

3, If SUCCESSORS is empty, then there are no moves to be made, so retum the
same structure that would have been returned if DEEP-ENOUGH had returned
true.

4. 1f SUCCESSORS is not empty, then examine each clement in tum aod keep track
of the best one, This i> done as follows,

Initialize BEST-SCORE to the minimum value that STATIC can returmn. Tt will be
updated 10 reflect the best score that can be achieved by an element of SUCCES-
SORS.

For each element SUCC of SUCCESSORS. do the following:

(a) Set RESULT-SUCC 1o
MINIMAX(SUCC, Depth + i, OPPOSITE(Player))’
This recursive call to MINIMAX will actually carry out the exploration of
succ.

(b} Set NEW-VALUE to — VALUE(RESULT-SUCC). This will cause it to reflec:
the merits of the pasition from the opposite perspective from that of the nexi
lower level.

{c) [f NEW-VALUE > BEST-SCORE, then we have found a successor thart is
better than any that have been examined so far. Record this by doing the
following:

i. Set BEST-SCORE 1o NEW-VALIJE.
ii. The best known path is now from CURRENT to SUCC and then on 10
the appropriate path down from SUCC as determined by the recursive

call to MINIMAX. So set BEST-PATH to the resuit of attaching SUCC
to the front of PATH(RESULT-SUCC)



4 CHAPTER 11. GAME PLAYING

3. Now that all the successors have been examined, we know the value of Position
as well as which path to take from it. So return the structure

VALUE = BEST-SCORE
PATH = BEST-PATH

When the initial call to MINIMAX returns, the best move from CURRENT is the
first element on PATH. To see how this procedure works, you should trace its execution
for the game tree shown in Figure 12,2

The MINIMAX procedure just described is very simple. But its performance can be
improved significantly with a few refinements. Some of these are described in the next
few sections. ’

12.3 Adding Alpha-Beta Cutoffs

Recall that the minimax procedure is a depth-first process. One path is explored as far as
time zllows, the static evaluation function is applied to the game positions at the last step
of the path, and the value can then be passed up the path one level at a time. One of the
good things about depth-first procedures is that their efficiency can often be improved by
using branch-and-bound techniques in which partial solutions that are clearly worse than
known solutions can be abandoned early. We described a straightforward application of
this technique to the traveling salesman problem in Section 2.2.1. For that problem, all
that was required was storage of the length of the best path found so far, If a later partial
path outgrew that bound, it was abandoned. But just as it was nccessary 1o modify
our scarch procedure slightly 1o handle both maximizing and minimizing players. 1l is
also necessary to modify the branch-and-bound strategy to include two bounds, one for
each of the players, This modified strategy is called alpha-beta pruning. Tt requires
the maintenance of two threshold values, one representing a lower bound on the value
that a maximizing node may ultimately be assigned (we call this alpha) and another
representing an upper bound on the value that a minimizing node may be assigned (this
we call beta).

Ta see how the alpha-beta procedure works, consider the example shown in Fig-
ure 12,4 Afier examining node F, we know that the opponent is guaranteed a score
of —5 or less at C (since the opponent is the minimizing player). But we also know that
we are guaranteed a score of 3 or greater at node A, which we can achieve if we move to
B. Any other move that produces a score of less than 3 is worse than the move io B, and
we can ignore it. After examining only F, we are sure that a move to C is worse (it will
be less than or equal to —5) regardless of the score of node G. Thus we need not bother
1o explore node G at all. Of course, cuting out one node may not appear to justify the
expense of keeping track of the limits and checking them, but if we were exploring this
tree to six ply, then we would have eliminated not a single node but an entire tree three
ply deep.

To see how the two thresholds. alpha and beta, can both be used, consider the
example shown in Figure 12.5 In searching this tree, the entire subtree headed by B
is searched. and we discover that at A we can expect a score of at least 3. When this

41 this figure, we retum to the use of a single STATIC function from the point of view of the maximizing
player.
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Figure 12.4: An Alpha Cutoff

alpha value is passed down to F, it will enable us to skip the exploration of L. Let’s see
why. After K is examined, we see that [ is guaranteed & maximum score of 0, which
means that F is guaranteed a mimimum of 0. Baut this is less than alpha’s value of 3, s¢
o more hranches of 1 need be considered. The maximizing player already knows not
to choose to move to C and then to | since, if that move is made, the resulting score
will be no better than 0 and a score of 3 can be achieved by moving 10 B instead. Now
let's sce bow the value of beta can be used Afer cutting off further exploration of 1, §
is exanuned. yielding 3 valuc of S, which is assigned as the walue of F (since it 1s the
maximum of $ and 1 This value becomes the value of beta at node C It indicate:
that C is guaranteed to get a 5 or less. Nov ‘we must expand . First M is examined
and it has a value of 7, which 15 passed back o G as its tentative value, But now 7 i
compared (o beta (5). It is greater, and the player whose tum it is at node C 1s trying 1o
minimize. So this player will not choose G, which would lead (o a score of at least 7.
since there is 4n alternative move to F, which will lead to a score of 5. Thus it is not
necessary to explore any of the other branches of G.

From this example, we see that ai maximizing levels, we can cie out a move earty il
it becomes clear that its value will be less than the current threshold, while at munimizing
Jevels, search will be terminated if values that are greater than the current threshold we
discovered. But ruling out a possible move by 2 maximizing player aclually mean<
cutting off thé search at a minimizing level. Leok again at the example n Figure i2.4
Once we determine that C is a bad move from A, we cannot bother to explore G, or any
ather paths, at the minimizing level below C. S0 the way alpha and beta are actually
used is that search at a minimizing level can be terminated when a value less than alpha
is discovered, whilc a search at a maximizing level can be terminated when a value
grealer than beta has been found. Cutiing off search at a maximizing level when a high
value is found may seem counterintuitive at first, but if you keep in mind that we orHy
get to a particular node at a maximizing levei if the minimizing player at the level above
chooses it, then it makes sense.

Having illustrated the operation of alpha-beta pruning with examples, we can now
explore how the MINIMAX procedure described in Section 12.2 can be modified 1
exploil this technique. Notice that at maximizing levels, only beta is used to delermine
whether 1o cut off the search, and at minimizing levels only alpha is used. Bur at
maximizing levels alpha must also be known since when a recursive call is made



316 {'HAPTER 12. GAME PLAYING
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Figure 12.5: Alpha and Beta Cutofls

to MINIMAX. a minimizing level is created, which needs access to alpha. So at
maximizing levels alpha must be known not so that it can be used but so that it can be
passed down the tree. The same is true of minimizing levels with respect to beta. Each
level must receive both values. one to use and one [0 pass down for the next level to use.

The MINIMAX procedure as it stands does not need to treat maximizing and inini
mizing levels difTerently sincc it simply negates evaluations each time it changes levels.
[t would be nice if 2 comparable technique for handling alpha and beta could be founc
so that it would still not be necessary to write scparate procedures for the two players.
This turns out to be easy to do. Instead of referring to alpha and beta, MINIMAX uses
1wo values, USE-THRESH and PASS-THRESH. USE THRESH is used to compuie
cutoffs. PASS-THRESH is merely passed to the next level as its USE-THRESH. Of
course, USE-THRESH must also be passed 10 the next level, but it will be passed as
PASS-THRESH so that it can be passed to the third level down 25 USE-THRESH again,
and so forth. Just as values had to be negated each time they were passed across fevels,
so too must these thresholds be ncgated. This is necessary so that, regardless of the
level of the search, a test for greater than will determine whether a threshold has been
crossed. Now there need still be no difference between the code required at maximizing
levels and that required at minimizing ones.

We have now described how alpha and beta values are passed down the tree. 1n
addition, we must decide how they are to he sel. To see how to do this, let's return first
to the simple example of Figure 12.4. At a maximizing level, such as that of node A,
alpha is set 10 be the value of the best successor that has yet been found. (Notice that
although at maximizing levels it is beta that 1s used to determine cutoffs, it is alpha
whose new value can be computed. Thus at any level, USE-THRESH will be checked
for cutoffs and PASS-THRESH will be updated to be used later.) But if the maximizing
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node is not at the top of the tree, we must also consider the alpha value that was passed
down from a higher node. To see how this works, look again at Figure 12.5 and consider
what happens at node F. We assign the value 0 to node I on the basis of examining
node K. This is so far the best successor of F. But from an earlier exploration of the
subtree headed by B, alpha was set to 3 and passed down from A to F. Alpha should
not be reset to 0 on the basis of node 1. It should stay as 3 1o reflect the best move found
<o far in the entire tree, Thus we see that at a maximizing tevel, alpha should be set to
either the value it had at the next-highest maximizing level or the best value found at
this level, whichever is greater. The corresponding statement can be made about heia
at minimizing levels. Tn fact, what we want 10 say is that at any level, PASS-THRESH
should always be the maximum of the value 1t inherits from above and the best move
found at its level. If PASS-THRESH is updated, the new value should be propagated
both down to lower levels and back vp 10 higher ones so that it always reflects the best
move found anywhere 1 the tree.

Al this point, we notice that we are doing the same thing in computing PASS-
THRESH that we did in MINIMAX to compute BEST-SCORE. We might as well
eliminate BEST-SCORE und let PASS-THRESH serve in its place.

With these observations. we are in a position (o describe the operation of the function
MINIMAX-A-B, which requires four arguments, Pasition. Depth, Use-Thresh, and
Pass-Thresh. The initial call. to choose a move for PLAYER-ONE from the position
CURRENT, should be

MINIMAX-A-B(CURRENT
0,
PLAYER-ONE,
maximum value STATIC can compute
minimam value STATIC can compuiei

These initial values for i/se-Thresh ané Pass-Thresh represent the worst vaiies that
zach side could achieve.

Algorithm: MINIMAX-A-B(Pusition, Depth, Player. Use-Thresh, Pass-Thresh)

i If DEEP-ENOUGH(Position. Deprh)_thenelum the Siructurc

VALUE = STATIC(Puosition, Player),
PATH =ml

ra

. Otherwise, generaie one more ply of the tree by calling the funcuon MOVE-
GEN(Position. Player) and setting SUCCESSORS 1o the list it returns.

3. If SUCCESSORS is empty. there are ne moves lo be made; relurn the same
structure that would have been retumed if DEEP-ENOUGH had returned TRUE

4. 1f SUCCESSORS is not empty, then go through it, examining cach element and
keeping track of the best one. This is done as follows.

For cach element SUCC of SUCCESSORS:
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(a) Set RESULT-SUCC o

MINIMAX-A-B(SUCC, Depth + 1, OPPOSITE(Player).

—Pass-Thresh, —Use-Thresh).

(b) Set NEW-VALUE to — YALUE(RESULT-SUCC).

(¢) If NEW-VALUE > Pass-Thresh, then we have found a successor that is
better than any that have been examined so far. Record this by doing the
following.

1. Set Pass-Thresh to NEW-VALUE.

ii. The best known path is now from CURRENT to SUCC and then on to
the appropriate path from SUCC as determined by the recursive call to
MINIMAX-A-B. So set BEST-PATH to the result of attaching SUCC
to the front of PATH(RESULT-SUCC).

(d) If Pass-Thresh (reflecting the current best value) is not better than Use-
Thresh, then we should stop examining this branch. But both thresholds and
values have been inverted. So if Pass-Thresh >= Use-Thresh, then return
immediately with the value

VALUE = Pass-Thresh

PATH = BEST-PATH

5. Rewurn the structure
VALUE = Pass-Thresh
PATH = BEST-PATH

The effectiveness of the alpha-beta procedure depends greatly on the order in which
paths are examined. If the worst paths are examined first, then no curoffs ar all will occur.
But, of course, if the best path were known in advance so that it could be guaranieed to
be examined first, we would not need to bother with the search process. If, however, we
knew how effective the pruning technique is in the perfect case, we would have an upper
bound on its performance in other situations. It is possible to prove that if the nodes are
perfectly ordered, then the number of terminal nodes considered by a search to depth
using alpha-beta pruning is approximately equal to twice the number of terminal nodes
generaled by a search 1o depth d/2 without alpha-beta [Knuth and Moore, 1975]. A
doubling of the depth to which the search can be pursued is a significant gain. Even
though all of this improvement cannot typically be realized, the alpha-beta technique is
a significant improvement to the minimax search procedure. For a more detailed siudy
of the average branching factor of the alpha-beta procedure, see Baudet [1978) and Pearl
[1982].

The idea behind the alpha-beta procedure can be exiended to cut off additional paths
that appear to be at best only slight improvements aver paths that have already been
explored. In step 4(d), we cut off the search if the path we were exploring was not better
than other paths already found. But consider the situation showu in Figure 12.6. After
examining node G, we see that the best we can hope for if we make move C is a score
of 3.2. We know that if we make move B we are guaranteed a score of 3. Since 3.2 is
only very slightly better than 3, we shouid perhaps terminate our exploration of C now,
We could then devote more time to exploring other parts of the tree where there may be
more to gain. Terminating the exploration of a subtrec that offers little possibility for
improvement over ather known paths is called a furility cutaff.
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Figure 127" The Bepmning of = Searcr.

12.4 Additional Refinements

In addition to alpha-beta pruning, there are a variety of other maodificavons 16 the
minimax procedure that can also improve its performance. Four of them are discussed
briefly in this section. and we discuss one other important modification in the next
section.

12.4.1 Waiting for Quiescence

As we suggested above, one of the factors that should sometimes be considercd in
determining when io siop going deeper in the search tree is whether the situation is
relanvely stable. Consider the (ree shown in Figure 12.7. Suppose that when node Bis
expanded one more level, the result is that shown in Figure 12.8. When we looked one
move ahead. our estimate of the worth of B changed drastically. This might happen, for
example, in the middle of a picce exchange. The opponent has significantly improved
the immediate appearance of his or her position by initiating a piece exchange. If we
stop exploring the tree at Lhis jevel, we assign the value —4 to B and therefore decide
that B is not a good move.

To make sure that such shori-term measures do not unduly influence our choice of
move, we shouid continue the search until no such drastic change occurs from one level
to the next. This is called waiting for quiescence. If we do that, we might get the
situation shown in Figure 12.9. in which the move (0 B again looks like a reasonable
move for us to make since the other half of the picce exchange has occurred. A very
general algorithm for quiescence can be found in Beal {1990).



320 CHAPTER 12 GAME PLAYING
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Figure 12.9: The Situation Calms Down

Waiting for quiescence helps in avoiding the horizon effect, in which an inevitable
bad event can be delayed by various tactics until it does not appear in the portion of
the game tree that minimax explores. The horizon effect can also influence a program’'s
perception of good moves. The effect may make a move look good despite the fact
that the move might be better if delayed past the horizon. Even with quiescence, all
fixed-depth search programs are subject to subtle horizon effects.

12.4.2 Secondary Search

One good way of combating the horizon effect is to double-check a chosen move to
make sure that a hidden pitfall does not exist a few moves farther away than the original
search explored. Suppese we explore a game tree 10 an average depth of six ply and,
on the basis of that search, choose a particular move. Although it would have been too
expensive 10 have searched the entire tree 1o a depth of eight, it is not very expensive to
search the single chosen branch an additional two levels to make sure that it still looks
goed. This technique is called .sﬂpndary search.
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One particularly successful form of secondary search is cailed singular extensions.
The idca behind singular extensions is that if a leaf node is judged to be far superior 10 1ts
siblings and if the value of the entire search depends critically on the correctness of thal
node’s value, then the node is expanded one exira ply. This technique allows the search
program to concenirale on ractical, forcing combinations. It employs a purely syntactic
criterion, choosing inicresting lines of play without recourse 10 any additional domain
knowledge. The DEEP THOUGHT chess computer | Anantharaman cf al.. 1990) ha.
used singular extensions to great advantage, finding mudgame mating combinations 8-
long as thirty-seven moves, an impossible feat for i xed-depth minimax.

1243 Using Book Moves

For compiicated games 1aken as wholes, it is, of course, not feastbie 10 select 8 move
by simply looking up (e current game configuration in a catalogue and extracting the
correct move. The catalogue would be immense and ne one knows how Lo construc!
it. But for some segments of some games, this approacii is reasonable. In chess, for
example, both opening sequences and cndgame sequences are highly stylized. In these
situations, the performance of a program can often be considerably enhanced if s
provided with a list of moves (called book moves) that shou!d be made. The use of ook
moves in the onening sequences and endgames, combined with the use of the mininias
search procedure for the midgame, provides a good example of the way that knowledpe
and seaich can be combined in a single program (o produce more cffective results than
could gither welmique on its own.

12.4.4 Alternatives to Minimax

Even with the refinements above. minimax still has some probleindic uspee For
instance, it relies heavily on the assumption that the opponent will always choos. e
optimal move. This assumption is acceptable in winning situations where a move that
is guaranteed o be good tor us can be found, But, as suggested in Berdiner | 1977], 1 4
Josing situation it might be better 10 1ake the risk that the opponent will make a mistake
Suppose we sl choose between two moves. both of which. if the opponent play+
perfectly, lead (o situations that are very bad for us. but one is slightly less bad than
the other. But further suppose that the less promising move could lead 10 a very good
ruation for us if the opponent makes a single mistake. Although the minimax proceduiv
w~ould choose the guaranteed bad move, we ought instead to choose the other one, whict:
is probably slightly worse but possibly a lot better. A similar situation arises when onc
move appears to be only slightly more advantageous than another, assuming that the
opponent plays perfectly. it might be better to choose the less advantageous move if
it could lead to a significanly superior situation if the opponent makes a mistake. 1o
make these decisions well, we must have access to a model of the individual opponent &
playing style so that the likelihood of various mistakes can be estimated. But this is
very hard to provide.

As a mechanism for propagating estimates of position strengths up the game tree.
minimax stands on shaky theoretical grounds. Nau [1980] and Pearl [1983] have
demonstrated thar for certain classes of game trees, €.8., uniform trees with random
(erminal values, the deeper the scarch, the poorer the result obtained by minimaxing.
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Iteration 1. Iteration 2.
Iteration 3. Tteration 4.

Figure 12.10: Iterative Decpening

This “pathological” behavior of amplifyingerror-prone heuristic estimates has not been
observed in actual game-playing programs, however. It seems that game trees containing
won positions and nonrandom distributions of heuristic estimates provide environments
that are conducive o minimaxing.

12,5 Iterative Deepening

A number of ideas for searching two-player game trees have led to new algorithins
for single-agent heuristic search, of the type described in Chapter 3. One such idea is
iterative deepening. ariginally used in a program called CHESS 4.5 [Slate and Atkin,
1977]. Rather than searching to a fixed depth in the game tree, CHESS 4.5 first searched
only a single ply, applying ils static cvaluation function to the result of each of its
possible moves. It then initiated a new minimax search. this time 1o a depth of two ply.
This was followed by a three-ply search, then a four-ply search, etc. The name “iterative
decpening” derives from the fact that on each iteration, the tree is searched one level
deeper. Figure 12,10 depicts this process.

On the face of it, this process scems wasteful. Why should we be inlerested n any
iteration except the final one? There arc several reasons. First, game-playing programs
are subject 1o time constraints. For example, & chess program may be required to
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complete all its moves within two hours. Since it is impossible 1o know in advance
how long a fixed-depth tree search will take (because of variations in pruning efficiency
and the need for selective search), a program may find itself running out of time. With
iterative deepening. the current search can be aborted at any time and the best move
found by (he previous iteration can be played. Perhaps more imporantly, previous
iterations can provide invaluable move-ordering constraints. If one mave Wis judged
to be superior to its siblings in a previous iteration. it can be searched first in the
next iteration. With effective ordering, the alpha: beta procedure Cin prune many more
branches. and total search time can be decreased drasticaily. This allows more time {or
deeper iterations.

Years after CHESS 4.5's success with iterative decpesing, it wiss noticed [Korf,
|985a] that the techmque could also be applied effectively to single-agent search to solve
problems like the 8 pyzzie. In Section 2.2.1, we compared two types of uninformed
search, depth-first search and breadth-first scarch. Depth-first search was efficient
terms of space but required some cutoff depth 1n order to force backtracking when 3
solution was not found. Breadth-first scarch was guaranteed to find the shortest solution
path but required inordinate amounts of space because all leef nodes had to be kept in
memory. An algorithm called depth-fiist iterative deepemng (DFID} combines the bes
aspects of depth-first and breadth-first search

Algorithm: Depth-First Ierative Deepening
. Set SEARCH-DEPTH = |

2. Conduct a depth-first search 10 a depth of SEARCH-DEPTH. 11 a soiution path
is found, then retum it.

1. Oxtherwise ncrement SEARCH-DEPTH by 1 ana go 1o step 2z

Clearly, DFIT: will find the shortest solution path to the goal state. Moreover, the
maximum amount of memors ased by DFID is proportional to the number of nodes mn
that solution path. The only disturbing fact is that all iterations but the final one arc
ecsentially wasted {lowever, this is not a serious problem, The reason is that most of the
activity during any givea ileration occurs at the leaf-nede level. Assuming a complete
tree. we sct that there arc as many leaf nodes at level n as there are tofal nodes in levels !
through . Thus, the work expended during the nth iteration is roughly equal to the
work expended during all previous iterations. This means that DFID is only slower than
depth-first search by a constant factor. The problem with depth-first search is that there
is no way 1o know in advance how deep the solution lies in the search space. DFID
avoids the problem of choosing cutoffs without sacrificing efficiency, and, in fact, DFID
is the optimal algorithm (in terms of space and time) for uninformed search.

But what about informed, heuristic search? lterative deepening can also be used w
improve the performance of the A* scarch algorithm [Korf, 1985a]. Since the major
practical difficulty with A* is the large amount of memory it requires to maintain the
<earch node lists, iterative deepening can be of considerable service.

Algorithm: Iterative-Deepening-A®
i. Set THRESHOLD = the heuristic evaluation of the start state.
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2. Conduct a depth-first search, pruning any branch when its total cost function
(g + i) exceeds THRESHOLD.® If a solution path is found during the search,
return it.

3. Otherwise, increment THRESHOLD by the minimum amount it was exceeded
during the previous step, and then go 1o Step 2.

Like A*, terative-Deepening-A* (IDA*) is guaranteed 10 find an optimal solution.
provided that 4" is an admissible heuristic. Because of its depth-first search technique,
IDA* is very efficient withrespect to space, IDA* was the first heuristic search al gorithm
to find optimal solution paths for the 15-puzzle (a 4x4 version of the 8-puzzle) within
reasonable time and space constraints.

12.6 References on Specific Games

In this chapter we have discussed search-based techniques for game playing. We
discussed the basic minimax algorithm and then introduced a series of refinements 1o
it. But even with these refinements, it is still difficult to build good programs to play
difficult games Every game, like every Altask, requires a careful combination of search
and knowledge.

Chess

Research on computer chess actually predates the ficld we call artificial intelligence.
Shannon [1950] was the first to propose a method for automating the game, and two
early chess programs were written by Greenblatt et al. [1967] and Newell and Simon
[1972).

Chess provides a well-defined laboratory for studying the trade-off between knowi-
edge and search. The more knowledge a program has, the less searching it needs 1o do.
On the other hand, the decper the search, the less knowledge is required. Human chess
players use a great deal of knowledge and very little search—they typically investigale
only 100 branches or so in'deciding a move. A computer, on the other hand, is capabie
of evaluating millions of branches. Its chess knowledge is vsually limited 1o a staric
evaluation function. Deep-searching chess program: have been calibrated on exercise
problems in the chess literature and have even discovered errors in the official human -
analyses of the problems. '

A chess player, whether human or machine, carries a numerical rating that tells how
well it has performed in competition with other players. This rating lets us evaluate in
an absolute sense the relative trade-offs between search and knowledge in this domain.
The recent trend in chess-playing programs is clearly away from knowledgeand toward
faster brute force search. It tumns out that deep. full-width search (with pruning) is
sufficient for competing at very high levels of chess. Two examples of highly rated
chess machines are HITECH [Berliner and Ebeling, 1989] and DEEP THOUGHT
[Anantharaman er al., 1990], both of which have beaten human grandmasters and both

5 Recall that & stands for the cost 2o far in reaching the current node, and &' s1ands for the heuristic estimate
i the disiance from the node 10 the goal
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of which use custom-built parallel hardware to speed up legal move generation s
heuristic evaluation.

Checkers

Waork on computer checkers began with Samue! [ 1963]. Samuel’s program had an inter-
esting learming component which allowed its performance 10 improve with expericnce
Uliimalely, the program was able 1o beat itsauthy We look more closely at the leaming

mechanisms used by Samuel in Chapter 1%

Guo

Gu is a very difficult game to play by machine since the averags branching factor oi
the game tree is very high. Brute force scarch, therefore, is not as affcctive as 1ts in
chess. Human go players make wp for their inability 1o search deeply by uwng a great
deal of knowledge about the game U is prabable tha go-playing program: must also
be knowledge-based, since today’s brute-force programs cannoi Compele W ith humans.
For a discussion of some of the issues involved. see Wilcox [198%]

Backgammon

Unlike chess, checkers, and go, a backgammon prograun must choose (15 maves vith
incomplete information aboul what may happen I ali the possible dice rolls are
considered, the number of alternatives at each level of the search is huge. With current
computational power, it is impossibie to search more than a few ply ahcad. Such &
cearch will nat expose the strengths and weaknesses of coviplex blocking positions.
so knowledge- iatensive methods must be used. One program that uses such methods
s BKG Berliner | 19801, BKG actually does no searching at all but relies instead on
positionai understunding and understanding of how ils goals should change for vanous
phases ol play. Like us chess-playing cousins, BKG has reached high levels of plav
even beating a human world champion in a short match

NEUROGAMMON [ Tesaure and Sejnowski, 1989] 1s another interesting buckgam
mon program 18 is based oo a neurat network model that learns from experienc
Neurogammon is one of the few comperinive game-playing programs that relies heaviiy
on automatic learning.

Othello

Othello is a popular hoard game that 1s played on an &x8 grid with bi-colored pieces
Although computer progranis lhave already achieved world-championship level play
[Rosenbloom, 1952 Lee and Mahajan. 1990]. humans continue 1o study the game and
ynternational tournaments are held regulardy. Computers are not permitied 1o compete
i these tournaments. but it is believed that the best programs are stronger than the besl
humans. High-performunce Othello programs rely on fast brute-force search and 1uble
lockup,

The Othello experience may shed some light on the future of computcy chess. Will
top human players in the future study chess games beiween World Champion computers
in the same way that they study classic human erandmaster matches today” Perhaps 1l
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will turn out that the different search versus knowledge trade- offs made by humans and
computers will make it impossible for either of them 1o benefit from the experiences of
the other. ’

Others

Levy [1988] contains a number of classic papers on computer game playing. The papers
cover the games listed above as well as bridge. scrabble, dominocs, go-moku, hearts,
and poker.

12.7 Exercises

I. Consider the following game tree in which static scores are all from the first
player’s point of view:

(M © @ 3 @ G O (2 6 2 G & O (2
Suppose the first player is the maximizing player. What move shonuld be chosen?

2. In the game tree shown in the previous problem, what nodes would not need to
be examined using the alpha-beta pruning procedure?

3. Why does the search in game-playing programs always proceed forward from the
current position rather than backward from a goal state?

4. Is the minimax procedure a depth-first or breadih-first search procedure?

5. The wnnimax algorithm we have described searches a game tree. But for some
games, it might be better to search a graph and to check, each time a position
1s gencraied, if it has been generated and evaluated before.  Under what cir-
cumstances would this be a good idea? Modify the minimax procedure to do
this.

6. How would the minimax procedure have 1o be modified 1o be used by a program
plaving a three- or four-person game rather than a two-person one?
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7. In the context of the search procedure described in Scction 12.3. does the ordering
of the list of successor positions created by MOVEGEN matter? Why or why not?
If it does matter, how much does it matter (i.c., how much effort is reasonable for

ordering it)?

4. Implement the alpha beta search procedure. Use itto play a simple game such =
tic-tac-toc.

9. Apply DFID to the waler jug problem ot Section 2.}



Chapter 13

Planning

In order to solve most nontrivial problems. it is necessary 10 combine some of the basic
problem-solving strategies discussed in Chapter 3 with one or more of the knowledge
representation mechanisms that have just been presented. It is often also useful to divide
the problem that must be solved into smaller pieces and Lo solve thage pieces separately,
10 the extent that that is possible. In this chapter, we describe several techniques for
doing this in order to construct plans for solving hard problems.

13.1 Overview

In Chapter 2, we described the process of problem solving as a search through a state
space in which cach paint corresponded 1o & situation that might arise. The scarch
started with an initial situation and pertormed a sequence of allowable operations until
a situation corresponding to a goal was reached. Then, in Chapter 3, we described a
variety of ways of moving through such a search space in an attempt o find a solution
to a particular problem. For example, the A* algorithm provides & way of conducting
a best-first search through a graph representing a problem space. Each node that is
examined in the A* algorithm represents a description of a complete problem state,
and each operator describes a way of changing the total state description. For simple
problems, such as, say, the 8-puzzle, manipulating the comp lete stale description al one
time is easy and reasonable.

However, for mere complicated problem domains, it becomes important to be able 1o
work on small pieces of a problem separately and then to combine the partial solutions
at the end into a complete problem solution. Unless we can do this, the number of
combinations of the states of the components of a problem becomes too large to handlc
in the amount of time available. There are two ways in which it is important to be able
to perform this decomposition.

First of all, we must avoid having to recompute the entire problem staie when we
move from one state to the next. Instead, we want Lo consider only that part of the
state that may have changed. For example, if we move from one room to another, this
does not affect the locations of the doors and the windows in the two rooms. The frame
problem, which is the problem of how (o determine which things change and which do

329
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not, becomes increasingly important as the complexity of the problzm state increases. It
is not difficult to figure out how the state of the 8-puzzle should change after every move,
nor is it a lot of work to record explicitly a new copy of the state with the appropriate
changes made. Our rules for moving from one state to another can simply describe how
one entire board position should be transformed into another.

But if we are considering the problem of guiding a rubot around an ordinary house,
the situation is much more complex. The description of a single state is very large since
it must describe the location of each object in the house as well as that of the robot. A
given action on the part of the robot will change only a small part of the total state. If
the robot pushes a table across the room, then the locations of ihe table and all of the
objects that were on it will change. But the locations of the other objects in the house
wiil not. Instesd of writing rules that describe ransformations of one =ntire state into
another, we would like to write rules that describe only the affected parts of the state
description. The rest of the description can then be assumed (o stay constant.

The second important way in which decomposition can make the solution of hard
problems easier is the division of a single difficult problem into several, hopefully easier,
subproblems, The AO* algorithm provides a way of doing this when it is possible to
decompose the oniginal problem into completely separate subproblems. Although this
is sometimes possible, it often is not. Instead, many problems can be viewed as
nearly decomposable [Simon, 1981}, by which we mean that they can be divided into
subproblems that have only a small amount of interaction. For example, suppose that
we want to move all the furniture out of a room. This problem can be decomposed
into a set of smaller problems, each involving moving one piece of furniture out of
the room. Within each of these subproblems, considerations such as removing drawers
can be addressed separatcly for each picce of furniture. But if there i1s a bookcase
behind a couch, then we must move the couch before we can move the bookcase. To
solve such nearly decompasable problems, we would like a method that enables us to
work on each subproblem separately, using techniques such as the ones we have already
studied, and then to record potential interactions among subproblems and to handle them
appropriately.

Several methods for doing these two kinds of decompaosition have been proposed
and we investigate them in this chapler. These metheds focus on ways of decomposing
the original problem into appropriate subparts and on ways ot recording and handling
interaciions among, the subparts as they are detected during the problem-solving process.
The use of these methods is often called planning.

In everyday usage, the word planning refers 1o the process of computing several
steps of a problem-solving procedure before executing any of them. When we describe
computer problem-solving behavior, the distinction between planning and doing fades
a bit since rarely can the computer actually do much of anything besides plan. In
solving the B-puzzle, for example, it cannot actually push any tiles around. So when
we discussed the computer solution of the 8-puzzle problem, what we were really doing
was outlining the way the computer might generate a plan for solving it. For problems
such as the 8-puzzle, the distinction between planning and doing is unimponant.

But in other situations, the distinction may be critical. Recall that in Chapter 2
one of the problem characteristics we discussed was whether solution steps could be
ignored or undone if they prove unwise. If they can, then the process of planning a
complete solution can proceed just as would an sttempt to find a solution by actually
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trying particular actions. If & dead-end path is detected, then a niew one can be explored
by backtracking to the last choice point. So, for example, in solving the 8-puzzle, a
computer could look for a solution plan in the same way as a person who was actually
trying to solve the problem by moving tiles on a board. 1If solution steps in the real world
cannot be ignored or undone, though, planning becomes extremely important. Although
real world steps may be irrevocable, compuier simulation of those sieps is not. So we
can circumvent the constraints of the real world by looking for a complete solution in
a simulated world in which hacktracking is allowed. Alter we find a solution, we can
execuie it in the real world.

The success of this approach, however, hunges on anuther characteristic of a prob-
fem's domain: ls its universe prediciable? 1f we look for a solation to a problem by
actually carrying oul sequences of operaiions, then at any step of the process we can
be sure of the outcome of that step; il is whatever happened. Butin an unpredictable
universe, we cannot know the outcome of 2 solution step if we are only simulating it
by computer. At best, we can consider the set of possible outcomes. possibly in some
order according to the likelihood of the vutcomes occurring. But then when we produce
a plan and attempt to execute it, we must be preparcd in case the actual outcome 18 not
what we expected. 1f the plan included paths for all possible oulcomes of each step,
then we can simply traverse the paths (hat wurn outic be appropriate. But often there are
a greal many possible outcomes, most of which ure highly unhkely In such situations.
it would be a great waste of effort 10 formulate plans for all contingencies.

Instead, we have twn choices. We can just take things one step at a time and pot
really try Lo plan ahead This is the approach that is taken 1n reactive sysrems, which
we will describe in Section 13,7, Our other choice is 1o produce a plan that 15 likely to
succeed. But then what should we doit i fails? One possibility 1s simply to throw awuy
the rest of the plan and start the planning process over, using the current situation as the
new initial state. Sometimcs, this 1s & reasonable thing io do.

But often the unexpected conscquence does not invalidate the entire rest of the plan.
Perhaps a small change, <uch as an additional step, is all that is necessary (o make it
possible for the rest of the plan to be useful. Suppose, for example, that we have a plan
for baking an angel food cake. It involves separating some CggS. While carrying out
the plani, we turn out 1o be slightly clumsy and one of the egg volks falls into the dish
of whites. We do not need to create a completely new plan (unless we decide to settle
for some other kind of cake). Instead, we simply redo the egg-separating step Uil
we get it right and theni continue with the rest of the plan. This is particularly true for
decomposable or nearly decomposable problems. 1f the final plan is really a composite
of many smaller plans for solving a set of subproblems, then if one step of the plan fails,
the only part of the remaining plan that can be affected is the rest of the plan for solving
that subproblem. The rest of the plan is unrelated to that step. If the problem was only
partially decomposable, then any subpians that interact with the affected one may also
be affected. So, just as 1t was important during the planning process 10 keep track of
interactions as they arise, it is important to record informaticn about interactions along
with the final plan so that if unexpected events occur al execution time. the interactions
can be considered during replanning.

Hardly any aspect of the real world is completely prediciable. So we must always
be prepared to have plans fail. But, as we have just seen, if we have built our plan by
decomposing our problem into as many separate (or nearly scparate) subproblems as
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possible, then the impact on our plan of the failure of one particular step may be quite
local, Thus we have an additional argument in favor of the problem-decomposition
approach to problem solving. In addition to reducing the combinatorial complexity of
the problem-solving process, it also reduces the complexity of the dynamic plan revision
process that may be required during the execution of a plan in an unpredictable world
(such as the one in which we live).

In order 1o make it easy to patch up plans if they go awry at execution time, we will
find that it is uscful during the planning process not only to record the steps that are i¢
be performed but also to associate with each step the reasons why it must be performed,
Then, if a step fails, it is easy, using techniques for dependency-dirccied backiracking,
to determine which of the remaining parts of the plan were dependent on it and so may
need o be changed. If the plan-generation process proceeds backward from the desired
goal state, then it is easy to record this dependency information. If, on the other hand,
it proceeded forward from the start state, determining the necessary dependencies may
be difficult. For this reason and because, for most problems, the branching factor is
smaller going backward, most planning systems work primarily in a geal-directed mode
in which they search backward from a goal state to an achicvable initial state,

In the next several sections, a variety of planning techniques are presented. All
of them, except the last, are problem-solving methods that rely heavily on problem
decomposition. They deal (1o varying degrees of success) with the inevitable interactions
among the components that they generate.

13.2 An Example Domain: The Blocks World

The techniques we are about to discuss can be applied in a wide variety of task domains,
and they have been. But to make it easy 10 compare the variety of methods we consider,
we should find it useful to look at all of them in a single domain that is complex enough
that the need for each of the mechauisms is apparent yer simple enough that easy-io-
follow examples can be found. The blocks world is such a domain. There is a flat surface
on which blocks can be placed. There are a number of square blocks, all the same size.
They can be stacked one upon another. There is a robot arm thal can manipulate the
blocks. The actions it can perform include:

o UNSTACK(A, B)—Pick up block A from i1s current position on block B, The
arm must be empty and block A must have no blocks on 1op of it

* STACK(A, B)—Place block A on block B. The arm must already be holding A
and the surface of B must be clear.

» PICKUP(A}--Pick up biock A from the table and hold it. The arm must be empty
and there must be nothing on tep of biock A.

e PUTDOWN(A)-~Put block A down on the table. The arm must have besn holding
block A.

Notice that in the world we have described, the robot arm can hold only one block at
a time. Also. since all blocks arc the same size, each block can have at most one other
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black directly on top of it.!
In order to specify both the conditions under which an operation may be performes
and the results of performing it, we need to use the following predicates: ¥

» ON(A, B)—Block A is on block B

« ONTABLE(A)—Block A is on the table

+ CLEAR(A)— There is nothing on top of block A
« HOLDING(A}— The arm is holding block A.

« ARMEMPTY—The amm is holding nothing.

Various logical statements are truz i thus blocks worid. For example,

{3x : HOLDING(x)] - ~ARMEMPTY
Vi . ONTABLE(x) — =3y : ON(x, y}
¥x : [=3y : ON(v, x)] = CLEAR(Y)

Vhe first of these statements says simply that if the arm is holding anything, then it
.« notempty The second says that if a block 15 on the table, then 1t is not also on enother
Slock Tre therd says that any block with ne blacks on it is clear.

:3.3  Components of a Planning System

In problem-solving systems based on the elementary lechnigues discussed in Chapter Fis
it was necessary to perform each of the foliowing fu nctions:

« Choose the best rule to apply next based on the bestavailable heuristic information.

« Apply the chosen rule to compute the new problem staie that arises from its
application.

e Detect when a solution has been found.

» Detect dead ends so that they can be abandoned and the system’s effort direcied
in more fruitful directions,

In the more complex systems we are aboul to explore, technigues for doing cach of
these tasks are also required. In addition, a fifth operation is often imporant:

e Detect when an almost correct solution has been found and employ special tech-
nigues 1o make :l totally correct.

Before we discuss specific planning methods, we need to look briefly at the ways i
which each of these five things can be done.

! Actually, by caefyl aligament, two blocks could he placed an 1op of one, but we ignore that pozsibality
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n ON(A, B, S0) A
B ONTABLE(B. 50) A
CLEAR(A, 50)

Figure 13.1: A Simple Blocks World Description

Choosing Rules to Apply

The most widely used technique for selecting appropriate ri:les to apply 1s first to 1solate
a set of differences between the desired goal state and (e current state and then to
identify those rules that arc relevant to reducing those differcnces. If several rules are
found. a variety of other heuristic information can be expl~ited (o choose among them.
This technique is based on the means-ends analysis method (recall Chapter 3), For
example, if our goal is to have a white fence around our yard and we currently have
a brown fence, we would select operators whose result involves a change of color of
an object. If, on the other hand, we currently have no fence, we must first consider
operators that involve constructing wooden objects.

Applying Rules

In the simple systems we have previously discussed, applying rules was easy. Each rule
simply specified the problem state that would result from its application. Now, however,
we must be able to deal with rules that specify only a small part of the complete problem
state. There are many ways of doing this.

One way is to describe, for each action, each of the changes it makes to the state
description. In addition, some statement that everything clse remains unchanged is also
necessary. An example of this approach is described in Green [1969]. In this system,
a given slale was described by a set of predicates representing the facts that were truc
in that state. Each distinct state was represented explicitly as part of the predicate, For
example, Figure 13,1 shows how a state, called S0, of a simple blocks world problem
could be represented.

The manipulation of these state descriptions was done using a resolution theorem
prover. So, for example. the effect of the operator UNSTACK(x, v) could be described
by the following axiom. (In all the axioms given in this section all variables are
universally quantified unless otherwise indicated.)

ICLEAR(x, 5) A ON(x, v, )] =
|HOLDING(x, DO(UNSTACK(x, v), 523 1
CLEAR(y, DO(UNSTACK(x. v). 5)}]

Here, DO is a function that specifies, for a given state and 8 giver aciion, the new
state that results from the execution of the action. The axiom siates that if CLEAR(x)
and ONiv, ») both hold in state 5, then HOLDING(x) and CLEAR(y} will hold in the
state that results from DOing an UNSTACK(x, v), starting in state s

If we execute UNSTACK(A, B) 1n slate 50 as defined above, then we can prove.
using our assertions about SO and our axiom about UNSTACK, shat ip ihe state that
results from the unstacking operation (we call this state S1)
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HOLDING(A. S1) A CLEAR(B,S1)

But what else do we know aboul the situation in stute 517 intuinvely, we know
that B is still on the table. But with what we have so far, we cannot derive it. To enable
us 1o do so, we need also to provide a set of rules. called frame axioms, that describe
components of the state that arc not affected by cach operator. So. forcxample, we need
16 say that

ONTABLE(-, 5) = ONTABLE(:, DO(UNSTACK(x, ¥). 5))

‘This axiom says that the ONTABLE relationis never affected trymiee UNSTACK operator
We also need to say that the ON relaticn is only affected by the UNSTACK operator if
the blocks invulved in the ON relation are the same ones nvolved in the UNSTACK
operation. This can be said as

[ON(m, 1, 3} A EQUAL{m. x)] = ON(m, n, DOGUNSTACK(x, y). 8)}

The advamage of this approach is thar a single mechanism, resolution, can pertorm
ail the operations that are required on state descriptions. The price we pay for this,
however, is that the number of axioms that are required becomes very large it the
problem-state descriptions are complex. For example, suppose that we arc interested
not only in the positions of our blocks but alse in their color. Then, for every operation
{except possibly PAINT). we would need an axiom such as the following.

COLOR(x, ¢. 5) — COLOR(x, ¢, DO(UNST. ACK(y, 2), 8))

To handie complex problem domains, we need a mechanisin that does not require a
jarge number of explicit frame axioms. One such mechanism is that used by the early
robot problem-solving system STRIPS [Fikes and Nilsson, 1971] and its descendants.
{n this approach, cach operation is described by a list of new predicates that the operator
causes to become true and a list of old predicates that il causes to become false. These
two lists are called the ADD and DELETE lists, respectively. A third list must also
be specified for each operator. This PRECONDITION list contains those precicates
that must be true for the operator to be applied. The frame axioms of Green's sysiem
are specified implicitly in STRIPS. Any predicate not included on either the ADD or
DELETE list of an operater is assumed to be unaffected by it. This means that. in
specifying each operator, we need not consider aspects of the domain that are unrelated
w0 it. Thus we need say nothing about the rclationship of UNSTACK 10 COLOR. Of
course, this means that some mechanism other than simple theorem proving must be
used to compute complete state descriptions after operanons have been performed.

STRIPS-style operators that correspond to the blocks world operations we have
been discussing are shown in Figure 13.2 Notice that for simple rules such as these
the PRECONDITION list is often identical to the DELETE list. In order to pick up 2
block, the robot arm must be empty; as soon s it picks up & block. it is no longer emiply.
But preconditions arc not always deleted. For example, in order for the arm to pich up
a block. the block must have no other hlocks un top of it After it ix picked up. a1 il
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STACK(x, y)
P: CLEAR(y) A HOLDING(x)
D: CLEAR(y) A HOLDING(x)
A: ARMEMPTY A ON(x, )

UNSTACK(x, y)
P: ON(x, y) A CLEAR(x) A ARMEMPTY
D: ON(x, y) A ARMEMFPTY
A: HOLDING(x} A CLEAR(y)

PICKUP(x)
P: CLEAR(x) A ONTABLE(x) A ARMEMPTY
D: ONTABLE(x) A ARMEMPTY
A: HOLDING(x)

PUTDOWN({x)
P: HOLDING(x)
D: HOLDING(x)
A: ONTABLE(x) A ARMEMPTY

Figure 13.2: STRIPS-Style Operators for the Blocks World

has no blocks on top of it. This is the reason that the PRECONDITION and DELETE
lists must be specified separately.

By making the frame axioms implicit, we have greatly reduced the amount of
information that must be provided for each operator. This means, among other things,
that when a new attribute that objects might possess is introduced into the system, it is
not necessary Lo o back and add a new axiom for each of the existing operators. But how
can we actually achieve the effect of the use of the frame axioms in computing complete
state descriptions? The first thing we notice is that for complex state descriptions, most
of the state remains unchanged after each operation. But if we represent the state as an
explicit part of each predicate, as was done in Green's system, then all that information
musi be deduced all over again for each state. To avoid that, we can drop the explicit
state indicator from the individual predicates and instead simply update a single database
of predicates so that it always describes the current state of the world. For example, il
we start with the situation shown in Figure 13.1, we would describe it as

ON(A, B) A ONTABLE(B) A CLEAR(A)
After applying the operator UNSTACK(A, B), our description of the world would be
ONTABLE(B) A CLEAR(A) A CLEAR(E) A HOLDING(A)

This is derived using the ADD and DELETE lists specified as part of the UNSTACK
operator.
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UNSTACK(A. B)

PUTDOWN(A)

Global database at this point

ONTABLE(B) A
CLEAR(A} A
CLEAR(B) A
ONTABLE(A)

Figure 13.3; A Simple Search Tree

Simply updating a single state description works well as a way of keeping track of
the effects of a given sequence of operators. But what happens during the process of
searching for the correct operator sequence? If one incorrect sequence is explored, it
must be possible to return to the original state so that a different one can be tried. But
ihis is possible cven if the global database describes the problem state at the current
node of the search graph. All we need to do is record at each node the changes that
were made 1o the global database as we passed through the node. Then, if we backtrack
through that node, we can undo the changes. But the changes are described exactly
in the ADD and DELETE lists of the operators that have been applied 1o move from
one node to another. Sa we need only record, along cach arc of the search graph, the
operator that was applicd. Figure 13.3 shows a small example of such a search tree and
the corresponding global database. The initial state is the one shown in Figure 13.1
and described in STRIPS form above. Notice that we must speci fy not just the operator
{e.g., UNSTACK) but also its arguments in order 10 be able to undo the changes later.

Now suppose that we want to explore a path different from the one we have just
showrn. First we backtrack through node 3 by adding each of the predicates in PUT-
DOWN's DELETE list to the global database and deleting each of the clements of
PUTDOWN's ADD list. After doing that, the database contains

ONTABLE(B) A CLEAR(A) A CLEAR(B) A HOLDING(A)

As we expected, this description is identical (0 the one we previously computed as
the result of applying UNSTACK to the initial situation. 1f we repeal this process using
the ADD and DELETE lists of UNSTACK, we denive a description identical to the one
with which we started.

Because an implicit staicment of the frame axioms is so important in comples
problem domains, all the techniques we look at cxploit STRIPS-style descriptions of the
available operators.
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Setecting a Solution

A planning system has succeeded in finding a solution to a problem when it hus tound
= sequence of operators that transforms the initial problem state into the goal stae

How will it know when this has been done? In simple problem-solving systems. this
question is easily answered by a straightforward match of the state descriptions. But if
eatire states are not represented explicitly but rather are described by a set of relevin)
properties. then this probiem becines more complea. The way it can be solved deponds
on the way that siate descriptions are represented. For any representational scheme
that 15 used, it must be possible 1o reason with representations 1o discover whether one
maiches another. Recal! that in Pant 1 we discussed a variety of ways that complex
objects could be represented as well as reasoning mechanisms for each representation

Any of those representations {or some combination of them) could be used 1o describe
probiem states. Then the corresponding reasoning mechanisms could be used 1o discaver
when a solution had been found.

One represemational technique has served as the basis for many of the planning
systems that have been built. It is predicate logic, which is appealing because of the
deductive mechanisms that it provides. Suppose thai, as part of our goal, we have the
“redicate P(x). To see whether P(x) is satistied in some statc. we ask whether we can
prove Plx) given the assertions that describe thar state and the axioms that define the
world model (such as the fact that if the arm is holding something, then i( is not empry)
il we can construct such a proof, then the problem-solving process tenminates. If we
cannot, then a sequence of operators that might solve the problem must be proposed.
This sequence can then be tested in the same way as the initial staie was by asking
whether P(x) can be proved from the axioms and the state description that was derived
by applying the operators,

Detecting Dead Ends

As a planning system is searching for a sequence of apecrators o solve a particula
problem, it must be able to detect when it is exploring a path that can never lead to &
solution (or at least appears unlikely to lead 10 one). The same fcasoning mechanisms
that can be used to detect a solution can often be used for detecting a dead end.

If the search process is reasoning forward from the initial state, it can prune any path
that leads to a state from which the goal state cannot be reached. For example, suppose
we have a fixed supply of paint: some white, some pink, and some red. We want 1o
paint a room so that it has light red walls and a while ceiling. We could produce ligh
red paint by adding some white paint (o the red. But then we could not paint the ceiling
white. So this approach should be abandoned in favor of mixing the pink and red paints
‘ogether. We can also prune paths that, although they do not preclude a solution, appear
10 be leading no closer to a solution than the place from which they stanted.

il the search process is reasoning backward from the goal state. it can also terminate
a path either because it is sure that the initial state cannot be reached or because little
progiess is being made. [n reasoning backward, each goal 1s decomposed into subgoals
Each of them. in tum, may lead 10 4 set of additional subgoals. Sometimes it is casy to
detect that there is no way that all the subgoals in a given set can be satisfied at once
For example. the robot arm cannot be boih empty and holding a block. Any path that 15
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attemnpting to make both of those goals true simultaneously can be pruned immediacly.
Other paths can be pruned because they lcad nowhere. For example, if, in trying to
satisfy goal A, the program eventually reduces its problem to the satisfaction of goal A
as well as goals B and C, it has made little progress. It has produced a probiem even
harder than its original one, and the path leading 10 this problem should be abandoned.

Repairing an Almost Correct Solution

The kinds of techniques we are Jiscussing are often uscful in solving nearly decom-
posable problems. One good way of solving such problems 1s [o assume that they are
completely decomposable, proceed to solve the subproblems separately, and then check
that when the subsolutions are combined. they do in fact yield a solution to the original
problem. Of course. if they do. then nothing more need be done. If they do not, however,
there are a variety of things that we can do. The simplestis justto throw out the solution,
look for another one, and hope that it is better. Although this is simple, it may lead toa
great deal of wasted effort.

A slighdy better approach 15 10 laok at the situation that results when the sequence
of operations corresponding 1o the proposed solution is executed and to compare that
situation to the desired goal. In moSt Cases, the difference between the iwo will be
smaller than the difference between the initial stale and the goal {asswming that the
solution we found did some useful things). Now the problem-solving system can be
called again and asked (0 find a way of eliminating this new difference. The first solution
can then be combined with this second one to form a solution to the original problem.

An even better way to patch up an almost correct solution 15 10 appeal to specific
knowledge aboul what went wrong and then to apply a direct paich. For example,
suppose that the reason that the proposed salution is inadcquate is that one of its operators
cannot be applied because at the point it should have been invoked. its preconditions
were not satisfied. This might occur if the operator had 1wo preconditions and the
sequence of operations that makes the second one true undid the first one. But perhaps.
if an anempt were made (o satisfy the preconditions in the opposite order, this problem
would noit arise.

A still better way to patch up incomplete solutions is not really to patch them up al
all but rather to leave them incompletely specified until the jast possible moment. Then
when as much information as possible is available, complete the specification in such
a way that no conflicts anse. This approach can be thought of as a least-commitment
strategy. It can be applied in a varicty of ways. One is to defer deciding on the
order in which operations will be performed. So, in our previous example, instead of
arbitrarily choosing one order in which to satisfy a set of preconditions, we could leave
the order unspecified until the very end. Then we would look at the effects of each of
the subsolutions to determine the dependencies that exist among them. At that point, an
ordering can be chosen.

13.4 Goal Stack Planning

One of the earliest tcchniques to be developed for solving compound goals that may
interact was the use of a goal stack. ‘I‘hiswlsﬂle:pplwhusedbymll’s. In this
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start: ON(B, A) A goal: ON(C, A) A
ONTABLE(A) A ON(B, D) A
ONTABLE(C) A ONTABLE(A) A
ONTABLE(D) A ONTABLE(D)
ARMEMPTY

Figure 13.4: A Very Simple Blocks Worid Problem

method, the problem solver makes use of a single stack that contains both goals and
operators that have been proposed to satisfy those goals. The problem solver also relies
onadaubmcthud:scﬁbeslhecumtsitmimmdamofopuumdmhad
PRECONDITION, ADD, and DELETE lists. Ta see how this method works, let us
carry it through for the simple example shown in Figure 13.4.

When we begin solving this problem, the goal stack is simply

ON(C, A) A ON(B, D) A ONTABLE(A) A ONTABLE(D)

But we want to separate this problem into four subproblems, one for each compunent
of the original goal. Two of the subproblems, ONTABLE(A) and ONT, ABLE(D), are
already true in the initial state. So we will work on only the remaining two. Depending
on the order in which we want to tackle the subproblems, there are two goal stacks that
could be created as our first step, where each line represents one goal on the stack and
OTAD is an abbreviation for ONTABLE(A) A ONT. ABLE(D):

ON(C, A) ON(B, D)
ON(B, D) ON(C, A)
ON(C, A) A ON(B, D) A OTAD  ON(C, A) A ON(B, D) A OTAD

(i} 121

At each succeeding step of the problem-solving process, the top goal on the stack
will be pursued. When a sequence of operators that satisfies it is found, that sequence is
applied to the state description, yielding a new description. Next, the goal that is then
at the top of the stack is explored and an arempt is made 1o satisfy it, starting from the
situation that was produced as a result of satisfying the first goal. This process continoes
until the goal stack is empty. Then, as one last check, the original goal is compared to
the final state derived fram the application of the chosen operators. If any components
of the goal are not satisfied in that state (which they might not be if they were achieved
al onc point and then undone later), then those unsolved parts of the goal are reinserted
onto the stack and the process resumed.

Tbmntiuucwiduhcexlmpkw:stmuiabuvc,letusmume that we choose first
to explore alternative 1. Aliernative 2 will also lead 1o a solution. In fact, it finds one
50 trivially that it is not very interesting. Exploring alternative 1, we first check to see
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whether ON(C, A) is true in the current staie. Since it is not, we check for operators that
could cause it to be true. Of the four operators we are considering, there is only one,
STACK, and it would have 1o be called with C and A. So we place STACK(C, A) on
the stack in place of ON(C, A), yielding

STACKI(C, A)
ON(B, D)
ON(C, A) A ON(B, D) A OTAD

STACK(C, A) replaced ON(C. A) because after performing the STACK we are guar-
anteed that ON(C, A) will hold. But in order to apply STACK(C, A), its preconditions
must hold, so we must establish them as subgoals. Again we must separe®* a compound
goal

CLEAR(A) A HOLDING(C)

into its components and choose an arder in which to work on them. At this point, it is
useful to exploit some heunstic knowledge. HOLDING(x) is very easy lo achieve. Al
most, it is necessary to put down something else and then to pick up the desired object.
But HOLDING is also very easy 1o undo. In order to do almost anything clse, the robot
will need to use the arm. So if we achieve HOLDING first and then try (o do something
else, we will most likely end up with HOLDING no longer true. So we exploit the
heuristic that if HOLDING is one of several goals to be achieved at once, it should be
tackled last, This produces the new goal stack

CLEAR(A)

HOLDING(C)

CLEAR(A) A HOLDING(C)
STACKI(C, A)

ON(B. D)

ON(C, A) A ON(B, D) A OTAD

This kind of heuristic information could be contained in the precondition list itself
by stating the predicates in the order in which they should be achieved.

Next we check 1o see if CLEAR(A) is true. It is not. The only operator that could -
make it true is UNSTACK(B, A). So we will attempt to apply it. This produces the goal
stack

ON(B, A)

CLEAR(B)

ARMEMPTY

ON(B, A) A CLEAR(B) A ARMEMPTY
UNSTACK{B, A)

HOLDING(C)

CLEAR(A) A HOLDING(C)
STACKI(C, A)

ON(B, D}

ON(C, A) A ON(B. D) A OTAL
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This time, when we compare the top element of the goal stack, ON(B, A). 10 the
world model. we see that it 1s satisfied. So we pop it off and consider the next goal.
CLEAR(B). 1. oo, is already true in the world model, although it was not stared
explu:uly as one of the initial predicates. But from the initial predicates and the blocks
world axiom that says that any block with no blocks on it is clear, a theorem prove:
could derive CLEAR(B). So that goal, too, can be popped from the stack. The third
precondition for UNSTACK(B, A) remains. It is ARMEMPTY, and it is also true in the
current world model, so it can be popped off the stack. The next element on the stack
is the combined goal representing all of the preconditions for UNSTACK(B, A). We
check to muke sure it is satisfied in the world model. It will be unless we undid one of
its components in atternpting (o satisfy another, In this case, there is no problem and the
combined goal can be popped from the stack.

Now the top element of the stack is the operator UNSTACK(B. A). We are now
guaranteed that its preconditions are satisfied, so it can be applied to produce a new
world model from which the rest of the problem-solving process can continue. This is
done using the ADD and DELETE lists specified for UNSTACK. Meanwhile we record
that UNSTACK(B, A} is the first operator of the proposed solution sequence, At this
point, the database corresponding to the world model is

ONTABLE(A) A ONTABLE({C) A ONTABLE(D) A
HOLDING(B) A CLEAR(A)

The goal stack now 15

HOLDING(C)

CLEAR(A) A HOLDING(C)

STACK(C, A)

ON(g, D)

ON(C, A) A ON(B, D) A OTAD

We now attempt to satisfy the goal HOLDING(C). There are two operators that

might make HOLDING(C) true: PICKUP(C) and UNSTACK(C. 1). where ¢ could be
any block from which C could be unstacked. Wirhout luoking shead, we cannot reli
which of these vperators is appropriate, 50 we create two branches of the search iree,
corresponding to the following goal stacks:

ONTABLE(C) ON(C. x)

CLEAR(C) CLEAR(C)

ARMEMPTY ARMEMPTY

ONTABLE(C) A CLEAR(C) A ON(C, x) A CLEAR(C) A
ARMEMPTY ARMEMPTY

PICKUP(C) UNSTACKIC, x)

CLEAR(A) A HOLDING(C) CLEAR(A) A HOLDING(C)

STACK(C, A) STACK(C, A)

ON(B. D) ON(B. D)

ON(C, A) AON(B,D) AOTAD ON(C. A) A ON(B. D} A OTAD

1] ' (21
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Notice that for alternative 2, the goal stack now contains a variable x. which appears
in three places. Although any block could be substituted for x, it is important that the
same one be matched 10 each of the x’s. Thus it is important that each time a vanable
is introduced into the goal stack, it be given a name distinct from any other variables
already in the stack. And whencver a candidate object is chosen to match a vaniable, the
hinding must be recorded so that other occurrences of the same variable will be bound
1o the saime object.

How should our program choose now between alternative 1 and aliernative 27 We
can tell that picking up C (aliemative 1} is better than unstacking it because it is not
currently on anything. So o unstack it, we would first have 1o stack it. Although this
could be done, it would be a waste of effort. But how could a program know that?
Suppose we decided to pursue alternative 2 first. To satisfy ON(C, x), we would have
to STACK C onto some biock x. The goal stack would then be

CLEAR(x)

HOLDING(C)

CLEAR(x) A HOLDING(C)
STACKIC, x)

CLEAR(C)

ARMEMPTY

ON(C, x) A CLEAR(C) A ARMEMPTY
UNSTACKI(C, x)

CLEAR(A) A HOLDING(C)
STACKI(C, A)

ON(B, D)

ONIC, A) A ON(B, D) A OTAD

But now notice that one of the preconditions of STACK is HOLDING(C). This is
what we were trying lo achieve by applying UNSTACK, which required us to apply
STACK so that the precondition ON(C, x) would be satisied. So we are back to our
original goal. In fact, we now have additional goals as well, since other predicates have
also been added 1o the stack. At this point, this path cun be terminated as unproductive.
If, however, block C had been on another block in the current state, ON(C, r) would
have been satisficd immediately with no need to doa STACK and this path would have
led 1o a good solution.

Now we must return 1o alternative 1, which used PICKUP 1o get the arm holding .
The top element on the goal stack is ONTABLE(C). which is slready satisfied, so
we pop it off. The next element s CLEAR(C), which is also satisfied, so we pop 1!
off. The remaming precondition of PICKUP(C) is ARMEMPTY, which is not satisfied
since HOLDING(B) is true. There are two operators thal could be applied 1o make
ARMEMPTY true: STACK(B, x) and PUTDOWN(B). In other words, we can either
put B on the table or we can put it on another block. Which should we cheose? i we
look ahead a bil. we see that we ultimately want to get B onto D. it would be mos:
efficient simply to put it there now. Our program cuuld figure this out by comparing the
clements of the ADD hists of the competing Operalors (o the rest of the goal stack. If onc
of the operators has the fortuitous effect of making any of those goals irue, it should be
chusen. So we choose 10 apply STACK(B. D) by binding D 10 vin the STACK operaior
This makes the goal stack
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CLEAR(D)

HOLDING(B)

CLEAR(D) A HOLDING(B}

STACK(B, D)

ONTABLE(C) A CLEAR(C) A ARMEMPTY
PICKUP(C)

CLEAR(A) A HOLDING(C)

STACKI(C, A)

ON(B, D)

ON(C, A) A ON(B, D) A OTAD

CLEAR(D) and HOLDING(B) are both true. Now the operation STACK(B. D) can be
performed, producing the world model

ONTABLE(A) A ONTABLE(C) A ONTABLE(D) A
ON(B, D) n ARMEMPTY

All of the preconditions for PICKUP(C) are now satisfied so it, too, can be executed,
Then all of the preconditions of STACK(C, A) are true, so it can be executed.

