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1-1 Digital Computers

The digital computer is a digital system that performs various computational
tasks. The word digital implies that the information in the computer is repre-
sented by variables that take a limited number of discrete values. These values
are processed internally by components that can maintain a limited number of
discrete states. The decimal digits 0, 1, 2,..., 9, for example, provide 10
discrete values. The first electronic digital computers, developed in the late
1940s, were used primarily for numerical computations. In this case the dis-
crete elements are the digits. From this application the term digital computer has
emerged. In practice, digital computers function more reliably if only two
states are used. Because of the physical restriction of components, and because
human logic tends to be binary (i.e., true-or-false, yes-or-no statements),
digital components that are constrained to take discrete values are further
constrained to take only two values and are said to be binary.

Digital computers use the binary number system, which has two digits:
0 and 1. A binary digit is called a bit. Information is represented in digital
computers in groups of bits. By using various coding techniques, groups of bits
can be made to represent not only binary numbers but also other discrete
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program
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symbols, such as decimal digits or letters of the alphabet. By judicious use of
binary arrangements and by using various coding techniques, the groups of
bits are used to develop complete sets of instructions for performing various
types of Eomputations.

In contrast to the common decimal numbers that employ the base 10
system, binary numbers use a base 2 system with two digits: 0 and 1. The
decimal equivalent of a binary number can be found by expanding it into a
power series with a base of 2. For example, the binary number 1001011 repre-
sents a quantity that can be converted to a decimal number by multiplying each
bit by the base 2 raised to an integer power as follows:

IX22+0Xx2+0Xx2+1xP2+0x2+1x2+1x2=75

The seven bits 1001011 represent a binary number whose decimal equivalent
1s75. However, this same group of seven bits represents the letter K when used
in conjunction with a binary code for the letters of the alphabet. It may also
represent a control code for specifying some decision logic in a particular digital
computer. In other words, groups of bits in a digital computer are used to
represent many different things. This is similar to the concept that the same
letters of an alphabet are used to construct different languages, such as English
and French.

A computer system is sometimes subdivided into two functional entities:
hardware and software. The hardware of the computer consists of all the
electronic components and electromechanical devices that comprise the phys-
ical entity of the device. Computer software consists of the instructions and
data that the computer manipulates to perform various data-processing tasks.
A sequence of instructions for the computer is called a program. The data that
are manipulated by the program constitute the data base.

A computer system is composed of its hardware and the system software
available for its use. The system software of a computer consists of a collection
of programs whose purpose is to make more effective use of the computer. The
programs included in a systems software package are referred to as the oper-
ating system. They are distinguished from application programs written by the
user for the purpose of solving particular problems. For example, a high-level
language program written by a user to solve particular data-processing needs
is an application program, but the compiler that translates the high-level
language program to machine language is a system program. The customer
who buys a computer system would need, in addition to the hardware, any
available software needed for effective operation of the computer. The system
software is an indispensable part of a total computer svstem. Its function is to
compensate for the dutferences that exist between user needs and the capability
of the hardware.

The hardware of the computer is usually divided into three major parts,
as shown in Fig. 1-1. The central processing unit (CPU) contains an arithmetic
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Figure 1-1 Block diagram of a digital computer.

and logic unit for manipulating data, a number of registers for storing data, and
control circuits for fetching and executing instructions. The memory of a
computer contains storage for instructions and data. It is called a random-
access memory (RAM) because the CPU can access any location in memory at
random and retrieve the binary information within a fixed interval of time. The
input-and output processor (IOP) contains electronic circuits for communicat-
ing and controlling the transfer of information between the computer and the
outside world. The input and output devices connected to the computer
include keyboards, printers, terminals, magnetic disk drives, and other com-
munication devices.

This book provides the basic knowledge necessary to understand the
hardware operations of a computer system. The subject is sometimes consid-
ered from three different points of view, depending on the interest of the
investigator. When dealing with computer hardware it is customary to distin-
guish between what is referred to as computer organization, computer design,
and computer architecture.

Computer organization is concerned with the way the hardware compo-
nents operate and the way they are connected together to form the computer
system. The various components are assumed to be in place and the task is to
investigate the organizational structure to verify that the computer parts oper-
ate as intended.

Computer design is concerned with the hardware design of the computer.
Once the computer specifications are formulated, it is the task of the designer
to develop hardware for the system. Computer design is concerned with the
determination of what hardware should be used and how the parts should be
connected. This aspect of computer hardware is sometimes referred to as
computer implementation .

Computer architecture is concerned with the structure and behavior of the
computer as seen by the user. It includes the information formats, the instruc-
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tion set, and techniques for addressing memory. The architectural design of
a computer system is concerned with the specifications of the various func-
tional modules, such as processors and memories, and structuring them to-
gether into a computer system.

The book deals with all three subjects associated with computer hard-
ware. In Chapters 1 through 4 we present the various digital components used
in the organization and design of computer systems. Chapters 5 through 7
cover the steps that a designer must go through to design and program an
elementary digital computer. Chapters 8 and 9 deal with the architecture of the
central processing unit. In Chapters 11 and 12 we present the organization and
architecture of the input-output processor and the memory unit.

1-2  Logic Gates

Binary information is represented in digital computers by physical quantities
called signals. Electrical signals such as voltages exist throughout the computer
in either one of two recognizable states. The two states represent a binary
variable that can be equal to 1 or 0. For example, a particular digital computer
may employ a signal of 3 volts to represent binary 1 and 0.5 volt to represent
binary 0. The input terminals of digital circuits accept binary signals of 3 and
0.5 volts and the circuits respond at the output terminals with signals of 3 and
0.5 volts to represent binary input and output corresponding to 1 and 0,
respectively.

Binary logic deals with binary variables and with operations that assume
2 logical meaning. It is used to describe, in algebraic or tabular form, the
manipulation and processing of binary information. The manipulation of bi-
nary information is done by logic circuits called gates. Gates are blocks of
hardware that produce signals of binary 1 or 0 when input logic requirements
are satisfied. A variety of logic gates are commonly used in digital computer
systems. Each gate has a distinct graphic symbol and its operation can be
described by means of an algebraic expression. The input-output relationship
of the binary variables for each gate can be represented in tabular form by a
truth table.

The names, graphic symbols, algebraic functions, and truth tables of
eight logic gates are listed in Fig. 1-2. Each gate has one or two binary input
variables designated by A and B and one binary output variable designated by
x. The AND gate produces the AND logic function: that is, the output is 1 if
input A and input B are both equal to 1; otherwise, the output is 0. These
conditions are also specified in the truth table for the AND gate. The table
shows that output x is 1 only when both input A and input Bare 1. The algebraic
operation symbol of the AND function is the same as the multiplication symbol
of ordinary arithmetic. We can either use a dot between the variables or




Graphin Algeraie Trurh

Name svimbhil Junction tahie

“A Bl
. = C LR
em——a . (Al 131
L) i

e b /" gius o 1]o
’ 1 D (0
R B I |
A 8| a
OR 4 v ox=A+B g oln
8 g 11
R ¢ ) 1
1 | 1

Al x

Inverer A —DO— | ol i

1|0

Al

Buffer A —D— v ot=A I

1}l
A Bl
NAND 4 t 1= [ABY il -
B — o 1|1
[ |
1 1]e
A B x
A [

NOR =0 .
B @D" y or=(A+ B 0 110
1 0|0
| . Sl O 2
A B|x
Exclusive-OR A D r=A®F g olo
{XOR) y nr

# v=AB+ AB' o
1 011
I 1) e
A B«
Exclusive-NOR A D y=1A®B)Y 6 ol
or equivalence B x or o 1]o
1=AB + AR 1 olo
11 |

Figure 1-2 Digital logic gates.

5



6  CcHAPTER ONE Digital Logic Circuits

OR

inverter

NAND

NOR

exclusive-OR

concatenate the variables without an operation symbol between them. AND
gates may have more than two inputs, and by definition, the output s 1 if and
only if all inputs are 1.

The OR gate produces the inclusive-OR function; that is, the output is 1
if input A or input B or both inputs are 1; otherwise, the output is 0. The
algebraic symbol of the OR function is +, similar to arithmetic addition. OR
gates may have more than two inputs, and by definition, the output is 1 if any
input is 1.

The inverter circuit inverts the logic sense of a binary signal. It produces
the NOT, or complement, function. The algebraic symbol used for the logic
complement is either a prime or a bar over the variable symbol. In this book
we use a prime for the logic complement of a binary variable, while a bar over
the letter is reserved for designating a complement microoperation as defined
in Chap. 4.

The small circle in the output of the graphic symbol of an inverter desig-
nates a logic complement. A triangle symbol by itself designates a buffer
circuit. A buffer does not produce any particular logic function since the binary
value of the output is the same as the binary value of the input. This circuit
is used merely for power amplification. For example, a buffer that uses 3 volts
for binary 1 will produce an output of 3 volts when its inputis 3 volts. However,
the amount of electrical power needed at the input of the buffer is much less
than the power produced at the output of the buffer. The main purpose of the
buffer is to drive other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated
by the graphic symbol, which consists of an AND graphic symbol followed by
a small circle. The designation NAND is derived from the abbreviation of
NOT-AND. The NOR gate is the complement of the OR gate and uses an OR
graphic symbol followed by a small circle. Both NAND and NOR gates may
have more than two inputs, and the output is always the complement of the
AND or OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except
for the additional curved line on the input side. The output of this gate is 1 if
any input is 1 but excludes the combination when both inputs are 1. The
exclusive-OR function has its own algebraic symbol or can be expressed in
terms of AND, OR, and complement operations as shown in Fig. 1-2. The
exclusive-NOR is the complement of the exclusive-OR, as indicated by the
small circle in the graphic symbol. The output of this gateis 1 only if both inputs
are equal to 1 or both inputs are equal to 0. A more fitting name for the
exclusive-OR operation would be an odd function; that s, its output is 1 if an
odd number of inputs are 1. Thusina three-input exclusive-OR {cdd) function,
the outputis1ifo nly cne input is 1 orif all three inputs are 1. The exclusive-OK
and exclusive-NOR gates are commonly available with two inputs, and only
seldom are they found with three or more inputs,
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1-3 Boolean Algebra

Boviean algebra 15 an aigedra tat deals with binary vanables and lugic vper-
ations. The variables are designated by letters suchas A, B, x, and y. The three
basic logic operations are AND, OR, and complement. A Boolean function can
be expressed algebraically with binary variables, the logic operation symbols,
parentheses, and equal sign. For a given value of the variables, the Boolean
function can be either 1 or 0. Consider, for example, the Boolean function

Fr=x+y'z

The function F is equal to 1if x is 1 or if both y' and z are equal to 1; F is equal
to 0 otherwise. But saying that y’ = 1 is equivalent to saying that v = 0 since
y' is the complement of y. Therefore, we may say that F is equalto 1 if x = 1
orif yz = OL. The relationship between a function and its binary variables can
be represented in a truth table. To represent a function in a truth table we need
a list of the 2" combinations of the n binary variables. As shown in Fig. 1-3(a),
there are eight possible distinct combinations for assigning bits to the three
variables x, y, and z. The function F is equal to 1 for those combinations where
x =1or yz = 01; it is equal to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into
a logic diagram composed of AND, OR, and inverter gates. The logic diagram
for F is shown in Fig. 1-3(b). There is an inverter for input y to generate its
complement y’. There is an AND gate for the term y'z, and an OR gate is used
to combine the two terms. In a logic diagram, the variables of the function are
taken to be the inputs of the circuit, and the variable symbol of the function
is taken as the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of
digital circuits. It provides a convenient tool to:

1. Express in algebraic form a truth table relationship between binary
variables.

Figure 1-3 Truth table and logic diagram for F = x + y'z.

X F F
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0 0 1 1

8 X Bl 0 ¥ F
0 1 1 0

L & B 1 z
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1 1 0 1
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(a) Truth table (b) Logic diagram
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Boclean expression

DeMorgan's theorem

2. Express in algebraic form the input-output relationship of logic
diagrams.

3. Find simpler circuits for the same function.
A Boolean function specified by a truth table can be expressed algebraically in
many different ways. By manipulating a Boolean expression according to
Boolean algebra rules, one may obtain a simpler expression that will require
fewer gates. To see how this is done, we must first study the manipulative
capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the iden-
tities in the table can be proven by means of truth tables. The first eight
identities show the basic relationship between a single variable and itself, or
in conjunction with the binary constants 1 and 0. The next five identities 9
through 13) are similar to ordinary algebra. Identity 14 does not apply in
ordinary algebra but is very useful in manipulating Boolean expressions.
Identities 15 and 16 are called DeMorgan’s theorems and are discussed below.
The last identity states that if a variable is complemented twice, one obtains
the original value of the variable.

TABLE 1-1 Basic Identities of Boolean Algebra

MDx+0=1x (2) x-0=0
B)x+1=1 4 x-1=x
Bx+x=x 6) x-x=x
Nx+x' =1 B xx'=0
O x+y=y+x (10) xy = yx
(D) x+(y+2)=@x+y)+z (12) x(¥2) = ()2

13) x(y + 2z) =y + xz
(15) (x + y)' = x'y’
17) (x') =x

(14) x + yx = (x + y)(x + 2)
(16) (xy)' = x' + ¥

The identities listed in the table apply to single variables or to Boolean
functions expressed in terms of binary variables. For example, consider the
following Boolean algebra expression:

AB'+C'D+ AB’ + C'D

Bylettingx = AB’ + C'Dthe expression can be writtenas x + x. From identity
5 in Table 1-1 we find that x + x = x. Thus the expression can be reduced to

only two terms:
AB + Dy A+ L'U-*-A;'_:i" +CD

DeMorgan's theorem is very important in dealing with NOR and NAND
gates. It states that a NOR gate that performs the (x + y)’ function is equivalent
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to the function x'y’. Similarly, a NAND function can be expressed by either
[re) or (" + ¥"). For this reason the NOR and NAND gates have two distinct
graphic symbols, as shown in Figs. 1-4 and 1-5. Instead ot representing a NOR
gate with an OR graphic symbol followed by a circle, we can represent it by
an AND graphic symbol preceded by circles in all inputs. The invert-AND
symbol for the NOR gate follows from DeMorgan’s theorem and from the
convention that small circles denote complementation. Similarly, the NAND
gate has two distinct symbols, as shown in Fig. 1-5.

To see how Boolean algebra manipulation is used to simplify digital
circuits. consider the logic diagram of Fig. 1-6(a). The output of the circuit can
be expressed algebraically as follows:

F=ABC + ABC' + A'C

Each term corresponds to one AND gate, and the OR gate forms the logical
sum of the three terms. Two inverters are needed to complement A" and C'.
The expression can be simplified using Boolean algebra.
F=ABC + ABC' + AAC=AB(C+ C') + A'C
=AB + A'C

Note that (C + C)' = 1 by identity 7and AB -1 = AB by identity 4 in Table 1-1.

The logic diagram of the simplified expression is drawn in Fig. 1-6(b). It
requires only four gates rather than the six gates used in the circuit of Fig.

1-6(a). The two circuits are equivalent and produce the same truth table rela-
tionship between inputs A, B, C and output F.

Figure 1-4 Two graphic symbols for NOR gate.

x x ,

(a) OR-invert (b) invert-AND

Figure 1-5 Two graphic symbols for NAND gare.

r * . ' U '
:_ z

(2} AND-invert (b} invert-OR
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Figure 1-6 Two logic diagrams for the same Boolean function.

Complement of a Function

The complement of a function F when expressed in a truth table is obtained
by interchanging 1's and 0's in the values of F in the truth table. When the
function is expressed in algebraic form, the complement of the function can be
derived by means of DeMorgan’s theorem. The general form of DeMorgan's
theorem can be expressed as follows:

G+ mtxyt et n) =xixixg x
X x) =xi+x+ x5+ +x

From the general DeMorgan'’s theorem we can derive a simple procedure for
obtaining the complement of an algebraic expression. This is done by changing
all OR operations to AND operations and all AND operations to OR operations
and then complementing each individual letter variable. As an example, con-
sider the following expression and its complement:

F=AB+C'D'+B'D

F'= (A" + B')(C + D)(B + D)
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The complement expression is obtained by interchanging AND and OR oper-

ations and complementing each individual variable. Note that the com plement
of C'is C

1-4 Map Simplification

The complexity of the logic diagram that implements a Boolean function is
related directly to the complexity of the algebraic expression from which the
functionis implemented. The truth table representation of a function is unique,
but the function can appear in many different forms when expressed alge-
braically. The expression may be simplified using the basic relations of Boolean
algebra. However, this procedure is sometimes difficult because it lacks specific
rules for predicting each succeeding step in the manipulative process. The map
method provides a simple, straightforward procedure for simplifying Boolean
expressions. This method may be regarded as a pictorial arrangement of the
truth table which allows an easy interpretation for choosing the minimum
number of terms needed to express the function algebraically. The map
method is also known as the Karnaugh map or K-map.

Each combination of the variables in a truth table is called a minterm. For
example, the truth table of Fig. 1-3 contains eight minterms. When expressed
in a truth table a function of n variables will have 2" minterms, equivalent to
the 2" binary numbers obtained from n bits. A Boolean function is equal to 1
for some minterms and to 0 for others. The information contained in a truth
table may be expressed in compact form by listing the decimal equivalent of
those minterms that produce a 1 for the function. For example, the truth table
of Fig. 1-3 can be expressed as follows:

F(x,y,2) = 2 (1,4,5,6,7)

The letters in parentheses list the binary variables in the order that they appear
in the truth table. The symbol 2, stands for the sum of the minterms that follow
in parentheses. The minterms that produce 1 for the function are listed in their
decimal equivalent. The minterms missing from the list are the ones that
produce 0 for the function.

The map is a diagram made up of squares, with each square representing
one minterm. The squares corresponding to minterms that produce 1 for the
function are marked by a 1 and the others are marked by a 0 or are left empty.
By recognizing various patterns and combining squares marked by 1’s in the
map, it is possible to derive alternative algebraic expressions for the function,
from which the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in F ig.
1-7. The number of squares in a map of n variables is 2". The 2" minterms are
listed by an equivalent decimal number for easy reference. The minterm
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Figure 1-7 Maps for two-, three-, and four-variable functions.

numbers are assigned in an orderly arrangement such that adjacent squares
represent minterms that differ by only one variable. The variable names are
listed across both sides of the diagonal line in the corner of the map. The (s
and 1's marked along each row and each column designate the value of the
variables. Each variable under brackets contains half of the squares in the map
where that variable appears unprimed. The variable appears with a prime
(complemented) in the remaining half of the squares.

The minterm represented by a square is determined from the binary
assignments of the variables along the left and top edges in the map. For
example, minterm 5 in the three-variable map is 101 in binary, which may be
obtained from the 1 in the second row concatenated with the 01 of the second
column. This minterm represents a value for the binary variables A, B, and C,
with A and C being unprimed and B being primed (i.e., AB’C). On the other
hand, minterm 5 in the four-variable map represents a minterm for four
variables. The binary number contains the four bits 0101, and the correspond-
ing term it represents is A'BC'D.

Minterms of adjacent squares in the map are identical except for one
variable, which appears complemented in one square and uncomplemented
in the adjacent square. According to this definition of adjacency, the squares
at the extreme ends of the same horizontal row are also to be considered
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adjacent. The same applies to the top and bottom squares of a column. As a
result, the four corner squares of a map must also be considered to be adjacent.

A Boolean function represented b g stk table 1 plattad e, the mayp
by inserting 1’s in those squares where the function is 1. The squares contain-
ing 1’s are combined in groups of adjacent squares. These groups must contain
a number of squares that is an integral power of 2. Groups of combined
adjacent squares may share one or more squares with one or more groups.
Each group of squares represents an algebraic term, and the OR of those terms
gives the simplified algebraic expression for the function. The following exam-
ples show the use of the map for simplifying Boolean functions.

In the first example we will simplify the Boolean function

F(A,B,C)=13, (3,4,6,7)

The three-variable map for this function is shown in Fig. 1-8. There are four
squares marked with 1's, one for each minterm that produces 1 for the func-
tion. These squares belong to minterms 3, 4, 6, and 7 and are recognized from
Fig. 1-7(b). Two adjacent squares are combined in the third column. This
column belongs to both B and C and produces the term BC. The remaining two
squares with 1’s in the two corners of the second row are adjacent and belong
to row A and the two columns of C’, so they produce the term AC'. The
simplified algebraic expression for the function is the OR of the two terms-

F=BC + AC’
The second example simplifies the following Boolean function:
F(A,B,C) = 3,(0,2,4,5,6)

The five minterms are marked with 1's in the corresponding squares of the
three-variable map shown in Fig. 1-9. The four squares in the first and fourth
columns are adjacent and represent the term C'. The remaining square marked
with a1 belongs to minterm 5and can be combined with the square of minterm
4 to produce the term AB’. The simplified function is

F=C'+AB

Figure 1.8 Map for F(A,B.C) = 3 (3,4,6,7).

O LE
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Figure 1.9 Map for F(A,B.C) = X (0,2,4.5,6).

The third example needs a four-variable map.
F(A,B,C,D) = 2 (0,1,2,6,8,9, 10)

The area in the map covered by this four-variable function consists of the
squares marked with 1's in Fig. 1-10. The function contains 1's in the four
corners that, when taken as a group, give the term B'D’. This is possible
because these four squares are adjacent when the map is considered with top
and bottom or left and right edges touching. The two 1’s on the left of the top
row are combined with the two 1s on the left of the bottom row to give the
term B'C'. The remaining 1 in the square of minterm 6 is combined with
minterm 2 to give the term A'CD’. The simplified function is

F=8'D"+ B'C' + A'CD'

Product-of-Sums Simplification

The Boolean expressions derived from the maps in the preceding examples
were expressed in sum-of-products form. The product terms are AND terms
and the sum denotes the ORing of these terms. It is sometimes convenient to
obtain the algebraic expression for the function in a product-of-sums form. The

Figure 1-10 Map for F(A,B, C, D) = 2(0,1,2,6,8,9,10).

