
CHAPTER FIVE

Basic Computer
Organization
and Design

IN THIS CHAPTER

54	 Instruction Codes
5-2	 Computer Registers
5-3	 Computer Instructions
5-4	 Timing and Control
5-5	 Instruction Cycle
5-6	 Memory-Reference instructions
5-7	 Input-Output and Interrupt
5-8	 Complete Computer Description
5-9	 Design of Basic Computer
5-10	 Design of Accumulator Logic

54 Instruction Codes

In this chapter we introduce a basic computer and show how its operation can
be specified with register transfer statements. The organization of the com-
puter is defined by its internal registers, the timing and control structure,
and the set of instructions that it uses. The design of the computer is then
carried out in detail. Although the basic computer presented in this chapter is
very small compared to commercial computers, it has the advantage of being
simple enough so we can demonstrate the design process without too many
complications.

The internal organization of a digital system is defined by the sequence
of microoperations it performs on data stored in its registers. The general-
purpose digital computer is capable of executing various microoperations and,

aditun, Ca 1' bc	 ..	 oi
perform. The user of a computer can control the process by means of a
program. A program is a set of instructions that specify the operations,

123

124	 CHAPTER FIVE Basic Computer Organization and Design

instruction code

operation code

operands, and the sequence by which processing has to occur. The data-
processing task may be altered by specifying a new program with different
instructions or specifying the same instructions with different data.

A computer instruction is a binary code that specifies a sequence of
microoperations for the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary code of the
instruction and proceeds to execute it by issuing a sequence of microopera-
tions. Every computer has its own unique instruction set. The ability to store
and execute instructions, the stored program concept, is the most important
property of a general-purpose computer.

An instruction code is a group of bits that instruct the computer to
perform a specific operation. It is usually divided into parts, each having its
own particular interpretation. The most basic part of an instruction code is its
operation part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement. The
number of bits required for the operation code of an instruction depends on
the total number of operations available in the computer. The operation code
must consist of at least n bits for a given 2 n (or less) distinct operations. As an
illustration, consider a computer with 64 distinct operations, one of them being
an ADD operation. The operation code consists of six bits, with a bit configu-
ration 110010 assigned to the ADD operation. When this operation code is
decoded in the control unit, the computer issues control signals to read an
operand from memory and add the operand to a processor register.

At this point we must recognize the relationship between a computer
operation and a microoperation. An operation is part of an instruction stored
in computer memory. It is a binary code that tells the computer to perform a
specific operation. The control unit receives the instruction from memory and
interprets the operation code bits. It then issues a sequence of control signals
to initiate nucrooperations in internal computer registers. For every operation
code, the control issues a sequence of microoperations needed for the had-
ware implementation of the specified operation. For this reason, an operation
code is sometimes called a macrooperation because it specifies a set of micro-
operations.

The operation part of an instruction code specifies the operation to be
performed. This operation must be performed on some data stored in proces-
sor registers or in memory. An instruction code must therefore specify not only
the operation but also the registers or the memory words where the operands
are to be found, as well as the register or memory word where the result is to
be stored. Memory words can be specified in instruction codes by their ad-
dress. Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2k registers. There are many
variations for arranging the binary code of instructions, and each computer has
its own particular instruction code format. Instruction code formats are con-

SECTiON 5 . 1 Instruction Codes	 125

ceived by computer designers who specify the architecture of the computer.
In this chapter we choose a particular instruction code to explain the basic
organization and design of digital computers.

Stored Program Organization

The simplest way to organize a computer is to have one processor register and
an instruction code format with two parts. The first part specifies the operation
to be performed and the second specifies an address. The memory address tells
the control where to find an operand in memory. This operand is read from
memory and used as the data to be operated on together with the data stored
in the processor register.

Figure 5-1 depicts this type of organization. Instructions are stored in one
section of memory and data in another. For a memory unit with 4096 words
we need 12 bits to specify an address since 212 4096. If we store each instruc-
tion code in one 16-bit memory word, we have available four bits for the

op code operation code (abbreviated opcode) to specify one out of 16 possible opera-
tions, and 12 bits to specify the address of an operand. The control reads a
16-bit instruction from the program portion of memory. It uses the 12-bit
address part of the instruction to read a 16-bit operand from the data portion
of memory. It then executes ihe operation specified by the operation code.

Figure 5-1 Stored program organization.

Memory
4096 x 16

15	 12 11	 0

Opcode	 Address	 Instructions

	

Instruction format 	
(program)

15	 0

I Binary operand	 I	
Operands

(data)

Processor register
(accumulator or AC)

126	 CHAPTER FIVE Basic Computer Organization and Design

Computers that have a single-processor register usually assign to it the name
accumulator (AC)	 accumulator and label it AC. The operation is performed with the memory

operand and the content of AC.
If an operation in an instruction code does not need an operand from

memory, the rest of the bits in the instruction can be used for other purposes.
For example, operations such as clear AC, complement AC, and increment AC

operate on data stored in the AC register. They do not need an operand from
memory. For these types of operations, the second part of the instruction code
(bits 0 through 11) is not needed for specifying a memory address and can be
used to specify other operations for the computer.

Indirect Address
It is sometimes convenient to use the address bits of an instruction code not
as an address but as the actual operand. When the second part of an instruction

immediate	 code specifies an operand, the instruction is said to have an immediate
instruction operand. When the second part specifies the address of an operand, the

instruction is said to have a direct address. This is in contrast to a third
possibility called indirect address, where the bits in the second part of the
instruction designate an address of a memory word in which the address of
the operand is found. Onq bit of the instruction code can be used to distinguish
between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code
format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit
address, and an indirect address mode bit designated by I. The mode bit is 0
for a direct address and I for an indirect address. A direct address instruction
is shown in Fig. 5-2(b). It is placed in address 22 in memory. The I bit is 0, so
the instruction is recognized as direct address instruction. The opcode speci-
fies an ADD instruction, and the address part is the binary equivalent of 457.
The control finds the operand in memory at address 457 and adds it to the
content of AC. The instruction in address 35 shown in Fig. 5-2(c) has a mode
bit 1 = 1. Therefore, it is recognized as an indirect address instruction. The
address part is the binary equivalent of 300. The control goes to address 300
to find the address of the operand. The address of the operand in this case is
1350. The operand found in address 1350 is then added to the content of AC.
The indirect address instruction needs two references to memory to fetch an
operand. The first reference is needed to read the address of the operand; the

effective address second is for the operand itself. We define the effective address to be the address
of the operand in a computation-type instruction or the target address in a
branch-type instruction. Thus the effective address in the instruction of Fig.
5-2(b) is 457 and in the instruction of Fig 5-2(c) is 1350.

The direct and indirect addressing modes are used in the computer
presented in this chapter. The memory word that holds the address of the
operand in an indirect address instruction is used as a pointer to an array of

Memory Memory

Figure 5-2 Demonstration of direct and indirect address.

(b) Direct address (c) indirect address

SECTION 52 Computer Registers	 127

15	 14	 12 Il	 0

Opcode	 Address --
	 1

(a) Instruction format

data. The pointer could be placed in a processor register instead of memory
as done in commeicial computers.

5-2 Computer Registers

Computer instructions are normally stored in consecutive memory locations
and are executed sequentially one at a time. The control reads an instruction
from a specific address in memory and executes it. It then continues by reading
the next instruction in sequence and executes it, and so on. This type of
instruction sequencing needs a counter to calculate the address of the next
instruction after execution of the current instruction is completed. It is also
necessary to provide a register in the control unit for storing the instruction

128	 CHAPTER FIVE Basic Computer Organization and Design

code after it is read from memory. The computer needs processor registers for
manipulating data and a register for holding a memory address. These require-
ments dictate the register configuration shown in Fig. 5-3. The registers are also.
listed in Table 5-1 together with a brief description of their function and the
number of bits that they contain.

The memory unit has a capacity of 4096 words and each word contains
16 bits. Twelve bits of an instruction word are needed to specify the address
of an operand. This leaves three bits for the operation part of the instruction
and a bit to specify a direct or indirect address. The data register (DR) holds
the operand read from memory. The accumulator (AC) register is a general-
purpose processing register. The instruction read from memory is placed in the
instruction register (IR). The temporary register (TR) is used for holding tem-
porary data during the processing.

TABLE 54 List of Registers for the Basic Computer

Register Number
symbol	 of bits	 Register name	 Function

Data register
Address register
Accumulator
Instruction register
Program counter
Temporary register
Input register
Output register

Holds memory operand
Holds address for memory
Processor register
Holds instruction code
Holds address of instruction
Holds temporary data
Holds input character
Holds output character

DR
	

16
AR
	

12
AC
	

16
JR
	

16
PC
	

12
TR
	

16
JNPR
	

8
OUTR
	

8

The memory address register (AR) has 12 bits since this is the width ofprogram	 a memory address. The program counter (PC) also has 12 bits and it holds thecounter (PC)
address of the next instruction to be read from memory after the current
instruction is executed. The PC goes through a counting sequence and causes
the computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch instruc-
t-ion is encountered. A branch instruction calls for a transfer to a nonconsecu-
tive instruction in the program. The address part of a branch instruction is
transferred to PC to become the address of the next instruction. To read an
instruction, the content of PC is taken as the address for memory and a memory
read rvlc	 ntited C then	 ,.dJ S
of the next instruction in sequence.

Two registers are used for input and output. The input register (INPR)
receives an 8-bit character from an input device. The output register (OUTR)
holds an 8-bit character for an output device.

129

Ii	 0

AR

15	 0

IR

15	 0

TR

7	 07	 0

OUTR	 INPR7

SECTION 5-2 Computer Registers

Memory
4096 words

16 bits per word

15	 0

DR

15	 0

AC

load (LO)

Figure 5-3 Basic computer registers and memory.

Common Bus System
The basic computer has eight registers, a memory unit, and a control unit (to
be presented in Sec. 5-4). Paths must be provided to transfer information from
one register to another and between memory and registers. The number of
wires will be excessive if connections are made between the outputs of each
register and the inputs of the other registers. A more efficient scheme for
transferring information in a system with many registers is to use a common
bus. We have shown in Sec. 4-3 how to construct a bus system using multiplex-
ers 01 three-state buffer gates. The connection of the registers and memory of
the basic computer to a common bus system is shown in Fig. 5-4.

The outputs of seven registers and memory are connected to the common
bus. The specific output that is selected for the bus lines at any given time is
determined from the binary value of the selection variables S 2, S 1 , and Sc, The
number along each output shows the decimal equivalent of the required binary
selection. For example, the number along the output of DR is 3. The 16-bit
outputs of DR are placed on the bus lines when S2S1 S0 = 011 since this is the
binary value of decimal 3. The lines from the common bus are connected to the
inputs of each register and the data inputs of the memory. The particular
register whose LD (load) input is enabled receives the data from the bus during
the next dock pulse transition. The memory receives the contents of the bus
when its write input is activated. The memory places its 16-bit output onto the
bus when the read input is activated and S2S1 S0 = 111.

Four registers, DR. AC, IR, and TR, have 16 bits each. Two registers, AR

Figure 5-4 Basic computer registers connected to a common bus.

IJ'J

SECTION 52 Computer Registers 	 131

and PC, have 12 bits each since the y hold a memory address. When the
contents ot AR or PC are applied to the 16-bit common bus, the tour most
significant bits are set to 0's. When AR or PC receive information from the bus,
only the 12 least significant bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each
and communicate with the eight least significant bits in the bus. INPR is
connected to provide information to the bus but OUTR can only receive infor-
mation from the bus. This is because INPR receives a character from an input
device which is then transferred to AC. OUTR receives a character from AC and
delivers it to an output device. There is no transfer from OUTR to any of the
other registers.

The 16 lines of the common bus receive information from six registers and
the memory unit. The bus lines are connected to the inputs of six registers and
the memory. Five registers have three control inputs: LD (load), INR (incre-
ment), and CLR (clear). This type of register is equivalent to a binary counter
with parallel load and synchronous clear similar to the one shown in Fig. 2-11.
The increment operation is achieved by enabling the count input of the coun-
ter. Two registers have only a LD input. This type of register is shown in
Fig. 2-7.

The input data and output data of the memory are connected to the
common bus, but the memory address is connected to AR. Therefore, AR must

memory address always be used to specify a memory address. By using a single register for the
address, we eliminate the need for an address bus that would have been
needed otherwise. The content of any register can be specified for the memory
data input during a write operation. Similarly, any register can receive the data
from memory after a read operation except AC.

The 16 inputs of AC come from an adder and logic circuit. This circuit has
three sets of inputs. One set of 16-bit inputs come from the outputs of AC. They
are used to implement register microoperations such as complement AC and
shift AC. Another set of 16-bit inputs come from the data register DR. The
inputs from DR and AC are used for arithmetic and logic microoperations, such
as add DR to AC or AND DR to AC. The result of an addition is transferred
to AC and the end carry-out of the addition is transferred to flip-flop F (ex-
tended AC bit). A third set of 8-bit inputs come from the input register JNPR.
The operation of INPR and OLTTR is explained in Sec. 5-7.

Note that the content of any register can be applied onto the bus and an
operation can be performed in the adder and logic circuit during the same clock
cycle. The clock transit-ion at the end of the cycle transfers the content of the
bus into the designated destination register and the output of the adder and
logic circuit into AC. For example, the two microoperations

DR +-- 	 and AC4—DR

can be executed at the same time. This can be done by placing the content of
AC on the bus (with S,S,S = 100). enabling the LD (load) input of DR, trans-

132	 CHAPTER FIVE Basic Computer Organization and Design

ferring the content of DR through the adder and logic circuit into AC, and
enabling the LD (load) input of AC, all during the same clock cycle. The two
transfers occur upon the arrival of the clock pulse transition at the end of the
dock cycle.

5-3 Computer Instructions
Instruction format The basic computer has three instruction code formats, as shown in Fig. 5-5.

Each format has 16 bits. The operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining 13 bits depends on the
operation code encountered. A memory-reference instruction uses 12 bits to
specify an address and one bit to specify the addressing mode I. I is equal to
o for direct address and to 1 for indirect address (see Fig. 5-2). The register-
reference instructions are recognized by the operation code 111 with a 0 in the
leftmost bit (bit 15) of the instruction. A register-reference instruction specifies
an operation on or a test of the AC register. An operand from memory is not
needed; therefore, the other 12 bits are used to specif y the operation or test to
be executed. Similarly, an input—output instruction does not need a reference
to memory and is recognized by the operation code 111 with a 1 in the leftmost
bit of the instruction. The remaining 12 bits are used to specify the type of
input—output operation or test performed.

The type of instruction is recognized by the computer control from the four
bits in positions 12 through 15 of the instruction. If the three opcode bits in
positions 12 though 14 are not equal to 111, the instruction is a memory-reference
type and the bit in position 15 is taken as the addressing mode 1. If the 3-bit opcode
is equal to 111, control then inspects the bit in position 15. If this bit is 0, the

Figure 5-5 Basic computer instruction formats.

15 14	 12 11	 0

LI Opcode	 Address	 (Opcode = 000 through 110)

(a)Memory - reference instruction

IS	 12 11	 0
1	 1	 Register operation 1 (Opcode = III, I = 0)

(b)Register - reference instruction

15	 12 Il

1/0 operation (Opcode= III. 1=1)

(c) Input - output intrucuun

SECTION 5-3 Computer Instructions	 133

instruction is a register-reference type. If the bit is 1, the instruction is an
input-output type. Note that the bit in position 15 of the instruction code is
designated by the symbol I but is not used as a mode bit when the operation
code is equal to 111.

Only three bits of the instruction are used for the operation code. It may
seem that the computer is restricted to a maximum of eight distinct operations.
However, since register-reference and input—output instructions use the remain-
ing 12 bits as part of the operation code, the total number of instructions can
exceed eight. In fact, the total number of instructions chosen for the basic
computer is equal to 25.

The instructions for the computer are listed in Table 5-2. The symbol
designation is a three-letter word and represents an abbreviation intended for

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol	 I = 0	 / = 1	 Description

AND	 Oxxx	 8xxx AND memory word to AC
ADD	 lxxx	 9xxx Add memory word to AC
LDA	 2xxx	 Axxx Load memory word to AC
STA	 3xxx	 Bxxx Store content of AC in memory
BUN	 4xxx	 Cxxx Branch Unconditionally
BSA	 5xxx	 Dxxx Branch and save return address
ISZ	 6xxx	 Exxx	 Increment and skip if zero

CLA	 7800	 Clear AC
CLE	 7400	 Clear E
CMA	 7200	 Complement AC
CME	 7100	 Complement E
CIR	 7080	 Circulate right AC and E
CIL	 7040	 Circulate left AC and E
INC	 7020	 Increment AC
SPA	 7010	 Skip next instruction if AC positive
SNA	 7008	 Skip next instruction if AC negative
SZA	 7004	 Skip next instruction if AC zero
SZE	 7002	 Skip next instruction if E is 0
HLT	 7001	 Halt computer

INP	 F800	 Input character to AC
OUT	 F400	 Output character from AC
SKI	 F200	 Skip on input flag
SKO	 F100	 Skip on output flag
ION	 F080	 Interrupt on
IOF	 F040	 Interrupt off

134	 CHAIVIER HVF Basic Computer Organi:ation and Design

hexadecimal code programmers and users. The hexadecimal code is equal to the equivalent hexa-
decimal number of the binary code used for the instruction. By using the
hexadecimal equivalent we reduced the 16 bits of an instruction code to four digits
with each hexadecimal digit being equivalent to four bits. A memory-reference
instruction has an address part of 12 bits. The address part is denoted by three
x's and stand for the three hexadecimal digits corresponding to the 12-bit address.
The last bit of the instruction is designated by the symbol I. When 1	 0, the last
four bits of an instruction have a hexadecimal digit equivalent from 0 to 6 since
the last bit is 0. When 1	 1, the hexadecimal digit equivalent of the last four
bits of the instruction ranges from 8 to 11 since the last bit is I.

Register-reference instructions use 16 bits to specify an operation. The
leftmost four bits are always 0111, which is equivalent to hexadecimal 7. The
other three hexadecimal digits give the binary equivalent of the remaining 12
bits. The input-output instructions also use all 16 bits to specif y an operation.
The last four hits are always 1111, equivalent to hexadecimal F.

Instruction Set Completeness

Before investigating the operations performed by the instructions, let us dis-
cuss the type of instructions that must be included in a computer. A computer
should have a set of instructions so that the user can construct machine
language programs to evaluate any function that is known to be computable.
The set of instructions are said to be complete if the computer includes a
sufficient number of instructions in each of the following categories:

1. Arithmetic, logical, and shift instructions
2. Instructions for moving information to and from memory and processor

registers
3. Program control instructions together with instructions that check

status conditions
4. Input and output instructions

Arithmetic, logical, and shift instructions provide computational capabil-
ities for processing the type of data that the user may wish to employ. The bulk
of the binary information in a digital computer is stored in memory, but all
computations are done in processor registers. Therefore, the user must have
the capability of moving information between these two units. Decision-
making capabilities are an important aspect of digital computers. For example,
two numbers can be compared, and if the first is greater than the second, it
niav be nciessarv to proceed differently dm tr thn' secerd t greater than the
first. Program control instructions such as branch instructions are used to
change the sequence in which the program is executed. Input and output
instructions are needed for communication between the computer and the

SR:TION	 Timing and Control	 135

user. Programs and data must he transferred into memor y and results of
computations must be transferred back to the user.

The instructions listed in Table 5-2 constitute a minimum set that provides
all the capabilities mentioned above. There is one arithmetic instruction, ADD,
and two related instructions, complement AC(CMA) and increment AC(INC).
With these three instructions we can add and subtract binary numbers when
negative numbers are in signed-2's complement representation. The circulate
instructions, CIR and CIL, can be used for arithmetic shifts as well as any other
type of shifts desired. Multiplication and division can be performed using
addition, subtraction, and shifting. There are three logic operations: AND,
complement AC(CMA), and clear AC(CLA). The AND and complement
provide a NAND operation. It can be shown that with the NAND operation
it is possible to implement all the other logic operations with two variables
(listed in Table 4-6). Moving information from memory to AC is accomplished
with the load AC(LDA) instruction. Storing information from AC into memory
is done with the store AC(STA) instruction. The branch instructions BUN, BSA,
and ISZ, together with the four skip instructions, provide capabilities for
program control and checking of status conditions. The input (INP) and output
(OUT) instructions cause information to be transferred between the computer
and external devices.

Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly. An
efficient set of instructions will include such instructions as subtract, multiply,
OR, and exclusive-OR. These operations must be programmed in the basic
computer. The programs are presented in Chap. 6 together with other pro-
gramming examples for the basic computer. By using a limited number of
instructions it is possible to show the detailed logic design of the computer.
A more complete set of instructions would have made the design too complex.
In this way we can demonstrate the basic principles of computer organization
and design without going into excessive complex details. In Chap. 8 we present
a complete list of computer instructions that are included in most commercial
computers.

The function of each instruction listed in Table 5-2 and the microopera-
tions needed for their execution are presented in Secs. 5-5 through 5-7. We
delay this discussion because we must first consider the control unit and
understand its internal organization.

54 Timing and Control

The timing for all registers in the basic computer is controlled by a master dock
clock pulses generator. The clock pulses are applied to all flip-flops and registers in the

system, including the flip-flops and registers in the control unit. The dock
pulses do not change the state of a register unless the register is enabled by

136	 CIIAVFER FIVE Basic Ctmputer Organi:ation and Design

hardwired control

microprogrammed
control

control unit

timing signals

a control signal. The control signals are generated in the control unit and
provide control inputs for the multiplexers in the common bus, control inputs
in processor registers, and microoperations for the accumulator.

There are two major types of control organization: hardwired control and
microprogrammed control. In the hardwired organization, the control logic is
implemented with gates, flip-flops, decoders, and other digital circuits. It has
the advantage that it can be optimized to produce a fast mode of operation.
In the microprogrammed organization, the control information is stored in a
control memory. The control memory is programmed to initiate the required
sequence of microoperations. A hardwired control, as the name implies, re-
quires changes in the wiring among the various components if the design has
to be modified or changed. In the microprogrammed control, any required
changes or modifications can be done by updating the microprogram in control
memory. A hardwired control for the basic computer is presented in this
section. A microprogrammed control unit for a similar computer is presented
in Chap. 7.

The block diagram of the control unit is shown in Fig. 5-6. It consists of
two decoders, a sequence counter, and a number of control logic gates. An
instruction read from memory is placed in the instruction register (1R). The
position of this register in the common bus system is indicated in Fig. 5-4. The
instruction register is shown again in Fig. 5-6, where it is divided into three
parts: the I bit, the operation code, and bits 0 through 11. The operation code
in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of
the decoder are designated by the symbols D0 through 07. The subscripted
decimal number is equivalent to the binary value of the corresponding opera-
tion code. Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol I. Bits 0 through 11 are applied to the control logic gates. The 4-bit
sequence counter can count in binary from 0 through 15. The outputs of the
counter are decoded into 16 timing signals T0 through T15 . The internal logic
of the control gates will be derived later when we consider the design of the
computer in detail.

The sequence counter SC can be incremented or cleared synchronously
(see the counter of Fig. 2-11). Most of the time, the counter is incremented to
provide the sequence of timing signals out of the 4 X 16 decoder. Once in
awhile, the counter is cleared to 0, causing the next active timing signal to be
T. As an example, consider the case where SC is incremented to provide timing
signals T0, T1 , T2, T3, and T4 in sequence. At time T4 , SC is cleared to 0 if decoder
output D3 is active. This is expressed symbolically by the statement

D3T4: sc - 0

fhe timing diagram of hg. 5-7 shows the time relationship of the control
signals. The sequence counter SC responds to the positive transition of the
clock. Initially, the CLR input of SC is active. The first positive transition of the

1nstnicn register (IRI

15	 14	 13	 12 1	 11.0

3x8
decoder

765432

SECTION 5 .4 Timing and Control	 137

Other inputs

ft	 I
Control

Control	 I
logic

*	 gates

15 14	 21

4x16
decoder

441t
ae1ence
Counter

(SC)

Increment (INR)

Clear (CLR)

Clock

Figure 5-6 Control unit of basic computer.

clock clears SC to 0, which in turn activates the timing signal T0 out of the
decoder. To is active during one clock cycle. The positive clock transition labeled
To in the diagram will trigger only those registers whose control inputs are
connected to timing signal T0 . SC is incremented with every positive clock
transition, unless its CLR input is active. This produces the sequence of timing
signals T0 , Ti , T2 , T3, T4, and so on, as shown in the diagram. (Note the
relationship between the timing signal and its corresponding positive dock
transition.) If SC is not cleared, the timing signals will continue with T5, T6, up
to T15 and back to T0.

138	 CHAPTER FIVE Basic Computer Organization and Design

Clock

To

T

T

T1

T4

CLR
SC

T0	1'4

Figure 5-7 Example of control timing signals.

The last three waveforms in Fig. 5-7 show how SC is cleared when
D 3 T4 = 1. Output D3 from the operation decoder becomes active at the end of
timing signal T2 . When timing signal T4 becomes active, the output of the AND
gate that implements the control function D3 T4 becomes active. This signal is
applied to the CLR input of SC. On the next positive clock transition (the one
marked T4 in the diagram) the counter is cleare to 0. This causes the timing
signal T0 to become active instead of T5 that would have been active if SC were
incremented instead of cleared.

