
CHAPTER EIGHT

Central Processing
Unit

IN THIS CHAPTER

84	 Introduction
8-2	 General Register Organization
8-3	 Stack Organization
8-4	 Instruction Formats
8-5	 Addressing Modes
8-6	 Data Transfer and Manipulation
8-7	 Program Control
8-8	 Reduced Instruction Set Computer

8-1 Introduction

The part of the computer that performs the bulk of data-processing operations
CPU is called the central processing unit and is referred to as the CPU. The CPU is

made up of three major parts, as shown in Fig. 8-1. The register set stores
intermediate data used during the execution of the instructions. The arithmetic
logic unit (ALU) performs the required microoperations for executing the
instructions. The control unit supervises the transfer of information among the
registers and instructs the ALU as to which operation to perform.

The CPU performs a variety of functions dictated by the type of in-
structions that are incorporated in the computer. Computer architecture is
sometimes defined as the computer structure and behavior as seen by the
programmer that uses machine language instructions. This includes the in-
struction formats, addressing modes, the instruction set, and the general
organization of the CPU registers.

One bo u n dary where the compulei Lics:gnt	 lJ e
grammer see the same machine is the part of the CPU associated with the
instruction set. From the designer's point of view, the computer instruction set
provides the specifications for the design of the CPU. The design of a CPU is

241

242	 CHAVTER EIGHT Central Processing Unit

Register set

Ccn

Arithmetic
logic unit
(ALtJ)

Figure 8.1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha-
sis on the user's view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to-retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISC).

8-2 General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo-
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consuming operation in a computer. It is more conve-
nient and more efficient to store these intermediate values in processor regis-
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu-
nicate with each other not only for direct data transfers, but also while perform-
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor,

bus system A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
Input data for the particular bus. The A and B buses form the inputs to a

SELB

SECTION 82 General Register Organization	 243

-

Output

(a) Block diagram

[SELA I SELB I SELD	 OPR

(b) Control word

Figure b-L Register set with common

244	 CHAPTER ERJHT Central Processing Unit

common arithmetic loic un i t (ALL) The operation selected in the ALU doter-
mines the arithmetic or logic microoperation that is to be performed. Ihe result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

RI — R2 + R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALL operation selector (OPR): to provide the arithmetic addition
A + B.

4. Decoder destination selector (SELD): to transfer the content of the
output bus into RI.

The four control selection variables are generated in the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALL, to the
output bus, and into the inputs of the destination register, all during the clock
c ycle interval. Then, when the next clock transition occurs, the binary informa-
tion from the output bus is transferred into RI. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word

There are 14 binary selection inputs in the unit, and their combined value
control word specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It

consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SF.LA select a source register for the A input of the
ALL. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register select i ons is specified in Table 8 1. The 3-bit

SECTION 5 . 2 General Register Orgar.i:tioti	 245

TABLE 8-1 Encoding of Register Selection Hetd

Binary
Code	 SELA SELB	 SELD

000	 Input	 Input	 None

	

001	 RI	 RI	 Ri
010	 R2	 R2	 R2

	

011	 R3	 R3	 R3
100	 R4	 R4	 R4

	

101	 R5	 R5	 R5

	

nO	 R6	 R6	 R6

	

111	 R7	 R7	 R7

binary code listed in the first column of the table specifies the binar y code for
each of the three fields. The register selected b y fields SELA, SELB, and SF,LL)
is the one whose decimal number is equivalent to the binar y number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus, are available in the external output.

ALU
The ALU provides arithmetic and logic operations. In addition, the CPU

must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-1 The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR

	

Select	 Operation	 Symbol

	00000	 Transfer A	 TSFA

	

00001	 Increment A	 INCA
	00010	 Add A '- B	 ADD

	

00101	 Subtract A - B	 SUB
	00110	 Decrement .-I	 DECA

	

01000	 AMD A mci R

	

01100	 XOR A arid B	 XOR

	

01110	 Complement A	 COMA
	10000	 Shift right A	 SHRA

	

11000	 Shift left A	 SI-I LA

246	 CHAPTER EIGHT Central Processing Unit

Examples of Microoperations
A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract microoperation given by the statement

R1—R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, RI for
the destination register, and an ALU operation to subtract A B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract microoperation is 010 011 001 00101 and
is obtained as follows:

Field:	 SELA SELB SELD OPR

Symbol:	 R2	 R3	 RI	 SUB
Control word:	 010	 011	 001	 0(101

The control word for this rnicrooperation and a few others are listed in
Table 8-3.

The increment and transfer microoperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD	 OPR

R1 -R2 - R3	 R2	 R3	 RI	 SUB
R4—R4VR5	 R4	 R5	 R4	 OR
R6—R6 + 1	 R6	 -	 R6	 INCA
R7—R1	 RI	 -	 R7	 TSFA
Output —R2	 R2	 -	 None TSFA
Output —Input Input	 -	 None TSFA
R4—shl R4	 R4	 -	 R4	 SHLA
R5-0	 R5	 R5	 R5	 XOR

Control Word

010 011 001 00101
100 101 100 01010
110 000 110 00001
001 000 111 00000
010 000 000 00000
000 000 000 00000
100 000 100 11000
101 101 101 01100

SECTION 33 Stack Organization	 247

of all 0's (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because xx = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
rnicrooperations for the CPU. This type of control is referred to as micropro-
grammed control. A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked "micro-ops."

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
LIFO last-in, first-out (LIFO) list. A stack is a storage device that stores information

in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The

stack pointer register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (Or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com-
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack
A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP

::JL'iil\	 Le ,	 OiO' A:	 tho	 irc	 t :l	 ..c;d that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To r'niove the top item, the stack is popped by reading the memory word

Address

T

63

248	 c-tms EIGHT Central Processing Unit

DR

Figure 8-3 Block diagram of a 64-word stack.

at address 3 and decrementing the content of SP. Item B is now on top of the
stack since SP holds address 2. To insert a new item, the stack is pushed by
incrementing SP and writing a word in the next-higher location in the stack.
Note that item C has been read out but not physically removed. This does not
matter because when the stack is pushed, a new item is written in its place.

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since
SP has only six bits, it cannot exceed a number greater than 63 (111111 in
binary). When 63is incremented by 1, the result isO since 111111 + 1 = 1000000
in binary, but SP can accommodate only the six least significant bits. Similarly,
when 000000 is decremented by 1, the result is 111111. The one-bit register
FULL is set to I when the stack is full, and the one-bit register EMTY is set to
1 when the stack is empty of items. DR is the data register that holds the binary
data to be written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so
that SP points to the word at address 0 and the stack is marked empty and not
full. If the stack is not full (if FULL = 0), a new item is inserted with a push

push	 operation. The push operation is implemented with the following sequence of
microoperations:

SP <-- SP + 1	 Increment stack pointer
M[SP] +-DR	 Write item on top of the stack

SECTiON 8-3 Stack Organization 	 249

If (SP = 0) then (FULL - 1)

EMTY*-0

Check if stack is full

Mark the stack not empty

POP

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into
the top of the stack. Note that SP holds the address of the top of the stack and
that M[SP} denotes the memory word specified by the address presently
available in SP. The first item stored in the stack is at address 1. The last item
is stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set
to 1. This condition is reached if the top item prior to the last push was in
location 63 and, after incrementing SP, the last item is stored in location 0. Once
an item is stored in location 0, there are no more empty registers in the stack.
If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if
EMTY 0). The pop operation Consists of the following sequence of micro-
operations:

DR —M[SP]
	

Read item from the top of stack

SP—SP - 1
	

Decrement stack pointer

If (SP = 0) then (EMTY —1)
	

Check if stack is empty

FULL 4-0
	

Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then
decrernented. If its value reaches zero, the stack is empty, so EMTY is set to
1. This condition is reached if the item read was in location 1. Once this item
is read out, SP is decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP
is decremented, SP changes to 111111, which is equivalent to decimal 63. In
this configuration, the word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the stack is pushed when
FULL = 1 or popped when EMTY = 1.

Memory Stack
A stack can exist as a stand-alone unit as in Fig. 8-3 or can be implemented in
a random-access memory attached to a CPU. The implementation of a stack
in the CPU is done by assigning a portion of memoiy to .i stack operation and
using a processor register as a stack pointer. Figure 8-4 shows a portion of
computer memory partitioned into three segments: program, data, and stack.
The program counter PC points at the address of the next instruction in the
program. The address register AR points at an array of data. The stack pointer

250	 CHAFrER EIGHT Central Processing Unit

Memory unit

At Ire

1000

3000

3997

3998

3999

4000

4001

Figure 8-4 Computer memory with program, data, and stack segments.

SP points at the top of the stack. The three registers are connected to a common
address bus, and either one can provide an address for memory. PC is used
during the fetch phase to read an instruction. AR is used during the execute
phase to read an operand. SP is used to push or pop items into or from the
stack.

As shown in Fig. S-4, the initial value of SP is 4001 and the stack grows
with decreasing addresses. Thus the first item stored in the stack is at address
4000, the second item is stored at address 3999, and the last address that can
be used for the stack is 3000. No provisions are available for stack limit checks.

SECTION 8-3 Stack Organization	 251

We assume that the items in the stack communicate with a data register
DR. A new item is inserted with the push operation as follows:

SP—SP - 1

M[SP] —DR

The stack pointer is decremerited so that it points at the address of the next
word. A memory write operation inserts the word from DR into the top of the
stack. A new item is deleted with a pop operation as follows:

DR —M[SPJ

SP—SP + 1

The top item is read from the stack into DR. The stack pointer is then incre-
mented to point at the next item in the stack.

Most computers do not provide hardware to check for stack overflow (full
stack limits stack) or underfiow (empty stack). The stack limits can be checked by using two

processor registers: one to hold the upper limit (3000 in this case), and the other
to hold the lower limit (4001 in this case). After a push operation, SP is
compared with the upper-limit register and after a pop operation, SP is com-
pared with the lower-limit register.

The two microoperations needed for either the push or pop are (1) an
access to memory through SP, and (2) updating SP. Which of the two micro-
operations is done first and whether SP is updated by incrementing or decre-
menting depends on the organization of the stack. In Fig. 8-4 the stack grows
by decreasing the memory address. The stack may be constructed to grow by
increasing the memory address as in Fig. 8-3. In such a case, SP is incremented
for the push operation and decremented for the pop operation. A stack may
be constructed so that SP points at the next empty location above the top of the
stack. In this case the sequence of microoperations must be interchanged.

A stack pointer is loaded with an initial value. This initial value must be
the bottom address of an assigned stack in memory. Henceforth, SP is automat-
ically decremented or incremented with every push or pop operation. The
advantage of a memory stack is that the CPU can refer to it without having to
specify an address, since the address is always available and automatically
updated in the stack pointer.

Reverse Polish Notation
A 'Thwk nroni7t10n ic very effective for evaluatin P, arithmetic exnressions. The
common mathematicai memod oi writing arithmetic expressions imposes dif-
ficulties when evaluated by a computer. The common arithmetic expressions

252	 CHAPTER EIGHT Central Processing Unit

are written in infix notation, with each operator written between the operands.
Consider the simple arithmetic expression

A*B + C*D

The star (denoting multiplication) is placed between two operands A and B or
C and D. The plus is between the two products. To evaluate this arithmetic
expression it is necessary to compute the product A * B, store this product
while computing C * D, and then sum the two products. From this example we
see that to evaluate arithmetic expressions in infix notation it is necessary to
scan back and forth along the expression to determine the next operation to
be performed.

The Polish mathematician Lukasiewicz showed that arithmetic expres-
sions can be represented in prefix notation. This representation, often referred
to as Polish notation, places the operator before the operands. The postfix

RPN	 notation, referred to as reverse Polish notation (RPN), places the operator after the
operands. The following examples demonstrate the three representations:

A + B Infix notation

+AB	 Prefix or Polish notation

AB+	 Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The
expression

A*B + C*D

is written in reverse Polish notation as

AB * CD * +

and is evaluated as follows: Scan the expression from left to right. When an
operator is reached, perform the operation with the two operands found on
the left side of the operator. Remove the two operands and the operator and
replace them by the number obtained from the result of the operation. Con-
tinue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

For the expression above we find the operator after A and B. We
perform the operation A * B and replace A, B, and * by the product to obtain

(A B) CD * +

where (A * B) is a single quantity obtained from the product. The next operator

SECTION 83 Sack Organization	 253

is a * and its previous two operands are C and D, so we perform C * D and
obtain an expression with two operands and one operator:

(A*B)(C*D) +

The next operator is + and the two operands to be added are the two products,
so we add the two quantities to obtain the result.

conversion to RPN The conversion from infix notation to reverse Polish notation must take
into consideration the operational hierarchy adopted for infix notation. This
hierarchy dictates that we first perform all arithmetic inside inner parentheses,
then inside outer parentheses, and do multiplication and division operations
before addition and subtraction oerations. Consider the expression

(A + B)*[C*(D + E) + F]

To evaluate the expression we must first perform the arithmetic inside the
parentheses (A + B) and (D ± E). Next we must calculate the expression
inside the square brackets. The multiplication of C * (D ± E) must be done
prior to the addition of F since multiplication has precedence over addition The
last operation is the multiplication of the two terms between the parentheses
and brackets. The expression can be converted to reverse Polish notation,
without the use of parentheses, by taking into consideration the operation
hierarchy. The converted expression is

AB + DE + C*F -i- *

Proceeding from left to right, we first add A and B, then add D and E. At this
point we are left with

(A + B)(D + E)C*F + *

where (A + B) and (D + E) are each a single number obtained from the sum.
The two operands for the next * are C and (D ±E). These two numbers are
multiplied and the product added to F. The final causes the multiplication
of the two terms.

Evaluation of Arithmetic Expressions
Reverse Polish notation, combined with a stack arrangement of registers, is the
most efficient way known for evaluating arithmetic exrre 1rc This rrcr
dLr is employed in suale eietrordc calculators and also in some computers.
The stack is particularly useful for handling long, complex problems involving
chain calculations. It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation.

254	 CHAPTER EIGHT Cenral Processing Unit

The procedure consists of first converting the arithmetic expression into
its equivalent reverse Polish notation. The operands are pushed into the stack
in the order in which they appear. The initiation of an operation depends on
whether we have a calculator or a computer. In a calculator, the operators are
entered through the keyboard. In a computer, they must be initiated by
instructions that contain an operation field (no address field is required). The
following microoperations are executed with the stack when an operation is
entered in a calculator or issued by the control in a computer: (1) the two
topmost operands in the stack are used for the operation, and (2) the stack is
popped and the result of the operation replaces the lower operand. By pushing
the operands into the stack continuously and performing the operations as
defined above, the çxpression is evaluated in the proper order and the final
result remains on top of the stack.

The following numerical example may clarify this procedure. Consider
the arithmetic expression

(3*4) + (5*6)

In reverse Polish notation, it is expressed as

34*56* +

stack operations Now consider the stack operations shown in Fig. 8-5. Each box represents one
stack operation and the arrow always points to the top of the stack. Scanning
the expression from left to right, we encounter two operands. First the number
3 is pushed into the stack, then the number 4. The next symbol is the multi-
plication operator * This causes a multiplication of the two topmost items in
the stack. The stack is then popped and the product is placed on top of the
stack, replacing the two original operands. Next we encounter the two
operands 5 and 6, so they are pushed into the stack. The stack operation that
results from the next * replaces these two numbers by their product. The last
operation causes an arithmetic addition of the two topmost numbers in the
stack to produce the final result of 42.

Scientific calculators that employ an internal stack require that the user
convert the arithmetic expressions into reverse Polish notation. Computers
that use a stack-organized CPU provide a system program to perform the

Figure 8-5 Stack operations to evaluate 3 - 4 + 5 . 6.

UI"-'

SECTION 84 Instruction Formats 	 255

conversion for the user. Most compilers, irrespective of their CPU organiza-
tion, convert all arithmetic expressions into Polish notation anyway because
this is the most efficient method for translating arithmetic expressions into
machine language instructions. So in essence, a stack-organized CPU may be
more efficient in some applications than a CPU without a stack.

8-4 Instruction Formats

The physical and logical structure of computers is normally described in refer-
ence manuals provided with the system. Such manuals explain the internal
construction of the CPU, including the processor registers available and their
logical capabilities. They list all hardware-implemented instructions, specify
their binary code format. and provide a precise definition of each instruction.
A computer will usually have a variety of instruction code formats. It is the
function of the control unit within the CPU to interpret each instruction code
and provide the necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box
symbolizing the bits of the instruction as they appear in memory words or in
a control register. The bits of the instruction are divided into groups called
fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor

register.
3. A mode field that specifies the way the operand or the effective address

is determined.

Other special fields are sometimes employed under certain circumstances, as
for example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define
various processor operations, such as add, subtract, complement, and shift.
The most common operations available in computer instructions are enumer-
ated and discussed in Sec. 8-6. The bits that define the mode field of an
instruction code specify a variety of alternatives for choosing the operands
from the given address. The various addressing modes that have been formu-
lated for digital computers are presented in Sec. 8-5. In this section we are
concerned with the address field of an instruction format and consider the
effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data
stored in memory or processor registers. Operands residing in memory are
specified by their memory address. Operands residing in processor registers

register address

	

	 are specified with a register address. A register address is a binary number of
k bits that defines one of 2' registers in the CPU. Thus a CPU with 16 processor

256	 CHAPTER EIGHT Central Processing Unit

registers RU through R15 will have a register address field of four bits. The
binary number 010:1, for example, will designate register R5.

Computers may have instructions of several different lengths containing
varying number of addresses. The number of address fields in the instruction
format of a computer depends on the internal organization of its registers. Most
computers fall into one of three types of CPU organizations:

1. Single accumulator organization.
2. General register organization.
3. Stack organization.

An example of an accumulator-type organization is the basic computer
presented in Chap. 5. All operations are performed with an implied accumu-
lator register. The instruction format in this type of computer uses one address
field. For example, the instruction that specifies an arithmetic addition is
defined by an assembly language instruction as

ADD X

where Xis the address of the operand. The ADD instruction in this case results
in the operation AC '-AC + M[X]. AC is the accumulator register and M[X}
symbolizes the memory word located at address X.

An example of a general register type of organization was presented in
Fig. 7-1. The instruction format in this type of computer needs three register
address fields. Thus the instruction for an arithmetic addition may be written
in an assembly language as

ADD	 RI, R2, RB

to denote the operation R -R2 + R3. The number of address fields in the
instruction can be reduced from three to two if the destination register is the
same as one of the source registers. Thus the instruction

ADD	 RI, R2

would denote the operation RI '-Ri ± R2. Only register addresses for R and
R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction
with a mnemonic MOV to symbolize a transfer instruction. Thus the instruc-
tion

NOV	 RI, R2

denotes the transfer RI *-R2 (or R2-R1, depending on the particular com-
puter). rhus transfer-type Instructions need two address fields to specify the
source and the destination,

General register-type computers employ two or three address fields in

SECTION 8 .4 Instruction Formats	 257

their instruction format. Each address field mas' specif y a processor register or
a memory word. An instruction symbolized by

ADD	 RI, X

would specify the operation Ri i—Ri + M[XJ. It has two address fields, one
for register RI and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with
stack organization would have PUSH and POP instructions which require an
address field. Thus the instruction

PUSH	 X

will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address
field in stack-organized computers. This is because the operation is performed
on the two items that are on top of the stack. The instruction

ADD

in a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack,
adding the numbers, and pushing the sum into the stack. There is no need to
specify operands with an address field since all operands are implied to be in
the stack.

Most computers fall into one of the three types of organizations that have
just been described. Some computers combine features from more than one
organizational structure. For example, the Intel 8080 microprocessor has seven
CPU registers, one of which is an accumulator register. As a consequence, the
processor has some of the characteristics of a general register type and some
of the characteristics of an accumulator type. All arithmetic and logic instruc-
tions, as well as the load and store instructions, use the accumulator register,
so these instructions have only one address field. On the other hand, instruc-
tions that transfer data among the seven processor registers have a format that
contains two register address fields. Moreover, the Intel 8080 processor has a
stack pointer and instructions to push and pop from a memory stack. The
processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

To illustrate the influence of the number of addresses on computer pro-
grams, we will evaluate the arithmetic statement

X = (A ± B)s(C + D)

using zero, one, two, or three address instructions. We will use the symbols
ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for
the transfer-type operation; and LOAD and STORE for transfers to and

258	 cvrE EJGI-ft Central Processing Unit

from memory and AC register. We will assume that the operands are in
memory addresses A, B, C, and D, and the result must be stored in memory
at address X.

Three-Address Instructions
Computers with three-address instruction formats can use each address field
to specify either a processor register or a memory operand. The program in
assembly language that evaluates X = (A + B) * (C + D) is shown below, to-
gether with comments that explain the register transfer operation of each
instruction.

ADD	 RI, A, B	 RI*—M[A] + N[B]
ADD	 R2,C,D	 R24—M[C]+N[D]
PIIJL	 X, RI, R2	 M[X1*—RI*R2

It is assumed that the computer has two processor registers, Ri and R2. The
symbol M[A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short
programs when evaluating arithmetic expressions. The disadvantage is that
the binary-coded instructions require too many bits to specify three addresses.
An example of a commercial computer that uses three-address instructions is
the Cyber 170. The instruction formats in the Cyber computer are restricted to
either three register address fields or two register address fields and one
memory address field.

Two-Address Instructions
Two-address instructions are the most common in commercial computers.
Here again each address field can specify either a processor register or a
memory word. The program to evaluate X = (A + B) * (C + D) is as follows:

NOV	 RI, A	 RI—M[A]
ADD	 RI, B	 R1—RI+N[B]
NOV	 R2, C	 R24—M[C]
ADD	 R2, D	 R2—R2 ± N[D]
MtJ.L	 RIP.R2	 RI—RI*R2
NOV	 X, RI	 M[X—RI

The MOV instruction moves or transfers the operands to and from memory
and processor registers. The first s ymbol l i s ted in an instruction is assumed to
be both a source and the destination where the result of the operation is
transferred.

SECTION 8-4 instruction Formats	 259

One-Address Instructions
One-address instructions use an implied accumulator (AC) register for all data
manipulation. For multiplication and division there is a need for a second
register. However, here we will neglect the second register and assume that
the AC contains the result of all operations. The program to evaluate
X = (A + B)*(C + D) is

LOAD	 A	 AC–M[A]
ADD	 B	 AC4–AC + M[B]
STORE	 T	 M[T] *–AC
LOAD	 C	 AC4–M[C]
ADD	 D	 AC—AC -r-M[b]
MUL	 T	 AC–AC*M[T]
STORE	 X	 M[X]4–AC

All operations are done between the AC register and a memory operand.
T is the address of a temporary memory location required for storing the
intermediate result.

Zero-Address Instructions
A stack-organized computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions, however, need an address
field to specify the operand that communicates with the stack. The following
program shows how X = (A + B)*(C + D) will be written for a stack-
organized computer. (TOS stands for top of stack.)

PUSH	 A	 TOS–A
PUSH	 B	 TOS4–B
ADD	 TOS–(A+B)
PUSH	 C	 TOS.–C
PUSH	 D	 TOS4–D
ADD	 TOS4–(C+D)
MUL	 TOS*–(C+D)*(A+B)
POP	 X	 MtXJ4–TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to
convert the expression into reverse Polish notation. The name "zero-address"
is given to this type of computer because of the absence of an address field in
the computational instructions.

RISC Instructions
The advantages of a reduced instruction set computer (RISC) architecture are
explained in Sec. 8-8. The instruction set of a typical RISC processor is restricted

260	 CHAPTER EIGHT Central Processing Unit

to the use of load and store instructions when communicating between mem-
ory and CPU. All instructions are executed within the registers of the
CPU without referring to memory. A program for a RISC-type CPU Consists
of LOAD and STORE instructions that have one memory and one register
address, and computational-type instructions that have three addresses with
all three specifying processor registers. The following is a program to evaluate
X = (A + B)*(C + D).

LOAD	 RI, A	 R14—M[A]
LOAD	 R2, B	 R24—M[B]
LOAD	 R3, C	 R3.—M[C]
LOAD	 R, D	 R.—M[D]
ADD	 RI, RI, R2	 R1—R1 + R2
ADD	 RB, RB, R2	 R3—R3 + R
MUL	 RI, RI, RB	 R14—RI*R3
STORE	 X, RI	 M[X]—R1

The load instructions transfer the operands from memory to CPU registers.
The add and multiply operations are executed with data in the registers
without accessing memory. The result of the computations is then stored in
memory with a store instruction.

8-5 Addressing Modes

The operation field of an instruction specifies the operation to be performed.
This operation must be executed on some data stored in computer registers or
memory words. The way the operands are chosen during program execution
is dependent on the addressing mode of the instruction. The addressing mode
specifies a rile for interpreting or modifying the address field of the instruction
before the operand is actually referenced. Computers use addressing mode
techniques for the purpose of accommodating one or both of the following
provisions:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly
language programmer flexibility for writing programs that are more efficient
with respect to the number of instructions and execution time.

To understand the various addressing modes to be presented in this
section, it is imperative that we understand the basic operation cycle of the

SECTION 8-5 Addressing Modes 	 261

computer. The control unit of a rnrnputer is designed to go through an instruc-tion cycle that is divided into three major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Execute the instruction.

program counter (PC) There is one register in the computer called the program counter or
PC thatkeeps track of the instructions in the program stored in memory.

PC holds theaddress of the instruction to be executed next and is
incremented each time an

instruction is fetched from memory. The decoding done in step 2
determines

the operation to be performed, the addressing mode of the instruction, and the
location of the operands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address-
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode field
is shown in Fig. 8-6. The operation code specifies the operation to be per-

mode field formed. The mode field is used to locate the operands needed for the opera-
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with
its own particular addressing mode.

Although most addressing modes modify the address field of the instruc-
tion, there are two modes that need no address field at all. These are the
implied and immediate modes.

Implied Mode: in this mode the operands are specified implicitly in the
definition of the instruction. For example, the instruction "complement accu -
mulator" is an implied-mode instruction because the operand in the accumu-
lator register is implied in the definition of the instruction. In fact, all register
reference instructions that use an accumulator are implied-mode instructions.

Figure 8-6 Instruction format with mode field.

I___ 01 c0Ik	 Mode	 Address

262	 CHAPTER EIGHT Central Processing Unit

Zero-address instructions in a stack-organized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction
itself. In other words, an immediate-mode instruction has an operand field
rather than an address field. The operand field contains the actual operand to
be used in conjunction with the operation specified in the instruction. Imme-
diate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memory word or a processor register. When the address field
specifies a processor register, the instruction is said to be in the register mode.

Register Mode: In this mode the operands are in registers that reside within
the CPU. The particular register is selected from a register field in the instruc-
tion. A k-bit field can specify any one of 2' registers.

Register Indirect Mode: In this mode the instruction specifies a register in the
CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than
the operand itself. Before using a register indirect mode instruction, the pro-
grammer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is
then equivalent to specifying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction uses fewer
bits to select a regist& than would have been required to specify a memory
address directly.

