

IN THIS CHAPTER

1-1 Digital Computers
1-2 Logic Gates
1-3 Boolean Algebra
1.4 Map Simplification

1-5 Combinational Circuits
1-6 Flip-Flops
1.7 Sequential Circuits

1-1 Digital Computers

digital
bit

The digital computer is a digital system that performs various computational tasks. The word digital implies that the information in the computer is represented by variables that take a limited number of discrete values. These values are processed internally by components that can maintain a limited number of discrete states. The decimal digits $0,1,2, \ldots, 9$, for example, provide 10 discrete values. The first electronic digital computers, developed in the late 1940s, were used primarily for numerical computations. In this case the discrete elements are the digits. From this application the term digital computer has emerged. In practice, digital computers function more reliably if only two states are used. Because of the physical restriction of components, and because human logic tends to be binary (i.e., true-or-false, yes-or-no statements), digital components that are constrained to take discrete values are further constrained to take only two values and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and 1. A binary digit is called a bit. Information is represented in digital computers in groups of bits. By using various coding techniques, groups of bits can be made to represent not only binary numbers but also other discrete
symbols, such as decimal digits or letters of the alphabet. By judicious use of binary arrangements and by using various coding techniques, the groups of bits are used to develop complete sets of instructions for performing various types of computations.

In contrast to the common decimal numbers that employ the base 10 system, binary numbers use a base 2 system with two digits: 0 and 1 . The decimal equivalent of a binary number can be found by expanding it into a power series with a base of 2 . For example, the binary number 1001011 represents a quantity that can be converted to a decimal number by multiplying each bit by the base 2 raised to an integer power as follows:

$$
1 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=75
$$

The seven bits 1001011 represent a binary number whose decimal equivalent is 75 . However, this same group of seven bits represents the letter K when used in conjunction with a binary code for the letters of the alphabet. It may also represent a control code for specifying some decision logic in a particular digital computer. In other words, groups of bits in a digital computer are used to represent many different things. This is similar to the concept that the same letters of an alphabet are used to construct different languages, such as English and French.

A computer system is sometimes subdivided into two functional entities: hardware and software. The hardware of the computer consists of all the electronic components and electromechanical devices that comprise the physical entity of the device. Computer software consists of the instructions and data that the computer manipulates to perform various data-processing tasks.

program

computer hardware A sequence of instructions for the computer is called a program. The data that are manipulated by the program constitute the data base.

A computer system is composed of its hardware and the system software available for its use. The system software of a computer consists of a collection of programs whose purpose is to make more effective use of the computer. The programs included in a systems software package are referred to as the operating system. They are distinguished from application programs written by the user for the purpose of solving particular problems. For example, a high-level language program written by a user to solve particular data-processing needs is an application program, but the compiler that translates the high-level language program to machine language is a system program. The customer who buys a computer system would need, in addition to the hardware, any available software needed for effective operation of the computer. The system software is an indispensable part of a total computer svstem. Its function is to compensate for the dnferences that exist between user needs and the capability of the hardware.

The hardware of the computer is usually divided into three major parts, as shown in Fig. 1-1. The central processing unit (CPU) contains an arithmetic

Figure 1-1 Block diagram of a digital computer.
computer organization

computer design

computer
architecture
and logic unit for manipulating data, a number of registers for storing data, and control circuits for fetching and executing instructions. The memory of a computer contains storage for instructions and data. It is called a randomaccess memory (RAM) because the CPU can access any location in memory at random and retrieve the binary information within a fixed interval of time. The input-and output processor (IOP) contains electronic circuits for communicating and controlling the transfer of information between the computer and the outside world. The input and output devices connected to the computer include keyboards, printers, terminals, magnetic disk drives, and other communication devices.

This book provides the basic knowledge necessary to understand the hardware operations of a computer system. The subject is sometimes considered from three different points of view, depending on the interest of the investigator. When dealing with computer hardware it is customary to distinguish between what is referred to as computer organization, computer design, and computer architecture.
nontoner nents operate and the way they are connected together to form the computer system. The various components are assumed to be in place and the task is to investigate the organizational structure to verify that the computer parts operate as intended.

Computer design is concerned with the hardware design of the computer. Once the computer specifications are formulated, it is the task of the designer to develop hardware for the system. Computer design is concerned with the determination of what hardware should be used and how the parts should be connected. This aspect of computer hardware is sometimes referred to as computer implementation.

Computer architecture is concerned with the structure and behavior of the computer as seen by the user. It includes the information formats, the instruc-
tion set, and techniques for addressing memory. The architectural design of a computer system is concerned with the specifications of the various functional modules, such as processors and memories, and structuring them together into a computer system.

The book deals with all three subjects associated with computer hardware. In Chapters 1 through 4 we present the various digital components used in the organization and design of computer systems. Chapters 5 through 7 cover the steps that a designer must go through to design and program an elementary digital computer. Chapters 8 and 9 deal with the architecture of the central processing unit. In Chapters 11 and 12 we present the organization and architecture of the input-output processor and the memory unit.

1-2 Logic Gates

Binary information is represented in digital computers by physical quantities called signals. Electrical signals such as voltages exist throughout the computer in either one of two recognizable states. The two states represent a binary variable that can be equal to 1 or 0 . For example, a particular digital computer may employ a signal of 3 volts to represent binary 1 and 0.5 volt to represent binary 0 . The input terminals of digital circuits accept binary signals of 3 and 0.5 volts and the circuits respond at the output terminals with signals of 3 and 0.5 volts to represent binary input and output corresponding to 1 and 0 , respectively.

Binary logic deals with binary variables and with operations that assume a logical meaning. It is used to describe, in algebraic or tabular form, the manipulation and processing of binary information. The manipulation of binary information is done by logic circuits called gates. Gates are blocks of hardware that produce signals of binary 1 or 0 when input logic requirements are satisfied. A variety of logic gates are commonly used in digital computer systems. Each gate has a distinct graphic symbol and its operation can be described by means of an algebraic expression. The input-output relationship of the binary variables for each gate can be represented in tabular form by a truth table.

The names, graphic symbols, algebraic functions, and truth tables of eight logic gates are listed in Fig. 1-2. Each gate has one or two binary input variables designated by A and B and one binary output variable designated by x. The AND gate produces the AND logic function: that is, the output is 1 if input A and input B are both equal to 1 ; otherwise, the output is 0 . These conditions ar, alsor specified in the truth table for the AND gate. The table shows that output x is 1 only when both input A and input B are 1. The algebraic operation symbol of the AND function is the same as the multiplication symbol of ordinary arithmetic. We can either use a dot between the variables or

Figure 1.2 Digital logic gates.
concatenate the variables without an operation symbol between them. AND gates may have more than two inputs, and by definition, the output is 1 if and only if all inputs are 1 .
OR
inverter

NAND
The OR gate produces the inclusive-OR function; that is, the output is 1 if input A or input B or both inputs are 1 ; otherwise, the output is 0 . The algebraic symbol of the OR function is + , similar to arithmetic addition. OR gates may have more than two inputs, and by definition, the output is 1 if any input is 1 .

The inverter circuit inverts the logic sense of a binary signal. It produces the NOT, or complement, function. The algebraic symbol used for the logic complement is either a prime or a bar over the variable symbol. In this book we use a prime for the logic complement of a binary variable, while a bar over the letter is reserved for designating a complement microoperation as defined in Chap. 4.

The small circle in the output of the graphic symbol of an inverter designates a logic complement. A triangle symbol by itself designates a buffer circuit. A buffer does not produce any particular logic function since the binary value of the output is the same as the binary value of the input. This circuit is used merely for power amplification. For example, a buffer that uses 3 volts for binary 1 will produce an output of 3 volts when its input is 3 volts. However, the amount of electrical power needed at the input of the buffer is much less than the power produced at the output of the buffer. The main purpose of the buffer is to drive other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated by the graphic symbol, which consists of an AND graphic symbol followed by a small circle. The designation NAND is derived from the abbreviation of

NOR
exclusive-OR NOT-AND. The NOR gate is the complement of the OR gate and uses an OR graphic symbol followed by a small circle. Both NAND and NOR gates may have more than two inputs, and the output is always the complement of the AND or OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except for the additional curved line on the input side. The output of this gate is 1 if any input is 1 but excludes the combination when both inputs are 1 . The exclusive-OR function has its own algebraic symbol or can be expressed in terms of AND, OR, and complement operations as shown in Fig. 1-2. The exclusive-NOR is the complement of the exclusive-OR, as indicated by the small circle in the graphic symbol. The output of this gate is 1 only if both inputs are equal to 1 or both inputs are equal to 0 . A more fitting name for the exclusive-OR operation would be an odd function; that is, its output is 1 if an odd number of inputs are 1 . Thus in a three-input exclusive-OR (cdd) function, the output is 1 if only one input is 1 or if all three inputs are 1. The exclusive-OR and exclusive-NOR gates are commonly available with two inputs, and only seldom are they found with three or more inputs.

1-3 Boolean Algebra

Buviean algebra is ath digebra that deals with binary varabies and lognc operations. The variables are designated by letters such as A, B, x, and y. The three

Boolean function

truth table
logic diagram basic logic operations are AND, OR, and complement. A Boolean function can be expressed algebraically with binary variables, the logic operation symbols, parentheses, and equal sign. For a given value of the variables, the Boolean function can be either 1 or 0 . Consider, for example, the Boolean function

$$
F=x+y^{\prime} z
$$

The function F is equal to 1 if x is 1 or if both y^{\prime} and z are equal to $1 ; F$ is equal to 0 otherwise. But saying that $y^{\prime}=1$ is equivalent to saying that $y=0$ since y^{\prime} is the complement of y. Therefore, we may say that F is equal to 1 if $x=1$ or if $y z=01$. The relationship between a function and its binary variables can be represented in a truth table. To represent a function in a truth table we need a list of the 2^{n} combinations of the n binary variables. As shown in Fig. 1-3(a), there are eight possible distinct combinations for assigning bits to the three variables x, y, and z. The function F is equal to 1 for those combinations where $x=1$ or $y z=01$; it is equal to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into a logic diagram composed of AND, OR, and inverter gates. The logic diagram for F is shown in Fig. 1-3(b). There is an inverter for input y to generate its complement y^{\prime}. There is an AND gate for the term $y^{\prime} z$, and an OR gate is used to combine the two terms. In a logic diagram, the variables of the function are taken to be the inputs of the circuit, and the variable symbol of the function is taken as the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of digital circuits. It provides a convenient tool to:

1. Express in algebraic form a truth table relationship between binary variables.

Figure 1-3 Truth table and logic diagram for $F=x+y^{\prime} z$.

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(a) Truth table

(b) Logic diagram

Boolean expression

2. Express in algebraic form the input-output relationship of logic diagrams.
3. Find simpler circuits for the same function.

A Boolean function specified by a truth table can be expressed algebraically in many different ways. By manipulating a Boolean expression according to Boolean algebra rules, one may obtain a simpler expression that will require fewer gates. To see how this is done, we must first study the manipulative capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the identities in the table can be proven by means of truth tables. The first eight identities show the basic relationship between a single variable and itself, or in conjunction with the binary constants 1 and 0 . The next five identities (9 through 13) are similar to ordinary algebra. Identity 14 does not apply in ordinary algebra but is very useful in manipulating Boolean expressions. Identities 15 and 16 are called DeMorgan's theorems and are discussed below. The last identity states that if a variable is complemented twice, one obtains the original value of the variable.

TABLE 1-1 Basic Identities of Boolean Algebra
(1) $x+0=x$
(2) $x \cdot 0=0$
(3) $x+1=1$
(4) $x \cdot 1=x$
(5) $x+x=x$
(6) $x \cdot x=x$
(7) $x+x^{\prime}=1$
(8) $x \cdot x^{\prime}=0$
(9) $x+y=y+x$
(10) $x y=y x$
(11) $x+(y+z)=(x+y)+z$
(12) $x(y z)=(x y) z$
(13) $x(y+z)=x y+x z$
(14) $x+y x=(x+y)(x+z)$
(15) $(x+y)^{\prime}=x^{\prime} y^{\prime}$
(16) $(x y)^{\prime}=x^{\prime}+y^{\prime}$
(17) $\left(x^{\prime}\right)^{\prime}=x$

The identities listed in the table apply to single variables or to Boolean functions expressed in terms of binary variables. For example, consider the following Boolean algebra expression:

$$
A B^{\prime}+C^{\prime} D+A B^{\prime}+C^{\prime} D
$$

By letting $x=A B^{\prime}+C^{\prime} D$ the expression can be written as $x+x$. From identity 5 in Table 1-1 we find that $x+x=x$. Thus the expression can be reduced to only two terms:

$$
A B+C D+A B+C D-A B+C D
$$

DeMorgan's theorem is very important in dealing with NOR and NAND gates. It states that a NOR gate that performs the $(x+y)^{\prime}$ function is equivalent
to the function $x^{\prime} y^{\prime}$. Similarly, a NAND function can be expressed by either $(r:)^{\prime}$ or $\left(x^{\prime}+y^{\prime}\right)$. For this reason the NOR and NAND gates have two distinct graphic symbols, as shown in Figs. 1-4 and 1-5. instead of representing a NOR gate with an OR graphic symbol followed by a circle, we can represent it by an AND graphic symbol preceded by circles in all inputs. The invert-AND symbol for the NOR gate follows from DeMorgan's theorem and from the convention that small circles denote complementation. Similarly, the NAND gate has two distinct symbols, as shown in Fig. 1-5.

To see how Boolean algebra manipulation is used to simplify digital circuits, consider the logic diagram of Fig. 1-6(2). The output of the circuit can be expressed algebraically as follows:

$$
F=A B C+A B C^{\prime}+A^{\prime} C
$$

Each term corresponds to one AND gate, and the OR gate forms the logical sum of the three terms. Two inverters are needed to complement A^{\prime} and C^{\prime}. The expression can be simplified using Boolean algebra.

$$
\begin{aligned}
F=A B C+A B C^{\prime}+A^{\prime} C & =A B\left(C+C^{\prime}\right)+A^{\prime} C \\
& =A B+A^{\prime} C
\end{aligned}
$$

Note that $(C+C)^{\prime}=1$ by identity 7 and $A B \cdot 1=A B$ by identity 4 in Table 1-1.
The logic diagram of the simplified expression is drawn in Fig. 1-6(b). It requires only four gates rather than the six gates used in the circuit of Fig. $1-6(a)$. The two circuits are equivalent and produce the same truth table relationship between inputs A, B, C and output F.

Figure 1-4 Two graphic symbols for NOR gate.

(a) OR-invert

(b) invert-AND

Figure 1.5 Two graphic symbols for NAND gate.

(a) AND-invert

(b) invert-OR

Figure 1-6 Two logic diagrams for the same Boolean function.

Complement of a Function

The complement of a function F when expressed in a truth table is obtained by interchanging 1 's and 0 's in the values of F in the truth table. When the function is expressed in algebraic form, the complement of the function can be derived by means of DeMorgan's theorem. The general form of DeMorgan's theorem can be expressed as follows:

$$
\begin{aligned}
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)^{\prime} & =x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} \cdots x_{n}^{\prime} \\
\left(x_{1} x_{2} x_{3} \cdots x_{n}\right)^{\prime} & =x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}+\cdots+x_{n}^{\prime}
\end{aligned}
$$

From the general DeMorgan's theorem we can derive a simple procedure for obtaining the complement of an algebraic expression. This is done by changing all OR operations to AND operations and all AND operations to OR operations and then complementing each individual letter variable. As an example, consifer the following expression and its complement:

$$
\begin{aligned}
F & =A B+C^{\prime} D^{\prime}+B^{\prime} D \\
F^{\prime} & =\left(A^{\prime}+B^{\prime}\right)(C+D)\left(B+D^{\prime}\right)
\end{aligned}
$$

The complement expression is obtained by interchanging AND and OR operations and complementing each individual variable. Note that the complement of C^{\prime} is C

1-4 Map Simplification

The complexity of the logic diagram that implements a Boolean function is related directly to the complexity of the algebraic expression from which the function is implemented. The truth table representation of a function is unique, but the function can appear in many different forms when expressed algebraically. The expression may be simplified using the basic relations of Boolean algebra. However, this procedure is sometimes difficult because it lacks specific rules for predicting each succeeding step in the manipulative process. The map method provides a simple, straightforward procedure for simplifying Boolean expressions. This method may be regarded as a pictorial arrangement of the truth table which allows an easy interpretation for choosing the minimum number of terms needed to express the function algebraically. The map method is also known as the Karnaugh map or K-map.

minterm

Each combination of the variables in a truth table is called a minterm. For example, the truth table of Fig. 1-3 contains eight minterms. When expressed in a truth table a function of n variables will have 2^{n} minterms, equivalent to the 2^{n} binary numbers obtained from n bits. A Boolean function is equal to 1 for some minterms and to 0 for others. The information contained in a truth table may be expressed in compact form by listing the decimal equivalent of those minterms that produce a 1 for the function. For example, the truth table of Fig. 1-3 can be expressed as follows:

$$
F(x, y, z)=\Sigma(1,4,5,6,7)
$$

The letters in parentheses list the binary variables in the order that they appear in the truth table. The symbol Σ stands for the sum of the minterms that follow in parentheses. The minterms that produce 1 for the function are listed in their decimal equivalent. The minterms missing from the list are the ones that produce 0 for the function.

The map is a diagram made up of squares, with each square representing one minterm. The squares corresponding to minterms that produce 1 for the function are marked by a 1 and the others are marked by a 0 or are left empty. By recognizing various patterns and combining squares marked by 1's in the map, it is possible to derive alternative algebraic expressions for the function, from which the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in Fig. $1-7$. The number of squares in a map of n variables is 2^{n}. The 2^{n} minterms are listed by an equivalent decimal number for easy reference. The minterm

Figure 1-7 Maps for two-, three-, and four-variable functions.
aajacent squares
numbers are assigned in an orderly arrangement such that adjacent squares represent minterms that differ by only one variable. The variable names are listed across both sides of the diagonal line in the corner of the map. The 0's and 1's marked along each row and each column designate the value of the variables. Each variable under brackets contains half of the squares in the map where that variable appears unprimed. The variable appears with a prime (complemented) in the remaining half of the squares.

The minterm represented by a square is determined from the binary assignments of the variables along the left and top edges in the map. For example, minterm 5 in the three-variable map is 101 in binary, which may be obtained from the 1 in the second row concatenated with the 01 of the second column. This minterm represents a value for the binary variables A, B, and C, with A and C being unprimed and B being primed (i.e., $A B^{\prime} C$). On the other hand, minterm 5 in the four-variable map represents a minterm for four variables. The binary number contains the four bits 0101 , and the corresponding term it represents is $A^{\prime} B C^{\prime} D$.

Minterms of adjacent squares in the map are identical except for one variable, which appears complemented in one square and uncomplemented in the adjacent square. According to this definition of adjacency, the squares at the extreme ends of the same horizontal row are also to be considered
adjacent. The same applies to the top and bottom squares of a column. As a result, the four corner squares of a map must also be considered to be adjacent.

A Bonlean function represented bw a truth table is plothed intu the map by inserting l's in those squares where the function is 1 . The squares containing 1's are combined in groups of adjacent squares. These groups must contain a number of squares that is an integral power of 2 . Groups of combined adjacent squares may share one or more squares with one or more groups. Each group of squares represents an algebraic term, and the OR of those terms gives the simplified algebraic expression for the function. The following examples show the use of the map for simplifying Boolean functions.

In the first example we will simplify the Boolean function

$$
F(A, B, C)=\Sigma(3,4,6,7)
$$

The three-variable map for this function is shown in Fig. 1-8. There are four squares marked with 1's, one for each minterm that produces 1 for the function. These squares belong to minterms $3,4,6$, and 7 and are recognized from Fig. 1-7(b). Two adjacent squares are combined in the third column. This column belongs to both B and C and produces the term $B C$. The remaining two squares with 1's in the two corners of the second row are adjacent and belong to row A and the two columns of C^{\prime}, so they produce the term $A C^{\prime}$. The simplified algebraic expression for the function is the OR of the two terms:

$$
F=B C+A C^{\prime}
$$

The second example simplifies the following Boolean function:

$$
F(A, B, C)=\Sigma(0,2,4,5,6)
$$

The five minterms are marked with 1's in the corresponding squares of the three-variable map shown in Fig. 1-9. The four squares in the first and fourth columns are adjacent and represent the term C^{\prime}. The remaining square marked with a 1 belongs to minterm 5 and can be combined with the square of minterm 4 to produce the term $A B^{\prime}$. The simplified function is

$$
F=C^{\prime}+A B^{\prime}
$$

Figure 1.8 Map for $F(A, B, C)=\Sigma(3,4,6,7)$.

Figure 1-9 Map for $F(A, B, C)=\Sigma(0,2,4,5,6)$.

The third example needs a four-variable map.

$$
F(A, B, C, D)=\Sigma(0,1,2,6,8,9,10)
$$

The area in the map covered by this four-variable function consists of the squares marked with 1's in Fig. 1-10. The function contains 1's in the four corners that, when taken as a group, give the term $B^{\prime} D^{\prime}$. This is possible because these four squares are adjacent when the map is considered with top and bottom or left and right edges touching. The two 1's on the left of the top row are combined with the two 1 's on the left of the bottom row to give the term $B^{\prime} C^{\prime}$. The remaining 1 in the square of minterm 6 is combined with minterm 2 to give the term $A^{\prime} C D^{\prime}$. The simplified function is

$$
F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C D^{\prime}
$$

Product-of-Sums Simplification

The Boolean expressions derived from the maps in the preceding examples were expressed in sum-of-products form. The product terms are AND terms and the sum denotes the ORing of these terms. It is sometimes convenient to obtain the algebraic expression for the function in a product-of-sums form. The

Figure 1-10 Map for $F(A, B, C, D)=\Sigma(0,1,2,6,8,9,10)$.

sums are OR terms and the product denotes the ANDing of these terms. With a minor modification, a product-of-sums form can be obtained from a map.

The procedure for obtaining a product-of-sums expression follows from the basic properties of Boolean algebra. The 1's in the map represent the minterms that produce 1 for the function. The squares not marked by 1 represent the minterms that produce 0 for the function. If we mark the empty squares with 0 's and combine them into groups of adjacent squares, we obtain the complement of the function, F^{\prime}. Taking the complement of F^{\prime} produces an expression for F in product-of-sums form. The best way to show this is by example.

We wish to simplify the following Boolean function in both sum-ofproducts form and product-of-sums form:

$$
F(A, B, C, D)=\Sigma(0,1,2,5,8,9,10)
$$

The 1's marked in the map of Fig. 1-11 represent the minterms that produce a 1 for the function. The squares marked with 0 's represent the minterms not included in F and therefore denote the complement of F. Combining the squares with 1's gives the simplified function in sum-of-products form:

$$
F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D
$$

If the squares marked with 0 's are combined, as shown in the diagram, we obtain the simplified complemented function:

$$
F^{\prime}=A B+C D+B D^{\prime}
$$

Taking the complement of F^{\prime}, we obtain the simplified function in product-ofsums form:

$$
F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)
$$

Figure 1-11 Map for $F(A, B, C, D)=\mathbf{\Sigma}(0,1,2,5,8,9,10)$.

NAND implementation

NOR
implementation

The logic diagrams of the two simplified expressions are shown in Fig. 1-12. The sum-of-products expression is implemented in Fig. 1-12(a) with a group of AND gates, one for each AND term. The outputs of the AND gates are connected to the inputs of a single OR gate. The same function is implemented in Fig. 1-12(b) in product-of-sums form with a group of OR gates, one for each OR term. The outputs of the OR gates are connected to the inputs of a single AND gate. In each case it is assumed that the input variables are directly available in their complement, so inverters are not included. The pattern established in Fig. 1-12 is the general form by which any Boolean function is implemented when expressed in one of the standard forms. AND gates are connected to a single OR gate when in sum-of-products form. OR gates are connected to a single AND gate when in product-of-sums form.