Now we can begin work on the second part of our original goal, ON(B, D), But it has
alrcady been satisfied by the operations that were used lo satisfy the first subgoal. This
happencd because when we had a choice of ways to get rid of the arm holding B, we
scanned back down the goal stack 1o see if one of the operators would have other useful
side effects and we found that one did. So we now pop ON(B, D) off the goal stack. We
then do one last check of the combined goal ON(C, A) A ON (B, D) A ONTABLE(A) A
ONTABLE(D) ro make sure that all four parts still hold, which, of course, they do here.
The problem solver can now halt and retumn as its answer the plan

UNSTACK(B. A)
STACK(B, D)
PICKUP(C)
STACK(C, A)

In this simple example, we saw a way in which heuristic information can be applied
to guide the search process, a way in which an unprofitable path could be detected, and
4 way in which considering some interaction ameng goals could help produce a good
overall solution. But for problems more difficult than this one, these methods are not
adequate,

To see why this method may fail 1o find a good solution, we attempt to solve the
problem shown in Figure 13.5.7 There are two ways that we could begin solving this
prroblem. corresponding to the goal stacks

i olll 3 o

ON(A. B) ON(B, C)
ON(B, C) ON(A, B)
ON(A. B) A ON(B.C) ON(A, B) A ON(B, ()

(1} 2

*This problem is often called the Sussman Anomaiy, because it was carefully siedied m Sussman [1975],
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start. ON(C, A) A goal: ON(A, B) A
ONTABLE(A) A ON(B, C}
ONTABLE(B) n
ARMEMFPTY

Figure 13.5: A Shightly Harder Blocks Problem

ON(C, A)
CLEAR(C)
ARMEMPTY
ON(C, A) A CLEAR(C) A ARMEMPTY
UNSTACKI(C, A)
ARMEMPTY
CLEAR(A) A ARMEMPTY
PICKUP(A)
CLEAR(B) A HOLDING(A}
STACK(A, B)
ON(B.C)

- ON(A. BY A ON(B, C)

Figure 13.6: A Goal Siack

Suppose that we choose alternative 1 and begin uying to gel A on B, We will
eventually produce the goal stack shown in Figure 13.6,

We can then pop off the stack goals that have already been satisfied, unt*! we reach the
ARMEMPTY precondition of PICKUP(A). To satisfy it, we need to PUTDOWN(C)
Then we can continue popping uniil the goal stack is

ON(B, C)
ON(A. B) A ON(B.C)

Then the current state is

ONTABLE(B) A

ON(A, B) A
ONTABLE(C) A c
ARMEMPTY 21

‘The sequence of operators applied so far 13
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1. UNSTACK(C, A).
2. PUTDOWN(C)

3. PICKUP(A)

4. STACK(A, B)

Now we can begin to work on satisfying ON(B, C). Without going through all the
detail, we can see that our algorithm will attempl to achieve this goal by stacking B
on C. But to do that, it has 10 unstack A from B. By the time we have achieved the goal
ON(B, C) and popped it off the stack, we will have executed the following additional
sequence of operalors:

5. UNSTACK(A, B
6. PUTDOWN(A)
7. PICKUP(B)

8. STACK(B,C)

The problem state will be

ON(B.C)A ;
ONTABLE(A) A B
ONTABLE(C) A A
ARMEMPTY

But now when we check the remaining goal on the stack,

ON(A, B) A ON(B.C)

we discover that it 1s not satisfied, We have undone ON(A, B) in the process of achieving
ON(B, C). The difference between the goal and the current state is ON{A, B}, which
1s now added 10 the stack so thal it can be achieved again. This time, the seguence of
uperalors

9. PICKUP(A)
10. STACK(A.B)

is found, Now the combined goal is again checked, and this time it it sansfied. The
complete plan that has been discovered is

I. UNSTACKI(C, A) 6. PUTDOWN(A)
2. PUTDOWN(C) 7. PICKUP(B)

3. PICKUP(A)} 8  STACK(B, C)
4. STACK(A. B) 9. PICKUP(A)

5. UNSTACK(A.B) 10. STACK(A.B)

Although this plan will achieve the desired goal, it does not do so very efficiently
A similar situation would have occurred if we had examined the two major subgoals in
the opposite order. The method we are using is not capable of finding an efficient way
of solving this problem.

There are two approaches we can take to the question of how a good plan can be
found. One 15 o look a1 ways to repair the plan we already have 1o make it more
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efficient. In this casc, that is fairly casy to do. We can look for places in the pian where
we perform an operation and then immediately undo it. If we find any such places, we
can eliminate both the doing and the undoing steps from the plan. Applying this rule to
our plan, we eliminate steps 4 and 5. Once we do that, we can also eliminaie steps 3
and 6. The resulting plan

1. UNSTACKI(C, A) 4. STACK(B,C)
2. PUTDOWN(C) 5. PICKUP{A)
3. PICKUP(B) 6. STACK(A.B)

contains, in fact, the minimum number of operators needed to solve this problem, Bui
for more complex tasks, the interfering operations may be farther apart in the plan and
thus much more difficult 1o detect. Tn addition, we wasted a good deal of problem-
solving effort producing all the steps that were later eliminated. It would be better if
there were a plan-finding procedure that could construct efficient plans directly. In the
next section, we present a technique for doing this.

13.5 Nonlinear Planning Using Constraint Posting

The goal-stack planning method attacks problems involving conjoined goals by solving
the goals one at a time, in order. A plan generated by this method contains a sequence
of operators for attaining the first goal, followed by a complete sequence for the second
goal, etc. But as we have seen, difficult problems cause goal interactions. The operators
used to solve one subproblem may interfere with the solution to a previous subproblem.
Most problems require an intertwined plan in which multiple subproblems are worked
on simultaneously. Such a plan is called a nonlinear plan becausc it is not composed of
a linear sequence of complete subplans.

As an example of the need for a nonlinear plan, iet us return to the Sussman anomaly
described in Figure 13.5. A pood plan for the solution of this problem is the following:

1. Begin work on the goal ON(A, B) by cleaning A, thus putting C on the tabie.
2. Achieve the goal ON(B, C by stacking B on [ G
3. Complete the goal ON(A, B) hy stacking A on B

This section explores some heuristics and al gorithrns for tackling nonlinear problems
such as this one.

Many ideas about nonlinear planning were present in HACKER [Sussman, 19751,
an automatic programming system. The first true nonlinear planner, though, was NOAH
1Sacerdoti, 1975). NOAH was further improved upon by the NONLIN program [Tate.
1977]. The goal stack algorithm of STRIPS was transformed into a goal ser algorithm
by Nilsson [1980]. Subsequemt planning systems, such as MOLGEN [Stefik, 1981b)
and TWEAK |Chapman, 1987}, used constraint posting as a central technigue.

The idea of constraint posting is to build up a plan by incrementally hypothesizing
operators, partial orderings between operators, and bindings of variables within oper-
ators. At any given time in the problem-solving process, we may have a set of useful
operators but perhaps no clear idea of how those operators should be ordered with respect
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State Space Search

ré,‘l Moves in the space:
+ Modify world state via operatar

- Model of time:
! . of node in search space
A Depth p
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rén * Senies of state transitions

Constraint Posting Search

Moves in the space:
1 = Add operators

D@ﬂ = Order operators
+ Bind variables

Plan 0 * Or otherwise constrain plan

Model of time:
« Partially ordered set of operators

Plan swored in:
* Single node

Figure 13.7: Constraint Posting versus State Space Search

to each other. A solution is a partially ordered, partially instantiated set of operators:
lo generate an actual plan, we convent the partial order into any of a number of tota!
orders. Figure 13.7 shows the difference between the constraint posting method and the
planning mcthods discussed in earlier sections.

We now examine several operations for nonlinear planning in a constraint-posting
environment, although many of the operations themselves predate the use of the tech.
nigue in planning.

Let’s incrementally generate a nonlinear plan to solve the Sussman anomaly problem.
We begin with the null plan, ie., a plan with no steps. Next we look gt the goal state
and posit steps for achieving that goal. Means-ends analysss tells us to choose rwo steps
with respective postconditions ON(A, B) and ON(B, C):
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1. Sicp Addition-—Creating new sleps for a plan.
2. Promotion-—Constraiming one step 1o come before another in a final plan.

3. Declobbering—Placing one (possibly new) step s between 1wo old sieps 5y and
$3, such that s reasserts some precondition of 53 that was negated (or “clobbered™)
by 5.

4. Simplc Establishment—Assigning a value (o 4 vaniable, 1 order 10 ensure the
preconditions of some step.

5. Separation—Preventing the assignment of certain values to a variable.

Figure 13.8: Heuristics for Planning Using Constraint Posting (TWEAK)

CLEAR(B) CLEAR(C)

* HOLDING(A) * HOLDING(B)
STACK(A.B) STACK(B, C)
ARMEMPTY ARMEMPTY
ON(A, B) ON(B, C)
‘CLEAR(B) ~CLEAR(C)

—HOLDING(A) ~HOLDING(B)

Each step is written with its preconditions above it and its postconditions below it.
Delete postconditions are marked with a negation symbol (). Notice that, at this point,
the steps are not ordered with respect to each other. All we know is that we want to
execute both of them eventually. Meither can be cxecuted right away because some
of their preconditions are not satisfied. An unachieved precondition is marked with 4
star (*). Both of the *HOLDING preconditions are unachieved because the arm Lolds
nothing in the initial problem state.

Introducing new steps o achieve goals or preconditions is called step addition, and
it is one of the heuristics we wiil use in generating nonlinear plans. Step addition 1s
a very basic method dating back to GPS [Newell and Simon, 1963}, where means-
ends analysis was used to pick operators with postconditions corresponding to desired
states. Figure 13.8 lists step addition along with other heuristics we use throughout this
example.

To achieve the preconditions of the 1wo steps ahove. we can use step addition again:



350 CHAPTER 13. PLANNING
*CLEAR(A) * CLEAR(B)
ONTABLE(A) ONTABLE(B)
* ARMEMPTY * ARMEMPTY
PICKUP(A) PICKUP(B)
~ONTABLE(A) ~ONTABLE(B)
~ARMEMPTY -~ARMEMPTY
HOLDING(A) HOLDING(B)

Adding these PICKUP steps is not enough 1o satisfy the *HOLDING preconditions
of the STACK steps. This is because there are no ordering constraints present among
the steps. If, in the eventual plan, the PICKUP steps were to follow the STACK »ieps,
then the *HOLDING preconditions would need to be satisfied by some other set of
steps. We solve this problem by introducing ordenng constraints whenever we employ
step addition, In this case, we want to say that cach PICKUP step should precede its
corresponding STACK step™:

PICKUP(A) « STACK(A, B)
PICKUP(B) «- STACK(B, C)

We now have four (pantially ordered) steps in our plan and four unachieved pre-
conditions. *CLEAR(A) is unachieved because block A is not clear in the initial state,
*CLEAR(B) is unachicved because although B is clear in the initial state, there ex-
ists a step STACK(A, B) with postcondition ~CLEAR(B), and that step might precede
the step with *CLEAR(B) as a precondition. To achieve precondition CLEAR(B), we
use a second heuristic known as promotion. Promotion, first used by Sussman ir his
HACKER program [Sussman, 1975), amounts to posting a constraint that one step must
precede another in the eventual plan. We can achieve CLEAR(B) by slating that the
PICKUP(B) step must come before the STACK(A, B) step:

PICKUP(B) « STACK(A. B)

Let’s now tumn to the two unachieved *ARMEMPTY preconditions [we deal with
*CLEAR(A) a little later]. While the initial state has an empty arm, each of the two
pickup operators contain ~ARMEMPTY postconditions. Either operator could prevent
the other from executing. We can use promotion to achieve at least one of the two

preconditions:
PICKUP(B) « PICKUP(A)

Since the initial situation contains an empty arm. and no step preceding PICKUP(B)
could make it unempty, the preconditions of PICKUP(B) are all satisfied.

A third heuristic, called declobbering, can help achieve the *ARMEMPTY precon-
dition in the PICKUP(A) step. PICKUP(B) asserts ~ARMEMPTY, but if we can insert

'S\ €= 5; means that step S, must precede siep S, in the eventual plan
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another step between PICKUP(B) and PICKUP(A) to reassen ARMEMPTY, then the
precondition will be achieved. The STACK(B. C) does the trick, so we post another
constraint:

PICKUP(B) « STACK(B, C) « PICKUP(A)

The step PICKUP(B) is said to “clobbher™ PICKUP(A)'s precondition. STACK(B, C)
is said to “declobber” it. Declobbering was first used in the NOAH planner [Sacerdoti,
1975]. and then in NONLIN. NOAH was the first nonlinear planner io makc usc of
the heuristics we are discussing here. NOAH also used many other heuristics and
was able to solve a number of difficult nonlinear planning problems. Still, there were
some natural problems that NOAH could not selve. In particular, NOAH's inability to
backtrack prevented it from finding many soiutions. The NONLIN program included
backtracking, but it also failed to solve many hard problems.

Back in our example, the only unachieved precondition left is *CLEAR(A), from
the PICKUP(A) step. We can usc step addiuon to achieve it:

*ON(x, A)
* CLEAR(x)
* ARMEMPTY

UNSTACK(x, A)

“ARMEMPTY
CLEAR(A)
HOLDING{A)

-ON(x, A}

We introduce the variable x because the only posicondition we are interesied 1n 15
CLEAR(A). Whatever block is on top of A is irrelevant. Constraint posting allows us
1o create plans that are incomplete with respect to the order of the steps. Variables allow
us to avoid commitling to particular instantiations of operators.

Unfortunately, we now have three new unachieved preconditions. We can achieve
ON(x, A) easily by constraining the value of x 1o be block C. This works because
block C is on block A in the initial state. This heuristic is called simple establishment,
and in its most general form, it allows us to state that two different propositions musl be
ultimately instantiated to the same proposition. In our case:

1=C mstep UNSTACK(z, A)

There are still steps that deny the preconditions CLEAR(C) and ARMEMPTY, but we
can use promotion to take care of them:

UNSTACK(x, A) « STACK(B, C)
UNSTACK(x, A) « PICKUP(A)
UNSTACK(x, A) « PICKUP{B)
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Among the heuristics we have looked at so far, adding a new step is the most
problematic because we must always check if the new step clobbers some precondition
of a later, already existing step. This has actually happened in our example. The step
PICKUP(B) requires ARMEMPT'Y, but this is denied by the new UNSTACK(x, A) step.
One way 1o solve this problem is to add 2 new declobbering step 10 the plan:

HOLDINGI(C)

PUTDOWN(C)

—=HOLDING(C)
ONTABLE(x)
ARMEMPTY

ordered as;
UNSTACKI(z, A) + PUTDOWN(C) « PICKUP(B)

Notice that we have seen two types of declobbering, one in which an existing step
15 used to declobber another, and one in which a new declobbering step is introduced.
Fortunately, the precondition of our newest PUTDOWN step is satisfied. In fact, all
preconditions of all steps are satisfied, so we are done. All that remains is to use the
plan ordering and vanable binding constraints to build a concrete plan:

UNSTACKI(C, A)

i

2. PUTDOWN(C)
4. PICKUP(B)

4 STACK(B, C)
5. PICKUP(A)

6. STACK(A, B)

This 15 the same plan we found at the end of Section 13.4. We used four dif-
ferent heuristics 10 synthesize it: step addition, promotion, declobbering, and simple
establishment. (These are sometimes called plan modification operations.) Are these
four operations. applied in the correct order, enough 1o solve any nonlinear planning
problem? Almost. We require one more, called separation. Separation is like simple
establishment, in that 1t concems variable bindings, but it is used in a declobbering fash-
1un. Suppose step C/ possibly precedes step €2 and C! possibly denies a precondition
ui C2. We say “possibly” because the propositions may contain variables. Separation
allows us to state a constraint that the two propositions must nor be instantiated in the
same way in the eventual plan.

Work on the TWEAK planner presented formal definitions of the five plan modifica-
110n operations and proved that they were sufficient for solving any solvable nonlinear
planning problem. In this manner, TWEAK cleaned up the somewhat ad hoc, heuristic
results in nonlinear planning research. The algorithm to exploit the plan modification
operations is quile simple.
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Algorithm: Nonlinear Planning (TWEAK)
1. Initialize § to be the set of propositions in the goal state,
2. Remove some unachicved proposition P from §

3, Achieve P by using step addition, promotion, declobbering, simple establishment,
OF Separation.

4. Review all the steps in the plan, including any new steps introduced by step
addition, to see if any of their preconditions are unachieved. Add to § the new set
of unachieved preconditions,

5. If S isempty, complete the plan by converting the partial order of steps into a tota!
order, and instantiate any variahles os necessary.

6. Otherwise, go to step 2.

Of course, not every sequence of pian modification operations leads to a solution.
For instance, we could use step addition ad infinirium without ever converging to a useful
plan. The nondeterminism of steps 2 and 3 must be implemented as some sort of search
procedure. This search can be guided by heuristics; for example, if promotion and step
addition will both do the job, it is probably better to try promaction first, TWEAK uscs
breadth-first dependency-dirccted backtracking, as well as ordering heuristics.

The example above used most of the plan modification operations, but not in their
full generality. We will now be mare specific about these operations and how they relate
to finding correct plans. The core notion 1s one of making a proposition necessariy true
in some state. The modal truth criterion tells us exactly when a proposition is true.

The Modal Truth Criterion. A proposition P is necessarily true in a state
S if and only il two conditions hold: there is a state T equal or necessarily
previous 1o 5 in which Pis necessarily asserted; and for every step C pussibly
before § and every proposition Q possibly codesignating® with £ which C
denies, there 1s u step W necessanly between € and 8 which asseris X, &
proposition such that R and P codesignate whenever P and 0 codesignate.

Roughly, this means that £ has to be asserted in the initial state or by some previous
step and that there can be no clobbenng sicps without corresponding declobbenng steps
to save the day. The relationship between the modal truth criterion and the five plan
modification operations is shown in Figure 13.9. The figure is simply a logical parse
trec of the criterion, from which we can see how the plan modification operaiions are
used to enforce the truth of various parts of the criterion. In the figure, the cxpression
C, < C; means step (or state) C) necessarily precedes step (or state} C;. The expression
P == Q means P and Q codesignate. _

The development of a provably correct planner was a noteworthy achievement in the
formal (or “neat™) style of Al. It cleancd up the complicated, ill-defined planning notions
that preceded it and made available a reliable (if not efficient) planner. Now. however,
a new round of more informal (or “scrufly”) research must follow, concemrating on

Two propositions rodesigaate if they can be unified, given the cument constraints on vanables
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Figure 13.9: The Modal Truth Criterion for Telling whether Proposition P Necessarily
Holds in State §

the wedknesses of such planners. Efficiency is of critical concern in large systems—
assured correctness is nice, but a slow planner can be less useful than un incorrect
one. Typically, search-based programs can be made faster through the use of heuristic
knowledge. Another efficiency issue has to do with the length of the plans produced by
# planner. Current planners can, unfortunately, generate highly ineficient plans.

Representational issues are just as important as efficiency 155u¢s, and the two are
closely intertwined. The representation of operators and plans used by TWEAK is al
the same time oo powerful and wo weak. Chapman [1987] proved that even with
simple STRIPS-style operators, planning in general is not even decidable, although it
is semidecidable: If there is a pian that solves a problem, a planner can find it but if
there 15 no such plan, the planner may never halt, NP-completeness results suggest that
planning is exponentially hard. But 1t 1s ot no use to look for a simpler representation
that might allow for more efficient plan construction—if anything, most domains ;eem
to require operators that arc much more complex than the operators used by TWEAK.
For example, it is natural to express many preconditions using quantifiers and embedded
negation and also to have postconditions with different effects depending on the stare
of the world. Figure 13,10 depicts a more complex operator structure, of the type
used in the PRODIGY planning system [Minton er al., 1989]. As our representation
becomes more expressive, the idea of a provably correct, efficient, domain-independent
planner becomes more unlikely, and we must again tum to knowledge-intensive heuristic
methods.

13.6 Hierarchical Planning

In order 10 solve hard problems, a problem solver may have to generate long plans. in
order to do that efficiently, it is important to be able to eliminate some of the details of
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(OPERATOR
{PRECONDITIONS
(and (...)
(forall(w...) ..)
(not
(exists ...)

(POSTCONDITIONS
(ADD(...))
(DELETE (...)}
(iffand (.. .)(...))
(ADD{...) (... D)
(DELETE (...} (... h)))

Figure 13.10. A Complex Operator

the problem until a solution that addresses the inaiu issues is found. Then an attempt
can be made (o fiil in the appropriate details. Early attempts to do this involved the
use of macro-operators, in which larger operators were built from smaller ones [Fikes
and Niisson, 1971). But in this spproach, no details were eliminated from the actual
descriptions of the operators. A better approach was developed in the ABSTRIPS
system [Sacerdoti, 1974], which actuaily planned in a hicrarchy of abstraction spaces.
in each of which preconditions at a lower level of abstraction were ignored.

As an example, suppose you want 1o visit a friend in Europe. but you have a limited
amount of cash to spend. It makes sense to check air fares first, since finding an
affordable fight will be the most difficult part of the task. You should not worry about
getting out of your driveway, planning a route to the airport, or parking your car until
you are surc you have a flight.

The ABSTRIPS approach to problem solving 1s as follows: First solve the problem
completely, considering only preconditions whose criticality value is the highest poss:-
ble. These values reflect the expected difficulty of sutisfving the precondition. To do
this. do exactly what STRIPS did, but simply ignore preconditions of lower than peak
criticality. Once this is done, use the constructed plan as the outline of a complete plan
and consider preconditions at the next-lowest criticality level. Augment the plan with
operators that satisfy those preconditions. Again. in choosing operalors, ignore all pra-
conditions whose criticality is less than the level now being considered, Continue this
process of considering less and less critical preconditions until all of the preconditions
of the original rules have been considered. Because this process explores entire plans
at one level of detail before it looks at the lower-level details of any one of them. ithas’
been called length-first search.

Clearly, the assignment of appropriate cnticalily values is crucial to the success of
this hierarchical planning method. Those preconditions that no operators can satisfy are
clearly the most critical. For example, if we are trying to solve a problem involving a
robot moving around in a house and we are considering the operator PUSH-THROUGH-
DOOR, the precondition that there exist a door big enough for the robot to get through
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1s of high criticality since there is (in the normal situation) nothing we can do about it if
itis nof true. But the precondition that the door be open is of lower criticality if we have
the operator OPEN-DOOR. In order for a hierarchical planning system to work with
STRIPS-like rules, 1t must be told, in addition to the rules themselves, the appropriatc
criticality value for each term that may occur in a precondition. Given these values, the
hasic process can function in very much the same way that nonhicrarchical planning
does  But effort will not be wasted filling in the details of plans that do not even come
ciose 10 solving the problem,

13.7 Reactive Systems

Su far, we have described a deliberative planning process, in which a plan for completing
an entire task is constructed prior to action. There is a very different way, though, that we
could approach the problem of deciding what todo. The idea of reactive systems | Brooks,
086 Agre and Chapman, 1987; Kacbling, 1987] is to avoid planning altogether, and
instead use the observable situation as a clue to which one can simply react.

A reactive system must have access to a knowledge base of some sort that describes
what actions should be taken under what circumstances. A reactive system is very
thifferent from the other kinds of planning systems we have discussed because it chooses
actions one at a lime; it does not anticipate and select an entire action sequence before
i1 does the first thing.

One of the very simplest reactive systems is a thermostat. The Job of a thermostat
13 10 keep the temperature constan! inside a room. One might imagine & solution 1o
this problem that requires significant amounts of planning, taking into account how the
external temperature rises and falls during the day, how heat flows from room to room.
and so forth. But a real thermostat uses the simple pair of situation-action rules:

i If the temperature in the room is k degrees above the desired temperature, then
turn the air conditioner on

L. If the temperature in the room is & degrees below the desired temperature. then
tum the air conditioner off

It tums out that reactive systems are capable of surprisingly complex behaviors,
especially in real world tasks such as robot navigation. We discuss robot tasks in
more detail in Chapter 21. The main advantage reactive systems have over traditional
planners is that they operate robustly in domains that are difficult to model completely
and accurately. Reactive systems dispense with modeling altogether and base their
actions directly on their perception of the world. In complex and unpredictable domains,
the ability to plan an exact sequence of steps ahead of time is of questionable value.
Another advantage of reactive systems is that they are extremely responsive, since they
avoid the combinatorial explasion involved in deliberauve planning. This makes them
altractive for real time tasks like driving and walking.

Of course, many Al tasks do require significant deliberation, which is usually imple-
mented as internal search. Since reactive systems maintain no model of the world and
no sxpiicit goal structures, their performance in these tasks is limited. For example, it
seems unlikely that a purely reactive system conld ever play expert chess. It is possibie



138 OTHER PIANNING TECHNIQUEY as?

r: provide a reactive system with rudimentary planning capability, but only by explic iy
storing whole plans along with the situations that should trigger them. Deliberative
planners need not rely on pre-stored plans; they can construct a new plan for cach new
problem.

Nevertheless, inquiry into reactive systems has served to illustrate many ol the
shoricomings of traditional planners. For one thing, it is vital to inierleave planmng
and plan execution. Planning is important, but so s action. An intelligent system witn
limited resources must decide when to stari thinking, when to stop thinking, and when:
to act. Also, goals arise naturally when the system inieracts with the cnvironment
Some mechanism for suspending plan execution is needed so thal the system can turn its
attention to high priority goals. Finally. some situations require immediate attention and
rapid action. For this reason, some deliberative planners [Mitchell, 1990] compile ot
ceactive subsystems (i.e., scts of situation-action rules) based on their problem-solving
experiences. Such systems leam to be reactive over lime.

13.8 Other Planning Techniques

Other planning technigues that we have not discussed include ibe following.

» Triangle Tables [Fikes et al.. 1971 Nilsson, 1980)-—Provide a way of recording
the goals that each operator is expected 10 sansfy as well as the goals that musi
be true for it to execute correctly  If something uncxpected happens during the
execution of a plan, the table provides the information required to patch the plan.

o Metaplanning [Stefik, 198 1a]—A technique for reasoning not just about the prob-
lem being solved but also about the planning process itself.

+ Macro-operators [Fikes and Nilsson. 1971 }—Allow a planner io build new oper-
ators that represent commonly used sequences of operators. See Chanter 17 for
more details.

o Case-Based Planning [Hammond, 1986]—Re-uses old plans o make new ones.
We return to case-based planning in Chapter 19.

13.9 Exercises

1. Consider the following blocks world problem:

start: ON(C, B) A goal: ON(C.B) A
ON(D, A) A ON(D. AY A
ONTABLE(B) A ONTABLE(B) A
ONTABLE(A) A ONTABLE(A)

ARMEMPTY
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(a) Show how STRIPS would solve this problem.

(b} Show how TWEAK would solve this problem.

{c) Did these processes produce optimal plans? If nol. could they be modified
1o do so?

2. Consider the problem of devising a plan for cleaning the kitchen

1a) Write a set of STRIPS-style aperators that might be used, When you describe
the operators, take into account such considerations as:

Cleaning the stove or the refrigerator will get the floor dirty.

To clean the oven, it is necessary to apply oven cleaner and then 1o
remove the cleaner.

Before the floor can be washed, it must be swept.

Before the floor can be swept, the garbage must be 1aken out.
Cleaning the refrigerator generates garbage and messes up the counters.
Washing the counters or the floor gets the sink dirty.

{b) Write a description of a likely initial state of a kitchen in need of cleaning.
Also write a description of a desirable (but perhaps rarely obtained) goal
state,

{c) Show how the technigue of planning using a goal stack could be used to solve
this problem. (Hint—you may want to modify the definition of an ADD
condition so that when a condition s added to the database, its negation is
automatically deleted if present.) .

3. In Section 13.4, we showed an example of a situation in which a search path
could be terminated because it led back to one of its earlier goals. Describe a
mechanism by which a program could detect this situation. -

4. Considerthe problem of swapping the contents of two registers, A and B. Suppose
that there is available the single operator ASSIGN(y. v, Iv, ov), which assigns the
value v, which is stored in location /v, to location x, which previously contained
the value ov:

ASSIGN(x, v, Iv, ov)
P: CONTAINS(/v. v) » CONTAINS(x, av)
D: CONTAINS(x, ov)
A: CONTAINS(x, v)

Assume that there is at least one additional register, C. available.

(a) What would STRIPS do with this problem?
(b) Whar would TWEAK do with this problem?
{c) How might you design a program to solve this problem?
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Understanding

i4.1 What Is Understanding?

To understand something is 10 transform it from one representation inio another, where
this second representation has been chosen to correspond 10 a st of available achions
that could be performed and where the mapping has been desi gned so that for each event,
an appropriare action will be performed  There is very litile absolute in the notion of
understanding. If you say to un airline database sysiem “1 peed 10 go to New York
as soon as possible,” the sysiem will have “understood™ il it hiuds the first available
nlane to New York. If you say the same thing to your best friend, who kmows that your
family lives in New York, she will have “understood” if she realizes that rhere may
be a probiem in your family and you may need some emotional support. As we talk
about understanding, it is important to keep in mind that the success or failure of an
“understanding” program can rarely be measured in an absoluie sense but must instead
be measured with respect 1o a particular 1ask 1o be performed. This is true both of
language-understanding programs and also of understanders in other domains, such as
vision.

For people, understanding applies to inputs from all the senses. Computer under-
standing has so far been applied primanily to images, speech, and typed language. In
this chapter we discuss issucs that cut across all of these modalities. In Chapter 15, we
explore the problem of typed natural language in more detail. and in Chapter 21, we
look at speech and vision problems. Although we have defined undersianding above as
the process of mapping into appropriate dciions, we arc not precluding a vicw of under-
standing in which inputs are simply interpreted and stored for later. In such a system,
the appropriate action is lo storg the proper representation. This view of understanding
describes what occurs 1n most image understanding programs and some language un-
derstanding programs. Taking direct action describes what happens in systems in which
language, either typed or spoken. is uscd in the interface between user and compuler.

359
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Figure 14.1: The Conceptual Dependency Representation of a Paragraph

14.2 What Makes Understanding Hard?
There are four major factors that contribute to the difficulty of an understanding problem:

1. The complexity of the target representation into which the matching is being done

=)

The type of the mapping: one-cne, many-one, ofie-many, Of many-many
. The level of interaction of the components of the source representation

3
4. The presence of noise in the input to the understander
A few exampies wili iliustrate the imporiance of each of these faciors.

Complexity of the Target Representation

Suppose English sentences are being used for communication with a keyword-baseri
data retrieval system. Then the sentence

I want to read all about the last Presidential election.
would need to be translated into a representation such as
(SEARCH KEYWORDS = ELECTION & PRESIDENT)
But now suppose that English sentences are being used to provide input to a progras:

that records events so that it can answer a variety of questions about those svents and
their relationships. For example, consider the following story:
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Bill told Mary he would not go to the movies with her.
Her feelings were hurt.

The result of understanding this story could be represenied, using the conceplus
dependency mode! that we discussed in Chapter 10, as shown in Figure 14.1. This
representation is considerably more complex than that for the simple query. All other
things being equal, constructing such a complex representaiion is more difficelt than
constructing a simple one since more information must be extracted from the input
seniences. Extracting that information often requires the use of addnional knowledge
about the world described by the sentences.

Type of Mapping

Recall that understanding is the process of mapping an input from its original form
io a more useful one. The simplest kind of mapping to deal with is one-to-one (i.e.,
each different statement maps to a single 1arget representation that is different from that
arismng from any other statement). Very few input systems arc totally one-iv-one. But
as an example of an alinost cne-to-one mapping, consider the language of arithmetic
“Xpressions in many programming languages, In such a language, a mapping such as
the following maght occur:

A +
A=Bs+C*D — /\
B -
& D

Although one-to-one mappings are, in general, the simplest to perform, they are
rarc in interesting input systems for several reasons. One important reason is that in
many domains, inputs must be interpreted not absolutely, but relatively, with respect
to some reference poini. For example, when images are being interpreted, size and
perspective will change as a function of the viewing position. Thus a singlc object will
look different in different images. To see this, look at Figure 14.2, which shows two
line drawings representing the same scene, one of which corresponds o a picture taken
close to the scene and onc of which represenis a picture taken from farther away. A
similar phenomenon occurs in English. The word “tall” specifies one height range in
the phrase “a tall giraffe” and a different one in the phrase “a tall poodle.”

A second reason that many-to-one mappings are frequent is that free variation is often
allowed, either because of the physical limitations of the system that produces the inputs
or because such variation simply makes the task of generating the inputs manageable.
Both of these factors help to explain why natural languages, both in their spoken and
their written forms, require many-lo-one mappings. Examples from speech abound. No
two people speak identically. In fact, onc person does not always say a given word the
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Figure 14.2: Relative Differences in Pictures of the Same Scene

same way. Figure 14 3 illustrates this problem. It shows a specirogram produced by
the beginning of the utterance “Alpha gets alpha minus beta”” A spectrogram shows
how the sound energy is distributed over the auditory frequency range as a function of
time. In this example, you can see two different patterns, cach preduced by the word
“alpha.” Even when we ignore the variability of the speech signal, natural languages
admit variability because of theirrichness. This is particularly noticeable when mapping
from a natural language (with its richness of structure and vocabulary) 1o a smali, simple
target representation. So, for example, we might find many-to-one mappings, such as
the following one, cecurring in the English front end to & keyword data retrieval system:

Tell me all about the

last presidential =
election.
(SEARCH

I'd like to scc all the KEYWORDS =

stories on the last — ELECTION

presidential election. &

PRESIDENT)

1 am interested in the

last presidential -

election.

Many-to-one mappings require that the understanding system know about all the
ways that a targe! representation can be expressed in the source language. As a result,
they typically require a structured analysis of the input rather than a simple, exact pattern
match, But they often do not require much other knowledge.

One-to-many mappings, on the other hand, often require a great deal of domain
knowladge (in addition to the input itself) in order to make the correct choice among the
available target representations. An example of such a mapping (in which the input can
e said 1o be ambiguous) is the following sentence:
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Alpha Qets Alpha

Figure 14.3: Differences in Speech Signals

—+ (They are

(flying airplanes))
- (They (are Rlying)
airplanes)
They are flying plencs.
—  (They are

{flying plaming-1ools))

-+ (They (are flywing)
plamng-tools)

Notice that although this sentence, taken in isolation, is ambiguous, it would usually
not be interpreted as being ambiguous by a human listener in a specific context. Clues
both from previous sentences and from the physical contextin which the sentence oceurs,
usually make one of thesc interpretations appear 1o be correct. The problem, though,
from a processing standpoint, is how to encede this contextual information and how to
exploil it while processing each new sentence.

Notice that English, in all its glory, has the propertics of both of these last two
examples; it involves a many-ro-many mapping, in which there are many ways to say
the same thing and a given statement may have many meanings
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Figure 14.4: Liule Interaction among Components

i.evel of Interaction among Components

In most interesting understanding contexts, cach input is composed of several com-
ponents (lines, words, symbols, or whatever). The mapping process is the simplest
if each component can be mapped without concemn for the other components of the
statement. Otherwise, as the number of interactions increases, so does the complexity
of the mapping.

Programming languages provide good examples of languages in which there is very
little interaction among the components of an input. For example. Figure 14 4 shows
how changing one word of a statement requires only a single change to one node of the
verresponding parse tree.

In many natural language sentences, on the other hand, changing a single word can
alter not just a single node of the interpretation, but rather its entire structure. Anexample
of this is shown in Figure 14.5. (The triangles in the figure indicate substructures whose
further decoinposition is not important.) As these examples show, the components of ail
English sentence typically interact more heavily with cach other than do the components
of antificial languages, such as programming languages, that have been designed, wnong
other things, to facilitate processing by computer.

Nonlocality can be & problem at all levels of an understanding process. In the
boy n the park cxample, the problem 1s in how (o group phrases together. But in
percepanal snderstanding tasks, this same problem may make it difficult even to decide
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Figure 14.7: A Speech Waveiorm

on what the basic constituents are. Figure 14.6 shows u simplified 2xampie from speech
understanding. Assuming that the sounds shown in the figure have been identified. the
problem is to group them into words. But the correct grouping cannot he determined
without looking at the larger context in which the sounds occurred. Either of the
groupings shown is possible. as can be seen from the two scnlences in the figure.
Figure 14.7 shows an actual speech waveform. in which the lack of local clues, ever for
segmenting into individual sounds, can be seen.

In image-understanding. problems as well, a similar problem involving local inde-
terminacy arises. Consider the situation shown in Figure 14.8. At this point. Lines have
been extracted from the original figure and the next task is to separate the figure intc
objects. But suppose we siart at the left and identify the object labeled A. Does it end
at the vertical line? It is not possible to tell without looking past the vertical object to
see if there 1s an extension whick. ir this case, there is.
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Figure 148 A Line Drawing with Local Ambiguity

Noise in the Input

tJndersianding is the process of interpreting an input and assigning it meaning. Unforto-
nately, in many understanding situations the input to which meaning should be assigned
s not always the input that is presented to the understander. Because of the complex
snvironment in which understanding usually occurs, other things often mterfere with
the basic input before it reaches the understander. In perceptual tasks, such as speech
and image understanding, this problem is common. We rarely have the opportunity to
listen Lo each other against a background of silence. Thus we must take an input signal
and separate the speech component from the background noise component in order to
anderstand the speech. The same problem occurs in image undersianding. If you look
ux of your car window in search of & particular store sign, the image you will see of the
sign may be interfered with by many things, such as your windshield wipers or the trees
alongside the road. Althoughty ped language is less susceptible to noise than is spoken
language. noisc 18 still a problem. For example, Lyping errors are comnon, particularly
if language is being used interactively to communicate with a computer system.

Conclusion

The point of this section has been twofold. On the one hand. it has attempted to
describe the sources of complexity in understanding tasks, in order to help you analyze
new understanding tasks for tractability. On the other, it has tried to peint out specific
understanding tasks that tumn out, unfortunaizly. 1o be hard (such as natural language
understanding) but that are nevertheless important in the sense that it would be useful
if we could perform them., it is to these understanding tasks that we wili nesd lo devote
substantial rescarch effort.

143 Understanding as Constraint Satisfaction

On the basis of a superficial analysis (such as the one in the last section), many under-
sianding tasks appear impossibly complex. The number of interpretations that can be
assigned to individual components of an input is lasge, and the number of combinations
of those components is enormous. But a closer analysis often reveals that many of the
combinations cannot actually occur. These natural constraints can be exploited in the
understanding process to reduce the complexity from unmanageable 1o tractable. There
arc two imporiant steps in the vse of constraints in problem solving:
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Figure 14.9: A Line Drawing

1. Analyze the problem domain to determine what the constraints are.

2. Solve the problem by applying a constraint satisfaction algorithm that effectively
uses the constraints from step 1 to control the search. Recall that we presented
such an algorithm in Seciion 3.5,

In the rest of this section, we look at one example of the use oi this approach, the Wallz
algorithm for labeling lirje drawings. In Chapter 15 we then fook tn depth at the problem
of natural language anding and sec how it 1o can be viewed as a constraint
satisfaction process.

Consider the drawing shown in Figure 14.9. Assume either (hat you have been
given this drawing as the input or that lower-level routines have already opl:ratr.d i
extract these lines from an input photograph. The nex( step in the analysis process iste
determine the objects described by the lines. To do this, we nead first to identily each
of the lines in the figure As representing either:

e An Obscuring Fdge—A boundary between objects. or between objects and the
background

« A Concave Edge—An edge between two faces that form an acute angle when
viewed from outside the object

e A Convex Edge—An cdge between two faces [hat form an obruse angle when
viewed from outside the object

For more complex figures, other edge types, such as cracks berween coplanar faces
and shadow edges between shadows and the background, would also be required. The
approach we describe here has, in fact, been extended (o handle these other edge types.
But to make the explanation straightforward, we consider only these three Tn fact, w:
sonsider only figures composed exclusively of trikedral vertices. which are vertices i
which exactly three planes come together. Figure 14,10 show: =xamples nf wihedral
figures. Figure 14.11 shows examples of nontrihedral figures.
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Figere 14.10: Some Trihedral Figures
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Figure 14 11: Some Nontrihedral Figures

¥ :
Convex line

———— Concave line
—=—— Boundary line with interior (o the right {down)

——=—  Boundary line with interior 1o the right (up)

Figure 14,12 Line-Labeling Conventions

Figure 14.13: An Example of Line Labeling
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Figure 14.14: The Four Trihedral Vertex Types

Determining the Constraints

The problem we are trying to solve is how 1o recognize individual objects i a figure.
To do thai, we intend first 1o label all the lines in the figure so that we know which ones
correspond to boundarics between objects. We use the three line types given above
For boundary lines, we also need to indicate a direction, telling which side of the line
corresponds 10 the object and which 10 the background. This produces a set of four labeis
that can be antached 1o a given linc. We use the conventions shown in Figure 14,12 1
show line labelings. To illustrate these labelings, Figure 14,13 shows the drawing of
Figure 14.9 with each of its lines correctly labeled.

Assuming thase four line types, we can calculate that the number of ways of labeling
a figure composed of N lines is 4", How can we find the correct onc? The critical
chservation here is that every line must meet other lines at a vertex at each of its ends.
For the trihedra: figures we are considenng, there are oniy four configuaiions thas
describe all the possible vertices. These four configurations are shown in Figure 14.14
The rotational position of the vertex is not significant. nor are the sizes of the angles
it contains, except that the distinction between acute angles (< 90 degrees) and obtuse
angles (> 90 degrees) 1s important to distinguish between a FORK and an ARROW. 1f
there turn out to be constraints on the kinds of vertices that can occur, then there would
be corresponding constraints on the lines entering the vertices and thus the number of
possible line labelings would be reduced.

To begin looking for such vertex constraints, we first consider the maximurn number
of ways that each of the four types of lines might combine with other lines at a vertex.
Since an'L vertex involves two lines, each of which can have four labels, there musi be
sixteen ways it could be formed. FORKs, Ts, and ARROWs involve three lines, so they
could be formed in sixty-four ways each. Thus there are 208 ways to form a trhedral
vedex, But, in fact, only a very small number of these labelings can actually occur
in line drawings representing real physical objects. To see this, consider the planes on
which the faces that form a vertex of a trihedral figure lie. These three planes musi
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Figure 14.15: A Figure Occupying One Octant

divide 3-space into eight parts (called octants) since each individual face diviges the
space in half and none of the faces can be coplanar. Trihedral figures may differ in the
aumber of octants that they fill and in the position (which must b~ one of the unfilled
octants) from which they are viewed. Any vertex that can occut in # trihedral figure
must correspond 1o such a division of space with same number (hetween one and eight)
of octants filled, which is viewed from onc of the pnfilled octants. So to find all the
vertex labelings that can nceur, we need only consider all the ways of filling the octants
and each of the ways of viewing those fillings, and then record the types of the vertices
that we find.

To illustrate this process, considar the drawing shown in Fagure 14.15. which occu
pies one of the eight oclants formed by the iniersection of the planes corresponding to
the faces of vertex A. Imagine viewing this figure from each of the remaining seven
octants and recording the configuration and the Tabeling of vertex A. Figure 14.16(a)
shows the results of this. When we lake those seven descriptions and eliminate rota
nional and angular vanations, we see that only three distinct ones remain, as shown in
Figure 14.16(b). If we continue this process for objects filling up 1o seven oclants (therc
can be no vertices if all eight octants are filled), we get a complete list of the possible
irihedral vertices and their labelings (equivalent to that developed by Clowes [1971])
‘This list is shown in Figure 14,17, Notice that of the 208 labelings that we said were
theoretically possible, only eighteen are physically possible. Thus we have found a
severe constraint on (he way that lines in drawings corresponding to real figures can be
labeled

Of course, at this poinl we have only found a constrainl on the ways in which sumpie.
irihedral vertices can be labeled. Many figures, such as those shown in Figure 14.11.
contain nontrihedral vertices. In addition, many figurcs contain shadow areas, which
can be of great use in analyzing the scene that is being porrayed When these variz-
tions are considered, there do become more than eighteen allowable venex labelings
But when these variations are allowed, the number of theoretically possible labelings
becomes much larger than 208, and, in fact, the ratio of physically allowable vertices (0
theoretically possible ones becomes even smaller than 18/208. Thus not only can this
approach be extended to larger diomains, it must be.
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As a result of this analysis, we have been able to articulate one class of constraints
that will be necded by a line-labeling procedure. These constraints are static (since the
physical rules they are based on never change), and so they donot need to be represented
explicitly us part of a problem state. They can be encoded directly into the line-labeling
algorithm. The other class of constraints we will need contains the dynamic ones that
describe the current options for the labeling of each vertex. These constraints will be
represented and manipulated explicitly by the line-labeling algorithm.

Applying Constraints in Analysis Problems

Having analyzcd the domain in which we are working and extracted a sct of constraints
that cojects in the domain must sarisfy, we need next (o apply those constraints to the
probicin of analyzing inpuis in the domain. To do this, we use & form of the constrain
satisfaction procedure described in Section 3.5. It turns out that for this problem it is
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Figure 14.17: The Eighteen Physically Possible Trihedral Vertices

not necessary to use the second part of our constraint satisfaction procedurc (the one
that makes guesses and results in search). The domain provides sufficiently powerful
constraints that it is not necessary 1o resort o search, Thus the Walrz algorithm [Waltz,
19751, which we present here, omits that step entirely.

To label line drawings of the sort we are considering, we first pick one vertex and
find all the labelings that arc possible for it. Then we move 1o an adjacent vertex and
find al! of its possible labelings. The line that we followed to get from the first vertex
to the second must end up with only one label, and that label must be consistent with
the two vertices it enters. So any labelings for either of the rwo vertices that require the
line to be labeled in a way that is inconsistent with the other veriex can be eliminated
Now another vertex, adjacent to one of the first two. can be labeled. New constrainis
will arise from this labcling and these constrainis can be propagated back to vertices that
have already been labeled, so the set of possible labelings for them is further reduced.
This process proceeds until all the vertices in the figure have been labeled.

As an example, consider the simple drawing shown in Figure 14.18(a). We can
begin by labeling all the boundary edges, as shown in Figure 14.18(b). Suppose we
then begin labeling vertices at veriex 1. The only vertex label that is consistent with
the known line labels is 13. At vertex 2, the only consistent label is 6. At each of the
remaining boundary vertices, there 1s also only one labeling choice. These labelings
are shown in parentheses in Figure 14.18(c). Now consider vertex 7. Just looking at
vertex 7 itself, it would appear that any of the five FORK labelings is possible. But
from the only labeling we found for vertex 2, we know that the linc beiween vertices 2
and 7 must be labeled +. This makes sense since it obviously represents a convex edge.
Using this fact, we can eliminate four of the possible FORK labels. Only label 8 i
now possible. The complete labeling just computed is shown in Figure 14.18(d). Thus
we sce that by cxploiting constraints on vernex Jabelings, we have correctly identified
vertex 7 as being formed by three convex edges.
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Figure 14.18: A Simple Fxample of the Labeling Process

We can now specify in more detail this parucular version of constraint propagation.

Algorithm: Waltz

I. Find the lines at the border of the scene boundary and label them. These lines can
be found by finding an outline such that no vertices are outside it. We do this first
because this labeling will impose additional constraints on the other labelings in
the figure.

rd

. Number the vertices of the figure to be analyzed. These numbers will correspond
1o the order in which the vertices will be visited during the labeling process. To
decide on a numbering, do the following:

(a) Start at any vertex on the boundary of the figure. Since boundary lines are
known, the vertices involving them are more highly constrained than are
interior ones.

(b) Move from the veriex along the boundary to an adjacent unnumbered vertex
and continue until all boundary vertices have been numbered.

(c) Number imterior vertices by moving from a numbered veriex (o some ad-
jacent unnumbered one. By alwaye iubeling a vertex next 1o one that has
already been labeled, maximum use can be made of the constraint

:. Visit each veriex V in onder and attempt fo 1abel it by doing the fallow:n,
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(a) Using the set of possible vertex jabelings given in Figure 14.17, attach to V
a list of its possible labelings.

(b) See whether some of these labelings can be eliminated on the basis of local
constraints, To do this, examine each vertex A that is adjacent to V and that
has already been visited. Check to see that for cach proposed labeling for V'
there is a way to label the line between V and A in such a way that at least
one of the labelings listed for A is still possible. Eliminate from Vs list any
labeling for which this 1s not the case. :

{¢) Use the set of labelings just attached to V' to constrain the labelings at
vertices adjacent to V. For each vertex A that was visited in the last step, do
the following:

i. Eliminate all labelings of A that are not consistent with at least one
labeling of V.
ii. If any labelings were eliminated, continue constraint propagation by
examining the vertices adjacent o A and checking for consistency with
the restricted set of labelings now attached to A.
iii. Continue to propagate until there are no adjacent lubeled vertices or
until there is no change made to the existing set of labelings

This algorithm will always find the unigue, correct figure labeling if one exists. 1f &
figure is ambiguous, however, the algorithm will terminate with at least one vertex still
yaving more than one labeling attached 0 ir

Actually, this algorithm, as described by Waltz, was applied to a larger class of
figures in which cracks and shadows might occur. But the operation of the algonthm
is the same regardless of the sizc of the table of allowable vertex labelings thal it uses.
In fact, as suggested in the last section, the usefulness of the algorithm increases as the
size of the domain increases and thus the ratio of physically possible to theoretically
possible vertices decreases. Waltz’s program, for example, used shadow information,
which appears in the figure locally as shadow lines, as a way of exploiting a global
constraint, namely that a single source of light produces consistent shadows.

144 Summary

In this chapter we outlined the major difficulties that confront programs designed to
perform perceptual tasks. We also described the use of the constraint satisfaction
procedure as one way of surmounting some of those difficulties,

Sometimes the problems of speech and image understanding are important in the
construction of stand-alone programs to solve one particular task. But they also play
an important role in the larger field of roborics, which has as its goal the construction
of intelligent robots capable of functioning with some degree of autonomy. For such
robots, perceptual abilities are essential. We will returm to these issues in Chapter 21
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14.5 Exercises

(]

One of the reasons that understanding complex perceptual patterns is difficult is
that if the pattern is composed of more than one object. a variety of difficult-
to-predict phenomena may occur at the junctions between objects. For example,
when the phrase “Could you go?" is spoken, a j sound appears between the words

“could” and "you.” Give another example of boundary interference in speech

Also give one example of it in vision

Which of the following figures are trihedral?

=D I

(a) 5

- In Section 14.3, we analyzed all the ways that a vertex of a trihedral object that

occupies one octant of the space formed by the intersection of its planes could be
labeled. Complete this analysis for vertices of objects thal occupy two through
seven octunts.

For each of the drawings in Figure 14.10. show how the Waliz algorithm would
produce a lubeling.

- In our description of the Waltz algorithm, we first assigned (o each veriex V all the

labelings thit might be attached to it. Then we looked at all adjacent vertices in
an atlempl to consirmn the set of labelings associated with V. And then we wemt
back to each adjacent vertex A To see if the knowledge about V could be used to
further constrain the lubelings for A. Why could we not simply visit cach adjacent
vertex once and pesform both these steps then?

. Give an example of an ambiguous Bgure for which the Waliz algorithm would not

find i unique labeling.



Chapter 15

Natural Language Processing

Language is meant for communicating about the world. By studying iznguage, we
¢an come 1o understand more about the world. We can test our theories about the
world by how well they support our antempt to understand language, And. if we can
succeed at building a computational model of language, we will have a powerful tool
for communicating about the world, In this chapter, we look al how we can exploit
knowledge about the world, in combination with linguistic facts, to build computational
natural language systems.

Throughout this discussion, it is going to be important 1o keep in mind thar the
difficulties we will encounter do not exist out of perversity on the part of some diabolical
designer. Instead, what we see as difficulties when we try to analyze language are just
the flip sides of the very propertics that make language so powerful, Figure 15.1 shows
some examples of this. As we pursue our discussion of language processing, it is
important 1o keep the good sides in mind since it is because of them that language is
significant enough 1 phenomeison (o be worth all the trouble,

By far the largest part of human linguistic communication occurs as speech. Written
‘anguage is a fairly recent invention and stil] plays a less central role than speech in
most activities. But processmg written language (@ssuming 1t is written in unambi guous
characters) is casier, in some ways, than processing speech.  For example. to build
2 program that understands spoken language, we need all the tacilitics of a writjen
language understander as well as enough additional knowledge to handle all the noise
and ambiguities of the audio signal' Thus it is useful 1o divide the entire language-
processing problem into iwo tasks:

* Processing written text, using lexical, syntactic. and sernantic knowledge of the
language as well as the required real world mformation

& Processing spoken language. using all the information needed above plus adds-
tional knowledge about phonology as well as enough added information to hand!
the further ambiguities that arise in speech

'Aﬂlil")- n understanding spoken language, we take advantage of clues, such as intonation and the
presence of pauses. 1o which we do not have access when we read. We can make the 135k of a speech
understanding program easier by allowing it. wo. o use these cues. but 1o do <0, we must know enough abow
ihem to incorporate inlo the program knowledge of how 10 use them

3
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The Problem: English sentences are incomplete descriptions of the information that
they are intended to convey: '

Some dogs are outside. I called Lynda to ask her
to the movies.
She said she'd love to go.

4 1)
Some dogs are on the lawn. She was home when I called X
Three dogs are on the lawn, She answered the phone.

Rover, Tripp, and Spot arc on the lawn. I actually asked her.

The Good Side: Language allows speakers to be as vague or as precise as they like. It
also altows speakers 1o leave out things they believe their hearers already know.

The Problem: The same expression means different things in different contexts:

Where's the water? (in a chemistry lab, it must be pure)
Where's the water? (when you are thirsty, it must be potable)
Where's the water? (dealing with a leaky roof, it can be filthy)

The Good Side: Language Jets us communicate about an infinite world using a finite
(and thus leamable) number of symbols,

The Problem: No natural language program can be complete becausc new words,
expressions, and meanings can be generated quate freely:

'l fax it 1o you.

The Good Side: Language can evolve as the experiences that we want to communicate
about evolve.

The Problem: There arc lots of ways to say the same thing:

Mary was born on October 11.

Mary's birthday is October 11.
The Good Side: When you know a lot, facts imply each other. Language is intended to
be used by agents who know a lot.

Figure 15.1: Features of Language That Make It Both Difficult and Useful
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In Chapter 14 we described some of the issues that anise in speech understanding, and in
Section 21.2.2 we return to them in more detail. In this chaprer, though, we concentrate
on written language processing (usually called simply natural language processing)

' Throughout this discussion of natural language processing, the focus 15 on English.
This happens 1o be convenient and turns out to be where much of the work in the field
has occurred. Bul the major issues we address are common Lo all natural languages. Tn
fact, the techniques we discuss are particularly important in the (ask of translating from
one natural language to another

Natural language processing includes both understanding and generation, as well as
other tasks such as multilingual translation. In this chapter we focus on understanding,
although in Section 15.5 we will provide some references to work n these other areas.

15.1 Introduction

Recall that in the last chapter we defined understanding as the process of mapping from
an input form into a more immediately useful form. It is this view of undersianding
that we pursue throughout this chapter. But it is useful to point out here that there is
a formal sense in which a language can be defined simply as a set of strings without
reference to any world being described or task to be performed. Although some of the
ideas that have come out of this formal study of languages can be exploited in parts of
the understanding process, they are only the beginning. To get the overall picture, we
need to think of language as a pair (source language, target representation), together with
1 mapping between elements of each 1o the other. The target representaion will have
neen chosen (o be appropriate for the task at hand. Often, if the task has clearly been
agreed on and the details of the target representation are not important in a particular
discussion, we talk just about the language iself, but the other half of the pair is really
ilways present.

One of the great philosophical debates throughout the centuries has centered around
the question of what a sentence means. Wedo not claim to have found the definitive
answer 10 that question. But once we realize that understanding a piece of language
involves mapping it into some representation appropriate to a particular situation, it
hecomes easy to see why the questions “What is language understanding?” and “What
does  sentence mean?” have proved to be so difficult to answer, We use language
in such a wide variety of situations that no single definition of understanding is able
10 account for them all. As we set about the task of building computer programs that
understand natural language. one of the first things we have to do is define precisely
what the underlying 1ask is and what the larget representation should look like. In the
rest of this chapier, we assume that our goal is to be able 10 reason with the knowledge
contained in the linguistic expressions, and we exploit a frame language as our target
-epresentation. '

!5.1.1 Steps in the Process

defore we go into detail on Lhe several components of the natural language understanding
process, it is useful to survey al! of them and see how they fit together. Roughly. we can
break the process down into the folloving pieces.
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* Morphological Analysis—Individual words are analyzed into their compunents,
and nonword tokens, such as punctuation, are separated from the words,

e Syntactic Analysis—Lincar sequences of words arc transformed into structures
that show how the words relate to each other. Some word sequences may be
rejected if they violate the language’s rules for how words may be combined. For
example, an English syntactic analyzer would reject the sentence “Boy the go the
to store.”

e Semantic Analysis—The structures created by the syntactic analyzer are assi gned
meanings. In other words, a mapping is made between the syntactic structures and
objects in the task domain. Structures for which no such mapping is possible may
be rejected. For example, in most universes, the sentence “Colorless green ideas
sleep furiously” [Chomsky. 1957) would be rejecied as semantically anomolous

* Discourse Integration—The meaning of an individual sentence may depend on
the sentences that precede it and may influence the meanings of the sentences that
follow it. For example, the word “it” in the sentence, “John wanted i1.” depends
on the prior discourse context, while the word “John™ may influence the meaning
of later sentences (such as, “He always had.”)

* Pragmatic Analysis—The structure representing what was said is reinterpreted to
determine what was actually meant. For example, the sentence “Do you know
what time it is?” should be interpreted as a request to be 1old the time

The boundaries between these five phases are often very fuzzy. The phases are
sometimes performed in sequence, and they are sometimes performed all at once. If
they are performed in sequence, one may need to appeal for assistance to another. For
example, part of the process of performing the syntactic analysis of the sentence “Is
the glass jar peanat butter?” is deciding how to form two noun phrases out of the four
nouns at the end of the sentence (giving a sentence of the form “Is the x y?). Al] of
the following constituents are syntactically possible: glass, glass jar. glass jar peanut,
jur peanul butter, peanut butter, butter. A syntactic processor on its own has no way lo
chouse among these, and s0 any decision must be made by appealing to some model
of the world in which some of these phrases make sense and others do not. If we do
this, then we gel a syntactic structure in which the constituents “glass jar" and “peanul
butter” appear. Thus although it is often useful to separate these five processing phases
to some extent, they can all interact in a variety of ways, making a complete separation
impossible.

Specifically, to make the overall language understanding problem tractable, it will
help if we distinguish between the following two ways of decomposing a program:

o The processes and the knowledge required to perform the task
¢ The global control structure that is imposed on those processes

In this chapter. we focus primarily on the first of thesc issues. It is the one that has
received the most attention from people working on this problem. We do not completely
ignore the second issue, although considerably less of substance 15 known about it. For
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an example of this kind of discussion that talks about interleaving syntactic and semantic
processing, see Lylinen [1986].

With that caveat, let’s consider an example to see how the individual processes work.
In this example. we assume that the processes happen sequentially. Suppose we have
an English interface 10 an operating system and the following sentence is typed:

I want to print Bill's init file.

Morphologieal Analysis
Morpnological anatysis must do the following things:

» Pull apart the word "Bill's” into the proper noun “Bill” and the possessive suffix

"

« Recognize the sequence “.init" s a file extension that is functioning as an adjective
u the sentence

in addition, this process will usually assign syntactic categories to all the words in the
sentence. This is usually done now because interpretations for affixes (prefixes and
suffixes) may depend on the syniactic category of the complete word. For example.
consider the word “prints.” This word is either a plural noun (with the "-s" marking
plural) or a third person singular verb (as in “he prints”), in which case the *-" indicates
hoth singular and third person. If this sicp is done now, then in our example, there will
be aminguiiy since “want,” “print,” and "file” can all function as more than one syntactic
category.

Syntactic Analysis

Syntactic analysis must exploit the resulisof morphological analysis to build a structural

description of the sentence. The goal of this process. called parsing, 18 to convert the
flat list of words that forms the sentence into a structure that defines the units that are

represented by that flat lisi. For our example sentence, the result of parsing is shown

in Figure 15.2. The details of this representation are not particularly significant: we
describe alternative versions of them in Section 15.2. What is important here is that

a flat sentence has been converted into a hicrarchical structure and that that structure.
has been designed to correspond to sentence units (such as noun phrases) that will

correspond 10 meaning units when semantic analysis 1s performed. One useful thing
we have done here, although not all syntactic systems do, is create a set of entitics we

call reference markers. They are shown in parentheses in the parse tree. Each one
corresponds to some entity that has been mentioned in the sentence. These reference

markers are useful later since they provide a place in which to accumulate informatior:

about the entitics as we get it. Thus although we have not tned to do semantic analysis

(i.c., assign mcaning) at this point, we have designed our syntactic analysis process so

that it will find constituents 10 which meaning car be assigned
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S
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Figure 15.2: The Resuli of Syntactic Analysis of “I want to print Bill’s .init file.”'

