Input-Output Organization

CHAPTER ELEVEN

IN THIS CHAPTER

11-1	Peripheral Devices
11-2	Input-Output Interface
11-3	Asynchronous Data Transfer
11-4	Modes of Transfer
11-5	Priority Interrupt
11-6	Direct Memory Access
11-7	Input-Output Processor
11-8	Serial Communication

11-1 Peripheral Devices

and the second second second

I/O

The input-output subsystem of a computer, referred to as I/O, provides an efficient mode of communication between the central system and the outside environment. Programs and data must be entered into computer memory for processing and results obtained from computations must be recorded or displayed for the user. A computer serves no useful purpose without the ability to receive information from an outside source and to transmit results in a meaningful form.

The most familiar means of entering information into a computer is through a typewriter-like keyboard that allows a person to enter alphanumeric information directly. Every time a key is depressed, the terminal sends a binary coded character to the computer. The fastest possible speed for entering information this way depends on the person's typing speed. On the other hand, the central processing unit is an extremely fast device capable of performing operations at very high speed. When input information is transferred to the processor via a slow keyboard, the processor will be idle most of the time while waiting for the information to arrive. To use a computer efficiently, a large amount of programs and data must be prepared in advance and transmitted into a storage medium such as magnetic tapes or disks. The information in the disk is then transferred into computer memory at a rapid rate. Results of programs are also transferred into a high-speed storage, such as disks, from which they can be transferred later into a printer to provide a printed output of results.

Devices that are under the direct control of the computer are said to be connected on-line. These devices are designed to read information into or out of the memory unit upon command from the CPU and are considered to be part of the total computer system. Input or output devices attached to the computer are also called *peripherals*. Among the most common peripherals are keyboards, display units, and printers. Peripherals that provide auxiliary storage for the system are magnetic disks and tapes. Peripherals are electromechanical and electromagnetic devices of some complexity. Only a very brief discussion of their function will be given here without going into detail of their internal construction.

Video monitors are the most commonly used peripherals. They consist of a keyboard as the input device and a display unit as the output device. There are different types of video monitors, but the most popular use a cathode ray tube (CRT). The CRT contains an electronic gun that sends an electronic beam to a phosphorescent screen in front of the tube. The beam can be deflected horizontally and vertically. To produce a pattern on the screen, a grid inside the CRT receives a variable voltage that causes the beam to hit the screen and make it glow at selected spots. Horizontal and vertical signals deflect the beam and make it sweep across the tube, causing the visual pattern to appear on the screen. A characteristic feature of display devices is a cursor that marks the position in the screen where the next character will be inserted. The cursor can be moved to any position in the screen, to a single character, the beginning of a word, or to any line. Edit keys add or delete information based on the cursor position. The display terminal can operate in a single-character mode where all characters entered on the screen through the keyboard are transmitted to the computer simultaneously. In the block mode, the edited text is first stored in a local memory inside the terminal. The text is transferred to the computer as a block of data.

Printers provide a permanent record on paper of computer output data or text. There are three basic types of character printers: daisywheel, dot matrix, and laser printers. The daisywheel printer contains a wheel with the characters placed along the circumference. To print a character, the wheel rotates to the proper position and an energized magnet then presses the letter against the ribbon. The dot matrix printer contains a set of dots along the printing mechanism. For example, a 5×7 dot matrix printer that prints 80 characters per line has seven horizontal lines, each consisting of $5 \times 80 = 400$ dots. Each dot can be printed or not, depending on the specific characters that are printed on the line. The laser printer uses a rotating photographic drum

peripheral

monitor and keyboard

printer

magnetic tape

magnetic disk

that is used to imprint the character images. The pattern is then transferred onto paper in the same manner as a copying machine.

Magnetic tapes are used mostly for storing files of data: for example, a company's payroll record. Access is sequential and consists of records that can be accessed one after another as the tape moves along a stationary read-write mechanism. It is one of the cheapest and slowest methods for storage and has the advantage that tapes can be removed when not in use. Magnetic disks have high-speed rotational surfaces coated with magnetic material. Access is achieved by moving a read-write mechanism to a track in the magnetized surface. Disks are used mostly for bulk storage of programs and data. Tapes and disks are discussed further in Sec. 12-1 in conjunction with their role as auxiliary memory.

Other input and output devices encountered in computer systems are digital incremental plotters, optical and magnetic character readers, analog-todigital converters, and various data acquisition equipment. Not all input comes from people, and not all output is intended for people. Computers are used to control various processes in real time, such as machine tooling, assembly line procedures, and chemical and industrial processes. For such applications, a method must be provided for sensing status conditions in the process and sending control signals to the process being controlled.

The input-output organization of a computer is a function of the size of the computer and the devices connected to it. The difference between a small and a large system is mostly dependent on the amount of hardware the computer has available for communicating with peripheral units and the number of peripherals connected to the system. Since each peripheral behaves differently from any other, it would be prohibitive to dwell on the detailed interconnections needed between the computer and each peripheral. Certain techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters

Input and output devices that communicate with people and the computer are usually involved in the transfer of alphanumeric information to and from the device and the computer. The standard binary code for the alphanumeric characters is ASCII (American Standard Code for Information Interchange). It uses seven bits to code 128 characters as shown in Table 11-1. The seven bits of the code are designated by b_1 through b_7 , with b_7 being the most significant bit. The letter A, for example, is represented in ASCII as 1000001 (column 100, row 0001). The ASCII code contains 94 characters that can be printed and 34 nonprinting characters used for various control functions. The printing characters, the 10 numerals 0 through 9, and 32 special printable characters such as %, *, and \$.

The 34 control characters are designated in the ASCII table with abbrevi-

ASCII

Long House	b ₇ b ₆ b ₅							
$b_4 b_3 b_2 b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р		p
0001 -	SOH	DC1	1	I h	A	Q	a	q
0010	STX	DC2	u	2	В	R	b	T
0011	ETX	DC3	#	3	C	S	c	S
0100	- EOT	DC4	S	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	v	f	v
0111	BEL	ETB	•	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM	ì	9	Ι	Y	i	y
1010	LF	SUB	*	2F - 124	J	Z	i	Z
1011	VT	ESC	3.24 m	1942	K	1	k	1
1100	FF	FS	100	<	L	1	1	
1101	CR	GS		-	M	1	m	3
1110	SO	RS	Sten of	>	N	~	n	~
1111	SI	US	1	12	0	_	0	DEL

TABLE 11-1 American Standard Code for Information Interchange (ASCII)

the state and the first want to be a set Control characters

and the state beauting

a faith their religion

- 15 - HE C'S

NUL	Null	DLE	Data link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End of transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

and the start of all other

ated names. They are listed again below the table with their functional names. The control characters are used for routing data and arranging the printed text into a prescribed format. There are three types of control characters: format effectors, information separators, and communication control characters. Format effectors are characters that control the layout of printing. They include

the familiar typewriter controls, such as backspace (BS), horizontal tabulation (111), and cartage return (CR). Information separately are used to separate the data into divisions like paragraphs and pages. They include characters such as record separator (RS) and file separator (FS). The communication control characters are useful during the transmission of text between remote terminals. Examples of communication control characters are STX (start of text) and ETX (end of text), which are used to frame a text message when transmitted through a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit called a *byte*. Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes used for other purposes, depending on the application. For example, some printers recognize 8-bit ASCII characters with the most significant bit set to 0. Additional 128 8-bit characters with the most significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic type font. When used in data communication, the eighth bit may be employed to indicate the parity of the binary-coded character.

11-2 Input-Output Interface

Input-output interface provides a method for transferring information between internal storage and external I/O devices. Peripherals connected to a computer need special communication links for interfacing them with the central processing unit. The purpose of the communication link is to resolve the differences that exist between the central computer and each peripheral. The major differences are:

- Peripherals are electromechanical and electromagnetic devices and their manner of operation is different from the operation of the CPU and memory, which are electronic devices. Therefore, a conversion of signal values may be required.
- The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and consequently, a synchronization mechanism may be needed.
- 3. Data codes and formats in peripherals differ from the word format in the CPU and memory.
- 4. The operating modes of peripherals are different from each other and each must be controlled so as not to disturb the operation of other peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware components between the CPU and peripherals to supervise and synchronize all input and output transfers. These components are called *interface* units because they interface between the processor bus and the peripheral device.

byte

interface

In addition, each device may have its own controller that supervises the operations of the particular mechanism in the peripheral.

I/O Bus and Interface Modules

A typical communication link between the processor and several peripherals is shown in Fig. 11-1. The I/O bus consists of data lines, address lines, and control lines. The magnetic disk, printer, and terminal are employed in practically any general-purpose computer. The magnetic tape is used in some computers for backup storage. Each peripheral device has associated with it an interface unit. Each interface decodes the address and control received from the I/O bus, interprets them for the peripheral, and provides signals for the peripheral controller. It also synchronizes the data flow and supervises the transfer between peripheral and processor. Each peripheral has its own controller that operates the particular electromechanical device. For example, the printer controller controls the paper motion, the print timing, and the selection of printing characters. A controller may be housed separately or may be physically integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To communicate with a particular device, the processor places a device address on the address lines. Each interface attached to the I/O bus contains an address decoder that monitors the address lines. When the interface detects its own address, it activates the path between the bus lines and the device that it controls. All peripherals whose address does not correspond to the address in the bus are disabled by their interface.

At the same time that the address is made available in the address lines, the processor provides a function code in the control lines. The interface

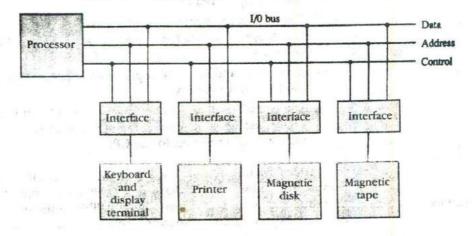


Figure 11-1 Connection of I/O bus to input-output devices.

SECTION 11-2 Input-Output Interface 387

I/O command

control command

status

output data

input data

selected responds to the function code and proceeds to execute it. The function code is referred to as an I/O command and is in essence an instruction that is executed in the interface and its attached peripheral unit. The interpretation of the command depends on the peripheral that the processor is addressing. There are four types of commands that an interface may receive. They are classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what to do. For example, a magnetic tape unit may be instructed to backspace the tape by one record, to rewind the tape, or to start the tape moving in the forward direction. The particular control command issued depends on the peripheral, and each peripheral receives its own distinguished sequence of control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface and the peripheral. For example, the computer may wish to check the status of the peripheral before a transfer is initiated. During the transfer, one or more errors may occur which are detected by the interface. These errors are designated by setting bits in a status register that the processor can read at certain intervals.

A data output command causes the interface to respond by transferring data from the bus into one of its registers. Consider an example with a tape unit. The computer starts the tape moving by issuing a control command. The processor then monitors the status of the tape by means of a status command. When the tape is in the correct position, the processor issues a data output command. The interface responds to the address and command and transfers the information from the data lines in the bus to its buffer register. The interface then communicates with the tape controller and sends the data to be stored on tape.