(1]

=15 }
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sums are OR terms and the product denotes the ANDing of these terms. With
a minor modification, a product-of-sums form can be obtained from a map.

squares with 0’s and combine them into groups of adjacent squares, we obtain
the complement of the function, F'. Taking the complement of F* produces an

expression for F in product-of-sums form. The best way to show this is by
example,

We wish to simplify the following Boolean function in both sum-of-
products form and product-of-sums form:

F(4,B,C,D) = % (0,1,2,5,8,9, 10)
The 1's marked in the map of Fig. 1-11 represent the minterms that produce
a1 for the function. The squares marked with 0’s represent the minterms not
included in F and therefore denote the complement of F. Combining the
squares with 1’s gives the simplified function in sum-of-products form:
F=B'D'+B'C'+A'C'D

If the squares marked with 0's are combined, as shown in the diagram, we
obtain the simplified complemented function:

F' = AB + CD + BD’

Taking the complement of F’, we obtain the simplified function in product-of-
sums form:

F=(A"+B")(C' + DB’ + D)

Figure 1-11 Map for F(A,B,C,D) = %£(0,1,2,5,8,9,10).
C
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0
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The logic diagrams of the two simplified expressions are shown in Fig. 1-12.
The sum-of-products expression is implemented in Fig. 1-12(a) with a group
of AND gates, one for each AND term. The outputs of the AND gates are
connected to the inputs of a single OR gate. The same function is implemented
in Fig. 1-12(b) in product-of-sums form with a group of OR gates, one for each
OR term. The outputs of the OR gates are connected to the inputs of a single
AND gate. In each case it is assumed that the input variables are directly
available in their complement, so inverters are not included. The pattern
established in Fig. 1-12 is the general form by which any Boolean function is
implemented when expressed in one of the standard forms. AND gates are
connected to a single OR gate when in sum-of-products form. OR gates are
connected to a single AND gate when in product-of-sums form.

A sum-of-products expression can be implemented with NAND gates as
shown in Fig. 1-13(a). Note that the second NAND gate is drawn with the
graphic symbol of Fig. 1-5(b). There are three lines in the diagram with smalk
circles at both ends. Two circles in the same line designate double complemen-
tation, and since (x')' = x, the two circles.can be removed and the resulting
diagram is equivalent to the one shown in Fig. 1-12(a). Similarly, a product-of-
sums expression can be implemented with NOR gates as shown in Fig. 1-13(b).
The second NOR gate is drawn with the graphic symbol of Fig. 1-4(b). Agair
the two circles on both sides of each line may be removed, and the diagramr
s0 obtained is equivalent to the one shown in Fig. 1-12(b).

Don’t-Care Conditions

The 1’s and 0’s in the map represent the minterms that make the function equa
to 1 or 0. There are occasions when it does not matter if the function produce:
O or 1 for a given minterm. Since the function may be either 0 or 1, we say tha
we don’t care what the function output is to be for this minterm. Minterms tha
may produce either 0 or 1 for the function are said to be don’t-care condition
and are marked with an X in the map. These don't-care conditions can be usec
to provide further simplification of the algebraic expression.

Figure 1-12 Logic diagrams with AND and OR gates.
B A’
D’ D_ s':_—_>_
gt el =t
c | D' —
A

(a) Sum of products: (b) Product of sums:
F=BD' +B'C'+A'C'D F=(A'+B)(C'+D")(B"+ D)
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Figure 1-13  Logic diagrams with NAND or NOR gates.

When choosing adjacent squares for the function in the map, the X’s may
be assumed to be either 0 or 1, whichever gives the simplest expression. In
addition, an x need not be used at all if it does not contribute to the simplifi-
cation of the function. In each case, the choice depends only on the simplifi-
cation that can be achieved. As an example, consider the following Boolean
function together with the don’t-care minterms:

F(A,B,C) = 2, (0,2,6)
d(A,B,C) = 2 (1,3,5)

The minterms listed with F produce a 1 for the function. The don’t-care min-
terms listed with 4 may produce eithera 0 ora 1 for the function, The remaining
minterms, 4 and 7, produce a 0 for the function. The map is shown in Fig. 1-14.
The minterms of F are marked with 1's, those of 4 are marked with x’s, and
the remaining squares are marked with 0s. The 1’s and x’s are combined in
any convenient manner so as to enclose the maximum number of adjacent
squares. It is not necessary to include all or any of the x’s, but all the 1’s must
be included. By including the don’t-care minterms 1 and 3 with the 1’s in the
first row we obtain the term A’. The remaining 1 for minterm 6 is combined
with minterm 2 to obtain the term BC'. The simplified expression is

F=A"+ BC'
Note that don’t-care minterm 5 was not included because it does not contribute
to the simplification of the expression. Note also that if don’t-care minterms
' 1and 3 were not included with the 1's, the simplified expression for F wouid
have been ;
F=AC - BC

This would require two AND gates and an OR gate, as compared to the ex-
pression obtained previously, which requires only one AND and one OR gate.
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block diagram

A{O x 0 1

Figure 1-14 Example of map with don’t-care conditions.

The function is determined completely once the X's are assigned to the
1’s or 0's in the map. Thus the expression

F=A'+BC
represents the Boolean function
F(A,B,C) = % (0,1,2,3,6)
It consists of the original minterms 0, 2, and 6 and the dont-care minterms 1
and 3. Minterm 5 is not included in the function. Since minterms 1, 3, and 5
were specified as being don’t-care conditions, we have chosen minterms 1 and

3 to produce a 1 and minterm 5 to produce a 0. This was chosen because this
assignment produces the simplest Boolean expression.

1-5 Combinational Circuits

A combinational circuit is a connected arrangement of logic gates with a set of
inputs and outputs. At any given time, the binary values of the outputs are a
function of the binary combination of the inputs. A block diagram of a combi-
national circuit is shown in Fig. 1-15. The n binary input variables come from
ain external source, the m binary output variables go to an external destination,
and in between there is an interconnection of logic gates. A combinational
circuit transforms binary information from the given input data to the required
output data. Combinational circuits are employed in digital computers for
generating binary control decisions and for providing digital components
required for data processing.

A combinational circuit can be described by a truth table showing the
binary relationship between the n input variables and the m output variables.
The truth table lists the corresponding output binary values for each of the 2"
input combinations. A combinational circuit can also be specified with m
Boolean functions, one for each output variable. Each output function is
expressed in terms of the n input variables.
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Figure 1-15 Block diagram of a combinational circuit.

The analysis of a combinational circuit starts with a given logic circuit
diagram and culminates with a set of Boolean functions or a truth table, If the
digital circuit is accompanied by a verbal explanation of its function, the
Boolean functions or the truth table is sufficient for verification. If the function
of the circuit is under investigation, it is necessary to interpret the operation of
the circuit from the derived Boolean functions or the truth table. The success
of such investigation is enhanced if one has experience and familiarity with
digital circuits. The ability to correlate a truth table or a set of Boolean functions
withan information-processing task is an art that one acquires with experience.

The design of combinational circuits starts from the verbal outline of the
problem and ends in a logic circuit diagram. The procedure involves the
following steps:

1. The problem is stated.
2. The input and output variables are assigned letter symbols.

3. The truth table that defines the relationship between inputs and outputs
is derived.

4. The simplified Boolean functions for each output are obtained.
5. The logic diagram is drawn.

To demonstrate the design of combinational circuits, we present two
examples of simple arithmetic circuits. These circuits serve as basic building
blocks for the construction of more complicated arithmetic circuits.

Half-Adder

The most basic digital arithmetic circuit is the addition of two binary digits, A
combinational circuit that performs the arithmetic addition of two bits is called
a half-adder. One that performs the addition of three bits (two significant bits
and a previous carry) is called a full-adder. The name of the former stems from
the fact that two half-adders are needed to implement a full-adder.

The input variables cf a half-adder aze called the augead and cddend
bits. The output variables the sum and carry. It is necessary to specify two
output variables because the sum of 1 + 1 is binary 10, which has two digits.
We assign symbols x and y to the two input variables, and S (for sum) and C
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(a) Truth table (b) Logic diagram

Figure 1-16 Half-adder.

(for carry) to the two output variables. The truth table for the half-adder is

_ shown in Fig. 1-16(a). The C output is 0 unless both inputs are 1. The 5 output

represents the least significant bit of the sum. The Boolean functions for the
two outputs can be obtained directly from the truth table:

S=x'y+xy'=x@y
C=uxy

The logic diagram is shown in Fig. 1-16(b). It consists of an exclusive-OR gate
and an AND gate. '

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three
input bits. It consists of three inputs and two outputs. Two of the input
variables, denoted by x and y, represent the two significant bits to be added.
The third input, z, represents the carry from the previous lower significant
position. Two outputs are necessary because the arithmetic sum of three binary
digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two
outputs are designated by the symbols S (for sum) and C (for carry). The binary
variable § gives the value of the least significant bit of the sum. The binary
variable C gives the output carry. The truth table of the full-adder is shown in
Table 1-2. The eight rows under the input variables designate all possible
combinations that the binary variables may have. The value of the output
variables are determined from the arithmetic sum of the input bits. When all
input bits are 0, the outputis 0. The S output is equal to 1 when only one input
is equal to 1 or when all three inputs are equal to 1. The C output has a carry
of 1 if two or three inputs are equal to 1.

The maps of Fig. 1-17 are used to find algebraic expressions for the two
output variables. The 1's in the squares for the maps of S and C are determined
directly from the minterms in the truth table. The squares with 1’s for the 5
output do not combine in groups of adjacent squares. But since the output is
1 when an odd number of inputs are 1, § is an odd function and represents
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the exclusive-OR relation of the variables (see the discussion at the end of Sec.
1-2). The squares with 1’s for the C output may be combined in a variety of
ways. One possible expression for C is'

C=xy+ (x'y + xy')z

Realizingthat x'y + xy' = x@yand including the expression for output S, we
obtain the two Boolean expressions for the full-adder:

S5=xPyD:z
C=xy + (xPy)

The logic diagram of the full-adder is drawn in Fig. 1-18. Note that the full-
adder circuit consists of two half-adders and an OR gate. When used in
subsequent chapters, the full-adder (FA) will be designated by a block diagram
as shown in Fig. 1-18(b).

Figure 1-17 Maps for full-adder.
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=xBydDz =xy+ Xy +xy)z
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(a) Logic diagram {b) Block diagram
Figure 1-18 Full-adder circuit.

1-6 Flip-Flops

The digital circuits considered thus far have been combinational, where the
outputs at any given time are entirely dependent on the inputs that are present
at that time. Although every digital system is likely to have a combinational
circuit, most systems encountered in practice also include storage elements,
which require that the system be described in terms of sequential circuits. The
most common type of sequential circuit is the synchronous type. Synchronous
sequential circuits employ signals that affect the storage elements only at
discrete instants of time. Synchronization is achieved by a timing device called
a clock pulse generator that produces a periodic train of clock pulses. The clock
pulses are distributed throughout the system in such a way that storage
elements are affected only with the arrival of the synchronization pulse.
Clocked synchronous sequential circuits are the type most frequently encoun-
tered in practice. They seldom manifest instability problems and their timing
is easily broken down into independent discrete steps, each of which may be
considered separately.

The storage elements employed in clocked sequential circuits are called
flip-flops. A flip-flop is a binary cell capable of storing one bit of information.
It has two outputs, one for the normal value and one for the complement value
of the bit stored in it. A flip-flop maintains a binary state until directed by a
clock pulse to switch states. The difference among various types of flip-flops
is in the number of inputs they possess and in the manner in which the inputs

affect the binary state. The most common types of flip-flops are presented
below.

SR Flip-Flop

The graphic symbol of the SR flip-flop is shown in Fig. 1-19(a). It has three
inputs, labeled S (for set), R (for reset), and C (for clock). It has an output Q
and sometimes the flip-flop has a complemented output, which is indicated
with a small circle at the other output terminal. There is an arrowhead-shaped
symbol in front of the letter C to designate a dynamic input. The dynamic
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Figure 1-19 SR flip-flop.

indicator symbol denotes the fact that the flip-flop responds to a positive
transition (from 0 to 1) of the input clock signal.

The operation of the SR flip-flop is as follows. If there is no signal at the
clock input C, the output of the circuit cannot change irrespective of the values
at inputs S and R. Only when the clock signal changes from 0 to 1 can the
output be affected according to the values in inputsSandR.If S = 1andR = 0
when C changes from 0 to 1, output Qissetto 1. If S = 0 and R = 1 when C
changes from 0 to 1, output Q is cleared to 0. If both S and R are 0 during the
clock transition, the output does not change. When both S and R are equal to
1, the output is unpredictable and may go to either 0 or 1, depending on
internal timing delays that occur within the circuit.

The characteristic table shown in Fig. 1-19(b) summarizes the operation
of the SR flip-flop in tabular form. The S and R columns give the binary values
of the two inputs. Q(t) is the binary state of the Q output at a given time
(referred to as present state). Q(t + 1) is the binary state of the output after
the occurrence of a clock transition (referred to as next state). If S = R = 0, a
clock transition produces no change of state [i.e., Q(t + 1) = Q). IfS=0
and R = 1, the flip-flop goes to the 0 (clear) state. If S = 1 and R = 0, the
flip-flop goes to the 1 (set) state. The SR flip-flop should not be pulsed when

= R = 1 since it produces an indeterminate next state. This indeterminate
condition makes the SR flip-flop difficult to manage and therefore it is seldom
used in practice.

D Flip-Flop
The D (data) flip-flop is a slight modification of the SR flip-flop. An SR flip-flop
is converted to a D flip-flop by inserting an inverter between $ and R and
assigning the symbol D to the single input. The D input is sampled during the
occurrence of a clock transition from 0 to 1. If D = 1, the output of the flip-flop
goes to the 1 state, but if D = 0, the output of the flip-flop goes to the 0 state.
The graphic symbol and characteristic table of the D flip-flop are shown
in Fig. 1-20. From the characteristic table we note that the next state Qit+1)
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Figure 1.20 D flip-flop.

is determined from the D input. The relationship can be expressed by a
characteristic equation:

Qt+1)=D

This means that the Q output of the flip-flop receives its value from the D input
every time that the clock signal goes through a transition from 0 to 1.

Note that no input condition exists that will leave the state of the D
flip-flop unchanged. Although a D flip-flop has the advantage of having only
one input (excluding C), it has the disadvantage that its characteristic table does
not have a “no change”' condition Q(t + 1) = Q(t). The “no change” condition
can be accomplished either by disabling the clock signal or by feeding the
output back into the input, so that clock pulses keep the state of the flip-flop
unchanged.

JK Flip-Flop

A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate
condition of the SR type is defined in the JK type. Inputs ] and K behave like
inputs S and R to set and clear the flip-flop, respectively. When inputs | and
K are both equal to 1, a clock transition switches the outputs of the flip-flop
to their complement state.

The graphic symbol and characteristic table of the JK flip-flop are showr
in Fig. 1-21. The ] input is equivalent to the S (set) input of the SR flip-flop,
and the K input is equivalent to the R (clear) input. Instead of the indeterminate
condition, the JK flip-flop has a complement condition Q(t + 1) = Q'(t) wher
both ] and K are equal to 1.

T Flip-Flop

Another type of flip-flop found in textbooks is the T (toggle) flip-flop. Thi
flip-flop, shown in Fig. 1-22, is obtained from a JK type when inputs ] and }
are connected to provide a single input designated by T. The T flip-floj
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Figure 1-21 JK flip-flop.
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Figure 1-.22 T flip-flop.

therefore has only two conditions. When T = 0 (] = K = 0) a clock transition
does not change the state of the flip-flop. When T =1 (] = K = 1) a clock
transition complements the state of the flip-flop. These conditions can be
expressed by a characteristic equation:

Qt+1)=Q0)&T

Edge-Triggered Flip-Flops
The most common type of flip-flop used to synchronize the state change during
a clock pulse transition is the edge-triggered flip-flop. In this type of flip-flop,
output transitions occur at a specific level of the clock pulse. When the pulse
input level exceeds this threshold level, the inputs are locked out so that the
flip-flop is unresponsive to further changes in inputs until the clock puise
returns to 0 and another pulse occurs. Some edge-triggered flip-flops cause a
transition on the rising edge of the clock signal (positive-edge transition), and
others cause a transition on the falling edge (negative-edge transition).
Figure 1-23(a) shows the clock pulse signal in a positive-edge-triggered
D flip-flop. The value in the D input is transferred to the Q output when the
clock makes a positive transition. The output cannot change when the clock
is in the 1 level, in the 0 level, or in a transition from the 1 level to the 0 level.
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Figure 1-23 Edge-triggered flip-flop.

The effective positive clock transition includes a minimum time called the setup
time in which the D input must remain at a constant value before the transition,
and a definite time called the hold time in which the D input must not change
after the positive transition. The effective positive transition is usually a very
small fraction of the total period of the clock pulse.

Figure 1-23(b) shows the corresponding graphic symbol and timing dia-
gram for a negative-edge-triggered D flip-flop. The graphic symbol includes a
negation small circle in front of the dynamic indicator at the C input. This
denotes a negative-edge-triggered behavior. In this case the flip-flop responds
to a transition from the 1 level to the 0 level of the clock signal.

Another type of flip-flop used in some systems is the master-slave flip-
flop. This type of circuit consists of two flip-flops. The first is the master, which
responds to the positive level of the clock, and the second is the slave, which
responds to the negative level of the clock. The result is that the output changes
during the 1-to-0 transition of the clock signal. The trend is away from the use
of master-slave flip-flops and toward edge-triggered flip-flops.

Flip-flops available in integrated circuit packages will sometimes provide
special input terminals for setting or clearing the flip-flop asynchronously.
These inputs are usually called “preset”” and “clear.” They affect the flip-flop
on a negative level of the input signal without the need of a clock pulse. These

inputs are useful for bringing the flip-flops to an initial state prior toits clocked
operation.
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Excitation Tables

The characteristic tables of flip-flops specify the next state when the inputs and
the present state are known. Durin & the design of sequential circuits we usually
know the required transition from present state to next state and wish to find
the flip-flop input conditions that will cause the required transition. For this
reason we need a table that lists the required input combinations for a given
change of state. Such a table is called a flip-flop excitation table.

Table 1-3 lists the excitation tables for the four types of flip-flops. Each
table consists of two columns, Q(t) and Q(¢ + 1), and a column for each input
to show how the required transition is achieved. There are four possible
transitions from present state Q(t) to next state Q(t + 1). The required input
conditions for each of these transitions are derived from the information
available in the characteristic tables. The symbol X in the tables represents a
don’t-care condition; that is, it does not matter whether the input to the
flip-flop is 0 or 1.

TABLE 1-3 Excitation Table for Four Flip-Flops

SR flip-flop D flip-flop
Qv Qt+1 | s R oy Qe+ | D
0 0 0 X 0 0 0
0 il 1 0 0 1 1
1 0 0 1 1 0 0
1 1 bd 0 1 1 1
JK flip-flop T flip-flop
Qv  Qt+1 | J K QY Qe+1) | T
0 0 0 X 0 0 0
0 1 1 x 0 1 1
1 0 X 1 1 0 1
1 1 X 0 1 1 0

The reason for the don’t-care conditions in the excitation tables is that
there are two ways of achieving the required transition. For example, in a JK
flip-flop, a transition from present state of 0 to a next state of 0 can be achieved
by having inputs ] and K equal to 0 (to obtain no change) or by letting ] = 0
and K = 1 to clear the flip-flop (although it is already cleared). In both cases
Jmust be 0, but K is 0 in the first case and 1 in the second. Since the required
transition will occur in either case, we mark the K input with a don’t-care x
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input equation

and let the designer choose either 0 or 1 for the K input, whichever is more
convenient.

1-7 Sequential Circuits

A sequential circuit is an interconnection of flip-flops and gates. The gates by
themselves constitute a combinational circuit, but when included with the
flip-flops, the overall circuit is classified as a sequential circuit. The block
diagram of a clocked sequential circuit is shown in Fig. 1-24. It consists of a
combinational circuit and a number of clocked flip-flops. In general, any
number or type of flip-flops may be included. As shown in the diagram, the
combinational circuit block receives binary signals from external inputs and
from the outputs of flip-flops. The outputs of the combinational circuit go to
external outputs and to inputs of flip-flops. The gates in the combinational
circuit determine the binary value to be stored in the flip-flops after each clock
transition. The outputs of flip-flops, in turn, are applied to the combinational
circuit inputs and determine the circuit’s behavior. This process demonstrates
that the external outputs of a sequential circuit are functions of both external
inputs and the present state of the flip-flops. Moreover, the next state of
flip-flops is also a function of their present state and external inputs. Thus a
sequential circuit is specifiéd by a time sequence of external inputs, external
outputs, and internal flip-flop binary states.

Flip-Flop Input Equations

An example of a sequential circuit is shown in Fig. 1-25. It has one input
variable x, one output variable y, and two clocked D flip-flops. The AND gates,
OR gates, and inverter form the combinational logic part of the circuit. The
interconnections among the gates in the combinational circuit can be specified
by a set of Boolean expressions. The part of the combinational circuit that
generates the inputs to flip-flops are described by a set of Boolean expressions
called flip-flop input equations. We adopt the convention of using the flip-flop
input symbol to denote the input equation variable name and a subscript to

Figure 1-24 Block diagram of a clocked synchronous sequenrial circuit.
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Figure 1-25 Example of a sequential circuit,

designate the symbol chosen for the output of the flip-flop. Thus, in Fig. 1-25,
we have two input equations, designated D, and Dj;. The first letter in each
symbol denotes the D input of a D flip-flop. The subscript letter is the symbol
name of the flip-flop. The input equations are Boolean functions for flip-flop
input variables and can be derived by inspection of the circuit. Since the output
of the OR gate is connected to the D input of flip-flop A, we write the first input
equation as

Dy = Ax + Bx

where A and B are the outputs of the two flip-flops and x is the external input.
The second input equation is derived from the single AND gate whose output
is connected to the D input of flip-flop B:

Ds =A'x



30  cHapTER ONE Digital Logic Circuits

present state

next state

The sequential circuit also has an external output, which is a function of
the input variabie and the state of the flip-flops. This output can be specified
algebraically by the expression

y = Ax" + Bx'

From this example we note that a flip-flop input equation is a Boolean
expression for a combinational circuit. The subscripted variable is a binary
variable name for the output of a combinational circuit. This output is always
connected to a flip-flop input.

State Table

The behavior of a sequential circuit is determined from the inputs, the outputs,
and the state of its flip-flops. Both the outputs and the next state are a function
of the inputs and the present state. A sequential circuit is specified by a state
table that relates outputs and next states as a function of inputs and present
states. In clocked sequential circuits, the transition from present state to next
state is activated by the presence of a clock signal.