A sum-of-products expression can be implemented with NAND gates as shown in Fig. 1-13(a). Note that the second NAND gate is drawn with the graphic symbol of Fig. 1-5(b). There are three lines in the diagram with small circles at both ends. Two circles in the same line designate double complementation, and since $\left(x^{\prime}\right)^{\prime}=x$, the two circles can be removed and the resulting diagram is equivalent to the one shown in Fig. 1-12(a). Similarly, a product-ofsums expression can be implemented with NOR gates as shown in Fig. 1-13(b). The second NOR gate is drawn with the graphic symbol of Fig. 1-4(b). Again the two circles on both sides of each line may be removed, and the diagrarr so obtained is equivalert to the one shown in Fig. 1-12(b).

Don't-Care Conditions

The 1's and 0 's in the map represent the minterms that make the function equa to 1 or 0 . There are occasions when it does not matter if the function produce: 0 or 1 for a given minterm. Since the function may be either 0 or 1 , we say tha we don't care what the function output is to be for this minterm. Minterms tha-
don't-care conditions may produce either 0 or 1 for the function are said to be don't-care condition. and are marked with an \times in the map. These don't-care conditions can be usec to provide further simplification of the algebraic expression.

Figure 1-12 Logic diagrams with AND and OR gates.

(a) Sum of products: $F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D$

(b) Product of sums: $F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

(a) With NAND gates

(b) With NOR gates

Figure 1.13 Logic diagrams with NAND or NOR gates.

When choosing adjacent squares for the function in the map, the \times 's may be assumed to be either 0 or 1, whichever gives the simplest expression. In addition, an \times need not be used at all if it does not contribute to the simplification of the function. In each case, the choice depends only on the simplification that can be achieved. As an example, consider the following Boolean function together with the don't-care minterms:

$$
\begin{aligned}
& F(A, B, C)=\sum(0,2,6) \\
& d(A, B, C)=\sum(1,3,5)
\end{aligned}
$$

The minterms listed with F produce a 1 for the function. The don't-care minterms listed with d may produce either a 0 or a 1 for the function. The remaining minterms, 4 and 7, produce a 0 for the function. The map is shown in Fig. 1-14. The minterms of F are marked with 1's, those of d are marked with \times 's, and the remaining squares are marked with 0 's. The 1 's and \times 's are combined in any convenient manner so as to enclose the maximum number of adjacent squares. It is not necessary to include all or any of the \times 's, but all the 1 's must be included. By including the don't-care minterms 1 and 3 with the 1 's in the first row we obtain the term A^{\prime}. The remaining 1 for minterm 6 is combined with minterm 2 to obtain the term $B C^{\prime}$. The simplified expression is

$$
F=A^{\prime}+B C^{\prime}
$$

Note that don't-care minterm 5 was not included because it does not contribute to the simplification of the expression. Note also that if don't-care minterms 1 and 3 were not included with the 1 's, the simplified expression for F would have been

$$
F=A^{\prime} C^{\prime}+B C^{\prime}
$$

This would require two AND gates and an OR gate, as compared to the expression obtained previously, which requires only one AND and one OR gate.

Figure 1-14 Example of map with don't-care conditions.

The function is determined completely once the \times 's are assigned to the 1 's or 0 's in the map. Thus the expression

$$
F=A^{\prime}+B C^{\prime}
$$

represents the Boolean function

$$
F(A, B, C)=\Sigma(0,1,2,3,6)
$$

It consists of the original minterms 0,2 and 6 and the don't-care minterms 1 and 3 . Minterm 5 is not included in the function. Since minterms 1,3, and 5 were specified as being don't-care conditions, we have chosen minterms 1 and 3 to produce a 1 and minterm 5 to produce a 0 . This was chosen because this assignment produces the simplest Boolean expression.

1.5 Combinational Circuits

A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. At any given time, the binary values of the outputs are a function of the binary combination of the inputs. A block diagram of a combinational circuit is shown in Fig. 1-15. The n binary input variables come from an external source, the m binary output variables go to an external destination, and in between there is an interconnection of logic gates. A combinational circuit transforms binary information from the given input data to the required output data. Combinational circuits are employed in digital computers for generating binary control decisions and for providing digital components required for data processing.

A combinational circuit can be described by a truth table showing the binary relationship between the n input variables and the m output variables. The truth table lists the corresponding output binary values for each of the 2^{n} input combinations. A combinational circuit can also be specified with m Boolean functions, one for each output variable. Each output function is expressed in terms of the n input variables.

Figure 1-15 Block diagram of a combinational circuit.

Abstract

analysis design The analysis of a combinational circuit starts with a given logic circuit diagram and culminates with a set of Boolean functions or a truth table. If the digital circuit is accompanied by a verbal explanation of its function, the Boolean functions or the truth table is sufficient for verification. If the function of the circuit is under investigation, it is necessary to interpret the operation of the circuit from the derived Boolean functions or the truth table. The success of such investigation is enhanced if one has experience and familiarity with digital circuits. The ability to correlate a truth table or a set of Boolean functions with an information-processing task is an art that one acquires with experience.

The design of combinational circuits starts from the verbal outline of the problem and ends in a logic circuit diagram. The procedure involves the following steps:

1. The problem is stated.
2. The input and output variables are assigned letter symbols.
3. The truth table that defines the relationship between inputs and outputs is derived.
4. The simplified Boolean functions for each output are obtained.
5. The logic diagram is drawn.

To demonstrate the design of combinational circuits, we present two examples of simple arithmetic circuits. These circuits serve as basic building blocks for the construction of more complicated arithmetic circuits.

Half-Adder

The most basic digital arithmetic circuit is the addition of two binary digits. A combinational circuit that performs the arithmetic addition of two bits is called a half-adder. One that performs the addition of three bits (two significant bits and a previous carry) is called a full-adder. The name of the former stems from the fact that two half-adders are needed to implement a full-adder.

The input variables of a half-adder are callen the augond dion underu bits. The output variables the sum and carry. It is necessary to specify two output variables because the sum of $1+1$ is binary 10 , which has two digits. We assign symbols x and y to the two input variables, and S (for sum) and C

x	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(a) Truth table

(b) Logic diagram

Figure 1-16 Half-adder.
(for carry) to the two output variables. The truth table for the half-adder is shown in Fig. 1-16(a). The C output is 0 unless both inputs are 1. The S output represents the least significant bit of the sum. The Boolean functions for the two outputs can be obtained directly from the truth table:

$$
\begin{aligned}
& S=x^{\prime} y+x y^{\prime}=x \oplus y \\
& C=x y
\end{aligned}
$$

The logic diagram is shown in Fig. 1-16(b). It consists of an exclusive-OR gate and an AND gate.

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It consists of three inputs and two outputs. Two of the input variables, denoted by x and y, represent the two significant bits to be added. The third input, z, represents the carry from the previous lower significant position. Two outputs are necessary because the arithmetic sum of three binary digits ranges in value from 0 to 3 , and binary 2 or 3 needs two digits. The two outputs are designated by the symbols S (for sum) and C (for carry). The binary variable S gives the value of the least significant bit of the sum. The binary variable C gives the output carry. The truth table of the full-adder is shown in Table 1-2. The eight rows under the input variables designate all possible combinations that the binary variables may have. The value of the output variables are determined from the arithmetic sum of the input bits. When all input bits are 0 , the output is 0 . The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1 . The C output has a carry of 1 if two or three inputs are equal to 1 .

The maps of Fig. 1-17 are used to find algebraic expressions for the two output variables. The 1's in the squares for the maps of S and C are determined directly from the minterms in the truth table. The squares with 1 's for the S output do not combine in groups of adjacent squares. But since the output is 1 when an odd number of inputs are $1, S$ is an odd function and represents

TABLE 1-2 Truth Table for Full-Adder

Inputs			Outputs	
x	y	z	C	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

the exclusive-OR relation of the variables (see the discussion at the end of Sec. $1-2$). The squares with 1 's for the C output may be combined in a variety of ways. One possible expression for C is

$$
C=x y+\left(x^{\prime} y+x y^{\prime}\right) z
$$

Realizing that $x^{\prime} y+x y^{\prime}=x \oplus y$ and including the expression for output S, we obtain the two Boolean expressions for the full-adder:

$$
\begin{aligned}
& S=x \oplus y \oplus z \\
& C=x y+(x \oplus y) z
\end{aligned}
$$

The logic diagram of the full-adder is drawn in Fig. 1-18. Note that the fulladder circuit consists of two half-adders and an OR gate. When used in subsequent chapters, the full-adder (FA) will be designated by a block diagram as shown in Fig. 1-18(b).

Figure 1-17 Maps for full-adder.

$$
\begin{aligned}
S & =x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& =\mathrm{x} \oplus \mathrm{y} \oplus \mathrm{z}
\end{aligned}
$$

$$
\begin{aligned}
C & =x y+x z+y z \\
& =x y+\left(x^{\prime} y+x y^{\prime}\right) z
\end{aligned}
$$

Figure 1-18 Full-adder circuit.

1-6 Flip-Flops

The digital circuits considered thus far have been combinational, where the outputs at any given time are entirely dependent on the inputs that are present at that time. Although every digital system is likely to have a combinational circuit, most systems encountered in practice also include storage elements, which require that the system be described in terms of sequential circuits. The most common type of sequential circuit is the synchronous type. Synchronous sequential circuits employ signals that affect the storage elements only at discrete instants of time. Synchronization is achieved by a timing device called a clock pulse generator that produces a periodic train of clock pulses. The clock pulses are distributed throughout the system in such a way that storage elements are affected only with the arrival of the synchronization pulse. Clocked synchronous sequential circuits are the type most frequently encountered in practice. They seldom manifest instability problems and their timing is easily broken down into independent discrete steps, each of which may be considered separately.

The storage elements employed in clocked sequential circuits are called
clocked sequential circuit flip-flops. A flip-flop is a binary cell capable of storing one bit of information. It has two outputs, one for the normal value and one for the complement value of the bit stored in it. A flip-flop maintains a binary state until directed by a clock pulse to switch states. The difference among various types of flip-flops is in the number of inputs they possess and in the manner in which the inputs affect the binary state. The most common types of flip-flops are presented below.

SR Flip-Flop

The graphic symbol of the SR flip-flop is shown in Fig. 1-19(a). It has three inputs, labeled S (for set), R (for reset), and C (for clock). It has an output Q and sometimes the flip-flop has a complemented output, which is indicated with a small circle at the other output terminal. There is an arrowhead-shaped symbol in front of the letter C to designate a dynamic input. The dynamic

'Figure 1-19 SR flip-flop.
indicator symbol denotes the fact that the flip-flop responds to a positive transition (from 0 to 1) of the input clock signal.

The operation of the $S R$ flip-flop is as follows. If there is no signal at the clock input C, the output of the circuit cannot change irrespective of the values at inputs S and R. Only when the clock signal changes from 0 to 1 can the output be affected according to the values in inputs S and R. If $S=1$ and $R=0$ when C changes from 0 to 1 , output Q is set to 1 . If $S=0$ and $R=1$ when C changes from 0 to 1 , output Q is cleared to 0 . If both S and R are 0 during the clock transition, the output does not change. When both S and R are equal to 1 , the output is unpredictable and may go to either 0 or 1 , depending on internal timing delays that occur within the circuit.

The characteristic table shown in Fig. 1-19(b) summarizes the operation of the $S R$ flip-flop in tabular form. The S and R columns give the binary values of the two inputs. $Q(t)$ is the binary state of the Q output at a given time (referred to as present state). $Q(t+1)$ is the binary state of the Q output after the occurrence of a clock transition (referred to as next state). If $S=R=0, \mathrm{a}$ clock transition produces no change of state [i.e., $Q(t+1)=Q(t)]$. If $S=0$ and $R=1$, the flip-flop goes to the 0 (clear) state. If $S=1$ and $R=0$, the flip-flop goes to the 1 (set) state. The $S R$ flip-flop should not be pulsed when $S=R=1$ since it produces an indeterminate next state. This indeterminate condition makes the $S R$ flip-flop difficult to manage and therefore it is seldom used in practice.

D Flip-Flop

The D (data) flip-flop is a slight modification of the $S R$ flip-flop. An $S R$ flip-flop is converted to a D flip-flop by inserting an inverter between S and R and assigning the symbol D to the single input. The D input is sampled during the occurrence of a clock transition from 0 to 1 . If $D=1$, the output of the flip-flop goes to the 1 state, but if $D=0$, the output of the flip-flop goes to the 0 state.

The graphic symbol and characteristic table of the D flip-flop are shown in Fig. 1-20. From the characteristic table we note that the next state $Q(t+1)$

(a) Graphic symbol

D	$Q(t+1)$	
$\mathbf{0}$	0	Clear to 0
1	1	Set to 1

(b) Characteristic table

Figure 1.20 D flip-flop.
is determined from the D input. The relationship can be expressed by a characteristic equation:

$$
Q(t+1)=D
$$

This means that the Q output of the flip-flop receives its value from the D input every time that the clock signal goes through a transition from 0 to 1 .

Note that no input condition exists that will leave the state of the D flip-flop unchanged. Although a D flip-flop has the advantage of having only one input (excluding C), it has the disadvantage that its characteristic table does not have a "no change" condition $Q(t+1)=Q(t)$. The "no change" condition can be accomplished either by disabling the clock signal or by feeding the output back into the input, so that clock pulses keep the state of the flip-flop unchanged.

$J K$ Flip-Flop

A JK flip-flop is a refinement of the $S R$ flip-flop in that the indeterminate condition of the $S R$ type is defined in the $J K$ type. Inputs J and K behave like inputs S and R to set and clear the flip-flop, respectively. When inputs J and K are both equal to 1, a clock transition switches the outputs of the flip-flop to their complement state.

The graphic symbol and characteristic table of the $J K$ flip-flop are showr in Fig. 1-21. The J input is equivalent to the S (set) input of the $S R$ flip-flop, and the Kinput is equivalent to the R (clear) input. Instead of the indeterminat ϵ condition, the $J K$ flip-flop has a complement condition $Q(t+1)=Q^{\prime}(t)$ wher both J and K are equal to 1 .

T Flip-Flop

Another type of flip-flop found in fextbooks is the T (toggle) flip-flop. Thi flip-flop, shown in Fig. 1-22, is obtained from a $J K$ type when inputs J and 1 are connected to provide a single input designated by T. The T flip-flo

(a) Graphic symbol

J	K	$Q(t+1)$	
0	0	$Q(t)$	No change
0	1	0	Clear to 0
1	0	1	Set to 1
1	1	$Q^{\prime}(t)$	Complement

(b) Characteristic table

Figure 1-21 JK flip-flop.

(a) Graphic symbol

T	$Q(t+1)$	
0	$Q^{(t)}$	No change
1	$Q^{\prime}(t)$	Complement

(b) Characteristic table

Figure 1-22 T flip-flop.
therefore has only two conditions. When $T=0(J=K=0)$ a clock transition does not change the state of the flip-flop. When $T=1(J=K=1)$ a clock transition complements the state of the flip-flop. These conditions can be expressed by a characteristic equation:

$$
Q(t+1)=Q(t) \oplus T
$$

Edge-Triggered Flip-Flops

The most common type of flip-flop used to synchronize the state change during a clock pulse transition is the edge-triggered flip-flop. In this type of flip-flop, output transitions occur at a specific level of the clock pulse. When the pulse input level exceeds this threshold level, the inputs are locked out so that the flip-flop is unresponsive to further changes in inputs until the clock pulse returns to 0 and another pulse occurs. Some edge-triggered flip-flops cause a transition on the rising edge of the clock signal (positive-edge transition), and others cause a transition on the falling edge (negative-edge transition).

Figure 1-23(a) shows the clock pulse signal in a positive-edge-triggered D flip-flop. The value in the D input is transferred to the Q output when the clock makes a positive transition. The output cannot change when the clock is in the level, in the 0 level, or in a transition from the 1 level to the 0 level.

Figure 1-23 Edge-triggered flip-flop.
master-slave
flip-flop

The effective positive clock transition includes a minimum time called the setup time in which the D input must remain at a constant value before the transition, and a definite time called the hold time in which the D input must not change after the positive transition. The effective positive transition is usually a very small fraction of the total period of the clock pulse.

Figure 1-23(b) shows the corresponding graphic symbol and timing diagram for a negative-edge-triggered D flip-flop. The graphic symbol includes a negation small circle in front of the dynamic indicator at the C input. This denotes a negative-edge-triggered behavior. In this case the flip-flop responds to a transition from the 1 level to the 0 level of the clock signal.

Another type of flip-flop used in some systems is the master-slave flipflop. This type of circuit consists of two flip-flops. The first is the master, which responds to the positive level of the clock, and the second is the slave, which responds to the negative level of the clock. The result is that the output changes during the $1-$ to- 0 transition of the clock signal. The trend is away from the use of master-slave flip-flops and toward edge-triggered flip-flops.

Flip-flops available in integrated circuit packages will sometimes provide special input terminals for setting or clearing the flip-flop asynchronously. These inputs are usually called "preset" and "clear." They affect the flip-flop on a negative level of the input signal without the need of a clock pulse. These inputs are useful for bringing the flip-flops to an initial state prior to its clocked operation.

Excitation Tables

The characteristic tables of flip-flops specify the next state when the inputs and the present state are known. During the design of sequential circuits we usually know the required transition from present state to next state and wish to find the flip-flop input conditions that will cause the required transition. For this reason we need a table that lists the required input combinations for a given change of state. Such a table is called a flip-flop excitation table.

Table 1-3 lists the excitation tables for the four types of flip-flops. Each table consists of two columns, $Q(t)$ and $Q(t+1)$, and a column for each input to show how the required transition is achieved. There are four possible transitions from present state $Q(t)$ to next state $Q(t+1)$. The required input conditions for each of these transitions are derived from the information available in the characteristic tables. The symbol \times in the tables represents a don't-care condition; that is, it does not matter whether the input to the flip-flop is 0 or 1 .

TABLE 1-3 Excitation Table for Four Flip.Flops

SR flip-flop				D flip-flop		
$Q(t)$	$Q(t+1)$	s	R	$Q(t)$	$Q(t+1)$	D
0	0	0	\times	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	1	\times	0	1	1	1
$J K$ flip-flop				T flip-flop		
$Q(t)$	$Q(t+1)$	J	K	$Q(t)$	$Q(t+1)$	T
		0	\times	0	0	0
0	1	1	\times	0	1	1
1	0	\times	1	1	0	1
1	1	\times	0	1	1	0

The reason for the don't-care conditions in the excitation tables is that there are two ways of achieving the required transition. For example, in a $J K$ flip-flop, a transition from present state of 0 to a next state of 0 can be achieved by having inputs J and K equal to 0 (to obtain no change) or by letting $J=0$ and $K=1$ to clear the flip-flop (although it is already cleared). In both cases J must be 0 , but K is 0 in the first case and 1 in the second. Since the required transition will occur in either case, we mark the K input with a don't-care \times
and let the designer choose either 0 or 1 for the K input, whichever is more convenient.

1-7 Sequential Circuits

A sequential circuit is an interconnection of flip-flops and gates. The gates by themselves constitute a combinational circuit, but when included with the flip-flops, the overall circuit is classified as a sequential circuit. The block diagram of a clocked sequential circuit is shown in Fig. 1-24. It consists of a combinational circuit and a number of clocked flip-flops. In general, any number or type of flip-flops may be included. As shown in the diagram, the combinational circuit block receives binary signals from external inputs and from the outputs of flip-flops. The outputs of the combinational circuit go to external outputs and to inputs of flip-flops. The gates in the combinational circuit determine the binary value to be stored in the flip-flops after each clock transition. The outputs of flip-flops, in turn, are applied to the combinational circuit inputs and determine the circuit's behavior. This process demonstrates that the external outputs of a sequential circuit are functions of both external inputs and the present state of the flip-flops. Moreover, the next state of flip-flops is also a function of their present state and external inputs. Thus a sequential circuit is specified by a time sequence of external inputs, external outputs, and internal flip-flop binary states.

Flip-Flop Input Equations

An example of a sequential circuit is shown in Fig. 1-25. It has one input variable x, one output variable y, and two clocked D flip-flops. The AND gates, OR gates, and inverter form the combinational logic part of the circuit. The interconnections among the gates in the combinational circuit can be specified by a set of Boolean expressions. The part of the combinational circuit that generates the inputs to flip-flops are described by a set of Boolean expressions called flip-flop input equations. We adopt the convention of using the flip-flop input symbol to denote the input equation variable name and a subscript to

Figure 1-24 Block diagram of a clocked synchronous sequential circuit.

Figure 1-25 Example of a sequential circuit.
designate the symbol chosen for the output of the flip-flop. Thus, in Fig. 1-25, we have two input equations, designated D_{A} and D_{B}. The first letter in each symbol denotes the D input of a D flip-flop. The subscript letter is the symbol name of the flip-flop. The input equations are Boolean functions for flip-flop input variables and can be derived by inspection of the circuit. Since the output of the OR gate is connected to the D input of flip-flop A, we write the first input equation as

$$
D_{A}=A x+B x
$$

where A and B are the outputs of the two flip-flops and x is the external input. The second input equation is derived from the single AND gate whose output is connected to the D input of flip-flop B:

$$
D_{B}=A^{\prime} x
$$

The sequential circuit also has an external output, which is a function of the input variabie and the state of the flip-flops. This output can be specified algebraically by the expression

$$
y=A x^{\prime}+B x^{\prime}
$$

From this example we note that a flip-flop input equation is a Boolean expression for a combinational circuit. The subscripted variable is a binary variable name for the output of a combinational circuit. This output is always connected to a flip-flop input.

State Table

The behavior of a sequential circuit is determined from the inputs, the outputs, and the state of its flip-flops. Both the outputs and the next state are a function of the inputs and the present state. A sequential circuit is specified by a state table that relates outputs and next states as a function of inputs and present states. In clocked sequential circuits, the transition from present state to next state is activated by the presence of a clock signal.

The state table for the circuit of Fig. 1-25 is shown in Table 1-4. The table consists of four sections, labeled present state, input, next state, and output. The

present state

next state present-state section shows the states of flip-flops A and B at any given time t. The input section gives a value of x for each possible present state. The next-state section shows the states of the flip-flops one clock period later at time $t+1$. The output section gives the value of y for each present state and input condition.

The derivation of a state table consists of first listing all possible binary combinations of present state and inputs. In this case we have eight binary combinations from 000 to 111. The next-state values are then determined from the logic diagram or from the input equations. The input equation for flip-flop A is

$$
D_{A}=A x+B x
$$

The next-state value of a each flip-flop is equal to its D input value in the present state. The transition from present state to next state occurs after application of a clock signal. Therefore, the next state of A is equal to 1 when the present state and input values satisfy the conditions $A x=1$ or $B x=1$, which makes D_{A} equal 1. This is shown in the state table with three 1's under the column for next state of A. Similarly, the input equation for flip-flop B is

$$
D_{B}=A^{\prime} x
$$

The next state of B in the state table is equal to 1 when the present state of A is 0 and input x is equal to 1 . The output column is derived from the output equation

$$
y=A x^{\prime}+B x^{\prime}
$$

TABLE 1-4 State Table for Circuit of Fig. 1-25

Present state		$\frac{\text { Input }}{x}$	Next state		
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

state table
state diagram

The state table of any sequential circuit is obtained by the procedure used in this example. In general, a sequential circuit with m flip-flops, n input variables, and p output variables will contain m columns for present state, n columns for inputs, m columns for next state, and p columns for outputs. The present state and input columns are combined and under them we list the 2^{m+n} binary combinations from 0 through $2^{m+n}-1$. The next-state and output columns are functions of the present state and input values and are derived directly from the circuit or the Boolean equations that describe the circuit.

