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1 1.-i Peripheral Devices
rio The input—output subsystem of a computer, referred to as 110, provides an

efficient mode of communication between the central system and the outside
environment. Programs and data must be entered into computer memory for
processing and results obtained from computations must be recorded or dis-
played for the user. A computer serves no useful purpose without the ability
to receive information from an outside source and to transmit results in a
meaningful form.

The most familiar means of entering information into a computer is
through a typewriter-like keyboard that allows a person to enter alphanumeric
information directly. Every time a key is depressed, the terminal sends a binary
coded character to the computer. The fastest possible speed for entering
information this wa y depends on the person's typing speed On the other
;lid, ilt UL11 an euemely last dcvcc capable or per-
forming operations at very high speed. When input information is transferred
to the processor via a slow keyboard, the processor will be idle most of the time
while waiting for the information to arrive. To use a computer efficiently, a
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large amount of programs and data must be prepared in advance and transmit-
ted into a storage medium such as magnetic or disks The information
in the disk is then transferred into computer memory at a rapid rate. Results
of programs are also transferred into a high-speed storage, such as disks, from
which they can be transferred later into a printer to provide a printed output
of results.

Devices that are under the direct control of the computer are said to be
connected on-line. These devices are designed to read information into or out
of the memory unit upon command from the CPU and are considered to be
part of the total computer system. Input or output devices attached to the

peripheral computer are also called peripherals. Among the most common peripherals are
keyboards, display units, and printers. Peripherals that provide auxiliary stor-
age for the system are magnetic disks and tapes. Peripherals are electrome-
chanical and electromagnetic devices of some complexity. Only a very brief
discussion of their function will be given here without going into detail of their
internal construction.

monitor and	 Video monitors are the most commonly used peripherals. They consist
keyboard of a keyboard as the input device and a display unit as the output device. There

are different types of video monitors, but the most popular use a cathode ray
tube (CRT). The CRT contains an electronic gun that sends an electronic beam
to a phosphorescent screen in front of the tube. The beam can be deflected
horizontally and vertically. To produce a pattern on the screen, a grid inside
the CRT receives a variable voltage that causes the beam to hit the screen and
make it glow at selected spots. Horizontal and vertical signals deflect the beam
and make it sweep across the tube, causing the visual pattern to appear on the
screen. A characteristic feature of display devices is a cursor that marks the
position in the screen where the next character will be inserted. The cursor can
be moved to any position in the screen, to a single character, the beginning of
a word, or to any line. Edit keys add or delete information based on the cursor
position. The display terminal can operate in a single-character mode where
all characters entered on the screen through the keyboard are transmitted to
the computer simultaneously. In the block mode, the edited text is first stored
in a local memory inside the terminal. The text is transferred to the computer
as a block of data.

printer Printers provide a permanent record on paper of computer output data
or text. There are three basic types of character printers: daisvwheel, dot
matrix, and laser printers. The daisywheel printer contains a wheel with the
characters placed along the circumference. To print a character, the wheel
rotates to the proper position and an energized magnet then presses the letter
against the ribbon. The dot matrix printer contains a set of dots along the
printing mechanism. For example, a 5 x 7 dot matrix printer that prints 80
characters per line has seven horizontal lines, each consisting of 5 x 80 = 400
dots. Each dot can he printed or not, depending on the specific characters that
are printed on the line. The laser printer uses a rotating photographic drum
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that is used to imprint the character images. The pattern is then transferred
nti pip'r 1T, tki' 	 rannr as

magnetic tape Magnetic tapes are used mostly for storing files of data: for example, a
company's payroll record. Access is sequential and consists of records that can
be accessed one after another as the tape moves along a stationary read—write
mechanism. It is one of the cheapest and slowest methods for storage and has

magnetic disk	 the advantage that tapes can be removed when not in use. Magnetic disks have
high-speed rotational surfaces coated with magnetic material. Access is
achieved by moving a read—write mechanism to a track in the magnetized
surface. Disks are used mostly for bulk storage of programs and data. Tapes
and disks are discussed further in Sec. 12-1 in conjunction with their role as
auxiliary memory.

Other input and output devices encountered in computer systems are
digital incremental plotters, optical and magnetic character readers, analog-to-
digital converters, and various data acquisition equipment. Not all inputcomes
from people, and not all output is intended for people. Computers are used
to control various processes in real time, such as machine tooling, assembly
line procedures, and chemical and industrial processes. For such applications,
a method must be provided for sensing status conditions in the process and
sending control signals to the process being controlled.

The input—output organization of a computer is a function of the size of
the computer and the devices connected to it. The difference between a small
and a large system is mostly dependent on the amount of hardware the
computer has available for communicating with peripheral units and the num-
ber of peripherals connected to the system. Since each peripheral behaves
differently from any other, it would be prohibitive to dwell on the detailed
interconnections needed between the computer and each peripheral. Certain
techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters
Input and output devices that communicate with people and the computer are
usually involved in the transfer of alphanumeric information to and from the
device and the computer. The standard binary code for the alphanumeric

ASCII	 characters is ASCII (American Standard Code for Information Interchange). It
uses seven bits to code 128 characters as shown in Table 11-1. The seven bits
of the code are designated by b 1 through b7, with b being the most significant
bit. The letter A, for example, is represented in ASCII as 1000001 (column 100,
row 0001). The ASCII code contains 94 characters that can be printed and 34
nonprinting characters used for various control functions. The printing char-
acters consist of the 26 uppercase letters A through Z, the 26 lowercase letters,
the 10 numerals 0 through 9, and 32 special printable characters such as
and $.

The 34 control characters are designated in the ASCII table with abbrevi-
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TABLE 11-1 American Standard Code for Information Interchange (ASCII)

b7b6b5

b3b3 bb 	 000	 001	 010	 011	 100	 101	 110	 111
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p
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r
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d
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f
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CAN
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X
	

h
	

X
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EM
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Y
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L 
	

SUB
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z
	

z
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VT
	

ESC
	

+
	

K
	

k
1100
	

FF
	

FS
	

L
1101
	

C 
	

GS
	

M
	

M
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So
	

RS
	

N
	

A
	

n
1111
	

Si
	

US
	

0
	

0
	

DEL

Control characters

NUL
	

Null
	

DLE
	

Data link escape
SOH
	

Start of heading
	

DCI
	

Device control 1
STX
	

Start of text
	

DC2
	

Device control 2
ETX
	

End of text
	

DO
	

Device control 3
EOT
	

End of transmission
	

DC4
	

Device control 4
ENO
	

Enquiry
	

NAK Negative acknowledge
ACK
	

Acknowledge
	

SYN
	

Synchronous idle
BE1
	

Bell
	

ETB
	

End of transmission block
BS
	

Backspace
	

CAN Cancel
Err
	

Horizontal tab
	

EM
	

End of medium
LF
	

Line feed
	

SUB
	

Substitute
rr
	

Vertical tab
	

ESC
	

Escape
FF
	

Form feed
	

FS
	

File separator
CR
	

Carriage return
	

GS
	

Group separator
So
	

Shift out
	

RS
	

Record separator
Si
	

Shift in	 US
	

Unit separator
SF
	

Space
	

DEL
	

Delete

ated names. ! 'hey are listed again beiow the table with their functional names.
The control characters are used for routing data and arranging the printed text
into a prescribed format There are three types of control characters: format
effectors, information separators, and communication control characters. For-
mat effectors are characters that control the layout of printing. They include
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the familiar typewriter controls, such as backspace (BS), horizontal tabu lath)nH	 !.

data into divisions like paragraphs and pages. l'hev include characters such as
record separator (RS) and file separator (FS). The com munication control char-
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are SIX (start of te\t) and FIX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
byte	 as a single unit called a byte Therefore, ASCII characters most often are stored

one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to (J. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other s ymbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

11-2 Input—Output Interface

Input-output interface provides a method for transferring information be-
tween internal storage and external I/O devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechanism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize

interface	 all input and output transrs. These components are called interface units
because they interface between the processor bus and the peripheral device.
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In addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

110 Bus and Interface Modules
A typical communication link between the processor and several peripherals
is shown in Fig. 11-1. The 110 bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac-
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral device has associated with it
an interface unit. Each interface decodes the address and control received from
the I/O bus, interprets them for the peripheral, and provides signals for the
peripheral controller. It also synchronizes the data flow and supervises the
transfer between peripheral and processor. Each peripheral has its own con-
troller that operates the particular electromechanical device. For example, the
printer controller controls the paper motion, the print timing, and the selection
of printing characters. A controller may be housed separately or may be
physically integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the 110 bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made available in the address lines,
the processor provides a function code in the control lines. The interface

Figure 11-1 Connection of 110 bus to input-output devices.
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StILLtU It JL'1tLL.	 JL t	 LLiiLLiLa	 aitU p.i.,	 i. I
I/O command code is referred to as an 110 command and is in essence an instruction that is

executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

control command A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

status A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig-
nated by setting bits in a status register that the processor can read at certain
intervals.

output data A data rutput command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. l'he
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

input data The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com-
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

i/O versus Memory Bus

In addition to communicating with 110, the processor must communicate with
the memory unit. Like the 110 bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and 110:

1. Use two separate buses, one for memory and the other for 1/0.
2. Use one common bus for both memor y and I/O but have separate

control lines for each.
3. Use one common bus for rnemor\' and 110 with common control lines.
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In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for 1/0. This is done

lop in computers that provide a separate 1/0 processor (lOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the lOP through a memory bus. The [OP communicates also with the input
and output devices through a separate [/0 bus with its own address, data and
control lines. The purpose of the LOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The 110 processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the lOP in more detail.

Isolated versus Memory-Mapped 110

Many computers use one common bus to transfer information between mem-
ory or I/O and the CPU. The distinction between a memory transfer and 110
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The ii 0

read and YO write control lines are enabled during an I/O transfer. The memory

read and memory write control lines are enabled during a memory transfer. This
configuration isolates all 1/0 interface addresses from the addresses assigned
to memory and is referred to as the isolated i/O method for assigning addresses

in a common bus.
isolated I/O In the isolated I/O configuration, the CPU has distinct input and output

instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the 110
read (for input) or 110 write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo-
nents that the address is for a memory word and not for an 110 interface.

The isolated I/O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to USC the same address
space for both memory and 1/0. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and

i	 S	 .	 . ItLL

computer treats an interface register as being part of the memory system. The
assigned addresses for interface r sters cannot be used for memory words,
which reduces the memory address range available.
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In mem ory-mapped iO organization there are no specific input or

registers with the same instructions that are used to manipJ ate -memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. l'pically, a segment of the total
address space is reserved for interlace registers, but in general, they can be
located at any address as long as there is not also a memory word that respondsto the same address.

Computers with memo'-mapped 1/0 can use memory-type instructions
to access 10 data. It allows the computer to use the same instructions for either
input—output transfers or for menlorv transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from 1/0 registers. In a typical computer, there aremore memo rv-.reference Instructions than 110 instructions With memory-
mapped 110 all instructions that refer to memory are also available for i/O.

Example of 110 Interface

I/O port An example of an I/O interface unit is shown in block diagram form in Fig. 11-2,
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The 1/0 read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the 1/0 device attached to the interface.

The 1/0 data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the 110 device by sending a word to the appropriate
interface register. In a system like this, the function code in the 110 bus is not
needed because control is sent to the control register, status information is
received from the Status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates

The control register receives control information from the CPU. By load-
ing appropriate bits into the control register, the interface and the I/O device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may he instructed to rewind the tape or to start the tape moving in
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Figure 11-2 Example of 1/0 interface unit.

the forward direction. The bits in the status register are used for status condi-
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that port A has received a new data item from

the 110 device. Another bit in the status register may indicate that a parity error

has occurred during the transfer.
The interface registers communicate with the CPU through the bidirec-

1bn1 di bus. Th address bits se]t' ts the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RSI. and RSO are usually
connected to the two least significant lines of the address bus. These two inputs
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select one of the four registers in the infrface assppc'jfjpd in the table accorp-
panying the diagram. Fhe content of the selected register is transfer into the
CPU via the data bus when the I/O read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the 110 write
input is enabled.

11-3 Asynchronous _Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an I/O interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted. One way of achieving this is

strobe by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree-

handshaking	 ment between two independent units is referred to as handshaking.
The strobe pulse method and the handshaking method of asynchronous

data transfer are not restricted to 110 transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen-
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or a read transfer. It is customary to specify the asynchronous transfer

timing diagram between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchrpnous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Con1

The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.
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Data bus
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Source	 Destination
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(a) Block diagram

Data	 f-..--	 Valid data

Strobe	 I

(b) Timing diagram

Figure 11 .3 Source-initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus long
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit then
disables the strobe. The source removes the data from the bus after a predeter-
mined time interval.

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,
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(a) Block diagram

Data	 Valid ata__F .̂data^..

Strobe

(b) Timing diagram

Figure 11-4 Destination- initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the
memory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
110 device is commonly controlled by a set of handshaking lines.

Handshaking

The disadvantage of the strobe method is that the source unit that initiates thetransfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this problem
by introducing a second control signal that provides a reply to the unit that

two-wire control initiates the transfer. The basic principle of the two-wire handshaking method
of data transfer is as follows. One control line is in the same direction as the
data flow in the bus from the source to the destination. It is used by the source
unit to inform the destination unit whether there are valid data in the bus. The
other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept
data. The sequence of control during the transfer depends on the unit that
initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by thesource unit, and data accepted, generated by the destination unit. The liming
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can
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Figure 116 Source-initiated transfer using handshaking.

'be at any given time. The source unit initiates the transfer by placing the data
on the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into
its initial state. The source does not send the next data item until atter the
destination unit shows its readiness to accept new data by disabling its data

accepted signal. This scheme allows arbitrary delays from one state to the next



Ready for data

Data valid

Data bus

SECTION I I-3 Asynchronous Data Transfer 	 395
and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-intjated transfer using 
handshang Lre is shown n

Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit
in this case does not place data on the bus until after it receives the 

ready fordata signal from the destination unit. From there on, the handshaking proce-
dure follows the same pattern as in the source-initiated case. Note that the

Figure 11-6 Destination- tnitjat transfer using handshaking.

Data bus
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unit	 Destination

Read for data

(a) Block diagram

(b) Timing diagram

Source Unit	 Destinajij unit

Ready to accept data.
Place data on bus.	 Enable ready for data.
Enable data valid.

Accept data from bus.
Disable data valid.	 Disable ready for data.

Invalidate data on bus
(initial state).

(c) Sequence of events
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sequence of events in both cases would be identical if we consider the ready for

data signal as the complement of data accepted. In fact, the only difference

between the source-initiated and the destination-initiated transfer is in their

choice of initial state. me provides a high degree of flexibility and reliabil-
The handshaking sche

ity 
because the successful completion of a data transfer relies on active partic-

ipation by both units. If one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a timeout mechanism,

which produces an alarm if the data transfer is not completed within a prede-
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control
signals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes

appropriate error recovery action.

Asynchronous Serial Transfer
The transfer of data between two units may be done in parallel or serial. In
parallel data transmission, each bit of the message has its own path and the
total message is transmitted at the same time. This means that an n-bit message

must be transmitted through n separate conductor paths. In serial data trans-

mission, each bit in the message is sent in sequence one at a time. This method
requires the use of one pair of conductors or one conductor and a common
ground. Parallel transmission is faster but requires many wires. It is used for
short distances and where speed is important. Serial transmission is slower but
is less expensive since it requires only one pair of conductors

Serial transmission can be synchronous or asynchronous . In synchron-

ous transmission, the two units share a common dock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. in long-
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans-
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other. Syn-
chronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many interac-
tive terminals employs special bits that are inserted at both ends of the char-
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the troT Titter rests

timeout

synchronous

asynchronous



SECTION 1-3 Asynchronous Data Transfer 	 397

start bit at the 1-state when no characters are transmitted. The first bit, called the start
bit, is always a 0 and is used to indicate the beginning of a character. The last
bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.
2. The initiation of a character transmission is detected from the start bit,

which is always 0.
3. The character bits always follow the start bit.
4. After the last bit of the character is transmitted, a stop bit is detected

when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1 t 0. A clock in the receiver examines the line at proper bit times. The receiver
knows the transfer rate of the bits and the number of character bits to accept.

stop bit After the character bits are transmitted, one or two stop bits are sent. The stop
bits are always in the 1-state and frame the end of the character to signify the
idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until anoiher character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists

Figure 11-7 Asynchronous serial transmission.

0	 0	 OIl0

Start I	 _______________
Character bitsbit	 I	 bits
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of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The

baud rate baud rate is defined as the rate at which serial information is transmitted and
is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed,
the terminal sends 11 bits serially along a wire. To print a character in the
printer, an 11-bit message must be received along another wire. The terminal
interface consists of a transmitter and a receiver. The transmitter accepts an
8-bit character from the computer and proceeds to send a serial 11-bit message
into the printer line. The receiver accepts a serial 11-bit message from the
keyboard line and forwards the 8-bit character code into the computer. Inte-
grated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver-
transmitter (UART).

Asynchronous Communication Interface
The block diagram of an asynchronous communication interface is shown in
Fig. 11-8. It functions as both a transmitter and a receiver. The interface is
initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from
the CPU through the data bus. This byte is transferred to a shift register for
serial transmission. The receiver portion receives serial information into an-
other shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission, The CPU can read the status register to check the status of
the flag bits and to determine if any errors have occurred. The chip select and
the read and write control lines communicate with the CPU. The chip select
(CS) input is used to select the interface through the address bus. The register
select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a func-
tion of the RS value and the RD and WR status, as listed in the table accom-
panying the diagram.

The operation of the asynchronous communication interface is initialized
by the CPU by sending a byte to the control register. The initialization proce-
durc fhn r rfc-e r i specific mode of operation as i t defines certain
parameters such as the baud rate to use, how many bits are in each character,
whether to generate and check parity, and how many stop bits are appended
to each character. Two bits in the status register are used as flags. One bit is
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Figure 11-8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is
used to indicate whether the receiver register is full.

transmitter The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmitter
register and the interface clears the flag to mark the register full. The first bit
in the transmitter shift register is set to 0 to generate a start bit. The charact€r
is transferred in parallel from the transmitter register to the shift register and
the appropriate number of stop bits are appended into the shift register. The
transmitter register is then marked empty. The character can now be transmit-
ted one bit at a time by shifting the data in the shift register at the specified
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baud rate. The CPU can transfer another character to the transmitter register
ailer uLekL1lg Life i1d	 the 
buffered because a new character can be loaded as soon as the previous one
starts transmission.

receiver The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
data bits, the interface checks for the parity and stop bits. The character without
the start and stop bits is then transferred in parallel from the shift register to
the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over-
run error. Parity error occurs if the number of l's in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next one
becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer

FIFO A first-in, first-out (FIFO) buffer is a memory unit that stores information in
such a manner that the item first in is the item first out. A FIFO buffer comes
with separate input and output terminals. The important feature of this buffer
is that it can input data and output data at two different rates and the output
data are always in the same order in which the data entered the buffer. When
placed between two units, the FIFO can accept data from the source unit at one
rate of transfer and deliver the data to the destination unit at another rate. If
the source unit is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate. If the source is faster
than the destination, the FIFO is useful for those cases where the source data
arrive in bursts that fill out the buffer but the time between bursts is long
enough for the destination unit to empty some or all the information from the
buffer. Thus a FIFO buffer can be useful in some applications when data are
transferred asynchronously. It piles up data as they come in and gives them
away in the same order when the data are needed.