The data input command is the opposite of the data output. In this case the interface receives an item of data from the peripheral and places it in its buffer register. The processor checks if data are available by means of a status command and then issues a data input command. The interface places the data on the data lines, where they are accepted by the processor.

I/O versus Memory Bus

In addition to communicating with I/O, the processor must communicate with the memory unit. Like the I/O bus, the memory bus contains data, address, and read/write control lines. There are three ways that computer buses can be used to communicate with memory and I/O:

- 1. Use two separate buses, one for memory and the other for I/O.
 - 2. Use one common bus for both memory and I/O but have separate control lines for each.
 - Use one common bus for memory and I/O with common control lines.

388 CHAPTER ELEVEN Input-Output Organization

In the first method, the computer has independent sets of data, address, and control buses, one for accessing memory and the other for I/O. This is done in computers that provide a separate I/O processor (IOP) in addition to the central processing unit (CPU). The memory communicates with both the CPU and the IOP through a memory bus. The IOP communicates also with the input and output devices through a separate I/O bus with its own address, data and control lines. The purpose of the IOP is to provide an independent pathway for the transfer of information between external devices and internal memory. The I/O processor is sometimes called a data channel. In Sec. 11-7 we discuss the function of the IOP in more detail.

Isolated versus Memory-Mapped I/O

Many computers use one common bus to transfer information between memory or I/O and the CPU. The distinction between a memory transfer and I/O transfer is made through separate read and write lines. The CPU specifies whether the address on the address lines is for a memory word or for an interface register by enabling one of two possible read or write lines. The I/O read and I/O write control lines are enabled during an I/O transfer. The memory read and memory write control lines are enabled during a memory transfer. This configuration isolates all I/O interface addresses from the addresses assigned to memory and is referred to as the *isolated I/O method* for assigning addresses in a common bus.

isolated I/O

In the isolated I/O configuration, the CPU has distinct input and output instructions, and each of these instructions is associated with the address of an interface register. When the CPU fetches and decodes the operation code of an input or output instruction, it places the address associated with the instruction into the common address lines. At the same time, it enables the I/O read (for input) or I/O write (for output) control line. This informs the external components that are attached to the common bus that the address in the address lines is for an interface register and not for a memory word. On the other hand, when the CPU is fetching an instruction or an operand from memory, it places the memory address on the address lines and enables the memory read or memory write control line. This informs the external components that the address is for a memory word and not for an I/O interface.

The isolated I/O method isolates memory and I/O addresses so that memory address values are not affected by interface address assignment since each has its own address space. The other alternative is to use the same address space for both memory and I/O. This is the case in computers that employ only one set of read and write signals and do not distinguish between memory and I/O addresses. This configuration is referred to as *memory mapped I/O*. The computer treats an interface register as being part of the memory system. The assigned addresses for interface r⁻¹ isters cannot be used for memory words, which reduces the memory address range available.

IOP

memory-mappea

In a memory-mapped I/O organization there are no specific input or registers with the same instructions that are used to manipulate memory words. Each interface is organized as a set of registers that respond to read and write requests in the normal address space. Typically, a segment of the total address space is reserved for interface registers, but in general, they can be located at any address as long as there is not also a memory word that responds to the same address.

Computers with memory-mapped I/O can use memory-type instructions to access I/O data. It allows the computer to use the same instructions for either input-output transfers or for memory transfers. The advantage is that the load and store instructions used for reading and writing from memory can be used to input and output data from I/O registers. In a typical computer, there are more memory-reference instructions than I/O instructions. With memorymapped I/O all instructions that refer to memory are also available for I/O.

Example of I/O Interface

An example of an I/O interface unit is shown in block diagram form in Fig. 11-2. It consists of two data registers called *ports*, a control register, a status register, bus buffers, and timing and control circuits. The interface communicates with the CPU through the data bus. The chip select and register select inputs determine the address assigned to the interface. The I/O read and write are two control lines that specify an input or output, respectively. The four registers communicate directly with the I/O device attached to the interface.

The I/O data to and from the device can be transferred into either port *A* or port *B*. The interface may operate with an output device or with an input device, or with a device that requires both input and output. If the interface is connected to a printer, it will only output data, and if it services a character reader, it will only input data. A magnetic disk unit transfers data in both directions but not at the same time, so the interface can use bidirectional lines. A command is passed to the I/O device by sending a word to the appropriate interface register. In a system like this, the function code in the I/O bus is not needed because control is sent to the control register, status information is received from the status register, and data are transferred to and from ports *A* and *B* registers. Thus the transfer of data, control, and status information is always via the common data bus. The distinction between data, control, or status information is determined from the particular interface register with which the CPU communicates.

The control register receives control information from the CPU. By loading appropriate bits into the control register, the interface and the I/O device attached to it can be placed in a variety of operating modes. For example, port *A* may be defined as an input port and port *B* as an output port. A magnetic tape unit may be instructed to rewind the tape or to start the tape moving in

I/O port

390 CHAPTER ELEVEN Input-Output Organization

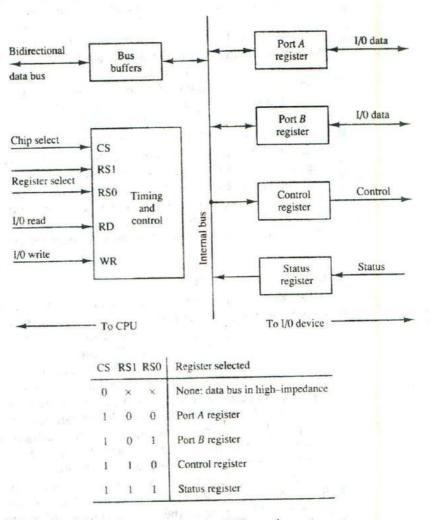


Figure 11-2 Example of I/O interface unit.

the forward direction. The bits in the status register are used for status conditions and for recording errors that may occur during the data transfer. For example, a status bit may indicate that port *A* has received a new data item from the I/O device. Another bit in the status register may indicate that a parity error has occurred during the transfer.

The interface registers communicate with the CPU through the bidirectional data bus. The address bus selects the interface unit through the chip select and the two register select inputs. A circuit must be provided externally (usually, a decoder) to detect the address assigned to the interface registers. This circuit enables the chip select (CS) input when the interface is selected by the address bus. The two register select inputs RS1 and RS0 are usually connected to the two least significant lines of the address bus. These two inputs select one of the four registers in the interface as specified in the table accompanying the diagram. The content of the selected register is transfer into the CPU via the data bus when the I/O read signal is enabled. The CPU transfers binary information into the selected register via the data bus when the I/O write input is enabled.

11-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock pulses supplied by a common pulse generator. Clock pulses are applied to all registers within a unit and all data transfers among internal registers occur simultaneously during the occurrence of a clock pulse. Two units, such as a CPU and an I/O interface, are designed independently of each other. If the registers in the interface share a common clock with the CPU registers, the transfer between the two units is said to be synchronous. In most cases, the internal timing in each unit is independent from the other in that each uses its own private clock for internal registers. In that case, the two units are said to be asynchronous to each other. This approach is widely used in most computer systems.

Asynchronous data transfer between two independent units requires that control signals be transmitted between the communicating units to indicate the time at which data is being transmitted. One way of achieving this is by means of a *strobe* pulse supplied by one of the units to indicate to the other unit when the transfer has to occur. Another method commonly used is to accompany each data item being transferred with a control signal that indicates the presence of data in the bus. The unit receiving the data item responds with another control signal to acknowledge receipt of the data. This type of agreement between two independent units is referred to as *handshaking*.

The strobe pulse method and the handshaking method of asynchronous data transfer are not restricted to I/O transfers. In fact, they are used extensively on numerous occasions requiring the transfer of data between two independent units. In the general case we consider the transmitting unit as the source and the receiving unit as the destination. For example, the CPU is the source unit during an output or a write transfer and it is the destination unit during an input or a read transfer. It is customary to specify the asynchronous transfer between two independent units by means of a timing diagram that shows the timing relationship that must exist between the control signals and the data in the buses. The sequence of control during an asynchronous transfer depends on whether the transfer is initiated by the source or by the destination unit.

Strobe Control

The strobe control method of asynchronous data transfer employs a single control line to time each transfer. The strobe may be activated by either the source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.

strobe

handshaking

timing diagram

392 CHAPTER ELEVEN Input-Output Organization

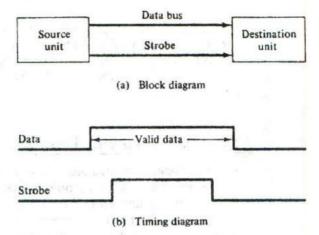


Figure 11-3 Source-initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination unit. Typically, the bus has multiple lines to transfer an entire byte or word. The strobe is a single line that informs the destination unit when a valid data word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places the data on the data bus. After a brief delay to ensure that the data settle to a steady value, the source activates the strobe pulse. The information on the data bus and the strobe signal remain in the active state for a sufficient time period to allow the destination unit to receive the data. Often, the destination unit uses the falling edge of the strobe pulse to transfer the contents of the data bus into one of its internal registers. The source removes the data from the bus a brief period after it disables its strobe pulse. Actually, the source does not have to change the information in the data bus. The fact that the strobe signal is disabled indicates that the data bus does not contain valid data. New valid data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this case the destination unit activates the strobe pulse, informing the source to provide the data. The source unit responds by placing the requested binary information on the data bus. The data must be valid and remain in the bus long enough for the destination unit to accept it. The falling edge of the strobe pulse can be used again to trigger a destination register. The destination unit then disables the strobe. The source removes the data from the bus after a predetermined time interval.

In many computers the strobe pulse is actually controlled by the clock pulses in the CPU. The CPU is always in control of the buses and informs the external units how to transfer data. For example, the strobe of Fig. 11-3 could be a memory-write control signal from the CPU to a memory unit. The source, being the CPU, places a word on the data bus and informs the memory unit,

SECTION 11-3 Asynchronous Data Transfer 393

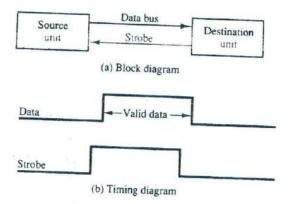
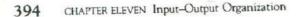
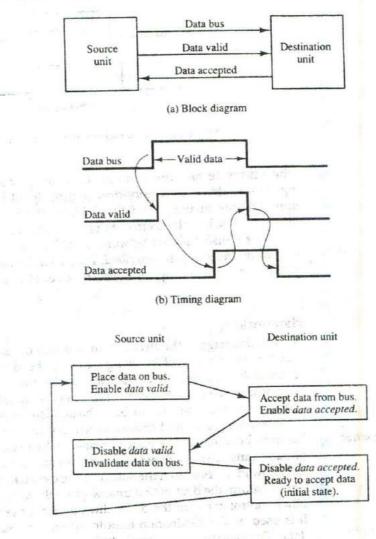


Figure 11-4 Destination-initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of Fig. 11-4 could be a memory-read control signal from the CPU to a memory unit. The destination, the CPU, initiates the read operation to inform the memory, which is the source, to place a selected word into the data bus.