The state table for the circuit of Fig. 1-25 is shown in Table 1-4. The table
consists of four sections, labeled present state, input, next state, and output. The
present-state section shows the states of flip-flops A and B at any given time
t. The input section gives a value of x for each possible present state. The
next-state section shows the states of the flip-flops one clock period later at time
t + 1. The output section gives the value of y for each present state and input
condition.

The derivation of a state table consists of first listing all possible binary
combinations of present state and inputs. In this case we have eight binary
combinations from 000 to 111. The next-state values are then determined from

the logic diagram or from the input equations. The input equation for flip-flop
Alis

D, = Ax + Bx

The next-state value of a each flip-flop is equal toits D input value in the present
state. The transition from present state to next state occurs after application of
a clock signal. Therefore, the next state of A is equal to 1 when the present state
and input values satisfy the conditions Ax = 1 or Bx = 1, which makes D,
equal 1, This is shown in the state table with three 1’s under the column for
next state of A. Similarly, the input equation for flip-flop B is

Dg = A'x
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The next state of B in the state table is equal to | when the present state of A

is U and input x 1s equal to 1. The output column is derived from the output
equation :

=AY B

TABLE 1-4 State Table for Circutr of Fig. 1-25

Present Next
state Input state Output

A B x A B y
] 0 (] 1] 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 i 0 0

The state table of any sequential circuit is obtained by the procedure used
in this example. In general, a sequential circuit with m flip-flops, n input
variables, and p output variables will contain m columns for present state, n
columns for inputs, m columns for next state, and p columns for outputs. The
present state and input columns are combined and under them we list the 27 *
binary combinations from 0 through 2"*" — 1. The next-state and output
columns are functions of the present state and input values and are derived
directly from the circuit or the Boolean equations that describe the circuit.

State Diagram

The information available in a state table can be represented graphically in a
state diagram. In this type of diagram, a state is represented by a circle, and
the transition between states is indicated by directed lines connecting the
circles. The state diagram of the sequential circuit of Fig. 1-25 is shown in Fig.
1-26. The state diagram provides the same information as the state table and
is obtained directly from Table 1-4. The binary number inside each circle
identifies the state of the flip-flops. The directed lines are labeled with two
binary numbers separated by a slash. The input value during the present state
is labeled first and the number after the slash gives the output during the
present state, For example, the directed line from state 00 to 01 is labeled 1/0,
meaning that when the sequential circuit is in the present state 00 and the input
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binary counter

Figure 1-26 State diagrams of sequential circuir.

is 1, the output is 0. After a clock transition, the circuit goes to the next state
01. The same clock transition may change the input value. If the input changes
to 0, the output becomes 1, but if the input remains at 1, the output stays at
0. This information is obtained from the state diagram along the two directed
lines emanating from the circle representing state 01. A directed line connect-
ing a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except
in the manner of representation. The state table is easier to derive from a given
logic diagram and the state diagram follows directly from the state table, The
state diagram gives a pictorial view of state transitions and is the form suitable
for human interpretation of the circuit operation. For example, the state dia-
gram of Fig. 1-26 clearly shows that starting from state 00, the output is 0 as
long as the input stays at 1. The first 0 input after a string of 1's gives an output
of 1 and transfers the circuit back to the initial state 00.

Design Example

The procedure for designing sequential circuits will be demonstrated by a
specific example. The design procedure consists of first translating the circuit
specifications into a state diagram. The state diagram is then converted into a
state table. From the state table we obtain the information for obtaining the
logic circuit diagram.

We wish to design a clocked sequential circuit that goes through a se-
quence of repeated binary states 00, 01, 10, and 11 when an external input x
is equal to 1. The state of the circuit remains unchanged when x = 0. This type
of circuit is called a 2-bit binary counter because the state sequence is identical
to the count sequence of two binary digits. Input x is the control variable that
specifies when the count should proceed.

The binary counter needs two flip-flops to represent the two bits. The
state diagram for the sequential circuit is shown in Fig. 1-27. The diagram is
drawn to show that the states of the circuit follow the binary count as long as
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Figure 1-27  State diagram for binary counter.

x = 1. The state following 11 is 00, which causes the count to be repeated. If
x = 0, the state of the circuit remains unchanged. This sequential circuit has
no external outputs, and therefore only the input value is labeled in the
diagram. The state of the flip-flops is considered as the outputs of the counter.

We have already assigned the symbol x to the input variable. We now
assign the symbols A and B to the two flip-flop outputs. The next state of A
and B, as a function of the present state and input x, can be transferred from
the state diagram into a state table. The first five columns of Table 1-5 constitute
the state table. The entries for this table are obtained directly from the state
diagram.

The excitation table of a sequential circuit is an extension of the state table.
This extension consists of a list of flip-flop input excitations that will cause the

TABLE 1-5 Excitation Table for Binary Counter

-

Present Next
state Input state Flip-flop inputs

A B x A B Ja Ka Ia K
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 0 1 0 X x 0
0 1 1 1 0 1 X X 1
1 0 0 1 0 x 0 0 bt
1 0 i 1 1 x 0 1 X
1 1 0 1 1 X 0 X 0
1 1 1 0 0 X 1 X 1
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required state transitions. The flip-flop input conditions are a function of the
type of flip-flop used. If we employ JX flip-flops, we need columns for the !
and K inputs of each flip-flop. We denote the inputs of flip-flop A by ], and
K4, and those of flip-flop B by J; and K.

The excitation table for the JK flip-flop specified in Table 1-3 is now used
to derive the excitation table of the sequential circuit. For example, in the first
row of Table 1-5, we have a transition for flip-flop A from 0in the present state
toOin the next state. In Table 1-3 we find that a transition of states from Qty=0
to Q(t + 1) = 0in a JK flip-flop requires that input ] = 0 and input K = x. So
0and x are copied in the first row under J, and K, respectively. Since the first
row also shows a transition for flip-flop B from 0 in the present state to 0 in
the next state, 0 and X are copied in the first row under J; and K;. The second
row of Table 1-5 shows a transition for flip-flop B from 0 in the present state
to 1 in the next state. From Table 1-3 we find that a transition from Q#)=0
to Q(t + 1) = 1 requires that input | = 1 and input K = X. So 1 and X are
copied in the second row under J; and K, respectively. This process is contin-
ued for each row of the table and for each flip-flop, with the input conditions
as specified in Table 1-3 being copied into the proper row of the particular
flip-flop being considered.

Let us now consider the information available in an excitation table such
as Table 1-5. We know that a sequential circuit consists of a number of flip-flops
and a combinational circuit. From the block diagram of Fig. 1-24, we note that
the outputs of the combinational circuit must go to the four flip-flop inputs J,,
K4, Js, and K. The inputs to the combinational circuit are the external input
x and the present-state values of flip-flops A and B. Moreover, the Boolean
functions that specify a combinational circuit are derived from a truth table that
shows the input-output relationship of the circuit. The entries that list the
combinational circuit inputs are specified under the “present state” and “in-
put” columns in the excitation table. The combinational circuit outputs are
specified under the “flip-flop inputs” columns. Thus an excitation table trans-
forms a state diagram to a truth table needed for the design of the combina-
tional circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now
be derived. The inputs are the variables A, B, and x. The outputs are the
variables |, Ky, J5, and K;. The information from the excitation table is trans-

ferred into the maps of Fig. 1-28, where the four simplified flip-flop input
equations are derived:

Ja = Bx K, = Bx
I =x Ky =x

The logic diagram is drawn in Fig. 1-29 and consists of two JK flip-flops and
an AND gate. Note that inputs | and K determine the next state of the counter
when a clock signal occurs. If both [ and K are equal to 0, a clock signal will
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have no effect; that is, the state of the flip-flops will not change. Thus when
x = 0, all four inputs of the flip-flops are equal to 0 and the state of the flip-flops
remains unchanged even though clock pulses are applied continuously.

Design Procedure

The design of sequential circuits follows the outline described in the preceding
example. The behavior of the circuit is first formulated in a state diagram. The
number of flip-flops needed for the circuit is determined from the number of
bits listed within the circles of the state diagram. The number of inputs for the
circuit is specified along the directed lines between the circles. We then assign
letters to designate all flip-flops and input and output variables and proceed
to obtain the state table.

For m flip-flops and n inputs, the state table will consist of m columns for
the present state, n columns for the inputs, and m columns for the next state.
The number of rows in the table will be up to 2", one row for each binary
combination of present state and inputs. For each row we list the next state as
specified by the state diagram. Next, the flip-flop type to be used in the circuit
is chosen. The state table is then extended into an excitation table by including
columns for each input of each flip-flop. The excitation table for the type of
flip-flop in use can be found in Table 1-3. From the information available in this
table and by inspecting present state-to-next state transitions in the state table,
we obtain the information for the flop-flop input conditions in the excitation
table.

The truth table for the combinational circuit part of the sequential circuit
is available in the excitation table. The present-state and input columns consti-
tute the inputs in the truth table. The flip-flop input conditions constitute the
outputs in the truth table. By means of map simplification we obtain a set of
flip-flop input equations for the combinational circuit. Each flip-flop input
equation specifies a logic diagram whose output must be connected to one of
the flip-flop inputs. The combinational circuit so obtained, together with the
flip-flops, constitutes the sequential circuit.

The outputs of flip-flops are often considered to be part of the outputs
of the sequential circuit. However, the combinational circuit may also contain
external outputs. In such a case the Boolean functions for the external outputs
are derived from the state table by combinational circuit design techniques.

A set of flip-flop input equations specifies a sequential circuit in algebraic
form. The procedure for obtaining the logic diagram from a set of flip-flop input
equations is a straightforward process. First draw the flip-flops and label all
their inputs and outputs. Then draw the combinational circuit from the
Boolean expressions given by the flip-flop input equations. Finally connect
outputs of flip-flops to inputs in the combinational circuit and outputs of the
combinational circuit to flip-flop inputs.
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1-4.

1-5.

1-6.

1-7.

1-8.

Determine by means of a truth table the validity of DeMorgan’s theorem for
three variables: (ABC) = A’ + B’ + C'.

List the truth table of a three-variable exclusive-OR (odd) function: x = A @
B®C.

Simplify the following expressions using Boolean algebra.

a. A+ AB

b. AB + AB’

¢. A'BC + AC

d. A'B + ABC' + ABC

Simplify the following expressions using Boolean algebra.

a. AB + A(CD + CD")

b. (BC' + A’D) (AB’ + CD")

Using DeMorgan’s theorem, show that:

a. (A+B)Y(A"+B')Y =0

b.A+AB+AB =1

Given the Boolean expression F = x'y + xyz":

a. Derive an algebraic expression for the complement F*.

b. Show that F-F' = 0.

¢. ShowthatF + F' = 1.

Given the Boolean function
F=xy'z + 2'y'z + xiz

. List the truth table of the function.

Draw the logic diagram using the original Boolean expression.

. Simplify the algebraic expression using Boolean algebra.

. List the truth table of the function from the simplified expression and
show that it is the same as the truth table in part (a).

e. Draw the logic diagram from the simplified expression and compare the

total number of gates with the diagram of part (b).

Simplify the following Boolean functions using three-variable maps.
a. F(x,y,2)= % (0,1,5,7)

b. F(x,y,2)= 2 (1,2,3,6,7)

¢. Flx,y,2)= 2 (3,5,6,7)

d. F(A,B,C) = 2 (0,2,3,4.6)

Simplify the following Boolean functions using four-variable maps.
a. F(A,B,C,D) = 2 (4,6,7,15)

b. F(A,B,C,D) = % (3,7,11,13, 14, 15)

¢. F(A,B,C,D)= 2 (0,1,2,4,5,7,11,15)

d. F(A,B,C,D) = % (0,2,4,5,6,7,8,10,13,15)

an e
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1-10.

1-11.

1-12.

1-13.

1-14.

1-15.

1-16.

1-17.

1-18.

1-19,

Simplify the following expressions in (1) sum-of-products form and (2)
product-of-sums form.

a xz'+y'' +yz' +xy

b. AC' + B'D + A'CD + ABCD

Simplify the following Boolean function in sum-of-products form by means
of a four-variable map. Draw the logic diagram with (a) AND-OR gates; (b)
NAND gates.

F(A,B,C,D) = % (0,2,8,9,10,11, 14, 15)

Simplify the following Boolean function in product-of-sums form by means
of a four-variable map. Draw the logic diagram with (2) OR-AND gates; (b)
NOR gates.

Fw,x,y,z) = 2 (2,3,4,5,6,7,11, 14, 15)

Simplify the Boolean function F together with the don’t-care conditions d in
(1) sum-of-products form and (2) product-of-sums form.

Fw,x,y.z)= % (0,1,2,3,7,8,10)
dw,x,y,2) = 2, (56,11, 15)

Using Table 1-2, derive the Boolean expression for the S (sum) output of the
full-adder in sum-of-products form. Then by algebraic manipulation show
that S can be expressed as the exclusive-OR of the three input variables.

S=xByD:

A majority function is generated in a combinational circuit when the output
is equal to 1 if the input variables have more 1's than 0's. The output is 0
otherwise. Design a three-input majority function.

Design a combinational circuit with three inputs x, y, z and three outputs
A, B, C. When the binary inputis0, 1, 2, or 3, the binary output is one greater
than the input. When the binary input is 4, 5, 6, or 7, the binary output is
one less than the input.

Show that a JK flip-flop can be converted to a D flip-flop with an inverter
between the ] and K inputs.

Using the information from the characteristic table of the JK flip-flop listed
in Fig. 1-21(b), derive the excitation table for the JK flip-flop and compare
your answer with Table 1-3,

A sequential circuit has two D flip-flops A and B, two inputs x and y, and

one output z. The flip-flop input equations and the circuit output are as
follows:

D..=x'y + XA
Ds=x'B + xA
z=B
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a. Draw the logic diagram of the circuit.
b. Tabuiate the state table.

1-20. Design a 2-bit count-down counter. This is a sequential circuit with two
flip-flops and one input x. When x = 0, the state of the flip-flops does not
change. When x = 1, the state sequence is 11, 10, 01, 00, 11, and repeat.

1-21.  Design a sequential circuit with two JK flip-flops A and B and two inputs E
and x. If E = 0, the circuit remains in the same state regardless of the value
of x. When E = 1and x = 1, the circuit goes through the state transitions
from 00 to 01 to 10 to 11 back to 00, and repeat. When E = 1and x = 0, the
circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00,
and repeat.

1. Hill, F.]., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing,
1985.

4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.

5. Shiva, S. G., Introduction to Logic Design. Glenview, IL: Scott, Foresman, 1988.

6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice
Hall, 1990.

7. Ward, 5. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.






Ss1

IN THIS CHAPTER

2-1 Integrated Circuits

2.2 Decoders
2-3 Multiplexers
2-4 Registers

2-5 Shift Registers
2-6  Binary Counters
2-7 Memory Unit

2-1 Integrated Circuits

Digital circuits are constructed with integrated circuits. An integrated circuit
(abbreviated IC) is a small silicon semiconductor crystal, called a chip, contain-
ing the electronic components for the digital gates. The various gates are
interconnected inside the chip to form the required circuit. The chip is mounted
in a ceramic or plastic container, and connections are welded by thin gold wires
to external pins to form the integrated circuit. The number of pins may range
from 14 in a small IC package to 100 or more in a larger package. Each IC has
a numeric designation printed on the surface of the package for identification.
Each vendor publishes a data book or catalog that contains the exact descrip-
tion and all the necessary information about the ICs that it manufactures.

As the technology of ICs has improved,, the number of gates that can be
put in a single chip has increased considerably. The differentiation between
those chips that have a few internal gates and those having hundreds or
thousands of gates is made by a customary reference to a package as being
either a small-, medium-, or large-scale integration device.

Small-scale integration (SSI) devices contain several independent gates in
a single package. The inputs and outputs of the gates are connected directly

41
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to the pins in the package. The number of gates is usually less than 10 and is
limited by the number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately
10 to 200 gates in a single package. They usually perform specific elementary
digital functions such as decoders, adders, and registers.

Large-scale integration (LSI) devices contain between 200 and a few thou-
sand gates in a single package. They include digital systems, such as proces-
sors, memory chips, and programmable modules.

Very-large-scale integration (VLSI) devices contain thousands of gates
within a single package. Examples are large memory arrays and complex
microcomputer chips. Because of their small size and low cost, VLSI devices
have revolutionized the computer system design technology, giving designers
the capability to create structures that previously were not economical.

Digital integrated circuits are classified not only by their logic operation
but also by the specific circuit technology to which they belong. The circuit
technology is referred to as a digital logic family. Each logic family has its own
basic electronic circuit upon which more complex digital circuits and functions
are developed. The basic circuit in each technology is either a NAND, a NOR,
or an inverter gate. The electronic components that are employed in the
construction of the basic circuit are usually used for the name of the technol-
ogy. Many different logic families of integrated circuits have been introduced
commercially. The following are the most popular.

ITL Transistor-transistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for many
years and is considered as standard. ECL has an advantage in systems requir-
ing high-speed operation. MOS is suitable for circuits that need high compo-
nent density, and CMOS is preferable in systems requiring low power
consumption.

The transistor-transistor logic family was an evolution of a previous
technology that used diodes and transistors for the basic NAND gate. This
technology was called DTL, for “diode-transistor logic.” Later the diodes were
replaced by transistors to improve the circuit operation and the name of the
logic family was changed to “transistor-transistor logic.” This is the reason for
mentioning the word “transistor” twice There are several variations of the TT1.
family besides the standard TTL, such as high-speed TTL, low-power TTL,
Schottky TTL, low-power Schottky TTL, and advanced Schottky TTL. The
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power supply voltage for TTL circuits is 5 volts, and the two logic levels are
approximately 0 and 3.5 volts.

The emitter-coupled logic (ECL) family provides the highest-speed di gital
circuits in integrated form. ECL is used in systems such as supercomputers and
signal processors where high speed is essential. The transistors in ECL gates
operate in a nonsaturated state, a condition that allows the achievement of
propagation delays of 1 to 2 nanoseconds.

The metal-oxide semiconductor (MOS) is a unipolar transistor that
depends on the flow of only one type of carrier, which may be electrons
(n-channel) or holes (p-channel). This is in contrast to the bipolar transistor
used in TTL and ECL gates, where both carriers exist during normal operation.
A p-channel MOS is referred to as PMOS and an n-channel as NMOS. NMOS
is the one that is commonly used in circuits with only one type of MOS
transistor. The complementary MOS (CMOS) technology uses PMOS and
NMOS transistors connected in a complementary fashion in all circuits. The
most important advantages of CMOS over bipolar are the high packing density
of circuits, a simpler processing technique during fabrication, and a more
economical operation because of low power consumption.

Because of their many advantages, integrated circuits are used exclu-
sively to provide various digital components needed in the design of computer
systems. To understand the organization and design of digital computers it is
very important to be familiar with the various components encountered in
integrated circuits. For this reason, the most basic components are introduced
in this chapter with an explanation of their logical properties. These compo-
nents provide a catalog of elementary digital functional units commonly used
as basic building blocks in the design of digital computers.

2-2 Decoders

Discrete quantities of information are represented in digital computers with
binary codes. A binary code of  bits is capable of representing up to 2" distinct
elements of the coded information. A decoder is a combinational circuit that
converts binary information from the n coded inputs to a maximum of 2"
unique outputs. If the n-bit coded information has unused bit combinations,
the decoder may have less than 2" outputs.

The decoders presented in this section are called n-to-m-line decoders,
where m = 2" Their purpose is to generate the 2" (or fewer) binary combina-
tions of the n input variables. A decoder has n inputs and m outputs and is also
referred to as an n x m decoder.

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-1. The three
data inputs, A, A,, and A,, are decoded into eight outputs, each output
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Figure 2-1 3-t0-8-line decoder.

representing one of the combinations of the three binary input variables. The
three inverters provide the complement of the inputs, and each of the eight
AND gates generates one of the binary combination. A particular application
of this decoder is a binary-to-octal conversion. The input variables represent
a binary number and the outputs represent the eight digits of the octal number
system. However, a 3-to-8-line decoder can be used for decoding any 3-bit code
to provide eight outputs, one for each combination of the binary code.
Commercial decoders include one or more enable inputs to control the
operation of the circuit. The decoder of Fig. 2-1 has one enable input, E. The
decoder is enabled when E is equal to 1 and disabled when E is equal to 0.
The operation of the decoder can be clarified using the truth table listed

in Table 2-1. When the enable input E is equal to 0, all the outputs are equal

to 0 regardiess of the values of the other three data inputs. The three X’s in
the table designate don‘t-care conditions. When the enable input is equal to
1, the decoder operates in a normal fashion. For each possible input combina-
tion, there are seven outputs that are equal to 0 and only one that is equal to
L. The output variable whose value is equal to 1 represents the octal number
equivalent of the binary number that is available in the input data lines.
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TABLE 2-1 Truth Table for 3-to-8-Line Decoder
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NAND Gate Decoder

Some decoders are constructed with NAND instead of AND gates. Since a
NAND gate produces the AND operation with an inverted output, it becomes
more economical to generate the decoder outputs in their complement form.
A 2-to-4-line decoder with an enable input constructed with NAND gates is
shown in Fig. 2-2. The circuit operates with complemented outputs and a
complemented enable input E. The decoder is enabled when E is equal to 0.
As indicated by the truth table, only one output is equal to 0 at any given time;
the other three outputs are equal to 1. The output whose value is equal to 0
represents the equivalent binary number in inputs A; and Ao. The circuit is
disabled when E is equal to 1, regardless of the values of the other two inputs.

Figure 2.2 2-to-4-line decoder with NAND gates.
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When the circuit is disabled, none of the outputs are selected and all outputs
are equal to 1. In general, a decoder may operate with complemented or
uncomplemented outputs. The enable input may be activated with a 0 or with
a'1 signal level. Some decoders have two or more enable inputs that must
satisfy a given logic condition in order to enable the circuit

Decoder Expansion

There are occasions when a certain-size decoder is needed but only smaller
sizes are available. When this occurs it is possible to combine two or more
decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line
decoder is needed, it is possible to construct it with four 4-to-16-line decoders.