The logic diagram of a typical 4 x 4 FIFO buffer is shown in Fig. 11-9. It
consists of four 4-bit registers RI, I = 1, 2, 3, 4, and a control register with
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Master clear

Figure 11-9 Circuit diagram of 4 x 4 FIFO buffer.

flip-flops 13, j = 11, 2,3,4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop 13 in the control register that is set to 1 indicates that a 4-bit d ita
word is stored in the corresponding register RI. A C) in 13 indicates that the
corresponding register does not contain valid data. The control register directs
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register is set (I 1) and the ii bit is reset (1- = 1), a clock is generated
causing register R(l ± 1) to accept the data from register RI. The same clock
transition sets F to 1 and resets F to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
of it. This ripple-through operation stops when the data reach a register RI with
the next flip-flop F+ 1 being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F1 is reset, indicating that
register Ri is empty. Data are loaded from the input lines by enabling the clock
in RI through the insert control line. The same clock sets F1 , which disables the
input ready control. indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in RI are transferred into R2 and F: is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, T remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F4 is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete

control signal. This resets F4, causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F4 will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer

Binary information received from an external device is usually stored in men-
orv for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
1/0 instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and I/O devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed 110
2. interrupt-initiated 1/0

3. Direct memory access (DMA)
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programmed I/O Programmed I/O operations are the result of 110 instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon-
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
It is up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the 1/0 device.

In the programmed 110 method, the CPU stays in a program loop until
the I/O unit indicates that it is ready for data trans fer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using

interrupt an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device, In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the I/O
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed 1/0 is between CPU and peripheral.
DMA In direct memory access (DMA), the interface transfers data into and out of the

memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory I/O transfer. Since peripheral speed is usually
slower than processor speed, 110-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11-6.

lop Many computers combine the interface logic with the requirements -for
direct memory access into one unit and call it an 1/0 processor (lOP). The lOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the lOP. 110 processors are presented in Sec. 11-7.

Example of Programmed 110
In the programmed I/O method. the 110 device does not have direct accecs to
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several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.
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An example of data transfer from an I/O device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at  tbne
as they are available. When a byte of data is available, the device places it in
the 110 bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an For "flag" bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the 110
device, This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-I1. It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1. Read the status register.
2. Check the status of the flag bit and branch to step I if not set or to step

3 if set.
3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a
store instruction. A common 1/0 programming task is to transfer a block of
words from an 110 device and store them in a memory buffer. A program that

Figure 11-10 Data transfer from 110 device to CPU.
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Figure 1111 Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21.

The programmed 110 method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the 110 device
makes this type of transfer inefficient. To see why this is inefficient, consider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 i.s. Assume that the input device transfers its
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data at an average rate of 100 bytes per second. This is equivalent to one byte
ever) i,'uO . fh incanz, tI-ut thc CFU v.111 jiulk the f l ag 10,000 tunes
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated I/O
An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required 110 transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
One is called vectored interrupt and the other, nonvectorcd interrupt. In a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.

vectored interrupt In a vectored interrupt, the source that interrupts supplies the branch informa-
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the 110 service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the 1/0 service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations
The previous discussion was concerned with the basic hardware needed to
interface I/O devices to a computer system. A computer must also have soft-
ware routines for controlling peripherals and for transfer of data between the

I/O routines processor and peripherals. I/O routines must issue control commands to acti-
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the 110 software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
I/O software must initiate the DMA channel to start its operation.
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Software control of input—output equipment is a complex undertaking.
For this reason 110 routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
1/0 programs to support the particular line of peripherals offered for the
computer. I/O routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

11-5 Priority interrupt

Data transfer between the CPU and an 110 device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current P5W (program status word)
onto the stack and load a new P5W for the service routine. We neglect the PSW
here in order not to complicate the discussion of 1/0 interrupts.

In a typical application a number of 110 devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

priority interrupt A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi-
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high-
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft-
polling ware or hardware. A polling procedure is used to identify the highest-priority

source by software means. In this method there is one common branch address
for all interrupts The proeram that takes care of interrupts be .mns at the branch
address and polls the interrupt sources in sequence. The order in which they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and
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so on. Thus the initial service routine for all interrupts consists of a program
ri uefl.e liid branJies o one oz many

possible service routines. The particular service routine reached belongs to the
highest-prionty device among all devices that interrupted the computer. The
disadvantage of the software method is that if there are many interrupts, the
time required to poll them can exceed the time available to service the 110
device. In this situation a hardware priority-interrupt unit can be used to speed
up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and isSues 411 interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy-
chaining method.

Daisy-Chaining Priority
The daisy-chaining method of establishing priority consists of a serial connec-
tion of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic connec-
tion. If any device has its interrupt signal in the low-level state, the interrupt
line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts are pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative-
logic OR operation. The CPU responds to an interrupt request by enabling the
interrupt acknowledge line. This signal is received by device I at its P1 (priority
in) input. The acknowledge signal passes on to the next device through the P0
(priority out) output only if device 1 is not requesting an interrupt. If device
1 has a pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the P0 output. It then proceeds to insert its own interrupt

vector address (VAD) vector address (VAD) into the data bus for the CPU to use during the interrupt
cycle.

A device with a 0 in its Pt input generates a 0 in its P0 output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its P1 input will intercept
the acknowledge signal by placing a 0 in its P0 output. If the device does not
have pending interrupts, it transmits the acknowledge signal to the next device
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Processor data bus

Figure 11-12 Daisy-chain priority interrupt.

by placing a I in its P0 output. Thus the device with Pt =- 1 and P0 = 0 is the
one with the highest priority that is requesting an interrupt, and this device
places its VAD on the data bus. The daisy chain arrangement gives the highest
priority to the device that receives the interrupt acknowledge signal from the
CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its RF
flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop goes
through an open-collector inverter, a circuit that provides the wired logic for
the common interrupt line. If P1 = 0, both P0 and the enable line to VAD are
equal to 0, irrespective of the value of RF. If P1 = 1 and RE = 0, then P0 = I
and the vector address is disabled. This condition passes the acknowledge
signal to the next device through P0. The device is active when P1 = 1 and
RF = 1. This condition places a 0 in P0 and enables the vector address for the
data bus. It is assumed that each device has its own distinct vector address.
The RF flip-flop is reset after a sufficient delay to ensure that the CPU has
received the vector address.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set sepa-
rtiy by the 1ntern;p sgita from iJ	 l'tty i. taL j t 	 LLD1Ut1tg
to the position of the bits in the register. In addition to the interrupt register,
the circuit may include a mask register whose purpose is to control the status
of each interrupt request. The mask register can be programmed to disable
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Figure 11-13 One stage of the daisy-chain priority arrangement.

priority logic

lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask register
has the same number of bits as the interrupt register. By means of program
instructions, it is possible to set or reset any bit in the mask register. Each
interrupt bit and its corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to I by the program. The
priority encoder generates two bits of the vector address, which is transferred
to the CPU.

Another output from the encoder sets an interrupt status flip-flop 1ST

when an interrupt that is not masked occurs. The interrupt enable flip-flop lEN

can be set or cleared by the program to provide an overall control over the
interrupt system. The outputs of 1ST ANDed with LEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt con-
troller and the CPU.
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Figure 11-14 Priority interrupt hardware.

Priority Encoder
The priority encoder is a circuit that implements the priority function. The logic
of the priority encoder is such that if two or more inputs arrive at the same time,
the input having the highest priority will take precedence. The truth table of
a four-input priority encoder is given in Table 11-2. The x's in the table
designate don't-care conditions. Input lo has the highest priority; so regardless
of the values of other inputs, when this input is 1, the output generates an
output xy = 00.11 has the next priority level. The output is 01 if 1 = 11 provided
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TABLE 11-2 Priority Encoder Truth Table

Inputs	 Outputs

10	 x y 1ST	 Boolean functions

I x x x	 0 0 1

	

•	 0	 1x x	 0	 1	 1	 x=I'011
-	 4)	 0	 1	 )<	 1	 0	 1	 y = 1'1 -- 11

0	 0	 0	 1	 I	 1	 1	 (1ST)	 1	 1,	 + J
0000	 X 	 0

that I = 0, regardless of the values of the other two lower-priority inputs. The
output for 12 is generated only if higher-priority inputs are 0, and so on down
the priority level. The interrupt status 1ST is set only when one or more inputs
are equal to 1. If all inputs are 0, 1ST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don't-care conditions. This
is because the vector address is not transferred to the CPU when 1ST = 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.

The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append-
ing six zeros to the x and  outputs of the encoder. With this choice the interrupt
vectors for the four 110 devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle
The interrupt enable flip-flop lEN shown in Fig. 11-14 can be set or cleared by
program instructions. When lEN is cleared, the interrupt request coming from
1ST is neglected by the CPU. The program-controlled lEN bit allows the pro-
grammer to choose whether to use the interrupt facility. If an instruction to
dear lEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set lEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears lEN to 0 every time an inter-
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks lEN and the interrupt
signal from 1ST. If either is equal to 0, control continues with the next instruc-
tion. If both lEN and 1ST are equal to 1, the CPU goes to an interrupt cycle.
During the interrupt cycle the CPU performs the following sequence of micro,
operations:

SP -SP - I	 Decrement stack pointer
M1.P1 .— PC	 P1ih PC ir't stack- -- I	 -
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INTACK *-1	 Enable interrupt acknowledge

PC e— VAD	 Transfer vector address to PC

IEN-*--O	 Disable further interrupts

Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl-
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The CPU
transfers the vector address into PC and clears lEN prior to going to the next
fetch phase. The instruction read from memory during the next fetch phase will
be the one located at the vector address.

Software Routines
A priority interrupt system is a combination of hardware and software tech-
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.
Figure 11-15 shows the programs that must reside in memory for handling the

Figure 11-15 Programs stored in memory for servicing interrupts.

Address

Memory	 110 service programs

0	 JMP DISK	 DISK	 Program to service
magnetic disk

ii	 JMPFTR

2

!

	JMP RDR	 FIR 

-1	
Program to service

3	 JMPKBD	 I
line printer

Main program
RDR	 Program to service

character reader
750

KBD	 Program to service
keyboard

256

750
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service program	 interrupt system. Each device has its own service program that can be reached

symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC. The instruction
in location 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruc-
tion in each routine is a return from interrupt instruction. When the disk
service program is completed, the return instruction pops the stack and places
256 into PC. This returns control to the KBD routine to continue servicing the
keyboard. At the end of the KBD program, the last instruction pops the stack
and returns control to the main program at address 750. Thus, a higher-priority
device can interrupt a lower-priority device. It is assumed that the time spent
in servicing the high-priority interrupt is short compared to the transfer rate
of the low-priority device so that no loss of information takes place.

Initial and Final Operations
Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable LEN is cleared at the end of an interrupt cycle. This flip-flop
must be set again to enable higher-priority interrupt requests, but not before
lower-priority interrupts are disabled. The initial sequence of each interrupt
service routine must have instructions to control the interrupt hardware in the
following manner:

1. Clear lower-level mask register bits.

2. Clear interrupt status bit 1ST.

3. Save contents of processor registers.

4. Set interrupt enable bit lEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the inter-
rupt. Although lower-priority interrupt sources are assigned to higher-num-
bered bits in the mask register, priority can be changed if desired since the
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programmer can use any bit configuration for the mask register. The interrupt
iJ	 L)t2 .	 UgtiI1 vnen d!1iglr-pnor	 wierrupt

occurs. The contents of processor registers are saved because they may be
needed by the program that has been interrupted after control returns to it The
interrupt enable ILN is then set to allow other higher-priority) interrupts and
the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable hit ]EN.

2. Restore contents of processor registers.
3. Clear the bit in the interrupt register belonging to the source that has

been serviced.

4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set lEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will he available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter-
rupted program is accomplished by restoring the return address to PC. Note
that the hardware must be designed so that no interrupts occur while executing
steps 2 through 5; otherwise, the return address may be lost and the informa-
tion in the mask and processor registers may he ambiguous if an interrupt
is acknowledged while executing the operations in these steps. For this reason
tEN is initially cleared and then set after the return address is transferred into
PC.

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of proces-
sor registers can be pushed into a stack by the hardware before branching to
the service routine. Other initial and final operations can be assigned to the
hardware. In this way, it is possible to reduce the time between receipt of an
interrupt and the execution of the instructions that service the interrupt source.

11-6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly
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bus request

bus grant

burst transfer

cycle stealing

would improve the speed of transfer. This transfer technique is called direct
memory access (DMA). During DMA transfer, the CPU is idle and has no
control of the memory buses. A DMA controller takes over the buses to manage
the transfer directly between the 110 device and memory.

The CPU may be placed in an idle state in a variety of ways. One common
method extensively used in microprocessors is to disable the buses through
special control signals. Figure 11-16 shows two control signals in the CPU that
facilitate the DMA transfer. The bus request (BR) input is used by the DMA
controller to request the CPU to relinquish control of the buses. When this
input is active, the CPU terminates the execution of the current instruction and
places the address bus, the data bus, and the read and write lines into a
high-impedance state. The high-impedance state behaves like an open circuit,
which means that the output is disconnected and does not have a logic signif-
icance (see Sec. 4-3). The CPU activates the bus grant (BG) output to inform the
external DMA that the buses are in the high-impedance state. The DMA that
originated the bus request can now take control of the buses to conduct
memory transfers without processor intervention. When the DMA terminates
the transfer, it disables the bus request line. The CPU disables the bus grant,
takes control of the buses, and returns to its normal operation.

When the DMA takes control of the bus system, it communicates directly
with the memory. The transfer can be made in several ways. In DMA burst
transfer, a block sequence consisting of a number of memory words is trans-
ferred in a continuous burst while the DMA controller is master of the memory
buses. This mode of transfer is needed for fast devices such as magnetic disks,
where data transmission cannot be stopped or slowed down until an entire
block is transferred. An alternative technique called cycle stealing allows the
DMA controller to transfer one data word at a time, after which it must return
control of the buses to the CPU. The CPU merely delays its operation for one
memory cycle to allow the direct memory 110 transfer to "steal" one memory
cycle.

DMA Controller
The DMA controller needs the usual circuits of an interface to communicate
with the CPU and I/O device. In addition, it needs an address register, a word
count register, and a set of address lines. The address register and address lines

Figure 11-16 CPU bus signals for DMA transfer.
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are used for direct communication with the memory. The word count register

woi-d 6	 t muL be U4nkerred. The data transfer may
be done directly between the device and memory under control of the DMA.

Figure 11-17 shows the block diagram of a typical DMA controller. The
unit communicates with the CPU via the data bus and control lines. The
registers in the DMA are selected by the CPU through the address bus by
enabling the DS (DMA select) and RS (register select) inputs. The RD (read)and WR (write) inputs are bidirectional. When the BG (bus grant) input is 0,
the CPU can communicate with the DMA registers through the data bus to read
from or write to the DMA registers. When BG 1, the CPU has relinquished
the buses and the DMA can communicate directly with the memory by speci-
fying an address in the address bus and activating the RD or WR control. The
DMA communicates with the external peripheral through the request and
acknowledge lines by using a prescribed handshaking procedure.

The DMA controller has three registers: an address register, a word count
register, and a control register. The address register contains an address to
specify the desired location in memory. The address bits go through bus
buffers into the address bus. The address register is incremented after each
word that is transferred to memory. The word count register holds the number
of words to be transferred. This register is decremented by one after each word
transfer and internally tested for zero. The control register specifies the mode
of transfer. All registers in the DMA appear to the CPU as 110 interface
registers. Thus the CPU can read from or write into the DMA registers under
program control via the data bus.

Figure 11, 17  Block diagram of DMA controller.
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The DMA is first initialized by the CPU. After that, the DMA starts and
continues to transfer data between memory and peripheral unit until an entire
block is transferred. The initialization process is essentially a program consist-
ing-'of 110 instructions that include the address for selecting particular DMA
registers. The CPU initializes the DMA by sending the following information
through the data bus:

1. The starting address of the memory block where data are available (for
read) or where data are to be stored (for write)

2. The word count, which is the number of words in the memory block

3. Control to specify the mode of transfer such as read or write

4. A control to start the DMA transfer

The starting address is stored in the address register. The word count is stored
in the word count register, and the control information in the control register.
Once the DMA is initialized, the CPU stops communicating with the DMA
unless it receives an interrupt signal or if it wants to check how many words
have been transferred.

DMA Transfer
The position of the DMA controller among the other components in a computer
system is illustrated in Fig. 11-18. The CPU communicates with the DMA
through the address and data buses as with any interface unit. The DMA has
its own address, which activates the DS and RS lines. The CPU initializes the
DMA through the data bus. Once the DMA receives the start control com-
mand, it can start the transfer between the peripheral device and the memory.

When the peripheral device sends a DMA request, the DMA controller
activates the BR line, informing the CPU to relinquish the buses. The CPU
responds with its BG line, informing the DMA that its buses are disabled. The
DMA then puts the current value of its address register into the address bus,
initiates the RI) or WR signal, and sends a DMA acknowledge to the peripheral
device. Note that the RD and WR lines in the DMA controller are bidirectional.
The direction of transfer depends on the status of the BG line. When BG = 0,
the RD and WR are input lines allowing the CPU to communicate with the
internal DMA registers. When BG = 1, the RD and WR are output lines from
the DMA controller to the random-access memory to specify the read or write
operation for the data.

When the peripheral device receives a DMA acknowledge, it puts a word
in the data bus (for write) or receives a word from the data bus (for read). Thus
the DMA controls the read or write operations and supplies the address for the
memory. The peripheral unit can then communicate with memory through the
data bus for direct transfer between the two units while the CPU is momen-
tarily disabled.
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Figure 11-18 DMA transfer in a computer system.

For each word that is transferred, the DMA increments its address regis-
ter and decrements its word Count register. if the word count does not reach
zero, the DMA checks the request line coming from the peripheral. For a
high-speed device, the line will be active as soon as the previous transfer is
completed. A second transfer is then initiated, and the process continues until
the entire block is transferred. If the peripheral speed is slower, the DMA
request line may come somewhat later. In this case the DMA disables the bus
request line so that the CPU can continue to execute its program When the
peripheral requests a transfer, the DMA requests the buses again.