Autoincremeni or Autodecrement Mode: This is similar to the register in-
direct mode excep t that the register is incremented or decremented after (or
before) its value is used to access memory. When the address stored in the
register refers to a table of data in memory, it is necessary to increment or
decrement the register after 2very access to the table. This can be achieved by
using the increment or decrement instruction. However, because it is such a
common requirement, some computers incorporate a special mode that auto-
matically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
to obtain the operand from memory. Sometimes the value given in the address
field is the address of the operand, but sometimes it is just an address from
which the address of the operand is calculated. To differentiate among the
various addressing modes it is necessary to distinguish between the address

.0	 _;-_.	 .i	 ' --	 rrn	 !.c'n

effective address executing the instruction. The effective address is defined to be the memory
address obtained from the computation dictated by the given addressing
mode. The effective address is the address of the operand in a computational-

SECTION 8-5 Addressing Modes	 263

type instruction. i1 is th iddress where contiul branches in response to a
branch-type instruction. We have already defined two addressing modes in
Chap. 5. They are summarized here for reference.

Direct Address Mode: In this mode the effective address is equal to the
address part of the instruction. The operand resides in memory and its address
is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction
gives the address where the effective address is stored in memory. Control
fetches the instruction from memory and uses its address part to access mem-
ory again to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The effective address
in these modes is obtained from the following computation:

effective address = address part of instruction ± content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application.

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2's
complement representation) which can be either positive or negative. When
this number is added to the content of the program counter, the result pro-
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory
during the fetch phase and the program counter is then incremented by one
to 826. The effective address computation for the relative address mode is
826 + 24 = 850. This is 24 memory locations forward from the address of the
next instruction. Relative addressing is often used with branch-type instruc-
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared to the
number of bits required to designate the entire memory address.

Indexed Addressing Mode: In this mode the content of an index register is
added to the address part of the instruction to obtain the effective address. The

264	 .:il.rrER EK;HT Central Processing Unit

index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array
in memory. Each operand in the arra y is stored in memory relative to the
beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any
operand in the array can be accessed with the same instruction provided that
the index register contains the correct index value. The index register can be
incremented to facilitate access to consecutive operands. Note that if an index-
type instruction does not include an address field in its format, the instruction
converts to the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an index
register. This register is involved implicitly when the index-mode instruction
is used. In computers with many processor registers, any one of the CPU
registers can contain the index number. In such a case the register must he
specified explicitly in a register field within the instruction format.

Base Registe- Addressing Mode: In this mode the content of a base register
is added to the address part of the instruction to obtain the effective address.
This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register. The difference between the
two modes is in the way they are used rather than in the way that they are
computed. An index register is assumed to hold an index number that is
relative to the address part of the instruction. A base register is assumed to hold
a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in
computers to facilitate the relocation of programs in memor y. When programs
and data are moved from one segment of memory to another, as required in
multiprogramming s ystems, the address values of instructions must reflect
this change of position. With a base register, the displacement values of
instructions do not have to change. Only the value of the base register requires
updating to reflect the beginning of a new memory segment.

Numerical Example

To show the differences between the various modes, we will show the effect
of the addressing modes on the instruction defined in Fig. 8-7. The two-word
instruction at address 200 and 201 is a "load to AC" instruction with an address
field equal to 500. The first word of the instruction specifies the operation code
and mode, and the second word specifies the address part. PC has the value?oo c.	 fetJii1,.		 ,	
and the content of an index register XR is 100. AC receives the operand after
the instruction is executed. The figure lists a few pertinent addresses and
shows the memory content at each of these addresses.

21)0PC = 20O

20!

RI=400 -	 20:

[
XR=!u0

399

L

t0()

702

SECTION 8 .5 Addressing Modes	 265

Figure 8-7 Numerical example for addressing moJe.

The mode field of the instruction can specify any one of a number of
modes. For each possible mode we calculate the effective address and the
operand that must be loaded into AC. In the direct address mode the effective
address is the address part of the instruction 500 and the operand to be loaded
into AC is 800. In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201.) In the indirect mode the effective address
is stored in memory at address 500. Therefore, the effective address is 800 and
the operand is 300. In the relative mode the effective address is 500 + 202 =
702 and the operand is 325. (Note that the value in PC after the fetch phase and
during the execute phase is 202.) In the index mode the effective address is
XR + 500 = 100 ± 500 = 600 and the operand is 900- in the register mode the
operand is in R and 400 is loaded into AC. (There is no effective address in
this case.) In the register indirect mode the effective address is 400, equal to
the content of R It and the operand loaded into AC is 700. The autoincrement
mode is the same as the register indirect mode except that R is incremented
to 401 after the execution of the instruction. The autodecrement mode decre-
ments RI to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450. Table 8-4 lists the values of the effective address and the
operand loaded into AC for the nine addressing modes.

266	 CHAPTER EIGHT Central Processing Unit

TABLE 8 .4 Tabular List of Numerical Example

Addressing	 Effective	 Content
Mode	 Address	 of AC

Direct address	 500	 800
Immediate operand 	 201	 500
Indirect address	 800	 300
Relative address	 702	 325
Indexed address	 600	 900
Register	 -	 400
Register indirect 	 400	 700
Autoincrement	 400	 700
Autodecrement	 399	 450

8-6 Data Transfer and Manipulation

Computers provide an extensive set of instructions to give the user the flexi-
bility to carry out various computational tasks, The instruction set of different
computers differ from each other mostly in the way the operands are deter-
mined from the address and mode fields. The actual operations available in the
instruction set are not very different from one computer to another. It so
happens that the binary code assignments in the operation code field is differ-
ent in different computers, even for the same operation. It may also happen
that the symbolic name given to instructions in the assembly language notation
is different in different computers, even for the same instruction. Nevertheless,

set of	 there is a set of basic operations that most, if not all, computers include in their
basic operations	 instruction repertoire. The basic set of operations available in a typical com-

puter is the subject covered in this and the next section.
Most computer instructions can be classified into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. Data manipulation instruc-
tions are those that perform arithmetic, logic, and shift operations. Program
control instructions provide decision-making capabilities and change the path
taken b y the progrttn when executed in the cemputer. he tlirU(t'ufl
a particular computer determines the register transfer operations and controi
decisions that are available to the user.

SECTION 5-6 Data Transfer and Manipulation	 267

Data Transfer Instructions
Data trnsfec 1strutuns r1i0c iac.a from one place in the computer to another
without changing the data content. The most common transfers are between
memory and processor registers, between processor registers and input or
output, and between the processor registers themselves. Table 8-5 gives a list
of eight data transfer instructions used in many computers. Accompanying
each instruction is a mnemonic symbol. It must be realized that different
computers use different mnemonics for the same instruction name.

The load instruction has been used mostly to designate a transfer from
memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruc-
tion has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers
between CPU registers and memory or between two, memory words. The
exchange instruction swaps information between two registers or a register and
a memory word. The input and output instructions transfer data among proces-
sor registers and input or output terminals. The push and pop instructions
transfer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as in
subsequent tables in this section, are often associated with a variety of address-
ing modes. Some assembly language conventions modify the mnemonic sym-
bol to differentiate between the different addressing modes. For example, the
mnemonic for load immediate becomes LDI. Other assembly language conven-
tions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the
operand. In any case, the important thing is to realize that each instruction can
occur with a variety of addressing modes. As an example, consider the load to
accumulator instruction when used with eight different addressing modes.

TABLE 8-5 Typical Data Transfer
Instructions

Name	 Mnemonic

Load	 LD
Store	 ST
Move	 MOv
Exchange	 XCi-I
Input	 IN
Output	 OUT
Push	 PUSH
Pop	 POP

268	 CI-IAVTER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load instruction

Assembly
Mode	 Convention	 Register Transfer

Direct address	 LD ADR	 AC -- M[ADR)
Indirect address	 LD @A DR.	 AC M[M[ADRI]
Relative address	 LD $ADR	 AC --- M [PC + ,4DR]
Immediate operand	 LD N B R	 AC +-- NBR
Index addressing	 LD ADR(X)	 AC— M[ADR + XR]
Register	 LD RI	 AC i- Ri

Register indirect	 LD (R 1)	 AC - M[RI]
Autoincrement	 LD (RI)—	 AC i- M(R11, RI .- RI + I

Table 8-6 shows the recommended assembly language convention and the
actual transfer accomplished in each case. ADR stands for an address, NBR is
a number or operand, Xis an index register, R is a processor register, and AC
is the accumulator register. The (q character symbolizes an indirect address.
The $ character before an address makes the address relative to the program
counter PC. The # character precedes the operand in an immediate-mode
instruction. An indexed mode instruction is recognized by a register that is
placed in parentheses after the symbolic address. The register mode is symbol-
ized by giving the name of a processor register. In the register indirect mode,
the name of the register that holds the memory address is enclosed in paren-
theses. The autoincrement mode is distinguished from the register indirect
mode by placing a plus after the parenthesized register. The autodecrement
mode would use a minus instead. To be able to write assembly language
programs for a computer, it is necessary to know the type of instructions
available and also to be familiar with the addressing modes used in the partic-
ular computer.

Data Manipulation Instructions
Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer. The data manipulation instruc-
tions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

A list of data manipulation instructions will look very much like the list of
microoperations given in Chap. 4. It must be realized, however, that each
instruction when executed in the computer must go through the fetch phase

SECTION .6 Data Transfer and Manipulation 	 269

to read its binary code value from memory. The operands must also be brought
into processor registers according to the rules of the instruction ad dressjng
mode. The last step is to execute the instruction in the processor. This last step
is implemented by means of microoperations as explained in Chap. 4 or
through an ALU and shifter as shown in Fig. 8-2. Some of the arithmetic
instructions need special circuits for their implementation.

Arithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication
and division. Most computers provide Instructions for all four operations,
Some small computers have only addition and possibly subtraction instruc-
tions. The multiplication and division nt.ust then be generated by means of
software subroutines. The four basic arithmetic operations are sufficient for
formulating solutions to scientific problems when expressed in terms of nu-
merical analysis methods.

A list of typical arithmetic instructions is given in Table 8-7. The increment
instruction adds 1 to the value stored in a register or memory word. One
common characteristic of the increment operations when executed in processor
registers is that a binary number of all l's when incremented produces a result
of all 0's. The decrement instruction subtracts I from a value stored in a register
or memory word. A number with all 0's, when decremented, produces a
number with all l's.

The add, subtract, multiply, and divide instructions may be available for
data type different types of data. The data type assumed to be in processor registers

during the execution of these arithmetic operations is included in the definition
of the operation code. An arithmetic instruction may specify fixed-point or
floating-point data, binary or decimal data, single-precision or double-preci
sion data. The various data types are presented in Chap. 3.

It is not uncommon to find computers with three or more add insi-ruc-

TABLE 8.. 7 Typical Arithmetic Instructions

Name	 Mnemonic

Increment	 INC
Decrement	 DEC
Add	 ADD
Subtract	 SUB
Multiply	 MUL
Divide	 DIV
Add with carry	 ADDC
Subtract with borrow	 SUBB
Negate (2's complement)	 NEC

270	 CHAPTER EIGHT Central Prucesng Unit

tions: one for binary integers, one for floating-point operands, and one for
decimal operands. The mnemonics for three add instructions that sPeciy
different data types are shown below.

ADDI	 Add two binary integer numbers
ADDF	 Add two floating—point numbers
ADDD	 Add two decimal numbers in BCD

Algorithms for integer, floating-point, and decimal arithrretic uperatiors are
developed in Chap. 10.

The number of bits in an y registei is of finite length and therefore theresults of arithmetic operations are of finite precision. Some computers provide
hardware double-precision

'
Lperatons where the length of each operand is

taken to he the length of two nemory words. Most srnfl computers provide
special instructions to tcilitatc double-preciic,c arithmetic. A special carry
flip-flop is used to store the carry from an operation. The instruction "add
carry performs tho addition on two operands plus the value of the carr- from
the previous computation. Sim i larly, the "subtract with borrow"
subtracts two words and a borrow which may have resu 	 from a previoussubtract operation. Fhe negate instruction forms	 e 2's complement of a

signed-2's compicm nt form.
number, effectivel y reversing the sign of an IP:,eger when represented in the

Logical and Bit M..1tipu1ation Instructions
Log--cal lflSt L1';o	 perform binary operations on strings of hits stored inregisters.	

iey are useful for manipulating individual bits or a group of bitsthat	 .'resent binary-coded information. fhe logical instructions consider
ea' it of the operand separately and treat it as a Boolean variable. By proper

pplication of the logical instructions it is possible to change bit values, to clear
a group of bits, or to insert new bit values into operands stored in registers or
memory words.

Some typical logical and bit manipulation instructions are listed in Table
8-8. The clear instruction causes the specified operand to be replaced by D's.
The complement instruction produces the l's complement b y inverting all the
bits of the operand. The AND, OR, and XOR instructions produce the corre-
sponding logical operations on individual bits of the operands. Although tby
perform Boolean operations, when used in computer instructions, the loiCdl

instructions should be considered as performing bit manipulation orations.
There are three bit manipulation operations possible: a selec t, " bit can be
cleared to 0, or can be set to 1, or can be complemented. Me three logical
instructions are usually applied to do just that.

clear selected hits The AND Intrtieton ir uccj te C!or . s&ectcd group of bits of
an operand. For any Boolean variable x, the rela .mShip S x bO = 0 and x bi = x
dictate that a binary variable ANDed with ti pr..iduces a 0; but the variable

5E:TIONS-o' Data Transfer and Manipulation 	 271

TABLE 8-8 Typical Logical and Bit
Manipulation lnsrwcratjns

Name	 Mnemonic

Clear	 CLR
Complement	 CO
AND	 AND
OR	 OR
Exclusive-OR	 XOR
Clear carry	 CLRC
Set carry	 SETC
Complement carry	 COMC
Enable interrupt	 El
Disable interrupt	 Dl

does not change in value when ANDed with a 1. lherefore, the AND instruc-
tion can he used to clear bits of an operand selectivel y by ANDing the operand
with another operand that has O's in the hit positions that must be cleared. The
AND instruction is also called a mask because it masks or inserts V's iii a selected
portion of an operand.

set selected bits The OR instruction is used to set a hit or a selected group of bits of an
operand. For any Boolean variable x, the relationships x + I = I and x - 0 = x
dictate that a binary variable ORed with a I produces a 1; but the variable does
not change when ORed with a 0. Therefore, the OR instruction can he used
to selectively set bits of an operand b y ORing it with another operand with l's
in the hit positions that must he set to 1.

complement selected	 Similarly, the XOR instruction is used to selectivel y complement bits ofbits
an operand. This is because of the Boolean relationships xl = x' and
xE0 = x. 'Thus a binary variable is complemented when XORed withal but
does not change in value when XORed with a 0. Numerical examples showing
the three logic operations are given in Sec. 4-5.

A few other bit manipulation instructions are included in Table 8-8.
Individual bits such as a carry can he cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter-
rupt facility and is either enabled or disabled by means of bit manipulation
instructions.

Shift Instructions

!n'tniction to chft the c nrten f of an operaT73	 in
provided in several variations. Shifts are operations in which the bits of a word
are moved to the left or right. The bit shifted in at the end of the word
determines the type of shift used. Shift instructions may specify either logical

272	 CHAPTER EIGHT Central Processing Unit

shifts, arithmetic shifts, or rotate-type operations. In either case the shift may

Table 8-9 lists four types of shift instructions. The logical shift inserts 0
to the end bit position. The end position is the leftmost hit for shift right and
the rightmost bit position for the shift left. Arithmetic shifts usually con-
form with the rules for signed-2's complement numbers. These rules are given
in Sec. 4-6. The arithmetic shift-right instruction must preserve the sign bit in
the leftmost position. The sign bit is shifted to the right together with the rest
of the number, but the sign bit itself remains unchanged. This is a shift-right
operation with the end bit remaining the same. The arithmetic shift-left in-
struction inserts 0 to the end position and is identical to the logical shift-left
instruction. For this reason many computers do not provide a distinct arith-
metic shift-left instruction when the logical shift-left instruction is already
available.

The rotate instructions produce a circular shift. Bits shifted out at one end
of the word are riot lost as in a logical shift but are circulated back into the other
end. The rotate through carry instruction treats a carry bit as an extension of
the register whose word is being rotated. Thus a rotate-left through carry
instruction transfers the carry bit into the rightmost bit position of the register,
transfers the leftmost bit position into the carry, and at the same time, shifts
the entire register to the left.

Some computers have a multiple-field format for the shift instructions.
One field contains the operation code and the others specify the type of shift
and the number of times that an operand is to be shifted. A possible instruction
code format of a shift instruction may include five fields as follows:

OP	 REG	 TYPE	 RL	 COUNT

Here OP is the operation code field; REG is a register address that specifies the
location of the operand; TYPE is a 2-bit field specifying the four different types
of shifts; RL is a 1-bit field specifying a shift right or left; and COUNT is a k-bit
field specifying up to 2' - 1 shifts. With such a format, it is possible to specify
the type of shift, the direction, and the number of shifts, all in one instruction.

TABLE 8-9 Typical Shift Instructions

Name	 Mnemonic

Logical shift right	 SITR
Logical shift left	 SHL
Arithmetic shift right	 SHRA
Arithmetic shift left 	 SHLA
Rotate right	 ROR
Rotate left	 ROL

Rotate right through carry	 RORC

Rotate left through carry	 ROI.0

Prr	 (:-, 1 ! r(,i	 273

8-7 Program Control

Instructions are aiwa s stored in successive memor y locations. When pr
essed in the CPU, the instructions are fetched from ccnsccutive memory
locations and executed. Each time an instruction i fetched from memor y , the
program counter is incremented so that it contains the address ot the next
instruction in sequence. After the execution of a data transfer or data manip-
ulation instruction, control returns to the fetch cycle with the program counter
containing the address of the instruction next in sequence. On the other hand
a program control t ype of i nstruction, when executed, ma y chan ge the address
value in the program counter and Lause the flow of control to he altered. In
other words, program control instructions specify conditions for altering the
Content of the program counter .. while data transter and manipulation in-
structions specif y conditons for data- processing operations. lhr' change in
value of the program counter as a result of the execution of a program con-
trol instruction Lauses a break in the sequence Of instruction execution. ihi
is an im portant feature in digital computers, a	 Pro id's	 ntro! over the fko'
of program execution and a ca ahilitv for branching t different program
segments.

Sonic ty pical prcgrarii contr(jl instructions are listed ul Fable S-10 The
branch and jump instructions are used inlerchangeahh- to mean the same
thing, but sometimes they are used to denote different addressing modes. The
branch is usually a one-address instruction. It i5 written in assembl y language
as FR ADl, where A[1 R i , , a 'vmboic name for an address. When e\ectl ted,
the branch ;nstrucnori LdU.c'5 a tai .ter of the value or Al)l< in to the program
counter. Since the program counter contains the addre',s of the instruction to
be executed, thc next instruction will come from locati&r:i ADE

Branch and jump instructions max' be conditional or unconditional. An
unconditional branch instruction Causes a branch to the specified address will-r-
out any conditions, The conditional branch instruction specifies a condtien
such as branch it Positive or branch if zero. If the condition is met, the program
counter is loaded with the branch address and the next instruction is taken

TABLE 5-10 T'. pu,rl Prcr.rrn c..onrl lnsrruch'n-

Name	 Mnemonic

Branch	 BR
Jump	 iMP

Call	 ('ALL
Return	 RPI
Compare (b y 'u htraci on)	 CM P
Test thy ANDing)	 TST

274	 CHAPTER EIGHT Central Processing Unit

from this address. If the condition is not met, the program Counter is not
changed and the next instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a
zero-address instruction. A conditional skip instruction will skip the next
instruction if the condition is met. This is accomplished by incrementing the
program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the
next instruction in sequence where the programmer inserts an unconditional
branch instruction. Thus a skip-branch pair of instructions causes a branch if
the condition is not met, while a single conditional branch instruction causes
a branch if the condition is met.

The call and return instructions are used in conjunction with subroutines.
Their performance and implementation are discussed later in this section. The
compare and test instructions do not change the program sequence directly.
They are listed in Table 8-10 because of their application in setting conditions
for subsequent conditional branch instructions. The compare instruction per-
forms a subtraction between two operands, but the result of the operation is
not retained. However, certain status bit conditions are set as a result of the
operation. Similarly, the test instruction performs the logical AND of two
operands and updates certain status bits without retaining the result or chang-
ing the operands. The status bits of interest are the carry bit, the sign bit, a zero
indication, and an overflow condition. The generation of these status bits will
be discussed first and then we will show how they are used in conditional
branch instructions.

Status Bit Conditions
It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALU with a 4-bit status register. The four status bits
are symbolized by C, S. Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C 8 is 1. It is cleared to if the carry
is 0.

2. Bit S (sign) is set to I if the highest-order bit F is 1. It is set to 0 if the
bit is 0.

3. Bit Z (zero) is set to I if the output of the ALU contains all 0's. It is cleared
to 0 otherwise. In other words, Z = 1 if the output is zero and Z 0
if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is
equal to 1, and cleared to 0 otherwise. This is the condition for an

SECTION 8-7 Program Control	 275

Output F

Figure 8-8 Status register hits.

overflow when negative numbers are in 2's complement (see Sec. 3-3).
For the 8-bit ALU, V = 1 if the output is greater than + 127 or less than
—128.

The status bits can be checked after an ALU operation to determine
certain relationships that exist between the values of A and B. If bit V is set after
the addition of two signed numbers, it indicates an overflow condition. If Z is
set after an exclusive-OR operation, it indicates that A = B. This is so because
X x = 0, and the exclusive-OR of two equal operands gives an all-O's result
which sets the Z bit. A single bit in A can be checked to determine if it is 0 or
1 by masking all bits except the bit in question and then checking the Z status
bit. For example, let A = lOix 1100, where xis the bit to be checked. The AND
operation of A with B = 00010000 produces a result 000x0000. If x = 0, the Z
status bit is set, but if x = 1, the Z bit is cleared since the result is not zero. The
AND operation can be generated with the TEST instruction listed in Table 8-10
if the original content of A must be preserved.

Conditional Branch Instructions
Table 8-11 gives a list of the most common branch instructions. Each mnemonic
is constructed with the letter B (for branch) and an abbreviation of the condition
name. When the opposite condition state is used, the letter N (for no) is

276	 CHAPTER EIGHT Central Processing Unit

	

Mnemonic	 Branch condition	 Tested condition

BZ	 Branch if zero	 Z =

BNZ	 Branch if not zero	 Z = 0

BC	 Branch if carry	 C =

BNC	 Branch if no carry	 C = 0
BP	 Branch if plus	 S = 0

BM	 Branch if minus	 S
BV	 Branch if overflow	 V = I
BNV	 Branch if no overflow	 V = 0

Unsigned compare conditions (A -- B)
BUI	 Branch if higher	 A	 B
BHE	 Branch if higher or equal	 A > B
BLO	 Branch if lower	 A < 13
BLOE	 Branch if lower or equal 	 A	 B
BE	 Branch if equal	 A = B
BNE	 Branch if not equal	 A	 B

Signed compare conditions (A	 B)
BGT	 Branch if greater than	 A > B
BGE	 Branch if greater or equal 	 A > B
BLT	 Branch if less than	 A < B
BILE	 Branch if less or equal	 A	 B
BE	 Branch if equal	 A = B
BNE	 Branch if not equal	 A	 B

inserted to define the 0 state. Thus BC is Branch on Carry, and BNC is Branch
on No Carry. If the stated condition is true, program control is transferred to
the address specified by the instruction. If not, control continues with the
instruction that follows. The conditional instructions can be associated also
with the jump, skip, call, or return type of program control instructions.

The zero status bit is used for testing if the result of an ALU operation
is equal to zero or not. The carry bit is used to check if there is a carry out of
the most significant bit position of the ALU. It is also used in conjunction with
the rotate instructions to check the bit shifted from the end position of a register
into the carry position. The sign bit reflects the state of the most significant bit
of the output from the ALU. S = 0 denotes a positive sign and S = 1, a negative
sign. Therefore, a branch on plus checks for a sign bit of 0 and a branch on
minus checks for a sign bit of 1. It must be realized, however, that these two
conditional branch instructions can be used to check the value of the most
significant bit whether it represents a sign or not. The overflow bit is used in
conjunction with arithmetic operations done on signed numbers in 2's comple-
ment I C}JL c.,crtsutnfl..

sr(T!flN Q7 Prcram Control	 277

As stated previousl y, the compare instruction performs a subtraction of
two operands, sa y A - B. The result of the operation is not transferred into
a destination register, but the status bits are affected. The status register
provides information about the relative magnitude of A and B. Some comput-
ers provide conditional branch instructions that can be applied right after the
execution of a compare instruction. The specific conditions to be tested depend
on whether the two numbers A and B are considered to be unsigned or signed
numbers. Table 8-11 gives a list of such conditional branch instructions. Note
that we use the words higher and lower to denote the relations between
unsigned numbers.. and greater and less than for signed numbers. The relative
magnitude shown under the tested condition column in the table seems to he
the same for unsigned and signed numbers. However, this is not the case since
each must be considered separately as explained in the following numerical
e<am pie

numerical example Consider an 8-bit ALL as shown in Fig. 8-8. The largest unsigned number
that can be accommodated in 8 bits is 255. The range of signed numbers is
between 127 and 128. The subtraction of two numbers is the same whether
they are unsigned or in signed-2's complement represPotahon (see Chap. 3).
Let A	 11110000 and B 00010100. To perform A -. B, the ALL takes the 2's
complement of B and adds it to A.

A: 11110000
B ± 1: rll101iOO
A — B: 11011100	 C1	 51	 V0	 Z0

The compare instruction updates the status bits as shown. C = I because there
is a carry, Out of the last stage. S = I because the leftmost hit is 1. V = 0 because
the last two carries are both equal to 1, and Z = 0 because the result is not equal
to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and
that of B is 20. The ubtraction in decimal is 240 - 20 220. The binary result
11011100 is indeed the equivalent of decimal 220. Since 240	 20, we have that

A > B and A B. These two relations can also he derived from the tact that
status bit C is equal to 1 and hit Z s equal to 0. The instructions that will cause
a branch after this comparison are BHI (branch if higher), B1-IE (branch if higher
or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is —16. This
is because the sign of .4 is negative and 11110000 is the 2's complement of
00010000, which is the decimal equivalent of +16. The dec i ma l cqwvaient of

B is ±20. The subtraction in decimal is (-16) -- (-20) 	 —36. The binary result
11011100 (the 2's complement of OOiOUiOO) is indeed the equivalent of decimal

can also be derived from the fact that status bits 5 = i (negative), V zr (no

overflow), and Z U (not zero). The instructions that \\'iil cause a branch after
this comparison are BLT (branch if less than), BLE (branch if less or equal), and
BNE (branch if not equal).

278	 CHAPTER EIGHT Central Processing Unit

It should be noted that the instruction BNE and BNZ (branch if not zero)
are identical. Similarly, the two instructions BE (branch if equal) and BZ
(branch if zero) are also identical. Each is repeated three times in Table 8-11 for
the purpose of clarity and completeness.

It should be obvious from the example that the relative magnitude of
two unsigned numbers can be determined (after a compare instruction) from
the values of status bits C and Z (see Prob. 8-26). The relative magnitude of two
signed numbers can be determined from the values of S. V. and Z (see
Prob. 8-27).

Some computers consider the C bit to be a borrow bit after a subtraction
operation - B. A borrow does not occur if A B, but a bit must be borrowed
from the next most significant position if A < B. The condition for a borrow
is the complement of the carry obtained when the subtraction is done by taking
the 2's complement of B. For this reason, a processor that considers the C bit
to be a borrow after a subtraction will complement the C bit after adding the
2's complement of the subtrahend and denote this bit a borrow.