Semantic Analysis
Semantic analysis must do two important things:

« [t must map individual words into appropriate objecis in the knowledge base or
database.

« 1t must create the correct structures (o correspond 1o the way the meanings of the
individual words combine with each other.

For this example, suppose that we have a frame-based knowledge base that contains
the units shown in Figure 15.3. Then we can generate a partial meaning, with respect to
that knowledge base, as shown in Figure 15.4. Reference marker RM/ corresponds to
the top-level event of the sentence. It is 3 wanting event in which the speaker (denoted
by “T") wants a printing évent to occur in which the same speaker prints a file whose
extension is “.init"” and whose owner is Bill.

Discourse Integration

At this point, we have figured out what kinds of things this sentence is about. But we
do not yet know which specific individuals are being referred to. Specifically, we do
not know to whom the pronoun “1" or the proper noun “Bill” refers. To pin down these
references requires an appeal to a model of the current discourse context, from which
we can learn that the current user (who typed the word “T") is User068 and that the only
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User
i5a .

* login-name :

User(68
insiance :
login-name :

User(73
instance :
login-name :
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in-directory :

File-Struct
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Printing
15a .
* agent -
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must be <information-object>

Mental-Event
must be <animate>
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must be <animate>

must be <animate Of program=>
must be <event>
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Figure 15.3: A Knowledge Base Fragment

1)



384 CHAPTER I5. NATURAL LANGUAGE PROCESSING
RM 1 {the whole senience}
instance : Wanting
agent : RM2 {1
object : RM3 {a printing event|
RM2 {1}
RM3 . {a printing event }
instance ; Printing
agent : RM2 {1}
ohject : RM4 {Bill's .init file}
RM4 {Bill’s .init file)
instance File-Struce
exiension :  .init
owner RMS {Bill}
RMS {Bill}
insiance : Person

first-name - Bill

Figure 15.4: A Partial Meaning for a Sentence

person named “"Bill” about whom we could be talking is User)73. Once the correc
referent for Bill is known, we can also determine exactly which file is being referred to:
F1 is the only file with the extension " init” that is owned by Bill.

Pragmatic Analysis

We now have a complete description, in the terms provided by our knowledge base, of
what was said. The final step toward effective understanding is to decide what 1o do as
a result. One possible thing te do is to record what was said as a fact and be done with
it. For some sentences, whose intended effect is clearly declarative, that is precisely the
correct thing to do. But for other sentences, including this one, the intended effect is
different. We can discover this intended effect by applying a sct of rules that characterize
cooperative dialogues. In this cxample. we use the fact that when the user claims 10
want something that the system is capable of performing, then the system should go
ahead and do it. This produces the final meaning shown in Figure 15.5.

The final step in pragmatic processing is 1o translate, when necessary, from the
knowledge-based representation to a command 1o be executed by the system. [n this
case, this step is necessary, and we see that the finai result of the understanding process

5]

lpr ‘wsmith/stuff.init
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Meaning
instance ; Commanding
agenl : User068

performer . This-System
object : P27

P27
instance . Printing
agent : This-System

object ; Fl
Figure 15.5: Representing the Intended Meaning

where “Ipr” is the operating system’s file print command.

Summary

At this point, we have seen the results of each of the main processes that combinc
1o form a natural language system. In a complete system, all of these processes are
necessary in some form. For example. it may have scemed that we could Liave skipped
the knawledpe-based representation of the meaning of the sentence since the final
output of the understanding system bore no relationship to it. But it is that intermediaie
knowledge-based represeniation to which we usually attach the knowledge that supporis
the creation of the final answer. )

All of the processes we have described are important in a complete natural language
understanding sysiem. But not all programs are writien with exactly these components.
Sometimes two or more of them are collapsed, as we will sec in several sections later in
this chapter Doing that usually results in a system that is easier to build for restricted
subsets of English but one that is harder 10 extend to wider coverage. In the rest of this
chapter we describe the major processes in more detail and talk about some of the ways
in which they can be put together to form a complete system.

15.2 Syntactic Processing

Syniactic processing is the step in which a flal inpul sentence is converted into a
hierarchical structure that corresponds to the units of meaning in the sentence. This
process is called parsing. Although there are natural language understanding systems
that skip this step (for example, see Section 15.3.3). it plays an important role in many
natural language understanding systems for two reasons:

e Semantic processing must operate on sentence constituents. If there is no syntactic
parsing step, then the semantics system must decide on its own constituents. Tf
parsing is done, on the other hand, it constrains the number of constituents that
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semantics can consider. Syntactic parsing is computationally less expensive than
is semantic processing (which may require substantial inference). Thus it can
play a significant role in reducing overall system complexity.

» Although it is often possible to extract the meaning of a sentence without using
grammatical facts, it is not always possible to do so. Consider, for example, the
sentences

~ The satellite orbited Mars,
—~ Mars orbited the satellite.

In the second sentence, syntactic facts demand an interpretation in which a planet
(Mars) revolves around a satellite, despite the apparent improbability of such a
scenario.

Although there are many ways o produce a parse, almost all the systems that are
actually used have two main components:

e A declarative representation, catled a grammar, of the syntactic facts about the
language

® A procedure, called a parser, that compares the grammar against input sentences
to produce parsed structures

15.2,1 Grammars and Parsérs

The mosi common way to represent grammars is as a set of production rules. Although
details of the forms that are allowed in the rules vary, the basic idea remains the same
and is illustrated in Figure 15.6, which shows a simple context-free, phrase structurg
grammar for English. Read the first rule as, “A senténce is composed of a noun phras.e
followed by & verb phrase.” In this grammar, the vertical bar should be read as “oc
The & denotes the empty string. Symbols that are further expanded by rules are callec
nonterminal symbols. Symbols that correspond directly to strings that must be found in
an input sentence are called termiral symbols.

Grammar formalisms such as this one underlie many linguistic theories, which
in tum provide the basis for many natural language understanding systems. Modern
linguistic theorics include: the government binding theory of Chomsky [1981; 1986],
GPSG [Gazdar et al., 1985], LFG [Bresnan, 1982}, and categorial grammar [Ades and
Steedman, 1982; Ochrle et al., 1987]. The first three of these are also discussed in Sells
[1986]. We should point out here that there is gencral agrecment that pure, context-
free grammars are not effective for describing nutiral languages.? As a result, natural
language processing systems have less in common with computer language processing
systems (such as compilers) than you might expect.

Regardless of the theoretical basis of the grammar, the parsing process takes the
rules of the grammar and compares them against the input sentence. Each rule thar
matches adds something to the complete structurc that is being built for the sentence.

“There is, however, still some debate on whether contexi-free grammuars are formally adequste for describ
ing natural languages (¢ g., Gazdar [1982})
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S <+ NBPVP

NP —» the NP1

NP -3 PRO

NP — PN

NP — NP1

NPl = ADIS N

ADIJS — el ADJ ADIS
VP =Y

YP - V NP

N — file | printer

PN — Bill

PRO =1

ADJ — short | long | fast
V — printed | created | want

Figure 15.6: A Simple Grammar fora Fragment of English

The sunplest structure o build is a parse free, which simply records the rules and
now they are matched, Figure 15.7 shaws the parse tree that would be produced for
:he sentence “Bill printed the file” using this grammar. Figure 15.2 contained another
example of o parse tree, although some additions 10 this grammar would be required to
produce it.

Notice that every node of the parse tree corresponds either to an input word or o a
nonterminal in our grarmunar. Each level in the parse tree corresponds to the application
of one grammar rule. Asa result, it should be clear that a grammar specifies two things
about a language:

« Its weak generative capacity, by which we mecan the sct of sentences that are
contained within the language. This set (called the set of grammatical sentences)
is made up of precisely those sentences that can be completely matched by aseries
of rules in the grammar.

o [ts strony generative capacity, by which we mean the structure (or possibly struc-
tures) to be assigned to each grammatical sentence of the language.

So far, we have shown the resull of parsing to be exactly a trace of the rules that
were applied during it. This is not always the case, though. Some grammars contain
additional information that describes the structure that should be built. We present an
example of such a grammar in Section 1522

But first we need to look at two important issues that define the space of possible
parsers that can exploit the grammars we write

‘Top-Down versus Bottom-Up Parsing

To parse a sentence, it is pecessary o find a way in which that sentence could have been
generated from the start symbol. There are two ways that this can be done:
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Bill  printed the NPi
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< file

Figure 15.7: A Parse Tree for u Sentence

® Top-Down Parsing— -Begin with the start symbol and apply the grammar rules
forward untit the symbols at the terminals of the tree correspond 1o the components
of the sentence being parsed,

But using tables thay have been precomputed for a particular grammar, the parser can
immediately eliminate constituents that can never he combined into useful higher-level
structures.

Finding One Interpretation or Finding Many

Suppose, for €xample, that a sentence Mr looks at the words of an npi
Sentence one at a time, from lef 1o right, and suppose that so far, it has seen:
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“Have the students who missed the cxane—

There are two paths that the processor could be following at this point:

+ “Have” is the main verb of an imperative sentence, such as
“Have the students who missed the exam take it today.”

s “Have" is an auxiliary verb of an interrogative seatence, such ay
“Have the students who missed the exam taken it today?"

There are four ways of handling sentences such as these:

o All Paths—Follow all possible paths and build all the possible intermediate com-
ponents, Many of the components will later be ignored because the other inpuls
required to use them will not appear. For example, if the auxiliary verb interpreta-
tion of “have” in the previous example is built. it will be discarded if no participle,
such as *“1aken,” ever appears. The major disadvantage of this approach is that.
because it results in many spurious constituents being built and many deadend
paths being followed, it can be very inefficient.

& Best Path with Backtracking—Follow only one path at a time, but record, at every
choice point, the information that is necessary to make another choice if thechosen
path fails 10 lead 10 a complete interpretation of the sentence. In this example,
if the auxiliary verb interpretation of “have” were chosen first and the end of the
sentence appeared with no main verb having been seen, the understander would
detect failure and backirack o try some other path. There are (wo important
drawbacks to this approach, The first is that a good deal of time may be wasited
saving stute descriptions a1 each choice point, even though backtracking will occur
to only a few of those points, The second is thal often the same constituent may
be analyzed many times. In our example, if the wrong interpretation is selected
for the word “have.” it will not be detected until after the phrase “the students
who missed the @xam” has been recognized. Once the error is detecied, a simple
backtracking mechanism will undo everything that was done after the incorrect
interpretation of “have” was chosen, and the noun phrase will be reinterpreted
(identically) after the second interpretation of “have™ has been selected. This
problem can be avoided using some form of dependency-directed backtracking,
but then the implementation of the parser is more complex.

e Best Path with Parchup—Follow only one path at a time. but when an error is
detected, explicitly shuffle around the components that have already been formed.
Again, using the same example, if the auxiliary verb interpretation of “have™ were
chosen first, then the noun phrase “the students who missed the exam” would
be interpreted and recorded as the subject of the sentence. If the word “taken”
appears next, this path can simply be continued. But if “1ake” occurs nexl, the
understander can simply shift components into different slots. “Have™ becomes
the main verb. The noun phrase that was marked as the subject of the sentence
becomes the subject of the embedded senience “The students who missed the
exam take it today.” And the subject of the main sentence can be filled in .
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“you,” the default subject for imperative sentences. This approach is usually
more efficient than the previous two techniques. Its major disadvantage is that
it requires interactions umong the rules of the grammar to be made explicit in
the rules for moving components from one place to another. The interpreter
often becomes ad hoc, rather than being simple and driven exclusively from the

grammar,

* Wait and See—Tollow only one path. but ruther than making decisions about
the function of each component as it is encountered, procrastinate the decision
until enough information is available 10 make the decision correctly. Using this
approach, when the word “have” of our example is encountered, it would be
recorded as some kind of verb whose function is, as yet, unknown. The following
noun phrase would then be interpreted and recorded simply as a noun phrase.
Then, when the next word is encountered, a decision can be made about how all
the constituents encountered so far should be combined. Although several parsers
have used some form of wait-and-see strategy, one, PARSIFAL [Marcus, 1980],
relies on it exclusively. Tt uses a small, fixed-size buffer in which constituents
can be stored until their purpose can be decided upon. This approach is very
efficient, but it does have the drawback that if the amount of Jookahead that is
necessary is greater than the size of the buffer, then the interpreter will fail. But
the sentences on which it fails are exactly those on which people have trouble,
apparently becausc they choose one interpretation, which proves to be wrong. A
classic example of this phenomenon, called the garden path sentence, is

The horse caced past the bam fell down.

A'though the problems of deciding which paths to follow and how to handle back-
tracking are common to all search processes, they are complicated in the case of language
understanding by the existence of genuinely ambiguous sentences, such as our earlier
example “They are flying planes.” If it is important that not just one interpretation but
rather all possible ones be found, then either ail possible paths must be followed (which
is very expensive since most of them will die out before the end of the sentence) or
backiracking must be forced (which 1s also expensive because of duplicated computa
tions). Many practical systems are content to find a single plausible interpretation. If
that interpretation is laler rejected. possibly for semantic or pragmatic reasons, then a
new attempt to find a different interpretation can be made

Parser Summarv

As this discussion suggests, there aré many dificrent kinds of parsing systems. There
are three that have been used fairly extensively in natural language systems:

o Chart parsers [Winograd; 1983], which provide a way of avoiding backup by
storing intermediate constituents so that they can be reused along altermnative
parsing paths.

» Definite clause grammars [Pereira and Warren, 1980], in which grammar rules
are written as PROLOG clauses and the FROLOG interpreter is used to perform
top-down, depth-first parsing.
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« Augmented transition networks (or ATNs) [Woods, 1970], in which the parsing
process is described as the transition from a start state to a final state in a transifion
network that corresponds to a grammar of English.

We do not have space here to go into all these methods. In the next section, we
illustrate the main ideas involved in parsing by working through an example with an
ATN. Afier this, we look at one way of parsing with a more declarative representation

15.2.2 Augmented Transition Networks

An augmented transition network (ATN) is a top -down parsing procedure that allows
various kinds of knowledge to be incorporated into the parsing system so it can operate
efficiently. Since the early use of the ATN in the LUNAR system [Woods, 1973], which
provided access to a large database of information on lunar geology, the mechanism has
been exploited in many ianguage-understanding systems. The ATN is similar to a finite
state machine in which the class of labels that can be attached to the arcs that define
transitions between states has been augmented. Arcs may be Jabeled with an arbitrary
combination of the following:

« Specific words, such as "in."
e Word categories, such as “noun.”

e Pushes to other networks that recognize significant components of a sentence
For example, a network designed 1o recognize 2 prepositional phrase (PP) miay
include an arc that asks for (“pushes for”) a noun phrase (NP),

» Procedures that perform arbitrary tests on both the Current input and on sentence
components that have already been identified.

« Procedures that build structures that will form pari of the final parse.

Figure 15.8 shows an example of an ATN in graphical notation. Figure 15.Y shows
the top level ATN of that example in a notation that a program could read. To see how
an ATN works, let us trace the execution of this ATN as it parses the following sentence

The long file has printed.

This execution proceeds as follows:
! Beginn state §
2. Push o NP
3. Do acategory test ¢ sor o “the’ is a defermine:

4. This test succeeds, so set the DETERMINER register o DECINITL and e -
state Q6

Do a ca~gory test o see if “leag” + an adjective.

e
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Figure 15.8: An ATN Netwoik for a Fragmeni of English

. This tesi succeeds, so append “long™ to the list contained in the ADIS register

(Tius st was previously empiy.) Stay in state Q6.

. Do a category test to see if “file” is an adjective. This test fails.

. Do a category test to see if “file” is a noun. This test succeeds, so set the NOUN

register to “file” and go to state Q7.

. Push 1o PP
10.

Do a category test to see if “has™ is a preposiuon. This tesi fails, so pop and signal

failure.

There is nothing else that can be done from state Q7. s0 pop and scturn the structure
(NP (FILE (LONG) DEFINITE))

The retumn causes the machine to be in state Q1. withthe SUBJ register sei to the

structure just returned and the ['YPE register se. .« DCL,

Do a category test to see if “has” 1s a verb. This rest succeeds, so sel the AUX
regisier to NIL and set the V register to “has.” Go to state Q4.

Push 1o state NP. Since the next word, “printed.” is not a determiner or a proper
noun, NP will pop and retum failure.

The only other thing 10 do in staie Q4 is 1o halt. Bu: mose input remains, so a
complete parse has not been {ound. Backtracking 15 now reyuired.
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{8/ PUSHNP/T
{SEIR SUBJ *)
(SETR TYPE (QUOTE DCL))
(TO Q1))
(CATAUXT
(SETR AUX *)
(SETR TYPE (QUOTE Q))
(TOQ2)N
Q1 (CATVT
(SETR AUX NIL)
(SETR V *)
(TO Q4))
(CATAUXT
(SETR AUX *)
(TOQ3)))
{(Q2 {PUSHNP/T
{SETR SUBIJ *)
(TO Q3»)
Q3 (CATVT
(SETR V *)
(TG Q4)))
(Q4 (POP(BUILDQ(S +++ (VP +))
TYPE SUBJAUX V) T)
(PUSHNP/T
(SETR VP (BUILDQ (VP (V +) *) v
(TO Q50
(QS (POP(BUILDQ (S +++ +)
TYPE SUBJ AUX VP)T)
(PUSHPP/ T
(SETR VP (APPEND (GETR VP) (LIST *)
(TO 05N

Figure 159 An ATN Grammar n 1 is1 Form
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15. The last choice point was m state Q! so retum there. The registers AUX and V
iust be unget

16. Do a category test to see if “has™ is an auxiliary. This (est succeeds, so set the
AUX register to “has” and go to state Q3.

17. Do a category test to see if “printed” is a verb. This test succeeds, so set the V
register to “printed.” Go to state Q4.

18. Now, since the inpul is exhausied, Q4 is an accepuable final state. Pop and return

the structure
(S DCL (NP (FILE (LONG) DEFINITE))
HAS
(VP PRINTED))

This structure is the ontput of the parse.

This example grammar illustrates several interesting points about the use of ATNs,
A single subnetwork need only occur once even though it is used inmore than one place.
A metwork can be called recursively. Any number of internal registers may be used to
contain the result of the parse. The result of a network can be built, using the function:
BUILDQ, out of vatues contained in the various system registers. A single state may
be both a final state, in which a complete sentence has been found, and zn intermediate
stare, in which only a part of a sentence has beon recognized. And, finally, the contents
of a register can be modified at any time.

In addition, there are a variety of ways i which ATNS can be used which are no
showa in this example:

» The contents of registers can he swapped. For example, if the neiwork were
expanded to recogaize passive sentences, then at the point that the passive was
detected, the current contents of the SUBJ register would be transferred to an
OBJ register and the object of the preposition "by"” would be placed inthe SUBJ
register. Thus the final interpretation of the following two sentences would be the
same

— Bill printed the file.
- The file wag prinied by Bill.

¢ Arbitsary iests can be-placed on the arcs In each of the arvs in this exstnole. Sy
st is-.-ipeciﬁ% simply as T (always true). But this need not be the case. Suppos.
that wiic:: the hrst NP is found. its number is determuned and recorded in 2 registes
called NUMBER Then the arcs labeled V could have an additionei test placed oa
*hem that checked that the number of the particular verb that was round is cqual
w: the value stored in NUMBER. More sophisticated tesis. mvalving semantic
markers or other semantic features, can also be perform:d

1523 Unification Grammars

ATN grammars have substantial procedural components. The grammar describes the
order in which constituents must be built, Vanat'ss are explicitly given values, and
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they must already have been assigned a value before they can be referenced. This
procedurality limits the effectiveness of ATN grammais in some cascs, for example: it
speech processing where some laler parts of the sentence may have been recognized
clearly while earlier parts are still unknown (for example, suppose we had heard, “The
fong « » « file printed.™), or in systems that want to use the same grammiar 10 support
both understanding and generation (c.g.. Appelt [ 19871 Shieber [1988] and Barnett et
ai. [1990]). Although there isno clear distinction between declarative and procedural
(epresentations (as we saw in Section 6.1}, there is a spectrum and it often tums oul that
more declarative representations are more flexible than more procedural ones are. Soin
this section we describe a declarative approach 1o representing granmimars,

When a parser applies grammar rules to a sentence, it performs two major kinds of
operations: .

« Matching (of sentence constiluents (0 grammar rules)
« Building structure (corresponding to the result of combining constituents)

No - think back 1o the unification operation that we described in Section 5.4.4 as part
of our theorem-proving discussion, Matching and structure building are operations that
unification performs naturally. 5o an obvious candidate for represenling grammars is
some structure on which we can define a unification operator. Directed acyclic graphs
{DAGs) can do exactly that.

Each DAG represents a set of antribute-value pairs. For example. the graphs corie:
sponding to the words “the” and “file” are:

|CAT: DET [CAT: N
1L.EX: the] LEX: file
NUMBER: SING]

Both words have a lexical category (CAT) and a lexical entry. In addition, the word
“&1e” has a value (SING) for the NUMBER anribute. The result of combining these
two words to form a simple NP can also be described as a graph:

INP: {DET: the
HEAD: file
NUMBER: SING|

The twie tmal forms this new constituent can also be represented as a graph, but 1o
de se we need 1o introduce a new notation. Until now, all our graphs have actually been
tices. 1o describe graphs thal are nol trees. we need a way 1o label a piece of a graph
aad then point 1o thal piece elsewhere in the graph. So let {n} for any value of n be
- jabel. which is to be interpreted as a label for the next constituent following it in the
graph. Sometimes, the constituent s emply (1.e., there is not yct-any structure that is
known to fill that picce of the graph). In that case, the label functions very much like 2
variable and will be treated likc onc by the unification operation. It is this degenerate
kind of a label that we need in order to describe the NP rule:

NP - DETN

We can write this rule as the following graph:
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(CONSTITUENTI: [CAT: DET
LEX: {1}]
CONSTITUENT2: [CAT: N
LEX: {2}
NUMBER: {3}]
BUILD: [NP: [DET: {1}
HEAD: {2}
NUMBER: {3}]]]

This rule should be read as follows: Two constituents, described inthe subgraphs labeled
CONSTITUENT] and CONSTITUENTZ, are to be combined. The first musl be of CAT
DET. We do not care what its lexical entry is, but whatever it is will be bound to the
label {1}. The second constituent must be of CAT N. Its lexica! entry will be bound to
the label {2}, and its number will be bound to the label {3}. The result of combining
these two constituents is described in the subgraph labeled BUILD. This result willbe a
graph corresponding to an NP.with three attributes: DET, HEAD, and NUMBER. The
values for all these attributes are to be taken from the appropriate pieces of the graphs
that are being combined by the rule.

Now we need to define a unification operator that can be applied w the graphs we
have just described. It will be very similar to logical unification. Two graphs umfy if,
recurstvely, all their subgraphs unify. The result of a successful unincaiion 1s a graph
that is composed of the union of the subgraphs of the two inputs, with all bindings made
as indicated. This process bottoms oul when a subgraph is not an attnbute-value pau
but is just a value for an attribute. At that point, we must define what il means o
two values to unify. Identical values unify. Anything unifies with & variabie (a label
with no attached structurc) and produces a binding for the label. The simplest thing
to do is then to say that any other situation results in failure. But it may be oseful
to be more flexible So some systems allow a value (o match with a more general
one (e.g., PROPER-NOUN maiches NOUN). Others allow values that are disjunciions
fe.g., (MASCULINE v FEMININE)], in which case unification succeeds whenever the
intersection of the two values is not empty.

There 1s one other important difference between logical umification and graph unifi-
cation. The inputs to logical unification are treated as logical formelus Order marters,
since. for example. figla) /ith)) is a different formula than fll(h), g(a},. The inputs to
grapli unitization, on the other hand, must be treated as seis, since the order in which
atiribute-vaine pairs are staied dogs not matter.  For example. if & rule describes a
constituent as

[CAT: DET
LEX: {1 }]

we want to be ikle ro match a eonstiteent such as

[LEX: the
CAT: DET]

Algorithm: Graph-Unify

I, Ifeither G! or G21s an attnbute that is not itself an atiribute-value pair then:
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() If the attributes conflict (as defined above), then fail.

th) If either is a variable. then bind it to the value of the other and retum that
value.

(¢ Otherwise, return the most general value that is consistent with both the
original values. Specifically, if disjunction is allowed, then retum the inter-
section of the values.

2. Otherwise, do:

(a) Set variable NEW to empty.
(b) For each attribute A that is present (al the top level) in either G1 or G2 do

1. If A is not present at the top level in the other input, then add A and its
value to NEW.

ji. If it is, then call Graph-Unify with the two values for A. If that fails,
then fail. Otherwise, take the new value of A o be the result of that
unification and add A with its value to NEW.

<¢) If there are any labels attached to G or G2, then bind them to NE‘W and
-eturn NEW.

A simple parser can use this algorithm to apply a grammar rule by unifying CON-
STITUENT] with a proposed first constituent. If that succeeds, then CONSTITUENT2
++ unified with a proposed second constituent. If that also succeeds, then a new con-
stituent corresponding to the value of BUILD is produced. If there are vanables in the
value of BUILD that were bound during the malching of the constituents, then those
bindings will be used to build the new constituent.

“there are many possible variations on the notation we have described here. There
ire also a variety of ways of using it to represent dictionary entries and grammar rules.
et Shieber [1986] and Knight [1989] for discussions of some of them.

aithough we have presented unification here as a lechnique for doing syntactic
anadysis. it has also been used as a basis for semantic interpretation. In fact, there are
arguments for using it @ a uniform representation for all phases of natural language
undessiundiage  There are also arguments against doing so, primarily involving system
sodulanity, the noncompositionality of language in some respects (see Section 15.3.4).
snd the need fo invoke substantial domain reasoning. We will not say any maze about
tis here but to see how this idca could work, see Allen [1989].

15,3 Semantic Analysis

Croducing « syntactic parse of a sentence is only the first step toward understanding
. We must still produce a representation of the meaning of the sentence. Because
undesstanding is a mapping process, we must first define the language into which we arc
trying to map. There is no single, definitive language in which all sentence meanings
can be described. All of the knowledge representation systems that were described in
Part 11 are candidates, and having selected one or more of them, we still need to define
the vocabulary (i.e.. the predicates, frames, or whatever) that will be used on top of the
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structure. In the rest of this chapter, we call the final meaning representation language.
including both the representational framework and the specific meaning vocabulary, the
target language. The choice of a target language for any particular natural language
understanding program must depend on what is to be done with the meanings once they
are constructed. There are two broad families of target languages that are used in NI
systems, depending on the role that the natural language system is playing in a lmpe:
system (if any).

When natural language is being considered as a phenomenon on its own, as, o
example, when one builds a program whose goal is to read text and then answer
questions about it, a target language can be designed specifically to support language
processing. In this case, one typically looks for primitives that correspond t¢ distinctions
that are usually made in language. Of course, selecting the right set of primitives is no!
easy. We discussed this issue briefly in Section 4.3.3, and in Chapter 10 we looked &
two proposals for a set of primitives, conceptual dependency and CYC

When natural language is being used as an interface language to another program
(such as a database query system or an expert system), then the tarpet language must
be a legal input to that other program. Thus the design of the target language is driven
by the backend program. This was the case in the simple cxample we discussed in
Section 15.1.1. But even in this case. it is useful, as we showed in ihat example. (v
pee an intermediate knowledge-based representation tu gide the overall process. 50,
in the rest of this section, we assume that the target language we are building is 4
knowledge-based one.

Although the main purpose of semantic processing is he creation of atarget language
representation of a sentence’s meaning, there is another important role that it plays. It
imposes constraints on the representations that can be constructed, and, because of the
structural connections that must exist between the syniactic structure and the scmantic
one, it also provides a way of selecting among competing syntactic analyses. Semantic
processing can impose constraints because it his access (0 knowledge about what makes
sense in the world. We already mentioned one example of this, the senfence, VIs the
glass jar peanut butter”” There are other examples in the rest of this section,

I.exical Processing

The first step 1n any semantic processing system is to look up the individual waords in
a dictionary {or lexiron) and extract their meanings. Unfortunately, many words have
several meamings, and 1t may not be possible to choose the correct one just by looking
at the word itself For example, the word “diamond”™ might have the following set of
meanings’

e A geometrical shape with four equa! sides
e A baseball field
@ An extremely hard and valuable gemstone

To select the correct meaning for the word “diamond ™ in the sentence.

Joan saw Susan’s diamond shimmering from across the room
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it is necessary to know that neither geometrical shapes nor baseball fields shimmer,
whereas gemstones do. L

Unfortunately, if we view English understanding as mapping from English words
into objects in a specific knowledge base, lexical ambiguity is often greater than it seems
in everyday English. For, example, consider the word “mean.” This word is ambiguous
in at least three ways: il can be a verb meaning “10 signify ™, it can be an adjective
meaning “unpleasant” or “cheap”; and it can be a noun meaning “siatistical average.”
But now imagine that we have a knowledge base that describes a statistics program and
its operation. There might be at least two distinct objects in that knowledge base, both
of which correspond to the “statistical average” meaning of “mean.” Onc object is the
statistical concept of a mean; the other is the particular function that computes the mean
in this program. To understand the word “mean” we need to map it into some concept in
our knowledge base. But 1o do that, we must decide which of these concepts is meant.
Because of cases like this, lexical ambiguity is a serious problem, even when thedomain
of discourse is severely constrained.

The process of determining the correct meaning of an individual word is called word
sense disambiguation or lexical disambiguation. It is done by associating, with each
word in the lexicon. information about the contexts in which each of the word's senses
may appear. Each of the words in a sentence can serve as part of the coniexi in which
the meanings of the other words must be determined.

Sometimes only very straightforward information about each word sense is neces-
sary. For example, the baseball field inierpretation of “diamond” could be marked 2s
a LOCATION. Then the correct meaning of “diamond™ in the sentence “I'll meet you
at the diamond” could easily be determined if the fact that af requires a TIME or a
LOCATION as its object were recorded as part of the lexical entry for ar. Such simple
properties of word senses are called semantic markers. Other useful semantic markers
are

+ PHYSICAL-OBJECT
« ANIMATE-OBJECT
s ABSTRACT-OBIJECT

Using these markers, the correct meaning of “diamond™ in the sentence “1 dropped
my diamond" can be computed. As part of its lexical entry, the verb “drop™ will specify
that its object must be a PHYSICAL-OBJECT. The gemstone meaning of “diamond™
will be marked as a PHYSICAL-OBJECT. So it will be selected as the appropriate
meaning in this context.

This technique has been extended by Wilks [1972: 1975a; 1975b] in his preference
semantics, which relies on the notion that requirements, such as the one described above
for an object that is a LOCATION, are rarcly hard-and-fast demands. Rather, they can
best be described as preferences. For example, we might say that verbs such as “hate™
prefer a subject that is animsi?. Thus we have no difficulty in undersianding the sentence

Pop hates the cold.

as describing the feelings of a man and not those of sof drank: et soe ~ansjdes th
sentence .
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My lawn hates the cold.

(o interpret the sentence ‘about Susan’s diamond comrectly, we must mark one sense of
diamond as SH IMMERABLE, while the other two are marked NONSHIMMERABLE
As the number of such markers grows, the size of the lexicon becomes unmanageable,
In addition, cach new entry into the lexicon Mmay require that a new marker be added to
each of the existing entries. The breakdown of the semantic marker approach when the
number of words and word senses becomes large has led 1o the development of other
ways in which correct senses can be chosen. We return 1o this issue in Section 15.3.4

Several approaches 1o the problem of creating a semantic Tepresentation of a $2ntence
have been developed, including the [ llewing:

* Semantic grammars, which combine syntactic, semantic, and Pragmatic know|-
edge into a single set of rules in the form of a grammar. The result of parsing
with such a grammar js a scmantic, rather than Just a syntactic, description of a
sentence.,

¢ Case grammars, in which the siructure ibat is buily by the parser contains sofie
semantic information, al though further interpretation may also be necessary.

* Conceptual parsing, in which syntactic and semantic knowledge are combined
into a single interpretation system that is driven by the semantic knowledge. |
this approach, syntactic parsing is subordinated to semantic interpretation, which
is usually used to set up strong expectations for Particular sentence structurcs.

¢ Approximarely compositional semantic interpretation, in which semantic pro-
cessing is applied to the result of performing a syntactic parse. This can be done
either incrementally, as constituents are built, or al] at once, when a structure
corresponding to a complele sentence has been built.

In the following sections, we discuss cach of these approaches.

153.1 Semantic Grammars
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S —» what is FILE-PROPERTY of FILE?
{query FILE FILE-PROPERTY }
§—» I want to ACTION
{command ACTION}
FILE-PROPERTY — the FILE-PROP
{FILE-PROP}
FILE-PROP — extension | protection | creation date | owner
{value]}
FILE —» FILE-NAME | FILE!
{value}
FILE! — USER's FILE2
{FILEZ.owner: USER |
FILEl — FILE2
{FILE2)
FILE2 —» EXT file
{instance: file-struct
extension: EXT}
EXT — .init] txt 1 Ispi for | ps|.mss
value
ACTION -3 print FILE
{instance: printing
object: FILE}
ACTION — print FILE on PRINTER
{instance: printing
object: FILE
printer: PRINTER }
USER — Bill | Susan
{value)

Figure 15.10: A Semantic Grammar

<

An example of a fragment of a semantic grammar is shown in Figure 15,10. This
grammar defines part of a simple interface to an operating system. Shown in braces
under each rule is the semantic action that is taken when the rule is applied. The term
“yalue™ is used 1o refer to the value that is matched by the right-hand side of the rule.
The dotted notation x.y should be read as the y attribute of the unit x. The result of a
successful parse using this grammar will be either a command or a query.

A semantic grammar can be used by a parsing system in exactly the same ways in
which a strictly syntactic grammar could be used. Several existing systems that have
used semantic grammars have been built around an ATN parsing system, since it offers
a greal deal of flexibility.

Figure 15.11 shows the result of applying this semantic grammar to the sentence

1 want to print Bill's init file
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s
|command: |instance: printing
object: |instance: file-struct
extension; init
owner: Bill|}}

ACTION
linstance: printing
object: |instance: file-struct
extension: .imt
owner: Bill|)

FILE

l

FILE|
|instance: file-struct
extension: .init
owner: Bill}}

FILEZ
|instance: file-struct
extension: .init
owner: Bill] |

EXT

l

want 0 print Rill's .init file.

Figure 15.11: The Result of Parsing with a Semantic Grammar
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Notice that in this approach, we have combined into a single process all five steps
of Section 15.1.1 with the exception of the final part of pragmatic processing in which
the conversion to the system’s command syntax is done.

The principal advantages of semanltic grammars are the following:

¢ When the parse is complete. the result can be used immediately without the
additional stage of processing that would be required if a scmantic interpretation
had not already heen performed during the parse.

o Many ambiguities that would arise during a strictly syntactic parse can be avoided
since some of the interpretations do not make sense semantically and thus cannot
be generated by a semantic grammar. Consider, for example, the sentence "I
want to print stuff.txt on printer3.” During a strictly syntactic parse, it would not
be possible 1o decide whether the prepositional phrase, “on printer3” modified
“want” or “print.” But using our semantic grummar, there is no general notion of
a prepositional phrase and there 1s no attachment ambiguity.

« Syntactic issues that do not affect the semantics can be ignored. For example,
using the grammar shown above, the sentence, “What is the extension of lisp
file?" would be parsed and accepted as correct.

There are, however, some drawbacks to the use of semantic grammars:

¢ The number of rules required can become very large since many syntaclic gener
alizations are missed.

o Because the number of grammar rules may be very large, the parsing process maj
be expensive. g

After many experiments with the use of semantic grammars in a variety of domains,
the conclusion appears-10 be that for producing restricted natural language interfaces
quickly, they can be very uscful. But as an overall solution to the problem of lan-
guage understanding, they are doomed by their failure to capture important linguistic
generalizations.

15.3.2 Case Grammars

Case grammars [Fillmore, 1968; Bruce, 1975] provide a different approach to the
problem of how syntactic and semantic interpretation can be combined. Grammar rules
are written to describe syntactic rather than semantic regularitics. Bul the structures the
rules produce correspond to semantic relations rather than to strictly syntactic ones, As
an example, consider the two sentences and the simplified forms of their conventional
parse trees shown in Figure 15.12.

Although the semantic roles of “Susan™ and “the file” are identical in these two
sentences, their syntactic roles are reversed. Each is the subject in one senience and the
object in another.

Using a case grammar, the interpretations of the two s.ntences would both be

(printed (agent Susan)
(object File))
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S S
o o o
NP VP NP VP
v NP v PP
| N N\ AN
Susan ponted  the file. The file was printed by Susan.

Figure 15.12: Syntactic Parses of an Active and a Passive Sentence

S s
o T
NP vp NP VP
o /\ N
v PP v PP
i L s

Mother baked for three hours, The pic baked for three hours.

Figure 15.13: Syntactic Parses of Two Similar Sentences

Now consider the two sentences shown in Figure 15.13.

The syntactic structures of these two sentences are almost identical. In one case,
“Mother” is the subject of “baked,” while in the other “the pie” is the subject. But the
relationship between Mother and baking is very different from that between the pie and
baking. A case gramma- analysis of these two sentences reflects this difference. The
first sentence would be interpreted as

(baked (agent Mother)
(timeperiod 3-hours))

The second would be interpreted as

{baked (object Pic)
(timeperiod 3-hours))

In these representations, the semantic roles of “mother™ and “the pie” are made explicit.
It is intercsting 1o notc that this semantic information actually does intrude into the
syntax of the language. While it is allowed to conjoin two parallel sentences (e.g., “the
pie baked” and “the cake baked” become “the pic and the cake baked”), this is only
possible if the conjoined noun phrases are in the same case relation to the verb. This
accounts for the fact that we do not say, “Mother and the pie baked.”

Notice that the cases used by a case grammar describe relationships between verbs
and their arguments. This contrasts with the grammatical notion of surface case, as
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exhibited, for example, in English, by the distinction between i (nominative case) and
“me"” (objective case). A given grammalical, or surface, case can indicate a variely of
semantic, or deep, cases.

There is no clear agreement on exactly what the correct set of deep cases ought to
e, but some obvious ones are the following:

e (A) Agent—Instigator of the action (typically animatc)

e (1) Instrument - Cause of the event or vbject used in causing the event (typically
inammate)

e (D) Dative—Entity affected by the action (typically animalte}

o (F) Factitive—Object or being resuiting from the event

» (L) Locative—Place of the event

o {S) Source—-Place from which somethmg moves

« (G) Goal—Place to which something moves

« (B) Beneficiary—Being on whose behall the event occuned (typically animate)
¢ (T) Time—Time at which the event occurred

s (0) Objeci—Entity that 1s acted upon or that changes, the most general case

The process of parsing into a casc representation is heavily directed by the lexical
entries associated with each verb. Figure 15.14 shows examples of a fow such entries.
Optional cases arc indicated in parentheses.

Languages have rules for mapping from underlying case structures (o surface syn-
ractic forms. For example. in English, the “unmarked subject™ is generally chosen by
the following rule:

If A is present, it is the subject, Otherwise, if 1is present, it is the subject.
Else the subject is O.

These rules can be applied in reverse by a parser 10 determnine the underlying case
structure from the superficial syntax.

Parsing using a case grammar is usually expecialton-driven. Once the vesb of the
sentence has been located. it can be used to predict the noun phrases that will occur and
1o determine the relationship ot those phrases (o the rest of the sentence.

ATNs provide a good structure for case grammar parsing. Unlike traditional parsing
algorithms in which the output structure always rrors the structure of the grammar rules
that created it, ATNs allow output structures of arbitrary form. For an exanple of their
use, see Simmons [ 1973}, which describes a system thai uses an ATN parser to translate
English sentences into a semantic net representing the case structures of sentences.
These semantic nets can then be used 1o answer questions aboul the sentences.

“The unmarked subject is the one that is used by defaults it signals no special focus or emphucis i 0
senience.
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open  [..0O(I)(A)]
The door opened.
John opened the door.
The wind opened the door,
John opened the door with a chisel.

die [..D]
John died.

kil [L_D()A)
Bill killed John.
Bili killed John with a knife.

run [--A)
John ran.
want [._AQ]

John wanted some ice cream.
John wanted Mary to go to the store.

Figure 15.14: Some Verb Case Frames

The result of parsing in a casc representation is usually not a complete semantic
description of a sentence. For example, the constituents that fill the case slots may still
be English words rather than true semantic descriptions stated in the target representation,
To go the rest of the way toward buildinga meaning representation, we still require many
of the steps that are described in Section 15.3 4.

15.3.3 Conceptual Parsing

Conceptual parsing, like semantic grammars, is a strategy for finding both the structure
and the meaning of a sentence in one step. Conceplual parsing is driven by « dictionary
that describes the meanings of words as conceptual dependency (CD) structures,
Parsing a sentence into a conceptual dependency representation is similar to the
process of parsing using a case grammar. In both systems, the parsing process is heavily
driven by a set of expectations that are set up on the basis of the sentence's main verb. But
because the representation of a verb in CD is at a lower level than that of a verb in a case
grammar (in which the representation is often identical to the English word that is used),
CD usually provides a greater degree of predictive power. The first step in mapping a
sentence into its CD representation involves a syntactic processor that extracts the main
noun and verb. It also determines the syntactic category and aspectual class of the verb
(i.e., stative, transitive, or intransitive). The conceptual processor then takes over. It
makes use of a verb-ACT dictionary, which contains an entry for each environment in
which a verb can appear. Figure 15.15 (taken from Schank [1973]) shows the dictionary
entrics associated with the verb “want.” These three entries correspond to the three
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Figure 15.15: The Verb-ACT Dictionary

ef o D the stare
MnW?WRr\NS <+— Mary O—E

John &= pleased

Figure 15.16: A CD Struciure

kinds of wanting:
« Wanting something to happen
» Wanting an object
« Wanting a person

Once the correct dichionary entry is chosen, the conceptual processor analyzes the
rest of the sentence looking for components that will fit into the empty slots of the verh
structure. For cxample, if the stative form of “want™ has been found, then the conceplual
processor will look for a conceptualization that can be inserted into the structure. So. il
the sentence being processed were

John wanted Mary 10 go to the siore.
the structure shown in Figure 15.16 woul be built.

The conceptual processor examines possibie interpretations i a well-defined order
For ~xample. it a phrase of the form “with PP” (recall that a PP is # picture producer)
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occurs, it could indicate any of the following relationships between the PP and the
conceptualization of which it is a part:

1. Object of the insirumental case

2. Additional actor of the main ACT

3. Auaribute of the PP just preceding it

4. Attribute of the actor of the conceptualization

Suppose that the conceptual processor were attempting to interpret the prepositional
phrase in the sentence

John went to the park with the girl.

First, the system's immediate memory would be checked to see if a park with a girl
has been mentioned. [f so, a reference to that particular object iz generated and the
process terminates, Otherwise, the four possibilities outlined above are investigated in
the order in which they arc presented. Can “the girl” be an instrument of the main ACT
(PTRANS) of this sentence? The answer is no, because only MOVE and PROPEL can
be instruments of a PTRANS and their objects must be either body parts or vehicles.
“Girl” is neither of these. So we move on to consider the second possibility. In order
for “girl” 1o be an additional actor of the main ACT. it must be animate. Ttis. So this
interpretation is chosen and the process terminates. If, however, the sentence had beer,

folin went to the park with the fountain.

the process would not have stapped since a fountain is inanimate and canno! move.,
Then the third possibility would have been considered. Since parks can have fountains,
it would be accepted and the process would terminate there. For a more detailed
descrniption of the way a conceptual processor hascd on CD works, see Schank [1973),
Rieger [1975], and Riesbeck (1975

‘This example illustrates both thc strengths and the weaknesses of this approach to
sentence understanding. Because a great deal of semantic informatien is exploited in
the understanding process, sentences thal would be ambiguous to a purely syntachic
parser can be assigned a unique interpretation. Unfortunately, the amount of semantic
information that is required to do this job perfectly is immense. All simple rules have
exceptions. For example, suppose the concepiual processor described above were given
the sentence

Juhn went to the park with the peacocks.

Since peacocks are animale, they would be acceptable as additional actors of the
main verb, “went."” Thus, the interpretation that would be produced would be thal
shown in Figure 15.17{a), while the more likely interpre1ation, in which John went to
a park containing peacocks, is shown in Figure 15.17(5), But if the possible roles for
a prepositional phrase introduced by “with"” were considered in the order necessary for
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p o D park «— specific
john €= PTRANS <— John ~—E
A

peacocks

t

specific
John went (o the park with the peacocks
(a)

P & D park «— with peacocks
John € PTRANS <+— John --—E

John went to the park with the peacocks.
(b

Figure 15.17: Two CD Interpretanions of a Sentence

this sentence 10 be interpreted correctly, then the prev ious example involving the phrase,
“with Mary," would have been misunderstood.

The problem is that the simple check for the property ANIMATE is not sufficient
1o determine acceptability as an additional actor of a PTRANS. Additional knowledge
is necessary. Some more knowledge can be inserted within the framework we have
described for a conceptual processor, But to do a very good job of producing correct
semantic interpretations of sentences requires knowledge of the larger context in which
the sentence appears. Technigues for exploiting such knowledge are discussed in the
next section.

15.3.4 Approximately Compositional Semantic Interpretation

The final approach i semantics that we consider here is one in which syntactic parsing
and semantic interpretation are treated as separale sieps. although they must mirror each
other in well-defined ways. This is the approach to scmantics that we looked at briefly
\n Section 15.1.1 when we worked through the example sentence “] want to print Bill's
Jimt file.”

If & strictly syntactic parse of a sentence has been produced, then a straightforward
way lo generate a semantic interpretation is the fellowing:

1. Look up each word in a lexicon that contains one or more definitions for the woid,
cach stated in terms of the chosen target represeniation. These definitions must
describe how the idea that corresponds to the word is 10 be represented. and they
may also describe how the idea represented by this word may coinbine with the
ideas represented by other words in the sentence.

rd

: Qu the structure information contained in the output of the parser to provide addi
tional constraints, beyond those extracied from the lexicon. on the way individual
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words may combine to form larger meaning units.

We have already discussed the first of these steps (in Secrion 15.3). In the rest o
this section, we discuss the second.

Montaguae Semantics

Recall that we argoed in Section 15.1.1 that the reason syntactic parsing was a good
idea was that it produces structures that correspond to the structures that should result
from semantic processing. If we investigate this idea more closely, we wrive at 4
notion called compositional semantics. The main idea behind compositional semantics
i« that, fur every step in the syntactic parsing process, there is a corresponding step
i semantic interpretation. Each rime syntactic constituents are combined to form a
larger syntactic unit, their corresponding semantic interpretations can be combined to
iorm a larger semantic unit. The necessary rules for combining semantic structures
are associated with the corresponding rules for gombining syntactic structures. We use
the word “compositional™ to describe this approach because it defines the meaning of
each sentence constituent (o be a composition of the meanings of its constituents with
the meaning of the rule that was used to create it. The main theoretical basis for this
approach is modern (i.e., post-Fregean) logic; the clearest linguistic application is the
work of Montague [Dowty et al., 1981; Thomason, 1974].

As an example of this approach to semantic interpretation, let’s return to the example
that we began in Section 15.1.1. The sentence 1s

i want 10 print Bill's .init file.

‘The output of the syntactic parsing process was shown in Figure 15.2, and a fragment of
the knowledge base that is being used to define the targel representation was shown in
Figure 15.3. The result of semantic interpretation was also shown there in Figure 15.4.
Although the exact form of semantic mapping rules in this approach depends on the way
that the symactic grammar is defined, we illustrate the idea of compositional semantic
rules in Figure 1518,

The first two cules are examples of verb-mapping rules. Read these ruies as saying
that they map from a partial syniactic structure containing a verb, its subject, and its
object, to some unit with the attributes instance, agent, and object. These rules do two
things. They describe the mieaning of the verbs (“want™ or “print”) themselves in terms
of events in the knowledge base. They also state how the syntactic arguments of the
verbs (their subjects and objects) map into attributes of those events. By the way, do not
get confused by the use of the term “object™ in two different senses here, The syntactic
ubject of a sentence and its semantic object are two different things. For historical
reasons (including the standard usage in case grammars as described in Section 15.3.2),
they are often called the same thing, although this problem is sometimes avoided by
using some other name, such as affected-entity, for the semantic object. Alternatively,
in some knowledge bases, much more specialized names, such as printed-thing, are
sometimes used as aitnbute names.

‘The third and fourth rules are examples of modifier rules. Like the verb rules, they
too must specify both their own constituent’s contribution to meaning as well as how it
combines with the meaning of the noun phrase or phrases to which it is attached.
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“want” Unit
suhject: RM; instance : Wanting
object : RM; agent: RM,;
object: RM;
“print” Unit
subject: RM, instance: Printing
object: RM; agent: RM,;
ohject: RM,
*init” Unit for NP, plus
modifying NP, extension: .init
possessive marker Init for NP plus
NP, ’s NP, owner: NP,
“file” Unit
instance : File-Struct
“Bill” Unit

instance . Person
first-name: Bill

Figurc 15.18: Some Semantic Interpretation Rules

The last two rules are simpler. They define the meanings of nouns. Since nouns
do not usually take arguments, these rules specify only single-word meanings; they do
not need to describe how the meanings of larger constituents are derived from their
components.

One important thing to remember about these rules is that since they define mappings
from words into a knowledge base, they implicitly make available o the semantic pro-
cessing system all the information con tained in the knowledge base itsell. For example,
Figure 15.19 contains a description of the semantic information that is associated with
the word "want™ after applying the semantic rule associated with the verb and retrieving
semantic constraints associated with wanting events in the knowledge base. Notice that
we now know where to pick up the agent for the wanurg (RM1) and we know: some
property that the agent must have. The semantic interpretation routine will reject any
interpretation that does not satisfy all these constraints.

This compositional approach to defining semantic interpretation has proved to be a
very powerful idea. (See, for example. the Absity system descnibed in Hirst [1987].)
Unfortunately, there are some linguistic constructions that cannot be accounted for
naturally in a strictly compositioral system. Quantified expressions have this property.
Consider, for example, the sentence

Every studeni who hadn't declared a major tonk an English (1nss
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Unit
instance : Wanting
agent : RM,
must be <animate>
ohjecr : RM;

must be <state or event>

Figure 15.19: Combining Mapping Knowledge with the Knowledge Base

There are several ways in which the relative scopes of the quantifiers in this sentence
can be assigned. In the most likely, both existential quantifiers are within the scope of
the universal quantifier. But, in other readings, they are not. These include readings
corresponding to, “There is a major such that every student who had not declared it took
an English class,” and “There is an English class such that every student who had not
declared some major took it.”” In order to generate these meanings compositionally from
the parse, it is necessary to produce a separate parse for each scope assignment. But
there is no syntactic reason to do that, and it requires substantial additiona! effori. An
alternative is to generate a single parse and then to use a noncompositional algorithm 1o
generate as many altemnative scopes as desired.

As a sccond example, consider the sentence, “John only eats meat on Friday and
Mary does 100.” The syntactic analysis of this sentence must include the verb phrase
constituent, “only eats meat on Friday,” since that is the constituent that is picked up by
the elliptical expression “does 100.” But the meaning of the first clavse has a structure
more like

only(meat, {x | John eats x on Friday})

whicn can be read as, “Meal is the only thing that Jonn eats on Friday.”

Extended Reasoning with a Knowledge Base

A significant amount of world knowledge may be necessary in order to do semantic
interpretation (and thus, sometimes, to get the correct syntactic parse). Sometimes the
knowledge is needed to enable the system to choose among competing inlerpretations.
Consider, for example, the sentences

l. John made a huge wedding cake with chocolate icing,

2. John made a huge wedding cake with Bill’s mixer.

3. John made a huge wedding cake with a giant tower covered with roses.
4. John made a cherry pie with a giant tower covered with roses,

Let's concentrate on the problem of deciding to which constituent the prepositionas
phrase should be attached and of assigning a meaning lo the preposition “with.” We
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have two main choices: either the phrase attaches to the action of making the cake and
vwith” indicates the instrument relation, or the prepositional phrase attaches to the noun
phrase describing the dessert that was made, in which case “with” describes an additional
component of the dessert. The first two sentences arc relatively straightforward if we
imagine that our knowledge base contains the following facts:

» Foods can be components of other foods.
« Mixers are used 1o make many kinds of desserts.

But now consider the third sentence. A giant tower 1s neither a food nor a mixer. So it
is not a likely candidate for either role. What is required here is the much more specific
(and culturally dependent) fact that

e Wedding cakes often have towers and statues and bridges and fiowers on them.

The highly specific nature of this knowledge is illustrated by the fact that the last of
these sentences does not make much sense to us since we can find no appropriate role
for the tower, cither as part of a pie or as an instrument used during pie making.

Another use for kiowledge is to enable the system to accept meanings that it has not
been explicitly totd about. Consider the following sentences as examples:

1. Sue likes to read Joyce.
2. Washington backed out of the surmmit talks.
3. The stranded explorer ate squirrels.

Suppose our system has only the following meanings for the words “Joyce,” "Wash-
mgton,” and “squirrel” (actually we give only the relevant parts of the meanings):

1. Joyce—instance: Author; lasi-name: Joyce
2. Washington—instance. City; name: Washington
3. squimrel—isa: Rodenr, ...

Bul suppose that we also have only the following meamngs for the verbs iu these
scnicnces:

I. read—isa: Mental-Event; object: must be <printed-material >
2. back out —isa: Mental-Event; agent: must be <animate-entity>
3. eat—zsa: Ingestion-Event; object: must be <food>

The problem is that it is not possible to construct coherent interpretations for any ot
these sentences with these definitions. An author is not a <printed-malerial>. A city is
nol an <animate-entity>. A rodent is not a <food>. One solution is to create additionai
dictionary entries for the nouns: Joyce as a set of litcrary works, Washington as the
people who run the U.S. government, and a squirrel as a food. But a better solution 1s to
use general knowledge to derive these meanings when they are needed. By bettor, here
we mean that since less knowledge must be entered by hand, the resulting system will
be less brittle. The general knowledge that is necessary to andle these example< i<*
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* The name of a person cani be used (o refer Io things the person creates. Aud-oimng
1s a kind of creating.

® The name of a place can be used to stand for an organization headquanered iy
that place if the association between the organization and the place s salient in
the context. An organization can in tum stand for the people who run it. The
headquarters of the U.S. government is in Washington.

o Food (meat) can be made out of almost any amimal. Usually the word for the
animal can be used to refer to the meat made trom the animal.

Of course, this problem can become arbitrarily complex. For example, metaphors
dre a rich source for linguistic expressions [Lakoff and Johnson, 1980]. And the
problem becomes even more complex when we move beyond single sentences and
attempt 1o extract mesning from texts and dialogues. We delve briefly into those issues
in Section 15.4 |

The Interaction between Syntax and Semantics

If we take a compositional approach to semantics, then we apply semantic interpretation
rules [0 each syntactic constituent, eventually producing an interpretation for an entire
seatence. But making a commitment about what to do implies no specific commitment
about when o do it. To implement a system, however, we must make some decision
on how control will be passed back and forth between the syntactic and the semantic
processors. Two extreme positions are:

» Every lime a syniactic constituent is formed, apply semantic interpretation to it
immediately.

¢ Wait until the entire sentence has been parsed, and then interpret the whele thing.

There are arguments in favor of each approach. The theme of most of the arguments
Is scarch control and the opportunity to prune dead-end paths. Applying semantic
processing to each constituent as soon as it is produced allows semantics to rule out right
uway those constituents thal are syntactically valid but that make no sense. Syntactic
processing can then be informed that it should not go any further with those constituents.
This approach would pay off, for example, for the sentence, “Is the glass jar peanur
butter?” But this approach can be costly when syntactic processing builds constituents
that il will eventually reject as being syntactically unacceptable, regardless of their
semantic acceplability. The sentence, “The horse raced past the barn fell down,” is
an example of this. There is no point in doing a semantic analysis of the sentence
“The horse raced past the bamn.” since that constituent will not end up being part of
any complete syntactic parse. There are also additional arguments for waiting until a
complete sentence has been parsed to do at least sone parts of semantic interpresation.
These arguments involve the need for large constituents to serve as the basis of those
semantic actions, such as the ones we discussed in Section |5.3.4, that are hard 10 define
compietely compositionally. There is no magic solution to this problem. Most systems
use one of these iwo extremes or a heuristically driven compromise position.
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15.4 Discourse and Pragmatic Processing

To understand even a single sentence, it is necessary 1o consider the discourse and
pragmatic conlext in which the sentence was uttered (as we saw in Section 15.1.1)
These issues become even more important when we want to understand texis and
dialogues, s0 in this section we broaden our concem to these larger linguistic units.
There are a number of important relationships that may hold between phrases and parts
of their discourse contexts, including:

« ldentical entities. Consider the text

-~ Rill had a red halloon.

- John wanted it.

The word “it" should be identified as referring to the red balloon. References such
as this are called anaphoric references or anaphora.

« Parts of entities. Consider the tex

- Sue opened the book she just bought.

— The title page was torm.

The phrase “the title page” should be recognized as being part of the book that
was just boughi.

e Parts of actions, Consider the text

— John went on a business trip 10 New York.

— He left on an early morning fhight.
Taking a flight should be recognized as part of going on a trip.
= Entities involved in actions. Consider the teal
— My house was broken into last week.
— They ook the TV and the stereo.

The pronoun “they™ should be recognized as referring to the burglars who broke
inio the house.

¢ Elements of sets. Consider the ext

— The decals we have in stock are stars, the moon., item and a Hag

—~ I'll take two moons. .

The moons in the second sentence should be undersiood 1o be some of the moons
mentioned in the first sentence. Notice that to understand the second sentence a.
all requires that we use the context of the first sentence (o establish that the wor
“moons” means moon decals.
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Narmes of individuals. Consider the text
= Dave went to the movics.

Dave should be understood to be some person named Dave. Although there are
many, the Speaker had one particular one in mind and the discourse context should
tell us which.

Causal chains. Consider the text

— There was a big snow storm yesterday.
- The schools were closed today.

The snow should be recognized as the reason that the schools were closed.
Planning sequences. Consider the text

- Sally wanted a new car.
~ She decided to get a job.

Sally's sudden interest in a job should be recognized as arising out of her desire
for a new car and thus for the money 1o buy one.

Nlocutionary force. Consider the sentence
— It sure is cold in here.

In many circumstances, this sentence should be recognized as having. as its
intended effect, that the hearer should do something like close the window or lurn
up the thermostat.

Implicit presuppositions. Consider the query
— Did Joe [ail CS1017

The speaker’s presuppositions, including the fact that CS101 is a valid course,
that Joe is a student, and that Joe took CS101, shiould be recognized so that if anv
of them is not satisfied, the speaker can be informed.

In order 1o be able to recognize these kinds of relationships among sentences. o
great deal of knowledge about the world being discussed is required. Programs that
can do multiple-sentence understanding rely either on large knowiedge bases or on
strong constraints on the domain of discourse so that only a more limited knowledge
base 1s necessary. The way this knowledge is organized is critical to the success of
the understanding program. In the rest of this section, we discuss briefly how some of
the knowledge representations described in Chapters 9 and 10 can be exploited by a
language-understanding program. In particular, we focus on the use of the following
kinds of knowiedge:

# The current focus of the dialogue
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+ A model of each participant’s current beliefs
* The goal-driven character of dialogue

o The rules of conversation shared by all participants

Although these issues are complex, we discuss them only briefly here. Most of the
hard problems are not peculiar to natural language processing. They involve reasoning
about objects, events, goals, plans, intentions, beliefs, and likelihoods, and we have
discussed all these issues in some detail elsewhere. Our goal in this section is 1o Ly
those reasoning mechanisms into the process of natural language understanding.

15.4.1 Using Focus in Understanding

There arc two important parts of the process of using knowledge to facilitate under-
standing:

+ Focus on the relevant pari(s) of the available knowledge buse.

« Use that knowledge to resolve ambiguities and 10 make connections among things
that were said.

The first of these is critical if e amount of knowledge available is large. Some
techniques for handling this were outlined in Section 4.3.5, since the problem arises
whenever knowledge structures are to be used.

The linguistic properties of coherent discourse, however, provide some additional
mechanisms for focusing. For example, the structure of task-oriented discourses typ-
ically mirrors the structure of the task. Consider the following sequence of (highly
simplified) instructions:

To make the torte, first make the cake, then. while the cake is baking, make
the filling. To make the cake, combine all ingredients. Pour them into the
pans, and bake for 30 minutes. To make the filling,combine the ingredients.
Mix until light and flufly. When the cake is done, alternate layers of cake
and filling.

This task decomposes into three subtasks: making the cake, making the filling, and
combining the two components. The structure of the par agraph of instructionsis: overall
sketch of the task, instructions for step |, instructions for step 2. and then instructions
for step 3.

A second property of coherent discourse is that dramatic changes of focus are
usually signaled explicitly with phrases such as “on the other hand,” “to return to an
earlier topic.” or "'a second issue is.”

Assuming that all this knowledge has been used successfully 1o focus on the relevant
part(s) of the knowledge base, the second issue is how 1o use the focused knowledge
to help in understanding. There are as many ways of doing this as there are discourse
phenomena that require it In the last section, we presented a sample list of those
phenomena. To give one example. consider the problem of finding the meaning of
definite noun phrases. Definite noun phrases are ones that refer to specific individual
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objects, for example, the first noun phrase in the sentence, “The title page was tom "
The title page in question is assumed 1o be one that is related 10 an object that is currently
in focus. So the procedure for finding a meaning for it involves searching for ways in
which a title page could be related to a focused object. Of course, in some sense, almost
any object in 2 knowledge base relates somehow to almost any other. But some rclations
are far more salient than others, and they should be considered first. Highly salient
relations include physical-part-6f, temporal-part-of. and element-of. In this example,
physical-part-of relates the title page to the book that is in focus as a result of its mention
in the previous sentence.