State Diagram

The information available in a state table can be represented graphically in a state diagram. In this type of diagram, a state is represented by a circle, and the transition between states is indicated by directed lines connecting the circles. The state diagram of the sequential circuit of Fig. 1-25 is shown in Fig. 1-26. The state diagram provides the same information as the state table and is obtained directly from Table 1-4. The binary number inside each circle identifies the state of the flip-flops. The directed lines are labeled with two binary numbers separated by a slash. The input value during the present state is labeled first and the number after the slash gives the output during the present state. For example, the directed line from state 00 to 01 is labeled $1 / 0$, meaning that when the sequential circuit is in the present state 00 and the input

Figure 1-26 State diagrams of sequential circuit.
is 1 , the output is 0 . After a clock transition, the circuit goes to the next state 01 . The same clock transition may change the input value. If the input changes to 0 , the output becomes 1 , but if the input remains at 1 , the output stays at 0 . This information is obtained from the state diagram along the two directed lines emanating from the circle representing state 01 . A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except in the manner of representation. The state table is easier to derive from a given logic diagram and the state diagram follows directly from the state table. The state diagram gives a pictorial view of state transitions and is the form suitable for human interpretation of the circuit operation. For example, the state diagram of Fig. 1-26 clearly shows that starting from state 00 , the output is 0 as long as the input stays at 1 . The first 0 input after a string of 1 's gives an output of 1 and transfers the circuit back to the initial state 00 .

Design Example

The procedure for designing sequential circuits will be demonstrated by a specific example. The design procedure consists of first translating the circuit specifications into a state diagram. The state diagram is then converted into a state table. From the state table we obtain the information for obtaining the logic circuit diagram.

We wish to design a clocked sequential circuit that goes through a sequence of repeated binary states $00,01,10$, and 11 when an external input x is equal to 1 . The state of the circuit remains unchanged when $x=0$. This type of circuit is called a 2-bit binary counter because the state sequence is identical to the count sequence of two binary digits. Input x is the control variable that specifies when the count should proceed.

The binary counter needs two flip-flops to represent the two bits. The state diagram for the sequential circuit is shown in Fig. 1-27. The diagram is drawn to show that the states of the circuit follow the binary count as long as

Figure 1-27 State diagram for binary counter.
$x=1$. The state following 11 is 00 , which causes the count to be repeated. If $x=0$, the state of the circuit remains unchanged. This sequential circuit has no external outputs, and therefore only the input value is labeled in the diagram. The state of the flip-flops is considered as the outputs of the counter.

We have already assigned the symbol x to the input variable. We now assign the symbols A and B to the two flip-flop outputs. The next state of A and B, as a function of the present state and input x, can be transferred from the state diagram into a state table. The first five columns of Table 1-5 constitute the state table. The entries for this table are obtained directly from the state diagram.

The excitation table of a sequential circuit is an extension of the state table. This extension consists of a list of flip-flop input excitations that will cause the

TABLE 1-5 Excitation Table for Binary Counter

Present state		$\frac{\text { Input }}{x}$	Next state		Flip-flop inputs			
A	B		A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	0	0	\times	0	\times
0	0	1	0	1	0	\times	1	\times
0	1	0	0	1	0	\times	\times	0
0	1	1	1	0	1	\times	\times	1
1	0	0	1	0	\times	0	0	\times
1	0	1	1	1	\times	0	1	\times
1	1	0	1	1	\times	0	\times	0
1	1	1	0	0	\times	1	\times	1

required state transitions. The flip-flop input conditions are a function of the type of flip-flop used. If we employ $J K$ flip-flops, we need columns for the J and K inputs of each flip-flop. We denote the inputs of flip-flop A by J_{A} and K_{A}, and those of flip-flop B by J_{B} and K_{B}.

The excitation table for the $J K$ flip-flop specified in Table 1-3 is now used to derive the excitation table of the sequential circuit. For example, in the first row of Table 1-5, we have a transition for flip-flop A from 0 in the present state to 0 in the next state. In Table $1-3$ we find that a transition of states from $Q(t)=0$ to $Q(t+1)=0$ in a $J K$ flip-flop requires that input $J=0$ and input $K=\times$. So 0 and \times are copied in the first row under J_{A} and K_{A}, respectively. Since the first row also shows a transition for flip-flop B from 0 in the present state to 0 in the next state, 0 and \times are copied in the first row under J_{B} and K_{B}. The second row of Table $1-5$ shows a transition for flip-flop B from 0 in the present state to 1 in the next state. From Table $1-3$ we find that a transition from $Q(t)=0$ to $Q(t+1)=1$ requires that input $J=1$ and input $K=x$. So 1 and \times are copied in the second row under j_{8} and K_{8}, respectively. This process is continued for each row of the table and for each flip-flop, with the input conditions as specified in Table 1-3 being copied into the proper row of the particular flip-flop being considered.

Let us now consider the information available in an excitation table such as Table 1-5. We know that a sequential circuit consists of a number of flip-flops and a combinational circuit. From the block diagram of Fig. 1-24, we note that the outputs of the combinational circuit must go to the four flip-flop inputs J_{A}, K_{A}, J_{B}, and K_{B}. The inputs to the combinational circuit are the external input x and the present-state values of flip-flops A and B. Moreover, the Boolean functions that specify a combinational circuit are derived from a truth table that shows the input-output relationship of the circuit. The entries that list the combinational circuit inputs are specified under the "present state" and "input" columns in the excitation table. The combinational circuit outputs are specified under the "flip-flop inputs" columns. Thus an excitation table transforms a state diagram to a truth table needed for the design of the combinational circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now be derived. The inputs are the variables A, B and x. The outputs are the variables J_{A}, K_{A}, J_{B}, and K_{B}. The information from the excitation table is transferred into the maps of Fig. 1-28, where the four simplified flip-flop input equations are derived:

$$
\begin{array}{ll}
J_{A}=B x & K_{A}=B x \\
J_{B}=x & K_{B}=x
\end{array}
$$

The logic diagram is drawn in Fig. 1-29 and consists of two $J K$ flip-flops and an AND gate. Note that inputs J and K determine the next state of the counter when a clock signal occurs. If both J and K are equal to 0 , a clock signal will

Figure 1-28 Maps for combinational circuit of counter.

Figure 1-29 Logic diagram of a 2-bit binary counter.
have no effect; that is, the state of the flip-flops will not change. Thus when $x=0$, all four inputs of the flip-flops are equal to 0 and the state of the flip-flops remains unchanged even though clock pulses are applied continuously.

Design Procedure

The design of sequential circuits follows the outline described in the preceding example. The behavior of the circuit is first formulated in a state diagram. The number of flip-flops needed for the circuit is determined from the number of bits listed within the circles of the state diagram. The number of inputs for the circuit is specified along the directed lines between the circles. We then assign letters to designate all flip-flops and input and output variables and proceed to obtain the state table.

For m flip-flops and n inputs, the state table will consist of m columns for the present state, n columns for the inputs, and m columns for the next state. The number of rows in the table will be up to 2^{m+n}, one row for each binary combination of present state and inputs. For each row we list the next state as specified by the state diagram. Next, the flip-flop type to be used in the circuit is chosen. The state table is then extended into an excitation table by including columns for each input of each flip-flop. The excitation table for the type of flip-flop in use can be found in Table 1-3. From the information available in this table and by inspecting present state-to-next state transitions in the state table, we obtain the information for the flop-flop input conditions in the excitation table.

The truth table for the combinational circuit part of the sequential circuit is available in the excitation table. The present-state and input columns constitute the inputs in the truth table. The flip-flop input conditions constitute the outputs in the truth table. By means of map simplification we obtain a set of flip-flop input equations for the combinational circuit. Each flip-flop input equation specifies a logic diagram whose output must be connected to one of the flip-flop inputs. The combinational circuit so obtained, together with the flip-flops, constitutes the sequential circuit.

The outputs of flip-flops are often considered to be part of the outputs of the sequential circuit. However, the combinational circuit may also contain external outputs. In such a case the Boolean functions for the external outputs are derived from the state table by combinational circuit design techniques.

A set of flip-flop input equations specifies a sequential circuit in algebraic form. The procedure for obtaining the logic diagram from a set of flip-flop input equations is a straightforward process. First draw the flip-flops and label all their inputs and outputs. Then draw the combinational circuit from the Boolean expressions given by the flip-flop input equations. Finaily connect outputs of flip-flops to inputs in the combinational circuit and outputs of the combinational circuit to flip-flop inputs.

1-1. Determine by means of a truth table the validity of DeMorgan's theorem for three variables: $(A B C)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}$.
1-2. List the truth table of a three-variable exclusive-OR (odd) function: $x=A \oplus$ $B \oplus C$.
1-3. Simplify the following expressions using Boolean algebra.
a. $A+A B$
b. $A B+A B^{\prime}$
c. $A^{\prime} B C+A C$
d. $A^{\prime} B+A B C^{\prime}+A B C$

1-4. Simplify the following expressions using Boolean algebra.
a. $A B+A\left(C D+C D^{\prime}\right)$
b. $\left(B C^{\prime}+A^{\prime} D\right)\left(A B^{\prime}+C D^{\prime}\right)$

1-5. Using DeMorgan's theorem, show that:
a. $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}=0$
b. $A+A^{\prime} B+A^{\prime} B^{\prime}=1$

1-6. Given the Boolean expression $F=x^{\prime} y+x y z^{\prime}$:
a. Derive an algebraic expression for the complement F^{\prime}.
b. Show that $F \cdot F^{\prime}=0$.
c. Show that $F+F^{\prime}=1$.

1-7. Given the Boolean function

$$
F=x y^{\prime} z+x^{\prime} y^{\prime} z+x y z
$$

a. List the truth table of the function.
b. Draw the logic diagram using the original Boolean expression.
c. Simplify the algebraic expression using Boolean algebra.
d. List the truth table of the function from the simplified expression and show that it is the same as the truth table in part (a).
e. Draw the logic diagram from the simplified expression and compare the total number of gates with the diagram of part (b).
1-8. Simplify the following Boolean functions using three-variable maps.
a. $F(x, y, z)=\Sigma(0,1,5,7)$
b. $F(x, y, z)=\sum(1,2,3,6,7)$
c. $F(x, y, z)=\sum(3,5,6,7)$
d. $F(A, B, C)=\Sigma(0,2,3,4.6)$

1-9. Simplify the following Boolean functions using four-variable maps.
a. $F(A, B, C, D)=\Sigma(4,6,7,15)$
b. $F(A, B, C, D)=\Sigma(3,7,11,13,14,15)$
c. $F(A, B, C, D)=\Sigma(0,1,2,4,5,7,11,15)$
d. $F(A, B, C, D)=\Sigma(0,2,4,5,6,7,8,10,13,15)$

1-10. Simplify the following expressions in (1) sum-of-products form and (2) product-of-sums form.
a. $x^{\prime} z^{\prime}+y^{\prime} z^{\prime}+y z^{\prime}+x y$
b. $A C^{\prime}+B^{\prime} D+A^{\prime} C D+A B C D$

1-11. Simplify the following Boolean function in sum-of-products form by means of a four-variable map. Draw the logic diagram with (a) AND-OR gates; (b) NAND gates.

$$
F(A, B, C, D)=\sum(0,2,8,9,10,11,14,15)
$$

1-12. Simplify the following Boolean function in product-of-sums form by means of a four-variable map. Draw the logic diagram with (a) OR-AND gates; (b) NOR gates.

$$
F(w, x, y, z)=\Sigma(2,3,4,5,6,7,11,14,15)
$$

1-13. Simplify the Boolean function F together with the don't-care conditions d in (1) sum-of-products form and (2) product-of-sums form.

$$
\begin{aligned}
& F(w, x, y, z)=\sum(0,1,2,3,7,8,10) \\
& d(w, x, y, z)=\sum(5,6,11,15)
\end{aligned}
$$

1-14. Using Table 1-2, derive the Boolean expression for the S (sum) output of the full-adder in sum-of-products form. Then by algebraic manipulation show that S can be expressed as the exclusive-OR of the three input variables.

$$
S=x \oplus y \oplus z
$$

1-15. A majority function is generated in a combinational circuit when the output is equal to 1 if the input variables have more 1's than 0 's. The output is 0 otherwise. Design a three-input majority function.
1-16. Design a combinational circuit with three inputs x, y, z and three outputs A, B, C. When the binary input is $0,1,2$, or 3 , the binary output is one greater than the input. When the binary input is $4,5,6$, or 7 , the binary output is one less than the input.
1-17. Show that a $/ K$ flip-flop can be converted to a D flip-flop with an inverter between the J and K inputs.
1-18. Using the information from the characteristic table of the $J K$ flip-flop listed in Fig. 1-21(b), derive the excitation table for the JK flip-flop and compare your answer with Table 1-3.
1-19. A sequential circuit has two D flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and the circuit output are as follows:

$$
\begin{aligned}
D_{A} & =x^{\prime} y+x A \\
D_{B} & =x^{\prime} B+x A \\
z & =B
\end{aligned}
$$

a. Draw the logic diagram of the circuit.
b. Tabulate the state table.

1-20. Design a 2-bit count-down counter. This is a sequential circuit with two flip-flops and one input x. When $x=0$, the state of the flip-flops does not change. When $x=1$, the state sequence is $11,10,01,00,11$, and repeat.
1-21. Design a sequential circuit with two $J K$ flip-flops A and B and two inputs E and x. If $E=0$, the circuit remains in the same state regardless of the value of x. When $E=1$ and $x=1$, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00 , and repeat. When $E=1$ and $x=0$, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00 , and repeat.

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd ed. New York: John Wiley, 1981.
2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.
4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
5. Shiva, S. G., Introduction to Logic Design. Glenview, IL: Scott, Foresman, 1988.
6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJः Prentice Hall, 1990.
7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.
\square

Q
\square

\qquad

2
H^{6}
swip

ERA....
Fury volicy ras va

IN THIS CHAPTER

2-1 Integrated Circuits
2-2 Decoders
2-3 Multiplexers
2-4 Registers
2-5 Shift Registers
2-6 Binary Counters
2-7 Memory Unit

2-1 Integrated Circuits

Digital circuits are constructed with integrated circuits. An integrated circuit (abbreviated IC) is a small silicon semiconductor crystal, called a chip, containing the electronic components for the digital gates. The various gates are interconnected inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic container, and connections are welded by thin gold wires to external pins to form the integrated circuit. The number of pins may range from 14 in a small IC package to 100 or more in a larger package. Each IC has a numeric designation printed on the surface of the package for identification. Each vendor publishes a data book or catalog that contains the exact description and all the necessary information about the ICs that it manufactures.

As the technology of ICs has improved ${ }_{6}$ the number of gates that can be put in a single chip has increased considerably. The differentiation between those chips that have a few internal gates and those having hundreds or thousands of gates is made by a customary reference to a package as being either a small-, medium-, or large-scale integration device.

Small-scale integration (SSI) devices contain several independent gates in a single package. The inputs and outputs of the gates are connected directly
to the pins in the package. The number of gates is usually less than 10 and is limited by the number of pins available in the IC.
TTL Transistor-transistor logic

ECL Emitter-coupled logic
MOS Metal-oxide semiconductor
CMOS Complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for many years and is considered as standard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits that need high component density, and CMOS is preferable in systems requiring low power consumption.
$T T L$
The transistor-transistor logic family was an evolution of a previous technology that used diodes and transistors for the basic NAND gate. This technology was called DTL, for "diode-transistor logic." Later the diodes were replaced by transistors to improve the circuit operation and the name of the logic family was changed to "transistor-transistor logic." This is the reason for mentioning the word "transistor" twice. There are several variations of the TTT. family besides the standard TTL, such as high-speed TTL, low-power TTL, Schottky TTL, low-power Schottky TTL, and advanced Schottky TTL. The
decoder

2-2 Decoders

Discrete quantities of information are represented in digital computers with binary codes. A binary code of n bits is capable of representing up to 2^{n} distinct elements of the coded information. A decoder is a combinational circuit that converts binary information from the n coded inputs to a maximum of 2^{n} unique outputs. If the n-bit coded information has unused bit combinations, the decoder may have less than 2^{n} outputs.
power supply voltage for TTL circuits is 5 volts, and the two logic levels are approximately 0 and 3.5 volts. circuits in integrated form. ECL is used in systems such as supercomputers and signal processors where high speed is essential. The transistors in ECL gates operate in a nonsaturated state, a condition that allows the achievement of propagation delays of 1 to 2 nanoseconds.
The metal-oxide semiconductor (MOS) is a unipolar transistor that depends on the flow of only one type of carrier, which may be electrons (n-channel) or holes (p-channel). This is in contrast to the bipolar transistor used in TTL and ECL gates, where both carriers exist during normal operation. A p-channel MOS is referred to as PMOS and an n-channel as NMOS. NMOS is the one that is commonly used in circuits with only one type of MOS transistor. The complementary MOS (CMOS) technology uses PMOS and NMOS transistors connected in a complementary fashion in all circuits. The most important advantages of CMOS over bipolar are the high packing density of circuits, a simpler processing technique during fabrication, and a more economical operation because of low power consumption.

Because of their many advantages, integrated circuits are used exclusively to provide various digital components needed in the design of computer systems. To understand the organization and design of digital computers it is very important to be familiar with the various components encountered in integrated circuits. For this reason, the most basic components are introduced in this chapter with an explanation of their logical properties. These components provide a catalog of elementary digital functional units commonly used as basic building blocks in the design of digital computers.

The decoders presented in this section are called n-to- m-line decoders, where $m \leq 2^{n}$. Their purpose is to generate the 2^{n} (or fewer) binary combinations of the n input variables. A decoder has n inputs and m outputs and is also referred to as an $n \times m$ decoder.

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-1. The three data inputs, A_{0}, A_{1}, and A_{2}, are decoded into eight outputs, each output

Figure 2-1 3-to-8-line decoder.

Enable input

representing one of the combinations of the three binary input variables. The three inverters provide the complement of the inputs, and each of the eight AND gates generates one of the binary combination. A particular application of this decoder is a binary-to-octal conversion. The input variables represent a binary number and the outputs represent the eight digits of the octal number system. However, a 3 -to-8-line decoder can be used for decoding any 3-bit code to provide eight outputs, one for each combination of the binary code.

Commercial decoders include one or more enable inputs to control the operation of the circuit. The decoder of Fig. 2-1 has one enable input, E. The decoder is enabled when E is equal to 1 and disabled when E is equal to 0 .

The operation of the decoder can be clarified using the truth table listed in Table 2-1. When the enable input E is equal to 0 , all the outputs are equal to 0 regardless of the values of the other three data inputs. The three x^{\prime} 's in the table designate don't-care conditions. When the enable input is equal to 1, the decoder operates in a normal fashion. For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1. The output variable whose value is equal to 1 represents the octal number equivalent of the binary number that is available in the input data lines.

TABLE 2-1 Truth Table for 3-to-8-Line Decoder

Enable	Inputs			Outputs								
E	A_{2}	A_{1}	A_{0}	D	${ }_{7}$	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	\times	\times	\times		0	0	0	0	0	0	0	0
1	0	0	0		0	0	0	0	0	0	0	1
1	0	0	1		0	0	0	0	0	0	1	0
1	0	1	0		0	0	0	0	0	1	0	0
1	0	1	1		0	0	0	0	1	0	0	0
1	1	0	0		0	0	θ	1	0	0	0	0
1	1	0	1		0	0	1	0	0	0	0	0
1	1	1	0		0	1	0	0	0	0	0	0
1	1.	1	1		1	0	0	0	0	0	0	0

NAND Gate Decoder

Some decoders are constructed with NAND instead of AND gates. Since a NAND gate produces the AND operation with an inverted output, it becomes more economical to generate the decoder outputs in their complement form. A 2-to-4-line decoder with an enable input constructed with NAND gates is shown in Fig. 2-2. The circuit operates with complemented outputs and a complemented enable input E. The decoder is enabled when E is equal to 0 . As indicated by the truth table, only one output is equal to 0 at any given time; the other three outputs are equal to 1 . The output whose value is equal to 0 represents the equivalent binary number in inputs A_{1} and A_{0}. The circuit is disabled when E is equal to 1 , regardless of the values of the other two inputs.

Figure 2-2 2-to-4-line decoder with NAND gates.

(a) Logic diagram

(b) Truth table

When the circuit is disabled, none of the outputs are selected and all outputs are equal to 1 . In general, a decoder may operate with complemented or uncomplemented outputs. The enable input may be activated with a 0 or with a 1 signal level. Some decoders have two or more enable inputs that must satisfy a given logic condition in order to enable the circuit.

Decoder Expansion

There are occasions when a certain-size decoder is needed but only smaller sizes are available. When this occurs it is possible to combine two or more decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line decoder is needed, it is possible to construct it with four 4-to-16-line decoders.

Figure $2-3$ shows how decoders with enable inputs can be connected to form a larger decoder. Two 2-to-4-line decoders are combined to achieve a 3-to-8-line decoder. The two least significant bits of the input are connected to both decoders. The most significant bit is connected to the enable input of one decoder and through an inverter to the enable input of the other decoder. It is assumed that each decoder is enabled when its E input is equal to 1 . When E is equal to 0 , the decoder is disabled and all its outputs are in the 0 level. When $A_{2}=0$, the upper decoder is enabled and the lower is disabled. The lower decoder outputs become inactive with all outputs at 0 . The outputs of the upper decoder generate outputs D_{0} through D_{3}, depending on the values of A_{1} and A_{0} (while $A_{2}=0$). When $A_{2}=1$, the lower decoder is enabled and the upper is disabled. The lower decoder output generates the binary equivalent D_{4} through D_{7} since these binary numbers have a 1 in the A_{2} position.

Figure 2.3 A 3×8 decoder constructed with two 2×4 decoders.

The example demonstrates the usefulness of the enable input in decoders or any other combinational logic component. Enable inputs are a convenient feature for interconnecting two or more circuits for the purpose of expanding the digital component into a similar function but with more inputs and outputs.

Encoders

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2^{n} (or less) input lines and n output lines. The output lines generate the binary code corresponding to the input value. An example of an encoder is the octal-to-binary encoder, whose truth table is given in Table 2-2. It has eight inputs, one for each of the octal digits, and three outputs that generate the corresponding binary number. It is assumed that only one input has a value of 1 at any given time; otherwise, the circuit has no meaning.

TABLE 2-2 Truth Table for Octal-to-Binary Encoder

Inputs								Outputs		
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	A_{2}	A_{1}	A_{0}
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

The encoder can be implemented with OR gates whose inputs are determined directly from the truth table. Output $A_{0}=1$ if the input octal digit is 1 or 3 or 5 or 7 . Similar conditions apply for the other two outputs. These conditions can be expressed by the following Boolean functions:

$$
\begin{aligned}
& A_{0}=D_{1}+D_{3}+D_{5}+D_{7} \\
& A_{1}=D_{2}+D_{3}+D_{6}+D_{7} \\
& A_{2}=D_{4}+D_{5}+D_{6}+D_{7}
\end{aligned}
$$

The encoder can be implemented with three OR gates.

2-3 Multiplexers

multiplexer

A multiplexer is a combinational circuit that receives binary information from one of 2^{n} input data lines and directs it to a single output line. The selection of a particular input data line for the output is determined by a set of selection inputs. A 2^{n}-to- 1 multiplexer has 2^{n} input data lines and n input selection lines whose bit combinations determine which input data are selected for the output.

A 4-to-1-line multiplexer is shown in Fig. 2-4. Each of the four data inputs I_{0} through I_{3} is applied to one input of an AND gate. The two selection inputs S_{1} and S_{0} are decoded to select a particular AND gate. The outputs of the AND gates are applied to a single OR gate to provide the single output. To demonstrate the circuit operation, consider the case when $S_{1} S_{0}=10$. The AND gate associated with input I_{2} has two of its inputs equal to 1 . The third input of the gate is connected to I_{2}. The other three AND gates have at least one input equal to 0 , which makes their outputs equal to 0 . The OR gate output is now equal to the value of I_{2}, thus providing a path from the selected input to the output.