Subroutine Call and Return
A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro-
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

The instruction that transfers program control to a subroutine is known
by different names. The most common names used are call subroutine, jump to
subroutine, branch to subroutine, or branch and save address. A call subroutine
instruction consists of an operation code together with an address that specifies
the beginning of the subroutine. The instruction is executed by performing two
operations: (1) the address of the next instruction available in the program
counter (the return address) is stored in a temporary location so the subroutine
knows where to return, and (2) control is transferred to the beginning of the
subroutine. The last instruction of every subroutine, commonly called return
from subroutine, transfers the return address from the temporary location into
the program counter. This results in a transfer of program control to the
instruction whose address was originally stored in the temporary location.

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some Store it in a fixed location in memory, some store it in
a processor register, and some store it in a memory stack The most efficient
way is to store the return address in a memory stack. The advantage of using
a stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from

SECTION 87 Program Control	 279

subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is
always to the program that last called a subroutine. A subroutine call is
implemented with the following microoperations:

SP'.—SP - 1	 Decrement stack pointer

M ISPI 4—PC	 Push content of PC onto the stack

PC 4—effective address	 Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperatioris:

PC 4—M[SP]	 Pop stack and transfer to PC

SP - SP + 1	 Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored
by the hardware in one unit. The programmer does not have to he concerned
or remember where the return address was stored.

A recursive subroutine is a subroutine that calls itself. If only one register
or memory location is used to store the return address, and the recursive
subroutine calls itself, it destroys the previous return address. This is undesir-
able because vital information is destroyed. This problem can be solved if
different storage locations are employed for each use of the subroutine while
another lighter-level use is still active. When a stack is used, each return
address can be pushed into the stack without destroying any previous values.
This solves the problem of recursive subroutines because the next subroutine
to exit is always the last subroutine that was called.

Program Interrupt
The concept of program interrupt is used to handle a variety of problems that
arise out of normal program sequence. Program interrupt refers to the transfer
of program control from a currently running program to another service pro-
gram as a result of an external or internal generated request. Control returns
to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an internal
or external signal rather than from the execution of an instruction (except for

v i'	
program is determined by the hardware rather than from the address field of
an instruction; and (3) an interrupt procedure usually stores all the information

280	 CHAPTER EIGHT Central Processing Unit

necessary to define the state of the CPU rather than storing only the program
counter. These three procedural concepts are clarified further hdow.

After a program has been interrupted and the service routine been exe-
cuted, the CPU must return to exactly the same state that it was when the
interrupt occurred. Only if this happens will the interrupted program be able
to resunr- exactly as if nothing had happened. The state of the CPU at the end
of the . .ute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
program status word a program status word or PSW. The PSW is stored in a separate hardware register

and contains the status information that characterizes the state of the CPU.
Typically, it includes the status bits from the last ALU operation and it specifies
the interrupts that are allowed to occur and whether the CPU is operating in
a supervisor or user mode. Many computers have a resident operating system
that controls and supervises all other programs in the computer. When the
CPU is executing a program that is part of the operating system, it is said to

supervisor mode be in the supervisor or system mode. Certain instructions are privileged and
can be executed in this mode only. The CPU is normally in the user mode when
executing user programs. The mode that the CPU is operating at any given time
is determined from special status bits in the PSW.

Some computers store only the program counter when responding to an
interrupt. The service program must then include instructions to store status
and register content before these resources are used. Only a few computers
store both program counter and all status and register content in response to
an interrupt. Most computers just store the program counter and the PSW. In
some cases, there exist two sets of processor registers within the computer, one
for each CPU mode. In this way, when the program switches from the user to
the supervisor mode (or vice versa) in response to an interrupt, it is not
necessary to store the contents of processor registers as each mode uses its own
set of registers.

The hardware procedure for processing an interrupt is very similar to the
execution of a subroutine call instruction. The state of the CPU is pushed into
a memory stack and the beginning address of the service routine is transferred
to the program counter. The beginning address of the service routine is deter-
mined by the hardware rather than the address field of an instruction. Some
computers assign one memory location where interrupts are always trans-
ferred. The service routine must then determine what caused the interrupt and
proceed to service it. Some computers assign a memory location for each
possible interrupt. Sometimes, the hardware interrupt provides its own ad-
dress that directs the CPU to the desired service routine. In any case, the CPU

SECTION 8 .7 Program Control	 281

must possess some form of hardware procedure for selecting a branch address
for servicing	 inerruIJ.

The CPU does not respond to an interrupt until the end of an instruction
execution. Just before going to the next fetch phase, control checks for any
interrupt signals. If an interrupt is pending, control goes to a hardware inter-
rupt cycle. During this cycle, the contents of PC and PSW are pushed onto the
stack. The branch address for the particular interrupt is then transferred to PC
and a new PSW is loaded into the status register. The service program can now
be executed starting from the branch address and having a CPU mode as
specified in the new PSW.

The last instruction in the service program is a return from interrupt
instruction. When this instruction is executed, the stack is popped to retrieve
the old P5W and the return address. The PSW is transferred to the status
register and the return address to the program counter. Thus the CPU state
is restored and the original program can continue executing.

Types of interrupts
There are three major types of interrupts that cause a break in the normal
execution of a program. They can be classified as:

1. External interrupts
2. Internal interrupts
3. Software interrupts

External interrupts come from input—output (110) devices, from a timing
device, from a circuit monitoring the power supply, or from any other external
source. Examples that cause external interrupts are 1/0 device requesting
transfer of data, 1/0 device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the
CPU into a nondestructive memory in the few milliseconds before power
ceases.

Internal interrupts arise from illegal or erroneous use of an instruction or
data. Internal interrupts are also called traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc-
tion execution. The service program that processes the internal interrupt deter-
mines the corrective measure to be taken.

The difference between internal and external interrupts is that the inter-
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with

282	 CHAPTER EIGHT Central Processing Unit

the program while external interrupts are asynchronous. If the program is
rerun, the internal interrupts will occur in the same place each time. External
interrupts depend on external conditions that are independent of the program
being executed at the time.

External and internal interrupts are initiated from signals that occur in the
software interrupt hardware of the CPU. A software interrupt is initiated by executing an instruc-

tion. Software interrupt is a special call instruction that behaves like an inter-
rupt rather than a subroutine call. It can be used by the programmer to initiate
an interrupt procedure at any desired point in the program. The most common
use of software interrupt is associated with a supervisor call instruction. This
instruction provides means for switching from a CPU user mode to the super-
visor mode. Certain operations in the computer may be assigned to the super-
visor mode only, as for example, a complex input or output transfer procedure.
A program written by a user must run in the user mode. When an input or
output transfer is required, the supervisor mode is requested by means of a
supervisor call instruction. This instruction causes a software interrupt that
stores the old CPU state and brings in a new PSW that belongs to the supervisor
mode. The calling program must pass information to the operating system in
order to specify the particular task requested.

8-8 Reduced Instruction Set
Computer (RISC)

An important aspect of computer architecture is the design of the instruction
set for the processor. The instruction set chosen for a particular computer
determines the way that machine language programs are constructed. Early
computers had small and simple instruction sets, forced mainly by the need
to minimize the hardware used to implement them. As digital hardware
became cheaper with the advent of integrated circuits, computer instructions
tended to increase both in number and complexity. Many computers have
instruction sets that include more than 100 and sometimes even more than 200
instructions. These computers also employ a variety of data types and a large
number of addressing modes. The trend into computer hardware complexity
was influenced by various factors, such as upgrading existing models to
provide more customer applications, adding instructions that facilitate the
translation from high-level language into machine language programs, and
striving to develop machines that move functions from software implementa-
tion into hardware implementation. A computer with a large number of in-
structions is classified as a complex instruction set computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that
.,..;,.,,..,...,	 .. ,.,,.	 .	 ,..

cuted much faster within the CPU without having to use memory as often. This
type of computer is classified as a reduced instruction set computer or RISC. In

CISC

RJC

SECTION 8-8 Reduced Instruction Set Computer (RISC) 	 283

this section we introduce the major characteristics of CISC and RISC architec-
a IUSC

processor.

CISC Characteristics
The design of an instruction set for a computer must take into consideration
not only machine language constructs, but also the requirements imposed on
the use of high-level programming languages. The translation from high-level
to machine language programs is done by means of a compiler program. One
reason for the trend to provide a complex instruction set is the desire to simplify
the compilation and improve the overall computer performance. The task of
a compiler is to generate a sequence of machine instructions for each high-level
language statement. The task is simplified if there are machine instructions that
implement the statements directly. The essential goal of a CISC architecture
is to attempt to provide a single machine instruction for each statement that
is written in a high-level language. Examples of CISC architectures are the
Digital Equipment Corporation VAX computer and the IBM 370 computer.

Another characteristic of CISC architecture is the incorporation of vari-
able-length instruction formats. Instructions that require register operands
may be only two bytes in length, but instructions that need two memory
addresses may need five bytes to include the entire instruction code. If the
computer has 32-bit words (four bytes), the first instruction occupies half a
word, while the second instruction needs one word in addition to one byte in
the next word. Packing variable instruction formats in a fixed-length memory
word requires special decoding circuits that count bytes within words and
frame the instructions according to their byte length.

The instructions in a typical CISC processor provide direct manipulation
of operands residing in memory. For example, an ADD instruction may specify
one operand in memory through index addressing and a second operand in
memory through a direct addressing. Another memory location may be in-
cluded in the instruction to store the sum. This requires three memory refer-
ences during execution of the instruction. Although CISC processors have
instructions that use only processor registers, the availability of other modes
of operations tend to simplify high-level language compilation. However, as
more instructions and addressing modes are incorporated into a computer, the
more hardware logic is needed to implement and support them, and this may
cause the computations to slow down. In summary, the major characteristics
of USC architecture are:

1. A large number of instructions—typically from 100 to 250 instructions
2. Some instructions that perform specialized tasks and are used infre-

quently

284	 CHAPTER EIGHT Central Processing Unit

A large varetv of addressing modes—typically from S to 20 different
modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

RISC Characteristics
The concept of RISC architecture involves an attempt to reduce execution time
by simplifying the instruction set of the computer. The major characteristics
of a RISC processor are:

1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store instructions
4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format
6. Single-cycle instruction execution

7. Hardwired rather than microprogrammed control

The small set of instructions of a typical RISC processor consists mostly
of register-to-register operations, with only simple load and store operations
for memory access. Thus each operand is brought into a processor register with
a load instruction. All computations are done among the data stored in proces-
sor registers. Results are transferred to memory by means of store instructions.
This architectural feature simplifies the instruction set and encourages the
optimization of register manipulation. The use of only a few addressing modes
results from the fact that almost all instructions have simple register address-
ing. Other addressing modes may be included, such as immediate operands
and relative mode.

By using a relatively simple instruction format, the instruction length can
be fixed and aligned on word boundaries. An important aspect of RISC instruc-
tion format is that it is easy to decode. Thus the operation code and register
fields of the instruction code can be accessed simultaneously by the control.
By simplifying the instructions and their format, it is possible to simplify the
control logic. For faster operations, a hardwired control is preferable over a
microprogrammed control. An example of hardwired control is presented in
Chap. 5 in conjunction with the control unit of the basic computer. Examples
of microprogrammed control are presented in Chap. 7.

A characteristic of RISC processors is their ability to execute one instruc-
tion per clock cycle. This is done by overlapping the fetch, decode, and execute
phases of two or three instructions by using a procedure referred to as pipelin-
ing. A load or store instruction may require two clock cycles because access to

SECTION 8 .8 Reduced Instruction Set Computer (RISC) 	 285

memory takes more time than register operations. Efficient pipelining, as well
as a few other characteristics, are sometimes attributed to RISC, although they
may exist in non-RISC architectures as well. Other characteristics attributed to
RISC architecture are:

1. A relatively large number of registers in the processor unit
2. Use of overlapped register windows to speed-up procedure call and

return

3. Efficient instruction pipeline
4. Compiler support for efficient translation of high-level language pro-

grams into machine language programs

A large number of registers is useful for storing intermediate results and
for optimizing operand references. The advantage of register storage as op-
posed to memory storage is that registers can transfer information to other
registers much faster than the transfer of information to and from memory.
Thus register-to-memory operations can be minimized by keeping the most
frequent accessed operands in registers. Studies that show improved perform-
ance for RISC architecture do not differentiate between the effects of the
reduced instruction set and the effects of a large register file. For this reason
a large number of registers in the processing unit are sometimes associated
with RISC processors. The use of overlapped register windows when trans-

pipelining ferring program control after a procedure call is explained below. Instruction
pipeline in RISC is presented in Sec. 9-5 after we explain the concept of
pipelining.

Overlapped Register Windows
Procedure call and return occurs quite often in high-level programming lan-
guages. When translated into machine language, a procedure call produces a
sequence of instructions that save register values, pass parameters needed for
the procedure, and then calls a subroutine to execute the body of the proce-
dure. After a procedure return, the program restores the old register values,
passes results to the calling program, and returns from the subroutine. Saving
and restoring registers and passing of parameters and results involve time-
consuming operations. Some computers provide multiple-register banks, and
each procedure is allocated its own bank of registers. This eliminates the need
for saving and restoring register values. Some computers use the memory stack

rnmoIy access every time the stack is accessed.

A characteristic of some RISC processors is their use of overlapped register
wind.vs to provide the passing of parameters and avoid the need for saving
and restoring register values. Each procedure call results in the allocation of

286	 CHAPTER EIGHT Central Processing Unit

a new window consisting of a set of registers from the register file for use by
the new procedure. Each procedure call activates a new register window by
incrementing a pointer, while the return statement decrements the pointer and
causes the activation of the previous window. Windows for adjacent proce-
dures have overlapping registers that are shared to provide the passing of
parameters and results.

The concept of overlapped register windows is illustrated in Fig. 8-9. The
system has a total of 74 registers. Registers RO through R9 are global registers
that hold parameters shared by all procedures. The other 64 registers are
divided into four windows to accommodate procedures A, B, C, and D. Each
register window consists of 10 local registers and two sets of six registers
common to adjacent windows. Local registers are used for local variables.
Common registers are used for exchange of parameters and results between
adjacent procedures. The common overlapped registers permit parameters to
be passed without the actual movement of data, Only one register window is
activated at any given time with a pointer indicating the active window. Each
procedure call activates a new register window by incrementing the pointer.
The high registers of the calling procedure overlap the low registers of the
called procedure, and therefore the parameters automatically transfer from
calling to called procedure.

As an example, suppose that procedure A calls procedure B. Registers
R26 through R31 are common to both procedures, and therefore procedure A
stores the parameters for procedure B in these registers. Procedure B uses local
registers R32 through R41 for local variable storage. If procedure B calls pro-
cedure C, it will pass the parameters through registers R42 through R47. When
procedure B is ready to return at the end of its computation, the program stores
results of the computation in registers R26 through R31 and transfers back to
the register window of procedure A. Note that registers R 1 through R15 are
common to procedures A and D because the four windows have a circular
organization with A being adjacent to D.

As mentioned previously, the 10 global registers RO through R9 are
available to all procedures. Each procedure in Fig. 8-9 has available a total of
32 registers while it is active. This includes 10 global registers, 10 local registers,
six low overlapping registers, and six high overlapping registers. Other fixed-
size register window schemes are possible, and each may differ in the size of
the register window and the size of the total register file. In general, the
organization of register windows will have the following relationships:

number of global registers = G

number of local registers in each window = L

number of registers common to two windows = C
number of windows = W

SECTION 8-8 Reduced Instruction Set Computer (RISC)	 287

Ri5

Common to D and A

RIO

R73

Local to D

R64

R63

Common to C and D
R5

	Proc /)	 R57

Local to C

R48

R47

Common to B and C
R42

	ProcC	 R41

Local to B

R32

R31

Common to A and B

R26

	

ProcB	 R25

Local to

R16

	

R9	 R15

	Common to all	
Common to A and 1)procedures

	

RO	 RIO

	Global	 Proc A
registers

Figure 8.9 Overlapped register windows,

288	 CHAPTER EIGHT Central Processing Unit

The number of registers available for each window is calculated as follows:

window size = L ± 2C + G

The total number of registers needed in the processor is

register file = (L + C)W + C

In the example of Fig. 8-9 we have G = 10, L = 10, C = 6, and W = 4. The
window size is 10 + 12 + 10 = 32 registers, and the register file consists of
(10 * 6) x 4 + 10 74 registers.

Berkeley RISC I
One of the first projects intended to show the advantages of RISC architecture
was conducted at the University of California, Berkeley. The Berkeley RISC I
is a 32-bit integrated circuit CPU. It supports 32-bit addresses and either 8-, 16-,
or 32-bit data. It has a 32-bit instruction format and a total of 31 instructions.
There are three basic addressing modes: register addressing, immediate
operand, and relative to PC addressing for branch instructions. It has a register
file of 138 registers arranged into 10 global registers and 8 windows of 32
registers in each. The 32 registers in each window have an organization similar
to the one shown in Fig. 8-9. Since only one set of 32 registers in a window is

Figure 8-10 Berkeley RISC I instruction formats.

31	 24 23	 19 18	 14 13 12	 5 4	 0

I
Not used	

J	
s2

(a) Register mode: (S2 specifies a register)

31	 24 23	 19 18	 14 13 12	 0

Opcode J
	

Rd	 Rs	 I	 S2

8

	

	 5	 51	 13

(h) Register—immediate mode: (S2 specifies an operand)

LOpeode J COND	

19

(c) PC relative mode:

SECTION 8-8 Reduced Instruction Set Computer (RISC)	 289

aceced at tr- iiven timu. !he instr cticn format can c pccifv a rrocessor
register with a register field of five bits.

Figure 8-10 shows the 32-bit instruction formats used for register-to-
register instructions and memory access instructions. Seven of the bits in the
operation code specify an operation, and the eighth bit indicates whether to
update the status bits after an ALU operation. For register-to-register instruc-
tions, the 5-bit Rd field selects one of the 32 registers as a destination for the
result of the operation. The operation is performed with the data specified in
fields Rs and S2. Rs is one of the source registers. If bit 13 of the instruction
is 0, the low-order 5 bits of 52 specify another source register. If bit 13 of the
instruction is 1, 52 specifies a sign-extended 13-bit constant. Thus the instruc-
tion has a three-address format, but the second source may be either a register
or an immediate operand. Memory access instructions use Rs to specify a 32-bit
address in a register and S2 to specify an offset. Register RO contains all 0's,
so it can be used in any field to specify a zero quantity. The third instruction
format combines the last three fields to form a 19-bit relative address Y and is
used primarily with the jump and call instructions. The COND field replaces
the Rd field for jump instructions and is used to specify one of 16 possible
branch conditions.

The 31 instructions of RISC I are listed in Table 8-12. They have been
grouped into three categories. Data manipulation instructions perform arith-
metic, logic, and shift operations. The symbols under the opcode and operands
columns are used when writing assembly language programs. The register
transfer and description columns explain the instruction in register transfer
notation and in words. Note that all instructions have three operands. The
second source S2 can be either a register or an immediate operand, symbolized
by the number sign #. Consider, for example, the ADD instruction and how
it can be used to perform a variety of operations.

ADD R22,R21,R23
AD!) R22,#ISIJ,B23
ADD RU,R1,R22
ADD R0,#1S0,R2E
ADD R221#1,R22

R23 —R22 + R21
R23—R22 + ISO

R22—R21 (Move)
R22'—ISO (Load immediate)
R22—R22 + I (Increment)

By using register RO, which always contains U's, it is possible to transfer the
contents of one register or a constant into another register. The increment
operation is accomplished by adding a constant 1 to a register.

The data transfer instructions consist of six load instructions, three store
instructions, and two instructions that transfer the program status word PSW.
The register that holds P5W contains the status of the CPU and includes the
program counter, the status bits from the ALU, pointers used in conjunction
with the register windows, and other information that determines the state of
the CPU.

290	 CHAPTER EIGHT Central Processing Unit

TABLE 842 Instruction Set of Berkeley RISC I

Opudc	 Opeicilids	 Regitei ii giisici	 Description

Data manipulation instructions
ADD	 Rs,S2,Rd
ADDC	 Rs,S2,Rd
SUB	 Rs,S2,Rd
SUBC	 Rs,S2,Rd
SUBR	 Rs,S2,Rd
SUBCR	 Rs,S2,Rd
AND	 Rs,S2,Rd
OR	 Rs,S2.Rd
XOR	 Rs,S2,Rd
SLL	 Rs,S2,Rd
SRL	 Rs,S2,Rd
SRA	 Rs,S2,Rd

Data transfer instructions
LDL	 (Rs)S2,Rd
LDSU	 (Rs)S2,Rd
LDSS	 (Rs)S2,Rd
LDBU	 (Rs)S2,Rd
LDBS	 (Rs)S2,Rd
LDHI	 RdY
STL	 Rd,(Rs)S2
STS	 Rd,(Rs)S2
SIB	 Rd,(Rs)S2
GETPSW Rd
PUTPSW Rd

Program control instructions
iMP	 COND,

S2(Rs)
JMPR	 COND,Y
CALL	 Rd,S2(Rs)

Rd Rs +S2
Rd Rs + 52 + carry
Rd Rs -S2
Rd Rs - S2 - carry
Rd S2 - Rs
Rd 4-52 - Its - carry
Rd Rs AS2
Rd —Rs VS2
Rd - Rs T 52
Rd +–Rs shifted by S2
Rd *- Rs shifted by S2
Rd - Rs shifted by S2

Integer add
Add with carry
Integer subtract
Subtract with carry
Subtract reverse
Subtract with carry
AND
OR
Exclusive-OR
Shift-left
Shift-right logical
Shift-right arithmetic

Load long
Load short unsigned
Load short signed
Load byte unsigned
Load byte signed
Load immediate high
Store long
Store short
Store byte
Load status word
Set status word

Conditional jump

Jump relative
Call subroutine

and
change window

Call relative
and
change window

Return and
change window

Disable interrupts

Enable interrupts

Get last PC

CALLR	 Rd,Y

RET	 Rd,S2

CALLINT Rd

RETINT	 Rd,S2

GTLPC	 Rd

Rd c–M[Rs 52]
Rd4–M[Rs - S21
Rd4–M[Rs + S21
Rdi–M[Rs + S21
Rd <--+ S21
Rd 4- Y
M[Rs + S2] —Rd
M[Rs S21—Rd
M[Rs +S2] 4–Rd
Rd - PSW
PSWRd

PCRs 52

PC 4–PC + Y
Rd
PC Rs + 52
cwp cwP - 1
Rd - PC
PC 4–Pc + y
CWPCWP -
PC Rd + S2
CwP - cwP + I
Rd .- PC
CWP.–CWP - 1
PC -(--Rd + S2
CWPCWP + I
Rd*– PC

SECTION 5 .8 Reduced Instruction Set Computer (RISC)	 291

The load and store instructions move data between a register and mem-
ory. The load instructions accommodate signed or unsigned data of eight bits
(byte) or 16 bits (short word). The long-word instructions operate on 32-bit
data. Although there appears to be a register plus displacement addressing
mode in data transfer instructions, register indirect addressing and direct
addressing is also possible. The following are examples of load long instruc-
tions with different addressing modes.

LDL (R22)#150,R5	 R5—M[R22] + ISO
LDL (R2)#O,RS	 R54—M[R22]
LDL (R0)#SD0,R5	 R54—M[500)

The effective address in the first instruction is evaluated from the contents of
register R22 plus a displacement of 150, The second instruction uses a 0
displacement, which reduces it to a register indirect mode. The third instruc-
tion uses all 0's from registerRO to produce a direct address type of instruction.

The program control instructions operate with the program counter PC
to control the program sequence. There are two jump and two call instructions.
One uses an index plus displacement addressing; the second uses a relative
to PC mode with the 19-bit Y value as the relative address. The call and return
instructions use a 3-bit CWP (current window pointer) register which points
to the currently active register window. Every time the program calls a new
procedure, CWP is decremented by one to point to the next-lower register
window. After a return instruction CWP is incremented by one to return to the
previous register window.

S-i.

	

	 A bus-organized CPU similar to Fig. 8-2 has 16 registers with 32 bits in each,
an ALU, and a destination decoder.
a. How many multiplexers are there in the A bus, and what is the size of

each multiplexer?
b. How many selection inputs are needed for MUX A and MUX B?
c. How many inputs and outputs are there in the decoder?
d. How many Inputs and outputs are there in the ALU for data, including

input and output carries?
e. Formulate a control word for the system assuming that the ALU has 35

operations.

8-2.	 The bus system of Fig. 8-2 has the following propagation delay times: 30 ns
hc	 •.':	 '	 .	 t	 :fui' L

ADD operation in the ALU, 20 ns delay in the destination decoder, and 10
ns to clock the data into the destination register. What is the minimum cycle
time that can be used for the clock?

292	 CHAPTER EIGHT Central Processing Unit

	

8-3.	 Specify the control word that must be applied to the processor of Fig. 8-2 to
implement the following :nicrooperations.
a. Ri.-R2+R3
b. R4-R4

c. R5'-R5 -1
d. R64-shlRl
e. R7+-input

	

8-4.	 Determine the microoperations that will be executed in the processor of Fig.
8-2 when the following 14-bit control words are applied.
a. 00101001100101
b. 00000000000000
C. 01001001001100
d. 00000100000010
e. 11110001110000

	

8-5.	 Let SP = 000000 in the stack of Fig. 8-3. How many items are there in the
stack if:
a. FULL = 1 and EMTY = 0?
b. FULL = 0 and EMTY = 1?

8-6. A stack is organized such that SP always points at the next empty location
on the stack. This means that SP can be initialized to 4000 in Fig. 8-4 and the
first item in the stack is stored in location 4000. List the microoperations for
the push and pop operations.

	

8-7.	 Convert the following arithmetic expressions from infix to reverse Polish
notation.
a. AB + C*D + E*F

b. A*B + A*(B*D + C*E)

c. A + B*[C*D + E*(F + G)]

d
A*[B+C*(D+E)]

F*(G+H)

	8-8.	 Convert the following arithmetic expressions from reverse Polish notation
to infix notation.
a.ABCDE+*1

b. A B C D E * / - +
c. A B C*I D - E F / +
d. A B C D E F G + * + * +

	

8-9.	 Convert the following numerical arithmetic expression into reverse Polish
notation and show the stack operations for evaluating the numerical result.

(3 + 4)[10(2 + 6) + 81

8-10. A first-in, first-out (FIFO) has a memory organization that stores information
in such a manner that the item that is stored first is the first item that is
retrieved. Show how a FIFO memory operates with three counters. A write
counter WC holds the address for writing into memory. A read counter RC
holds the address for reading from memory. An available storage counter
ASC indicates the number of words stored in FIFO. ASC is incremented for
every word stored and decremented for every item that is retrieved.

SECTION 8-8 Reduced Instruction Set Computer (RISC) 	 293
	8-11.	 A computer has 32-bit instructions and 12-bit addresses. If there are2U twb c d Jrcinstructions, how man) cno-ddrc :nstrutjons can be

formulated?

	

8-12.	 Write a program to evaluate the arithmetic statement:

X =	 + C*(D*E - F)

C + H * K

a. Using a general register computer with three address instructions.
b. Using a general register computer with two address instructions.
c. Using an accumulator type computer with one address instructions.
d. Using a stack organized computer with zero-address operation instruc-

tions.