The transfer of data between the CPU and an interface unit is similar to the strobe transfer just described. Data transfer between an interface and an I/O device is commonly controlled by a set of handshaking lines.


Handshaking

The disadvantage of the strobe method is that the source unit that initiates the transfer has no way of knowing whether the destination unit has actually received the data item that was placed in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing whether the source unit has actually placed the data on the bus. The handshake method solves this problem by introducing a second control signal that provides a reply to the unit that initiates the transfer. The basic principle of the two-wire handshaking method of data transfer is as follows. One control line is in the same direction as the data flow in the bus from the source to the destination. It is used by the source unit to inform the destination unit whether there are valid data in the bus. The other control line is in the other direction from the destination to the source. It is used by the destination unit to inform the source whether it can accept data. The sequence of control during the transfer depends on the unit that initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the source. The two handshaking lines are *data valid*, which is generated by the source unit, and *data accepted*, generated by the destination unit. The timing diagram shows the exchange of signals between the two units. The sequence of events listed in part (c) shows the four possible states that the system can

two-wire control

(c) Sequence of events

Figure 11-5 Source-initiated transfer using handshaking.

15

11

¹¹ be at any given time. The source unit initiates the transfer by placing the data on the bus and enabling its *data valid* signal. The *data accepted* signal is activated by the destination unit after it accepts the data from the bus. The source unit then disables its *data valid* signal, which invalidates the data on the bus. The destination unit then disables its *data accepted* signal and the system goes into its initial state. The source does not send the next data item until after the destination unit shows its readiness to accept new data by disabling its *data accepted* signal. This scheme allows arbitrary delays from one state to the next and permits each unit to respond at its own data transfer rate. The rate of transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in Fig. 11-6. Note that the name of the signal generated by the destination unit has been changed to *ready for data* to reflect its new meaning. The source unit in this case does not place data on the bus until after it receives the *ready for data* signal from the destination unit. From there on, the handshaking procedure follows the same pattern as in the source-initiated case. Note that the

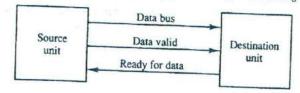
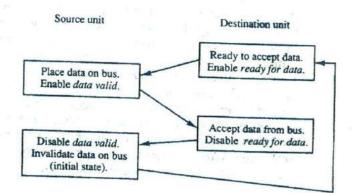



Figure 11-6 Destination-initiated transfer using handshaking.

(b) Timing diagram

(c) Sequence of events

sequence of events in both cases would be identical if we consider the ready for data signal as the complement of data accepted. In fact, the only difference between the source-initiated and the destination-initiated transfer is in their choice of initial state.

The handshaking scheme provides a high degree of flexibility and reliability because the successful completion of a data transfer relies on active participation by both units. If one unit is faulty, the data transfer will not be completed. Such an error can be detected by means of a timeout mechanism, which produces an alarm if the data transfer is not completed within a predetermined time. The timeout is implemented by means of an internal clock that starts counting time when the unit enables one of its handshaking control signals. If the return handshake signal does not respond within a given time period, the unit assumes that an error has occurred. The timeout signal can be used to interrupt the processor and hence execute a service routine that takes appropriate error recovery action.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In parallel data transmission, each bit of the message has its own path and the total message is transmitted at the same time. This means that an n-bit message must be transmitted through n separate conductor paths. In serial data transmission, each bit in the message is sent in sequence one at a time. This method requires the use of one pair of conductors or one conductor and a common ground. Parallel transmission is faster but requires many wires. It is used for short distances and where speed is important. Serial transmission is slower but is less expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchron-

synchronous

ous transmission, the two units share a common clock frequency and bits are transmitted continuously at the rate dictated by the clock pulses. In longdistant serial transmission, each unit is driven by a separate clock of the same frequency. Synchronization signals are transmitted periodically between the two units to keep their clocks in step with each other. In asynchronous transmission, binary information is sent only when it is available and the line remains idle when there is no information to be transmitted. This is in contrast to synchronous transmission, where bits must be transmitted continuously to keep the clock frequency in both units synchronized with each other. Synchronous serial transmission is discussed further in Sec. 11-8.

asynchronous

A serial asynchronous data transmission technique used in many interactive terminals employs special bits that are inserted at both ends of the character code. With this technique, each character consists of three parts: a start bit, the character bits, and stop bits. The convention is that the transmitter rests

timeout

start bit

at the 1-state when no characters are transmitted. The first bit, called the start bit, is always a 0 and is used to indicate the beginning of a character. The last bit called the stop bit is always a 1. An example of this format is shown in Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge of the transmission rules:

- 1. When a character is not being sent, the line is kept in the 1-state.
- 2. The initiation of a character transmission is detected from the start bit, which is always 0.
- 3. The character bits always follow the start bit.
- 4. After the last bit of the character is transmitted, a stop bit is detected when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from 1 to 0. A clock in the receiver examines the line at proper bit times. The receiver knows the transfer rate of the bits and the number of character bits to accept. After the character bits are transmitted, one or two stop bits are sent. The stop bits are always in the 1-state and frame the end of the character to signify the idle or wait state.

At the end of the character the line is held at the 1-state for a period of at least one or two bit times so that both the transmitter and receiver can resynchronize. The length of time that the line stays in this state depends on the amount of time required for the equipment to resynchronize. Some older electromechanical terminals use two stop bits, but newer terminals use one stop bit. The line remains in the 1-state until another character is transmitted. The stop time ensures that a new character will not follow for one or two bit times.

As an illustration, consider the serial transmission of a terminal whose transfer rate is 10 characters per second. Each transmitted character consists

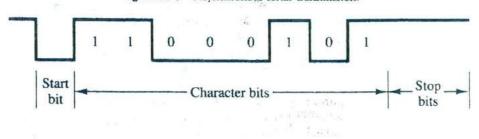
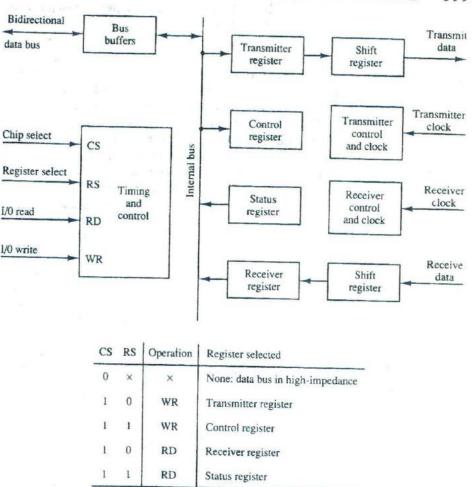


Figure 11-7 Asynchronous serial transmission.

stop bit

398 CHAPTER ELEVEN Input-Output Organization

baud rate


of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten characters per second means that each character takes 0.1 s for transfer. Since there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The *baud rate* is defined as the rate at which serial information is transmitted and is equivalent to the data transfer in bits per second. Ten characters per second with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed, the terminal sends 11 bits serially along a wire. To print a character in the printer, an 11-bit message must be received along another wire. The terminal interface consists of a transmitter and a receiver. The transmitter accepts an 8-bit character from the computer and proceeds to send a serial 11-bit message into the printer line. The receiver accepts a serial 11-bit message from the keyboard line and forwards the 8-bit character code into the computer. Integrated circuits are available which are specifically designed to provide the interface between computer and similar interactive terminals. Such a circuit is called an *asynchronous communication interface* or a *universal asynchronous receiver-transmitter* (UART).

Asynchronous Communication Interface

The block diagram of an asynchronous communication interface is shown in Fig. 11-8. It functions as both a transmitter and a receiver. The interface is initialized for a particular mode of transfer by means of a control byte that is loaded into its control register. The transmitter register accepts a data byte from the CPU through the data bus. This byte is transferred to a shift register for serial transmission. The receiver portion receives serial information into another shift register, and when a complete data byte is accumulated, it is transferred to the receiver register. The CPU can select the receiver register to read the byte through the data bus. The bits in the status register are used for input and output flags and for recording certain errors that may occur during the transmission. The CPU can read the status register to check the status of the flag bits and to determine if any errors have occurred. The chip select and the read and write control lines communicate with the CPU. The chip select (CS) input is used to select the interface through the address bus. The register select (RS) is associated with the read (RD) and write (WR) controls. Two registers are write-only and two are read-only. The register selected is a function of the RS value and the RD and WR status, as listed in the table accompanying the diagram.

The operation of the asynchronous communication interface is initialized by the CPU by sending a byte to the control register. The initialization procedure places the interface in a specific mode of operation as it defines certain parameters such as the baud rate to use, how many bits are in each character, whether to generate and check parity, and how many stop bits are appended to each character. Two bits in the status register are used as flags. One bit is

SECTION 11-3 Asynchronous Data Transfer 399

Figure 11-8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is used to indicate whether the receiver register is full.

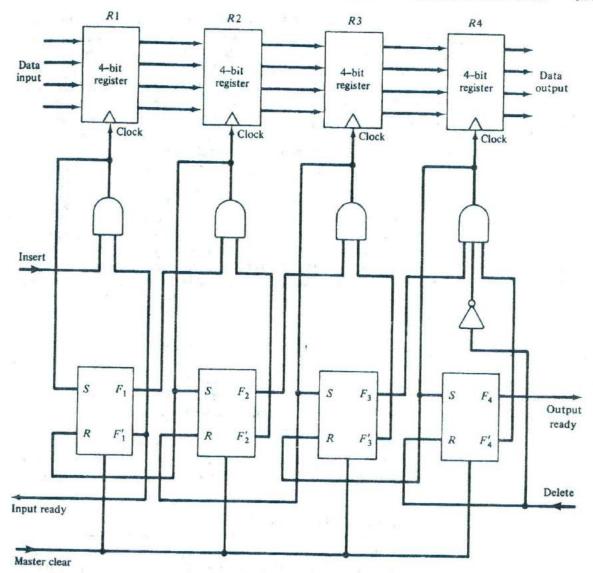
The operation of the transmitter portion of the interface is as follows. The CPU reads the status register and checks the flag to see if the transmitter register is empty. If it is empty, the CPU transfers a character to the transmitter register and the interface clears the flag to mark the register full. The first bit in the transmitter shift register is set to 0 to generate a start bit. The character is transferred in parallel from the transmitter register to the shift register and the appropriate number of stop bits are appended into the shift register. The transmitter register is then marked empty. The character can now be transmitted one bit at a time by shifting the data in the shift register at the specified

transmitter

baud rate. The CPU can transfer another character to the transmitter register after checking the flag in the status register. The interface is said to be *double buffered* because a new character can be loaded as soon as the previous one starts transmission.