The 4 -to- 1 line multiplexer of Fig. $2-4$ has six inputs and one output. A truth table describing the circuit needs 64 rows since six input variables can have 2^{6} binary combinations. This is an excessively long table and will not be shown here. A more convenient way to describe the operation of multiplexers is by means of a function table. The function table for the multiplexer is shown in Table 2-3. The table demonstrates the relationship between the four data inputs and the single output as a function of the selection inputs S_{1} and S_{0}.

Figure 2-4 4-to-1-line multiplexer.

When the selection inputs are equal to 00 , output Y is equal to input I_{0}. When the selection inputs are equal to 01 , input I_{1}, has a path to output Y, and similarly for the other two combinations. The multiplexer is also called a data selector, since it selects one of many data inputs and steers the binary information to the output.

TABLE 2-3 Function Table for 4-to-1-Line Multiplexer

Select			Output	
S_{1}	S_{0}		Y	
0	0		l_{0}	
0	1		l_{1}	
1	0		I_{2}	
1	1		l_{3}	

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed they decode the input selection lines. In general, a 2^{n}-to-1line multiplexer is constructed from an n-to- 2^{n} decoder by adding to it 2^{n} input lines, one from each data input. The size of the multiplexer is specified by the number 2^{n} of its data inputs and the single output. It is then implied that it also contains n input selection lines. The multiplexer is often abbreviated as MUX.

As in decoders, multiplexers may have an enable input to control the operation of the unit. When the enable input is in the inactive state, the outputs are disabled, and when it is in the active state, the circuit functions as a normal multiplexer. The enable input is useful for expanding two or more multiplexers to a multiplexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within a single integrated circuit package. The selection and the enable inputs in multiple-unit construction are usually common to all multiplexers. As an illustration, the block diagram of a quadruple 2-to-1-line multiplexer is shown in Fig. 2-5. The circuit has four multiplexers, each capable of selecting one of two input lines. Output Y_{0} can be selected to come from either input A_{0} or B_{0}. Similarly, output Y_{1} may have the value of A_{1} or B_{1}, and so on. One input selection line S selects one of the lines in each of the four multiplexers. The enable input E must be active for normal operation. Although the circuit contains four multiplexers, we can also think of it as a circuit that selects one of two 4 -bit data lines. As shown in the function table, the unit is enabled when $E=1$. Then, if $S=0$, the four A inputs have a path to the four outputs. On the other hand, if $S=1$, the four B inputs are applied to the outputs. The outputs have all 0^{\prime} 's when $E=0$, regardless of the values of S.

Figure 2-5 Quadruple 2-to-1 line multiplexers.

2-4 Registers

A register is a group of flip-flops with each flip-flop capable of storing one bit of information. An n-bit register has a group of n flip-flops and is capable of storing any binary information of n bits. In addition to the flip-flops, a register may have combinational gates that perform certain data-processing tasks. In its broadest definition, a register consists of a group of flip-flops and gates that effect their transition. The flip-flops hold the binary information and the gates control when and how new information is transferred into the register.

Various types of registers are available commercially. The simplest register is one that consists only of flip-flops, with no external gates. Figure 2-6 shows such a register constructed with four D flip-flops. The common clock input triggers all flip-flops on the rising edge of each pulse, and the binary data available at the four inputs are transferred into the 4 -bit register. The four outputs can be sampled at any time to obtain the binary information stored in the register. The clear input goes to a special terminal in each flip-flop. When this input goes to 0, all flip-flops are reset asynchronously. The clear input is useful for clearing the register to all 0 's prior to its clocked operation. The clear input must be maintained at logic 1 during normal clocked operation. Note that the clock signal enables the D input but that the clear input is independent of the clock. register. If all the bits of the register are loaded simultaneously with a common

Figure 2-6 4-bit register.
clock pulse transition, we say that the loading is done in parallel. A clock transition applied to the C inputs of the register of Fig. 2-6 will load all four inputs I_{0} through I_{3} in parallel. In this configuration, the clock must be inhibited from the circuit if the content of the register must be left unchanged.

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train of clock pulses. The clock pulses are applied to all flip-flops and registers in the system. The master clock acts like a pump that supplies a constant beat to all parts of the system. A separate control signal must be used to decide which specife clork pulse will have an erfect on a particular register.

A 4-bit register with a load control input that is directed through gates and into the D inputs is shown in Fig. 2-7. The C inputs receive clock pulses at all times. The buffer gate in the clock input reduces the power requirement

Figure 2-7 4-bit register with parallel load.
from the clock generator. Less power is required when the clock is connected to only one input gate instead of the power consumption that four inputs would have required if the buffer were not used.
load input
The load input in the register determines the action to be taken with each clock pulse. When the load input is 1 , the data in the four inputs are transferred into the register with the next positive transition of a clock pulse. When the load input is 0 , the data inputs are inhibited and the D inputs of the flip-flops are connected to their outputs. The feedback connection from output to input is necessary because the D flip-flop does not have a "no change" condition.

With each clock pulse, the D input determines the next state of the output. To leave the output unchanged, it is necessary to make the D input equal to the present value of the output.

Note that the clock puises are applied to the C inputs at all times. The load input determines whether the next pulse will accept new information or leave the information in the register intact. The transfer of information from the inputs into the register is done simultaneously with all four bits during a single pulse transition.

2.5 Shift Registers

A register capable of shifting its binary information in one or both directions is called a shift register. The logical configuration of a shift register consists of a chain of flip-flops in cascade, with the output of one flip-flop connected to the input of the next flip-flop. All flip-flops receive common clock pulses that initiate the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 2-8. The output of a given flip-flop is connected to the D input of the flip-flop at its right. The clock is common to all flip-flops. The serial input determines what goes into the leftmost position during the shift. The serial output is taken from the output of the rightmost flip-flop.

Sometimes it is necessary to control the shift so that it occurs with certain clock pulses but not with others. This can be done by inhibiting the clock from the input of the register if we do not want it to shift. When the shift register of Fig 2-8 is used, the shift can be controlled by connecting the clock to the input of an AND gate, and a second input of the AND gate can then control the shift by inhibiting the clock. However, it is also possible to provide extra circuits to control the shift operation through the D inputs of the flip-flops rather than the clock input.

Bidirectional Shift Register with Parallel Load

A register capable of shifting in one direction only is called a unidirectional shift register. A register that can shift in both directions is called a bidirectional shift register. Some shift registers provide the necessary input and output terminals

Figure 2-8 4-bit shutt recister.

for parallel transfer. The most general shift register has all the capabilities listed below. Others may have some of these capabilities, with at least one shift operation.

1. An input for clock pulses to synchronize all operations.
2. A shift-right operation and a serial input line associated with the shiftright.
3. A shift-left operation and a serial input line associated with the shift-left.
4. A parallel load operation and n input lines associated with the parallel transfer.
5. n parallel output lines.
6. A control state that leaves the information in the register unchanged even though clock pulses are applied continuously.

A 4-bit bidirectional shift register with parallel load is shown in Fig. 2-9. Each stage consists of a D flip-flop and a 4×1 multiplexer. The two selection inputs S_{1} and S_{0} select one of the multiplexer data inputs for the D flip-flop. The selection lines control the mode of operation of the register according to the function table shown in Table 2-4. When the mode control $S_{1} S_{0}=00$, data input 0 of each multiplexer is selected. This condition forms a path from the output of each flip-flop into the input of the same flip-flop. The next clock transition transfers into each flip-flop the binary value it held previously, and no change of state occurs. When $S_{1} S_{0}=01$, the terminal marked 1 in each multiplexer has a path to the D input of the corresponding flip-flop. This causes a shift-right operation, with the serial input data transferred into flip-flop A_{0} and the content of each flip-flop A_{i-1} transferred into flip-flop A_{i} for $i=1,2$, 3. When $S_{1} S_{0}=10$ a shift-left operation results, with the other serial input data going into flip-flop A_{3} and the content of flip-flop A_{i+1} transferred into flip-flop A_{i} for $i=0,1,2$. When $S_{1} S_{0}=11$, the binary information from each input I_{0} through I_{3} is transferred into the corresponding flip-flop, resulting in a parallel load operation. Note that the way the diagram is drawn, the shift-right operation shifts the contents of the register in the down direction while the shift left operation causes the contents of the register to shift in the upward direction.

TABLE 2-4 Function Table for Register of Fig. 2-9

Mode control		
S_{1}	S_{0}	Register operation
0	0	
0	No change	
1	1	
1	1	Shift right (down)

Figure 2-9 Bidirectional shift register with parallel load.
Shift registers are often used to interface digital systems situated remotely from each other. For example, suppose that it is necessary to transmit an n-bit quantity between two points. If the distance between the source and the destination is too far, it will be expensive to use n lines to transmit the n bits in parallel. It may be more economical to use a single line and transmit the information serially one bit at a time. The transmitter loads the n-bit data in
parallel into a shift register and then transmits the data from the serial output line. The receiver accepts the data serially into a shift register through its serial input line. When the entire n bits are accumulated they can be taken from the outputs of the register in parallel. Thus the transmitter performs a parallel-toserial conversion of data and the receiver converts the incoming serial data back to parallel data transfer.

2-6 Binary Counters

A register that goes through a predetermined sequence of states upon the application of input pulses is called a counter. The input pulses may be clock pulses or may originate from an external source. They may occur at uniform intervals of time or at random. Counters are found in almost all equipment containing digital logic. They are used for counting the number of occurrences of an event and are useful for generating timing signals to control the sequence of operations in digital computers.

Of the various sequences a counter may follow, the straight binary sequence is the simplest and most straightforward. A counter that follows the binary number sequence is called a binary counter. An n-bit binary counter is a register of n flip-flops and associated gates that follows a sequence of states according to the binary count of n bits, from 0 to $2^{n}-1$. The design of binary counters can be carried out by the procedure outlined in Sec. 1-7 for sequential circuits. A simpler alternative design procedure may be carried out from a direct inspection of the sequence of states that the register must undergo to achieve a straight binary count.

Going through a sequence of binary numbers such as $0000,0001,0010$, 0011 , and so on, we note that the lower-order bit is complemented after every count and every other bit is complemented from one count to the next if and only if all its lower-order bits are equal to 1 . For example, the binary count from 0111 (7) to 1000 (8) is obtained by (a) complementing the low-order bit, (b) complementing the second-order bit because the first bit of 0111 is 1 , (c) complementing the third-order bit because the first two bits of 0111 are 1 's, and (d) complementing the fourth-order bit because the first three bits of 0111 are all 1's.

A counter circuit will usually employ flip-flops with complementing capabilities. Both T and $J K$ flip-flops have this property. Remember that a $J K$ flip-flop is complemented if both its J and K inputs are 1 and the clock goes through a positive transition. The output of the flip-flop does not change if $J=K=0$. In addition, the counter may be controlled with an enable input that turns the counter on or off without removing the clock signal from the flipflops.

Synchronous binary counters have a regular pattern, as can be seen from the 4 -bit binary counter shown in Fig. 2-10. The C inputs of all flip-flops receive the common clock. If the count enable is 0 , all J and K inputs are maintained

Figure 2-10 4-bit synchronous binary counter.
at 0 and the output of the counter does not change. The first stage A_{0} is complemented when the counter is enabled and the clock goes through a positive transition. Each of the other three flip-flops are complemented when all previous least significant flip-flops are equal to 1 and the count is enabled. The chain of AND gates generate the required logic for the J and K inputs. The
output carry can be used to extend the counter to more stages, with each stage having an additional flip-flup and an AND gate.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel load capability for transferring an initial binary number prior to the count operation. Figure 2-11 shows the logic diagram of a binary counter that has a parallel load capability and can also be cleared to 0 synchronous with the clock. When equal to 1 , the clear input sets all the K inputs to 1 , thus clearing all flip-flops with the next clock transition. The input load control when equal to 1 , disables the count operation and causes a transfer of data from the four parallel inputs into the four flip-flops (provided that the clear input is 0). If the clear and load inputs are both 0 and the increment input is 1 , the circuit operates as a binary counter.

The operation of the circuit is summarized in Table 2-5. With the clear, load, and increment inputs all at 0 , the outputs do not change even when pulses are applied to the C terminals. If the clear and load inputs are maintained at logic 0 , the increment input controls the operation of the counter and the outputs change to the next binary count for each positive transition of the clock. The input data are loaded into the flip-flops when the load control input. is equal to 1 provided that the clear is disabled, but the increment input can be 0 or 1 . The register is cleared to 0 with the clear control regardless of the values in the load and increment inputs.

TABLE 2-5 Function Table for the Register of Fig. 2-11

Clock	Clear	Load	Increment	Operation
\uparrow	0	0	0	No change
\uparrow	0	0	1	Increment count by 1
\uparrow	0	1	\times	Load inputs I_{0} through I_{3}
\uparrow	1	\times	\times	Clear outputs to 0

Counters with parallel load are very useful in the design of digital computers. In subsequent chapters we refer to them as registers with load and increment operations. The increment operation adds one to the content of a register. By enabling the count input during one clock period, the content of the register can be incremented by one.

2-7 Memory Unit

A memory unit is a collection of storage cells together with associated circuits needed to transfer information in and out of storage. The memory stores binary

Figure 2-11 4-bit binary counter with parallel load and synchronous clear.
byte

RAM

write and read operations
bits that move in and out of storage as a unit. A memory word is a group of 1 's and 0's and may represent a number, an instruction code, one or more alphanumeric characters, or any other binary-coded information. A group of eight bits is called a byte. Most computer memories use words whose number of bits is a multiple of 8 . Thus a 16 -bit word contains two bytes, and a 32 -bit word is made up of four bytes. The capacity of memories in commercial computers is usually stated as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of words it contains and the number of bits in each word. Special input lines called address lines select one particular word. Each word in memory is assigned an identification number, called an address, starting from 0 and continuing with $1,2,3$, up to $2^{k}-1$ where k is the number of address lines. The selection of a specific word inside the memory is done by applying the k-bit binary address to the address lines. A decoder inside the memory accepts this address and opens the paths needed to select the bits of the specified word. Computer memories may range from 1024 words, requiring an address of 10 bits, to 2^{32} words, requiring 32 address bits. It is customary to refer to the number of words (or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga). K is equal to $2^{10}, M$ is equal to 2^{20}, and G is equal to 2^{30}. Thus $64 \mathrm{~K}=2^{16}, 2 \mathrm{M}=2^{21}$, and $4 \mathrm{G}=2^{32}$.

Two major types of memories are used in computer systems: randomaccess memory (RAM) and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for information transfer from any desired random location. That is, the process of locating a word in memory is the same and requires an equal amount of time no matter where the celis are located physically in memory: thus the name "random access."

Communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines, that specify the direction of transfer. A block diagram of a RAM unit is shown in Fig. 2-12. The n data input lines provide the information to be stored in memory, and the n data output lines supply the information coming out of memory. The k address lines provide a binary number of k bits that specify a particular word chosen among the 2^{k} available inside the memory. The two control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the write and read operations. The write signal specifies a transfer-in operation and the read signal specifies a transfer-out operation. On accepting one of these control signals, the internal circuits inside the memory provide the desired function. The steps that must be taken for the purpose of transferring a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.

Figure 2-11 4-bit binary counter with parallel load and synchronous clear.

byte

RAM
write and read operations
bits that move in and out of storage as a unit. A memory word is a group of 1 's and 0's and may represent a number, an instruction code, one or more alphanumeric characters, or any other binary-coded information. A group of eight bits is called a byte. Most computer memories use words whose number of bits is a multiple of 8 . Thus a 16 -bit word contains two bytes, and a 32 -bit word is made up of four bytes. The capacity of memories in commercial computers is usually stated as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of words it contains and the number of bits in each word. Special input lines called address lines select one particular word. Each word in memory is assigned an identification number, called an address, starting from 0 and continuing with $1,2,3$, up to $2^{k}-1$ where k is the number of address lines. The selection of a specific word inside the memory is done by applying the k-bit binary address to the address lines. A decoder inside the memory accepts this address and opens the paths needed to select the bits of the specified word. Computer memories may range from 1024 words, requiring an address of 10 bits, to 2^{32} words, requiring 32 address bits. It is customary to refer to the number of words (or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga). K is equal to 2^{10}, M is equal to 2^{20}, and G is equal to 2^{30}. Thus $64 \mathrm{~K}=2^{16}, 2 \mathrm{M}=2^{21}$, and $4 \mathrm{G}=2^{32}$.

Two major types of memories are used in computer systems: randomaccess memory (RAM) and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for information transfer from any desired random location. That is, the process of locating a word in memory is the same and requires an equal amount of time no matter where the cells are located physically in memory: thus the name "random access."

Communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines, that specify the direction of transfer. A block diagram of a RAM unit is shown in Fig. 2-12. The n data input lines provide the information to be stored in memory, and the n data output lines supply the information coming out of memory. The k address lines provide a binary number of k bits that specify a particular word chosen among the 2^{k} available inside the memory. The two control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the write and read operations. The write signal specifies a transfer-in operation and the read signal specifies a transfer-out operation. On accepting one of these control signais, the internal circuits inside the memory provide the desired function. The steps that must be taken for the purpose of transferring a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.

Figure 2-12 Block diagram of random access memory (RAM).
2. Apply the data bits that must be stored in memory into the data input lines.
3. Activate the write input.

The memory unit will then take the bits presently available in the input data lines and store them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of memory are as follows:

1. Apply the binary address of the desired word into the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address and apply them into the output data lines. The content of the selected word does not change after reading.

Read-Only Memory

As the name implies, a read-only memory (ROM) is a memory unit that performs the read operation only; it does not have a write capability. This implies that the binary information stored in a ROM is made permanent during the hardware production of the unit and cannot be altered by writing different words into it. Whereas a RAM is a general-purpose device whose contents can be altered during the computational process, a ROM is restricted to reading words that are permanently stored within the unit. The binary information to be stored specified bv the designer is then embedded in the unit to form the required interconnection patiern. Ruvis come wail special internal elecromu fuses that can be "programmed" for a specific configuration. Once the pattern is established, it stays within the unit even when power is turned off and on again.

Figure 2-13 Block diagram of read only memory (ROM).

An $m \times n$ ROM is an array of binary cells organized into m words of n bits each. As shown in the block diagram of Fig. 2-13, a ROM has k address input lines to select one of $2^{k}=m$ words of memory, and n output lines, one for each bit of the word. An integrated circuit ROM may also have one or more enable inputs for expanding a number of packages into a ROM with larger capacity.

The ROM does not need a read-control line since at any given time, the output lines automatically provide the n bits of the word selected by the address value. Because the outputs are a function of only the present inputs (the address lines), a ROM is classified as a combinational circuit. In fact, a ROM is constructed internally with decoders and a set of OR gates. There is no need for providing storage capabilities as in a RAM, since the values of the bits in the ROM are permanently fixed.

ROMs find a wide range of applications in the design of digital systems. Basically, a ROM generates an input-output relation specified by a truth table. As such, it can implement any combinational circuit with k inputs and n outputs. When employed in a computer system as a memory unit, the ROM is used for storing fixed programs that are not to be altered and for tables of constants that are not subject to change. ROM is also employed in the design of control units for digital computers. As such, they are used to store coded information that represents the sequence of internal control variables needed for enabling the various operations in the computer. A control unit that utilizes a ROM to store binary control information is called a microprogrammed control unit. This subject is dicsussed in more detail in Chapter 7.

Types of ROMs

The required paths in a ROM may be programmed in three different ways. The first, mask programming, is done by the semiconductor company during the last fabrication process of the unit. The procedure for fabricating a ROM requires
that the customer fill out the truth table that he or she wishes the ROM to satisfy. The truth table may be submitted in a special form provided by the manufacturer or in a specified format on a computer output medium. The manufacturer makes the corresponding mask for the paths to produce the 1's and 0 's according to the customer's truth table. This procedure is costly because the vendor charges the customer a special fee for custom masking the particular ROM. For this reason, mask programming is economical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities it is more economical to use a second type of ROM called a programmable read-only memory or PROM. When ordered, PROM units contain all the fuses intact, giving all 1's in the bits of the stored words. The fuses in the PROM are blown by application of current pulses through the output terminals for each address. A blown fuse defines a binary 0 state, and an intact fuse gives a binary 1 state. This allows users to program PROMs in their own laboratories to achieve the desired relationship between input addresses and stored words. Special instruments called PROM programmers are available commercially to facilitate this procedure. In any case, all procedures for programming ROMs are hardware procedures even though the word "programming" is used.

The hardware procedure for programming ROMs or PROMs is irreversible, and once programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been established, the unit must be discarded if the bit pattern is to be changed. A third type of ROM available is called erasable PROM or EPROM. The EPROM can be restructured to the initial value even though its fuses have been blown previously. When the EPROM is placed under a special ultraviolet light for a given period of time, the shortwave radiation discharges the internal gates that serve as fuses. After erasure, the EPROM returns to its initial state and can be reprogrammed to a new set of words. Certain PROMs can be erased with electrical signals instead of ultraviolet light. These PROMs are called electrically erasable PROM or EEPROM.

PROBEEMS

2-1. TTL SSI come mostly in 14-pin IC packages. Two pins are reserved for power supply and the other pins are used for input and output terminals. How many circuits are included in one such package if it contains the following type of circuits? (a) Inverters; (b) two-input exclusive-OR gates; (c) three-input OR gates; (d) four-input AND gates; (e) five-input NOR gates; (f) eightinput NAND gates; (g) clocked $/ K$ flip-flops with asynchronous clear.
2-2. MSI chips perform elementary digital functions such as decoders, multiplexers, registers, and counters. The following are TTL-type integrated circuits that provide such functions. Find their description in a data book and compare them with the corresponding component presented in this chapter.
a. IC type 74155 dual 2 -to-4-line decoders.
b. IC type 74157 quadruple 2 -to-1-line multiplexers.
c. IC type 741944 -bit bidirectional shift register with parallel load.
d. IC type 741634 -bit binary counter with parallel load and synchronous clear.
2-3. Construct a 5 -to-32-line decoder with four 3-to-8-line decoders with enable and one 2-to-4-line decoder. Use block diagrams similar to Fig. 2-3.
2-4. Draw the logic diagram of a 2 -to-4-line decoder with only NOR gates. Include an enable input.
2-5. Modify the decoder of Fig. 2-2 so that the circuit is enabled when $E=1$ and disabled when $E=0$. List the modified truth table.
2-6. Draw the logic diagram of an eight-input, three-output encoder whose truth table is given in Table 2-2. What is the output when all the inputs are equal to 0 ? What is the output when only input D_{0} is equal to 0 ? Establish a procedure that will distinguish between these two cases.
2-7. Construct a 16 -to-1-line multiplexer with two 8 -to-1-line multiplexers and one 2 -to- 1 -line multiplexer. Use block diagrams for the three multiplexers.
2-8. Draw the block diagram of a dual 4 -to-1-line multiplexers and explain its operation by means of a function table.
2-9. Include a two-input AND gate with the register of Fig. 2-6 and connect the gate output to the clock inputs of all the flip-flops. One input of the AND gate receives the clock pulses from the clock pulse generator. The other input of the AND gate provides a parallel load control. Explain the operation of the modified register.
2-10. What is the purpose of the buffer gate in the clock input of the register of Fig. 2-7?
2-11. Include a synchronous clear capability to the register with parallel load of Fig. 2-7.
2-12. The content of a 4-bit register is initially 1101 . The register is shifted six times to the right with the serial input being 101101. What is the content of the register after each shift?
2-13. What is the difference between serial and parallel transfer? Using a shift register with parallel load, explain how to convert serial input data to parallel output and parallel input data to serial output.
2-14. A ring counter is a shift register as in Fig. 2-8 with the serial output connected to the serial input. Starting from an initial state of 1000 , list the sequence of states of the four flip-flops after each shift.
2-15. The 4 -bit bidirectional shift register with parallel load shown in Fig. 2-9 is enclosed within one IC package.
a. Draw a block diagram of the IC showing all inputs and outputs. Include two pins for power supply.
b. Draw a block diagram using two $I C$ s to prodree an :-but brdrac thonal shift register with parallel load.
2-16. How many flip-flops will be complemented in a 10 -bit binary counter to reach the next count after (a) 1001100111; (b) 0011111111?