8-13. The memory unit of a computer has 256K words of 32 bits each. The
computer has an instruction format with four fields: an operation code field,
a mode field to specify one of seven addressing modes, a register address
field to specify one of 60 processor registers, and a memory address. Specify
the instruction format and the number of bits in each field if the in instruction
is in one memory word.

8-14. A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W 4- 1) is desig-
nated by the symbol Y. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register
contains the value X. State how Z is calculated from the other addresses if
the addressing mode of the instruction is
a. direct
b, indirect
c. relative
d. indexed

	

8-15.	 A relative mode branch type of instruction is stored in memory at an address
equivalent to decimal 750. The branch is made to an address equivalent to
decimal 500.
a. What should be the value of the relative address field of the instruction

(in decimal)?
b. Determine the relative address value in binary using 12 bits. (Why must

the number be in 2's complement?)
c. Determine the binary value in PC after the fetch phase and calculate the

binary value of 500. Then show that the binary value in PC plus the
relative address calculated in part (b) is equal to the binary value of 500.

8-16. How many times does the control unit refer to memory when it fetches and
executes an indirect addressing mode instruction if the instruction is (a) a
computational type requiring an operand from memory; (b) a branch type.

	

8-17.	 What must the address field of an indexed addressing mode instruction be
to make it the same as a register indirect mode instruction?

8-18. An instruction is stored at location 300 with its address field at location 301.
The address field has the value 400. A processor register Ri contains the
number 200. Evaluate the effective address if the addressing mode of the

294	 CHAPTER EIGHT Central Processing Unit

instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect;
(e) index with Ri as the index register.

8-19. Assuming an 8-bit computer, show the multiple precision addition of the
two 32-bit unsigned numbers listed below using the add with carry instruc-
tion. Each byte is expressed as a two-digit hexadecimal number.

(6E C3 56 7A) + (13 55 6B 8F)

	

8-20.	 Perform the logic AND, OR, and XOR with the two binary strings 10011100
and 10101010.

	

8-21.	 Given the 16-bit value 1001101011001101. What operation must be per-
formed in order to:
a. clear to 0 the first eight bits?
b. set to I the last eight bits?
c. complement the middle eight bits?

8-22. An 8-bit register contains the value 01111011 and the carry bit is equal to 1.
Perform the eight shift operations given by the instructions listed in Ta-
ble 8-9. Each time, start from the initial value given above.

	

8-23.	 Represent the following signed numbers in binary using eight bits. +83;
—83; +68; —68.
a. Perform the addition (-83) + (+68) in binary and interpret the result

obtained.
b. Perform the subtraction (-68) - (+83) in binary and indicate if there is

an overflow.
c. Shift binary —68 once to the right and give the value of the shifted number

in decimal.
d. Shift binary —83 once to the left and indicate if there is an overflow.

	

8-24.	 Show that the circuit labeled 'check for zero output' in Fig. 8-8 is an 8-bit
NOR gate.

8-25. An 8-bit computer has a register R. Determine the values of status bits C,

S, Z, and V (Fig. 8-8) after each of the following instructions. The initial value
of register R in each case is hexadecimal 72. The numbers below are also in
hexadecimal.
a. Add immediate operand C6 to R.

b. Add immediate operand 1E to R.

c. Subtract immediate operand 9A from R.

d. AND immediate operand 8D to R.

e. Exclusive-OR R with R.

8-26. Two unsigned numbers A and B are compared by subtracting A - B. The
carry status bit is considered as a borrow bit after a compare instruction in
most commercial computers, so that C = 1 if A < B. Show that the relative

magnitude of A and B can be determined from inspection of status bits C and
Z as specified in the table for Problem 8-2. (See also Table 8-11.

8-27. Two signed numbers A and B represented in signed-2's complement torn
are compared by subtracting A - B. Status bits 5, Z, and V are set or cleared
depending on the result of the operation. (Note that there is a sign reversal

SECTION 8-8 Reduced Instruction Set Computer (RISC) 	 295

Table for Problem 8-26

Relation	 Condition of Status Bits

A > B	 CO and Z-0
A —̂ >B
A < B	 C
AB	 C=lorZ=1
A=B	 Z
A 	 Z0

if an overflow occurs.) Show that the relative magnitude of A and B can be
determined from inspection of the status bits as specified below. (See also
Table 8-11.)

Table for Problem 8-27

Relation	 Condition of Status Bits

A > B	 (SEBV)=O and Z=0
A;2--B	 (So V)=0
A < B	 (SV)=i
AB	 (SeV)=lorz=i
A=B	 Z=1
AB	 Z=0

	8-28.	 It is necessary to design a digital circuit with four inputs C, S, Z, and V and
10 outputs, one for each of the branch conditions listed in Probs. 8-26 and
8-27. (The equal and unequal conditions are common to both tables.) Draw
the logic diagram of the circuit using two OR gates, one XOR gate, and five
inverters.

	

8-29.	 Consider the two 8-bit numbers A = 01000001 and B = 10000100.
a. Give the decimal equivalent of each number assuming that (1) they are

unsigned, and (2) they are signed.
b. Add the two binary numbers and interpret the sum assuming that the

numbers are (1) unsigned, and (2) signed.
c. Determine the values of the C, Z, S. and V status bits after the addition.
d. List the conditional branch instructions from Table 8-11 that will have a

true condition.

	

8-30.	 The program in a computer compares two unsigned numbers A and B by
performing a subtraction A - B and updating the status bits. Let A
01000001 and B = 10000100.
a. Evaluate the difference and interpret the binary result.
b. Determine the values of status bits C (borrow) and Z.
c. List the conditional branch instructions from Table 8-11 that will have a

true condition.

Z96	 CHAPTER EIGHT Central Processing Unit

8-31. The program in a computer compares t-wo signed numbers A and B by
performing the subtraction and updating the status bits. Let A =
01000001 and B = 10000100.

a. Evaluate the difference and interpret the binary result.

b. Determine the value of status bits 5, Z, and V.

c. List the conditional branch instructions from Table 8-11 that will have a

true condition.

8-32. The content of the top of a memory stack is 5320. The content of the stack

pointer SP is 3560. A two-word call subroutine instruction is located in

memory at address 1120 followed by the address field of 6720 at location

1121. What are the oiitent of PC, SF, and the top of the stack:

a. Before the call instruction is fetched from memory?

b. Alter the call instruction is executed?
c. After the return from subroutine?

	

8-33.	 What are the basic differences between a branch instruction, a call subrou-

tine instruction, and program interrupt?

8-34. Give five examples of external interrupts and five examples of internal

interrupts. What is the difference between a software interrupt and a sub-

routine call?

8-35. A computer responds to an interrupt request signal by pushing onto the

stack the contents of PC and the current P5W (program status word). It then

reads a new PSW from memory from a location given by an interrupt address

symbolized by lAD. The first address of the service program is taken from

memory at location lAD 4 1.

a. List the sequence of microoperations for the interrupt cycle.

b. List the sequence of microoperations for the return from interrupt in-

struction.

8-36. Examples of computers with variable instruction formats are IBM 370, VAX

11, and Intel 386. Compare the variable instruction formats of one of these

computers with the fixed-length instruction format used in RISC I.

8-37. Three computers use register windows with the following characteris-

tics. Determine the window size and the total number of registers in each

computer.

Computer 1	 Computer 2	 Computer 3

Global registers	 10	 8	 tO

Local registers	 10	 8	 16

Common registers	 6	 8	 16

Number of windows	 8	 4	 16

(c p	 n p'n,ri,	 T?Ic' T ;,,	 ,,,.4.,.,. +1,,f4 ,,.I1 ...-,,.,S,._ th. d1l

a. Decrement a register
b. Complement a register
C. i\?egate a register

SECTION 8 .8 Reduced Instruction Set Computer (RISC) 	 297
4.	 iLL.
e. Divide a signed number b y 4
1. No operation

8-39.	 Write the RISC I instructions in assembly language that will cause a jump
to address 3200 if the Z (zero) status bit is equal to 1.
a. Using immediate mode
b. Using a relative address mode (assume that PC = 3400)

1. Gear, C. W., Computer Organization and Programming, 3rd ed. New York: McGraw-
Hill, 1980.

2. Gorsline, C. W., Computer Organization: Hardware/Software, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

3. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hall, 1987.

4. Hamacher, V. C., Z. C. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

5. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

6. Langholz, C., J . Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

7. Levy, 11. M., and R. U. Eckhouse, Jr., Computer Programming and Architecture: The
VAX-fl. Bedford, MA: Digital Press, 1980.

8. Lippiatt, A. C., and G. L. Wright, The Architecture of Small Computer Systems, 2nd
ed. Englewood Cliffs, NJ: Prentice Hall, 1985.

9. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

10. Murra y , W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1990.

ii. Patterson, D. A., and J. L. Hennessy, Coeiputer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

12. Patterson, D. A., and C. H. Sequin, "A VLSI RISC." IEEE Computer, September
1982, pp. 8-22.

13. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

14. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN:
West Publishers, 1988-

15. Siewiorek, D., C. C. Bell, and A. Newell, Computer Structures: Principles and Exam-
ples. New York: McGraw-Hill, 1982-

298	 CHAPTER EIGHT Central Processing Unit

16. Stallings, W., Computer Organization and Architecture, 2nd ed. New York. Macmillan,
1989.

17. Tanenbaum, A. S., Structured Computer Organization, 3rded. Englewood Cliffs, NJ:
Prentice Hall, 1990.

18. Tomek, I.. Introduction to Computer Organization. Rockville, MD: Computer Science
Press, 1981.

19. Toy, W., and B. Zee, Computer Hard ware/Softrmzre Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1986.

20. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

..

CJ-1I4P.TER NINE

Pipeline and Vectoi
Processing

IN THIS CHAPTER

	

9-1	 Parallel Processing

	

9-2	 Pipelining

	

9-3	 Arithmetic Pipeline

	

9-4	 Instruction Pipeline

	

9-5	 RISC Pipe!ie

	

9-6	 Vector Processing

	

9-7	 Array Processors

9-1 Parallel Process

Parallel processing is a term used to denote a large class of techniques that are
used to provide simultaneous data-processing tasks for the purpose of increas-
ing the computational speed of a computer system. Instead of processing each
instruction sequentially as in a conventional computer, a parallel processing
system is able to perform concurrent data processing to achieve faster execu-
tion time. For example, while an instruction is being executed in the ALU, the
next instruction can be read from memory. The system may have two or more
ALUs and be able to execute two or more instructions at the same time.
Furthermore, the system may have two or more processors operating concur-
rently. The purpose of parallel processing is to speed up the computer process-

throughput ing capability and increase its throughput, that is, the amount of processing
that can be accomplished during a given interval of time. The amount of
hardware increases with parallel processing, and with it, the cost of the system
increases. However, technological developments have reduced hardware costs
to the point where parallel processing techniques are economically feasible.

Parallel processing can be viewed from various levels of complexity. At
the lowest level, we distinguish between parallel and serial operations by the
type of registers used. Shift registers operate in serial fashion one bit at a time,

299

0 i I Icfl1t'I'

300	 PIER Ni	 il reiIne md \ottir Pr,j

while registers with parallel load operate with all the bits of the word simulta-
neously. Parallel processing at a higher level of complexity can be achieved by
having a multiplicit y of functional units that perform identical or different
operations dniultaneouslv. Parallel processing is established by distributing
the data among the multiple functional units. For example, the arithmetic,
logic, and shitt operations can he separated into three units and the operands
diverted to each unit under the supervision of a control unit.

multiple functional	 Figure 9-1 shows one possible wa y of separating the execution unit into
units	 eight functional units operating in parallel. The operands in the registers are

applied to one of the units depending on the operation specified b .N
. the iristruc-

Ftgtirc •J. I	 ii	 Ilu

.Adkr-uhtr;.

Iie :diipk

Locaun'

ii

SF(.TiDN 9-1 Parallel Processing	 301

tion associated with the o perands. The operation performed in each functional

perform the arithmetic operations with integer numbers. The floating-point
operations are separated into three circuits operating in parallel. The logic,
shift, and increment operations can be performed concurrently on different
data. All units are independent of each other, so one number can be shifted
while another number is being incremented. A multifunctional organization
is usually associated with a complex control unit to coordinate all the activities
among the various components.

There are a variety of ways that parallel processing can be classified. It
can be considered from the internal organization of the processors, from the
Interconnection structure between processors, or from the flow of information
through the system. One classification introduced by M. J . Flynn considers the
organization of a computer system by the number of instructions and data
items that are manipulated simultaneously. The normal operation of a com -
puter is to fetch instructions from memory and execute them in the processor.
The sequence of instructions read from memory constitutes an instruction
stream. The operations performed on the data in the processor constitutes a data
treamn. Parallel processing may occur in the instruction stream, in the data

stream, or in both. Flynn's classification divides computers into four major
groups as follows:

Single instruction stream, single data stream (SISD)

Single instruction stream, multiple data stream (SIMD)
Multiple instruction stream, single data stream (MISD)

Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containing a con-
trol unit, a processor unit, and a memory unit. Instructions are executed
sequentially and the system may or may not have internal parallel processing
capabilities. Parallel processing in this case may be achieved by means of
multiple functional units or by pipeline processing.

SIMD SJMD represents an organization that includes many processing units
under the supervision of a common control unit. All processors receive
the same instruction from the control unit but operate on different items of
data. The shared memory unit must contain multiple modules so that it can
communicate with all the processors simultaneously. MISD structure is only
of theoretical interest since no practical system has been constructed using this

MJMD organization. MIMD organization refers to a computer system capable of
processing several programs at the same time. Most multiprocessor and multi-
computer systems can be classified in this category.

Flynn's classification depends on the distinction between the perform-
ance of the control unit and the data-processing unit. It emphasizes the be-

302	 CHAPTER NINE Pipeline and Vector Processing

havioral characteristics of the computer system rather than its operational and
structural interconnections. One type of parallel processing that does not fit
Flynn's classification is pipelining. The only two categories used from this
classification are SIMD array processors discussed in Sec. 9-7, and MIMD
multiprocessors presented in Chap. 13.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing

2. Vector processing

3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper-
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and ma-
trices. Array processors perform computations on large arrays of data.

9-2 Pipelining
Pipelining is a technique of decomposing a sequential process into suhopera-
tions, with each subprocess being executed in a special dedicated segment that
operates concurrenlv with all other segments. A pipeline can be visualized as
a collection of processing segments through which binar y information flows.
Each segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained after
the data have passed through all segments. The name "pipeline" implies a
flow of information analogous to an industrial assembly line. It is characteristic
of pipelines that several computations can be in progress in distinct segments
at the same time. The overlapping of computation is made possible b y associ-
ating a register with each segment in the pipeline. The registers provide
isolation between each segment so that each can operate on distinct data
simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. A clock
is applied to all registers after enough time has elapsed to perform all segment

11, ti	 .	 he i1i rT;at;ufl tiO	 through the piptiJitJ ,)1e :t&.j) .i

time.
an example	 The pipeline organization will l- demonstrated by means of a simple

SECTION 9.2 Pipeiining	 303

example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

A*B±C.	 for i=1,2,3,...,7

Each suboperation is to be implemented in a segment within a pipeline. Each'
segment has one or two registers and a combinational circuit as shown in Fig.
9-2. R through R5 are registers that receive new data with every clock pulse.
The multiplier and adder are combinational circuits. The suboperations per-
formed in each segment of the pipeline are as follows:

RI—A, R2—B,	 Input A, and B,

R3 . —R1*R2, R4—C,	 Multiply and input C,

R5—R3 + R4
	

Add C, to product

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 9-I. The first clock pulse transfers A 1 and B 1 into RI and

Figure 9-2 Example of pipeline processing.

A i	 B,	 C,

IR

304	 CHAFfER NINE Pipeline and Vector Processing

task

space-time diagram

TABLE 9-1 Content of Registers in Pipeline Example

Clock	 Segment I	 Segment 2	 Segment 3
Pulse

Number Ri R2	 R3	 R4	 R5

1	 A B1	 - -	 -
2	 A2	 B 2 	A 1 *B 1 	C 1	-
3	 A3	 B3	A 2 *B2 	C3	 A1*B1+C1

4	 A4	 B4	A 3 * B 3 	C3	 A 2 *B2 + C2

5	 A5	 B 3 	A4 * B 4 	 C4	 A*B + C3

6	 As	 B6	 A 5 *B5 	C5	 A4*B4+C4

7	 A7	 B7	 A 6 *B6 	C6	 A 5 *B 5 + C5

8	 -	 - A7* B7 C7 A 6 *B6 + C6

9	 - -	 -	 -. A7*B7+C7

R2. The second clock pulse transfers the product of Ri and R2 into R3 and C
into R4. The same clock pulse transfers A2 and B2 into Ri and R2. The third
clock pulse operates on all three segments simultaneously. It places A3 and B3

into RI and R2, transfers the product of R and R2 into R3, transfers C2 into
R4, and places the sum of R3 and R4 into R5. It takes three clock pulses to fill
up the pipe and retrieve the first output from R5. From there on, each clock
produces a new output and moves the data one step down the pipeline. This
happens as long as new input data flow into the system. When no more input
data are available, the clock must continue until the last output emerges out
of the pipeline.

General Considerations
Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with different sets of data. The general structure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit Sithat
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers R, that hold the intermediate results
between the stages. Information flows between adjacent stages under the
control of a common clock applied to all the registers simultaneously. We
define a task as the total operation performed going through all the segments
in the pipeline.

The behavior of a pipeline can be illustrated with a space-time diagram.
This is a diagram that shows the segment utilization as a function of time. The
space-time diagram of a four-segment pipeline is demonstrated in Fig. 9 .4. The
horizontal axis displays the time in clock cycles and the vertical axis gives the

Segment: I

Clock cycles

SECTION 92 Pipelining	 305

Clock

Figure 9-3 Four-segment pipeline.

segment number. The diagram shows six tasks T through T6 executed in four
segments. Initially, task T1 is handled by segment 1. After the first clock,
segment 2 is busy with T1 , while segment I is busy with task 7. Continuing
in this manner, the first task T is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time
t is used to execute n tasks. The first task T requires a time equal to kt to
complete its operation since there are k segments in the pipe. The remaining
n - 1 tasks emerge from the pipe at the rate of one task per clock cycle and
they will be completed after a time equal to (n - 1)t. Therefore, to complete
n tasks using a k-segment pipeline requires k + (n - 1) clock cycles. For exam-
ple, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 + (6 - 1) 9 clock cycles, as
indicated in the diagram.

Next consider a nonpipelirte unit that performs the same operation and
takes a time equal to f to complete each task. The total time required for n tasks

speedup	 is nt.. The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

nt

= (k + n - 1)t

Figure 94 Space-time diagram for pipeline.

306	 CHAPTER NINE Pipeline and Vector Processing

As the number of tasks increases, n bcontcs much larger than k - 1 and

k + n - 1 approaches the value of n. Under this condition, the speedup
becomes

fp

If we assume that the time it takes to process a task is the same in the pipeline
and nonpipeline circuits, we will have t = kt. Including this assumption, the
speedup reduces to

S
tp

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to t, = 20 ns. Assume that the pipeline has k = 4 seg-
ments and executes n = 100 tasks in sequence. The pipeline system will take
(k + n - 1)t = (4 + 99) x 20 = 2060 ns to complete. Assuming that f

kt = 4 x 20 = 80 ns, a nonpipeline system requires nkt = 100 X 80 = 8000 ns
to complete the 100 tasks. The speedup ratio is equal to 8000/2060 = 3,88. As
the number of tasks increases, the speedup will approach 4, which is equal to
the number of segments in the pipeline. If we assume that t, = 60 ns, the
speedup becomes 60/20 = 3.

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
processor can be expected to equal the performance of k copies of an equivalent
nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits accept four
input data items simultaneously and perform four tasks at the same time.
As far as the speed of operation is concerned, this is equivalent to a four
segment pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a
single-instruction multiple-data (SIMD) organization since the same instruc-
tion is used to operate on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi-
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay of
the segment with the maximum propagation time. This causes all other seg-
ments to waste time while waiting for the next clock. Moreover, it is not always

SECTION 9-3 Arithmetic Pipeline	 307

+ 2

it

P4 1 	P,

	

T
Figure 9-5 Multiple functional units in parallel.

correct to assume that a nonpipe circuit has the same time delay as that of an
equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provides a faster
operation over a purely serial sequence even though the maximum theoretical
speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub-
operations for execution in the pipeline segments. An instruction pipeline oper-
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They
are used to implement floating-point operations, multiplication of fixed-point
numbers, and similar computations encountered in scientific problems. A
pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized float-
ing-point binary numbers.

X = A x

Y = B x 2"

308	 CHAPTER NINE Pipeline and Vector Processing

4 and are twn fractions that represent the mantissa and a and are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed between
the segments to store intermediate results. The suboperations that are per-
formed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

This follows the procedure outlined in the flowchart of Fig. 10-15 but with some
variations that are used to reduce the execution time of the suboperations. The
exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent
difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of
the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an
overflow occurs, the mantissa of the sum or difference is shifted right and the
exponent incremented by one. If an underfiow occurs, the number of leading
zeros in the mantissa determines the number of left shifts in the mantissa and
the number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations per-
formed in each segment. For simplicity, we use decimal numbers, although
Fig. 9-6 refers to binary numbers. Consider the two normalized floating-point
numbers:

X = 0.9504 x 102

Y = 0.8200 x 102

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The
larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X = 0.9504 x 102

Y = 0.0820 x iO

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z = 1.0324 x 10

Sencrn

Segment 2:

Segment 3:

Segment 4:

$CTION 9-3 Arithmetic Pipeline 	 309

Eponcnts	 Mantissas

Figure 96 Pipeline for floating-point addition andAubcracrson.

310	 CHAPTER NINE Pipeline and Vector Processing

The sum is adjusted by normalizing the result so that it has a fraction with a
:ia: :ri.t ..ui

incrementing the exponent by one to obtain the normalized sum.

Z = 0.10324 x io

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits. Sup-
posse that the time delaysof the four segments are t = E0ns,t 2 = 70ns. f-, =- 100

ns, t4 = 80 ns, and the interface registers have a delay of t. = 10 i's. The clock
cycle is chosen to he t, = t 	 1. = 110 ns. An equivalent nonpipeline floating-
point adder-suhtractor will have a dela y time t., = t, -4- t 4- t + t - = 320
ns. In this case the pipelined adder has a speedup of 320:110 = 2.9 over the
nonpipelined adder.

9-4 instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction
stream as well. An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in other segments.
This causes the instruction fetch and execute phases to overlap and perform
simultaneous operations. One possible digression associated with such a
scheme is that an instruction may cause a branch out of sequence. In that case
the pipeline must be emptied and all the instructions that have been read from
memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can he implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem-
ory. The instructions are inserted into the FIFO buffer so that they can be
executed on a first-in, first-out basis. Thus an instruction stream can he placed
in a queue, waiting for decoding and processing by the execuLion segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO buffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc-
tions for the execution unit.

instruction cycle Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completel y . In the most general
case, the computer needs to process each instruction with the following Se-
ru ,anro of etonc

SECTION 9 .4 Instruction Pipeline	 311

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Calculate the effective address.
4. Fetch the operands from memory.
5. Execute the instruction.
6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certa in operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate modules. In
this way, an instruction word and a data word can be read simultaneousl y from
two different modules.

The design of an instruction pipel i ne will be most efficient if the instruc-
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its functiondepends on the instruction and the way it is executed.

Example: Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calcu-
lation of the effective address into one segment. Assume further that most of
the instructions place the result into a processor register so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can he processed
with a four-segment pipeline. While an instruction is being executed in seg-
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail-
able, the fourth and all subsequent instructions can he fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle can
overlap and up to four differer i nstructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence ma y he a program control
type that causes a branch out of normal sequence. In that case the pending
operations in the last two s*gments are completed and all information tnrecl
11	 ULi.i.iJI;	 ceU.	 he iiFC	 euiei i	 iai	 i:u:	 IhC 1i.V

address stored in the program counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start again from a new
address value.

312	 CHAPTER NINE Pipeline and Vector Procesing

Segment 1	 .Feth insuction

--
T

Decode ir,stjctio
Segment 2. L

I effieaddrsj

yes _7

-KS Branch? . -;

no

Fetch opiid
Segment 3: L frrn memory

Segment 4:

es

110

Figure 94 Four-segment CPU pipeline.

Figure 9-8 shows the operation of the instruction pipeline. The time in the
horizontal axis is divided into steps of equal duration. The four segments are
represented in the diagram with an abbreviated symbol.

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the
effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories
so that the operation in F! and FO can proceed at the same time. In the absence

Ih! ru:non P ' hne	 313

Sfep.	 I

Ft DA F(i EX

Fl DA

3	 Fl DA EQ ' EX

4	 F1

I:ID:(A::t:i..::1DFEo:FFioXEX

Figure 9-8 Turng i IrruLt! n tr!in

pipeline conflicts

of a branch instruction, each segment operates on different instructions Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FL

Assume now that instrucon 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from LI to DA of
the other instructions is halted until the branch instruction is executed in step
6. If the branch is taken, a new instruction is fetched in step 7. If the branch
is not taken, the instruction fetched previously in step 4 can he used The
pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeiine if the lix s€gment needs to store
the result of the operation in the data memory while the FO segment needs
to fetch an operand. In that case, segment FC) must wait until segment EX has
finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be reelved by using separate
instruction and data memories.

2. Duti iepenth'icy conflicts arise when an Instruction depends on the
result of a previous in s truction, but this result is not vet available.

3. Branch difficulties arise from branch and other instructions that change
'i' rif PC

Data Dependency

A difficulty that ma y caused a degradation of performance in an instruction
pipeline jc clue to possible collision of da ta or address. A collision occurs when

314	 CHAPTER NINE Pipeline and Vector Processing

an instruction cannot proceed because previous instructions did not complete
Lrtain operations-A, data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the
previous instruction in segment EX. Therefore, the second instruction must
wait for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot be calculated because
the information needed by the addressing mode is not available. For example,
an instruction with register indirect mode cannot proceed to fetch the operand
if the previous instruction is loading the address into the register. Therefore,
the operand access to memory must be delayed until the required address is
available. Pipelined computers deal with such conflicts between data depen-
dencies in a variety of ways.

hardware interlocks The most straightforward method is to insert hardware interlocks. An
interlock is a circuit that detects instructions whose source operands are des-
tinations of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

operand forwarding Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU result
into a destination register, the hardware checks the destination operand, and
if it is needed as a source in the next instruction, it passes the result directly
into the ALU input, bypassing the register file. This method requires additional
hardware paths through multiplexers as well as the circuit that detects the
conflict.

A procedure employed in some computers is to give the responsibility for
solving data conflicts problems to the compiler that translates the high-level
programming language into a machine language program. The compiler for
such computers is designed to detect a data conflict and reorder the instruc-
tions as necessary to delay the loading of the conflicting data by inserting

delayed load	 no-operation instructions. This method is referred to as delayed load. An exam-

ple of delayed load is presented in the next section.

Handling of Branch Instructions
One of the major problems in operating an instruction pipeline is the occur-
rence of branch instructions. A branch instruction can be conditional or uncon-
ditional. An unconditional branch always alters the sequential program flow
by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the normal sequence of the iristruc-
tioji streuti, cdusiag difficulties in the operation of the instruction pipeline.