The operation of the receiver portion of the interface is similar. The receive data input is in the 1-state when the line is idle. The receiver control monitors the receive-data line for a 0 signal to detect the occurrence of a start bit. Once a start bit has been detected, the incoming bits of the character are shifted into the shift register at the prescribed baud rate. After receiving the data bits, the interface checks for the parity and stop bits. The character without the start and stop bits is then transferred in parallel from the shift register to the receiver register. The flag in the status register is set to indicate that the receiver register is full. The CPU reads the status register and checks the flag, and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets appropriate bits in the status register. The CPU can read the status register at any time to check if any errors have occurred. Three possible errors that the interface checks during transmission are parity error, framing error, and overrun error. Parity error occurs if the number of 1's in the received data is not the correct parity. A framing error occurs if the right number of stop bits is not detected at the end of the received character. An overrun error occurs if the CPU does not read the character from the receiver register before the next one becomes available in the shift register. Overrun error results in a loss of characters in the received data stream.


First-In, First-Out Buffer

A first-in, first-out (FIFO) buffer is a memory unit that stores information in such a manner that the item first in is the item first out. A FIFO buffer comes with separate input and output terminals. The important feature of this buffer is that it can input data and output data at two different rates and the output data are always in the same order in which the data entered the buffer. When placed between two units, the FIFO can accept data from the source unit at one rate of transfer and deliver the data to the destination unit at another rate. If the source unit is slower than the destination unit, the buffer can be filled with data at a slow rate and later emptied at the higher rate. If the source is faster than the destination, the FIFO is useful for those cases where the source data arrive in bursts that fill out the buffer but the time between bursts is long enough for the destination unit to empty some or all the information from the buffer. Thus a FIFO buffer can be useful in some applications when data are transferred asynchronously. It piles up data as they come in and gives them away in the same order when the data are needed.

The logic diagram of a typical 4×4 FIFO buffer is shown in Fig. 11-9. It consists of four 4-bit registers RI, I = 1, 2, 3, 4, and a control register with

FIFO

receiver

SECTION 11-3 Asynchronous Data Transfer 401

Figure 11-9 Circuit diagram of 4 × 4 FIFO buffer.

flip-flops F_i , i = 1, 2, 3, 4, one for each register. The FIFO can store four words of four bits each. The number of bits per word can be increased by increasing the number of bits in each register and the number of words can be increased by increasing the number of registers.

A flip-flop F_i in the control register that is set to 1 indicates that a 4-bit data word is stored in the corresponding register RI. A 0 in F_i indicates that the corresponding register does not contain valid data. The control register directs the movement of data through the registers. Whenever the *E* bit of the control register is set ($F_i = 1$) and the F_{i+1} bit is reset ($F_{i+1} = 1$), a clock is generated causing register R(I + 1) to accept the data from register RI. The same clock transition sets F_{i+1} to 1 and resets F_i to 0. This causes the control flag to move one position to the right together with the data. Data in the registers move down the FIFO toward the output as long as there are empty locations ahead of it. This ripple-through operation stops when the data reach a register RI with the next flip-flop F_{i+1} being set to 1, or at the last register R4. An overall master clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the *input ready* signal is enabled. This occurs when the first control flip-flop F_1 is reset, indicating that register R1 is empty. Data are loaded from the input lines by enabling the clock in R1 through the *insert* control line. The same clock sets F_1 , which disables the *input ready* control, indicating that the FIFO is now busy and unable to accept more data. The ripple-through process begins provided that R2 is empty. The data in R1 are transferred into R2 and F_1 is cleared. This enables the *input ready* line, indicating that the inputs are now available for another data word. If the FIFO is full, F_1 remains set and the *input ready* line stays in the 0 state. Note that the two control lines *input ready* and *insert* constitute a destination-initiated pair of handshake lines.

The data falling through the registers stack up at the output end. The *output ready* control line is enabled when the last control flip-flop F_4 is set, indicating that there are valid data in the output register R4. The output data from R4 are accepted by a destination unit, which then enables the *delete* control signal. This resets F_4 , causing *output ready* to disable, indicating that the data on the output are no longer valid. Only after the *delete* signal goes back to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no data in R3 and F_4 will remain in the reset state. Note that the two control lines *output ready* and *delete* constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer

Binary information received from an external device is usually stored in memory for later processing. Information transferred from the central computer into an external device originates in the memory unit. The CPU merely executes the I/O instructions and may accept the data temporarily, but the ultimate source or destination is the memory unit. Data transfer between the central computer and I/O devices may be handled in a variety of modes. Some modes use the CPU as an intermediate path; others transfer the data directly to and from the memory unit. Data transfer to and from peripherals may be handled in one of three possible modes:

- 1. Programmed I/O
- 2. Interrupt-initiated I/O
- 3. Direct memory access (DMA)

programmed I/O

Programmed I/O operations are the result of I/O instructions written in the computer program. Each data item transfer is initiated by an instruction in the program. Usually, the transfer is to and from a CPU register and peripheral. Other instructions are needed to transfer the data to and from CPU and memory. Transferring data under program control requires constant monitoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU is required to monitor the interface to see when a transfer can again be made. It is up to the programmed instructions executed in the CPU to keep close tabs on everything that is taking place in the interface unit and the I/O device.

In the programmed I/O method, the CPU stays in a program loop until the I/O unit indicates that it is ready for data transfer. This is a time-consuming process since it keeps the processor busy needlessly. It can be avoided by using an interrupt facility and special commands to inform the interface to issue an interrupt request signal when the data are available from the device. In the meantime the CPU can proceed to execute another program. The interface meanwhile keeps monitoring the device. When the interface determines that the device is ready for data transfer, it generates an interrupt request to the computer. Upon detecting the external interrupt signal, the CPU momentarily stops the task it is processing, branches to a service program to process the I/O transfer, and then returns to the task it was originally performing.

Transfer of data under programmed I/O is between CPU and peripheral. In direct memory access (DMA'), the interface transfers data into and out of the memory unit through the memory bus. The CPU initiates the transfer by supplying the interface with the starting address and the number of words needed to be transferred and then proceeds to execute other tasks. When the transfer is made, the DMA requests memory cycles through the memory bus. When the request is granted by the memory controller, the DMA transfers the data directly into memory. The CPU merely delays its memory access operation to allow the direct memory I/O transfer. Since peripheral speed is usually slower than processor speed, I/O-memory transfers are infrequent compared to processor access to memory. DMA transfer is discussed in more detail in Sec. 11-6.

Many computers combine the interface logic with the requirements for direct memory access into one unit and call it an I/O processor (IOP). The IOP can handle many peripherals through a DMA and interrupt facility. In such a system, the computer is divided into three separate modules: the memory unit, the CPU, and the IOP. I/O processors are presented in Sec. 11-7.

Example of Programmed I/O

In the programmed I/O method, the I/O device does not have direct access to memory. A transfer from an I/O device to memory requires the execution of several instructions by the CPU, including an input instruction to transfer the data from the device to the CPU and a store instruction to transfer the data from the CPU to memory. Other instructions may be needed to verify that the data are available from the device and to count the numbers of words transferred.

DMA

interrupt

IOP

An example of data transfer from an I/O device through an interface into the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time as they are available. When a byte of data is available, the device places it in the I/O bus and enables its data valid line. The interface accepts the byte into its data register and enables the data accepted line. The interface sets a bit in the status register that we will refer to as an *F* or "flag" bit. The device can now disable the data valid line, but it will not transfer another byte until the data accepted line is disabled by the interface. This is according to the handshaking procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status register to determine if a byte has been placed in the data register by the I/O device. This is done by reading the status register into a CPU register and checking the value of the flag bit. If the flag is equal to 1, the CPU reads the data from the data register. The flag bit is then cleared to 0 by either the CPU or the interface, depending on how the interface circuits are designed. Once the flag is cleared, the interface disables the data accepted line and the device can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown in Fig. 11-11. It is assumed that the device is sending a sequence of bytes that must be stored in memory. The transfer of each byte requires three instructions:

- 1. Read the status register.
- 2. Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.
- 3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a store instruction. A common I/O programming task is to transfer a block of words from an I/O device and store them in a memory buffer. A program that

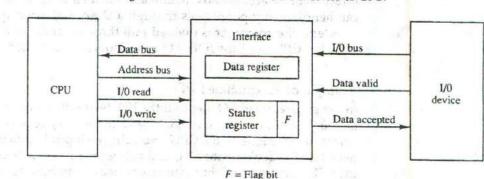


Figure 11-10 Data transfer from I/O device to CPU.

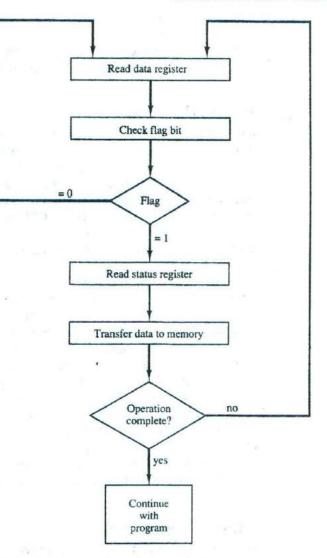


Figure 11-11 Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in Chap. 6 is listed in Table 6-21.

The programmed I/O method is particularly useful in small low-speed computers or in systems that are dedicated to monitor a device continuously. The difference in information transfer rate between the CPU and the I/O device makes this type of transfer inefficient. To see why this is inefficient, consider a typical computer that can execute the two instructions that read the status register and check the flag in 1 μ s. Assume that the input device transfers its 406 CHAPTER ELEVEN Input-Output Organization

data at an average rate of 100 bytes per second. This is equivalent to one byte every $10,000 \ \mu$ s. This means that the CPU will check the flag 10,000 times between each transfer. The CPU is wasting time while checking the flag instead of doing some other useful processing task.

Interrupt-Initiated I/O

An alternative to the CPU constantly monitoring the flag is to let the interface inform the computer when it is ready to transfer data. This mode of transfer uses the interrupt facility. While the CPU is running a program, it does not check the flag. However, when the flag is set, the computer is momentarily interrupted from proceeding with the current program and is informed of the fact that the flag has been set. The CPU deviates from what it is doing to take care of the input or output transfer. After the transfer is completed, the computer returns to the previous program to continue what it was doing before the interrupt.