A memory read or write cycle will be initiated with the rising edge of a
timing signal. It will be assumed that a memory cycle time is less than the clock
cycle time. According to this assumption, a memory read or write cycle ini-
tiated by a timing signal will be completed by the time the next clock goes
through its positive transition. The clock transition will then be used to load
the memory word into a register. This timing relationship is not valid in many
computers because the memory cycle time is usually longer than the processor
clock cycle. In such a case it is necessary to provide wait cycles in the processor

SECTION 5 .5 Instruction Cycle 	 139

until the memory word is available. lo facilitate the presentation, we will
assume that a wait period is not necessary in the basic computer.

To fully comprehend the operation of the computer, it is crucial that one
understands the timing relationship between the clock transition and the
timing signals. For example, the register transfer statement

T0: AR - PC

specifies a transfer of the content of PC into AR if timing signal T0 is active. T0
is active during an entire clock cycle interval. During this time the content of
PC is placed onto the bus (with S2 S1S0 0110) and the LD (load) input of AR
is enabled. The actual transfer does not occur until the end of the clock cycle
when the clock goes through a positive transition. This same positive dock
transition increments the sequence counter SC from 0000 to 0001. The next
clock cycle has T1 active and T0 inactive.

5-5 Instruction' Cycle

A program residing in the memory unit of the computer consists of a sequence
of instructions. The program is executed in the computer by going through a
cycle for each instruction. Each instruction cycle in turn is subdivided into a
sequence of subcycles or phases. In the basic computer each instruction cycle
consists of the following phases:

1. Fetch an instruction from memory.
2. Decode the instruction,
3. Read the effective address from memory if the instruction has an indi-

rect address.
4. Execute the instruction.

Upon the completion of step 4, the control goes back to step Ito fetch, decode,
and execute the next instruction. This process continues indefinitely unless a
HALT instruction is encountered.

Fetch and Decode
Initially, the program counter PC is loaded with the address of the first instruc-
tion in the program. The sequence counter SC is cleared to 0, providing a
decoded timing signal T0. After each clock pulse, SC is incremented by one,
so that the timing signals go through a sequence T0, T1 , T2, and so on. The
microoperatioris for the fetch and decode phases can be specified by the
following register transfer statements.

140	 CHAPTER FIVE Basic Computer Organization and Design

T0: AR—PC
T: 1R4—M[AR], PC—PC + 1
T2: D0, .., D7 *—Decode IR(12- .14), AR —IR(O--11), I —IR(15)

Since only AR is connected to the address inputs of memory, it is neces-
sary to transfer the address from PC to AR during the dock transition associ-
ated with timing signal T0 . The instruction read from memory is then placed
in the instruction register IR with the dock transition associated with timing

Figure 5 . 8 Register transfers for the fetch phase.

SECTION 5-5 Instruction Cycle	 141

signal T. . At the z a rne time. PC is incremented by one to prepare it for the
address 01 the next instruction in the program. At time T2, the operation code
in JR is decoded, the indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR. Note that SC is incremented after
each clock pulse to produce the sequence T0, T1 , and T2.

Figure 5-8 shows how the first two register transfer statements are imple-
mented in the bus system. To provide the data path for the transfer of PC to
AR we must apply timing signal To to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs
S2 5 1 S0 equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR.

The next clock transition initiates the transfer from PC to AR since T0 = I. In
order to implement the second statement

T1 : IR—. M [AR], PC—PC+1

it is necessary to use timing signal T1 to provide the following connections in
the bus system.

1. Enable the read input of memory.
2. Place the content of memory onto the bus by making SS 1 S0 = 111,
3. Transfer the content of the bus to JR by enabling the LD input of JR.
4. Increment PC by enabling the INR input of PC.

The next clock transition initiates the read and increment operations since
T = 1.

Figure 5-8 duplicates a portion of the bus system and shows how T0 and
are connected to the control inputs of the registers, the memory, and the

bus selection inputs. Multiple input OR gates are included in the diagram
because there are other control functions that will initiate similar operations.

Determine the Type of Instruction
The timing signal that is active after the decoding is T3. During time T3, the
control unit determines the type of instruction that was just read from memory.
The flowchart of Fig. 5-9 presents an initial configuration for the instruction
cycle and shows how the control determines the instruction type after the
decoding. The three possible instruction types available in the basic computer
are specified in Fig. 5-5.

Decoder output D7 is equal to 1 if the operation code is equal to binary
Ill. From Fig. 5-5 we determine that if D7 = 1, the instruction must be a

142	 CHAPTER FIVE Basic Computer Organization and Design

Start
SC

TO

PC	
I

I 1R4—M [AR j,PC*---PC+I I

T.

Decode operation code in /8 (12 - 14)
AR4-IR(0--1l). 14-IR(15)

= 0 (Memory-reference)

(indirect) = I	 = 0 (direct)

T3

IR - M[AR]	 Nothing

(Register or 1/0) =_I /
I-	 D7

(1/0)0(register)

T3

Execute	 Execute
input-output	 register-reference
instruction	 instruction
SC-0	 SC (--

Execute
memory-reference

instruction
SC 4—U

Figure 5-9 Flowchart for instruction cycle (initial configuration).

register-reference or input—output type. If D7 0, the operation code must be
one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I. If D7 = 0 and I = 1, we have a memory-
reference instruction with an indirect address. It is then necessary to read the

SECTION 5-5 Instruction Cycle	 143

effective address from memory. The microoperation for the indirect address
indirect address	 condition can be symbolized by the register transfer statement

AR*-M[AR]

Initially, AR holds the address part of the instruction. This address is used
during the memory read operation. The word at the address given by AR is
read from memory and placed on the common bus. The LD input of AR is then
enabled to receive the indirect address that resided in the 12 least significant
bits of the memory word.

The three instruction types are subdivided into four separate paths. The
selected operation is activated with the clock transition associated with timing
signal T3. This can be symbolized as follows:

DIT3: AR-M[AR1
DI'T3: Nothing
D7 1'T3: Execute a register-reference instruction
D7 IT3: Execute an input-output instruction

When a memory-reference instruction with I = 0 is encountered, it is not
necessary to do anything since the effective address is already in AR. However,
the sequence counter SC must be incremented when D . T3 = 1, so that the
execution of the memory-reference instruction can be continued with timing
variable T4 . A register-reference or input-output instruction can be executed
with the clock associated with timing signal 3 . After the instruction is executed,
SC is cleared to 0 and control returns to the fetch phase with T0 1.

Note that the sequence counter SC is either incremented or cleared to U
with every positive clock transition. We will adopt the convention that if SC
is incremented, we will not write the statement SC f-SC + 1, but it will be
implied that the control goes to the next timing signal in sequence. When SC
is to be cleared, we will include the statement sc -o.

The register transfers needed for the execution of the register-reference
instructions are presented in this section. The memory-reference instructions
are explained in the next section. The input-output instructions are included in
Sec. 5-7.

Register-Reference Instructions
Register-reference instructions are recognized by the control when D7 = I and
I = 0. These instructions use bits 0 through Ill of the instruction code to specify
jne 01 12 nstructons. These 12 bits are aviiobie UI JR(O IlL ih L; Usu

transferred to AR during time T2.

The control functions and microoperations for the register-reference in-

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

rB11

rB1
rB9:
rB5:

rB7:

rB6:

rBs:
rB4:

rB3:

rB:
rB:

rB:

144	 CHAPTER FIVE Basic Computer Organization and Design

structions are listed in Table 5-3. These instructions are executed with the clock
transition associated with timing variable T.3 . Each control function needs tht
Boolean relation D7173, which we designate for convenience by the symbol r.
The control function is distinguished by one of the bits in JR (0-11). By assigning
the symbol B, to bit i of JR, all control functions can be simply denoted by rB,.
For example, the instruction CLA has the hexadecimal code 7800 (see Table 5-2),
which gives the binary equivalent 0111 1000 0000 0000. The first bit is a zero
and is equivalent to F. The next three bits constitute the operation code and
are recognized from decoder output D7 . Bit 11 in JR is 1 and is recognized from
B. The control function that initiates the niicrooperation for this instruction
is D7173 B 11 = rB 11 . The execution of a register-reference instruction is com-
pleted at time T3 . The sequence counter SC is cleared to 0 and the control goes
back to fetch the next instruction with timing signal T0.

The first seven register-reference instructions perform clear, comple-
ment, circular shift, and increment microoperations on the AC or E registers.
The next four instructions cause a skip of the next instruction in sequence when
a stated condition is satisfied. The skipping of the instruction is achieved by
incrementing PC once again (in addition, it is being incremented during the
fetch phase at time T1). The condition control statements must be recognized
as part of the control conditions. The AC is positive when the sign bit in
AC(15) = 0; it is negative when AC(15) = 1. The content of AC is zero (AC 0)
if all the flip-flops of the register are zero. The HLT instruction clears a
start—stop flip-flop S and stops the sequence counter from counting. To restore
the operation of the computer, the start—stop flip-flop must be set manually.

TABLE 5-3 Execution of Register-Reference Instructions

D,I73 = r (common to all register-reference instructions)
JR(i)	 B, [bit in JR(0-11) that specifi

e s the operation]

SC .-0
AC'-0

AC 4—AC

AC —shr AC, AC(15)4—E, E4—AC(0)
AC4—shl AC, AC(0).—E, E4—AC(15)
AC—AC -1- 1
If (AC(15) = 0) then (PC—PC + 1)
If (AC(15) = 1) then (PC —PC + 1)
If (AC = 0) then PC—PC + 1)
If (E = 0) then (PC+—PC + 1)
S 4—U (S is a start—stop flip-flop)

Clear SC
Clear AC
Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

effective address

SE1 ION i o Memory . Reference Instructions	 145

5-6 Memory-Reference Instructions

In order to specify the microoperations needed for the execution of each
instruction, it is necessary that the function that' they are intended to perform
be defined precisely. Looking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous description. This is
because the explanation qf an instruction in words is usually lengthy, and not
enough space is available in the table for such a lengthy explanation. We will
now show that the function of the memory-reference instructions can be
defined precisely by means of register transfer notation.

Table 5-4 lists the seven memory-reference instructions. The decoded
output D, for i 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction is included in the table. The effective address of the instruc-
tion is in the address register AR and was placed there during timing signal
T2 when I = 0, or during timing signal T3 when I = 1. The execution of the
memory-reference instructions starts with timing signal T4 . The symbolic de-
scription of each instruction is specified in the table in terms of register transfer
notation. The actual execution of the instruction in the bus system will require
a sequence of microoperations. This is because data stored in memory cannot
be processed directly. The data must be read from memory to a register where
they can be operated on with logic circuits. We now explain the operation of
each instruction and list the control functions and microoperations needed for
their execution. A flowchart that summarizes all the microoperatipns is pre-
sented at the end of this section.

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol
	

decoder	 Symbolic description

AND
	

D0
	

AC—AC 1\ M[AR]
ADD	 AC—AC - M[AR, E-C.,,,
LDA	 AC - M[A R]
STA
	

MIARJ+-AC
BUN
	

D4
	

PC A!?
BSA
	

M[AR] *-PC. PC — AR ±1
ISZ
	

M[AR]M(AR] + 1,
lfM[AR] + I O then PC—PC + 1

AND to AC

This is an instruction that performs the AND logic operation on pairs of bits
in AC and the memory word specified by the effective address. The result of

146	 CHAPTER FIVE Basic Computer Organization and Design

the operation is transferred to AC. The inicrooperations that execute this
iflStnctioii are:

D0T4:	 DR+-M[ARJ
D0T5: AC4—ACADR, SC4-0

The control function for this instruction uses the operation decoder D0 since
this output of the decoder is active when the instruction has an AND operation
whose binary code value is 000. Two timing signals are needed to execute the
instruction. The clock transition associated with timing signal T4 transfers the
operand from memory into DR. The clock transition associated with the next
timing signal T5 transfers to AC the result of the AND logic operation between
the contents of DR and AC. The same clock transition clears SC to 0, transfer-
ring control to timing signal To to start a new instruction cycle.

ADD to AC

This instruction adds the content of the memory word specified by the effective
address to the value of AC. The sum is transferred into AC and the output carry

is transferred to the E (extended accumulator) flip-flop. The microopera-
tions needed to execute this instruction are

D1 T4 : DR - M[ARJ
D1 T5 : AC .- AC + DR. E 4- C, SC	 0

The same two tuning signals, T4 and T5, are used again but with operation
decoder D instead of D0, which was used for the AND instruction. After the
instruction is fetched from memory and decoded, only one output of the
operation decoder will be active, and that output determines the sequence of
microoperations that the control follows during the execution of a memory-ref-
erence instruction.

LDA: Load to AC

This instruction transfers the memory word specified by the effective address
to AC. The microoperations needed to execute this instruction are

D2T4 : DR - M[AR]
D2 T5 : AC - OR, SC	 0

Looking back at the bus system shown in Fig. 5-4 we note that there is no direct
path from the bus into AC. The adder and logic circuit receive information from
DR which can be transferred into AC. Therefore, it is necessary to read the

SECTION 56 Memory -Reference Instructions	 147

memory word into DR first and then transfer the content of DR into AC. The
reason for not connecting the bus to the inputs of AC is the delay encountered
in the adder and logic circuit. It is assumed that the time it takes to read from
memory and transfer the word through the bus as well as the adder and logic
circuit is more than the time of one clock cycle. By not connecting the bus to
the inputs of AC we can maintain one clock cycle per microoperation.

STA: Store AC

This instruction stores the content of AC into the memory word specified by
the effective address. Since the output of AC is applied to the bus and the data
input of memory is connected to the bus, we can execute this instruction with
one microoperation:

DT4: M[AR] - AC, SC - 0

BUN: Branch Unconditionally
This instruction transfers the program to the instruction specified by the
effective address. Remember that PC holds the address of the instruction to be
read from memory in the next instruction cycle. PC is incremented at time T1

to prepare it for the address of the next instruction in the program sequence.
The BUN instruction allows the programmer to specify an instruction out of
sequence and we say that the program branches (or jumps) unconditionally.
The instruction is executed with one microoperation:

D4 T4: PC - AR, SC	 0

The effective address from AR is transferred through the common bus to PC.

Resetting SC to 0 transfers control to T0 . The next instruction is then fetched
and executed from the memory address given by the new value in PC.

BSA: Branch and Save Return Address
This instruction is useful for branching to a portion of the program called a
subroutine or procedure. When executed, the BSA instruction stores the ad-
dress of the next instruction in sequence (which is available in PC) into a
memory location specified b y the effective address. The effective address plus
one is then transferred to PC to serve as the address of the first instruction in
the subroutine. This operation was specified in Table 5-4 with the following

M[AR1—PC, PC—AR+1

148	 CHAPTER FIVE, Basic Computer Organization and Design

return address

A numerical example that demonstrates how this instruction is used with
a subroutine is shown in Fig. 5-10. The BSA instruction is assumed to be in
memory at address 20. The I bit is 0 and the address part of the instruction has
the binary equivalent of 135. After the fetch and decode phases, PC contains
21, which is the address of the next instruction in the program (referred to as
the return address). AR holds the effective address 135. This is shown in part
(a) of the figure. The BSA instruction performs the following numerical oper-
ation:

M[135] — 21, PC +- 135 + I = 136

subroutine call

The result of this operation is shown in part (b) of the figure. The return address
21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136. The return to the original program (at
address 21) is accomplished by means of an indirect BUN instruction placed
at the end of the subroutine. When this instruction is executed, control goes
to the indirect phase to read the effective address at location 135, where it finds
the previously saved address 21. When the BUN instruction is executed, the
effective address 21 is transferred to PC. The next instruction cycle finds PC
with the value 21, so control continues to execute the instruction at the return
address.

The BSA instruction performs the function usually referred to as a sub-
routine call. The indirect BUN instruction at the end of the subroutine performs
the function referred to as a subroutine return. In most commercial computers,
the return address associated with a subroutine is stored in either a processor

Figure 5-10 Example of BSA instruction execution.

Memory	 Memory

	

20
	

0	 BSA	 135
	

20
	

0	 BSA	 135

	

PC 21
	

Next instruction
	

21
	

Next instruction

	

4R= 135
	

35
	

21

	

136
	

Subroutine
	

PC =136
	

Subroutine

I	 BUN	 135
	

I	 BUN	 135

(a) Mrnorv. PC. and AR at tirIle 1	 h) Memory and PC after execution

SECTION 5 -6 Memory -Reference InstructIons	 149

register or in a portion of memory called a stack. This is discussed in more detail
in Sec. 8-7.

It is not possible to perform the operation of the BSA instruction in one
clock cycle when we use the bus system of the basic computer. To use the
memory and the bus properly, the BSA instruction must be executed with a
sequence of two microoperations:

D5T4 : M[AR] - PC, AR - AR + 1
D5 T5: PC - AR, SC .- 0

Timing signal T4 initiates a memory write operation, places the content of PC
onto the bus, and enables the INR input of AR. The memory write operation
is completed and AR is incremented by the time the next clock transition
occurs. The bus is used at T; to transfer the content of AR to PC.

ISZ: Increment and Skip if Zero
This instruction increments the word specified by the effective address, and
if the incremented value is equal to 0, PC is incremented by 1. The programmer
usually stores a negative number (in 2's complement) in the memory word. As
this negative number is repeatedly incremented by one, it eventually reaches
the value of zero. At that time PC is incremented by one in order to skip the
next instruction in the program.

Since it is not possible to increment a word inside the memory, it is
necessary to read the word into DR, increment DR, and store the word back
into memory. This is done with the following sequence of microoperations:

D6T4: DR - M[AR]
D6T5 : DR—DR+1
D6T6: M[AR] - DR. if (DR = 0) then (PC - PC + 1), SC - 0

Control Flowchart

A flowchart showing all microoperations for the execution of the seven mem-
ory-reference instructions is shown in Fig. 5-11. The control functions are
indicated on top of each box. The microoperat-ions that are performed during
time 7', T6. or T6 depend on the operation code value. This is indicated in the
flowchart by six different paths, one of which the control takes after the
instruction is decoded. The sequence counter SC is cleared to 0 with the last
timing signal in each case. This causes a transfer of control to timing signal To
to star t11	 rt in ruti.-:

Note that we need only seven timing signals to execute the longest
instruction (ISZ). The computer can be designed with a 3-bit sequence counter.
The reason for using a 4-bit counter for SC is to provide additional timing
signals for other instructions that are presented in the problems section.

DR4-M(AR)

D2T

AC 4-DR

Sc - 0

M (AR) 4- AC
SC 4-0

150	 CHAPTER FIVE Basic Computer Organization and Design

McnlorN - efeIne uiftutiOfl

AND
	

ADD
	

LDA
	

STA

D0T4

DR - M[AR]

D0T5

AC4-ACA DR

Sc 4- 0

D1T4

DR4-M[MAR]

D 1 T3

AC4-AC+DR
E - C0

sc - 0

BUN
	

BSA
	

ISZ

'	 D4T4.
	 D5T4	 D6T4

PC 4- AR
	

M [AR) 4- Pc
	

DR4-MIAR]

Sc - 0
	

AR*-- Aft I

D5T
	

DT5

PC AR
	

DRDR+I

sc 4-0

D6T6

M(AR)+- DR
If (DR = 0)
then (PC 4-PC+ I)
SC 4-U

Figure 5-11 Flowchart for memory-reference instructions.

5-7 Input—Output and Interrupt

A computer can serve no useful purpose unless it communicates with the
external environment. Instructions and data stored in memory must come
from some input device. Computational results must be transmitted to the user
through some output device. Commercial computers include many types of

SECTION 5-7 Input-Output and Interrupt 	 151

input and output devices. To demonstrate the most basic requirements for
input and output communication, we will use as an illustration a terminal unit
with a keyboard and printer. Input-output organization is dicsussed further in
Chap. 11.

Input-Output Configuration

The terminal sends and receives serial information. Each quantity of informa-
tion has eight bits of an alphanumeric code. The serial information from the
keyboard is shifted into the input register INPR. The serial information for the
printer is stored in the output register OUTR. These two registers communicate
with a communication interface serially and with the AC in parallel. The
input-output configuration is shown in Fig. 5-12. The transmitter interface re-
ceives serial information from the keyboard and transmits it to INPR. The re-
ceiver interface receives information from OUTR and sends it to the printer
serially. The operation of the serial communication interface is explained in
Sec. 11-3.

input register

	

	 The input register INPR consists of eight bits and holds an alphanumeric
input information. The 1-bit input flag FGI is a control flip-flop. The flag bit is

Figure 5-12 Input-output configuration.

Input - output	 Serial	 Computerterminal	 communication	 registers and

	

interface	 flip-flops

L1

iFGi

152	 CHAPTER FIVE Basic Computer Organi:auon and DesLgn

output register

I r. n the input dcvfre and is cleared
to 0 when the information is accepted by the computer. The flag is needed to
synchronize the timing rate difference between the input device and the
computer. The process of information transfer is as follows. Initially, the input
flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanu-
meric code is shifted into INPR and the input flag EGI is set to 1. As long as

the flag is set, the information in INPR cannot be changed by striking another
key. The computer checks the flag bit; if it is 1, the information from INPR is

transferred in parallel into AC and EQ is cleared to 0. Once the flag is cleared,
new information can be shifted into 1NPR by striking another key.

The output register OIJTR works similarly but the direction of informa-
tion flow is reversed. Initially, the output flag EGO is set to 1. The computer
checks the flag bit; if it is 1, the information from AC is transferred in parallel

to OUTR and EGO is cleared to 0. The output device accepts the coded infor-
mation, prints the corresponding character, and when the operation is com-
pleted, it sets EGO to 1. The computer does not load a new character into OUTR

when FGO is 0 because this condition indicates that the output device is in the
process of printing the character.

Input-Output Instructions
Input and output instructions are needed for transferring information to and
from AC register, for checking the flag bits, and for controlling the interrupt
facility. Input-output instructions have an operation code 1111 and are recog-
nized by the control when D 7 = I and I = 1. The remaining bits of the instruc-
tion specify the particular operation. The control functions and microopera-
tions for the input-output instructions are listed in Table 5-5. These instructions
are executed with the clock transition associated with timing signal T3 . Each
control function needs a Boolean relation D71T3 , which we designate for con-
venience by the symbol p. The control function is distinguished by one of the
bits in IR((;-1 1). By assigning the symbol B, to bit i of IR, all control functions

TABLE 5-5 Input-Output Instructions

071T1 p (common to all input-output instructions)
IR(i) = B, [bit in IR(6-11) that specifies the instruction]

INP	 pBi1:
OUT pBo:
SKI	 pB9:

SKO	 pHs:
ION	 VB.:
IOF	 j'B-:

SC -0
AC(0-7) 4-INPR, FG1 -0
OUTR 4-AC(O-7), FGO 4-0

If(FGI = 1) then (PC 4-PC +
If(FGO = 1) then (PC-PC
lEN -
/F\, --Ii

Clear SC
Input character
Output character

1)	 Skip on input flag
1) Skip on output flag

Interrupt enable on
Interrupt enable off

cTIN S- input-Output arid interrupt 	 153

can be denoted by p8, for i = 6 though 11. The sequence counter SC is cleared
to 0 when p = P-IT1 = 1.

The INP instruction transfers the input information from !NPR into the
eight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of Ac into the output register
OUTR and clears the output flag to (. The next two instructions ir TuNe
check the status of the flags and cause a skip of the next instruction it the hag
is 1. The instruction that is skipped will normall y be a branch in'.lt uct;en tu
return and check the flag again. rhe branch instruction is not skipped it lie
flag isO. It the flag is 1, the branch instruction is skipped and an input or output
instruction is executed. (Examples of input and output programs are given
in Sec. 6-8.) The last two instructions set and clear an interrupt enable flip-
flop lEN. The purpose of lEN is explained in coniunction with the interrupt
operation.

Program Interrupt
The process of communication just described is referred to as prugrammed
control transfer. The computer keeps checking the flag bit, and when it finds
it set, it initiates an information transfer. The difference of information flow
rate between the computer and that of the input-output device makes this type
of transfer inefficient. To see why this is inefficient, consider a computer that can
go through an instruction cycle in 1 jts. Assume that the input--output device can
transfer information at a maximum rate of 10 characters per second. This is
equivalent to one character every 100,0(0p.s. Two instructions are executed vhen
the computer checks the flag bit and decides not to transfer the information. This
means that at the maximum rate, the computer will check the flag 50.000 times
between each transfer. The computer is wasting time while checking the flag
instead of doing some other useful processing task.

An alternative to the programmed controlled procedure is to let the external
device inform the computer when it is ready for the transfer. In the meantime the
computer can be busy with other tasks. This type of transfer uses the interrupt
facility. While the computer is running a program, it does not check the flags.
However, when a flag is set, the computer is momentarily interrupted from
proceeding with the current program and is informed of the fact that a flag has
been set. The computer deviates momentarily from what it is doing to take care
of the input or output transfer. It then returns to the current program to continue
what it was doing before the interrupt.

The interrupt enable flip-flop lEN can be set and cleared with two instruc-
tions. When lEN is cleared to 0 (with the IOF instruction), the flags cannot
interrupt the com puter. When lEN is set to 1 (with the ION instruction), the
computer can be intcrruptcU. ihese two tnstruCti&xis pruviUe inc
with the capability of making a dedsion as to whether or not to use the
interrupt facility.