Other ways of using focused information also exist. We examine some of them m
the remaining parts of this section,

154.2 Modeling Beliefs

[n order for a program (o be able to participate intelligently in a dialogue, it must be able
to represent not only its own beliefs about the world, but also its knowledge of the other
dialogue participant’s beliefs about the world, that person's beliefs about the computer s
beliefs, and so forth. The remark “She knew I knew she knew [ knew she knew™ may
be a bit extreme, but we do that kind of thinking all the time. To make computational
models of belief, it is useful to divide the issue into two parts: those beliefs that can
be assumed to be shared among all the participants in a linguistic event and those that
cannot.

Modeling Shared Beliefs

Shared belicfs can be modeled without any explicit notion of belief in the knowledge
base. All we need to do is represent the shared beliefs as facts, and they will be accessed
whenever knowledge about anyone’s beliefs is needed. We have already discussed
techniques for doing this, For example, much of the knowledge described in Chapter 10
is exactly the sort that people presume 1s shared by other people they are communicating
with.  Scripts, in particular, have been used extensively 1o aid in natural language
undersiunding. Recali thal scripts record commonly occuming sequences of cvents.
There are two steps in the process of using a script te aid in language understanding:

= Seiect the appropriate script(s) from memory.
e Use the script(s) to fill in unspecified parts of the text to be understood.

Both of these aspects of reasoning with scripts have already been discussed in Sec-
tion 10.2. The story-understanding program SAM [Cullingford. 1981] demonstrated
the usefulness of such reasoning with scripts ir natural language understanding. To
understand a story, SAM first employed a parser that translated the English sentences
into their conceptual dependency representation, Then it built a representation of the
entire text using the relationships indicated by the relevant scripts.

‘From Kingsley ‘l‘II-IIS. Jake's Thing.
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Modeling Individual Beliefs

As soon as we decide to represent individual beliefs, we need to introduce some explicit
predicate(s) to indicate that a fact is believed. Up until now, belief has been indicated
only by the presence or absence of assertions in the knowledge base. Tomodel belicf, we
need 1o move to a logic that supports reasoning about belief propositions. The standard
approach is 1o use a modal logic such as that defined in Hintikka [1962]. Logic, cr
“classical” logic, deals with the truth or falsehood of different statements as they are

Modal logic, on the other hand, concems itself with the different “modes™ in which
2 statement may be true. Modal logics allow us to talk about the truth of a set of
propositions not only in the current state of the real world, but also about their truth or
falsehood in the past or the future (these are called temperal logics), and about their
wruth or falsehood under circumstances that might have been, but were not (these are
sometimes called conditional logics). We have already used one idea from modal logic,
numely the notion necessarily true. We used it in Section 13.5, when we talked about
nonlinear planning in TWEAK.

Modal logics also allow us to talk of the truth or falsehood of statements conceming
the belicfs, knowledge, desires, intentions, and obligations of people and robots, which
may, in fact be, respectively, false, unjustified, unsatisfiable, irrational, or mutually
contradictory. Modal logics thus providea set of powerful tools for understanding natural
language ulterances, which ofien involve reference to other times and circumslances,
and to the mental states of people.

In particular, to model individual belief we define a modal operator BELIEVE, that
enables us to make assertions of the form BELIEVE(A, P). which is true whenever A
belicves £ to be true. Notice that this can occur even if P is believed by someone else
to be false or even if P is false.

Another useful modal operator is KNOW:

BELIEVE(A, P) A P — KNOW(A, P}

A third useful modal operator is KNOW-WHAT(A, ), which is true if A knows the
value of the function P. For example, we might say that A knows the value of his age.

An alternative way to represent individual beliefs is 10 use the idea of knowledge
hase partitioning that we discussed in Scction 9.1, Panitioning enables us to do Iwo
things:

I. Represent efficiently the large set of beliefs shared by the participants. We
discussed one way of doing this above.

2. Represent accurately the smaller set of beliefs that are not shared.

Requirement | makes it imperative that shared beliefs not be duplicated in the
represcntation. This suggests that a single knowledge base must be used to represent the
beliefs of all the participants. But requirement 2 demands that it be possible 1o separate
the beliefs of one person from those of another. One way to do this is to use partitioned
semantic nets. Figure 15.20 shows an example of 3 partitioned belief space.

Three different belef spaces are shown:

# 51 belicves that Mary hit Bill.
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51

Hit /@

instance L~ agent

Actl
dative

agent

52

Figure 15.20: A Partitioned Semantic Net Showing Three Belief Spaces

* 52 believes that Sue hit Bill.

* 53 belicves that someone hit Bill. Tt is important 1o be able to handle incomplete
beliefs of this kind, since they (requently serve as the basis for questions, such as.
in this case. “Who hit Bill?"

15.4.3 Using Goals and Plans for Understanding

Consider the text

John was anxious to get his daughter’s new bike put together before Christ-
mas Eve. He looked high and low for a screwdriver.

To understand this story, we need to recognize that John had
1. A goal, getting the bike put together.

2. A plan, which involves pulting together the vanous subparts until the bike is
complete. At least one of the resulting subplans involves using a screwdriver to

screw lwo parts together.

Some of the common goals that can be identified in siorics of all sorts (including
children’s stories. newspaper reports, and history books) are

e Satisfaction goals. such as sleep, food, and water,
* Enjoyment goals, such as entertainment and competition,

» Achievement goals, such as possession, power, and slatus.
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s Pleasing goals, which involve satisfying some other kind of goal for someonc
else.

» Instrumental goals, which cnable preconditions for other, higher-level goals.

To achieve their goals, people exploit plans. In Chapter 13, we talked about several
computational representations of plans. These representations can be used to support
natural language processing, particularly if they are combined with a knowledge base of
operators and stored plans that describe the ways that people often accomplish common
goals. These stored opcrators and plans enable an understanding system (0O form a
coherent representation of a text even when steps have been omitted, since they specify
things that must have occurred in the complete story. For example, to understand this
simple text about John, we need to make use of the fact that John was exploiting the
operator USE (by A of P to perform G), which can be described as:

USE(4, P, G):
precondition: KNOW-WHAT(A, LOCATION(P))
NEAR(A, P)
HAS-CONTROL-OF(A, P)
READY(FP)

pastcondition: DONE(G)

In other words, for .4 to use P to perform G, A must know the location of P, A must
be near /. A must have control of P (for example, I cannot use a serewdriver that you
are holding and refuse to give to me), and P must be ready for use (for example, [ cannot
use a broken screwdnver) :

In our story, John's plan for constructing the bike includes using & screwdniver. S0
he needs (o establish the preconditions for thas use. In particular, he meeds to know the
location of the screwdriver. To find that out, he makes use of the operator LOOK-FOR.

LOOK-FOR(A, P):
precondition: CAN-RECOGNIZE(A, P)
postcondition: KNOW-WHAT(A, LOCATIONU)

A story understanding program can conncct the goal of putting io the bike
with the activity of looking for a screwdlriver by recognizing that John is IOWgng for a
screwdriver so that he can use it as pan of putting the bike together.

Often there are altemative operators or plans for achicving the same goal. For
example, to find out where the screwdriver was, John could have asked someone. Thus
tie problem of constructing a coherent interpretation of a text or adiscourse may involve
considering many partial plans and operalors. )

Plan recognition has served as the basis for many understanding programs. PAM
[Wilensky, 1981] is an early example: it translated storics into a CD representation.
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Another such program was BORIS [Dyer, 1983). BORIS used amemory structure called
the Thematic Abstraction Unit to organize knowledge about plans, goals, interpersonal
relationships, and emotions. For other examples, see Allen and Perrault [1980] and
Sidner [1985).

1544 Speech Acts

Language is a form of behavior. We use it as one way 1o accomplish our goals. In
essence, we make communicarive plans in much the same sense that we make plans for
anything else [Austin, 1962]. In fact, as we just saw in the example above, John could
have achieved his goal of locating a screwdriver by asking someone where it was rather
than by looking for it. The elements of communicative plans arc called speech acts
[Searle, 1969). We can axiomatize speech acts just as we axiomatized other operators in
the previous section, except thal we need (o make use of modal opcrators that describe
states of belicf, knowledge, wanting, eic. For example, we can define the basic speech
act A INFORM B of P as follows:

™

INFORM(A, B, P)
precondition: BELIEVE(A, P)
KNOW-WHAT(A, LOCATION(B))
postcondition: BELIEVE(B, BELIEVE(A, £))
BELIEVE-IN(B, A) - BELIEVE(B, P)

To execute this operation, A must believe P and A must know where ¥ 1s. The result
of this operator is that B believes that A belicves P, and if B believes in the truth nf
what A says. then B also belicves P,

We can define other speech acts similarly. For example, we can define ASK-WHAT
(in which A asks B the value of some predicate P):

ASK-WHAT(A, 8. P):
nrecondition: KNOW-WHAT(A, LOCATION(B )
KNOW-WHAT(B, P)
WILLING-TO-PERFORM
(B, INFORM(H, A, P))
sostrondion: KNOW-WHAT(A, P)
This'is the action that John could have performed us an ahemative way of finding a
screwdriver.
W Cas 40 getiiv: uther speech ants, such as A REQUEST B to perform R-

REQUEST A, #, H;
precondinge. KNOW-WHAT(A, LOCATION(R) -
CAN-FERFORM(A. &,
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WILLING-TO-PERFORM(B, R)
postcondition: WILL{PERFORM(B, R))

15.4.5 Conversational Postulates

Unfortunately, this analysis of language is complicated by the fact thal we do notalways
say exactly what we mean. Instead, we often use indirect speech acts, such as Do you
know what time it is?" or “It sure is cold in here.” Searle [1975) presents a linguistic
theory of such indirect speech acts. Computational treatments of this phenomenon
usually rely on models of the speaker’s goals and of ways that those goals might
reasonably be achieved by using language. See, for example, Cohen and Perrault
[1979).

Fortunately, there is a certain amount of regularity in people’s goals and in the way
language can be used to achieve them. This regularity gives rise to aset of conversational
postulates, which are rules ahout conversation that are shared by all speakers. Usually
these rules are followed. Sometimes they are not. but when this happens, the violation
of the rules communicates something in itself. Some of these conversational postulates
are:

» Sincerity Conditions—Fora request by A of 8 to do R to be sincere, A must want &
to do R, A must assume B can do R. A must assume B i1s willing to do R, and A
must believe that 8 would not have done R anyway. If A attempts to verify one
of these conditions by asking a question of B, that question should normaliy be
interpreted by B as equivalent to the request R. For example.

A: Can you open the door?

e Reasonableness Conditions—For a request by A of B to do R 1o be reasonable,
A must have a rcason for wanting R done, A must have a reason for assuming
that 8 can do R, A must have a resson for assuming that 8 is willing to do R,
and A must have a reason for assuming that 8 was not already planning to do
R. Reasonableness conditions often provide the basis for challenging a request.
Together with the sincerity conditions described above, they account for the
coherence of the following interchange:

A: Can you open the door?
B: Why do you want it open?

* Appropriateness Conditions-——For a statement to be gppropriate, it must provide
the correct amount of information. it must accurately reflect the speaker s beliefs,
it must be concise and unambiguous, and it must be polite. These conditions
account for A’s response in the following interchange:

A: Who won the race?
B: Someone with long, dark hair,
A: 1 thought you knew all the nunners.

A inferred from B's incomplete response that 8 did not know who won the race.
because if 8 had known she would have provided a name.
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Of course, sometimes people “cop out” of these conventions. In the following
dialogue, B is explicitly copping out:

A: Who is going to be nominated for the position?
B: I'm sorry, | cannot answer that question.

But in the absence of such a cop out, and assuming a cooperative relationship between
the parties to a dialogue, the shared assumption of these postulates greatly facilitates
communication. For a more detailed discussion of conversational postulates, see Grice
[1975] and Gordon and Lakoff [1975].

We can axiomatize these conversational postulates by augmenting the preconditions
for the speech acts that we have already defined. For example. we can describe the sin-
cerily conditions by adding the following clauses to the precondition for REQUEST(A,
B, R):

WANT(A, PERFORM(B, R))

BELIEVE(A, CAN-PERFORM(B, R))
BELIEVE(A, WILLING-TO-PERFORM(B, R))
BELIEVE(A, ~WILL(PERFORM(2, R))}

If we assume that cach participant in a dialogue is following these conventions, then
it is possible to infer facts about the participants’ belief states from what they say. Those
facts can then be used as a basis for constructing a coherent interpretation of a discourse
as a whole. .

To summarize, we have just described several technigues for representing knowledge
about how people act and talk. This knowledge plays an important role in text and
discourse understanding, since il enables an understander to fill in the gaps left by the
original wriler or speaker. It turns out that many of these same mechanisms, in particular
those that allow us to represent explicitly the goals and beliefs of multiple agents, will
alsa tum outto be useful in constructing distributed reasoning systems, in which several
(4t least partially independent) agents interact to achieve a single goal. We come back
10 this topic in Section 16.3.

15.5 Summary

In this chapter. we presented a brief introduction to the surprisingly hard problem of
language understanding. Recall that in Chapter 14, we showea that at least one under-
standing problem, line labeling. could effectively be viewed as a constraint satisfaction
.problem. One interesting way 10 summarize the natural language undersianding prob-
lem that we have described in this chapter is 1o view it (00 as a constraint satisfaction
problem. Unfortunately, many more Kinds of constraints must be considered, and even
when they are all exploited. it is usually not possible to avoid the guess and scarch
part of the constraint satisfaction procedure. But constraint satisfaction does provide a
reasonable framework in which 1o view the whole collection of steps that together create
a meaning for a sentence. Essentially each of the steps described in this chapter exploits
a particular kime of knowledge that contributes a specific set of constraints thar must be
satished by any correct final interpretation of a sentence,
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Syntactic processing contributes a set of constraints derived from the grammar of
the language. It imposes constraints such as:

« Word order, which rules out, for example, the constituent, “manager the key,” in
the sentence, “1 gave the apartment managet the key.”

+ Number agreement, which keeps “trial run” from being interpreted as a sentence
in “"The first trial run was a failure.”

« Case agreement, which rules, out, for example, the constituent, “me and Susan
gave one to Bob,” in the sentence, “Mike gave the program to Alan and me and
Susan gave one to Bob.”

Semantic processing contributes an additional set of constraints derived from the
knowledge it has about entities that can exist in the world. It imposes constraints such
asl

e Specific kinds of actions involve specific classes of participants. ‘We thus rule
out the baseball field meaning of the word “diamond” in the sentence, “‘John saw
Susan’s diamond shimmering from across the room.”

o Objects have properties that can take on values from a limited set. We thus rule
out Bill's mixer as a component of the cake in the sentence, “John made a huge
wedding cake with Bill's mixer i

Discourse processing contributes 4 further set of constraints that arise from the
structure of coherent discourses, These include:

« The entities involved in the sentence must cither have been introduced explicitly
or they must be related to enlities that were. Thus the word “it" in the discourse
“John had a cold. Bill caught it,"” must refer to John’s cold. This constraint can
propagate through other constraints, For example. in this case, it can be used 10
determine the meaning of the word “caught” in this discourse, in contrast 0 its
meaning in the discourse, “John threw the ball. Bill caught it.”

« The overall discourse must be coherent. Thus, in the discourse, 1 needed o0
deposit some money, so | went down to the bank,” we would choose the financial
institution reading of bank over the river bank reading. This requirement can even
cause a later sentence o impose a constraint on the interpretation of an carlier
one, as in the discourse, “I went down 10 the bank. The river had just flooded.
and I wanted 1o see how bad things were.”

And finally, pragmatic processing contributes yet another set of constraints.  For
example,

e The meaning of the sentence must be consistent with the known goals of the
speaker. So, for example, in the sentence. “Mary was anxious to get the bill
passed this session, so she moved totable it,” we are forced to choose the {normally
British) meaning of table (to put it on the table for discussion) over the (normally
American) meaning (to set it aside for later).
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There are many important issues in natural language processing that we have barely
touched on here. To leam more about the overall problem, see Allen [1987], Cullingford
[1986], Dowty et al. [1985), and Grosz et af, [1986]. For more information on syntactic
processing, see Winograd [1983] and King [1983). See Joshi er al. [1981] for more
discussion of the issues involved in discourse understanding. Also, we have restricted
our discussion 10 natural language understanding. It is often wseful to be able to go
the other way as well, that is, to begin with a logica! description and render it into
Cnglish. For discussions of natural language generalion systems, see McKeown and
Swartout [1987] and McDonald and Bolc [1988]. By combining understanding and
generation systems, it is possible 1o attack the problem of machine translation, by which
we understand text written in one language and then generate it in another language. Sce
Slocum [1988), Nirenburg [1987], Lehrberger and Bourbeau |1988], and Nagao [1989}
for discussions of a variety of approaches to this problem. '

15.6 Exercises

L. Consider the sentence
The old man’s glasses were filled with sherry,
What information is necessary to choese the correct meaning for the word
“glasses™ What information suggests the incorrect meaning?

2. For each of the following sentences, show a parse tree. For each of them, explain
what knowledge. in addition to the grammar of English, is necessary to produce
the correct parsc. Expand the grammar of Figure 15.6 as necessary to do this

e John wanted 1o go to the movie with Sally.

* John wanted to go to the movie with Robert Redford.
o | heard the story listening to the radio.

# | heard the kids listening to the radio.

¢ All books and magazines that deal with controversial topics have been
removed from the shelves.

& All books and magazines that come out quanterly have been removed from
the shelves.

3. In the following paragraph, show the antecedents for each of the pronouns. What
knowledge is necessary to determine each?

John went to the store to buy a shirt. The salesclerk asked him if he
could help him. He said he wanted a blue shirt. The salesclerk found
one and he tried it on. He paid for it and left.
4. Consider the following sentence:
Put the red block on the blue block on the table.

(a) Show all the syntactically valid parses of this sentence. Assume any standard
grammatical formalism you like.
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(b) How could semantic miormaton sna world xnowledge be used 1o select the
appropriate meaning of this command in a particular situation?

After you have done this, you might want 1o look at the discussion of this problem
in Church and Patil [1982].

5. Each of the following sentences is ambiguous in at least two ways. Because of the
type of knowledge represented by each sentence, different target languages may
be useful to characterize the different meanings. For each of the sentences, choose
an appropriate target language and show how the different meanings would be
represented:

» Everyone doesn't know everything.
# John saw Mary and the boy with a telescope.
e John flew to New York.

6. Write an ATN grammar that recognizes verb phrases involving auxiliary verbs.
The grammar should handle such phrases as

e “went”

e “should have gone”

+ “had been going”

* “would have been guing”

* “would go”

Do not expect 1o produce an ATN that can handle all possible verb phrases. Butdo
design one with a reasonable structure that handles most common ones, including
the ones above. The grammar should create structures that refiect the structures
of the input verb phrases.

7. Show how the ATN of Figures 15.8 and 15.9 could be modified to handle passive
sentences.

8. Write therule S — NP VP in the graph notation that we defined in Section 15.2.3. .
Show how unification can be used to enforce number agreement between the
subject and the verb.

9. Consider the problem of providing an English interface to a database of employee
recorgs.
{(a) Writc a scmantic grammar to define a language for this task.
(b) Show a parse, using your grammar, of each of the two sentences
What is Smith’s salary?
Tell me who Smith's manager is.
(c) Show parses of the two sentences of part (b) using a standard syntactic
grammar of English. Show the fragment of the grammar that you use.
(d) How do the parses of parts (b) and (c) differ? What do these differeaces say
about the differences between syntactic and semantic grammars?
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How would the following sentences be represented in a case structure:

(a) The planeflew above the clouds.

(b) John flew to New York.

(c) The co-pilot flew the plane.
Both case grammar and conceptual dependency produce representations of sen-
tences in which noun phrases are described in terms of their semantic relationships
to the verb. In what ways are the two approaches similar? In what ways are they

different? [s one a more general version of the other? As an example, compare
the representation of the sentence

John broke the window with a hammer.
in the two formalisms.
Use compositional semantics and a knowledge base 1o construct a semantic inter-
pretation of each of the following sentences:

(a) A student deleted my file.

(b) John asked Mary to print the file.

To do this, you will need to do all the following things:

e Define the necessary knowledge base nbjecls.‘

¢ Decide what the output of your parser will be assumed to be.
* Write the necessary semantic interpretation rules.

¢ Show how the process proceeds.

. Show how conversational postulates can be used to get to the most common.

coherent interpretation of each of the following discourses:
() A: Do you have a comb?
(b) A: Would Jones make a good programmer?
B: He's a great guy, Everyone likes him.
(c) A (in a store): Do you have any money?
B (A’s friend): What do you want to buy?

Winograd and Flores [ 1986] present an argument that it is wrong to attempt to
make computers understand language. Analyze their arguments in light of what
was said in this chapter.



Chapter 16

Paraliel and Distributed AJ

Reemt years have seen significant advances in paralle] computation and distributed
systems. What are the implications of these advances for AI? There are three main areas
in which paralle! and distributed architectures can contribute 1o the study of intelligent
systems:

* Psychological modeling
¢ Improving efficiency
¢ Helping to organize systems in a modular fashion

These areas are often overlapping and complementary. For example, consider
the production system model that we described in Chapter 2. The ideas of short-
term and long-term memory, independently operating productions, matching, and so
forth first arose in the psychological literature. When researchers began building Al
Systems based on these principles, they realized that parallel computers might be used to
increase significaatly the speed at which the systems could run. Even un single processor
systems, however, the production system architecture turned out to have many benefirs
over conventional programming. One benefit is beiter modularity, When rules oOperate
more or less independently, it is easy to add, delete, or modify them without changing
the structure of the entire program. In this chapter, we discuss all these issues. First we
bricfly discuss psychological modeling. Then, in the following two sections we present
some specific techniques that can be exploited in constructing parallel and distributed
reasoning systems,

16.1 Psychological Modeiing

The production system was originaily proposed as a model of human information pro-
cessing, and it continues to play a role in psychological modeling. Some production
syslem models stress the sequential nature of production systems, ie.. the manner in
which short-term memory is modified over time by the rules. Other models stress the
parallel aspect, in which all productions match and fire simultaneously, no matter how

129
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many there are. Both types of models have been used to explain timing data from
experiments on human problem solving.

SOAR [Laird er e/, 1987] is the production system architecture that we mentioned in
Chapter 6. SOAR has a dual mission. On the one hand. itis intended as an architecturs
for building integrated Al systems; on the other hand. it is intended as a model of
human intelligence [Newell, 1991]. SOAR .acorporates both sequential and paralicl
aspects of production systems by operating in cycles. In the elaboration phase of the
processing cycle. productions fire in parallel. In the decision phase, operators and
stales are chosen, and working memory is modified, thus setting the stage for another
elaboration phase. By tying these phases to particular timings, SOAR accounts fora
number of psychological phenomena.

Another approach to psychological modeling draws its inspiration from the physical
organization of the human brain itself. While individual neurons are quitc slow com-
pared to digital computer circuits, there are vast numbers of these richly interconnected
components, and they all operate concurrenily. If we wish to model the brain or use o
as a source of ideas for Al, we must consider the powers and constraints imposed by the
brain's architecture at the neural level. Unfortunately, we do not understand very well
how neurons are wired in the brain, so modeling at this level is difficult. But we return
to this idea in Chapter 18, where we describe the use of neural networks as a way of
representing and using knowledge.

16.2 Parallelism in Reasoning Systems

Al programs consume significant time and space resources. It is therefore important
that Al algorithms make use of advances in parallel computation. In this section, we
describe several ways of doing this without substantially changing the programs that we
wiite. Then. in the next section. we explore ways in which techniques from parallel and
distributed computing can be used in the overall design of Al systems.

16.2.1 Parallelizing Al Architectures

As we mentioned above, praduction systems have both sequential and parallel aspects.
The question arises, how much speedup can we expect from parailel processing? There
are several sources of parallel speedup in production systems:

e Maich-level parallelism, in which multiple processors are used to speed up the
handling of individual match-resolve-act cycles

— Production-level parallelism, in which all of the productions match them-
selves against working memory in parallel

- Condition-level parallelism, in which all of the conditions of a single pro-
duction are maiched in parallel

- Action-level parallelism, in which all of the actions of a single production
are executed wn parallel

» Task-level parallelism. in which several cycles are executed simultaneously
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The amount of task-level parallclism available is completely dependent on the nature
of the task. In 2 medical diagnosis system, for example, each production firing might be
dependent on the previous production firing, thus enabling a long, sequential chain of
reasoning to occur. However, if the system were diagnosing five patients simultaneously.
productions involving different patients would not interact with one another and could
be executed in parallel.

Match-level parallelismn is more widely applicable. Since production systems spend
nearly all of their time in the matching phase. il was expected early on that match-level
parallelism would lead to vast speedups. In a sysiem with a thousand productions.
for example. one processor could be zusigned to every production, possibly speeding
up every match cycle by a factor of a thousand. However, as Gupta [1985] showcd.
having n processors does not lcad 10 an a-fold speedup. Some reasons for this eflect
are:

1. Only a few productions are affccted by each change in working memory. With
some bookkeeping to save state information, sequential implementations such
as RETE [Forgy, 1982] (Section 6.4.2) can avoid processing large numbers of
productions. Parallel implementations must be judged with respect tothe speedups
they offer over efficient sequential algorithms, not inefficient ones.

[+

. Some productions are very expensive to match, while others are cheap. This
means that many processors may sit idle waiting for others to fimish. When
processors arc idle, the speedup available from parallel processing diminishes.

3. Overhead resulting from communication costs among multiple processors cun
further reduce the benefits of parallelism.

Other architectures behave differently with respect to parallel implementation. The
brain-style architectures mentioned above are naturally parallelin fact, simulating them
on sequentizl machines is often prohibitive because of the high degree of paralielism
they assume. In Section 16.3, we discuss some other parallel Al architectures.

16.2.2 Parallelizing Al Programming Languages

In the last section. we discussed the benefits of parallelizing a particular kind of program.
namely a production systen, interpreter. Other frequently used interpretersin Al include
those for the programming languages LISP and PROLOG.

Writing paraliel programs is a difficult task for humans, and there is some hope iy
parallel implementations of these languages (perhaps augmented with parallel program
ming constructs) will make effective speedups more practical. Parallel LISP models
include Multilisp [Halstead, 1988], QLISP [Gabricl and McCarthy, 1988], and the Pur
alation Model [Sabot, 1988). Parallel PROLOG models include Concurrent PROLOG
|Shapiro, 1987], PARLOG [Clark and Gregory. 1986]), and Guarded Horn Clauses [Ucda.
1085).

Research into paralle! logic programming languages was an important focus of the
Japanese Fifth Generation project (ICOT. 1984]. Languages like PROLOG immediatel,
suggest two types of parallelism. In OR-perafielism, multiple paths to the same goal are
taken in parallel. For examole, suppose we bave the following clauses:
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uncle (X, Y) :- mother(Z,¥Y), sibling(X,2).
uncle(X,Y) :- father(Z,Y), sibling(X,2).

Then the query
?- uncle{John,Bill)

could be satisfied in two different ways since John could be the sibling of Bill's mother
or of Bill's father. A sequential implementation would try to satisfy the first condition,
and then, if that failed, try the second condition. There is no reaso:i, howeer, why these
two paths could not be pursued in paratle] !

in AND-parallelism, the portions of a conjunctive goal arc pursued in parallel.
Consider the clause:

infleldfly(X) :- fly(X), infileldcatchable(X),
occupiedbase (fFirst), outs(zero).

Here. the four conditions can be checked in parallel, possibly leading to a four-fold
speedup in processing infieldfly queries. Such AND-parallelism is not so straight-
forward when variables are shared across goals, as in:

uncle (X, ¥) :- mother(2,Y), sibling (X, 2}).

The mother(Z,Y) and sibling (X, Z) conditions cannot be satisfied indepen-
dently, since they must instantiate the variable 2 in the same manner.

Research on parallel logic programmin  <hares the same goal as thar on parallel
production systems: to permit the efficient execution of high-level, easily written code
for Al systems.

16.2.3 Parallielizing Al Algorithms

Some problems are more amenable to paraliel solutions than others. While nine authors
may be able to write a book much faster than one author (if they each write separate
chapiers), nine women cannot bear a child any faster than one can. Likewise, throwing
more processors at an Al problerm may not bring the desired benefits. One example of an
inherently sequential problem in Al is unification (recall Scction 5.4.4). While multiple
processors can help somewhar [Vitter and Simoas. 1986], forraal argumeis [Dwork et
al., 1984} show thai vast speedups in the unification of large terms are not possible.

Many probiems can be solved efficiently by parallel mechods, but it is not always
@ simple matter to converi a sequential algorithm into an efficient parallel one. Some
Al algorithms whose parallel aspects have been studied are besi-first search [Kumar e/
al.. 1988]. alpha-beta pruning [Hsu, 1989], constraint satisfaction [Kasif, 1986], natural
language parsing [Thompson, 1989], resolution theorem proving [Cheng and Juang.
1987). and property inheritance [Fahlman, 1979].

'In PROLOG. clases are miatched sequentially from top to botiom. If PROLOG programmers write code
that depends on this behay ior. OR-parallelism may yiekd undesired results.
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162.4 Custom Paraliel Hardware .

Finally, we must ask how these parallcl algorithms can be imp lemented in hardware. One
approach is to code an algorithm in a programming language supported by a general-
purpose parallel computer. Another approach is 1o build custom parallel hardware
that directly implements a single algorithm. This last approach has led to striking
performance increases, as demonstrated in the SPHINX [Lee and Hon, 1988] speech
recognition system, where real-time performance was achieved through the use of a
beam search accelerator [Bistani ef af., 1989], and in the DEEP THOUGHT chess
machine [Hsu. 1989]. which uscs a paralle! tree-search algorithm for scarching game
trees.

16.3 Distributed Reasoning Systems

tn all of our discussions of problem-solving systems until now, we have focused on the
design of single systems. In this section, we expand our view, and look at distributed
reasoning systems. We define a distributed reasoning system to be one that is composed
of a set of separatc modules (often called agenrs since each module is usually expected
1o act as a poblem-solving entity in its own right) and a set of communication paths
hetween them. This definition is intentionally very vague. It adrnits systems every where
long u spectrum that ranges from tightly coupled systems in which there is a completely
-entralized control mechanism and a shared knowledge base to ones in which both
control and knowledge are fully distributed. In fact, of course, most real distributed
reasoning systems lic somewhere in the middle. This definition also includes systems
that are distributed at varying levels of granularity. although we do not intend it {0
include systems with very fine granularity (such as connectionist systems in which the
individual nodes do not perform reasoning in the same sense that we have been using
the term).

For many kinds of applications, distribut=d reasoning systems have significant ad-
vantages over large monolithic systems. These advantages can include:

1. System Modularity—It is easier to build and maintain a collection of quas-
independent modules than one huge one =

3. Efficiency—Not all knowledge is needed for all rasks. By modularizing it, we
gain the ability to fucus the problem-solving system's efforts in ways that are most
likely 1o pay off.

3. Fast Computer Architectures  As problem solvers gel more complex. they need
more and more cycles. Although machines continue to get faster, the recl speed-
ups arc beginning to come not from a single processor with a huge assowated
memory. but from clusters of smaller processors. cach with its own memory
Distributed systems are better able (o exploil such architectures.

4 Heterogeneous Reasoning— -The problem-solving lechimicjues and knowledge rep-
resentation formalisms ihat are best for working on one part of a problem may not
be the best for working on another part

V ; = B )
In thas respect. reasnaing programs ine po different Froom nth - 1L0pe proprams | Digkstrs. 1972}
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5. Multiple Perspectives—The knowledge required 1o solve a problem may not

reside in the head of a single person. It is very difficult 1o gel many diverse
people to build a single, coherent knowledge base, and sometimes it is impossible
because their models of the domain are actually inconsistent.

. Distributed Problems - -Some problems are inherently distributed. For example,

there may be different data available in each of several distinct physical locations.

. Reliability—If a problem is distributed across agents on different systems, prob-

lem solving can continue even if one system fails.

An architecture for distributed reasoning must provide:

1. A mechanism for ensuring that the activities of the various agents in the system

are coordinated so that the overall problem-solving system achieves its goal(s).

. A communication structure that enables information to be passed back and forth

among agents.

. Distributed versions of the necessaty reasoning techniques. These mechanisms

are likely to differ from their monolithic counterparts since they will be presumed
to operatc on a set of local knowledye bases rather than on a global one that can
be assumed o possess a sct of global properties (such as consistency).

In the rest of this section. we address each of these issues,

16.3.1 Coordination and Cooperation

The biggest issue that needs to be taced in the desige of any distributed reasoning system
is how the actions of the individual agents can be coordinated so that they work wgether
effectively, There are a varicty of approaches that can be taken here, including the
following:

« One agent is in charge. That miaster agenl makes a plan and disinbutes pieces

of the plan (o other “slave™ agents, who then do as they afe told and report back
their results. They may also communicate with other slave agenis if necessary to
accomplish their goals

One agent is in charge and that agent decomposes the problem into subproblems,
but then negotiation occurs to decide what agenmts will take responsibility for
which subtasks. '

No one agent is in charge, although there is a single shared goal among all the
agents. They must cooperate both in forming a plan and in executing it.

No one agent is in charge, and there is no guarantee that a single goal will be
shared among all (he agents. They may even compete with each other.
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Although these approaches differ considerably, there is onc moditication to a simple,
single agent view of reasoning that is necessary 10 support all of them in anything other
than a trivial way, We need a way [0 reprosent models of agents, including what
they know, what they can do. and what their goals are. Fortunately, what we need is
exactly the set of mechanisms that we introduced in Section 154, But now, instead
of using modal operators and predicates (such as BELIEVE, KNOW, KNOW-WHAT,
CAN-PERFORM, and WILLING-TO-PERFORM) to model writers and speakers, we
use them to model agents in a distributed system. Using such operators, it is possible
for each agent 10 build a model of both itse!f and the other agents”with which it must
interact. The self-descriptive model is necessary 10 enahie the sgent W know when it
should get help from others and to allow i. to represent itsell accarately to other agents
who may wish to get help from it. The model of other agents is nccessary to enable an
agent to know how best to get help from ther.

Planning for Multi-agent Execution

The least distributed form of distributed reasoning is that in which a single agent:
1. Decomposes the goal inio subgoals, and
2. Asmigns the subgoals to the vanous other agents

This kind of reasoning is usually called multi-cgent planning. The firststep, problem
decomposition, is essentially the same as it is for single-agent planmig systems. Ideally,
the decompasition results in a set of subproblems thal are mutually independent. This is
often not possible, however, so various of the techniques that we described in Chapter 13
mst be exploited.

Onge 2 decomposition has heen produced, the subproblems must be allocated 1o the
available agents for exceution. At this paint, distributed planming differs from single
agent planning in the following important ways:

+ Unless all the slave apents are identical, the master agent must have access o
models of the capabilities of the various slaves. These models make it possible to
allocate tasks to the agents that are best able to perform them.

o Even if alt the slave agents are identical, the masier must do load balancing to
acsure that the overall goal is completed as soon as possible.

o Once the tasks have been distributed, synchronization among the slaves is nec-
cssary unless all the tasks are completely independent. In single-agenl planning,
dependencies are usually handled at plan cr=ation time. In a multiple agent sys-
tem. it is not usually possible to do that, since any such static scheme will be
defeated if the various agents take unpredictable amounts of time ta perform their
tasks,

Let's consider this last issue in a bit more detail. Suppose the 1ask is 1o do spelling
correction on 2 document with several chapters, and then 1o print it. We can distribute
this among several spelling correcting agents and one printing agent. But to get the
desired result, we need to ensure that the ponting agent does not begin printing any
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chapter until spelling correction on that chapter is complete.  Distributed reasoning
systems exploit a wide variety of synchronization techniques to guarantee this, ranging
from simple ones (e.g.. in which the printing process does not begin until all the spelling
correctors are done and have so informed the master) to more sophisticated ones inwhich
the slave processes communicate directly with each other (e.g., the spelling correctors
each inform the printer when they have finished). These more saphisticated techniques
require that each slave agent be told some information about the other slaves al the time
that it 1s given its task.

" For rclatively simple tasks, such as the one we just described, the various agents can
communicate effectively with each other just by announcing when operations bave been
completed. For other kinds of tasks, though, it is not encugh o know when an agent has
completed its task. It may also be necessary to know what state the system is in during
task execution. For example, suppose that there is a single resovrce hal the vanous
agents share, such as an input or output device. Then one agent may want to know
whether any other is currently using the device. To support this kind of interaction, it
is useful to introduce a state-based model, such as thai described by Georgeff [1983,
1984]. In this kind of a model, each availabie action is characterized as a sequencr of
state changes that it effects. The various agents may share a single model, which they
all update as necessary, or they may each have thew own model, in which case they must
also inform all other relevant agents whenever they make a change to their iternal state
that could be important externally.

Planning and Negotiation: Contract Nets

A slightly more distributed kind of reasoning occurs when a single agent performs the
problem decomposition bul then negotiates with the ather agents w determine who will
take on which subtasks. The confraci net mechanism [Davis and Smith, 1983] supports
this kind of interaction. In a contract net, there are two roles thai the agents can assume:

1. Manager, who decomposes a problem, looks for contractors to attack pieces of
the problem. and monitors the problem’™s execution.

2. Contractor, who executes a subtask, possibly by actnally doing the job and possibly
by recursively becoming a manager and subcontracting subparts of the job to other
contractors.

Managers and contractors find each other through a process of bulding:
1. A manager announces a task.

2. Contractors evaluate the task with respect to their own abilities and the resource
requirements necessary to accomplish it.

3. Contractors make bids to the manager.
4. The manager chooses a single contractor and waits for the resuit.

Thus managers and contractors sclect each other by communicaling in a completely
distributed fashion. A node can be both a manager and a contractor simultaneously;
rather than sit idle, waiting for results from its contractors, a manager can take on work
in the meantime,
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Distributed Control and Communication

So far, we have focused on sysiems in which there is a single agent who maintains
control of the overall pmhlem—snlving process. In this section, we look at the problem
of distributed planning.in which there is no such centralized coniroller. In the cxtreme
form of such syslems, We cdn make no assumptions about how the various agenis will
behave. But withoutany such assumptions, it is impossible to construct problem-solving
algorithms, So we start by assuming that each agent is rational. We can define rationality
as follows:

An pgent is rarional if it behaves in a manner ihat 1s optim il with respect
1o its goals.

Unfortunately, ina complx world, an azent may not have enough processing power
to behave optimally. This leads 1o a slightly weaket, but more useful, notion of bounded
rationality [Simon, 1957]:

Bounded rationality is a propernty of an agent that behaves n a manner that
is as nearly optimal with respect 10 its goals as its resources allow.

Bounded rationality is akin to the notion of satisficing that we discussed in Chapter 2

Using these ideas, we can define techmques that an individua! agent can use 10 auain
its goals, taking into account what wili probably happen as a result of what the other
agents in its environment are likely to do. Sometimes, the other agents arc cooperaling
to achieve the same goal. Sonictimes they are working on other goals, which may
be competitive or simply orthogonal. We consider two classes of approaches to this
problem:

» Planning with communicalion

o Planning without communication

The first approach is one in which the agents can communicaie freely with each other
during problem solving. In this case, the agents can each create their own plans, which
are composed both of problem-solving actions and of communication actions of the sort
we described in Section 15.4. Sometnes the communication actions are addressed to a
specific other agent who is behieved to be able tosari fy a request (either tor information
or o perform some other task). In other sysiems, the agents do not know explicitly
about cach other. Instead, cach agent can broadcast to a shared memary Struciure. which
other agents can be counted on to read, Each agent can then reply W those (1essages 10
which it chooses 0 pay attention. We deseripe one specific way of implementing such
2 broadeast structure as 4 biackboard system in Section 16.3.2.

One specific technigue (hat several companicaling agenis can use is called the func-
tionally accurate, cooperative {FA/C) approach [Lesser and Corkill, 198 1] to distributed
problem solving. Each agent begins by forming a tentalive, incompletc plan These
plans arc then shared among the agents, who are able 10 help refine each other's plans by
adding information that they posscss. Ideally. the entire system CONverges on a complete

plan.
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Figure 16.1: A Payoff Matrix for Two Agents and Two Actions

The second approach is one in which we assume that the agents cannot communicate.
This may seem to be a very serious restriction. but it is useful 1o consider it both because
it does sometimes arise in the extreme (perhaps because the agents are peographically
1solated) and because it often arises at small granularity levels where the cost of constant
communication may come to dominate the cost of actual problem solving.

If we assume that the agents cannot communicate and thal they are all rational, then
we can use many of the standard notions of game theory 10 describe how each of them
should act. The most basic technique is that of a payoff matrix, such as the one shown
in Figure 16.1. We assume that there are only two agenis. P and Q, and that there are
only two actions that ¢ach of them can perform (@ and £ for P, and ¢ and 4 for Q). Then
the matrix shows the payoff for each of them for each of the possible joint actions. The
number in the lower left of cach box is the pavoff for P: the rumber in the upper right
is the payoff for Q. Each agent's goal is to maximuze 1ts own payoii. For example, P
comes out best if it makes move h and Q makes move . On the other hand, Q comes
out best if P makes move a and Q makes move r,

Qf course, no one of the agents can force such a dual move. Each must make its
own decision independently. In this case, for example, P should choose move « {rather
than b, even though the best case for P included 1aove A). Why? The answer i3 thal
P shouid assume that Q will behave rationally. In this matrix, the ¢ column dominates
the d column for Q, by which we mean that in every row, the payoff for Q is higher n
the ¢ column than in the & column. Thus Q can be predicied 1o choose , and P should
plan accordingly. Given that Q will choose c. P sees that it does belter 'n chnose mova
a than move b.

We can now view our discussion of game-playing programs {Chapter 12 from a
different perspective, that of noncommunicating agents Irying to suive their own goais
Both payoff matrices and tree-scarch algorithms can be generalized to more than twa
players (e.g.. Korf [1989]). but there are some important differences. In board game:,
players usually take turns making moves, whereas payoff matrices model the kind of
simultaneous decision making common in the real world. Also, games are usually
zers-sum, meaning that one plaver’s gain is another player’s loss. Payoff matrices are



16.3. DISTRIBUTED REASONING SYSTEMS 429

sometimes zero-sum, but need not be. See Genesereth ¢/ al [1987] and Rosenschein
and Breese [ 1989] for more substantial discussions of operations on payofl matrices.

16.32 Communication: Blackboards and Messages

The specific communication architectures that have been proposed to suppon distributed
reasoning fall into two classes with respect 1o communication structure:

o Blackboerd systems. in which communication takes pince through a shared kn swl-
edge structure called a Mackboard. Modules can post iiems on the blackboard.
and they can read and act on MESSages that are posied by other modules.

o Message-passing systems, in which one reasoning module sends messages (both
requests for services and information as well as replics (o such requests) 1o one of
more other modules whose names are explicitly known.

Although on the surface. these Iwo techniques appear quite different, they turn out in
practice to offer essentially the same support for distributed reasoning. In fact. they can
be used to simulate cach other, as we see below. In the rest of this section, we describe
examples of cach approach.

Biackboard Systems

The blackboard approach Lo the organization of large Al programs was first developed
in the context of the HEARSAY-11 specch-understanding project [Erman e al.. 1980].
The idea behind the blackboard approach is simple. The entire system COnsists of:

e A set of independent modules, called knowledge sources (or KSs), that contain
the system's domain-specific knowledge

e A blackboard. which is the shared datu structure through which the knowledge
sources communicate with each other

« A control system. which defermines the order in which knowledge sources will
operate on the entries on the blackboard

To see how ithese pieces work together, let's look at the HEARSAY-I1 system.
Here. the KSs correspond to the levels of knowledge about speech, language (syllables.
words. phrases, and sentencesh and the task being discussed. The blackboard contains
hypotheses aboul interpretations at cach af these levels. Control is performed by a
specialized knowledge source that seasons about such factors as cost of execution and
likelihood of achieving a result.

When a KS is activated tas described belewi, it examines the current contents of
the blackboard and applics its knowledge cither io create 2 new hyporhesis and wnile 1
on the blackboard, or to modify an existing one. Although the execution of the eniire
HEARSAY-11 system: consists of the asynchrorous execution of @ collection of KSs.
the execution of an individual KS is sequential process Once 2 KS 15 activated. it
executes without being interrupted until it is finished
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Figure 16.2: A Snapshot of a HEARSAY-I1 Blackboard

The hypotheses on the blackboard are arranged along two dimensions: level (from
small, low-level hypotheses about individual sounds 1o large, high-level hypotheses
about the meaning of an entire sentence) and time (corresponding to periods of the
utterance being analyzed). The goal of the system is to create a single hypothesis
thal represents a solution to a problem. For HEARSAY-1I, such 4 sclution would be an
acceptable interpretation of an entire utterance. Figures 16.2 and 16.3 show a snapshot of
a HEARSAY-I1 blackboard. Figure 16.2 shows the lowesi three levels of the blackboard,
and Figure 16.3 shows the top three. The levels are the [ollowing:

a

The waveform corresponding to the senience “Are any by Feigenbauvm and Feld
man?”

. The correct words shown just for reference
. The sound segments

. The syllable classes

. The words as created by one word KS

The words as created by a second word KS

. Word sequences

. Phrases
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Associated with each KS is a set of rriggers that specify conditions under which the
KS should be activated. These triggers are an example of the gencral idea of a demon,
which is, conceptually, a procedure that watches for some condition to become true and
then activates an associated process.’ .

When a trigger fires, it creates an activation record describing the KS that should be
activated and the specific event that fired the trigger. This latter information can be used
te focus the attention of the KS when it is actually activated. Of course, a single event,
such as the addition of a particular kind of hypothesis to the blackboard, could cause
several triggers Io fire at once, causing scveral activation records to be created. The KS
that caused the wiggering event to occur need not know about any of these subsequent
acuvations. The actual determination of which KS should be activated next is done
by a special KS, cailed the scheduler, on the basis of its knowledge about how best to
conduct the search in the particular domain. The scheduler uses ratings supplicd to it by
cach of the independent KSs. 1F the scheduler ever discovers that there are no activation
records pending, then the system’s execution terminates. For more information on the
HEARSAY-1I scheduler, see Hayes-Roth and Lesser [1977].

The techniques developed in HEARSAY-11 have since been generalized in several
multipurpose blackboard systems, including HEARSAY-111 {Balzer er al., 1980; Erman
et al., 1981), GBB [Corkill e? al., 1987, and BB1 [Hayes-Roth, 1985; Hayes-Roth and
Hewett. 1989). For example, the use of time as an explicit dimension on the blackboard
is not appropriate in all domains, so it has been removed from these more general
systems.

But these new blackboard systems also pravide facilities that HEARSAY-II lacked
In HEARSAY-1I, control was data-driven. This worked well for speech understanding.
But for other kinds of probiem solving, other kinds of control are more appropriate.
Examples include control that isdriveneither by goals or by plans. The newer blackboard
systems provide explicit support for these other control mechanisms, One important
way in which they do that is to allow the use of muhiple blackboards. Although this
idea can also be exploited as a way to modularize domain reasoning, one of its impariant
uses 18 1o exploit one blackboard for reasoning in the problem domain and another for
controlling that reasoning. In addition, these systems provide a goal-structured agends
mechanism that can be used in the control space to allow problem solving to be dniven
by an explicit goal structure. See Englemore and Morgan [1989] and Jagannathan et al.
[ 1989] for further descriptions of these systems and some applicaticns that have been
built on top of them.

Message-Passing Systems

Message-passing systems provide an alternative way for agents in a distributed reasoning
system to communicate with cach other. In such a framework, the agents terd to know
more about each other than they do ina blackboard system. Thisknowledge enables them
to direct their messages to those agents who are most likely to be able to do what needs
to be done. As an example of a message-passing distributed system, we describe MACE
[Gasser e al., 1987], which provides a general architecture for distributed reasoning

i ;C_)fmm.dﬂmm usually are not actually implemented as processes that walch for things, but rather the
things they are watching for arc st up 1o activate them when appropriate
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systems (in the same sense that systcms such as BB1 provide a generat architecture for
blackboard systems). A MACE system is cumposed of five kinds of components:

1. Problem-solving agenis, which are specialized 1o a problem domain

2. System agents, which provide such facilities as command interpretalion, error
handling, tracing

3. Facilities, which are built-in functionsthat agents can use for such things as pattern
matching and simulation

4. A description database, which maintains descriptions of the agents

5. Kemels, of which there is one for each processor, which handle such functions «s
message routing and U/O transfers

A MACE problem-solving agent maintains models of other agents. A model that an
agent P has of some other agent A contains the following information:

1. Name: A's name
2. Class: A's class
1. Address: A's location

4. Role: A's relationship 10 P. This relationship can be 1dentily, creator, or member
of an organizatior,

5. Skills: P's knowleaze about what A can do
6. Goals. P's neliefs abeui A’s goals

7. Plans: F's beliefs about A s plans for aclieving its goals

‘This architeciute supports many of the kinds of distributed reasoning systems tha
we have been discussing. Let's consider a few.

Firet, suppose we want 1o build a system in which a controllingarent will decomposc
the problem and then negotiate with other agents to perform subtasks using a contrac
net mechanism. Then each of the agenis can be representad as a prablem-solving agent
in MACE. The munager decomposes the problem. Tt then sends requests for bids 1o
all the other agents, about which it knows nothing except their addresses. As the other
agents respond, the manager can build up its model of them. Using that model, it can
choose the agents to whom it wishes to award bids The chosen agenis perform their
tasks and then send reply messages to the manager.

At another extreme. suppose we want 1o build a system that i1scomposed of competing
agents. We can model such & system in a MACE architecturc, again by building a set
of problem-solving agents, but this time their models of each other must be more
sophisticated. In particular, it will be necessary Lo mode! each other's goals and plans.

Although MACE directly supports a message-passing communicailon protocol, it
can be used to simulate a blackboard system. A single probiem-solving agent, of col-
lection of them. can be used to simulate each blackboard knowledge source. Additiona
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agents can simulate the blackboard itself. Agemts send messages (o the blackboard,
which in turn routes the messages io the other agents that should be triggered as 4 result
of the posting.

As this example supgests, there really is no dichotomy between blsckboard and
message-passing systems so much as there is a continuum. Al one exireme, an agent
can do nothing but broadcast its message to everyone. At the other, an agent can do
nothing except send its message to a specific other agent. There are many in-between
positions that can be very uscful. For example. an agent may not know exactly which
other agent should receive its message, but it may know that it is some agent belonging
to a particular class. In a message-passing architecture, this can be implemented by
arranging agents into a hierarchy of classes and allowing messages to be sent to a class
and thus delivered to all members of the class. In a blackboard system, this same
capability can be implemented by creating a type hierarchy for blackboar elemenrs.
Then each KS is marked with the types of clements that will be considered as triggenng
events. When an element is posted, only those KSs that are defined for elements of that
type will be given a chance to trigger on i1,

16.3.3 Distributed Reasoning Algorithms

So far we have discussed various issues that arise when planning and plan execution are
distributed across multiple agents, But we have not considered any modifications to any
. other reasoning algorithms. We have implicitly assumed that such standard procedures
as maiching and inheritance would work in a distributed system just as they do in a
single-agent system. In many cases they do. But there are some reasoning algorithms,
particularly ones that operate globally on a knowledge base, that need to be redesigned
Lo support distributed reasoning. We consider one example of such an algotithm here,

Consider again the justification-based truth maintenance system (JTMS) that we
described in Section 7.5.2. The JTMS works by considering an entire knowledge base
and labeling the nodes in the knowledge base so thu the labeling is consistent and
well-founded. Both of these are global properties. But consider a distributed reasoning
system in which there are several agents, each of which has its own knowledge base.
Although we expect that each of these knowledge bases will be locally consisient, we
do not want to insist that, taken together, they be globally consistent. This is important,
since one of the benefits of u distributed system is (hat agents that represent different
points of view and positions can interact. So whal does it mean to label the nodes in
such an inconsistent knowlcdge base?

A second question arises when we extend the notion of a JTMS 10 a distributed
system. In a single-agent system, a justification is created as part of the reasoning
process. It stays with the resulting node and can be used o update the belief status of the
node if any of the assumptions on which the reasoning depended ever change. But what
if one agent does the reasoning and then communicales its result to another? Tt may
nol make sense to communicate the justification, since it may involve knowledge-base
objects that the receiver of the result knows nothing abeut. This will often happen if
one agent asks another 10 solve a problem about which it knows very little.

Both of these problems can be solved by introducing the idea of a disiributed
truth maintenance system. In this system, interagent justifications work as follows,
Assume Al solves a problem and reports the result 10 42. Then Al also reports to
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A2 a justification that says “Because Al says so." This justification is treated by A2
essentially like a premise justification. But Al must also remember the justification, and
it must remember that it sent this justification 10 A2. If the justification ever becomes
invalid in A1. then A1 must send a message to A2 saying that Al no longer says so, At
that point, the conclusion musi 20 OUT in A2 unless there exists some other justification
that is still valid.

Node labeling in the distributed truth maintenance system works similarly to node
iubeling in a single-agent system except that we need lo redefine consistency. Rather
than insisting on global consistency, we instead insist on extended local consistency,
by which we mean that the labels within the knowledge base of a single agent mus!
be consistent and the labels that are attached to nodes that have been explicitly shared
among agenis must be consisient across agents. But we do not insist that the labels
attached to nodes thal have not been explicitly shared e consisient across agents. For
more information on how to do this, see Bridgeland and Huhns [1990]. Feor a similar
discussion of ways to create a distributed assumption-based truth maintenance system,
see Mason and Johnson [1989].

16.4 Summary

{ix this chapter. we discussed parallel and distributea uspects of Al. We examined
ssychologigal factors as well as efficiency concerns. The last section described the
‘ssues that arise when we attempt to extend the problem-solving mechanisms of earlier
chanters to distributed reasoning systems. We have by no means covered all of them.

P more information in this area, see the the following eollections: Huhns J1987].
el and Gasser |1988], and Gasser and Huhns [1989].

Before we end this chapter, we shouid point out that as distributed systems become
wswce complex, it becomes harder to see how best to organize them. One thing that
hes proved promising 1% to look for analogies in the organization of other complex
systems. One of the most promising sources of such analogies is the structure of
tuiaan orgamizations, such as socicties and corporalions. A team or a corporation or a
oevernment is, after all, a distributed goal-oriented system. We have already seen one
expmple of this iaea, aamneiy the bidding that is exploited in the contract net framework.
Zee Fox {1981], Malone 19871, und Kormnfeld and Hewitt [1981] for further discussion
of this idea.

Another source of ideas is the way a single human brain functions. The book, The
Seciery of Mind [Minsky, 1985] explores the notion that single minds are also distributed
sysiems, composed of collections of heterogeneous agents that simultaneously cooperate
sl compete,

16.5 Exercises
| Consider a situation in which one agent Al requests help from a second agent A2

10 help find @ movie it would like. AT knows what it likes and A2 know s about
movies,
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fa} Using the belief and communication opera&brs that we have defined (plus
any others that you find it useful to define). write a plan that could be used
by Al.

(b) Write a similar plan for A2,

2. Consider the following payoff matrix:

Q

[ ]
iy

If Q assumes P is rational, what move should Q make?

3. Show how the HEARSAY-I blackboard system could be extended to suppori the
whole natural language understanding process that we described in Chapter 15.

4. Show how a speech understanding system could be built using a MACE-siyle
architecture.



Chapter 17

Learning

i7.1 What Is Learning?

One of the most often heard criticisms of Al is that machines cannot be called intelligent
watil they are able to learn 1o do new things and to adapt Lo new situations, rather than
simply doing as they are told to do. There can be litile question that the ability to
adapt to new surroundings and 10 solve new problems is an important charactenstic of
inteiligent entitics. Can we expect 1o see such abilities in programs? Ada Augusta, one
of the earliest philosophers of computing, wrotc that

The Analytical Engine has no pretensions whatever to originate anything.
It can do whatever we know how to order it 1o perform. [Lovelace, 1961]

This remark has been interpreted by several Al critics as saying thal compulers
cannot learn. In fact, it does not say that at all  Nothing prevents us from telling
a computer how to interprel its inputs in such & way that iis performance gradually
Improves.

Rather than asking in advance whether it is possible for computers to “fearmn,” itis
much more enlightening to try to describe exactly what activities we mean when we say
“leaming” and what mechanisms could be used to enable us to perform those activities.
Simon [1983] has proposed that learning denotes

... changes in the system that are adaptive in the sense that they enable the
system to do the same task or tasks drawn from the same population miore
efficiently and more cffectively the next time.

As thus defined, learning covers a wide range of phenomena. At one end of the
spectrum is skill refinement. People pet better at many iasks simply by practicing. The
morc you ride a bicycle or play tennis, the better you get. Al the other end of the
spectrum lies knowledge acquisition. As we have seen, many Al programs draw heavily
on knowledge as their source of power. Knowledge is generally acquired through
experience, and such acquisition is the focus of this chapler.

Knowledge acquisition itself includes many different activities. Simple stonng of
computed information, or rote learning. is the most hasic leaming activity. Many

447
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computer programs, e.g., database systems, can be said to “leam” in this sense, although
most people would not call such simple storage learning. However, many Al programs
are able to improve their performance substantially through rote-leamning techniques,
and we will look at onc example in depth, the checker-playing program of Samuel
[1963].

Another way we learn is through taking advice from others. Advice taking is similar
torote leamning, but high-level advice may not be in a form simple enougii for a program
10 use directly in problem solving. The advice may need to be first operationalized, a
process explored in Section 17.3.

People also learn through their own problem-solving experience. Afier solving a
complex problem. we remember the structure of the problem and the methods we used to
solve it. The next time we see the problem, we can solve it more efficiently. Moreover,
we can generalize from our experience to solve related probiems more easily. In contrast
to advice taking, learning from problem-solving experience does not usually involve
gathering new knowledge that was previously unavailable to the learning program.
Thar is. the program remembers its experiences and generalizes from them, but does
not add to the transitive closure' of its knowledge, in the sense that an advice-taking
program would, i.e., by receiving stimuli from the outside world. In large problem
spaces, however, efficiency gains are critical. Practically speaking, learning can mean
the difference between solving a problem rapidly and not solving it at all. In addition,
programs that leam through problem-solving experience may be able to come up with
qualitatively better solutions in the future.

Another form of learning that does involve stimuli from the outside is learning from
examples., 'We often leamn to classify things in the world without being given explicit
rules. For example, adults can differentiate between cats and dogs, but small children
often cannot. Somewhere along the line, we induce a method for telling cats from dogs
based on seeing numerous examples of each. Learning from examples usually involves
a teacher who helps us classify things by correcting us when we are wrong. Sometimes,
however, a program can discover things withoul the aid of a teacher.

Al researchers have proposed many mechanisms for doing the kinds of learning
described above. In this chapter, we discuss several of them. But keep in mind
throughout this discussion that leamning 1s itself a problem-solving process. In fact, 1l
15 very difficult to formulate a precise defic: i Of learming that distinguishes it from
other problem-solving tasks. Thus it should come as no surprise that. throughout this
chapter, we will make extensive use of both the problenz-solving mechanisms and the
knowledge representation technigues that were presented in Parts | and 11

17.2 Rote Learning

W hen a computer stores a piece of data, it is performing a rudimentary form of leaming.
Afrer all, this act of storage presumably allows the program to perform better in the
future (otherwise, why bother?). In the case of dara caching, we store compuied values
50 that we do not have to recompute them later. When computation is more expensive
than recall, this strategy can save a significant amount of time. Caching has been used

IThe transitive closure of a program’s knowledge it that knawledge pluv whatever the program can
logically deduce from it
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(h)

Figure 17.1: Storing Backed-Up Values

in Al programs to produce some surprising performance improvements. Such caching
is known as rote learning.

In Chapter 12, we mentioned one of the earliest same-playing programs, Samuel’s
checkers program [Samuel, 1963]. This program learned to play checkers well enough
10 beat its creator. It exploited two kinds of learning: rote learing, which we look at
now, and parameter (or coefficient) adjustment. which is described in Section 17.4.1.
Samuel's program used the minimax search procedure to €x plore checkers game trees
As is the case with all such programs, time constt.ints permitted 1t to search onl a few
fevels in the tree. (The exact number varied depending on the situation.) When il could
search no decper. it applied its static evaluation function to the board position and used
that score to continue its search of the game tree. When it finished searching the tree
and propagating the values backward, it had a score for the position represenied by the
root of the tree. It could then choose the best move and make it. But it also recorded the
board position at the root of the tree and the backed up score that had just been computed
for it. This situation is shown in Figure 17.1{a).
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Now suppose that in a later game, the situation shown in Figure 17.1(b) were to arise.
Instead of using the static evaluation function to compute a score for position A, the
stored value for A can be used. This creates the effect of having searched an additional
several ply since the stored value for A was compuied by backing up values from exactly
such a search.

Rote learning of this sort is very simple. It does not appear 1o involve any sophis-
ticated problem-solving capabilities. But even it shows the need for some capabilities
that will become increasingly important in more complex learming systems, These
capabilities include:

o Organized Storage of Information—In order for it to be faster to use a stored value
than it would be to recompute it, there must be a way to access the appropriate
stored value quickly. In Samuel’s program, this was dane by indexing board
positions by a few important characteristics, such as the number of picces. But as
the complexity of the stored information increases, more sophisticated techniques
are necessary.

o Generalization—The number of distinct objects that might potentially be stored
can be very large. To keep the number of stored objects down to a manageable
level, some kind of gencralization is necessary. In Samuel's program, for example,
the number of distinct objects that could be stored was equal to the number of
different board positions that can arise in a game. Only a few simple forms of
generalization were used in Samuel's program to cut down that number. All
positions are stored as though White is to move. This cuts the number of stored
positions in half. When possible, rotations along the diagonal are also combined.
Again, though, as the complexity of the leaming process increases, 50 (00 does
the need for generalization.

At this point, we have begun to see one way in which leamning is similar to other
kinds of problem solving. Its success depends on a good organizational structure for its
knowledge base.