Figure 2-3 shows how decoders with enable inputs can be connected to
form a larger decoder. Two 2-to-4-line decoders are combined to achieve a
3-to-8-line decoder. The two least significant bits of the input are connected to
both decoders. The most significant bit is connected to the enable input of one
decoder and through an inverter to the enable input of the other decoder. It
is assumed that each decoder is enabled when its E input is equal to 1. When
Eisequalto0, thedecoderis disabled and all its outputs arein the 0 level, When
A; = 0, the upper decoder is enabled and the lower is disabled. The lower
decoder outputs become inactive with all outputs at 0. The outputs of the upper
decoder generate outputs D, through D;, depending on the values of A, and
Ao (while A; = 0). When A, = 1, the lower decoder is enabled and the upper
is disabled. The lower decoder output generates the binary equivalent D,
through D; since these binary numbers have a 1 in the A, position.

Figure 2-3 A 3 x 8 decoder constructed with two 2 X 4 decoders.
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The example demonstrates the usefulness of the enable input in decoders
or any other combinational logic component. Enable inputs are a convenient
feature for interconnecting two or more circuits for the purpose of expand-
ing the digital component into a similar function but with more inputs and
outputs.

Encoders

An encoder is a digital circuit that performs the inverse operation of a decoder.
An encoder has 2" (or less) input lines and n output lines. The output lines
generate the binary code corresponding to the input value. An example of an
encoder is the octal-to-binary encoder, whose truth table is given in Table 2-2.
It has eight inputs, one for each of the octal digits, and three outputs that
generate the corresponding binary number. It is assumed that only one input
has a value of 1 at any given time; otherwise, the circuit has no meaning.

TABLE 2-2 Truth Table for Ocral-to-Binary Encoder

[nputs Outputs

D- D, Ds Dy Dy D Di Ds A A A
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

The encoder can be implemented with OR gates whose inputs are deter-
mined directly from the truth table. Output A, = 1 if the input octal digit is 1
or 3 or 5 or 7. Similar conditions apply for the other two outputs. These
conditions can be expressed by the following Boolean functions:

Ag=D,+Dy+ Ds + Dy
A1=Dz+D3+Dé"'D?
A1=D4+D5+D6+D7

The encoder can be implemented with three OR gates.
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multiplexer

2-3  Multiplexers

A multiplexer is a combinational circuit that receives binary information from
one of 2" input data lines and directs it to a single output line. The selec-
tion of a particular input data line for the output is determined by a set of
selection inputs. A 2"-to-1 multiplexer has 2" input data lines and n input
selection lines whose bit combinations determine which input data are selected
for the output.

A 4-to-1-line multiplexer is shown in Fig. 2-4. Each of the four data inputs
I, through I, is applied to one input of an AND gate. The two selection inputs
Sy and S, are decoded to select a particular AND gate. The outputs of the AND
gates are applied to a single OR gate to provide the single output. To demon-
strate the circuit operation, consider the case when §,5; = 10. The AND gate
associated with input I, has two of its inputs equal to 1. The third input of the
gate is connected to [,. The other three AND gates have at least one input equal
to 0, which makes their outputs equal to 0. The OR gate output is now equal
to the value of I, thus providing a path from the selected input to the output.

The 4-to-1 line multiplexer of Fig. 2-4 has six inputs and one output. A
truth table describing the circuit needs 64 rows since six input variables can
have 2° binary combinations. This is an excessively long table and will not be
shown here. A more convenient way to describe the operation of multiplexers
is by means of a function table. The function table for the multiplexer is shown
in Table 2-3. The table demonstrates the relationship between the four data
inputs and the single output as a function of the selection inputs S; and S,.

Figure 2-4 4-to-1-line multiplexer.
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When the selection inputs are equal to 00, output Y is equal to input [, When
the selection inputs are equal to 01, input [, has a path to output ¥, and similarly
for the other two combinations. The multiplexer is also called a data selector,
since it selects one of many data inputs and steers the binary information to
the output.

TABLE 2-3 Function Table for 4-to-1-Line Multiplexer

Select Output

51 So ) &
] ] o
0 1 B
1 0 {5
1 1 I

The AND gates and inverters in the multiplexer resemble a decoder
circuit, and indeed they decode the input selection lines. In general, a 2™-to-1-
line multiplexer is constructed from an n-to-2" decoder by adding to it 2" input
lines, one from each data input. The size of the multiplexer is specified by the
number 2" of its data inputs and the single output. It is then implied that it also
contains n input selection lines. The multiplexer is often abbreviated as MUX.

As in decoders, multiplexers may have an enable input to control the
operation of the unit. When the enable input is in the inactive state, the outputs
are disabled, and when it is in the active state, the circuit functions as a normal
multiplexer. The enable input is useful for expanding two or more multiplexers
to a multiplexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within a single
integrated circuit package. The selection and the enable inputs in multiple-unit
construction are usually common to all multiplexers. As an illustration, the
block diagram of a quadruple 2-to-1-line multiplexer is shown in Fig. 2-5. The
circuit has four multiplexers, each capable of selecting one of two input lines.
Output Y; can be selected to come from either input A, or B,. Similarly, output
Y; may have the value of A; or B;, and so on. One input selection line S selects
one of the lines in each of the four multiplexers. The enable input E must be
active for normal operation. Although the circuit contains four multiplexers,
we can also think of it as a circuit that selects one of two 4-bit data lines. As
shown in the function table, the unit is enabled when E = 1. Then, if S = 0,
the four A inputs have a path to the four outputs. On the other hand, if 5 = 1,
the four B inputs are applied to the outputs. The outputs have all 0's when
E = 0, regardless of the values of S.
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Figure 2-5 Quadruple 2-to-1 line multiplexers.

2-4 Registers

A register is a group of flip-flops with each flip-flop capable of storing one bit
of information. An n-bit register has a group of n flip-flops and is capable of
storing any binary information of  bits. In addition to the flip-flops, a register
may have combinational gates that perform certain data-processing tasks. In
its broadest definition, a register consists of a group of flip-flops and gates that
effect their transition. The flip-flops hold the binary information and the gates
control when and how new information is transferred into the register.

Various types of registers are available commercially. The simplest regis-
ter is one that consists only of flip-flops, with no external gates. Figure 2-6
shows such a register constructed with four D flip-flops. The common clock
input triggers all flip-flops on the rising edge of each pulse, and the binary data
available at the four inputs are transferred into the 4-bit register. The four
outputs can be sampled at any time to obtain the binary information stored in
the register. The clear input goes to a special terminal in each flip-flop. When
this input goes to 0, all flip-flops are reset asynchronously. The clear input is
useful for clearing the register to all 0's prior to its clocked operation. The clear
input must be maintained at logic 1 during normal clocked operation. Note that
the clock signal enables the D input but that the clear input is independent of
the clock. D

The transfer of new information into a register is referred to as loading the
register. If all the bits of the register are loaded simultaneously with a common
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Figure 2-6 4-bit register.

Clear

clock pulse transition, we say that the loading is done in parallel. A clock
transition applied to the C inputs of the register of Fig. 2-6 will load all four
inputs Iy through I in parallel. In this configuration, the clock must be inhibited
from the circuit if the content of the register must be left unchanged.

Register with Parallel Load
Most digital systems have a master clock generator that supplies a continuous
train of clock pulses. The clock pulses are applied to all flip-flops and registers
in the system. The master clock acts like a pump that supplies a constant beat
to all parts of the system. A separate control signal must be used to decide
which specihic clock pulse will have an ettect on a particular register.

A 4-bit register with a load control input that is directed through gates
and into the D inputs is shown in Fig. 2-7. The C inputs receive clock pulses
at all imes. The buffer gate in the clock input reduces the power requirement
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Figure 2-7 4-bit register with parallel load.

from the clock generator. Less power is required when the clock is connected
to only one input gate instead of the power consumption that four inputs
would have required if the buffer were not used.

load input The load input in the register determines the action to be taken with each
clock pulse. When the load input is 1, the data inrthe four inputs are transferred
into the register with the next positive transition of a clock pulse. When the
load input is 0, the data inputs are inhibited and the D inputs of the flip-flops
are connected to their outputs. The feedback connection from output to input
is necessary because the D flip-flop does not have a “no change” condition.
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With each clock pulse, the D input determines the next state of the output. To
leave the output unchanged, it is necessary to make the D input equal to the
present value of the output.

Note that the clock pulses are applied to the C mputs atall imes. The load
input determines whether the next pulse will accept new information or leave
the information in the register intact. The transfer of information from the
inputs into the register is done simultaneously with all four bits during a single
pulse transition.

2-5 Shift Registers

A register capable of shifting its binary information in one or both directions
is called a shift register. The logical configuration of a shift register consists of
a chain of flip-flops in cascade, with the output of one flip-flop connected to
the input of the next flip-flop. All flip-flops receive common clock pulses that
initiate the shift from one stage to the next.

~ The simplest possible shift register is one that uses only flip-flops, as
shown in Fig. 2-8. The output of a given flip-flop is connected to the D input
of the flip-flop at its right. The clock is common to all flip-flops. The serial input
determines what goes into the leftmost position during the shift. The serial
output is taken from the output of the rightmost flip-flop.

Sometimes it is necessary to control the shift so that it occurs with certain
clock pulses but not with others. This can be done by inhibiting the clock from
the input of the register if we do not want it to shift. When the shift register
of Fig 2-8 is used, the shift can be controlled by connecting the clock to the input
of an AND gate, and a second input of the AND gate can then control the shift
by inhibiting the clock. However, it is also possible to provide extra circuits to
control the shift operation through the D inputs of the flip-flops rather than
the clock input.

Bidirectional Shift Register with Parallel Load

A register capable of shifting in one direction only is called a unidirectional shift
register. A register that can shift in both directions is called a bidirectional shift
register. Some shift registers provide the necessary input and output terminals

Figure 2-8  4-bit statt re ister-
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for parallel transfer. The most general shift register has all the capabilities listed
below. Others may have some of these capabilities, with at least one shift
operation.

i 1. An input for clock pulses to synchronize all operations.

2. A shift-right operation and a serial input line associated with the shift-
right. -

3. A shift-left operation and a serial input line associated with the shift-left.

4. A parallel load operation and n input lines associated with the parallel
transfer. . :

5. n parallel output lines.

6. A control state that leaves the information in the register unchanged
even though clock pulses are applied continuously.

A 4-bit bidirectional shift register with parallel load is shown in Fig, 2-9.
Each stage consists of a D flip-flop and a 4 X 1 multiplexer. The two selection
inputs 5, and S, select one of the multiplexer data inputs for the D flip-flop.
The selection lines control the mode of operation of the register according to
the function table shown in Table 2-4. When the mode control 5,5, = 00, data
input 0 of each multiplexer is selected. This condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock
transition transfers into each flip-flop the binary value it held previously, and
no change of state occurs. When 5,5, = 01, the terminal marked 1 in each
multiplexer has a path to the D input of the corresponding flip-flop. This causes
a shift-right operation, with the serial input data transferred into flip-flop A,
and the content of each flip-flop A, -, transferred into flip-flop A, fori = 1, 2,
3. When 5, = 10a shift-left operation results, with the other serial input data
going into flip-flop A; and the content of flip-flop 4, , , transferred into flip-flop
A, for i =0, 1, 2. When 5,5 = 11, the binary information from each input
[y through I is transferred into the corresponding flip-flop, resulting in a
parallel load operation. Note that the way the diagram is drawn, the shift-right
operation shifts the contents of the register in the down direction while the
shift left operation causes the contents of the register to shift in the upward
direction.

TABLE 2-4 Function Table for Register of Fig. 2-9

Mode control

5 8 Register operation

0. 7%0 No change

SRR | Shift right (down)
L0 Shift left (up)

1 1 Parallel load
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Figure 2-9 Bidirectional shift register wich paralle! load.

Shift registers are often used to interface digital systems situated remotely
from each other. For example, suppose that it is necessary (o transmit an n-bit
quantity between two points. If the distance between the source and the
destination is too far, it will be expensive to use n lines to transmit the n bits
in parallel. It may be more economical to use a single line and transmit the
information serially one bit at a time. The transmitter loads the n-bit data in
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parallel into a shift register and then transmits the data from the serial output
line. The receiver accepts the data serially into a shift register through its serial
input line. When the entire n bits are accumulated they can be taken from the
outputs of the register in parallel. Thus the transmitter performs a parallel-to-
serial conversion of data and the receiver converts the incoming serial data back
to parallel data transfer.

2-6 Binary Counters

A register that goes through a predetermined sequence of states upon the
application of input pulses is called a counter. The input pulses may be clock
pulses or may originate from an external source. They may occur at uniform
intervals of time or at random. Counters are found in almost all equipment
containing digital logic. They are used for counting the number of occurrences
of an event and are useful for generating timing signals to control the sequence
of operations in digital computers.

Of the various sequences a counter may follow, the straight binary se-
quence is the simplest and most straightforward. A counter that follows the
binary number sequence is called a binary counter. An n-bit binary counter is
a register of n flip-flops and associated gates that follows a sequence of states
according to the binary count of n bits, from 0 to 2" — 1. The design of binary
counters can be carried out by the procedure outlined in Sec. 1-7 for sequential
circuits. A simpler alternative design procedure may be carried out from a
direct inspection of the sequence of states that the register must undergo to
achieve a straight binary count.

Going through a sequence of binary numbers such as 0000, 0001, 0010,
0011, and so on, we note that the lower-order bit is complemented after every
count and every other bit is complemented from one count to the next if and
only if all its Jower-order bits are equal to 1. For example, the binary count from
0111 (7) to 1000 (8) is obtained by (a) complementing the low-order bit, (b)
complementing the second-order bit because the first bit of 0111 is 1, (c)
complementing the third-order bit because the first two bits of 0111 are 1’s, and
(d) complementing the fourth-order bit because the first three bits of 0111 are
all 1's.

A counter circuit will usually employ flip-flops with complementing
capabilities. Both T and JK flip-flops have this property. Remember that a JK
flip-flop is complemented if both its | and K inputs are 1 and the clock goes
through a positive transition. The output of the flip-flop does not change if
J = K = 0. Inaddition, the counter may be controlled with an enable input that
turns the counter on or off without removing the clock signal from the flip-
flops.

Synchronous binary counters have a regular pattern, as can be seen from
the 4-bit binary counter shown iri Fig. 2-10. The Cinputs of all flip-flops receive
the common clock. If the count enable is 0, all ] and X inputs are maintained
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Figure 2-10 4-bit synchronous binary counter.

at U and the output oi the counter does not change. The first stage Ag is
complemented when the counter is enabled and the clock goes through a
positive transition. Each of the other three flip-flops are complemented when
all previous least significant flip-flops are equal to 1 and the count is enabled.
The chain of AND gates generate the required logic for the | and K inputs. The
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increment

word

output carry can be used to extend the counter to more stages, with each stage
having an additional fip-flup and an AND gale.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel load capa-
bility for transferring an initial binary number prior to the count operation.
Figure 2-11 shows the logic diagram of a binary counter that has a parallel load
capability and can also be cleared to 0 synchronous with the clock. When equal
to 1, the clear input sets all the K inputs to 1, thus clearing all flip-flops with
the next clock transition. The input load control when equal to 1, disables the
count operation and causes a transfer of data from the four parallel inputs into
the four flip-flops (provided that the clearinput s 0). If the clear and load inputs
are both 0 and the increment input is 1, the circuit operates as a binary counter.

The operation of the circuit is summarized in Table 2-5. With the clear,
load, and increment inputs all at 0, the outputs do not change even when
pulses are applied to the C terminals. If the clear and load inputs are main-
tained at logic 0, the increment input controls the operation of the counter and
the outputs change to the next binary count for each positive transition of the
clock. The input data are loaded into the flip-flops when the load control input
is equal to 1 provided that the clear is disabled, but the increment input can
be 0 or 1. The register is cleared to 0 with the clear control regardless of the
values in the load and increment inputs.

TABLE 2.5 Function Table for the Register of Fig. 2-11

Clock  Clear  Load Increment Operation
t 0 0 0 No change
t 0 0 1 Increment count by 1
1 0 1 X Load inputs I, through I,
t 1 x X Clear outputs to 0

Counters with parallel load are very useful in the design of digital com-
puters. In subsequent chapters we refer to them as registers with load and
increment operations. The increment operation adds one to the content of a
register. By enabling the count input during one clock period, the content of
the register can be incremented by one.

2-7 Memory Unit

A memory unit is a collection of storage cells together with associated circuits
needed to transfer information in and out of storage. The memory stores binary
information in groups of bits called words. A word in memory is an entity of
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Figure 2-11 4-bit binary counter with parallel load and synchronous clear.
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bits that move in and out of storage as a unit. A memory word is a group of
I's and 0's and may represent a number, an instruction code, one or more
alphanumeric characters, or any other binary-coded information. A group of
eight bits is called a byte. Most computer memories use words whose number
of bits is a multiple of 8. Thus a 16-bit word contains two bytes, and a 32-bit
word is made up of four bytes. The capacity of memories in commercial
computers is usually stated as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of
words it contains and the number of bits in each word. Special input lines called
address lines select one particular word. Each word in memory is assigned an
identification number, called an address, starting from 0 and continuing with
1,2, 3, up to 2* — 1 where k is the number of address lines. The selection of
a specific word inside the memory is done by applying the k-bit binary address
to the address lines. A decoder inside the memory accepts this address and
opens the paths needed to select the bits of the specified word. Computer
memories may range from 1024 words, requiring an address of 10 bits, to 2%
words, requiring 32 address bits. Itis customary to refer to the number of words
(or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga).
Kis equal to 2'°, M is equal to 2%, and Gis equal to 2%, Thus 64K = 2%,2M = 2%,
and 4G = 2%,

Two major types of memories are used in computer systems: random-
access memory (RAM) and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for infor-
mation transfer from any desired random location. That is, the process of
locating'a word in memory is the same and requires an equal amount of time
no matter where the cells are located physically in memory: thus the name
“random access.”

Communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control lines.
that specify the direction of transfer. A block diagram of a RAM unit is shown
in Fig. 2-12. The n data input lines provide the information to be stored in
memory, and the n data output lines supply the information coming out of
memory. The k address lines provide a binary number of k bits that specify a
particular word chosen among the 2" available inside the memory. The two
control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the
write and read operations. The write signal specifies a transfer-in operation
and the read signal specifies a transfer-out operation. On accepting one of
these control signals, the internal circuits inside the memory provide the
desired function. The steps that must be taken for the purpose of transferring
a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.
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bits that move in and out of storage as a unit. A memory word is a group of
1's and 0’'s and may represent a number, an instruction code, one or more
alphanumeric characters, or any other binary-coded information. A group of
eight bits is called a byte. Most computer memories use words whose number
of bits is a multiple of 8. Thus a 16-bit word contains two bytes, and a 32-bit
word is made up of four bytes. The capacity of memories in commercial
computers is usually stated as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of
words it contains and the number of bits in each word. Special input lines called
address lines select one particular word. Each word in memory is assigned an
identification number, called an address, starting from 0 and continuing with
1,2, 3, up to 2* — 1 where k is the number of address lines. The selection of
a specific word inside the memory is done by applying the k-bit binary address
to the address lines. A decoder inside the memory accepts this address and
opens the paths needed to select the bits of the specified word. Computer
memories may range from 1024 words, requiring an address of 10 bits, to 2*
words, requiring 32 address bits. It is customary to refer to the number of words
(or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga).
Kis equal to 2'°, Mis equal to 2%, and G is equal to 2. Thus 64K = 2'%,2M = 2%,
and 4G = 2%,

Two major types of memories are used in computer systems: random-
access memory (RAM) and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for infor-
mation transfer from any desired random location. That is, the process of
locating a word in memory is the same and requires an equal amount of time
no matter where the cells are located physically in memory: thus the name
“random access.”

Communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control lines,
that specify the direction of transfer. A block diagram of a RAM unit is shown
in Fig. 2-12. The n data input lines provide the information to be stored in
memory, and the » data output lines supply the information coming out of
memory. The k address lines provide a binary number of k bits that specify a
particular word chosen among the 2* available inside the memory, The two
control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the
write and read operations. The write signal specifies a transfer-in operation
and the read signal specifies a transfer-out operation. On accepting one of
these control signals, the internal circuits inside the memory provide the
desired function. The steps that must be taken for the purpose of transferring
2 new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.
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Figure 2-12 Block diagram of random access memory (RAM).

2. Apply the data bits that must be stored in memory into the data input
lines. )

3. Activate the write input.

The memory unit will then take the bits presently available in the input data
lines and store them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word
out of memory are as follows:

1. Apply the binary address of the desired word into the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected
by the address and apply them into the output data lines. The content of the
selected word does not change after reading.

]

Read-Only Memory

As the name implies, a read-only memory (ROM).is a memory unit that
performs the read operation only; it does not have a write capability. This
implies that the binary information stored ina ROM is made permanent during
the hardware production of the unit and cannot be altered by writing different
words into it. Whereas a RAM is a general-purpose device whose contents can
be altered during the computational process, a ROM is restricted to reading
words that are permanently stored within the unit. The binary information to
be stored. specified bv the desiener is then embedded in the unit to form the
reyuired interconnecuon patiern. Rulvis ome wit special miernai erectronic
fuses that can be “programmed” for a specific configuration. Once the pattern
is established, it stays within the unit even when power is turned off and on
again.
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Figure 2-13  Block diagram of read only memory (ROM).

Anm X n ROM is an array of binary cells organized into m words of n
bits each. As shown in the block diagram of Fig. 2-13, a ROM has k address
input lines to select one of 2¥ = m words of memory, and n output lines, one
for each bit of the word. An integrated circuit ROM may also have one or more
enable inputs for expanding a number of packages into a ROM with larger
capacity. :

The ROM does not fieed a read-control line since at any given time, the
output lines automatically provide the n bits of the word selected by the
address value. Because the outputs are a function of only the present inputs
(the address lines), a ROM s classified as a combinational circuit. [n fact, a ROM
is constructed internally with decoders and a set of OR gates. There is no need
for providing storage capabilities as in a RAM, since the values of the bits in
the ROM are permanently fixed.

ROM s find a wide range of applications in the design of digital systems.
Basically, a ROM generates an input-output relation specified by a truth table.
As such, it can implement any combinational circuit with k inputs and n outputs.
When employed in a computer system as amemory unit, the ROM is used for
storing fixed programs that are not to be altered and for tables of constants that
are not subject to change. ROM is also employed in the design of control units
for digital computers. As such, they are used to store coded information that
represents the sequence of internal control variables needed for enabling the
various operations in the computer. A control unit that utilizes a ROM to store
binary control information is called a microprogrammed control unit. This
subject is dicsussed in more detail in Chapter 7.