154	 CHAPTER FIVE Basic Computer Organization and Design

Instruction cycle	
0LIR^ I 	 Interrupt cycle

Fetch and decode	 Store return address
instruction	 in location 0

M[0—PC

Execute	

< = 1 =0instruCtion

=	 I	 Branch to location I
PC — l

=0

I_L<FGO>	 I	 I	 lEN - Ci

Figure 5-13 Flowchart for interrupt cycle.

The way that the interrupt is handled by the computer can be explained
by means of the flowchart of Fig. 5-13, An interrupt flip-flop R is included in
the computer. When R 0, the computer goes through an instruction cycle.
During the execute phase of the instruction cycle lEN is checked by the control.
If it is 0, it indicates that the programmer does not want to use the interrupt,
so control continues with the next instruction cycle. If lEN is 1, control checks
the flag bits. If both flags are 0, it indicates that neither the input nor the output
registers are ready for transfer of information. In this case, control continues
with the next instruction cycle. If either flag is set to 1 while lEN = 1, flip-flop
R is set to 1. At the end of the execute phase, control checks the value of R,
and if it is equal to 1, it goes to an interrupt cycle instead of an instruction cycle.

interrupt cycle The interrupt cycle is a hardware implementation of a branch and save
return address operation. The return address available in PC is stored in a
specific location where it can be found later when the program returns to the
instruction at which it was interrupted. This location may be a processor

SECTION	 Input-Output and Interrupt	 155

register, a memory stack, or a specific memory location. Here we choose the
memory location at address 0 as the place for storing the return address.
Control then inserts address 1 into PC and dears lEN and R so that no more
interruptions can occur until the interrupt request from the flag has been
serviced.

An example that shows what happens during the interrupt cycle is shown
in Fig. 544. Suppose that an interru pt occurs and R is set to I while the control
is executing the instruction at address 255. At this time, the return address 256
is in PC. The programmer has previously placed an input—output service
program in memory starting from address 1120 and a BUN 1120 instruction at
address 1. This is shown in Fig. 5-14(a).

When control reaches timing signal T0 and finds that R = 1, it proceeds
with the interrupt cycle. The content of PC (256) is stored in memory location
0, PC is set to 1, and R is cleared to 0. At the beginning of the next instruction
cycle, the instruction that is read from memory is in address I since this is the
content of PC. The branch instruction at address 1 causes the program to
transfer to the input—output service program at address 1120. This program
checks the flags, determines which flag is set, and then transfers the required input
or output information. Once this is done, the instruction ION is executed to set
lEN to 1 (to enable further interrupts), and the program returns to the location
where it was interrupted. This . is shown in Fig. 5-14(b).

The instruction that returns the computer to the original place in the main
program is a branch indirect instruction with an address part of 0. This instruc-
tion is placed at the end of the 110 service program. After this instruction is

Figure 5-14 Demonstration of the interrupt cycle.

Memory	 Memor)

	

0	 0	 256

	

I 0	 BUN 1120	 PC= I 0	 BUN 112()

255	 255

	

PC = 256	 Main	 256	 Main
program	 program

	

1120	 1120
1/0	 I/O

program	 oroerarn

	

I	 BUN	 0	 I	 BUN	 0

	

(a) Before interrupt 	 (b) After interrupt cycle

156	 CHAVIER FIVE Basic Computer OrganL:ahrn and Design

read trom memory during the ietLh phase, control goes to the indirect phase
(because I = 1) to read the effective address. The effective address is in location
0 and is the return address that was stored there during the previous interrupt
cycle. The execution of the indirect BUN instruction results in placing into PC
the return address from location 0.

interrupt Cvck
We are now read y to list the register transfer statements for the interrupt cycle.
The interrupt c ycle is initiated after the last execute phase if the interrupt
flip-flop 1< is equal to 1. This flip-flop is set to 1 if lEN = 1 and either FGI or
EGO are equal to 1. This can happen with any clock transition except when
timing signals T, T1 , or T2 are active. The condition for setting flip-flop R to
I can he expressed with the following register transfer statement:

TTT(IEN)(FGl + FGO): R –1

The symbol + between FGJ and FGO in the control function designates a logic
OR operation. This is ANDed with lEN and

modified fetch phase We now modify the fetch and decode phases of the instruction cycle.
Instead of using only timing signals T0, T1 , and T2 (as shown in Fig. 5-9) we
will AND the three timing signals with R' so that the fetch and decode phases
will be recognized from the three control functions R70, R'T1 , and R72 . The
reason for this is that after the instruction is executed and SC is cleared to 0,
the control will go through a fetch phase only if R = 0. Otherwise, if R = 1,

the control will go through an interrupt cycle. The interrupt cycle stores the
return address (available in PC) into memory location 0, branches to memory
location 1, and clears lEN, R, and SC to 0. This can be done with the following
sequence of microoperations:

RT0: AR — O, TR.–PC

RT 1 : MlARI–TR, PC-0
RT.,: PC4–PC + 1, IEN—O, R*-0, SC-0

During the first timing signal AR is cleared to 0, and the content of PC is
transferred to the temporary register TR. With the second timing signal, the
return address is stored in memory at location 0 and PC is cleared to 0. The
third timing signal increments PC to 1, clears lEN and R, and control goes back
to T by clearing SC to 0. The beginning of the next instruction cycle has the
condition RT and the content of PC is equal to 1. The control then goes
through an instruction cycle that fetches and executes the BUN instruction in
location 1.

SF(.TIL'. 5-9 Design of Basic Computer	 157

5-8 Complete Computer Description

The final flowchart of the instruction cycle, including the interrupt cycle for the
flowchart for basic 	 basic computer, is shown in Fig. 5-15. The interrupt flip-flop R may be set at
computer any time during the indirect or execute phases. Control returns to timing signal

T0 after SC is cleared to 0. If R = 1, the computer goes through an interrupt
cycle. If R = 0, the computer goes through an instruction cycle. If the instruc-
tion is one of the memory-reference instructions, the computer first checks if
there is an indirect address and then continues to execute the decoded instruc-
tion according to the flowchart of Fig. 5-11. If the instruction is one of the
register-reference instructions, it is executed with one of the microoperations
listed in Table 5-3. If it is an input-output instruction, it is executed with one of
the microoperations listed in Table 5-5.

Instead of using a flowchart, we can describe the operation of the computer
with a list of register transfer statements. This is done by accumulating all the
control functions and microoperations in one table. The entries in the table are
taken from Figs 5- 11 and 5-15. and Tables 5-3 and 5-5.

The control functions and microoperations for the entire computer are
summarized in Table 5-6. The register transfer statements in this table describe
in a concise form the internal organization of the basic computer. They also give
all the information necessary for the design of the logic circuits of the computer.
The control functions and conditional control statements listed in the table
formulate the Boolean functions for the gates in the control unit. The list of
microoperations specifies the type of control inputs needed for the registers and
memory. A register transfer language is useful not only for describing the internal
organization of a digital system but also for specifying the logic circuits needed
for its design.

5-9 Design of Basic Computer

The basic computer consists of the following hardware components:

1. A memory unit with 4096 words of 16 bits each

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

3. Seven flip-flops: I, S, E, R, lEN, FCI, and EGO

4. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder

5. A 16-bit common bus

6. Control logic gates

7. A..jd	 .r.d Irigir riTctt	 nr1d	 b'

The memory unit is a standard component that can be obtained readily
from a commercial source. The registers are of the type shown in Fig. 2-11 and

D71 T3

Execute
input-output
instruction
(Table 5-5)

D,I'T3

Execute
register-reference

instruction
(Table 5-3)

D'71T3

AR+— MLARI

D7IT

Nothing

158	 CHAPTER FIVE Basic Computer Organization and Design

Start

SC — O,IEN —O,R4--0

(instruction cycle)	 0

R'T0

AR PC	 j

R'T1

!R4—M[AR1,PC---PC+1 II	 R'T2

AR4—IR(O—I1), 14—JR(15)
D0 D7€-Decode1R(12--14)

(Register or 110) = 1

0 (register)

= I (interrupt cycle)

RT0

IAR+— OTR — PC	 1
Jr	 RT1

F M(AR]— TR. PC4--0 	 IT RT2

PC4—PC+l, iEN-0
R - 0, Sc - 0

=0 (Memory - reference)

(indect) = 1	 =0 (direct)

Execute
memory - reference

instruction
(Fig 5-11)

Figure 5-15 Flowchart for computer operation.

SECTION 5-9 Design of Basic Computer	 159

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

AR-PC
IR .-M[AR, PC - PC+i
Do, .., D 7 4-Decodc IR(12-14),
AR 4-!R(O-I I), ['.-JR(l5)
AR 4-MAR]

R4-1
AR-0, TR-PC

M IAR I I-TR, PC-0
PCI-PC+ 1, 1EN-0, R4-O, SCI-0

DR 4-M[AR]
AC-ACADR, SC-0
DR i-M(ARJ
AC-AC+DR, E-C, SC*-0
DR —M[AR]
AC—DR, SC-0
M[ARJ4-AC, SC-0
PC*-AR, SCI-0

M(ARI-PC, ARAR + 1
PC 4-AR, SC-0
DR—M[AR]
DR 4--DR +
M[AR-DR, if(DR = 0)then(PCPC + 1), SC-0

Fetch	 R'To:
R ' T1:

	

Decode	 R72:

	

Indirect	 D4IT:
Interrupt:

TJ;7(IEN)(FGI + FGO):
R T,:
RT1:
R T2.

Memory-reference:

	

AND
	

DOT.:

	

ADD
	

D 1 1'4:
D T5:

	

LDA
	

D1T4:

	

STA
	

DT4:

	

BUN
	

D4T4:

	

BSA
	

D5T4:
D5T5:

lsz
D6T5:

Register-reference:
D,t'T3 = r (common to all register-reference instructions)
IR(i)B(i=0,1,2.....11)

r: SC —0
CLA	 rB11: ACi-0
CLE	 rB8: EO
CMA	 r89: AC 4-A7C
CME	 r88: El-
CIR	 rB: AC*-shrAC, AC(15)E, EAC(0)
CIL	 rB6: ACshlAC, AC(0)*-E, EAC(15)
INC	 rB: AC +--AC + I
SPA	 rB4:	 lt(AC(15) = 0) then (PC 4-PC + 1)
SNA	 rB:	 If (AC(15) = 1) then (PC —PC + 1)
SZA	 rB2:	 If (AC = 0) then PCI-PC + 1)
SZE	 rB:	 If (E = 0) then (PC +--PC + 1)
HLT	 rB0: S.-0

Input-output:
D71T3 = p (common to all input-output instructions)
JR(i) = B, (i = 6,7,8,9, 10, II)

P :	 SC i-0
INP	 pB1: AC(O-7)i---INPR, FGIi-0
OUT	 pB4O: OUTR i-AC(0-7), FGO i--0
SKI	 pB9:	 If 	 = 1) then (PC — PC + I)
SKO	 pB0: if (FGO = 1) then (PC —PC + 1)
ION	 pBi: JEN-1
IOF	 pB6: JEN"-O

160	 CHAPTER FIVE Basic Computer Organization and Design

are similar to integrated circuit type 74163. The flip-flops can be either of the
V or JK type, as described in Sec. 1-6. The two decoders are standard compo-
nents similar to the ones presented in Sec. 2-2. The common bus system can
be constructed with sixteen 8 x 1 multiplexers in a configuration similar to the
one shown in Fig. 4-3. We are now going to show how to design the control
logic gates. The next section deals with the design of the adder and logic Circuit
associated with AC.

Control Logic Gates
control unit The block diagram of the control logic gates is shown in Fig. 5-6. The inputs

to this circuit come from the two decoders, the I flip-flop, and bits 0 through
II of JR. The other inputs to the control logic are: AC bits 0 through 15 to check
if AC = 0 and to detect the sign bit in AC(15); DR bits 0 through 15 to check if
DR = 0; and the values of the seven flip-flops.

The outputs of the control logic circuit are:

1. Signals to control the inputs of the nine registers
2. Signals to control the read and write inputs of memory
3. Signals to set, clear, or complement the flip-flops
4. Signals for S2, S i , and S0 to select a register for the bus
5. Signals to control the AC adder and logic circuit

The specifications for the various control signals can be obtained directly from
the list of register transfer statements in Table 5-6.

Control of Registers and Memory

The registers of the computer connected to a common bus system are shown
in Fig. 5-4. The control inputs of the registers are LID (load), INR (increment),
and CLR (clear). Suppose that we want to derive the gate structure associated
with the control inputs of AR. We scan Table 5-6 to find all the statements that
change the content of AR:

R'T0 : ARE—PC
R72 : AR—lR(O-11)

DJT3: AR 4M[AR]
RT0 : AR+—O

D5T4: AR—AR +1

The first three statements specify transfer of information from a register
or memory to AR. The content of the source register or memory is placed on

T

R

T0

05

To bus

Clock

SECTION 5-9 Design of Basic Computer	 161

the bus and the content of the bus is transferred into AR by enabling its LD
control input. The fourth statement clears AR to 0. The last statement incre-
ments AR by 1. The control functions can be combined into three Bcolean
expressions as follows:

LD(AR) = RT - R'T. + DT,
CLR(AI) = RT
l\R(AR) =

where LD(AR) is the load input of AR, CL.R(AR) is the clear input of AR, and
INR(AR) is the increment input of AR. The control gate logic associated with
AR is shown in Fig. 5-16.

In a similar fashion we can derive the control gates for the other registers
as well as the logic needed to control the read and write inputs of memory. The
logic gates associated with the read input of memory is derived by scanning
Table 5-6 to find the statements that specify a read operation. The read oper-
ation is recognized from the symbol *-M [AR I.

Read = R'T1 + DIT3 + (D0 + D1 + D2 + D6)T4

The output of the logic gates that implement the Boolean expression above
must be connected to the read input of memory.

Figure 5-16 Control gates associated with AR.

I
T3 lEN

162	 CHAPTER FIVE Basic Computer Organization and Design

Control of Single Flip-flops
The control gates for the seven flip-flops can be determined in a similar
manner. For example, Table 5-6 shows that lEN may change as a result of the
two instructions ION and IOF.

pB7: JEN+-1

pB6: lEN —O

where p D71T3 and B7 and B6 are bits 7 and 6 of JR. respectively. Moreover,
at the end of the interrupt cycle lEN is cleared to 0.

RT2: IEN4-0

If we use a JK flip-flip for lEN, the control gate logic will be as shown in
Fig. 5-17.

Control of Common Bus
The 16-bit common bus shown in Fig. 5-4 is controlled by the selection inputs
S2. S i , and S0 . The decimal number shown with each bus input specifies the
equivalent binary number that must be applied to the selection inputs in order
to select the corresponding register. Table 5-7 specifies the binary numbers for
S2S 1 S0 that select each register. Each binary number is associated with a Boolean
variable x1 through x7, corresponding to the gate structure that must be active
in order to select the register or memory for the bus. For example, when x 1 = 1,
the value of S 2S 1 S0 must be 001 and the output of AR will be selected for the
bus. Table 5-7 is recognized as the truth table of a binary encoder. The place-
ment of the encoder at the inputs of the bus selection logic is shown in Fig.
5-18. The Boolean functions for the encoder are

SO = xi + x3 + x5 + x7

SI = x2 + x3 + x6 + x7

S2 = x4 + x5 + x6 + x7

Figure 5-17 Control inputs for lEN.

X1

XZ

X3

X4

xs
X6

X7

SECTION 5 .9 Design of Basic Computer	 163

TABLE 5-7 Encoder for Bus Selection Circuit

Inputs	 Outputs	 Register
selected

X1	 X2	 x3 	x4 	x5 	x6 	 x7	 S2 	 S1	 .jo	 for bus

(j	 0	 0	 0	 0	 0	 0	 0	 0	 0	 None
1	 0	 0	 0	 0	 0	 0	 0	 0	 1	 AR
o	 1	 0	 0	 0	 0	 0	 0	 1	 0	 PC
o	 0	 1	 0	 0	 0	 0	 0	 1	 1	 DR
o	 0	 0	 1	 0	 0	 0	 1	 0	 0	 AC
o	 o	 0	 0	 1	 0	 0	 1	 0	 1	 1R
o	 0	 0	 0	 0	 1	 0	 1	 1	 0	 TR
0	 0	 0	 0	 0	 0	 1	 1	 1	 1	 Memory

To determine the logic for each encoder input, it is necessary to find the
control functions that place the corresponding register onto the bus. For exam-
ple, to find the logic that makes x 1 = 1, we scan all register transfer statements
in Table 5-6 and extract those statements that have AR as a source.

D4T4: PC —AR
D5T5 : PC —AR

Therefore, the Boolean function for x 1 is

xi = D4T4 + D5T5

The data output from memory are selected for the bus when x 7 = 1 and
S2 5 1 S0 = 111, The gate logic that generates x7 must also be applied to the read
input of memory. Therefore, the Boolean function for x 7 is the same as the one
derived previously for the read operation.

= R'T 1 + DIT3 + (D0 + D1 + D2 + D6)T4

In a similar manner we can determine the gate logic for the other registers.

Figure 5-18 Encoder for bus selection inputs.

From

From IN

164	 CHAPTER FIVE Basic Computer Organization and Design

5-10 Design of Accumulator Logic

The circuits associated with the AC register are shown in Fig. 5-19. The adder
and logic circuit has three sets of inputs. One set of 16 inputs comes from the
outputs of AC. Another set of 16 inputs comes from the data register DR. A
third set of eight inputs comes from the input register !NPR. The outputs of
the adder and logic circuit provide the data inputs for the register. in addition,
it is necessary to include logic gates for controlling the LD, INR, and CLR in
the register and for controlling the operation of the adder and logic circuit.

In order to design the logic associated with AC, it is necessar y to go over
the register transfer statements in Table 5-6 and extract all the statements that
change the content of AC.

	

DOT:	 AC —AC A DR	 AND with DR

	

D 1 Tç:	 AC—AC + DR	 Add with DR
	D 2Tç:	 AC - DR 	Transfer from DR

	

pB 11 :	 AC(O-7) *—INPR	 Transfer from INPR

	

rB9 :	 AC *—AC	 Complement

	

rB7 :	 AC4—shr AC, AC(15)*—E	 Shift right

	

rB:	 AC - shi AC, AC (0) - E	 Shift left

	

rB 11 :	 AC —0	 Clear

	

rB 5 :	 AC—AC + 1	 Increment

From this list we can derive the control logic gates and the adder and logic
circuit.

Figure 5-19 Circuits associated with AC.

1

1'

B1,

r

B-,

8.

To bus

Clock

SECTION 5-IC Design of Accumulator Logic	 165

Control of AC Register
The gate structure that controls the LD, INR, and CLR inputs of AC is shown
in Fig. 5-20. The gate configuration is derived from the control functions in the
list above. The control function for the clear microoperation is rB 11 , where
r = D7173 and B 1 , = IR(11). The output of the AND gate that generates this
control function is connected to the CLR input of the register. Similarly, the
output of the gate that implements the increment microoperation is connected
to the INR input of the register. The other seven microoperatioris are generated
in the adder and logic circuit and are loaded into AC at the proper time. The
outputs of the gates for each control function is marked with a symbolic name.
These outputs are used in the design of the adder and logic circuit.

Figure 5-20 Gate structure for controlling the LD, lR, and CLR of AC.

166	 CHAPTER FIVE Basic Computer Organization and Design

Adder and Logic Circuit
The adder and logic circuit can be subdivided into 16 stages, with each stage
corresponding to one bit of AC. The internal construction of the register is as
shown in Fig. 2-I1. Looking back at that figure we note that each stage has a
JK flip-flop, two OR gates, and two AND gates. The load (LD) input is con-
nected to the inputs of the AND gates. Figure 5-21 shows one such AC register
stage (with the OR gates removed). The input is labeled Ij and the output AC(i).
When the LD input is enabled, the 16 inputs I, for i 0, 1, 2.....15 are
transferred to AC (0-15).

adder and	 One stage of the adder and logic circuit consists of seven AND gates, one
logic circuit OR gate and a full-adder (FA), as shown in Fig. 5-21. The inputs of the gates with

symbolic names come from the outputs of gates marked with the same symbolic
name in Fig. 5-20. For example, the input marked ADD in Fig. 5-21 is connected
to the output marked ADD in Fig. 5-20.

The AND operation is achieved by ANDing AC(i) with the corresponding
bit in the data register DR(i). The ADD operation is obtained using a binary
adder similar to the one shown in Fig. 4-6. One stage of the adder uses a

Figure 5-21 One stage of adder and logic circuit.

DR 0) AC(i)

SECTION 5 1 Design of Accumulator Logic 	 167

tu1l-adder with the corresponding input and output carries. 1 he transfer from
INPR to AC is only for bits 0 through 7. The complement microoperation is
obtained by inverting the bit value in AC. The shift-right operation transfers
the bit from AC(z + 1), and the shift-left operation transfers the bit from
AC(i - 1). The complete adder and logic circuit consists of 16 stages connected
together.

A computer uses a memory unit with 256K words of 32 bits each. A binary
instruction code is stored in one word of memory. The instruction has four
parts: an indirect bit, an operation code, a register code part to specify one
of 64 registers, and an address part.
a. How many bits are there in the operation code, the register code part,

and the address part?
b. Draw the instruction word, fornat and indicate the number of bits in each

part.
c. How many bits are there in the data and address inputs of the memory?

What is the difference between a direct and an indirect address instruction?
How many references to memory are needed for each type of instruction to
bring an operand into a processor register?

The following control inputs are active in the bus system shown in Fig. 5-4.
For each case, specify the register transfer that will ibe executed during the
next clock transition.

	

S2	S1	So
	 LD of register	 Memory Adder

a. t	 I
	

JR	 Read
b. 1	 1
	

PC	 -

	

C. 1	 0
	

DR	 Write

	

d. 0 0
	

AC	 -	 Add

5-4. The following register transfers are to be executed in the system of Fig. 5-4.
For each transfer, specify: (1) the binary value that must be applied to bus
select inputs S, 5, and So; (2) the register whose LD control input must be
active (if any); (3) a memory read or write operation (if needed); and (4) the
operation in the adder and logic circuit (if any).
a. AR—PC
b. 1R4—M[ARJ
c. M(AR]—TR
d. AC—DR, DR.—AC (done simultaneously)

	

5-5.	 Explain why each of the following microoperations cannot be executed

5-1

5-2.

5-3

168	 CHAPTER FIVE Basic Computer Organization and Design

during a single clock pulse in the system shown in Fig. 5-4. Specify a
sequence of microoperations that will perform the operation.
a. IR-M[PC]
b. AC*- AC + TR
c. DR - DR + AC (AC does not change)

5-6. Consider the instruction formats of the basic computer shown in Fig. 5-5 and
the list of instructions given in Table 5-2. For each of the following 16-bit
instructions, give the equivalent four-digit hexadecimal code and explain in
your own words what it is that the instruction is going to perform.
a. 0001 0000 0010 0100
b. 1011 0001 0010 0100
c. 0111 0000 0010 0000

	

5-7.	 What are the two instructions needed in the basic computer in order to set
the E flip-flop to P

Draw a timing diagram similar to Fig. 5-7 assuming that SC is cleared to 0
at time T3 if control signal C7 is active.

C 'T3: SC'-0

C7 is activated with the positive clock transition associated with 1.

5-9. The content of AC in the basic computer is hexadecimal A937 and the initial
value of E is 1. Determine the contents of AC, E, PC, AR, and JR in hexadec-
imal after the execution of the CLA instruction. Repeat 11 more times,
starting from each one of the register-reference instructions. The initial value
of PC is hexadecimal 021.

5-10. An instruction at address 021 in the basic computer has 1 0, an operation
code of the AND instruction, and an address part equal to 083 (all numbers
are in hexadecimal). The memory word at address 083 contains the operand
B8F2 and the content of AC is A937. Co over the instruction cycle and
determine the contents of the following registers at the end of the execute
phase: PC, AR, DR. AC, and JR. Repeat the problem six more times starting
with an operation code of another memory-reference instruction.

5-11. Show the contents in hexadecimal of registers PC, AR, DR, IR, and SC of
the basic computer when an ISZ indirect instruction is fetched from memory
and executed. The initial content of PC is 7FF. The content of memory at
address 7FF is EA9F. The content of memory at address A9F is 0C35. The
content of memory at address C35 is FFFF. Give the answer in a table with
five columns, one for each register and a row for each timing signal. Show
the contents of the registers after the positive transition of each clock pulse.

5-12. The content of PC in the basic computer is 3AF (all numbers are in hexadec-
imal). The content of AC is 7EC3. The content of memory at address 3AF is
932E. The content of memory at address 32F is flAC The content 1 memory

i., 5139F.
a, What is the instruction that will be fetched and executed next?
b. Show the binary operation that will be performed in the AC when the

instruction is executed.

SECTION 5-10 Design of Accumulator Logic	 169

c. Give the contents of registers PC, AR, PR, AC, and JR in hexadecimaland the values of £, 1, and the sequence counter SC in binary at the endof the instruction cycle.

5-13. Assume that the first six memory-reference instructions in the basic com-
puter listed in Table 5-4 are to be changed to the instructions specified in the
following table. EA is the effective address that resides in AR during time
T4 . Assume that the adder and logic circuit in Fig. 5-4 can perform the
exclusive-OR operation AC 4—AC DR. Assume further that the adder and
logic circuit cannot perform subtraction directly. The subtraction must be
done using the 2's complement of the subtrahend by complementing and
incrementing AC. Give the sequence of register transfer statements needed
to execute each of the listed instructions starting from timing T4 . Note that
the value in AC should not change unless the instruction specifies a change
in its content. You can use TR to Store the content of AC temporary or you
can exchange DR and AC.