17.3 Learning by Taking Advice

A computer can do very little without a program for it to run. When a programmer
writes a series of instructions into a computer, a rudimentary kind of leaming is taking
place: The programmer is a sort of teacher, and the computer is a sort of student.
After being programmed, the computer is now able to do som=thing it previously could
not. Executing the program may nol be such a simple matter, however. Suppose the
program is written in a high-level language like LISP. Some interpreter or compiler must
intervene 1o change the teacher’s instructions into code that the machine can execute
directiy.

People process advice in an analogous way. In chess, the advice “fight for control of
the center of the board” is useless unless the player can translate the advice into concrete
moves and plans. A computer program might make use of the advice by adjusting its
static evaluation function 10 include a factor based on the number of center squares
attacked by its own pieces.
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Mostow [1983] describes a program called FOO, which accepts advice for playing
hearts, 2 card game. A human user first translates the advice from English into a
representation that FOO can understand. For example, “Av oid taking point ™ becomes:

(avoid (take-points me) (trick))

FOO must operationalize this advice by tuming it into an expression thal contains
concepts and actions FOO can use when playing the game of hearts, One strategy FOO
can follow is to UNFOLD an expression by replacing scme term by its definition. By
UNFOLDing the definition of avoid, FOO comes up with:

(zchieve (not (dunng (tnck) (take-points me))))

FOO considers the advic. .o apyly (o the player called “me.” Next, FOO UNFOLDs
the definition of trick:

(achieve (not (during
{scenario
(each p! (players) (play-card p1))
(take-mick (trick-winner)))
(take-points me})))

In other words. the player should avoid taking points during the scenario consisting
of (1) players playing cards and (2) one player taking the trick. FOO then uses case
analysis to determine which steps could cause onc to take points. It rules out step | on
the basis that it knows of no intersection of the concepts take-points and play-card. But
step 2 could affect taking points, so FOO UNFOL Ds the definition of take-points:

(achieve (not (there-cxists ¢1 (cards-played)
(there-exists c2 (point-cards)
{during (take (trick-winner) ci)
(take me ¢2))))))

This advice says that the player should avoid taking point-cards during the process of
the trick-winner taking the trick. The question for FOO now is: Under what conditions
does (take me ¢2) occur durmg (take (trick-winner) ¢l)? By using a technique called
parnal match, FOO hyporhesizes that poinis will be taken if me = irick-winner and ¢2
= ¢1. It transforms the advice into:

(achieve (not (and (have-points (cards-played))
(= (trick-winner) me))))

This means “Do not win a trick that has points.” We have nol traveled very far
conceptually from “aviid taking points.” but it is important 1o note that the current
vocabulary is one that FOO can understand in terms of actually playing the game of
hearts. Through a number of other transformations. FOO eventually setiles on:

(achieve (>= (and (in-suit-led (card-of me))
(possible (trick-has-points)))
{(low (card-of me)))
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In other words, when playing a card that is the same suit as the card that was played
first, if the trick possibly contains points, then play a low card. At last, FOO has
translated the rather vague advice “avoid taking points" into a specific, usable heuristic.
FOO is able to play a betier game of hearts after receiving this advice. A human can
watch FOO play, detect new mistakes, and corfect them through yet more advice, such
as “play high cards when it is safe to do s0." The ability to operationalize knowledge is
critical for systems that learn from a teacher's advice. It is also an important component
of explanation-based learning. another form of leamning discussed in Section 17.6.

17.4 Learning in Problem Solving

In the last section, we saw how a problem solver could improve its performance by
taking advice from a teacher. Can a program get betier without the aid of a teacher? It
can, by generalizing from its own experiences.

17.4.1 Learning by Parameter Adjustment

Many programs rely on an evaluation procedure that combines information from several
sources into a single summary statistic. Game-playing programs do this tn their static
evaluation functions, in which a variety of factors, such as piece advantage and mobility,
are combined into a single score reflecting the desirability of a particular board position.
Pattern classification programs often combine several features to determine the correct
category into which a given stimulus should be placed. In designing such programs, it
is often difficult to know a priori how much weight should be attached io each feature
heing used. One way of finding the correct weights is to begin with some estimate of
the correct settings and then to let the program modify the settings on the basis of its
experience. Features that appear to be good predictors of overall success will have their
weights increased, while those that do not will have their weights decreased, perhaps
even (o the point of being dropped entirely. .

Samuel’s checkers program [Samuel, 1963 explosted thiskind of learning inaddition
to the rote learning described above, and it provides a good example of its use. Asits
static evaluation function, the program used a polynomial of the form

cply Y Cafa ) +Cinlin

The ¢ terms are the values of the sixieen features thal contribuie to the evaluation.
The ¢ terms are the coefficients (weights) that are attached to each of these values. As
learning progresses. the ¢ values will change.

The most important question in the design of a learning program based on parameter
adjustment is “When should the value of a cocfficient be increased and when should it be
decreased?” The second question to be answered is then “By how fuch should the value
be changed?" The simple answer to the first question is that the coefficients of terms
that predicted the final outcome accurately should be increased, while the coefficients
of poor predictors should be decreased. In some domains, this is casy to do. 1f a pattern
classification program uses its evaluation function to classify an input and it gets the
right answer, then all the terms that predicted that answer should have their weights
increased. But in game-playing programs, the problem is more difficult The program
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does not get any concrete feedback fron mdwidual moves It does not find out for sure
until the end of the game whether it has won. Eut many moves have contributed to that
final outcome. Even if the program wins, it may have made some bad moves along the
way. The problem of appropriately assigning responsibility to each of the steps that led
(0 a singlc outcome is known as the credit assignment praoblem.

Samuel’s program exploits one technique. albeit imperfect, for solving this problem.
Assurne that the initial values chosen for the cocfficients are good enough that the iotal
cvaluation function produces values that are fairly reasonable measures af the carrect
score even if they are not as aecurale as we hope (0 get them. Then this evaluation
function can be used 1o provide feedback 1o itself. Move sequences that lead 1o posttions
with higher values can be considered good (and the terms in the evaluation function tha
suggested them can be reinforced).

Because of the limitations of thir anprow’y however, Samucl’s program did two
other things, one of which provided an additional resi that progress was being made and
the other of which generated additioral nudges ta keep thie process out of a rut:

+ When the program was in learning mode. it played against another copy of itsell.
Only one of the copies altered its scoring function during the game; the other
remnained fixed. At the end of the game, if the copy with the modified function
won, then the modified function was accepted.  Otherwise, the old one was
retained. If, however, this happened very many times, then some drastic change
was made Lo the function in an attempt 1o get the process going in a more profitabic
direction.

« Periodically. one term in the scoring function’ was eliminated and replaced by
another. This was possible because, although the program used only sixteen
features at any one bme, it actually knew about thirty-eight. This replacement
differed from the sest of the leaming procedure since it created a sudden change
in the scoring function rather than a gradual shiftin its weights.

This process of leaming by successive modifications to the weights of terms in a
scoring function has many limitations, mostly arising out of its lack of exploitation
of any knowledge about the structure of the problem with which it is dealing and the
logical relationships among the problem’s components. In addition, because the leaming
procedure is a variety of hill climbing, 1t suffers from the same difficulties as do other
hill-climbing programs. Parameter adjustment is certainly not a solution to the overall
leaming problem. But it is often a uscful techmque, cither in situations where very
little additional knowledge is available or in programs in which it is combined with
more knowledge-intensive methods. We have more to say about this type of learning in
Chapter 18.

17.4.2 Learning with Macro-Operators

We saw in Section 17.2 how rote learning was used in the context of a checker-playing
program. Similar techniques can be used in more general problem-solving programs.
The idea is the same: to avoid expensive recomputaiion. For example, suppose you
are faced with the problem of getting to the downtown post office. Your solution may
involve getting in your car, starting it, and driving along 2 certain route. Substantial
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planning may go into choosing the appropriate route, but you need not plan about how 10
go about starting your car. You are free to treat START-CAR as an atomic action, even
though it really consists of several actions: sitting down, adjusting the mirror, inseriing
the key, and turning the key. Sequences of actions that can be treated as a whole are
called macro-operators.

Macro-operators were used in the early problem-solving system STRIPS [Fikes
and Nilsson, 1971; Fikes ef al.. 1972): We discussed the operator and goal steuctures
of STRIPS in Section 13.2, but STRIPS also has a lcaming component. After each
problem-solving episode, the learning component takes the computed plan and stores
it away as a macro-operator, or MACROP. A MACROP is iust lik.c a regular operator
except that it consists of a sequence of actions, nof just a single ore. A MACROP's
preconditions are the initial conditions of the problem just solved, and its postconditions
correspond to the goal just achieved. In its simplest form, the caching of previemly
computed plans is similar to rote leaming.

Suppose we are givenan initial blocks world situation in which ON(C, B) and ON(A,
Table) are both true. STRIPS can achieve the goal ON(A. B) by devising a plan with
the four steps UNSTACK(C, B), PUTDOWN(C), PICKUP(A), STACK(A, B). STRIPS
now builds a MACROP with preconditions ON(C, ). ON(A, Table) and postconditions
ON(C, Table), ON(A, B). The body of the MACROP consists of the four sieps just
mentioned. In future planning, STRIPS is free to use this compiex macre-operator jusi
as it would use any other operator.

But rarely will STRIPS see the exact same problem twice. New problems will differ
from previous problems. We would still like the problem solver to make efficient use
of the knowledge it gained from its previous experiences. By generalizing MACROPs
before storing them, STRIPS is able 1o accomplish this. The simplest idea for gener-
alization is to replace all of the constants in the macro-operator by vanables Instead
of storing the MACROP described in the previous paragraph, STRIPS can general-
ize the plan to consist of the steps UNSTACK(x). x2), PUTDOWN(x; ), PICKUP(x1),
STACK(x3, r2). where ¥, x3, and x3 are variables. This plan can then be stored with
preconditions ON(x;, x2), ON(x3, Table) and postconditions ON(xy, Table), ON(x2, x3).
Such a MACROP can now apply in a variety of siluations.

Generalization is not so easy, however. Sometimes constants must retain their
specilic values. Suppose our domain included an operator called STACK-ON-B(x), with
preconditions that both x and B be clear, and with postconditon ON(z, B). Consider the
same problem as above:

B (B
start: ON(C. B) poal ON(A, B)

STRIPS might come up with the plan UNSTACK(C, B), PUTDOWN(C), STACK-
ON-B(A). Let's generalize this plan and store it as a MACROP. The precondition
becomes ON(x3, x2), the postcondition becomes ON(x;, x2), and the plan itself becomes
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UNSTACK(x3, ¥2), PUTDOWN(x3), STACK-ON-B(x)). NOw, Suppose we encounter
a slightly different problem:

1 1] [5)
[A] [c] |B] [E] [c] |B]

start: ON(F, () goal: ON(A, )
ON(D. B}

The gencralized MACROF we ju:t stored seems well-suited to solving this problem
if we letx; = A, x3 =C, and x3 = B. [ts precorchitions are safisfied, so we.construct
the plan UNSTACK(E, C), PUTDOWN(E), STACK-ON-B(A). But this plan does not
work. The problem is thai the postcondition of the MACROP is overgeneralized. This
operation is only useful for stacking blocks onto B, which is not what we need in this new
example. In this case, this difficulty will be discovered when the last step 15 altempted.
Although we cleared C, which is where we wanted o put A, we failed to clear B, which
is were the MACROP is going to try to put it. Since B is not clear, STACK-ON-B
cannot be executed. 1f B had happencd to be clear, the MACROP would have execured
to eompletion, but it would not have accomplished the stated goal.

In reality, STRIPS uses a more complex generalization procedure. First. all constants
are replaced by vanables, Then, for each operator in the parameterized plan. STRIPS
recvaluates its preconditions. In our example, (he preconditions of steps 1 and 2 are
satistied, but the only way to ensure that B is clear for step 3 is to assume that block
1o, which was cleared by the UNSTACK operator, is actuaily block B. Through “re-
proving” that the generalized plan works, STRIPS locates constraints of this kind.

More recent work on macro-operators appears in Korf [1985b). 1t tums out that
the set of problems for which macro-operators are critical are exactly those problems
with nonserializable subgoals. Nonserializability means that working on one subgoal
will necessanly interfere with the previous solution to another subgoal. Recall that we
discussed such problems in connection with nonlinear pianning {Section 13.5). Macre
aperators can be useful in such cases, since one macro-operator can produce a small
giobal change in the world, even though the individual operators that make it up produce
many undesirable local changes.

For example, consider the 8-puzzle. Once a prograin has correctly placed the first
four tiles, it is difficult to place the fifth tile without disturbing the first four. Because
disturbing previously solved subgoals is detecled as a bad thing by heuristic scoring
functions, it is strongly resisted. For many problems, includingthe 8-puzzle and Rubik’s
cube, weak methods based on heuristic scoring are therefore insufficient. Hencec, we
either need domain-specific knowledge, or else a new weak method. Fortunately, we can
Jearn the domain-specific knowledge we need in the form of macro-operators. Thus,
macro-operators can be viewed as a weak method for learning. In the 8-puzzle. for
example, we might have a macro--a complex, prestored sequence of operators—for
placiug the fifth tile without disturbing any of the first four tiles externally (although
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in fact they are disturbed within the macro itseln). Korf [1985b] gives an algorithm
for learning a complete set of macro-operators. This approach contrasts with STRIPS,
which leamed its MACROPs gradually, from experience. Korf's algorithm runs in time
proportional to the time it takes to solve a single problem without MAcro-operators.

17.4.3 Learning by Chunking

Chunking is a process similar in flavor Lo macro-operators, The idca of chunking vuines
from the psychological literature on meiory and problzim soiving. lis computational
basis is in production systems, of the type studied in Chapter 6. Recall that in that
chapter we described the SOAR systein and discussed its use of control knowledge.
SOAR also exploits chunking [Laird ef al., 1986] so that its performance can increase
with experience. In fact, the designers of SOAR ! ypuihesize that chunkingisa universal
learning method, i.e.. it can account for all typss of lcarning in intelligent systems.

SOAR solves problems by firing productions, which are stored in long -term memory,
Some of those firings turn out to be more useful than others. When SOAR detects a
useful sequence of production firings, it creates a chunk, which is essentially a large
production that does the work of an entire sequence of smaller ones. As 1t MACROPs
chunks are generalized before they are stored.

Recall from Section 6.5 that SOAR is a uniform processing architecture. Problems
like choosing which subgoals to tackle and which operators fe try (i.e., search control
problems) are solved with the same mechanisms as problems in the original problem
space. Because the problem solving is uniform, chunking can he uscd to learn general
search control knowledge in addition to operator sequences. For example, if SOAR tries
several different operators, but only one leads {o a useful path in the search space, then
SOAR builds productions that help it choose operalors more wisely in the iuture.

SOAR has used chunking to replicate the magic-operator results described in the
last section. In solving the §-puzzle. for example, SOAR learns how to place a given
tile without permanently disturbing the previously placed tiles. Given the way that
SOAR learns, several chunks may encode a single macro-operalar, and one chunk
may participate in a number of macro sequences. Chunks are generally applicable
toward any goal state. This contrasts with macro tables, which are structured toward
reaching a particular goal state from any initial state. Also, chunking emphasizes liow
learning can occur during problem solving while macro tables are usually built during
a preprocessing stage. As a result, SOAR is able to learn within trials as well as across
wials. Chunks learned during the initial stages of solving a problem are applicable in the
later stages of the same probiem-solving episode. Afier a solution is found, the chunks
remain in memory, ready for use in the next problem.

The price that SOAR pays for this generality and fAexibility is speed. At present.
chunking is inadequate for duplicating the contents of large, directly-compuied macro
operator lables,

17.4.4 The Utility Problem

PRODIGY [Minton er al., 1989], which we described in Section 6.5, also acquires
control knowledge automatically. PRODIGY employs several leamning mechanisms.
One mechanism uses explanation-based learning (EBL), a learning method we discuss



17.5. LEARNING FROM EXAMPLES: INDUCTION 457

in Section 17.6. PRODIGY can examine a trace of ifs own problem-solving behavior
and try 1o explain why certain paths failed. The program uses those explanations to
formulate control rules that help the problem solver avoid those paths in the future. So
while SOAR leams primarily from examples of successful problem solving, PRODIGY
also learns from its failures.

A major contribution of the work on EBL in PRODIGY [Minton, 1988] was the
identification of the unility probles: In learning systems. While new search control
knowledge can be of great benefit in solving future problems efficiently, there are also
some drawbacks. The leamed control rulcs can take up large amounts of memory and
the search program must take the time 10 ronsider each rule at each step during problem
solving. Considering a cortrol rule amoun's to seeing if its postconditions are desirable
and seeing if its preconditions are satisfied Thisisa time-consuming process. So while
learned rules may reduce problem-solving time by directing the search more carefully,
they may also increase problem-solving time by forcing the problem solver (o consider
them. If we only want to minimize the number of node expansions in the search space,
then the more control rules we leam, the better. But if we want to minimize the total
CPU time required to solve a problem, we must consider this trade-off.

PRODIGY maintains a utility measure for each control rule. This measure takes
into account the average savings provided by the rule, the frequency of its application,
and the cost of maiching it. If a proposed rule has a negative utility, it is discarded
{or “forgotten”™). If not, it is placed in long-term memory with the other rules. It
is then menitored during subsequent problem solving, 1f its utility falls, the rule is
discarded. Erpirical expeniments have demonstrated the effectiveness of keeping only
thase control rules with high utility. Utility considerations apply to a wide range of
learning systems. For example, for a discussion of how to deal with large, expensive
chunks in SOAR, see Tanibe and Rosenbloom [1989].

17.5 Learning from Examples: Induction

Classification is the process of assigning, 10 a particular input, the name of a class
which it belongs. The classes from which the classi fication procedure can choose can
be described in a variety of ways. Their definition will depend on the use to which they
will be put.

Classification is af important component of many problem-solving tasks. in its
simplest form, it is presented as a straightforward recognition task. An exampie of this
is the question “What letter of the alphabet is this?” But often classification is embedded
inside another operaiion. To sce how this can happen, cons ider a problem-solving system
that contains the following production rule:

Tf: +the current geal is to get from place A to place B, and
there is a WALL separating the two places
then: look for a DOORWAY in the WALL and go through it.

To use this rule successfully, the system's matching routine must be able to identily
an object as a wall. Without this, the rule can never be invoked. Then, 1o apply the rule,
the system must be able to recognize a doorway.
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Before classification can be done, the classes it will use must be defined. This can
be done in a variety of ways, including:

o Isolate a set of features that are relevant to the task domain. Define each class
by a weighted sum of values of these features. Each class is then defined by
a scoring function that looks very similar to the scoring functions often used in
other situations, such as game playing. Such a function has the form:

Gyt Cilp +caly+ -+

Each  corresponds to a value of a relevant parameter, and each ¢ represents the
weight 10 be attached to the corresponding 1. Negative weights can be used 1o
indicate features whose presence usually constitules negative evidence for a given
class.

For example, if the task is weather prediction, the parameters can be such measure-
ments as rainfall and location of cold fronts, Ditferent functions can be wntten lo
combine these parameters to predict sunny, cloudy. rainy, or snowy weather,

o Tsolate a set of features that are relevant to the task domain. Define each class as
& structure composed of those features.

For example, if the task is to identify animals, the body of each type of animal can
be stored as a structure, with various features representing such things as color,
length of neck, and feathers.

There are advaniages and disadvantages ic each of these general approaches. The
stalistical approach 1aken by the first scheme presented here is often more efficient than
the structural approach taken by the second. But the sccond is more fiexible and mare
extensible.

Regardless of the way that classes are to be described, it 1s often difficult 1o construet,
by hand, good class definitions. This is particularly true in domains that are not well
understood or that change rapidly. Thus the idea of producing a classification program
that can evolve its own class definitions is appealing. This task of constructing class
definitions is called concept learning, or induction, The techniques used for this task
must, of course, depend on the way that classes (concepts) are described. If classes are
described by scoring functions, then concept learning can be done using the technique
of coefficient adjustment described in Section 17.4.1. If, however, we want o define
classes structurally, some other technique for leaming class definitions is necessary. In
this section, we present three such techniques.

17.5.1 Winston’s Learning Program

Winstorn [1975] describes an carly structural concept learning program. This program
operated n a simple blocks world domain. Its goal was to construct representations of
the defimtions of concepts in the blocks domain. For example, it learned the concepis
House, Tent, and Arihi shiown in Figure 17.2. The figure also shows an example of a near
miss for each concept. A near miss is an object that is not an instance of the concep! in
question but that is very similar to such instances.
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Concept Near Mise
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Figure 17.2: Some Blocks Wor!d Concepts

The program stirted with a line drawing of a blocks world structure. It used
procedures such as the one described in Section 143 1o analyze the drawing and construct
a semantic net representation of the structural description of the object{s). This structural
description was then provided as input to the learning program. An example of such a
structural description for the House of Figure 17.2 is shown in Figure 17.3(a). Node A
represents the entire structure, which is composed of two parts: node B, a Wedge, and
node C, a Brick. Figures 17.3(h) and 17.3(c) show descriptionsof the two Arch structures
of Figure 17.2. These descriptions are identical except for the types of the objects on the
top; one is a Brick while the other is a Wedge. Notice that the two supporting objects are
related not only by left-of and right-of links, but also by a does-not-marry link, which
says that the two objects do not marry. Two objects marry if they have faces that touch
and they have a common edge. The marry relation is critical in the definition of an
Arch. Itis the difference between the first arch structure and the near miss arch structure
shown in Figure 17.2.

The basic approach that Winston’s program 100k to the problem of concept formation
can be described as follows:

1. Begin with a structural description of onc known instance of the concept, Call
that description the concept definition.

2. Examine descriptions of other known instances of the concept. Generalize the
definition to include them.

3. Examine descriptions of near misses of the concept. Restrict the definition to
exclude these.

Steps 2 and 3 of this procedure can be interleaved.

Steps 2 and 3 of this procedure rely heavily on a comparison process by which
similarities and diffcrences between structures can be detecte®. This process must
function in much the same way as docs any other matching process, such as one 1o
determine whether a given production rule can be applied to a particular problem state.
Because differences as well as similaritics must be found, the procedure must perform



CHAPTER {7 LEARNING

(b)

e

isa I{ﬂ*ﬂ] ixd
Brick J

does-noi-marry

(c}

Figure 17.3: Structural Descriptions
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left-of
righs-of

does-not-marry

Figure !17.4: The Comparison of Two Arches

a0t just literal but also approximate matching. The output of the comparison procedure
iv a skeleton structure describing the commonalities between the two inpul structures.
it is annotated with a set of comparison notes that describe specific similarines and
differences between the inputs.

To see how this approach warks, we trace it through the process of learning what
an arch is. Suppose that the arch description of Figure 17.3(b) is presented first. It then
becomes the definition of the concept Arch. Then suppose that the arch description of
Figure 17.3(¢) is presented. The comparison routine will retuin & structure similar to
the two inpul structures except that it will note that the objects represented by the nodes
labeled C are not identical, This structure is shown as Figure 17.4, The c-note link
from node C describes the difference found by the comparison routine. It notes that the
ditterence occurred in the ¢5a link, and that in the first structure the isa link pointed 10
Brick, and in the second it pointed to Wedge. It also notes that if we were to follow isa
links from Brick and Wedge, these links would eventually merge. At this point, a new
description of the concept Arch can be generated. This description could say simply
that node C must be either a Brick or a Wedge. But since this particular disjunction has
ne previously known significance, it is probably better to trace up the isa hierarchies of
Brick and Wedge until they merge. Assuming that that happens at the node Object, the
Arch definition shown in Figure, 17.5 can be built.
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Figure 17.5: The Arch Description after Two Examnples

Next, suppose that the near miss arch shown in Figure 17,2 is presentec. This time,
the comparison routine will note that *he only difference between the current definition
and the near miss is in the does-no - marry link between nodes B and £, Bat since this
is a near miss, we do not wanf to broaden the definition to mclude it Instead, we want
to restrict the definitéon so that it 1s specifically excluded. To do this, we modify the
unk does-not-marry, which may simply be recording something that has happened by
chance to be true of the smail number of examples that have been presented. It must
now say must-rot-marry. The Arch description at this point is shown in Figure 17.6.
Actually, must-not-marry should not be a completely new link. There must be some
structurc among link types to reflect the relationship between marry, does-nor-marry,
and must-not-marry

Notice how the problem-solving and knowledge representation iechniques we cov-
ered in earlier chapters are brought to bear on the problem of learning. Semantic
networks were used to describe block structures, and an /sa hicrarchy was used 1o de-
scribe relationships among already known objects. A matching process was used to
detect similarities and differences between structures, and hill climbing allowed the
program to evolve a more and more accurate concept definition.

This approach to structural concept leaming is not without its problems. One major
problem is that a teacher must guide the learning program through a carefully chosen
sequence of examples. In the next section, we explore a leaming techmique that is
insensitive to the order in which examples are presented.

2752 Version Spaces

Hitchell [1977; 1978] describes another approach to concept learning called version
spaces. The goal is the same: to produce a description that is consistent with all positive
examples hut no negative examples in the training set. But while Winston's system
tid thi= by wvolving a single concept descrintion version spaces work by mamtaining a
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rigure 17.6: The Arch Description after a Near Miss

Car()23
arigin Japan
manufacturer ©  Honda
color Biue
decade : 1970
npe: Economy

Figure 17.7: An Example of the Concept Car

set of possible descriptions and evolving that set as new examples 3nd near misses are
presented. As in the previous section, we need some sort of representation language for
examples so that we can describe exactly what the system sees in an example. For now
we assume a simple frame-based language, although version spaces can be constructed
for more general representation languages. Consider Figure 17.7, a frame representing
an individual car.

Now, suppose that each slot may contain only the discreie values shown in Fig-
ure 17.8. The choice of features and values is called the bias of the leaming system. By
being embedded in a particular program and by using particular representations, every
learning system is biased. because it learns some things more easily than others. In our
example, the bras is fairly simple-—e.g.. we can leamn concepts that have to do with car
manufacturers, but not car owners. In more complex systems. the bias is less obvious
A clear staterment of the bias of a learning system is very important to its evaluation.

Concept descriptions, as well as training examples, can be stated in terms of these
slots and values. For example, the concept “Japanese economy car™ can be represented
as 0 Figure 17.9. The names x,. x3, and x; are variables. The presence ot x;, for

. example, indicates that the color of a car is not relevant to whether the cas.1s a Japanese
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origin € {Japan, USA, Britain, Germany, ltaly}

manufacturer & {Honda, Toyora, Ford, Chrysler, Jaguar, BMW Fiar;
color € {Blue, Green, Red, White}

decade € {1950, 1960, 1970, 1980, 1990, 2000}

type € {Economy, Luxury, Sports)

Figure i7.8: Representation Language for Cars

origin . Japan
manufacturer :  x,

color : X2
decade : x3

type : Econony

Figure 17.9: The Concept “Japanese economy car”

economy car. Now the learning problem is: Given a representation language such
as in Figurc 17.8, and given positive and negative training examples such as those in
Figure 17.7, how can we produce a concept deseriplion such as that in Figure 17.9 that
is consistent with all the training examples?

Before we proceed to the version space algorithm, we should make some observa-
tions about the representation. Some descriptions are more general than others. For
cxample, the description in Figure 17.9 is more general than the one in Figure 17.7. In
fact. the representation language defines a partial ordering of descriptions. A portion of
that partial ordering is shown in Figure 17.10.

The entire partial ordering is called the concept space, and can be depicted as in
Figure 17.11. At the top of the cancept space is the null description, consisting only
of variables, and at ihe bottom are all the possible training instances, which contain no
variables. Before we receive any training exampies, we know that the targei concept
lies somewhere in the concept space. For example, if every possible description is an
instace of the intended concept, then the null description is the concept definition since
it matches everything. On the other hand, if the target concept includes only a single
example, then one of the descriptions at the bottom of the concept space is the desired
concept definition. Most target concepts, of course, lie somewhere in between these twe
extremes.

AS we process training examples, we want (o refine our notion of where the target
concept might lie. Our current hypothesis can be represented as a subset of the concept
space called the version space. The version space is the largest collection of descriptions
that is consistent with all the training examples seen so far,

How can we represent the version space? The version space is simply a set of
descriptions, so an initial idea is to keep an explicit list of those descriptions. Unfor-
tunately, the number of descriptions in the concept space is exponential in the number
of features and values. So enumerating them is prohibitive, However, it turns out thas
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wrigin ; 1
mfr : Xz
color: X3
decade ;. A\
rype : x5
arigin:  Japan origin:
mfr X3 mfr : 0
calar 1 color : Xi
decade © x4y decade : Xa
rpe : Xs pe Econoniy
origin:  Japan ongin:  USA
: mfr : 3] mfr . 2
: color . 1 color: X
decade : x4 decade 1  xa
Iype: Economy type : Ecomouty

P —

origin ;. Japan origin: USA

mfr : Honda mfr Chiysler
color Whire volor : Green
decade : 1980 decade = 1970
type : Economy rpe : Economy

Figure 17.10: Partial Ordening of Concepts Specified by the Representation Language
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Null Hypothesis
G
 JR
e B » Concept Space
, M.

Training Examples

Figure 17.11: Concept and Version Spaces

the version space has a concise representation. It consists of two subsets of the concepi
space. One subset, called G, contains the most general descriplions consistent with
the training examples seen so far; the other subsct, called §, contains the most specific
descriptions consistent with the training examples. The version space is the set of all
descriptions that lie between spme element of G and some element of § in the partial
order of the concept space.

This representation of (e version space is not only efficient for storage, but also for
modification. Intuitively, each time we receive a positive training example, we want
to make the § set more general. Negative training examples serve to make the G set
more specific. If the § and G sels converge., our range of hypotheses will narrow to a
single concept description. The algorithm for narrowing the version space is called the
candidate elimination algorithm.

Algorithm: Candidate Elimination

Given: A representation language and a set of positive and negative exampies
expressed in that language.

Compute: A concept description that is consisient with 2ll the positive examples
and none of the negative examples.

1. Initialize G to contain one element: ihe null description (all features are variables).
2. Initialize § to contain one element: the first positive example.

1. Accept a new traming example.

If it is a posirive example, first remove from G any descriptions that do not cover
the example. Then. update the § set to contain the most specific set of descriptiuns
in the version space that cover the example and the current elements of the § set
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origin:  Japan origin:  Japan origin. Japan
mfr Honda mfr : Toyota mfr Toyora
color - Blue color : Green color : Blue
decade . 1980 decade : 1970 decade : 1990
type : Economy npe . Sports ype : Economy
(+) (=) (+)

arigin:  USA arigin:  Japan

mfr Chrysler mfr - Honda

color Red colar: White

decade : 1980 decade - 1980

fype - Economy fype . Economy

= (+)

Figure 17.12; Posinve and Negative Examples of the Concept Japanese economy car”

That is, generalize the elements of § as little as possible so that they cover the new
training example.

If it is a negarive example, first remove from § any desenptions that cover the
example. Then, update the G set to contain the most general set of descriptions in
the version space that do not cover the example. That is, specialize the elements
of G as little as possible so that the negative example is no longer covered by any
of the clements of G.

4. If S and G are both singleton sets. then if they are identical, output their value and
halt. 1f they are both singleton sets but they are different, then the training cases
were imconsistent. Output this result and halt. Otherwise, go to step 3.

Let us trace the operation of the candidate elimination algorithm. Suppose we want
to learn the concept of “Japanese econnmy car” from the examples in Figure 17.12. G
and § both start out as singleton sets. G contains the null description (see Figure 17.11).
and § contains the first positive training example. The version space now contains all
descriptions that are consistent with this first example”

G = {(x1. X, X3, Xa, X5)}
§ = {(Japan, Honda, Blue, 1980, Economy) }

Now we are ready to process the second example. The G set must be specialized
in such a way that the negative example is no longer in the version space. In our rep-
resentation language, specialization involves replacing variables with constants. (Note:
The G set must be specialized only to descriptions that are within the current version
space, not outside of i.} Here are the available specializations:

170 make this example concise, we skip slot names in the descriptions. We just list slot values in the orde
in which the slots have been shown in the precedmg hgures



46% CHAPTER 17 LEARNING

G = {(x;, Honda, x3, xs, x5), (%1, x2, Blue. rs. xs),
(rps a2, 3, 1980, xs), (xy, x2, x5, x4, Economy) |

The § set is unaffected by the negative example. Now we come to the third cxample,
a positive one. The first order of business is to remove from the G set any descriptions
that are inconsistent with the positive example. Our new G set is:

G = {(x), x2, Blue, xa, x3), (1. X2, X3, X3, Fconomy))

We must now generalize the § set 1o include the new cxample. This involves
replacing constants with variables. Here is the new § set:

8 = {(Japan, x, Blue, x4, Economy)}

At this point. the § and G sets specify a version space (a space of candidate descrip-
tions) that can be translated roughly into English as: “The target concepl may be as
specific as “Japanese, blue economy car,” or as general as either *blue car” or ‘economy
car.'™

Next, we get another negative example, a car whose origin is [/SA. The § set is
unaffccted, but the G set must be specialized 10 avoid covering the new example. The
new G set is:

G ={(Japan, x3, Blue, x4, xs), (Japan, x2, X3, xa, Economy)}

We now know that the car must be Japanese, because all of the descriptions in the
version space contain Japan as origin.’ Our final example is a positive one. We first
remove from the G set any descriptions that are inconsistent with it, leaving:

G = {{Japan, x3, x3, x3, Economy))
We then generalize the § set to include the new example:
S = [{(Japan, x;, x1, x4, Economy))

§ and G are both singletons. so the algorithm has converged on the target concepr. No
more examples are necded.

There are several things to note about the candidate elimination algorithm. First, it
18 a least-commitment algorithm. The version space is pruned as littlc as possible at each
step. Thus, even if all the positive training exaiaples are Japanese cars, the algorithm will
not reject the possibility that the target concept may include cars of other origin—until
it receives a negative example that forces the rejection. This means that if the training
data are sparse, the § and G sets may never converge 10 a single description; the system
may learn only partially specified concepts. Second, the algorithm involves exhaustive,
breadth-first search through the version space. We can see this in the algorithm for

"It could be the case that wr_l;u-pt concept is “not Chrysler,” but we will ignore this possibility because
our representation lunguage is not powerful enough to express negation and disjunction.
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updating the G set. Contrast this with the depth-first hehavior of Winston's learning
program. Third, in our simple representation language, the § set always contains exaclly
one element, because any two positive examples always have exactly one generalization,

Other representation languages may not share this property.

The version space approach can be applied to a wide vaniety of leaming tasks and
representalion languages. The algorithm above can be extended to handle continuously
valued features and hierarchical knowledge (sce Exercises). However, version spaces
have several deficiencies. Once is the large space requuements of the exhaustive, breadth-
first search mentioned above. Another is that inconsistent data, also called noise, can
cause the candidate elimination algorithm to prune the target concept from the version
space prematurety. In the car example above, if the third training instance had been
mislabeled (=) instead of (+). the target concept of “Japanese cconomy car” would
never be reached. Alse, given cnough erroncous negative examples, the G set can be
specialized so far that the version space becomes empty. In that case, the algorithm
concludes that no concept fits the training cxamples.

One solution to this problem [Mitchell, 1978} is to maintain several G and § sets.
One G sel is consistent with all the training instances, another is consistent with all but
onc, another with all but two, ¢tc. (and the same for the S set), When an inconsistency
arises. the algorithm switches to G and § sets that are consistent with most, butnot all, of
the raining cxampies. Maintaining multiple version spaces can be costly, however, and
the § and € seis are typically very large. If we assume bounded inconsistency, i.e., that
instances close 1o the targel concept boundary are the most likely to be misclassified,
then more efficient solutions are possible. Hirsh [1990] presents an algorithm that
runs as follows. For each instance, we form a version space consistent with that
instance plus other nearby instances (for some suitable definition of nearby). This
version space is then intersected with the one created for all previous instances. We
keep accepting instances until the version space is reduced to a small set of candidate
concept descriptions. (Because of inconsistency, it is unlikely that the version spave
will converge 10 a singleton.) We then match each of the concept descriptions against
the entire data set, and choose the one that classifies the instances most accurately.

Another problem with the candidate elimination algorithm is the learming of dis-
junctive concepts. Suppose we wanted to leamn the concept of “European car,” which,
in our representation, mcans cither a German, Bntish, or Italian car. Given positive
examples of cach, the candidate elimination algorithm will generalize to cars of any
origin. Given such a generalization, a negative instance (say, a Japancsc car) will only
cause an inconsistency of the type mennoned above.

Of course, we could simply extend the representation language 1o include disjunc-
tions. Thus, the concept space would hold descriptions such as “Blue car of German or
British origin™ and “ltalian sports car or German luxury car.” This approach has iwo
drawbacks. First, the concept space becomes much larger and specialization becomes
intractable. Second, generalization can casily degencrate to the point where the S set
contains simply one large disjunction of all positive instances. We must somehow force
generalization while allowing for the introduction of disjunctive descriptions. Mitchell
[1978] gives an iterative approach that involves several passes through the training data.
On each: pass, the algorithm builds a concept that covers the largest number of posiiive
training instances without covering any negative training instances. At the end of the
pass. the posilive training instances cavererd hy the new coincept are removed from the
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origin ?
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rype ?
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Sports  Economy  Luxury
(-} (+) (-)

Figure 17.13: A Decision Tree

wraining set, and the new concept then becomes one disjunce in the eventual disjunctive
concept description. When all positive training instances have been removed, we are
left with a disjunctive concept that covers all of them without covering any negative
instances.

There are a number of other complexities, including the way in which features
interact with one another. For example, if the erigin of a car is Japan, then the
manufacturer cannot be Chiysler. The version space algorithm as described above
makes no use of such information. Also in our example, it would be more natural 1o
replace the decade slot with a continuously valued year field. We would have to change
our procedures for updating the § and G scts to account for this kind of numerical data,

17.5.3 Decision Trees

A third approach to concept learning is the induction of decision trees, as exemplified
by the ID3 program of Quinlan [1986]. [D3 uses a tree representation for concepts,
such as the one shown in Figure 17.13. To classify a particular input, we start at ihe
top of the tree and answer questions until we reach a leaf, where the classification is
stored. Figure 17.13 represents the familiar concept “Japanese economy car.” 1D3 is a
program that builds decision trees automatically, given positive and negative instances
of a concept *

ID3 uses an iterative method to build up decision trees, preferring simple trees over
complex ones, on the theory that simple trees are more accurate classifiers of future
inputs. [t begins by choosing a random subset of the training examples. This subset
is called the window. The algorithm builds a decision tree that correctly classifies all
cxamples in.the window. The trec is then tested on the training examples outside the
window. If all the examples are classified correctly, the algorithm halts. Otherwise, it
adds a number of training examples to the window and the process repeats. Empirical
evidence indicates that the iterative stirategy is more efficient than considering the whole
training set at once,

‘Aclually. the decision tree representation is more general: Leaves can depote any of a number of classes,
not just positive and negative
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S0 how does ID3 actually construct decision trees? Building 2 node means choosing
some attribute 1o test. Al a given point in the trec, some atiributes will yicld more
information than others. For example, testing the attribute color is useless if the color of
a car does not help us to classify it correctly. Ideally, an attribute will separate training
instances into subsets whose members share 3 common label (e.g., positive or negative).
Tn that case, branching is termunated, and the leaf nodes are labeled.

There are many variations on this basic algorithm. For example, when we add a test
that has more than two branches, it is possible that one branch has no corresponding
training instances, In that case. we can cither leave the node unlabeled, or we can aticmpt
10 guess 4 label hased on statistical properties of the set of instances being lested at ihat
point in the tree, Noisy input is another issue. One way of handling noisy inputis to
avoid building new branches if the information gained is very slight. In other words, we
do not want to overcomplicate the tree to account for isolated noisy instances. Another
source of uncertainty is that atiributc values may be unknown. For example a patient’s
medical record may be incomplete. One solution is to guess the correct branch to take;
another solution is to build special “unknown’ branches at cach node during leaming.

When the concept space is very large. decision tree learning algorithms run more
quickly than their version space cousins, Also, disjunction is more straightforward,
For example, we can easily modify Figure 17.13 to represent the disjunctive concept
“American car or Japaneseé economy car,” simply by changing one of the negative (=)
leaf labels to positive (+). One drawback to the 1D3 approach is that large, complex
decision trees can be difficult for humans to understand. and so & decision tree system
may have a hard time explaining the reasons for its classifications.

17.6 Explanation-Based Learning

The previous section illustrated how we can induce concept descriptions from positive
and negative examples. Learning complex concepts using these procedures typically
requires a substantial number of training instances. But people seem to be able to learn
quite a bit from single examples. Consider a chess player who. as Black, has reached the
position shown in Figure 17.14, The position is called a “fork™ because the white knight
artacks both the black king and the black queen. Black must move the king, thereby
Jeaving the queen open (o capture. From this single experience, Black is able 1o learn
quite a bit about the fork trap: the idea is that if any piece r attacks both the opponent’s
king and another picce v, then piece y will be lost. We don't need to see dozens of
positive and negative examples of fork positions in order to draw these conclusions.
From just one experience, we can leam to avoid this trap in the future and perhaps to
use it 1o our own advanlage.

What makes such single-example leamning possible? The answer, not surprisingly,
is knowledge. The chess player has plenty of domain-specific knowledge that can be
brought to bear, including the rules of chess and any previously acquired sirategies.
That knowledge can be used to identify the critical aspects of the training example. In
the case of the fork, we know that the double simultancous attack i1s important while the
precise position and type of the attacking piece is not,

Much of the recent work in machine leaming has moved away from the empiri
cal, dara-intensive approach described in the last section toward this more analytical.
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Figure 17.14: A Fork Position in Chess

knowledge-intensive approach. A number of independent studies led to the character-
ization of this approach as explanation-based learning. An EBL sysiem attempis 10
leamn from a single example x by explaining why x is an example of the target concept
The explanation is then generalized, and the system’s performance is improved through
the availability of this knowledge.

Mitchell er al. [1986) and DeJong and Mooney | 1986] both describe general frame-
works for EBL programs and give general learning algorithms. We can think of EBL
programs as accepting the following as input:

* A Training Example—What the learing program “sees” n the world, e.g., the
car of Figure 17.7

s A Goal Concept—A high-level description of what the program is supposed to
learn

o An Operationality Criterion—A description of which concepts are usable

e A Domain Theory—A set of rules that describe relationships between ohjects and
actions in a domain

From this, EBL computes a generalizarion of the training example that is sofficient (o
describe the goal concept, and also satisfies the operationality criterion.

Let’s look more closely at this specification. The training example is a familiar
input—it is the same thing as the example in the version space algorithm. The goal
concept is also familiar, bul in previous seciions, we have viewed the goal concept as an
output of the program, not an input. The assumpiion here is that the goal concept is not
operational, just like the high-level card-playing advice described in Section 17.3. An
EBL program seeks to operationalize the goal concept by expressing it in terms that a
problem-solving program can understand. These terms are given by the operationality
criterion. In the chess example, the goal concept might be something like “bad position
for Black,"” and the operationalized concept would be a generalized description of
situations similar to the (raining exampie, given in teims of pieces and their relative
positions. The last input 10 an EBL program is a domain theory, in our case, the rules of
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chess. Without such knowledge, it isimpossible to come up with a correct generalization
of the training example.

Explanation-based gereralization (EBG) is an algorithm for EBL described in
Mitchell er al. [1986]. It has two steps: (1) explain and (2) generalize. During the
first step, the domain theory is used to prunc away all the unimportant aspects of the
training example with respect to the goal concept. What is left is an explanation of why
the training example is an instance of the goal concept. This explanation is expressed
in terms that satisfy the operationality criterion. The next step is to generalize the
explanation as far as possible while still describing the goal concept. Following our
chess example, the first EBL step chooses to ignore White’s pawns, king, and rook,
-and constructs an explanation consisting of White's knight, Black's king, and Black’s
queen, each in their specific positions. Operationality is ensured: all chess-playing
programs understand the basic concepts of piece and position. Next, the cxplanation
is generalized. Using domain knowledge, we find that moving the pieces to a different
part of the board is still bad for Black. We can also determine that other pieces besides
knights and queens can participate in fork attacks.

In reality, current EBL methods run into difficulties in domains as complex as chess,
s0 we will not pursue this example further. Instead, let's look at a simpler case. Consider
the problem of learning the concept Cup [Mitchell eral., 1986]. Unlike the arch-leaming
program of Section 17.5.1, we want 1o be able to generalize from a single example of a
cup. Suppose the example is:

® Training Example:

owner{Ohject23, Ralph) A has-part(Objeci23, C oncavityl 2) A
is(Object23, Light) A color(Object23, Browm) A - - -

Clearly, some of the features of Object23 are more relevant to its being a cup than
others. So far in this chapter. we have seen scveral methods for isolating relevant
features. These methods all require many positive and negative examples. In EBL we
instead rely on domain knowledge, such as: '

« Domain Knowledge:
is(x, Light) A has-pari(x, ¥) A isa(y, Handie) — lifrable(x)

has-part(x, y) A isaly. Bottom) A is(y, Flar) — stable(x)
has-part(x, ¥) A isaly, Concavity) A isty, Upward-Pointing) = open-vessel(x)

We also nced a goal concept Lo operationalize:
+ Goal Concept: Cup
xis a Cup iff x is liftable, stable, and open-vessel.

* Operationality Criterion: Concept definitionmust be ex pressed in purely structural
terms (e.g.. Light, Flar. exc.).

Given a training example and a functional description, we want 10 build a general
structural description of a cup. The first siep is 10 explain why Qhject23 is a cup. We
do this by constructing a proof, as shown in Figure 17.15. Standard theorem-proving
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Cup(Objecti3)

f i i
Hftable(Object23) open-vessel(Obyect23)

I stabletObieci23) I

+
is{Object23, Light) hay-part{Ohjeci23, Concaviryl2)
has-part(Object23, Handle!6) isa{Concavityi 2, Concavity)
1salMHandlel 6, Handle) is(Concaviryl2, Upward-Poinfing)

has-part(Object2 3, Botiom19)
isa(Botioml 9, Bortom)
is{Borntami9, Flat)

Figure 17.15: An Explanation

techniques can be used to find such a proof. Notice that the proof isolates the relevant
features of the training example; nowhere in the proof do the predicates owner and color
appear. The proof also serves as a basis for a valid generalization. If we gather up all
the assumptions and replace constants with variables, we get the following description
of a cup:

has-partlx, ¥) A tsaly, Concavity) A isly, Upward-Pointing) A
has-parttx. 2) A isa(z, Bortom) A is(z, Flar) i
has-part(x, w) A isalw, Handle) A is(x, Light)

This definition satisfies the operationality criterion and could be used by a robot to
classify objects.

Simply replacing constants by variables worked in this example, but in some cases
il is nccessary to retain certain constants. To catch these cases. we must reprove the
goal. This process. which we saw earlier in our discussion of leamning in STRIPS, is
called goal regression.

As we have seen, EBL. depends strongly on a domain theory, Given such a theory,
why are examples needed at all? We could have operanonalized the goal concept
Cup without reference to an exampic. sinee the domain theory contains all of the
requisite information. The answer is thal examples help to focus the learning on
relevant operationalizations. Without an example cup, EBL is faced with the task of
characterizing the entire range of objects that satisfy the goal concept. Most of these
objects will never be encountered in the real world, and so the result will be overly
zeneral.

Providing a tractable domain theory is a difficult task. There is evidence that
humans do not leam with very primitive relations. Insiead they create incomplete and
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inconsistent domain theorics. For cxample, returning o chess, such a theory might
include concepts like “weak pawn structure.” Getting EBL to work in ill-structured
domain theories is an active area of rescarch (see. ¢.g., Tadepalli [1989]).

EBL shares many features of all the lcamning methods described in earlier sections.
Like concept leaming, EBL begins with a positive example of some concept. As in
learning by advice taking, the goal1s to operationalize some piece of knowledge. And
EBL techniques, like the technigues of chunking and macro-operators, are often used
to improve the performance of problem-solving engines. The major difference between
EBL and other leamning methods is that EBL programs are built to take advantage of
domain knowledge. Since leamning is just another kind of problem solving, it should
come as no surprise that there is leverage to be found in knowledge.

17.7 Discovery

Leaming is the process by which one entity acquires knowledge. Usually that knowledge
is already possessed by some number of other entities who may serve as teachers.
Discovery is & resiricted form of learning in which one entity acquires knowledge
without the help of a teacher.® In this section, we look at three types of automated
discovery systems.

17.7.1  AM: Theory-Driven Discovery

Discovery is certainly leaming. But it is also, perhaps more clearly than other kinds of
jearning, problem solving. Suppose that we want 1o build a program to discover things,
for example, in mathematics. We expect that such a program would have to rely heavily
on ihe problem-solving techniques we have discussed. In fact, one such program was
written by Lenat [1977; 1982]. It was called AM., and it worked from a few basic
concepts of set theory to discover a good deal of standard number theory.

AM exploited a variety of general-purpose Al techniques. It used a frame system
{0 represent mathematical concepts. One of the major activities of AM is 1o create new
concepts and fill in their slots. An example of an AM concept is shown in Figure 17.16.
AM also uses heuristic search, guided by a set of 250 heuristic rules representing hints
about activities that are likely 1o lead to “interesting” discoveries. Fxamples of the kind
of heuristics AM used are shown in Figure 17.17. Generate-and-test is used to form
hypotheses on the basis of a small number of examples and then to test the hypotheses
on a larger set to see if they still appear to hold. Finally, an agenda controls the entire
discovery process. When the heuristics suggesi a task, it is placed on a central agenda.
along with the reason that it was suggested and the strength with which it was suggested.
AM operates in cycles, each rime choosing the most promising task from the agenda
and performing it.

In onc run. AM discovered the concept of prime numbers. How did it do tha:?
Having stumbled onto the natural numbers, AM explored operations such as addition,
multiplication, and their inverses. It created the concept of divisibility and noticed that
some numbers had very few divisors. AM has a built-in heuristic that tells it to explore

S Sorhetimes. there is nu one in the world who has the knowledge we seek. In that case, the kind of action
we mutl take 15 called soienfific discovery
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name : Prime-Numbers
defimitions ;
origin : Number-of-divisors-ofic) = 2
predicate-calculus: Prime(x) <3 (Y2)z | v => (t= 1@ 1= x))
iterative ; (for x > 1) : For i from 20 /X1 [x
examples: 2,3,5,7.11,13,17
boundary: 2,3
boundary-failures: 0, 1
failwres - 12
generalizations : Number, numbers with an even number of divisors
specializations = Odd primes, prime pairs. prime uniquely addables
conjecs : Unique factorization, Goldbach's conjecture, extrema of number-of-divisors-of
intus : A metaphor to the effect that primes are the building blocks of all numbers
analogies:
Ma lly divisible bers are ronverse exrremes of number-of-divicore.of
Factor a nonsimple group into simple groups .
[nteresi’: Conjectures rying primes to rimes, ta divisors af. io related operations
warth : 800

Figure 17.16: An AM Concept: Prime Number

¢ If fis a function from A to B and B is ordered, then consider the elements of A
that arc mapped into exiremal clements of A. Creaic a new conceplt representing
this subset of A.

e If some (but not most) examples of some concept X are also examples of another
concept ¥, create a new concept representing the intersection of X and Y.

* If very few examples of a concept X are found. then add to the agenda the task of
finding a generalization of X,

Figure 17.17: Some AM Heuristics

extreme cases, It attlempted to list all numbers with zero divisors (finding none), one
divisor (finding one: 1), and two divisors. AM was instructed to call the last concept
“primes.” Before pursuing this concept, AM weni on to list numbers with three divisors.
such as 49. AM tricd to relate this property with other properties of 49, such as its being
odd and a perfect square. AM generated other odd numbers and other perfect squares
1o test ils hypotheses. A side effect of determinipg the equivalence of perfect squares
with numbers with three divisors was 10 boost the “interestingness™ rating of the divisor
concept. This led AM 1o investigate wuys in ~hich 2 number could be broken down
into factors. AM then noticed that there was anfy one way 1o break a number down into
prime factors (known as the Unique Factorizazion Theorem).

Since breaking down numbers into multiplicative components turned out to he
interesting, AM decided, by analogy, to pursue additive components as well. It made
several uninteresting conjectures, such as that every number could be expressed as a
sum of 1's. It also found more interesting phenomena, such as that many numbers
were expressibie as the sum of Iwo primes. By listing vases, AM determined that all
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even numbers greater than 2 seemed to have this property. This conjecture, known as
Goldbach’s Conjecture, is widely believed to be true, but a proof of it has yet 1o be found
in mathematics.

AM contains a great many general-purpose heuristics such as the ones it used in
this example. Often different heuristics point in the same place. For example, while
AM discovered prime numbers using a heuristic that imvolved looking at extreme cases,
another way to derive prime numbers is to use the following two rules:

e If there is a strong analogy between A and B bui there is a conjecture about A
that does not hold for all elements of B, define a new concept that includes the
elements of B for which it does hold.

e If there is a set whose complement is much rarcr than itself, then create a new
concepl representing the complement.

There is a strong analogy between addition and multiplication of natural numbers.
But that analogy breaks down when we observe that all natural numbers greater than 1
can be expressed as the sum of two smaller natural numbers (excluding the identity).
This is not true for multiplication. So the first heuristic described above suggests the
creation of a new concept representing the set of composite numbers. Then the sccond
heuristic suggests creating a concept representing the complement of that, namely the
set of prime numbers.

Two major questions came out of the work on AM. One question was: “Why was
AM ever turned off?” That is, why didn’t AM simply keep discovering new interesting
facts about numbers, possibly facts unknown to human mathematics? Lenat [1983b]
contends that AM’s performance was limited by the static nature of its heuristics. As
the program progressed, the concepts with which it was working evolved away trom the
initial ones, while the heuristics that were available to work on those concepts stayed the
same. To remedy this problem, it was suggested that heuristics be treated as full-fledged
concepts that could be created und modified by the same sorts of processes (such as
generalization, specialization, and analogy) as are concepis in the task domain. In other
words. AM would run in discovery mode in the domain of “Heuretics,” the study of
heuristics themselves, as well as in the domain of number theory. An extension of AM
called EURISKO [Lenat, 1983a] was designed with this goal in mind.

The other question was: “Why did AM work as wellas itd id?" One source of power
for AM was its huge collection of heuristics about what constitute interesting things.

_But AM had another less obvious source of power, namely, the natural relationship
between number theoretical concepts and their compact representations in AM [Lenat
and Brown, 1983). AM worked by syntactically mutating old concept definitions—
stored essentially as short LISP programs—in the hopes of finding new, interesting
concepts. [t tums out thal a mutation in a small LISP program very likely results in
another well-formed, meaningful LISP program. This accounts for AM’s ability to
generate so many novel concepts. But while humans interpret AM as exploring number
theory, it was actually exploring the space of small LISP programs. AM succeeded
in large pant because of this intimate relationship between number theory and LISF
programs. When AM and EURISKO were applied to other domains, including the
study of heuristics themselves, problems arose. Concepts in these domains were larger
and more complex than number theory concepts, and the syntax of the representation
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Figure 17.18: BACON Discovering the Idcal Gas Law

language no longer closely mirrored the semantics of the domain. As a result, syntactic
mutation of a concept definition almost always resulted in an ill-formed or useless
concept, severely hampering the discovery procedure.

Perhaps the moral of AM is that lcarning is a tricky busincss,. We must be careful
how we interpret what our Al programs are doing [Ritchie and Hanna, 1984]. AM
had an implicit higs toward learning concepts in number theory. Only after that bias
was explicitly recognized was it possible to understand why AM performed well in one
deinain and poorly in another.

17.7.2  BACON: Data-Driven Discovery

AM showed how discovery might oceur in a theoretical selting. Empincal scientists see
things somewhat differently. They arc confronted with data from the world and must
make sense of it. They make hypotheses, and in order to validate them, they design and
execute experiments. Scientific discovery has inspired a number of computer models.
Langley er al. [19813] present a model of data-driven scientific discovery that has been
implemented as a program called BACON, named after Sir Francis Bacon, an carly
phiiosopher of science.

BACON begins with a set of vanables [or a problem. For example, in the study of
the behavior of gases, some variables are p, the pressure on the gas, V. the volume of
the gas, . the amount of gas in moles, and T, the temperature of the gas. Physicists
have long known a law, called the ideal gas law, that relates these variables. BACON is
able to derive this law on its own. First, BACON holds the variables n and T constant.
performing experiments at different pressures p,, ps, and p3. BACON notices that as the
pressure increases, the volume V decreases. Therefore, it creates a theoretical term pV.
This term is constant. BACON systematically moves on to vary the other variables. It
tries an experiment with different values of 7', und finds that pV changes. The two terms
are linearly refated with an intercept of 0. so BACON creates a new term p¥/T. Finally,
BACON varies the term # and finds another linear refation beiween n and pV/T. For all
valuesof n,p, V, and 7. pV'/nT = 8 32 'This is, in fact, tne ideal gas law. Figure 17.18
shows BACON s reasoninig in a tabular i ormat

BACON has been used to discover a wide variety of scientific laws, such as Kepler's
third law, Ohm’s law, the conservation of momentum, and Joule’s law. The heuristics
BACON uses to discover the idcal gas law include noting constancics. finding lincar
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relations, and defining theoretical terms. Other heuristics allow BACON to postulate
intrinsic properties of objects and to rcason by analogy. For example, if BACON finds
a regularity in one set of parameters, it will attempt to generate the same regularity in
a similar set of purameters. Since BACON’s discovery procedure is state-space search,
these heuristics allow it to reach solutions while visiting only a small portion of the
search space. In the gas example, BACON comes up with the ideal gas law using a
minimal number of experiments.

A better understanding of the science of scientific discovery may lead one day to
programs that display true creativity. Much more work must be done in areas of science
that BACON does not model, such as determining what data to gather, choosing (or
creating) instruments to measure the data, and using analogies to previously understood
phenomena. For a thorough discussion of scientific discovery programs, see Langley er
al. [1987]

17.7.3 Clustering

A third type of discovery, called clusiering, is very similar to induction, as we described
it in Section 17.5. In inductive leaming, a program learns to classify objects based on
the labelings provided by a teacher. In clustering, no class labelings are provided. The
program must discover for itself the natural classes that exist for the objects, in addition
10 a method for classifying instances.

AUTOCLASS [Checseman er al., 1988] is one program that accepts a number of
sraining cases and hypothesizes a set of classes. For any given case, the program
provides a set of probabilities thal predict into which class(es) the case is likely to
fall. In one application, AUTOCLASS found meaningful new classes of stars from
their infrared spectral data. This was an instance of true discovery by computer, since
the facls it discovered were previously unknown to sstronomy. AUTOCLASS uses
statistical Bavesian rcasoning of the type discussed in Chapter 8.

17.8 Analogy

Analogy is a powerful inference tool. Our language and reasoning are laden with
analogies. Consider the following sentences:

» Last month, the stock market was a roller coasler.
+ Billis like a fire engine.
e Problems in electromagnetism are just like problems in fluid flow.

Underlying each of these examples is a complicated mapping between what appear
to be dissimilar concepts. For example, to understand the first sentence above, it is
necessary to do two things: (1) pick out one key property of aroller coaster, namely that
it travels up and down rapidly and (2} realize that physical travel is itself an analogy for
numerical Auctuations (in stock prices). This is no casy trick, The space of possible
analogies is very large. We do not want to entertain possibilities such as “the stock
muarket is like a roller coaster because it is made of metal.”
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Figure 17.19: Transformational Analogy

Lakoff and Johnson [1980] make the case that everyday lanBuage is filled with such
analogies and metaphors. An Al program thal is unable to grasp analogy will be difficult
totalk to and, consequehtly, difficult 1o teach. Thus, analogical reasoning is an important
factor in learning by advice taking. It is also important to learning in problem solving.

Humans often solve problems by making analogies to things they already understand
how to do. This process is more complex than storing micro-operators (as discussed in
Section 17.4.2) because the old problem might be quite different from the new problem
on the surface. The difficulty comes in determining what things are similar and what
things are not. Two methods of analogical problem solving that have been studied in AT
are fransformational and derivational analogy.

17.8.1 Transformational Analogy

Suppose you are asked to prove a theorem in plane geometry. You might look for a
previous theorem that is very similar and “copy” its proof, making substitutions when
necessary. The idea is to transform a solution to a previous problem into a solution for
the current problem. Figure 17.19 shows this process.

An example of transformational analogy is shown in Figure 1/.20 jAnderson and
Kline, 1979]. The program has seen proofs about points and line scgments; for example.,
it knows a proof that the line segment RN is exactly as long as the line segment OY,
given that RO is exactly as long as NY. The program is now asked Lo prove a theorem
about angles, namely that the angle BD is equivalent to the angle CE, given that angles
BC and DE are equivalent. The proof about line segments is retrieved and transformed
into a proof about angles by substituting the notion of line for point, angle for line
segment, AB for R, AC for O, AD for N, and AF for Y.

Carbonell [1983] describes one method for wansforming old solutions into new
solutions. Whole solutions are viewed as states in a problem space called T-space. T-
operators prescribe the methods of transforming solutions (states) into other solutions
Reasoning by analogy becomes search in T-space: starting with an old solution, we use
means-ends analysis or some other method to find a solution to the current problem.
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Figure 17.20: Solving a Problem by Transformational Analogy
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Figure 17.21: Derivational Analogy

17.8.2 Derivational Analogy

Notice that transformational analogy does not look a1 #ow the old problem was solved:
it only looks ai the final solution. Often the twists and wrns involved in solving an
old problem are relevant to solving a new problem. The detailed history of a problem-
solving episode is called its derivation. Analogical reasoning that takes these histories
into account 1s called derivational analogy (see Figure 17.21).