2-17. Show the connections between four 4-bit binary counters with parallel load (Fig. 2-11) to produce a 16 -bit binary counter with parallel load. Use a block diagram for each 4 -bit counter.
2-18. Show how the binary counter with parallel load of Fig. 2-11 can be made to operate as a divide-by- N counter (i.e., a counter that counts from 0000 to N -and back to 0000). Specifically show the circuit for a divide-by- 10 counter using the counter of Fig. 2-11 and an external AND gate.
2-19. The following memory units are specified by the number of words times the number of bits per word. How many address lines and input-output data lines are needed in each case? (a) $2 \mathrm{~K} \times 16$; (b) $64 \mathrm{~K} \times 8$; (c) $16 \mathrm{M} \times 32$; (d) $4 \mathrm{G} \times 64$.

2-20. Specify the number of bytes that can be stored in the memories listed in Prob. 2-19.
2-21. How many 128×8 memory chips are needed to provide a memory capacity of 4096×16 ?
2-22. Given a 32×8 ROM chip with an enable input, show the external connections necessary to construct a 128×8 ROM with four chips and a decoder.
2-23. A ROM chip of 4096×8 bits has two enable inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw a block diagram and label all input and output terminals in the ROM.

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd ed. New York: John Wiley, 1981.
2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.
4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
5. Shiva, S. G., Introduction to Logic Design. Glenview, Il: Scott, Foresman, 1988.
6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Cliffs, NJ: Prentice Hall, 1990.
7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.
s.

2-17. Show the connections between four 4-bit binary counters with parallel load (Fig. 2-11) to produce a 16-bit binary counter with parallel load. Use a block diagram for each 4 -bit counter.
2-18. Show how the binary counter with parallel load of Fig. 2-11 can be made to operate as a divide-by- N counter (i.e., a counter that counts from 0000 to N-and back to 0000). Specifically show the circuit for a divide-by- 10 counter using the counter of Fig. 2-11 and an external AND gate.
2-19. The following memory units are specified by the number of words times the number of bits per word. How many address lines and input-output data lines are needed in each case? (a) $2 \mathrm{~K} \times 16$; (b) $64 \mathrm{~K} \times 8$; (c) $16 \mathrm{M} \times 32$; (d) $4 \mathrm{G} \times 64$.

2-20. Specify the number of bytes that can be stored in the memories listed in Prob. 2-19.
2-21. How many 128×8 memory chips are needed to provide a memory capacity of 4096×16 ?
2-22. Given a 32×8 ROM chip with an enable input, show the external connections necessary to construct a 128×8 ROM with four chips and a decoder.
2-23. A ROM chip of 4096×8 bits has two enable inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw a block diagram and label all input and output terminals in the ROM.

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd ed. New York: John Wiley, 1981.
2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.
4. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
5. Shiva, S. G., Introduction to Logic Design. Glenview, Il: Scott, Foresman, 1988.
6. Wakerly, J. F., Digital Design Principles and Practices, Englewood Cliffs, NJ: Prentice Hall, 1990.
7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.

 29

IN THIS CHAPTER

3-1 Data Types

3-2 Complements
3-3 Fixed-Point Representation
3-4 Floating-Point Representation
3-5 Other Binary Codes
3.6 Error Detection Codes

3-1 Data Types

Binary information in digital computers is stored in memory or processor registers. Registers contain either data or control information. Control information is a bit or a group of bits used to specify the sequence of command signals needed for manipulation of the data in other registers. Data are numbers and other binary-coded information that are operated on to achieve required computational results. In this chapter we present the most common types of data found in digital computers and show how the various data types are represented in binary-coded form in computer registers.

The data types found in the registers of digital computers may be classified as being one of the following categories: (1) numbers used in arithmetic computations, (2) letters of the alphabet used in data processing, and (3) other discrete symbols used for specific purposes. All types of data, except binary numbers, are represented in computer registers in binary-coded form. This is because registers are made up of flip-flops and flip-flops are two-state devices that can store only 1's and 0's. The binary number system is the most natural system to use in a digital computer. But sometimes it is convenient to employ different number systems, especially the decimal number system, since it is used by people to perform arithmetic computations.
radix
decimal
binary
octal
hexademical

Number Systems

A number system of base, or radix, r is a system that uses distinct symbols for r digits. Numbers are represented by a string of digit symbols. To determine the quantity that the number represents, it is necessary to multiply each digit by an integer power of r and then form the sum of all weighted digits. For example, the decimal number system in everyday use employs the radix 10 system. The 10 symbols are $0,1,2,3,4,5,6,7,8$, and 9 . The string of digits 724.5 is interpreted to represent the quantity

$$
7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1}
$$

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2 . The two digit symbols used are 0 and 1 . The string of digits 101101 is interpreted to represent the quantity

$$
1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=45
$$

To distinguish between different radix numbers, the digits will be enclosed in parentheses and the radix of the number inserted as a subscript. For example, to show the equality between decimal and binary forty-five we will write $(101101)_{2}=(45)_{10}$.

Besides the decimal and binary number systems, the octal (radix 8) and hexadecimal (radix 16) are important in digital computer work. The eight symbols of the octal system are $0,1,2,3,4,5,6$, and 7 . The 16 symbols of the hexadecimal system are $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$, and F. The last six symbols are, unfortunately, identical to the letters of the alphabet and can cause confusion at times. However, this is the convention that has been adopted. When used to represent hexadecimal digits, the symbols A, B, C, D, E, F correspond to the decimal numbers $10,11,12,13,14,15$, respectively.

A number in radix r can be converted to the familiar decimal system by forming the sum of the weighted digits. For example, octal 736.4 is converted to decimal as follows:

$$
\begin{aligned}
(736.4)_{8} & =7 \times 8^{2}+3 \times 8^{1}+6 \times 8^{0}+4 \times 8^{-1} \\
& =7 \times 64+3 \times 8+6 \times 1+4 / 8=(478.5)_{10}
\end{aligned}
$$

The equivalent decimal number of hexadecimal F3 is obtained from the following calculation:

$$
(F 3)_{10}=F \times 16+3=15 \times 16+3=(243)_{14}
$$

Conversion from decimal to its equivalent representation in the radix r system is carried out by separating the number into its integer and fraction parts and
converting each part separately. The conversion of a decimal integer into a base r representation is done by successive divisions by r and accumulation of the remainders. The conversion of a decimal fraction to radix r representation is accomplished by successive multiplications by r and accumulation of the integer digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separating the number into its integer part 41 and fraction part .6875 . The integer part is converted by dividing 41 by $r=2$ to give an integer quotient of 20 and a remainder of 1 . The quotient is again divided by 2 to give a new quotient and remainder. This process is repeated until the integer quotient becomes 0 . The coefficients of the binary number are obtained from the remairders with the first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying it by $r=2$ to give an integer and a fraction. The new fraction (without the integer) is multiplied again by 2 to give a new integer and a new fraction. This process is repeated until the fraction part becomes zero or until the number of digits obtained gives the required accuracy. The coefficients of the binary fraction are obtained from the integer digits with the first integer computed being the digit to be placed next to the binary point. Finally, the two parts are combined to give the total required conversion.

Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal representation plays an important part in digital computers. Since $2^{3}=8$ and $2^{4}=16$, each octal digit corresponds to three binary digits and each hexadecimal digit corresponds to four binary digits. The conversion from binary to octal is easily accomplished by partitioning the binary number into groups of three bits each. The corresponding octal digit is then assigned to each group of bits and the string of digits so obtained gives the octal equivalent of the binary number. Consider, for example, a 16 -bit register. Physically, one may think of the

Figure 3.1 Conversion of decimal 41.6875 into binary.

Figure 3-2 Binary, octal, and hexadecimal conversion.
register as composed of 16 binary storage cells, with each cell capable of holding either a 1 or a 0 . Suppose that the bit configuration stored in the register is as shown in Fig. 3-2. Since a binary number consists of a string of 1's and 0^{\prime} s, the 16 -bit register can be used to store any binary number from 0 to $2^{16}-1$. For the particular example shown, the binary number stored in the register is the equivalent of decimal 44899. Starting from the low-order bit, we partition the register into groups of three bits each (the sixteenth bit remains in a group by itself). Each group of three bits is assigned its octal equivalent and placed on top of the register. The string of octal digits so obtained represents the octal equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are divided into groups of four. The corresponding hexadecimal digit for each group of four bits is written as shown below the register of Fig. 3-2. The string of hexadecimal digits so obtained represents the hexadecimal equivalent of the binary number. The corresponding octal digit for each group of three bits is: easily remembered after studying the first eight entries listed in Table 3-1. The correspondence between a hexadecimal digit and its equivalent 4 -bit code can be found in the first 16 entries of Table 3-2.

TABLE $3-1$ Binary-Coded Octal Numbers

Octal number	Binary-coded octal	Decimal equivalent	
0	000	0	\uparrow
1	001	1	Code
2	010	2	for one
3	011	3	octal
4	100	4	digit
5	101	5	
6	110	6	
7	111	7	
10	001000	8	
11	001001	9	
12	001010	10	
24	010	100	20
62	110	010	50
143	001	100011	99
370	011	111000	248

Table 3-1 lists a few octal numbers and their representation in registers in binary-coded form. The binary code is obtained by the procedure explained above. Each octal digit is assigned a 3-bit code as specified by the entries of the first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal numbers and their representation in registers in binary-coded form. Here the binary code is obtained by assigning to each hexadecimal digit the 4 -bit code listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their binary number equivalent we find that the bit combination in all three representations is exactly the same. For example, decimal 99, when converted to binary, becomes 1100011. The binary-coded octal equivalent of decimal 99 is 001100011 and the binary-coded hexadecimal of decimal 99 is 01100011 . If we neglect the leading zeros in these three binary representations, we find that their bit combination is identical. This should be so because of the straightforward conversion that exists between binary numbers and octal or hexadecimal. The point of all this is that a string of 1 's and 0 's stored in a register could represent a binary number, but this same string of bits may be interpreted as holding an octal number in binary-coded form (if we divide the bits in groups of three) or as hoiding a hexadecimal number in binary-coded form (if we divide the bits in groups of four).

TABLE 3 -2 Binary-Coded Hexadecimal Numbers

Hexadecimal number	Binary-coded hexadecimal	Decimal equivalent	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	Code
7	0111	7	for one
8	1000	8	hexadecimal
9	1001	9	digit
A	1010	10	
B	1011	11	
C	1100	12	
D	1101	13	
E	1110	14	
F	1111	15	
14	0001	0100	20

The registers in a digital computer contain many bits. Specifying the content of registers by their binary values will require a long string of binary digits. It is more convenient to specify content of registers by their octal or hexadecimal equivalent. The number of digits is reduced by one-third in the octal designation and by one-fourth in the hexadecimal designation. For example, the binary number 111111111111 has 12 digits. It can be expressed in octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer manuals invariably choose either the octal or the hexadecimal designation for specifying contents of registers.

Decimal Representation

The binary number system is the most natural system for a computer, but people are accustomed to the decimal system. One way to solve this conflict is to convert all input decimal numbers into binary numbers, let the computer perform all arithmetic operations in binary and then convert the binary results back to decimal for the human user to understand. However, it is also possible for the computer to perform arithmetic operations directly with decimal numbers provided they are placed in registers in a coded form. Decimal numbers enter the computer usually as binary-coded alphanumeric characters. These codes, introduced later, may contain from six to eight bits for each decimal digit. When decimal numbers are used for internal arithmetic computations, they are converted to a binary code with four bits per digit.

binary code

$B C D$
A binary code is a group of n bits that assume up to 2^{n} distinct combinations of 1's and 0 's with each combination representing one element of the set that is being coded. For example, a set of four elements can be coded by a 2 -bit code with each element assigned one of the following bit combinations; 00,01 , 10, or 11. A set of eight elements requires a 3 -bit code, a set of 16 elements requires a 4 -bit code, and so on. A binary code will have some unassigned bit combinations if the number of elements in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that distinguishes among 10 elements must contain at least four bits, but six combinations will remain unassigned. Numerous different codes can be obtained by arranging four bits in 10 distinct combinations. The bit assignment most commonly used for the decimal digits is the straight binary assignment listed in the first 10 entries of Table 3-3. This particular code is called binary-coded decimal and is commonly referred to by its abbreviation BCD. Other decimal codes are sometimes used and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion of decimal numbers into binary and the binary coding of decimal numbers. For example, when converted to a binary number, the decimal number 99 is represented by the string of bits 1100011 , but when represented in BCD, it becomes 1001 1001. The only difference between a decimal number represented by the familiar digit symbols $0,1,2, \ldots, 9$ and the BCD symbols $0001,0010, \ldots, 1001$ is in the symbols used to represent the digits-the number itself is exactly the

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal number	Binary-coded decimal $(B C D)$ number	
0	0000	
1	0001	
2	0010	Code
3	0011	for one
4	0100	decimal
5	0101	digit
6	0110	
7	0111	
8	1000	
9	1001	
10	00010000	
20	00100000	
50	01010000	
99	10011001	
248	001001001000	

same. A few decimal numbers and their representation in BCD are listed in Table 3-3.

Alphanumeric Representation

Many applications of digital computers require the handling of data that consist not only of numbers, but also of the letters of the alphabet and certain special characters. An alphanumeric character set is a set of elements that includes the 10 decimal digits, the 26 letters of the alphabet and a number of special characters, such as $\$,+$, and $=$. Such a set contains between 32 and 64 elements (if only uppercase letters are included) or between 64 and 128 (if both uppercase and lowercase letters are included). In the first case, the binary code will require six bits and in the second case, seven bits. The standard alphanumeric binary code is the ASCII (American Standard Code for Information Interchange), which uses seven bits to code 128 characters. The binary code for the uppercase letters, the decimal digits, and a few special characters is listed in Table 3-4. Note that the decimal digits in ASCII can be converted to BCD by removing the three high-order bits, 011. A complete list of ASCII characters is provided in Table 11-1.

Binary codes play an important part in digital computer operations. The codes must be in binary because registers can only hold binary information. One must realize that binary codes merely change the symbols, not the meaning of the discrete elements they represent. The operations specified for digital

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Character	Binary code	Character	Binary code
A	1000001	0	0110000
B	1000010	1	0110001
C	1000011	2	0110010
D	1000100	3	0110011
E	1000101	4	0110100
F	1000110	5	0110101
G	1000111	6	0110110
H	1001000	7	0110111
I	1001001	8	0111000
J	1001010	9	0111001
K	1001011		
L	1001100		
M	1001101	space	0100000
N	1001110	.	0101110
0	1001111	(0101000
P	1010000	+	0101011
Q	1010001	\$	0100100
R	1010010	*	0101010
S	1010011)	0101001
T	1010100	-	0101101
U	1010101	1	0101111
V	1010110	,	0101100
W	1010111	$=$	0111101
X	1011000		
Y	1011001		
Z	1011010		

computers must take into consideration the meaning of the bits stored in registers so that operations are performed on operands of the same type. In inspecting the bits of a computer register at random, one is likely to find that it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as the musical notes and chess pieces and their positions on the chessboard. Binary codes are also used to formulate instructions that specify control information for the computer. This chapter is concerned with data representation. Instruction codes are discussed in Chap. 5.

3.2 Complements

Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation. There are two types of complements for each base r system: the r 's complement and the $(r-1)^{\prime}$'s complement.

When the value of the base r is substituted in the name, the two types are referred to as the 2 's and 1 's complement for binary numbers and the 10 's and 9 's complement for decimal numbers.

($r-1$)'s Complement

Given a number N in base r having n digits, the $(r-1$)'s complement of N is defined as $\left(r^{n}-1\right)-N$. For decimal numbers $r=10$ and $r-1=9$, so the 9 's complement of N is $\left(10^{n}-1\right)-N$. Now, 10^{n} represents a number that consists of a single 1 followed by $n 0$'s. $10^{n}-1$ is a number represented by $n 9$'s. For example, with $n=4$ we have $10^{4}=10000$ and $10^{4}-1=9999$. It follows that the $9^{\prime} \mathrm{s}$ complement of a decimal number is obtained by subtracting each digit from 9. For example, the 9 's complement of 546700 is $999999-546700=$ 453299 and the 9 's complement of 12389 is $99999-12389=87610$.

For binary numbers, $r=2$ and $r-1=1$, so the 1 's complement of N is $\left(2^{n}-1\right)-N$. Again, 2^{n} is represented by a binary number that consists of a 1 followed by $n 0^{\prime}$ s. $2^{n}-1$ is a binary number represented by $n 1^{\prime}$ s. For example, with $n=4$, we have $2^{4}=(10000)_{2}$ and $2^{4}-1=(1111)_{2}$. Thus the 1^{\prime} 's complement of a binary number is obtained by subtracting each digit from 1 . However, the subtraction of a binary digit from 1 causes the bit to change from 0 to 1 or from 1 to 0 . Therefore, the 1's complement of a binary number is formed by changing 1 's into 0 's and 0 's into 1's. For example, the 1 's complement of 1011001 is 0100110 and the 1 's complement of 0001111 is 1110000.

The $\langle r-1$)'s complement of octal or hexadecimal numbers are obtained by subtracting each digit from 7 or F (decimal 15) respectively.

(r 's) Complement

The r^{\prime} 's complement of an n-digit number N in base r is defined as $r^{n}-N$ for $N \neq 0$ and 0 for $N=0$. Comparing with the $(r-1)^{\prime}$'s complement, we note that the r 's complement is obtained by adding 1 to the $(r-1)^{\prime}$'s complement since $r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1$. Thus the 10^{\prime} 's complement of the decimal 2389 is $7610+1=7611$ and is obtained by adding 1 to the 9 's complement value. The 2's complement of binary 101100 is $010011+1=010100$ and is obtained by adding 1 to the 1 's complement value.

Since 10^{n} is a number represented by a 1 followed by $n 0^{\prime} s$, then $10^{n}-N$, which is the 10 's complement of N, can be formed also be leaving all least significant 0 's unchanged, subtracting the first nonzero least significant digit from 10, and then subtracting all higher significant digits from 9 . The 10 's complement of 246700 is 753300 and is obtained by leaving the two zeros unchanged, subtracting 7 from 10 , and subtracting the other three digits from 9. Similarly, the 2 's complement can be formed by leaving all least significant 0 's and the first 1 unchanged, and then replacing 1 's by 0 's and 0 's by 1 's in all other higher significant bits. The 2's complement of 1101100 is 0010100 and is obtained by leaving the two low-order 0 's and the first 1 unchanged, and then replacing 1's by 0 's and 0's by 1's in the other four most significant bits.

In the definitions above it was assumed that the numbers do not have a radix point. If the original number N contains a radix point, it should be removed temporarily to form the r^{\prime} s or $(r-1)^{\prime} s$ complement. The radix point is then restored to the complemented number in the same relative position. It is also worth mentioning that the complement of the complement restores the number to its original value. The r^{\prime} s complement of N is $r^{n}-N$. The complement of the complement is $r^{n}-\left(r^{n}-N\right)=N$ giving back the original number.
subtraction
end carry

Subtraction of Unsigned Numbers

The direct method of subtraction taught in elementary schools uses the borrow concept. In this method we borrow a 1 from a higher significant position when the minuend digit is smaller than the corresponding subtrahend digit. This seems to be easiest when people perform subtraction with paper and pencil. When subtraction is implemented with digital hardware, this method is found to be less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers $M-N(N \neq 0)$ in base r can be done as follows:

1. Add the minuend M to the r 's complement of the subtrahend N. This performs $M+\left(r^{n}-N\right)=M-N+r^{n}$.
2. If $M \geq N$, the sum will produce an end carry r^{n} which is discarded, and what is left is the result $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $r^{n}-(N-M)$, which is the r^{\prime} s complement of $(N-M)$. To obtain the answer in a familiar form, take the r 's complement of the sum and place a negative sign in front.

Consider, for example, the subtraction $72532-13250=59282$. The 10 's complement of 13250 is 86750 . Therefore:

$$
\begin{aligned}
M & =72532 \\
10^{\prime} \text { s complement of } N= & +86750 \\
\text { Sum } & =159282 \\
\text { Discard end carry } 10^{5} & =-\frac{100000}{} \\
\text { Answer } & =\frac{59282}{}
\end{aligned}
$$

Now consider an example with $M<N$. The subtraction 13250-72532 produces negative 59282 . Using the procedure with complements, we have

$$
\begin{aligned}
M & =13250 \\
10^{\prime} \text { s complement of } N & =+27468 \\
\text { Sum } & =\underline{40718}
\end{aligned}
$$

There is no end carry

Answer is negative $59282=10$'s complement of 40718
Since we are dealing with unsigned numbers, there is really no way to get an unsigned result for the second example. When working with paper and pencil, we recognize that the answer must be changed to a signed negative number. When subtracting with complements, the negative answer is recognized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar manner using the same procedure outlined above. Using the two binary numbers $X=1010100$ and $Y=1000011$, we perform the subtraction $X-Y$ and $Y-X$ using 2 's complements:

$$
\begin{array}{rlr}
X & =1010100 \\
\text { 2's complement of } Y & =+\underline{0111101} \\
\text { Sum } & =10010001 \\
\text { Discard end carry } 2^{7} & =-\underline{10000000} \\
\text { Answer: } X-Y & =\underline{0010001} \\
Y & =1000011 \\
\text { 2's complement of } X= & +\underline{0101100} \\
\text { Sum } & =1101111
\end{array}
$$

There is no end carry
Answer is negative $0010001=2$'s complement of 1101111

3-3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers. However, to represent negative integers, we need a notation for negative values. In ordinary arithmetic, a negative number is indicated by a minus sign and a positive number by a plus sign. Because of hardware limitations, computers must represent everything with 1's and 0's, including the sign of a number. As a consequence, it is customary to represent the sign with a bit placed in the leftmost position of the number. The convention is to make the sign bit equal to 0 for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point. The position of the binary point is needed to represent fractions, integers, or mixed integer-fraction numbers. The representation of the binary point in a register is complicated by the fact that it is characterized by a position in the register. There are two ways of specifying the position of the binary point in a register: by giving it a fixed position or by employing a floating-point representation. The fixed-point method assumes that the binary point is always
fixed in one position. The two positions most widely used are (1) a binary point in the extreme left of the register to make the stored number a fraction, and (2) a binary point in the extreme right of the register to make the stored number an integer. In either case, the binary point is not actually present, but its presence is assumed from the fact that the number stored in the register is treated as a fraction or as an integer. The floating-point representation uses a second register to store a number that designates the position of the decimal point in the first register. Floating-point representation is discussed further in the next section.

Integer Representation

signed numbers
When an integer binary number is positive, the sign is represented by 0 and the magnitude by a positive binary number. When the number is negative, the sign is represented by 1 but the rest of the number may be represented in one of three possible ways:

1. Signed-magnitude representation
2. Signed-1's complement representation
3. Signed 2's complement representation

The signed-magnitude representation of a negative number consists of the magnitude and a negative sign. In the other two representations, the negative number is represented in either the 1's or 2's complement of its positive value. As an example, consider the signed number 14 stored in an 8 -bit register. +14 is represented by a sign bit of 0 in the leftmost position followed by the binary equivalent of 14: 00001110. Note that each of the eight bits of the register must have a value and therefore 0 's must be inserted in the most significant positions following the sign bit. Although there is only one way to represent +14 , there are three different ways to represent -14 with eight bits.