The CPU responds to the interrupt signal by storing the return address from the program counter into a memory stack and then control branches to a service routine that processes the required I/O transfer. The way that the processor chooses the branch address of the service routine varies from one unit to another. In principle, there are two methods for accomplishing this. One is called *vectored interrupt* and the other, *nonvectored interrupt*. In a nonvectored interrupt, the branch address is assigned to a fixed location in memory. In a vectored interrupt, the source that interrupts supplies the branch information to the computer. This information is called the *interrupt vector*. In some computers the interrupt vector is the first address of the I/O service routine. In other computers the interrupt vector is an address that points to a location in memory where the beginning address of the I/O service routine is stored. A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations

The previous discussion was concerned with the basic hardware needed to interface I/O devices to a computer system. A computer must also have software routines for controlling peripherals and for transfer of data between the processor and peripherals. I/O routines must issue control commands to activate the peripheral and to check the device status to determine when it is ready for data transfer. Once ready, information is transferred item by item until all the data are transferred. In some cases, a control command is then given to execute a device function such as stop tape or print characters. Error checking and other useful steps often accompany the transfers. In interrupt-controlled transfers, the I/O software must issue commands to the peripheral to interrupt when ready and to service the interrupt when it occurs. In DMA transfer, the I/O software must initiate the DMA channel to start its operation.

vectored interrupt

I/O routines

Software control of input-output equipment is a complex undertaking. For this reason I/O routines for standard peripherals are provided by the manufacturer as part of the computer system. They are usually included within the operating system. Most operating systems are supplied with a variety of I/O programs to support the particular line of peripherals offered for the computer. I/O routines are usually available as operating system procedures and the user refers to the established routines to specify the type of transfer required without going into detailed machine language programs.

11-5 Priority Interrupt

Data transfer between the CPU and an I/O device is initiated by the CPU. However, the CPU cannot start the transfer unless the device is ready to communicate with the CPU. The readiness of the device can be determined from an interrupt signal. The CPU responds to the interrupt request by storing the return address from PC into a memory stack and then the program branches to a service routine that processes the required transfer. As discussed in Sec. 8-7, some processors also push the current PSW (program status word) onto the stack and load a new PSW for the service routine. We neglect the PSW here in order not to complicate the discussion of I/O interrupts.

In a typical application a number of I/O devices are attached to the computer, with each device being able to originate an interrupt request. The first task of the interrupt system is to identify the source of the interrupt. There is also the possibility that several sources will request service simultaneously. In this case the system must also decide which device to service first.

priority interrupt

polling

A priority interrupt is a system that establishes a priority over the various sources to determine which condition is to be serviced first when two or more requests arrive simultaneously. The system may also determine which conditions are permitted to interrupt the computer while another interrupt is being serviced. Higher-priority interrupt levels are assigned to requests which, if delayed or interrupted, could have serious consequences. Devices with highspeed transfers such as magnetic disks are given high priority, and slow devices such as keyboards receive low priority. When two devices interrupt the computer at the same time, the computer services the device, with the higher priority first.

Establishing the priority of simultaneous interrupts can be done by software or hardware. A polling procedure is used to identify the highest-priority source by software means. In this method there is one common branch address for all interrupts. The program that takes care of interrupts begins at the branch address and polls the interrupt sources in sequence. The order in which they are tested determines the priority of each interrupt. The highest-priority source is tested first, and if its interrupt signal is on, control branches to a service routine for this source. Otherwise, the next-lower-priority source is tested, and so on. Thus the initial service routine for all interrupts consists of a program that tests the interrupt sources in sequence and branches to one of many possible service routines. The particular service routine reached belongs to the highest-priority device among all devices that interrupted the computer. The disadvantage of the software method is that if there are many interrupts, the time required to poll them can exceed the time available to service the I/O device. In this situation a hardware priority-interrupt unit can be used to speed up the operation.

A hardware priority-interrupt unit functions as an overall manager in an interrupt system environment. It accepts interrupt requests from many sources, determines which of the incoming requests has the highest priority, and issues an interrupt request to the computer based on this determination. To speed up the operation, each interrupt source has its own interrupt vector to access its own service routine directly. Thus no polling is required because all the decisions are established by the hardware priority-interrupt unit. The hardware priority function can be established by either a serial or a parallel connection of interrupt lines. The serial connection is also known as the daisy-chaining method.

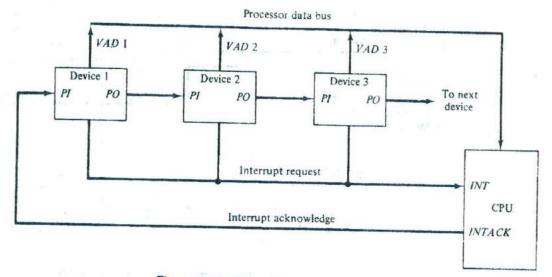
Daisy-Chaining Priority

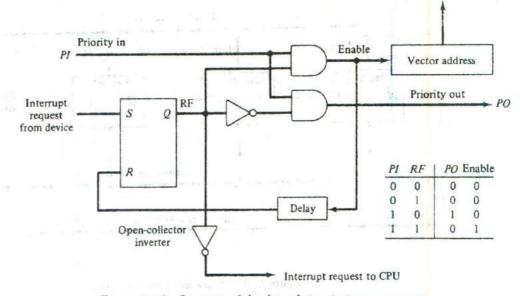
The daisy-chaining method of establishing priority consists of a serial connection of all devices that request an interrupt. The device with the highest priority is placed in the first position, followed by lower-priority devices up to the device with the lowest priority, which is placed last in the chain. This method of connection between three devices and the CPU is shown in Fig. 11-12. The interrupt request line is common to all devices and forms a wired logic connection. If any device has its interrupt signal in the low-level state, the interrupt line goes to the low-level state and enables the interrupt input in the CPU. When no interrupts are pending, the interrupt line stays in the high-level state and no interrupts are recognized by the CPU. This is equivalent to a negativelogic OR operation. The CPU responds to an interrupt request by enabling the interrupt acknowledge line. This signal is received by device 1 at its PI (priority in) input. The acknowledge signal passes on to the next device through the PO (priority out) output only if device 1 is not requesting an interrupt. If device 1 has a pending interrupt, it blocks the acknowledge signal from the next device by placing a 0 in the PO output. It then proceeds to insert its own interrupt vector address (VAD) into the data bus for the CPU to use during the interrupt cycle.

A device with a 0 in its *PI* input generates a 0 in its *PO* output to inform the next-lower-priority device that the acknowledge signal has been blocked. A device that is requesting an interrupt and has a 1 in its *PI* input will intercept the acknowledge signal by placing a 0 in its *PO* output. If the device does not have pending interrupts, it transmits the acknowledge signal to the next device

vector address (VAD)

SECTION 11-5 Priority Interrupt 409




Figure 11-12 Daisy-chain priority interrupt.

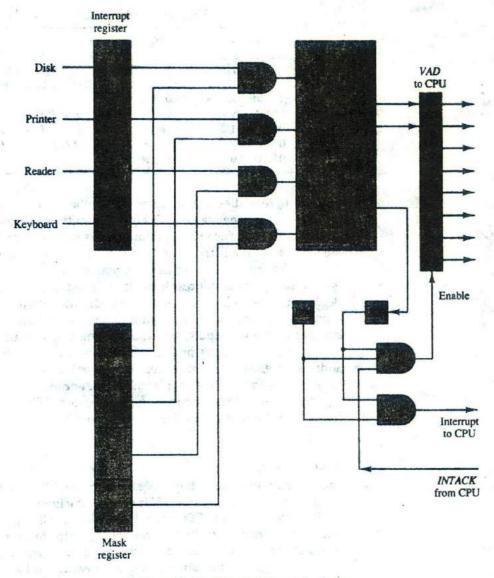
by placing a 1 in its PO output. Thus the device with PI = 1 and PO = 0 is the one with the highest priority that is requesting an interrupt, and this device places its VAD on the data bus. The daisy chain arrangement gives the highest priority to the device that receives the interrupt acknowledge signal from the CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each device when connected in the daisy-chaining scheme. The device sets its *RF* flip-flop when it wants to interrupt the CPU. The output of the *RF* flip-flop goes through an open-collector inverter, a circuit that provides the wired logic for the common interrupt line. If PI = 0, both *PO* and the enable line to VAD are equal to 0, irrespective of the value of *RF*. If PI = 1 and RF = 0, then PO = 1 and the vector address is disabled. This condition passes the acknowledge signal to the next device through *PO*. The device is active when PI = 1 and RF = 1. This condition places a 0 in *PO* and enables the vector address for the data bus. It is assumed that each device has its own distinct vector address. The *RF* flip-flop is reset after a sufficient delay to ensure that the CPU has received the vector address.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set separately by the interrupt signal from each device. Priority is established according to the position of the bits in the register. In addition to the interrupt register, the circuit may include a mask register whose purpose is to control the status of each interrupt request. The mask register can be programmed to disable

VAD


Figure 11-13 One stage of the daisy-chain priority arrangement.

lower-priority interrupts while a higher-priority device is being serviced. It can also provide a facility that allows a high-priority device to interrupt the CPU while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in Fig. 11-14. It consists of an interrupt register whose individual bits are set by external conditions and cleared by program instructions. The magnetic disk, being a high-speed device, is given the highest priority. The printer has the next priority, followed by a character reader and a keyboard. The mask register has the same number of bits as the interrupt register. By means of program instructions, it is possible to set or reset any bit in the mask register. Each interrupt bit and its corresponding mask bit are applied to an AND gate to produce the four inputs to a priority encoder. In this way an interrupt is recognized only if its corresponding mask bit is set to 1 by the program. The priority encoder generates two bits of the vector address, which is transferred to the CPU.

Another output from the encoder sets an interrupt status flip-flop *IST* when an interrupt that is not masked occurs. The interrupt enable flip-flop *IEN* can be set or cleared by the program to provide an overall control over the interrupt system. The outputs of *IST* ANDed with *IEN* provide a common interrupt signal for the CPU. The interrupt acknowledge INTACK signal from the CPU enables the bus buffers in the output register and a vector address VAD is placed into the data bus. We will now explain the priority encoder circuit and then discuss the interaction between the priority interrupt controller and the CPU.

priority logic

Priority Encoder

The priority encoder is a circuit that implements the priority function. The logic of the priority encoder is such that if two or more inputs arrive at the same time, the input having the highest priority will take precedence. The truth table of a four-input priority encoder is given in Table 11-2. The \times 's in the table designate don't-care conditions. Input I_0 has the highest priority; so regardless of the values of other inputs, when this input is 1, the output generates an output xy = 00. I_1 has the next priority level. The output is 01 if $I_1 = 1$ provided

	Inputs				Outputs			
1	<i>I</i> ₀ .	<i>I</i> ₁	12	13	x	у	IST	Boolean functions
-	1	×	×	×	0	0	1	Salar States
	0	it with	×	x	0	1	1	$x = I_0' I_1'$
纪.	0	0	1	X	1	0	1	$y = I'_0 I_1 + I'_0 I'_2$
	0	0	0	1	1	1	1	$(IST) = I_0 + I_1 + I_2 + I_1$
	0	0	0	0	×	×	0	

TABLE 11-2 Priority Encoder Truth Table

that $I_0 = 0$, regardless of the values of the other two lower-priority inputs. The output for I_2 is generated only if higher-priority inputs are 0, and so on down the priority level. The interrupt status *IST* is set only when one or more inputs are equal to 1. If all inputs are 0, *IST* is cleared to 0 and the other outputs of the encoder are not used, so they are marked with don't-care conditions. This is because the vector address is not transferred to the CPU when *IST* = 0. The Boolean functions listed in the table specify the internal logic of the encoder. Usually, a computer will have more than four interrupt sources. A priority encoder with eight inputs, for example, will generate an output of three bits.