Carbonell [1986] claims that derivational analogy is a necessary component in the
transfer of skills in complex domains. For example, suppose you have coded an efficient
sorting routine in Pascal, and then you are asked to recode the routine in LISP. A line-
by-line translarion is not appropriate, but you wil! reuse the major structural and control
decisions you made when you constructed the Pascal program. One way to model this
behavior is to have a problem-salver “replay " the previous derivation and modify it when
necessary. If the original reasons and assumptions for a step’s existence still hold in the
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new problem, the step is copied over. If some assumption is no longer valid, another
assumption must be found. If one cannot be found, then we can try to find justification
for some alternative stored in the derivation of the onginal problem. Or perhaps we
can try some step marked as leading to search failure in the original denivation, if the
reasons for failure conditions are not valid in the current derivation.

Analogy in problem solving is a very upen area of research. For a survey of recent
work, see Hall [1989].

17.9 Formal Learning Theory

Like many other Al problems, learning has attracted the attention of mathematicians
and theoretical computer scientists. Inductive learning in particular has received con-
siderable attention. Valiant [1984] describes a “theory of the learnable™ which classifies
problems by how difficult they are to learn. Formally, a device leamns a concept if it can,
given positive and negative examples, produce an algorithm that will classify future
examples correctly with probability | /h. The complexity of leaming a concept is a
function of three factors: the error tolerance (k), the number of binary features present
in the examples (), and the size of the rule necessary to make the discrimination (f). U
the number of training examples required is polynomial in k, £, and f, then the concept
is said to be learnable.

Some interesting results have been demonstrated for concept leaming Consider
the problem of leaning conjunctive feature descriptions. For example, from the list of
positive and negative examples of elephants shown in Figure 17.22, we want to induce
the description “gray, mammal, large.” It has been shown that in conjunctive learning
the number of randomly chosen training examples is proportional to the logarithm of the
total number of features [Haussler, 1988; Linlestone, 1988].% Since very few trmining
examples are needed 1o solve this induction problem, ii is called fearnable. Even if we
restrict the learner to positive examples only, conjunctive learning can be achieved when
the number of examples is linearly proportional to the number of atiributes [ Ehrenfeuchi
et al., 1989), Learning from positive examples only is a phenomenon not modeled
by least-commitment inductive techniques such as version spaces. The introduction
of the error (olerance /i makes this possible: After all. even if all the clephants in our
training set are gray, we may later encounter a genuine elephant that happens to be white
Fortunately, we can 2xtend the size of our randomly sampled training sct to ensurc that
the probability of misclassifying an elephantas something else (such as a polar bear) is
an arbitrarily small 1 /A,

Formal techniques have been applied to a number of other learning probiems. For
example, given positive and negative examples of strings in some regular language, can
we efficiently induce the finite automaton that produces all and only the strings in that
language? The answer is no; an exponential number of computational steps is required
[Kearns and Valiant, 1989).7 However, if we allow the leamer to make specific queries
(e.g., "Is string x in the language?”), then the problem is learnable [Angluin, 1987].

SHowever, the number of examples must be iirear in the number of reievani anributes, i.c.. the number of
attributes that sppear in the leamed conjunction,
"The proof of this result resis on some unproven hypotheses about the complexity of cenamn number
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(gray? mammal? large? vegelanan? wild? l
+ + + + + +  (Elephani)
+ + s ~ - +  (Elephant)
+ + - + + - (Mouse)
- + - - + - (Giraffe)
+ — + : - -  (Dinosaur)
+ + i + +  {Elephant) Jl

Figure 17.22: Six Positive and Negative Examples of the Concept Elephant

It is difficult 1o tell how such mathematical studies of learning will affect the way3
i which we solve Al problems in practice. After all, people are able to solve many
exponentially hard problecms by using knowledge to constrain the space of possible
solutions. Perhaps mathematical theory will one day be used to quantify the use of such
knowledge, but this prospect seems far off. For a critique of formal learning theory
as well as some of the inductive techniques described in Section 17.5, see Amsterdam
[1988].

17.10 Neural Net Learning and Genetic Learning

The very first efforts in machine leaming tned to mimic animal learning at a neural
level. These efforts were quite different from the symbolic manipulation methods we
have seen so far in this chapter. Collections of idealized neurons were presented with
stimuli and prodded into changing their behavior via forms of reward and punishment.
Researchers hoped that by imitating the learning mechanisms of animals, they might
build learning machines from very simple parts. Such hopes proved elusive. However,
the field of neural network learning has secn a resurgence in recent years, partly as a
result of the discovery of powerful new learning algorithms. Chapler 18 describes these
algorithms in detail.

While neural network models are based on a computational “brain metaphor,” 2
number of other leaming techniques make use of a metaphor based on evolution. In this
work, learning occurs through a selection process that begins with a large popuiation
of random programs. Leaming algorithms inspired by evolution are called generic
algorithms [Holland, 1975; de Jong, 1988; Goldberg, 1989]

17.11 Summary

The most important thing to conclude from our study of automated learning is that
learning itself is a problem-solving process. We can cast various learming strategies in
terms of the methods of Chapters 2 and 3.

* Learning by taking advice

- Initial state: high-level advice
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- Final statc: an operational ruk
- Operators: unfolding definitions, case analysis. marching, el

« Learning from examples

= Initial state: collection of positive and negative examples
- Final state: concept description
- Search algorithms: candidate elimination, induction of decision tices

¢ Learning in problem solving

- Initial state: solution traces 1o example problems
- Final state: new heuristics for solving new problems cfficiently

- Heuristics for search: generalization, cxplanation-based learning, utihity
considerations 7

s Discovery

- Ininial state: some environment
~ Final state: unknown
= Heunistics for search: imerestingness, analogy, etc.

A learning machine is the dream system of Al As we have scen in previous
chapters, the key to intelligent behavior is having a lot of knowledge Getting all of that
knowledge into a computer is a staggering task. One hope of sidestepping the task is
to let computers acquire knowledge independently, as people do. We do not yet have
programs that can extend themselves indefinitely. But we have discovered some of the
reasons for our failure to create such systems. If we look at actual learning programs, we
find that the more knowledge a program starts with, the more it can learn. This finding
is satisfying, in the sense that it corroborates our other discoveries about the power of
knowledge. But it is also unpleasant, hecause it scems that fully self -extending systems
are, for the present, still out of reach.

Research in machine leaming has gone through several cycles of popularity. Timing
is always an important consideration. A learing program needs (o0 acquire new knowl-
edge and new probiem-solving abilities, but knowledge and probl em-solving are topics
still under intensive study. If we do not understand the nature of the thing we wanl
to learn, learning 1s difficult. Not surprisingly, the most successful learning programs
operate in fairly well-understood areas (like planning). and not in less well-understood
areas (like natral language understanding)

17.12 Exercises

1. Would it be reasonabic to apply Samuel s rote-learning procedure 1o chess? Why
{not)?
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mly Implemem the candidate ehminzuon algoritnm for veision spaces. Choose a
concept space with several features (for example, the space of books, computers.
animals, etc.) Pick a concept and demonstrate learning by presenting posilive and
negative examples of the concept.

3. In Section 17.5.2, the concept “Japancse economy car” was learned through the
prescntation of five positive and negative examples. Give a sequence of fow
examples that accomplishes the same goal. In general, what properties of a
positive example make it most useful? Whal makes negalve example most
useful?

4. Recall the problem of leaming disjunctive concepis in version spaces. We dis-
cussed learning a concept like “European car,” where a European car was defined
as a car whose origin was cither Germany, ltaly, or Britain. Suppose we expand
the number of discrete values the slot origin might take to include the values
Europe and Jmported. Suppose further that we have the following isa hicrarchy
at our disposal:

X
i

i

Imparted [FAT ]

i

Europe Japan
Germany  fraly  Britain

The diagram reflects facts such as “Japanese cars arc a subset of imported cars'
and “lialian cars are a subset of European cars” How could we modify the
candidate elimination algorithm to take advantage of this knowledge? Proposc
new methods of updating tne sets G and § that would allow us to learn the concep!
“European car” in one pass through a set of adequate training examples.

5. AM exploited a set of 250 heuristics designed to guide AM’s behavior loward
imeresting mathematical concepts. A classic work by Polya [1957] describex
a set of heuristics for solving mathematical problemns. Unfortunately, Polya's
heuristics are not specified in enough detail to make them implementable ina
program. In particulas, they lack precise descriptions of the situations in which
they are appropriate {i.e., the left sides if they are viewed as productions). Examine
some of Polya’s rules and refine them so that they could be implemented in a
problem-solving program with a structure similar to AM’s,

6. Consider the problem of building a program to leam a grammar for a language
such as English. Assume that such a program would be provided. as input, witha
sel of pairs, each consisting of a sentence and a representation of the meaning of
the sentence. This is analogous to the experience of a child who hears a sentence
and sees something at the same time. How could such a program be built using
the techniques discussed in this chapter?



Chapter 18

Connectionist Modeils

In our quest to build intelligent machines, we have but one naturally occurning model:
the human brain, One obvious idea for Al, then, 1s to simulate the functioning of
the brain directly on a computer. Indeed, the idea of building an melligent machine
out of artificial neurons has been around for quite some time. Some carly results
on brainlike mechanisms were achieved by McCulloch and Pius [1943], and other
researchers pursued this notion through the next two decades, ¢2., Ashby [1952].
Minsky [1954], Minsky and Selfridge [1961], Block [1962], and Rosenblatt [1962)
Research in neural networks came to virtual halt in the 1970s, however, when the
networks under study were shown lo be very weak computationally. Recently, there
has been a resurgence of interest in neural networks. There are several reasons for
this, including the appearance of faster digital computers on which to simulate larger
networks, the interest in building massively parallel computers, and, most important,
the discovery of new neural network architectures and powerful learning algorithms.

The new neural network architectures have been dubbed “‘connectionist” architec-
tures. For the most part, these architectures are not meant to duplicate the operation of
the human brain, but rather to receive inspiration from known facis about how the brain
works. They are characterized by having:

s A large number of very simple neuronlike processing elements,

e A large number of weighted connections between the elements. The weights on
the connections encode the knowledge of a network.

o Highly parallel, distributed control.
¢ An emphasis on lcarning internal representations automaticaliy.

Connectionist researchers conjecture that thinking about computation in terms of
the “‘brain metaphor™ rather than the “digital computer metaphor™ will lead to insights
into the nature of mtelligent behavior

Computers are capable of amazing feats. They can effortlessly store vasl quantities
of information, Their circuits operate in nanoseconds. They can perform extensive
arithmetic calculations without error. Humans cannot approach these capabilities. On
the other hand, humans routinely perform “simple” tasks such as walking, talking. and

487
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commonsense reasoning. Current Al systems cannot do any of these things better than
humans can. Why not? Perhaps the structure of the brain is somehow suiled 10 these
tasks and not suited to tasks such as high-speed arithmetic calculation. Working under
constraints similar to those of the brain may make traditional computation more difficult,
but it may lead to solutions to Al problems that would otherwise be overlooked.

What constraints, then, does the brain offer us? First of all, individual neurons arc
extremely slow devices when compared to their counterparts in digital compuicrs, Neu-
rons operate in the millisecond range, an eiemity (o a VLSI designer. Yet, humans can
perform extremely complex tasks, such as interpreting a visual scene or understanding
a sentence, in just a tenth of @ second. In other words, we do in about a hundred steps
What current computers cannot do in 10 million steps. How can this he possible? Un-
like a conventional computer, the brain contains a huge number of processing elements
that act in parallel. This suggests that in our search for solutions, we should look for
massively parallel algorithms that require no more than 100 time steps [Feldman and
Ballard, 1985]. .

Also. neurons are failure-prone devices. They' are constantly dying (you have
ceriainly lost a few since you began reading this chapier), and their firing patterns are
irregular. Components in digital computers, on the other hand, musl operate perfectly.
Why? Such components store bits of information that are available nowhere else in the
computer: the failure of one component means a loss of information. Suppose that we
built Al programs that were not sensitive to the failure of a few components, perhaps
by using redundancy and distributing information across a wide range of components?
This would open up the possibiiity of very large-scale implementations. With current
technology. it s far easier to build a billion-component integrated circuit in which 95
percent of the components work correctly than it isto build a million-componentmachine
that functions perfectly {Fahlman and Hinton, 1987),

Another thing people seem to be able to do betier than computers is handle fuzzy
situations.  We have very large memories of visual, auditory, and problem-solving
cpisodes, und vne key operation in solving new problems is finding closest maiches 1o
old situations. Approximate matching is something brain-style models seem to be good
at, because of the ditfuse and fluid way in which knowledge is represented.

The idea behind connectionism, then, is that we may see significant advances in Al if
we approach problems from the point of view of brain-style computation. Connectionist
Al is guite differemt from the symbolic approach covered in the other chapters of this
hoak. Atthe end of this chapter. we discuss the relal ionship between the two approaches.

18.1 Introduction: Hopfield Networks

The history of Al 1s curious. The first problems artacked by Al researchers were
problems such as chess and theorem proving, because they were thought to require the
essence of intelligence. Vision and language unilerstanding—processcs easily mastered
by five-year olds—were not thought to be difficult. These days. we have expert chess
programs and expert medical diagnosis programs, bul no programs that can match the
basic perceptual skills of a child. Neural network researchers contend that there is a
basic mismatch between standard computer infornation processing technology and the
iechnology used by the brain
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In addition to these perceptual tasks, Al is just starting to grapple with the funda
mental problems of memory and commonsense reasoning. Computers are nolorious
for their lack of common sense. Many people believe that commeon sense derives from
our massive store of knowledge and, ‘'more important, our ability to access relevant ’
knowledge quickly, effortlessly, and at the right time.

When we read the description “gray, large, mammal,” we automatically think of
clephants and their associated features, We access our memories by content. In tradi-
tional unplementations, access by content involves cxpensive scarchin, and matching
procedures. Massively parallel networks suggest a more cfficient method.

Hopfield [ 1982] introduced a neural network that he proposed as a theory of memory.
A Hopfield network has the following interesting features:

e Distributed Representation—A memory is stored as a pattern of activation across
a set of processing elements. Funthermore, memories can be superimposed on one
another; different memories are represented by different patterns over the sarme
set of processing elements,

» Distributed, Asynchronous Control—Each processing element makes decisions
hased only on its own local situation, All these local actions add up to a global
solution.

e Conlent-Addressable Memory—A number of patterns can be stored in a net-
work. To retrieve 4 pattern, we need only specify a portion of it. The network
automatically finds the closest match.

o Fault Tolerance—If a few processing elements misbehave or fail completely, the
network will still function properly.

How are these features achieved? A simple Hopfield net is shown in Figure 18.1
Processing elements, or units, are always in onc of two states, active or inactive. In
the figure, units colored black are active and units colored white are inactive. Units are
connected 1o each other with weighted, symmeiric connections. A positively weighted
connection indicates that the two units tend to activate each other. A negative connection
allows an active unit to deactivate a neighboring unit.

The network operates as follows. A random unit is chosen, If any of its neighbors
are active, the unit computes the sum of the weights on the connections to those active
neighbors, If the sum is positive, the unit becomes active, otherwise it becomes inactive.
Another random unit is chosen, and the process repeats until the network reaches a stable
state, i.e., until no more units can change state. This process is called parallel relaxation.
If the network starts in the state shown in Figure 18.1, the unit in the lower left comer
will tend to activate the unit above it. This unit, in turn, will attempt to activate the unit
ubove if, but the inhibitory connection from the upper-right unit will foil this artempt,
and 50 on,

This network has only four distinct stable states, which are shown in Figure 18.2.
Given any initial state. the network will necessarily settle into one of these four
configurations.! The network can be thought of as “storing " the patterns in Figure i8.2,
Hopfield’s major contribution was to show that given any set of weights and any imtial

'The stable state in which all units are ina-tive can only be reached if it is also the mital state.
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Figure 18.1: A Simple Hopfield Network

state, his parallel relaxation algorithm would eventually steer the network into a stable
state. There can be no divergence or oscillation.

The network can be used as a content-addressable memory by setting the aclivities
of the units to correspond to a partial pattern. To retrieve a pattern, we need only supply
a portion of it. The petwork will then settle into the stable state that best matches the
partial pattern. An exampie is shown in Figure 18 3.

Parallel relaxation is nothing more than scarch. albeit of a different style than the
search described in the early chapters of this book. It is useful to think of the various
states of a neiwork as forming a search space, as in Figure 18.4. A randomly chosen
state will rransform itsell ullimately inte one of the lecal minima, namely the nearest
stable siate. This is how we get the conteni-addressable behavior.” We also get eror
correcting behavior. Suppose we read the description, “gray, large, fish, eats plankton "
We imagine a whale, even though we know that a whale is a mammal, not a fish. Even if
the initial state contains inconsistencies, a Hopfield network will settle into the solution
that violates the fewest constraints offered by the inputs. Traditional match-and-retrieve
procedures are less torgiving.

Now. suppose a unit occasionally fails, say, by becoming active or inactive when 1t
should not. This causes no major problem: surrounding units will quickly set it straight
again, Itwouldtake the unlikely concerted effort of many errant units to push the network
into the wrong stable state. In networks of thousands of more highly interconnected
units, such fault tolerance is even more apparent—units and connections can disappear
completely without adverscly affecting the overall behavior of the network ..

So parallel networks of simple clements can compute inieresting things, The neat
important question is: What is the relationship between the weights on the network s
cennections and the local minima it settles into? In other words, if the weights encode the
knowledge of a particular network, then how is that knowledge acquired? In Chapter 17
we saw several ways to acquire symbolic structures and descriptions. Such acquisition
was quite difficult. One feature of connectionist architectures is thal their method
of representation (namely, real-valued connection weights) lends itself very nicely to

“lIn Figurs 8.4, state B is depicied as being lower than stute A because fewer constrainis are violated, A
constraini is violated. for example. when two active units are connected by o negatively weighted connection
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Figure 18.2: The Four Stable Slates of a Particular Hopfield Net

Figure 18.3: A Hopfield Net as a Model of Content- Addressable Memory
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Figure 18.4: A Simplified View of What a Hopfield Net Computes

automatic learning.

In the next section, we look closely at learning in several neural network models.
including perceptrons, backpropagation networks, and Boltzmann machines, a variation
of Hopfield networks. After this, we investigate some applications of connectionism.
Then we see how networks with feedback can deal with temporal processes and how
distributed representations can be made efficient.

18.2 Learning in Neural Networks

18.2.1 Perceptrons

The perceptron, an invention of Rosenblant [1962], was one of the earliest neural
network models. A perceptron models 4 neuron by taking a weighted sum of its inputs
and sending the output 1 if the sum is greater than some adjustable threshold value
(otherwise it sends 0). Figure 18.5 shows the device. Notice that in a percepiron, unlike
a Hopfield network. connections are unidirectional.

The inputs (X, 42,..., xn) and connection weights (w) . wy. .. w, ) in the figure are
typically real values. both positive and negative. If the presence of some feature v tends
to cause the perceptron to fire, the weight w; will be positive; if the feature v, inhibits the
percepiron, the weight w; will be negative. The perceptron itself consists of the weights,
the summation processor, and the adjustable threshold processor. Leaming is a process
of modifying the values of the weights and the thre-hold, It is convenient to implement
the threshold as just another weight wy. as in Figure 18.6. This weight can be thought
of as the propensity of the percep'ron to fire inrespective of its inputs. The perceptroi
of Figure 18.6 fires if the weighted sum is greater than zero.

A perceptron compultes a binary function of its input. Several perceptrons can be
combined (o compute more complex functions. as shown in Figure 18,7,

Such a group of perceptrons can be trained on sample input-output pairs until 1t
iearns to compute the correct function. The amazing property ol perceptron leaming
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Figure 18.5: A Neuron and a Perceptron

posiuve/negative

threshold

Figure 18.6: Perceptron with Adjustable Threshold Implemented as Additional Weight
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Frgure 18.7: A Perceptron with Many Inputs and Many Outputs

is this: Whatever a perceptron can compute, it can learn to compute! We demonstrate
this in a moment, At the tme perceptrons were invented, many people speculated thag
intelligent systems could be constructed out of perceptrons (see Figure 18.8).

Since the perceptrons of Figure 18.7 are independent of one another, they can be
separately trained. So let us concentrate on what a single perceptron can learn 1o do.
Consider the paitern classification problem shown in Figure 18.9. This problem is
finearly separable, because we can draw a line that separates onc class from another.
Civen vatues for v, and x3. we want to train a perceptron to output | if it thinks the input
belongs to the cluss of white dots and 0 if it thinks the wput belongs to the class of black
dows. Pattern classification is very similar to concepr learning, which was discussed in
Chapter 17. We have no explicit rule to guide us; we must induce a rule from a set of
traiming instances. We now see how perceptrons can learn to solve such problems.

First, it 18 necessary to take a close ook at what the perceptron computes, Let ¥ be
an mpul vector (X, vi.... .. V). Notice that the weighted summation function g(x) and
the output function o{x) can be defined as:

giv) = Z Wi,

a=l)

4= 1 fgla)>0
g i ifgl <0

Consider the case wi ere we have only two inputs (as in Figure 18.9). Ther-
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Figure 18.8: An Early Notion of an Intelligent System Built from Trainable Perceptrons

If g(x) is exactly zero, the perceptron cannot decide whether to fire. A slight change
in inputs could cause the device to go either way. If we solve the equation gix) = 0, we
get the equation for a line:

Wy wa
Ky = — =X = —
Wa wa

The location of the line is completely determined by the weights wg. w, and w2, If an
input vector lies om one side of the line, the perceptron will output I; if it lies on the other
side, the perceptron will output 0. A line that correctly separates the training instances
corresponds to a perfectly functioning perceptron. Such a linc is called a decision
surface. In percepirons with many inputs, the decision surface will be a hyperplane
through: the multidimensional space of possible input vectors. The problem of fearning
is one of locating an appropnate decision surface.

We present a formal leaming algorithm later. For now, consider the informal rule:

If the perceptron fires when it should not fire, make cach w; smaller by an
amount proportional to x,. If the perceptron fails to fire when it should fire
make each wy; larger by a similar amount.

Suppose we want to train a three-input perceptron to fire only when its first inpui is
on. If the perceptron fails to fire in the presence of an active x;, we will increase w,
(and we may increase other weights). If the percepiron fires incorrectly, we will end
up decreasing weights that are not w, (We will never decrcase wy because undesired
firings only occur when x; is 0, which forces the proportional change in w, also 1o be
0.) In addition, wq will find a value based on the total number of incorrect firings versus
incorrect misfirings. Soon, w; will become large enough to overpower wy, while w and
w3 will not be powerful enough 1o fire the perceptron, even in the presence of both x-
and xa.
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X

Figure 18.9: A Lincarly Scparable Pattern Classification Problem

Now let us e to the funcuons g(x) and o(x). While the sign of glx) 1§ cnticar
1o determining whether the perceptron will fire, the magnitude is also mmportant. The
sbsolute value of g(x) tells how far a giver input vector ¥ lies from the decision surface.
This gives us a way of characterizing how good a set of weights is. Let # be the weight
vector (wg, wy, ... wy), and let X be the subset of training instances misclassified by the
current sei of weights. Then define the percepiron criterion function, Jiw), to be the
sum of the distances of the misclassified input vectors from the decision surface:

CEDY Z waef = 3

fex | =0 TEX

l'o create a better set of weights than the current sei, we would like to reduce J(w).
Ultimately, if ail inputs are classifier] correctly, J(w) = (.

How do we go about minimizing J(W)? We can use a form of local-search hill
climbing known as gradient descent. We have already seen in Chapter 3 how we can
use hill-climbing strategies in symbolic Al systems. For our current purposes, think of
J(¥) as defining a surface in the space of all possible weights. Such a surface mi ght
look like the one in Figure 18.10,

In the figure, weight wy should be part of the weight space but is omitted here because
it 1s easier to visualize J in only three dirmensions. Now, some of the weight vectors
constitute solutions, in that a perceptron with such a weight vector will classify all its
inputs correctly. Note that there are an infinite number of solution vectors. For any
solution vector w,, we know that J{w',) = 0. Suppose we begin with a randorn weight
vector W that is not a solution vector. We want to slide down the J surface. There is
a mathematical method for doing this—we compute the gradient of the function Ji 57},
Before we derive the gradient function, we reformulate the perceptron criterion functicy,
to remove the absolute value sign:

K = Z P { X if Tis misclassified as a ncgative example

o ~7if ¥ is misclassified as a positive example
€ .
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i solution space

Figure 18 10: Adjusting the Weights by Gradient Descent, Minimizing J(W)

Recall that X is the set of misclassified inpui vectors.
Now, here is VI, the gradient of J(#) with respect to the weight space:

V() = Z { ¥ i[ 7 is rnisclassified as a negative example
o —¥ if ¥ is misclassified as a positive example
The gradient is a vector that tells us the direction to move in the weight space in
order 1o reduce JOW). In order to find a solution weight vector, we simply change the
weights in the direction of the gradient, recompute J(W), recompute the new gradient,
and iterate until /(&) = 0 The rule for updating the weights at time 7 + 1 15

Wi =+t VJ

Or in expanded form:

5 = T if ¥ is misclassified as a negative example
H',,l:w"l-nz - s A . X B
e —7if 7 is misclassified as a positive example
n is a scale tactor that tells us how far to move in the direction of the gradient.
<mall 1 will lead to slower leaming. but a large 1| may cause a move through weighi
space that “overshoots” the solution vector. Taking 1) to be a constant gives us whit |
usually called the “fixed-increment perceptron learning algorithm™

Algorithm: Fixed-Increment Perceptron Learning

Given: A classification problem with n input features (x), x2... ... v,,) and two outpul
classes.

Compute: A set of weights (wy, wy, wy.....w,) that will cause a perceptron Lo lire
whenever the input falls into the first output class.
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I. Create a perceptron with n + | inputs and n + 1 weights, where the extra input xg
isalways set to 1.

2. Initialize the weights (wg. w. ..., w,) to random real values.

3. lerate through the training set, collecting all examples misclassified by the current
set of weights.

4, If all examples are classified correctly, outpul the weights and quit.

5. Otherwise, compute the vector sum § of the misclassified input vectors, where
each vector has the form (xg. v, ..., v,). In creating the sum, add to § a vector ¥
if X is an input for which the perceptron incorrectly fails to fire, but add vector - ¥
if ¥ is an input for which the perceptron incorrectly fires. Multiply the sum by a
scale factor ).

6. Modify the weights (wg,w).....w,) by adding the elements of the vecior § 10
them. Go to step 3.

The perceptron learning algorithmis & search algonthm. It begins in a random initial
state and finds a solution state. The search space is simply all possible assignments of
real values to the weights of the perceptron, and the search strategy is gradient descent.
Gradient descent is identical to the hill-climbing strategy described in Chapter 3, except
that we view good as “down" rather than “up."

So far, we have seen two search methods employed by neural networks, gradient
descent in perceptrons and parallel relavation in Hopfield netwarks. It is important
to understand the relation between the two. Parallel relaxation is a problem-solving
strategy, analogous o state space search in symbolic AL Gradient descent is a learning
straiegy, analogous to techniques such as version spaces. In both symbolic and connec-
tionist Al, learning is viewed as a type of problem solving, and this is why search is
useful in learning. But the ultimate goal of learning is to get a system into a position
where it can solve problems betier. Do not confuse learning algorithms with others.

The perception convergence theorem, due to Rosenblall [1962], guarantees that the
pereeptron will find a solution state, i.e., it will leam to classity any lineariy separabie
set of inputs. In other words, the theorem shows that in the weight space, there are
no local minima that do not correspond to the global minimum. Figure 18.11 shows a
perceptron leaming to classify the instances of Figure 18.9. Remember that every set of
weights specifies some decision surface, in this case some two-dimensional line. I the
figure, & is the number of passes through the training data, i.e., the number of iterations
of steps 3 through 6 of the fixed-increment perceptron learning algorithm.

The introduction of perceptrons in the late 1950s created a great deal of exciternent.
Here was a device that strongly resembled a neuron and for which well-defined learing
algorithms were available. There was much speculation about how intelligent systems
could be construcied from perceptron building blocks. In their book Perceprrons
Minsky and Papert [ 1969] put an end to such speculation by analyzing the compututionai
capabilitics of the devices. They noticed that while the convergence theorem guaranteed
correct classification of linearly separable data, most problems do not supply such nice
data. Indeed. the percep:ron is incapable of learning 1o solve some very simple probiems.
Ung evample grven by Minsky and Papert is the exclusive-or (XOR) probicin. Gives
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Figure 18.11: A Perceptron Learning to Soive 2 Classification Problem

two binary inputs, output | if exactly one of the inputs is on and output 0 otherwise. We
can view XOR as a pattern classification problem in which there are four patlerns and
two possible outputs (see Figure 18.12).

The perceptron cannot leam a linear decision surface to separate these different
outputs, because no such decision surface exists. No single line cun separaie the |
outputs from the 0 outputs. Minsky and Papert gave a number of problems with this
property including telling whether a line drawing is connecied, and separaling figure
from ground in a picture. Notice that the deficiency here is not in the perceptron leaming
algorithm, but in the way the perceptron represents knowledge.

If we could draw an elliptical decision surface, we could encircle thetwo ™ 1" outpuis
in the XOR space. However, perceptrons are incapable of modeling such surfaces.
Another idea is to employ two separate line-drawing stages. We could draw one line
to isolate the point (x; = |, x = 1) and then another line 1o divide the remaining three
points into two categories. Using this idea, we can construct a “multilayer” perceptron
(a series of perceptrons) 10 solve the problem. Such a device is shown in Figure 18.13.

Note how the output of the first perceptron serves as one of the inputs to the sccond
perceptron. with a large, negatively weighted conncction. If the first perceptron sees the
input (xy = 1,1y = 1), it will send a massive inhibitory pulse 1o the second perceptron.
causing that unit to output 0 regardless of its other inputs. If cither of the inputs is 0, the
second perceptron gets no inhibition from the first perceptron. and it outputs 1 if either
of the inputs 1s |

The use of multilayer perceptrons, then, solves our knowledge representation prob-
lem. However, il introduces a serious learning problem: The convergence theorem does
not extend to multildyer perceptrons. The perceptron learning algorithm can correctly
adjust weights between inputs and outputs, but it cannot adjust weights between percep-
trons. In Figure 18.13, the inhibitory weight *~9.0" was hand-coded, not learmed. At
the time Percepirons was published, no one knew how multilayer perceptrons could be
made to learn. In fact, Minsky and Papert speculated:

Y
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Figure I18.12: A Classification Problem. XOR, That Is Not Lincarly Separable

Figure 18.13: A Multilayer Perceptron That Solves the XOR Problem

The percepiron ... has many features that attract attention: 1its hneanty,
its intriguing leaming theorem ... there is no reason to suppose that any
of these virtues carry over to the many-layered version. Nevertheless, we
consider it 1o be an important research problem to elucidate (or reject) our
intuitive judgement that the extension is sterile.

Despite the identification of this “important research problem.” actual research in
perceptron learning came (o a halt in the 1970s. The field saw little interest until
the 1980s, when several leamning procedures for multilayer perceptrons—also called
multilayer networks—were proposed. The next few sections are devoled to such learning

procedures.

18.2.2 Backpropagation Networks

As suggested by Figure 18.8 and the Percepirons critique, the ability to train multilay::
aetworks is an important step in the direction of building intelligent machines fron.
peuronlike components. Lat’s refiect for a moment o0 why this is so Our goal is
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take a relatively amorphous mass of neuronlike elements and teach it 1o perform useful
tasks. We would like it 1o be fast and resistant to damage. We would like it 10 generalize
from the inputs it sees. We would like 10 build these neural masses on a very large scale,
and we would like them to be able to leamn efficiently. Perceptrons got us part of the
way there, but we saw thai they were too weak computationally. So we turn 10 more
complex, multilayer networks.

What can a multilayer network compute? The simple answer is: anything! Given
+ set of inputs, we can use summation-threshold units as simple AND, OR, and NOT
gates by appropriately setting the threshold and connection weights, We know that we
can build any arbitrary combinational circuit out of those basic logical units. In fact, if
we are allowed to use feedback loops, we can build a general-purpose computer with
them.

The major problem is leaning. The knowledge representation system employed
by neural nets i1s quile opaque: the nets must learn their own representations because
programming them by hand is impossible. Perceptrons had the nice property that
whatever they could compute, they could leamn to compule. Does this property extend
1o multilayer netwarks? The answer is yes, soft of. Backpropagation is a step in that
direction. )

It will be useful 10 deal first with a subclass of multilayer networks, namely fully
connected, layered, feedforward networks. A sample of such a network is shown in
Figure 18.14. In this figure, x. hi, and o, represent unit activation levels of input.
hidden, and output units. Weights on connections between the input and hidden layers
are denoted here by wl,;, while weights on connect jons between the hidden and outpui
layers are denoted by w2y This network has three layers, although it is possible and
sounetimes useful to have more. Each unit in one layer is connected in the forward
direction to every unit in the next layer. Activations flow from the input layer through
the hidden layer, then on to the output layer. As usual, the knowledge of the network
is encoded in the weights on connections between units. In contrast 10 the parallel
relaxation method used by Hopfield nets, backpropagation networks perform a simpler
computation. Because aclivations flow in only one direction, there is no need for
an iterative relaxation process. The activation levels of the units in the output layer
determine the output of the network.

The existence of hidden units allows the network to develop complex feature de-
tectors, or internal representations. Figure 18,15 shows the application of a three layer
network to the problem of recognizing digits. The two-dimensional grid containing the
sumeral 7" forms the input layer. A single hidden unit might be strongly activated
by a horizontal line in the input, or perhaps a diagonal. The important thing to note
is that the behavior of these hidden units is automatically jearned, not preprogrammed.
In Figure 18.15, the input grid appears L0 be laid out in two dimensions, but the fully
connected network is unaware of this 2-D structure. Because this structure can be im-
portant, many networks permit their hidden units to maintain only local connections to
the input layer (e.g., a different 4 by 4 subgrid for each hidden unit).

‘The hope in attacking problems like handwritten character recognition is that the
neural network will not only leam to classify the inputs it is trained on but that it
will generalize and be able to classify inputs that it has not yet seen. We return 1
generalization in the next section.

A reasonable question at this point is: “All neural nets seem fo be able to do
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output units

input units

Figure 18.14: A Multilayer Network

is classification. Hard Al problems such as planning, natural language parsing, and
theorem proving are not simply classification (asks, so how do connectionist models
address these problems?” Most of the problems we see in this chapter are indeed
classification problems, because these are the problems that neural networks are best
suited to handle at present. A major limitation of current network formalisms is how
they deal with phenomena that involve time. This limitation is lifted to some degree in
wark on recurrent networks (see Section 18.4), but the problems are still severe. Hence,
we concentrate on classification problems for now,

Let's now return to backpropagation networks. The unit in a backpropagation
network requires a slightly different activation function from the perceptron. Both
functions are shown in Figure 18.16. A backpropagation unit still sums up its weighted
inputs, but unlike the perceptron, it produces a real value between 0 and 1 as output,
based on a sigmoid (or S-shaped) function, which is continuous and differentiable, as
required by the backpropagation algorithin. Let sum be the weighted sum of the inputs
10 a vnil. The equation for the unit’s output is given by:

1
= e
Notice that if the sum is 0, the output is 0.5 (in contrast to the perceptron, where it must
be either 0 or 1). As the sum gets larger, the output approaches 1. As the sum gets
smaller, on the other hand, the output approaches 0.
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Figure 18.15: Using a Multilayer Network to Learn to Classify Handwritten Digits

1.0 1.0

0 0

Figure 18.16: The Stepwise Activation Function of the Perceptron (/eft), and the Sigmoid
Activation Function of the Backpropagation Unit (right)
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Like a perceptron, a backpropagation network typically starts out with a random
set of weights. The network adjusts its weights each time it sees an input-output pair.
Each pair requires two stages: a forward pass and a backward pass. The forward pass
involves presenting a sample input to the network and letting activations flow until they
reach the output layer. During the backward pass, the network s actual output (from the
forward pass) is compared with the target output and error estimates are computed for
the output units. The weights connected to the output units can be adjusted in order 1o
reduce those errors. We can then use the error estimates of the output units 1o derive
error estimates for the units in the hidden layers. Finally, errors are propagated back to
the connections stemming from the input units.

Unlike the perceptron learning algorithm of the last section, the backpropagation
algorithm usually updates its weights incrementally, after seeing each input-output pair.
After it has seen all the input-output pairs (and adjusted its weights that many times),
we say that onc epoch has been completed. Training a backpropagation network usually
requires many epochs.

Refer back to Figure 18.14 for the basic structurs on which the following algorithm
is based.

Algorithm: Backpropagation

Given: A set of input-output vector pairs.
Compute: A set of weights for a three-layer network thar maps inputs onto corre-
sponding outputs,

l. Let A be the number of unils in the input layer, as determined by the length of
the training input vectors. Let C be the number of units in the output iayer Now
choose B, the number of units in the hidden layer As shown in Fi gure 18.14, the
input and hidden layers each have an extra unit used for thresholding; therefore,
the units in these layers will sometimes be indexed by the ranges (0,.. , A) and
(0,...,B). We denote the activation levels of the units in the mput layer by x,,
in the hidden layer by A, and in the output layer by 0;. Weights connecting the
input layer to the hidden layer are denoted by w1, where the Subscript i indexes
the input units and J indexes the hidden units. Likewise, weights connecting the
hidden layer to the output layer are denoted by w2, with i indexing to hidden
units and j indexing output units.

2. Initialize the weights in the network. Each weight should be set randomly 1o a
number between —().1 and 0.1,

wly = random(—0.1,0.1) for all i £ YT, ) e AR
w2y = random(—0.1.0.1) foralt j=0, B jely,,..C

I Initializethe activi1ons of the thresholding units. The values of these thresholding
units should never change.

.
*Successful large-scale networks have gsed topologies like 203-80-26 [Sejnowski and Rosenberg, 1987,
960-7-45 |Pomericay, 1989]. and 459-24-24-1 [ Te-aurs and Sejnowski, 1989]. A lusger hiddes Layer results
In & more prwerful network. but wo much power may he undesirable (see Sexvion 18.2.3),
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w=10
h“,l =10
4, Choose an input-output pair. Suppose the mpnt vector is .y, and the target ontput
vector is v, Assign activation levels to the input units

5. Propagate the activations from the unus in the input faver to the units in the hidden
layer using the activation function of Figure |8.16.

h=——= forall j=1.....B
) IR b AL

Note that ¢ ranges from 0 to A, wlg, 15 the thresholding weight for hidden unit ¢
(its propensity to fire irrespective of its inpuis). vo is always 1.0,

6. Propagate the activations from the unite in the tuddea laver to the units in the
output layer. .

| , :
== g forall i=l,....(

O L

Again, the thresholding weight w2y, for output unit j plays a role in the weighted
summation. by s always 1O,

7. Compute the errors’ of the units in the oltput layer, denoted §2;. Errors are based
on the network s actual output () and the target output (y;).

82 =nil —oiy, —0) forall j=1,....C

8. Compute the errors of the units 1n the hidden layer, denoed 61,

81, =kl = )Y 82 wi, forall j=1. B
=l

9. Adjust the weighis between the hidden layer and output layer® The leaming rate
1s denoted M. s function is the same as in perceptron leaming. A reasonabie
value of 1) 15 0.35.

“The error formuly is related 1o the defivanve uf the activanon funcrisn. The mathematic o dervation
behind the backpropagation learming aigorithm is beyond the <cnpe of this book

sulﬂh we omit the details of the dervanon, Toe batic idea i thut =och hedden unit fnes ta misemize the
errors of outpul anits to which it connects
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Aw2;i=n -32, h forall i=0,.... B g=t. AT

10. Adjust the we! zhis berween the input layer and the hidden laye

Awl, =0 :81;-x; forall i=0...../ A J=t. B

11. Go to step 4 and repeat. When all the input-output pairs have been presented 1o
the network. one epoch has been completed. Repeat sieps 4 to 10 for as many
epachs as desired.

The algorithm generalizes straightforwardly to networks of more than three layers."
For each extra hidden layer, insert a forward propagation step between steps 6 and 7.
an error computation step between steps 8 and 9, and a weight adjustment step between
steps 10 and 11. Ecror computation for hidden units should use the equation in step 8,
but with i ranging bver the units in the next layer, not necessarily the output layer.

The speed of learning can be increased by modifying the weight modification steps
9 and 10 to include a momentum term .. The weight updaic formulas become:

Aw2 (t+ 1)=n -2 hy + A Aw2i(r)
e\n‘l”fa‘-k |]='I] 61‘ 'Xf*aau'ir;(”

where #,, 1, 81; and 82; are measured at time 1+ 1 Aw,l0) is the change the weight
experienced during the previous forward-backward pass. If & is set 10 (0.9 or 5o, learning
speed is improved,’

Recull that the aci; - e3ion function has a sigmoid shape. Since infinite weights would
ve required for the a twual outputs of the network to reach 0.0 and 1.0, binary targel
outputs (the y;'s of st s 4 and 7 above) are usually given as 0.1 and 0.9 instead. The
sigmoid is required by dack propagation because the derivation of the weight update rule
requires that the activation functioa be continuous and differentiable. :

The derivatic n of tiie weight update Tule is more complex than the derivation of the
fixed-increment Jpdate rule for perceptrons, but the idea is much the sume. There is
an error function ihat defines a surface over weight space, and the weights are modified
in the direction of the gradient of the surface. Sce Rumelhart er al. [1986] for details.
Interestingly, the error surface for multilayer nets is more complex than the error surface
for perceptrons. One notable difference is the existence of local minima. Recall the
bowl-shaped space we used 1o explain perceptron learning {Figure 18.10). As we

54 network with une hidden v can compute any fumtion that a nciwork with many hidden layers can
compute: with an exponential nun:ier of hidden unirs. ore umit con*) be assigned 1o every possible mput
pattern. However, saming is sometimes f«ster with multiple hidden laycrs, especially tf the input is highly
nonlinear, 1.e., hard 10 separate +ith a series of straight lincs.

7 Enspinically, b sitesults have come from letting ¥ %+ .e7 for the fiest few training passes, then inceeasing
it 100.9 for the rest of raining. This process first gives the alponinm some time w find 2 good generaldivection.
and then moves i1 in that direction with some exira speed.
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modified weights, we moved in the direction of the bottom of the bowl; eventually. we
reached it. A backpropagation: network, however, may slide down the error surface into
a set of weights that docs not solve the problem it 15 being trained on. If that set of
weights is at a local minimum, the network will never reach the optimal set of weights.
Thus, we have no analogue of the perceptron convergence theorem for backpropagation
networks,

There are several methods of overcoming the problem of local minima. The o~
mentum factor n, which tends to keep the weight changes moving in the same direction.
allows the algorithm to skip over small minima. Simulated annealing, discussed later in
Section 18.2.4. is also uscful. Finally, adjusting the shape of a umit's activation function
can have an effect on the nctwork’s susceptibility to local minuma.

Fortunately, hackpropagation networks rarcly slip into locai minima. It tums out
that, especially in larger networks, the high-dimensional weight space prov ides plenty of
degrees of freedom forthe algorithm. The lack of aconvergence theorem is not a problem
in practice. However, this pleasant feature of backpropagation was not discovered until
recently, when digital compulers became fast enough to support large-scale simulations
of neural networks. The backpropagation algorithm was actually derived independently
by a number of rescarchers in the past. but it was discarded as many times because of
the potential problems with local minima. In the days before fast di gital compuicrs,
researchers could only judge their ideas by proving theorems about them, and they had
no idea that local minima would tum out to be rare 1i practice. The modern form of
hackpropagation is often credited to Werbos | 1974), LeCun [ 1985], Parker [1985], and
Rumelhant er al [19%0].

Backpropagation networks are not without real problems, however, with the mos!
serious being the slow speed of leaming. Even simple tasks reguire extensive tramning
periods. The XOR prohlem, for example, mvolves only five units and nine weights,
but it can require many, many passes through the four training cases before the weights
converge, especially if the learning paramelers are not carefully tuned. Also, simpic
backpropagation does not scale up very well. The number of training examples required
is superlinear in the size of the network.

Since backpropagation is inherently a parallel, disinbuted algorithm, the idea of
improving speed by building special-purpose backpropagation hardware is attractive.
However, fast new variations of backpropagation and other learning algorithms appear
frequently in the literature e.g.. Fahlman [198R]. By thetime an algorithm is transformed
into hardware and embedded in a computer system, the algorithm is likely to be absolete

18.2.3 Generalization

If all possible inputs and outputs are shown (0 a backpropagation network, the network
will (probably, eventually) find a set of weights that maps the inputs onto the outputs.
For many Al problems, however, it is impossible to give all possible inputs. Consider
face recognition and character recognition. There are an infinite number of orientations
and expressions 10 a face, and an infinite number of fonts and sizes for a characier, yet
humans learn to classify these objects easily from only a few examples. We would hope
that our networks would do the same. And, in fact, backpropagation shows promise as
a gencralization mechanism. 1f we work in a domain (such as the classification domains
just discussed) where similar inputs get mapped onto similar outputs, backpropagation
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Figure 18.17: A Common Generalization Effect in Neural Network Learning

will interpolate when given inpuls it has never seen before. For example, afier learning
‘o distinguish a few different sized As from a few different sized Bs, 2 network will
usual'y be able to distinguish any sized A from any sized B Also, generalization will
help overcome any undesirable noise in the inputs.

There are some pitfalls, however. Figure 18.17 shows the common generalization
effeci during a long training period. During the first pari of the training, performance on
the training set improves as the network adjusts its weights through backpropagation,
Performance on the test set (examples that the network is por allowed to leamn an) also
improves, although it is never quite as good as the training sci. After a while, network
performance reaches a plateau as the weights shift around, looking for a path to further
unprovement. Ultimately, such a path is found, and performance on the training set
improves agaii. But performance on the test set gets worse. Why? The network has
begun to memorize the individual input-output pairs rather than settling for weights thar
generally describe the mapping for all cases. With ihousands of real-valued weights al
its disposal, backpropagation is theoretically capable of storing entire training sets; with
enough hidden units. the algorithm could learn to assign a hidden unit to cvery distinet
input pattern in the training set. It is a testament to the power of backpropagation that
this actually happens in practice.

Of course, that much power is undesirable. There are several ways to prevens
backpropagation from resorting to a table-lookup scheme. One way is 1o stop training
when a plateau has been reached, on the assumption that.any other improvement will
come through “cheating.” Another way is to add deliberately small amounts of noise to
the training inputs. The noise should be enough fo prevent memorization, but it should
not be so much that it confuses the classifier. A third way to help generalization is 1o
reduce the number of hidden units in the network, crealing a bottleneck between the
input and output layers. Confronted with a bottleneck, the network will be forced 1o
come up with compact internal representations of its inputs,

Finally, there is the issue of exceptions. In many domains, there are general rules,
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but there are also exceptions to the rules, For example, we can generally make the past
tense of an English verb by adding *-ed" to it, but this is not true of verbs like “sing.”
“think,” and “eat.” When we show many present and past tense pairs to a netwnrk. we
would like it to generalize in spite of the exceptions—but not 10 generalize so far that the
exceplions are lost. Backpropagation performs fairly well in this regard, as do simple
percepirons, as 'eported in Rumelhart and McClelland [1986a].

i8.2.4 Boltzmann Machines

A Boltzmann machine is a variation on the idea of a Hopfield network. Recall that pairs
of units in a Hophield net are connected by symmetric weights. Units update their states
asynchronously by looking at their local connections to ather units.

In addition to serving as content-addressable memories, Hophield networks can solve
a wide vaniely of constraint satisfaction problems. The idea is to view each unit as a
“hypothesis.” and 1o place positive weights on connections between units representing
compatible or mutually supporting hypotheses, and negative weights on connections
between units representing incompatible hypotheses. As the Hopfield net scttles into
a stable state, it attempts to assign truth and Misity to the various hypotheses while
violating as few constraints as possible. We see examples of how neural networks attack
real-world constraint satisfaction problems in Section 13 3.

The main problem with Hopfield networks is that they settle into local minima.
Having many local minima is good for building content-addressable memories, but for
constraint satisfaction tasks, we need 10 find the globally optimai state of the network,
This state corresponds 10 an interpretation that satisfics as many interacting constraints
as possible. Unfortunately. Hopfield networks cannot find global solutions because they
settle into stable states via a completely distributed algorithm. 1T a network reaches a
stable state Jike: state A in Figure 18 4, then no single unit is willing to change its state in
order to move uphilt, so the network will never reach globally optimal state A. If several
units decided 1o change state simultanecusly, the network might be able to scale the hill
and slip into state B. We need a way to push networks into globally optimal stares while
maintaiming our distributed approach.

At about the same time that Hopfield networks were developed, a new search teci
nique, called simulated annealing, appeared in the literalure. Simulated annealing,
described in Chapter 3, is @ technigue for finding globally optimal solutions o com-
binatorial problems. Hinton and Sejnowski [1986] combined Hopfield networks and
simulated annealing to produce networks called Boltzimann machines.

To understand how annealing applies, go back to Figurc 18.4 and imagine it as a
black box, Imagine further a ball rolling around in the box. If we could not sec into
the black box, how could we coax the ball into the deepest valley? By shaking the box,
of course, Now. if we shake too violently, the ball will bounce from valley 1o valley at
random. That is, if the ball were in valley A, it might jump to valley B: but if the bail
were in valley B, it might jump 1o valley A. If we shake too softly, however, the ball
might find wself in valley A, unable to jump out. The answer suggested by annealing
is to shake the box violently at first, then gradually slow down. At some point, the
probability of the ball jumping from A to B will be larger than the probability of jumping
from B to A. The ball will very likely find its way to valtey B, and as the shaking
becomes softes, it will be unable 1o escape. This is what we want
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How is this idea implemented in a neural network? Units in Boltzmann machines
update their individual binary states by a stochastic rather than deterministic rule. The
probability that any given unit will be active is given by p:

1
P= v easr

where AE is the sum of the unit’s active input lines and T is the “temperaiure” ol the
network. Stochastic updating of units is very similar to updating in Hopfield nets, except
for the temperature factor. At high temperatures, units display random behavior, while
at very low temperatures, units behave as in Hopfield nets. Annealing is the process of
gradually moving from a high temperature down to a low temperature. The randomness
added by the temperature helps the network escape from local minima.

There is a leaming procedure for Boltzmann machines, i e., a procedure that assigns
weights o connections between units given a training set of initial states and final
states. We do not go into the algorithm here; interested readers should see Hinton and
Sejnowski [1986]. Boltzmann learning is more time-consuming than backpropagation.®
because of the complex annealing process, but it has some advantages. For one thing, it
18 easier (o use Boltzmann machines to solve constraint satisfaction problems. Unlike
backpropagation networks, Boltzmann machines do not make a clear division between
“input” and “output.” For example, a Boltzmann machine might have three important
sets of units, any two of which could have their values “clamped.” or fixed. like the input
layer of a backpropagation net—activations in the third set of units would be determined
by parallel relaxation.

If the annealing is carried out properly, Bolizmann machines can avoid local minima
and learn to compute any computable function of fixed-sized inputs and cutputs.

18.2.5 Reinforcement Learning

Whal if we train our networks not with sample outputs bui with punishment and reward
instead? This process is certainly sufficient to train animals v perform relatively
interesting tasks. Barto [1985] describes a network which leams as follows: (1) the
aetwork is presented with a sample input from the training set, (2) the network computes
what it thinks should be the sample output, (3) the network is supplied with 4 real-
valued judgment by the teacher, (4) the network adjusts its weights, and the process
repeats. A positive value in step 3 indicates good performance, while a negative value
indicates bad performance. The network seeks a set of weights that will prevent negative
reinforcement in the future, much as an experimental rat seeks behaviors that will prevent
electric shocks.

18.2.6 Unsupervised Learning

What if a neural network is given no feedback for its outputs, not even a real-valued
reinforcement? Can the network leam anything useful? The uniniuitive answer is yes.

80ne deterministic variation of Boltzmann lesming (Peterson and Anderson, 1987] promises in be more
efficient.
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Figure 18.18: Data for Unsupervised I carming

This form of leaming is called unsupervised learning because no teacher i required.”
Given a set of input data, the network 1s allowed to play with it to try tu discover
regularities and relationships between the different parts of the input.

Learning is often made possible through some notion of which features in the input
set are important. But often we do not know in advance which featurcs are important
and asking a learning system to deal with raw input data can be computationally expen-
sive. Unsupervised learning can be used as a “feature di scovery” module that precedes
supervised learning.

Consider the data in Figure 18 18. The group of ten animals, each described by -
own set of features, breaks down naiurally into three groups: mammals, reptiles, and
birds. We would like to build a network that can learn which group a particular animal
belongs to, and to generalize so that it can identify animals it has not yer seen. We
can easily accomplish this with a six-input, three-ouiput backpropagation network. We
simply present the actwork with an input, observe its output. and update 1ts weights
based on the errors it makes. Without a teacher, however, the error cannot be computed,
so we must seek other methods.

Our first problem is to ensure that only one of the three output units becomes active
for any given input. One solution 1o this problem is 10 let the network settle, find the
output unit wirth the highest level of activaiion, and set that un i to | and all other output
units 1o 0. In other words, the output unit with the highest activation is the only ons we
consider to be active. A more neural-like solution is to have the output units fight among
{hemselves for control of an input vector. The scheme is shown in Figure 18.19. The
input units are directly connected to the output units, as in the percepiror., but the output
wnits are also connected to each other via prewired negative, or inhibitory, connections
The output unit with the most activation along s input lines imitiaii v will most strongl

*One analogue of nsupsrvised leaming in symbulic Al is discavery (Sect:on 7.7).
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Figure 18.19: A Competitive Learning Network

dampen its competitors. As a result, the competitors will become weaker. losing their
power of inhibition over the stronger output unit. The stronger unit then becomes even
stronger, and its inhibiting effect on the other output units hecomes overwhelming,
Soon, the other output units are all completely inactive. This type of mutval inhibition
is called winner-take-all behavior. One popular unsupervised learni ng scheme based on
ihis behavior is known as competitive learning.

In competitive learning, output units fight for control over portions of the input
space. A simple competitive learning algorithm is the following:

1. Present an input vector.
2. Calculate the initial activation for each outpul unit.
3. Let the output units fight until only one is active,

4. Increase the weights on connections between the active output unit and achive
input units. This makes it more likely that the output unit will be active next time
the pattern is repeated,

One problem with this algorithm is thai one output unit may leamn to be active all the
time—it may claim all the space of inputs for itself. For example, if all the weights on
a unit’s input lines are large, it will tend 1o bully the other output units into submission.
Leamning will only further increase those weights.

The solution, originally due 1o Rosenblatt (and described in Rumelhart and Zipser
[1986]), is to ration the weights. The sum of the weights on a unit’s input lines is limited
10 1. Increasing the weight of one connection requires thal we decrease the weight of
some other connection. Here is the learning algorithm.
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Algorithm: Competitive Learning

Given: A network consisting of n binary-valued input units directly connected 10
any number of output units.

Produce: A set of weights such that the output units become active according to
some natural division of the inputs,

1. Present an input vector, denoted (x7, Xz, ..., X4).

2. Calculate the initial activation for each output unit by computing a weighted sum
of its inputs.'”

3. Lei the output units fight until only one is active."!

4. Adjust the weights on the input lines that lead to the single active output unit.

Aw; =7 i—’:--n w, forall j=1,....n

where w; is the weight on the connection from input unit f 1o the active output unit.
x; i the value of the jth input bit. m is the number of input units thal are active in
the input vector that was chosen in step 1, and 1 is the learning rate (some small
consiant), It is easy to show that if the weights on the connections feeding into
an output unit sum o | before the weight change, then they will still sum to |
afterward.

5. Repeat steps 1 1o 4 for all input patterns for many epochs.

‘The weight update rule in step 4 makes the output unit more prone to fire when
it sces the same input again. If the same mput 1s presenied over and over, the output
unit will eventually adjust 1ts weights for maximum activalion on that jnput. Because
inpul vectors arrive in a mixed fashion, however, outpui unils never setiie on a perfect
set of weights. The hope is that each will find a natural group of input vectors and
gravitate toward it, that is, toward high activations when presented with those inpus.
The algorithm halts when the weight changes become very small.

The competitive learning algorithm works well in many casas, bul it has some
problems. Sometimes, one output unit will always win. despite the existence of more
than one cluster of input vectors. [f two clusters are close together, one output umit
may leam weights that give it a high level of activation when presented with an input
from sither cluster. In other words, 1t may oscillate between the two clusters, Nonmally,
another output unit will win occasionally and move to claim one of the two clusters.
However, if the other output units are completely unexcitable by the input vectors, they
may never win the competition. Oog solulion, called “leaky learming,” is to change

“There is nio reason to pass the weighted su through a sigmoid function, as we did wilh backpropagation.
because we only calculsie activation leveis for the purpasc of susghmg out the most highly sctivaied outpat
unit,

TAs mentioned carlier. iy method for determinmg the ost highly & ivaied output unit 15 ~ufficient.
Simulsters wrillen in a serial programming language may dispense with te nepral circuitry and simph
corpare activations fevels (o find the maximum
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the weights belonging to relatively inactive output units as well as the most active
one. The weight update rule for losing output units is the same as in the algorithm
above, except that they move their weights with a much smaller n (learning rate). An
alternative solution is to adjust the sensitivity of an output unit through the use of a bias,
or adjustable threshold. Recall that this bias mechanism was used in percepirons and
eorresponded to the propensity of a unit to fire irrespective of its inputs. Output,units
that seldom win in the competitive leamning process can be given larger biases. In effect,
they arc given control over a larger portion of the input space. In this way, units that
consistently lose are cventually given a chance to win and adjust their weights in the
direction of a particular clusier.

18.3 Applications of Neural Networks

Connectionist models can be divided [Touretzky, 1989b] into the following categories
based on the comiexity of the problem and the network’s behavior:

« Pattern recognizers and associative memories
o Pattern transtormers
# Dynamic inferencess

Most of the examples we have seen so far fall into the first category. In this
section, we also see networks that fall into the second category. General mferencing in
connectionist networks is still al a primitive stage.

18.3.1 Connectionist Speech

Specch recognition is a difficult perceptual task (as we see in Chapter 21). Connectionist
networks have been applied to a number of problems in speech recognition; for asurvey,
see Lippmann [1989). Figure 18.20 shows how a three-layer backpropagation network
can be trained to discriminaic beiween different vowel sounds. The network is trained to
output ene of ten vowels, given a pair of frequencies taken from the speech waveform.
Note the nonlinear decision surfaces created by backpropagation leaming.

Speech production—the problem of translating text into speech rather than vice
versa—has also been attacked with neural networks. Speech production is easier than
speech recognition, and high performance programs are available, NETtalk [Sejnowski
and Rosenberg, 19871, a network that learns to pronounce English text, was one of e
first systems fo demonstrate that connectionist methods could be applied to real-world
tasks.

Linguists have long studied the rules governing the translation of text into speech
units called phonemes. For example, the letter “x™ is usually pronounced with a “ks”
sound, as in “box” and “axe.” A traditional approach to the problem would be Lo write
all these rules down and use a production system to apply them. Unfortunately, most of
the rules have exceptions—consider “xylophone™—and these exceptions must also be
programmed in. Also, the rules may interact with one another in unpleasant, unforeseen
ways. A connectionist approach is simply to present a network with words and their
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Figure 18.20: A Network That Leams to Distinguish Vowel * ound?

pronunciations, and hope that the network will discover the reguianties and remembe
the exceptions, NETtalk succeeds fairly wel | at this task witha backpropagation network
of the type deseribed in Section 18.2.2.

We can think of NETtalk as an exercise n “gxtensional progranming [Coterell
et af.. 1987} There exists some complex relationship between Iext and speech, and
we program thai relationship inte the computer by showing it examples from the real
world. Contrast this with traditional, “intensional programming,” in which we write
rules or specialized algorithms without reference 1o any particular examples. "in the
former case, we hope that the network generalizes [0 wranslate new words correctly. in
{he latter case. we hope that the algorithm is general enough o handle whatever words
it receives. Exiensional programming is 2 powerful technique because it drastically
cuts down on knowledge acquisition time, a major boitleneck in the construction of
Al systems. However, current learning niethods are not adequate for the extenstons!
programming of very complex tasks. such as the translation of English sentences inio
Japanese.

18.3.2 Connectionist Vision

Humans achieve significant visual prowess with limied visual hardware. Only the
center of the retina maintains good spatial resolution; #s a result, we must constantly
shift our attention among various poinis of mverest. Each snapshot lasts only about iwo
hundred milliseconds. Since individual neural firing rates usually lic in the millisecond
range, each scems must he interpreted in about a hundred computational steps. To
compound the problem, each interpretation must be rapidly integrated with previous
interpretations to enable the construction of & stahle three-dimensional medel of the
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world. These severe timing constraints strongly suggest that human vision 1s higbly
parallel. Connectionism offers many methods for studying both the engineering and
biological aspects of massively parallel vision,

Parallel relaxation plays an important role in connectionist vision systeins [Ballard o1
al.. 1983; Ballard, 1984]. Recall our discussion of parallel relaxation search in Hopficld
networks and Boltzmann machines. Ina typical system, some neural units receive their
initial activation levels from a video camera and then these activations are iteratively
modified based on the influences of nearby units, One use for relaxation is detecting
edges. If many units think they are located on an edge border, they can override any
dissenters. The relaxation process seitles on the most likely sei of edges in the scene,
While rraditional vision programs running on scrial computing engines must redson
about which regions of a scene require edge detection processing, the connectionist
approach simply assumes massively parallel machinery [Fahlman and Hinton, 1987).

Visual interpretation also requires the integration of many constraint sources. For
example, if two adjacent areas in the scene have the same color and lexture, then they
are probably part of the same object. If these constraints can be encoded in a network
struciure, then parallel relaxation is an attractive technique for combining them. Because
relaxation treats constraints as “soft"—i.e., it will violate one constraint if necessary-to
saiisfy the others—it achieves a global best-fit interpretation even in the presence of
locil ambiguity or noise.