In signed-magnitude representation	10001110	
In signed-1's complement representation	1	1110001
In signed-2's complement representation	1	1110010

The signed-magnitude representation of -14 is obtained from +14 by complementing only the sign bit. The signed- 1 's complement representation of -14 is obtained by complementing all the bits of +14 , including the sign bit. The signed- 2 's complement representation is obtained by taking the 2's complement of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is awkward when employed in computer arithmetic. Therefore, the signed-complement is normally used. The 1's complement imposes difficulties because it
has two representations of $0(+0$ and -0$)$. It is seldom used for arithmetic operations except in some older computers. The 1's complement is useful as a logical operation since the change of 1 to 0 or 0 to 1 is equivalent to a logical complement operation. The following discussion of signed binary arithmetic deals exclusively with the signed-2's complement representation of negative numbers.

2's complement addition

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the result the sign of the larger magnitude. For example, $(+25)+(-37)=-(37-25)=-12$ and is done by subtracting the smaller magnitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the result. This is a process that requires the comparison of the signs and the magnitudes and then performing either addition or subtraction. (The procedure for adding binary numbers in signedmagnitude representation is described in Sec. 10-2.) By contrast, the rule for adding numbers in the signed-2's complement system does not require a comparison or subtraction, only addition and complementation. The procedure is very simple and can' be stated as follows: Add the two numbers, including their sign bits, and discard any carry out of the sign (leftmost) bit position. Numerical examples for addition are shown below. Note that negative numbers must initially be in 2 's complement and that if the sum obtained after the addition is negative, it is in 2 's complement form.

$$
\begin{array}{rlrl}
+6 & 00000110 & -6 & 11111010 \\
+13 & \frac{00001101}{+19} & +\frac{13}{+7} & \frac{00001101}{00000010011} \\
+6 & 00000110 & -6 & 11111010 \\
-\frac{13}{-7} & \frac{11110011}{11111001} & -\frac{13}{19} & \frac{11110011}{11101101}
\end{array}
$$

In each of the four cases, the operation performed is always addition, including the sign bits. Any carry out of the sign bit position is discarded, and negative results are automatically in 2's complement form.

The complement form of representing negative numbers is unfamiliar to people used to the signed-magnitude system. To determine the value of a negative number when in signed- 2 's complement, it is necessary to convert it to a positive number to place it in a more famihar form. For example, the signed binary number 11111001 is negative because the leftmost bit is 1 . Its 2 's complement is 00000111 , which is the binary equivalent of +7 . We therefore recognize the original negative number to be equal to -7 .

2's complement subtraction

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2 's complement form is very simple and can be stated as follows: Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit). A carry out of the sign bit position is discarded.

This procedure stems from the fact that a subtraction operation can be changed to an addition operation if the sign of the subtrahend is changed. This is demonstrated by the following relationship:

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

But changing a positive number to a negative number is easily done by taking its 2's complement. The reverse is also true because the complement of a negative number in complement form produces the equivalent positive number. Consider the subtraction of $(-6)-(-13)=+7$. In binary with eight bits this is written as $11111010-11110011$. The subtraction is changed to addition by taking the 2's complement of the subtrahend (-13) to give $(+13)$. In binary this is $11111010+00001101=100000111$. Removing the end carry, we obtain the correct answer $00000111(+7)$.

It is worth noting that binary numbers in the signed-2's complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, computers need only one common hardware circuit to handle both types of arithmetic. The user or programmer must interpret the results of such addition or subtraction differently depending on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers of n digits each are added and the sum occupies $n+1$
overflow digits, we say that an overflow occurred. When the addition is performed with paper and pencil, an overflow is not a problem since there is no limit to the width of the page to write down the sum. An overflow is a problem in digital computers because the width of registers is finite. A result that contains $n+1$ bits cannot be accommodated in a register with a standard length of n bits. For this reason, many computers detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set which can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether the numbers are considered to be signed or unsigned. When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position. In the case of signed numbers, the - leftmost bit always represents the sign, and negative numbers are in 2's
complement form. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other is negative, since adding a positive number to a negative number produces a result that is smaller than the larger of the two original numbers. An overflow may occur if the two numbers added are both positive or both negative. To see how this can happen, consider the following example. Two signed binary numbers, +70 and +80 , are stored in two 8 -bit registers. The range of numbers that each register can accommodate is from binary +127 to binary -128 . Since the sum of the two numbers is +150 , it exceeds the capacity of the 8 -bit register. This is true if the numbers are both positive or both negative. The two additions in binary are shown below together with the last two carries.
carries: 01
$\begin{array}{rrr}+70 & 0 & 1000110 \\ +80 & 0 & 1010000 \\ +150 & 10010110\end{array}$
carries: 10

$$
-70 \quad 10111010
$$

$$
\begin{array}{rll}
-80 \\
-150 & \frac{1}{0} 1110000 \\
\hline 1101010
\end{array}
$$

Note that the 8 -bit result that should have been positive has a negative sign bit and the 8 -bit result that should have been negative has a positive sign bit. If, however, the carry out of the sign bit position is taken as the sign bit of the result, the 9-bit answer so obtained will be correct. Since the answer cannot be accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. If these two carries are not equal, an overflow condition is produced. This is indicated in the examples where the two carries are explicitly shown. If the two carries are applied to an exclusive-OR gate, an overflow will be detected when the output of the gate is equal to 1 .

Decimal Fixed-Point Representation

The representation of decimal numbers in registers is a function of the binary code used to represent a decimal digit. A 4-bit decimal code requires four flip-flops for each decimal digit. The representation of 4385 in BCD requires 16 flip-flops, four flip-flops for each digit. The number will be represented in a register with 16 flip-flops as follows:

$$
0100001110000101
$$

By representing numbers in decimal we are wasting a considerable amount of storage space since the number of bits needed to store a decimal number in a binary code is greater than the number of bits needed for its
equivalent binary representation. Also, the circuits required to perform decimal arithmetic are more complex. However, there are some advantages in the use of decimal representation because computer input and output data are generated by people who use the decimal system. Some applications, such as business data processing, require small amounts of arithmetic computations compared to the amount required for input and output of decimal data. For this reason, some computers and all electronic calculators perform arithmetic operations directly with the decimal data (in a binary code) and thus eliminate the need for conversion to binary and back to decimal. Some computer systems have hardware for arithmetic calculations with both binary and decimal data.

The representation of signed decimal numbers in $B C D$ is similar to the representation of signed numbers in binary. We can either use the familiar signed-magnitude system or the signed-complement system. The sign of a decimal number is usually represented with four bits to conform with the 4 -bit code of the decimal digits. It is customary to designate a plus with four 0^{\prime} 's and a minus with the BCD equivalent of 9 , which is 1001.

The signed-magnitude system is difficult to use with computers. The signed-complement system can be either the 9's or the 10's complement, but the 10 's complement is the one most often used. To obtain the 10 's complement of a BCD number, we first take the 9 's complement and then add one to the least significant digit. The 9 's complement is calculated from the subtraction of each digit from 9 .

The procedures developed for the signed-2's complement system apply also to the signed-10's complement system for decimal numbers. Addition is done by adding all digits, including the sign digit, and discarding the end carry. Obviously, this assumes that all negative numbers are in 10's complement form. Consider the addition $(+375)+(-240)=+135$ done in the signed10's complement system.

$$
\left.\left.\begin{array}{r}
0375 \\
+9760 \\
\left.+\begin{array}{rllllll}
(0000 & 0011 & 0111 & 0101
\end{array}\right)_{B C D} \\
\hline 0135
\end{array} \frac{(1001}{0111} 01100000\right)_{B C D} 0000000100110101\right)_{B C D}
$$

The 9 in the leftmost position of the second number indicates that the number is negative. 9760 is the 10 's complement of 0240 . The two numbers are added and the end carry is discarded to obtain +135 . Of course, the decimal numbers inside the computer must be in BCD, including the sign digits. The addition is done with BCD adders (see Fig. 10-18).

The subtraction of decimal numbers either unsigned or in the signed-10's complement system is the same as in the binary case. Take the 10 's complement of the subtrahend and add it to the minuend. Many computers have special hardware to perform arithmetic calculations directly with decimal numbers in $B C D$. The user of the computer can specify by programmed instructions that - the arithmetic operations be performed with decimal numbers directly without having to convert them to binary.

3-4 Floating-Point Representation

mantissa
exponent
fraction
normalization

The floating-point representation of a number has two parts. The first part represents a signed, fixed-point number called the mantissa. The second part designates the position of the decimal (or binary) point and is called the exponent. The fixed-point mantissa may be a fraction or an integer. For example, the decimal number $+6132: 789$ is represented in floating-point with a fraction and an exponent as follows:

Fraction	Exponent
+0.6132789	+04

The value of the exponent indicates that the actual position of the decimal point is four positions to the right of the indicated decimal point in the fraction. This representation is equivalent to the scientific notation $+0.6132789 \times 10^{+4}$.

Floating-point is always interpreted to represent a number in the following form:

$$
m \times r^{e}
$$

Only the mantissa m and the exponent e are physically represented in the register (including their signs). The radix r and the radix-point position of the mantissa are always assumed. The circuits that manipulate the floating-point numbers in registers conform with these two assumptions in order to provide the correct computational results.

A floating-point binary number is represented in a similar manner except that it uses base 2 for the exponent. For example, the binary number +1001.11 is represented with an 8 -bit fraction and 6 -bit exponent as follows:

Fraction	Exponent
01001110	000100

The fraction has a 0 in the leftmost position to denote positive. The binary point of the fraction follows the sign bit but is not shown in the register. The exponent has the equivalent binary number +4 . The floating-point number is equivalent to.

$$
m \times 2^{6}=+(.1001110)_{2} \times 2^{+4}
$$

A floating-point number is said to be normalized if the most significant digit of the mantissa is nunzero. For example, the decimai number 350 is normalized but 00035 is not. Regardless of where the position of the radix point is assumed to be in the mantissa, the number is normalized only if its leftmost digit is nonzero. For example, the 8 -bit binary number 00011010 is not normal-
ized because of the three leading 0's. The number can be normalized by shifting it three positions to the left and discarding the leading 0 's to obtain 11010000. The three shifts multiply the number by $2^{3}=8$. To keep the same value for the floating-point number, the exponent must be subtracted by 3 . Normalized numbers provide the maximum possible precision for the floating-point number. A zero cannot be normalized because it does not have a nonzero digit. It is usually represented in floating-point by all 0 's in the mantissa and exponent.

Arithmetic operations with floating-point numbers are more complicated than arithmetic operations with fixed-point numbers and their execution takes longer and requires more complex hardware. However, floating-point representation is a must for scientific computations because of the scaling problems involved with fixed-point computations. Many computers and all electronic calculators have the built-in capability of performing floating-point arithmetic operations. Computers that do not have hardware for floating-point computations have a set of subroutines to help the user program scientific problems with floating-point numbers. Arithmetic operations with floating-point numbers are discussed in Sec. 10-5.

3.5 Other Binary Codes

In previous sections we introduced the most common types of binary-coded data found in digital computers. Other binary codes for decimal numbers and alphanumeric characters are sometimes used. Digital computers also employ other binary codes for special applications. A few additional binary codes encountered in digital computers are presented in this section.

Gray Code

Digital systems can process data in discrete form only. Many physical systems supply continuous output data. The data must be converted into digital form before they can be used by a digital computer. Continuous, or analog, information is converted into digital form by means of an analog-to-digital converter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used for the converted digital data. The advantage of the Gray code over straight binary numbers is that the Gray code changes by only one bit as it sequences from one number to the next. In other words, the change from any number to the next in sequence is recognized by a change of only one bit from 0 to 1 or from 1 to 0 . A typical application of the Gray code occurs when the analog data are represented by the continuous change of a shaft position. The shaft is partitioned into segments with each segment assigned a number. If adjacent segments are made to correspond to adjacent Gray code numbers, ambiguity is reduced when the shaft position is in the line that separates any two segments.

Gray code counters are sometimes used to provide the timing sequences

TABLE 3 -5 4-Bit Gray Code

Binary code	Decimal equivalent	Binary code	Decimal equivalent
0000	0	1100	8
0001	1	1101	9
0011	2	1111	10
0010	3	1110	11
0110	4	1010	12
0111	5	1011	13
0101	6	1001	14
0100	7	1000	15

that control the operations in a digital system. A Gray code counter is a counter whose flip-flops go through a sequence of states as specified in Table 3-5. Gray code counters remove the ambiguity during the change from one state of the counter to the next because only one bit can change during the state transition.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous different codes can be formulated by arranging four or more bits in 10 distinct possible combinations. A few possibilities are shown in Table 3-6.

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal digit	BCD 8421	2421	Excess-3	Excess-3 gray
0	0000	0000	0011	0010
1	0001	0001	0100	0110
2	0010	0010	0101	0111
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1100
6	0110	1100	1001	1101
7	0111	1101	1010	1111
8	1000	1110	1011	1110
9	1001	1111	1100	1010
	1010	0101	0000	0000
Unused	1011	0110	0001	0001
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1000
nations	1110	1001	1110	1001
	1111	1010	1111	1011

self-complementing

weighted code
excess-3 code

The BCD (binary-coded decimal) has been introduced before. It uses a straight assignment of the binary equivalent of the digit. The six unused bit combinations listed have no meaning when $B C D$ is used, just as the letter H has no meaning when decimal digit symbols are written down. For example, saying that 10011110 is a decimal number in BCD is like saying that 9 H is a decimal number in the conventional symbol designation. Both cases contain an invalid symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the 9 's complement of the number is to be computed. On the other hand, the 9 's complement is easily obtained with the 2421 and the excess- 3 codes listed in Table 3-6. These two codes have a self-complementing property which means that the 9 's complement of a decimal number, when represented in one of these codes, is easily obtained by changing 1 's to 0 's and 0^{\prime} 's to 1 's. This property is useful when arithmetic operations are done in signed-complement representation.

The 2421 is an example of a weighted code. In a weighted code, the bits are multiplied by the weights indicated and the sum of the weighted bits gives the decimal digit. For example, the bit combination 1101, when weighted by the respective digits 2421 , gives the decimal equivalent of $2 \times 1+4 \times 1+2 \times$ $0+1+1=7$. The BCD code can be assigned the weights 8421 and for this reason it is sometimes called the 8421 code.

The excess-3 code is a decimal code that has been used in older computers. This is an unweighted code. Its binary code assignment is obtained from the corresponding $B C D$ equivalent binary number after the addition of binary 3 (0011).

From Table 3-5 we note that the Gray code is not suited for a decimal code if we were to choose the first 10 entries in the table. This is because the transition from 9 back to 0 involves a change of three bits (from 1101 to 0000). To overcome this difficulty, we choose the 10 numbers starting from the third entry 0010 up to the twelfth entry 1010 . Now the transition from 1010 to 0010 involves a change of only one bit. Since the code has been shifted up three numbers, it is called the excess-3 Gray. This code is listed with the other decimal codes in Table 3-6.

Other Alphanumeric Codes

The ASCII code (Table 3-4) is the standard code commonly used for the transmission of binary information. Each character is represented by a 7-bit code and usually an eighth bit is inserted for parity (see Sec. 3-6). The code consists of 128 characters. Ninety-five characters represent graphic symbols that include upper- and lowercase letters, numerals zero to nine, punctuation marks, and special symbols. Twenty-three characters represent format effectors, which are functional characters for controlling the layout of printing or display devices such as carriage return, line feed, horizontal tabulation, and back
space. The other 10 characters are used to direct the data communication flow and report its status.

Another alphanumeric (sometimes called alphameric) code used in IBM equipment is the EBCDIC (Extended BCD Interchange Code). It uses eight bits for each character (and a ninth bit for parity). EBCDIC has the same character symbols as ASCII but the bit assignment to characters is different.

When alphanumeric characters are used internally in a computer for data processing (not for transmission purposes) it is more convenient to use a 6 -bit code to represent 64 characters. A 6 -bit code can specify the 26 uppercase letters of the alphabet, numerals zero to nine, and up to 28 special characters. This set of characters is usually sufficient for data-processing purposes. Using fewer bits to code characters has the advantage of reducing the memory space needed to store large quantities of alphanumeric data.

3-6 Error Detection Codes

Binary information transmitted through some form of communication medium is subject to external noise that could change bits from 1 to 0 , and vice versa. An error detection code is a binary code that detects digital errors during transmission. The detected errors cannot be corrected but their presence is indicated. The usual procedure is to observe the frequency of errors. If errors occur infrequently at random, the particular erroneous information is transmitted again. If the error occurs too often, the system is checked for malfunction.

The most common error detection code used is the parity bit. A parity bit is an extra bit included with a binary message to make the total number of 1's either odd or even. A message of three bits and two possible parity bits is shown in Table 3-7. The P (odd) bit is chosen in such a way as to make the sum of 1's (in all four bits) odd. The P (even) bit is chosen to make the sum of all 1 's even. In either case, the sum is taken over the message and the P bit In any particular application, one or the other type of parity will be adopted. The even-parity scheme has the disadvantage of having a bit combination of all 0's, while in the odd parity there is always one bit (of the four bits that constitute the message and P) that is 1 . Note that the P (odd) is the complement of the P (even).

During transfer of information from one location to another, the parity bit is handled as follows. At the sending end, the message (in this case three bits) is applied to a parily generator, where the required parity bit is generated. The message, including the parity bit, is transmitted to its destination. At the receiving end, all the incoming hits (in this race forme) aro annlind to monit, checher that checks tike proper panity adopted (odd or even). An error is detected if the checked parity does not conform to the adopted parity. The parity method detects the presence of one, three, or any odd number of errors. An even number of errors is not detected.

parity generator

varity checker

TABLE 3-7 Parity Bit Generation

Message $x y z$	P (odd)	P (even)
000	1	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	0	1

Parity generator and checker networks are logic circuits constructed with exclusive-OR functions. This is because, as mentioned in Sec. 1-2, the exclu-sive-OR function of three or more variables is by definition an odd function. An odd function is a logic function whose value is binary 1 if, and only if, an odd number of variables are equal to 1 . According to this definition, the P (even) function is the exclusive-OR of x, y, and z because it is equal to 1 when either one or all three of the variables are equal to 1 (Table 3-7). The P (odd) function is the complement of the P (even) function.

As an example, consider a 3 -bit message to be transmitted with an odd parity bit. At the sending end, the odd-parity bit is generated by a parity

Figure 3-3 Error detection with odd parity bit.

generator circuit. As shown in Fig. 3-3, this circuit consists of one exclusive-OR and one exclusive-NOR gate. Since P (even) is the exclusive-OR of x, y, z, and P (odd) is the complement of P (even), it is necessary to employ an exclusiveNOR gate for the needed complementation. The message and the odd-parity bit are transmitted to their destination where they are applied to a parity checker. An error has occurred during transmission if the parity of the four bits received is even, since the binary information transmitted was originally odd. The output of the parity checker would be 1 when an error occurs, that is, when the number of 1 's in the four inputs is even. Since the exclusive-OR function of the four inputs is an odd function, we again need to complement the output by using an exclusive-NOR gate.

It is worth noting that the parity generator can use the same circuit as the parity checker if the fourth input is permanently held at a logic-0 value. The advantage of this is that the same circuit can be used for both parity generation and parity checking.

It is evident from the example above that even-parity generators and checkers can be implemented with exclusive-OR functions. Odd-parity networks need an exclusive-NOR at the output to complement the function.

PROBLEMS

3-1. Convert the following binary numbers to decimal: 101110; 1110101; and 110110100.

3-2. Convert the following numbers with the indicated bases to decimal: $(12121)_{3}$; $(4310)_{5} ;(50)_{7}$; and $(198)_{12}$.
3-3. Convert the following decimal numbers to binary: 1231; 673; and 1998.
3-4. Convert the following decimal numbers to the bases indicated.
a. 7562 to octal
b. 1938 to hexadecimal c. 175 to binary

3-5. Convert the hexadecimal number F3A7C2 to binary and octal.
3-6. What is the radix of the numbers if the solution to the quadratic equation $x^{2}-10 x+31=0$ is $x=5$ and $x=8$?
3-7. Show the value of all bits of a 12 -bit register that hold the number equivalent to decimal 215 in (a) binary; (b) binary-coded octal; (c) binary-coded hexadecimal; (d) binary-coded decimal (BCD).
3-8. Show the bit configuration of a 24 -bit register when its content represents the decimat equivalent of 295: (a) in binary; (b) in BCD, (c) in ASCII using eight bits with even parity.
3-9. Write your name in ASCII using an 8-bit code with the leftmost bit always 0 . Include a space between names and a period after a middle initial.

3-10. Necode the following ASCII code:
100101010011111001000 lưūi1̣̂̂ úiữon0 100010010011111000101
3-11. Obtain the 9's complement of the following eight-digit decimal numiveis: 12349876; 00980100; 90009951; and 00000000 .
3-12. Obtain the 10 's complement of the following six-digit decimal numbers: 123900; 090657; 100000; and 000000 .
3-13. Obtain the 1's and 2's complements of the following eight-digit binary numbers: 10101110; 10000001; 10000000; 00000001; and 00000000.
3-14. Perform the subtraction with the following unsigned decimal numbers by taking the 10 's complement of the subtrahend.
a. $5250-1321$
b. $1753-8640$
c. $20-100$
d. $1200-250$

3-15. Perform the subtraction with the following unsigned binary numbers by taking the 2 's complement of the subtrahend.
a. $11010-10000$
b. 11010-1101
c. $100-110000$
d. $1010100-1010100$

3-16. Perform the arithmetic operations $(+42)+(-13)$ and $(-42)-(-13)$ in binary using signed-2's complement representation for negative numbers.
3-17. Perform the arithmetic operations $(+70)+(+80)$ and $(-70)+(-80)$ with binary numbers in signed-2's complement representation. Use eight bits to accommodate each number together with its sign. Show that overflow occurs in both cases, that the last two carries are unequal, and that there is a sign reversal.
3-18. Perform the following arithmetic operations with the decimal numbers using signed-10's complement representation for negative numbers.
a. $(-638)+(+785)$
b. $(-638)-(+185)$

3-19. A 36-bit floating-point binary number has eight bits plus sign for the exponent and 26 bits plus sign for the mantissa. The mantissa is a normalized fraction. Numbers in the mantissa and exponent are in signed-magnitude representation. What are the largest and smallest positive quantities that can be represented, excluding zero?
3-20. Represent the number $(+46.5)_{10}$ as a floating-point binary number with 24 bits. The no malized fraction mantissa has 16 bits and the exponent has 8 bits.
3-21. The Gray code is sometimes called a reflected code because the bit values are reflected on both sides of any 2^{n} value. For example, as shown in Table 3-5, the values of the three low-order bits are reflected over a line drawn between 7 and 8 . Using this property of the Gray code, obtain:
a. The Gray code numbers for 16 through 31 as a continuation of Table 3-5.
b. The excess-3 Gray code for decimals 10 to 19 as a continuation of the list in Table 3-6.
3-22. Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c) 2421 code; (d) as a binaty number.

3-23. List the 10 BCD digits with an even parity in the leftmost position (total of five bits per digit). Repeat with an odd-parity bit.
3-24. Represent decimal 3984 in the 2421 code of Table 3-6. Complement all bits of the coded number and show that the result is the 9's complement of 3984 in the 2421 code.
3-25. Show that the exclusive-OR function $x=A \oplus B \oplus C \oplus D$ is an odd function. One way to show this is to obtain the truth table for $y=A \oplus B$ and for $z=C \oplus D$ and then formulate the truth table for $x=y \oplus z$. Show that $x=1$ only when the total number of 1 's in A, B, C, and D is odd.
3-26. Derive the circuits for a 3-bit parity generator and 4 -bit parity checker using an even-parity bit. (The circuits of Fig. 3-3 use odd parity.)