If the word count register reaches zero, the DMA stops any further
transfer and removes its bus request. It also informs the CPU of the termination
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by means of an interrupt. When the CPU responds to the interrupt, it reads
the content of the word count register. The zero value of this register indicates
that all the words were transferred successfully. The CPU can read this register
at any time to check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each
channel has a request and acknowledge pair of control signals which are
connected to separate peripheral devices. Each channel also has its own ad-
dress register and word count register within the DMA controller. A priority
among the channels may be established so that channels with high priority are
serviced before channels with lower priority.

DMA transfer is very useful in many applications. It is used for fast
transfer of information between magnetic disks and memory. It is also useful
for updating the display in an interactive terminal. Typically, an image of the
screen display of the terminal is kept in memory which can be updated under
program control. The contents of the memory can be transferred to the screen
periodically by means of DMA transfer.

11-7 Input—Output Processor (lOP)

Instead of having each interface communicate with the CPU, a computer may
incorporate one or more external processors and assign them the task of
communicating directly with all 110 devices. An input-output processor (lOP)
may be classified as a processor with direct memory access capability that
communicates with 110 devices. In this configuration, the computer system
can be divided into a memory unit, and a number of processors comprised of
the CPU and one or more lOPs. Each lOP takes care of input and output tasks,
relieving the CPU from the housekeeping chores involved in 110 transfers.
A processor that communicates with remote terminals over tiephone and
other communication media in a serial fashion is called a data communication
processor (DCP).

110 processing The lOP is similar to a CPU except that it is designed to handle the details
of I/O processing. Unlike the DMA controller that must be set up entirely by
the CPU, the LOP can fetch and execute its own instructions. 10? instructions
are specifically designed to facilitate 110 transfers. In addition, the 10? can
perform other processing tasks, such as arithmetic, logic, branching, and code
translation.

The block diagram of a computer with two processors is shown in Fig.
1149. The memory unit occupies a central position and can communicate with
each processor by means of direct memory access. The CPU is responsible for
processing data needed in the somtion or computational tasks. IPe 1011 pro-
vides a path for transfer of data between various peripheral devices and the
memory unit. The CPU is usually assigned the task of initiating the 110
program. From then on the JO? operates independent of the CPU and contin-
ues to transfer data from external devices and memory.
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Figure 11-19 Block diagram of a computer with I/O processor.

The data formats of peripheral devices differ from memory and CPU data
formats. The lOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered
in the lOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are
transferred from lOP directly into memory by "stealing" one memory cycle
from the CPU. Similarly, an output word transferred from memory to the lOP
is directed from the lOP to the output device at the device rate and bit capacity.

The communication between the lOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memor y access method. The way by which the
CPU and lOP communicate depends on the level of sophistication included in
the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the lOP is a slave processor. The CPU
is assigned the task of initiating all operations, but I/O instructions are executed
in the lOP. CPU instructions provide operations to start an I/O transfer and also
to test 110 status conditions needed for making decisions on various 110
activities. The lOP, in turn, typically asks for CPU attention by means of an
interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program. When
an I/O operation is desired, the CPU informs the 16 p where to find the I/O
program and then leaves the transfer details to the LOP.

Instructions that are read from memory by an lOP are sometimes called
commands commands, to distinguish them from instructions that are read by the CPU.

Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the lOP. The CPU informs the LOP
where to find the commands in memory when it is time to execute the 110
program.
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CPU—lop Communication
The communication between CPU and lop may take different forms, depend-
ing on the particular computer considered. in most cases the memory unit acts
as a message center where each processor leaves information for the other. To
appreciate the operation of a typical LOP, we will illustrate by a specific example
the method by which the CPU and lOP communicate. This is a simplifiea
example that omits many operating details in order to provide an overview of
basic concepts.

The sequence of operations may be carried out as shown in the flowchart
of Fig. 11-20. The CPU sends an instruction to test the lOP path. The lOP

Figure 11-20 CPU . IOP communication.
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respondc by i'ertin' a sta tus word	 r'ern -' f l -' -	 T

of the status word indicate the condition Of the 10!' and 110 device, such aslop overload condition, device busy with another transfer, or device ready for
I/O transfer. The CPU refers to the status word in memory to decide what to
do next. If all is in order, the CPU sends the instruction to Start I/O transfer.
The memory address received with this instruction tells the LOP where to find
its program.

The CPU can now continue with another program while the lOP is busy
with the 110 program. Both programs refer to memory by means of DMA
transfer. When the lOP terminates the execution of its program, it sends an
interrupt request to the CPU. The CPU responds to the interrupt by issuing
an instruction to read the status from the lOP. The LOP responds by placing
the contents of its status report into a specified memory location. The status
word indicates whether the transfer has been completed or if any errors
occurred during the transfer. From inspection of the bits in the status word,
the CPU determines if the 110 operation was completed satisfactorily without
errors.

The lOP takes care of all data transfers between several 110 units and the
memory while the CPU is processing another program. The lOP and CPU are
competing for the use of memory, so the number of devices that can be in
operation is limited by the access time of the memory. It is not possible to
saturate the memory by 110 devices in most systems, as the speed of most
devices is much slower than the CPU. However, some very fast units, such as
magnetic disks, can use an appreciable number of the available memory cycles.
In that case, the speed of the CPU may deteriorate because it will often have
to wait for the Lop to conduct memory transfers.

IBM 370 1/0 Channel
The 110 processor in the IBM 370 computer is called a channel. A typical
computer system configuration includes a number of channels with each
channel attached to one or more 110 devices. There are three types of channels:
multiplexer, selector, and block-multiplexer. The multiplexer channel can be
connected to a number of slow- and medium-speed devices and is capable of
operating with a number of 110 devices simultaneously. The selector channel
is designed to handle one 110 operation at a time and is normally used to
control one high-speed device. The block-multiplexer channel combines the
features of both the multiplexer and selector channels. It provides a connection
to a number of high-speed devices, but all 110 transfers are conducted with an
entire block of data as compared to a multiplexer channel, which can transfer
only one byte at a time.

The CPU communicates directly with the channels through dedicated
control lines and indirectly through reserved storage areas in memory.
Figure 11-21 shows the word formats associated with the channel operation.
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(c) Channel command word format

Figure 11-21 IBM 370 110 related word formats.

The 110 instruction format has three fields: operation code, channel address,
and device address. The computer system may have a number of channels, and
each is assigned an address. Similarly, each channel may be connected to
several devices and each device is assigned an address. The operation code
specifies one of eight I/O instructions: start 110, start I/O fast release, test 1)0,
clear 110, halt 110, halt device, test channel, and store channel identification.
The addressed channel responds to each of the 110 instructions and executes
it. It also sets one of four condition codes in a processor register called P5W
(processor status word). The CPU can check the condition code in the PSW to
determine the result of the 110 operation. The meaning of the four condition
codes is different for each I/O instruction. But, in general, they specify whether
the channel or the device is busy, whether or not it is operational, whether
interruptions are pending, if the 110 operation had started successfully, and
whether a status word was stored in memory by the channel.

The format of the channel status word is shown in Fig. 11-21(b). It is
always stored in location 64 in memory. The key field is a protection mechanism
used to prevent unauthorized access by one user to information that belongs
to another user or to the operating system. The address held in the status word
gives the address of the last command word used by the channel. The count
field gives the residual count when the transfer was terminated. The count field
will show zero if the transfer was completed successfully. The status field
identifies the conditions in the device and the channel and any errors that
occurred during the transfer.

The difference between the start 110 and start 1/0 fast release instructions
is that the latter requires less CPU time for its execution. When the channel
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receives one of thes two instructions, it refers to merfl('fl' !c 'tinn 72 fr taddress of the first channel command word (CCW. [he format of the channel
command word is shown in Fig. 11-21(c). The data address field specifies the
first address of a memory buffer and the count field gives the number of bytes
involved in the transfer. The command field specifies an 110 operation and the
flag bits provide additional information for the channel. The command field
corresponds to an operation code that specifies one of six basic types of 110
operations:

I. Write. Transfer data from memory to 110 device.
2. Read. Transfer data from 110 device to memory.
3. Read backwards. Read magnetic tape with tape moving backward.
4. Control. Used to initiate an operation not involving transfer of data, such

as rewinding of tape or positioning a disk-access mechanism.
5. Sense. Informs the channel to transfer its channel status word to

memory location 64.
6. Transfer in channel. Used instead of a jump instruction. Here the data

address field specifies the address of the next command word to be
executed by the channel.

An example of a channel program is shown in Table 11-3. it consists of
three command words. The first causes a transfer into a magnetic tape of 60
bytes from memory starting at address 4000. The next two command words
perform a similar function with a different portion of memory and byte count.
The six flags in each control word specify certain interrelations between the
command words. The first flag is set to I in the first command word to specify
"data chaining." It results in combining the 60 bytes from the first command
word with the 20 bytes of its successor into one record of 80 bytes. The 80 bytes
are written on tape without any separation or gaps even though two memory
sections were used. The second flag is set to 1 in the second command word
to specify "command chaining." It informs the channel that the next command
word will use the same 110 device, in this case, the tape. The channel informs
the tape unit to start inserting a record gap on the tape and proceeds to read
the next command word from memory. The 40 bytes of the third command

TABLE 11-3 IBM-370 Channel Program Example

Command	 Address	 Flags	 Count

Write tape	 4000	 100000	 60
Write tape	 6000	 010000	 20
Write tape	 3000	 000000	 40
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word are then written on tape as a separate record. When all the flags are equal
to zero, it signifies the end of 110 operations for the particular 110 device.

A memory map showing all pertinent information for 110 processing is
illustrated in Fig. 11-22. The operation begins when the CPU program encoun-
ters a start 110 instruction. The lOP then goes to memory location 72 to obtain
a channel address word. This word contains the starting address of the 1/0
channel program. The channel then proceeds to execute the program specified
by the channel command words. The channel constructs a status word during

Figure 11.22 Location of information in memory for 110 operations in the
IBM 370.

Memory unit

Channel status word

	

Channel address word	 72

	

Channel command word I	
I/O channel

Channel command word 2 pm
Channel command word 3 - J 

	

Start I/C) instruction 	 CPU
______	 program
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to memorymemory location 64 for the status word.

Intel 8089 lop

r?fr'-d

The Intel 8089 1/0 processor is contained in a 40-pin integrated circuit package.
Within the 8089 are two independent units called channels. Each channel
combines the general characteristics of a processor unit with those of a direct
memory access controller. The 8089 is designed to function as an lOP in a
microcomputer system where the Intel 8086 microprocessor is used as the
CPU. The 8086 CPU initiates an 110 operation by building a message in memory
that describes the function to be performed. The 8089 lOP reads the message
from memory, carries out the operation, and notifies the CPU when it has
finished.

In contrast to the IBM 370 channel, which has only six basic 1/0 com-
mands, the 8089 lOP has 50 basic instructions that can operate on individual
bits, on bytes, or 16-bit words. The LOP can execute programs in a manner
similar to a CPU except that the instruction set is specifically chosen to provide
efficient input—output processing. The instruction set includes general data
transfer instructions, basic arithmetic and logic operations, conditional and
unconditional branch operations, and subroutine call and return capabilities.
The set also includes special instructions to initiate DMA transfers and issue
an interrupt request to the CPU. It provides efficient data transfer between any
two components attached to the system bus, such as I/O to memory, memory
to memory, or 110 to L'O.

A microcomputer system using the Intel 8086/8089 pair of integrated
circuits is shown in Fig. 11-23. The 8086 functions as the CPU and the 8089 as
the lOP. The two units share a common memory through a bus controller
connected to a system bus, which is called a "multibus" by Intel. The Lo p uses
a local bus to communicate with various interface units connected to I/O
devices. The CPU communicates with the lOP by enabling the cha miel attention
line. The select line is used by the CPU to select one of two channels in the 8089.
The lOP gets the attention of the CPU by sending an interrupt request.

The CPU and LOP communicate with each other by writing messages for
one another in system memory. The CPU prepares the message area and
signals the lOP by enabling the channel attention line. The LOP reads the
message, performs the required 110 functions, and executes the appropriate
channel program. When the channel has completed its program, it issues an
interrupt request to the CPU.

The communication scheme consists of program sections called "blocks,"
which are stored in memory as shown in Fig. 11-24. Each block contains control
and parameter information as well as an address pointer to its successor block.
The address of the control block is passed to each lOP channel during initial-
ization. The busy flag indicates whether the 101' is busy or ready to perform
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Figure 11-23 Intel 808618089 microcomputer system block diagram.
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Figure 11-24 Location of information in memory for 110 operations in the
Intel 8086/8089 microcomputer system.

a new 110 operation. The CCW (channel command word) is specified by the
CPU to indicate the type of operation required from the LOP. The CCW in the
8089 does not have the same meaning as the command word in the IBM
channel. The CCW here is more like an 110 instruction that specifies an
operation for the lOP, such as sta.operation, suspend operation, resume
operation, and halt 110 program. The parameter block contains variable data
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that the lOP program must use in carrying out its task. The task block contains
Lii	 Iugi; ;;	 cxccut.. .r

The CPU and LOP work together through the control and parameter
blocks. The CPU obtains use of the shared memory after checking the bus y flag
to ensure that the 101' is available. The CPU then fills in the information in the
parameter block and writes a "start operation" command in the CCW. After
the communication blocks have been set up, the CPU enables the channel
attention signal to inform the lOP to start its i/O operation. The CPU then
continues with another program. The lOP responds to the channel attention
signal by placing the address of the control block into its program counter. The
lOP refers to the control block and sets the busy flag. It then checks the
operation in the CCW. The PB (parameter block) address and TB (task block)
address are then transferred into internal lOP registers. The lOP starts execut-
ing the program in the task block using the information in the parameter block.
The entries in the parameter block depend on the 110 device. The parameters
listed in Fig. 11-24 are suitable for data transfer to or from a magnetic disk. The
memory address specifies the beginning address of a memory buffer. The byte
count gives the number of bytes to be transferred. The device address specifies
the particular 110 device to be used. The track and sector numbers locate the
data on the disk. When the I/O operation is completed, the lOP stores its status
bits in the status word location of the parameter block and interrupts the CPU.
The CPU can refer to the status word to check if the transfer has been com-
pleted satisfactorily.

11-8 Serial Communication

A data communication processor is an 110 processor that distributes and
collects data from many remote terminals connected through telephone and
other communication lines. It is a specialized 1/0 processor designed to com-
municate directly with data communication networks. A communication
network may consist of any of a wide variety of devices, such as printers,
interactive display devices, digital sensors, or a remote computing facility.
With the use of a data communication processor, the computer can service
fragments of each network demand in an interspersed manner and thus have
the apparent behavior of serving many users at once. In this way the computer
is able to operate efficiently in a time-sharing environment.

data communication	 The most striking difference between an 1/0 processor and a data commu-
processor nication processor is in the way the processor communicates with the I/O

devices. An I/O processor communicates with the peripherals through a com-
mon 110 bus that is comprised of many data and control lines. All peripherals
share the common bus and use it to transfer information to and from the I/O
processor. A data communication processor communicates with each terminal
through a single pair of wires. Both data and control information are trans-
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ferred in a serial fashion with the result that the transfer rate is much slower.
The task of the data communication processor is to transmit and collect digital
ipformation to and from each terminal, determine if the information is data or
control and respond to all requests according to predetermined established
procedures. The processor, obviously, must also communicate with the CPU
and memory in the same manner as any 110 processor.

The way that remote terminals are connected to a data communication
processor is via telephone lines or other public or private communication
facilities. Since telephone lines were originally designed for voice communica-
tion and computers communicate in terms of digital signals, some form of
conversion must be used. The converters are called data sets, acoustic couplers,

modem or modems (from "modulator-demodulator"). A modem converts digital signals
into audio tones to be transmitted over telephone lines and also converts audio
tones from the line to digital signals for machine use. Various modulation
schemes as well as different grades of communication media and transmission
speeds are used. A communication line may be connected to a synchronous
or asynchronous interface, depending on the transmission method of the
remote terminal. An asynchronous interface receives serial data with start and
stop bits in each character as shown in Fig. 11-7. This type of interface is similar
to the asynchronous communication interface unit presented in Fig. 11-8.

Synchronous transmission does not use start-stop bits to frame characters
and therefore makes more efficient use of the communication link. High-speed
devices use synchronous transmission to realize this efficiency. The modems
used in synchronous transmission have internal clocks that are set to the
frequency that bits are being transmitted in the communication line. For proper
operation, it is required that the clocks in the transmitter and receiver modems
remain synchronized at all times. The communication line, however, Contains
only the data bits from which the dock information must be extracted. Fre-
quency synchronization is achieved by the receiving modem from the signal
transitions that occur in the received data. Any frequency shift that may occur
between the transmitter and receiver clocks is continuously adjusted by main-
taining the receiver clock at the frequency of the incoming bit stream. The
modem transfers the received data together with the dock to the interface unit.
The interface or terminal on the transmitter side also uses the dock information
from its modem. In this way, the same bit rate is maintained in both transmitter
and receiver.

Contrary to asynchronous transmission, where each character can be sent
separately with its own start and stop bits, synchronous transmission must
send a continuous message in order to maintain synchronism. The message
consists of a group of bits transmitted sequentiall y as a block of data. The entire
block is transmitted with special control characters at the beginning and end
of the block. The control characters at the beginning of the block supply the
information needed to separate the incoming bits into individual characters.

One of the functions of the data communication processor is to check for
transmission errors. An error can be detected by checking the parity in each
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character received. Another procedure used in asynchronous terminals involv-
ing a human operator is to echo the character. The character transmitted from
the keyboard to the computer is recognized by the processor and retransmitted
to the terminal printer. The operator would realize that an error occurred
during transmission if the character printed is not the same as the character
whose key he has struck.

block transfer In synchronous transmission, where an entire block of characters is
transmitted, each character has a parity bit for the receiver to check. After the
entire block is sent, the transmitter sends one more character that constitutes
a parity over the length of the message. This character is called a longitudinal
redundancy check (LRC) and is the accumulation of the exclusive-OR of all
transmitted characters. The receiving station calculates the LRC as it receives
characters and compares it with the transmitted LRC. The calculated and
received LRC should be equal for error-free messages. If the receiver finds an
error in the transmitted block, it informs the sender to retransmit the same
block once again. Another method used for checking errors in transmission is

CRC the cyclic redundancy check (CRC). This is a polynomial code obtained from
the message bits by passing them through a feedback shift register containing
a number of exclusive-OR gates. This type of code is suitable for detecting burst
errors occurring in the communication channel.