SEC7!oN' 9-i RISC Pipeline	 315

prefetch target
instruction

branch target buffer

loop buffer

branch prediction

delayed branch

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the target instruc-
tion in addition to the instruction following the branch. Both are saved until
the branch is executed. If the branch condition is successful, the pipeline
continues from the branch target instruction. An extension of this procedure
is to continue fetching instructions from both places until the branch decision
is made. At that time control chooses the instruction stream of the correct
program flow.

Another possibility is the use of a branch tarc.'et buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of the instruction. If it is in the BTB, the instruction is available directly
and prefetch continues from the new path. If the Instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, Including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction. A
pipeline with branch prediction uses some additional logic to guess the out-
come of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most RISC processors is the delayed branch. In
this procedure, the compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that keep the
pipeline operating without interruptions. An example of delayed branch is the
insertion of a no-operation instruction after a branch instruction. This causes
the computer to fetch the target instruction during the execution of the no
operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9-5 RISC Pipeline

The reduced instruction set computer (RISC) was introduced in Sec. 8-8.
Among the characteristics attributed to RISC is its abiiitv to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

316	 CHAPTER NINE Pipeline and Vector Prcessin

single-cycle
instruction
execution

compiler support

imølement an instruction p ipeline usin g a small number of suboperations,
vial, v..ULt L'Llli	 ¼.nLtatv_¼ Lit tJlIL LI'J t' ¼.'_I'_ .	 1LA.?. k/ I 	 IL LLACLAICIIbLAI

instruction format, the decoding of the operation can occur at the same time
as the register selection. All data manipulation instructions have register-to-
register operations. Since all operands are in registers, there is no need for
calculating an effective address or fetching of operands from memory. There-
fore, the instruction pipeline can be implemented with two or three segments.
One segment fetches the instruction from program memory, and the other
segment executes the instruction in the ALU. A third segment may be used to
store the result of the ALU operation in a destination register.

The data transfer instructions in RISC are limited to load and store
instructions. These instructions use register indirect addressing. They usually
need three or four stages in the pipeline. To prevent conflicts between a
memory access to fetch an instruction and to load or store an operand, most
RISC machines use two separate buses with two memories: one for storing the
instructions and the other for storing the data. The two memories can some-
time operate at the same speed as the CPU clock and are referred to as cache
memories (see Sec. 12-6).

As mentioned in Sec. 8-8, one of the major advantages of RISC is its ability
to execute instructions at the rate of one per clock cycle. It is not possible to
expect that every instruction be fetched from memory and executed in one
clock cycle. What is done, in effect, is to start each instruction with each clock
cycle and to pipeline the processor to achieve the goal of single-cycle instruc-
tion execution. The advantage of RISC over CISC (complex instruction set
computer) is that RISC can achieve pipeline segments, requiring just one clock
cycle, while CISC uses man y segments in its pipeline, with the longest segment
requiring two or more clock cycles.

Another characteristic of RISC is the support given by the compiler that
translates the high-level language program into machine language program.
Instead of designing hardware to handle the difficulties associated with data
conflicts and branch penalties, RISC processors rely on the efficiency of the
compiler to detect and minimize the delays encountered with these problems.
The following examples show how a compiler can optimize the machine
language program to compensate for pipeline conflicts.

Example: Three-Segment Instruction Pipeline
A typical set of instructions for a RISC processor are listed in Table 8-12. We
see from this table that there are three types of instructions. The data manip-
ulation instructions operate on data in processor registers. The data transfer
instructions are load and store instructions that use an effective address ob-
tained from the addition of the contents of two registers or a register and a
displacement constant provided in the instruction. The program control in-
structions use register values and a constant to evaluate the branch address,
which is transferred to a register or the program counter PC.

SECTION S RISC Pipeiirie	 317

Now consider the hardware operation for such a computer. The
control

section fetches the instruct-ion from program memory into an instruction reg-
ister. The instruction is decoded at the same time that the registers needed for
the execution of the instruction are selected. The processor unit consists of a
number of registers and an arithmetic logic unit (ALU) that performs the
necessary arithmetic, logic, and shift operations. A data memory is used

to
load or store the data from a selected register in the register file. The instruction
cycle can he divided into three suboperations and implemented in three
segments:

I:	 Instruction fetch

A: ALU operation

E: Execute instruction

The I segment fetches the instruction from program memory. The instruction
is decoded and an ALU operation is performed in the A segment. The ALU
is used for three different functions, depending on the decoded instruction
It performs an operation for a data manipulation instruction, it evaluates the
effective address for a load or store instruction, or it calculates the branch
address for a program control instruction. The E segment directs the output
of the ALU to one of three destinations, depending on the decoded instruction.
It transfers the result of the ALLT operation into a destination register in the
register file, it transfers the effective address to a data memory for loading or
storing, or it transfers the branch address to the program counter.

Delayed Load

Consider now the operation of the following four instructions:

I. LOAD: Ri —Mfaddress lJ
2. LOAD: R2 +-M[address 2]
3. ADD: R3—RI + R2
4. STORE: M taddress 31 '—R3

If the three-segment pipeline proceeds without interruptions, there will be a
data conflict in instruction 3 because the operand in R2 is not vet available in
the A segment. This can be seen from the timing of the pipeline shown in
Fig. 9-9(a). The E segment in clock cycle 4 is in a process of placing the memory
data into R2. The A segment in clock cycle 4 is using the data from R2, but the
^Ulul Ail	 .	 wiiect viue since it rias not yet neen transterred
from memory. It is up to the compiler to make sure that the instruction
following the load instruction uses the data fetched from memory . If the
compiler cannot find a useful instruction to put after the lead, it inserts a no-op
(no-operation) instruction. This is a type of instruction that is fetched from

318	 CHAMTR NINE Pipeline and Vector Processing

(a) Pipeline timing with data conflict

Clock cycle:	 1	 2 1 3	 4 1 5 16	 7

l. Load Rl	 I A E

2. Load R2	 I A E

3.No-operation	 I A E

4AddRI+R2	 I A E

5. Store R3	 I A E

(b). Pipeline timing with delayed load

Figure 9-9 Three-segment pipeline timing.

memory but has no operation, thus wasting a clock cycle. This concept of
delaying the use of the data loaded from memory is referred to as delayed load.

Figure 9-9(b) shows the same program with a no-op instruction inserted
after the load to R2 instruction. The data is loaded into R2 in clock cycle 4. The
add instruction uses the value of R2 in step 5. Thus the no-op instruction is
used to advance one clock cycle in order to compensate for the data conflict in
the pipeline. (Note that no operation is performed in segment A during clock
cycle 4 or segment E during clock cycle 5.) The advantage of the delayed load
approach is that the data dependency is taken care of by the compiler rather
than the hardware. This results in a simpler hardware segment since the
segment does not have to check if the content of the register being accessed
is currently valid or not.

Delayed Branch
It was shown in Fig. 9-8 that a branch instruction delays the pipeline operation
until the instruction at the branch address is fetched. Several techniques for
reducing branch penalties were discussed in the preceding section. The
method used in most RISC processors is to rely on the compiler to redefine the
branches so that they take effect at the proper time in the pipeline. This method
is referred to as delayed branch.

SECTION 9 .6 Vector Processing	 319

Th. -n-r1r frr a proccor that uses diaved branches is designed to
analyze the instructions Detore and alter the branch and rearrange the program
sequence by inserting useful instructions in the delay steps. For example, the
compiler can determine that the program dependencies allow one or more
instructions preceding the branch to be moved into the delay steps after the
branch. These instructions are then fetched from memory and executed
through the pipeline while the branch instruction is being executed in other
segments. The effect is the same as if the instructions were executed in their
original order, except that the branch delay is removed. It is up to the compiler
to find useful instructions to put after the branch instruction. Failing that, the
compiler can insert no-op instructions.

An example of delayed branch is shown in Fig. 9-10. The program for this
example Consists of five instructions:

Load from memory to R

Increment R2

Add R3 to R4

Subtract R5 from R6

Branch to address X

In Fig. 9-10(a) the compiler inserts two no-op instructions after the branch.
The branch address X is transferred to PC in clock cycle 7. The fetching of the
instruction at X is delayed by two clock cycles by the no-op instructions. The
instruction at X starts the fetch phase at clock cycle 8 after the program counter
PC has been updated.

The program in Fig. 9-10(b) is rearranged by placing the add and subtract
instructions after the branch instruction instead of before as in the original
program. Inspection of the pipeline timing shows that PC is updated to the
value of X in clock cycle 5, but the add and subtract instructions are fetched
from memory and executed in the proper sequence. In other words, if the load
instruction is at address 101 and X is equal to 350, the branch instruction is
fetched from address 103. The add instruction is fetched from address 104 and
executed in clock cycle 6. The subtract instruction is fetched from address 105
and executed in clock cycle 7. Since the value of X is transferred to PC with clock
cycle 5 in the E segment, the instruction fetched from memory at clock cycle
6 is from address 350, which is the instruction at the branch address.

9-6 Vector Processing

There is a class of computational problems that are beyond the capabilities of
a conventional computer. These problems are characterized by the fact that
they require a vast number of computations that will take a conventional
computer days or even weeks to complete. In many science and engineering

320	 (1-IAVrER NINE Pipeline and Vector Procesng

Clock cycles:

I. Load

2. Increment

3. Add

4 Subtract

5 Branch tC)X

b. No-operation

7 . No-operation

Instruction in X

auuuuuug

IUIIi
(a Using nooperat;on Inslruction,

(:Iock ycIes:

-.reIlIeis

i. Branch to
4. Add

5. Suba

f Instruction in X

1f:J:	 45	

1

ILAt

(b) Rearranging the fltrUCtIon,

Figure 9-10 Example of dela yed branch

applications, the problems can be formulated in terms of vectors and matrices
that lend themselves to vector processing.

Computers with vector processing capabilities are in demand in special-applications	 ized applications. The following are representative application areas where
vector processing is of the utmost importance.

Long-range weather forecasting

Petroleum explorations
Seismic data analysis
Medical diagnosis
Aerod ynamics and space flight simulations

SECTiON 9.6 Vector Processing	 321

Artificial intelligence and expert systems
Mapping the human genome
Image processing

Without sophisticated computers, many of the required computations cannot
be completed within a reasonable amount of time. To achieve the required level
of high performance it is necessary to utilize the fastest and most reliable
hardware and apply innovative procedures from vector and parallel processing
techniques.

Vector Operations

Many scientific problems require arithmetic operations on large arrays of
numbers. These numbers are usually formulated as vectors and matrices of
floating-point numbers. A vector is an ordered set of a one-dimensional array
of data items. A vector V of length n is represented as a row vector by
V = [V1 V2 V ... VI. It maybe represented asa column vector ifthedata
items are listed in a column. A conventional sequential computer is capable of
processing operands one at a time. Consequently, operations on vectors must
be broken down into single computations with subscripted variables. The
element V, of vector V is written as V(I) and the index I refers to a memory
address or register where the number is stored. To examine the difference
between a conventional scalar processor and a vector processor, consider the
following Fortran DO loop:

DO 20 I = 1, 100
20	 C(I)=B(I)+A(I)

This is a program for adding two vectors A and B of length 100 to produce a
vector C. This is implemented in machine language by the following sequence
of operations.

Initialize I = 0
20	 Read A(I)

Read B (I)
Store C(I) = P(I) + B(I)
Increment I = I + I
If I S 100 go to 20
Continue

This constitutes a program loop that reads a pair of operands from arrays A
and B and performs a floating-point addition. The loop control variable is then
updated and the steps repeat 100 times.

A computer capable of vector processing eliminates the overhead associ-
ated with the time it takes to fetch and execute the instructions in the program

322	 CHAPTER NINE Pipeline and Vector Processing

loop. It allows operations to be specified with a single vector instruction of the
form

C(1: 100) = A(1:100) + B(1:100)

The vector instruction includes the initial address of the operands, the length
of the vectors, and the operation to be performed, all in one composite instruc-
tion. The addition is done with a pipelined floating-point adder similar to the
one shown in Fig. 9-6.

A possible instruction format for a vector instruction is shown in Fig. 9-11.
This is essentially a three-address instruction with three fields specifying the
base address of the operands and an additional field that gives the length of
the data items in the vectors. This assumes that the vector operands reside in
memory. It is also possible to design the processor with a large number of
registers and store all operands in registers prior to the addition operation. In
that case the base address and length in the vector instruction specify a group
of CPU registers.

Matrix Multiplication
Matrix multiplication is one of the most computational intensive operations
performed in computers with vector processors. The multiplication of two
n x ri matrices consists of n2 inner products or n 3 multiply-add operations. An
n x m matrix of numbers has n rows and m columns and may be considered
as constituting a set of n row vectors or a set of m column vectors. Consider,
for example, the multiplication of two 3 x 3 matrices A and B.

a,
'

a12 a13	 b11	 "12	 b13	

[I:C2,11

	 c12 c13

a21 a	 a	 x b21 b	 b, = 	 C22 c
a31 a32 a	 6 h	 b-33	 Lc3 1 c32 c

The product matrix C is a 3 x 3 matrix whose elements are related to the
elements of A and B by the inner product:

c =	 a,5 X

For example, the number in the first row and first column of matrix C is
calculated by letting i = 1,j = 1, to obtain

c 11	 a ll b11 ± a 12 b2l + a 13 b11

1Lrc 9 ii

Operation	 Base address	 address	 Base address	 Vector
code	 I	 source 2	 destination	 length

SECTION 9.6 Vector Processing 	 323

This requires three multiplications and (after initializing c11 to 0) three addi-
tions. 1 he total number of multiplications or additions required to compute the
matrix product is 9 X 3 = 27. If we consider the linked multiply-add operation
c + a x b as a cumulative operation, the product of two n >(n matrices requires
n 3 multiply-add operations. The computation consists of n2 inner products,
with each inner product requiring ii multiply-add operations, assuming that
c is initialized to zero before computing each element in the product matrix.

In general, the inner product consists of the sum of k product terms of
the form

C = A, B, + A2 B2 + A, B3 -4- A4 B4 + ... + AB,,

In a typical application k may be equal to 100 or even 1000. The inner product
calculation on a pipeline vector processor is shown in Fig. 9-12. The values of
A and B are either in memory or in processor registers. The floating-point
multiplier pipeline and the floating-point adder pipeline are assumed to have
four segments each. All segment registers in the multiplier and adder are
initialized to 0. Therefore, the output of the adder is 0 for the first eight cycles
until both pipes are full. Aj and B pairs are brought in and multiplied at a rate
of one pair per cycle. After the first four cycles, the products begin to be added
to the output of the adder. During the next four cycles 0 is added to the
products entering the adder pipeline. At the end of the eighth cycle, the first
four products A 1 B 1 through A4 B4 are in the four adder segments, and the next
four products, A5 B5 through A8 B8, are in the multiplier segments. At the
beginning of the ninth cycle, the output of the adder is A5 B 1 and the output
of the multiplier is A5 B 5 . Thus the ninth cycle starts the addition A 1 B 1 + A5 B5

in the adder pipeline. The tenth cycle starts the addition A2 B2 + A4 B6, and so
on. This pattern breaks down the summation into four sections as follows:

C = A 1 B + Ac B 3 + A9 B9 + A 13 B 13 +

+ A2 B2 + A6 B6 + A10 B10 + A14 B 14 +

+A3 B3 + A7 B7 + A ll B 11 + A 15 B 15 +

+A4 B4 + A8 B8 + A l2 B 12 + A 16 B 16 +

Figure 9-12 Pipeline for calculating an inner product.

AR
Ak

Memcjr
array

Nlemon

I	 AR

Mem&1memo r"
array

324	 CHAPTER NINE Pipeline and Vector Procesjn

When there are no more product terms to he added, the system inserts four
zeros into the multiplier pipeline. The adder pipeline will then have one partial
product in each of its four segments, corresponding to the four sums listed in
the four rows in the above equation. The four partial sums are then added to
form the final sum.

Memory Interleaving

Pipeline and vector processors often require simultaneous access to memory
from two or more sources. An instruction pipeline may require the fetching of
an instruction and an operand at the same time from two different segments.
Similarly, an arithmetic pipeline usually requires two or more operands to
enter the pipeline at the same time. Instead of using two memory buses for
simultaneous access, the memory can be partitioned into a number of modules
connected to a common memory address and data buses. A memory module
is a memory array together with its own address and data registers. Figure 9-13
shows a memory unit with four modules. Each memory array has its own
address register AR and data register DR. The address registers receive infor-
mation from a common address bus and the data registers communicate with
a bidirectional data bus. The two least significant bits of the address can be used
to distinguish between the four modules. The modular system permits one
module to initiate a memory access while other modules are in the process of
reading or writing a word and each module can honor a memory request
independent of the state of the other modules.

Figure 9-13 Multiple module memory organization.

Addres bUS

4
	 DR	

J.

Data him

SEC-NON 9-6 'vector Processing	 325

The advantage of a modular memory is that it allows the use of a tech-
itue ..djeU	 In an iiiiikaved memory, diiterent sets ut addresses
are assigned to different memory modules. For example, in a two-module
memory system, the even addresses may be in one module and the odd
addresses in the other. When the number of modules is a power of 2, the least
significant bits of the address select a memory module and the remaining bits
designate the specific location to be accessed within the selected module.

A modular memory is useful in systems with pipeline and vector process-
ing. A vector processor that uses an n-way interleaved memory can fetch

it
operands from it modules. By staggering the memory access, the
effective memory cycle time can be reduced by a factor close to the number of
modules. A CPU with instruction pipeline can take advantage of multiple
memory modules so that each segment in the pipeline can access memory
independent of memory access from other segments.

Supercomputers

A commercial computer with vector instructions and pipelined floating-point
arithmetic operations is referred to as a supercomputer. Supercomputers are
very powerful, high-performance machines used mostly for scientific compu-
tations. To speed up the operation, the components are packed tightl y together
to minimize the distance that the electronic signals have to travel. Supercom-
puters also use special techniques for removing the heat from circuits to
prevent them from burning up because of their close proximity.

The instruction Set of supercomputers contains the standard data trans-
fer, data manipulation, and program control instructions of conventional com-
puters. This is augmented by instructions that process vectors and combina-
tions of scalars and vectors. A supercomputer is a computer system best known
for its high computational speed, fast and large memory systems, and the
extensive use of parallel processing. It is equipped with multiple functional
units and each unit has its own pipeline configuration. Although the super-
computer is capable of general-purpose applications found in all other comput-
ers, it is specificall y optimized for the type of numerical calculations involving
vectors and matrices of floating-point numbers.

Supercomputers are not suitable for normal everyday processing of a
typical computer installation. They are limited in their use to a number of
scientific applications, such as numerical weather forecasting, seismic wave
analysis, and space research. They have limited use and limited market be-
cause of their high price.

A measure used to evaluate computers in their ability to perform a given
number of floating-point operations per second is referred to as flops. The term
megaflops is used to denote m.illion flops and giga flops to denote billion flops.
A typical supercomputer has a basic cycle time of 4 to 20 ns. If the processor
can calculate a floating-point operation through a pipeline each cycle time, it
will have the ability to perform 50 to 250 mega-flops. This rate would be

326	 CHAPTER NINE Pipeline and Vector Processing

sustained from the time the first answer is produced and does not include the
initial setup time of the pipeline.

The first supercomputer developed in 1976 is the Cray-i supercomputer.
It uses vector processing with 12 distinct functional units in parallel. Each
functional unit is segmented to process the incoming data through a pipeline.
All the functional units can operate concurrently with operands stored in the
large number of registers (over 150) itt the CPU. A floating-point operation can
be performed on two sets of 64-bit operands during one clock cycle of 12.5 ns.
This gives a rate of 80 megaflops during the time that the data are processed
through the pipeline. It has a memor y capacity of million 64-bit words. The
memory is divided into 16 banks, with each bank having a 50-ris access time.
This means that when all 16 banks are accessed simultaneously, the memory
transfer rate is 320 million words per second. Cray research extended its
supercomputer to a multiprocessor cor.figuration called Cray X-MP and Cray
Y-MP. The new Cray-2 superconiputer is 12 times more powerful than the
Cray-I in vector processing mode.

Another early model suerccimputer is the Fujitsu VP-200. It has a scalar
processor and a vector processor that can operate concurrently. Like the Cray
supercomputers, a large number of registers and multiple functional units are
used to enable register-to-register vector operations. There are four execution
pipelines in the vector processor, and when operating simultaneously, they
can achieve up to 300 megaflops. The main memory has 32 million words
connected to the vector registers through load and store pipelines. The VP-200
has 83 vector instructions and 195 scalar instructions. The newer VP-2600 uses
a clock cycle of 3.2 ns and claims a peak performance of 5 gigaflops.

9-7 Array Processors

An array processor is a processor that performs computations on large arrays
of data, The term is used to refer to two different types of processors. An
attached array processor is an auxiliary processor attached to a general-purpose
computer. It is intended to improve the performance of the host computer in
specific numerical computation tasks. An SIMD array processor is a processor
that has a single-instruction multiple- data organization. It manipulates vector
instructions by means of multiple i:uniioral units responding to a common
instruction. Although both types of array processors manipulate vectors, their
internal organization is different.

Attnched A rr.i' Prncessor

An attached array processor is designed as a peripherai for a conventional host
computer, and its purpose is to enhance the performance of the computer by
providing vector processing for complex scientific applications. It achieves

SECTION 9-7 Array Processors	 327

high performance by means of parallel processing with multiple functional
t.tiui.z,. ii	 n	 iiLinii Lg uut Or inure Pipe III ed iloatuig-
point adders and multipliers. The array processor can be programmed by the
user to accommodate a variety of complex arithmetic problems.

Figure 9-14 shows the interconnection of an attached array processor to
a host computer. The host computer is a general-purpose commercial com-
puter and the attached processor is a back-end machine driven by the host
computer. The array processor is connected through an input—output con-
troller to the computer and the computer treats it like an external interface. The
data for the attached processor are transferred from main memory to a local
memory through a high-speed bus. The general-purpose computer without
the attached processor serves the users that need conventional data process-
ing. The system with the attached processor satisfies the needs for complex
arithmetic applications.

Some manufacturers of attached array processors offer a model that can
be connected to a variety of different host computers. For example, when
attached to a VAX 11 computer, the FSP- 1641MAX from Floating-Point Systems
increases the computing power of the VAX to 100 megaflops. The objective of
the attached array processor is to provide vector manipulation capabilities to
a conventional computer at a fraction of the cost of supercomputers.

SIMD Array Processor
An SIMD array processor is a computer with multiple processing units oper-
ating in parallel. The processing units are synchronized to perform the same
operation under the control of a common control unit, thus providing a single
instruction stream, multiple data stream (SIMD) organization. A general block
diagram of an array processor is shown in Fig. 9-15. It contains a set of identical
processing elements (PEs), each having a local memory M. Each processor
element includes an ALU, a floating-point arithmetic unit, and working regis-
ters. The master control unit controls the operations in the processor elements.
The main memory is used for storage of the program. The function of the
master control unit is to decode the instructions and determine how the
instruction is to be executed. Scalar and program control instructions are

Figure 9-14 Attached array processor ith host computer.

General-purpose 	 Input-output	 I	 Attached array
CO] puter	 I	 interface	 I processor

High-speed memory-to-
I	 Local memoryMain niemo	

memory bus

328	 CHAPTER NINE Pipeline and Vector Processing

Figure 9-15 SIMD array processor organization.

directly executed within the master control unit. Vector instructions are broad-
cast to all PEs simultaneously. Each PE uses operands stored in its local
memory. Vector operands are distributed to the local memories prior to the
parallel execution of the instruction.

Consider, for example, the vector addition C = A + B. The master con-
trol unit first stores the ith components a i and bi of A and B in local memory
M1 for i = 1, 2., 3,. . . , n. It then broadcasts the floating-point add instruction
ci = a + b, to all PEs, causing the addition to take place simultaneously. The
components of c, are stored in fixed locations in each local memory. This
produces the desired vector sum in one add cycle.

Masking schemes are used to control the status of each PE during the
execution of vector instructions. Each FE has a flag that is set when the FE is
active and reset when the FE is inactive. This ensures that only those PEs that
need to participate are active during the execution of the instruction. For
example, suppose that the array processor contains a set of 64 PEs. If a vector
length of less than 64 data items is to be processed, the control unit selects the
proper number of PEs to be active. Vectors of greater length than 64 must be
divided into 64-word portions by the control unit.

The best known SIMD array processor is the ILLIAC IV computer devel-
oped at the University of Illinois and manufactured by the Burroughs Corp.
This computer is no longer in operation. SIMD processors are highly special-
ized computers. They are cuitod prim arflv for numerical problems that can be
expressed in vector or matrix form. However, they are not very efficient in
other types of computations or in dealing with conventional data-processing
programs.

SECTiON 9 . 7 Array Processors	 329

- -{	 PROBI EMS

9-1. In certain scientific computations it is necessar y to perform the arithmetic
operation (A + B)(C + D) with a stream of numbers. Specify a pipeline
configuration to carry out this task. List the contents of all registers in the
pipeline for i	 1 through 6.

	

9-2.	 Draw a space-time diagram for a six-segment pipeline showing the time it
takes to process eight tasks.

	

9-3.	 Determine the number of clock cycles that it takes to process 200 tasks in a
six-segment pipeline.

94. A nonpipline system takes 50 ns to process a task. The same task can be
processed in a six-segment pipeline with a clock cycle of 10 ns. Determine
the speedup ratio of the pipeline for 100 tasks. What is the maximum
speedup that can be achieved?

9-5. The pipeline of Fig. 9-2 has the following propagation times: 40 ns for the
operands to be read from memory into registers RI and R2, 45 ns for the
signal to propagate through the multiplier, 5 ns for the transfer into R3, and
15 ns to add the two numbers into R5.
a. What is the minimum clock cycle time that can be used?
b. A nonpipeline system can perform the same operation by removing R3

and R4. How long will it take to multiply and add the operands without
using the pipeline?

c. Calculate the speedup of the pipeline for 10 tasks and again for 100 tasks.
d. What is the maximum speedup that can be achieved?

9-6. it is necessary to design a pipeline for a fixed-point multiplier that multiplies
two 8-bit binary integers. Each segment consists of a number of AND gates
and a binary adder similar to an array multiplier as shown in Fig. 10-10.
a. How many AND gates are there in each segment, and what size of adder

is needed?
b. How many segments are there in the pipeline?
c. If the propagation delay in each segment is 30 ns, what is the average time

that it takes to multiply two fixed-point numbers in the pipeline?

9-7. The time delay of the four segments in the pipeline of Fig. 9-6 are as follows:
tj = 50 ns, f2 = 30 ns, t 3 = 95 ns, and t4 = 45 ns'The interface registers delay
time t, = 5 ns-
a. How long would it take to add 100 pairs of numbers in the pipeline?
b. How can we reduce the total time to about one-half of the time calculated

in part (a)?

	

9-8.	 How would you use the floating-point pipeline adder of Fig. 9-6 to add 100
-floating-point numbers X 1 X + X + .. + X?

	9-9.	 Formulate a six-segment instruction pipeline for a computer. Specify the
operations to be performed in each segment.

9-10. Explain four possible hardware schemes that can be used in an instruction
pipeline in order to minimize the performance degradation caused by in-
struction branching.

330	 CHAPTER NINE Pipeline and Vector Processing

9-I1. Consider the four instructions in the following program. Suppose that the
first instruction starts from step 1 in the pipeline used in Fig. 9-8. Specify
what operations are performed in the four segments during step 4.

Load	 R1-M[3121
ADD	 R24-R2 + M[3131
INC	 R3-R3 + I
STORE	 M[3]*-R3

9-12.	 Give an example of a program that will cause data conflict in the three-seg-
ment pipeline of Sec. 9-5.