Types of ROMs

The required paths in a ROM may be programmed in three different ways. The
first, mask programming, is done by the semiconductor company during the last
fabrication process of the unit. The procedure for fabricating a ROM requires
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that the customer fill out the truth table that he or she wishes the ROM to
satisfy. The truth table may be submitted in 4 spicial form provided by the
manufacturer or in a specified format on a computer output medium. The
manufacturer makes the corresponding mask for the paths to produce the 1’s
and 0's according to the customer’s truth table. This procedure is costly because
the vendor charges the customer a special fee for custom masking the particular
ROM. For this reason, mask programming is economical onlyifalarge quantity
of the same ROM configuration is to be ordered. ‘

For small quantities it is more economical to use a second type of ROM
called a programmable read-only memory or PROM. When ordered, PROM units
contain all the fuses intact, giving all 1's in the bits of the stored words. The
fuses in the PROM are blown by application of current pulses through the
output terminals for each address. A blown fuse defines a binary 0 state, and
an intact fuse gives a binary 1 state. This allows users to program PROMs in
their own laboratories to achieve the desired relationship between input ad-
dresses and stored words. Special instruments called PROM programmers are
available commercially to facilitate this procedure. In any case, all procedures
for programming ROMs are hardware procedures even though the word
“programming” is used.

The hardware procedure for programming ROMs or PROMs is irre-
versible, and once programmed, the fixed pattern is permanent and cannot be
altered. Once a bit pattern has been established, the unit must be discarded
if the bit pattern is to be changed. A third type of ROM available is called erasabie
PROM or EPROM. The EPROM can be restructured to the initial value even
though its fuses have been blown previously. When the EPROM is placed
under a special ultraviolet light for a given period of time, the shortwave
radiation discharges the internal gates that serve as fuses. After erasure, the
EPROM returns to its initial state and can be reprogrammed to a new set of
words. Certain PROMS can be erased with electrical signals instead of ultravi-
olet light. These PROMs are called electrically erasable PROM or EEPROM.

2-1. TTL SSI come mostly in 14-pin IC packages. Two pins are reserved for power
supply and the other pins are used for input and outpul terminals. How
many circuits are included in one such package if it contains the following
type of circuits? (a) Inverters; (b) two-input exclusive-OR gates; (c) three-in-
put OR gates; (d) four-input AND gates; (e) five-input NOR gates; (f) eight-
input NAND gates; (g) clocked /K flip-flops with asynchronous clear.

22, MSI chips perform elementary digital functions such as decoders, multiplex-
ers, registers, and counters. The following are TTL-type integrated circuits
that provide such functions. Find their description in a data book and
compare them with the corresponding component presented in this cha pter
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2-3.
2-4.
2-5.

2-6.

2-7.
2-8.

2-9,

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

. IC type 74155 dual 2-to-4-line decoders.

. IC type 74157 quadruple 2-to-1-line multiplexers.

. 1C type 74194 4-bit bidirectional shift register with parallel load.

. IC type 74163 4-bit binary counter with parallel load and synchronous
clear.

Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable

and one 2-to4-line decoder. Use block diagrams similar to Fig. 2-3.

Draw the logic diagram of a 2-to-4-line decoder with only NOR gates.
Include an enable input.

Modify the decoder of Fig. 2-2 so that the circuit is enabled when E = 1and
disabled when E = 0. List the modified truth table.

Draw the logic diagram of an eight-input, three-output encoder whose truth
table is given in Table 2-2. What is the output when all the inputs are equal
to 0? What is the output when only input D; is equal to 0? Establish a
procedure that will distinguish between these two cases.

Construct a 16-to-1-line multiplexer with two 8-to-1-line multiplexers and
one 2-to-1-line multiplexer. Use block diagrams for the three muiltiplexers.

Draw the block diagram of a dual 4-to-1-line multiplexers and explain its
operation by means of a function table.

T ™

&

Include a two-input AND gate with the register of Fig. 2-6 and connect the
gate output to the clock inputs of all the flip-flops. One input of the AND
gate receives the clock pulses from the clock pulse generator. The other input
of the AND gate provides a parallel load control. Explain the operation of
the modified register.

What is the purpose of the buffer gate in the clock input of the register of
Fig. 2-77 '

Include a synchronous clear capability to the register with parallel load of
Fig. 2-7.
The content of a 4-bit register is initially 1101. The register is shifted six times

to the right with the serial input being 101101. What is the content of the
register after each shift? '

What is the difference between serial and parallel transfer? Using a shift
register with parallel load, explain how to convert serial input data to parallel
output and parallel input data to serial output.

A ring counter is a shift register as in Fig. 2-8 with the serial output connected
to the serial input. Starting from an initial state of 1000, list the sequence of
states of the four flip-flops after each shift.

The 4-bit bidirectional shift register with parallel load shown in Fig. 2-9is
enclosed within one IC package.

a. Draw a block diagram of the IC showing all inputs and outputs. Include

two pins for power supply.
b. Draw ablock diagram using two 1Cs o produce an Sbit bidires onal shatt

register with parallel load.

How many flip-flops will be complemented in a 10-bit binary counter to
reach the next count after (a) 1001100111; (b) 00111111117
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Show the connections between four 4-bit binary counters with parallel load
(Fig. 2-11) to produce a 16-bit binary counter with parallel load. Use a block
diagram for each 4-bit counter.

Show how the binary counter with parallel load of Fig. 2-11 can be made to
operate as a divide-by-N counter (i.e., a counter that counts from 0000 to
N-and back to 0000). Specifically show the circuit for a divide-by-10 counter
using the counter of Fig. 2-11 and an external AND gate.

The following memory units are specified by the number of words times the
number of bits per word. How many address lines and input—output data
lines are needed in each case? (a) 2K x 16; (b) 64K x 8;(c) 16M x 32;
(d) 4G x 64.

Specify the number of bytes that can be stored in the memories listed in
Prob. 2-19.

How many 128 x 8 memory chips are needed to provide a Memory capacity
of 4096 x 16?

Given a 32 x 8 ROM chip with an enable input, show the external connec-
tions necessary to construct a 128 x 8 ROM with four chips and a decoder.
AROM chip 0f 4096 x 8 bits has two enable inputs and operates froma 5-volt
power supply. How many pins are needed for the integrated circuit pack-

age? Draw a block diagram and label all input and output terminals in the
ROM.

L. Hill F.]., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paui, MN: West Publishing,

1985.

4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
5. Shiva, 5. G., Introduction to Logic Design. Glenview, II: Scott, Foresman, 1988.

6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice
Hall, 1990.

7. Ward, 5. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.
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Show the connections between four 4-bit binary counters with parallel load
(Fig. 2-11) to produce a 16-bit binarv counter with parallel load. Use a block
diagram for each 4-bit counter.

Show how the binary counter with parallel load of Fig. 2-11 can be made to
operate as a divide-by-N counter (i.e., a counter that counts from 0000 to
N-and back to 0000). Specifically show the circuit for a divide-by-10 counter
using the counter of Fig. 2-11 and an external AND gate.

The following memory units are specified by the number of words times the
number of bits per word. How many address lines and input—-output data
lines are needed in each case? (a) 2K x 16; (b) 64K x 8;(c) 16M x 32:
(d) 4G x 64.

Specify the number of bytes that can be stored in the memories listed in
Prob. 2-19.

How many 128 x 8 memory chips are needed to provide a memory capacity
of 4096 x 16?

Given a 32 x 8 ROM chip with an enable input, show the external connec-
tions necessary to construct a 128 x 8 ROM with four chips and a decoder.
AROM chip of 4096 x 8bits has two enable inputs and operates from a 5-volt
power supply. How many pins are needed for the integrated circuit pack-

age? Draw a block diagram and label all input and output terminals in the
ROM.

1. Hill, F.J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991
3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing,

1985.

4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
5. Shiva, S. G., Introduction to Logic Design. Glenview, II: Scott, Foresman, 1988.

6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice
Hall, 1990.

7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.
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IN THIS CHAPTER

3.1 Data Types

3-2 Complements

3-3 Fixed-Point Representation
3-4 Floating-Point Representation
3-5 Other Binary Codes

3-6 Error Detection Codes

3-1 Data Types

Binary information in digital computers is stored in memory or processor
registers. Registers contain either data or control information, Control informa-
tion is a bit or a group of bits used to specify the sequence of command signals
needed for manipulation of the data in other registers. Data are numbers and
other binary-coded information that are operated on to achieve required com-
putational results. In this chapter we present the most common types of data
found in digital computers and show how the various data types are repre-
sented in binary-coded form in computer registers.

The data types found in the registers of digital computers may be classi-
fied as being one of the following categories: (1) numbers used in arithmetic
computations, (2) letters of the alphabet used in data processing, and (3) other
discrete symbols used for specific purposes. All types of data, except binary
numbers, are represented in computer registers in binary-coded form. This is
because registers are made up of flip-flops and flip-flops are two-state devices
that can store only 1’s and 0s. The binary number system is the most natural
system to use in a digital computer. But sometimes it is convenient to employ
different number systems, especially the decimal number system, since it is
used by people to perform arithmetic computations.

67
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radix

decimal

binary

octal
hexademical

conversion

Number Systems

A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of 7 and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
724.5 is interpreted to represent the quantity

7x100+2x10'+4x10°+ 5 x 10!

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal
number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. The string of digits 101101 is interpreted to represent the quantity

IXBP+0X2+1X2P+1Xx2+0%x2'+1%2=45

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101), = (45)s0.

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym-
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the
hexadecimal system are 0,1, 2, 3,4,5,6,7,8,9, A, B, C, D, E, and F. The last
six symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix r can be converted to the familiar decimal system by

forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(736.4) =7 x 8 +3x8 +6%x8 +4x8!
=7X64+3xX8+6x1+4/8=(478.5),

The equivalent decimal number of hexadecimal F3 is obtained from the follow-
ing calculation:

(Fw=Fx16+3=15x%16+ 3 = (243),

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and
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converting each part separately. The conversion of a decimal integer into a base
I representation 1s done by successive divisions by r and accumulation of the
remainders. The conversion of a decimal fraction to radix r representation is
accomplished by successive multiplications by r and accumulation of the in-
teger digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separating
the number into its integer part 41 and fraction part .6875. The integer part is
converted by dividing 41 by r = 2 to give an integer quotient of 20 and a
remainder of 1. The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remairfders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying itby r = 2to give an integer
and a fraction. The new fraction (without the integer) is multiplied again by 2
to give a new integer and a new fraction. This process is repeated until the
fraction part becomes zero or until the number of digits obtained gives the
required accuracy. The coefficients of the binary fraction are obtained from
the integer digits with the first integer computed being the digit to be placed

next to the binary point. Finally, the two parts are combined to give the total
required conversion.

Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 2° = 8 and 24 — 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor-
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits each.
The corresponding octal digit is then assigned to each group of bits and the
string of digits so obtained gives the octal equivalent of the binary number.
Consider, for example, a 16-bit register. Physically, one may think of the

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer = 4] Fraction = 0.6875

41 0.6875
20 |1 2
10 |0 1.3750
5|0 x 2
211 0.7500
11 x 2
011 1.5000
x 2
1.0000

(4!)[5 =(101001h {06875];0 =(ﬂ.|01!]1

(41.6875),5 = (101001.101 1),
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2 7‘ 5”4 3 Octal
010111101 100011 Binary
A F 6 3 Hexadecimal

1
—_
I

Figure 3-2 Binary, octal, and hexadecimal conversion.

register as composed of 16 binary storage cells, with each cell capable of
holding either a 1 or a 0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of 1’s and
0’s, the 16-bit register can be used to store any binary number from 0to 2" - 1.
For the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four. The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig. 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of the
binary number. The corresponding octal digit for each group of three bits js.
easily remembered after studying the first eight entries listed in Table 3-1. The
corréspondence between a hexadecimal digit and its equivalent 4-bit code can
be found in the first 16 entries of Table 3-2.

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal

number octal equivalent

0 000 0 ‘l‘
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
7 111 7 l
10 001 000 8

11 001 001 9

12 001 M0 0

24 010 100 20

62 110 010 50

143 001 100 011 99

370 011 111 000 248
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; Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure explained
above. Each octal digit is assigned a 3-bit code as specified by the entries of the
first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal
numbers and their representation in registers in binary-coded form. Here the
binary code is obtained by assigning to each hexadecimal digit the 4-bit code
listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their
binary number equivalent we find that the bit combination in all three repre-
sentations is exactly the same. For example, decimal 99, when converted to
binary, becomes 1100011. The binary-coded octal equivalent of decimal 99 is
001 100 011 and the binary-coded hexadecimal of decimal 99 is 0110 0011, If
we neglect the leading zeros in these three binary representations, we find that
their bit combination is identical. This should be so because of the straightfor-
ward conversion that exists between binary numbers and octal or hexadecimal.
The point of all this is that a string:of 1’s and 0's 'stored in a register could
represent a binary number, but this same string of bits may be interpreted as
holding an octal number in binary-coded form (if we divide the bits in groups
of three) or as hoiding a hexadecimal number in binary-coded form (if we
divide the bits in groups of four).

TABLE 3.2 Binary-Coded Hexadecimal Numbers

Hexadecimal ~ Binary-coded Decimal

number hexadecimal  equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 <
5 0101 S
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 11
o] 1100 12
D 1101 13
E 1110 14
F 1111 15
14 0001 0100 | 20
32 0011 0010 50
63 0110 0011 99
F8 1111 1000 248
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binary code

BCD

The registers in a digital computer contain many bits. Specifying the
content of registers by their binary values will require a long string of binary
digits. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For exam-
ple, the binary number 1111 1111 1111 has 12 digits. It can be expressed in
octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation

The binary number system is the most natural system for a computer, but
people are accustomed to the decimal system. One way to solve this conflict
is to convert all input decimal numbers into binary numbers, let the computer
perform all arithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num-
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2" distinct combina-
tions of 1's and 0’s with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of
2. The 10 decimal digits form such a set. A binary code that distinguishes
among 10 elements must contain at least four bits, but six combinations will
remain unassigned. Numerous different codes can be obtained by arranging
four bits in 10 distinct combinations. The bit assignment most commonly used
for the decimal digits is the straight binary assignment listed in the first 10
entries of Table 3-3. This particular code is called binary-coded decimal and is
commonly referred to by its abbreviation BCD. Other decimal codes are some-
times used and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers. For
example, when converted to a binary number, the decimal number 99 is repre-
sented by the string-of bits 1100011, but when represented in BCD, it becomes
1001 1001. The only difference between a decimal number represented by the
familiar digit symbols 0, 1,2, .. .,9 and the BCD symbols 0001, 0010, .. ., 1001
is in the symbols used to represent the digits—the number itself is exactly the
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TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal
number (BCD) number

0001

0010

0011 Code
0100 for one
0101 decimal
0110 digit
0111 |
1000 l
1001

&

W~ aWwWihe=Oo

0001 0000
0010 0000
0101 0000
1001 1001
0010 0100 1000

E888a

same. A few decimal numbers and their representation in BCD are listed in
Table 3-3.

Alphanumeric Representation

Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and certain
special characters. Analphanumeric character set is a set of elements that includes
the 10 decimal digits, the 26 letters of the alphabet and a number of special
characters, such as §, +, and =. Such a set contains between 32 and 64 elements
(if only uppercase letters are included) or between 64 and 128 (if both uppercase
and lowercase letters areincluded). In the first case, the binary code will require
six bits and in the second case, seven bits. The standard alphanumeric binary
code is the ASCII (American Standard Code for Information Interchange),
which uses seven bits to code 128 characters. The binary code for the uppercase
letters, the decimal digits, and a few special characters is listed in Table 3-4.
Note that the decimal digits in ASCII can be converted to BCD by removing
the three high-order bits, 011. A complete list of ASCII characters is provided
in Table 11-1.

Binary codes play an important part in digital computer operations. The
codes must be in binary because registers can only hold binary information.
One must realize that binary codes merely change the symbols, not the mean-
ing of the discrete elements they represent. The operations specified for digital
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TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
[ 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
) 8 100 1100
M 100 1101 space 010 0000
N 100 1110 ; 010 1110
o 100 1111 ( 010 1000
P 101 0000 - 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011 ) 010 1001
T 101 D100 - 010 1101
U 101 0101 / 010 1111
v 101 0110 . 010 1100
W 101 0111 = 011 1101
X 101 1000
Y 101 1001
Z 101 1010

computers must take into consideration the meaning of the bits stored in
registers so that operations are performed on operands of the same type. In
inspecting the bits of a computer register at random, one is likely to find that
it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulate instructions that specify control infor-
mation for the computer. This chapter is concerned with data representation.
Instruction codes are discussed in Chap. 5.

3-2 Complements

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r's complement and the (r — 1)’s complement.
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When the value of the base r is substituted in the name, the two types are
referred to as the 2’s and 1’s complement for binary numbers and the 10’s and

9's complement for decimal numbers.

(r — 1)’s Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N js
defined as (r" — 1) -~ N. For decimal numbers r = 10 and r=1=09,s0the9s
complement of N is (10" — 1) = N. Now, 10" represents a number that consists
of a single 1 followed by n 0’s. 10" — 1 is a number represented by n 9’s. For
example, with 7 = 4 we have 10* = 10000 and 10* — 1 =9999. It follows that
the 9’s complement of a decimal number is obtained by subtracting each digit
from 9. For example, the 9's complement of 546700 is 999999 — 546700 =
453299 and the 9's complement of 12389 is 99999 — 12389 = 87610.

For binary numbers, r = 2and r - 1 = 1, so the 1's complement of N is
(2" = 1) = N. Again, 2 is represented by a binary number that consists of a 1
followed by n (/s. 2" - 1isa binary number represented by n11's. For example
with n = 4, we have 2% = (10000), and 2* — 1 = (1111),. Thus the 1's comple-

changing 1's into (s and (s into 1’s. For example, the 1’s complement of
1011001 is 0100110 and the 1’s complement of 0001111 is 1110000.

The (r — 1)'s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal 15) respectively.

(r’s) Complement

The r’s complement of an n-digit number N in base r is defined as r* — N for
N # 0and 0 for N = 0. Comparing with the (r — 1)’s complement, we note
that the r’s complement is obtained by adding 1 to the (r — 1)’s complement
since r" ~ N = [(r" - 1) = N] + 1. Thus the 10’s complement of the decimal
2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9's complement
value. The 2’s complement of binary 101100 is 010011 + 1 = 010100 and is
obtained by adding 1 to the 1s complement value.

Since 10" is a number represented by a 1 followed by 7 0's, then 10" — N,
which is the 10's complement of N, can be formed also be leaving all least
significant 0's unchanged, subtracting the first nonzero least significant digit
from 10, and then subtracting all higher significant digits from 9. The 10's

unchanged, subtracting 7 from 10, and subtracting the other three digits from
9. Similarly, the 2’s complement can be formed by leaving all least significant
0's and the first 1 unchanged, and then replacing 1's by 0’s and 0’s by I'sin
all other higher significant bits. The 2's complement of 1101100 is 0010100 and
is obtained by leaving the two low-order 0’s and the first 1 unchanged, and then
replacing 1's by 0’s and 0’s by 1's in the other four most significant bits.
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subtraction

end carry

In the definitions above it was assumed that the numbers do not have a
radix point. If the original number N contains a radix point, it should be
removed temporarily to form the 7’s or (r — 1)’'s complement. The radix point
is then restored to the complemented number in the same relative position. It
is also worth mentioning that the complement of the complement restores the
number to its original value. The r’s complement of N is r* — N. The comple-
ment of the complement is r* = (7 — N) = N giving back the original number.

Subtraction of Unsigned Numbers

The direct method of subtraction taught in elementary schools uses the borrow
concept. In this method we borrow a 1 from a higher significant position when
the minuend digit is smaller than the corresponding subtrahend digit. This
seems to be easiest when people perform subtraction with paper and pencil.
When subtraction is implemented with digital hardware, this method is found
to be less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N(N # 0) inbase
r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This
performs M + (r" = N) =M — N + "

2. If M = N, the sum will produce an end carry r" which is discarded, and
what is left is the result M — N.

3. If M < N, the sum does not produce an end carry and is equal to
" — (N — M), which is the r’s complement of (N — M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place
a negative sign in front.

Consider, for example, the subtraction 72532 — 13250 = 59282. The 10’s com-
plement of 13250 is 86750. Therefore:

M= 72532
10’s complement of N = +86750
Sum = 159282

Discard end carry 10° = —100000
Answer = 59282

Now consider an example with M < N. The subtraction 13250 — 72532
produces negative 59282. Using the procedure with complements, we have

M= 13250
10’'s complement of N = +27468
Sum = 40718
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There is no end carry

Answer is negative 59282 = 10's complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
getan unsigned result for the second example. When working with paper and
pencil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog-
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary
numbers X = 1010100 and Y = 1000011, we perform the subtraction X — Y
and Y — X using 2's complements:

X = 1010100

2's complement of Y = +0111101
Sum = 10010001

Discard end carry 27 = —10000000
Answer: X = Y = 0010001

Y = 1000011
2's complement of X = +0101100
Sum = 1101111

There is no end carry

Answer is negative 0010001 = 2's complement of 1101111

3-3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative
values. In ordinary arithmetic, a negative number is indicated by a minus sign
and a positive number by a plus sign. Because of hardware limitations, com-
puters must represent everything with 1's and 0's, including the sign of a
number. As a consequence, it is customary to represent the sign with a bit
placed in the leftmost position of the number. The convention is to make the
sign bit equal to 0 for positive and to 1 for negative. )

In addition to the sign, a number may have a binary (or decimal) point.
The position of the binary point is needed to represent fractions, integers, or
mixed integer—fraction numbers. The representation of the binary point in a
register is complicated by the fact that it is characterized by a position in tl"ne
register. There are two ways of specifying the position of the binar}f point in
a register: by giving it a fixed position or by employing a floating-point repre-
sentation. The fixed-point method assumes that the binary point is always



78 CHAPTER THREE Data Representation

signed numbers

fixed in one position. The two positions most widely used are (1) a binary peint
in the extreme left of the register to make the stored number a fraction, and
(2) abinary point in the extreme right of the register to make the stored number
an integer. In either case, the binary point is not actually present, but its
presence is assumed from the fact that the number stored in the register is
treated as a fraction or as an integer. The floating-point representation uses a
second register to store a number that designates the position of the decimal

point in the first register. Floating-point representation is discussed further in
the next section.