REFERENCES

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd ed. New York: John Wiley, 1981.
2. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization. Englewood Cliffs, NJ: Prentice Hall, 1989.
3. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: AddisonWesley, 1983.
4. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
5. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing, 1985.
6. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
7. Shiva, S. G., Introduction to Logic Design. Glenview, Il: Scott, Foresman, 1988.
8. Tomek, I., Introduction to Computer Organization. Rockville, MD: Computer Science Press, 1981.
9. Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley, 1981.
10. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.

$$
\begin{aligned}
& \geqslant \quad 3: 3+\quad ;
\end{aligned}
$$

IN THIS CHAPTER

4-1 Register Transfer Language
4-2 Register Transfer
4-3 Bus and Memory Transfers
4-4 Arithmetic Microoperations
4.5 Logic Microoperations
4.6 Shift Microoperations

4-7. Arithmetic Logic Shift Unit

4-1 Register Transfer Language

A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in size and complexity from a few integrated circuits to a complex of interconnected and interacting digital computers. Digital system design invariably uses a modular approach. The modules are constructed from such digital components as registers, decoders, arithmetic elements, and control logic. The various modules are interconnected with common data and control paths to form a digital computer system.

Digital modules are best defined by the registers they contain and the operations that are performed on the data stored in them. The operations executed on data stored in registers are called microoperations. A microoperation is an elementary operation performed on the information stored in one or more registers. The result of the operation may replace the previous binary information of a register or may be transferred to another register. Examples of microoperations are shift, count, clear, and load. Some of the digital components introduced in Chap. 2 are registers that implement microoperations. For example, a counter with parallel load is capable of performing the micro-
operations increment and load. A bidirectional shift register is capable of pertorming the shift right and shitt leit nucrouperations.

The internal hardware organization of a digital computer is best defined by specifying:

1. The set of registers it contains and their function.
2. The sequence of microoperations performed on the binary information stored in the registers,
3. The control that initiates the sequence of microoperations.
register transfer
language
It is possible to specify the sequence of microoperations in a computer by explaining every operation in words, but this procedure usually involves a lengthy descriptive explanation. It is more convenient to adopt a suitable symbology to describe the sequence of transfers between registers and the various arithmetic and logic microoperations associated with the transfers. The use of symbols instead of a narrative explanation provides an organized and concise manner for listing the microoperation sequences in registers and the control functions that initiate them.

The symbolic notation used to describe the microoperation transfers among registers is called a register transfer language. The term "register transfer" implies the availability of hardware logic circuits that can perform a stated microoperation and transfer the result of the operation to the same or another register. The word "language" is borrowed from programmers, who apply this term to programming languages. A programming language is a procedure for writing symbols to specify a given computational process. Similarly, a natural language such as English is a system for writing symbols and combining them into words and sentences for the purpose of communication between people. A register transfer language is a system for expressing in symbolic form the microoperation sequences among the registers of a digital module. It is a convenient tool for describing the internal organization of digital computers in concise and precise manner. It can also be used to facilitate the design process of digital systems.

The register transfer language adopted here is believed to be as simple as possible, so it should not take very long to memorize. We will proceed to define symbols for various types of microoperations, and at the same time, describe associated hardware that can implement the stated microoperations. The symbolic designation introduced in this chapter will be utilized in subsequent chapters to specify the register transfers, the microoperations, and the control functions that describe the internal hardware organization of digital computers. Other symbology in use can easily be learned once this language has become familiar, for most of the differences between register transfer languages consist of variations in detail rather than in overall purpose.

4-2 Register Transfer

registers
register transfer

Computer registers are designated by capital letters (sometimes followed by numerals) to denote the function of the register. For example, the register that holds an address for the memory unit is usually called a memory address register and is designated by the name MAR. Other designations for registers are PC (for program counter), $I R$ (for instruction register, and $R 1$ (for processor register). The individual flip-flops in an n-bit register are numbered in sequence from 0 through $n-1$, starting from 0 in the rightmost position and increasing the numbers toward the left. Figure 4-1 shows the representation of registers in block diagram form. The most common way to represent a register is by a rectangular box with the name of the register inside, as in Fig. 4-1(a). The individual bits can be distinguished as in (b). The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c). A 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the 16 -bit register is $P C$. The symbol $P C(0-7)$ or $P C(L)$ refers to the low-order byte and $P C(8-15)$ or $P C(H)$ to the high-order byte. bolic form by means of a replacement operator. The statement

$$
R 2 \leftarrow R 1
$$

denotes a transfer of the content of register $R 1$ into register $R 2$. It designates a replacement of the content of $R 2$ by the content of $R 1$. By definition, the content of the source register $R 1$ does not change after the transfer.

A statement that specifies a register transfer implies that circuits are available from the outputs of the source register to the inputs of the destination register and that the destination register has a parallel load capability. Nor-

Figure 4-1 Block diagram of register.

(a) Register R

(c) Numbering of bits

(b) Showing individual bits

(d) Divided into two parts
mally, we want the transfer to occur only under a predetermined control condition. This can be shown by means of an if-then statement.

$$
\text { If }(P=1) \text { then }(R 2 \leftarrow R 1)
$$

where P is a control signal generated in the control section. It is sometimes convenient to separate the control variables from the register transfer operation by specifying a control function. A control function is a Boolean variable that is equal to 1 or 0 . The control function is included in the statement as follows:

$$
P: \quad R 2 \leftarrow R 1
$$

The control condition is terminated with a colon. It symbolizes the requirement that the transfer operation be executed by the hardware only if $P=1$.

Every statement written in a register transfer notation implies a hardware construction for implementing the transfer. Figure 4-2 shows the block diagram that depicts the transfer from $R 1$ to $R 2$. The n outputs of register $R 1$ are connected to the n inputs of register $R 2$. The letter n will be used to indicate any number of bits for the register. It will be replaced by an actual number when the length of the register is known. Register $R 2$ has a load input that is activated by the control variable P. It is assumed that the control variable is synchronized with the same clock as the one applied to the register. As shown

Figure 4-2 Transfer from R1 to R2 when $P=1$.

(a) Biock diagram

(b) Timing diagram
in the timing diagram, P is activated in the control section by the rising edge of a cluck pulse at time t. The next pusitive transition of the cluch at time $t+1$ finds the load input active and the data inputs of $R 2$ are then loaded into the register in parallel. P may go back to 0 at time $t+1$; otherwise, the transfer will occur with every clock pulse transition while P remains active.

Note that the clock is not included as a variable in the register transfer statements. It is assumed that all transfers occur during a clock edge transition. Even though the control condition such as P becomes active just after time t, the actual transfer does not occur until the register is triggered by the next positive transition of the clock at time $t+1$.

The basic symbols of the register transfer notation are listed in Table 4-1. Registers are denoted by capital letters, and numerals may follow the letters. Parentheses are used to denote a part of a register by specifying the range of bits or by giving a symbol name to a portion of a register. The arrow denotes a transfer of information and the direction of transfer. A comma is used to separate two or more operations that are executed at the same time. The statement

$$
T: \quad R 2 \leftarrow R 1, \quad R 1 \leftarrow R 2
$$

denotes an operation that exchanges the contents of two registers during one common clock pulse provided that $T=1$. This simultaneous operation is possible with registers that have edge-triggered flip-flops.

TABLE 4-1 Basic Symbols for Register Transfers

Symbol	Description	Examples
Letters (and numerals)	Denotes a register	MAR, 22
Parentheses ()	Denotes a part of a register	$R 2(0-7), R 2(L)$
Arrow \leftarrow	Denotes transfer of information	$R 2 \leftarrow R 1$
Comma ,	Separates two microoperations	$R 2 \leftarrow R 1, R 1 \leftarrow R 2$

4-3 Bus and Memory Transfers

A typical digital computer has many registers, and paths must be provided to transfer information from one register to another. The number of wires will be excessive if separate lines are used between each register and all other registers in the system. A more efficient scheme for transferring information between registers in a multiple-register configuration is a common bus system. A bus structure consists of a set of common lines, one for each bit of a register, through which binary information is transferred one at a time. Control signals
determine which register is selected by the bus during each particular register transfer.

One way of constructing a common bus system is with multiplexers. The multiplexers select the source register whose binary information is then placed on the bus. The construction of a bus system for four registers is shown in Fig. 43. Each register has four bits, numbered 0 through 3 . The bus consists of four 4×1 multiplexers each having four data inputs, 0 through 3 , and two selection inputs, S_{1} and S_{0}. In order not to complicate the diagram with 16 lines crossing each other, we use labels to show the connections from the outputs of the registers to the inputs of the multiplexers. For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labeled A_{1}. The diagram shows that the bits in the same significant position in each register are connected to the data inputs of one multiplexer to form one line of the bus. Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of the registers, and similarly for the other two bits.

Figure 4-3 Bus system for four registers.

The two selection lines S_{1} and S_{0} are connected to the selection inputs of all four multiplexers. The seiection lines choose the four bits of one register and transfer them into the four-line common bus. When $S_{1} S_{0}=00$, the 0 data inputs of all four multiplexers are selected and applied to the outputs that form the bus. This causes the bus lines to receive the content of register A since the outputs of this register are connected to the 0 data inputs of the multiplexers. Similarly, register B is selected if $S_{1} S_{0}=01$, and so on. Table 4-2 shows the register that is selected by the bus for each of the four possible binary value of the selection lines.

TABLE 4-2 Function Table for Bus of Fig. 4-3

S_{1}	S_{0}	Register selected
0	0	A
0	1	B
1	0	C
1	1	D

In general, a bus system will multiplex k registers of n bits each to produce an n-line common bus. The number of multiplexers needed to construct the bus is equal to n, the number of bits in each register. The size of each multiplexer must be $k \times 1$ since it multiplexes k data lines. For example, a common bus for eight registers of 16 bits each requires 16 miltiplexers, one for each line in the bus. Each multiplexer must have eight data input lines and three selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination registers can be accomplished by connecting the bus lines to the inputs of all destination registers and activating the load control of the particular destination register selected. The symbolic statement for a bus transfer may mention the bus or its presence may be implied in the statement. When the bus is includes in the statement, the register transfer is symbolized as follows:

$$
\text { BUS } \leftarrow C, \quad R 1 \leftarrow \text { BUS }
$$

The content of register C is placed on the bus, and the content of the bus is loaded into register $R 1$ by activating its load control input. If the bus is known to exist in the system, it may be convenient just to show the direct transfer.

$$
R 1 \leftarrow C
$$

From this statement the designer knows which control signals must be activated to produce the transfer through the bus.

Three-State Bus Buffers

three-state gate
high-impedance

buffer

bus system

A bus system can be constructed with three-state gates instead of multiplexers. A three-state gate is a digital circuit that exhibits three states. Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate. The third state is a high-impedance state. The high-impedance state behaves like an open circuit, which means that the output is disconnected and does not have a logic significance. Three-state gates may perform any conventional logic, such as AND or NAND. However, the one most commonly used in the design of a bus system is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4. It is distinguished from à normal buffer by having both a normal input and a control input. The control input determines the output state. When the control input is equal to 1 , the output is enabled and the gate behaves like any conventional buffer, with the output equal to the normal input. When the control input is 0 , the output is disabled and the gate goes to a high-impedance state, regardless of the value in the normal input. The high-impedance state of a three-state gate provides a special feature not available in other gates. Because of this feature, a large number of three-state gate outputs can be connected with wires to form a common bus line without endangering loading effects.

The construction of a bus system with three-state buffers is demonstrated in Fig. 4-5. The outputs of four buffers are connected together to form a single bus line. (It must be realized that this type of connection cannot be done with gates that do not have three-state outpuits.) The control inputs to the buffers determine which of the four normal inputs will communicate with the bus line. No more than one buffer may be in the active state at any given time. The connected buffers must be controlled so that only one three-state buffer has access to the bus line while all other buffers are maintained in a highimpedance state.

One way to ensure that no more than one control input is active at any given time is to use a decoder, as shown in the diagram. When the enable input of the decoder is 0 , all of its four outputs are 0 , and the bus line is in a high-impedance state because all four buffers are disabled. When the enable input is active, one of the three-state buffers will be active, depending on the binary value in the select inputs of the decoder. Careful investigation will reveal that Fig. 4-5 is another way of constructing a 4×1 multiplexer since the circuit can replace the multiplexer in Fig. 4-3.

To construct a common bus for four registers of n bits each using three-

Figure 4-4 Graphic symbols for three-state buffer.

Figure 4-5 Bus line with three state-buffers.
state buffers, we need n circuits with four buffers in each as shown in Fig. 4-5. Each group of four buffers receives one significant bit from the four registers. Each common output produces one of the lines for the common bus for a total of n lines. Only one decoder is necessary to select between the four registers.

Memory Transfer

The operation of a memory unit was described in Sec. 2-7. The transfer of information from a memory word to the outside environment is called a read operation. The transfer of new information to be stored into the memory is called a write operation. A memory word will be symbolized by the letter M. The particular memory word among the many available is selected by the memory address during the transfer. It is necessary to specify the address of M when writing memory transfer operations. This will be done by enclosing the address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called the address register, symbolized by $A R$. The data are transferred to another register, called the data register, symbolized by $D R$. The read operation can be stated as follows:

$$
\text { Read: } \quad D R \leftarrow M[A R]
$$

This causes a transfer of information into $D R$ from the memory word M selected by the address in AR.

The write operation transfers the content of a data register to a memory word M selected by the address. Assume that the input data are in register R1
and the address is in $A R$. The write operation can be stated symbolically as follows:

$$
\text { Write: } \quad M[A R] \leftarrow R 1
$$

This causes a transfer of information from $R 1$ into the memory word M selected by the address in $A R$.

4-4 Arithmetic Microoperations

A microoperation is an elementary operation performed with the data stored in registers. The microoperations most often encountered in digital computers are classified into four categories:

1. Register transfer microoperations transfer binary information from one register to another.
2. Arithmetic microoperations perform arithmetic operations on numeric data stored in registers.
3. Logic microoperations perform bit manipulation operations on nonnumeric data stored in registers.
4. Shift microoperations perform shift operations on data stored in registers.

The register transfer microoperation was introduced in $\mathrm{Sec} .4-2$. This type of microoperation does not change the information content when the binary information moves from the source register to the destination register. The other three types of microoperations change the information content during the transfer. In this section we introduce a set of arithmetic microoperations. In the next two sections we present the logic and shift microoperations.

The basic arithmetic microoperations are addition, subtraction, increment, decrement, and shift. Arithmetic shifts are explained later in conjunction with the shift microoperations. The arithmetic microoperation defined by the statement

$$
R 3 \leftarrow R 1+R 2
$$

specifies an add microoperation. It states that the contents of register $R 1$ are added to the contents of register $R 2$ and the sum transferred to register R3. To implement this statement with hardware we need three registers and the digital component that performs the addition operation. The other basic arithmetic microoperations are listed in Table 4-3. Subtraction is most often implemented through complementation and addition. Instead of using the minus operator, we can specify the subtraction by the following statement:

$$
R 3 \leftarrow R 1+\overline{R 2}+1
$$

$\overline{R 2}$ is the symbol for the 1's complement of R2. Adding 1 to the 1's complement produces the 2 's complement. Adding the contents of $R 1$ to the 2 's complement of $R 2$ is equivalent to $R 1-R 2$.

TABLE 4-3 Arithmetic Microoperations

Symbolic designation	Description
$R 3 \leftarrow R 1+R 2$	Contents of $R 1$ plus $R 2$ transferred to $R 3$
$R 3 \leftarrow R 1-R 2$	Contents of $R 1$ minus $R 2$ transferred to $R 3$
$R 2 \leftarrow \overline{R 2}$	Complement the contents of $R 2$ (1's complement)
$R 2 \leftarrow \overline{R 2}+1$	2's complement the contents of $R 2$ (negate)
$R 3 \leftarrow R 1+\overline{R 2}+1$	$R 1$ plus the 2's complement of $R 2$ (subtraction)
$R 1 \leftarrow R 1+1$	Increment the contents of $R 1$ by one
$R 1 \leftarrow R 1-1$	Decrement the contents of $R 1$ by one

The increment and decrement microoperations are symbolized by plusone and minus-one operations, respectively. These microoperations are implemented with a combinational circuit or with a binary up-down counter.

The arithmetic operations of multiply and divide are not listed in Table 43. These two operations are valid arithmetic operations but are not included in the basic set of microoperations. The only place where these operations can be considered as microoperations is in a digital system, where they are implemented by means of a combinational circuit. In such a case, the signals that perform these operations propagate through gates, and the result of the operation can be transferred into a destination register by a clock pulse as soon as the output signal propagates through the combinational circuit. In most computers, the multiplication operation is implemented with a sequence of add and shift microoperations. Division is implemented with a sequence of subtract and shift microoperations. To specify the hardware in such a case requires a list of statements that use the basic microoperations of add, subtract, and shift (see Chapter 10).

Binary Adder

To implement the add microoperation with hardware, we need the registers that hold the data and the digital component that performs the arithmetic addition. The digital circuit that forms the arithmetic sum of two bits and a previous carry is called a full-adder (see Fig. 1-17). The digital circuit that generates the arithmetic sum of two binary numbers of any length is called a binary adder. The binary adder is constructed with full-adder circuits con-

Figure 4.6 4-bit binary adder.

full-adder

adder-subtractor
nected in cascade, with the output carry from one full-adder connected to the input carry of the next full-adder. Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder. The augend bits of A and the addend bits of B are designated by subscript numbers from right to left, with subscript 0 denoting the low-order bit. The carries are connected in a chain through the full-adders. The input carry to the binary adder is C_{0} and the output carry is C_{4}. The S outputs of the full-adders generate the required sum bits.

An n-bit binary adder requires n full-adders. The output carry from each full-adder is connected to the input carry of the next-high-order full-adder. The n data bits for the A inputs come from one register (such as $R 1$), and the n data bits for the B inputs come from another register (such as $R 2$). The sum can be transferred to a third register or to one of the source registers ($R 1$ or $R 2$), replacing its previous content.

Binary Adder-Subtractor

The subtraction of binary numbers can be done most conveniently by means of complements as discussed in Sec. 3-2. Remember that the subtraction $A-B$ can be done by taking the 2 's complement of B and adding it to A. The 2's complement can be obtained by taking the 1's complement and adding one to the least significant pair of bits. The 1 's complement can be implemented with inverters and a one can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one common circuit by including an exclusive-OR gate with each full-adder. A 4 -bit adder-subtractor circuit is shown in Fig. 4-7. The mode input M controls the operation. When $M=0$ the circuit is an adder and when $M=1$ the circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of B. When $M=0$, we have $B \oplus 0=B$. The full-adders receive the value of B, the input carry is 0 , and the circuit performs A plus B. When $M=1$, we have $B \oplus 1=B^{\prime}$ and $C_{0}=1$. The B inputs are all complemented and a 1 is added through the input carry. The circuit performs the operation A plus the

Figure 4-7 4-bit adder-subtractor.

2's complement of B. For unsigned numbers, this gives $A-B$ if $A \geq B$ or the 2 's complement of $(B-A)$ if $A<B$. For signed numbers, the result is $A-B$ provided that there is no overflow.

Binary Incrementer

The increment microoperation adds one to a number in a register. For example, if a 4-bit register has a binary value 0110 , it will go to 0111 after it is incremented. This microoperation is easily implemented with a binary counter (see Fig. 2-10). Every time the count enable is active, the clock pulse transition increments the content of the register by one. There may be occasions when the increment microoperation must be done with a combinational circuit independent of a particular register. This can be accomplished by means of half-adders (see Fig. 1-16) connected in cascade.

incrementer

The diagram of a 4 -bit combinational circuit incrementer is shown in Fig. 4-8. One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other input is connected to the least significant bit of the number to be incremented. The output carry from one half-adder is connected to one of the inputs of the next-higher-order half-adder. The circuit receives the four bits from A_{0} through A_{3}, adds one to it, and generates the incremented output in S_{0} through S_{3}. The output carry C_{4} will be 1 only after incrementing binary 1111. This also causes outputs S_{0} through S_{3} to go to 0 .

The circuit of Fig. 4-8 can be extended to an n-bit binary incrementer by extending the diagram to include n half-adders. The least significant bit must have one input connected to logic-1. The other inputs receive the number to be incremented or the carry from the previous stage.

Figure 4-8 4-bit binary incrementer.

Arithmetic Circuit

arithmetic circuit
input carry

The arithmetic microoperations listed in Table 4-3 can be implemented in one composite arithmetic circuit. The basic component of an arithmetic circuit is the parallel adder. By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits that constitute the 4 -bit adder and four multiplexers for choosing different operations. There are two 4 -bit inputs A and B and a 4 -bit output D. The four inputs from A go directly to the X inputs of the binary adder. Each of the four inputs from B are connected to the data inputs of the multiplexers. The multiplexers data inputs also receive the complement of B. The other two data inputs are connected to logic-0 and logic-1. Logic-0 is a fixed voltage value (0 volts for TTL integrated circuits) and the logic- 1 signal can be generated through an inverter whose input is 0 . The four multiplexers are controlled by two selection inputs, S_{1} and S_{0}. The input carry $C_{\text {in }}$ goes to the carry input of the FA in the least significant position. The other carries are connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic sum:

$$
D=A+Y+C_{\mathrm{in}}
$$

where A is the 4 -bit binary number at the X inputs and Y is the 4 -bit binary number at the Y inputs of the binary adder. $C_{\text {in }}$ is the input carry, which can be equal to 0 or 1 . Note that the symbol + in the equation above denotes an arithmetic plus. By controlling the value of Y with the two selection inputs S_{1} and S_{0} and making $C_{\text {in }}$ equal to 0 or 1 , it is possible to generate the eight arithmetic microoperations listed in Table 4-4.

Figure 4-9 4-bit arithmetic circuit.

TABLE 4-4 Arithmetic Circuit Function Table

Select				Input		
		Output				
S_{1}	S_{0}	C_{10}	Y	$D=A+Y+C_{\text {in }}$	Microoperation	
0	0	0	B	$D=A+B$	Add	
0	0	1	B	$D=A+B+1$	Add with carry	
0	1	0	\bar{B}	$D=A+\bar{B}$	Subtract with borrow	
0	1	1	\bar{B}	$D=A+\bar{B}+1$	Subtract	
1	0	0	0	$D=A$	Transfer A	
1	0	1	0	$D=A+1$	Increment A	
1	1	0	1	$D=A-1$	Decrement A	
1	1	1	1	$D=A$	Transfer A	

When $S_{1} S_{0}=00$, the value of B is applied to the Y inputs of the adder. If $C_{\mathrm{m}}=0$, the output $D=A+B$. If $C_{\mathrm{in}}=1$, output $D=A+B+1$. Both cases
addition
increment
decrement
subtraction perform the add microoperation with or without adding the input carry.

When $S_{1} S_{0}=01$, the complement of B is applied to the Y inputs of the adder. If $C_{i n}=1$, then $D=A+\bar{B}+1$. This produces A plus the 2 's complement of B, which is equivalent to a subtraction of $A-B$. When $C_{i n}=0$, then $D=A+\bar{B}$. This is equivalent to a subtract with borrow, that is, $A-B-1$.

When $S_{1} S_{0}=10$, the inputs from B are neglected, and instead, all 0 's are inserted into the Y inputs. The output becomes $D=A+0+C_{i n}$. This gives $D=A$ when $C_{\text {in }}=0$ and $D=A+1$ when $C_{i n}=1$. In the first case we have a direct transfer from input A to output D. In the second case, the value of A is incremented by 1 .