9-13.	 Give an example that uses delayed load with the three-segment pipeline of
Sec. 9-5.

9-14.	 Give an example of a program that will cause a branch penalty in the
three-segment pipeline of Sec. 9-5.

9-15.	 Give an example that uses delayed branch with the three-segment pipeline
of Sec. 9-5.

9-16.	 Consider the multiplication of two 40 x 40 matrices using a vector processor.
a. How many product terms are there in each inner product, and how many

inner products must be evaluated?
b. How many multiply-add operations are needed to calculate the product

matrix?

9-17. How many clock cycles does it take to process an inner product in the
pipeline of Fig. 9-12 when used to evaluate the product of two 60 x 60
matrices? How many inner products are there, and how many clock cycles
does it take to evaluate the product matrix?

9-18.	 Assign addresses to an array of data of 1024 words to be stored in the
memory described in Fig. 9-13.

9-19. A weather forecasting computation requires 250 billion floating-point oper-
ations. The problem is processed in a supercomputer that can perform 100
megaflops. How long will it take to do these calculations?

9-20. Consider a computer with four floating-point pipeline processors. Suppose
that each processor uses a cycle time of 40 ns. How long will it take to perform
400 floating-point operations? Is there a difference if the same 400 operations
are carried out using a single pipeline processor with a cycle time of 10 ns?

1. Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John
Wiley, 1989.

2. DeCegama, A. L., Parallel Processing Architecture and VLSI Hardmx2re. Englewood
Cliffs, NJ: Prentice Hall, 1989.

SECTION 9 .7 Array Processors 	 331

3. Gibson, C. A., Computer 5yiems Concep6 and Den. Englewood Culls, NJ: Prentice
Hall, 1991.

4. Hays,J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill
1988.

5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New
York: McGraw-Hill, 1984.

6. Kain, R., Computer Architecture: Software and Hardware. Vol. 2. Englewood Cliffs, NJ:
Prentice Hall, 1989.

". Lee, J. K. F., and A. J. Smith, "Branch Prediction Strategies and Branch Target
Buffer Design." Computer, Vol. 17, No. 1 (January 1984), pp. 6-22.

8. Lilja, D. J., "Reducing the Branch Penalties in Pipeline Processors." Computer, Vol.
21, No. 7 (J uly 1988), pp. 47-55.

9. Patterson, D. A., andJ. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

10. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

11. Stone, H. S., High-Performance Computer Architecture, 2nd ed. Reading, MA:
Addison-Wesley, 1990.

12. Tabak, D., Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.

cI

CHAP rER TEN

Computer Arithmetic-

IN THiS CHAPTER

	

10-1	 Introduction

	

10-2	 Addition and Subtraction

	

10-3	 Multiplication Algorithms

	

10-4	 Division Algorithms

	

10-5	 Floating-Point Arithmetic Operations

	

10-6	 Decimal Arithmetic Unit

	

10-7	 Decimal Arithmetic Operations

10-1 Introduction

Arithmetic instructions in digital computers manipulate data to produce re-
suits necessary for the solution of computational problems. These instructions
perform arithmetic calculations and are responsible for the bulk of activity
involved in processing data in a computer. The four basic arithmetic operations
are addition, subtraction, multiplication, and division. From these four basic
operations, it is possible to formulate other arithmetic functions and solve
scientific problems by means of numerical analysis methods.

An arithmetic processor is the part of a processor unit that executes
arithmetic operations. The data type assumed to reside in processor registers
during the execution of an arithmetic instruction is specified in the definition
of the instruction. An arithmetic instruction may specify binary or decimal
data, and in each case the data may be in fixed-point or floating-point form.
Fixed-point numbers may represent integers or fractions. Negative numbers
may be in signed-magnitude or signed-complement representation. The arith-
metic processor is very simple if only a binary fixed-point add instruction is
included. It would be more complicated if it includes all four arithmetic oper-

333

334	 ci IAPTER TEN Computer Arithmetic

ations for binary and decimal data in fixed-point and floating-point represen-
tation.

At an early age we are taught how to perform the basic arithmetic
operations in signed-magnitude representation. This knowledge is valuable
when the operations are to be implemented by hardware. However, the de-
signer must be thoroughly familiar with the sequence of steps to be followed
in order to carry out the operation and achieve a correct result. The solution
to any problem that is stated by a finite number of well-defined procedural

algorithm steps is called an algorithm. An algorithm was stated in Sec. 3-3 for the addition
of two fixed-point binary numbers when negative numbers are in signed-2's
complement representation. This is a simple algorithm since-all it needs for its
implementation is a parallel binary adder. When negative numbers are in
signed-magnitude representation, the algorithm is slightly more complicated
and its implementation requires circuits to add and subtract, and to compare
the signs and the magnitudes of the numbers. Usually, an algorithm will
contain a number of procedural steps which are dependent on results of
previous steps. A convenient method for presenting algorithms is a flowchart.
The computational steps are specified in the flowchart inside rectangular
boxes. The decision steps are indicated inside diamond-shaped boxes from
which two or more alternate paths emerge.

In this chapter we develop the various arithmetic algorithms and show
the procedure for implementing them with digital hardware. We consider
addition, subtraction, multiplication, and division for the following types of
data:

1. Fixed-point binary data in signed-magnitude representation
2. Fixed-point binary data in signed-2's complement representation
3. Floating-point binary data
4. Binary-coded decimal (BCD) data

10-2 Addition and Subtraction

As stated in Sec. 3-3, there are three ways of representing negative fixed-point
binary numbers: signed-magnitude, signed-i's complement, or signed-2's
complement. Most computers use the signed-2's complement representation
when performing arithmetic operations with integers. For floating-point oper-
ations, most computers us the signed-magnitude representation for the man-
tissa. In this section we develop the addition and stihtraction algorithms for
data represented in signed-magnitude and again for data represented in
signed-2's complement.

It is important to realize that the adopted representation for negative
numbers refers to the representation of numbers in the registers before and

SECTION 1'3-2 Addition and Subtraction	 335

after the execution of the arithmetic operation. It does not mean that comple-
ment arithmetic may not be used in an intermediate step. For example, it is
Convenient to employ complement arithmetic when performing a subtraction
operation with numbers in signed-magnitude representation. As long as the
initial minuend and subtrahend, as well as the final difference, are in signed-
magnitude form the fact that complements have been used in an intermediate
step does not alter the fact that the representation is in signed-magnitude.

Addition and Subtraction with Signed-Magnitude Data
The representation of numbers in signed-magnitude is familiar because it
used in everyday arithmetic calculations. The procedure for adding or subtract-
ing two signed binary numbers with paper and pencil is simple and straight-
forward. A review of this procedure will be helpful for deriving the hardware
algorithm.

We designate the magnitude of the two numbers by A and B. When the
signed numbers are added or subtracted, we find that there are eight different
conditions to consider, depending on the sign of the numbers and the opera
tion performed. These conditions are listed in the first column of Table 10-1
The other columns in the table show the actual operation to be performed with
the magnitude of the numbers. The last column is needed to prevent a negative
zero. In other words, when two equal numbers are subtracted, the result
should be ­ 0 not —0.

The algorithms for addition and subtraction are derived from the table
and can be stated as follows (the words inside parentheses should be used for
the subtraction algorithm):

Addition (subtraction) algorithm: when the signs of A and B are identic
(different), add the two magnitudes and attach the sign of A to the result. When
the signs of A and B are different (identical), compare the magnitudes and

magnitude

addition
(subtraction)
algorithm

TABLE 10-1 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes
Add

Magnitudes	 When A > B When A <B When A = BOperation

(±fl) 4. (+B)

(+A) + (-8)
(—A) -i- (+B)
(—A) + (—B)
(+A) - (B)

(—A) - (±B)

(—A) - (—B)

+ B)
—(A - B)
—(A - B)

—(A + B)

- B)

— (A i' B)

—(A - B)

	

—(B - A)	 i-(A - B)

	

- A)	 +(A -- B)

	

—(B A)	 +(A—B)

	

- A)	 -1'(A - B)

336	 CHAPTER TEN Computer Arithmetic

subtract the smaller number from the larger. Choose the sign of the result to
I the .arne as .4 f A	 P cr the complement of the sign of A if A	 P. li
two magnitudes are equal, subtract B from A and make the sign of the result
positive.

The two algorithms are similar except for the sign comparison. The
procedure to be followed for identical signs in the addition algorithm is the
same as for different signs in the subtraction algorithm, and vice versa.

Hardware Implementation
To implement the two arithmetic operations with hardware, it is first necessary
that the two numbers be stored in registers. Let A and B be two registers that
hold the magnitudes of the numbers, and A and B, be two flip-flops that hold
the corresponding signs. The result of the operation may be transferred to a
third register: however, a saving is achieved if the result is transferred into A
and A. Thus A and A, together form an accumulator register.

Consider now the hardware implementation of the algorithms above.
First, a parallel-adder is needed to perform the microoperation A + B. Second,
a comparator circuit is needed to establish if A > B, A = B, or A <B. Third,
two parallel-subtractor circuits are needed to perform the microoperations
A - B and B - A. The sign relationship can be determined from an exclusive-
OR gate with A, and B, as inputs.

This procedure requires a magnitude comparator, an adder, and two
subtractors. However, a different procedure can be found that requires less
equipment. First, we know that subtraction can be accomplished by means of
complement and add. Second, the result of a comparison can be determined
from the end carry after the subtraction. Careful investigation of the alterna-
tives reveals that the use of 2's complement for subtraction and comparison is
an efficient procedure that requires only an adder and a complementer.

Figure 10-1 shows a block diagram of the hardware for implementing the
addition and subtraction operations. It consists of registers A and B and sign
flip-flops A. and B. Subtraction is done by adding A to the 2's complement of
B. The output carry is transferred to flip-flop E, where it can be checked to
determine the relative magnitudes of the two numbers. The add-overflow
flip-flop AVF holds the overflow bit when A and B are added. The A register
provides other microoperations that may be needed when we specify the
sequence of steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S (sum)
output of the adder is applied to the input of the A register. The complementer
provides an output of B or the complement of B depending on the state of the
mode control M. The complementer consists of exclusive-OR gates and the
parallel adder consists of full-adder circuits as shown in Fig. 4-7 in Chap. 4.
The M signal is also applied to the input carry of the adder. When M = 0, the
output of B is transferred to the adder, the input carry is 0, and the output of

M (Mode control)

urn

SECTION 1C . 2 Addition and Subtraction	 337

Figure 10-1 Hardware for signed- magnitude addition and subtraction.

the adder is equal to the sum A ± B. When M = 1, the l's complement of B
is applied to the adder, the input carry is I, and output S = A + B + 1. This
is equal to A plus the 2's complement of B, which is equivalent to the subtrac-
tionA - B.

Hardware Algorithm
The flowchart for the hardware algorithm is presented in Fig. 10-2. The two
signs A, and B. are compared by an exclusive-OR gate. If the output of the gate
is 0, the signs are identical; if it is 1, the signs are different. For an add operation,
identical signs dictate that the magnitudes be added. For a subtract operation,
different signs dictate that the magnitudes be added. The magnitudes are
added with a microoperation EA <-- A + B, where EA is a register that com-
bines E and A. The carry in F after the addition constitutes an overflow if it is
equal to 1. The value of E is transferred into the add-overflow flip-flop AVE.

The two magnitudes are subtracted if the signs are different for an add
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2's complement of B. No overflow can occur if the numbers
are subtracted so AVF is cleared to 0. A I in E indicates that A ^! B and the
number in A is the correct result. If this number is zero, the sign A. must be
made positive to avoid a negative zero. A 0 in E indicates that A < B. For this
case it is necessary to take the 2's complement of the value in A. This operation
can be done with one microoperation A 4—A + 1. However, we assume that

complement and	 the A register has circuits for microoperations complement and increment, so the
increment 2's complement is obtained from these two microoperations. In other paths of

the LlowcuiarL, the sign u s tht ieut &s the scuue as the sign ol A, so no hsng
in A, is required. However, when A < B, the sign of the result is the comple-
ment of the original sign of A. It is then necessary to complement A, to obtain

338	 CHAPTER TEN Computer Arithmetic

Subtract operation	 Add operation

Figure 102 Flowchart for add and subtract operations.

the correct sign. The final result is found in register A and its sign in A 5 . The
value in AVF provides an overflow indication. The final value of E is immaterial.

Addition and Subtraction with Signed-Z's
Complement Data

The signed-2's complement representation of numbers together with arith-
metic algorithms for addition and subtraction are introduced in Sec. 3-3. They
are summarized here for easy reference. The leftmost bit of a binary number
represents the sign bit: 0 for positive and 1 for negative. If the sign bit is 1, the
entire number is represented in 2's complement form. Thus +33 is represented

SECTION 10 . 2 Addition and Subtraction 	 339

as 00100001 and — 33 as 11011111. Note that 11011111 is the 2's complement of
00100001, and vice versa.

The addition of two numbers in signed-2's complement form consists of
adding the numbers with the sign bits treated the same as the other bits of the
number. A carry-out of the sign-bit position is discarded. The subtraction
consists of first taking the 2's complement of the subtrahend and then adding
it to the minuend.

When two numbers of n digits each are added and the sum occupies n + I
digits, we say that an overflow occurred. The effect of an overflow on the sum
of two signed-2's complement numbers is discussed in Sec. 3-3. An overflow
can be detected by inspecting the last two carries out of the addition. When
the two carries are applied to an exclusive-OR gate, the overflow is detected
when the output of the gate is equal to 1.

The register configuration for the hardware implementation is shown in
Fig. 10-3. This is the same configuration as in Fig. 10-1 except that the sign bits
are not separated from the rest of the registers. We name the A register AC
(accumulator) and the B register BR. The leftmost bit in AC and BR represent
the sign bits of the numbers, The two sign bits are added or subtracted together
with the other bits in the cornplementer and parallel adder. The overflow
flip-flop V is set to 1 if there is an overflow. The output carry in this case is
discarded.

The algorithm for adding and subtracting two binary numbers in signed-
2's complement representation is shown in the flowchart of Fig. 10-4. The sum
is obtained by adding the contents of AC and BR (including their sign bits). The
overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it
is cleared to 0 otherwise. The subtraction operation is accomplished by adding
the content of AC to the 2's complement of BR. Taking the 2's complement of
BR has the effect of changing a positive number to negative, and vice versa.
An overflow must be checked during this operation because the two numbers
added could have the same sign. The programmer must realize that if an
overflow occurs, there will be an erroneous result in the AC register.

Figure 10-3 Hardware for signed-2's complement addition and subtraction.

Coniplementer and
V	 parallel adder

Overilow

AC register	 1

340	 CHAPTER TEN Computer Arithmetic

	

Subtract	 Add

Minuend in AC \	 (Augend in AC
Subtrahend in BR I	 .	 Addend in BR

	

.1C—AC +BR+ I	 AC—.1C+BR
¼—overf]ow	 I	 I	 V<—overflow

END	 I	 I	 END

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2s
complement representation.

Comparing this algorithm with its signed-magnitude counterpart, we
note that it is much simpler to add and subtract numbers if negative numbers
are maintained in signed-2's complement representation. For this reason most
computers adopt this representation over the more familiar signed-magnitude.

10-3 Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude repre-
sentation is done with paper and pencil by a process of successive shift and
add operations. This process is best illustrated with a numerical example.

	

23	 10111 Multiplicand
19 x 10011 Multiplier

10111
10111

00000 +
00000

10111
437 110110101 Product

The process consists of looking at successive bits of the multiplier, least signif-
icant bit first. If the multiplier bit is a 1, the multiplicand is copied down;
otherwise, zeros are copied down. The numbers copied down in successive
lines are shifted one position to the left from the previous number. Finally, the
numbers are added and their sum forms the product.

SECTION 10-3 Multiplication Algorithms	 341

The sign of the product is determined from the signs of the multiplicand
and multiplier. If they are alike, the sign of the product is positive. If they are
unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data
When multiplication is implemented in a digital computer, it is convenient to
change the process slightly. First, instead of providing registers to store and
add simultaneously as many binary numbers as there are bits in the multiplier,
it is convenient to provide an adder for the summation of only two binary
numbers and successively accumulate the partial products in a register. Sec-
ond, instead of shifting the multiplicand to the left, the partial product is
shifted to the right, which results in leaving the partial product and the
multiplicand in the required relative positions. Third, when the corresponding
bit of the multiplier is 0, there is no need to add all zeros to the partial product
since it will not alter its value.

The hardware for multiplication consists of the equipment shown in Fig.
10-1 plus two more registers. These registers together with registers A and B
are shown in Fig. 10-5. The multiplier is stored in the Q register and its sign
in Q . The sequence counter SC is initially set to a number equal to the number
of bits in the multiplier. The Counter is decremented by 1 after forming each
partial product. When the content of the counter reaches zero, the product is
formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum
of A and B forms a partial product which is transferred to the EA register. Both
partial product and multiplier are shifted to the right. This shift will be denoted
by the statement shr EAQ to designate the right shift depicted in Fig. 10-5. The

Figure 10-5 Hardware for multiply operation.

B register	 Sequence counter

Cornplerncnter and
parallel adder

(rightmost bin

Lj LU

E	 A register	 i	
0. I	 Q register

342	 CHAPTER TEN Computer Arithmetic

msL si2nifcant oion of Q. the
bit from E is shifted into the most significant position of A, and 0 is shifted into
E. After the shift, one bit of the partial product is shifted into Q, pushing the
multiplier bits one position to the right. In this manner, the rightmost flip-flop
in register Q, designated by Q, will hold the bit of the multiplier, which must
be inspected next.

Hardware Algorithm
Figure 10-6 is a flowchart of the hardware multiply algorithm. Initially, the
multiplicand is in B and the multiplier in Q. Their corresponding signs are in
B, and Q,, respectively. The signs are compared, and both A and Q are set to

Figure 10-6 Flowchart for multiply operation.

Multiply operation

SECTION 10-3 Multiplication Algorithms	 343

correspond to the sign of the product since a double-length product will be
stored in registers A and Q . Registers A and E are cleared and the sequence
counter SC is set to a number equal to the number of bits of the multiplier. We
are assuming here that operands are transferred to registers from a memory
unit that has words of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the magnitude will consist
of n	 1 bits.

After the initialization, the low-order bit of the multiplier in Q is tested.
If it is a 1, the multiplicand in B is added to the present partial product in A.
If it is a 0, nothing is done. Register EAQ is then shifted once to the right to
form the new partial product. The sequence counter is decremented by I and
its new value checked. If it is not equal to zero, the process is repeated and a
new partial product is formed. The process stops when SC = 0, Note that the
partial product 'ormed in A is shifted into Q one bit at a time and eventually
replaces the multiplier. The final product is available in both A and Q, with A
holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table 10-2 to clarify the
hardware multiplication process. The procedure follows the steps outlined in
the flowchart.

Booth Multiplication Algorithm
Booth algorithm gives a procedure for multiplying binary integers in signed-2's
complement representation. It operates on the fact that strings of 0's in the
multiplier require no addition but just shifting, and a string of l's in the
multiplier from bit weigh 2 to weight 2' can be treated as 2k. - 2'". For
example, the binary number 001110 (+14) has a string of l's from 2 to 2'

TABLE 10.2 Numerical Example for Binary Multiplier

A	 Q	 SC

00000	 10011	 101
10111
10111
01011	 11001	 100
10111
00010
10001	 01100	 011
01000	 10110	 010

10111
11011
01101	 10101	 000

Multiplicand B = 10111

Multiplier in Q
= 1; add B

First partial product
Shift right FAQ

= 1; add B
Second partial product
Shift right FAQ

= 0: shift right EAQ

= 1: add B
Fifth partial product
Shift right EAQ
Final product in AQ = 0110110101

344	 CHAPTER TEN Computer Arithmetic

(k = 3, m = 1). The number can be represented as 2' - 2" = 2 - 21 = 16 -
2 = 14. Therefore, the multiplicatioriM x 14, where\1 is the multiplicand and
14 the multiplier, can be done as M X 2 - M >(2'. Thus the product can be
obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left once.

As in all multiplication schemes, Booth algorithm requires examination
of the multiplier bits and shifting of the partial product. Prior to the shifting,
the multiplicand may be added to the partial product, subtracted from the
partial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encounter-
ing the first least significant 1 in a string of l's in the multiplier.

2. The multiplicand is added to the partial product upon encountering the
first 0 (provided that there was a previous 1) in a string of 0's in the
multiplier.

3. The partial product does not change when the multiplier bit is identical
to the previous multiplier bit.

The algorithm works for positive or negative multipliers in 2's comple-
ment representation. This is because a negative multiplier ends with a string
of l's and the last operation will be a subtraction of the appropriate weight.
For example, a multiplier equal to —14 is represented in 2's complement as
110010 and is treated as —2 + 2 2 - 21 = —14.

The hardware implementation of Booth algorithm requires the register
configuration shown in Fig. 10-7. This is similar to Fig. 10-5 except that the sign
bits are not separated from the rest of the registers. To show this difference,
we rename registers A, B, and Q, as AC, BR, and QR, respectively. Q desig-
nates the least significant bit of the multiplier in register QR. An extra flip-flop
Q,1, is appended to QR to facilitate a double bit inspection of the multiplier.
The flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended

Figure 10-7 Hardware for Booth algorithm.

BR register	
[

Sequence Counter (SC) 1
Complemencer and

parallel adder

AC register Q/? resister

SEC11ON to Multiplication Algorithms 	 345
Multiply

Figure 10-8 Booth algorlum for multiplication of signed-2's complement
numbers.

346	 CHAPTER TEN Computer Arithmetic

bit Q+ are initially cleared to 0 and the sequence counter SC is set to a number
v; civaI ic ie ii-L• i lit t . & hits o tile multiplier
in Q and Q are inspected. If the two bits are equal to 10, it means that the
first I in a string of l's has been encountered. This requires a subtraction of
the multiplicand from the partial product in AC. If the two bits are equal to 01,
it means that the first 0 in a string of 0's has been encountered. This requires
the addition of the multiplicand to the partial product in AC. When the two
bits are equal, the partial product does not change. An overflow cannot occur
because the addition and subtraction of the multiplicand follow each other. As
a consequence, the two numbers that are added always have opposite signs,
a condition that excludes an overflow. The next step is to shift right the partial
product and the multiplier (including bit Q,,+) . This is an arithmetic shift right
(ashr) operation which shifts AC and QR to the right and leaves the sign bit
in AC unchanged (see Sec. 4-6). The sequence counter is decremented and the
computational loop is repeated n times.

A numerical example of Booth algorithm is shown in Table 10-3 for n = 5.
It shows the step-by-step multiplication of (-9) x (-13) = + 117. Note that the
multiplier in QR is negative and that the multiplicand in BR is also negative.
The 10-bit product appears in AC and QR and is positive. The final value of Q+
is the original sign bit of the multiplier and should not be taken as part of the
product.

Array Multiplier
Checking the bits of the multiplier one at a time and forming partial products
is a sequential operation that requires a sequence of add and shift microoper-
ations. The multiplication of two binary numbers can be done with one micro-
operation by means of a combinational circuit that forms the product bits all

TABLE 103 Example of Multiplication with Booth Algorithm

BR = 10111
+ I = 01001	 AC	 QR	 Q.	 Sc

Initial	 00000	 10011	 0	 101
0	 Subtract BR	 01001

01001
ashr	 00100	 11001	 1	 100
ashr	 00010	 01100	 1	 011

1	 Add BR	 10111
11001

ashr	 11100	 10110	 0	 010
(I	 ashr	 11110	 01011	 0	 001
t)	 Subtract BR	 01001

00111
ashr	 00011	 10101	 1	 000

a0

1,,	 b0

a 1	 a0

a0 b 1	 a0b0

	

a 1 b 1	 a 1 b0	 a1

C3	 C2	 C1	 CO

C3 C2	 C1	 CO

SECTION 10. 3 Multiplication Algorithms	 347

at once. This is a fast way of multiplying two numbers since all it takes is the
time for the signals to propagate through the gates that form the multiplication
array. However, an array multiplier requires a large number of gates, and for
this reason it was not economical until the development of integrated circuits.

To see how an array multiplier can be implemented with a combinational
circuit, consider the multiplication of two 2-bit numbers as shown in Fig. 10-9.
The multiplicand bits are b1 and b0, the multiplier bits are a 1 and a0, and the
product is c3 c2 c 1 co. The first partial product is formed by multiplying a 0 by b 1 b0.

The multiplication of two bits such as a0 and b0 produces a I if both bits are 1;
otherwise, it produces a 0. This is identical to an AND operation and can be
implemented with an AND gate. As shown in the diagram, the first partial
product is formed by means of two AND gates. The second partial product is
formed by multiplying a 1 by b 1 b0 and is shifted one position to the left. The two
partial products are added with two half-adder (HA) circuits. Usually, there are
more bits in the partial products and it will be necessary to use full-adders to
produce the sum. Note that the least significant bit of the product does not have
to go through an adder since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be con-
structed in a similar fashion. A bit of the multiplier is ANDed with each bit of
the multiplicand in as many levels as there are bits in the multiplier. The binary
output in each level of AND gases is added in parallel with the partial product
of the previous level to form a new partial product. The last level produces the
product. For] multiplier bits and k multiplicand bits we need] x k AND gates
and (j - 1) k-bit adders to produce a product of] + k bits.

As a second example, consider a multiplier circuit that multiplies a binary
number of four bits with a number of three bits. Let the multiplicand be

Figure 10-9 2-bit by 2-bit array multiplier.

ao

a'

a

U
348	 CHAPTER TEN Computer Arithmetic

f , IS	 (I(4	 C'

Figure 10.10 4-hit by 3-bit array multiplier.

CI)

represented by b3 b2 b, b0 and the multiplier by a 2 a 1 a0 . Since k 4 and j = 3, we
need 12 AND gates and two 4-bit adders to produce a product of seven bits.
The logic diagram of the multiplier is shown in Fig. 10-10.

10-4 Division Algorithms

Division of two fixed-point binary numbers in signed-magnitude representa-
tion is done with paper and pencil by a process of successive compare, shift,
md subtract operations. Binary division is simpler than decimal division be-e-

partial remainder

SECTION 10-4 Division Algorithms '349

cause the quotient digits are either 0 or 1 and there is no need to estimate how
many times the dividend or partial remainder fits into the divisor. The division
process is illustrated by a numerical example in Fig. 10-11. The divisor B
consists of five bits and the dividend A, of ten bits. The five most significant
bits of the dividend are compared with the divisor. Since the 5-bit number is
smaller than B, we try again by taking the six most significant bits of A and
compare this number with B. The 6-bit number is greater than B, so we place
a I for the quotient bit in the sixth position above the dividend. The divisor is
then shifted once to the right and subtracted from the dividend. The difference
is called a partial remainder because the division could have stopped here to
obtain a quotient of I and a remainder equal to the partial remainder. The
process is continued by comparing a partial remainder with the divisor. If the
partial remainder is greater than or equal to the divisor, the quotient bit is equal
to 1. The divisor is then shifted right and subtracted from the partial remainder.
If the partial remainder is smaller than the divisor, the quotient bit is 0 and no
subtraction is needed. The divisor is shifted once to the right in any case. Note
that the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data
When the division is implemented in a digital computer, it is convenient to
change the process slightly. Instead of shifting the divisor to the right, the
dividend, or partial remainder, is shifted to the left, thus leaving the two
numbers in the required relative position. Subtraction may be achieved by
adding A to the 2's complement of B. The information about the relative
magnitudes is then available from the end-carry.