Symbol Opcode	 Symbolic designation 	 Description in words

XOR	 000 AC 4— ACeMEEAI	 Exclusive-OR to AC
ADM	 001 M [EA I 4—M [EA] + AC	 Add AC to memory
SUB	 010 AC'—AC - M[EA]	 Subtract memory from AC
XCI-!	 011 AC+—M[EA], M[EA]—AC Exchange AC and memory
SEQ	 100	 If (M[EA] AC) then	 Skip on equal

(PC f—PC + 1)
BPA	 101	 If(AC >0) then (PC 4—EA)	 Branch if AC positiveand

non-zero

5-14.	 Make the following changes to the basic computer.
1. Add a register to the bus system CTR (count register) to be selected with

S2S 1 S0 = 000.
2. Replace the ISZ instruction with an instruction that loads a number into

erR.

LDC Address	 CYR -M [Address]

3. Add a register reference instruction ICSZ: Increment CTR and skip next
instruction if zero. Discuss the advantage of this change.

5-15. The memory unit of the basic computer shown in Fig. 5-3 is to be changed
to a 65,536 x 16 memory, requiring an address of 16 bits. The instruction
format of a memory-reference instruction shown in Fig. 5-5(a) remains the
same for 1 = 1 (indirect address) with the address part of the instruction
residing in posifr)ns 0 through 11. But when 1 0 (direct address), the
address of the instruction is given by the 16 bits in the next word following
the instruction. Modify the microoperations during time T2, T3, (and T4 if
necessary) to conform with this configuration

170	 CHAFFER FIVE Basic Computer Organization and Design

	

5-16.	 A computer uses a memory of 65,536 words with eight bits in each word,
It has the following registers: PC, AR, TR (16 bits each), and AC, DR. 1R
(eight bits each). A memory-reference instruction Consists of three words: an
8-bit operation-code (one word) and a 16-bit address (in the next two words).
All operands are eight bits. There is no indirect bit.
a. Draw a block diagram of the computer showing the memory and registers

as in Fig. 5-3. (Do not use a common bus).
b. Draw a diagram showing the placement in memory of a typical three-

word instruction and the corresponding 8-bit operand.
c. List the sequence of microoperations for fetching a memory reference

instruction and then placing the operand in DR. Start from timing sig-
nal T0.

517. A digital computer has a memory unit with a capacity of 16,384 words, 40
bits per word. The instruction code format consists of six bits for the oper-
ation part and 14 bits for the address part (no indirect mode bit). Two
instructions are packed in one memory word, and a 40-bit instruction regis-
ter 1R is available in the control unit. Formulate a procedure for fetching and
executing instructions for this computer.

5-18. An output program resides in memory starting from address 2300. It is
executed after the computer recognizes an interrupt when 1-'GO becomes a
I (while lEN = 1).
a. What instruction must be placed at address 1?
b. What must be the last two instructions of the output program?

	

5-19.	 The register transfer statements for a register R and the memory in a com-
puter are as follows (the X's are control functions that occur at random):

XX1 : R 4—M[ARI	 Read memory word into R
X X2 : R 4—AC	 Transfer AC to R
XX3: MEARI 4—R	 Write R to memory

The memory has data inputs, data outputs, address inputs, and control
inputs to read and write as in Fig. 2-12. Draw the hardware implementation
of Rand the memory in block diagram form. Show how the control functions
X 1 through X3 select the load control input of R, the select inputs of multi-
plexers that you include in the diagram, and the read and write inputs of
the memory.

	

5-20.	 The operations to be performed with a flip-flop F (not used in the basic
computer) are specified by the following register transfer statements:

xT3: F4-1	 Set Ftol
yT 1 : F 	 Clear Fto0
zT2: F-r	 Complement F
wT: F 4—C	 Transfer value of G to F

Otherwise, the content of F must not change. Draw the logic diagram
showing the connections of the gates that form the control functions and the
inputs of flip-flop F. Use a JK flip-flop and minimize the number of gates.

SECTION 5. 10 Design of Accumulator Logic 	 171

	

5-21.	 Derive the control gates associated with the program counter PC in the basic
rnp U er.

	

5-22.	 Derive the control gates for the write input of the memory in the basic
computer.

	

5-23.	 Show the complete logic of the interrupt flip-flops R in the basic computer.
Use a 11< flip-flop and minimize the number of gates.

	

5-24.	 Derive the Boolean logic expression for x 2 (see Table 5-7). Show that x 2 can
be generated with one AND gate and one OR gate.

	

5-25.	 Derive the Boolean expression for the gate structure that clears the sequence
counter SC to 0. Draw the logic diagram of the gates and show how the
output is connected to the INR and CLR inputs of SC (see Fig. 5-6). Minimize
the number of gates.

REFERENCES

1. Bell, C. G., J. C. Mudge, and J . E. McNamara, Computer Engineering. Bedford,
MA: Digital Press, 1980.

2. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,
1984.

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hall, 1987.

5. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd
ed. New York: John Wiley, 1987.

6. Lewin, M. H. Logic Design and Computer Organization. Reading, MA: Addison-
Wesley, 1983.

7. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

8. Patterson, D. A. and J. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

9. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1987.

10. Shiva, S. C., Computer Design and Architecture, 2nd ed. New York: HarperCollins
Publishers, 1991.

-.	 ..

55.

S I.	 .'	 •.•

-	 -	 5.	 --

S. 	-.	 -	 -	 . 	
_ 5_.•	 5	 5	 5

-	 -	 -'•.

5I	 .-
".5

	

-	 S

-	
I,..,	 . 	

.•	 -	 S

-.5

	•_••.fS.•.S	
•	 .	

..,	 ...-	
•5 	

'5	 5

IF-

	

-	 I

CHAPTER SIX

Programming
the Basic Computer,

IN THIS CHAPTER

6-1	 introduction
6-2	 Machine Language
6-3	 Assembly Language
64	 The Assembler
6.5	 Program Loops
66	 Programming Arithmetic and Logic Operations
6-7	 Subroutines
6-8	 Input-Output Programming

6-1 Introduction

A total computer system includes both hardware and software. Hardware con-
sists of the physical components and all associated equipment. Software refers
to the programs that are written for the computer. It is possible to be familiar
with various aspects of computer software without being concerned with
details of how the computer hardware operates. It is also possible to design
parts of the hardware without a knowledge of its software capabilities. How-
ever, those concerned with computer architecture should have a knowledge of
both hardware and software because the two branches influence each other.

Writing a program for a computer consists of specifying, directly or
indirectly, a sequence of machine instructions. Machine instructions inside the
computer form a binary pattern which is difficult, if not impossible, for people
to work with and understand. It is preferable to write programs with the more
familiar symbols of the alphanumeric character set. As a consequence, there
is a need for translating user-oriented symbolic programs into binary programs
recognized by the hardware.

A program written by a user may be either dependent or independent of

173

174	 CHAPTER SIX Programming the Basic Computer

the physical computer that runs his program. For example, a program written
in standard Fortran is machine independent because most computers provide
a translator program that converts the standard Fortran program to the binary
code of the computer available in the particular installation. But the translator
program itself is machine dependent because it must translate the Fortran
program to the binary code recognized by the hardware of the particular
computer used.

This chapter introduces some elementary programming concepts and
shows their relation to the hardware representation of instructions. The first
part presents the basic operation and structure of a program that translates a
user's symbolic program into an equivalent binary program. The discussion
emphasizes the important concepts of the translator rather than the details of
actually producing the program itself. The usefulness of various machine
instructions is then demonstrated by means of several basic programming
examples.

instruction set The instruction set of the basic computer, whose hardware organization
was explored in Chap. 5, is used in this chapter to illustrate many of the
techniques commonly used to program a computer. In this way it is possible
to explore the relationship between a program and the hardware operations
that execute the instructions.

The 25 instructions of the basic computer are repeated in Table 6-1 to
provide an easy reference for the programming examples that follow. Each
instruction is assigned a three-letter symbol to facilitate writing symbolic pro-
grams. The first seven instructions are memory-reference instructions and the
other 18 are register-reference and input—output instructions. A memory-
reference instruction has three parts: a mode bit, an operation code of three
bits, and a 12-bit address. The first hexadecimal digit of a memory-reference
instruction includes the mode bit and the operation code. The other three digits
specify the address. In an indirect address instruction the mode bit is 1 and the
first hexadecimal digit ranges in value from 8 to E. In a direct mode, the range
is from 0 to 6. The other 18 instructions have a 16-bit operation code. The code
for each instruction is listed as a four-digit hexadecimal number. The first digit
of a register-reference instruction is always 7. The first digit of an input—output
instruction is always F. The symbol m used in the description column denotes
the effective address. The letter M refers to the memory word (operand) found
at the effective address.

6-2 Machine Language

A program is a list of instructions or stat&'nsents for directing the:' computer t
perform a required data-processing task. There are various types of program-
ming languages that one may write fora computer, but the computer can execute
programs only when they are represented internally in binary form, Programs

SECTION 6-2 Machine Language	 175

TABLE 61 Computer Instructions

Hexadecimal
Symbol	 code	 Description

AND
	

0or8	 AND MtoAC
ADD
	

I or 	 Add Mto AC, carry toE
LDA
	

2orA	 Load AC from M
STA
	

3orB	 Store ACinM
BUN
	

4 or C	 Branch unconditionally to n
BSA
	

5 or D	 Save return address in m and branch to m -j--
ISz
	

6 or E	 increment M and skip if zero
CLA
	

7800	 Clear AC
CLE
	

7400	 Clear E
CMA
	

7200	 Complement AC
CME
	

7100	 Complement E
CIR
	

7080	 Circulate right E and 4C
CIL
	

7040	 Circulate left Eand AC
INC
	

7020	 Increment AC,
SPA
	

7010	 Skip if AC is positive
SNA
	

7008	 Skip if AC is negative
SZA
	

7004	 Skip if AC is zero
SZE
	

7002	 Skip if Eis zero
HLT
	

7001	 Halt computer
1NP
	

F800	 Input information and clear flag
OUT
	

F400	 Output information and clear flag
SKI
	

F200	 Skip if input flag is on
SKO
	

FI00	 Skip if output flag is on
ION
	

F080	 Turn interrupt on
IOF
	

F040	 Turn interrupt off

written in any other language must be translated to the binary representation
of instructions before they can be executed by the computer. Programs written
for a computer may be in one of the following categories:

1. Binary code. This is a sequence of instructions and operands in binary
that list the exact representation of instructions as they appear in com-
puter memory.

2. Octal or hexadecimal code. This is an equivalent translation of the binary
code to octal or hexadecimal representation.

3. Symbolic code. The user employs symbols (letters, numerals, or special
characters) for the operation part, the address part, and other parts of
the instruction code. Each symbolic instruction can be translated into
one binary coded instruction. This translation is done by a special
program called an assembler. Because an assembler translates the sym-

176	 CHAPTER SIX Programming the Basic Computer

assembly language

	

	 bols, this type of symbolic program is referred to as an assembly language
program.

,. lges. These aie speci al ianguages developed
to reflect the procedures used in the solution of a problem rather than
be concerned with the computer hardware behavior. An example of a
high-level programming language is Fortran. It employs problem-
oriented symbols and formats. The program is written in a sequence of
statements in a form that people prefer to think in when solving a
problem. However, each statement must be translated into a sequence
of binary instructions before the program can be executed in a com-
puter. The program that translates a high-level language program to
binary is called a compiler.

machine language Strictly speaking, a machine language program is a binary program of
category 1. Because of the simple equivalency between binary and octal or
hexadecimal representation, it is customary to refer to category 2 as machine
language. Because of the one-to-one relationship between a symbolic instruc-
tion and its binary equivalent, an assembly language is considered to be a
machine-level language.

We now use the basic computer to illustrate the relation between binary
and assembly languages. Consider the binary program listed in Table 6-2. The
first column gives the memory location (in binary) of each instruction or
operand. The second column lists the binary content of these memory loca-
tions. (The location is the address of the memory word where the instruction
is stored. It is important to differentiate it from the address part of the instruc-
tion itself.) The program can be stored in the indicated portion of memory, and
then executed by the computer starting from address 0. The hardware of the
computer will execute these instructions and perform the intended task. How-
ever, a person looking at this program will have a difficult time understanding
what is to be achieved when this program is executed. Nevertheless, the
computer hardware recognizes only this type of instruction code.

TABLE 6-2 Binary Program to Add Two Numbers

Location	 Instruction code

	

0	 0010 0000 0000 0100

	

1	 0001 0000 0000 0101

	

10	 0011 0000 0000 0110

	

11	 0111 0000 0000 0001

	

100	 0000 0000 0101 0011

	

101	 1111 1111 1110 1001

	

110	 0000 0000 0000 0000

SECTION 6.2 Machine Language	 177

TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location	 Instruction

	

000	 2004

	

001	 1005

	

002	 3006

	

003	 7001

	

004	 0053

	

005	 FFE9

	

006	 0000

Writing 16 bits for each instruction is tedious because there are too many
digits. We can reduce the number of digits per instruction if we write the octal
equivalent of the binary code. This will require six digits per instruction. On
the other hand, we can reduce each instruction to four digits if we write the

hexadecimal code equivalent hexadecimal code as shown in Table 6-3. The hexadecimal represen-
tation is convenient to use; however, one must realize that each hexadecimal
digit must be converted to its equivalent 4-bit number when the program is
entered into the computer. The advantage of writing binary programs in
equivalent octal or hexadecimal form should be evident from this example.

The program in Table 6-4 uses the symbolic names of instructions (listed
in Table 6-1) instead of their binary or hexadecimal equivalent. The address
parts of memory-reference instructions, as well as operands, remain in their
hexadecimal value. Note that location 005 has a negative operand because the
sign bit in the leftmost position is 1. The inclusion of a column for comments
provides some means for explaining the function of each instruction. Symbolic
programs are easier to handle, and as a consequence, it is preferable to write
programs with symbols. These symbols can be converted to their binary code
equivalent to produce the binary program.

We can go one step further and replace each hexadecimal address by a

TABLE 6-4 Program with S ymbolic Operation Codes

Location	 Instruction	 Comments

000	 LDA 004	 Load first operand into AC
001	 ADD 005	 Add second operand to AC
002	 STA 006	 Store sum in location 006
003	 1-11T	 Halt computer
004	 0053	 First operand
005	 FFE9	 Second operand (negative)
006	 0000	 Store sum here

178	 CHAPTER SIX Programming the Basic Computer

TABLE 6-5 Assembly Language Program to Add Two Numbers

ORG 0	 /Origin of program is location 0
LDA A	 iLoad operand from location A
ADD B	 /Add operand from location
STA C	 /Store sum in location C
HLT	 /Halt computer

A, DEC 83	 Decimal operand
B, DEC —23 /Decimal operand
C, DEC 0	 /Sum stored in location C

END	 /End of symbolic program

symbolic address and each hexadecimal operand by a decimal operand. This
is convenient because one usually does not know exactly the numeric memory
location of operands while writing a program. If the operands are placed in
memory following the instructions, and if the length of the program is not
known in advance, the numerical location of operands is not known until the
end of the program is reached. In addition, decimal numbers are more familiar
than their hexadecimal equivalents.

The program in Table 6-5 is the assembly-language program for adding
two numbers. The symbol ORG followed by a number is not a machine
instruction. Its purpose is to specify an origin, that is, the memory location of
the next instruction below it. The next three lines have symbolic addresses.
Their value is specified by their being present as a label in the first column.
Decimal operands are specified following the symbol DEC. The numbers may
be positive or negative, but if negative, they must be converted to binary in the
signed-2's complement representation. The last line has the symbol END
indicating the end of the program. The symbols ORG. DEC, and END, called
pseudoinstructions, are defined in the next section. Note that all comments are
preceded by a slash.

The equivalent Fortran program for adding two integer numbers is listed
in Table 6-6. The two values for A and B may be specified by an input statement
or by a data statement. The arithmetic operation for the two numbers is
specified by one simple statement. The translation of this Fortran program into
a binary program consists of assigning three memory locations, one each for
the augend, addend, and sum, and then deriving the sequence of binary

TABLE 6-6 Fortran Program to Add Two Numbers

INTEGER A, B, C
DATA A,83 B,-23
C A +B
END

SEC[ION 6 .3 Assembly Language	 179

instructions that form the sum. Thus a compiler program translates the sym-
bols of the Fortran program into the binary values listed in the program of
Table 6-2.

6-3 Assembly Language

A programming language is defined by a set of rules. Users must conform with
all format rules of the language if they want their programs to be translated
correctly. Almost every commercial computer has its own particular assembly
language. The rules for writing assembly language programs are documented
and published in manuals which are usually available from the computer
manufacturer.

The basic unit of an assembly language program is a line of code. The
specific language is defined by a set of rules that specify the symbols that can
be used and how they may be combined to form a line of code. We will now
formulate the rules of an assembly language for writing symbolic programs for
the basic computer.

Rules of the Language

Each line of an assembly language program is arranged in three columns called
fields. The fields specify the following information.

1. The label field may be empty or it may specify a symbolic address.
2. The instruction field specifies a machine instruction or a pseudoin-

struction.
3. The comment field may be empty or it may include a comment.

symbolic address A symbolic address consists of one, two, or three, but not more than three
alphanumeric characters. The first character must be a letter; the next two may
be letters or numerals. The symbol can be chosen arbitrarily by the pro-
grammer. A symbolic address in the label field is terminated by a comma so
that it will be recognized as a label by the assembler.

The instruction field in an assembly language program may specify one
of the following items:

1. A memory-reference instruction (MRI)
2. A register-reference or input—output instruction (non-MRI)
3. A pseudoinstruction with or without an operand

A memory-reference instruction occupies two or three symbols separated
by spaces. The first must be a three-letter symbol defining an MRI operation

180	 CHAPTER SIX Programming the Bask Computer

code from Table 6-1. The second is a symbolic address. The third s y mbol, which
may or may not be present, is the letter!. If I is missing, the line denotes a direct
address instruction. The presence of the symbol I denotes an indirect address
instruction.

A non-MRI is defined as an instruction that does not have an address
part. A non-MRI is recognized in the instruction field of a program by any one
of the three-letter symbols listed in Table 6-1 for the register-reference and
input-output instructions.

The following is an illustration of the symbols that may be placed in the
instruction field of a program.

CLA	 non-MRI
ADD OPR	 direct address MRI
ADD PTR I	 indirect address NRI

The first three-letter symbol in each line must be one of the instruction symbols
of the computer and must be listed in Table 6-1. A memory-reference instruc-
tion, such as ADD, must be followed by a symbolic address. The letter I may
or may not be present.

A symbolic address in the instruction field specifies the memory location
of an operand. This location must be defined somewhere in the program by
appearing again as a label in the first column. To be able to translate an
assembly language program to a binary program, it is absolutely necessary that
each symbolic address that is mentioned in the instruction field must occur
again in the label field.

pseudoinstiuction A pseudoinstruction is not a machine instruction but rather an instruction
to the assembler giving information about some phase of the translation. Four
pseudoinstructions that are recognized by the assembler are listed in Table 6-7.
(Other assembly language programs recognize many more pseudoinstruc-
tions.) The ORG (origin) pseudoinstruction informs the assembler that the
instruction or operand in the following line is to be placed in a memory location
specified by the number next to ORG. It is possible to use ORG more than once
in a program to specify more than one segment of memory. The END symbol

TABLE 6..7 Definition of Pseudoinstruct ions

Symbol	 Information for the Assembler

ORG N	 Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

END	 Denotes the end of symbolic program
DEC N	 Signed decimal number N to be converted to binary
HEX N	 Hexadecimal number N to be converted to binary

SECTION 6-3 Assembly Language	 181

is placed at the end of the program to inform the assembler that the program
is terminated. The other two pseudoinstructions specify the radix of the
operand and tell the assembler how to convert the listed number to a binary
number.
1. The third field in a program is reserved for comments. Aline of code may

or may not have a comment, but if it. has, it must be preceded by a slash for
the assembler to recognize the beginning of a comment field. Comments are
useful for explaining the program and are helpful in understanding the step-
by-step procedure taken by the program. Comments are inserted for explana-
tion purposes only and are neglected during the binary translation process.

An Example
The program of Table 6-8 is an example of an assembly language program. The
first line has the pseudoinstruction ORG to define the origin of the program
at memory location (100)16. The next six lines define machine instructions, and
the last four have pseudoinstructions. Three symbolic addresses have been
used and each is listed in column I as a label and in column 2 as an address
of a memory-reference instruction. Three of the pseudoinstructions specify
operands, and the last one signifies the END of the program.

When the program is translated into binary code and executed by the
computer it will perform a subtraction between two numbers. The subtraction
is performed by adding the minuend to the 2's complement of the subtrahend.
The subtrahend is a negative number. It is converted into a binary number in
signed-2's complement representation because we dictate that all negative
numbers be in their 2's complement form. When the 2's complement of the
subtrahend is taken (by complementing and incrementing the AC), —23 con-
verts to ±23 and the difference is 83 + (2's compIemext of —23) = 83 +
23 = 106.

TABLE 6-8 Assembly Language Program to Subtract Two Numbers

ORG 100	 /Origin of program is location 100
LDA SUB	 /Load subtrahend to AC

CMA	 /Complement AC

INC	 Ilncrement AC

ADD MEN /Add minuend to AC
STA DIF	 /Store difference
I-ItT	 /Halt computer

MIN,	 DEC 83	 /Minuend
SUB,	 DEC -
DIF,	 HEX 0	 /Difference stored here

END	 /End of symbolic program

182	 CHAPTER SIX Programming the Basic Computer

Translation to Binary
The translation of the symbolic program into binary is done by a special

assembler program called an assembler. The tasks performed by the assembler will be
better understood if we first perform the translation on paper. The translation
of the symbolic program of Table 6-8 into an equivalent binary code may be
done by. scanning the program and replacing the symbols by their machine
code binary equivalent. Starting from the first line, we encounter an ORG
pseudoinstruction. This tells us to start the binary program from hexadecimal
location 100. The second line has two symbols. It must be a memory-reference
instruction to be placed in location 100. Since the letter I is missing, the first
bit of the instruction code must be 0. The symbolic name of the operation is
LDA. Checking Table 6-1 we find that the first hexadecimal digit of the instruc-
tion should be 2. The binary value of the address part must be obtained from
the address symbol SUB. We scan the label column and find this symbol in line
9. To determine its hexadecimal value we note that line 2 contains an instruc-
tion for location 100 and every other line specifies a machine instruction or an
operand for sequential memory locations. Counting lines, we find that label
SUB in line 9 corresponds to memory location 107. So the hexadecimal address
of the instruction LDA must be 107. When the two parts of the instruction are
assembled, we obtain the hexadecimal code 2107. The other lines representing
machine instructions are translated in a similar fashion and their hexadecimal
code is listed in Table 6-9.

Two lines in the symbolic program specify decimal operands with the
pseudoinstruction DEC. A third specifies a zero by means of a HEX pseudo-
instruction (DEC could be used as well). Decimal 83 is converted to binary and
placed in location 106 in its hexadecimal equivalent. Decimal —23 is a negative
number and must be converted into binary in signed-2's complement form.

TABLE 6-9 Listing of Translated Program of Table 6-8

Hexadecimal code

	

Location	 Content	 Symbolic program

ORG 100
100	 2107	 LDA SUB
101	 7200	 CMA
102	 7020	 INC
103	 1106	 ADD MIN
104	 3108	 STADIF
105	 7001	 HLT
106	 0053	 MIN,	 DEC 83
107	 FFE9	 SUB, DEC —23
108	 0000	 DIF,	 HEX 0

END

SECTION 6-4 The Assembler 	 183

The hexadecimal equivalent of the binary number is placed in location 107. The
END symbol signals the end of the symbolic program telling us that there are
no more lines to translate.

address symbol table The translation process can be simplified if we scan the entire symbolic
program twice. No translation is done during the first scan. We merely assign
a memory location to each machine instruction and operand, The location
assignment will define the address value of labels and facilitate the translation
process during the second scan. Thus in Table 6-9, we assign location 100 to
the first instruction after ORG. We then assign sequential locations for each line
of code that has a machine instruction or operand up to the end of the program.
(ORG and END are not assigned a numerical location because they do not
represent an instruction or an operand.) When the first scan is completed, we
associate with each label its location number and form a table that defines the
hexadecimal value of each symbolic address. For this program, the address
symbol table is as follows:

Address symbol 	 Hexadecimal address

MIN	 106
SUB	 107
DIF	 108

During the second scan of the symbolic program we refer to the address
symbol table to determine the address value of a memory-reference instruc-
tion. For example, the line of code LDA SUB is translated during the second
scan by getting the hexadecimal value of LDA from Table 6-1 and the hexadec-
imal value of SUB from the address-symbol table listed above. We then assem-
ble the two parts into a four-digit hexadecimal instruction. The hexadecimal
code can be easily converted to binary if we wish to know exactly how this
program resides in computer memory.

When the translation from symbols to binary is done by an assembler
program, the first scan is called the first pass, and the second is called the second
pass.