The output of the priority encoder is used to form part of the vector address for each interrupt source. The other bits of the vector address can be assigned any value. For example, the vector address can be formed by appending six zeros to the x and y outputs of the encoder. With this choice the interrupt vectors for the four I/O devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle

The interrupt enable flip-flop *IEN* shown in Fig. 11-14 can be set or cleared by program instructions. When *IEN* is cleared, the interrupt request coming from *IST* is neglected by the CPU. The program-controlled *IEN* bit allows the programmer to choose whether to use the interrupt facility. If an instruction to clear *IEN* has been inserted in the program, it means that the user does not want his program to be interrupted. An instruction to set *IEN* indicates that the interrupt facility will be used while the current program is running. Most computers include internal hardware that clears *IEN* to 0 every time an interrupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks *IEN* and the interrupt signal from *IST*. If either is equal to 0, control continues with the next instruction. If both *IEN* and *IST* are equal to 1, the CPU goes to an interrupt cycle. During the interrupt cycle the CPU performs the following sequence of micro-operations:

 $SP \leftarrow SP - 1$ Decrement stack pointer $M[SP] \leftarrow PC$ Push PC into stack $INTACK \leftarrow 1$ Enable interrupt acknowledge $PC \leftarrow VAD$ Transfer vector address to PC $IEN \leftarrow 0$ Disable further interruptsGo to fetch next instruction

The CPU pushes the return address from *PC* into the stack. It then acknowledges the interrupt by enabling the *INTACK* line. The priority interrupt unit responds by placing a unique interrupt vector into the CPU data bus. The CPU transfers the vector address into *PC* and clears *IEN* prior to going to the next fetch phase. The instruction read from memory during the next fetch phase will be the one located at the vector address.

Software Routines

A priority interrupt system is a combination of hardware and software techniques. So far we have discussed the hardware aspects of a priority interrupt system. The computer must also have software routines for servicing the interrupt requests and for controlling the interrupt hardware registers. Figure 11-15 shows the programs that must reside in memory for handling the

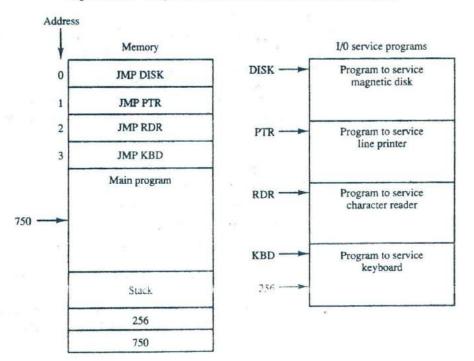


Figure 11-15 Programs stored in memory for servicing interrupts.

414 CHAPTER ELEVEN Input-Output Organization

service program

interrupt system. Each device has its own service program that can be reached through a jump ((P,P)) instruction stored at the assigned vector address. The symbolic name of each routine represents the starting address of the service program. The stack shown in the diagram is used for storing the return address after each interrupt.

To illustrate with a specific example assume that the keyboard sets its interrupt bit while the CPU is executing the instruction in location 749 of the main program. At the end of the instruction cycle, the computer goes to an interrupt cycle. It stores the return address 750 in the stack and then accepts the vector address 00000011 from the bus and transfers it to PC. The instruction in location 3 is executed next, resulting in transfer of control to the KBD routine. Now suppose that the disk sets its interrupt bit when the CPU is executing the instruction at address 255 in the KBD program. Address 256 is pushed into the stack and control is transferred to the DISK service program. The last instruction in each routine is a return from interrupt instruction. When the disk service program is completed, the return instruction pops the stack and places 256 into PC. This returns control to the KBD routine to continue servicing the keyboard. At the end of the KBD program, the last instruction pops the stack and returns control to the main program at address 750. Thus, a higher-priority device can interrupt a lower-priority device. It is assumed that the time spent in servicing the high-priority interrupt is short compared to the transfer rate of the low-priority device so that no loss of information takes place.

Initial and Final Operations

Each interrupt service routine must have an initial and final set of operations for controlling the registers in the hardware interrupt system. Remember that the interrupt enable *IEN* is cleared at the end of an interrupt cycle. This flip-flop must be set again to enable higher-priority interrupt requests, but not before lower-priority interrupts are disabled. The initial sequence of each interrupt service routine must have instructions to control the interrupt hardware in the following manner:

- 1. Clear lower-level mask register bits.
- 2. Clear interrupt status bit IST.
- 3. Save contents of processor registers.
- 4. Set interrupt enable bit IEN.
- 5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that interrupted) are cleared to prevent these conditions from enabling the interrupt. Although lower-priority interrupt sources are assigned to higher-numbered bits in the mask register, priority can be changed if desired since the programmer can use any bit configuration for the mask register. The interrupt status bit must be cleared so it can be set again when a higher-priority interrupt occurs. The contents of processor registers are saved because they may be needed by the program that has been interrupted after control returns to it. The interrupt enable *IEN* is then set to allow other (higher-priority) interrupts and the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instructions to control the interrupt hardware in the following manner:

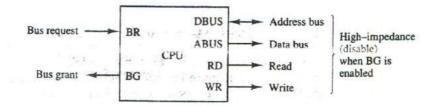
- 1. Clear interrupt enable bit IEN.
- 2. Restore contents of processor registers.
- 3. Clear the bit in the interrupt register belonging to the source that has been serviced.
- 4. Set lower-level priority bits in the mask register.
- 5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the interrupt must be cleared so that it will be available again for the source to interrupt. The lower-priority bits in the mask register (including the bit of the source being interrupted) are set so they can enable the interrupt. The return to the interrupted program is accomplished by restoring the return address to *PC*. Note that the hardware must be designed so that no interrupts occur while executing steps 2 through 5; otherwise, the return address may be lost and the information in the mask and processor registers may be ambiguous if an interrupt is acknowledged while executing the operations in these steps. For this reason *IEN* is initially cleared and then set after the return address is transferred into *PC*.

The initial and final operations listed above are referred to as *overhead* operations or *housekeeping* chores. They are not part of the service program proper but are essential for processing interrupts. All overhead operations can be implemented by software. This is done by inserting the proper instructions at the beginning and at the end of each service routine. Some of the overhead operations can be done automatically by the hardware. The contents of processor registers can be pushed into a stack by the hardware before branching to the service routine. Other initial and final operations can be assigned to the hardware. In this way, it is possible to reduce the time between receipt of an interrupt and the execution of the instructions that service the interrupt source.

11-6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and memory is often limited by the speed of the CPU. Removing the CPU from the path and letting the peripheral device manage the memory buses directly would improve the speed of transfer. This transfer technique is called direct memory access (DMA). During DMA transfer, the CPU is idle and has no control of the memory buses. A DMA controller takes over the buses to manage the transfer directly between the I/O device and memory.


The CPU may be placed in an idle state in a variety of ways. One common method extensively used in microprocessors is to disable the buses through special control signals. Figure 11-16 shows two control signals in the CPU that facilitate the DMA transfer. The *bus request* (*BR*) input is used by the DMA controller to request the CPU to relinquish control of the buses. When this input is active, the CPU terminates the execution of the current instruction and places the address bus, the data bus, and the read and write lines into a high-impedance state. The high-impedance state behaves like an open circuit, which means that the output is disconnected and does not have a logic significance (see Sec. 4-3). The CPU activates the *bus grant* (*BG*) output to inform the external DMA that the buses are in the high-impedance state. The DMA that originated the bus request can now take control of the buses to conduct memory transfers without processor intervention. When the DMA terminates the transfer, it disables the bus request line. The CPU disables the bus grant, takes control of the buses, and returns to its normal operation.

When the DMA takes control of the bus system, it communicates directly with the memory. The transfer can be made in several ways. In DMA *burst transfer*, a block sequence consisting of a number of memory words is transferred in a continuous burst while the DMA controller is master of the memory buses. This mode of transfer is needed for fast devices such as magnetic disks, where data transmission cannot be stopped or slowed down until an entire block is transferred. An alternative technique called *cycle stealing* allows the DMA controller to transfer one data word at a time, after which it must return control of the buses to the CPU. The CPU merely delays its operation for one memory cycle to allow the direct memory I/O transfer to "steal" one memory cycle.

DMA Controller

The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O device. In addition, it needs an address register, a word count register, and a set of address lines. The address register and address lines

Figure 11-16 CPU bus signals for DMA transfer.

bus request

bus grant

burst transfer

cycle stealing

SECTION 11-6 Direct Memory Access 417

are used for direct communication with the memory. The word count register specifies the number of words that must be transferred. The data transfer may be done directly between the device and memory under control of the DMA.

Figure 11-17 shows the block diagram of a typical DMA controller. The unit communicates with the CPU via the data bus and control lines. The registers in the DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and RS (register select) inputs. The RD (read) and WR (write) inputs are bidirectional. When the BG (bus grant) input is 0, the CPU can communicate with the DMA registers through the data bus to read from or write to the DMA registers. When BG = 1, the CPU has relinquished the buses and the DMA can communicate directly with the memory by specifying an address in the address bus and activating the RD or WR control. The DMA communicates with the external peripheral through the request and acknowledge lines by using a prescribed handshaking procedure.

The DMA controller has three registers: an address register, a word count register, and a control register. The address register contains an address to specify the desired location in memory. The address bits go through bus buffers into the address bus. The address register is incremented after each word that is transferred to memory. The word count register holds the number of words to be transferred. This register is decremented by one after each word transfer and internally tested for zero. The control register specifies the mode of transfer. All registers in the DMA appear to the CPU as I/O interface registers. Thus the CPU can read from or write into the DMA registers under program control via the data bus.

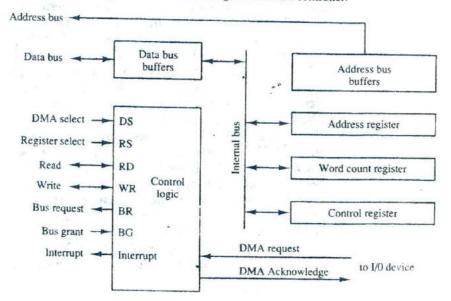


Figure 11-17 Block diagram of DMA controller.