Integer Representation

When an integer binary number is positive, the sign is represented by 0 and
the magnitude by a positive binary number. When the number is negative, the
sign is represented by 1 but the rest of the number may be represented in one
of three possible ways:

1. Signed-magnitude representation
2. Signed-1's complement representation
3. Signed 2's complement representation

The signed-magnitude representation of a negative number consists of the
magnitude and a negative sign. In the other two representations, the negative
number is represented in either the 1's or 2's complement of its positive value.
As an example, consider the signed number 14 stored in an 8-bit register. +14
is represented by a sign bit of 0 in the leftmost position followed by the binary
equivalent of 14: 00001110. Note that each of the eight bits of the register must
have a value and therefore 0's must be inserted in the most significant positions
following the sign bit. Although there is only one way to represent +14, there
are three different ways to represent —14 with eight bits.

In signed-magnitude representation 1 0001110
In signed-1's complement representation 1 1110001
In signed-2’s complement representation 1 1110010

The signed-magnitude representation of —14 is obtained from +14 by comple-
menting only the sign bit. The signed-1's complement representation of —14
is obtained by complementing all the bits of +14, including the sign bit. The
signed-2's complement representation is obtained by taking the 2's comple-
ment of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is awk-
ward when employed in computer arithmetic. Therefore, the signed-comple-
ment is normally used. The 1’s complement imposes difficulties because it
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has two representations of 0 (+0 and —0). It is seldom used for arithmetic
operations except in some older computers. The 1's complement is useful as
a logical operation since the change of 1 to 0 or 0 to 1 is equivalent to a logical
complement operation. The following discussion of signed binary arithmetic
deals exclusively with the signed-2's complement representation of negative
numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules
of ordinary arithmetic. If the signs are the same, we add the two magnitudes
and give the sum the common sign. If the signs are different, we subtract the
smaller magnitude from the larger and give the result the sign of the larger
magnitude. For example, (+25) + (~-37) = —(37 - 25) = ~12 and is done by
subtracting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the
comparison of the signs and the magnitudes and then performing either
addition or subtraction. (The procedure for adding binary numbers in signed-
magnitude representation is described in Sec. 10-2.) By contrast, the rule for
adding numbers in the signed-2's complement system does not require a
comparison or subtraction, only addition and complementation. The proce-
dure is very simple and can'be stated as follows: Add the two numbers,
including their sign bits, and discard any carry out of the sign (leftmost) bit
position. Numerical examples for addition are shown below. Note that nega-
tive numbers must initially be in 2’s complement and that if the sum obtained
after the addition is negative, it is in 2's complement form.

+6 00000110 -6 11111010
+13 00001101 +13 00001101
+19 00010011 +7 00000111
+6 00000110 -6 11111010
—-13 11110011 ~13 11110011
—7 11111001 -19 11101101

In each of the four cases, the operation performed is always addition, including
the sign bits. Any carry out of the sign bit position is discarded, and negative
results are automatically in 2's complement form.

The complement form of representing negative numbers is unfamiliar to
people used to the signed-magnitude system. To determine the value of a
negative number when in signed-2’s complement, it is necessary to convert it
to a positive number to place itin a more famihar form. For example, the signed
binary number 11111001 is negative because the leftmost bit is 1. Its 2’s com-
plement is 00000111, which is the binary equivalent of +7. We therefore
recognize the original negative number to be equal to —7.
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2’s complement
subtraction

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2's
complement form is very simple and can be stated as follows: Take the 2's
complement of the subtrahend (including the sign bit) and add it to the
minuend (including the sign bit). A carry out of the sign bit position is dis-
carded.

This procedure stems from the fact that a subtraction operation can be
changed to an addition operation if the sign of the subtrahend is changed. This
is demonstrated by the following relationship:

(£A) = (+B) = (xA) + (-B)
(£A) = (=B) = (xA) + (+B)

But changing a positive number to a negative number is easily done by taking
its 2's complement. The reverse is also true because the complement of a
negative number in complement form produces the equivalent positive num-
ber. Consider the subtraction of (—6) = (—13) = +7. In binary with eight bits
this is written as 11111010 — 11110011. The subtraction is changed to addition
by taking the 2's complement of the subtrahend (—13) to give (+13). In binary
this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain
the correct answer 00000111 (+7).

It is worth noting that binary numbers in the signed-2’s complement
system are added and subtracted by the same basic addition and subtraction
rules as unsigned numbers. Therefore, computers need only one common
hardware circuit to handle both types of arithmetic. The user or programmer
must interpret the results of such addition or subtraction differently depending
on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers of n digits each are added and the sum occupies n + 1
digits, we say that an overflow occurred. When the addition is performed with
paper and pencil, an overflow is not a problem since there is no limit to the
width of the page to write down the sum. An overflow is a problem in digital
computers because the width of registers is finite. A result that contains n + 1
bits cannot be accommodated in a register with a standard length of = bits. For
this reason, many computers detect the occurrence of an overflow, and when
it occurs, a corresponding flip-flop is set which can then be checked by the user.

The detection of an overflow after the addition of two binary numbers
depends on whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end
carry out of the most significant position. In the case of signed numbers, the
leftmost bit always represents the sign, and negative numbers are in 2's
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complement form. When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and
the other is negative, since adding a positive number to a negative number
produces a result that is smaller than the larger of the two original numbers.
An overflow may occur if the two numbers added are both positive or both
negative. To see how this can happen, consider the following example. Two
signed binary numbers, +70 and +80, are stored in two 8-bit registers. The
range of numbers that each register can accommodate is from binary +127 to
binary —128. Since the sum of the two numbers is +150, it exceeds the capacity
of the 8-bit register. This is true if the numbers are both positive or both
negative. The two additions in binary are shown below together with the last
two carries.

carries; 0 1 carries: 1 0
+70 0 1000110 =70 1 0111010
+80 0 1010000 =80 1 0110000
+150 1 0010110 =150 0 1101010

Note that the 8-bit result that should have been positive has a negative sign
bit and the 8-bit result that should have been negative has a positive sign bit.
If, however, the carry out of the sign bit position is taken as the sign bit of the
result, the 9-bit answer so obtained will be correct. Since the answer cannot be
accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the
sign bit position and the carry out of the sign bit position. If these two carries
are not equal, an overflow condition is produced. This is indicated in the
examples where the two carries are explicitly shown. If the two carries are
applied to an exclusive-OR gate, an overflow will be detected when the output
of the gate is equal to 1.

Decimal Fixed-Point Representation

The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit. A 4-bit decimal code requires four
flip-flops for each decimal digit. The representation of 4385 in BCD requires 16
flip-flops, four flip-flops for each digit. The number will be represented in a
register with 16 flip-flops as follows:

0100 0011 1000 0101
By representing numbers in decimal we are wasting a considerable

amount of storage space since the number of bits needed to store a decimal
number in a binary code is greater than the number of bits needed for its
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equivalent binary representation. Also, the circuits required to perform deci-
mal arithmetic are more complex. However, there are some advantages in the
use of decimal representation because computer input and output data are
generated by people who use the decimal system. Some applications, such as
business data processing, require small amounts of arithmetic computations
compared to the amount required for input and output of decimal data. For this
reason, some computers and all electronic calculators perform arithmetic oper-
ations directly with the decimal data (in a binary code) and thus eliminate the
need for conversion to binary and back to decimal. Some computer systems
have hardware for arithmetic calculations with both binary and decimal data.

The representation of signed decimal numbers in BCD is similar to the
representation of signed numbers in binary. We can either use the familiar
signed-magnitude system or the signed-complement system. The sign of a
decimal number is usually represented with four bits to conform with the 4-bit
code of the decimal digits. It is customary to designate a plus with four s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is difficult to use with computers. The
signed-complement system can be either the 9's or the 10’s complement, but
the 10’s complement is the one most often used. To obtain the 10’s complement
of a BCD number, we first take the 9's complement and then add one to the
least significant digit. The 9's complement is calculated from the subtraction
of each digit from 9. :

The procedures developed for the signed-2’s complement system apply
also to the signed-10's complement system for decimal numbers. Addition is
done by adding all digits, including the sign digit, and discarding the end
carry. Obviously, this assumes that all negative numbers are in 10's comple-
ment form. Consider the addition (+375) + (-240) = +135done in the signed-
10’s complement system.

0 375 (0000 0011 0111 0101)scp
+9 760 (1001 0111 0110 0000)scn
0 135 (0000 0001 0011 0101)scp

The 91in the leftmost position of the second number indicates that the number
is negative. 9760 is the 10’s complement of 0240. The two numbers are added
and the end carry is discarded to obtain +135. Of course, the decimal numbers
inside the computer must be in BCD, including the sign digits. The addition
is done with BCD adders (see Fig. 10-18).

The subtraction of decimal numbers either unsigned or in the signed-10's
complement system is the same as in the binary case. Take the 10's complement
of the subtrahend and add it to the minuend. Many computers have special
hardware to perform arithmetic calculations directly with decimal numbers in
BCD. The user of the computer can specify by programmed instructions that
the arithmetic operations be performed with decimal numbers directly without
having to convert them to binary.
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3-4 Floating-Point Representation

The floating-point representation of a number has two parts. The first part
represents a signed, fixed-point number called the mantissa. The second part
designates the position of the decimal (or binary) point and is called the
exponent. The fixed-point mantissa may be a fraction or an integer. For exam-
ple, the decimal number +6132.789 is represented in floating-point with a
fraction and an exponent as follows: '

Fraction Exponent
+0.6132789 +04

The value of the exponent indicates that the actual position of the decimal point
is four positions to the right of the indicated decimal point in the fraction. This
representation is equivalent to the scientific notation +0.6132789 x 10**.
Floating-point is always interpreted to represent a number in the follow-
ing form:

m X

Only the mantissa m and the exponent ¢ are physically represented in the
register (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide
the correct computational results.

A floating-point binary number is represented in a similar manner except
that it uses base 2 for the exponent. For example, the binary number +1001.11
is represented with an 8-bit fraction and 6-bit exponent as follows:

Fraction Exponent
01001110 000100

The fraction has a 0 in the leftmost position to denote positive. The binary point
of the fraction follows the sign bit but is not shown in the register. The exponent
has the equivalent binary number +4. The floating-point number is equivalent
to

m X 2 = +(.1001110), x 2**

A floating-point number is said to be normalized if the most significant
digit of the mantissa 15 nunzero, bor example, the decimai number 350 1s
normalized but 00035 is not. Regardless of where the position of the radix point
is assumed to be in the mantissa, the number is normalized only if its leftmost
digit is nonzero. For example, the 8-bit binary number 00011010 is not normal-
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Gray code

ized because of the three leading 0's. The number can be normalized by shifting
it three positions to the left and discarding the leading 0's to obtain 11010000.
The three shifts multiply the number by 2° = 8. To keep the same value for the
floating-point number, the exponent must be subtracted by 3. Normalized
numbers provide the maximum possible precision for the floating-point num-
ber. A zero cannot be normalized because it does not have a nonzero digit. It
is usually represented in floating-point by all 0's in the mantissa and exponent.

Arithmetic operations with floating-point numbers are more complicated
than arithmetic operations with fixed-point numbers and their execution takes
longer and requires more complex hardware. However, floating-point repre-
sentation is a must for scientific computations because of the scaling problems
involved with fixed-point computations. Many computers and all electronic
calculators have the built-in capability of performing floating-point arithmetic
operations. Computers that do not have hardware for floating-point computa-
tions have a set of subroutines to help the user program scientific problems
with floating-point numbers. Arithmetic operations with floating-point num-
bers are discussed in Sec. 10-5.

3-5 Other Binary Codes

In previous sections we introduced the most common types of binary-coded
data found in digital computers. Other binary codes for decimal numbers and
alphanumeric characters are sometimes used. Digital computers also employ
other binary codes for special applications. A few additional binary codes
encountered in digital computers are presented in this section.

Gray Code

Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor-
mation is converted into digital form by means of an analog-to-digital con-
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used
for the converted digital data. The advantage of the Gray code over straight
binary numbers is that the Gray code changes by only one bit as it sequences
from one number to the next. In other words, the change from any number
to the next in sequence is recognized by a change of only one bit from 0 to 1
or from 1 to 0. A typical application of the Gray code occurs when the analog
data are represented by the continuous change of a shaft position. The shaft
is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity
is reduced when the shaft position is in the line that separates any two
segments., '

Gray code counters are sometimes used to provide the timing sequences
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TABLE 3-5 4-Bic Gray Code

Binary Decimal Binary Decimal
code equivalent code equivalent
0000 0 1100 8
0001 1 1101 9
0011 2 1111 10
0010 3 1110 1
0110 4 1010 12
0111 3 1011 13
0101 6 1001 14
0100 7 1000 15

that control the operations in a digital system. A Gray code counter is a counter
whose flip-flops go through a sequence of states as specified in Table 3-5. Gray
code counters remove the ambiguity during the change from one state of the
counter to the next because only one bit can change during the state transition.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous
different codes can be formulated by arranging four or more bits in 10 distinct
possible combinations. A few possibilities are shown in Table 3-6.

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal  BCD Excess-3
digit 8421 2421 Excess-3 gray
0 0000 0000 0011 0010
1 0001 0001 0100 0110
2 0010 0010 0101 0111
3 0011 0011 0110 0101
4 0100 0100 0111 0100
) 0101 1011 1000 1100
6 0110 1100 1001 1101
7 0111 1101 1010 1111
8 1000 1110 1011 1110
9 1001 1111 1100 1010
1010 0101 0000 0000
Unused il i (VTR 00Ul
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1000
nations 1110 1001 1110 1001

1111 1010 1111 1011
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' self-complementing

weighted code

excess-3 cogi_!e

The BCD (binary-coded decimal) has been introduced before. It uses a
straight assignment of the binary equivalent of the digit. The six unused bit
combinations listed have no meaning when BCD is used, just as the letter H
has no meaning when decimal digit symbols are written down. For example,
saying that 1001 1110 is a decimal number in BCD is like saying that 9H 1s a
decimal number in the conventional symbol designation. Both cases contain
an invalid symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the
9’s complement of the number is to be computed. On the other hand, the 9's
complement is easily obtained with the 2421 and the excess-3 codes listed
in Table 3-6. These two codes have a self-complementing property which
means that the 9's complement of a decimal number, when represented in one
of these codes, is easily obtained by changing 1's to 0's and 0's to 1's. This
property is useful when arithmetic operations are done in signed-complement
representation.

The 2421 is an example of a weighfed code. In a weighted code, the bits are
multiplied by the weights indicated and the sum of the weighted bits gives the
decimal digit. For example, the bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2x1+4x1+2X
0+ 1+1=7. The BCD code can be assigned the weights 8421 and for this
reason it is sometimes called the 8421 code.

The excess-3 code is a decimal code that has been used in older comput-
ers. This is an unweighted code. Its binary code assignment is obtained from
the corresponding BCD equivalent binary number after the addition of binary
3 (0011).

From Table 3-5 we note that the Gray code is not suited for a decimal code
if we were to choose the first 10 entries in the table. This is because the
transition from 9 back to 0 involves a change of three bits (from 1101 to 0000).
To overcome this difficulty, we choose the 10 numbers starting from the third
entry 0010 up to the twelfth entry 1010. Now the transition from 1010 to 0010
involves a change of only one bit. Since the code has been shifted up three
numbers, it is called the excess-3 Gray. This code is listed with the other
decimal codes in Table 3-6.

Other Alphanumeric Codes

The ASCIl code (Table 3-4) is the standard code commonly used for the
transmission of binary information. Each character is represented by a 7-bit
code and usually an eighth bit is inserted for parity (see Sec. 3-6). The code
consists of 128 characters. Ninety-five characters represent graphic symbols that
include upper- and lowercase letters, numerals zero to nine, punctuation
marks, and special symbols. Twenty-three characters represent format effectors,
which are functional characters for controlling the layout of printing or display
devices such as carriage return, line feed, horizontal tabulation, and back
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space. The other 10 characters are used to direct the data communication flow
and report its status.

Another alphanumeric (sometimes called alphameric) code used in IBM
equipment is the EBCDIC (Extended BCD Interchange Code). It uses eight bits
for each character (and a ninth bit for parity). EBCDIC has the same character
symbols as ASCII but the bit assignment to characters is different.

When alphanumeric characters are used internally in a computer for data

3-6  Error Detection Codes

Binary information transmitted through some form of communication medium
is subject to external noise that could change bits from 1 to 0, and vice versa.
An error detection code is a binary code that detects digital errors during
transmission. The detected errors cannot be corrected but their presence is

I's even. In either case, the sum is taken over the message and the P bit In
any particular application, one or the other type of parity will be adopted. The
even-parity scheme has the disadvantage of having a bit combination of all 0’s,
while in the odd parity there is always one bit (of the four bits that censtitute
the message and P) that is 1. Note that the P(odd) is the complement of the
P(even).

During wansfer of information from one location to another, the parity
bit is handled as follows, At the sending end, the message (in this case three
bits) is applied to a paril Y generutor, where the required parity bit is generated.,
The message, including the parity bit, is transmitted to its destination. At the
receiving end. all the inﬁnmine bits (in thic race faur) ara "-l"‘l-r‘\.!:n_r;_ b o Iw.w’i.l.
cliecker that Giedks the pioper panty adopted (odd or even). An error is detected
if the checked parity does not conform to the adopted parity. The parity
method detects the presence of one, three, or any odd number of errors. An
even number of errors is not detected.
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TABLE 3.7 Parity Bit Generation

Meséage
xyz P(odd) P(even)

000
001
010
011
100
101
110
111

O D OO =
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Parity generator and checker networks are logic circuits constructed with
exclusive-OR functions. This is because, as mentioned in Sec. 1-2, the exclu-
sive-OR function of three or more variables is by definition an odd function.

odd function An odd function is a logic function whose value is binary 1 if, and only if, an
odd number of variables are equal to 1. According to this definition, the P(even)
function is the exclusive-OR of ¥, y, and z because it is equal to 1 when either
one or all three of the variables are equal to 1 (Table 3-7). The P(odd) function
is the complement of the P(even) function.
As an example, consider a 3-bit message to be transmitted with an odd
parity bit. At the sending end, the odd-parity bit is generated by a parity

Figure 3-3 Error detection with odd parity bit.
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X ﬂ— x
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Eror
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Parity generator Parity checker
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generator circuit. As shown in Fig. 3-3, this circuit consists of one exclusive-OR
and one exclusive-NOR gate. Since P(even) is the exclusive-OR of x, ¥, 2, and
P(odd) is the complement of P(even), it is necessary to employ an exclusive-
NOR gate for the needed complementation. The message and the odd-parity
bit are transmitted to their destination where they are applied to a parity
checker. An error has occurred during transmission if the parity of the four bits
received is even, since the binary information transmitted was originally odd.
The output of the parity checker would be 1 when an error occurs, thatis, when
the number of 1's in the four inputs is even. Since the exclusive-OR function
of the four inputs is an odd function, we again need to complement the output
by using an exclusive-NOR gate.

Itis worth noting that the parity generator can use the same circuit as the
parity checker if the fourth input is permanently held at a logic-0 value. The
advantage of this is that the same circuit can be used for both parity generation
and parity checking.

It is evident from the example above that even-parity generators and
checkers can be implemented with exclusive-OR functions. Odd-parity net-
works need an exclusive-NOR at the output to complement the function.

= e i J)ROBWS e R

3-1. Convert the following binary numbers to decimal: 101110; 1110101; and
110110100,

3-2, Convert the following numbers with the indicated bases to decimal: (12121),;
(4310)s; (50)7; and (198)s..

3-3, Convert the following decimal numbers to binary: 1231; 673; and 1998.

3-4. Convert the following decimal numbers to the bases indicated.
a. 7562 to octal

b. 1938 to hexadecimal
c. 175 to binary

3-5. Convert the hexadecimal number F3A7C2 to binary and octal.

3-6. What is the radix of the numbers if the solution to the quadratic equation
x*~10x + 31 =0isx =5and x = 8?
3-7. Show the value of all bits of a 12-bit register that hold the number equivalent

to decimal 215 in (a) binary; (b) binary-coded octal; () binary-coded hexadec-
imal; (d) binary-coded decimal (BCD).

3-8. Show the bit configuration of a 24-bit register when its content represents
the decimal equrvalent ot 295 {aj in binary, (b} i BCD, (¢ in ASCI using
eight bits with even parity.

3-9, Write your name in ASCII using an 8-bit code with the leftmost bit always

0. Include a space between names and a period after a middle initial.
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3-10.

3-11.

312,

3-13.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

Decode the following ASCH code:
1001010 1001111 1001000 1001115 0iGCH00 1000100 1001111 1000101

Obtain the 9's complement of the following eight-digit decimal numuess:
12349876; 00980100; 90009951; and 00000000.

Obtain the 10's complement of the following six-digit decimal numbers:
123900; 090657; 100000; and 000000.

Obtain the 1’s and 2's complements of the following eight-digit binary
numbers: 10101110; 10000001; 10000000; 00000001; and 00000000.

Perform the subtraction with the following unsigned decimal numbers by
taking the 10's complement of the subtrahend.

a. 5250 — 1321 b. 1753 — 8640

c. 20 - 100 d. 1200 — 250

Perform the subtraction with the following unsigned binary numbers by
taking the 2's complement of the subtrahend.

a. 11010 - 10000 b. 11010 — 1101

c. 100 — 110000 d. 1010100 — 1010100

Perform the arithmetic operations (+42) + (—13) and (—42) — (—13) in bi-
nary using signed-2's complement representation for negative numbers.
Perform the arithmetic operations (+70) + (+80) and (~70) + (—80) with
binary numbers in signed-2's complement representation. Use eight bits to
accommodate each number together with its sign. Show that overflow oc-

curs in both cases, that the last two carries are unequal, and that there is a
sign reversal.

Perform the following arithmetic operations with the decimal numbers using
signed-10's complement representation for negative numbers.

a. (—638) + (+785)

b. (—638) — (+185)

A 36-bit floating-point binary number has eight bits plus sign for the expo-
nent and 26 bits plus sign for the mantissa. The mantissa is a normalized
fraction. Numbers in the mantissa and exponent are in signed-magnitude
representation. What are the largest and smallest positive quantities that can
be represented, excluding zero?