6-4 The Assembler

An assembler is a program that accepts a symbolic language program and
produces its binary machine language equivalent. The input symbolic program
is called the source program and the resulting binary program is called the object
program. The assembler is a program that operates on character strings and
produces an equivalent binary interpretation.

184	 CRAFTER SIX Programming the Basic Computer

line of code

Representation of Symbolic Program in Memory
-:cr c :h ssembiy process, the symbolic program rIUSt he stored

in memory. The user types the symbolic program on a terminal. A loader
program is used to input the characters of the symbolic program into memory.
Since the program consists of symbols, its representation in memory must use
an alphanumeric character code. In the basic computer, each character is
represented by an 8-bit code. The high-order bit is always 0 and the other seven
bits are as specified by ASCII. The hexadecimal equivalent of the character set
is listed in Table 6-10, Each character is assigned two hexadecimal digits which
can be easily converted to their equivalent 8-bit code. The last entry in the table
does not print a character but is associated with the physical movement of the
cursor in the terminal. The code for CR is produced when the return key
is depressed. This causes the "carriage" to return to its initial position to start
typing a new line. The assembler recognizes a CR code as the end of a line of
code.

A line of code is stored in consecutive memory locations with two char-
acters in each location. Two characters can be stored in each word since a
memory word has a capacity of 16 bits. A label symbol is terminated with a
comma. Operation and address symbols are terminated with a space and the
end of the line is recognized by the CR code. For example, the following line
of code:

PL3,	 LDSUBI

TABLE 640 Hexadecimal Character Code

Character	 Code	 Character	 Code	 Character	 Code

A
	

41
	

Q
	

51
	

6	 36
B
	

42
	

R
	

52
	

7	 37

C
	

43
	

S
	

53
	

8	 38
D
	

44
	

T
	

54
	

9	 39
E
	

45
	

U
	

55
	

space	 20
F
	

46
	

V
	

56
	

(28
0
	

47
	

W
	

57
	

)	 29
Fl
	

48
	

X
	

58
	 *	 2A

49
	

Y
	

59
	 +	 28

3
	

4A
	

Z
	

5A
	

2C
K
	

4B
	

0
	

30	 -	 2D
L
	

4C
	

31	 -	 2E
M
	

4D
	

2
	

32
	

I	 2F
N
	

4E
	

3
	

33	 =	 3D
0
	

4F
	

4
	

34
	

CR	 OD
P
	

50
	

5
	

35
(carriage
return)

Memory
word

2
3
4
5
6
7

Symbol

PL
3,
L
A
S U
B
I CR

SECTION 64 The Assembler	 185

TABLE 6-11 Computer Representation of the Line 01 Code: PL3, LDA SUB I

Hexadecimal
code

50 4C
33 2C
4C 44
41 20
53 55
42 20
49 OD

Binary representation

0101 0000 0100 1100
0011 0011 0010 1100
0100 1100 0100 0100
0100 0001 0010 0000
0101 0011 0101 0101
0100 0010 0010 0000
0100 1001 0000 1101

is stored in seven consecutive memory locations, as shown in Table 6-11. The
label PL3 occupies two words and is terminated by the code for comma (2C).
The instruction field in the line of code may have one or more symbols. Each
symbol is terminated by the code for space (20) except for the last symbol,
which is terminated by the code of carriage return (OD). If the line of code has
a comment, the assembler recognizes it by the code for a slash (2F). The
assembler neglects all characters in the comment field and keeps checking for
a CR code. When this code is encountered, it replaces the space code after the
last symbol in the line of code.

The input for the assembler program is the user's symbolic language
program in ASCII. This Input is scanned by the assembler twice to produce the
equivalent binary program. The binary program constitutes the output gener-
ated by the assembler. We will now describe briefly the major tasks that must
be performed by the assembler during the translation process.

First Pass

location counter (LC)

A two-pass assembler scans the entire symbolic program twice. During the first
pass, it generates a table that correlates all user-defined address symbols with
their binary equivalent value. The binary translation is done during the second
pass. To keep track of the location of instructions, the assembler uses a memory
word called a location counter (abbreviated LC). The content of LC stores the
value of the memory location assigned to the instruction or operand presently
being processed. The ORG pseudoinstruction initializes the location counter
to the value of the first location. Since instructions are stored in sequential
locations, the content of LC is incremented by 1 fter prncrcerg each line cf
code. To avoid ambiguity in case ORG is missing, the assembler Sets the
location counter to 0 initially.

The tasks performed by the assembler during the first pass are described
in the flowchart of Fig. 6-1. LC is initially set to 0. A line of symbolic code is
analyzed to determine if it has a label (by the presence of a comma). If the line

186	 CHAVTER six Programming the Basic Computer

First pass

LC-O

	

Scan next line of code	 I
I I Set LC

yes

yes

END')--

Go to
Store symbol

in address-
symbol table	 second
together with	 pass
value of LC	 I

Increment LC

Figure 6-1 Flowchart for first pass of assembler.

of code has no label, the assembler checks the symbol in the instruction field.
If it contains an ORG pseudoinstruction, the assembler sets LC to the number
that follows ORG and goes back to process the next line. If the line has an END
pseudoinstruction, the assembler terminates the first pass and goes to the
second pass. (Note that a line with ORG or END should not have a label.) If
the line of code contains a label, it is stored in the address symbol table together
with its binary equivalent number specified by the content of LC. Nothing is
stored in the table if no label is encountered. LC is then incremented by I and
a new line of code is processed.

For the program of Table 6-8, the assembler generates the address symbol
table listed in Table 6-12. Each label symbol is stored in two memory locations
and is terminated by a comma. If the label contains less than three characters,
the memory locations are filled with the code for space. The value found in LC
while the line was processed is stored in the next sequential memory location.
The program has three symbolic addresses: MIN, SUB, and DIF. These sym-
bols represent 12-bit addresses equivalent to hexadecimal 106. 107. and 108,

SECTION 6 . 4 The Assembler
	

187

TABLE 6-12 Address Symbol Table for Program in Table 6-8

Symbol	 Hexadecimal
or (LC) I	 code	 Binary representation

MI
	

4D 49
	

0100 1101 0100 1001
N,	 4E 2C
	

0100 1110 0010 1100
(LC)
	

01 06
	

0000 0001 0000 0110
S
	

53 55
	

0101 0011 0101 0101
B,	 42 2C
	

0100 0010 0010 1100
(LC)
	

01 07
	

0000 0001 0000 0111
DI
	

44 49
	

0100 0100 0100 1001
F,	 46 2C
	

0100 0110 0010 1100
(LC)
	

01 08
	

0000 0001 0000 1000

Memory
word

1
2
3
4
5
6
7
8
9

(LC) designates content of location counter.

respectively. The address symbol table occupies three words for each label
symbol encountered and constitutes the output data that the assembler gener-
ates during the first pass.

Second Pass
Machine instructions are translated during the second pass by means of table-

table-lookup lookup procedures. A table-lookup procedure is a search of table entries to
determine whether a specific item matches one of the items stored in the table.
The assembler uses four tables. Any symbol that is encountered in the program
must be available as an entry in one of these tables; otherwise, the symbol
cannot be interpreted. We assign the following names to the four tables:

1. Pseudoinstruction table.
2. MRJ table.
3. Non-MRI table.
4. Address symbol table.

The entries of the pseudoinstruction table are the four symbols ORG.
END, DEC, and HEX. Each entry refers the assembler to a subroutine that
processes the pseudoinstruction when encountered in the program. The MRI
table contains the seven symbols of the memory-reference instructions and
their 3-bit operation code equivalent. The non-MRI table contains the symbols
for the 18 register-reference and input-output instructions and their 16-bit
binary code equivalent. The address symbol table is generated during the first
pass of the assembly process. The assembler searches these tables to find the
symbol that it is currently processing in order to determine its binary value.

The tasks performed by the assembler during the second pass are de-

188	 CHAPTER Stx Programming the Raic Computer

scribed in the flowchart of Fig. 6-2. LC is ir.itialiv set to 0. Lines of code are then
analyzed one at a time. Labels are neglected during the second pass, so the
assembler goes immediately to the instruction field and proceeds to check the
first symbol encountered. It first checks the pseudoinstruction table. A match
with ORG sends the assembler to a subroutine that sets LC to an initial value.
A match with END terminates the translation process. An operand pseudo-
instruction causes a conversion of the operand into binary. This operand is
placed in the memory location specified by the content of LC. The location
counter is then incremented by I and the assembler continues to analyze the
next line of code.

If the symbol encountered is not a pseudoinstruction, the assembler
refers to the MRI table. If the symbol is not found in this table, the assembler
refers to the non-MRI table. A symbol found in the non-MRI table corresponds
to a register reference or input—output instruction. The assembler stores the
16-bit instruction code into the memory word specified by LC. The location
counter is incremented and a new line analyzed.

When a symbol is found in the MRI table, the assembler extracts its
equivalent 3-bit code and inserts it in bits 2 through 4 of a word. A memory
reference instruction is specified by two or three symbols. The second symbol
is a symbolic address and the third, which may or may not be present, is the
letter I. The symbolic address is converted to binary by searching the address
symbol table. The first bit of the instruction is set to 0 or I, depending on
whether the letter I is absent or present. The three parts of the binary instruc-
tion code are assembled and then stored in the memory location specified by
the content of LC. The location counter is incremented and the assembler
continues to process the next line.

error diagnostics One important task of an assembler is to check for possible errors in the
symbolic program. This is called error diagnostics. One such error may be an
invalid machine code symbol which is detected by its being absent in the MRI
and non-MRJ tables. The assembler cannot translate such a symbol because it
does not know its binary equivalent value. In such a case, the assembler prints
an error message to inform the programmer that his symbolic program has an
error at a specific line of code. Another possible error may occur if the program
has a symbolic address that did not appear also as a label. The assembler cannot
translate the line of code properly because the binary equivalent of the symbol
will not be found in the address symbol table generated during the first pass.
Other errors may occur and a practical assembler should detect all such errors
and print an error message for each.

It should be emphasized that a practical assembler is much more compli-
cated than the one explained here. Most computers give the programmer more
flexibility in writing assembly language programs. For example, the user may
be allowed to use either a number or a symbol to specify an address. Many
assemblers allow the user to specify an address by an arithmetic expression.
Many more pseudoinstructions may be specified to facilitate the programming

SECTION 6 .4 The Assembler	 189

Second pass

Le

i1oco

Yes Yes
Yes

ORG End

yes
No

ye,	 No
M

.
%4Rt	

DEC or I IFX

n.
f. -Vaj1 \	 N	 opezztd

c(flOflMR \	 TO

\ bitrue&m /	 - and so
-mioca

given by LC

Yes

- —

- Scac1 ades-
symbol tab1 for
biLry qtivaJe

of	 Tiic ttess
nd se(bits 5-16

rror n -
of

Yes

L.U

Store binary
eIva1e1t of

-	 iuuoziNo	 1ocsrion

fixl
bñwu

co1) sset by LC

Figure 6.2 Flowchart for second pass of assembler.

190	 CHAFfER SIX Programming the Basic Computer

task. As the assembly language becomes more sophisticated, the assembler
becomes more complicated.

6-5 Program Loops

A program loop is a sequence of instructions that are executed many times,
each time with a different set of data. Program loops are specified in Fortran
by a DO statement. The following is an example of a Fortran program that
forms the sum of 100 integer numbers.

DIMENSION A(100)
INTEGER SUM, A
SUM = 0
DO 3 J = 1, 100

3 SUM = SUM +A(J)

Statement number 3 is executed 100 times, each time with a different operand
AU) for- J=1,2,...,1O0.

A system program that translates a program written in a high-level
programming language such as the above to a machine language program is

compiler called a compiler. A compiler is a more complicated program than an assembler
and requires knowledge of systems programming to fully understand its
operation. Nevertheless, we can demonstrate the basic functions of a compiler
by going through the process of translating the program above to an assembly
language program. A compiler may use an assembly language as an interme-
diate step in the translation or may translate the program directly to binary.

The first statement in the Fortran program is a DIMENSION statement.
This statement instructs the compiler to reserve 100 words of memory for 100
operands. The value of the operands is determined from an input statement
(not listed in the program). The second statement informs the compiler that the
numbers are integers. If they were of the real type, the compiler would have
to reserve locations for floating-point numbers and generate instructions that
perform the subsequent arithmetic with floating-point data. These two state-
ments are nonexecutable and are similar to the pseudoinstructions in an
assembly language. Suppose that the compiler reserves locations (150) 16 to
(1B3) 16 for the 100 operands. These reserved memory words are listed in lines
19 to 118 in the translated program of Table 6-13. This is done by the ORG
pseudoinstruction in line 18, which specifies the origin of the operands. The
first and last operands are listed with a specific decimal number, although
these values are not known during compilation. The compiler just reserves the
data space in memory and the values are inserted later when an input data
statement is executed. The line numbers in the symbolic program are for
reference only and are not part of the translated symbolic program.

The indexing of the DO statement is translated into the instructions in

SECTION 6-5 Program Loops	 191

TABLE 6-13 SvmbulC Procrm to Ail 10 Numbers

Line

	

1	 ORG 100	 /Origin of program is HEX 100

	

2	 LDA ADS	 /Load first address of operands

	

3	 STA PTR	 (Store in pointer

	

4	 LDA NBR	 (Load minus 100

	

5	 STA CTR	 (Store in counter

	

6	 CLA	 /Clear accumulator

	

7	 LOP,	 ADD PTR I (Add an operand to AC

	

8	 ISZ PTR	 /Increment pointer

	

9	 ISZ CTR	 (Increment counter

	

10	 BUN LOP	 /Repeat loop again

	

11	 STA SUM	 (Store sum
	12	 HLT	 /Halt

	

13	 ADS,	 HEX 150	 (First address of operands

	

14	 PTR,	 HEX 0	 'This location reserved for a pointer

	

15	 NBR,	 DEC —100	 /Constant to initialized counter

	

16	 CTR,	 HEX 0	 /This location reserved for a counter

	

17	 SUM,	 HEX 0	 (Sum is stored here

	

18	 ORG 150	 (Origin of operands is HEX 150

	

19	 DEC 75	 (First operand

	

118	 DEC 23	 (last operand

	

119	 END	 /End of symbolic program

lines 2 through 5 and the constants in lines 13 through 16. The address of the
first operand (150) is stored in location ADS in line 13. The number of times
that Fortran statement number 3 must be executed is 100. So —100 is stored in
location NBR. The compiler then generates the instructions in lines 2 through
5 to initialize the program loop. The address of the first operand is transferred
to location PTR. This corresponds to setting AU) to A(1). The number —100 is
then transferred to location CTR. This location acts as a counter with its content
incremented by one every time the program loop is executed. When the value
of the counter reaches zero, the 100 operations will be completed and the
program will exit from the loop.

Some compilers will translate the statement SUM = 0 into a machine
instruction that initializes location SUM to zero. A reference to this location is
then made every time Fortran statement number 3 is executed. A more intel-
ligent compiler will realize that the sum can be formed in the accumulator and
only the final result stored in location SUM. This compiler will produce an
instruction in line 6 to dear the AC. It will also reserve a memory location

192	 CHAFTER SIX Programming the Basic Computer

symbolized by SUM (in line 17) for storing the value of this variable at the
termination of the loop.

The program loop specified by the DO statement is translated to the
sequence of instructions listed in lines 7 through 10. Line 7 specifies an indirect
ADD instruction because it has the symbol I. The address of the current
operand is stored in location PTR. When this location is addressed indirectly
the computer takes the content of PTR to be the address of the operand. As
a result, the operand in location 150 is added to the accumulator. Location PTR
is then incremented with the ISZ instruction in line 8, so its value changes to
the value of the address of the next sequential operand. Location CTR is
incremented in line 9, and if it is not zero, the computer does not skip the next
instruction. The next instruction is a branch (BUN) instruction to the beginning
of the loop, so the computer returns to repeat the loop once again. When
location CTR reaches zero (after the loop is executed 100 times), the next
instruction is skipped and the computer executes the instructions in lines 11
and 12. The sum formed in the accumulator is stored in SUM and the computer
halts. The halt instruction is inserted here for clarity; actually, the program will
branch to a location where it will continue to execute the rest of the program
or branch to the beginning of another program. Note that ISZ in line 8 is used
merely to add I to the address pointer FTR. Since the address is a positive
number, a skip will never occur.

The program of Table 6-13 introduces the idea of a pointer and a counter
which can be used, together with the indirect address operation, to form a

pointer	 program loop. The pointer points to the address of the current operand and
counter the counter counts the number of times that the program loop is executed. In

this example we use two memory locations for these functions. In computers
with more than one processor register, it is possible to use one processor
register as a pointer, another as a counter, and a third as an accumulator. When
processor registers are used as pointers and counters they are called index
registers. Index registers are discussed in Sec. 8-5.

6-6 Programming Arithmetic
and Logic Operations

The number of instructions available in a computer may be a few hundred in
a large system or a few dozen in a small one. Some computers perform a given
operation with one machine instruction; others may require a large number of
machine instructions to perform the same operation. As an illustration, con-
sider the four basic arithmetic operations. Some computers have machine
instructions to add, subtract, multiply, and divide. Others, such as the basic
computer, have only one arithmetic instruction, such as ADD. Operations not
included in the set of machine instru c4ions must be implemented by a program.

LTIO. 6-6 Programming Arithmetic and Logic Operations 	 193

We have 'hown in Table 6-9a program for subtracting vo numbers l'ririn
for the other arithmetic operations can be developed in a similar fashion.

Operations that are implemented in a computer with one machine in-
struction are said to be implemented by hardware. Operations implemented
by a set of instructions that constitute a program are said to be implemented
by software. Some computers provide an extensive set of hardware instruc-
tions designed to speed up common tasks. Others contain a smaller set of
hardware instructions and depend more heavily on the software implementa-
tion of many operations. Hardware implementation is more costly because of
the additional Circuits needed to implement the operation. Software imple-
mentation results in long programs both in number of instructions and in
execution time.

This section demonstrates the software implementation of a few arith -
metic and logic operations. Programs can be developed for any arithmetic
operation and not only for fixed-point binary data but for decimal and floating-
point data as well. The hardware implementation of arithmetic operations is
carried out in Chap. 10.

Multiplication Program

We now develop a program for multiplying two numbers. To simplify the
program, we neglect the sign bit and assume positive numbers. We also
assume that the two binary numbers have no more than eight significant bits
so their product cannot exceed the word capacity of 16 bits. It is possible to
modify the program to take care of the signs or use 16-bit numbers. However,
the product may be up to 31 bits in length and will occupy two words of
memory.

The program for multiplying two numbers is based on the procedure we
use to multiply numbers with paper and pencil. As shown in the numerical
example of Fig. 6-3, the multiplication process consists of checking the bits of
the multiplier Y and adding the multiplicand X as many times as there are l's
in Y, provided that the value of X is shifted left from one line to the next. Since
the computer can add only two numbers at a time, we reserve a memory
location, denoted by P. to store intermediate sums. The intermediate sums are
called partial products since they hold a partial product until all numbers are
added. As shown in the numerical example under P, the partial product starts
with zero. The multiplicand X is added to the content of P for each bit of the
multiplier Y that is 1. The value of X is shifted left after checking each bit of
the multiplier. The final value in P forms the product. The numerical example
has numbers with four significant bits. When multiplied, the product contains
eight significant bits. The computer can use numbers with eight significant bits
to produce a product of up to 16 bits.

The flowchart of Fig. 6-3 shows the step-by-step procedure for program-

194	 CHAPTER SIX Programming the Basic Computer

CTR	 X holds the multiplicand
P- 0 	Y holds the multiplier

I	 P forms the product

Example with four sagnificant digits
E-0]

I	 x=00001lll	 P
Y00001011 00000000

0000 liii	 00001111

	

AC- YJ	 000inio 00101101
1	 00000000 00101101

0111 1000	 10100101

	

cit EAC I	 10100101

X-A

P'-P+X

E-0

14c+_x

EAC

X-AC

fCCTR
=0

 Stop

Figure 6-3 Flowchart for multiplication program.

SCCFION 6 .6 Programming Arithmetic and Logic Operations 	 195

ming the multiplication operation. The program has a loop that is traversed
eight times, once for each significant bit of the multiplier. Initially, location x
holds the multiplicand and location Y holds the multiplier. A counter CTR is
set to —8 and location P is cleared to zero.

The multiplier bit can be checked if it is transferred to the E register. This
is done by clearing E, loading the value of Y into the AC, circulating right E
and AC and storing the shifted number back into location Y. This bit stored in
E is the low-order bit of the multiplier. We now check the value of E. If it is
1, the multiplicand X is added to the partial product P. If it is 0, the partial
product does not change. We then shift the value of X once to the left by loading
it into the AC and circulating left E and AC. The loop is repeated eight times
by incrementing location CTR and checking when it reaches zero. When the
counter reaches zero, the program exits from the loop with the product stored
in location P.

The program in Table 6-14 lists the instructions for multiplying two
unsigned numbers. The initialization is not listed but should be included when
the program is loaded into the computer. The initialization consists of bringing
the multiplicand and multiplier into locations X and Y, respectively; initializing
the counter to — 8; and initializing location P to zero. If these locations are not

TABLE 6. 14 Program to Multiply Two Positive Numbers

ORG 100
LOP,	 CLE	 /Clear F

LDA Y	 /Load multiplier
CIR	 /Transfer multiplier bit to £
STA Y	 /Store shifted multiplier
SZE	 /Check if bit is zero
BUN ONE /Bit is one; go to ONE
BUN ZRO	 /Bit is zero; go to ZRO

ONE,	 WA X	 /Load multiplicand
ADD P	 /Add to partial product
STA P	 /Store partial product
CLE	 /Clear £

ZRO,	 LDA X	 /Load multiplicand
CIL	 /Shift left
STA X	 /Store shifted multiplicand
ISZ CTR	 /Increment counter
BUN LOP	 /Counter not zero; repeat loop
HLT	 /Counter is zero; halt

CTR,	 DEC —8	 This location serves as a counter
X, HEX 000F	 /Multiplicand stored here
Y, HEX 000B	 /Multiplier stored here

HEX 0	 /Product formed here
END

196	 CHAPTER SIX Programming the Basic Computer

initialized, the program may run with incorrect data. The program itself is
straightforward and follows the steps listed in the flowchart. The comments
may help in following the step-by-step procedure.

This example has shown that if a computer does not have a machine
instruction for a required operation, the operation can be programmed by a
sequence of machine instructions. Thus we have demonstrated the software
implementation of the multiplication operation. The corresponding hardware
implementation is presented in Sec. 10-3.

Double-Precision Addition

When two 16-bit unsigned numbers are multiplied, the result is a 32-bit
product that must be stored in two memory words. A number stored in two
memory words is said to have double precision. When a partial product is
computed, it is necessary that a double-precision number be added to the
shifted multiplicand, which is also a double-precision number. For greater
accuracy, the programmer may wish to employ double-precision numbers and
perform arithmetic with operands that occupy two memory words. We now
develop a program that adds two double-precision numbers.

One of the double-precision numbers is placed in two consecutive mem-
ory locations, AL and AH, with AL holding the 16 low-order bits, The other
number is placed in BL and BH. The program is listed in Table 6-15. The two
low-order portions are added and the carry transferred into E. The AC is
cleared and the bit in F is circulated into the least significant position of the AC.
The two high-order portions are then added to the carry and the double-
precision sum is stored in CL and CH.

TABLE 6-15 Program to Add Two Double-Precision Numbers

LDA AL /Load A low
ADD BL	 /Add B low, carry in E
STA CL	 /Store in C low
CLA	 /Clear AC
CIL	 /Circulate to bring carry into AC(16)
ADD AH /Add A high and carry
ADD BH /Add B high
STA CH	 /Store in C high
HLT

AL,	 -	 /Location of operands
Aft -
BL,

CL, -
CH, -

SEC110N	 Programming Arithmetic and Logic Operations	 197

Logic Operations

The basic computer has three machine instructions that perform logic opera-
tions: AND, CMA, and CLA. The LDA instruction may be considered as a logic
operation that transfers a logic operand into the AC. In Sec. 4-5 we listed 16
different logic operations. All 16 logic operations can be implemented by
software means because any logic function can be implemented using the AND
and complement operations. For example, the OR operation is not available as
a machine instruction in the basic computer. From DeMorgan's theorem we
recognize the relation x + y = (x'y')'. The second expression contains only
AND and complement operations. A program that forms the OR operation of
two logic operands A and B is as follows:

LDA A	 Load first operand A
CMA	 Complement to get

STA TMP Store in a temporary location
LDA B	 Load second operand B
CMA	 Complement to get B
AND TMP AND withtogetAi

CMA	 Complement again to get A V B

The other logic operations can be implemented by software in a similar
fashion.

Shift Operations
The circular-shift operations are machine instructions in the basic computer.
The other shifts of interest are the logical shifts and arithmetic shifts. These two
shifts can be programmed with a small number of instructions.