418 CHAPTER ELEVEN Input-Output Organization

The DMA is first initialized by the CPU. After that, the DMA starts and continues to transfer data between memory and peripheral unit until an entire block is transferred. The initialization process is essentially a program consisting of I/O instructions that include the address for selecting particular DMA registers. The CPU initializes the DMA by sending the following information through the data bus:

- 1. The starting address of the memory block where data are available (for read) or where data are to be stored (for write)
- 2. The word count, which is the number of words in the memory block
- 3. Control to specify the mode of transfer such as read or write
- 4. A control to start the DMA transfer

The starting address is stored in the address register. The word count is stored in the word count register, and the control information in the control register. Once the DMA is initialized, the CPU stops communicating with the DMA unless it receives an interrupt signal or if it wants to check how many words have been transferred.

DMA Transfer

The position of the DMA controller among the other components in a computer system is illustrated in Fig. 11-18. The CPU communicates with the DMA through the address and data buses as with any interface unit. The DMA has its own address, which activates the DS and RS lines. The CPU initializes the DMA through the data bus. Once the DMA receives the start control command, it can start the transfer between the peripheral device and the memory.

When the peripheral device sends a DMA request, the DMA controller activates the *BR* line, informing the CPU to relinquish the buses. The CPU responds with its *BG* line, informing the DMA that its buses are disabled. The DMA then puts the current value of its address register into the address bus, initiates the *RD* or *WR* signal, and sends a DMA acknowledge to the peripheral device. Note that the *RD* and *WR* lines in the DMA controller are bidirectional. The direction of transfer depends on the status of the *BG* line. When *BG* = 0, the *RD* and *WR* are input lines allowing the CPU to communicate with the internal DMA registers. When *BG* = 1, the *RD* and *WR* are output lines from the DMA controller to the random-access memory to specify the read or write operation for the data.

When the peripheral device receives a DMA acknowledge, it puts a word in the data bus (for write) or receives a word from the data bus (for read). Thus the DMA controls the read or write operations and supplies the address for the memory. The peripheral unit can then communicate with memory through the data bus for direct transfer between the two units while the CPU is momentarily disabled.

Interrupt BG Random-access CPL memory (RAM) BR RD WR Address Data RD WR Address Data Read control Write control Data bus Address bus Address select RD WR Address Data

> DS RS

BR

BG

Interrupt

SECTION 11-6 Direct Memory Access 419

DMA acknowledge

DMA request

1/0

Peripheral

device

Figure 11-18 DMA transfer in a computer system.

Direct memory

access (DMA)

controller

For each word that is transferred, the DMA increments its address register and decrements its word count register. If the word count does not reach zero, the DMA checks the request line coming from the peripheral. For a high-speed device, the line will be active as soon as the previous transfer is completed. A second transfer is then initiated, and the process continues until the entire block is transferred. If the peripheral speed is slower, the DMA request line may come somewhat later. In this case the DMA disables the bus request line so that the CPU can continue to execute its program. When the peripheral requests a transfer, the DMA requests the buses again.

If the word count register reaches zero, the DMA stops any further transfer and removes its bus request. It also informs the CPU of the termination by means of an interrupt. When the CPU responds to the interrupt, it reads the content of the word count register. The zero value of this register indicates that all the words were transferred successfully. The CPU can read this register at any time to check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each channel has a request and acknowledge pair of control signals which are connected to separate peripheral devices. Each channel also has its own address register and word count register within the DMA controller. A priority among the channels may be established so that channels with high priority are serviced before channels with lower priority.

DMA transfer is very useful in many applications. It is used for fast transfer of information between magnetic disks and memory. It is also useful for updating the display in an interactive terminal. Typically, an image of the screen display of the terminal is kept in memory which can be updated under program control. The contents of the memory can be transferred to the screen periodically by means of DMA transfer.

11-7 Input-Output Processor (IOP)

Instead of having each interface communicate with the CPU, a computer may incorporate one or more external processors and assign them the task of communicating directly with all I/O devices. An input-output processor (IOP) may be classified as a processor with direct memory access capability that communicates with I/O devices. In this configuration, the computer system can be divided into a memory unit, and a number of processors comprised of the CPU and one or more IOPs. Each IOP takes care of input and output tasks, relieving the CPU from the housekeeping chores involved in I/O transfers. A processor that communicates with remote terminals over telephone and other communication media in a serial fashion is called a data communication processor (DCP).

I/O processing

The IOP is similar to a CPU except that it is designed to handle the details of I/O processing. Unlike the DMA controller that must be set up entirely by the CPU, the IOP can fetch and execute its own instructions. IOP instructions are specifically designed to facilitate I/O transfers. In addition, the IOP can perform other processing tasks, such as arithmetic, logic, branching, and code translation.

The block diagram of a computer with two processors is shown in Fig. 11-19. The memory unit occupies a central position and can communicate with each processor by means of direct memory access. The CPU is responsible for processing data needed in the solution of computational tasks. The IOP provides a path for transfer of data between various peripheral devices and the memory unit. The CPU is usually assigned the task of initiating the I/O program. From then on the IOP operates independent of the CPU and continues to transfer data from external devices and memory.

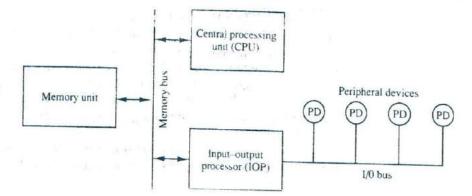


Figure 11-19 Block diagram of a computer with I/O processor.

The data formats of peripheral devices differ from memory and CPU data formats. The IOP must structure data words from many different sources. For example, it may be necessary to take four bytes from an input device and pack them into one 32-bit word before the transfer to memory. Data are gathered in the IOP at the device rate and bit capacity while the CPU is executing its own program. After the input data are assembled into a memory word, they are transferred from IOP directly into memory by "stealing" one memory cycle from the CPU. Similarly, an output word transferred from memory to the IOP is directed from the IOP to the output device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it is similar to the program control method of transfer. Communication with the memory is similar to the direct memory access method. The way by which the CPU and IOP communicate depends on the level of sophistication included in the system. In very-large-scale computers, each processor is independent of all others and any one processor can initiate an operation. In most computer systems, the CPU is the master while the IOP is a slave processor. The CPU is assigned the task of initiating all operations, but I/O instructions are executed in the IOP. CPU instructions provide operations to start an I/O transfer and also to test I/O status conditions needed for making decisions on various I/O activities. The IOP, in turn, typically asks for CPU attention by means of an interrupt. It also responds to CPU requests by placing a status word in a prescribed location in memory to be examined later by a CPU program. When an I/O operation is desired, the CPU informs the IOP where to find the I/O program and then leaves the transfer details to the IOP.

commands

Instructions that are read from memory by an IOP are sometimes called *commands*, to distinguish them from instructions that are read by the CPU. Otherwise, an instruction and a command have similar functions. Commands are prepared by experienced programmers and are stored in memory. The command words constitute the program for the IOP. The CPU informs the IOP where to find the commands in memory when it is time to execute the I/O program.

CPU-IOP Communication

The communication between CPU and IOP may take different forms, depending on the particular computer considered. In most cases the memory unit acts as a message center where each processor leaves information for the other. To appreciate the operation of a typical IOP, we will illustrate by a specific example the method by which the CPU and IOP communicate. This is a simplified example that omits many operating details in order to provide an overview of basic concepts.

The sequence of operations may be carried out as shown in the flowchart of Fig. 11-20. The CPU sends an instruction to test the IOP path. The IOP

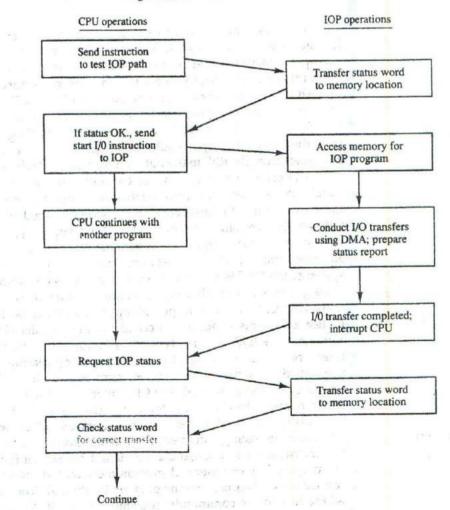


Figure 11-20 CPU-IOP communication.

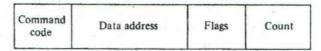
responds by inserting a status word in memory for the CPU to check. The bits of the status word indicate the condition of the IOP and I/O device, such as IOP overload condition, device busy with another transfer, or device ready for I/O transfer. The CPU refers to the status word in memory to decide what to do next. If all is in order, the CPU sends the instruction to start I/O transfer. The memory address received with this instruction tells the IOP where to find its program.

The CPU can now continue with another program while the IOP is busy with the I/O program. Both programs refer to memory by means of DMA transfer. When the IOP terminates the execution of its program, it sends an interrupt request to the CPU. The CPU responds to the interrupt by issuing an instruction to read the status from the IOP. The IOP responds by placing the contents of its status report into a specified memory location. The status word indicates whether the transfer has been completed or if any errors occurred during the transfer. From inspection of the bits in the status word, the CPU determines if the I/O operation was completed satisfactorily without errors.

The IOP takes care of all data transfers between several I/O units and the memory while the CPU is processing another program. The IOP and CPU are competing for the use of memory, so the number of devices that can be in operation is limited by the access time of the memory. It is not possible to saturate the memory by I/O devices in most systems, as the speed of most devices is much slower than the CPU. However, some very fast units, such as magnetic disks, can use an appreciable number of the available memory cycles. In that case, the speed of the CPU may deteriorate because it will often have to wait for the IOP to conduct memory transfers.

IBM 370 I/O Channel

The I/O processor in the IBM 370 computer is called a *channel*. A typical computer system configuration includes a number of channels with each channel attached to one or more I/O devices. There are three types of channels: multiplexer, selector, and block-multiplexer. The multiplexer channel can be connected to a number of slow- and medium-speed devices and is capable of operating with a number of I/O devices simultaneously. The selector channel is designed to handle one I/O operation at a time and is normally used to control one high-speed device. The block-multiplexer channel combines the features of both the multiplexer and selector channels. It provides a connection to a number of high-speed devices, but all I/O transfers are conducted with an entire block of data as compared to a multiplexer channel, which can transfer only one byte at a time.


The CPU communicates directly with the channels through dedicated control lines and indirectly through reserved storage areas in memory. Figure 11-21 shows the word formats associated with the channel operation.

(a) I/O instruction format

Key	Address	Status	Count	
RCY	Address	Status	Count	

(b) Channel status word format

(c) Channel command word format

Figure 11-21 IBM 370 I/O related word formats.

The I/O instruction format has three fields: operation code, channel address, and device address. The computer system may have a number of channels, and each is assigned an address. Similarly, each channel may be connected to several devices and each device is assigned an address. The operation code specifies one of eight I/O instructions: start I/O, start I/O fast release, test I/O, clear I/O, halt I/O, halt device, test channel, and store channel identification. The addressed channel responds to each of the I/O instructions and executes it. It also sets one of four condition codes in a processor register called PSW (processor status word). The CPU can check the condition code in the PSW to determine the result of the I/O operation. But, in general, they specify whether the channel or the device is busy, whether or not it is operational, whether interruptions are pending, if the I/O operation had started successfully, and whether a status word was stored in memory by the channel.