“18.3.3 Combinatorial Problems

A

Parailel relaxation can also be used to solve many other constraint satisfaction problems.
Hopfield and Tank [1985] show how a Hopfield network can be programmed 1o come

up with approximate solutions to the traveling salesman problem. The system employs

- n* neural units, where # is the number of cities 10 be roured. Figure 18.21 shows

how tours themselves are represented. Each row stands for one city.  The tour proceeds
horizontally across the columns. The starting city is marked by the active unit in column
i, the next city by column 2, etc. The tour shown in Figure 18.21 goes through cities D,
B.E.H.G.F.C A andback to D’

Like all Hopfield networks, this n by n array contains a number of weighted con-
nections. The connection weights are initialized to reflect exactly the constraints of a
particular problem instance.'? Firstof all, every unit is connected with a negative weight
10 every other unit in its column, becanse only one city at a time can be visited. Sccond.
every unil inhibits every other unit in its row, because each city can only be visited
once. Third, units in adjacent columns inhibit each other in proportion to the distances
between cities represented by their rows, For example, if city D 1s far from city G, then
the: fourth unit tn column 3 will strongly inhibit the seventh units in columns 2 and 4.
There is some global excitation, so in the absence of strong inhibition, individual units
will prefer 10 be uctive.

Notice that each unit represents some hypothesis about the position of a particutar
city in a short tour. To find that tour. we start out by giving our units random activation
values. Once all the weights are set, the units update themselves asynchronouslv-

"INote that these conncction weights are hand-coded. not lcamed.
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Figure 18.21: The Representation of a Traveling Salesman Tour in a Hopfield Network

according to the rule described in Section 18.1."* This updating continues until a stable
state is reached. Stable states of the network correspond 1o short tours because conflicts
between constrainis are minimal. Hopficld and Tank [1985] have used these networks
to come up with quick, approximate solutions to traveling salesman problems (but see
Wilson and Pawley [1988] for a critique of their results). Many other combinatorial
problems, such as graph-coloring, can be cast as constraint satisfaction problems and
solved with parallel relaxation networks.

18.3.4 Other Applications

Other tasks successfully rackled by neural networks include learming 1o play backgam

mon [Tesauro and Sejnowski, 1989], to classify sonar signals [Gorman and Sejnowski.
1988). 1o compress images [Coitrell er al.. 1987], and to drive a vehicie along a road
(Pomerleau, 1989]. While there are other techniques for attacking all these problems,
leamning-based connectionist systems can often be built more quickly and with less
expertise than their traditional counterparts.

18.4 Recurrent Networks

One clear deficiency of neural network models compared to symbolic models is the
difficulty in getting neural network models to deal with temporal Al tasks such as
planning and naiural language parsing. Recurrent networks, or networks with loups, are
an attempl o remedy this situation.

Consider trying to teach a nctwork how to shoot a basketball through a hoop. We cun
present the network with an input situation (distance and height of hoop, initial | sitivn

Y Actually, the units used by Hopficld and Tank [1985) take on real activation values (determined by a
sigmoid curve) not binary values. By changing the shape of the sigmoid during processing, the notwork
achieves some of the same results as does simulated annealing.
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Figure 18.22: A Jordan Network

of muscies), but we need more than a single output vector. We need a series of output
vectors® first move the muscles this way, then this way, then this way, etc. Jordan [ 1986]
has invented a network that can do something like this. It is shown in Figure 18.22.
The network's plan units stay constant. They correspond to an instruction like “shoot
a basket.” The state units encode the current statc of the network. The outpur units
simultancously give commands (e.g., move arm x 10 position y) and update the state
units. The network never settles into a stable state; instead it changes at each lime step.

Recurrent networks can be trained with the backpropagation algorithm. At each step,
we compare the activations of the output units with the desired activations and propagate
errors backward through the network. When training is completed, the network will
be capable of performing a sequence of actions. Features of backpropagation, such as
automatic gencralization, also hold for recurrent networks. A few modifications are
useful, however. First of all, we would like the state units to change smoothly. For
example, we would not like to move from a crouched position to a jumping position
instantaneously. Smoothness can be implemented as a change in the weight update
rule; essentially, the “error” of an output becomes a combination of real error and the
magnitude of the change in the state units. Enforcing the smoothness constraini turns
out to be very important in fast leaming, as it removes many of the weight-manipalation
options available to backpropagation.

A major problem in supervised learning systems lies in correcting the network s
behavior. If enough training data can be amassed, then target outputs can be provided
for many input vectors. Recurrent networks have special Iraining problems, however,
because it is difficult to specify completely a series of target outputs. In shooting
basketballs, for example, the feedback comes from the external world (i.e., where the
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Figure 18.23: A Recurrent Network with a Mental Model

basketball lands). not from a teacher showing how to move each muscle. To get around
this difficulty, we can learn a mental model, a mapping thal relates the network 's outputs
t0 events in the world. Once such a model is known, the system can learn sequential
tasks by backpropagating the errors it sees in the real world. So it 15 necessary to learn
two different things: the relationship between the plan and the network’s output, and
the relationship between the network 's cutput and the real world

Networks of this type are described by Jordan [1988]. Figure 18.23 shows such a
network. which is essentially the same as a Jordan net except for the addition of two
more layers: another hidden layer and a layer representing results as seen in the world.
First, the latter portion of the network is trained (using backpropagation) on various
pairs of outpuls and targets until the network gets a good feel for how its outputs affect
the real world. After these rough weights are cstablished, the whole network 1s trained
using real-world feedback until it is able to perform accurately.

Another type of recurrent network is described in Elman 11990]. In this model,
aclivation levels are explicitly copied from hidden units 1o state units. Networks of this
xind have been used in a number of applications, including natural language parsing.
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18.5 Distributed Representations

As we have seen, the long-term knowledge of a connectionist aetwork is stored as
a set of weights on connections between units. This general scheme admits many
kinds of representations, just as the basic slot-and-filler structure left room for all the
representations discussed in Chapters 9 and 10. Connectionist networks can be divided
roughly into two classes: those that use localisr representations and those that use
distribured represeniations.

NETL [Fahlman, 1979] is a highly parallel system that employs a localist represen-
tation. Each node in a NETL network stands for one concept in a semantic network
For example, there is a node for “clephant,” a node for “gray,” etc. When the nctwork
is considering an elephant, the clephant unit becomes active. This unit then activates
neighboring units, such as units for gray, large, and mammal. The reverse process works
nicely as a content-addressable memory.

Distribuled representations {Hinton et af., 1986], on the other hand, do not use
individual units to represent concepts; they use patterns of activations over many units.
We have already seen one example of how this works: A Hopfield network provides a
distributed representation for a content-addressable memory, in which each structure is
stored as a collection of active units. One might be tempted to say that digital computers
also use distributed representations. After all, a small integer is stored in a distributed
fashion, as a pattern of activation over cight storage locations, each of which represents
one bit of data. An extreme localist approach, on the other hand, would be to use 256
bits per integer, only one of which could be active at any given time. However, besides
storing objects as patterns across many units, distributed representations have another
important property, namely that stored objects may be superimposed on one another.
One set of units can thus store many different objects. It is clearly impossible to store
two 8-bit integers in one 8-bit place-holder, so we do not view such an encoding as a
truly distributed representation.

Distributed representations have several advantages over localist ones. For one
thing, they are more resistant to damage. If NETL loses its “elephant™ unit somehow,
then it immediately loses all ability 1o reason or remember about elephants. This fragility
is undesirable if our goal is to build very large systems from unreliable parts. Also. it
does not conform to what we know about human and animal memory. Lashley [1929]
performed a number of classic experiments conceming memories in rats.  Lashley
wanted to find out in which part of its brain a ral stores iis knowledge of how to run a
particular maze. In the experiments, rats’ brains were lesioned in many different places.
Performance degraded in all rats in proportion to the size of the lesion, but the location
of the lesion had no special effect on performance. Lashley concluded that the memory
of how 10 run the maze was somehow stored in a distributed fashion across the entire
rat cortex. Such a memory organization has been described using a hologram metaphor,
in reference to the holographic storage medium, which allows the recanstruction of the
entire image from just a portion of the recording (although the reconstructed image may
be of poorer quality than the original). Work on distributed representations brings this
metaphor down io an implementational level.

In addition to being more robust than localist representations, distributed represen-
tations can also be more efficient. Consider the problem of describing the locations of
objects on a two-dimensional 8 by 8 grid [Hinton ez al., 1986]. In a symbolic implemen-
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Figure 18.24: A Localist Representation of Location (2 3) onan B by & Grid

tation. this task is easy: A location can be stored simply as # list of two numbers, C.B.
(2 3). Multiple object locations can be stored easily in this notation, as a list of Jists:
((23) (657 1) How can we accomplish the same task with neuronlike units? The
localist approach is o maintain an array of sixty-four units, one unit for every possible
location (see Figure 18.24). A more efficient approach would be to use a group of cight
units for the x-axis and another group of eight unils for the y-axis, as in Figure 18.25.
To represent the hocation (2 33, we activate two units: the second unit of the x-axis
group and the third unit of (he y-axis group. The other 14 units remain inactive. This
method is not very damage resistant, however, and il will not supposi 1he representation
of multiple object Jocations. To represent both (23)and (6 5) would require lurning on
two x-axis units and two y-axis units. But then we get the following binding problem:
it is impossible to tell which of the four x-y pairs (2 3). (2 5).(63), and (6 5) correspond
10 actual object locations.

There is & distributed representation for solving this problem—it is called coarse
coding. In coarse coding, we divide the space of possible object locations into a number
+f large, overlapping, circular zones. See. for example. Figure 18.26, in which units
are depicted as small dots and their receptive fields as large circles. A unit becomes
active if any object is located within its receptive field. - There is a unil associated
with each zone—the zone is called the unit’s receprive ﬁefd." Whenever an object is
located in a unit's receplive field. the unit becomes active. By looking at a single active
unit, we cannot tell with any accuracy where an object is located, but by looking &
the paticrn of activily acToss all the units, we can actually be quite precisc Consider
chat the interséction of several circular zones associated with a group ot uaits may be s

WThe term receplive field comes from the siudy of vision A recepiive field of u retinal el is an areg of
e petina that the cell i responsible for. The cell is triggered by light in that area.
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Figure 18.25:. A More Efficient Representation, Requiring Only 16 Units, but Unable
to Store Multiple T.ocations

very small area—if only those units are active, we can be fairly precise about where the
object 1s located. In fact, as the receptive fields become larger, i.c., as the individual units
become less discriminating about object locations, the whole representation becomes
more accurate, because the regions of intersection become smaller. In the end, we can
represent multiple objects with some precision withowt paying the price of the localist
representation scheme.

Orne drawback to distributed representations is that they cannot store many densely
packed objects. A localist or symbolic system could easily represent the three distnct
chjects at (44), (4 3), and (5 4). but adistributed scheme would be confounded by the loss
of information caused by the effect of many objects on a single unit’s receptive field. On
the other hand, psychological experiments have shown that a similar interference effect
is very likely a cause of forgetting in human memory [Gleitman, 1981]. A more serious
deficiency concerning disiributed representations lies in the difficully of interpreting,
#cquiring, and modifying them by hand. Thus, they are usually used in conjunction with
automatic leaming mechanisms of the type discussed in Section 18.2.

18.6 Connectionist Al and Symbolic Al

The connectionist approach to Al is quite different from the tradirional symbolic ap-
proach. Both approaches are certainly joined at the problem; both try to address difficult
issues in search, knowledge representation, and learning. Let’s list some of the methods
used by both:
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Figure 18.26: Distributed Representation Using Coarse Coding

1. Connectionist

« Search—Parallel relaxation.

« Knowledge Representation—Very large number of real-valued connection
strengths. Structures often stored as distributed patterns of activation.

 Leamning—Backpropagation, Bolizmann machines, reinforcement learning,
unsupervised learming.

2. Symbolic
o Search—Stale space traversal.
s Knowledge Represeniation—Predicate logic, semantic networks — nmes,
scripts.
o Leaming-——Macro-operators, version spaces, explanation-hased learning,
discovery.

The approaches have different strengths and weaknesses.  One major allure of
conneclionist systems is that they employ knowledge representations thai seem 10 be
more Icarnable than their symbolic counterparts, Nearly all connectionist sysiems have
a strong learning component. However. neural network leaming algorithms usually
involve a large number of training examples and long training periods compared (o
their symbolic cousins. Also, after a network has learned 1o perform a difficult ta=k,
its knowledge is usuallv cuite opague ar impenetrable mass of connection weights
Getting the network to exbimn its reasonina then, is difficulr Of course, this may 1.01
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be a bad thing. Humans, for example, appear to have little access to the procedures they
ase for many tasks such as speech recognition and vision. It is no accident that the most
promising uses for neural networks are in these areas of low-level perception,

Coanectionist knowledge representation offers other advantages besides leamnability,
Touretzky and Geva [1987] discuss the fluidity and richness of connectionist represen-
tations. In connectionist models, concepts are represented as feature vectors, sets of
activation values over groups of units. Similar concepts are given similar feature vector
representations. In symbolic models, on the other hand, concepts are usually given
atomic labels that bear no surface relation to each other, such as Car and Porsciie. Links
(like isa) are used to describe relationships between concepis. When the relationships
become more fuzzy than isa, however, symbolic systems have difficulty doing maitch-
ing. For example, consider the phrases “mouth of a bird” and “nose of a bird.” People
have no trouble mapping these phrases onto the concept Beak. A connectionist system
could perform this fuzzy match by considering that Nose, Mouth, and Beak have similar
feature value representations. Morcover, symbolic systems do not handle multiple, re-
lated shades of meaning very well. Consider the sentence, “The newspaper changed its
format.” Usually, the word “newspaper” is interpreted either as (1) something made of
black and white paper or (2) u group of people in charge of producing a daily periodical.
In the senience above, however, it is impossible to choose between the two readings. In
symbeolic systems, different word senses are represented as independent atomic objects.
Connectionist models offer several ways of maintaining multiple meanings: the simul-
wneous activations of different units (localist), the superposttion of activity patterns
(distributed), and the choice of intcrmediate feature vectors. The third method involves
choosing a representation that shares some features of one meaning and some feature of
another, but the intermediate representation itself has no single, corresponding symbolic
“oncepl.

A major part of this book has been devoted to the study of search in symbolic systems.
fi is difficult to see how connectionist systems will tackle difficult problems that state-
space search addresses (e.g.. chess, theorem-proving, and planning). Paralle! relaxation
search, however, does have some advantages over symbolic search. First of all, it maps
naturaily ontohighly parallel hardware. When such hardware becomes widely available,
parallel relaxation methods will be extremely efficient. More importantly, parallel
-=laxation search may prove even more efficient because it makes use of states that have
au analogues in symbolic search. 'We saw this phenomenon briefly in Section 18.3.3
vwhen we considered a Hopfield network that comes up with short traveling salesman
tours. In the process of settling into a solution state, the nerwork enters and exits many
“impossible” states, such as ones in which a city is visited twice. or ones in which the
traveler iv in two places al the sune time. Eventually, a valid solution state falls out
of the relaxation process. In conlrast, a symbolic system can only expand new search
nodes that correspond to valid, possible states of the world.

A good deal of connectionist research cancerns itself with modeling human memal
processes. Neural networks seem to display many psychologically and biologically
plausible features such a: content-addressable memory, fault tolerance, distributed rep-
resentations, and automatic generalization. Can we integrate these desirable properties
into symbolic Al systems? Certainly, high-level theories of cognition can incorporate
such features as new psychological primitives. Practically speaking, we may want to use
connectionist architectures for low-level tasks such as vision, speech recognition, and
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memory, feeding results from these modules into symbolic Al programs. Another idea
is 1o take a symbolic notion and implement it in a connectionist framework. Touretzky
and Hinton [1988] describe a connectionist production system. and Derthick |1988]
describes a connectionist semantic network.

A third idea is 1o program a symbolic sysiem with the basic principles that are
necessary 1o perform a task and then use the symbolic system to guide the performance
of a neural network, which refines 115 behavior as it acquires experience. An examnple
of this approach is described by ilandelman er al. [ 1989], who describe & robot arm that
can throw a ball at a target. Initially. a symbolic system guides the behavior of the arm
Each throw produces a training case, which is fed 1o a neural network. The symbolic
system monitors the progress of the network. which is acquiring the fine motor control
that the symbolic system lacks. When the network’s behavior exceeds a set criterion,
control of the arm is turned over to it.

Ultimately, connectionists would like to see symbolic structures “emerge” naturally
from complex interactions among simple units, in the same way that “wetness™” emerges
{from the combination of hydrogen and oxygen, although it is an intrinsic property of
neither

Most of the promising advantages of connectionist systems described in this section
are just tha': promising. A great deal of work remains 1o be done to tum these promises
into results, Only time will tell how influential connectionist models will be in the
evolution of Al research. In any case, connectiomsts can at least point to the brain as an
existence proof that neural networks. i some form, are capable of exhibiting intethgent
behavior.

18.7 Exercises

|. Consider a Hopfield net with the symmetric, weighted connections of Figure 18.1.
If"all the unus are initially active, which of the four states in Figure 18.2 will the
network settle into?

2. !mplement the fixed-increment percepiron leaming algorithm. Invent a three-
feature linearly separable classification problem on which 1o test your program.

3. Implement the backpropagation learning algorithm for a fully connected three-
tayer network. Be sure o include parameters for layer sizes, learning rate (1), and
number of irmining epochs. Test your implementation first on the OR problem:

Input Vector  Target Outpul Vector

(0.0, 0.0) (G.1)
(0.0, 1.0) (0.9)
(1.0.00) 0.9)
_ 00,10 (0.9)

Then on the XOR problem:
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Input Vector  Target Output Vector

(00,501 .1
(0.0, 1.0y (09)
(1.0,0.0) (0.9)
(1.0, 1.0 (0.1)

Initially, use two hidden units, set 1 = 0.35, and run for 6000 training cpochs,
(Each cpoch consists of forward and backward propagation of each of the fous
training examples.) Modify your program to use the momentum factor o =
0.9. Did adding momentum significant] y decrease the number of training epachs
required for learning?

- Here is a toy problem for testing generalization in networks, Suppose that there

are eight political issues on which every political party must decide, and supposc
further that those decisions are binary (for example, to legalize gambling or not,

to increase military spending or not, etc.). We can then represent the platform of

a political party as a vector of eight ones and zeros. Individuals who belong to

political parties may have beliefs that differ slightly from their party s platform.

Your job is to frain a backpropagation network to compute the political platform

of the party that most closely matches a given individual s beliefs.

Generate four random 8-bit vectors to represent the platforms of four political
partics. For cach party. generate nine individuals who belong to that party, The
belicfs of an individual, like those of a party, are represented as an 8-bit vecion
One of the nine individuals should agree entirely with the party platform, and the
other eight should differ on exactly onc issue (1 bir). Now generaie 36 inpu:-
outpat pairs, by juxtaposing individuals with the platforms of their respective
political parties. Each input is 8 bits, and each output is § bits.

Input Vector  Target Output Vectos

individual, party,
individual, party
individualy party,
individual i party,
indivicdual, party;
individual ;4 partys;
individual partyy

Next. remove five of the input-output pairs. These five will make up the “lesting
set”; the other 31 will make up the “training set.” Create a backpropagation
network with eight input units, eight hidden units, and eight output units. Train
the network on the 31 vectors in the training sct until performance is very high.
Now test the network on the five input-output pairs it has never seen before. How
well does i1 perform? Experiment with the different sizes of testing and training
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sels. as weli as midden layers of different sizes. Finally. how does the network
perform when given individuals whose beliefs are not so close 10 one of the four

parties?

. Many peopie consider connectionisi lo be irrelevant to Al, hecause 1 studies

imelligence at such a low level. They argue that intelligence should be modeled
at a higher, morc abstract level. They ofien relate connectionism 1o symibolic
Al with a software metaphor that runs: Il you wani to study the behavior of
a complex LISP program, then you should inspect its input and outputs, its
functions, its data, its general flow of control. but you should not be concerned
about the particular hardware the program happens to be runming on. The same
goes for the study of intelligence.” Read both Broadbent | 1985] and Rumelhart
and McClelland [1986b], and comment on this line of reasoning. '

in vontrast to those who view connectionism merely as an implementational
theory, others believe that connectiontst models are too abstruct and tha ¢
should iook more closely at the organization of the brain for clues aboul how to
organize anificial networks, Consider the following facts about the brain | Crick
and Asanuma, |986; Rosenzweig and Leiman, 1982], and comment on how
they might affect current connectionist models of memory, leaming. and problerr
solving: -

» Newrons excite and inhibit one another. but an individual neuron s either
purcly excitatory or purely inlibitory. Neuron A cannor excite neuron 14
while inhsbiting neuron C.

* Newrons communicate through their finng rates, which range from a lew
spikes per second to perhaps 500 spikes per second. Neuron firing is asyn-
chronous; there appears 0 be no global clock. There are two types of neural
summation: (1) spatial summation, in which the effects of vanous con-
necting neurons are added together and (2) temporal summation, in which
asynciwonousiy arnving impulses are likely to cause a neuron to fire when
they all arrive closely together in time. As a corollary of (2), one neuron
can have a very great effect on another by firing very rapidly.

& Some behavioral functions. such as vision and language, appear to be jocal-
ized in the brain. Destruction of small portions of the brain cun result in the
complete mability to perform certain cognitive tasks.

¢ The human brain has at least 150 billion nearons and probably 1000 to
10,000 connections per neuron. The brain of a rat is 700 times smaller. The
proponion of the brain taken up by the coriex is much larger in humans than
10 rats.

» Neurons are not connected symmetrically: if the axon of neuron A leads 10
neuron B, then the axon of neuron B probably does not lead back 1o neuron
A.

* There are many different types of neurons. Some types do not project out
of their local area of the brain. while the axons of nther tvpes travel long
distances,
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7. Life is a one-player game invented by John Conway. The game 15 played on an

infinite two-dimensional grid of square cells. At any given time, a cell is either
living or dead. Patterns of cells transform themselves according to a simple set
of rules:

» If a cell is living, it contnues 1o live if surrounded by exacily two or three
living cells. If it is surrounded by more than three living cells, it dies of
overcrowding; if less than two of its neighbors is alive, it dies of loneliness.

« If a cell is dead, it becomes living only if it is surrounded by exactly shree
living cells. Otherwise, it remains dead.

ror cxample:

| e R ] i N
| O Jr_‘n

o - cell becomes dead o — cell slays living

| Li] (o 3

[ — cell stays dead - ceil becomes living

= E —t—

E mED

{a) Create input-output pairs for every possible configuration of a cell and its
cight neighbors. There will be 512 (2% difterent input vecturs. Associated
with each input vector will be onc output bit: 01 if the siexi stawe of the cellis
dead. 1 if living. Use the rules ahove to compute the proper output for cach
input vector.

(b) Train a three-layer backpropagation network to learn the behavior of a Life
cell. Use two mdden units.

(c) Print out the set of weights and biases learned by the network. Now derive a
set of (symbolic) rules that conciscly describes how the neiwork is actually
computing its output. Focus on the behaviors of the two hidden units-~how
do they respond to their inputs, and what effects do they have on the eventual
output?

(dy Compare the rules you derived in part (¢) with the rules you used 1o create
the data in part (a).



Chapter 19

Commoin Sense

Computers have an entircly desei ved reputation for lacking commion sense. Anyone
who has ever received a bill for $0.00 from an accounting program can artest o this
fact. An Al program may possess more knowledge than an accounting program, but it
still computes using primitives that it knows nothing about. For example, consider the
following interaction between a medical diagnosis system and a human (adapted from
Lenat and Guha [1990]):

Svstenr How old is the patient?

Human (looking at his 1957 Cheviolet): 33.
Systen: Are there any spots on the patient’s body?
Human (noticing rust spois); Yes.

Sysrem: What color are the spois?

Human: Reddish-brown.

System: The patient hus meusles (probability 0.9).

' Obviously, the system does not really know what measles are, what spots are, or
what the difference between cars and people is. Even within its specialty, the system 1s
unaware of fundamental facts, for example, that humans have two arms. Clearly, what
the system lacks is knowledge. So far inthis book. we have seen a number of technigques
that can be used to.enable an Al program to represent and reaso . with commonsense
knowledge. For example, in predicate logic, one can state facts such as “if you die
vou are dead at all later times.” Frames can describe everyday objects, and scripts
can describe the typical sequences of events. Nonmanotonic logics can support defauli
reasoning, an important aspect of cominon sense.

As of yet, however, no program can malch the commonsense reasoning powers of a
five-year-old child, This is due, in part, to the large amount of knowledge required For
commeon sense. In Section 103, we discussed the CYC progrant, one attempt to codify
this information in a large knowledge base. In this chapter, we look more closely at the
kitus of knowledge such a system must possess. In particular, we investigate how 10
understand and predict physical processes, how to model the behavior of materials, and
how to reason about time and space. Merory 15 unother key aspect to common sensc.
We look at how a memory can organiz cxperiences, gencralizs them, and usc them to
solve new problems.

529
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(a) h) (c)
Figure |9 |1 Three Physical Situations

19.1  Qualitative Physics

People know a great deal about the how the physical world works. Consider the three
situations shown in Figure 19.1.

Anyone can predict what will happen in thesc scenarios. In situation (a), the ball
will probably bounce on the ground several times, then come to rest. In situation (b),
the ball will travel upward and to the right, then downwand  In situation (c), the ball
will swing repeatedly from left to right, finally coming 1o rest in the middie. Now, how
can we build a computer program to do this kind of reasoning?

The obvious answer is Lo program in the equations governing the physical motion of
ubjects. These equations date back to classical physics and appear in every introductory
physics textbook, For example. if the initial velocity of the ball in Figure 19.1() is v,
and the angle of its deparre from the pround 1= €, then the ball’s position ¢ seconds
after being launched is given by:

.

herghr = wp-i-sin(@) - lor
distance = \p 1 cosB}

We can do the same thing for Figures 19.1(a) and (¢} For Figure 19.1(a), we need
1o know the coefficient of elasticity, and for Figure 19.1(c), we need to know the length
of the siring, the initial velocity of the ball. and its original horizontal displacement.

There are two problems with this approach. First. most people do not know these
equations, yet they are perfectly capable of predicting what will happen in physical
situations Aiso, unlike equations, people do nor need exact, numerical measures. They
need oniv yualitative descriptions. such as the ones given at the beginning of this section.
Peapie seem Io reason more abstractly than the equations would indicate. The goal of
gualitative physics s 10 understand how to build and rcason with absiract, numberless
represeniations.

One might object to qualitative physics on the grounds that computers are actually
well-suited to model physical processes with numerical equations. Afier all, a com-
puter s ability to solve simultaneous equations far outstrips that of a human. However,
we cannot escape common sense so easily. Equations themselves say nothing about
when they should be used: this is usually left up to a human physicist. The common-
sense knowledge employed by the physicist is part of what we must model. While
some sort of qualitative physics seems necessary for automating the solution of physics
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problems, it is not sufficient by itsclf, The goal of gualitative physics is not to replace
rraditional physics but rather to provide a foundation for programs that can reason about
the physical world. One such program might be a physics expert system.

As a further illustration of the need for qualitative models, consider a scene in which
a glass of water leans precariously against a book on top of a cluttered desk. When the
book is moved. the glass begins to lip over. At present, no set of differential equations
can accurately model exactly how the spilling water will low across the desk. Even if
such a model existed. 1t would be impossible to measure the initial conditions accurately
enough to make an accurate prediction, Yet anyone =1 ihis sitvation can immediziely
visuzhize what is likely 10 happen and 1ake rapid action w prevent ir.

19.1.1 Representing Gualitative Information

Qualitanve physics seeks 1o understand physical processes by building models of them.,
4 model is an abstract representation that eliminates irrelevant details. For example,
f we want to predict the motion of a ball, we may want to consider its mass and
veloety, but probably not its color. Traditional physical models are buil: up from real-
valued variables, rates of change, expressions, equations, and states. Qualitative physics
pravides similar building blocks, ones which are more abstract and nonnumeric,

e Variables—In traditional physics, real-valued variables are used 1o represent fea-
tures of objects, such as position, velocity, angle, and temperature. Qualitative
physics retains this notion, but restricts each variable to a small finite set of pos-
sible values. For example, the amount of water in 4 pot might be represented as
one of {empry, between, full] . and its temperature as {frozen, between, baifing}.

e Quantity Spaces—A small set of discrete values for a variable is called a guantiry
space. The clements of 4 quantity space are usually ordered with respect 1o each
other so thal une value can be said 10 be smaller than another.’

o Rates of Change—Variables take on different values at different times. A real-
valued rate of change (dx/dr) can be modeled qualitatively with the quantitygpace
{decreasing, steady, increasing}.

¢ Expressions—Variables can be combined to form expressions. Consider repre

senting the volume of water in a glase as {empry, berween, full}. If we pour the
contents of onc glass into another, how much water will the second glass contain?
We can add two qualitative values with the following chart:

emnly + empty = empty

emipty + between = bemween

empty + full = fui

between + berween = {Ferween, full)

Berween + full = full < overflow

full + full = full + overflow
Notice that qualitative addition differs from its guantirative counterpart, in part
because the result of qualitative addition may b= ambiguous. For example, if both

"I some variations [Raiman, 1986), it is possible to siste hat 0 +~lue is #1e | laiges than another
that two values arc unequal but very close 1o one saosh—
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glasses arc between empty and full, it is impossible to know whether combining
them will result in a full glass or not.

s Equations—Expressions and variables can be linked to one another viu equations.
The simplest equation states that variable x increases as variable y increases. This
gives us an abstracl representation of the actual function relating x and y (it may
be linear, quadratic, or logarithmic, for x ample).

« States—Traditional physics models a process as a st of variables whose values
evolve over time. A stare is a single snapshot in wh o each variable possesses one
value, Within qualitative physics, there are severa) diffcrent ways of formulating

state information. One idea [de Kleer. 1979] is to combine qualitative state

variables with symbolic descriptions. For example, the state of Figure 19.1(a)

might be represented as (BALL-1. IN-AIR, DOWN). Ini order 1o predict the

behavior of devices, de Kleer and Brown | 1984] represent a state as a network of
connected components. Forbus [1984] presents a state organization centered on
processes and their influences.

19.1.2 Reasoning with Qualitative Information

No matter how siates are represented, we need some way to reason about the informa-
tion contained in them A wommon reaconing method in gualitative physics 1s called
gualitative simufarion {Koipers. 1986). The idea is Lo consiruct a sequence of discrete
“episndes” thal accur as gualitative vanables chunge values. Srates are linked to other
states by qualitative rules  Some rules are very general, For example, one simulation
o= aates thai variables reach closer values before reaching further ones, and another
rule states that changing from one value © anothe: consumes some finite amount of
time. Other rules. such as the rules goveming ihe motion of objects through the air. are
nione spec'iﬁc_

In systems that contain more than one obiect, rules must apply to all objects sumii
tanenusly. For example. consider an electrical device with many components. Because
t.cmnponenls are connected, they mtiuence one another The constrant satisfaction
tevhaique (Chapters 3 and 14 is one efficient way of propagating a change m one
component to other nearby componetils.

Since combining qualitative values can lead to ambiguity, a qualitative simulation
must sometimes split into two or more possible paths. A network of all possible states
and transitions for a qualitative system 1S called an envisionment. Figure 19.2 shows
an envisionment of the bouncing ball system of Figure 19.1{a). This network allows
a computer (o reason about the behavior of the ball without recourse Lo numerical
simulation. There pse often many paths through an envisionment. Each path is called a
history.

Envisionments are useful in a number of applications. Most importantly, cnvision-
menls provide explanations for physical systems, and those explanations can be used to
predict future behavior, In addition, if a system is an artificial one, such as a mechanical
device, envisionments can be used to diagnose problems that occur when components
fail 1o behave correctly. Envisionments can also be used to represent and/or repair inac-
curate mental models that people may have. For more information about envisionmenls
and qualitative simulation, sec Weld and de Kleer [1988].
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[ball-t Tinair[ down

[ball-l | on ground I duwnJ

[ ball-1 I on ground [ rest l 1 ball-1 | in air[ up

Figure 19.2: An Envisionment

In order 10 write programs that automatically construct ¢nvisionments, we must
represent qualitative knowledge about the behavior of particular kinds of processes,
substances, spaces, devices, and so on. In the next section, we look at how 1o codify
some of this knowledge.

19.2 Commonsense Ontologies

A computer program that interacts with the real world must be able 1o reason aboul
things like time, space, and materials. As fundamental and commonsensical as these
concepts may be, modeling them turns out to present some thomy problems.

19.2.1 Time

While physicists and philosophers still debate the true nature of time, we all manage (o
get by on a few basic commonsense notions. These notions help us to decide when to
initiate actions, how to reason about others' actions, and how to detennine relationships
between events, For instance, if we know that (he Franco-Prussian War preceded World
War [ and that the Baitle of Verdun occurred during World War I, then we can casily
_ infer that the Battle of Verdun musi have occurred sometime after the Franuo-Prussian
War. A commonsense theory of time must account for reasoning of this kind

The most basic notion of time is that it is occupied by events. These events occur
during intervals, continuous spaces of time. What Kinds of things might we want 10 say
about an interval? An interval has a starting point and an ending pownt, and u duration
tiefined by these points. Intervals can be related 10 other intervals, as we saw in the last
paragraph. It tums out that there are exacily thirteen ways in which two non-empty time
intervals can relate to one another. Figure 19.3 shows these relationships. As 15 clear
from the figure, there are actually only seven distinct relationships: the relationship of
equality plus six other relationships that have their own inverses.

Now we can state iules for drawing inferences about time intervals. For exampie.
common sense lells us that the IS-BEFORE relation is transitive. That is, if event ¢
occurred before event b and if event b occurred before event ¢. then event @ must have
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— i 1S-BEFORE | i IS-AFTER ;
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f—A i MEETS 1 IS-MET-BY
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S 4 ; i STARTS #1S-STARTED-BY
)
— i1S-DURING / i CONTAINS |
f—f
j
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Figure 19.3: Thirteen Possible Relationships between Two Time Intervals

occurred before event ¢, How many such axioms will we need before we capture all of
our basic commonsensc notions of time? We can greatly simplify matters if we define
some interval relationships in terms of other more basic ones. In fact, we can reduce all
the relations in Figure 19.3 10 the single relation MEETS. Here is the definition of the
relution 1S-BEFORE:

i 1S-BEFORE j = 3k : (i MEETS 4) A (¢ MEETS j)

in other words, if i 1IS-BEFORE j, then there rust be some  in between that MEETS
both i and j. When the rest of the relations are defined similarly, MEETS becomes the
only primitive relation, and we can write all our commonsense axioms in terms of it.
Our first axiom states that points where intervals MEET are unigue:

¥ij: (3K : (i MEETS &) A ( MEETS &) —
: (¥ : (i MEETS 1) > (f MEETS D)

In other words, / and j cannot MEET & at different points in time, so cvery cvent
has a unique starting time. We can wrile a similar axiom 1o state that every event has a
unique ending time. Next, we state that given two places where intervals meet, exactly
one of the following three conditions must hold: the places are the same, the first place
precedes the second, or the second precedes the first.?

*In this formula v should be read as “exclusive-or” p i @ & r s logical shorthand for (p A ~g A =r) v-
{'whqhw}vt-ﬁphwar],
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Yi, i k,1: (i MEETS /) A (k MEETS /) —
(i MEETS 1)+
3m : (+t MEETS m) A {m MEETS [) -
3m : (kK MEETS m) A (m MEETS j)
There are two more axioms, One states that there are always intervals sunounding
any given interval. This axion turns out to be useful. although it prohibitsany reasoning
about infinite time intervals,

¥i: 3.k ¢ MEETS ) A (f MEETS &)

Finally, we can state that for any two intervals that MEET, there exists a continuous
interval that 1s the union of the two:

Vi.j: (i MEETS j) =
da. b (i +)):
ta MEETS 0 A (j MEETS b) A
{a MEETS (i + ) A (i +7) MEETS b)

These axioms encode a rich commonsense theory of time. They allow us to derive
many facts, such as the transitivity of the IS-BEFORE relation. Suppose we know that
a IS- BEFORE b and that b 1S BEFORE . By the defininon of [S-BEFORE, there must
be some interval d that lies between @ and b, ic.. a MEETS  and d MEETS 6. By the
union axiom, we can deduce the existence of an interval (d + b) such that there is an
v that MEETS (o + &) and a v thut IS-MET-BY (d +5). Ry the unigueness of starting
points, we can conclude that a also meets (d + ). Since b IS-BEFORE ¢, there must be
an ¢ between them. We can now construct another union interval (d + b+ ¢}, which we
can prove MEETS ¢ and IS-MET-BY «. Therefore « IS-BEFORE .

This may seem like a roundabout way of doing things, and it 1s. There is nothing m
the axioms themselves that dictates how they should be used in real programs. In fact,
efficient implementations represent all thirieen temporal relations explicitly, making use
of precompiled tables that record how the refations can interact. Constraint satisfactionis
auseful technique for making inferences about these relations [ Kautz, 1986]. The logical
statements above are just a concise way of writing down one particular commonsense
theory of time.

19.2.2 Space

in this book, we have often used examples from the blocks world. Primitives in this
world include block names. actions like PICKUP and STACK. and predicates likte
ON(x, y). These primitives constitute a usetul abstracuion, but eventually we imust hreak
them down, If we want & real robot 10 achieve ON(x, v}, then that rebot had better know
what ON really means, where 1 and v are located, how big they are. how they are shaped.
how to align v on top of v so that 1 won't fall oft, and <o forth. These requirements
become mare apparent if we want 1o 15sue commands ke “place block v near block v
or “lean block vup agansi biock v Commonsense notions of space are critical fo
living in the real world
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Objects have spatial extent, while gvents have temporal exient. We might therefore
try to expand our commonsense theory of time inte & conmonsense theory of space.
Because space is three-dimensional, there are far more than thirteen possible spalial
relationships beiween two objects. For instance, consider one block perfectly aligned
on top of another. The objects are EQUAL in the lengih and width dimensions, while
they MEET in the height dimension. If the top block is smaller than the bottom one but
still centered on top of it, then they still MEET in the height dimension, bul we must use
the spatial equivalent of IS-DURING 10 describe the length and width relationships. The
main problem with this approach is that it generates a vast number of relations (namely
i3% = 2197), many of which are not very commonsensical. Moreover, a number of
:nteresting spatial relations, such as “x curves around y," are not included. So we must
consider another approacii.

In our discussion of qualitative physics, we saw how to build abstract models by
transforming real-valued variables inlo discrete quantity spaces. We can also view
nhjects and spaces a1 various levels of abstraction. For instance, we can view a three-
dimensional piece of paper as a two-dimensional sheet; similarly, we can view a three-
dimensional highway as a onc-dimensional curve. Hobbs [1985] proposed one very
general mechanism for creating and mampulating abstract models. With this mechanism,
we start out with a full-blown theory of the world, and then we construct a simpler, more
abstract model by extracting a set of relevant properties. 'We then group objects into
classes whose members are indistinguishable from cach other as far as their relevant
properties go. For example, as we drive along a highway, our major relevant property
might be DISTANCE-TO-GOAL. This property effectively reduces the bits of concrete
in the three-dimensional highway into a one-dimensional curve, where each point on
the curve has a unique DISTANCE-TO-GOAL value. In a similar fashion, we can map
veal time intervals onto discrete time steps. spatial coordinates onto a two-dimensional
grid, and 50 on. Choosing a set of relevant properiies amounts to viewing the world at a
particelar level of granulariry. Since different granularitics are systematically related to
cach other, we can reason in a simplified model with relative assurance that our actions
will be inplementable in the real world.

The idea of granularity can be used to build a commonsense model of space
{Kautz, 1985]. The basic idea is (o define relations over spaces. The first relation
is INSIDE(x, v, g). where vand y are spaces occupred by particular objects and g is the
level of granularity at which those objects are viewed. For example, water is INSIDE a
glass 1f the three-dimensional space takein up by the water is completely contained within
the three-dimensional space taken up by the gluss. If we view a highway as a three-
dimensional slab of concrete, then a car driving along the highway would be considered
ADJACENT to the highway. but not INSIDE of it. However, if some granularity g views
the highway as one-dimensional curve, then the relation INSIDE(Car, Highway, g)
holds for as long as the car stays on the road. This is because the car and its position on
the road are indistinguishable at that level of granularity.

We can now define a number of useful properties for curves, lines, surfaces, planes.
and volumes. For example. here is the definition of a lerminal point p of a curve @
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Figure 19.4: Two Ribbons (y; and y;) and Twe Curves (x; and 12}

TERMINAL(p.c) =
INSIDE(p. ¢} A
¥y 0s - INSIDE(¢ . ) A INSIDE(c;. )
A INSIDE(p, ) A INSIDE(p. c2)
—5 INSIDE(¢|, €2) ¥ INSIDEL, ¢1)

In other words, pis 1 TERMINAL of ¢ if, whenever two subcurves of ¢ both include
pr,one must be a subcurve of the other. We can i milarly define curve segments, adjoinimg
curves, loops, and forks. Another useful class 1 define is that of a RIBBON:

RIBBON(object, side) ., sides)

A ribbon is essentially a curve viewed at a coarser level of granularity, resulting
i a two dimensional ribbonlike shape. Our world contains many objects that are
usefully viewed as ribbons, e.g., rivers and bridges (Figure 19.4). We can define several
propertics of curves as they relate to ribbons. For example,

ALONG(r,y) . = CURVE()ARIBBON(y.5.53) "
¥z : INSIDE(z. ) = ADJACENT(z.»)
ACROSS(+.y) = CURVE() A RIBBON(y. 5;. %) A

PERPENDICULAR(x, AXISiy. xy. 5200 A
ADJACENT(x. v} ~ ADJACENT(v.51) /
ADJACENT(x. 57}

These definitions assume thal we have defined the terms PERPENDICULAR. AXIS.
and ADJACENT. and that we have supplied the commonsense axiom thal an object vis
ADJACENT to an object v if any part of v is ADJACENT 10 v.

A robot could use the ALONG relation 1o plot a course down the river’s edge. It
could similarly use the ACROSS relation to navigate to the other side of the niver
Unfortunately, the ACROSS relation 15 not erough, as the robot might try to cross the
river without using the bridge. The robot is sull missing one fact: you can't walk on
water. That’s common sense
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19.2.3 Materials

Why can’t you walk on water? What happens if you tumn a glass of water upside down”
What happens when you pour water into the soil of a potted plani?

Liquids present a particularly interesting and challenging domain 1o formalize.
Hayes [1985] presented one awempt to describe them. Before we can write down
any properties of liquids, we must decide what kinds of ohjects those properties will
describe. In the last section. we defined spatial relations in termis of the spaces occupied
by objects. not in 1erms of the objects themselves. I is particularly useful to 1ake this
point of view with ligquids, since liquid “objects™ can be split and merged ~o easth
For example. if we consider 2 river 1o be a piece of liquid, then what happens to the
river when the liquid fows out mto the ocean? Instead of continuully changing owr
characterization of the river, it is more convenicnt 10 view the river as a hxed spuce
occupied by water, ’

Conlainers piay an important role in the world of liquids. Since we do not want to
refer 1o Liquid objects. we must have another way of stating how much liquid is in a
container. We can define a CAPACITY function to bound the amount of liquid / that a
space 5 can hold. The space is FULL when the AMOUNT equals the CAPACITY.

CAPACITY(s) > AMOUNT(/, 5) > none
FULLLs) = AMOUNT(L. 5) = CAPACITY(x)

We can also dehine an AMOUNT function:
AMOUNT(Warer. Glass) > none

This staternent means, “There is water in the glass.” Here, Warer refers to the generic
concept of watcr and Glass refers to the space enclosed by a particular glass.

Spaces have n number of other properties besides CAPACITY and FULL. Recall
that spaces can be linked to one another by the INSIDE relation. In addition. a space
can be frec or not. A space is free if it is not wholly contained inside a solid object. In
addition. vy ery space 1s bounded on all sides by a sel of two-dimensional regions, called
fuces. I 1 lree fuce (one not part of a solid object ) separides iwo free spaces. iris called
a pertul. 1 iguids can Aow from one free space to another via a portal. Two objects are
sand to be joisicd of they share » common face. To summanize:

FREE(+) = =du . SOLID{o) A INSIDE(s. 0)

FACE(f v) = [1» some 2-D bounding region of s

PORTALL) = 35,. 5 : FACE(f. 51) A FACE(f. 57) A
FREEis;) A FREE(s:) A FREE())

JOINED( p=_f) = FACE(. 0,) A FACE(f 01)

We can now define a closed container as a hollow object with na ponals:
CLOSED-CONTAINER(c) =

{35 : INSIDE(s, o) A FREE(s)) A
(—3x.f . INSIDE(s. ¢) A JOINED(s. . /) A ~PORTAL(f))

An open container has (at least) one portal at the top:
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OPEN-CONTAINER(¢) =
(3s : INSIDE(s, ) A FREE(5)) A
(Vs.f : INSIDE(s, ©) A JOINED(s.¢. ) —
f=TOP{c) A ~PORTAL(/})

Liguids make things wet. To model wetness, we will find ituseful to imagine a solid
object as being surrounded by a very thin free space. This space 15 broken up into a sei
of thin outer spaces corresponding to the various faces of the object. Ohjects that touch
share these outer spaces.

SURROUND{o) = thin space suirounding object o

Yo : FREE(SURROUNIXNe))

OUTER(d, o) = 3f : FACE(f, 0) and d is the thin free space just outside f
TOUCHING(o, 0;) = 3d : OUTER(d.0;) A OUTER(d. 02}

Vd, o+ OUTER(d, 0) = INSIDE(d, SURROUND{5))

¥s.0 - FREE(3) A INSIDE(0, 5) — INSIDE(SURROQUND(2). 5)

The last two facts state that SURROUNDY{#) contains all its outer spaces, and that any
targer, free space containing object o also contains SURROUND{e). Now we can define
wetness as a relation between an outer space d and some generic liquid /:

WET-BY(d. /) = CAPACITY(d) > AMOUNT(/.d) > none
IS-WET(0) = 34,/ : OUTER(d. 0) A WET-BY(d.])
IS WET-ALL-OVER(e) = ¥d : OUTER(d, 0) — 31 : WET-BY(d./)

Suppose our rabot encounters a room with six inches of water on the floor. What
will happen if the robaot touches the foor? By the definition of TOUCHING, we have:

34y : OUTER(d,. Robot) A OUTER(d, . Floor)
Since the floor only has one face. d. we can conclude:
OUTER(d. Robat) A OUTER(d. Flor)

Combining the first clause with the fact WET-BY(d, Warer) gives us IS-WET(Robor).
In other words, the robot will get wet. Recall that at the end of the last section, our robot
was aboul {0 try crossing a river wishoul using a bridge. 1t might find ths fact useful:

INSIDE(s, , 52) A FRCE(s,) A FULL(s2. h — FULLts. )

It is straightforward o show that if the robot is submerged. it will be wet all
over. Predicting that the robot will become submerged in the first place requires some
envisionment. We need a rule that says one dense solid chjacl must be supporied by
another solid object, or else it will tend to move downward. One property of liquids is
that they do not support densc solid objects.

We also need general rules describing how liquids themselves behave over time.
Consider all the possible forme hiat - tigued i, ke «f 3 viven instart Haves [10R9!
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distinguishes between “lazy, sull” liquids, “lazy, moving' hquids and “energetic, mov-
ing” liquids. Energetic; moving liquids are liquids being propelled by some active force,
for example, oil being pumped through a pipeline. Lazy liquids are liquids i their nat-
ural state. Sometimes they are moving, as in river water and rain. and sometimes they
are still. Liquids in any of these forms can also be either bulk or divided. Most of the
time we deal with bulk liquid, but sometimes we encounter mist, dew, or rain. Finally,
liguids can be either unsupporied, on a surfac2, orin a countainer.

What happens ta these types ot liquids? Figure 19.5 shows live env isionments for
lazy, bulk liquids. A containment event can hecome a falling event if the container fips.
The falling event becomes a wetting event and then a spreading one. Depeniding on
where the spreading takes place, further falling or flowing events may ensue. When
all the liquid has left the container, the spreading will .top, and sometime afterward, a
drying event will begin.

Other materials behave differently. Solids can be rigid or flexible. A string can be
used 10 pull an object but not to push it. Solids can also be particulate (like sand), in
which case they share many of the same behaviors as liquids. Gases are’also similar 10
liquids. Also, some solids soak up liquid (sponges. dirt), while others are waltertight.

We can see that commonsense knowledge representation has a strongly taxonomic
flavor. A lot of work has been done in these and other aress, but much more also remains
to be worked out.

19.3 Memory Organization

Memory is central to commonsense behavior. Humen memory contains an immense
amount of knowledge about the world. So far, we huve oniy discussed a tiny fraction
of that knowledge. Memory is aiso the basis for learning. A system that cannot learn
cannot, in practice, possess COMMON sense.

A complete theory of human memory hus riof yet been discovered, but we do have
a number of facts at our disposal. Somc of these facts come from neurobology (e.g.,
[Kandel and Schwartz, 1985]), while others are psychological in nature. Compulter
models of neural memory (such as the Hopfield network of Chapter 18) are interesting.
but they do not serve as theories about how mernory s ased in everyday, commonsensc
reasoning. Psychology and Al seek o address (hose 1ssues.

Psychological studies suggest several distinctions in human memory. One distinction
is between short-term memory (STM) and long-term memory (LTM). We know that a
person ¢an only hold a few items at a time in STM, but the capacity of LTM is very large.
TM storage is also fairly permanent. The production system 1s one computer model of
the STM-LTM structure. Perceptual information is stored directly in STM, also cailed
working memory. Production rules, stored in LTM, match themselves against items (n
STM. Productions fire, modify STM, and repeat.

LTM is often divided intoepisodic memory and semantic memory. Episodic memory
contains information about past personal experiences, usually stored from an autobio-
graphical point of view. For example, 2 college graduation, a wedding, or a concer may
all form episodic memories. Semantic memory, on the other hand, contains facts like
“Birds fly.” These facts are no longer connected with personal experiences.

Work on modeling semantic memory began with Quillian {1969]. This mode! soon
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developed inio the idca of semantic nctworks and from there into the other slot-and-
filler structures we saw in Chapters 9 and 10. Semantic memory 1s especially useful in
programs that undersiand naiural language.

Models for episodic memory grew out of research on scripts. Recall that a script is
a stereotyped sequence of events, such as those involved in going to the dentist. One
obvious guestion 1o ask is: How are scripts acquired? Surely they are acquired through
personal experience. Bul a particular experience often includes details that we do not
wani to include in a scripi. For example, just because we once saw The New Yorke
magazine in a dentist’s waiting room, that doesn 't mean that The New Ycrker should be
part of the dentist scripl. The problem is that if a seript contains too man * details. it will
not be matched and retrieved correctly when new, similar situations arise.

In general, it is difficult to know which script Lo retrieve (as we discussed in Sec-
tion 4.3.5). One reason for this is that scripis are oo monolithic. It is hard 1o do
any kind of partial matching. [t is also hard to modify a script. More recent work
reduces scripts to individual scenes. which can be shared across multiple structures.
Stercotypical sequences of scenes are strung together into memory organization packets
(MOPx) [Schank, 1977). Usually. three distinct MOPs encode knowledge about an
event sequence One MOP represents the jhysical sequence of events, such as entering
a dentist’s office, sitting in the waiting room, reading a magazine, sitting 1o the dentist’s
chair, etc. Another MOP represents the set of social evenis that take plaee. These are
events that involve personal interactions. A third MOP revolves around the goals of the
person in the particularepisode. Any of these MOPs may be important for understanding
new situations.

MOPs organize scenes, and they themselves are further organized inio higher-level
MOPs. For example, the MOP for visiting the office of a professiopal may comtain a
sequence of abstract general scenes, such as talking Lo an assistant, waiting. and mecting.
High-level MOPs contain no actual memories, «o where do they come from?

New MOPs are created upon the failure of expectations. When we use scripts for
story understanding. we are able (o locate interesting parts ol (he story by noticing pluces
where events do not conform to the seript's expectations. In a MOP-based sysiem, 1if
an expectation is repeatedly violated, then the MOP is generalized or spli, Eventually,
episodic memories can fade away, leaving only a set of generalized MOPs. These MOEs
look something like scripis, except that they shaie scenes with one another.

Let's look at an example. The first time you go lo the dentist, you raust determine
how things work from scratch since you have no prior experience. In doing so0, you
store detailed accounts of each scene and string them logether into a MOP, The next
time you visit the dentist, that MOP provides certain expectations, which are mostly
met. You arc able to deal with the situation casily and make inferences that you could
nol make the first time. If any expectation fails, this provides grounds for modifying
the MOP. Now, suppose you later visit a doctor’s office. As you begin to store episodic
scenes, you notice similarities between these scenes and scenes from the dentist MOP.
Such similarities provide a basis for using the dentist MOP to generate expectations.
Multiple trips to the doctor will result in a doctor MOP that is slightly different from
the dentist MOP. Later experiences with visiting lawyers and government officials will
result in other MOPs. Uhtimately, the structures shared by all of these MOPs will cause
a generalized MOP 1o appear. Whencver you visit a professional’s office in the future,
you can use the generalized MOP 1o provide expectations.



i UASE BASED QEASUNIVE 543

With MOPs. memory is boih a vonsiructive and reconsizuclive process it is con-
siructive because new experiences Crealc nCw mMemory Sruciurcs, It is reconstructive
because even if the details of a particular episode are lost, the MOP provides information
about what was likely to have happened. The ability o do this kind of reconstruction iy
an important feature of human memary.

There are several MOP-based compuler programs. CYRUS [Kolodner, 1984] is a
program that contains episodes taken from the fife of a particular individual, CYRUS
can answer questions that require significant amounts of memory reconstruction, The
PP program | Lebowitz, 1983] accepts stories about terrorist attacks and stores them in
an episodic memory As it notices similarities in the stories, it creates general memory
structures. These structurss improve its ability 1o understand. MOPTRANS [Lytinen,
1984 uses a MOP-based memory 10 undersiand sentences in one language and translate
them into another

19.4 Case-Based Reasoning

We now turn to the role of memory in general problem solving. Most Al programs
solve problems by reasoning from first principles. They can explain their reasoning
by reporting the string of deductions that led from the input data to the conclusion
With human experts, however, we often observe a different type of explanation. An
experl encountering @ new problem is usually remninded of similar cases seen in the
past. remembering the results of those cases and perhaps the reasoning behind those
results. New problems are solved by analogy with old ones and the explanations are
often couched in terms of prior experiences. Medical expertise, for example, scems 10
follow this panern, and legal education is also case-oriented.

Computer systems that solve new problems by analogy with old ones are often called
case-based reasoning (CBR) systems. A CBR system draws its power from a large case
tibrary. rather than from a set of first principles. In order to be successful, CBR systems
st answer the following questions:

| How are vases organized in memory?

2. How are relevant cases retrieved from memory !

3. How can previous cascs be adapted to new problems?!
4. How are cases originally acquired?

The memory structures we discussed in the previous section are clearly relevant 1o
C BR. Those structures were used primarily in text understanding applications, however.
Now we look at general memory-based problem solving.

To use a memory effectively, we must have a rich indexing mechanism. When we
are presented with a problem, we should be reminded of relevant past experiences. but
not be inundated with a lot of useless memories. The obvious idea 1s to index past
episodes by the features present in them. For example, any experience having to do
with a car would be filed under Car, as well as under other indices. But we must have
some scheme for distinguishing important indices from unimportant ones. Otherwise,
everything will remind us of everything clse. and we will be unable 1o focus on memories
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that will best help us to solve our current problem. But important features are not always
the most obvious ones. Here is an example from Schank [1977]. called the “steak and
haircut™ story:

X described how his wife would never cook his steak as rare as he liked it.

When X told this to Y. Y was reminded of a time, 30 years carlier, when

he tried to get his hair cut in England and the barber just wouldn't cui it as
Ahortas he wanted i1,

4¢y. the indices Steak, Wife, and Rare arc insufficient to remind Y of the barbershop

efisode. We need more general indices, such as Provide-Service, Refusal, and Extreme.
Dyer [ 1983] also takes up this theme, embodied in a program that deduces adages and
morals from narratives,

Some features are only important in certain contexts. For example, suppose it is
cloudy. If your problem is o plan a picnic, you might want to retrieve other episodes
involving cloudy days. But if your problem is 10 write a computer program, then the fact
that it is cloudy is probably incidental. Because imporiant features vary from domain
1o domain, a general CBR system must be able to learn a proper set of indices from
experience. Both the inductive and explanation-based learning 1echniques described in
Chapter 17 have been used for this task.

Recall that in our discussion of production systems, we talked about how rules
and states could be organized into a RETE network for efficient matching. We also
discussed matching frames and scripts in Section 4.3.5 Something similar is required
for CBR, since the number of cases can be very large. The data structure for the case
itself is also important. A case is usually stored as a monolithic structure, although 1n
some variations, cases can be stored piecemeal. The former strategy is efficient when
it 15 possible to obtain almost-pertect matches; the latter strategy is better in complex
problem-solving domains.

The result of the retrieval process is usualiy = set of cases. The next step is 1o take
the best case and adapt it to the current sitvation. One method for choosing the best case
is the use of preference heuristics [Kolodner, 1989]. Here are some examples:

s Goal-Directed Preference—Prefer cases that involve the same goal as the current
situation.

= Salient-Feature Preference—Prefer cases that match the most important features,
or those that match the largest number of important features.

¢ Specificity Preference- Prefer cases that match features exactly over those that
match features generally,

= Frequence Preference—Prefer frequently matched cases.
* Recency Preference—Prefer recently matched cases.

¢ Ease-of-Adapiation Preference—Prefer cases with features that are easily adapted
to new situations,
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Since even the best case will not match the curreni situation exactly, it vl i@
to be adapted. At the simplest level. this involves mapping new objects onta uld ones
(e.g., Sreak onto Hair. und Rare onto Shorr). When old cases represent entire preblem
solving episodes, adaptation can be quite complex. CHEF {Hammona, !986] is an
example of a case-based planner, a program whose cases are actually complete plan:
for selving problems in the domain of cooking. CHEF's case library is augmented with
a plan-modification library indexed by plan types and change types CHEF first louks
at the retrieved pian and sees 1l 1t <atisfies the current goals. If any goal is unsatisfied,
then the plan-modification library is consulted. The itbrary may suggesta hist of steps
{o be added to the plan, deleted trom the plan, ov substituted for evisting steps. his
modification process is not § aranteed to succeed, however, and 50 CHEF ncludes a
plan repair module that uses coman know!edge to explain why the new plan fails, if it
does. Once a complete, working plan is created, it is executed and then stored mn the
case library [or future reference.

We have said nothing yet about how cases arc acquired originally. In fact, most
CBR systems draw on a small library of cases that are entercd by hand. Of course, we
will eventually be able to wansform large bodies of on-line texts, such as legal cases,
into large casc libraries. Another approach 1s to bootstrap gi adually from rule-bases
«carch into CBR. The idea is to start solving problems with a heuristic search engine
Each time a problem is solved. 1tis automatically stored in a case library. As the librar
grows, it becomes possible 10 solve SOmE new problems by analogy with old ones. The:
idea is very similar to some of the learning techniques we saw in Section 17.4—1he
acquisition of search control rules, for example. This brings up the issue of whether v
i better 1o store whole cases in memory or [0 tore smaller bits of control knowledge
instead. There are a number of trade-offs involved. First is the ease of modification.
Central to case-based reasoning isthe idea that stored cases can be adapied and modified.
Search control rules are morc procedural. Once learned, they are hard Lo modify. If a
search control tule starts to perform badly, it 1s usually deleted intoto. Another trade-off
nvolves indexing. Séarch control rules are fully indexed: they apply in exactly the
Jituations to which they are relevant. Cases, on the other hand, are usually indexed
heuristically, as we saw above. Finally, cearch control rules are explicitly generalized at
storage time. In CBR, peneralization occurs over time as a by-product of the retrieval
and adaptation process. Ag gressive gencralization makes it easy 10 solve new problems
quickly, but in fess complete domains, where proper generalizations are unknown, an
aggressive sirategy can be inefficient and even incorrect.

19.5 Exercises

I Consider a toy balloon hooked up Lo a pottle of compressed air.  As the aw
is released. the balloon expands. Using guatitauve measures, list the quantity
spaces of variables and rates of change n this systern. Construct an envisionmen!
for the system, and wrile down onc possible history.

2. Express all the temporal relations in Figure 19.3 in terms of the singic relation
MEETS.

3. Suppose you know the following facts:
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® The Franco-Prussian War took place before World War |
® The Battle of Verdun took place during World War 1.

Convert these facts into logical statements in terms of the MEETS relation. Use
the commansense axinms of time given in Section 19.2.1 to show that the Franco-
Prussian War must bave occurred before the Batile of Verdun.

- Using the axioms in Section 19.2.2, show that a robot submerged under waler will
be wet all over.

. Case-based reasoming shares many of the same sdeas of icarning by analogy
(Section 17.8). Briefly discuss how transformationad and derivational analogy
could apply in case based reasoning sysiems.

. Forgeuting is une aspect of human memory that is not usually modeled in computer
systems. Under what circumstances might a case based reusoning system benefit
from she ability 1o forgel ?



Chapter 20

Expert Systems

Expert systems solve problems (such as the ones in Figure 1.1) thor are nornally solved
by human “experts.” To solve expert-level problems, expert systems need uccess 10 a
<ubstantial domain knowledge base, which must be built as efficiently as possible. They
also need 10 exploit one or more reasonmg mechanisms 1o apply their knowledge @
the problems they are given. Then they need a mechanism for explaininy what they
have done 1o the users who rely on them. One way to look at expert systems 18 thul
they represent applied Al in a very broad sense. They tend to lag several years behind
research advances, but because they are tackling harder and harder problems. they will
eventually be able to make use of all of the kinds of results that we have described
throughout this bgok. So this chapter is in some ways a rev iew of much of what we
have already discussed.