Represent the number (+46.5).0 as a floating-point binary number with
24 bits. The no. malized fraction mantissa has 16 bits and the exponent has
8 bits.

The Gray code is sometimes called a reflected code because the bit values are

reflected on both sides of any 2" value. For example, as shown in Table 3-5,

the values of the three low-order bits are reflected over a line drawn between

7 and 8. Using this property of the Gray code, obtain:

a. The Gray code numbers for 16 through 31 as a continuation of Table 3-5.

b. The excess-3 Gray code for decimals 10 to 19 as a continuation of the list
in Table 3-6.

Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c) 2421 code;
{d) as a binary number.
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3-23.  List the 10 BCD digits with an even parity in the leftmost position (total of

five bits per digit). Repeat with an odd-parity bit.

3-24.  Represent decimal 3984 in the 2421 code of Table 3-6. Complement all bits

of the coded number and show that the result is the 9's complement of 3984
in the 2421 code.

3-25. Show that the exclusive-OR function x = A GB®CH D is an odd function,

One way to show this is to obtain the truth table for y = A®B and for
z = C@D and then formulate the truth table for x = y®z. Show thatx = 1
only when the total number of 1'sin A, B, C, and D is odd.

3-26.  Derive the arcuits for a 3-bit parity generator and 4-bit parity checker using

an even-parity bit. (The circuits of Fig. 3-3 use odd parity.)
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Register Transfer
and Microoperations

IN THIS CHAPTER

4-1 Register Transfer Language
4-2  Register Transfer

4-3 Bus and Memory Transfers
4-4 Arithmetic Microoperations
4-5 Logic Microoperations

4-6  Shift Microoperations

4-7 Arithmetic Logic Shift Unir

4-1 Register Transfer Language

registers, decoders, arithmetic elements, and control logic. The various mod-
ules are interconnected with common data and control paths to form a digital
computer system.

Digital modules are best defined by the registers they contain and the
operations that are performed on the data stored in them. The operations
executed on data stored in registers are called microoperations. A microoper-
ation is an elementary operation performed on the information stored in one
Or more registers. The result of the Operation may replace the previous binary
information of a register or may be transferred to another register. Examples
of microoperations are shift, count, clear, and load. Some of the digital com-
ponents introduced in Chap. 2 are registers that implement microoperations.
For example, a counter with parallel load is capable of performing the micro-

93
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operations increment and load. A bidirectional shift register is capable of
pertorming the shuft nght and shiit leit nucrovperativns.

The internal hardware organization of a digital computer is best defined
by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information
stored in the registers.

3. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of microoperations in a computer by
explaining every operation in words, but this procedure usually involves a
lengthy descriptive explanation. It is more convenient to adopt a suitable
symbology to describe the sequence of transfers between registers and the
various arithmetic and logic microoperations associated with the transfers. The
use of symbols instead of a narrative explanation provides an organized and
concise manner for listing the microoperation sequences in registers and the
control functions that initiate them.

The symbolic notation used to describe the microoperation transfers

register transfer among registers is called a register transfer language. The term “‘register
language transfer” implies the availability of hardware logic circuits that can perform a

stated microoperation and transfer the result of the operation to the same or
another register. The word “language” is borrowed from programmers, who
apply this term to programming languages. A programming language is a
procedure for writing symbols to specify a given computational process. Sim-
ilarly, a natural language such as English is a system for writing symbols and
conbining them into words and sentences for the purpose of communication
between people. A register transfer language is a system for expressing in
symbolic form the microoperation sequences among the registers of a digital
module. It is a convenient tool for describing the internal organization of digital
computers in concise and precise manner. It can also be used to facilitate the
design process of digital systems.

The register transfer language adopted here is believed to be as simple
as possible, so it should not take very long to memorize. We will proceed to
define symbols for various types of microoperations, and at the same time,
describe associated hardware that can implement the stated microoperations.
The symbolic designation introduced in this chapter will be utilized in subse-
quent chapters to specify the register transfers, the microoperations, and the
control functions that describe the internal hardware organization of digital
computers. Other symbology in use can easily be learned once this language
has become familiar, for most of the differences' between register tra nsfer
languages consist of variations in detail rather than in overall purpose.



registers

register transfer

SECTION 4.2 Register Transfer 95

4-2 Register Transfer S

Computer registers are designated by capital letters (sometimes followed by
numerals) to denote the function of the register. For example, the register that
holds an address for the memory unit is usually called a memory address
register and is designated by the name MAR. Other designations for registers
are PC (for program counter), IR (for instruction register, and R1 (for processor
register). The individual flip-flops in an n-bit register are numbered in se-
quence from 0 through n — 1, starting from 0 in the rightmost position and
increasing the numbers toward the left. Figure 4-1 shows the representation
of registers in block diagram form. The most common way to represent a
register is by a rectangular box with the name of the regidter inside, as in
Fig. 4-1(a). The individual bits can be distinguished as in (b). The numbering
of bits in a 16-bit register can be marked on top of the box as shown in (c). A
16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned
the symbol L (for low byte) and bits 8 through 15 are assigned the symbol H
(for high byte). The name of the 16-bit register is PC. The symbol PC(0-7) or
PC(L) refers to the low-order byte and PC(8-15) or PC(H) to the high-order
byte.

Information transfer from one register to another is designated in sym-
bolic form by means of a replacement operator. The statement

R2 « R1

denotes a transfer of the content of register R1 into register R2. It designates
a replacement of the content of R2 by the content of R1. By definition, the
content of the source register R1 does not change after the transfer.

A statement that specifies a register transfer implies that crcuits are
available from the outputs of the source register to the inputs of the destination
register and that the destination register has a parallel load capability. Nor-

Figure 4-1 Block diagram of register.

R | 13’“5432‘M

{a) Register R (h) Showing individual bits

15 8 7 0
R2 | [ reen | rcw |

{¢) Numbering of bits (d) Divided into two parts
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control function

mally, we want the transfer to occur only under a predetermined control
condition. This can be shown by means of an if-then statement.

If (P = 1) then (R2 « R1)

where P is a control signal generated in the control section. It is sometimes
convenient to separate the control variables from the register transfer operation
by specifying a control function. A control function is a Boolean variable that is
equal to 1 or 0. The control function is included in the statement as follows:

P: R2 « R1

The control condition is terminated with a colon. It symbolizes the requirement
that the transfer operation be executed by the hardware only if P = 1.
Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer. Figure 4-2 shows the block dia-
gram that depicts the transfer from R1 to R2. The n outputs of register R1 are
connected to the n inputs of register R2. The letter 1 will be used to indicate
any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is
activated by the control variable P. It is assumed that the control variable is
synchronized with the same clock as the one applied to the register. As shown

Figure 4-2 Transfer from R1 to R2 when P = L.

Control E Load

circuit

R2 Clock

Clock

Transfer occurs here J

(b) Timing diagram
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in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time 1. The next pusitive transition of the duch at time ¢ + |
finds the load input active and the data inputs of R2 are then loaded into the
register in parallel. P may go back to 0 at time f + 1; otherwise, the transfer
will occur with every clock pulse transition while P remains active.

Note that the clock is not included as a variable in the register transfer
statements. Itis assumed that all transfers occur during a clock edge transition.
Even though the control condition such as P becomes active just after time f,
the actual transfer does not occur until the register is triggered by the next
positive transition of the clock at time t + 1.

The basic symbols of the register transfer notation are listed in Table 4-1.
Registers are denoted by capital letters, and numerals may follow the letters.
Parentheses are used to denote a part of a register by specifying the range of
bits or by giving a symbol name to a portion of a register. The arrow denotes
a transfer of information and the direction of transfer. A comma is used to
separate two or more operations that are executed at the same time. The
statement

T: R2 « R1, Rl « R2
denotes an operation that exchanges the contents of two registers during one

common clock pulse provided that T = 1. This simultaneous operation is
possible with registers that have edge-triggered flip-flops.

TABLE 4-1 Basic Symbols for Register Transfers

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses ( ) Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « Rl
Comma , Separates two microoperations R2 « RI, R1 « R2

4-3 Bus and Memory Transfers

A typical digital computer has many registers, and paths must be provided to
transfer information from one register to another. The number of wires will be
excessive if separate lines are used between each register and all other registers
in the system. A more efficient scheme for transferring information between
registers in a multiple-register configuration is a common bus system. A bus
structure consists of a set of common lines, one for each bit of a register,
through which binary information is transferred one at a time. Control signals
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determine which register is selected by the bus during each particular register
transfer.

One way of constructing a common bus system is with multiplexers. The
multiplexers select the source register whose binary information is then placed
on the bus. The construction of a bus system for four registers is shown in
Fig. 4-3. Each register has four bits, numbered 0 through 3. The bus consists
of four 4 X 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, 5, and S;. In order not to complicate the diagram with 16 lines
crossing each other, we use labels to show the connections from the outputs
of the registers to the inputs of the multiplexers. For example, output 1 of
register A is connected to input 0 of MUX 1 because this input is labeled A;.
The diagram shows that the bits in the same significant position in each register
are connected to the data inputs of one multiplexer to form one line of the bus.
Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the
four 1 bits of the registers, and similarly for the other two bits.

Figure 4-3  Bus system for four registers.

# 4- line
common
Ly > bus
£ “'
T le] d4x1 —> 4x1 == 4x1 4%
MUX 3 = MUX 2 = MUX 1 = MUX 0
3 2 10 3 2 1°0 3 2 1 0 32 L9
Pt Pt BRE HEE
Dy Cy By As Dy C B A Dy Co By Ag
DZ Di DU f} C| Cq B; B| Bo AJ A| Au
I-—d e B | T LA [ Ax I fi e [ B

Register D Register C Register B Register A
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The two selection lines 5; and S; are connected to the selection inputs of
all jour multiplexers. The sewcction lines choose the four bits of one register and
transfer them into the four-line common bus. When 5,5, = 00, the 0 data
inputs of all four multiplexers are selected and applied to the outputs that form
the bus. This causes the bus lines to receive the content of register A since the
outputs of this register are connected to the 0 data inputs of the multiplexers.
Similarly, register B is selected if 5,5, = 01, and so on. Table 4-2 shows the
register that is selected by the bus for each of the four possible binary value
of the selevdvii lines.

TABLE 4-2 Function Table for Bus of Fig. 4-3

54 So  Register selected

— - O
— = D

In general, a bus system will multiplex k registers of n bits each to produce
an n-line common bus. The number of multiplexers needed to construct the
bus is equal to 7, the number of bits in each register. The size of each multi-
plexer must be k X 1 since it multiplexes k data lines. For example, a common
bus for eight registers of 16 bits each requires 16 multiplexers, one for each line
in the bus. Each multiplexer must have eight data input lines and three
selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination
registers can be accomplished by connecting the bus lines to the inputs of all
destination registers and activating the load control of the particular destina-
tion register selected. The symbolic statement for a bus transfer may mention
the bus or its presence may be implied in the statement. When the bus is
includes in the statement, the register transfer is symbolized as follows:

BUS <« C, R1 < BUS
The content of register C is placed on the bus, and the content of the bus is
loaded into register R1 by activating its load control input. If the bus is known
to exist in the system, it may be convenient just to show the direct transfer.

Rl « C

From this statement the designer knows which control signals must be acti-
vated to produce the transfer through the bus.
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three-state gate

high-impedance

buffer

bus system

Three-State Bus Buffers

Abus system can be constructed with three-state gates instead of multiplexers.
A three-state gate is a digital circuit that exhibits three states. Two of the states
are signals equivalent to logic 1 and 0 as in a conventional gate. The third state
is a high-impedance state. The high-impedance state behaves like an open circuit,
which means that the output is disconnected and does not have a logic signif-
icance. Three-state gates may perform any conventional logic, such as AND or
NAND. However, the one most commonly used in the design of a bus system
is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4 Ttis
distinguished from a normal buffer by having both a normal input and a control
input. The control input determines the output state. When the control input
is equal to 1, the output is enabled and the gate behaves like any conventional
buffer, with the output equal to the normal input. When the control input is
0, the output is disabled and the gate goes to a high-impedance state, regard-
less of the value in the normal input. The high-impedance state of a three-state
gate provides a special feature not available in other gates. Because of this
feature, a large number of three-state gate outputs can be connected with wires
to form a common bus line without endangering loading effects.

The construction of a bus system with three-state buffers is demonstrated
in Fig. 4-5. The outputs of four buffers are connected together to form a single
bus line. (It must be realized that this type of connection cannot be done with
gates that do not have three-state outputs.) The control inputs to the buffers
determine which of the four normal inputs will communicate with the bus line.
No more than one buffer may be in the active state at any given time. The
connected buffers must be controlled so that only one three-state buffer
has access to the bus line while all other buffers are maintained in a high-
impedance state.

One way to ensure that no more than one control in put is active at any
given time is to use a decoder, as shown in the diagram. When the enable input
of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled. When the enable
input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder. Careful investigation will
reveal that Fig. 4-5is another way of constructing a4 x 1 multiplexer since the
circuit can replace the multiplexer in Fig, 4-3.

To construct a common bus for four registers of n bits each using three-

Figure 4-4  Graphic symbols for three-state buffer.

o : ‘ F Output ¥ =AIfC=1
s L High-impedance if C =0

Control input €



memory read

memory write

SECTION 4.3 Bus and Memory Transfers 101

A _j‘\_ Bus line for bit 0
LA
Bl:
Co
L

Dy LT>_

-y
Select

| 5, %4
decoder 7
1

Enable

Figure 4.5 Bus line with three state-buffers.

state buffers, we need n circuits with four buffers in each as shown in Fig. 4-5.
Each group of four buffers receives one significant bit from the four registers.
Each common output produces one of the lines for the common bus for a total
of n lines. Only one decoder is necessary to select between the four registers.

Memory Transfer

The operation of a memory unit was described in Sec. 2-7. The transfer of
information from a memory word to the outside environment is called a read
operation. The transfer of new information to be stored into the memory is
called a write operation. A memory word will be symbolized by the letter M.
The particular memory word among the many available is selected by the
memory address during the transfer. It is necessary to specify the address of
M when writing memory transfer operations. This will be done by enclosing
the address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called
the address register, symbolized by AR. The data are transferred to another
register, called the data register, symbolized by DR. The read operation can
be stated as follows:

Read: DR « M[AR]

This causes a transfer of information into DR from the memory word M
selected by the address in AR.

The write operation transfers the content of a data register to a memory
word M selected by the address. Assume that the input data are in register R1
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add microoperation

subtract
microoperation

and the address is in AR. The write operation can be stated symbolically as
follows:

Write: M[AR] « R1
This causes a transfer of information from R1 into the memory word M selected

by the address in AR.

4-4 _Arithmetic Microoperations

A microoperation is an elementary operation performed with the data stored
in registers. The microoperations most often encountered in digital computers
are classified into four categories:

1. Register transfer microoperations transfer binary information from one
register to another.

2. Arithmetic microoperations perform arithmetic operations on numeric
data stored in registers.

3. Logic microoperations perform bit manipulation operations on non-
numeric data stored in registers.

4. Shift microoperations perform shift operations on data stored in
registers,

The register transfer microoperation was introduced in Sec. 4-2. This type
of microoperation does not change the information content when the binary
information moves from the source register to the destination register. The
other three types of microoperations change the information content during
the transfer. In this section we introduce a set of arithmetic microoperations.
In the next two sections we present the logic and shift microoperations.

The basic arithmetic microoperations are addition, subtraction, incre-
ment, decrement, and shift. Arithmetic shifts are explained later in conjunction

with the shift microoperations. The arithmetic microoperation defined by the
statement

R3 « R1+R2

specifies an add microoperation. It states that the contents of register R1 are
added to the contents of register R2 and the sum transferred to register R3. To
implement this statement with hardware we need three registers and the
digital component that performs the addition operation. The other basic arith-
metic microoperations are listed in Table 4-3. Subtraction is most often imple-
mented through complementation and addition. Instead of using the minus
operator, we can specify the subtraction by the following statement:
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R3 « R1+R2 +1
R2 is the symbol for the 1's complement of R2. Adding 1 to the 1’s complement

produces the 2’s complement. Adding the contents of R1 to the 2's complement
of R2 is equivalent to R1 — R2.

TABLE 4-3 Arithmetic Microoperations

Symbolic

designation Description
R3 « R1 + R2 Contents of R1 plus R2 transferred to R3
R3 « R1-R2 Contents of R1 minus R2 transferred to R3
R2 « R2 Complement the contents of R2 (1's complement)
R2 « R2 +1 2's complement the contents of R2 (negate)
R3 « R1+ R2 +1 R1 plus the 2's complement of R2 (subtraction)
Rl « R1+1 Increment the contents of R1 by one
Rl « R1 -1 Decrement the contents of R1 by one

The increment and decrement microoperations are symbolized by plus-
one and minus-one operations, respectively. These microoperations are imple-
mented with a combinational circuit or with a binary up-down counter.

The arithmetic operations of multiply and divide are not listed in Table 4-
3. These two operations are valid arithmetic operations but are not included
in the basic set of microoperations. The only place where these operations can
be considered as microoperations is in a digital system, where they are imple-
mented by means of a combinational circuit. In such a case, the signals that
perform these operations propagate through gates, and the result of the oper-
ation can be transferred into a destination register by a clock pulse as soon as
the output signal propagates through the combinational circuit. In most com-
puters, the multiplication operation is implemented with a sequence of add
and shift microoperations. Division is implemented with a sequence of subtract
and shift microoperations. To specify the hardware in such a case requires a
list of statements that use the basic microoperations of add, subtract, and shift
(see Chapter 10).

Binary Adder

To implement the add microoperation with hardware, we need the registers
that hold the data and the digital component that performs the arithmetic
addition. The digital circuit that forms the arithmetic sum of two bits and a
previous carry is called a full-adder (see Fig. 1-17). The digital circuit that
generates the arithmetic sum of two binary numbers of any length is called a
binary adder. The binary adder is constructed with full-adder circuits con-



104  CHAFTER FOUR Register Transfer and Microoperations

full-adder

adder-subtractor

B: 'i]. B8 ."1: B] A; Bc 40
C! CI CI ) Cu
l FA - FA - FA - FA [t
C.: Sj S)_ S| SQ

Figure 4-6  4-bit binary adder.

nected in cascade, with the output carry from one full-adder connected to the
input carry of the next full-adder. Figure 4-6 shows the interconnections of four
full-adders (FA) to provide a 4-bit binary adder. The augend bits of A and the
addend bits of B are designated by subscript numbers from right to left, with
subscript 0 denoting the low-order bit. The carries are connected in a chain
through the full-adders. The input carry to the binary adder is C, and the
output carry is C,. The S outputs of the full-adders generate the required sum
bits.

An n-bit binary adder requires n full-adders. The output carry from each
full-adder is connected to the input carry of the next-high-order full-adder. The
n data bits for the A inputs come from one register (such as R1), and the n data
bits for the B inputs come from another register (such as R2). The sum can be
transferred to a third register or to one of the source registers (R1 or R2),
replacing its previous content.

Binary Adder-Subtractor

The subtraction of binary numbers can be done most conveniently by means
of complements as discussed in Sec. 3-2. Remember that the subtraction A —
can be done by taking the 2’s complement of B and adding it to A. The 2's
complement can be obtained by taking the 1's com plement and adding one to
the least significant pair of bits. The 1's complement can be implemented with
inverters and a one can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one com-
mon circuit by including an exclusive-OR gate with each full-adder. A 4-bit
adder-subtractor circuit is shown in Fig. 47. The mode input M controls the
operation. When M = 0 the circuit is an adder and when M = 1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of the
inputs of B. When M = 0, we have B ®.0 = B. The full-adders receive the
value of B, the input carry 1s 0, and the circuit periorms A plus B, When M = 1,
wehave B® 1 =B andC, = 1. The B inputs are all complemented and a 1
is added through the input carry. The circuit performs the operation A plus the
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Figure 4-7  4-bit adder-subtracror.

2's complement of B. For unsigned numbers, this givesA — Bif A = Borthe

2's complement of (B — A) if A < B. For signed numbers, the resultis 4 — B
provided that there is no overflow.

Binary Incrementer

The increment microoperation adds one to a number in a register. For example,
if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.
This microoperation is easily implemented with a binary counter (see Fig. 2-10).
Every time the count enable is active, the clock pulse transition increments the
content of the register by one. There may be occasions when the increment
microoperation must be done with a combinational circuit independent of a
particular register. This can be accomplished by means of half-adders (see
Fig. 1-16) connected in cascade.

The diagram of a 4-bit combinational circuit incrementer is shown in
Fig. 4-8. One of the inputs to the least significant half-adder (HA) is connected
to logic-1 and the other input is connected to the least significant bit of the
number to be incremented. The output carry from one half-adder is connected
to one of the inputs of the next-higher-order half-adder. The circuit receives
the four bits from A, through A,, adds one to it, and generates the incremented
output in 5, through S;. The output carry C, will be 1 only after incrementing
binary 1111. This also causes outputs S, through S, to go to 0.

The circuit of Fig. 4-8 can be extended to an n-bit binary incrementer by
extending the diagram to include n half-adders. The least si gnificant bit must
have one input connected to logic-1. The other inputs receive the number to
be incremented or the carry from the previous stage.
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arithmetic circuit

input carry

Ajz A Ay Ag ]

1 Y Y i l

X : 4 x y ¥ x ¥
HA HA HA HA

C Ay C s &, hy c §

o]
L

gl
IL-,‘

S So

Figure 4-8 4-bit binary incrementer.