Data can be transmitted between two points in three different modes:
simplex, half-duplex, or full-duplex. A simplex line carries information in one

direction only. This mode is seldom used in data communication because
the receiver cannot communicate with the transmitter to indicate the occur-
rence of errors. Examples of simplex transmission are radio and television
broadcasting.	 -

A half-duplex transmission system is one that is capable of transmitting in
both directions but data can be transmitted in only one direction at a time. A
pair of wires is needed for this mode. A common situation is for one modem
to act as the transmitter and the other as the receiver. When transmission in
one direction is completed, the role of the modems is reversed to enable
transmission in the reverse direction. The time required to switch a half-duplex
line from one direction to the other is called the turnaround time.

full-duplex A full-duplex transmission can send and receive data in both directions
simultaneously. This can be achieved by means of a four-wire link, with a
different pair of wires dedicated to each direction of transmission. Alterna-
tively, a two-wire circuit can support full-duplex communication if the
frequency spectrum is subdivided into two nonoverlapping frequency bands

to create separate receive and transmit channels in the same physical pair of
wires.

The communication lines, modems, and other equipment used in the
transmission of information between two or more stations is called a data link.

The orderly transfer of information in a data link is accomplished by means of

protocol

	

	 a protocol. A data link control protocol is a set of rules that are followed by
interconnecting computers and terminals to ensure the orderly transfer of
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information. The purpose of a data link protocol is to establish and terminate
a connection between two stations, to identify the sender and receiver, to
ensure that all messages are passed correctly without errors, and to handle all
control functions involved in a sequence of data transfers. Protocols are divided
into two major categories according to the message-framing technique used.
These are character-oriented protocol and bit-oriented protocol.

Character-Oriented Protocol

SYN character

The character-oriented protocol is based on the binary code of a character set.
The code most commonly used is ASCII (American Standard Code for Infor-
mation Interchange). It is a 7-bit code with an eighth bit used for parity. The
code has 128 characters, of which 95 are graphic characters and 33 are control
characters. The graphic characters include the upper- and lowercase letters, the
ten numerals, and a variety of special symbols. A list of the ASCII characters
can be found in Table 11-1. The control characters are used for the purpose of
routing data, arranging the test in a desired format, and for the layout of the
printed page. The characters that control the transmission are called communi-
cation control characters. These characters are listed in Table 114. Each character
has a 7-bit code and is referred to by a three-letter symbol. The role of each
character in the control of data transmission is stated briefly in the function
column of the table.

The SYN character serves as synchronizing agent between the transmitter
and receiver. When the 7-bit ASCII code is used with an odd-parity bit in the
most significant position, the assigned SYN character has the 8-bit code
00010110 which has the property that, upon circular shifting, it repeats itself
only after a full 8-bit cycle. When the transmitter starts sending 8-bit characters,
it sends a few characters first and then sends the actual message. The initial
Continuous string of bits accepted by the receiver is checked for a SYN charac-
ter. In other words, with each clock pulse, the receiver checks the last eight bits

TABLE 114 ASCII Communication Control Characters
--.	 .-.--.	 ---

Code

0010110
0000001
0000010
000001]
0000160
0000110
0010101
0000101
OOioiii
0010000

Meaning

Synchronous idle
Start of heading
Start of text
End of text
End of transmission
Acknowledge
Negative acknowledge
Inquiry
End of transmission block
Data link escape

Function

Establishes synchronism
Heading of block message
Precedes block of text
Terminates block of text
Concludes transmission
Affirmative acknowledgement
Negative acknowledgement
Inquire if terminal is on
End of block of data
Special control character

Symbol

SYN
SOH
STX
ETX
EOT
ACK
NAK
ENQ
ETB
DLE
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received. If they do not match the bits of the SYN character, the receiver accepts
the next bit, rejects the previous high-order bit, and again checks the last eight
bits received for a SYN character. This is repeated after each clock pulse and
bit received until a SYN character is recognized. Once a SYN character is
detected, the receiver has framed a character. From here on the receiver counts
every eight bits and accepts them as a single character. Usually, the receiver
checks two consecutive SYN characters to remove any doubt that the first did
not occur as a result of a noise signal on the line. Moreover, when the trans-
mitter is idle and does not have any message characters to send, it sends a
continuous string of SYN characters. The receiver recognizes these characters
as a condition for synchronizing the line and goes into a synchronous idle state.
In this state, the two units maintain bit and character synchronism even though
no meaningful information is communicated.

Messages are transmitted through the data link with an established
format consisting of a header field, a text field, and an error-checking field. A
typical message format for a character-oriented protocol is shown in Fig. 11-25.
The two SYN characters assure proper synchronization at the start of the
message. Following the SYN characters is the header, which starts with an
SOH (start of heading) character. The header consists of address and control
information. The STX character terminates the header and signifies the begin-
ning of the text transmission. The text portion of the message is variable in
length and may contain any ASCII characters except the communication con-
trol characters. The text field is terminated with the ETX character. The last field
is a block check character (BCC) used for error checking. It is usually either a
longitudinal redundancy check (LRC) or a cyclic redundancy check (CRC).

The receiver accepts the message and calculates its own BCC. If the BCC
transmitted does not agree with the BCC calculated by the receiver, the receiver
responds with a negative acknowledge (NAK) character. The message is then
retransmitted and checked again. Retransmission will be typically attempted
several times before it is assumed that the line is faulty. When the transmitted
BCC matches the one calculated by the receiver, the response is a positive
acknowledgment using the ACK character.

Transmission Example
In order to appreciate the function of a data communication processor, let us
illustrate by a specific example the method by which a terminal and the
processor communicate. The communication with the memory unit and CPU
is similar to any IJ'O processor.

Figure 11- 1-5 TYF ic i I fnes,i4ge format for character-rienrcJ 1,rotocol.

SYN I SYN I SOH I Header I STX I	 Text	 f ETX I BCC
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A typical message that might be sent from a terminal to the processor is
listed in Table 11-5. A look at this message reveals that there are a number of
control characters used for message formation. Each character, including the
control characters, is transmitted serially as an 8-bit binary code which consists
of the 7-bit ASCII code plus an odd parity bit in the eighth most significant
position. The two SYN characters are used to synchronize the receiver and
transmitter. The heading starts with the SOH character and continues with two
characters that specify the address of the terminal. In this particular example,
the address is 14, but in general it can have any set of two or more graphic
characters. The STX character terminates the heading and signifies the begin-
ning of the text transmission. The text data of concern here is "request balance
of account number 1234." The individual characters for this message are not
listed in the table because they will take too much space. It must be realized,
however, that each character in the message has an 8-bit code and that each
bit is transmitted serially. The ETX control character signifies the termination
of the text characters. The next character following ETX is a longitudinal
redundancy check (LRC). Each bit in this character is a parity bit calculated from
all the bits in the same column in the code section of the table.

The data communication processor receives this message and proceeds
to analyze it. It recognizes terminal T4 and stores the text associated with the
message. While receiving the characters, the processor checks the parity in
each character and also computes the longitudinal parity. The computed LRC
is compared with the LRC character received. If the two match, a positive
acknowledgment (ACK) is sent back to the terminal. If a mismatch exists, a

TABLE 11-5 Typical Transmission from a Terminal to Processor

Code

0001 0110
0001 0110
0000 0001
0101 0100
0011 0100
0000 0010
0101 0010
0100 0101

1011 0011
0011 0100
1000 0011
0111 0000

Symbol

SYN
SYN
SOH
T
4

STX

request
balance
of account
No. 1234

ETX
IRC

Comments

First sync character
Second sync character
Start of heading
Address of terminal is T4

Start of text transmission

Text sent is a request to respond with the balance of
account number 1234

End of text transmission
Longitudinal parity character
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negative acknowledgment (NAK) is returned to the terminal, which would
initiate a retransmission of the same block. If the processor finds the message
without errors, it transfers the message into memory and interrupts the CPU.
When the CPU acknowledges the interrupt, it analyzes the message and
prepares a text message for responding to the request. The CPU sends an
instruction to the data communication processor to send the message to the
terminal.

A typical response from processor to terminal is listed in Table 11-6. After
two SYN characters, the processor acknowledges the previous message with
an ACK character. The line continues to idle with SYN character waiting for
the response to come. The message received from the CPU is arranged in the
proper format by the processor by inserting the required control characters
before and after the text. The message has the heading SOH and the address
of the terminal T4. The text message informs the terminal that the balance is
$100. An LRC character is computed and sent to the terminal. If the terminal
responds with a NAK character, the processor retransmits the message.

While the processor is taking care of this terminal it is busy processing
other terminals as well. Since the characters are received in a serial fashion, it
takes a certain amount of time to receive and collect an 8-bit character. During
this time the processor is multiplexing all other communication lines and

TABLE 11-6 Typical Transmission from Processor co Terminal

Code	 Symbol
	

Comments

SYN	 First sync character
SYN	 Second sync character
ACK	 Processor acknowledges previous message
SYN	 Line is idling

SYN	 Line is idling
SOH	 Start of heading
T	 Address of terminal is T4
4

STX
	

Start of text transmission

balance
	

Text sent is a response from the computer giving the
is
	

balance of account
$100.00

0001 0110
0001 0110
1000 0110
0001 0110

0001 0110
0000 0001
0101 0100
0011 0100
0000 0010
1100 0010
1100 0001

1011 0000
1000 0011	 ETX	 End of text transmission
1101 0101	 LRC	 Longitudinal parity character
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services each one in turn. The speed of most remote terminals is extremely slow
compared to the processor speed. This property allows multiplexing of many
users to achieve greater efficiency in a time-sharing system. This also allows
many users to operate simultaneously while each is being sampled at speeds
comparable to normal human response.

Data Transparency

The character-oriented protocol was originally developed to communicate with
keyboard, printer, and display devices that use alphanumeric characters exclu-
sively. As the data communication field expanded, it became necessary to
transmit binary information which is not ASCII text. This happens, for exam-
ple, when two remote computers send programs and data to each other over
a communication channel. An arbitrary bit pattern in the text message becomes
a problem in the character-oriented protocol. This is because any 8-bit pattern
belonging to a communication control character will be interpreted erro-
neously by the receiver. For example, if the binary data in the text portion of
the message has the 8-bit pattern 10000011, the receiver will interpret this as
an ETX character and assume that it reached the end of the text field. When
the text portion of the message is variable in length and contains bits that are
to be treated without reference to any particular code, it is said to contain
transparent data. This feature requires that the character recognition logic of
the receiver be turned off so that data patterns in the text field are not acciden-
tally interpreted as communication control information.

Data transparency is achieved in character-oriented protocols by insert-
DLE character ing a DLE (data link escape) character before each communication control

character. Thus, the start of heading is detected from the double character DLE
SOH, and the text field is terminated with the double character DLE ETX. If
the DLE bit pattern 00010000 occurs in the text portion of the message, the
transmitter inserts another DLE bit pattern following it. The receiver removes
all DLE characters and then checks the next 8-bit pattern. If it is another DLE
bit pattern, the receiver considers it as part of the text and continues to receive
text. Otherwise, the receiver takes the following 8-bit pattern to be a commu-
nication control character.

The achievement of data transparency by means of the OLE character is
inefficient and somewhat complicated to implement. Therefore, other proto-
cols have been developed to make the transmission of transparent data more
efficient. One protocol used by Digital Equipment Corporation employs a byte
count field that gives the number of bytes in the message that follows, The
receiver must then count the number of bytes received to reach the end of the
text field. The protocol that has been mostly used to solve the transparency
problem (and other problems associated with the character-oriented protocol)
is the bit-oriented protocol.
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Bit-Oriented Protocol
The bit-oriented protocol does not use characters in its control field and is
independent of any particular code. It allows the transmission of serial bit
stream of any length without the implication of character boundaries. Mes-
sages are organized in a specific format called a frame. In addition to the
information field, a frame contains address, control, and error-checking fields.
The frame boundaries are determined from a special 8-bit number called a flag.
Examples of bit-oriented protocols are SDLC (synchronous data link control)
used by IBM, HDLC (high-level data link control) adopted by the International
Standards Organization, and ADCCF (advanced data communication control
procedure) adopted by the American National Standards Institute.

Any data communication link involves at least two participating stations.
The station that has responsibility for the data link and issues the commands
to control the link is called the primary station. The other station is a secondary
station. Bit-oriented protocols assume the presence of one primary station and
one or more secondary stations. All communication on the data link is from
the primary station to one or more secondary stations, or from a secondary
station to the primary station.

The frame format for the bit-oriented protocol is shown in Fig. 11-26. A
8-bit flag frame starts with the 8-bit flag 01111110 followed by an address and control

sequence. The information field is not restricted in format or content and can
be of any length. The frame check field is a CRC (cyclic redundancy check)
sequence used for detecting errors in transmission. The ending flag indicates
to the receiving station that the 16 bits just received constitute the CRC bits.
The ending frame can be followed by another frame, another flag, or a se-
quence of consecutive l's. When two frames follow each other, the intervening
flag is simultaneously the ending flag of the first frame and the beginning flag
of the next frame. If no information is exchanged, the transmitter sends a series
of flags to keep the line in the active state. The line is said to be in the idle state
with the occurrence of 15 or more consecutive l's. Frames with certain control
messages are sent without an information field. A frame must have a minimum
of 32 bits between two flags to accommodate the address, control, and frame
check fields. The maximum length depends on the condition of the communi-
cation channel and its ability to transmit long messages error-free.

To prevent a flag from occurring in the middle of a frame, the bit-oriented
zero inserhon	 protocol uses a method called zero insertion. This requires that a 0 be inserted

Figure 11-26 Frame format for bit-oriented protocol.

Flag	 Address	 Control	 Information	 Frame check	 Flag
01111110	 8bits	 8bits	 any number of bits	 16bits	 01111110
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by the transmitting station after any succession of five continuous l's. The
receiver always removes a 0 that follows a succession of five l's. Thus the bit
pattern 0111111 is transmitted as 01111101 and restored by the receiver to its
original value by removal of the 0 following the five l's. As a consequence, no
pattern of 01111110 is ever transmitted between the beginning and ending
flags.

Following the flag is the address field, which is used by the primary
station to designate the secondary station address. When a secondary station
transmits a frame, the address tells the primary station which secondary
station originated the frame. An address field of eight bits can specify up to
256 addresses. Some bit-oriented protocols permit the use of an extended
address field. To do this, the least significant bit of an address byte is set to 0
if another address byte follows. A I in the least significant bit of a byte is used
to recognize the last address byte.

control field Following the address field is the control field. The control field comes
in three different formats, as shown in Fig. 11-27. The information transfer
format is used for ordinary data transmission. Each frame transmitted in this
format contains send and receive counts. A station that transmits sequenced
frames counts and numbers each frame. This count is given by the send count
N5 . A station receiving sequenced frames counts each error-free frame that it
receives. This Count is given by the receive count Nr. The N. count advances
when a frame is checked and found to be without errors. The receiver confirms
accepted numbered information frames by returning its N. count to the trans-
mitting station.

The P/F bit is used by the primary station to poll a secondary station to

Figure 11 .27 Control field format in bit-oriented protocol.
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request that it initiate transmission. It is used by the secondary station to
indicate the final transmitted frame. Thus the P/F field is called P (poll) when
the primary station is transmitting but is designated as F (final) when a sec-
ondary station is transmitting. Each frame sent to the secondary station from
the primary station has a P bit set to 0. When the primary station is finished
and ready for the secondary station to respond, the P bit is set to 1. The
secondary station then responds with a number of frames in which the F bit
is set to 0. When the secondary station sends the last frame, it sets the F bit
to 1. Therefore, the P/F bit is used to determine when data transmission from
a station is finished.

The supervisory format of the control field is recognized from the first two
bits being 1 and 0. The next two bits indicate the type of command. This follows
by a P/F bit and a receive sequence frame count. The frames of the supervisory
format do not carry an information field. They are used to assist in the transfer
of information in that they confirm the acceptance of preceding frames carrying
information, convey ready or busy conditions, and report frame numbering
errors.

The unnumbered format is recognized from the first two bits being 11.
The five code bits available in this format can specify up to 32 commands and
responses. The primary station uses the control field to specify a command for
a secondary station. The secondary station uses the control field to transmit
a response to the primary station. Unnumbered-format frames are employed
for initialization of link functions, reporting procedural errors, placing stations
in a disconnected mode, and other data link control operations.

•PROBMS	 1
11-1. The addresses assigned to the four registers of the 110 interface of Fig. 11-2

are equal to the binary equivalent of 12, 13, 14, and 15. Show the external
circuit that must be connected between an 8-bit £/0 address from the CPU
and the CS, RS1, and RSO inputs of the interface.

11-2. Six interface units of the type shown in Fig. 11-2 are connected to a CPU that
uses an 1/0 address of eight bits. Each one of the six chip select (CS) inputs
is connected to a different address line. Thus the high-order address line is
connected to the CS input of the first interface unit and the sixth address line
is connected to the CS input of the sixth interface unit. The two low-order
address lines are connected to the RS1 and RSO of all six interface units.
Determine the 8-bit address of each register in each interface.

	

11 .3.	 List four peripheral devices that produce an acceptable output for a person
drs1and.

11-4. Write your full name in ASCII using eight bits per character with the leftmost
bit always 0. Include a space between names and a period after a middle
initial.
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11-5.	 What is the difference between isolated 110 and memory-mapped 110? What
are the advantages and disadvantages of each?

r.i...;	 ---.--...-	 -,
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a. Skip next instruction if flag is set.
b. Seek a given record on a magnetic disk.
c. Check if I/O device is ready.
d. Move printer paper to beginning of next page.
e. Read interface status register.

111-7. A commercial interface unit uses different names for the handshake lines
associated with the transfer of data from the 110 device into the interface
unit. The interface input handshake line is labeled STB (strobe), and the
interface output handshake line is labeled IBF (input buffer full). A low-level
signal on STB loads data from the 110 bus into the interface data register. A
high-level signal on IBF indicates that the data item has been accepted by the
interface. !BF goes low after an 110 read signal from the CPU when it reads
the contents of the data register.
a. Draw a block diagram showing the CPU, the interface, and the 110 device

together with the pertinent interconnections among the three units.
b. Draw a timing diagram for the handshaking transfer.
c. Obtain a sequence-of-events flowchart for the transfer from the device to

the interface and from the interface to the CPU.

11-8. A CPU with a 20-MHz clock is connected to a memory unit whose access time
is 40 ns. Formulate a read and write timing diagrams using a READ strobe
and a WRITE strobe. Include the address in the timing diagram.

11-9. The asynchronous communication interface shown in Fig. 11-8 is connected
between a CPU and a printer. Draw a flowchart that describes the sequence
of operations in the transmitter portion of the interface when the CPU sends
characters to be printed.

	

11-10.	 Give at least six status conditions for the setting of individual bits in the
status register of an asynchronous communication interface.