The hardware for implementing the division operation is identical to that
required for multiplication and consists of the components shown in Fig. 10-5.
Register EAQ is now shifted to the left with 0 inserted into Q, and the previous
value of E lost. The numerical example is repeated in Fig. 10-12 to clarify the

Figure 10-11 Example of binary division.

Divisor:

B = 10001

11010

1000000
01110
011100
-l000I

-010110

--001010
---010100
----10001

----000110
00110

Quotient = Q

Dividend = .4
5 bits of <B, quotient has 5 bits
6 bits of 	 B
Shift right B and subtract; enter I in Q

7 hits of remainder 1?
ugiit B md subra, ncr I j.a Q

Remainder <B; enter 0 in Q; shift right B
Remainder > B
Shift right B and subtract; enter 1 in Q

Remainder <B; enter 0 in Q
Final remainder

350	 CHAPTER TEN Computer Arithmetic

Divisor B=I0001,	 B+101111

E	 A	 Q	 SC

Dividend:	 01110	 00000	 5
shIEAQ	 0	 11100	 00000
add	 +1	 01111

E1	 1	 01011
Set 0" 	I 	 01011	 00001	 '
shIEAQ	 0	 10110	 00010
AddB+1	 01111

1	 00101
Set Q, 1	 1	 00101	 00011	 3
sh!EAQ	 (1	 01010	 00110
AddB -1-1	 01111

E0: leave Q,1.0	 0	 11001	 00110
Add 	 10001	

2
Restore remainder	 1	 01010
sh1EAQ	 0	 10100	 01100
Add B+1	 01111
El	 1	 00011
Set Q = 1	 1	 00011	 01101	 1
shIEAQ	 0	 00110	 11010
Add B+1	 01111
E0: leave Q ,0	 0	 10101	 11010
AddB	 10001

Restore remainder	 1	 00110	 11010	 0
Neglect £
Remainder in A:	 00110
Quotient inQ: 	 11010

Figure 10-12 Example of binary division with digital hardware.

proposed division process. The divisor is stored in the B register and the
double-length dividend is stored in registers A and Q. The dividend is shifted
to the left and the divisor is subtracted by adding its 2's complement value. The
information about the relative magnitude is available in E. If E = 1, it signifies
that A -2^ B. A quotient bit 1 is inserted into Q, and the partial remainder is
shifted to the left to repeat the process. If E = 0, it signifies that A < B so the
quotient in Q, remains a 0 (inserted during the shift). The value of B is then
added to restore the partial remainder in A to its previous value. The partial
remainder is shifted to the left and the process is repeated again until all five
quotient bits are formed. Note that while the partial remainder is shifted left,
the quotient bits are shifted also and after five shifts, the quotient is in Q and

the final remainder is in A.

Before showing the algorithm in flowchart form, we have to consider the
sign of the result and a possible overflow condition. The sign of the quotient
is determined from the signs of the dividend and the divisor. If the two signs

SECTION 10-4 Division Algorithms	 351

are alike, the sign of the quotient is plus. If they are unalike, the sign is minus.
­;-*Li	 i.., U'...	 .i, Ll.	 ig	 f Ll	 didnd.

Divide Overflow

The division operation may result in a quotient with an overflow. This is not
a problem when working with paper and pencil but is critical when the
operation is implemented with hardware. This is because the length of regis-
ters is finite and will not hold a number that exceeds the standard length. To
see this, consider a system that has 5-bit registers. We use one register to hold
the divisor and two registers to hold the dividend. From the example of
Fig. 10-11 we note that the quotient will consist of six bits if the five most
significant bits of the dividend constitute a number greater than the divisor.
The quotient is to be stored in a standard 5-bit register, so the overflow bit will
require one more flip-flop for storing the sixth bit. This divide-overflow condi-
tion must be avoided in normal computer operations because the entire quo-
tient will be too long for transfer into a memory unit that has words of standard
length, that is, the same as the length of registers. Provisions to ensure that
this condition is detected must be included in either the hardware or the
software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for
overflow can be stated as follows: A divide-overflow condition occurs if the
high-order half bits of the dividend constitute a number greater than or equal
to the divisor. Another problem associated with division is the fact that a
division by zero must be avoided. The divide-overflow condition takes care of
this condition as well. This occurs because any dividend will be greater than
or equal to a divisor which is equal to zero. Overflow condition is usually
detected when a special flip-flop is set. We will call it a divide-overflow flip-flop
and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways.
In some computers it is the responsibility of the programmers to check if DVF
is set after each divide instruction. They then can branch to a subroutine that
takes a corrective measure such as rescaling the data to avoid overflow. In some
older computers, the occurrence of a divide overflow stopped the computer
and this condition was referred to as a divide stop. Stopping the operation of
the computer is not recommended because it is time consuming. The proce-
dure in most computers is to provide an interrupt request when DVF is set.
The interrupt causes the computer to suspend the current program and branch
to a service routine to take a corrective measure. The most common corrective
measure is to remove the program and type an error message explaining the
reason why the program could not he completed. It is then the responsibility
of the user who wrote the program to rescale the data or take any other
corrective measure. The best way to avoid a divide overflow is to use floating-
point data. We will see in Sec. 10-5 that a divide overflow can be handled very
simply if numbers are in floating-point representation.

352	 CHAPTER TEN Computer Arithmetic

Hardware Algorithm
The hardware divide algorithm is shown in the flowchart of Fig. 10-13. The
dividend is in A and Q and the divisor in B. The sign of the result is transferred
into Q, to be part of the quotient. A constant is set into the sequence counter
SC to specify the number of bits in the quotient. As in multiplication, we
assume that operands are transferred to registers from a memory unit that has

Figure 10-13 Flowchart for divide operation.

Divide operation

d in A
in B

Divide magnitudes

Q '-A,eB
SC 4-n —1

EA I-A + + 1

ABj

EAI-A+B

IDVFI-t I	 DVF-0

shi FAQ

JB =
a—A B

SC — SC
END / 	END

(Divide overflow)	 J	 ((Quotient is in Q

	

J	 \. remainder is in A)

SECTION 10 .4 Division Algorithms 	 353

wordccf r hit. Since anorfnind must be stored with it sign, one hit of the
worU will be uLdpleU oy the sign and the magnitude will consist or n —1 bits.

A divide-overflow condition is tested by subtracting the divisor in B from
half of the bits of the dividend stored in A. If A ^- B, the divide-overflow
flip-flop DVF is set and the operation is terminated prematurely. If A <B,
no divide civerflow occurs so the value of the dividend is restored by adding
B . A.

The division of the magnitudes starts by shifting the dividend in AQ to
the left with the high-order bit shifted into E. If the bit shifted into F is 1, we
know that EA > B because EA consists of a 1 followed by n—i bits while B
consists of only n—i bits. In this case, B must be subtracted from EA and I
inserted into Q,, for the quotient bit. Since register A is missing the high-order
bit of the dividend (which is in F), its value is EA - 2'. Adding to this value
the 2's complement of B results in

(EA —2')+(21-3)=EA—B

The carry from this addition is not transferred to E if we want E to remain
a 1.

If the shift-left operation inserts a 0 into F, the divisor is subtracted by
adding its 2's complement value and the carry is transferred into E. If E = 1,
it signifies that A 2! B; therefore, Q is set to 1. If E = 0, it signifies that A < B
and the original number is restored by adding B to A. In the latter case we leave
a 0 in Q (0 was inserted during the shift).

This process is repeated again with register A holding the partial remain-
der. After n - 1 times, the quotient magnitude is formed in register Q and the
remainder is found in register A. The quotient sign is in Q, and the sign of the
remainder in A5 is the same as the original sign of the dividend.

Other Algorithms
restoring method The hardware method just described is called the restoring method. The reason

for this name is that the partial remainder is restored by adding the divisor to
the negative difference. Two other methods are available for dividing numbers,

comparison and	 the comparison method and the nonrestoring method. In the comparison method
nonrestoring method A and B are compared prior to the subtraction operation. Then if A L- B, B is

subtracted from A. If A <B nothing is done. The partial remainder is shifted
left and the numbers are compared again. The comparison can be determined
prior to the subtraction by inspecting the end-carry Out of the parallel-adder
prior to its transfer to register E.

In the nonrestoring method, B is not added if the difference is negative
but instead, the negative difference is shifted left and then B is added. To see
why this is possible consider the case when A < B. From the flowchart in Fig.
9-11 we note that the operations performed are A - B + B; that is, B is sub-

354	 cu.pma TLN Computer Arithmetic

tracted and then added to restore A. The next time around the loop, this
number is shifted left (or multiplied by 2) and B subtracted again. This gives
2(4 - B + B) - B = 2A - B. This result is obtained in the nonrestoring
method by leaving A - B as is. The next time around the loop, the number is
shifted left and B added to give 2(A - B) + B = 2A - B, which is the same as
before. Thus, in the nortrestoring method, B is subtracted if the previous value
of Q, was a 1, but B is added if the previous value of Q,, was a 0 and no restoring
of the partial remainder is required. This process saves the step of adding the
divisor if A is less than B, but it requires special control logic to remember the
previous result. The first time the dividend is shifted, B must be subtracted.
Also, if the last bit of the quotient is 0, the partial remainder must be restored
to obtain the correct final remainder.

10-5 Floating-Point Arithmetic Operations

Many high-level programming languages have a facility for specifying floating-
point numbers. The most common way is to specify them by a real declaration
statement as opposed to fixed-point numbers, which are specified by an integer

integer declaration	 declaration statement. Any computer that has a compiler for such high-level
statement programming language must have a provision for handling floating-point

arithmetic operations. The operations are quite often included in the internal
hardware. If no hardware is available for the operations, the compiler must be
designed with a package of floating-point software subroutines. Although the
hardware method is more expensive, it is so much more efficient than the
software method that floating-point hardware is included irunost computers
and is omitted only in very small ones.

Basic Considerations
Floating-point representation of data was introduced in Sec. 3-4. A floating-
point number in computer registers consists of two parts: a mantissa m and an
exponent e. The two parts represent a number obtained from multiplying m
times a radix r raised to the value of e; thus

mxr'

The mantissa may be a fraction or an integer. The location of the radix point
and the value of the radix r are assumed and are not included in the registers.
For example, assume a fraction representation and a radix 10. The decimal
'nicr 17. 2 is rprcented in 3 regiskr with i. :r.d iri is
interpreted to represent the floating-point number

.53725 x iO

SECTION C-S Floating-Poin t Arithmetic Operations 	 355

A floating-point number is normalized if the most si gnificant digit of the
manti: . nnzcr-	 - sy L1i zn	 uui	 nlaimum possible
number of significant digits. A zero cannot be normalized because it does not
have a nonzero digit. It is represented in floating-point by all 0's in the mantissa
and exponent.

Floating-point representation increases the range of numbers that can be
accommodated in a given register. Consider a computer with 48-bit words.
Since one bit must be reserved for the sign, the range of fixed-point integer
numbers will be ±(2 1), which is approximately 10'. The 48 bits can be
used to represent a floating-point number with 36 bits for the mantissa and 12
bits for the exponent. Assuming fraction representation for the mantissa and
taking the two sign bits into consideration, the range of numbers that can be
accommodated is

±(1 - 2) x 22047

This number is derived from a fraction that contains 35 l's, an exponent of 11
bits (excluding its sign), and the fact that 211 - 1 = 2047. The largest number
that can be accommodated is approximately 10615, which is a very large number.
The mantissa can accommodate 35 bits (excluding the sign) and if considered
as an integer it can store a number as large as (2 31 - 1). This is approximately
equal to 1010, which is equivalent to a decimal number of 10 digits.

Computers with shorter word lengths use two or more words to represent
a floating-point number. An 8-bit microcomputer may use four words to
represent one floating-point number. One word of 8 bits is reserved for the
exponent and the 24 bits of the other three words are used for the mantissa.

Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers and their execution takes longer and requires
more complex hardware. Adding or subtracting two numbers requires first an
alignment of the radix point since the exponent parts must be made equal
before adding or subtracting the mantissas. The alignment is done by shifting
one mantissa while its exponent is adjusted until it is equal to the other
exponent. Consider the sum of the following floating-point numbers:

5372400 x 10

± J5801300 x 10

It is necessary that the two exponents be equal before the mantissas can be
added. We can either shift the first number three positions to the left, or shift
the second number three positions to the right. When the mantissas are stored
in registers, shifting to the left causes a loss of most significant digits. Shifting
to the right causes a loss of least significant digits. The second method is
preferable because it only reduces the accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has

356	 CHAPTER TEN Computer Arithmetic

the smaller exponent to the right by a number of places equal to the difference
between the exponents. After this is done, the mantissas can be added:

.5372400 x 102
+0001580 x 102

.5373980 x 102

When two normalized mantissas are added, the sum may contain an
overflow digit. An overflow can be corrected easily by shifting the sum once
to the right and incrementing the exponent. When two numbers are sub-
tracted, the result may contain most significant zeros as shown in the following
example:

.56780 x iO
-.56430 x iO

.00350 x iO

A floating-point number that has a 0 in the most significant position of the
mantissa is said to have an underfiow. To normalize a number that contains an
underfiow, it is necessary to shift the mantissa to the left and decrement the
exponent until a nonzero digit appears in the first position. In the example
above, it is necessary to shift left twice to obtain .35000 X 10. In most comput-
ers, a normalization procedure is performed after each operation to ensure that
all results are in a normalized form.

Floating-point multiplication and division do not require an alignment of
the mantissas. The product can be formed by multiplying the two mantissas
and adding the exponents. Division is accomplished by dividing the mantissas
and subtracting the exponents.

The operations performed with the mantissas are the same as in fixed-
point numbers, so the two can share the same registers and circuits. The
operations performed with the exponents are compare and increment (for
aligning the mantissas), add and subtract (for multiplication and division), and
decrement (to normalize the result). The exponent may be represented in any
one of the three representations: signed-magnitude, signed-2's complement,
or signed-I's complement.

A fourth representation employed in many computers is known as a
biased exponent. In this representation, the sign bit is removed from being a
separate entity. The bias is a positive number that is added to each exponent
as the floating-point number is formed, so that internally all exponents are
positive. The following example may clarify this type of representation. Con-

dcr	 cxp'n	 i-:	::.	 : .	 Lv
two digits (without a sign) by adding to it a bias of 50. The exponent register
contains the number e + 50, where e is the actual exponent. This way, the
exponents are represented in registers as positive numbers in the range of 00

SECTION C-5 Floating-Point Arithmetic Operations	 357

to. 99. Positive exponents in registers have the range of numbers from 99 to 50.
i h	 trctior u	 gvcs the pove va estrc, :n 49 to U .NegaU;-e
are represented in registers in the range from 49 to 00. The subtraction of 50
gives the negative values in the range of —1 to —50.

The advantage of biased exponents is that they contain only positive
numbers. It is then simpler to compare their relative magnitude without being
concerned with their signs. As a consequence, a magnitude comparator can be
used to compare their relative magnitude during the alignment of the man-
tissa. Another advantage is that the smallest possible biased exponent contains
all zeros. The floating-point representation of zero is then a zero mantissa and
the smallest possible exponent.

In the examples above, we used decimal numbers to demonstrate some
of the concepts that must be understood when dealing with floating-point
numbers. Obviously, the same concepts apply to binary numbers as well. The
algorithms developed in this section are for binary numbers. Decimal computer
arithmetic is discussed in the next section.

Register Configuration

The register configuration for floating-point operations is quite similar to the
layout for fixed-point operations. As a general rule, the same registers and
adder used for fixed-point arithmetic are used for processing the mantissas.
The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in Fig.
10-14. There are three registers, BR, AC, and QR. Each register is subdivided
into two parts. The mantissa part has the same uppercase letter symbols as in
fixed-point representation. The exponent part uses the corresponding lower-
case letter symbol.

It is assumed that each floating-point number has a mantissa in signed-
magnitude representation and a biased exponent. Thus the AC has a mantissa

Figure 10-14 Registers for floating-point arithmetic operations.

[J	 B	 1	 b	 JBR

I Parallel-adder

 Land comparatorL
[J'4	 1	 a	 JAC

Q	 1 L q]QR

358	 CHAPTER TEN Computer Arithmetic

whose sign is in A5 and a magnitude that is in A. The exponent is in the part
of the register denoted by the lowercase letter symbol a. The diagram shows
explicitly the most significant bit of A, labeled by A 1 . The bit in this position
must be a I for the number to be normalized. Note that the symbol AC
represents the entire register, that is, the concatenation of A,, A, and a.

Similarly, register BR is subdivided into B, B, and b, and QR into Q5, Q,
and q. A parallel-adder adds the two mantissas and transfers the sum into A
and the carry into F. A separate parallel-adder is used for the exponents. Since
the exponents are biased, they do not have a distinct sign bit but are repre-
sented as a biased positive quantity. It is assumed that the floating-point
numbers are so large that the chance of an exponent overflow is very remote,
and for this reason the exponent overflow will be neglected. The exponents are
also connected to a magnitude comparator that provides three binary outputs
to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating-point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers are assumed to be initially normalized. After
each arithmetic operation, the result will be normalized. Thus all floating-point
operands coming from and going to the memory unit are always normalized.

Addition and Subtraction
During addition or subtraction, the two floating-point operands are in AC and
BR. The sum or difference is formed in the AC. The algorithm can be divided
into four consecutive parts:

1. Check for zeros.
2. Align the mantissas.
3. Add or subtract the mantissas.
4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this number
is used during the computation, the result may also be zero. Instead of check-
ing for zeros during the normalization process we check for zeros at the
beginning and terminate the process if necessary. The alignment of the man-
tissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be unnormalized. The normalization
procedure ensures that the result is normalized prior to its transfer to memory.I 1	 u.. Lh..1t ii	 .sA.)jcsLuLt	 .VJ LL5ictLI1IfJULLtL UlitOly ILUIIL

bers is shown in Fig. 10-15. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. If AC is equal to zero, we transfer

Cl

t

Align
mantissas

Mantissa
addition

or
subtraction

ormalization

SEC110N 10-5 floating-Point Arithmetic Operations 	 359

Add	 uhtr*J

Figure 10. 15 Addition and subtraction of floating-point numbers.

360	 CHAFFER mi' Computer Arithmetic

the content of BR into AC and also complement its sign if the numbers are to
be subtracted. If neither number is equal to zero, we proceed to align the
mantissas.	 -

The magnitude comparator attached to exponents a and b provides three
outputs that indicate their relative magnitude. If the two exponents are equal,
we go to perform the arithmetic operation. If the exponents are not equal, the
mantissa having the smaller exponent is shifted to the right and its exponent
incremented. This process is repeated until the two exponents are equal.

The addition and subtraction of the two mantissas is identical to the
fixed-point addition and subtraction algorithm presented in Fig. 10-2. The
magnitude part is added or subtracted depending on the operation and the
signs of the two mantissas. If an overflow occurs when the magnitudes are
added, it is transferred into flip-flop E. If £ is equal to 1, the bit is transferred
into A l and all other bits of A are shifted right. The exponent must be incre-
mented to maintain the correct number. No underfiow may occur in this case
because the original mantissa that was not shifted during the alignment was
already in a normalized position.

If the magnitudes were subtracted, the result may be zero or may have
an urtderflow. If the mantissa is zero, the entire floating-point number in the
AC is made zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underfiow if the most significant bit in position
A 1 is 0. In that case, the mantissa is shifted left and the exponent decremented.
The bit in A 1 is checked again and the process is repeated until it is equal to
1. When A 1 = 1, the mantissa is normalized and the operation is completed.

Multiplication
The multiplication of two floating-point numbers requires that we multiply the
mantissas and add the exponents. No comparison of exponents or alignment
of mantissas is necessary. The multiplication of the mantissas is performed in
the same way as in fixed-point to provide a double-precision product. The
double-precision answer is used in fixed-point numbers to increase the accu-
racy of the product. In floating-point, the range of a single-precision mantissa
combined with the exponent is usually accurate enough so that only single-
precision numbers are maintained. Thus the half most significant bits of the
mantissa product and the exponent will be taken together to form a single-
precision floating-point product.

The multiplication algorithm can be subdivided into four parts:

1. Check for zeros.
-- 2. Add the exponents.

• I Multiply the mantissas.
4. Normalize the product.

SECTION IC-5 Floating-Point Arithmetic Operations 	 361

cteps 2 and 3 can he done simultaneousl y if separate adders are available for
the mantissas and exponents.

The flowchart for floating-point multiplication is shown in Fig. 10-16. The
two operands are checked to determine if they contain a zero. If either operand
is equal to zero, the product in the AC is set to zero and the operation is

Figure 1046 Multiplication o1floang-point numbers.

Multiply

Multiplicand in BR
Multiplier in QR=
 J

0
BR

E2J a-q

I
1

1° " - bias

I
Multiply mantissa
as in Fig. 10-6

=4
END

(product is in AC)

362	 CHAPTER TEN Computer Arithmetic

terminated. If neither of the operands is equal to zero, the process continues
with the exponent addition.

The exponent of the multiplier is in q and the adder is between exponents
a and b. It is necessary to transfer the exponents from q to a, add the two
exponents, and transfer the sum into a. Since both exponents are biased by the
addition of a constant, the exponent sum will have double this bias. The correct
biased exponent for the product is obtained by subtracting the bias number
from the sum.

The multiplication of the mantissas is done as in the fixed-point case with
the product residing in A and Q . Overflow cannot occur during multiplication,
so there is no need to check for it.

The product may have an underfiow, so the most significant bit in A is
checked. If it is a 1, the product is already normalized. If it is a 0, the mantissa
in AQ is shifted left and the exponent decremented. Note that only one
normalization shift is necessary. The multiplier and multiplicand were origi-
nally normalized and contained fractions. The smallest normalized operand is
0.1, so the smallest possible product is 0.01. Therefore, only one leading zero
may occur.

Although the low-order half of the mantissa is in Q, we do not use it for
the floating-point product. Only the value in the AC is taken as the product.

Division
Floating-point division requires that the exponents be subtracted and the
mantissas divided, The mantissa division is done as in fixed-point except that
the dividend has a single-precision mantissa that is placed in the AC. Remem-
ber that the mantissa dividend is a fraction and not an integer. For integer
representation, a single-precision dividend must be placed in register Q and
register A must be cleared. The zeros in A are to the left of the binary point
and have no significance. In fraction representation, a single-precision divi-
dend is placed in register A and register Q is cleared. The zeros in Q are to the
right of the binary point and have no significance.

The check for divide-overflow is the same as in fixed-point representa-
tion. However, with floating-point numbers the divide-overflow imposes no
problems. If the dividend is greater than or equal to the divisor, the dividend
fraction is shifted to the right and its exponent incremented by 1. For normal-
ized operands this is a sufficient operation to ensure that no mantissa divide-

dividend alignment	 overflow will occur. The operation above is referred to as a dividend alignment.
The division of two normalized floating-point numbers will always result

in a normalized quotient provided that a dividend alignment is carried out
before the division. Therefore, unlike the other ooerations, the quotient ob-
tancU drr.er trw uivsion uocs noz require a normaazation.

The division algorithm can be subdivided into five parts:

1. Check for zeros.
2. Initialize registers and evaluate the sign.

SECTION iC .o Decimal Arithmetic Unit 	 363
3. Ali pi, the dividepd

4. Subtract the exponents.
5. Divide the mantissas.

The flowchart for floating-point division is shown in Fig. 10-17. The two
operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which is an illegal operation. The operation is terminated with
an error message. An alternative procedure would be to set the quotient in QR
to the most positive number possible (if the dividend is positive) or to the most
negative possible (if the dividend is negative). If the dividend in AC is zero, thequotient in QR is made zero and the operation terminates.

If the operands are not zero, we proceed to determine the sign of the
quotient and store it in Q,. The sign of the dividend in A, is left unchanged to
be the sign of the remainder. The Q register is cleared and the sequence counter
SC is set to a number equal to the number of bits in the quotient.

The dividend alignment is similar to the divide-overflow check in the
fixed-point operation. The proper alignment requires that the fraction divi-
dend be smaller than the divisor. The two fractions are compared by a subtrac-
tion test. The carry in E determines their relative magnitude. The dividend
fraction is restored to its original value by adding the divisor. If A ^ B, it isnecessary to shift A once to the right and increment the dividend exponent.
Since both operands are normalized, this alignment ensures that A < B.

Next, the divisor exponent is subtracted from the dividend exponent.
Since both exponents were originally biased, the subtraction operation gives
the difference without the bias. The bias is then added and the result trans-
ferred into q because the quotient is formed in QR.

The magnitudes of the mantissas are divided as in the fixed-point case.
After the operation, the mantissa quotient resides in Q and the remainder in
A. The floating-point quotient is already normalized and resides in QR. The
exponent of the remainder should be the same as the exponent of the dividend.
The binary point for the remainder mantissa lies (n - 1) positions to the left
of A 1 . The remainder can be converted to a normalized fraction b y subtracting
n - 1 from the dividend exponent and by shift and decrement until the bit in
A 1 is equal to 1. This is not shown in the flow chart and is left as an exercise.

10-6 Decimal Arithmetic Unit

The user of a computer prepares data with decimal numbers and receives
results in decimal form. A CPU with an arithmetic logic unit can perform
arithmetic microoperations with binary data. To perform arithmetic operations
with decimal data, it is necessary to convert the input decimal numbers to
binary, to perform all calculations with binary numbers, and to convert the
results into decimal. This may be an efficient method in applications requiring
a large number of calculations and a relatively smaller amount of input and

364	 CHAPTER TEN Computer Arithmetic

Figure 10-17 Division of floating-point numbers.

SECTION 10 .6 Decimal Arithmet i c Unit	 365

output data. When the application calls for a large amount of input—output and
y smaller number c,i arithmetic calculations, it becomes convenient

to do the internal arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the decimal data in binary-
coded form. The decimal numbers are then applied to a decimal arithmetic unit
capable of executing decimal arithmetic microoperations.

Electronic calculators invariably use an internal decimal arithmetic unit
since inputs and outputs are frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again converting the
displayed results to decimal, since this process requires special circuits and also
takes a longer time to execute. Many computers have hardware for arithmetic
calculations with both binary and decimal data. Users can specify by pro-
grammed instructions whether they want the computer to perform calculations
with binary or decimal data.

A decimal arithmetic unit is a digital function that performs decimal
microoperations. It can add or subtract decimal numbers, usually by forming
the 9's or 10's complement of the subtrahend. The unit accepts coded decimal
numbers and generates results in the same adopted binary code. A single-stage
decimal arithmetic unit consists of nine binary input variables and five binary
output variables, since a minimum of four bits is required to represent each
coded decimal digit. Each stage must have four inputs for the augend digit,
four inputs for the addend digit, and an input-carry. The outputs include four
terminals for the sum digit and one for the output-carry. Of course, there is
a wide variety of possible circuit configurations dependent on the code used
to represent the decimal digits.