The logical shift requires that zeros be added to the extreme positions.
This is easily accomplished by clearing £ and circulating the AC and E. Thus
for a logical shift-right operation we need the two instructions

CLE
CIR

For a logical shift-left operation we need the two instructions

CLE
CIL

The arithmetic shifts depend on the type of representation of negative
numbers. For the basic computer we have adopted the signed-2's complement
representation. The rules for arithmetic shifts are listed in Sec. 4-6. For an
arithmetic right-shift it is necessary that the sign bit in the leftmost position
remain unchanged. But the sign bit itself is shifted into the high-order bit

198	 CHAPTER SIX Programming the Basic Computer

position of the number. The program for the arithmetic right-shift requires that
we set E to the same value as the sign bit and circulate right, thus:

CLE /Clear EtoO
SPA /Skip if AC is positive; E remains D
CME IACis negative; set Etol
CIR /Circulate E and AC

For arithmetic shift-left it is necessary that the added bit in the least significant
position be 0. This is easily done by clearing E prior to the circulate-left
operation. The sign bit must not change during this shift. With a circulate
instruction, the sign bit moves into E. It is then necessary to compare the sign
bit with the value of E after the operation. If the two values are equal, the
arithmetic shift has been correctly implemented. If they are not equal, an
overflow occurs. An overflow indicates that the unshifted number was too
large. When multiplied by 2 (by means of the shift), the number so obtained
exceeds the capacity of the AC.

6-7 Subroutines

Frequently, the same piece of code must be written over again in many different
parts of a program. Instead of repeating the code every time it is needed, there
is an obvious advantage if the common instructions are written only once. A
set of common instructions that can be used in a program many times is called
a subroutine. Each time that a subroutine is used in the main part of the
program, a branch is executed to the beginning of the subroutine. After the
subroutine has been executed, a branch is made back to the main program.

A subroutine consists of a self-contained sequence of instructions that
carries out a given task. A branch can be made to the subroutine from any part
of the main program. This poses the problem of how the subroutine knows
which location to return to, since many different locations in the main program
may make branches to the same subroutine. It is therefore necessary to store
the return address somewhere in the computer for the subroutine to know
where to return. Because branching to a subroutine and returning to the main
program is such a common operation, all computers provide special instruc-
tions to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a sub-
routine is the BSA instruction (branch and save return address). To explain how
this instruction is used, let us write a subroutine that shifts the content of the
accumulator four times to the left. Shifting a word four times is a useful
operation for processing binary-coded decimal numbers or alphanumeric char-
acters. Such an operation could have been included as a machine instruction
in the computer. Since it is not included, a subroutine is formed to accomplish
this task. The program of Table 6-16 starts by loading the value of X into the

SECTION 6-7 Subroutines	 199

TABLE 6-16 Prouram ti Demonstrate the Use of

Location

ORG 100
LDA X
BSA SH4
STA X
LDA Y
BSA SH4
STA Y
HLT
HEX 1234
HEX 4321

HEX 0
CIL
CIL
CIL
CR
AND MSK
BUN SH4 I
HEX FRO
END

/Main program
/Load X
/Branch to subroutine
/Store shifted number
[Load Y
[Branch to subroutine again
.!Store shifted number

/Subroutine to shift left 4 times
/Store return address here
/Circulate left once

/Circulate left fourth time
/Set AC(13.-16) to zero
[Return to main program
Mask operand

100
il.

102
103
104
105
106
107
	

X,
108
	

Y.

109
	

SH4,
1OA
lOB
1OC
1OD
10E
1OF
110
	

MSK,

AC. The next instruction encountered is BSA SH4. The BSA instruction is in
location 101. Subroutine SH4 must return to location 102 after it finishes its
task. When the BSA instruction is executed, the control unit stores the return
address 102 into the location defined by the symbolic address SH4 (which is
109). It also transfers the value of SH4 + 1 into the program counter. After this
instruction is executed, memory location 109 contains the binary equivalent of
hexadecimal 102 and the program counter contains the binary equivalent of
hexadecimal WA. This action has saved the return address and the subroutine
is now executed starting from location 10A (since this is the content of PC in
the next fetch cycle).

The computation in the subroutine circulates the content of AC four limes
to the left. In order to accomplish a logical shift operation, the four low-order
bits must be set to zero. This is done by masking FFFO with the content of AC.
A mask operation is a logic AND operation that clears the bits of the AC where
the mask operand is zero and leaves the bits of the AC unchanged where the
mask operand bits are l's.

The last instruction in the subroutine returns the computer to the main
program. This is accomplished by the indirect branch instruction with an
address symbol identical to the symbol used for the subroutine name. The
address to which the computer branches is not SH4 but the value found in

200	 CHAPTER SIX Programming the Basic Computer

location SH4 because this is an indirect address instruction. What is found in
location SH4 is the return address 102 which was previously stored there by
the BSA instruction. The computer returns to execute the instruction in loca-
tion 102. The main program continues by storing the shifted number into
location X. A new number is then loaded into the AC from location Y, and
another branch is made to the subroutine. This time location SH4 will contain
the return address 105 since this is now the location of the next instruction after
BSA. The new operand is shifted and the subroutine returns to the main
program at location 105.

From this example we see that the first memory location of each sub-
routine serves as a link between the main program and the subroutine. The
procedure for branching to a subroutine and returning to the main program
is referred to as a subroutine linkage. The BSA instruction performs an opera-
tion commonly called subroutine call. The last instruction of the subroutine
performs an operation commonly called subroutine return.

The procedure used in the basic computer for subroutine linkage is
commonly found in computers with only one processor register. Many com-
puters have multiple processor registers and some of them are assigned the
name index registers. In such computers, an index register is usually employed
to implement the subroutine linkage. A branch-to-subroutine instruction
stores the return address in an index register. A return-from-subroutine in-
struction is effected by branching to the address presently stored in the index
register.

Subroutine Parameters and Data Linkage
When a subroutine is called, the main program must transfer the data it wishes
the subroutine to work with. In the previous example, the data were trans-
ferred through the accumulator. The operand was loaded into the AC prior to
the branch. The subroutine shifted the number and left it there to be accepted
by the main program. In general, it is necessary for the subroutine to have
access to data from the calling program and to return results to that program.
The accumulator can be used for a single input parameter and a single output
parameter. In computers with multiple processor registers, more parameters
can be transferred this way. Another way to transfer data to a subroutine is
through the memory. Data are often placed in memory locations following the
call. They can also be placed in a block of storage. The first address of the block
is then placed in the memory location following the call. In any case, the return
address always gives the link information for transferring data between the
main program and the subroutine.

As an i utratin, con--,der a subroutine that p.utcrns the lo8ic OR
operation. Two operands must be transferred to the subroutine and the sub-
routine must return the result of the operation. The accumulator can be used

SECTION 6 . 7 Subroutines	 201

to transfer one operand and to receive the result. The other operand is inserted
in the location following the BSA instruction. This is demonstrated in the
program of Table 6-17. The first operand in location X is loaded into the AC.
The second operand is stored in location 202 following the BSA instruction.
After the branch, the first location in the subroutine holds the number 202.
Note that in this case, 202 is not the return address but the address of the
second operand. The subroutine starts performing the OR operation by com-
plementing the first operand in the AC and storing it in a temporary location
TMP. The second operand is loaded into the AC by an indirect instruction at
location OR. Remember that location OR contains the number 202. When the
instruction refers to it indirectly, the operand at location 202 is loaded into the
AC. This operand is complemented and then ANDed with the operand stored
in IMP. Complementing the result forms the OR operation.

The return from the subroutine must be manipulated so that the main
program continues from location 203 where the next instruction is located. This
is accomplished by incrementing location OR with the ISZ instruction. Now
location OR holds the number 203 and an indirect BUN instruction causes a
return to the proper place.

It is possible to have more than one operand following the BSA instruc-

TABLE 6-17 Program to Demonstrate Parameter Linkage

Location

ORG 200
LDA X
BSA OR
HEX 3AF6
STA Y
HLT
HEX 7B95
HEX 0
HEX 0
CMA
STA TM?
LDA OR I
CMA
AND IMP
CMA
ISZ OR
BUN OR I
HEX 0
END

/Load first operand into AC
[Branch to subroutine OR
/Second operand stored here
/Subroutine returns here

[First operand stored here
[Result stored here
/Subroutine OR
/Complement first operand
/Store in temporary location
[Load second operand
/Complement second operand
/AND complemented first operand
/Complement again to get OR
/Increment return address
[Return to main program
/Temporary storage

200
201
202
203
204
205
	

X,
206
207
	

OR,
208
209
20A
20B
20C
20D
20E
20F
210
	

TMP,

202	 CHAPTER SIX Programming the Basic Computer

tion. The subroutine must increment the return address stored in its first
location for each operand that it extracts from the calling program. Moreover,
the calling program can reserve one or more locations for the subroutine to
return results that are computed. The first location in the subroutine must be
incremented for these locations as well, before the return. If there is a large
amount of data to be transferred, the data can be placed in a block of storage
and the address of the first item in the block is then used as the linking
parameter.

A subroutine that moves a block of data starting at address 100 into a block
starting with address 200 is listed in Table 6-18. The length of the block is 16
words. The first introduction is a branch to subroutine MVE. The first part of
the subroutine transfers the three parameters 100, 200 and —16 from the main
program and places them in its own storage location. The items are retrieved
from their blocks by the use of two pointers. The counter ensures that onl y 16
items are moved. When the subroutine completes its operation, the data
required is in the block starting from the location 200. The return to the main
program is to the HLT instruction.

TABLE 6-18 Subroutine to Move a Block of Data

/Main program
BSA MVE	 /Branch to subroutine
HEX 100	 /First address of source data
HEX 200	 /First address of destination data
DEC —16	 /Number of items to move
HLT

MVE, HEX 0	 /Subroutine MVE
LDA MVE I	 /Bring address of source
STA Fri	 /Store in first pointer
ISZ MVE	 /Increment return address
LDA MVE I	 /Bring address of destination
STA FF2	 /Store in second pointer
ISZ MVE	 ilncrement return address
LDA MVE I /Bring number of items
STA CFR	 /Store in counter
ISZ MVE	 /Increment return address

LOP,	 LDA P11 1	 /Load source item
STA PT2 I	 /Store in destination
ISZ PT!	 /Increment source pointer
ISZ FF2	 /Increment destination pointer
ISZ CTR	 /Increment counter

UN LOP	 /Repeat 16 times
BUN MVE I	 Return to main program

Fl-I, -
FF2, -
CTR,

SECTION 6-8 Input-Output Programming	 203

6-8 Input—Output Programming

Users of the computer write programs with symbols that are defined by the
programming language employed. The symbols are strings of characters and
each character is assigned an 8-bit code so that it can be stored in computer
memory. A binary-coded character enters the computer when an INP (input)
instruction is executed. A binary-coded character is transferred to the output
device when an OUT (output) instruction is executed. The output device
detects the binary code and types the corresponding character.

Table 6-19(a) lists the instructions needed to input a character and store
it in memory. The SKI instruction checks the input flag to see if a character is
available for transfer. The next instruction is skipped if the input flag bit is 1.
The INP instruction transfers the binary-coded character into AC(O-7). The
character is then printed by means of the OUT instruction. A terminal unit that
communicates directly with a computer does not print the character when a
key is depressed. To type it, it is necessary to send an OUT instruction for the
printer. In this way, the user is ensured that the correct transfer has occurred.
If the SKI instruction finds the flag bit at 0, the next instruction in sequence
is executed. This instruction is a branch to return and-check the flag bit again.
Because the input device is much slower than the computer, the two instruc-
tions in the loop will be executed many times before acharacter is transferred
into the accumulator.

Table 6-19(b) lists the instructions needed to print a character initially
stored in memory. The character is first loaded into the AC. The output flag
is then checked. If it is 0, the computer remains in a two-instruction loop
checking the flag bit. When the flag changes to 1, thecharacter is transferred
from the accumulator to the printer.

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:
CIF,	 SKI	 /Check input flag

BUN CIF	 /FIag=O, branch to check again
IN?	 /Flag= 1, input character
OUT	 /Print character
STA CHR	 /Store character
HLT

dR.	 -.	 /Store character here
(b) Output one character:

LDA CHR /Load character into AC
COF,	 SKO	 /Check output flag

BUN COF IFlag=0, branch to check again
OUT	 /Flag=1, output character
ULT

CHR,	 HEX 0057	 /Character is "W"

204	 CHAPTER SIX Programming the Basic Computer

Character Manipulation
A computer is not just a calculator but also a symbol manipulator. The binary-
coded characters that represent symbols can be manipulated by computer
instructions to achieve various data-processing tasks. One such task may be
to pack two characters in one word. This is convenient because each character
occupies 8 bits and a memory word contains 16 bits. The program in Table 6-20
lists a subroutine named 1N2 that inputs two characters and packs them into
one 16-bit word. The packed word remains in the accumulator. Note that
subroutine SH4 (Table 6-16) is called twice to shift the accumulator left eight
times.

In the discussion of the assembler it was assumed that the symbolic
program is stored in a section of memory which is sometimes called a buffer.
The symbolic program being typed enters through the input device and is
stored in consecutive memory locations in the buffer. The program listed in
Table 6-21 can be used to input a symbolic program from the keyboard, pack
two characters in one word, and store them in the buffer. The first address of
the buffer is 500. The first double character is stored in location 500 and all
characters are stored in sequential locations. The program uses a pointer for
keeping track of the current empty location in the buffer. No counter is used
in the program, so characters will be read as long as they are available or until
the buffer reaches location 0 (after location FFFF). In a practical situation it may
be necessary to limit the size of the buffer and a counter may be used for this
purpose. Note that subroutine 1N2 of Table 6-20 is called to input and pack the
two characters.

In discussing the second pass of the assembler in Sec. 6-4 it was men-
tioned that one of the most common operations of an assembler is table lookup.
This is an operation that searches a table to find out if it contains a given
symbol. The search may be done by comparing the given symbol with each of
the symbols stored in the table. The search terminates when a match occurs

TABLE 6-20 Subroutine to Input and Pack Two Characters

1N2,	 -	 /Subroutine entry
FST,	 SKI

BUN FST
INP	 /Input first character
OUT
BSA SH4	 /Shift left four times
BSA SH4	 /Shift left four more times

SCD, SKI
BUN SCD
INP	 ;Input second character
OUT
BUN 1N2 I /Return

SECTION 6-8 Input-Output Programming	 205

TABLE 6-21 Program to Store Input Characters in a Buffer

LDA ADS	 Load first address ot butler
STA PTR	 !Initialize pointer

LOP,	 BSA 1N2	 [Go to subroutine 1N2 (Table 6-20)
STA PTR I	 [Store double character word in buffer
ISZ PTR	 (Increment pointer
BUN LOP	 [Branch to input more characters
HLT

ADS,	 HEX 500	 [First address of buffer
PTR,	 HEX 0	 [Location for pointer

or if none of the symbols match. When a match occurs, the assembler retrieves
the equivalent binary value. A program for comparing two words is listed in
Table 6-22. The comparison is accomplished by forming the 2's complement of
a word (as if it were a number) and arithmetically adding it to the second word.
If the result is zero, the two words are equal and a match occurs. If the result
is not zero, the words are not the same. This program can serve as a subroutine
in a table-lookup program.

Program Interrupt

The running time of input and output programs is made up primarily of the
time spent by the computer in waiting for the external device to set its flag. The
waiting loop that checks the flag keeps the computer occupied with a task that
wastes a large amount of time. This waiting time can be eliminated if the
interrupt facility is used to notify the computer when a flag is set. The advan-
tage of using the interrupt is that the information transfer is initiated upon
request from the external device. In the meantime, the computer can be busy
performing other useful tasks. Obviously, if no other program resides in
memory, there is nothing for the computer to do, so it might as well check for

TABLE 6-22 Program to Compare Two Words

LDA WD1 [Load first word
CMA
INC	 [Form 2's complement
ADD WD2 [Add second word
SZA	 [Skip if AC is zero
BUN UEQ [Branch to "unequal" routine
BUN EQL [Branch to "equal" routine

WDI, -
WD2, -

206	 CHAPTER SIX Programming the Basic Computer

the flags. The interrupt facility is useful in a multiprogram environment when
two or more programs reside in memory at the same time.

Only one program can be executed at any given time even though two
or more programs may reside in memory. The program currently being exe-
cuted is referred to as the running program. The other programs are usually
waiting for input or output data. The function of the interrupt facility is to take
care of the data transfer of one (or more) program while another program is
currently being executed. The running program must include an ION instruc-
tion to turn the interrupt on. If the interrupt facility is not used, the program
must include an LOF instruction to turn it off. (The start switch of the computer
should also turn the interrupt off.)

The interrupt facility allows the running program to proceed until the
input or output device sets its ready flag. Whenever a flag is set to 1, the
computer completes the execution of the instruction in progress and then
acknowledges the interrupt. The result of this action is that the return address
is stored in location 0. The instruction in location 1 is then performed; this
initiates a service routine for the input or output transfer. The service routine
can be stored anywhere in memory provided a branch to the start of the routine
is stored in location 1. The service routine must have instructions to perform
the following tasks:

1. Save contents of processor registers.
2. Check which flag is set.
3. Service the device whose flag is set.
4. Restore contents of processor registers.
5. Turn the interrupt facility on.
6. Return to the running program.

The contents of processor registers before the interrupt and after the
return to the running program must be the same; otherwise, the running
program may be in error. Since the service routine may use these registers, it
is necessary to save their contents at the beginning of the routine and restore
them at the end. The sequence by which the flags are checked dictates the
priority assigned to each device. Even though two or more flags may be set at
the same time, the devices nevertheless are serviced one at a time. The device
with higher priority is serviced first followed by the one with lower priority.

The occurrence of an interrupt disables the facility from further inter-
rupts. The service routine must turn the interrupt on before the return to the
running program. This will enable further interrupts while the computer is
executing the running program. The interrupt facility .should not be turned on
until after the return address is inserted into the program counter.

An example of a program that services an interrupt is listed in Table 6-23.

SECTION -8 Input-Output Programming 	 207

TABLE 6-23 Program to Service an Interrupt

Location

	

0	 ZRO, -
	1 	 BUN SRV

	

100	 CLA

	

101	 ION

	

102	 LDAX

	

103	 ADD

	

104	 STA Z

/Return address stored here
/Branch to service routine
/Portion of running program
[Turn on interrupt facility

/Interrupt occurs here
/Program returns here after interrupt

(Interrupt service routine
200	 SRV,	 STA SAC	 /Store content of AC

CIR	 (Move E into AC(1)

STA SE	 (Store content of E
SKI	 (Check input flag
BUN NXT	 (Flag is off, check next flag
INP	 (Flag is on, input character
OUT	 (Print character
STA PT I	 /Store it in input buffer
ISZ IT1	 (Increment input pointer

NXT, SKO	 /Check output flag
BUN EXT	 /Flag is off, exit
LDA PT2 I	 (Load character from output buffer
OUT	 (Output character
ISZ PT2	 [Increment output pointer

E)(T,	 LDA SE	 (Restore value of AC(1)
CIL	 (Shift it to E
LDA SAC	 (Restore content of AC
ION	 'Turn interrupt on
BUN ZRO I /Return to running program

SAC,	 -	 'AC is stored here
SE,	 -	 JE is stored here
Fri.	 -	 'Pointer of input buffer
FF2,	 -	 (Pointer of output buffer

Location 0 is reserved for the return address. Location I has a branch instruc-
tion to the beginning of the service routine SRV. The portion of the running
program listed has an ION instruction that turns the interrupt on. Suppose that
an internir'f rcrrs whr' the computer is executing tIw nt:uctj

103. The interrupt cycle stores the binary equivalent of hexadecimal 104 in
location 0 and branches to location 1. The branch instruction in location I sends
the computer to the service routine SRV.

208	 CHAPTER SIX Programming the Basic Computer

The service routine performs the six tasks mentioned above. The contents
of AL and L are stored m special iocations. lhose are the only proccsr
registers in the basic computer.) The flags are checked sequentially, the input
flag first and the output flag second. If any or both flags are set, an item of data
is transferred to or from the corresponding memory buffer. Before returning
to the running program the previous contents of E and AC are restored and
the interrupt facility is turned on. The last instruction causes a branch to the
address stored in location 0. This is the return address stored there previously
during the interrupt cycle. Hence the running program will continue from
location 104, where it was interrupted.

A typical computer may have many more input and output devices
connected to the interrupt facility. Furthermore, interrupt sources are not
limited to input and output transfers. Interrupts can be used for other pur-
poses, such as internal processing errors or special alarm conditions. Further
discussion of interrupts and some advanced concepts concerning this impor-
tant subject can be found in Sec. 11-5.

6-1. The following program is stored in the memory unit of the basic computer.
Show the contents of the AC, PC, and IR (in hexadecimal), at the end, after
each instruction is executed. All numbers listed below are in hexadecimal.

Location	 Instruction

010	 CLA
011	 ADD 016
012	 BUN 014
013	 HLT
014	 AND 017
015	 BUN 013
016	 C1A5
017	 93C6

6-2. The following program is a list of instructions in hexadecimal code. The
computer executes the instructions starting from address 100. What are the
content of AC and the memory word at address 103 when the computer
halts?

SECTION	 Inpur-Output Programming	 209

Location	 Instruction

100	 5103
101	 7200
102	 7(X)1
103	 000(1
104	 7800
105	 7020
106	 C103

6-3. List the assembly language program (of the equivalent binary instructions)
generated by a compiler from the following Fortran program. Assume in-
teger variables.

SUM 9
SUM = SUM + A + B
DIF = DIF - C
SUM = SUM -'- DIF

	

64.	 Can the letter I be used as a symbolic address in the assembl y language
program defined for the basic computer? Justify the answer.

6-5. What happens during the first pass of the assembler (Fig. 6-1) if the line of
code that has a pseudoinstruction ORG or END also has a label? Modify the
flowchart to include an error message if this occurs.

	

6-6.	 A line of code in an assembly language program is as follows:

DEC —35

a. Show that four memory words are required to store the line of code and
give their binary content.

b. Show that one memory word stores the binary translated code and give
its binary content.

	

6-7.	 a. Obtain the address symbol table generated for the program of Table 6-13
during the first pass of the assembler.

b. List the translated program in hexadecimal.

6-8. The pseudoinstruction BSS N (block started by symbol) is sometimes em-
ployed to reserve N memory words for a group of operands. For example.
the line of code

A, BSS ID

informs the assembler that a block of 10 (decimal) locations is to be left free,

SION A(10). Modify the flowchart of Fig. 6-1 to process this pseudoinstruc-
tion,

210	 CHAPTER SIX Programming the Basic Computer

.9.	 Modifv the flowchart of Fig. 6-2 to include an error message when a symbolic
address is not defined by a label.

6-10.	 Show how the MRI and non-MM tables can be stored in memory.

6-11.	 List the assembly language program (of the equivalent binary instructions)
generated by a compiler for the following IF statement:

IP(A — B) 10, 20, 30

The program branches to statement 10 if A - B <0; to statement 20 if
A - B 0; and to statement 30 if A - B > 0.

6-12.	 a. Explain in words what the following program accomplishes when it is
executed. What is the value of location CTR when the computer halts?

b. List the address symbol table obtained during the first pass of the
assembler.

c. List the hexadecimal code of the translated program.

ORG 100
CLE
CLA
STA CTR
LDA WED
SZA
BUN ROT
BUN STP

ROT,	 CIL
S ZE
BUN AGN
BUN ROT

PGN,	 CLE
ISZ CTR
SZA
BUN ROT

STP,	 HLT
CTR,	 HEX
WED,	 HEX 62C1

END

6-13.	 Write a program loop, using a pointer and a counter, that clears o 0 the
contents of hexadecimal locations 500 through 5FF.

6-14. Write a program to multiply two positive numbers by a repeated addition
method. For example, to multiply 5 x 4, the program evaluates the product
by adding 5 four times, or 5 + 5 + 5 + 5.

6-15. The multiplication program of Table 6-14 is not initialized. After the pro-
gram is executed once, location CTR will be left with zero. Show that if
the program is executed again starting from location 100, the loop will
be traversed 65536 times. Add the needed instructions to initialize the
program.

,1 -SECTION 6.8 Input-Output Prog[aEnmtrlg	 i

	6-16.	 Write a program to multiply two unsigned positive numbers, each with 16
significant bits, to produce an unsigned double-precision product.

6-17. Write a program to multiply two signed numbers with negative numbers
being initially in signed-2's complement representation. The product should
be single-precision and signed-2's complement representation if negative.

	

6-18.	 Write a program to subtract two double-precision numbers.

	

6-19.	 Write a program that evaluates the logic exclusive-OR of two logic operands

	

6-20.	 Write a program for the arithmetic shift-left operation. Branch to OVF if an
overflow occurs.

6-21. Write a subroutine to subtract two numbers. In the calling program, the
BSA instruction is followed by the subtrahend and minuend. The difference
is returned to the main program in the third location following the BSA
instruction.

6-22. Write a subroutine to complement each word in a block of data. In the caflrg
program, the BSA instruction is followed by two parameters: the star.: g
address of the block and the number of words in the block.

6-23. Write a subroutine to circulate E and AC four times to the right. If AC conn-
hexadecimal 079C and E = 1, what are the contents of AC and E after :e
subroutine is executed?

6-24. Write a program to accept input characters, pack two characters in one wor1
and store them in consecutive locations in a memory buffer. The first address
of the buffer is (400)j6. The size of the buffer is (512) 1,, words. If the buffer
overflows, the computer should halt.

	

6-25.	 Write a program to unpack two characters from location WRD an"
them in bits 0 through 7 of locations CHI and CH2. Bits 9 through 15 shc..
contain zeros.

	

6-26.	 Obtain a flowchart for a program to check for a CR code (hexadecimal Th
in a memory buffer. The buffer contains two characters per word. When tre
code for CR is encountered, the program transfers it to bits U through
location LNE without disturbing bits 8 through 15.