11-11. How many bits are there in the transmitter shift register of Fig. 11-8 when
the interface is attached to a terminal that needs one stop bit? List the bits
in the shift register when the letter W is transmitted using ASCII with even
parity.

	

11-12.	 How many characters per second can be transmitted over a 1200-baud line
in each of the following modes? (Assume a character code of eight bits.)
a. Synchronous serial transmission.
b. Asynchronous serial transmission with two stop bits.
c. Asynchronous serial transmission with one stop bit.

11-13. Information is inserted into a FIFO buffer at a rate of m bytes per second.
The information is deleted at a rate of 71 byte per second. The maximum
capacit y of the buffer is k bytes.
a. How long does it take for an empt y buffer to fill up when m > n?
b. How long does it take for a full buffer to empty when in < n?
c. Is the FIFO buffer needed if in =
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11-14.	 The bits in the control register of the FIFO shown in Fig. 11-9 are
F1 F2 F3 = 0011. Give the sequence of internal operations when an item is
deleted from the FIFO and then a new item is inserted.

	

11-15.	 What are the values of input ready and output ready and control bits F1

through F4 in Fig. 11-9 when:
a. The buffer is empty?
b. The buffer is full?
c. The buffer contains two data items?

11-16. Show a block diagram similar to Fig. 11-10 for the data transfer from a CPU
to an interface and then to an 110 device. Determine a procedure for setting
and clearing the flag bit.

	

11-17.	 Using the configuration established in Prob. 11-16, obtain a flowchart (sim-
ilar to Fig. 11-11) for the CPU program to output data.

	

11-18.	 What is the basic advantage of using interrupt-initiated data transfer over
transfer under program control without an interrupt?

11-19. In most computers an interrupt is recognized only after the execution of the
instruction. Consider the possibility of acknowledging the interrupt at any
time during the execution of the instruction. Discuss the difficulty that may
arise.

11-20. What happens in the daisy-chain priority interrupt shown in Fig. 11-12 when
device I requests an interrupt after device 2 has sent an interrupt request to
the CPU but before the CPU responds with the interrupt acknowledge?

11-21. Consider a computer without priority interrupt hardware. Any one of mans'
sources can interrupt the computer, and any interrupt request results in
storing the return address and branching to a common interrupt routine.
Explain how a priority can be established in the interrupt service program.

11-22. Using combinational circuit design techniques, derive the Boolean expres-
sions listed in Table 11-2 for the priority encoder. Draw the logic diagram of
the circuit.

	

11-23.	 Design a parallel priority interrupt hardware for a system with eight inter-
rupt sources.

11-24. Obtain the truth table of an 8 x 3 priority encoder. Assume that the three
outputs xyz from the priority encoder are used to provide a vector address
of the form 101xyzOO. List the eight vector addresses starting from the one
with the highest priority.

	

11-25.	 What should be done in Fig. 11-14 to make the four VAD values equal to the
binary equivalent of 76, 77, 78, and 79?

11-26. What programming steps are required to check when a source interrupts the
computer while it is still being serviced by a previous interrupt request from
the same source?

11-27. Why are the read and write control lines in a DMA controller bidireLuonal?
Under what condition and for what purpose are they used as inputs? Under
what condition and for what purpose are they used as outputs?

	

11-28.	 It is necessary to transfer 256 words from a magnetic disk to a memory
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section starting from address 1230. The transfer is by means of DMA as
shown in Fig 11-18.
a. Give the initial values that the CPU must transfer to the DMA controller.
b. Give the step-by-step account of the actions taken during the input of the

first two words.

11-29. A DMA controller transfers 16-bit words to memory using cycle stealing. The
words are assembled from a device that transmits characters at a rate of 2400
characters per second. The CPU is fetching and executing instructions at an
average rate of 1 million instructions per second. By how much will the CPU
be slowed down because of the DMA transfer?

	

11-30.	 Why does DMA have priority over the CPU when both request a memory
transfer?

	

11-31.	 Draw a flowchart similar to the one in Fig. 11-20 that describes the CPU-1/0
channel communication in the IBM 370.

11-32. The address of a terminal connected to a data communication processor
consists of two letters of the alphabet or a letter followed by one of the 10
numerals. How many different addresses can be formulated.

11-33. List a possible line procedure and the character sequence for the communi-
cation between a data communication processor and a remote terminal. The
processor inquires if the terminal is operative. The terminal responds with
yes or no. lithe response is yes, the processor sends a block of text.

11-34. A data communication link employs the character-controlled protocol with
data transparency using the DLE character. The text message that the trans-
mitter sends between SIX and ETX is as follows:

DLE STX DLE DLE ETX DLE DLE ETX DLE ETX

What is the binary value of the transparent text data?

	

11-35.	 What is the minimum number of bits that a frame must have in the bit-
oriented protocol?

11-36. Show how the zero insertion works in the bit-oriented protocol when a zero
followed by the 10 bits that represent the binary equivalent of 1023 are
transmitted.
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12-1 Memory Hierarch

The memory unit is an essential component in any digital computer since it is
needed for storing programs and data. A very small computer with a limited
application may be able to fulfill its intended task without the need of addi-
tional storage capacity. Most general-purpose computers would run more
efficiently if they were equipped with additional storage beyond the capacity
of the main memory. There is just not enough space in one memory unit to
accommodate all the programs used in a typical computer. Moreover, most
computer users accumulate and continue to accumulate large amounts of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage are

T '	',	 -. ....	 ..
computer systems are magnetic disks and tapes. The y are used for storing
system programs, large data files, and other backup information. Only pro-
grams and data currently needed by the processor reside in main memory. All

445
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other information is stored in auxiliary memory and transferred to main mem-
nrv when nedc1

1 he total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
auxiliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure 12-1
illustrates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu-
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an I/O processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans-
ferred into auxiliary memory to provide space for currently used programs and
data.

cache memory A special very-high-speed memory called a cache is sometimes used to
increase the speed of processing by making current programs and data avail-
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usually faster than main memory access
time, with the result that, processing speed is limited primarily by the speed
of main memory. A technique used to compensate for the mismatch in oper-
ating speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time is close to processor logic clock cycle time.
The cache is used for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

Figure 12-1 Memory hierarchy in a computer system.

Auxiliary memory

Magnetic
tapes
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By making programs and data available at a rapid rate, it is possible to increase

While the 110 processor manages data transfers between auxiliary mem-
ory and, main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy stem. The reason for having two
or three leveR (It rnenlorv hcrarchv k e.erimic. As the storage capacity of
th mcniirv im,rt 1t iu C ' ir . iJJr\ n1E 'rmatinn decreases
and the access time ot the inernor\ bccomc' nicr. Thu auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen-
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavil y used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about I to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from I to 16
words.

Many operating systems are designed to enable the CPU to process a
multiprogramming number of independent programs concurrently. This concept, called iiiulfipro-

gramiiiing, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an 1/0
transfer is required. The CPU initiates the 1/0 processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro-
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory . When the program or a segment of the
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program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre-
sented in Sec. 12-7.

12-2 Main Memo

random-access
memory (RAM)

read-only memory
(ROM)

bootstrap loader

Computer startup

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem-
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from a read-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
pnver is fiirnm off Thocn ort -t TC\1 iTt.	 .

turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the
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first address of the bootstrap loader. The bootstrap program loads a portion
of the operattne system from dick to main rnn-o' , ncl rc-n	 t'j-
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon-
strate the chip interconnection, we will show an example of a 1024 

X 8 memoryconstructed with 128 x 8 RAM chips and 512 x 8 ROM chips.

RAM and ROM Chips

A RAM chip is better suited for communication with the CPU 
if it has one or

more control inputs that select the chip only when needed. Another common
bidirectional bus feature is a bidirectional data bus that allows the transfer of data either from

memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high-
impedance state. The ogic 1 and 0 are normal digital signals. The high-
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 122 Typical RAM chip.

Chip select 1 —i Csj

Chip select . —4 1E

Read H RD	 128X8	 I
-	 I '	 8-bit data bus

Write -1 WR RAM

7-bit address

(a) Block diagram

('Si CS2 RD WR_IMeniorv_fuiictij_
o	 0	 x	 x	 Inhibit
0	 x	 Inhibit
1	 0	 0	 0	 Inhibit
I	 0	 0	 -I	 Write
I	 0	 1	 x	 Read

inhibit

(b) Function table

State of data bus
High-impedance
High-impedance
High-impedance
Input data to RAM
Output data from RAM
High-impedance
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address and an 8-bit bidirectional data bus. The read and write inputs specify
the memory operation and the two chips select (CS) control inputs are for
enabling the chip only when it is selected by the microprocessor. The availabil-
ity.--of more than one control input to select the chip facilitates the decoding of
the address lines when multiple chips are used in the microcomputer. The read
and write inputs are sometimes combined into one line labeled RJW. When the
chip is selected, the two binary states in this line specify the two operations
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RAM
chip. The unit is in operation only when CS1 = 1 and CS2 0. The bar on top
of the second select variable indicates that this input is enabled when it is equal
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CSI = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM. For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip se1ct inputs must be CS1 = 1 and CS2 0 for the
unit to operate. Otherwise, the data bus is in a high-impedance state. There
is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map
The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
1rv a7'' ?'7(	 1	 171! C707 	 pri'C7t3tiOfl o f assigned address space for

each chip in the system.
To demonstrate with a particular example, assume that a computer sys-

tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips
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Chi p select I - CSI

Chip select 2

512X8
ROM	

_-- 8-bit data bus

9-bit address	 I AD9

Figure 12 . 3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for,
this configuration is shown in Table 12-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x's are alwa ys assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
2 = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal

Component	 address	 10 9	 8 7 6 5	 4 3 2 1

RAM 	 0000-007F	 00	 0 x x x	 x 	 x 
RAM 2	 008000FF	 0 0	 1 x x x	 x x x x
RAM 	 0100-017F	 0 1 0 x x x x  x 
RAM 	 0180-OIFF	 0 1	 1 x x x	 x x x x
ROM	 0200-03FF	 1 x	 x x x x	 x x x x
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subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
andis always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo-
nent is determined from the x's associated with it. These x's represent a binary
number that can range from an all-O's to an all-i's value.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus. This is done through a 2 x 4 decoder whose outputs go to the CSI inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1. The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1 t 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions.

The example just shown gives an indication of the interconnection com-
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips. The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined.

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic ±sks anci tapes. Other components used, but not as frequently, are
magnetic drum3, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. Al-
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Figure 12-4 Memory connection to the CPU.
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though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and compared by a few parame-
ters. The important characteristics of any device are its access mode, access
titne, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drum is a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head. Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on ' a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferrecf is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems. .cenarate read/write heads are provided for each track in each surface
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and
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Read/write
head

Figure 12-5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk. If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks. A disk drive with remov-
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5.25 and 3.5 inches. The
3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording
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medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re-
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol's binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel-
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called

content addressable an associative memory or content addressable memory (CAM). This type of memorymemo7y 
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa-
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel . searches by data association. Moreover, searches can be done on
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an entir' word or on a specific field within a word, An associative memor y is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short.

Hardware Organization

The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register  has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all l's. Otherwise, only those bits in the argument
that have l's in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12-6 Block diagram of associative memory.
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specifies how the reference to memory is made. To illustrate with a numerical
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has l's in these positions.

A	 101 111100
K	 111 000000
Word 1	 100 111100	 no match
Word 2	 101 000001	 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C,, is the cell for bit
j in word i. A bit A1 in the argument register is compared with all the bits in
column j of the array provided that K = 1. This is done for all columns
j = 1,2,.. . , n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit M, in the match register is
set to 1. If one or more unmasked bits of the argum4tt and the word do not
match, M is cleared to 0.

Figure 12-7 Associative memory of m word, n cells per word.
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The internal organization of a typical cell C. is shown in Fig 12-8. It
consists of a flip-flop storage element Fij and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un-
masked bit of the argument and provides an output for the decision logic that
sets the bit in M•.

Match Logic

The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu-
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if A, = I, for] = 1,2,..., n. Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

= A, F11. 	 A' F4

where .x = 1 if the pair of bits in position j are equal; otherwise, x, = 0.
For a word ito be equal to the argument in A we must have all xj variables

equal to 1. This is the condition for setting the corresponding match bit M, to
1. The Boolean function for this condition is

M=xix2x3.x

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12-8 One cell of associative memory.

Output
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We now include the key bit K1 in the comparison logic. The requirement
is that if = 0, the corresponding bits of A, and F,, need no comparison. Only
when iç = I must they be compared. This requirement is achieved by ORing
each term with .', thus:

+ ' =J; ifX,

1. 1	 inç=o

When K, 1, we have K/ = 0 and x, + 0 x,. When K, 0, then K/ = I and
x,+l=l. A term (x,+Kf) will bein the l state if its pair of bits isriot
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K = L

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M, = (x1 + K)(x2 + K2)(x3 + K)- . (x,, + K,:)

Each term in the expression will be equal to 1 if its corresponding K, = 0. if
K, = 1, the term will be either Oor I depending on the value of x,. A match will
occur and M, 

will 
be equal tolif 

all 
terms are equal tol.

If we substitute the original definition of x, the Boolean function above
can be expressed as follows:

M1 =	 (A, F + Al F4 + K,')

where H is a product symbol designating the AND operation of all n terms. We
need in such functions, one for each word i = 1,2,3, - . ., in.

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A, and K, are needed once
for each column and are used for all bits in the column. The output of all OR
ates in the cells of the same word go to the input of a common AND gate to

generate the match signal for M. Mi will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0's, output Mi will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation
If more than one word in memory matches the unmasked argument field, all
the matched words will have l's in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying a read signal to each word
line whose corresponding M1 bit is a 1.
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Figure 12-9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M, directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation

An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor-
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device a random -
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random-
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder to d lines,
where m =
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If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first Ci bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all 0's if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the K 1 bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of

locality of reference locality of reference. The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc-
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat-
edly refer to that portion in memory where the table is stored. Iterative proce-
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. It is placed between the CPU and main memory as illustrated
in Fig. 12-1. The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest cbmponent in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-
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age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. if the word is found in the cache, it is
read from the fast memory. if the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a

hit ratio	 quantity called hit ratio. When the CPU refers to memory and finds the word

in cache, it is said to produce a hit. If the word is not found in cache, it is in

main memory and it counts as a miss. The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem-
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to

mapping	 as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

i. Associative mapping

2. Direct mapping

3. Set-associative mapping

To help in the discussion of these three mapping procedures we wifl use a
specific example of a memory organization as shown in Fig. 12-10. Ihe main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is
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Main menior:2J,t:IJ
Figure 12-10 Example of cache memory,

a duplicate copy in main memory. The CPU communicates with both memo-
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping

The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11. The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal numbr and its corresponding 12-bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12.11 Associative mapping cache (all numbers in octal).
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address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad-
dress—data pair is then transferred to the associative cache memory. If the cache
is full, an address--data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

tag field

Direct Mapping
Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2 ' words in cache memory and 2 words in
main memory. The n-bit memory address is divided into two fields: k bits for

the index field and n - k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12-12 Addressing relationships between main and cache memories.
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Memory	 Index
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Figure 1243 Direct mapping cache organization

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but different tags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu-
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tags are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of 8 words is shown in Fig. 12-14.
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Figure 12-14 Direct mapping cache with block size of 8 words.

The index field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 x 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with
larger block size because of the sequential nature of computer programs.

SetAssociative Mapping
It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ-
ization, called set-associative mapping, is an improvement over the direct
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag—data items in one word of cache is said te
form a set. An example of a set-associative cache organization for a set size o
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 x 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In generals a set-associative cache of set size k will accommo-

date k words of main memory in each word of cache.
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Index	 Tag	 Data	 Tag	 Data

Figure 12-15 Two-way set-assocjattve mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name "set-associative" The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in vurds of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it isreplacement	
necessary to replace one of the tag-data items with a new value. The mostalgorithms 
common replacement algorithms used are: random replacement, first-in, first-
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag—data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache

An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the s ystem can proceed.
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The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up-
dated in parallel if it contains the word at the specified address This is called

write-through the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an 110 device communicating
through DMA would receive the most recent updated data.

write-back The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. It is only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. A .alytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory- After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to

valid bit	 include with each word in cache a valid bit to indicate whether or not the word

contains valid data.
The cache is initialized by clearing all the valid bits to 0. The valid bit of

a particular cache word is set to I the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro-
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory
In a memory tuerarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though a large
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memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a ph ysical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the setaddress space	 of such addresses the address space. An address in main memory is called a

memory space	 location or physical address. The set of such locations is called the memory space.
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of
32K words (K = 1024). Fifteen bits are needed to specify a physical address in
memory since 32K = 2' s . Suppose that the computer has available auxiliary
memory for storing 2° = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot-
ing the address space by N and the memory space by M, we then have for thisexample N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program I is currently being executed in the CPU.
Program I and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for
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Auxiliary memory

Main memory

Program I	 Program 1

Data 1.1

Data 1, 2

Data I. I
Program 2

Data 2, 1	 Memory space
M = 32k = 2'

Address space
N IO24K 220

Figure 12-16 Relation between address and memory space in a virtual

memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem-
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated immediately as a word is refer-

enced by CPU.
The mapping table may be stored in a separate memory as shown in

Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12-17 Memory table for mapping a virtual address.
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takes space from main memory and two accesses to memory are required with
-

memory as explained below.

pages and blocks

Page frame

Address Mapping Using Pages
The table implementation of the address mapping is simplified if the informa-
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term "page frame" is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with 2P words per page, pbits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 2'° = 1024 words, the high-
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged s ystem is
shown in Fig. 12-19. The memory-page table Consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
merno' in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the
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Page 0

Page I

Page 2

Page 3

	

Page 4
	

Block 0

	

Page 5
	

Block

	Page 6	 Block 2

	Page 7	 Block 3

Address space	 Memory space

	

N = 8K =	 M 4K = 212

Figure 12-18 Address space and memory space split into groups of 1K words.

word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Figure 12-19 Memory table in a paged system.
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transfers the content of the word to the main memory buffer register ready to
;	 1 ..	 L.	 .1It	 J	 Lu1z:

is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table

A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with ii pages and m blocks would require a memory-page
table of n locations of which up to in blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this
way the size of the memory is reduced and each location is fully utilized. This
method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12-20 An associative memory page table.

Virtual address

Page no.

1	 Line numberlII Argument register

i	 0 1 Key register

Looi iI
1010	 o1

Associative memory

Page no. Block no
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block number. The page field in oach word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement
A virtual memory system is a combination of hardware and software tech-
niques. The memory management software system handles all the software
operations for the efficient utilization.of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
page, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti-
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still

page fault	 in auxiliary memory. This condition is called page fault . When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an 110 operations the operating system assigns this
task to the 110 processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be nuLL:6zary to remove a page from a memory block to make room

for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,
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FIFO

	

	 first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a

k	
:tU	 U

stack. FIFO will be full  whenever memory has no more empty blocks. When
a new page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum-
stances pages are removed and loaded from memory too frequently.