When $S_{1} S_{0}=11$, all 1 's are inserted into the Y inputs of the adder to produce the decrement operation $D=A-1$ when $C_{\text {in }}=0$. This is because a number with all 1 's is equal to the 2 's complement of 1 (the 2 's complement of binary 0001 is 1111). Adding a number A to the 2 's complement of 1 produces $F=A+2$'s complement of $1=A-1$. When $C_{\text {in }}=1$, then $D=A-1+1=$ A, which causes a direct transfer from input A to output D. Note that the microoperation $D=A$ is generated twice, so there are only seven distinct microoperations in the arithmetic circuit.

4-5 Logic Microoperations

Logic microoperations specify, binary operations for strings of bits stored in registers. These operations consider each bit of the register separately and treat them as binary variables. For example, the exclusive-OR microoperation with the contents of two registers $R 1$ and $R 2$ is symbolized by the statement

$$
P: \quad R 1 \leftarrow R 1 \oplus R 2
$$

It specifies a logic microoperation to be executed on the individual bits of the registers provided that the control variable $P=1$. As a numerical example, assume that each register has four bits. Let the content of R1 be 1010 and the content of $R 2$ be 1100. The exclusive-OR microoperation stated above symboiizes the following logic computation:

1010 Content of R1

1100 Content of R2
0110 Content of $R 1$ after $P=1$
The content of $R 1$, after the execution of the microoperation, is equal to the bit-by-bit exclusive-OR operation on pairs of bits in $R 2$ and previous values of $R 1$. The logic microoperations are seldom used in scientific computations, but they are very useful for bit manipulation of binary data and for making logical decisions.

Special symbols will be adopted for the logic microoperations OR, AND, and complement, to distinguish them from the corresponding symbols used to express Boolean functions. The symbol V will be used to denote an OR microoperation and the symbol \wedge to denote an AND microoperation. The complement microoperation is the same as the 1's complement and uses a bar on top of the symbol that denotes the register name. By using different symbols, it will be possible to differentiate between a logic microoperation and a control (or Boolean) function. Another reason for adopting two sets of symbols is to be able to distinguish the symbol + , when used to symbolize an arithmetic plus, from a logic OR operation. Although the + symbol has two meanings, it will be possible to distinguish between them by noting where the symbol occurs. When the symbol + occurs in a microoperation, it will denote an arithmetic plus. When it occurs in a control (or Boolean) function, it will denote an OR operation. We will never use it to symbolize an OR microoperation. For example, in the statement

$$
P+Q: \quad R 1 \leftarrow R 2+R 3, \quad R 4 \leftarrow R 5 \vee R 6
$$

the + between P and Q is an OR operation between two binary variables of a control function. The + between R2 and R3 specifies an add microoperation. The OR microoperation is designated by the symbol \vee between registers $R 5$ and R6.

List of Logic Microoperations

There are 16 different logic operations that can be performed with two binary variables. They can be determined from all possible truth tables obtained with two binary variables as shown in Table 4-5. In this table, each of the 16 columns F_{0} through F_{15} represents a truth table of one possible Boolean function for the

TABLE 4-5 Truth Tables for 16 Functions of Two Variables

\boldsymbol{x}	\boldsymbol{y}	F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

two variables x and y. Note that the functions are determined from the 16 binary combinations that can be assigned to F.

The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first column of Table 4-6. The 16 logic microoperations are derived from these functions by replacing variable x by the binary content of register A and variable y by the binary content of register B. It is important to realize that the Boolean functions listed in the first column of Table 4-6 represent a relationship between two binary variables x and y. The logic microoperations listed in the second column represent a relationship between the binary content of two registers A and B. Each bit of the register is treated as a binary variable and the microoperation is performed on the string of bits stored in the registers.

TABLE 4-6 Sixteen Logic Microoperations

Boolean function	Microoperation	Name
$F_{0}=0$	$F \leftarrow 0$	Clear
$F_{1}=x y$	$F \leftarrow A \wedge B$	AND
$F_{2}=x y^{\prime}$	$F \leftarrow A \wedge \bar{B}$	
$F_{3}=x$	$F \leftarrow A$	Transfer A
$F_{4}=x^{\prime} y$	$F \leftarrow \bar{A} \wedge B$	
$F_{5}=y$	$F \leftarrow B$	Transfer B
$F_{6}=x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_{7}=x+y$	$F \leftarrow A \vee B$	OR
$F_{8}=(x+y)^{\prime}$	$F \leftarrow \overline{A \vee B}$	NOR
$F_{9}=(x \oplus y)^{\prime}$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10}=y^{\prime}$	$F \leftarrow \bar{B}$	Complement B
$F_{11}=x+y^{\prime}$	$F \leftarrow A \vee \bar{B}$	
$F_{12}=x^{\prime}$	$F \leftarrow \bar{A}$	Complement A
$F_{1}=x^{\prime}+y$	$F \leftarrow \bar{A} \vee B$	
$F_{14}=(x y)^{\prime}$	$F \leftarrow \bar{A} \wedge B$	NAND
$F_{15}=1$	$F \leftarrow a l l 1^{\prime} ' s$	Set to all 1's

Hardware Implementation

The hardware implementation of logic microoperations requires that logic gates be inserted for each bit or pair of bits in the registers to perform the required logic function. Although there are 16 logic microoperations, most computers use only four-AND, OR, XOR (exclusive-OR), and complementfrom which all others can be derived.

Figure 4-10 shows one stage of a circuit that generates the four basic logic microoperations. It consists of four gates and a multiplexer. Each of the four logic operations is generated through a gate that performs the required logic. The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputs S_{1} and S_{0} choose one of the data inputs of the multiplexer and direct its value to the output. The diagram shows one typical stage with subscript i. For a logic circuit with n bits, the diagram must be repeated n times for $i=0,1,2, \ldots, n-1$. The selection variables are applied to all stages. The function table in Fig. 4-10(b) lists the logic microoperations obtained for each combination of the selection variables.

Some Applications

Logic microoperations are very useful for manipulating individual bits or a portion of a word stored in a register. They can be used to change bit values, delete a group of bits, or insert new bit values into a register. The following examples show how the bits of one register (designated by A) are manipulated

Figure 4-10 One stage of logic circuit.

(a) Logic diagram

S_{1}	S_{0}	Output	Operation
0	0	$E=A \wedge B$	AND
0	1	$E=A \vee B$	OR
1	0	$E=A \oplus B$	XOR
1	1	$E=\bar{A}$	Complement

(b) Function table
selective-set
selective-complement
by logic microoperations as a function of the bits of another register (designate ${ }^{3}$ by B). In a typical application, register A is a processor register and the bits of register B constitute a logic operand extracted from memory and placed in register B.

The selective-set operation sets to 1 the bits in register A where there are corresponding 1's in register B. It does not affect bit positions that have 0's in B. The following numerical example clarifies this operation:

1010	A before
$\frac{1100}{1110}$	B (logic operand)
A after	

The two leftmost bits of B are 1 's, so the corresponding bits of A are set to 1 . One of these two bits was already set and the other has been changed from 0 to 1 . The two bits of A with corresponding 0 's in B remain unchanged. The example above serves as a truth table since it has all four possible combinations of two binary variables. From the truth table we note that the bits of A after the operation are obtained from the logic-OR operation of bits in B and previous values of A. Therefore, the OR microoperation can be used to selectively set bits of a register.
The selective-complement operation complements bits in A where there are corresponding 1's in B. It does not affect bit positions that have 0 's in B. For example:

1010	A before
$\frac{1100}{0110}$	(logic operand) A after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are complemented. This example again can serve as a truth table from which one can deduce that the selective-complement operation is just an exclusive-OR microoperation. Therefore, the exclusive-OR microoperation can be used to selectively complement bits of a register.
selective-clear

The selective-clear operation clears to 0 the bits in A only where there are corresponding 1's in B. For example:

1010	A before
1100	B (logic operand)
0010	after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are cleared to 0 . One can deduce that the Boolean operation performed on the individual bits is $A B^{\prime}$. The corresponding logic microoperation is

$$
A \leftarrow A \wedge \bar{B}
$$

The mask operation is similar to the selective-clear operation except that the bits of A are cleared only where there are corresponding 0 's in B. The mask operation is an AND micro operation as seen from the following numerical example:

1010	A before
1100	B (logic operand)
1000	A after masking

The two rightmost bits of A are cleared because the corresponding bits of B are 0 's. The two leftmost bits are left unchanged because the corresponding bits of B are 1's. The mask operation is more convenient to use than the selectiveclear operation because most computers provide an AND instruction, and few provide an instruction that executes the microoperation for selective-clear.

The insert operation inserts a new value into a group of bits. This is done by first masking the bits and then ORing them with the required value. For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost bits by the value 1001 we first mask the four unwanted bits:

01101010	A before
00001111	B (mask)
00001010	A after masking

and then insert the new value:

00001010	A before
$1001 \quad 0000$	B (insert)
10011010	A after insertion

The mask operation is an AND microoperation and the insert operation is an OR microoperation.

The clear operation compares the words in A and B and produces an all 0 's result if the two numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown by the following example:

1010	A
1010	B
0000	$A \leftarrow A \oplus B$

When A and B are equal, the two corresponding bits are either both 0 or both 1. In either case the exclusive-OR operation produces a 0 . The all-0's result is then checked to determine if the two numbers were equal.

4-6 Shift Microoperations

Shift microoperations are used for serial transfer of data. They are also used in conjunction with arithmetic, logic, and other data-processing operations. The contents of a register can be shifted to the left or the right. At the same time that the bits are shifted, the first flip-flop receives its binary information from the serial input. During a shift-left operation the serial input transfers a bit into the rightmost position. During a shift-right operation the serial input transfers a bit into the leftmost position. The information transferred through the serial input determines the type of shift. There are three types of shifts: logical, circular, and arithmetic.
logical shift
circular shift
arithmetic shift

TABLE 4-7 Shift Microoperations

Symbolic designation	Description
$R \leftarrow \operatorname{shl} R$	Shift-left register R
$R \leftarrow \operatorname{shr} R$	Shift-right register R
$R \leftarrow$ cil R	Circular shift-left register R
$R \leftarrow \operatorname{cir} R$	Circular shift-right register R
$R \leftarrow$ ashl R	Arithmetic shift-left R
$R \leftarrow$ ashr R	Arithmetic shift-right R

An arithmetic shift is a microoperation that shifts a signed binary number to the left or right. An arithmetic shift-left multiplies a signed binary number by 2 . An arithmetic shift-right divides the number by 2 . Arithmetic shifts must leave the sign bit unchanged because the sign of the number remains the same

Figure 4-11 Arithmetic shift right.
when it is multiplied or divided by 2 . The leftmost bit in a register holds the sign bit, and the remaining bits hold the number. The sign bit is 0 for positive and 1 for negative. Negative numbers are in 2's complement form. Figure 4-11 shows a typical register of n bits. Bit R_{n-1} in the leftmost position holds the sign bit. R_{n-2} is the most significant bit of the number and R_{0} is the least significant bit. The arithmetic shift-right leaves the sign bit unchanged and shifts the number (including the sign bit) to the right. Thus R_{n-1} remains the same, R_{n-2} receives the bit from R_{n-1}, and so on for the other bits in the register. The bit in R_{0} is lost.

The arithmetic shift-left inserts a 0 into R_{0}, and shifts all other bits to the left. The initial bit of R_{n-1} is lost and replaced by the bit from R_{n-2}. A sign reversal occurs if the bit in R_{n-1} changes in value after the shift. This happens if the multiplication by 2 causes an overflow. An overflow occurs after an arithmetic shift left if initially, before the shift, R_{n-1} is not equal to R_{n-2}. An overflow flip-flop V_{s} can be used to detect an arithmetic shift-left overflow.

$$
V_{s}=R_{n-1} \oplus R_{n-2}
$$

If $V_{s}=0$, there is no overflow, but if $V_{s}=1$, there is an overflow and a sign reversal after the shift. $V_{\text {s }}$ must be transferred into the overflow flip-flop with the same clock pulse that shifts the register.

Hardware Implementation

A possible choice for a shift unit would be a bidirectional shift register with parallel load (see Fig. 2-9). Information can be transferred to the register in parallel and then shifted to the right or left. In this type of configuration, a clock pulse is needed for loading the data into the register, and another pulse is needed to initiate the shift. In a processor unit with many registers it is more efficient to implement the shift operation with a combinational circuit. In this way the content of a register that has to be shifted is first placed onto a common bus whose output is connected to the combinational shifter, and the shifted number is then loaded back into the register. This requires only one clock pulse for loading the shifted value into the register.

A combinational circuit shitter can be constructed with multiplexers as shown in Fig. 4-12. The 4 -bit shifter has four data inputs, A_{0} through A_{3}, and four data outputs, H_{0} through H_{3}. There are two serial inputs, one for shift left

Figure 4-12 4-bit combinational circuit shifter.
(I_{L}) and the other for shift right $\left(I_{L}\right)$. When the selection input $S=0$, the input data are shifted right (down in the diagram). When $S=1$, the input data are shifted left (up in the diagram). The function table in Fig. $4-12$ shows which input goes to each output after the shift. A shifter with n data inputs and outputs requires n multiplexers. The two serial inputs can be controlled by another multiplexer to provide the three possible types of shifts.

4-7 Arithmetic Logic Shift Unit

Instead of having individual registers performing the microoperations directly, computer systems employ a number of storage registers connected to a common operational unit called an arithmetic logic unit, abbreviated ALU. To
perform a microoperation, the contents of specified registers are placed in the inputs of the common ALU. The ALU performs an operation and the result of the operation is then transferred to a destination register. The ALU is a combinational circuit so that the entire register transfer operation from the source registers through the ALU and into the destination register can be performed during one clock pulse period. The shift microoperations are often performed in a separate unit, but sometimes the shift unit is made part of the overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig. 4-13. The subscript i designates a typical stage. Inputs A_{i} and B_{i} are applied to both the arithmetic and logic

Figure 4-13 One stage of arithmetic logic shift unit.

units. A particular microoperation is selected with inputs S_{1} and S_{0}. A 4×1 multiplexer at the output chooses between an arithmetic output in E_{i} and a logic output in H_{i}. The data in the multiplexer are selected with inputs S_{3} and S_{2}. The other two data inputs to the multiplexer receive inputs A_{i-1} for the shift-right operation and A_{i+1} for the shift-left operation. Note that the diagram shows just one typical stage. The circuit of Fig. 4-13 must be repeated n times for an n-bit ALU. The output carry C_{i+1} of a given arithmetic stage must be connected to the input carry C_{i} of the next stage in sequence. The input carry to the first stage is the input carry $C_{i n}$, which provides a selection variable for the arithmetic operations.

The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic operations, and two shift operations. Each operation is selected with the five variables $S_{3}, S_{2}, S_{1}, S_{0}$, and $C_{\text {in }}$. The input carry $C_{\text {in }}$ is used for selecting an arithmetic operation only.

Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations (see Table 4-4) and are selected with $S_{3} S_{2}=00$. The next four are logic operations (see Fig. 4-10) and are selected with $S_{3} S_{2}=01$. The input carry has no effect during the logic operations and is marked with don't-care \times 's. The last two operations are shift operations and are selected with $S_{3} S_{2}=10$ and 11. The other three selection inputs have no effect on the shift.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select							
S_{3}	S_{2}	S_{1}	S_{0}	$C_{\text {in }}$	Operation	Function	
0	0	0	0	0	$F=A$	Transfer A	
0	0	0	0	1	$F=A+1$	Increment A	
0	0	0	1	0	$F=A+B$	Addition	
0	0	0	1	1	$F=A+B+1$	Add with carry	
0	0	1	0	0	$F=A+\bar{B}$	Subtract with borrow	
0	0	1	0	1	$F=A+\bar{B}+1$	Subtraction	
0	0	1	1	0	$F=A-1$	Decrement A	
0	0	1	1	1	$F=A$	Transfer A	
0	1	0	0	\times	$F=A \wedge B$	AND	
0	1	0	1	\times	$F=A \vee B$	OR	
0	1	1	0	\times	$F=A \oplus B$	XOR	
0	1	1	1	\times	$F=\bar{A}$	Complement A	
1	0	\times	\times	\times	$F=\operatorname{shr} A$	Shift right A into F	
1	1	\times	\times	\times	$F=\operatorname{shl} A$	Shift left A into F	

PROBLEMS

4-1. Show the block diagram of the hardware (similar to Fig. 4-2a) that implements the following register transfer statement:

$$
y T_{2}: \quad R 2 \leftarrow R 1, \quad R 1 \leftarrow R 2
$$

4-2. The outputs of four registers, $R 0, R 1, R 2$, and $R 3$, are connected through 4 -to-1-line multiplexers to the inputs of a fifth register, R5. Each register is eight bits long. The required transfers are dictated by four timing variables T_{0} through T_{3} as follows:

$$
\begin{array}{ll}
T_{0}: & R 5 \leftarrow R 0 \\
T_{1}: & R 5 \leftarrow R 1 \\
T_{2}: & R 5 \leftarrow R 2 \\
T_{3}: & R 5 \leftarrow R 3
\end{array}
$$

The timing variables are mutually exclusive, which means that only one variable is equal to 1 at any given time, while the other three are equal to 0 . Draw a block diagram showing the hardware implementation of the register transfers. Include the connections necessary from the four timing variables to the selection inputs of the multiplexers and to the load input of register R5.

4-3. Represent the following conditional control statement by two register transfer statements with control functions.

$$
\text { If }(P=1) \text { then }(R 1 \leftarrow R 2) \text { else if }(Q=1) \text { then }(R 1 \leftarrow R 3)
$$

4-4. What has to be done to the bus system of Fig. 4-3 to be able to transfer information from any register to any other register? Specifically, show the connections that must be included to provide a path from the outputs of register C to the inputs of register A.
4-5. Draw a diagram of a bus system similar to the one shown in Fig. 4-3, but use three-state buffers and a decoder instead of the multiplexers.
4-6. A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers.
a. How many selection inputs are there in each multiplexer?
b. What size of multiplexers are needed?
c. How many multiplexers are there in the bus?

4-7. The following transfer statements specify a memory. Explain the memory uperaline in tach case.
a. $R 2 \leftarrow M[A R]$
b. $M[A R] \leftarrow R 3$
c. $R 5 \leftarrow M[R 5]$

4-8. Draw the block diagram for the hardware that implements the following statements:

$$
x+y z: \quad A R \leftarrow A R+B R
$$

where $A R$ and $B R$ are two n-bit registers and x, y, and z are control variables. Include the logic gates for the control function. (Remember that the symbol + designates an OR operation in a control or Boolean function but that it represents an arithmetic plus in a microoperation.)
4-9. Show the hardware that implements the following statement. Include the logic gates for the control function and a block diagram for the binary counter with a count enable input.

$$
x y T_{0}+T_{1}+y^{\prime} T_{2}: \quad A R \leftarrow A R+1
$$

4-10. Consider the following register transfer statements for two 4 -bit registers $R 1$ and R2.

$$
\begin{aligned}
x T: & R 1 \leftarrow R 1+R 2 \\
x^{\prime} T: & R 1 \leftarrow R 2
\end{aligned}
$$

Every time that variable $T=1$, either the content of $R 2$ is added to the content of $R 1$ if $x=1$, or the content of $R 2$ is transferred to $R 1$ if $x=0$. Draw a diagram showing the hardware implementation of the two statements. Use block diagrams for the two 4 -bit registers, a 4 -bit adder, and a quadruple 2 -to- 1 -line multiplexer that selects the inputs to $R 1$. In the diagram, show how the control variables x and T select the inputs of the multiplexer and the load input of register $R 1$.
4-11. Using a 4-bit counter with parallel load as in Fig. 2-11 and a 4-bit adder as in Fig. 4-6, draw a block diagram that shows how to implement the following statements:

$$
\begin{array}{rll}
x: & R 1 \leftarrow R 1+R 2 & \\
\text { Add } R 2 \text { to } R 1 \\
x^{\prime} y: & R 1 \leftarrow R 1+1 & \text { Increment } R 1
\end{array}
$$

where $R 1$ is a counter with parallel load and $R 2$ is a 4 -bit register
4-12. The adder-subtractor circuit of Fig. 477 has the following values for input mode M and data inputs A and B. In each case, determine the values of the outputs: $S_{3}, S_{2}, S_{1}, S_{0}$, and C_{4}.

	\boldsymbol{M}		A
	B		
a.	0	0111	0110
b.	0	1000	1001
c.	1	1100	1000
d.	1	0101	1010
e.	1	0000	0001

4-13. Design a 4-bit combinational circuit decrementer using four full-adder circuits.
4-14. Assume that the 4-bit arithmetic circuit of Fig. 4-9 is enclosed in one IC package. Show the connections among two such ICs to form an 8-bit arithmetic circuit.
4-15. Design an arithmetic circuit with one selection variable S and two n-bit data inputs A and B. The circuit generates the following four arithmetic operations in conjunction with the input carry $C_{\text {in }}$. Draw the logic diagram for the first two stages.

S	$C_{\text {in }}=0$	$C_{\text {in }}=1$
0	$D=A+B$ (add)	$D=A+1$ (increment)
1	$D=A-1$ (decrement)	$D=A+\bar{B}+1$ (subtract)

4-16. Derive a combinational circuit that selects and generates any of the 16 logic functions listed in Table 4-5.
4-17. Design a digital circuit that performs the four logic operations of exclusiveOR, exclusive-NOR, NOR, and NAND. Use two selection variables. Show the logic diagram of one typical stage.
4-18. Register A holds the 8 -bit binary 11011001. Determine the B operand and the logic microoperation to be performed in order to change the value in A to: a. 01101101
b. 11111101

4-19. The 8-bit registers $A R, B R, C R$, and $D R$ initially have the following values:

$$
\begin{aligned}
& A R=11110010 \\
& B R=11111111 \\
& C R=10111001 \\
& D R=11101010
\end{aligned}
$$

Determine the 8 -bit values in each register after the execution of the following sequence of microoperations.

$$
\begin{array}{ll}
A R \leftarrow A R+B R & \text { Add } B R \text { to } A R \\
C R \leftarrow C R \wedge D R, B R \leftarrow B R+1 & \text { AND } D R \text { to } C R \text {, increment } B R \\
A R \leftarrow A R-C R & \text { Subtract } C R \text { from } A R
\end{array}
$$

4-20. An 8 -bit register contains the binary value 10011100. What is the register value after an arithmetic shift right? Starting from the initial number 10011100 , determine the register value after an arithmetic shift left, and state whether there is an overflow.
4-21. Starting from an initial value of $R=11011101$, determine the sequence of binary values in R after a logical shift-left, followed by a circular shift-right, followed by a logical shift-right and a circular shift-left.

4-22. What is the value of output H in Fig. 4-12 if input A is $1001, S=1, I_{R}=1$, and $I_{L}=0$?
4-23. What is wrong with the following register transfer statements?
a. $x T: \quad A R \leftarrow \overline{A R}, \quad A R \leftarrow 0$
b. $y T: \quad R 1 \leftarrow R 2, \quad R 1 \leftarrow R 3$
c. $z T: P C \leftarrow A R, \quad P C \leftarrow P C+1$

REFERENCES

1. Bell, C. G., J. C. Mudge, and J. E. McNamara, Computer Engineering. Bedford, MA: Digital Press, 1980.
2. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley, 1984.
3. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill, 1988.
4. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd ed. New York: John Wiley, 1987.
5. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Prentice Hall, 1988.
6. Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach. San Mateo, CA: Morgan Kaufmann Publishers, 1990.
7. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1987.
8. Sandige, R. S., Modern Digital Design. New York: McGraw-Hill, 1990.
9. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins Publishers, 1991.
10. Tomek, I., Introduction to Computer Organization. Rockville, MD: Computer Science Press, 1981.
11. Ward, S. A., and R.H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.