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with
a possible carry from a previous stage. Since each input digit does not exceed
9, the output sum cannot be greater than 9 + 9 + I = 19, the I in the sum being
an input-carry. Suppose that we apply two BCD digits to a 4-bit binary adder.
The adder will form the sum in binary and produce a result that may range from
0 to 19. These binary numbers are listed in Table 10-4 and are labeled by
symbols K, Z81 Z4, Z2, and Z1 . K is the carry and the subscripts under the letter
Z represent the weights 8, 4, 2, and I that can be assigned to the four bits in
the BCD code. The first column in the table lists the binary sums as they appear
in the outputs of a 4-bit binary adder. The output sum of two decimal numbers
must be represented in BCD and should appear in the form listed in the second
column of the table. The problem is to find a simple rule by which the binary
number in the first column can be converted to the correct BCD digit represen-
tation of the number in the second column.

In examining the contents of the table, it is apparent that when the binary
sum is equal to or less than 1001, the corresponding BCD number is identical

366	 CHAPTER TEN Computer Arithmetic

TABLE 104 Derivation of BCD Adder

Binary Sum	 BCD Sum

K	 Zr,	 Z4	Z2	Z1	C	 S8	 S.	 S2	S1	 Decimal

0
	

0
	

0
	

0
	

0
	

0
	

0
	

0
	

0
	

0
	

0
0
	

0
	

0
	

0
	

I
	

0
	

0
	

0
	

0
	

I
	

1
0
	

0
	

0
	

1
	

0
	

0
	

0
	

0
	

0
	

2
0
	

0
	

0
	

1
	

1
	

0
	

0
	

0
	

1
	

I
	

3
0
	

0
	

1
	

0
	

0
	

0
	

0
	

0
	

0
	

4
0
	

0
	

1
	

0
	

I
	

0
	

0
	

1
	

0
	

5
0
	

0
	

1
	

0
	

0
	

0
	

1
	

1
	

0
	

6
0
	

0
	

1
	

1
	

1
	

0
	

0
	

1
	

1
	

1
	

7
0
	

0
	

0
	

U
	

0
	

1
	

0
	

0
	

0
	

8
0
	

0
	

0
	

0
	

1
	

0
	

0
	

1
	

9

0
	

1
	

0
	

1
	

0
	

0
	

0
	

0
	

0
	

10
0
	

1
	

0
	

I
	

1
	

0
	

0
	

0
	

1
	

11
0
	

1
	

1
	

0
	

0
	

0
	

0
	

I
	

0
	

12
0
	

1
	

1
	

0
	

1
	

0
	

0
	

1
	

I
	

13
0
	

1
	

1
	

1
	

0
	

0
	

I
	

0
	

0
	

14
0
	

I
	

1
	

1
	

0
	

I
	

0
	

15
1
	

0
	

0
	

0
	

0
	

0
	

1
	

1
	

0
	

16
1
	

0
	

0
	

0
	

I
	

0
	

1
	

1
	

17
1
	

0
	

0
	

1
	

0
	

1
	

U
	

0
	

0
	

18
1
	

0
	

0
	

I
	

I
	

I
	

0
	

0
	

1
	

19

and therefore no conversion is needed. When the binary sum is greater than
1001, we obtain a nonvalid BCD representation. The addition of binary 6(0110)
to the binary sum converts it to the correct BCD representation and also
produces an output-carry as required.

One method of adding decimal numbers in BCD would be to employ one
4-bit binary adder and perform the arithmetic operation one digit at a time. The
low-order pair of BCD digits is first added to produce a binary sum. If the result
is equal or greater than 1010, it is corrected by adding 0110 to the binary sum.
This second operation will automatically produce an output-carry for the next
pair of significant digits. The next higher-order pair of digits, together with the
input-carry, is then added to produce their binary sum. If this result is equal
to or greater than 1010, it is corrected by adding 0110. The procedure is
repeated until all decimal digits are added.

The logic circuit that detects the necessary correction can be derived from
the table entries. It is obvious that a correction is needed when the binary stun

has an output carry K = 1. The other six combinations from 1010 to 1111 that
need a correction have a I in position Z 8 . To distinguish them from binary 1000
and 1001 which also have a 1 in position Z 8, we specify further that either Z4

8	 4	 S2	 SI

Output
carry

SECTION 10-6 Decimal Arithmetic Unit	 367

or Z2 must have a 1. The condition for a correction and an output-carry can be
expressed by the Boolean function

C = K +Z8 ZI + Z8Z2

When C = 1, it is necessary to add 0110 to the binary sum and provide an
output-carry for the next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces
a sum digit also in BCD. A BCD adder must include the correction logic in its
internal construction. To add 0110 to the binary sum, we use a second 4-bit
binary adder as shown in Fig. 10-18. The two decimal digits, together with the
input-carry, are first added in the top 4-bit binary adder to produce the binary
sum. When the output-carry is equal to 0, nothing is added to the binary sum.
When it is equal to 1, binary 0110 is added to the binary sum through the
bottom 4-bit binary adder. The output-carry generated from the bottom binary
adder may be ignored, since it supplies information already available in the
output-carry terminal.

Figure 10-18 Block diagram of BCD adder.

Addend	 Augend

368	 CHAPTER TEN Computer Arithmetic

A decimal parallel-adder that adds n decimal digits needs n BCD adder
stages with the output-carry from one stage connected to the input-carry of the
next-higher-order stage. To achieve shorter propagation delays, BCD adders
include the necessary circuits for carry look-ahead. Furthermore, the adder
circuit for the correction does not need all four full-adders, and this circuit can
be optimized.

BCD Subtraction
A straight subtraction of two decimal numbers will require a subtractor circuit
that will be somewhat different from a BCD adder. It is more economical to
perform the subtraction by taking the 9's or 10's complement of the subtrahend
and adding it to the minuend. Since the BCD is not a self-complementing code,
the 9's complement cannot be obtained by complementing each bit in the code.
It must be formed by a circuit that subtracts each BCD digit from 9.

The 9's complement of a decimal digit represented in BCD may be ob-
tained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods.
In the first method, binary 1010 (decimal 10) is added to each complemented
digit and the carry discarded after each addition. In the second method, binary
0110 (decimal 6) is added before the digit is complemented. As a numerical
illustration, the 9's complement of BCD 0111 (decimal 7) is computed by first
complementing each bit to obtain 1000. Adding binary 1010 and discarding the
carry, we obtain 0010 (decimal 2). By the second method, we add 0110 to 0111
to obtain 1101. Complementing each bit, we obtain the required result of 0010.
Complementing each bit of a 4-bit binary number N is identical to the subtrac-
tion of the number from 1111 (decimal 15). Adding the binary equivalent of
decimal 10 gives 15 - N + 10 = 9 - N + 16. But 16 signifies the carry that is
discarded, so the result is 9 - N as required. Adding the binary equivalent of
decimal 6 and then complementing gives 15 - (N + 6) = 9 - N as required.

The 9's complement of a BCD digit can also be obtained through a
combinational circuit. When this circuit is attached to a BCD adder, the result
is a BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted by
the four binary variables B8, B4, B2, and B 1 . Let M be a mode bit that controls
the add/subtract operation. When M = 0, the two digits are added; when
M = 1, the digits are subtracted. Let the binary variables x 8, x4, x2, and x1 be
the outputs of the 9's complementer circuit. By an examination of the truth
table for the circuit, it may be observed (see Prob. 10-30) that B 1 should always
be complemented; B2 is always the same in the 9's complement as in the original
digit; x4 is 1 when the exclusive-OR of B2 and B4 is 1; and x8 is - i when
B8 B4 B 2 = 000. The Boolean functions for the 9's complementer circuit are

= B, M' -1- BM

= X.

85 B4 B2 B1

S5	 S4	 52

M

C1 • I

C'

SECflON 0-7 Deciniai Athrcietic Opators	 369

= B, M' + (BB2 + B4B)M

= B, M' + BBBM

From these equations we see that x = B when M = 0. When M = 1, the x

outputs produce the 9's complement of B
One stage of a decimal arithmetic unit that can add or subtract two BCD

digits is shown in Fig. 10-19. It consists of a BCD adder and a 9's complementer.
The mode M controls the operation of the unit. With M = 0, the S outputs form

the sum of A and B. With M = 1, the S outputs form the sum of A plus the

9's complement of B. For numbers with n decimal digits we need n such stages.

The output carry C+ 1
from one stage must be connected to the input'carry C1

of the nexth er-order stage. The best way to subtract the two decimal

numbers is to let M = I and apply a 1 to the input carry C 1 of the first stage.

The outputs will form the sum of A plus the 10's complement of B, which

is equivalent to a subtraction operation if the carry-out of the last stage is

discarded.

10-7 Decimal Arithmetic Operations
The algorithms for arithmetic operations with decimal data are similar to the
algorithms for the corresponding operations with binary data. In fact, except
for a slight modification in the multiplication and division algorithms, the same

Figure 1049 One stage of a decimal arithmetic unit.

*

370	 CHAPTER TEN Computer Arithmetic

flowcharts can be used for both types of data provided that we interpret the
microoperation symbols properly. Decimal numbers in BCD are stored in
computer registers in grouos of four hits Fch 4-hit . grriip reprsent9 a

Uitt4 1LLA L	

decirrz!
L­ are1i db wut wiieri periorming aecimai microoperations.

For convenience, we will use the same symbols for binary and decimal
arithmetic microoperations but give them a different interpretation. As shown
in Table 10-5, a bar over the register letter symbol denotes the 9's complement
of the decimal number stored in the register. Adding 1 to the 9's complement
produces the 10's complement. Thus, for decimal numbers, the symbol
A *—A ± B + 1 denotes a transfer of the decimal sum formed by adding the
original content A to the 10's complement of B. The use of identical symbols
for the 9's complement and the l's complement may be confusing if both types
of data are employed in the same system. If this is the case, it may be better
to adopt a different symbol for the 9's complement. If only one type of data
is being considered, the symbol would apply to the type of data used.

Incrementing or decrementing a register is the same for binary and
decimal except for the number of states that the register is allowed to have. A
binary counter goes through 16 states, from 0000 to 1111, when incremented.
A decimal counter goes through 10 states from 0000 to 1001 and back to 0000,
since 9 is the last count. Similarly, a binary counter sequences from 1111 to 0000
when decremented. A decimal Counter goes from 1001 to 0000.

A decimal shift right or left is preceded by the letter d to indicate a shift
over the four bits that hold the decimal digits. As a numerical illustration
consider a register A holding decimal 7860 in BCD. The bit pattern of the 12
flip-flops is

0111 1000 0110 0000

The microoperation dshr A shifts the decimal number one digit to the right to
give 0786. This shift is over the four bits and changes the content of the register
into

0000 0111 1000 0110

TABLE 10-5 Decimal Arithmetic Microoperation Symbols

Symbolic Designation	 Description

A —A -r B	 Add decimal numbers and transfer sum into A
B	 9's complement of B
A —A ± 9 + 1	 Content of A plus 10's complement of B into A
Q - Q. + 1	 Increment BCD number in QL
dshr A	 Decimal shift-right register A
dshl A	 Decimal shift-!eft register A

SECTION ic Decimal Arithmetic Operations	 371

Addition and Subtraction
The algorithm for addition and subtraction of binary signed-magnitude num-
bers applies also to decimal signed-magnitude numbers provided that we
interpret the microoperation symbols in the proper manner. Similarly, the
algorithm for binary signed-2's complement numbers applies to decimal
signed-10's complement numbers. The binary data must employ a binary
adder and a complementer. The decimal data must employ a decimal arith-
metic unit capable of adding two BCD numbers and forming the 9's comple-
ment of the subtrahend as shown in Fig. 10-19.

Decimal data can he added in three different ways, as shown in Fig. 10-20.
The parallel method uses a decimal arithmetic unit composed of as many BCD
adders as there are digits in the number. The sum is formed in parallel and
requires only one microoperation. In the digit-serial bit-parallel method, the
digits are applied to a single BCD adder serially, while the bits of each coded
digit are transferred in parallel. The sum is formed by shifting the decimal
numbers through the BCD adder one at a time. For k decimal digits, this
configuration requires k microoperations, one for each decimal shift. In the all
serial adder, the bits are shifted one at a time through a full-adder. The binary
sum formed after four shifts must be corrected into a valid BCD digit. This
correction, discussed in Sec. 10-6, consists of checking the binary sum. If it is
greater than or equal to 1010, the binary sum is corrected by adding to it 0110
and generating a carry for the next pair of digits.

The parallel method is fast but requires a large number of adders. The
digit-serial bit-parallel method requires only one BCD adder, which is shared
by all the digits. It is slower than the parallel method because of the time
required to shift the digits. The all serial method requires a minimum amount
of equipment but is very slow.

Multiplication
The multiplication of fixed-point decimal numbers is similar to binary except
for the way the partial products are formed. A decimal multiplier has digits that
range in value from 0 to 9, whereas a binary multiplier has only 0 and I digits.
In the binary case, the multiplicand is added to the partial product if the
multiplier bit is 1. In the decimal case, the multiplicand must be multiplied by
the digit multiplier and the result added to the partial product. This operation
can be accomplished by adding the multiplicand to the partial product a
number of times equal to the value of the multiplier digit.

The registers organization for the decimal multiplication is shown in
Fig. 10-21. We are assuming here four-digit numbers, with each digit occupy-

ii	 .	 .
A, B, and Q, each having a corresponding sign flip-flop A5 , B5 , and Q5.

372	 CHAPTER TEN Computer Arithmetic

0110	 00 10	 0100

I	 0101	 0000	 0011

(a) Parallel decimal addition: 624 + 879 = 1503

Augend

(b) Digit-serial, bit-parallel decimal addition

Augend	 Sum

o o °I° I I 1I0 0 1 }___ø4 ck 	 I
Addend	 Correction

ICarryl

I
(c) All serial decimal addition

Figure 10-20 Three ways of adding decimal numbers.

SECTION 10-7 Decimal Arithmetic Operations	 373

B

Br] 1 103 1 102 hot I l0;;1

[IEIIF{	
BCD arithmetic unit

FAJ,	 FAJ, [103 10f io'J iooI

L
Sc	 I I

k z 4

L!lttIoi
Increment
Decrement

Figure 10-21 Registers for decimal arithmetic multiplication and division.

Registers A and B have four more bits designated by A, and B, that provide an
extension of one more digit to the registers. The BCD arithmetic unit adds the
five digits in parallel and places the sum in the five-digit A register. The
end-carry goes to flip-flop E. The purpose of digit A, is to accommodate an
overflow while adding the multiplicand to the partial product during multipli-
cation. The purpose of digit B, is to form the 9's complement of the divisor
when subtracted from the partial remainder during the division operation. The
least significant digit in register Q is denoted by QL. This digit can be incre-
mented or decremented.

A decimal operand coming from memory consists of 17 bits. One bit (the
sign) is transferred to B and the magnitude of the operand is placed in the
lower 16 bits of B. Both B, and A, are cleared initially. The result of the operation
is also 17 bits long and does not use the A, part of the A register.

The decimal multiplication algorithm is shown in Fig. 10-22. Initially, the
entire A register and B, are cleared and the sequence counter SC is set to a
number k equal to the number of digits in the multiplier. The low-order digit
of the multiplier in QL is checked. If it is not equal to 0, the multiplicand in B
is added to the partial product in A once and QL is decremented. QL is checked
again and the process is repeated until it is eq&al to 0. In this way, the
multiplicand in B is added to the partial product a number of times equal to
the multiplier digit. Any temporary overflow digit will reside in A, and can
range in value from 0 to 9.

Next, the partial product and the multiplier are shifted once to the right.
This places zero in A, and transfers the next multiplier quotient into Q. The
process is then repeated k times to form a double-length product in AQ.

374	 CHAPTER TEN Computer Arithmetic

Multiply

Multiplicand in B
Multiplier in Q

A 5 - QSeBS
A =0,Be
SC k

=0 	 1
A — A +B

QL-QL-1

dshrAQ
SC—SC

=0

END
(Product is in AQ)

Figure 10-22 Flowchart for decimal multiplication.

Division
Decimal division is similar to binary division except of course that the quotient
digits may have any of the 10 values from 0 to 9. In the restoring division
method, the divisor is subtracted from the dividend or partial remainder as
many times as necessary until a negative remainder results. The correct re-
mainder is then restored by adding the divisor. The digit in the quotient reflects
the number of subtractions up to but excluding the one that caused the
negative difference.

The decimal division algorithm is shown in Fig. 10-23. It is similar to the
algorithm with binary data except for the way the quotient bits are formed. The
dividend (or partial remainder) is shifted to the left, with its most significant
digit placed in A. The divisor is then subtracted by adding its 10's complement
value. Since B, is initially cleared, its complement value is 9 as required. The
carry in E determines the relative magnitude of A and B. If F 0, it signifies

SECTioN 10 . 7 Decimal Arithmetic Operations	 375

Divide

Divisor in B
Di'idend in AQ

Check for overflow]

Q5 —AB

SC4—kBe 0

dshlAQ

LA - A + B + 1

AB

QLQL1

(EA4-A+B+I]

*0 ;

END
(Quotient s in Q)

\ (Remainder is in A)

Figure 10-23 Flowchart for decimal division.

that A < B. In this case the divisor is added to restore the partial remainder
and QL stays at 0 (inserted there during the shift). If E = 1, it signifies that
A :-- B. The quotient digit in QL is incremented once and the divisor subtracted
again. This process is repeated until the subtraction results in a negative

difference which is recognized by E being 0. When this occurs, the quotient
digit is not incremented but the divisor is added to restore the positive remain-
der. In this way, the quotient digit is made equal to the number of times that
the partial remainder "goes" into the divisor.

376	 CHAPTER TEN Computer Arithmetic

The partial remainder and the quotient bits are shifted once to the left and
the process is repeated k times to form k quotient digits. Th rpminder i

3LI . i tie value oL c is iiegieueu.

Floating-Point Operations

Decimal floating-point arithmetic operations follow the same procedures as
binary operations. The algorithms in Sec. 10-5 can be adopted for decimal data
provided that the microoperation symbols are interpreted correctly. The mul-
tiplication and division of the mantissas must be done by the methods de-
scribed above.

iiTTTTiT:LTj	 PROBLEMS	 I_.TiiTJ -- -

10-I. The complementer shown in Fig. 10-1 is not needed if instead of performing
A + 9 + 1 we perform B + A (B plus the l's complement of A). Derive an
algorithm in flowchart form for addition and subtraction of fixed-point
binary numbers in signed-magnitude representation with the magnitudes
subtracted by the two microoperations A —A and EA —A f B.

10-2. Mark each individual path in the flowchart of Fig. 10-2 by a number and then
indicate the overall path that the algorithm takes when the following signed-
magnitude numbers are computed. In each case give the value of AVF. The
leftmost bit in the following numbers represents the sign bit.
a. 0 101101 + 0 011111
b. 1 011111 + 1 101101
C. 0 101101 - 0 011111
d. 0 101101 - 0 101101
e. 1 011111 - 0 101101

10-3. Perform the arithmetic operations below with binary numbers and with
negative numbers in signed-2's complement representation. Use sev2n bits
to accommodate each number together with its sign. In each case, determine
if there is an overflow by checking the carries into and out of the sign bit
position.
a. (+35) + (+40)
b. (-35) + (-40)
c. (-35) - (+40)

10-4.	 Consider the binary numbers when they are in signed-2's complement
representation. Each number has n bits: one for the sign and k = n - I for
the magnitude. A negative number -x is represented as 2' + (2" -
where the first 2" designates the sign bit and (2" - X) is the 2's complement
of X. A positive number is represented as 0 + X, where the 0 designates the
sign bit, and X, the k-bit magnitude. Using these generalized s ymbols, prove

Problems	 377

that the sum (±X) + (±Y) can be formed by adding the numbers including
their sign bits and discarding the carry-out of the sign-bit position. In other
words, prove the algorithm for adding two binary numbers in signed-2's
complement representation.

10-5. Formulate a hardware procedure for detecting an overflow by comparing the
sign of the sum with the signs of the augend and addend. The numbers are
in signed-2's complement representation.

10-6. a. Perform the operation (-9) + (-6) = —15 with binary numbers in
signed-I's complement representation using only five bits to represent
each number (including the sign). Show that the overflow detection
procedure of checking the inequality of the last two carries fails in this
case.

b. Suggest a modified procedure for detecting an overflow when signed-i's
complement numbers are used.

10-7. Derive an algorithm in flowchart form for adding and subtracting two fixed-

point binary numbers when negative numbers are in signed-i's complement
representation.

10-8. Prove that the multiplication of two n-digit numbers in baser gives a product
no more than 2n digits in length. Show that this statement implies that no
overflow can occur in the multiplication operation.

10-9. Show the contents of registers E, A Q, and SC (as in Table 10-2) during the
process of multiplication of two binary numbers, 11111 (multiplicand) and
10101 (multiplier). The signs are not included.

10-10. Show the contents of registers E, A, Q, and SC (as in Fig. 10-12) during the
process of division of (a) 10100011 by loll; (b) 00001111 by 0011. (Use a
dividend of eight bits.)

10-11.

	

	 Show that adding B after the operation A ± B + I restores the original value
of A. What should be done with the end carry?

10-12.

	

	 Why should the sign of the remainder after a division be the same as the sign
of the dividend?

10-13.

	

	 Design an array multiplier that multiplies two 4-bit numbers. Use AND gates
and binary adders.

10-14. Show the step-by-step multiplication process using Booth algorithm (as in
Table 10-3) when the following binary numbers are multiplied. Assume 5-bit
registers that hold signed numbers. The multiplicand in both cases is +15.

a. (+ 15) x (+13)
b. (+15) X (-13)

10-15.

	

	 Derive an algorithm in flowchart form for the nonrestoxing method of fixed-
point binary division.

10-16.

	

	 Derive an algorithm for evaluating the square root of a binary fixed-point
number.

10-17.

	

	 A binary floating-point number has seven bits tor a biased exponent. The
constant used for the bias is 64.
a. List the biased representation of all exponents from —64 to +63.

378	 CHAPTER TIN UJmpuft: Aritrucrk:

relative magnitude of the two exponents.
c. Show that after the addition of two biased exponents it is necessar y to

subtract 64 in order to have a biased exponents sum. How would you
subtract 64 by adding its 2's complement value?

J. Show that after the subtraction of two biased exponents it is necessary
to add 64 in order to have a biased exponent difference.

10-18. Derive an algorithm in flowchart form for the comparison of two signed
binary numbers when negative numbers are in signed-2's complement rep-
resentation:
a. By means of a subtraction operation with the signed-2's complement

numbers.
b. By scanning and comparing pairs of bits from left to right.

	

10-19.	 Repeat Prob. 10-18 for signed-magnitude binary numbers.

10-20. Leta be the number of bits of the mantissa in a binary floating-point number
When the mantissas are aligned during the addition or subtraction, the
exponent difference may be greater than n - 1. If this occurs, the mantissa
with the smaller exponent is shifted entirel y out of the register. Modify the
mantissa alignment in Fig. 10-15 b including a sequence counter SC that
counts the number of shifts. If the number of shifts is greater than a - 1,
the larger number is then used to determine the result.

10-21. The procedure for aligning mantissas during addition or subtraction of
floating-point numbers can be stated as follows: Subtract the smaller expo-
nent from the larger and shift right the mantissa havin g the smaller exponent
a number of places equal to the difference between the exponents. The
exponent of the sum (or difference) is equal to the larger exponents. Without
using a magnitude comparator, assuming biased exponents, and taking into
account that only the AC can be shifted, derive an algorithm in flowchart
form for aligning the mantissas and placing the larger exponent in the AC.

	10-22.	 Show that there can be no mantissa overflow after a multiplication operation-

10-23. Show that the division of two normalized floating-point numbers with
fractional mantissas will always result in a normalized quotient provided a
dividend alignment is carried Out prior to the division operation.

	

10-24.	 Extend the flowchart of Fig. 10-17 to provide a normalized floating-point
remainder in the AC. The mantissa should be a fraction.

	

10-25.	 The algorithms for the floating-point arithmetic operations in Sec. 10-5
neglect the possibility of exponent overflow or underflow.
a. Go over the three flowcharts and find whore an exponent overflow may

occur.
b. Repeat (a) for exponent underfiow. An exponent underfiow occurs if the

exponent is more negative than the smallest number that can be accom-
modated in the register.

c. Show how an exponent overflow or underfiow can be detected by the
hardwarL'

	

10-2b.	 If we assume integer representation for the mantissa of floating-point num-
t...it -:ing wik'ir ' dunng multiplication and dii

Problems	 379

sion. Let the number of bits in the magnitude part of the mantissa be (n - 1).
For integer representation:
a. Show that if a single-precision product is used, (n - 1) must be added

to the exponent product in the AC.
b. Show that if a single-precision mantissa dividend is used, (n - 1) must

be subtracted from the exponent dividend when Q is cleared.

10-27. Show the hardware to be used for the addition and subtraction of two
decimal numbers in signed-magnitude representation. Indicate how an
overflow is detected.

10-28. Show that 673 - 356 can be computed by adding 673 to the 10's complement
of 356 and discarding the end carry. Draw the block diagram of a three-stage
decimal arithmetic unit and show how this operation is implemented. List
all input bits and output bits of the unit.

	

10-29.	 Show that the lower 4-bit binary adder in Fig. 10-1 can be replaced by one
full-adder and two half-adders.

	

10-30.	 Using combinational circuit design techniques, derive the Boolean functions
for the BCD 9's complementer of Fig. 10-19. Draw the logic diagram.

10-31. It is necessary to design an adder for two decimal digits represented in the
excess-3 code (Table 3-6). Show that the correction after adding two digits
with a 4-bit binary adder is as follows:
a. The output carry is equal to the uncorrected carry.
b. If output carry = 1, add 0011.
C. If output cam' = 0, add 1101 and ignore the carry from this addition.

Show that the excess-3 adder can be constructed with seven full-adders
and two inverters.

10-32. Derive the circuit for a 9's complementer when decimal digits are repre-
sented in the excess-3 code (Table 3-6). A mode control input determines
whether the digit is complemented or not. What is the advantage of using
this code over BCD?

10-33. Show the hardware to be used for the addition and subtraction of two
decimal numbers with negative numbers in signed-10's complement repre-
sentation. Indicate how an overflow is detected. Derive the flowchart al-
gorithm and try a few numbers to convince yourself that the algorithm
produces correct results.

10-34. Show the content of registers A, B, Q, and SC during the decimal multipli-
cation (Fig. 10-22) of (a) 470 x 152 and (b) 999 x 199. Assume three-digit
registers and take the second number as the multiplier.

	

10-35.	 Show the content of registers A, E, Q, and SC during the decimal division
(Fig. 10-23) of 1680/32. Assume two-digit registers.

10-36. Show that subregister A, in Fig. 10-21 is zero at the termination of (a) the
decimal multiplication as specified in Fig. 10-22, and (b) the decimal division
as speciucu in rig. iu-L3.

10-37. Change the floating-point arithmetic algorithms in Sec. 10-5 from binary to
decimal data. In a table, list how each microoperation symbol should be
interpreted.

380	 CHAPTER TEN Computer Arithmetic

pppc 1

1. Blaauw, G., Digital Systems Implementation. Englewood Cliffs, NJ: Prentice Hall,
1976.

2. Cavanagh, J . J . F., Digital Computer Arithmetic. New York: McGraw-Hill, 1984.

3. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

4. Hays,J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

5. Hill, F. J . , and C. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd
ed. New York: John Wiley, 1987.

6. Hwang, K., Computer Arithmetic. New York: John Wiley, 1979.

7. Kulisch, V. W., and W. L. Miranker, Computer Arithmetic in Theory and Practice. New
York: Academic Press, 1980.

8. Schmid, H.., Decimal Arithmetic. New York: John Wiley, 1979.