LRU The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

1 2-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft-
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ-
ent users

Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12 -6. The fixed page size used in the virtual
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memory system causes certain difficulties with respect to program size and the
logical structure of programs. It is more convenient to divide programs and

segment data into logical parts called segments. A segment is a set of logically related
instructions or data elements associated with a given name. Segments may be
generated by the programmer or by the operating system. Examples of seg-
ments are a subroutine, an array of data, a table of symbols, or a user's
program.

The sharing of common programs is an integral part of a multiprogram-
ming system. For example, several users wishing to compile their Fortran
programs should be able to share a single copy of the compiler rather than each
user having a separate copy in memory. Other system programs residing in
memory are also shared by all users in a multiprogramming system without
having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user's unauthorized copying of another user's program. Another aspect
of protection is concerned with preventing the occasional user from performing
operating system functions and thereby interrupting the orderly sequence of
operations in a computer installation. The secrecy of certain programs must be
kept from unauthorized personnel to prevent abuses in the confidential activ-
ities of an organization.

logical address The address generated by a segmented program is called a logical address.

This is similar to a virtual address except that logical address space is associated
with variable-length segments rather than fixed-length pages. The logical
address may be larger than the physical memory address as in virtual memory,
but it may also be equal, and sometimes even smaller than the length of the
physical memory address. In addition to relocation information, each segment
has protection information associated with it. Shared programs are placed in
a unique segment in each user's logical address space so that a single physical
copy can be shared. The function of the memory management unit is to map
logical addresses into physical addresses similar to the virtual memory map-
ping concept.

Segmented-Page Mapping
It was already mentioned that the property of logical space is that it uses
variable-length segments. The length of each segment is allowed to grow and
contract according to the needs of the program being executed. One way of
specifying the length of a segment is by associating with it a number of
equal-size pages. To see how this is done, consider the logical address shown

I . 12 21. I 11 clgica ddrs 15 prt'.tiin'c lntn tru	 Ti: :

field specifies a segment number. The page field specifies the page within the
segment and the word field gives the specific word within the page. A page
field of k bits can specify up to 2 ' pages. A segment number may be associated
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Logical address

Physical address

(a) Logical to physical address mapping

F, 41
Segment	 Page	 Block

(b) Asociaiie n1cnu,ry translation look-aside buffer TLB)

Figure 2-21 Mapping in segmented-page memory management unit.

with just one page or with as many as 2k 
pages. Thus the length of a segment

would vary according to the number of pages that are assigned to it.
The mapping of the logical address into a physical address is done by

means of two tables, as shown in Fig. 12-21(a). The segment number of the
logical address specifies the address for the segment table. The entry in the
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segment table is a pointer address fora page tab] hae The nage t.He !'ase
is added to the page number given in the logical address. The sum produces
a pointer address to an entry in the page table. The value found in the page
table provides the block number in physical memory. The concatenation of the
block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories
or in main memory. In either case, a memory reference from the CPU will
require three accesses to memory: one from the segment table, one from the
page table, and the third from main memory. This would slow the system
significantly when compared to a conventional system that requires only one
reference to memory. To avoid this speed penalty, a fast associative memory
is used to hold the most recently referenced table entries. (This type of memory
is sometimes called a translation lookaside buffer, abbreviated TLB.) The first time
a given block is referenced, its value together with the corresponding segment
and page numbers are entered into the associative memory as shown in
Fig. 12-21(b). Thus the mapping process is first attempted by associative search
with the given segment and page numbers. If it succeeds, the mapping delay
is only that of the associative memory. If no match occurs, the slower table
mapping of Fig. 12-21 (a) is used and the result transformed into the associative
memory for future reference.

Numerical Example

A numerical example may clarify the operation of the memory management
unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit
segment number specifies one of 16 possible segments. The 8-bit page number
can specify up to 256 pages, and the 8-bit word field implies a page size of 256
words. This configuration allows each segment to have any number of pages
up to 256. The smallest possible segment will have one page or 256 words. The
largest possible segment will have 256 pages, for a total of 256 x 256 = 64K
words.

The physical memory shown in Fig. 12-22(b) consists of 220 words of 32
bits each. The 20-bit address is divided into two fields: a 12-bit block number
and an 8-bit word number. Thus, physical memory is divided into 4096 blocks
of 256 words each. A page in a logical address has a corresponding block in
physical memory. Note that both the logical and physical address have 20 bits.
In the absence of a memory management unit, the 20-bit address from the CPU
can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The
operating system may assign to this program segment 6 and pages 0 through
4, as shown in Fig. 12-23(a). The total logical address range for the program is
from hexadecimal 60000 to 604FF. When the program is loaded into physical
memory, it is distributed among five blocks in physical memory where the
operating system finds empty spaces. The correspondence between each
memory block and logical page number is then entered in a table as shown in
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4	 8	 8

Segment	 Page	 Word

(a) Logical address format: 16 segments of 256 pages each,
each page has 256 words

Block

220 X 32
Physical memory

(b) Physical address format: 4096 blocks of 256 words each,
each word has 32 bits

Figure 12-22 An example of logical and physical addresses.

Fig. 12-23(b). The information from this table is entered in the segment and
page tables as shown in Fig. 12-24(a).

Now consider the specific logical address given in Fig. 12-24. The 20-bit
address is listed as a five-digit hexadecimal number. It refers to word number
7E of page 2 in segment 6. The base of segment 6 in the page table is at address
35. Segment 6 has associated with it five pages, as shown in the page table at
addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 37. The
physical memory block is found in the page table to be 019. Word 7E in block
19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps
into block 12 and page 1 maps into block 0. The associative memory in Fig.

Figure 12-23 Example of logical and physical memory address assignment.

Hexadecimal
address

60000

60100

60200

60300
60400
604FF

Page number

Page 0

Page 1

Page 2

Page 3

.1

	

Segment Page	 Block

6	 00	 012
6	 01	 000
6	 02	 019
6	 03	 053
6	 04	 A61

(a) Logical address assignment	 (b) Segment-page versus
memory block assignment



01900
0197E
019FF

000FI

01200

012FF

Physical memory
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Logical address (in haxadecimal)

Segment table

6	 35

F N.
Page table

00

35

kA61

36

37

3

39

A31	 012

(a) Segment and page table mapping

(b) Associative memory (TLB)

Figure 12-24 Logical to physical memory mapping example (all numbers are
in hexadecimal)
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12-24(b) shows that pages 2 and 4 of segment 6 have been referenced previously
and therefore their corresponding block numbers are stored in the associative

memory.
From this example it should be evident that the memory management

system can assign any number of pages to each segment. Each logical page can
be mapped into any block in physical memory. Pages can move to different
blocks in memory depending on memory space requirements The only updat-
ing required is the change of the block number in the page table. Segments can
grow or shrink independently without affecting each other. Different seg-
ments can use the same block of memory if it is required to share a program
by many users. For example, block number 12 in physical memory can be
assigned a second logical address F0000 through FOOFF- This specifies segment
number 15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection
Memory protection can be assigned to the physical address or the logical
address. The protection of memory through the physical address can be done
by assigning to each block in memory a number of protection bits that indicate
the type of access allowed to its corresponding block. Every time a page is
moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical address
space rather than the physical address space. This can be done by including
protection information within the segment table or segment register of the
memory management hardware.

The content of each entry in the segment table or a segment register is
called a descriptor. A typical descriptor would contain, in addition to a base
address field, one or two additional fields for protection purposes. A typical
format for a segment descriptor is shown in Fig. 12-1 5. The base address field
gives the base of the page table address in a segmented-page organization or
the block base address in a segment register organization. This is the address
used in mapping from a logical to the physical address. The length field gives
the segment size by specifying the maximum number of pages assigned to the
segment. The length field is compared against the page number in the logical
address. A size violation occurs if the page number falls outside the segment
length boundary. Thus a given program and its data cannot access memory not
assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization, each

Figure 12-25 Format of a typical segment descriptor.

Base address	 Length	 ProtectioJ
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entry in the page table may have its own protection field to describe the acceç
cach pac. i ie iuie 01k liliorinaijon is set into the descriptor by the

master control program of the operating system. Some of the access rights of
interest that are used for protecting the programs residing in memory are:

I. Full read and write privileges
2. Read only (write protection)
3. Execute only (program protection)
4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing
its own instruct-ions. Write protection is useful for sharing system programs
such as utility programs and other library routines. These system programs are
stored in an area of memory where they can be shared by many users. They
can he read by all programs, but no writing is allowed. This protects them from
being changed by other programs.

The execute-only condition protects programs from being copied. It re-
stricts the segment to be referenced only during the instruction fetch phase but
not during the execute phase. Thus it allows the users to execute the segment
program instructions but prevents them from reading the instructions as data
for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time.
These system programs must he protected by making them inaccessible to
unauthorized users. The operating system protection condition is placed in the
descriptors of all operating system programs to prevent the occasional user
from accessing operating system segments.

	

12-1.	 a. How many 128 x 8 RAM chips are needed to provide a memory capacity
of 2048 bytes?

b. How many lines of the address bus must be used to access 2048 bytes of
memory? How many, of these lines will he common to all chips?

c. How many hoes must be decoded for chip select? Specify the size of the
decoders.

	

12-2.	 A computer uses RAM chips of 1024 x I capacity.
a. How many chips are needed, and how should their address lines be

connected to provide a memory capacity of 1024 bytes?
b. How many chips are needed to provide a memory capacity of 16K bytes?

Explain in words how the chips are to be connected to the address bus.

	

12-3.	 A ROM chip of 1024 x 8 bits has four select inputs and operates from a 5-volt
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power supply. How many pins are needed for the IC package? Draw a block
diagram and label all input and output terminals in the ROM.

124. Extend the memory system of Fig. 124 to 4096 bytes of RAM and 4096 bytes
of ROM. List the memory-address map and indicate what size decoders are
needed.

12-5. A computer employs RAM chips of 256 x 8 and ROM chips of 1024 x 8. The
computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped I/O configura-
tion is used. The two highest-order bits of the address bus are assigned 00
for RAM, 01 for ROM, and 10 for interface registers.
a. How many RAM and ROM chips are needed?
b. Draw a memory-address map for the system.
c. Give the address range in hexadecimal for RAM, ROM, and interface.

12-6. An 8-bit computer has a 16-bit address bus. The first 15 lines of the address
are used to select a bank of 32K bytes of memory. The high-order bit of the
address is used to select a register which receives the contents of the data
bus. Explain how this configuration can be used to extend the memory
capacity of the system to eight banks of 32K bytes each, for a total of 256K
bytes of memory.

	

12-7.	 A magnetic disk system has the following parameters;

T, average time to position the magnetic head over a track

R = rotation speed of disk in revolutions per second

= number of bits per track

N = number of bits per sector

Calculate the average time T that it will take to read one sector.

	

12-8.	 What is the transfer rate of an eight-track magnetic tape whose speed is 120
inches per second and whose density is 1600 bits per inch?

12-9. Obtain the complement function for the match logic of one word in an
associative memory. In other words, show that M,' is the sum of exclusive-
OR functions. Draw the logic diagram for M' and terminate it with an
inverter to obtain M,.

12-10. Obtain the Boolean function for the match logic of one word in an associative
memory taking into consideration a tag bit that indicates whether the word
is active or inactive.

	

12-11.	 What additional logic-is required to give a no-match result for a word in an
associative memory when all key bits are zeros?

12-12. a. Draw the logic diagram of all the cells of one word in an associative
memor Include the read and write logic of Fig. 12-8 and the match logic
of Fig. 129.

b. Draw the logic diagram of all cells along one vertical column (column j)
in an associative memory. Include a common output line for all bits in
the same column.



Problems	 485
c. From the diagrams in (a) and (b) show that if output M is connected to-	 :.. .::c s.)ra, thci, .h	 101 i.0 oid	 ili be read out,

provided that only one word matches the masked argument.

	

12-13.	
Describe in words and by means of a block diagram how multiple matched
words can be read out from an associative memory.

	

12-14.	
Derive the logic of one cell and of an entire word for an associative memory
that has an output indicator when the u nmasked argument is greater than
(but not equal to) the word in the associative memory.

	

12-15.	
A two-way Set associative cache memory uses blocks of four words. The
cache can accommodate a total of 2048 words from main memory. The main
memory size is 128K x 32.
a. Formulate all pertinent information required to construct the cache

memory.
b. What is the size of the cache memory?

	

12-16.	
The access time of a cache memory is 100 ns and that of main memory 1000
os. It is estimated that 80 percent of the memory requests are for read and
the remaining 20 percent for write. The hit ratio for read accesses only is 0.9.
A write-through procedure is used.
a. What is the average access time of the s ystem considering onl y memoryread cycles?
b. What is the average access time of the system for both read and write

requests?
c. What is the hit ratio taking into consideration the write cydes?

12-17. A four-way set-associative cache memory has four words in each set. A
replacement procedure based on the least recently used (LRU) algorithm is
Implemented by means of 2-bit counters associated with each word in the
set. A value in the range 0 to 3 is thus recorded for each word. When a hit
occurs, the counter associated with the referenced word 

IS set to 0, those
counters with values originally lower than the referenced one are incre-
mented by 1, and all others remain unchanged. If a miss occurs, the word
with counter value 3 is removed, the new word is put in its place, and its
counter is set to 0. The other three counters are incremented by I. Show that
this procedure works for the following sequence of word reference: A, B, C,
D, B, F, D, A, C, E, C, E. (Start with A, B, C, D as the initial four words,
with word A being the least recently used.)

	

12-18.	
A digital computer has a memory unit of 64K x 16 and a cache memory of
1K words. The cache uses direct mapping with a block size of four words
a. How many bits are there in the tag, index, block, and word fields of the

address format?
b. How many bits are there in each word of cache, and how are they divided

into functions ? Include a valid hit.
C. How many blocks can the cache accommodate?

	

1219.	
An address space is specified by 24 bits and the corresponding memory
space by 16 bits.
a. How many words are there in the address space?
b. 1-low many words are there in the memory space?
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c. If a page consists of 2K words, how many pages and blocks are there in
the system?

	

12-20.	 A virtual memory has a page size of 1K words. There are eight pages
and four blocks. The associative memory page table contains the following
entries:

Page	 Block

0	 3
I	 I
4	 2
6	 0

Make a list of all virtual addresses (in decimal) that will cause a page fault
if used by the CPU.

	

12-21.	 A virtual memory system has an address space of 8K words, a memory space
of 4K words, and page and block sizes of 1K words (see Fig. 12-18). The
following page reference changes occur during a given time interval. (Only
page changes are listed. If the same page is referenced again, it is not listed
twice.)

420126140102357

Determine the four pages that are resident in main memory after each page
reference change if the replacement algorithm used is (a) FIFO; (b) LRU.

	

12-22.	 Determine the two logical addresses from Fig. 12-24(a) that will access
physical memory at hexadecimal address 0I2AF.

12-23. The logical address space in a computer system consists of 128 segments.
Each segment can have up to 32 pages of 4K words in each. Physical memory
consists of 4K blocks of 4K words in each. Formulate the logical and physical
address formats.

	

12-24.	 Give the binary number of the logical address formulated in Prob. 12-23 for
segment 36 and word number 2000 in page 15.
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13-1 characteristics of Multiprocessors
A multiprocessor system is an interconnection of two or more CPUs with
memory and input—output equipment. The term "processor" in 

multiprocessor
can mean either a central processing unit (CPU) or an input—output processor
(TOP). However, a system with a single CPU and one or more lOPs is usually
not included in the definition of a multiprocessor system unless the lOP has
computational facilities comparable to a CPU. As it is most commonl y defined,
a multiprocessor system implies the existence of multiple CPUs, although
usually there will be one or more lOPs as well. As mentioned in Sec. 9-1,
multiprocessors are classified as multiple instruction stream, multiple dataMiMi)	 stream (MIMD) systems.

There are some similarities between multiprocessor and multicomputer
systems since both support concurrent operations. However, there exists an
important distinction between a system with multiple computers and a system
with multiple processors. Computers are interconnected with each other by
means of communication lines to form a computer network. The network consistsof several autonomous computers that may or may not communicate with eachother. A multiprocessor system , is controlled by one operating system that
provides interaction between processors and all the components of the system
cooperate in the solution of a problem:

489
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Although some large-scale computers include two or more CPUs in their

microprocessor overall system, it is the emergence of the microprocessor that has been the
major motivation for multiprocessor systems. The tact that microprocessors
take very little physical space and are very inexpensive brings about the
feasibility of interconnecting a large number of microprocessors into one corn-

VLSI posite system. Very-large-scale integrated circuit technology has reduced the
cost of computer components to such a low level that the concept of applying
multiple processors to meet system performance requirements has become an
attractive design possibility.

Multiprocessing improves the reliability of the system so that a failure or
error in one part has a limited effect on the rest of the system. If a fault causes
one processor to fail, a second processor can be assigned to perform the
functions of the disabled processor. The system as a whole can continue to
function correctly with perhaps some loss in efficiency.

The benefit derived from a multiprocessor organization is an improved
system performance. The system derives its high performance from the fact
that computations can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.

2. A single job can be partitioned into multiple parallel tasks.

An overall function can be partitioned into a number of tasks that each
processor can handle individually. System tasks may be allocated to special-
purpose processors whose design is optimized to perform certain types of
processing efficiently. An example is a computer system where one processor
performs the computations for an industrial process control while others
monitor and control the various parameters, such as temperature and flow
rate. Another example is a computer where one processor performs high-
speed floating-point mathematical computations and another takes care of
routine data-processing tasks.

Multiprocessing can improve performance by decomposing a program
into parallel executable tasks. This can be achieved in one of two ways. The user
can explicitly declare that certain tasks of the program be executed in parallel.
This must be done prior to loading the program by specifying the parallel
executable segments. Most multiprocessor manufacturers provide an operat-
ing system with programming language constructs suitable for specifying
parallel processing. The other, more efficient way is to provide a compiler with
multiprocessor software that can automatically detect parallelism in a user's
program. The compiler checks for data dependency in the program. If a program
depends on data generated in another part, the part yielding the needed data
must be executed first. However, two parts of a program that do not use data
generated by each can run concurrent liw paraflciizing compiler cnek the
entire program to detect any possible data dependencies. These that have no
data dependency are then considered for concurrent scheduling on different
processors.
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Multiprocessors are classified by the way their memory is organized. A
iultiprocecnr. c stern with common shared memory is classified as atightly coupled	 rneinoru or tightly coupled m ultiprocessor. This does not preclude each processor
from having its own local memory. In fact, most commercial tightly coupled
multiprocessors provide a cache memory with each CPU. In addition, there is
a global common memory that all CPUs can access. Information can therefore
be shared among the CPUs by placing it in the common global memory,

loosely coupled An alternative model of microprocessor is the distributed-memory or looselycoup led system. Each processor element in a loosely coupled system has its own
private local memory. The processors are tied together by a switching scheme
designed to route information from one processor to another through a mes-
sage-passing scheme. The processors relay program and data to other proces-
sors in packets. A packet consists of an address, the data content, and some
error detection code. The packets are addressed to a specific processor or taken
by the first available processor, depending on the communication system used.
Loosely coupled systems are most efficient when the interaction between tasks
is minimal, whereas tightly coupled systems can tolerate a higher degree of
interaction between tasks.