The problems that expert systems deal with are highly diverse. There are some
general issues thal anse across these varying domains. But it also turns out that there
are powerful technigues thal can be defined for specific classes of problems. Recall that
m Section 2.3.8 we mtroduced the notion of problem classitication and we described
come classes into which problems can be organized. Throughout this chapier we have
nccasion 10 return 10 this idea, and we see how some key problem characteristics play
wn important role in guiding the design of problem-solving systemns. For example. it is
now clear that tools that are developed to support one classification or diagnosis task
are often useful for another. while different rools are useful for solving various kinds of
design tasks.

20.1 Representing and Using Domain Knowledge

Expert systems are coniplex Al programs. Alrmost all the technigues that we described
in Parts 1 and 11 have been cxploited in a1 least one expert system Howeve-, the
most widely used way of representing domain knowledge in expert systems iv as a
set of production rules, which ure often coupled with a frame system ihat defines the
objects that occur in the rules. In Section 8.2, we saw one cxample of an expert systzm
rule, which was taken from the MYCIN system. Let’s look ata few additional examples
drawn from some other representative expert systems. All the rules we show are English

547
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versions of the actual rules that the systems use. Differcnces among these rules illustrate
some of the important differences in the ways that expert systems operate.

Rl [McDemott, 1982; McDermott, 1984] (semetimes also called XCON) is a
program that configures DEC VAX systems. Its rules look Tikethis:

If: the most current active context iz distributing
massbus devices, and
there is a single-port disk drive that has pot been
assigned to a massbus, and
there are no unassigned dual-port disk drives, and
the number of devieces that each massbus should
support is known, and
there is a massbus that has been assigned at leas:
one disk drive and that should support additional
disk drives,
and the type of cable needed t¢ connect the disk drive
to the previous device on the massbus is known
then: assign the disk drive to the massbus.

Notice that R1’s rules, unlike MYCIN's, contain no numeric measures of certainty.
In the task domain with which R 1 deals, it is possible to state exactly the comrect thing
to be done in each particular set of circumstances (although it may require a relatively
complex set of antecedents to do so). One reason for this is that there exists a good
deal of human expertise in this area. Another is that since R 1 is doingu.design task (in
contrast to the diagnosis task performed by MYCIN), it is not necessary to consider all
possible alternatives; one good one is enough. As a result, probabilistic information s
not necessary inR1.

PROSPECTOR [Dudu et al.. 1979 Hart er al., 1978] is a program thal provides
advice on mineral exploration. Its rules look like this:

[f: magnetite or pyrite in disseminated or veinlet form is
piesent
then: {2, -49) there 13 favorable miperalization and rexture
for the propylitic stage.

In PROSPECTOR, each rule comains twe confidence estimates. The first indicates
the extent to which the presence of the evidence described in the condition part of the
rule suggesis the validity of the rule's.conclusion. In the PROSPECTOR rule shown
above, the number 2 indicates that the presence of ihe evidence is mildly encouraging.
The second confidence estimate measures the extent to which the evidence is necessary
1o the validity of the conclusion, or stated another way. the extent o which the lack of
the evidence indicates that the conc'usion is not valid. Inthe example rule shown above.
the number —4 indicates that the absence of the evidence is sirongly discouraging for
the conclusion. y

DESIGN ADVISOR [Steele ef al.. 1989] 15 a system that entiques chip designs. Tty
rules look like:

[f: the sequential levei count of ELEMENT 15 greaater than 7,
UNLESS the signal of ELEMENT is resetlable
rhon: critique for poor resetability
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DEFEAT: pO0OL resetability of ELEMENT
Aue to: sequential level count of ELEMENT greater Lhan 2
py: ELEMENT is directly resetable

The DESIGN ADVISOR gives sdvice 1o a chip designer, who can accepl OF reject
the advice. 1f the advice is rejected, the sysien: can explout a Justificaizon-based tiuth
maintenance system o revise its model of the circuit. The first rule shown here says
that an element should be cniticized for poor resetability if ity sequential fevel countis
areater than two, unless its signal 1s currently believed to be resetable. Resetability is
a fairly common condition, so it is mentioned explicitly in this first rule. But rhere is
also a much less common condition, called direct resetability. The DESIGN ADVISOR
does not even bother to consider that condition unless it gets in trouble with its advice.
At that point, it can exploit the second of the rules shown above. Specifically, if the
chip designer rejects a critique about resetability and if that critique was based on a high
level count, then the system will attempt 10 discover (possibly by asking the designer)
whether the element is directly resetable. If it is, then the original rule is defeated and
the conclusion withdrawn.

Reasoning with the Knowledge

As these example rules have shown, expert systems exploit many of the representation
and reasoning mechanisms that we have discussed. Because these programs are usually
written primarily as rule-based systems, forward chaining, backward chaining, ur some
combination of the two, is usually used. For example, MYCIN used backward chaining
1o discover what organisms were presenk, then it used forward chaiming (o reason from
the organisms 10 a treatment regime. R1, on the other hand. used forward chaining. As
{he field of cxpert sysiems matures, more sysiems that explait other kinds of reasoning
mechanisms are being developed. The DESIGN ADVISOR is an example of such a
system; in addition to exploiting rules, it makes extensive use of a justification-based
truth maintenance system.

20.2 Expert System Shells

{nitially, each expert sysiem {hat was built was created from scratch, usually in LISP. But,
after several systems had been buili this way. it became clear that these sysiems often had
4 ot in common. In particular, since the systems were constructed as a set of declarative
representations (mostly rules) combined with an interpreter for those representanions. i
was possible to separate the interpreter from the domain-specific knowledge and thus
\0 create a system that could be used to construct new cxpert systems by adding new
knowledge corresponding {0 the new problem domain. The resulting inierpreters arc
called shells. One influential example of such a shell is EMYCIN (for Empty MYCIN)
[ Buchanan and Shortliffe, 1984], which was derived from MYCIN.

There are now several commercially available shellsthat serve as the basis for many
of the expert systems currently being built. These shells provide much greater flexibulity
in representing knowledge and in reasoning with it than MYCIN did. They typically
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support rules, frames, truth maintenance systems, and variety of uther reasoning
mechanisms.

Early expert system shells provided mechanisms for knowledge representation, rea-
soning, and cxplanation. Later, tools for knowledge acquisition were added. as we
see in Section 20.4. But as experience with using these systems 1o solve real world
problems grew. it became clear that expert system shells needed (o do something else
as well. They needed 10 make it easy to integrate expert systems with other kinds of
programs. Expert systems cannot operate in a vacuum, any more than their human
counterparts can. They need access to corporate databases, and access to them needs 10
be controlled just as it does for other systems. They are often embedded within larger
application programs that use primarily conventional programming lechniques. So one
of the important features that a shell musi provide is an easy-to-use interface between
an expert system that is written with the shell and a larger, probably more conventional,
programming environment.

20.3 Explanation

In order for an expert system to be an effective tool. people must be able to interact with
it easily. To facilitate this interaction. ihe expert system must have the following two
capabilities in addition 1o the ability 10 perform its underlying task:

» Explain its reasoning. In many of the domains in which expert systems operate,
people will not accept sesulis unless they have been canvinced of the accuracy
of the reasoning process that prodiced those results. This is particularly true,
for example, in medicine, where a doctor must accept ultimate responsibility for
a diagnosis, even if that diagnosis was arrived at with considerable help from a
program. Thus it is important that the reasoning process used in such programs
proceed in understandable steps and that enough meta-knowledge (knowledpe
about the reasoning process) be available so the explanations of 1those steps can
be generated.

* Acquire new knowledge and modifications of old knowledge. Since expen sys-
tems derive their power from the richness of the knowledge bases they exploil. it is
extremely tmportant that those knowledge bases be as <complete and as accurate as
possible. But often there exists no standard codification of that knowledge; ruther
it exists only inside the heads of human experts. One way 1o get this knuwierdge
into a program is through interaction with the human cxpert. Another way is 1o
have the program leam expen behavior from raw data.

TEIRESIAS [Davis, 1982; Davis, 1977 was the first program to support explanation
and knowledge acquisition. TEIRESIAS served as a front-end for the MYCIN expert
system. A fragment of a TEIRESIAS-MYCIN conversation with a user (a doctor) is
shown in Figure 20.1. The program has asked for a piece of information that it needs
in order to continue its reasoning, The doctor wants o know why the program wants
the information, and later asks how the program arrived at a conclusion that it ¢laimed
it had reached.
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1s the patient’s i1llnecs with ORGANISM-1 a4 hospital-acquired

infection?

- “HY .

[i.e., WHY is it important to determine whether or not the

infection wiLh ORGANISM-1 was acquired while the patient

was hospitalized?]

{2,0) This will aid in determining the category of
ORGANISM-1. It has already been established that

12.1] the gram stain of ORGANISM=-1 is gramneg, and

[2.2] the morphology cof ORGANISM-1 1s rad, and

[2.3] the aerobicity of URGANISM-1 is facultative

Therefore, if

[2.41 the infection with ORGANISM-1 was nnt acquired

while the patient was hospitalized, then
“here is strongly suggestive evidence (.8) that the
category of OQRCANISM-1 :i5 enterobacteriaceae

{ALS0O: there is weakly suggestive evidence (.1) that

the identity of ORGANISM-1 14 pseudomeonas-aeruginosal

PRULEC3T)

HOW [2.3]
|h.e., HOW was it established chat the aerobicity of
ORGANISM-1 is facultative?]
The following were used:

[3.1] RULEOZ?7 indirated there is strongly suggestive
evidence (.8) that the aercbicity of ORGANICM-I
5 faculrative.

[2.2) RULEO33 indicated there 13 weakly suggestive
evidence (.2) that the aerobicity of ORGANISM-1
is not facultative.

Since this gave a cumulative CF of (.6) for facultative,
the evidence indicates that the aercbicity ol ORGANISM-1
1s facultative.

Figure 20.1: A Portion of a Dialogue with TEIRESIAS

An imporiant premise underlying TEIRESIAS ‘s approach to explanation is that the
behavior of a program can be cxplained simply by referring to a trace of the program’s
execution. There arc ways in which this assumption limits the kinds of explanations
that can be produced, but it docs minimize the overhead involved in generating each
cxplanation. To understand how TEIRESIAS generates explanations of MYCIN's
behavior, we need 1o know how that behavior is structured.

MYCIN attempts 10 solve its goal of recommending a therapy for a particular patient
by first finding the cause of the patient’s illness. It uses its production rules to reason
backward from goals to clinical observations. To solve the top-levei diagnostic goal, 1t
looks for rules whose right sides suggest discases. It then uses the left sides of those
rules (the preconditions) to sct up subgoals whose success would enable the rules to
be invoked. These subgoals are again matched against rules, and their preconditions



552 CHAPTER 20. EXPERT SYSTEMS

are used 10 set up additional subgoals. Whenever a preconaition describes a specific
piece of clinical evidence, MYCIN uses that evidence if it alrcady has access to it.
Otherwise. it asks the user to provide the information. In order that MYCIN’s requests
for information will appear coherent to the user, the actual goals that MYCIN sets up
are often more general than they need be to satisfy the preconditions of an individual
rule. For example, if a precondition specifies that the identity of an organism is X,
MYCIN will set up the goal “infer identity.” This approach also means that if another
rule mentions the organism’s identity, no further work will be required, since the identity
will be known.

We can now retumn (o the trace of TEIRESIAS-MYCIN's behavior shown in Fig-
ure 20.1. The first question that the user asks is a “WHY” yuestion, which is assumed
fo mean “Why do you need to know that?" Particularly for clinical tests that are either
expensive or dangerous, it is important for the doctor to be convinced that the infor-
mation is really needed before ordering the test. (Requests for sensitive or confidential
information present similar difficulties.) Because MYCIN is reasoning backward, the
question can easily be answered by examining the goal tree. Doing so provides two
kinds of information:

= What higher-level question might the system be able to answer if it had the
requested piece of information? (In this case, 1t could help determine the category
of ORGANISM-1.)

s What other information does the system already have that makes it think that the
requested piece of knowledge would help? (In this case, facts [2.1] to [2.4])

When TEIRESIAS provides the answer to the first of these questions, the user may
be satisfied or may want to follow the reasoning process back even further. The user
can do that by asking additional “WHY™ guestions

When TEIRESIAS provides the answer to the second of these questions and tells
the user what it already believes, the user may want 1o know the basis for those beliefs.
The user can ask this with 2 "HOW" guestion. which TEIRESIAS will interpret as
‘How did you know thai?” This question also can be answered by looking at the goal
tree and chaining back ward from the stated fact 1o the evidence that allowed a rule thai
determined the fact to fire. Thus we sce that by reasoning backward from its top-level
2oal and by keeping track of the entire tree that it raverses in the process, TEIRESIAS-
MYCIN can do a fairly good job of justifying its reasoning to a human user. For more
details of this process, as well as a discussion of some of its limitations. see Davis
(1982).

The production system model is very general, and withoul some restrictions. i ic
hard 1o support all the kinds of explanations that a human might want. If we focus on a
particular type of problem solving, we can ask more probing questions. For example,
SALT [Marcus and McDermott, 1989] is a knowledge acquisition program used to build
expert systems that design artifacts through a propose-and-revise strategy, SAILT i
capable of answering questions like WHY-NOT (“why didn't you assign value x to this
parameter?”) and WHAT IF (“what would happen if you did?"). A human might ask
these questions in order 1o locate incorrect or missing knowledge in the system as 7
precursor to correcting it. We now turn (o ways in which a program such as SALT can
support the process of building and refining knowledge.
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20.4 Knowledge Acquisition

How are expert sysiems built? Typically, a knowledge enginecr interviews a domain
expert to elucidate expert knowledge, which is then translated into rules. After the
initial system is built, 1t rust be iteratively refined until it approximates expert-level
performance. This process is expensive and Hme-consuming, so 1tis worthwhile 1o
look for more automatic ways of constructing expert knowledge bases. While no totally
automatic knowledge acquisition systems yel exist, there are many programs that interaci
with domain experts 10 exiract expert xnowledge efficiently. These programs provide
support for the following activities:

« Entering knowledge
« Muintaining knowledge base consistency
« Ensuring knowledge hase completeness

The most useful knowledge acquisition programs are those that are resiricted 1o 2
particular problem-solving paradigm, ©.g. diagnosis or design. It is important to be
able 1o enumerate the roles that knowledge can play in the problem-solving process.
For example, if the paradigm is diagnosis, then the program can structure its knowledge
base around symptoms, hypotheses, and causes. It can identify symptoms for which
the expert has not yet provided causes. Since one symptom may have multiple causes,
the program can ask for knowledge about how to decide when one hypothesis is better
than ancther. 1f we move 10 another type of problem solving, say designing artifacts,
then these acquisition strategies no longer apply. and we must look for other ways
of profitably intcracting with an expert. We now examine ©'vo knowledge acquisition
systems in detail.

MOLE [Eshelman, 1988] is a knowledge acquisition system for heuristic classifica-
tion problems, such as diagnosing discases. In particular, it is used in conjunction with
the cover-and-differentiate problem-solving method. An expert system produced by
MOLE accepis input data, comes up with a set of candidate explanations or classifica-
tions that cover (or explain) the data, then uses differentiating knowledge to determine
which one is best. The process is iterative, since explanations must themselves be
justified, until ultimate causes arc ascertal ned.

MOLE interacts with a domain expert 1o produce @ knowledge base that a system
called MOLE-p (for MOLE-performance) uses 10 solve problems. The acquisition
proceeds through several steps:

1. Initial knowledge basc construction. MOLE asks the expert to list common
symptoms of complaints that might require diagnosis. For cach symptom, MOLE
prompts for a list of possible explanations. MOLE then iteratively seeks out
higher-level explanations until it comes up with a set of ultimate causes. During
this process, MOLE builds an influence network similar 10 the belief networks we
saw in Chapter 8.

Whenever an cvent has multiple explanations, MOLE tnes 1o determine the
conditions under which one explanation is correct. The expert provides covering
knowledge, that is, the knowledge that a hypothesized event might be the cause
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of a certain symptom. MOLE then tries to infer anticipatory knowledge, which
says that if the hypothesized event does occur, then the symptom will definitely
appear. This knowledge aliows the system lo rule out centain hypotheses on the
basis that specific symptoms are absent.

2. Refinement of the knowledge base. MOLE now tries to identify the weaknesses
of the knowledge base. One approach is to find holes and prompt the expert to fill
them. Itis difficult, in general, io know whether knowledge base is complete, so
instead MOLE lets the expert watch MOLE-p solving sample problems. When-
ever MOLE-p makes an incorrect diagnosis, the expert adds new knowledge.
There are several ways in which MOLE p can reech the wrong conclusion. It
may incorrectly reject a hypothesis because it does not feel that the hypathesis is
veeded to explain any sympiom, It may advance a hypothesis becanse it is needed
to explain some otherwisc inexplicable hypothesis. Or it may lack differentiating
knowledge for choosing between alternative hypotheses.

For example, suppose we have a paticnt with symploms A and B. Further suppose
that symptom A could be caused by evenis X and Y, and that symptom B can be
caused by Y and 7. MOLE-p might conclude Y, since it explains both A and B.
M ihe expert indicates that this decision was mcorrect, then MOLE will ask what
evidence should be used to prefer X andjor Z over '

MOLE has been used 1o build systems that diagnose problems with car engines,
groblems in steel-rolling mills, and snefficiencies in coai-burmning power plants. For
MOLE to be applicable, however, it must be possible to preenumerate solutions or
classifications. 1t must also be practical 10 encode the knowledge in terms of covering
and differentiating.

But suppose our task is to design an artifact, for example, an elevaior system. |
is no longer possible to preenumerate all solutions. Instead, we must assign values to
a large number of parameters, such as the width of the piatform, the type of door, the
cable weight, and the cable strength  These parameters must be consistent with each
other, and they must result in a design that satisfies external constraints imposed by cost
faciors, the type of building involved, and expecied payioads,

One problem-solving method useful for design tasks is called propose-and-revise
Propose-and-revise systems build up solutions incrementally. First, the sysiem proposes
an extension to the current design. Then it checks whether the extension violates any
global or local constraints. Constraint violations are then fixed, and the process repeats.
It tums out that domain cxperts are good at listing overall design constraints and at
providing local constraints on individual parameters, but not so good at explaining
how to arrive at global solutions. The SALT program [Marcus and McDermott, 1989]
nrovides mechanisms for elucidating this knowledge from the expent.

Like MOLE, SALT builds a dependency network as it converses with the expert,
Each node stands for a value of a paramcter that must be acquired or generated. There
are three kinds of links: conrributes-ro, constrains, and suggests-revision-of, Associated
with the first type of link are procedures thar allow SALT to generate a value for onc
parameter based on the value of another The second iype of link, constrains, rules out
certain parameter values. The third link, suggests-revision-of, points to ways in which
# consiraint violation can be fixed SALT uses the following heuristics to guide the
acquisition process:
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1. Every noninput node in the network needs at least one contribufes-1o link coming
into it. If links are missing, the expert is prompted to fill them in.

2. No contributes-to loops are allowed in the network. Without a value for at least
one parameter in the loop, it 1s impossible to comput  values for any parameter in
that loop. If a loop exists, SALT tries to transform one of the coniributes-16 links
into a constrains link.

1. Constraining links should have suggests-revision-of links associated with them.
These include constrains liaks that arc created when dependency loops are broken,

Control knowledge is also important. It is critical that the sysiem propose extensions
and revisions that lead toward a design solution. SALT allows the expert torate revisions
in terms of how much trouble they tend 10 produce.

SALT compiles its dependency neiwork into 2 set of production rules. As with
MOLE, an expert can watch the production system solve problems and ca:: overmide the
system’s decision. At that point, the knowledge base can be changed or the override can
be logged for future inspection.

I'he process of interviewing a human expert (o extract expertise presents a number of
difficulties, regardless of whether the interview is conducted by a human or by a machine.
Fxperts are surprisingly inarticulate when it comes to how they solve problems. They
o not seem to have access (o the low-level details of what they do and are especially
inadequate suppliers of any type of statistical information. There is, therefore, a greal
deal of interest in building systems that automatically induce their own rules by looking
at sample probiems and solutions. With inductive techniques, an expert needs only to
provide the conceptual framework for a problem and a set of useful examples.

For example, consider a bank’s problem in deciding whether 1o approve a loan. One
~pproach to automating this task is to interview loan officers in an aftempt to extract
their domain knowledge. Anrother approach is to inspect the record of loans the bank
has made in the past and then try to generate automatically rules that will maximize the
number of good loans and minimize the number of bad ones in the future.

META DENDRAL [Mitchell, 1978] was the first program to use leamning techniques
;0 construct rules for an expert system automatically. It built rules to be used by DEN-
DRAL, whosc job was to determine the structure of complex chemical compounds.
META-DENDRAL was able to induce its rules based on a set of mass spectrome-
wy data; it was then able 1o identify molecular stiuctures with very high accuracy.
META-DENDRAL used the version space leaming algorithm, which we discussed in
Chapter 17. Another popular method for automatically constructing expert systems is
the induction of decision trees, data structures we described in Section 17.5.3. De-
cision tree expert systems have been builit for assessing consumer credit applications,
analyzing hypothyroid conditions, and diagnosing soybean discascs, among many other
applications.

Statistical techniques. such as multivariate analysis, provide an alternative approach
to building expen-level systems. Unfortunately, statistical methods do not produce
concise rules that humans can understand. Therefore it is difficult for them to explain
their decisions.

For highly structured problems that require deep causal chains of reasoning, learming
techniques are presently inadequate. There is, however, a great deal of research activity
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in this area, as we saw in Chapter 17.

20.5 Summary

Since the mid-1960s, when work began on the earliest of what are now called expen
systems, much progress has been made in the construction of such programs. Experience
gained in these efforts suggests the following conclusions:

~ These systems derive their power from a great deal of domain-specific knowledge,
rather than from a single powerful technigue.

® In successful systems, the required knowledge is about a particular area and is
well defined. This contrasts with the kind of broad, hard-to-deiine knowledge
that we call common sense. It 15 easier to build expert systems than ones with
COMIMON $ense.

* An expeit system is usually buslt with the aid of one or more experis, who musi
be willing to spend a great deal of effori transferring their expertise to the sysiem

*» Transfer of knowledge takes place gradually through many interactions between
the expert and the system. The expert will never get the knowledge right or
complete the first time

® The amount of knowledge that is required depends on the rask. Itmay range from
forty rules to thousands.

e The choice of control structure for a particalar system depends on specific char-
actenstics of the sysiem.

e Itis possible to extract the nondomaun-specibie paris from existing expert systems
and use them as tools tor building new systems in new domains.

Four major problems facing curren! expert systems are:

+ Brittleness—Becuuse expert systerms only have access to highly specific domain
knowledge. they cannot fall back on more general knowledge when the need
arises. For example, suppose that we make a mistake in entering data for o
medical expert system, and we describe a patient who is 130 years old and weighs
40 pounds. Most systems would not be able to guess that we may have reversed
the two fields since the values aren’t very plausible. The CYC system, which
we discusscd in Section 10.3, represents one attempt 10 remedy this problem
by providing a substrate of commonsense knowledge on whicn specific expert
systems can be built.

o Lack of Meta-Knowledge—Expert systems do not have very sophisticated knowl-
edge about their own operation. They typically cannot reason about their own
scope and himitations, making it even more difficult to deal with the brittleness
problem.
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e Knowledge Acquisition—Despite the development of the tools that we described
in Section 20.4, acquisition still remains a major bottleneck n applying expert
systems technology 10 new domains.

» Validation—Measuring the performance of an expert system s difficult because
we do not know how to quantify the use of knowledge. Certainly it is tmpossiblc
tu present formal proofs of correciness for expert systems. Onc thing we can do
is pit thesc systems against human experts on real-world problems. For example,
MYCIN participated in a panel of cxperts in evaluating ten selected memngitis
cases, sconng higher than any of its hwman competitors | Buchanan, 1982]

There are many issues in the design and implementation of expert systems that we
have nol covered  For examiple, there has been a substantial amount of work done 11
the arca of real-time expert systems [LafTey ef al.. 1988]. For more information on the
whole ares of expert systems and Lo get a better feel for the kinds of apphications that
exist, look at Weiss and Kulikowski [1984], Harmon and King [1985]. Rauch-Hindin
[ 1986}, Warerman (1986]. and Prerag [ 1990],

20.6 Exercises
1. Rujc-based systems vften contain rules with several conditions in their lefi sidzs,
(a» Why 1s this truc 1a MYCINY
(b} Why is this true in R1?
2. Contrast expert systems and neural networks (Chapter 18) in terms of knowledgs
representation, knowledge acquisition, and explanation. Give one domain ir

which the expert system approach would he more promising and one domain i
which the neural network approach would be more promising.



Chapter 21

Perception and Action .

Tn the first chapter of this book, we proposed a defimition of Al based on the nature of the
problems it tackles, namely those for which humans currently outperform computers.
So far, we have discussed primarily cognitive lasks, but there arc many other tasks that
also fall within this realm. In basic perceptual and motor ckills, even lower amimals
possess phenomenal capabilities compared (0 compuiers.

Perception invelves interpreting sights, sounds, smells, and touch. Action includes
the abiiity to navigate through the world and manipulate objects. In order to build robots
that live 1n the world. we must come 10 understand these processes. Figure 21.1 shows a
design for a complete autonomous robot. Most of Al is concerned only with cognition,
the idea being that when intelligent programs arc developed., we will simply add sensore
and effectors to them. But problems in perception and action are substantial in theis
own right and are being tackled by researchers in the ficld of robotics.

In the past, robotics and Al have been largely independent endeavors, and they have
developed different techniques 10 solve different problems. We attempt (0 characterii«
the field of robotics at the end of this chapter, but for now, we should note one kuy
difference between Al progrims and robols: While Al programs usually opesate in
compufer-simulated worlds, robots must operate in the physical world, As an example.
consider making a move in chess. An Al program ¢an search millions of nodes in a
game tree without ever having to Sense of touch anything in the real world. A compicte
chess-playing robot, on the other hand. must be capable of grasping picces. visually
interpreting board positions, and carrying on a host of other actions,

The distinction between real and simulated worlds has sever. | implicaiions:

e The inpul to an Al program is symbolic in form. e.2., an R-puzzle configuration
or a typed English sentence. The input to a robot is typically an analop signal
such as o *wo-dimensional video image or a speech waveform

« Robots require spectal hardware for perceiving and affecting the world. wiile Al
progruns require only pencral-purpose compuiers.

« Robot sensors are inaccurate, and their ¢ficcion are limited in precision. There
is always some degrec of uncernanty about exactly where the robot 1s lcated,

559
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The
World

Figure 21.1° A Design for an Autonomous Robot

and where objects and obstacles stand in relation 10 it. Robot effectors are also
limited in precision.

Many robots must react in real time. A robot fighter plane, for example, cannot
afford to search optimally or to stop menitoring the world during a LISP garbage
collection.

The real world is unpredictable, dynamic, and uncertain. A robot cannot hope tu
maintain a correct and complete description of the world. This means that a robot
must consider the trade-off between devising and executing plans. This trade-off
has several aspects. For one thing. a robol may not possess enough information
about the world for it 1o do any uscful planning. In that case, it must first engage
in information gathering activity. Furthermore. once it begins executing a plan,
the robot must continually monitor the resuits of its actions. If the results are
unexpected, then re-planning may be necessary. -

Consider the problem of traveling across town. We might decide 1o take a bus.
but without a bus schedule, it is impossible to complete the plan. So we make a
plan for acquiring & schedule and execute it in the world. Now we can plan our
route. The bus we want to take may be scheduled to arrive at 5:22 p.m., but the
probability of it coming at exactly 5:22 pm. is actually very small. We should
stick to our plan and wait, even if the bus is late. After a while, if the bus still has
not come, we must make a new plan.

Because robots must operate in the real world, searching and backtracking can
be costly. Consider the problem of moving furniture inte a room. Operating in a
simulated world with full information, an Al program can come up with an optimal
plan by best-first search. Preconditions pf operators can be checked quickly, and
if an operator fails to apply, another can be tried. Checking preconditions in
the real world, however, can be time-consuming if the robot does not have full
information. For example, one operator may require that an object weigh less
than fifty pounds. Navigaling to the object and applying a force to it may 1ake the
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robot several minutes, At that rate, it is impossible to traverse and backtrack over
a large search space. Worse still, it may be impossible to evaluate a projecied
arrangement of furniture without actually moving the pieces first.

Recent years have seen efforts to integrate research in robotics and Al. The old idea
of simply attaching sensors and effectors to existing Al programs has given way 1o a
serious rethinking of basic Al algorithms in light of the problems involved in dealing
with the physical world. Rescarch in robotics is likewise affected by Altechniques, since
reasoning aboul goals and plaus is essential for mapping perceptions onto appropriate
actions. In this chapter, we explore the interface between robotics and Al. We do noi
delve 100 deeply into purely robotic issues, but instead focus on how the Al technigues
we have seen in this book can be used andfor modified 10 handle problems that arise in
dealing with the physical world.

Al this point. one might ask whether physical robots arc necessary for research
purposes. Since current Al programs already operate in simulated worlds, why not
build more realistic <inmilations, which betier model the real world? Such simulators
do exist, for example, Carborell and Hood [1986] and Langley et al. [1981b]. There
are several advantages 1o using a <imulated world: Experimems can be conducted very
rapidly, conditions can easily be replicated, programs can return 1o previous states at no
cost. and sensory input can be treated in a high level fashion. Furthermore, simuiators
require no fragile, expensive mechameal parts. The major drawback to simulators 15
figuring out exactly which factors to build in. Experience with real robots continues
to expose tough problems that do wot arise even in the most sophisticated simulators.,
The world turs out—not surprisingly—tobe an excellent mode! of itseif, and a readily
available one.

21.1 Real-Time Search

We now turm 1o heuristic scarch, as exemplified 1n Al by the A* algorithm. While A% in
guaranteed 0 find an optimal path from the initial state to the goal state, the algorithm
has a number of limitations in the real world. Forone, the exponential complexity of A*
limits the size of problems it can realistically solve, and forces us 10 consider a limited
search horizon. Also, having incomplete information about the world can further imit
that search horizon. For example, consider the task of navigating from on¢ room 1o
another in an unfamiliar building, The <earch horizon is limited 1o how far one can
(literally) sce at any given ume. It is necessary 1o take steps in the physical world
in order to see beyond the horizon. despite the fact that the steps may be nonoptimal
ones. Finally, real-time tasks like driving require continuous monitoring and reacting.
Because heuristic search is {ime-consuming. we cannot afferd 10 work out optimal
solutions ahead of time.

There is a variation of A* that addresszs these 1ssues. It is called Real- lime-A*
(RTA™) {Kort. 1988]. This algorithm commits 10 4 real-world action every K seconds.
where & is some constant that depends on the depth of the search honizon. Each ume
RTA* carries oul an action. it restarts the scarch from that point. Thus, RTAY is able
ic make progress 1oward & goal state without having to plan 2 complete sequence of
solution steps in sdvance ETAY was inspired to 4 degree by work on computer pames.
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As we mentioned in Chapter 12, game-playing programs must commit te irrevocable
moves hecause of time constraints.

Algorithin: Real-Time-A*
1. Set NODE to be the start state.

7. fienerate the successors of NODE. If any of the successors is a goal state, then
quit.

3. Estimate the vaiue of each successor by performing a fixed depth search starting
at that successor, Use depth-first search. Evaluate all leaf nodes using the A*
heuristic function f = g + i, where g is the distance to the leaf node and 4’ is the
predicted distance to the goal. Pass heuristic estimates up the search tree in such
a way that the f value of each internal node is set to the minimum of the values
of its children.'

4. Set NODE to the successor with the lowest score, and take the corresponding
action in the world. Store the old NODE in a table along with the heuristic score
of the second-best successor. (With this strategy, we can never enter into a fixed

_loop, because we never make the same decision at the same node twice.) If this
node is cver generated again in step 2, simply look up the heuristic cstimate in the
table instead of redoing the fixed-depth search of step 3.

5. Goto step 2.

We can adjusi the depth to which we search in step 3. depending on how much tme
we want to spend planning versus executing actions in the world. Provided that every
part of the search space is accessible from every other part, RTA* is guaranteed 1o find 2
path to a solution state if one exists. The path may nat be an optimal one, however. The
deeper we search in step 3, the shorter our average solution paths will be. Of course,
the task itself may impose limits on how deep we can scarch, as a result of incomplete
information.

RTA* is just one example of a limited-horizonsearch algorithm. Another algorithm,
due 1o Hansson and Mayer {1989], uses Bayesian infercnce. Dean and Boddy [1988)
define a related notion, the anytime algorithm. An anytime algorithm is one that can be
interrupted and queried at any point during its computation. The longer the algorithm
runs, the more accurate its answer is. )

Now we tum 1o more specific techniques aimed at various percepiual and motor
problems. Later, we investigate architectures for integraling perception, action, and
cognition. It should be noted that this is only a brief survey of a very large and active
field of research. Those interested 1n investigating these issues more deeply should
consult robotics texts such as Brady [1982] and Craig (1985].

Ut is possible 10 prune the search tree using a technique calied alpha pruniny. & single-agent analogue of
alpha-beta pruning. Alpha pruning is 2 branch-and-bound technique of the typs we encountered in Chapter 2.
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21.2 Perception

We perceive our environment through many channels; sight, sound, touch. smell, taste.
Many animals possess these same pereeptual capabilities, and others are able to monitor
entirely different channels. Robots, 100, can process visual and auditory information.
and they can also be equipped with more exat iv 'sensors, such as laser rangefinders,
speedometers, and radar.

Two cxtremely important sensory channeis for humans are vision and spoken lan
guage. It is through these two faculties that we gather almost all of the knowledge that
drives our problem-solving behaviors,

21.2.1 Vision

Aceurate machine vision opens up a new realm of computer apphications. These ap-
plications include mobite robot navigation, complex manufacturing tasks, analysis ol
satellite images, and medical ymage processing. In this section, we investigate how we
can transform raw camera images into useful information about the world.

A video camera provides a computer with an image represented as atwo-dimensional
grid of intensity levels. Each gnd element, or pixel, may storc a single bit of nformation
(that 15, black/whitc) or many bits (perhaps a real-valued intensity measure and colos
information). A visual image is composed of thousands of pixels. What kinds of things
might we want to do with such an image? Here arc four operations, in order of increasing
complexity:

1. Signa! Processing—Enhancing the image. either for human consumption o e
inpul to another piogram.

P

Measurement Analysis—For images containing a single object. determumng the
1wo-dimensional extent of the object depicted.

3. Pattern Recognition—For single-opject images. classifying the object into a cat
egory drawn from a finite set of possibilities.

4. Image Understanding—For images contanming many objects. locating the objec.:
in the image, classifying them. and building a three-diraensional model of th-
scene.

See Niblack [1986] for algorithms that perform the first two operations. The thire
operation, patiern recognition, varies in its difficulty. It is possible to classify two-
dimensional (2-D) objects, such as machine parts coming down a conveyor belt, bul
classifying 3-D objects is harder because ot the large number of possible onentation
for each object. Tmage understanding is the most difficult visual task, and it has been
the subject of the most study in AL. While some aspects of image understanding reducs
to measurement analysis and patiem recognition, the entire problem remains unsolvei!
because of difficulties that include the following:

e An image is two-dimensional, while the world 1s diree-Gh mensional. Some mfor-
mation is necessanly los! when an image is created
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Figure 21.2: An Ambiguous Image

* One image may contain several objects, and some objects may parially occlude
others, as we saw earlier in Figure 14.8,

¢ The value of a single pixel is affected by many different phenomena, including the
color of the object, the source of the light, the angle and distance of the camera,
the pollution in the air, etc. Itis hard to disentangle these effects.

As a result, 2-D images are highly ambiguous. Given a single image, we could
construct any number of 3-D worlds that would give rise to the image. For example,
consider the ambiguous image of Figure 21.2. It is impossible to decide what 3-D solid
it portrays. In order to determine the mest likely interpretation of a scene, we have to
apply several types of knowledge.

For example, we may invoke knowléedge about low-level image features, such as
shadows and textures, Figurc 21.3 shows how such knowledge can help to disambiguate
the image. Having multiple images of the same object can also be useful for recovering
3-D structure.  The use of two or more cameras to acquire multiple simultaneous
views of an object is called stereo vision. Moving objects (or moving cameras) also
supply multiple views. Of course, we must also possess knowledge about how motion
affects images that get produced. Still more information can be gathered with a laser
rangefinder, a device that returns an array of distance measures much like sonar does.
While rangefinders are still somewhat expensive, integration of visual and range data
will soon become commonplace. Integrating different sense modalitics is called sensor
fuston. Other image factors we might want 10 consider include shading, color, and
reflectance,

High-level knowledge is also important for interpreting visual data. For example,
consider the ambiguous object at the center of Figure 21.4(a). While no low-level
image features can tell us what the object is. the object’s surroundings provide us with
top-down expectations. Expectations are critical for interpreting visual scenes, but
resolving expectations can be tricky. Consider the scene shown in Figure 21.4(b). All
objects in this scene are ambiguous; the same shapes might be interpreted elsewhere as
an amoeba, logs in a fireplace, and a basketball. As a result, there are no clear-cut top-
down expectations. But the preferred interpretations of egg, bacon, and plate reinforce
cach other mutually, providing the necessary expectations.

So how can we bring all of this. knowledge to bear in an organized fashion? One
possible architecture for vision is shown in Figure 21.5. The very first step is to convert
the analog video signal into a digital image. The next step is to extract image features
like edges and regions. Edges can be detected by algorithms that look for sets of adjacent
pixels with differing values. Since pixel values are affected by many factors, small edges
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with similar orientations must be grouped into larger ones [Ballard and Brown, 1982 ).
Regions, on the other hand, are found by grouping similar pixels together. Edge and
region detection are computationally intensive processes, but ones that can be readily
mapped onto parallel hardware. The next step is to infer 3-D orientations for the various
regions. Texture, illumination, and range data are all useful for this task. Assumptions
about the kinds of objects that are portrayed can aiso be valuable, as we saw in the
Waltz labeling algorithm (Section 14.3). Next, surfaces are collected into 3-D solids.
Small solids arc combined into larger, composite objects. At this point, the scenc is
segmented into discrete entities. The final step involves matching these entities against «
knowledge base in order to pick the most likely interpretations for them. Organizing such
a knowledge base of objects is difficult. though the knowledge-structuring techniques
we studied in Part 11 are useful. As we demonstrated above, it may be impossible te
interpret objects in isolation. Therefore, higher-level modules can pass hypotheses back
down o lower level modules, which check for predictions made by the hypotheses.

This 15 only one way of structuning an image understanding program. It highlights
the spectrum of low- to high-level knowledge required for 3-D vision. As with other
Al tasks, the success of a vision program depends enitically on the way it represents and
applies knowledge. For more information on computer vision, sec Marr | 1982], Ballard
and Brown [1982). and Hom [1986). '

21.2.2 Speech Recognition

Natural language understanding systems usually accept typed inpul, but for a nunber
of applications this 18 not acceptable. Spoken language is a more natural form ol
communication in many human-computer interfaces. Speech recognition sysiems have
been available for some lime, but theirlimitationshave prevented widespread use. Below
are five major design issues in speech systems. These issues also provide dimensions
along which systems can be compared with one anathes.

® Speaker Dependence versus Speaker Independence—A speaker-independent sys
tem can listen to any speaker and translate the sounds into written text. Speaker
independence is hard to achieve because of the wide variations in pitch and accent
Ivis casier to build a speaker-dependent system, which can be irained on the voice
palterns of a single speaker. The system will only work for that one speaker. Tt
can be retrained on another voice, but then it will no longer work for the onginal

speaker.

+ Continuous versus Isolated-Word Speech—Interpreting isolated-word speech, in
which the speaker pauses between each word, is easier than inferpreting con-
tinuous speech. This is because boundary effecis cause words to be pronounced
differently in different contexis. For example, the spoken phrase “could you™ con-
tains a f sound, and despite the fact it contains two words, there is no emply space
between them in the speech wave, The ability to recognize continuous speech is
very important, however, since humans have difiiculty speaking in isolated words

& Real Time versus Offiine Processing—- Highly interactive applications requare that
a sentence be translated into text as it is being spoken, while in other situations,
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it is permissible to spend minutes in computation. Real-time speeds are hard (o
achieve. especially when higher-level knowledge is involved.

e Large versus Small Vocabulary-—Reccogmzing utlerances that are conhned fo
small vocabularies (e.g.. 20 words) is easier than working with large vocabularies
le.g.. 20000 words). A small vocabulary helps fo limit the number of word
candidates for a given Speech segment.

+ Broad versus Narrow Grammar—An example of a narrow grammar 1s the one tor
phone numbers: § — XXX -XXXX. where X 1s any number between zero and
nine. Syntactic and semantic constraints for unrestrcted English are much harder
to represent, as we saw in Chapter 15. The narrower the gramimar s the smalles
the search space for recognition will be
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Existing speech systems make various compromises. Early systems, like DRAGON
[Baker, 1975], HEARSAY [Lesser er al., 1975], and HARPY [Lowerre, 1976] dealt
with single-user, continuous speech, and vocabularies up 1o a thousand words, They
achieved word accuracy rates of 84 to 97 percent. TANGORA [IBM speech recognition
group, 1985] moved to speaker independence and a large, 20,000-word vocabulary, but
sacrificed continuous speech. TANGORA is 97 percent accurate. One system built at
Bell Labs for recognizing continnous, speaker-independent digit recognition (for phone
numbers) has also praduced 97 percent accuracy [Rabiner o al., 1988]. SPHINX [l &=
and Hon, 1988] is the first system 10 achieve high accuracy (96 percent) on real-time,
speaker independent, continuous speech with a vocabulary of 1000 words,

What techniques do these sysiems use? HEARSAY used a blackboard architeciure,
of the kind we discussed in Chapter 16. Using this method, various knowledge sources
enter positive and negative evidence for different hypotheses, and the blackboard nte-
grates all the evidence. Low-level phonemic knowledge sources provide information
that high-level knowledge sources can use to make hypotheses about what words appeai
in the input. The high-level knowledge sources can then generate expectations that can
be checked by the low-level ones.

The HARPY system also used knowledge to direct its reasoning, but it precompiled
all that knowledge into a very large network of phonemes. In the network model, an
interpreter tries 1o find the path through the network that best matches the spoken input.
This path can be found with any number of heuristic search techmgques, for example.
beam search. HARPY was much faster than HEARSAY. but the blackboard architecture
that HEARSAY used was more general and easily extensible.

Most modem speech systems are learning sysiems. In other words, they accept
sample inputs and interpretations, and modify themselves appropriately until they are
able to transform speech waveforms into writien words. So far, statistical leaming
methods have proven most useful for learning this type of transformation. The statistical
method used in the SPHINX system is called hidden Markov modeling. A hidden
Markov model (HMM) is a collection of states and transitions. Each transition leaving a
state is manked with (1) the probability with which that transition is taken, (2) an ovtput
symbol. and (3) the probability that the output symbol is emitted when the transition is
taken. The problem of decoding o speech waveform turns into the problem of finding
the most likely path (set of transitions) through an appropriate HMM. It is possible
10 wne the probabilities of an HMM automatically so that these paths correspond to
cofrect nterpretations of the waveform. The techmgue for doing this is called the
Forwurd-backward algorithm.

Connectionisi systerns also show promise as a learning mechanism for speech recog
nifton. One problem with connectionist models is that they do not deal very well with
uine-varying data. New types of networks. such as recurrent and time-delay networks
[Waibel er al., 1989], are being employed to overcome these difficulties.

In our discussion of vision in Section 21.2.1, we saw thar higher-level sources of
knowledge can be used to manage uncertainty at lower levels. Speech recognition
also has sources of higher-level knowledpe. We have already studied some of these in
Chapter 15. Syntactic knowledge can be used to identify constituent phrases, semantic
knowledge 1o disambiguate word senses, discourse knowledge o dereference pronouns.
and so forth, Early speech recognition systems sought to make use of this higher-ieve!
knowledge in order to constrain the interpretation at the lower levels. As we saw m
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Chapter 14, a speech system the Cannot uecide between “the cat's cares are few” and
“the cat scares are few” can invoke high-level knowledge to choose one alternative over
the other.

However, modem speech systems perform fairly well without any sophisticated
syntactic or semantic models of language. Instead, simple stanistical models are used.
For example, SPHINX uses a word pair grommar, which tells it which words can legally
appear adjacent o one another In the M TANGORA uses arrigram grammar, which,
given the previous two words in the inpul, yields the probability that a given word will
cecur next.

Still, no speech system is 100 percent accuraie. There has recently been renewced
interest in integrating speech recognition and natural language processing in order {0
overcome the final hurdie. For example, ATNs and unification-based granunars can he
used 10 constrain the hypotheses made by a speech system. Thus far. integration has
proved difficult, because natural language grammars do not offer much in the way of
constraints.

In the speech recognition literature, there 1s a quantitative measure of grammar.
called perplexity. Perplexity measures the number of words that can legally appear next
in the input (on average) The telephone number recognition task has a perplext v of
10, because at any decision point, there are ten alternatives, On a sample 1000-word
Englishtask, a word-pair grammar may reduce the perplexity from 1000 down to 60. A
bigram grammar may reduce it further, perhaps to 20 [Lee and Hon, 19R88].

While natural language grammars accurately predict word categories (such as noun
and verb). they say nothing about which waords within a cafegory are likeiy to show
up in the input. For example, given the word “the.” a gramimar might hypothesize that
the next word is either an adjective o1 a noun. But this knnwiedge does us little good
when there are thousands of possible adjectives and nouns 10 choose from. Thus, itis
watural 10 (W 1o statistical, or collocational, facts about language. For example. if the
word “doctor” is recognized, then one might expect 10 hear the word “nurse” later 1n the
input. but not “Norse,” Collocational data, untike more complex synlactic and semantic
structures, can be extracted automatically from large on-line bodies of text. Ultimately,
we want 1o substitute semantic and discourse information for statistical data. If we know
the conversation is about doctors, and if we know that doctors and nurses typically work
together, then we should be able 10 generate the proper expectations. Such astrategy will
require large knowledge bases and a deeper understanding of semantics and discourse

21.3 Action

Mabiliy and intelligence seem ta have evolved together, lmmobile creatures have hittle
use for intelligence, while it is intelligence that puts mobility to effective use. In this
section, we investigate the nature of mobility m terms of how robots navigate through
the world and mantpulate objects.

21.3.1 Navigation

Navigation means moving around the world: plaaning routes. reeching deared desu-
nations w*hout bumping imio things. and s forth 1 ike vision and speech recognition
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this 1s something humans do fairly easily.

Many classic Al planning problems involve navigation. The STRIPS system, for
example, gave high-level instructions to a robot moving through a set of rooms, carrying
objects from ope 1o another. Plans to solve goals like “move box A into room X"
coniained operators like MOVE(Y, X), meaniog “move from room Y to room X." The
planner did not concern itself with how this movement was 1o be realized in the world,
from its perspective, the manner of movement was something akin 1o teleportation. A
real robot, however, must consider the low-level details involved in getting from here
io there.

Navigational problems are surprisingly compiex. For example, suppose thal there
are obstacles in the rabot’s parh, as in Figure 21.6. The problem of path planning is 10
plot a continuous set of points connecting the initial position of the robot to its desired
position.

If the robot is so small as to be considered a point, the problem can be solved
straightforwardly by constructing a visibifity graph. Let 3 be the set consisting of the
initial and final positions as well as the vertices of all obstacles. To form the visibility
graph, we connect every pair of points in S that are visible from one another, as shown
in Figure 21.7. We can then search the graph (perhaps using the A* algorithm} o find
an oprimal path for the robot.

Most robots have bulky extent, however, and we must take this into account when wi
plan paths. Consider the problem shown in Figure 21,8, where the robot has a pentagonal
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shape. Fortunately, we can reduce this problem to the previous path-planning probtem.
The algorithm is as follows: First choose a point P on the surface of the robot, then
increase the size of the obstacles so that they cover all points that P cannot enter, because
of the physical size and shape of the robot. Now, simply construct and search a visibility
graph based on P and the vertices of the new obstacles, as in Figure 21.9, The basic
idea is to reduce the robot o a point £ and do path planning in an artificially constructed
space, known as configuration space, or c-space [Lozano-Perez et al., 1984].

1f we wanl to allow rotations, we can represent the roboi as a combination of point P
and some angle of rotation#, The robot can now be considered as a point moving through
three-dimensional space (x, y, #). Obstacles can be transformed into three-dimensional
c-space objects, and a visibility graph can again be created and searched.

An alternative approach to obstacle avoidance is the use of potential fields [Khaub,
1986]. With this technique, the direction of a moving robot is continually recomputed
as a function of its current position relative to obstacles and its destination. The
yohot is essentially repelled by obstacles and attracted to the destination point. This
spproach is especially uscful for correcting positioning errors that accumulate during
@ robot's journcy and for dealing with unexpected obstacles. It can be combined with
configuration space path planning te enable robust navigation [Krogh and Thorpe, 1986).

Road followingis another navigational task that has received a great deal of attention.
The object of road following is to steer a moving vehicle so that it stays centered on @
road and avoids obstacles. Much of the problem comes in locating the edges of the road
despite varying light, weather, and ground conditions. At present, this control task is
feasible only for fairly slow-moving vehicles [Shafer and Whittaker, 1989]. Increases
in speed demand more reactivity and thus more real-time computation.

21.3.2 Manipulation

Robots have found numerous applications in industrial settings. Robot manipulators
are able 1o perform simpie repetitive tasks, such as bolting and fitting automobile parts,
but these robots are highly task-specific. It is a long-standing goal in robotics to build
robots that can be programmed to carry out a wide variety of tasks.

A manipulator is composed of a series of links and joints, usually terminating in an
end-effector, which can take the form of a two-pronged gripper, a humanlike hand. or
any of a variety of 10als. One general manipulation problem is called prck-and-place.
in which a robot must grasp an object and move it 1o a specific location. For example,
consider Figure 21.10, where the goal is (o place a peg in a hole.

There are two main subtasks here, The first 15 fo design a robot motion that ends
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Figure 21.10: A Pick-and-Place Task

with the object stably grasped between the two fingers of the robot. Clearly some form
of path planning, as discussed above, can be used to move the arm toward the object,
but we need to modify the technique when il comes to the fine motion involved in the
grasp itself. Here, uncertainty is a critical problem. Even with the vision techhiques of
Section 21.2.1, a robot can never be sure of the precise location of the peg or the arm.
Therefore it would be a mistake to plan a grasp motion in which the gripper is spread
only wide enough to permit the peg to pass, as in Figure 21.11(a). A better stratcgy
is to open the gripper wide, then close gradually as the gripper gets near the peg. as
in Figure 21.11(b). That way, if the peg tums out to be located some small distance
away from where we thought it was, the grasp will still succeed. Although this strategy
depends less on precise vision, it requires some tactile sensilivity in order io ierminaie
the grasp. Unless we take special care in designing grasping motions, uncerfainly can
lead 10 disasters. For example, should the left side of the gripper touch the peg one
second before the right side does, the peg may fall, thus foiling the grasp. Brost [1988}
and Mason er al. [1988] give robust algorithms for grasping a wide variety of ohjects.

After the peg is stably grasped, the robot must place it in the hole. This sublask
resembles the path-planning problem, although it is complicated by the fact that moving
the peg through 3-D space requires careful orchiestration of the anm’s joints. Also, we
must seriously consider the problems introduced by uncertainty. Figure 21 12(a) shows
a naive strategy for placing the peg. Failure will result from even a slight positioning
error, because the peg will jam flatly on the outer surface. A better strategy is shown
i Figure 21.12(h). We slide the peg along the surface, applying downward pressure
5o that the peg enters the hole at an angle. After this happens, we straighien the peg
gradually and push it down into the hole.

This type of motion. which reacts to forces generated by the world. is called compli-
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Figure 21.11: Naive and Clever Strategies for Grasping

ant motion. Compliant motion is very robust in the face ol uncertainty. Humans employ
compliant motion in a wide variety of activities, such as writing on chalkboards.

So given a pick-and-place problem, how can we automatically generate & sequence
of compliant motions? One approach [Lozano-Perez e ai., 1984] is to usc the familiar
problem-solving process of backward chaining. Ourinitial and goal states for the peg-in-
hole problem are represented as puints in configuration space, as shown inFigure21.13.
First, we compute the set of points in c-space from which we are guaranteed (o reach
the goal state in 2 single compliani motion, assuming a certain degree of uncertainty in
initial position and direction of movement and certain facts about relative friction. This
set of points 1s called the goal state’s strong pre-image? In Figure 21.13, the strong
pre-image of the goal state is shown in gray. Now we use backward chaining to design
a set of motions that is guaranteed to get us from the initial state to some point in the
goal state’s strong pre-image. Recursively applying this procedure will eventually yield
a set of motions that, while individually uncertain, combine to form a guaranieed plan.

21.4 Robot Architectures

Now let us turn to what happens when we put it all together—perception, cognition, and
action. There are many decisions involved in designing an architecture that integrafes
all these capabilities, among them:

e What range of tasks is supported by the architecture?
« What type of environment (c.g.. indoor, outdoor, space) 15 supported?
e How are complex behaviors turned into sequences of low-level actions?

+ Is control centralized or distributed?

The set of points from which il is possible to reach the state in a single motion 15 called the state’s weai
pre-image.
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® How are numeric and symbolic representations merged?
e How does the architecture represent the state of the world?
* How quickly can the architecture react to changes in the environment?

e How do¢s the architecture decide when to plan and when 1o act?

With thesc issues in mind, let’s look briefly at a few existing robot architectures,
CODGER [Shafer et al., 1988) is an architecture for controlling vehicles in outdoor
road-following tasks. CODGER uses a blackboard structure to organize incoming
perceptual data. The system’s control is centralized and hierarchical—all numerical
darta from sensors are fused in order to build up a consistemt model of the world. This
model is represented symbolically. CODGER has been used to build a system for
driving the experimental NAVLAB [Shafer and Whittaker, 1989] vehicle, a commercial
van that has been altered for computer control via electric and hydraulic servos. The
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NAVLAB is completely self-contained, with room for several on-board computers und
researchers.

Brooks [1986] describes the subsumption architecture for building autonomous
robots for indoor navigation and manipulation. Behaviors are built up from layers
of simple, numeric finite-state machines. Bottom layers consist of reactive, instinctual
behaviors such as obstacle avoidance and wandering. Upper layers consist of behaviors
like object identification and reasoning about object mot ions. The various behaviors
operate in a decentralized fashion, computing independently, and suppressing or inform-
ing one another. Such an organization encourages reactivity—for example, high-level
navigation behavior is suppressed abruptly when an obstacle moves 1o block a robot’s
path. In fact. the subsumption architecture takes reactivity 10 the extreme. Separate
modules monitor only the sensors that affect their behavior, and there are no explicit
goals, plans, or world models in these systems. They simply react to the situation al
hand. For example, the task of one such robot is to wander the halls, picking up soda
cans and depositing them in a bin. When the robot locates a can, several modules steer
the robot toward it. Modules goveming the robot arm continuously monitor the physical
wheels of the robot. When the wheels stop, the arm extends to grasp the can. Notice
that all these motions are decentralized and reactive: nowhere in the robot is there any
explicit plan for how 1o pick up the soda can, or how 1o pick up soda cans in general.

This kind of organization presents a perspective on problem solving similar (o the
one we described in Section 13.7. Advantages of the subsumption architecture include
simplicity and speed, since programs for controlling such robats are simple enough that
they can be rendered easily into hardware, Also, modeling the real world is a very
difficult task. one that the subsumption architecture avoids, On the other hand, it is
not clear that the subsumption architecture will scale up to complex planning problems.
Subsumption robots tend to lack the flexibility that traditional problem solvers display in
being able to reason about a wide variety of tasks. Also, they lack the ability 1o reflect on
their own actions. For example, if the wheels of the soda can robot should siop turning
because of aloose connection, the robotarm will mindlessly extend forward in search of a
nonexistent can. While the CODGER architecture emphasizes data fusion, subsumption
robots emphasize data fission. A scries of subsumption robots have been built, and they
demonstrate how reactive systems are capable of much more interesting and vaned
behavior than was previously thought. It is uaknown whether these architectures are
capable of achieving tasks that seem Lo reguire significant amounts of planning.

TCA [Simmons and Mitcheil, 1989] is an architecture that combines the idea of
reactive systems with traditional Al planning. TCA is a distributed system with cen-
tralized control, designed to control autonomous robots for long periods in unstructured
environments. such as the surface of Mars., TCA particularly addresses issues that arise
in the context of multiple goals and limited resources. The architecture provides mech-
anisms for hierarchical task management and allows action based on incomplete plans.
Because robots gather new information by moving through the world, TCA permits
olans to be terminated early should higher-priority goals arise. Some situat ions require
highly reactive behavior. TCA achieves high-speed response by parallelizing planning
and execution whenever possible. For example, in designing walking motions over
rough terrain, TCA plans onc step. initiates i1, and then begins to plan the next step
before the leg motion has been completed.
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Another program for combining heuristic problem solving with reactivity 1s called
THEO-Agent [Mitchell, 1990]. THEO-Agent contains two subsystems, a reactive
engine and a peneral problem solver (called THEO [Mitchell er al , 1989]). When the
reactive subsystem fails to suggest a course of action, the problem solver creates a plan
for the robot. As it executes the plan, the robot uses explanation-based learning to create
new reactive modules. Thus, the robot becomes increasingly reactive with experience.
Robo-SOAR [Laird et al., 1989, an extension of the SOAR problem solving system, is
another leaming robot architecture.

PRS [Georgeff and Lansky, 1987] is a symbolic robot planning system that inter-
leaves planning and execution. In PRS, goals represent robot behaviors, not world states.
PRS contains procedures for tuming goals into subgoals or iterations thereof. A proce-
dure can be invoked by either the presence of a goal or the presence of some sensory
input. Thus, the robot is capable of goal-directed behavior but can also react when the
world changes or when plans fail. Goals and procedures are represented symbolically,
and a central reasoner uses a stack 1o oversee the invocation of procedures.

21.5 Summary

The field of robotics is often described as the subfield of Al that is concerned with
perceptual and motor tasks. As Figure 21.1 suggests, the tables can easily be tumed,
and Al could well be the subfield of robotics that deals with cognition. Indeed, Brady
[1985] has proposed a definition of 1obotics with this flavor:

Robotics is the intelligent connection of perception to action.
Another definition, suggested by Grossman,® reads as follows: -
A robot is anything that is surprisingly animate.

The word “surprisingly " suggests a moving-target definition, It should be noted that
the first automatic dishwashing machines were called robots by their designers, But
after a while, it became less surprising that a machine could wash dishes, and the ierm
“robot” fell away, This characterization of robotics is similar to the one we proposed for
Alin Chapter 1. There, we characterized Al as the study of problems in which humans
currently perform better than computers. As a result, programs that solve calculus
problems are no longer considered artificial intelligence.*

These moving-target definitions accurately differentiate actual Al work and robotics
work. Al tends to focus on uniquely human capabilities, while robotics aims to produce
physical, animate behaviors. As we have seen in this chapter, however, many interesting
problems lie a1 the intersection of Al and robotics, and only by combining techniques
from both fields will we be able to design intelligent robots that live in the world

*David Grossman. afier-dinner speech delivered a1 the 7th NSF Grantees Conference, Ithaca, NY, 1979,

“We must be careful here. When movable-type printing was first introduced, it was called arrificial writing,
because il seemed 10 be awlomating what scribes had been doing for previous centuries. Of course, printing
only automates a small portion of the writing process. It is ofien more enlightening to view Al programs and
rotots as tools for enhancing human capabilitics, rather than as independent, sutonumous agents [Hifl, 1989)
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‘21.6 Exercises

Describe scenarios in which the following features are criticai:

(a) Reactivity—The robot must react quickly io a changing environment

(b) Robustness—The robot must act appropriately, in spite of incomplete or
inexact sensory data,

(¢) Recoverability—When a plan fauls to bring about expected resuits, the robot
must find another way to achieve its goal.

Why aren’t the planning technigues described in Chapter 13 sufficient 1o ensure
these charactenistics?

. Describe three different ways of combining speech recognition with a natural

language understanding system. Compare and contrast them in terms of expected
performance and ease of implementation.

. Say each of the following phrases very slowly, and writc down the sounds you

use. Then gradually speed up, and continue to write down the sounds. Finally,
say them the way you would in ordinary speech. How do the sounds change as
you move through each series? What are the implications of these changes for
continuous speech recognition?

(a) could you

(b) boy's school

(¢) the store, the elevator

(d) sharp point

(e) stop it

(f) wantto go

. Create a search graph, labeled with heuristic estimates, that shows the RTA*

algorithm cnicring the same node twice. Explain what wou Id happen if RTA* did
not keep track of previously visited states,

In Section 21.1. we said that the RTA* algorithm is guarantced to find a path

to a solution state if such a path exists and if every part of the scarch space is
accessible from every other part. Why is this second qualification necessary”?
Give an example in which, without it, a solution will not be found.
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6. Consider the following variation on the peg-in-hole problem:

Explain, using the concept of a strong pre-image, why this problem s easier than
the standard peg-in-hole problem of Figure 21.10.



Chapter 22

Conclusion

22.1 Components of an Al Program

We have now surveyed the major technigues of artificial inteiligence. From our discir.-
sion of them. it should be clear that there are two important classes of Al techniques:

« Methods for representing and 0sing knowledp=
o Methods for conducting heunstic search

These two aspecis.interact heavily with cach vther  The choice of a knowled, ¢
epresentation framework determines the kind of problem-svit.ny regrhods that can be
applied. For example, if knowledge 1s represented us formulas wn predicets lozic, taen
resolution can be used to derive new inferences. If. on 