	

6-27.	 Translate the service routine SRV from Table 6-23 to its equivalent hexadec-
imal code. Assume that the routine is stored starting from location 200.

6-28. Write an interrupt service routine that performs all the required functions
but the input device is serviced only if a special location, MOD, contains aU
I's. The output device is serviced only if location MOD contains ail U's.

I. Booth, T. L., Ant wAuccion w t..ornpuer Engineering, 3rd ea. "iew loric,: junn vuv,
1984.

2. Gear, C. W., Computer Organization and Programming, 3rd ed. New York: McGraw-
Hill, 1980.

212	 CHAPTER SIX Programming the Basic Computer

3. Gibson. G. A. Computer Sistems Concepts and Deci , n Englewood Cliffs, N! : Prentice
Hall, 1991.

4. Gray, N. A. B., introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hal], 1987.

5. levy, H. M., and R. H. Eckhouse, Jr., Computer Programming and Architecture: The
VAX-1 I. Bedford, MA: Digital Press, 1980.

6. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison-
Wesley, 1983.

7. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1987.

8. Shiva, S. C., Computer Design and Architecture, 2nd ed. New York: HarperCollins
Publishers, 1991.

9. Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

10. Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley,
1981.

.:	 -	 -	 •"V	 V

•-

CHAPTER: SEVEN

Microprogrammed
Control

IN THIS CHAPTER

7-I	 Control Memory
7-2	 Address Sequencing
7-3	 Microprogram Example
7-4	 Design of Control Unit

7-1 Control Memory

The function of the control unit in a digital computer is to initiate sequences
of microoperations. The number of different types of microoperations that are
available in a given system is finite. The complexity of the digital s ystem is
derived from the number of sequences of microoperations that are performed.
When the control signals are generated by hardware using conventional logic
design techniques, the control unit is said to be hardwired. Microprogramming
is a second alternative for designing the control unit of a digital computer. The
principle of microprogramming is an elegant and systematic method for con-
trolling the microoperation sequences in a digital computer.

The control function that specifies a microoperation is a binary variable.
When it is in one binary State, the corresponding microoperation is executed.
A control variable in the opposite binary state does not change the state of the
registers in the system. The active state of a control variable may be either the
1 state or the 0 state, depending on the application. In a bus-organized system,
the control signals that specify microoperalions are groups of bits that select
the paths in multiplexers, decoders, and arithmetic logic units.

The control unit initiates a series of sequential steps of microoperations.

remain idle. The control variables at any given time can be represented by a
control word string of l's and 0's called a control word. As such, control words can be

programmed to perform various operations on the components of the system.
A control unit whose binary control variables are stored in memory is called

213

214	 CHAPTER SEVEN Microprogrammed Control

a microprogrammed control unit. Each word in control memory contains within
microinstruction	 it a nucroinsiructiou. The microinstruction specifies one or more microopera-

tions for the system. A sequence of microinstructions constitutes a micropro-
microprogram gram. Since alterations of the microprogram are not needed once the control

unit is in operation, the control memory can be a read-onl y memory (ROM).
The content of the words in ROM are fixed and cannot be altered by simple
programming since no writing capability is available in the ROM. ROM words
are made permanent during the hardware production of the unit. The use of
a microprogram involves placing all control variables in words of ROM for use
by the control unit through successive read operations. The content of the word
in RUM at a given address specifies a microinstruction.

A more advanced development known as dynamic microprogramming
permits a microprogram to be loaded initially from an auxiliary memory such
as a magnetic disk. Control units that use dynamic microprogramming employ
a writable control memory. This type of memory can be used for writing (to
change the microprogram) but is used mostly for reading. A memory that is

control memory	 part of a control unit is referred to as a control memory.
A computer that employs a microprogrammed control unit will have two

separate memories: a main memory and a control memory. The main memory
is available to the user for storing the programs. The contents of main memory
may alter when the data ore manipulated and every time that the program is
changed. The user's program in main memory consists of machine instructions
and data. In contrast, the control memory holds a fixed microprogram that
cannot be altered by the occasional user. The microprogram consists of mi-
croinstructions that specify various internal control signals for execution of
register microoperations. Each machine instruction initiates a series of microin-
structions in control memory. These microinstructions generate the microop-
erations to fetch the instruction from main memory; to evaluate the effective
address, to execute the operation specified by the instruction, and to return
control to the fetch phase in order to repeat the cycle for the next instruction.

The general configuration of a microprogrammed control unit is demon-
strated in the block diagram of Fig. 7-1. The control memory is assumed to be
a ROM, within which all control information is permanently stored. The

Figure 7-1 Microprogrammed control organization.

External
0.	

Next -	
Control	 Controlinput	 address	
address	

Control	 Control	 -4.- word
generator	 memory	 data

(sequencer)	 register	 (RUM)	 register

Next-address information

SECIhIN 71 Control Memur	 215

control address	 control memory address register specifies the address of the microinstruction,
register and the control data register holds the microinstruction read from memory.

The microinstruction contains a control word that specifies one or more micro-
operations for the data processor. Once these operations are executed, the
control must determine the next address. The location of the next microinstruc-
tion may be the one next in sequence, or it may he located somewhere else in
the control memory. For this reason it is necessary to use some bits of the
present microinstruction to control the generation of the address of the next
microinstruction. The next address may also be a function of external input
conditions. While the microoperations are being executed, the next address is
computed in the next address generator circuit and then transferred into the
control address register to read the next microinstruction. Thus a microinstruc-
tion contains bits for initiating microoperations in the data processor part and
bits that determine the address sequence for the control memory.

sequencer The next address generator is sometimes called a microprogram sequencer,
as it determines the address sequence that is read from control memory. The
address of the next microinstruction can be specified in several ways, depend-
ing on the sequencer inputs. Typical functions of a microprogram sequencer
are incrementing the control address register by one, loading into the control
address register an address from control memory, transferring an external
address, or loading an initial address to Start the control operations.

The control data register holds the present microinstruction while the
next address is computed and read from memory. The data register is some-

pipeline register times called a pipeline register. It allows the execution of the microoperations
specified by the control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with one clock
applied to the address register and the other to the data tegister.

The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-address
information are taken directly from the control memory. It must be realized that
a ROM operates as a combinational circuit, with the address value as the input
and the corresponding word as the output. The content of the specified word
in ROM remains in the output wires as long as its address value remains in the
address register. No read signal is needed as in a random-access memory. Each
clock pulse will execute the microoperations specified by the control ',vord and
also transfer a new address to the control address register. In the example that
follows we assume a single-phase clock and therefore we do not use a control
data register. In this way the address register is the only component in the
control system that receives clock pulses. The other two components: the
sequencer and the control memory are combinational circuits and do not need
a clock.

'I he main advaiLage Of the nucioprogranuned controi 15the Io..L tli,ii Otte
the hardware configuration is established, there should be no need for further
hardware or wiring changes. If we want to establish a. different control Se-

216	 CHAPTER SEVEN Microprogrammed Control

quence for the system, all we need to do is specify a different set of microin-
structions for control memory. The hardware confi guration should not be
changed for different operations; the only thing that must be changed is the
microprogram residing in control memory.

It should be mentioned that most computers based on the reduced in-
struction set computer (RISC) architecture concept (see Sec. 8-8) use hardwired

hardwired control	 control rather than a control memory with a microprogram. An example of a
hardwired control for a simple computer is presented in Sec. 5-4.

7-2 Address Sequencing

Microinstructions are stored in control memory in groups, with each group
routine specifying a routine. Each computer instruction has its own microprogram

routine in control memory to generate the microoperat-ions that execute the
instruction. The hardware that controls the address sequencing of the control
memory must be capable of sequencing the microinstructions within a routine
and be able to branch from one routine to another, To appreciate the address
sequencing in a microprogram control unit, let us enumerate the steps that the
control must undergo during the execution of a single computer instruction.

An initial address is loaded into the control address register when power
is turned on in the computer. This address is usually the address of the first
microinstruction that activates the instruction fetch routine. The fetch routine
may be sequenced by incrementing the control address register through the
rest of its microinstructions. At the end of the fetch routine, the instruction is
in the instruction register of the computer.

The control memory next must go through the routine that determines
the effective address of the operand. A machine instruction may have bits that
specify various addressing modes, such as indirect address and index regis-
ters. The effective address computation routine in control memory can be
reached through a branch microinstruction, which is conditioned on the status
of the mode bits of the instruction. When the effective address computation
routine is completed, the address of the operand is available in the memory
address register.

The next step is to generate the microoperations that execute the instruc-
tion fetched from memory. The microoperation steps to be generated in proc-
essor registers depend on the operation code part of the instruction. Each
instruction has its own microprogram routine stored in a given location of
control memory. The transformation from the instruction code bits to an
address in control memory where the routine is located is referred to as a

mapping mapping process. A mapping procedure is a rule that transforms the instruction
code into a control memory address. Once the required routine is reached, the
microinstructions that execute the instruction may be sequenced by increment-
ing the control address register, but sometimes the sequence of microopera-

SECTION	 Address Sequencing 	 217

lions will depend on values of certain status bits in processor registers.
Microprograms that employ subroutines will require an external register for
storing the return address. Return addresses cannot he stored in ROM because
the unit has no writing capability.

When the execution of the instruction is completed, control must return
to the fetch routine. This is accomplished by executing an unconditional branch
microinstruction to the first address of the fetch routine. In summary, the
address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.
2. Unconditional branch or conditional branch, depending on status bit

conditions.
3. A mapping process from the bits of the instruction to an address for

control memory.
4. A facility for subroutine call and return.

Figure 7-2 shows a block diagram of a control memory and the associated
hardware needed for selecting the next microinstruction address. The microin-
struction in control memory contains a set of bits to initiate microoperations
in computer registers and other bits to specify the method by which the next
address is obtained. The diagram shows four different paths from which the
control address register (CAR) receives the address. The incrementer incre-
ments the content of the control address register by one, to select the next
microinstruction in sequence. Branching is achieved by specifying the branch
address in one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific status bit in
order to determine its condition. An external address is transferred into control
memory via a mapping logic circuit. The return address for a subroutine is
stored in a special register whose value is then used when the microprogram
wishes to return from the subroutine.

Conditional Branching
The branch logic of Fig. 7-2 provides decision-making capabilities in 'he control

special bits unit. The status conditions are special bits in the system that provide parameter
information such as the carry-out of an adder, the sign bit of a number, the
mode bits of an instruction, and input or output status conditions. Information
in these bits can be tested and actions initiated based on their condition:
whether their value is I or 0. The status bits, together with the field in the
microinstruction that specifies a branch address, control the conditional branch
decisions generated In the bianch logic.

branch logic The branch logic hardware may be implemenred in a variety of ways. The
simplest way is to test the specified condition and branch to the indicated
address if the condition is met; otherwise, the address register is incremented.

218	 CHAPTER SEVEN Microprogrammed Control

Figure 7 .2 Selection of address for control memory.

This can be implemented with a multiplexer. Suppose that there are eight
status bit conditions in the system. Three bits in the microinstruction are used
to specify any one of eight status bit conditions. These three bits provide the
selection variables for the multiplexer. If the selected status bit is in the I state,
the output of the multiplexer is 1; otherwise, it is 0. A I output in the multi-
plexer generates a control signal to transfer the branch address from the
microinstruction into the control address register. AU output in the multiplexer
causes the address register to be incremented. In this configuration, the
microprogram follows one of two possible paths, depending on the value of
the selected status bit.

SECTION 7 . 2 Address Sequencing	 219

An unconditional branch microinstruction can be implemented by load-
ing the branch address from control memory into the control address register.
This can be accomplished by fixing the value of one status bit at the input of
the multiplexer, so it is always equal to 1. A reference to this bit by the status
bit select lines from control memory causes the branch address to be loaded
into the control address register unconditionally.

Mapping of Instruction
A special type of branch exists when a microinstruction specifies a branch to
the first word in control memory where a microprogram routine for an instruc-
tion is located. The status bits for this type of branch are the bits in the operation
code part of the instruction. For example, a computer with a simple instruction
format as shown in Fig. 7-3 has an operation code of four bits which can specify
up to 16 distinct instructions. Assume further that the control memory has 128
words, requiring an address of seven bits. For each operation code there exists
a microprogram routine in control memory that executes the instruction. One
simple mapping process that converts the 4-bit operation code to a 7-bit
address for control memory is shown in Fig. 7-3. This mapping consists of
placing a 0 in the most significant bit of the address, transferring the four
operation code bits, and clearing the two least significant bits of the control
address register. This provides for each computer instruction a microprogram
routine with a capacity of four microinstructions. If the routine needs more
than four microinstructions, it can use addresses 1000000 through 1111111. If
it uses fewer than four microinstructions, the unused memory locations would
be available for other routines.

One can extend this concept to a more general mapping rule by using a
RUM to specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping RUM. The contents of the map-
ping RUM give the bits for the control address register. In this way the
microprogram routine that executes the instruction can be placed in any de-
sired location in control memory. The mapping concept provides flexibility for
adding instructions for control memory as the need arises.

Figure 7-3 Mapping from instruction code to microinstruction address.

Opcode

	

Computer instruction:	 1 0 1 I	 address

	

Mapping bits:	 0 x x x jo 0

	

Microinstruction address: 	 0 1 0 1 1 0 0

220	 CHAFfER SEVEN Microprogrammed Control

The mapping function is sometimes implemented by means of an inte-
grated circuit called programmable logic device or PLD. A PLD is similar. t
ROM in conLet except that it uses AND and OR gates with internal electronic
fuses. The interconnection between inputs. AND gates, OR gates, and outputs
can be programmed as in ROM, A mapping function that can he expressed in
terms of Boolean expressions can be implemented conveniently with a PLD

Subroutines

Subroutines are programs that are used by other routines to accomplish a
particular task. A subroutine can be called from any point within the main body
of the microprogram. Frequently, many microprograms contain identical sec-
tions of code. Microinstructions can be saved by employing subroutines that
use common sections of microcode. For example, the sequence of microoper-
ations needed to generate the effective address of the operand for an instruc-
tion is common to all memory reference instructions. This sequence could be
a subroutine that is called from within many other routines to execute the
effective address computation.

Microprograms that use subroutines must have a provision for storing the
return address during a subroutine call and restoring the address during a
subroutine return. This may be accomplished by placing the incremented

subroutine register	 output from the control address register into a subroutine register and branch-
ing to the beginning of the subroutine. The subroutine register can then
become the source for transferring the address for the return to the main
routine. The best way to structure a register file that stores addresses for
subroutines is to organize the registers in a last-in, first-out (LIFO) stack. The
use of a stack in subroutine calls and returns is explained in more detail in
Sec. 8-7.

7-3 Microprogram Example

Once the configuration of a computer and its microprogrammed control unit
is established, the designer's task is to generate the microcode for the control
memory. This code generation is called microproramming and is a process
similar to conventional machine language programming. To appreciate this
process, we present here a simple digital computer and show how it is mi-
croprogrammed. The computer used here is similar but not identical to the
basic computer introduced in Chap. 5.

Computer Configuration

The block diagram of the computer is shown in Fig. 7-4. It consists of two
memory units: a main memory for storing instructions and data, and a control
memory for storing the microprogram. Four registers are associated with the
processor unit and two with the control unit. The processor registers are

SECTION 7-3 Microprogram Example	 221

I 	 I

to	 0

AR

—I	 Address	 Memory
2048 16

10	 1	 0
PC

Mlix

6	 0	 6	 0	 I
SBR	 (AR	

IS	 0

I	 DR

(ntroI memory	 Arithmetic
128 X 20	 logic and

shift unit

Control unit

IS	 Y	 0

AC

Figure 7 .4 Computer hardware configuration.

program counter PC, address register AR, data register DR, and accumulator
register AC. The function of these registers is similar to the basic computer
introduced in Chap. 5 (see Fig. 5-3). The control unit has a control address
register CAR and a subroutine register SBR. The control memory and its
registers are organized as a micropro grammed control unit. as shown in

i b -
The transfer of information among the registers in the processor is done

through multiplexers rather than a common bus. DR can receive information
from AC, PC, or memory. AR can receive information from PC or DR. PC can
receive information onl y from AR. The arithmetic, logic, and shift unit per-

222	 CHAPTER SEVEN Microprogrammed Control

forms microoperations with data from AC and DR and places the result in AC.
Note that memory receives its address from AR. Input data written to memory
come from DR, and data read from memory can go only to DR.

instruction format The computer instruction format is depicted in Fig. 7-5(a). It consists of
three fields: a 1-bit field for indirect addressing symbolized by I, a 4-bit oper-
ation code (opcode), and an 11-bit address field. Figure 7-5(b) fists four of the
16 possible memory-reference instructions. The ADD instruction adds the
'crttct of fhe operand found in the effective address to the content of AC. The
BRANCH instruction causes a rr.d1 to ilne eective address if ihe cpernd
in AC is negative. The program proceeds with the next consecutive instruction
if AC is not negative. The AC is negative if its sign bit (the bit in the leftmost
position of the register) is a 1. The STORE instruction transfers the content of
AC into the memory word specified by the effective address. The EXCHANGE
instruction swaps the data between AC and the memory word specified by the
effective address.

It will be shown subsequently that each computer instruction must be
microprogrammed. In order not to complicate the microprogramming exam-
ple, only four instructions are considered here. It should be realized that 12
other instructions can be included and each instruction must be micropro-
grammed by the procedure outlined below.

Microinstruction Format
microinstruction	 The microinstruction format for the control memory is shown in Fig. 7-6. The
format

	

	
20 bits of the microinstruction are divided into four functional parts. The three
fields Fl, F2, and F3 specify microoperations for the computer. The CD field

Figure 7-5 Computer instructions.

15	 14	 11	 10	 0

L!J Opcode	 Address

(a) Instruction format

Symbol	 Opcode	 Description

ADD	 0000	 AC#-AC+M(EA)

BRANCH	 0001	 If (AC <O) then (PC 4_EA)

STORE	 0010	 MIEAJ4.-AC

EXCHANGE	 0011	 AC 4- M[EA]. M(EAJ 4—AC

EA is the effective address

(b) Four computer instructions

SECTION -3 Microprogram Example 	 223

AD

Fl, F2, F3: Microoperat ion fields

CD: Condition for branching

BR: Branch field

AD: Address field

Figure 7-6 Microinstruction code format (20 bits).

selects status bit conditions. The BR field specifies the type of branch to be
used. The AD field contains a branch address. The address field is seven bits
wide, since the control memory has 128 = 2' words.

microoperations	 The microoperations are subdivided into three fields of three bits each.
The three bits in each field are encoded to specify seven distinct microopera-
tions as listed in Table 7-1. This gives a total of 21 microoperations. No more
than three microoperations can be chosen for a microinstruction, one from each
field. If fewer than three microoperations are used, one or more of the fields
will use the binary code 000 for no operation. As an illustration, a microinstruc-
tion can specify two simultaneous microoperations from F2 and F3 and none
from Fl.

DR —M[AR] with F2= 100

and PC —PC + 1	 with F3 = 101

The nine bits of the microoperation fields will then be 000 100 101. It is
important to realize that two or more conflicting microoperations cannot be
specified simultaneously. For example, a microoperation field 010 001 000 has
no meaning because it specifies the operations to clear AC to and subtract DR
from AC at the same time.

Each microoperation in Table 7-1 is defined with a register transfer state-
ment and is assigned a symbol for use in a symbolic microprogram. All
transfer-type microoperations symbols use five letters. The first two letters
designate the source register, the third letter is always a T, and the last two
letters designate the destination register. For example, the microoperation that
specifies the transfer AC -DR (Fl = 100) has the symbol DRTAC, which
stands for a transfer from DR to AC.

condition field

	

	 The CD (condition) field consists of two bits which are encoded to specify
four status bit conditions as listed in Table 74. The first condition is always a
1, SO that a reference to CD = 00 (or the symbol U) will always find the
condition to be true. When this condition is used in conjunction with the BR
(branch) field, it provides an unconditional branch operation. The indirect bit

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

Fl	 Microoperation	 Symbol

000 None	 NOP
001 AC*-AC +DR ADD
010 AC-0	 CLRAC
011 AC — AC +l	 INCAC
100 AC - DR	 DRTAC
101 AR -DR(0-10) DRTAR
110 ARE-PC	 PCTAR
111 M[AR)-DR	 WRITE

Microoperation

None
AC—AC DR
AC AC V DR
AC AC A DR
DR M[AR]
DR 4-AC
DR —DR + 1
DR (0-10) - PC

Microoperation

None
AC 4-AC DR
ACAC
AC4-shl AC
AC4-shr AC
PCE-PC + I
PC—AR
Reserved

F2

000
001
010
011
100
101
110
111

F3

000
001
010
011
100
101
110
111

Symbol

MOP
SUB
OR
AND
READ
ACFDR
INCDR
PCTDR

Symbol

NOP
XOR
COM
SHL
SUR
INCPC
ARTPC

CD	 Condition	 Symbol

00	 Always = 1	 U
01	 DR(15)	 I
10	 AC(15)	 S
11	 AC=0	 Z

Comments

Unconditional branch
Indirect address bit
Sign bit of AC
Zero value in AC

BR Symbol

00	 imp

01	 CALL

10	 RET
11	 MAP

Function

CAR +-AD if condition =
(AR-- (.i P -	 if
CAR AD, SBR+-CAR + 1 if condition = 1
CARE-CAR + 1 if condition = 0
CAR 4-SBR (Return from subroutine)
CAR(2-5),DR(11--14), CAR(0,L6)*-0

224

SECTION 7-3 Microprogram Example	 225
I is available from bit 15 of DR after an instruction is read from memor\' The
sign b i t ot .k p,-k) , id, tht ileAL SLàLUS bit. ihe zero value, symbolized by Z,
is a binary variable whose value is equal to I if all the bits in AC are equal to
zero. We will use the symbols U, I, S, and Z for the four status bits when we
write microprograrns in symbolic form.

branch field The BR (branch) field consists of two bits. It is used, in conjunction with
the address field AD, to choose the address of the next microinstruction As
shown in Table 7-1, when BR = 00, the control performs a jump (JMP) opera-
tion (which is similar to a branch), and when BR 01, it performs a call to
subroutine (CALL) operation. The two operations are identical except that a
call microinstruction stores the return address in the subroutine register SBR.
The jump and call operations depend on the value of the CD field, lithe Status
bit condition specified in the CD field is equal to 1, the next address in the AD
field is transferred to the control address register CAR. Otherwise, CAR isincremented by 1.

The return from subroutine is accomplished with a BR field equal to 10
This causes the transfer of the return address from SBR to CAR. The mapping
from the operation code bits of the instruction to an address for C AR is
accomplished when the BR field is equal to 11. This mapping is as depicted in
Fig. 7-3. The bits of the operation code are in DR(11-14' after an instruction
is read from memory. Note that the last two conditions in the BR field are
independent of the values in the CD and AD fields.

Symbolic Microinstructions

The symbols defined in Table 7-1 can be used to specify microirtstruclions in
symbolic form. A symbolic microprogram can be translated into its binary
equivalent by means of an assembler. A microprogram assembler is similar in
concept to a conventional computer assembler as defined in Sec. 6-3. The
simplest and most straightforward way to formulate an assembly language for
a microprogram is to define symbols for each field of the microinstruction and
to give users the capability for defining their own symbolic addresses.

Each line of the assembly language microprogram defines a symbolic
microinstruction. Each symbolic microinstruction is divided into five fields:
label, microoperations, CD, BR, and AD. The fields specify the following
information.

1. The label field may be empty or it may specify a symbolic address. A
label is terminated with a colon (:).

2. The microoperations field consists of one, two, or three s ymbols, sep-
arated by commas, from those defined in Table 7-1. There may be no
more than one symbol from each F field. The NO? symbol is used when
the microinstruction has no microoperations. This will be translated by
the assembler to nine zeros.

226	 CHAPTER SEVEN Microprogrammed Control

3. The CD field has one of the letters U, I, S, or Z.
4. The BR field contains one of the four symbols defined in Table 7-1.

address field	 5. The AD field specifies a value for the address field of the microinstruc-
tion in one of three possible ways:
a. With a symbolic address, which must also appear as a label.
b. With the symbol NEXT to designate the next address in sequence.
c. When the BR field contains a RET or MAP symbol, the AD field is

left empty and is converted to seven zeros by the assembler.

ORG We will use also the pseudoinstruction ORG to define the origin, or first
address, of a microprogram routine. Thus the symbol ORG 64 informs the
assembler to place the next microinstruction in control memory at decimal
address 64, which is equivalent to the binary address 1000000.

The Fetch Routine
The control memory has 128 words, and each word contains 20 bits. To
microprogram the control memory, it is necessary to determine the bit values
of each of the 128 words. The first 64 words (addresses 0 to 63) are to be
occupied by the routines for the 16 instructions. The last 64 words may be used
for any other purpose. A convenient starting location for the fetch routine is
address 64. The microinstructions needed for the fetch routine are

AR — PCPC

DR—M[AR], PC #-PC + 1

AR €- DR(0-10), CAR(2-5) +- DR(11-14), CAR(0,1,6) +-0

The address of the instruction is transferred from PC to AR and the instruction
is then read from memory into DR. Since no instruction register is available,
the instruction code remains in DR. The address part is transferred to AR and
then control is transferred to one of 16 routines by mapping the operation code
part of the instruction from DR into CAR.

fetch and decode The fetch routine needs three microinstructions, which are placed in
control memory at addresses 64, 65, and 66. Using the assembly language
conventions defined previously, we can write the symbolic microprogram for
the fetch routine as follows;

ORG
FETCH:	 PCTAR	 U	 JMP	 NEXT

READ, INCPC	 U	 JMP	 NEXT
DETAR	 U	 NAP

The translation of the symbolic microprogram to binary produces the
following binary microprogram. The bit values are obtained from Table 7-1.