13-2 Interconnection Structures

The components that form a multiprocessor system are CPUs, lOPs connected
to input—output devices, and a memory unit that may be partitioned into a
number of separate modules. The interconnection between the components
can have different physical configurations, depending on the number of trans-
fer paths that are available between the processors and memory in a shared
memory system or among the processing elements in a loosely coupled sys-
tem. There are several physical forms available for establishing an interconnec-
tion network. Some of these schemes are presented in this section:

1. Time-shared common bus
2. Multiport memory
3. Crossbar switch
4. Multistage switching network
5. Hypercube system

Time-Shared Common Bus

A common-bus multiprocessor system consists of a number of processors
connected through a common path to a memory unit. A time-shared common
bus for five processors is shown in Fig. 13-1. Only one processor can commu-
nicate with the memory or another processor at any given time. Transfer
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Figure 134 Time-shared common bus organization.

operations are conducted by the processor that is in control of the bus at the
time. Any other processor wishing to initiate a transfer must first determine
the availability status of the bus, and only after the bus becomes available can
the processor address the destination unit to initiate the transfer. A command
is issued to inform the destination unit what operation is to be performed. The
receiving unit recognizes its address in the bus and responds to the control
signals from the sender, after which the transfer is initiated. The system may
exhibit transfer conflicts since one common bus is shared by all processors.
These conflicts must be resolved by incorporating a bus controller that estab-
lishes priorities among the requesting units.

A single common-bus system is restricted to one transfer at a time. This
means that when one processor is communicating with the memory, all other
processors are either busy with internal operations or must be idle waiting for
the bus. As a consequence, the total overall transfer rate within the system is
limited by the speed of the single path The processors in the system can be
kept busy more often through the implementation of two or more independent
buses to permit multiple simultaneous bus transfers. However, this increases
the system cost and complexity.

A more economical implementation of a dual bus structure is depicted in
Fig. 13-2. Here we have a number of local buses each connected to its own local
memory and to one or more processors. Each local bus may be connected to
a CPU, an lOP, or any combination of processors. A system bus controller links
each local bus to a common system bus. The 110 devices connected to the local
lop, as well as the local memory, are available to the local processor. The
memory connected to the common system bus is shared by all processors. If
an lop is connected directly to the system bus, the I/O devices attached to it
may be made	 iiabic to all processors. Uni one processoi an comm'ncate

shared memory with the shared memory and other common resources through the system bus
at any given time. The other processors are kept busy communicating with
their local memory and I/O devices. Part of the local memory may be designed



SE<--TV,IN 13.2 lnEerco flflection Structure.,	 493
Local bus

COflfnOfl 1	
SystemSbared	 bush	 r(yLtmemory	

J Controfle tlopK)	 Local
memo'

Systcm bus

system
.bus,	 CPU	 lop 	 Local

Local bus

	

System	 -
bus	

i-QCai

	

Controller	 memory

Local bus
Figure 

13.2 System bus structure for multiprocessors.

as a cache m
emory attached to the CPU (see Sec. 126). In this way, the average

access time of the local memory can be made to approach the cycle time of the
CPU to which it is attached

Multiport Memory

A multiport memory system employs separate buses between each memorymodule and each CPU. This is shown in Fig. 13-3 for four CPUs and four
memory modules (MMs). Each processor bus is Connected to each rnenlorv
module A processor bus consists of the address, data, and control linesrequired to co

mmunicate with memory. The memory module is said to have
four ports and each port accommodates one of the buses. The module must
have internal control logic to determine which port will have access to memory
at any given time, Memory access conflicts are resolved by assigning fixed
Priorities to each memory port. The priority for memory access associated with
each processor may be established by the physical port position that its bus
occupies in each module Thus CPU I will have priority over CPU 2, CPU 2
will have priority over CPU 3, and CPU 4 will have the lowest priority.

The advantage of the multiport memory organization is the high transfer
rate that can be achieved because of the multiple paths between processors andmemory. The disadvantage is that it requires expensive memory control logic
and a large number of cables and connectors As a consequence, this intercon-
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Memory modules

Figure 13-3 Multiport memory organization.

nection structure is usually appropriate for systems with a small number of

processors.

Crossbar Switch
The crossbar switch organization consists of a number of crosspciifltS that are
placed at intersections between processor buses and memory module paths.
Figure 13-4 shows a crossbar switch interconnection between four CPUs and
four memory modules. The small square in each crosspoint is a switch that
determines the path from a processor to a memory module. Each switch point
has control logic to set up the transfer path between a processor and memory.
It examines the address that is placed in the bus to determine whether its
particular module is being addressed. It also resolves multiple requests for
access to the same memory module on a predetermined priority basis.

Figure 13-5 shows the functional design of a crossbar switch connected
to one memory module. The circuit consists of multiplexers that select the data.



Data. address. and
eorI(roj from CPU I

Data. address. and
control from CPU 2

Data, address. and
control from CPU 3

Memory module'

Figure 13-4 Crossbar switch.

Figure 13-5 Block diagram of crossbar switch.
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address, and control from one CPU for communication with the memorymodule. Prtv	 ''H	 [ ciec	 CI!
ii toie r us attempt to access the same memory. The multiplexers

are controlled with the binary code that is generated by a priority encoder
within the arbitration logic.

A crossbar switch organization supports simultaneous transfers from all
memory modules because there is a separate path associated with each mod-
ule. However, the hardware required to implement the switch can become
quite large and complex.

Multistage Switching Network

The basic component of a multistage network is a two-input, two-outputinterchange switch	
interchange switch. As shown in Fig. 13-6, the 2 x 2 switch has two inputs,
labeled A and B, and two outputs, labeled 0 and 1. There are control signals
(not shown) associated with the switch that establish the interconnection
between the input and output terminals. The switch has the capability of
connecting input A to either of the outputs. Terminal B of the switch behaves
in a similar fashion. The switch also has the capability to arbitrate between
conflicting requests. If inputs A and B both request the same output terminal,
only one of them will be connected; the other will be blocked.

Using the 2 x 2 switch as a building block, it is possible to build a
Multistage network to control the communication between a number of sources
and destinations To see how this is done, consider the binary tree shown in
Fig. 13-7. The two processors P1 and P2 are connected through switches to eight
memory modules marked in binary from 000 through ill. The path from a
source to a destination is determined from the binary bits of the destination

Figure 13-6 Operation of a 2 x 2 interchange switch.
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Figure 13-7 Binary (ree with 2 x 2 switches.

number. The first bit of the destination number determines the switch output
in the first level. The second bit specifies the output of the switch in the second
level, and the third bit specifies the output of the switch in the third level. For
example, to connect P1 to memory 101, it is necessary to form a path from P
to output 1 in the first-level switch, output 0 in the second-level switch, and
output I in the third-level switch. It is clear that either P, or P2 can be connected
to any one of the eight memories, Certain request patterns, however, cannot
be satisfied simultaneously. For example, if P1 is connected to one of the
destinations 000 through 011, P2 can be connected to only one of the destina-
tions 100 through 111.

Many different topologies have been proposed for multistage switching
networks to control processor-memory communication in a tightly coupled
multiprocessor system or to control the communication between the process-
ing elements in a loosely coupled system. One such toDolov is the nmeqi

omega network	 w't	 wyrK '-nFig. 	 n	 Jtthc IcAaLtiy tilte
path from each source to any particular destination. Some request patterns,
however, cannot be connected simultaneously. For example, any two sources
cannot be connected simultaneously to destinations 000 and 001.
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Figure 13-8 8 x 8 omega switching network,

A particular request is initiated in the switching network by the source,
which sends a 3-bit pattern representing the destination number. As the binary
pattern moves through the network, each level examines a different bit to
determine the 2 x 2 switch setting. Level I inspects the most significant bit,
level 2 inspects the middle bit, and level 3 inspects the least significant bit.
When the request arrives on either input of the 2 X 2 switch, it is routed to the
upper output if the specified bit is 0 or to the lower output if the bit is 1

In a tightly coupled multiprocessor system, the source is a processor and
the destination is a memory module. The first pass through the network sets
up the path. Succeeding passes are used to transfer the address into memory
and then transfer the data in either direction, depending on whether the
request is a read or a write. In a loosely coupled multiprocessor system, both
the source and destination are processing elements. After the path is estab-
lished, the source processor transfers a message to the destination processor.

Hypercube Interconnection
The hypercube or binary n-cube multiprocessor structure is a loosely coupled
system composed of N = 2" processors interconnected in an n-dimensional
binary cube. Each processor forms a node of the cube. Although it is customary
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to refer to each node as having a processor, in effect it contains not only a CPU
but also local memory and I/O interface. Each processor has direct communi-
cation paths to n other neighbor processors. These paths correspond to the
edges of the cube. There are 2" distinct n-bit binary addresses that can be
assigned to the processors. Each processor address differs from that of each
of its n neighbors by exactly one bit position.

Figure 13-9 shows the hypercube structure for n = 1, 2, and 3. A one-cube
structure has n = 1 and 2" = 2. It contains two processors interconnected by
a single path. A two-cube structure has n = 2 and 2" = 4. It contains four nodes
interconnected as a square. A three-cube structure has eight nodes intercon-
nected as a cube. An n-cube structure has 2" nodes with a processor residing
in each node. Each node is assigned a binary address in such a way that the
addresses of two neighbors differ in exactly one bit position. For example, the
three neighbors of the node with address 100 in a three-cube structure are 000,
110, and 101. Each of these binary numbers differs from address 100 by one
bit value.

Routing messages through an n-cube structure may take from one to n
links from a source node to a destination node. For example, in a three-cube
structure, node 000 can communicate directly with node 001. It must cross at
least two links to communicate with 011 (from 000 to 001 to Oil or from 000
to 010 to 011). It is necessary to go through at least three links to communicate
from node 000 to node 111. A routing procedure can be developed by comput-
ing the exclusive-OR of the source node address with the destination node
address. The resulting binary value will have 1 bits corresponding to the axes
on which the two nodes differ. The message is then sent along any one of the
axes. For example, in a three-cube structure, a message at 010 going to 001
produces an exclusive-OR of the two addresses equal to 011. The message can
be sent along the second axis to 000 and then through the third axis to 001.

Figure 13-9 Hypercube structures for n = 1,2,3.
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A representative of the hypercube architecture is the Intel iPSC computer
complex. It consists of 128 (n = 7) microcomputers connected through commu-

d JL1, IluaLing-poinl processor,
local memory, and serial communication interface units. The individual nodes
operate independently on data stored in local memory according to resident
programs. The data and programs to each node come through a message-pass-
ing system from other nodes or from a cube manager. Application programs
are developed and compiled on the cube manager and then downloaded to the
individual nodes. Computations are distributed through the system and exe-
cuted concurrently.

13-3 Interprocessor Arbitration

Computer systems contain a number of buses at various levels to facilitate the
transfer of information between components. The CPU contains a number of
internal buses for transferring information between processor registers and
ALU. A memory bus consists of lines for transferring data, address, and
read/write information. An 110 bus is used to transfer information to and from
input and output devices. A bus that connects major components in a multi-

system bus processor system, such as CPUs, lOPs, and memory, is called a system bus. The
physical circuits of a system bus are contained in a number of identical printed
circuit boards. Each board in the system belongs to a particular module. The
board consists of circuits connected in parallel through connectors. Each pin
of each circuit connector is connected by a wire to the corresponding pin of all
other connectors in other boards. Thus any board can be plugged into a slot
in the backplane that forms the system bus.

The processors in a shared memory multiprocessor system request access
to common memory or other common resources through the system bus. If no
other processor is currently utilizing the bus, the requesting processor may be
granted access immediately. However, the requesting processor must wait if
another processor is currently utilizing the system bus. Furthermore, other
processors may request the system bus at the same time. Arbitration must then
he performed to resolve this multiple contention for the shared resources. The
arbitration logic would be part of the system bus controller placed between the
local bus and the system bus as shown in Fig. 13-2.

System Bus

A typical system bus consists of approximately 100 signal lines, These lines are
divided into three functional groups: data, address, and control. In addition,
there are power distribution lines that supply power to the components. For
example, the IEEE standard 796 multibus system has 16 data lines, 24 address
lines, 26 control lines, and 20 power lines, for a total of 86 lines.
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synchronous bus

asynchronous bus

The data lines provide a path for the transfer of data between processors
and common memory. The number of data lines is usually a multiple of 8, with
16 and 32 being most common. The address lines are used to identify a memory
address or any other source or destination, such as input or output ports. The
number of address lines determines the maximum possible memory capacity
in the system. For example, an address of 24 lines can access up to 224 (16 mega)
words of memory. The data and address lines are terminated with three-state
buffers (see Fig. 4-5). The address buffers are unidirectional from processor to
memory. The data lines are bidirectional (see Fig. 12-3), allowing the transfer
of data in either direction.

Data transfers over the system bus may be synchronous or asynchronous.
In a synchronous bus, each data item is transferred during a time slice known
in advance to both source and destination units. Synchronization is achieved
by driving both units from a common clock source. An alternative procedure
is to have separate clocks of approximatel y the same frequency in each unit.
Synchronization signals are transmitted periodically in order to keep all clocks
in the system in step with each other. In an asynchronous bus, each data item
being transferred is accompanied by handshaking control signals (see Fig. 11-9)
to indicate when the data are transferred from the source and received by the
destination.

The control lines provide signals for controlling the information transfer
between units. Timing signals indicate the validity of data and address infor-
mation. Command signals specify operations to be performed. Typical control
lines include transfer signals such as memory read and write, acknowledge of
a transfer, interrupt requests, bus control signals such as bus request and bus
grant, and signals for arbitration procedures.

Table 13-1 lists the 86 lines that are available in the IEEE standard 796
rnultibus. It includes 16 data lines and 24 address lines. All signals in the
multihus are active or enabled in the low-level state. The data transfer control
signals include memory read and write as well as [10 read and write. Conse-
quently, the address lines can be used to address separate memory and 110
spaces. The memory or 1/0 responds with a transfer acknowledge signal when
the transfer is completed. Each processor attached to the multibus has up to
eight interrupt request outputs and one interrupt acknowledge input line.
They are usually applied to a priority interrupt controller similar to the one
described in Fig. 11-21. The miscellaneous control signals provide timing and
initialization capabilities. In particular, the bus lock signal is essential for
multiprocessor applications. This processor-activated signal serves to prevent
other processors from getting hold of the bus while executing a test and set
instruction. This instruction is needed for proper processor synchronization
I..,-	 C.,.	 1

ihe six bus arbitration signals are used ior interprocessor arbitration.
These signals will be explained later after a discussion of the serial and parallel
arbitration procedures.
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TABLE 13-I IEEE Standard 796 Multibus Signals

Signal name

Data and address
Data lines (lb lines)	 DATAO-DATA15
Address lines (24 lines)	 ADRSO-ADRS23

Data transfer
Memory read	 MRDC
Memory write	 MWTC
10 read	 IORC
JO write	 IOWC
Transfer acknowledge 	 TACK

Interrupt control
Interrupt request (8 lines)	 INTO-INT7
Interrupt acknowledge	 INTA

Miscellaneous control
Master clock	 CCLK
System initialization	 INIT
Byte high enable	 BHEN
Memory inhibit (2 lines)	 INHI-INH2
Bus lock	 LOCK

Bus arbitration
Bus requçest	 BREQ
Common bus request	 CBRQ
Bus busy	 BUSY
Bus clock	 BCLK
Bus priority in	 BPRN
Bus priority out	 BPRO

Power and ground (20 lines)

Reprinted with permission of the IEEE.

Serial Arbitration Procedure
Arbitration procedures service all processor requests on the basis of established
priorities. A hardware bus priority resolving technique can be established by
means of a serial or parallel connection of the units requesting control of
the system bus. The serial priority resolving technique is obtained from a
daisy-chain connection of bus arbitration circuits similar to the priority inter-
rupt logic presented in Sec. 11-5. The processors connected to the system bus
are assigned priority according to their position along the priority control line.
The device closest to the priority line is assigned the highest priority. When
multiple devices concurrently request the use of the bus, the device with the
highest priority is granted access to it.

Figure 13-10 shows the daisy-chain connection of four arbiters. It is
assumed that each processor has its own bus arbiter logic with priority-in and
priority-out lines. The priority out (P0) of each arbiter is connected to the
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Figure 13-10 Serial (daisy-chain) arbitration.

priority in (P1) of the next-lower-priority arbiter. The P1 of the highest-priority
unit is maintained at a logic I value. The highest -pr;ority unit in the system
will always receive access to the system bus w-1en it requests it. Th P0 output
for a particular arbiter is equal to 1 if its Fl input is equal to 1 and the processor
associated with the arbiter logic is not requesting control of the bus. This is the
way that priority is passed to the next unit in the chain. If the processor requests
control of the bus and the corresponding arbiter finds its P1 input equal to 1,
it sets its P0 output to (I. Lower-priority arbiters receive a 0 in P1 and generate
a 0 in P0. Thus the processor whosc arbiter has e.. P1 = 1 and P0 = 0 is the
one that is given control of the system bus.

A processor may be in the middle of a bus operatin when a nigher-
priority processor requests the bus. The lower pr'oiry processor must corn
plete its bus operation before it relinquishes control of the bus, The bus buc:
line shown in Fig. 13-10 provides a mechanism for an orderly transfer of
control. The busy line comes from open-collector circuits in each unit and
provides a wired-OR logic connection. When an arbiter receives control of the
bus (because i P1 = I and P0 = 0) it examines tbc busy line. If the line is
inactive, it means that no other processor is using the bus. The arbiter activates
the busy line and its processor takes control of the bus. However, if the arbiter
finds the busy line active, it means thai another processor is currently using
the bus. The arbiter keeps examining the busy line while the lower-priority
processor that lost control of the bus completes its operation. When the bus
busy line returns to its inactive state, the higher-priority arbiter enables the
busy line, and its corresponding processor can then conduct the required bus
transfers.