Arithmetic Circuit

The arithmetic microoperations listed in Table 4-3 can be implemented in one
composite arithmetic circuit. The basic component of an arithmetic circuit is the
parallel adder. By controlling the data inputs to the adder, it is possible to
obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four
full-adder circuits that constitute the 4-bit adder and four multiplexers for
choosing different operations. There are two 4-bit inputs A and B and a 4-bit
output D. The four inputs from A go directly to the X inputs of the binary
adder. Each of the four inputs from B are connected to the data inputs of the
multiplexers. The multiplexers data inputs also receive the complement of B.
The other two data inputs are connected to logic-0 and logic-1. Logic-0is a fixed
voltage value (0 volts for TTL integrated circuits) and the logic-1 signal can be
generated through an inverter whose input is 0. The four multiplexers are
controlled by two selection inputs, S, and S;. The input carry C,, goes to the
carry input of the FA in the least significant position. The other carries are
connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic

sum:
D=A+Y+C,

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary
number at the Y inputs of the binary adder. C,, is the input carry, which can
be equal to 0'or 1. Note that the symbol + in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection inputs S,

and Sy and making C, equal to 0 or 1, it is possible to generate the eight
arithmetic microoperations listed in Table 44.
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Figure 4-9 4-bit arithmetic circuit.
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addition

subtraction

increment

decremernt

TABLE 4-4 Arthmeric Circuit Function Table

Select
Input Output

51 Su O Y D=A+Y+C, Microoperation
{) 0] ( B D=A+8 Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+8 Subtract with borrow
{ 1 1 B D=A+H8 +1 Subtract
1 0 0 0 D=A Transfer A
1 {} 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 1 1 1 D=A Transfer A

When 5,5, = 00, the value of B is applied to the Y inputs of the adder.
IfC, = 0, theoutputD = A + B.IfC,, = 1,outputD = A + B + 1. Both cases
perform the add microoperation with or without adding the input carry.

- When 5,5, = 01, the complement of B is applied to the Y inputs of the
adder. If C;, = 1, then D = A + B + 1. This produces A plus the 2's comple-
ment of B, which is equivalent to a subtraction of A — B. When C,, = 0, then
D = A + B. This is equivalent to a subtract with borrow, thatis, A — B — 1.

When 5,5, = 10, the inputs from B are neglected, and instead, all s are
inserted into the Y inputs. The output becomes D = A + 0 + C,. This gives
D =Awhen C, =0and D = A + 1 when C,, = 1. In the first case we have
a direct transfer from input A to output D. In the second case, the value of A
is incremented by 1.

When 5,5, = 11, all 1’s are inserted into the Y inputs of the adder to
produce the decrement operation D = A — 1 when C,, = 0. This is because a
number with all 1's is equal to the 2’s complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A to the 2’s complement of 1 produces
F=A+ 2scomplementof1 = A — 1. WhenC,, = 1, thenD=A -1+ 1=
A, which causes a direct transfer from input A to output D. Note that the
microoperation D = A is generated twice, so there are only seven distinct
microoperations in the arithmetic circuit.

4-5 Logic Microoperations

Logic microoperations specify. binary operations for strings of bits stored in
registers. These operations consider each bit of the register separately and treat
them as binary variables. For example, the exclusive-OR microoperation with
the contents of two registers R1 and R2 is symbolized by the statement

P: Rl « R1 & R2
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It specifies a logic microoperation to be executed on the individual bits of the
registers provided that the control variable P = 1. As a numerical exampie,
assume that each register has four bits. Let the content of R1 be 1010 and the
content of R2 be 1100. The exclusive-OR microoperation stated above symboi-
izes the following logic computation:

1010 Content of R1
1100 Content of R2
0110 Content of R1 after P = ]

The content of R1, after the execution of the microoperation, is equal to the
bit-by-bit exclusive-OR operation on pairs of bits in R2 and previous values of
R1. The logic microoperations are seldom used in scientific computations, but
they are very useful for bit manipulation of binary data and for making logical
decisions.

Special symbols will be adopted for the logic microoperations OR, AND,
and complement, to distinguish them from the corresponding symbols used
to express Boolean functions. The symbol \/ will be used to denote an OR
microoperation and the symbol A\ to denote an AND microoperation. The
complement microoperation is the same as the 1's complement and uses a bar
on top of the symbol that denotes the register name. By using different
symbols, it will be possible to differentiate between a logic microoperation and
a control (or Boolean) function. Another reason for adopting two sets of
symbols is to be able to distinguish the symbol + , when used to symbolize
an arithmetic plus, from a logic OR operation. Although the + symbol has two
meanings, it will be possible to distinguish between them by noting where the
symbol occurs. When the symbol + occurs in a microoperation, it will denote
an arithmetic plus. When it occurs in a control (or Boolean) function, it will
denote an OR operation. We will never use it to symbolize an OR microoper-
ation. For example, in the statement

P+Q: Rl <« R2+R3, R4 « R5\/ Ré

the + between P and Q is an OR operation between two binary variables of a
control function. The + between R2 and R3 specifies an add microoperation.
The OR microoperation is designated by the symbol \/ between registers R5
and R6.

List of Logic Microoperations

There are 16 different logic operations that can be performed with two binary
variables. They can be determined from all possible truth tables obtained with
two binary variables as shown in Table 4-5. In this table, each of the 16 columns
Fy through F;; represents a truth table of one possible Boolean function for the
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TABLE 4-5 Truth Tables for 16 Functions of Two Variables

x y|Fkh R b /s F, Fs Fs , F K Fm Fu Fa Fy, F. Fy
QelE U 0 00 B 0. Gl At ote1l 4 4 3
0 1{0 0 0 0 1 1 1 1 0 0 O 1] 1 1 1 1
1 0j]0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1{0 1 0 1 O 1 0 1 0 1 0 1 0 1 0 1

two variables x and y. Note that the functions are determined from the 16

binary combinations that can be assigned to F.

The 16 Boolean functions of two variables x and y are expressed in
algebraic form in the first column of Table 4-6. The 16 logic microoperations are
derived from these functions by replacing variable x by the binary content of
register A and variable y by the binary content of register B. It is important to
realize that the Boolean functions listed in the first column of Table 4-6 repre-
sent a relationship between two binary variables x and y. The logic micro-
operations listed in the second column represent a relationship between the
binary content of two registers A and B. Each bit of the register is treated as
a binary variable and the microoperation is performed on the string of bits

stored in the registers.

TABLE 4-6 Sixteen Logic Microoperations

Boolean function

Microoperation Name

Fp=0 Fe0 Clear

Fy=xy Fe<ANB AND

E = xy' F—ANE

F=x FeA Transfer A

Fi=x'"y F—A NB

Fs=y F«B Transfer B

Fs = x@By F—ADB Exclusive-OR
F=x+y Fe<A\B OR
Fo=(x+y) Fe<A\/B NOR

Fs = (xBy) F—A®EB Exclusive-NOR
Fu=y FeB Complement B
.Fn’—"X‘f}" F*‘AVE

Fp=x' FeA Complement A
Fin=x"+y F—A \/B
F‘.‘. = (xy') FeA AB NAND
Fs=1 Feall 1's Set to all 1's
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Hardware Implementation

The hardware implementation of logic microoperations requires that logic
gates be inserted for each bit or pair of bits in the registers to perform the
required logic function. Although there are 16 logic microoperations, most
computers use only four—AND, OR, XOR (exclusive-OR), and complement—
from which all others can be derived.

Figure 4-10 shows one stage of a circuit that generates the four basic logic
microoperations. It consists of four gates and a muitiplexer. Each of the four
logic operations is generated through a gate that performs the required logic.
The outputs of the gates are applied to the data inputs of the multiplexer. The
two selection inputs S, and S, choose one of the data inputs of the multiplexer
and direct its value to the output. The diagram shows one typical stage with
subscript i. For a logic circuit with n bits, the diagram must be repeated » times
fori =0,1,2,...,n — 1. The selection variables are applied to all stages. The
function table in Fig. 4-10(b) lists the logic microoperations obtained for each
combination of the selection variables.

Some Applications

Logic microoperations are very useful for manipulating individual bits or a
portion of a word stored in a register. They can be used to change bit values,
delete a group of bits, or insert new bit values into a register. The following
examples show how the bits of one register (designated by A) are manipulated

Figure 4-10 One stage of logic circuit.
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selective-set

selective-contplement

selective-clear

by logic microoperations as a function of the bits of another register (designate.
by B). In a typical application, register A is a processor register and the bits of
register B constitute a logic operand extracted from memory and placed in
register B.

The selective-set operation sets to 1 the bits in register A where there are
corresponding 1's in register B. It does not affect bit positions that have 0’s in
B. The following numerical example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

The two leftmost bits of B are 1s, so the corresponding bits of A are set to 1.
One of these two bits was already set and the other has been changed from
0 to I. The two bits of A with corresponding 0’s in B remain unchanged. The
example above serves as a truth table since it has all four possible combinations
of two binary variables. From the truth table we note that the bits of A after
the operation are obtained from the logic-OR operation of bits in B and previ-
ous values of A. Therefore, the OR microoperation can be used to selectively
set bits of a register.

The selective-complement operation complements bits in A where there are
corresponding 1’s in B. It does not affect bit positions that have 0’s in B, For
example:

1010 A before
1100 B (logic operand)
01100 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are
complemented. This example again can serve as a truth table from which one
can deduce that the selective-complement operation is just an exclusive-OR
microoperation. Therefore, the exclusive-OR microoperation can be used to
selectively complement bits of a register.

The selective-clear operation clears to 0 the bits in A only where there are
corresponding 1’s in B. For example:

1010 A before
1100 B (logic operand)
0010 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are
cleared to 0. One can deduce that the Boolean operation performed on the
individual bits is AB’. The corresponding logic microoperation is

A<~ ANTE
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The mask operation is similar to the selective-clear operation except that
the bits of A are cleared only where there are corresponding ’s in B. The mask
operation is an AND micro operation as seen from the following numerical
example:

1010 A before
1100 B (logic operand)
1000 A after masking

The two rightmost bits of A are cleared because the carresponding bits of B are
0’s. The two leftmost bits are left unchanged because the corresponding bits
of Bare 1's. The mask operation is more convenient to use than the selective-
clear operation because most computers provide an AND instruction, and few
provide an instruction that executes the microoperation for selective-clear.
The insert operation inserts a new value into a group of bits. This is done
by first masking the bits and then ORing them with the required value. For
example, suppose that an A register contains eight bits, 0110 1010. To replace
the four leftmost bits by the value 1001 we first mask the four unwanted bits:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

and then insert the new value:

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

The mask operation is an AND microoperation and the insert operation is an
OR microoperation.

The clear operation compares the words in A and B and produces an all
0's result if the two numbers are equal. This operation is achieved by an
exclusive-OR microoperation as shown by the following example:

1010 A
1010 B

0000 A—AGB

When A and B are equal, the two corresponding bits are either both 0 or both
~ 1. In either case the exclusive-OR operation produces a 0. The all-0's result is
then checked to determine if the two numbers were equal,
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logical shift

circular shift

arithmetic shift

4-6 Shift Microoperations

Shift microoperations are used for serial transfer of data. They are also used
in conjunction with arithmetic, logic, and other data-processing operations.
The contents of a register can be shifted to the left or the right. At the same
time that the bits are shifted, the first flip-flop receives its binary information
from the serial input. During a shift-left operation the serial input transfers a
bit into the rightmost position. During a shift-right operation the serial input
transfers a bit into the leftmost position. The information transferred through
the serial input determines the type of shift. There are three types of shifts:
logical, circular, and arithmetic.

A logical shift is one that transfers 0 through the serial input. We will adopt
the symbols shi and shr for logical shift-left and shift-right microoperations. For
example:

‘R1eshl R1
R2«shr R2

are two microoperations that specify a 1-bit shift to the left of the content of
register R1and a 1-bit shift to the right of the content of register R2. The register
symbol must be the same’on both sides of the arrow. The bit transferred to the
end position through the serial input is assumed to be 0 during a logical shift.

The circular shift (also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information. This is accom-
plished by connecting the serial output of the shift register to its serial input.
We will use the symbols cil and cir for the circular shift left and right, respec-
tively. The symbolic notation for the shift microoperations is shown in Ta-
ble 4-7.

TABLE 4-7 Shift Microoperations

Symbolic designation Description
R«shlR Shift-left register R
R «shr R Shift-right register R
R<dlR Circular shift-left register R
Recir R Circular shift-right register R
R eashlR Arithmetic shift-left R
R+«ashr R Arithmetic shift-right R

An arithmetic shift is a microoperation that shifts a signed binary number
to the left or right. An arithmetic shift-left multiplies a signed binary number
by 2. An arithmetic shift-right divides the number by 2. Arithmetic shifts must
leave the sign bit unchanged because the sign of the number remains the same
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Figure 4-11  Arichmeric shift right.

when it is multiplied or divided by 2. The leftmost bit in a register holds the
sign bit, and the remaining bits hold the number. The sign bit is 0 for positive
and 1 for negative. Negative numbers are in 2's complement form. Figure 4-11
shows a typical register of n bits. Bit R, _, in the leftmost position holds the
sign bit. R, _; is the most significant bit of the number and R; is the least
significant bit. The arithmetic shift-right leaves the sign bit unchanged and
shifts the number (including the sign bit) to the right. Thus R, _ , remains the
same, R, , receives the bit from R, _,, and so on for the other bits in the
register. The bit in R, is lost.

The arithmetic shift-left inserts a 0 into Ry, and shifts all other bits to the
left. The initial bit of R, _, is lost and replaced by the bit from R, _,. A sign
reversal occurs if the bitin R, _; changes in value after the shift. This happens
if the multiplication by 2 causes an overflow. An overflow occurs after an
arithmetic shift left if initially, before the shift, R, _ , is not equal to R, _,. An
overflow flip-flop V, can be used to detect an arithmetic shift-left overflow.

Vs =Rx -'l@Ru—Z

If V, = 0, there is no overflow, but if V, = 1, there is an overflow and a sign
reversal after the shift. V, must be transferred into the overflow flip-flop with
the same clock pulse that shifts the register.

Hardware Implementation

A possible choice for a shift unit would be a bidirectional shift register with
parallel load (see Fig. 2-9). Information can be transferred to the register in
parallel and then shifted to the right or left. In this type of configuration, a clock
pulse is needed for loading the data into the register, and another pulse is
needed to initiate the shift. In a processor unit with many registers it is more
efficient to implement the shift operation with a combinational circuit. In this
way the content of a register that has to be shifted is first placed onto a common
bus whose output is connected to the combinational shifter, and the shifted
number is then loaded back into the register. This requires only one clock pulse
for loading the shifted value into the register.

A combrnational circuit shitter can be constructed with multiplexers as
shown in Fig. 4-12. The 4-bit shifter has four data inputs, A, through A;, and
four data outputs, H, through H;. There are two serial inputs, one for shift left
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Figure 4-12  4-bit combinational circuit shifter.

(I.) and the other for shift right (I;). When the selection input S = 0, the input
data are shifted right (down in the diagram). When S = 1, the input data are
shifted left (up in the diagram). The function table in Fig. 4-12 shows which
input goes to each output after the shift. A shifter with n data inputs and
outputs requires # multiplexers. The two serial inputs can be controlled by
another multiplexer to provide the three possible types of shifts.

4-7 Arithmetic Logic Shift Unit

Instead of having individual registers performing the microoperations directly,
computer systems employ a number of storage registers connected to a com-
ALU mon operational unit called an arithmetic logic unit, abbreviated ALU. To
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perform a microoperation, the contents of specified registers are placed in the
inputs of the common ALU. The ALU performs an operation and the result of
the operation is then transferred to a destination register. The ALU is a
combinational circuit so that the entire register transfer operation from the
source registers through the ALU and into the destination register can be
performed during one clock pulse period. The shift microoperations are often
performed in a separate unit, but sometimes the shift unit is made part of the
overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections
can be combined into one ALU with common selection variables. One stage
of an arithmetic logic shift unit is shown in Fig. 4-13. The subscript i designates
a typical stage. Inputs A, and B, are applied to both the arithmetic and logic

Figure 4-13  One stage of arithmetic logic shifc unit.
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units. A particular microoperation is selected with inputs 5, and 5,. A 4 x 1
multiplexer at the output chooses between an arithmetic output in E;and alogic
output in H;. The data in the multiplexer are selected with inputs 5; and 5,.
The other two data inputs to the multiplexer receive inputs A;_; for the
shift-right operation and A4, , ; for the shift-left operation. Note that the diagram
shows just one typical stage. The circuit of Fig. 4-13 must be repeated n times
for an n-bit ALU. The output carry C, ., of a given arithmetic stage must be
connected to the input carry C, of the next stage in sequence. The input carry
to the first stage is the input carry Ci,, which provides a selection variable for
the arithmetic operations.

The circuit whose one stage is specified in Fig. 4-13 provides eight arith-
metic operation, four logic operations, and two shift operations. Each opera-
tion is selected with the five variables Ss, Sy, S), So, and C,,. The input carry C,,
is used for selecting an arithmetic operation only.

Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic
operations (see Table 4-4) and are selected with 5,5, = 00. The next four are
logic operations (see Fig. 4-10) and are selected with S;S, = 01. The input carry
has no effect during the logic operations and is marked with don’t-care x’s.
The last two operations are shift operations and are selected with 5,5, = 10and
11. The other three selection inputs have no effect on the shift.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

L
-

S5 S S

o

Operation Function

Transfer A
[ncrement A
Addition

Add with carry
Subtract with borrow
Subtraction
Decrement A
Transfer A

AND
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Complement A
Shift right A into F
Shift left A into F
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4-1.

4-2,

43,

4-5.

4-7.

Show the block diagram of the hardware (similar to Fig. 4-2a) that imple-
ments the following register transfer statement:

yTz R2<R1, Rl1<R2

The outputs of four registers, R0, R1, R2, and R3, are connected through
4-to-1-line multiplexers to the inputs of a fifth register, RS5. Each register is
eight bits long. The required transfers are dictated by four timing variables
T through T, as follows:

To: R5+R0O
T;: R5«RI1
T}i R5«R2
T R5+«R3

The timing variables are mutually exclusive, which means that only one
variable is equal to 1 at any given time, while the other three are equal to
0. Draw a block diagram showing the hardware implementation of the
register transfers. Include the connections necessary from the four timing
variables to the selection inputs of the multiplexers and to the load input of
register R5.

Represent the following conditional control statement by two register trans-
fer statements with control functions.

U (P = 1) then (R1+R2) else if (Q = 1) then (R1 +—R3)

What has to be done to the bus system of Fig. 4-3 to be able to transfer
information from any register to any other register? Specifically, show the
connections that must be included to provide a path from the outputs of
register C to the inputs of register A.

Draw a diagram of a bus system similar to the one shown in Fig. 4-3, but use
three-state buffers and a decoder instead of the multiplexers.

A digital computer has a common bus system for 16 registers of 32 bits each.
The bus is constructed with multiplexers.

a. How many selection inputs are there in each multiplexer?

b. What size of multiplexers are needed?

¢. How many multiplexers are there in the bus?

The following transfer statements specify a memory. Explain the memory
wperalione in vach case

a. R2«M[AR]

b. M[AR]«R3

¢. R5+MJ[R5]
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4-8.

4-10.

4-11.

4-12.

Draw the block diagram for the hardware that implements the following
statements:

x +yz: AR<AR + BR

where AR and BR are two n-bit registers and x, Yy, and z are control variables.
Include the logic gates for the control function. (Remember that the sym-
bol + designates an OR operation in a control or Boolean function but that
it represents an arithmetic plus in a microoperation.)

Show the hardware that implements the following statement. Include the
logic gates for the control function and a block diagram for the binary counter
with a count enable input.

yTo+Ti+ y'To: AR«—AR + 1

Consider the following register transfer statements for two 4-bit registers R1
and R2.

xT: R1<R1+R2
x'T: Rle«R2

Every time that variable T = 1, either the content of R2 is added to the
contentof R1if x = 1, or the content of R2is transferred to R1if x = 0. Draw
a diagram showing the hardware implementation of the two statements, Use
block diagrams for the two 4-bit registers, a 4-bit adder, and a quadruple
2-to-1-line multiplexer that selects the inputs to R1. In the diagram, show
how the control variables x and T select the inputs of the multiplexer and
the load input of register R1.

Using a 4-bit counter with parallel load as in Fig. 2-11 and a 4-bit adder as

in Fig. 4-6, draw a block diagram that shows how to implement the following
statements:

x: Rl<R1+R2 AddR2toR1
x'y: Rl«<R1+1 Increment R1

where R1 is a counter with parallel load and R2 is a 4-bit register.

The adder-subtractor circuit of Fig. 47 has the following values for input
mode M and data inputs A and B. In each case, determine the values of the
uutputs: 53, Sz, S., Sn, and Cq.

M A B
a. 0 0111 0110
b. 0 1000 1001
c. 1 1100 1000
d. 1 0101 1010
e. 1 0000 0001
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Design a 4-bit combinational circuit decrementer using four full-adder cir-
cuits,

Assume that the 4-bit arithmetic circuit of Fig. 49 is enclosed in one IC
package. Show the connections among two such ICs to form an 8-bit arith-
metic circuit.

Design an arithmetic circuit with one selection variable S and two n-bit data
inputs A and B. The circuit generates the following four arithmetic opera-
tions in conjunction with the input carry C,,.. Draw the logic diagram for the
first two stages.

—_ —

Co=0 Cn=1

S
0 D=A+B(add)
1 D = A -1 (decrement)

D = A + 1 (increment)
D=A+

B + 1 (subtract)

i

Derive a combinational circuit that selects and generates any of the 16 logic
functions listed in Table 4-5.

Design a digital circuit that performs the four logic operations of exclusive-
OR, exclusive-NOR, NOR, and NAND. Use two selection variables. Show
the logic diagram of one typical stage.

Register A holds the 8-bit binary 11011001. Determine the B operand and the
logic microoperation to be performed in order to change the value in A to:
a. 01101101

b. 11111101

The 8-bit registers AR, BR, CR, and DR initially have the following values:

AR = 11110010
BR = 11111111
CR = 10111001
DR = 11101010

Determine the 8-bit values in each register after the execution of the follow-
ing sequence of microoperations.

AR < AR + BR Add BR to AR
CR<—CR ADR, BR«<BR + 1 AND DR to CR, increment BR
AR < AR - CR Subtract CR from AR

An 8-bit register contains the binary value 10011100. What is the register
value after an arithmetic shift right? Starting from the initial number
10011100, determine the register value after an arithmetic shift left. and state
whether there is an overflow.

Starting from an initial value of R = 11011101, determine the sequence of

binary values in R after a logical shift-left, followed by a circular shift-right,
followed by a logical shift-right and a circular shift-left.
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4-22.  What is the value of cutput H in Fig. 412 if input Ais 1001, S = 1, I» = 1,

and I, = 0?7

423.  What is wrong with the following register transfer statements?

a. xT: AR<AR, AR<0
b. yT: R1«R2, Rl «—R3
¢. zT: PC«—AR, PC«PC+1

10.
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