SECTION 7-3 Microprogram Example	 227

Binary
Address Fl	 F2	 F3 CD BR	 AD

1000000	 110	 000	 000	 00	 00	 1000001
1000001	 000	 100	 101	 00	 00	 1000010
1000010	 101	 000	 000	 00	 11	 0000000

The three microinstructions that constitute the fetch routine have been
listed in three different representations. The register transfer representation
shows the internal register transfer operations that each microinstruction im-
plements. The symbolic representation is useful for writing microprograms in
an assembly language format. The binary representation is the actual internal
content that must be stored in control memory. It is customary to write
microprograms in symbolic form and then use an assembler program to obtain
a translation to binary.

Symbolic Microprogram

The execution of the third (MAP) microinstruction in the fetch routine results
in a branch to address Oxxxx00, where xxxx are the four bits of the operation
code. For example, if the instruction is an ADD instruction whose operation
code is 0000, the MAP microinstruction will transfer to CAR the address
0000000, which is the start address for the ADD routine in control memory. The
first address for the BRANCH and STORE routines are 0 0001 00 (decimal 4)
and 0 0010 00 (decimal 8), respectively. The first address for the other 13
routines are at address values 12, 16, 20,..., 60. This gives four words in
control memory for each routine.

In each routine we must provide microinstructions for evaluating the
effective address and for executing the instruction. The indirect address mode
is. associated with all memory-reference instructions. A saving in the number
of control memory words may be achieved if the microinstructions for the
indirect address are stored as a subroutine. This subroutine, symbolized by
INDRCT, is located right after the fetch routine, as shown in Table 7-2. The table
also shows the symbolic microprogram for the fetch routine and the microin-
struction routines that execute four computer instructions.

To see how the transfer and return from the indirect subroutine occurs,
assume that the MAP microinstruction at the end of the fetch routine caused
a branch to address 0, where the ADD routine is stored. The first microinstruc-
tion in the ADD routine calls subroutine INDRCT, conditioned on status bit
1. If! = 1, a branch to INDRCT occurs and the return address (address I in this
case) is stored in the subroutine register SBR. The INDRCT subroutine has two
microinstructions:

INDRCT:	 READ	 U	 JMP	 NEXT
DRTAR	 U	 RET

228	 CHAPTER SEVEN Mcroprogrammed Control

TABLE 7-2 Symbolic Microprogram (Partial)

Label	 Microoperations	 CD	 BR	 AD

ORG 0
ADD:	 NOP	 I	 CALL INDRCT

READ	 U JMP	 NEXT
ADD	 U JMP	 FETCH

ORG 4
BRANCH:	 NOP	 S	 JMP	 OVER

NO?	 U imp	 FETCH
OVER:	 NO?	 I	 CALL INDRCT

ARTPC	 U imp	 FETCH

ORG 8
STORE:	 NO?	 I	 CALL INDRCT

ACTDR	 U imp	 NEXT
WRITE	 U JMP	 FETCH

ORG 12
EXCHANGE; NOP	 I CALL INDRCT

READ	 U JMP	 NEXT
ACTDR. DRTAC U JMP	 NEXT
WRITE	 U imp	 FETCH

ORG 64
FETCH:	 PTAR	 U JMP	 NEXT

READ, INCPC	 U JMP	 NEXT
DRTAR	 U MAP

INDRCT:	 READ	 U imp	 NEXT
DRTAR	 U RET

Remember that an indirect address considers the address part of the
instruction as the address where the effective address is stored rather than the
address of the operand. Therefore, the memory has to be accessed to get the
effective address, which is then transferred to AR. The return from subroutine
(RET) transfers the address from SBR to CAR, thus returning to the second
microinstruction of the ADD routine.

execution of	 The execution of the ADD instruction is carried out by the rnicroinstruc-
instructions	 lions at addresses I and 2. The first microinstruction reads the operand from

memory into DR. The second microinstruction performs an add microopera-
lion with the content of DR and AC and then jumps back to the beginning of
the fetch routine.

The BRANCH instruction should cause a branch to the effective address

SECTION 73 Microprogram Example 	 229
if AC <0. The AC will be less than zero if its sign is negative, which is detected
from status bit S being a 1. The BRANCH routine in Table 7-2 Starts by checking
the value of S. If is equal to 0, no branch Occurs and the next microinstruction
causes a jump back to the fetch routine without altering the content of PC. ifS is equal to 1, the first JMP microinstruction transfers control to locationOVER. The microinstruction at this location calls the INDRCT subroutine if
I = 1. The effective address is then transferred from AR to PC and the mi-croprogram jumps back to the fetch routine.

The STORE routine again uses the INDRCT subroutine if 1 1. Thecontent of AC is transferred into DR. A memory write operation is initiated tostore the content of DR in a location specified by the effective address in AR.
The EXCHANGE routine reads the operand from the effective address

and places it in DR. The contents of DR and AC are interchanged in the third
microinstruction. This interchange is possible when the registers are of the
edge-triggered type (see Fig. 1-23). The original content of AC that is now inDR is stored back in memory.

Note that Table 7-2 contains a partial list of the microprogram. Only four
out of 16 possible computer instructions have been microprogrammed. Also,
control memory words at locations 69 to 127 have not been used. Instructions
such as multiply, divide, and others that require a long sequence of micro-
operations will need more than four microinstructions for their execution.
Control memory words 69 to 127 can be used for this purpose.

Binary Microprogram

The symbolic microprogram is a convenient form for writing microprograms
in a way that people can read and understand. But this is not the way that the
microprogram is stored in memory. The symbolic microprogram must be
translated to binary either by means of an assembler program or by the user
if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3. The
addresses for control memory are given in both decimal and binary. The binary
content of each microinstruction is derived from the symbols and their equiv-
alent binary values as defined in Table 7-1.

Note that address 3 has no equivalent in the symbolic microprogram since
the ADD routine has only three microinstructions at addresses 0, 1, and 2. The
next routine starts at address 4. Even though address 3 is not used, some binary
value must be specified for each word in control memory. We could have
specified all 0's in the word since this location will never be used. However,
if some unforeseen error occurs, or if a noise signal sets CAR to the value of
3, it will be wise to jump to address 64, which is the beginning of the fetch
routine.

control memory

	

	
The binary microprogram listed in Table 7-3 specifies the word content

of the control memory When a ROM is used for the control memory, the

230	 CHAPTER SEVEN M tcroprogrammed Control

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address
Micro

Routine	 Decimal	 Binary

Binary Microinstruction

Fl F2 F3 CD BR
	

RE C

ADD
	

0
	

0000000 000 000 000 01
	

01
	

1000011
0000001 000 100 000 00

	
00 0000010

2
	

0000010 001 000 000 00
	

00
	

1000000
3
	

0000011 000 000 000
	

00
	

00
	

100(X()
BRANCH
	

4
	

0000100 000 000 000 10
	

00 0000110
5
	

0000101 000 000 000 00
	

00
	

1000000
6
	

0000110 000 000 000
	

01
	

01
	

1000011
7
	

0000111 000 000 110
	

00
	

00
	

1000000
STORE
	

8
	

0001000 000 000 000 01
	

01
	

1000011
9
	

0001001 000 101 000
	

00
	

00
	

0001010
10
	

0001010 111 000 000
	

00
	

00
	

1000000
11
	

0001011 000 000 000
	

00
	

00
	

1000000

EXCHANGE
	

12
	

0001100 000 000 000 01
	

01
	

1000011
13
	

0001101 001 000 000
	

00
	

00
	

0001110
14
	

0001110
	

100
	

101 000
	

00
	

00
	

0001111
15
	

0001111
	

111 000 000
	

00
	

00
	

1000000

FETCH
	

64	 1000000 110 000 000 00	 00	 1000001
65	 1000001 000 100 101	 00	 00	 1000010
66	 1000010 101 000 000	 00	 11	 0000000

INDRCT
	

67	 1000011 000 100 000	 (X)	 (X)	 1000100
68	 1000100 101 000 000 00	 10 0000000

microprogram binary list provides the truth table for fabricating the unit. This
fabrication is a hardware process and consists of cre .ting a mask for the ROM
so as to produce the l's and 0's for each word. The bits of ROM are fixed once
the internal links are fused during the hardware production. The ROM is made
of IC packages that can be removed if necessary and replaced by other pack-
ages. To modify the instruction set of the computer, it is necessary to generate
a new microprogram and mask a new ROM. The old one can be removed and
the new one inserted in its place.

If a writable control memory is employed,, the ROM is replaced b y a RAM.
The advantage of employing a RAM for the control memory is that the mi-
croprogram can be altered simply by writing a new pattern of l's and U's
without resorting to hardware procedures. A writable control memory pos-
sesses the flexibility of choosing the inctruction set of a computer dvnimicallv
by changing the microprogram under processor control. However, most mi-
croprogrammed systems use a ROM for the control memory because it is

SECTION 7-4 Design of Control Unit	 231

cheaper and faster than a RAM and ako to prevent the eccasional user from
changing the architecture of the system.

7-4 Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field
defining a distinct, separate function. The various fields encountered in in-
struction formats provide control bits to initiate microoperations in the system,
special bits to specify the way that the next address is to be evaluated, and an
address field for branching. The number of control bits that initiate microop-
erations can be reduced by grouping mutually exclusive variables into fields
and encoding the k bits in each field to provide 2k microoperations. Each field
requires a decoder to produce the corresponding control signals. This method
reduces the size of the microinstruction bits but requires additional hardware
external to the control memory. It also increases the delay time of the control
signals because they must propagate through the decoding circuits.

The encoding of control bits was demonstrated in the programming
example of the preceding section. The nine bits of the microoperation field are
divided into three subfields of three bits each. The control memory output
of each subfield must be decoded to provide the distinct microoperations. The
outputs of the decoders are connected to the appropriate inputs in the proces-
sor unit.

decoding of F fields Figure 7-7 shows the three decoders and some of the connections that
must be made from their outputs. Each of the three fields of the microinstruc-
tion presently available in the output of control memory are decoded with a
3 x 8 decoder to provide eight outputs. Each of these outputs must be con-
nected to the proper circuit to initiate the corresponding microoperation as
specified in Table 7-1. For example, when Fl = 101 (binary 5), the next clock
pulse transition transfers the content of DR (0-10) to AR (symbolized by DRTAR
in Table 7-1). Similarly, when El = 110 (binary 6) there is a transfer from PC
to AR (symbolized by PCTAR). As shown in Fig. 7-7, outputs 5 and 6 of decoder
Fl are connected to the load input of AR so that when either one of these
outputs is active, information from the multiplexers is transferred to AR. The
multiplexers select the information from DR when output 5 is active and from
PC when output 5 is inactive. The transfer into AR occurs with a clock pulse
transition only when output 5 or output 6 of the decoder are active. The other
outputs of the decoders that initiate transfers between registers must be con-
nected in a similar fashion.

arithmetic logic	 The arithmetic logic shift unit can be designed as in Figs. 5-19 and 5-20.
shift unit Instead of using gates to generate the control signals marked by the symbols

AND, ADD, and DR in Fig. 5-19, these inputs will now come from the outputs
of the decoders associated with the symbols AND, ADD, and DRTAC, respec-

232	 CHAPTER SEVEN Microprogrammed Control

Ft
	

F2
	

F3

3 x X decoder
	

3 x 8 decoder	 3 x 8 decoder

7 6 5 4 3 2 I 0
	

76543210
	

7 6 5 4 3 2 I 0

rIJ

LDRTAC	 Arithmetic
logic hitm

lmnhm

< l-	 1r
.	 l

Select
p

Load

From	 FromPC	 DR(O - - lO) LLI)II
0	 ii

Multiplexer

AC

AR	 Clock

Figure 7-7 Decoding of rrucrooperarton fe[ds.

tively, as shown in Fig. 7-7. The other outputs of the decoders that are asso-
ciated with an AC operation must also be connected to the arithmetic logic shift
unit in a similar fashion.

Microprogram Sequencer
The basic components of a microprogrammed control unit are the control
memory and the circuits that select the next address. The address selection part
is called a microprogram sequencer. A microprogram sequencer can be con-
structed with digital functions to suit a particular application. However, just

,--...,	-.
general-purpose sequencers suited for the construction of microprogram con-
trol units. To guarantee a wide range of acceptability, an integrated circuit
sequencer must provide an internal organization that can he adapted to a wide
range of applications.

SECTION 7 .4 Design of Control Unit	 233

The purpose of a microprogram sequencer is to present an
ddres to the

control memory so that a microinstruction may be read and executed. The
next-address logic of the sequencer determines the specific address Source to
be loaded into the control address register. The choice of the address source
is guided by the next-address information bits that the sequencer receives from
the present microinstruction. Commercial sequencers include within the unit
an internal register stack used for temporary storage of addresses during
microprogram looping and subroutine calls. Some sequencers provide an
output register which can function as the address register for the control
memory.

To illustrate the internal structure of a typical microprogram sequencer
we will show a particular unit that is suitable for use in the microprogram
computer example developed in the preceding section. The block diagram of
the microprogram sequencer is shown in Fig. 7-8. The control memory is
included in the diagram to show the interaction between the sequencer and the
memory attached to it. There are two multiplexers in the circuit. The first
multiplexer selects an address from one of four sources and routes it into a
control address register CAR. The second multiplexer tests the value of a
selected status bit and the result of the test is applied to an input logic circuit.
The output from CAR provides the address for the control memory. The
content of CAR is incremented and applied to one of the multiplexer inputs and
to the subroutine register SBR. The other three inputs to multiplexer number
1 come from the address field of the present microinstruction, from the output
of 58K, and from an external source that maps the instruction. Although the
diagram shows a single subroutine register, a typical sequencer will have a
register stack about four to eight levels deep. In this way, a number of subrou-
tines can be active at the same time. A push and pop operation, in conjunction
with a stack pointer, stores and retrieves the return address during the call and
return microinstructions.

The CD (condition) field of the microinstruction selectgs one of the status
bits in the second multiplexer. If the bit selected is equal to 1, the T (test)
variable is equal to 1; otherwise, it is equal to 0. The T value together with the
two bits from the BR (branch) field go to an input logic circuit. The input logic
in a particular sequencer will determine the type of operations that are available
in the unit. Typical sequencer operations are: increment, branch or jump, call
and return from subroutine, load an external address, push or pop the stack,
and other address sequencing operations. With three inputs, the sequencer
can provide up to eight address sequencing operations. Some commercial
sequencers have three or four inputs in addition to the Tinput and thus provide
a wider range of operations.

design of input logic	 The input logic circuit in Fig. 7-8 has three inputs, I, !, and T, and three
outputs, 50, S, and L. Variables S0 and S select one of the source addresses
for CAR. Variable L enables the load input in SBR. The binary values of the two
selection variables determine the path in the multiplexer. For example, with
S S = 10, multiplexer input numb€r 2 is selected and establishes a transfer

234	 CHAPTER SEVEN Microprogrammed Control

External
(MAP)

'0 Input'.:

r

1 13 2 J

IOic	 $ MUX 1

-

I J* [:Mf--TX-2LJ

4 Clod b CAR

Control memory

Mieroops.	 CD	 BR	 Al)

Figure 7-8 Microprogram sequencer for a control memory.

path from SBR to CAR. Note that each of the four inputs as well as the output
of MUX I contains a 7-bit address.

The truth table for the input logic circuit is shown in Table 74, Inputs Ii

and 10 are identical to the bit values in the BR field. The function listed in each
entry was defined in Table 7-1. The bit values for S and S 0 are determined from
the stated function and the path in the multiplexer that establishes the required
transfer. The subroutine register is loaded with the incremented value of CAR
during a call microinstruction (BR 01) provided that the status bit condition
is satisfied (T = 1). The truth table can be used to obtain the simplified Boolean
functions for the input logic circuit

S3 = 11

S0 = II I, +IT

L = 110T

SECTION 7-4 Design of Control Unit 	 235

TABLE 7-4 Input ogK Trud: Table for Miroprugrarn Sequencer

BR	 Input	 MUX I	 Load SBR
Field	 1 1 T	 S1 so	 L

00	 000
00	 001
01	 010
01	 011
10	 lOx
11	 lix

00	 0
01	 0
00	 0
01	 1
10	 0
Ii	 0

The circuit can be constructed with three AND gates, an OR gate, and an
inverter.

Note that the incrementer circuit in the sequencer of Fig. 7-8 is not a
counter constructed with flip-flops but rather a combinational circuit con-
structed with gates. A combinational circuit incrementer can be designed by
cascading a series of half-adder circuits (see Fig. 4-8). The output carry from
one stage must be applied to the input of the next stage. One input in the first
least significant stage must be equal to 1 to provide the increment-by-one
operation.

7-1. What is the difference between a microprocessor and a microprogram? Is it
possible to design a microprocessor without a microprogram? Are all mi-
croprogrammed computers also microprocessors?

7-2. Explain the difference between hardwired control and microprogrammed
control. Is it possible to have a hardwired control associated with a control
memory?

	

7-3.	 Define the following: (a) rnicrooperation; (b) microinstruction; (c) micro-
program; (d) microcode.

7-4. The microprogrammed control organization shown in Fig. 7-1 has the fol-
lowing propagation delay times. 40 ns to generate the next address, 10 ns
to transfer the address into the control address register, 40 ns to access the
control memory ROM, 10 ns to transfer the microinstruction into the control
data register, and 40 ns to perform the required microoperations specified
by the control word. What is the maximum clock frequency that the control
can use? What would the clock frequency be if the control data register is
not used?

7-5. The system shown in Fig. 7-2 uses a control memory of 1024 words of 32 bits
each. The microinstruction has three fields as shown in the diagram. The
microoperations field has 16 bits.
a. How many bits are there in the branch address field and the select field?

236	 CHAPTER SEVEN Micmprtzramrned Control

b. If there are 16 status bits in the system, how many bits of the branch logic
are used to select a status bit?

c. How many bits are left to select an input for the multiplexers?

7-6.	 The control memory in Fig. 7-2 has 4096 words of 24 bits each.
a. 1-low many bits are there in the control address register?
b. How many bits are there in each of the four inputs shown going into the

multiplexers?
c. What are the number of inputs in each multiplexer and how many

multiplexers are needed?

7-7.	 Using the mapping procedure described in Fig. 7-3, give the first microin-
struction address for the following operation code: (a) 0010; (b) 1011; (c) 1111.

7-8. Formulate a mapping procedure that provides eight consecutive microin-
structions for each routine. The operation code has six bits and the control
memory has 2048 words.

7-9. Explain how the mapping from an instruction code to a microinstruction
address can be done by means of a read-only memory. What is the advantage
of this method compared to the one in Fig. 7-3?

7-10. Why do we need the two multiplexers in the computer hardware configura-
tion shown in Fig. 7-4? Is there another way that information from multiple
sources can be transferred to a common destination?

7-11.	 Using Table 7-1, give the 9-bit microoperation field for the following micro-
operations:
a. AC - -AC + 1, DR 4—DR + I
b. PC-PC 1, DR —M[AR}

c. DR 4—AC, AC —DR

7-12.	 Using Table 7-1, convert the following symbolic microoperations to register
transfer statements and to binary.
a. READ, INCPC
b. ACTDR, DRTAC
c. ARTPC, DRTAC, WRITE

7-13.	 Suppose that we change the ADD routine listed in Table 7-2 to the following
two microinstructions.

ADD:	 READ	 I	 CALL	 INDR2

ADD	 U	 JMP	 FETCH

What should be subroutine INDR2?

7-14.	 The following is a symbolic microprogram for an instruction in the computer
defined in Sec. 7-3.

ORG .D
NOP	 S	 JMP	 FETCH
NOP	 Z	 JMP	 FETCH
NOF	 I	 CALL	 INDRCT
ARTPC	 U	 JPIP	 FETCH

a. Specify the operation performed when the instruction is executed.
b. Convert the four microinstructions into their equivalent binary form.

	

SECTION 7 .4 Design of Control Unit	 237
7-15.	 The computer of Sec. 7-3 has the following binary microproemm:

Address	 Binary Microprogram

60	 01000001000001000011
61	 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
62	 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1
63	 1 0 1 1	 1 0 0 0 0 1	 1	 1	 1 0 1	 1	 1	 1 0 o

a. Translate it to a symbolic microprogram as in Table 7-2. (FETCH is in
address 64 and JNDRCT in address 67.)

b. List all the things that will be wrong when this microprogram is executed
in the computer.

Add the following instructions to the computer of Sec 7-3 (EA is the effective
address). Write the symbolic microprogram for each routine as in Table 7-2.
(Note that AC must not change in value unless the instruction specifies a
change in AC.)

Symbol Opcode	 Symbolic Function	 Description

7-16.

AND
SUB
ADM
BTCL
BZ
SEQ
BPNZ

7-17.

7-18.

7-19.

7-20.

0100 AC — AC AM[EA]	 AND
0101	 AC-AC - M[EA]	 Subtract
0110	 M[EAJ-M[E.4) -t- AC	 Add to memory
0111	 AC—AC AM(Efl] 	 Bit clear
1000	 If (AC = 0) then (PC - EA)	 Branch if ACzero
1001	 If (AC = MIEAJ) then (PC.-PC + 1)	 Skip if equal
1010	 If (AC > 0) then (PC - FA)	 Branch if positive

and nonzero

Write a symbolic microprogram routine for the ESZ (increment and skip if
zero) instruction defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Note that DR = 0 status condition is not available in the
CD field of the computer defined in Sec. 7-3. However, you can exchange
AC and DR and check if AC = 0 with the Z bit.

Write the symbolic microprogram routines for the BSA (branch and save
address) instructions defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Minimize the number of microinstructions.

Show how outputs 5 and 6 of decoder F3 in Fig. 7-7 are to be connected to
the program counter PC.

Show how a 9-bit imcrooperation field in a microinstruction can he divided
into subfields to specify 46 microoperations. How many microoperations can
be specified in one microinstruction?

238	 ct1A'TER SEVEN Microprogrammed Control

7-21. A computer has 16 registers, an ALU (arithmetic logic unit) with 32 opera-
tions, and a shifter with eight operations, all connected to a common bus
system.
a. Formulate a control word for a microoperation.
b. Specify the number of bits in each field of the control word and give a

general encoding scheme.
c. Show the bits of the control word that specify the microoperation

R4—R5 + R6.

7-22. Assume that the input logic of the microprogram sequencer of Fig. 7-8 has
four inputs, I, I, !, T (test), and three outputs, s, so, and L The operations
that are performed in the unit are listed in the following table. Design the
input logic circuit using a minimum number of gates.

I:	 it	 Jo	 Operation

o	 0	 Increment CAR if T = 1, jump to AD if T = 0
o	 1	 Jump to AD unconditionally
0	 0	 Increment CAR unconditionally
1	 0	 Jump to AD if T 1, increment CAR if T = 0
1	 0	 Call subroutine if T = 1. increment CAR if T 0

1	 1	 Return from subroutine unconditionally
1	 1	 Map external address unconditionally

7-23. Design a 7-bit combinational circuit incrementer for the microprogram se-
quencer of Fig. 7-8 (see Fig. 4-8). Modify the incrementer by including a
control input D. When D 0, the circuit increments by one, but when
D = 1, the circuit increments by two.

7-24. Insert an exclusive-OR gate between MUX 2 and the input logic of Fig. 7-8.
One input to the gate comes from the test output of the multiplexer. The
other input to the gate comes from a bit labeled P (for polarity) in the
microinstruction from control memory. The output of the gate goes to the
input 1' of the input logic. What does the polarity control P accomplish?

REFER

1. Dasgupta, S., Computer Architecture: A Modern Synthesis. Vol. 1. New York: John

Wiley, 1989.
2 Goxsline, (•, 	 Cuit ()rgozoo. !1rdu '. -SoJi	 2.t.J e'l. Lilewoot.i

Cliffs, NJ: Prentice Hall, 1986

3. Hamacher, V. C., Z. C. Vranesic, and S. C. Zak y, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

- Design t Control Unit	 239
4.

Ha" I F., Comrer Archtfureand Organization, 2nd ed. New York: McGrawFjjlI1988.

5 arigholz, G., J. Francioni, and A. Kandel, E/'ne1,	 f Computer Organization.Englewood Cliffs, NJ: Prentice Hall, 1989.

6. Lewin, M. H., Logic D''1 ond Com
Wesley, 1983.	

puter Organization. Reading, NlAi Addison

7. Mano, M. M Computer Engineering. Hardware Design. Englewood Cliffs, NJ: Pren-tice Hall, 1988.

8. Rafiquzzaman Ni., and R. Chandra, Modern Computer Architecture St Paul, MN:West Publishing, 1988.

9. Stallings, W., Computer Organization and Architecture, 2nd ed. New York: Macmillan,1989,

10, Tanenbaum, A. S., Structured Computer Organization, 3rd ed. nglewood Cliffs, NPrentice Hall, 1990.

11. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge. MA; MITPress, 1990.

- AL