Parallel Arbitration Logic
The parallel bus arbitration technique uses an external priority encoder and a
decoder as shown in Fig. 13-11. Each bus arbiter in the parallel scheme has
a bus request output line and a bus acknowledge input line. Each arbiter
enables the request line when its processor is requesting access to the system
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Bus	 1	 1	 Bus	 Bus - 1	 Bus1

Figure 13-11	 Parallel arbitration.

bus. The processor takes control of the bus if its acknowledge input line is
enabled. The bus busy line provides an orderly transfer of control, as in the
daisy-chaining case.

Figure 13-11 shows the request lines from four arbiters going into a 4 x 2
priority encoder. The output of the encoder generates a 2-bit code which
represents the highest-priority unit among those requesting the bus. The truth
table of the priority encoder can be found in Table 11-2 (Sec. 11-5). The 2-bit
code from the encoder output drives a 2 x 4 decoder which enables the proper
acknowledge line to grant bus access to the highest-priority unit.

We can now explain the function of the bus arbitration signals listed in
Table 13-1. The bus priority-in BPRN and bus priority-out BPRO are used for
a daisy-chain connection of bus arbitration circuits. The bus busy signal BUSY
is an open-collector output used to instruct all arbiters when the bus is busy
conducting a transfer. The common bus request CBRQ is also an open-collector
output that serves to instruct the arbiter if there are any other arbiters of
lower-priority requesting use of the system bus. The signals used to construct
a parallel arbitration procedure are bus request BREQ and priority-in BPRN,
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corresponding to the request and acknowledge signals in Fig. 13-11. The bus
clock BCLK is used to synchronize all bus transactions.

Dynamic Arbitration Algorithms
The two bus arbitration procedures just described use a static priority al-
gorithm since the priority of each device is fixed by the way it is connected
to the bus. In contrast, a dynamic priority algorithm gives the system the
capability for changing the priority of the devices while the system is in
operation. We now discuss a few arbitration procedures that use dynamic
priority algorithms.

time slice The time slice algorithm allocates a fixed-length time slice of bus time that
is offered sequentially to each processor, in round-robin fashion. The service
given to each system component with this scheme is independent of its loca-
tion along the bus. No preference is given to any particular device since each
is allotted the same amount of time to communicate with the bus.

polling In a bus system that uses polling, the bus grant signal is replaced by a set
of lines called poll lines which are connected to all units. These lines are used
by the bus controller to define an address for each device connected to the bus.
The bus controller sequences through the addresses in a prescribed manner.
When a processor that requires access recognizes its address, it activates the
bus busy line and then accesses the bus. After a number of bus cycles, the
polling process continues by choosing a different processor. The polling se-
quence is normally programmable, and as a result, the selection priority can
be altered under program control.

LRU The least recently used (LRU) algorithm gives the highest priority to the
requesting device that has not used the bus for the longest interval. The
priorities are adjusted after a number of bus cycles according to the LRU
algorithm. With this procedure, no processor is favored over any other since
the priorities are dynamically changed to give every device an opportunity to
access the bus.

FIFO In the first-come, first-serve scheme, requests are served in the order
received. To implement this algorithm, the bus controller establishes a queue
arranged according to the time that the bus requests arrive. Each processor
must wait for its turn to use the bus on a first-in, first-out (FIFO) basis.

rotating daisy-chain The rotating daisy-chain procedure is a dynamic extension of the daisy-
chain algorithm. In this scheme there is no central bus controller, and the
priority line is connected from the priority-out of the last device back to the
priority-in of the first device in a closed loop. This is similar to the connections
shown in Fig. 13-10 except that the P0 output of arbiter 4 is connected to the
P1 input of arbiter 1. Whichever device has access to the bus serves as a bus
controller tor the tollowing arbitration. Each arbiter priority for a given bus
cycle is determined by its position along the bus priority line from the arbiter
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whose processor is currently controlling the bus. Once an arbiter releases the
bus, it hi the tuv.est priority.

13-4 Interprocessor Communication
and Synchronization

The various processors in a multiprocessor system must be provided with a
facility for communicating with each other. A communication path can be
established through common input—output channels. In a shared memory
multiprocessor system, the most common procedure is to set aside a portion
of memory that is accessible to all processors. The primary use of the common
memory is to act as a message center similar to a mailbox, where each processor
can leave messages for other processors and pick up messages intended for it.

The sending processor structures a request, a message, or a procedure,
and places it in the memory mailbox. Status bits residing in common memory
are generally used to indicate the condition of the mailbox, whether it has
meaningful information, and for which processor it is intended. The receiving
processor can check the mailbox periodically to determine if there are valid
messages for it. The response time of this procedure can he time consuming
since a processor will recognize a request only when polling messages. A more
efficient procedure is for the sending processor to alert the receiving processor
directly by means of an interrupt signal. This can be accomplished through a
software-initiated interprocessor interrupt by means of an instruction in the
program of one processor which when executed produces an external interrupt
condition in a second processor. This alerts the interrupted processor of the
fact that a new message was inserted by the interrupting processor.

In addition to shared memory, a multiprocessor system may have other
shared resources. For example, a magnetic disk storage unit connected to an
lOP may be available to all CPUs. This provides a facility for sharing of system
programs stored in the disk. A communication path between two CPUs can
be established through a link between two lOPs associated with two different
CPUs. This type of link allows each CPU to treat the other as an 110 device so
that messages can be transferred through the 110 path.

To prevent conflicting use of shared resources by several processors there
must be a provision for assigning resources to processors. This task is given
to the operating system. There are three organizations that have been used in
the design of operating system for multiprocessors: master-slave configura-
tion, separate operating system, and distributed operating system.

In a master-slave mode, one processor, designated the master, always
executes the opera ting system functions. The remaining processors, denoted
as slaves, do not perform operating system functions. If a slave processor needs
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an operating system service, it must request it by interrupting the master and
waiting until the current program can be interrupted.

In the separate operating system organization, each processor can exe-
cute the operating system routines it needs. This organization is more suitable
for loosely coupled systems where every processor may have its own copy of
the entire operating system.

In the distributed operating system organization, the operating system
routines are distributed among the available processors. However, each partic-
ular operating system function is assigned to only one processor at a time. This
type of organization is also referred to as a floating operating system since the
routines float from one processor to another and the execution of the routines
may be assigned to different processors at different times.

In a loosely coupled multiprocessor system the memor y is distributed
among the processors and there is no shared memory for passing information.
The communication between processors is by means of message passing
through 110 channels. The communication is initiated by one processor calling
a procedure that resides in the memory of the processor with which it wishes
to communicate. When the sending processor and receiving processor name
each other as a source and destination, a channel of communication is estab-
lished. A message is then sent with a header and various data objects used to
communicate between nodes.' There may be a number of possible paths avail-
able to send the message between any two nodes. The operating system in each
node contains routing information indicating the alternative paths that can be
used to send a message to other nodes. The communication efficiency of the
interprocessor network depends on the communication routing protocol, pro-
cessor speed, data link speed, and the topology of the network.

Interprocessor Synchronization
The instruction set of a multiprocessor contains basic instructions that are used
to implement communication and synchronization between cooperating pro-
cesses. Communication refers to the exchange of data between different
processes. For example, parameters passed to a procedure in a different pro-
cessor constitute interprocessor communication. Synchronization refers to the
special case where the data used to communicate between processors is control
information. Synchronization is needed to enforce the correct sequence of
processes and to ensure mutually exclusive access to shared writable data.

Multiprocessor systems usually include various mechanisms to deal with
the synchronization of resources. Low-level primitives are implemented di-
rectv by the harvi"e Thc Ll ninnitivt drt'	 i1i, .ht fluT'

mutual exclusion for more complex mechanisms implemented in software. A
number of hardware mechanisms for mutual exclusion have been developed.
One of the most popular methods is through the use of a binary semaphore.
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Mutual Exclusion with a Semaphore
A properly f unctionli ng multiprocessor system must provide a mechanism that
will guarantee orderly access to shared memory and other shared resources.
This is necessary to protect data from being changed simultaneously by two
or more processors. This mechanism has been termed mutual exclusion. Mutual
exclusion must be provided in a multiprocessor system to enable one processor
to exclude or lock out access to a shared resource by other processors when

critical section	 it is in a critical section. A critical section is a program sequence that, once begun,
must complete execution before another processor accesses the same shared
resource.

A binary variable called a semaphore is often used to indicate whether or
not a processor is executing a critical section. A semaphore is a software-
controlled flag that is stored in a memory location that all processors can access.
When the semaphore is equal to 1, it means that a processor is executing a
critical program, so that the shared memory is not available to other processors.
When the semaphore is equal to 0, the shared memory is available to any
requesting processor. Processors that share the same memory segment agree
by convention not to use the memory segment unless the semaphore is equal
to 0, indicating that memory is available. They also agree to set the semaphore
to I when they are executing a critical section and to clear it to 0 when they
are finished.

Testing and setting the semaphore is itself a critical operation and must
be performed as a single indivisible operation. If it is not, two or more proces-
sors may test the semaphore simultaneously and then each set it, allowing
them to enter a critical section at the same time. This action would allow
simultaneous execution of critical section, which can result in erroneous initial-
ization of control parameters and a loss of essential information.

A semaphore can be initialized by means of a test and set instruction in
hardware lock conjunction with a hardware lock mechanism. A hardware lock is a processor-

generated signal that serves to prevent other processors from using the system
bus as long as the signal is active. The test-and-set instruction tests and sets
a semaphore and activates the lock mechanism during the time that the instruc-
tion is being executed. This prevents other processors from changing the
semaphore between the time that the processor is testing it and the time that
it is setting it. Assume that the semaphore is a bit in the least significant
position of a memory word whose address is symbolized by SEM. Let
the mnemonic TSL designate the "test and set while locked" operation. The
instruction

TSL	 SEM

will be executed in two m€mory cycles (the first to read and the second to write)
without interference as follows:

R *— M[SEMI	 Test semaphore
M[SEM] —1	 Set semaphore
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The semaphore is tested by transferring its value to a Processor recisterR -
then :1	 to 1 he	 fl i	 urimn	 Ji u Jo	 i uifinds that R 1, it knows that the semaphore was originally set. (The fact that
it is set again does not change the semaphore value.) That means that another
processor is executing a critical section, so the processor that checked the
semaphore does not access the shared memory. If R 0, it means that the
common memory (or the shared resource that the semaphore represents) is
available. The semaphore is set to ito prevent other processors from accessing
memory. The processor can now execute the critical section. The last instruc-
tion in the program must clear location SEM to zero to release the shared
resource to other processors.

Note that the lock signal must be active during the execution of the
test-and-set instruction. It does not have to be active once the semaphore is set.
Thus the lock mechanism prevents other processors from accessing memory
while the semaphore is being set. The semaphore itself, when set, prevents
other processors from accessing shared memory while one processor is execut-
ing a critical section.

13-5 Cache Coherence

The operation of cache memory is explained in Sec. 12-6. The primary advan-
tage of cache is its ability to reduce the average access time in uniprocessors.
When the processor finds a word in cache during a read operation, the main
memory is not involved in the transfer. If the operation is to write, there are
two commonly used procedures to update memory. In the write-through policy,
both cache and main memory are updated with every write operation. In the
write-back policy, only the cache is updated and the location is marked so that
it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a
common memory. In addition, each processor may have a local memory, part
or all of which may be a cache. The compelling reason for having separate
'aches for each processor is to reduce the average access time in each processor.
The same information may reside in a number of copies in some caches and
main memory. To ensure the ability of the system to execute memory opera-
tions correctly, the multiple copies must be kept identical. This requirement
imposes a cache coherence problem. A memory scheme is coherent if the value
returned on a load instruction is always the value given by the latest store
instruction with the same address. Without a proper solution to the cache
coherence problem, caching cannot be used in bus-oriented multiprocessors
with two or more processors.

Conditions for Incoherence
Cache coherence problems exist in multiprocessors with private caches be-
cause of the need to share writable data. Read-only data can safely be replicated
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without cache coherence enforcement mechanisms. To illustrate the problem,
consider the three-processor configuration with private caches shown in
Fig. 13-12. Sometime during the operation an element X from main memory
is loaded into the three processors, P,. P2, and P3. As a consequence, it is also
copied into the private caches of the three processors. For simplicity, we
assume that X contains the value of 52. The load on X to the three processors
results in consistent copies in the caches and main memory.

If one of the processors performs a store to X, the copies of X in the caches
become inconsistent. A load by the other processors will not return the latest
value. Depending on the memory update policy used in the cache, the main
memory may also be inconsistent with respect to the cache. This is shown in
Fig. 13-13. A store to X (of the value of 120) into the cache of processor P1

updates memory to the new value in a write-through policy. A write-through
policy maintains consistency between memory and the originating cache, but
the other two caches are inconsistent since they still hold the old value. In a
write-back policy, main memory is not updated at the time of the store. The
copies in the other two caches and main memory are inconsistent. Memory is
updated eventually when the modified data in the cache are copied back into
memory.

Another configuration that may cause consistency problems is a direct
memory access (DMA) activity in conjunction with an LOP connected to the
system bus. In the case of input, the DMA may modify locations in main
memory that also reside in cache without updating the cache. During a DMA
output, memory locations may be read before they are updated from the cache
when using a write-back policy. 1/0-based memory incoherence can be over-
come by making the lOP a participant in the cache coherent solution that is
adopted in the system.

Solutions to the Cache Coherence Problem
Various schemes have been proposed to solve the cache coherence problem in
shared memory multiprocessors. We discuss some of these schemes briefly
here. See references 3 and 10 for more detailed discussions.

A simple scheme is to disallow private caches for each processor and have
a shared cache memory associated with main memory. Every data access is
made to the shared cache. This method violates the principle of closeness of
CPU to cache and increases the average memory access time. In effect, this
scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache to
each processor. One scheme that has been used allows only nonshared and
read-only dah to he stored in caches. Such items are called cachahie Shared
writable data are noncachable. The compiler must tag data as either cachable or
noncachable, and the system hardware makes sure that only cachable data are
stored in caches. The noncachable data remain in main memory. This method
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Figure 1342 Cache configuration after a load on X.

Figure 13-13 Cache configuration after a store to X by processor P.
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restricts the type of data stored in caches and introduces an extra software
overhead that may degradate performance.

A scheme that allows writable data to exist in at least one cache is a
method that employs a centralized global table in its compiler. The status of
memory blocks is stored in the central global table. Each block is identified as
read-only (RO) or read and write (RW). All caches can have copies of blocks
identified as RO. Only one cache can have a copy of an RW block. Thus if the
data are updated in the cache with an RW block, the other caches are not
affected because they do not have a copy of this block.

The cache coherence problem can be solved by means of a combination
of software and hardware or by means of hardware-only schemes. The two
methods mentioned previously use software-based procedures that require the
ability to tag information in order to disable caching of shared writable data.
Hardware-only solutions are handled by the hardware automatically and have
the advantage of higher speed and program transparency. In the hardware
solution, the cache controller is specially designed to allow it to monitor all bus
requests from CPUs and lOPs. All caches attached to the bus constantly
monitor the network for possible write operations. Depending on the method
used, they must then either update or invalidate their own cache copies when
a match is detected. The bus controller that monitors this action is referred to

snoopy cache	 as a snoopy cache controller. This is basically a hardware unit designed to main-
controller	 tain a bus-watching mechanism over all the caches attached to the bus.

Various schemes have been proposed to solve the cache coherence prob-
lem by means of snoopy cache protocol. The simplest method is to adopt a
write-through policy and use the following procedure. All the snoopy con-
trollers watch the bus for memory store operations. When a word in a cache
is updated by writing into it, the corresponding location in main memory is
also updated. The local snoopy controllers in all other caches check their
memory to determine if they have a copy of the word that has been overwritten.
If a copy exists in a remote cache, that location is marked invalid. Because all
caches snoop on all bus writes, whenever a word is written, the net effect
is to update it in the original cache and main memory and remove it from
all other caches. If at some future time a processor accesses the invalid
item from its cache, the response is equivalent to a cache miss, and the updated
item is transferred from main memory. In this way, inconsistent versions are
prevented.

-

13-1. Discuss the difference between tightly coupled multiprocessors and loosely
coupled multiprocessors from the viewpoint of hardware organization and
programming techniques.
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	13-2.	

What is the purpose of the system bus controller shown in Fig. 13-2? Explain
how the system can be dosigrd to distinguish L'et..	 t Icamemory and references to Common shared memory.

	

13-3.	 How many switch points are there in a crossbar switch network that con-
nects p processors to m memory modules?

	

134.	
The 8 x 8 omega switching network of Fig. 13-8 has three stages with four
switches in each stage, for a total of 12 Switches. How many stages and
switches per stage are needed in an n x n omega switching network?

	

13-5.	
Suppose that the wire breaks between the switch in the first row, second
column and the switch in the second row, third column in the omega
switching network of Fig. 13-8. What paths will be disconnected?

	

13-6.	 Construct a diagram for a 4 x 4 omega switching network. Show the switch
setting required to connect input 3 to output 1.

	

13-7.	 Three types of switches are used to design a multistage interconnection
network: an interchange switch with two inputs and two outputs as in Fig.
13-6, an arbitration switch with two inputs and one output, and a distribu-
tion switch with one input and two outputs.
a. Show how the arbitration and distribution switches operate.
b. Using arbitration and interchange switches, construct an 8 x 4 network

with a unique path between any source and any destination.
C. Using distribution and interchange switches, construct a 4 x 8 network

with a unique path between any source and any destination.

	

13-8.	 Draw a diagram showing the structure of a four-dimensional hypercube
network. List all the paths available from node 7 to node 9 that use the
minimum number of intermediate nodes.

	

13-9.	
Draw a logic diagram using gates and flip-flops showing the circuit of one
bus arbiter stage in the daisy-chain arbitration scheme of Fig. 13-10.

	

13-10.	
The bus controlled by the parallel arbitration logic shown in Fig. 13-11 is
initially idle. Devices 2 and 3 then request the bus at the same time. Specify
the input and output binary values in the encoder and decoder and deter-
mine which bus arbiter is acknowledged.

	

13-11.	 Show how the arbitration logic of Fig. 13-10 can be modified to provide a
rotating daisy-chain arbitration procedure. Explain how the priority is deter-
mined once the bus line is disabled.

13-12. Consider a bus topology in which two processors communicate through a
buffer in shared memory. When one processor wishes to communicate with
the other processor it puts the information in the memory buffer and sets
a flag. Periodically, the other processor checks the flags to determine if it has
information to receive. What can be done to ensure proper synchronization
and to minimize the time between sending and receiving the information?

	

13-13.	 Describe the following terminology associated with multiprocessors.
(a) mutual exclusion; (b) critical section; (c) hardware lock; (d) semaphore;
(e) test-and-set instruction.

	

13-14.	 What is cache coherence, and why is it important in shared-memory multi-
processor systems? How can the problem be resolved with a snoopy cache
controller?
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