The format of the channel status word is shown in Fig. 11-21(b). It is always stored in location 64 in memory. The key field is a protection mechanism used to prevent unauthorized access by one user to information that belongs to another user or to the operating system. The address field in the status word gives the address of the last command word used by the channel. The count field gives the residual count when the transfer was terminated. The count field will show zero if the transfer was completed successfully. The status field identifies the conditions in the device and the channel and any errors that occurred during the transfer.

The difference between the start I/O and start I/O fast release instructions is that the latter requires less CPU time for its execution. When the channel

SECTION 11-7 Input-Output Processor 425

receives one of these two instructions, it refers to memory location 72 for the address of the first channel command word (CCW). The format of the channel command word is shown in Fig. 11-21(c). The data address field specifies the first address of a memory buffer and the count field gives the number of bytes involved in the transfer. The command field specifies an I/O operation and the flag bits provide additional information for the channel. The command field corresponds to an operation code that specifies one of six basic types of I/O operations:

- 1. Write. Transfer data from memory to I/O device.
- 2. Read. Transfer data from I/O device to memory.
- 3. Read backwards. Read magnetic tape with tape moving backward.
- Control. Used to initiate an operation not involving transfer of data, such as rewinding of tape or positioning a disk-access mechanism.
- 5. Sense. Informs the channel to transfer its channel status word to memory location 64.
- 6. Transfer in channel. Used instead of a jump instruction. Here the data address field specifies the address of the next command word to be executed by the channel.

An example of a channel program is shown in Table 11-3. It consists of three command words. The first causes a transfer into a magnetic tape of 60 bytes from memory starting at address 4000. The next two command words perform a similar function with a different portion of memory and byte count. The six flags in each control word specify certain interrelations between the command words. The first flag is set to 1 in the first command word to specify "data chaining." It results in combining the 60 bytes from the first command word with the 20 bytes of its successor into one record of 80 bytes. The 80 bytes are written on tape without any separation or gaps even though two memory sections were used. The second flag is set to 1 in the second command word to specify "command chaining." It informs the channel that the next command word will use the same I/O device, in this case, the tape. The channel informs the tape unit to start inserting a record gap on the tape and proceeds to read the next command word from memory. The 40 bytes of the third command

Command	Address	Flags	Count	
Write tape	4000	100000	60	
Write tape	6000	010000	20	
Write tape	3000	000000	40	

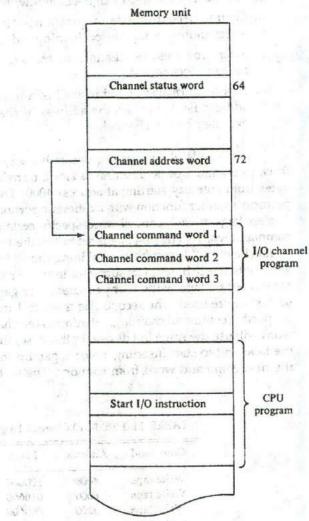
TABLE 11-3 IBM-370 Channel Program Example

-

CHAPTER ELEVEN Input-Output Organization 426

I YOR A THE MEETING OF

substance Enclosed and Loss of Dataset to wat an autom


> · AR 100

the second in

word are then written on tape as a separate record. When all the flags are equal to zero, it signifies the end of I/O operations for the particular I/O device.

A memory map showing all pertinent information for I/O processing is illustrated in Fig. 11-22. The operation begins when the CPU program encounters a start I/O instruction. The IOP then goes to memory location 72 to obtain a channel address word. This word contains the starting address of the I/O channel program. The channel then proceeds to execute the program specified by the channel command words. The channel constructs a status word during

Figure 11-22 Location of information in memory for I/O operations in the IBM 370.

the transfer and stores it in location 64. Upon interruption, the CPU can refer to memory location 64 for the status word.

Intel 8089 IOP

The Intel 8089 I/O processor is contained in a 40-pin integrated circuit package. Within the 8089 are two independent units called *channels*. Each channel combines the general characteristics of a processor unit with those of a direct memory access controller. The 8089 is designed to function as an IOP in a microcomputer system where the Intel 8086 microprocessor is used as the CPU. The 8086 CPU initiates an I/O operation by building a message in memory that describes the function to be performed. The 8089 IOP reads the message from memory, carries out the operation, and notifies the CPU when it has finished.

In contrast to the IBM 370 channel, which has only six basic I/O commands, the 8089 IOP has 50 basic instructions that can operate on individual bits, on bytes, or 16-bit words. The IOP can execute programs in a manner similar to a CPU except that the instruction set is specifically chosen to provide efficient input-output processing. The instruction set includes general data transfer instructions, basic arithmetic and logic operations, conditional and unconditional branch operations, and subroutine call and return capabilities. The set also includes special instructions to initiate DMA transfers and issue an interrupt request to the CPU. It provides efficient data transfer between any two components attached to the system bus, such as I/O to memory, memory to memory, or I/O to I/O.

A microcomputer system using the Intel 8086/8089 pair of integrated circuits is shown in Fig. 11-23. The 8086 functions as the CPU and the 8089 as the IOP. The two units share a common memory through a bus controller connected to a system bus, which is called a "multibus" by Intel. The IOP uses a local bus to communicate with various interface units connected to I/O devices. The CPU communicates with the IOP by enabling the *channel attention* line. The *select* line is used by the CPU to select one of two channels in the 8089. The IOP gets the attention of the CPU by sending an interrupt request.

The CPU and IOP communicate with each other by writing messages for one another in system memory. The CPU prepares the message area and signals the IOP by enabling the channel attention line. The IOP reads the message, performs the required I/O functions, and executes the appropriate channel program. When the channel has completed its program, it issues an interrupt request to the CPU.

The communication scheme consists of program sections called "blocks," which are stored in memory as shown in Fig. 11-24. Each block contains control and parameter information as well as an address pointer to its successor block. The address of the control block is passed to each IOP channel during initialization. The busy flag indicates whether the IOP is busy or ready to perform

CHAPTER ELEVEN Input-Output Organization

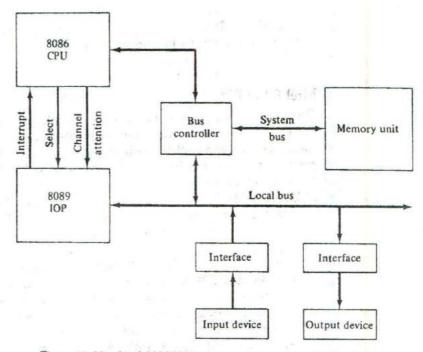
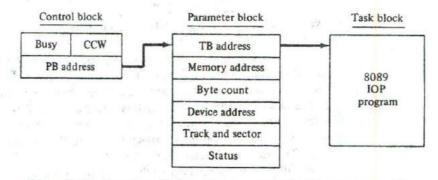
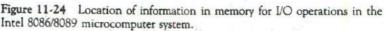




Figure 11-23 Intel 8086/8089 microcomputer system block diagram.

a new I/O operation. The CCW (channel command word) is specified by the CPU to indicate the type of operation required from the IOP. The CCW in the 8089 does not have the same meaning as the command word in the IBM channel. The CCW here is more like an I/O instruction that specifies an operation for the IOP, such as start operation, suspend operation, resume operation, and halt I/O program. The parameter block contains variable data

428

that the IOP program must use in carrying out its task. The task block contains

The CPU and IOP work together through the control and parameter blocks. The CPU obtains use of the shared memory after checking the busy flag to ensure that the IOP is available. The CPU then fills in the information in the parameter block and writes a "start operation" command in the CCW. After the communication blocks have been set up, the CPU enables the channel attention signal to inform the IOP to start its I/O operation. The CPU then continues with another program. The IOP responds to the channel attention signal by placing the address of the control block into its program counter. The IOP refers to the control block and sets the busy flag. It then checks the operation in the CCW. The PB (parameter block) address and TB (task block) address are then transferred into internal IOP registers. The IOP starts executing the program in the task block using the information in the parameter block. The entries in the parameter block depend on the I/O device. The parameters listed in Fig. 11-24 are suitable for data transfer to or from a magnetic disk. The memory address specifies the beginning address of a memory buffer. The byte count gives the number of bytes to be transferred. The device address specifies the particular I/O device to be used. The track and sector numbers locate the data on the disk. When the I/O operation is completed, the IOP stores its status bits in the status word location of the parameter block and interrupts the CPU. The CPU can refer to the status word to check if the transfer has been completed satisfactorily.

11-8 Serial Communication

A data communication processor is an I/O processor that distributes and collects data from many remote terminals connected through telephone and other communication lines. It is a specialized I/O processor designed to communicate directly with data communication networks. A communication network may consist of any of a wide variety of devices, such as printers, interactive display devices, digital sensors, or a remote computing facility. With the use of a data communication processor, the computer can service fragments of each network demand in an interspersed manner and thus have the apparent behavior of serving many users at once. In this way the computer is able to operate efficiently in a time-sharing environment.

data communication processor

6.42

The most striking difference between an I/O processor and a data communication processor is in the way the processor communicates with the I/O devices. An I/O processor communicates with the peripherals through a common I/O bus that is comprised of many data and control lines. All peripherals share the common bus and use it to transfer information to and from the I/O processor. A data communication processor communicates with each terminal through a single pair of wires. Both data and control information are transferred in a serial fashion with the result that the transfer rate is much slower. The task of the data communication processor is to transmit and collect digital information to and from each terminal, determine if the information is data or control and respond to all requests according to predetermined established procedures. The processor, obviously, must also communicate with the CPU and memory in the same manner as any I/O processor.

The way that remote terminals are connected to a data communication processor is via telephone lines or other public or private communication facilities. Since telephone lines were originally designed for voice communication and computers communicate in terms of digital signals, some form of conversion must be used. The converters are called *data sets*, *acoustic couplers*, or *modems* (from "modulator-demodulator"). A modem converts digital signals into audio tones to be transmitted over telephone lines and also converts audio tones from the line to digital signals for machine use. Various modulation schemes as well as different grades of communication media and transmission speeds are used. A communication line may be connected to a synchronous or asynchronous interface, depending on the transmission method of the remote terminal. An asynchronous interface receives serial data with start and stop bits in each character as shown in Fig. 11-7. This type of interface is similar to the asynchronous communication interface unit presented in Fig. 11-8.

Synchronous transmission does not use start-stop bits to frame characters and therefore makes more efficient use of the communication link. High-speed devices use synchronous transmission to realize this efficiency. The modems used in synchronous transmission have internal clocks that are set to the frequency that bits are being transmitted in the communication line. For proper operation, it is required that the clocks in the transmitter and receiver modems remain synchronized at all times. The communication line, however, contains only the data bits from which the clock information must be extracted. Frequency synchronization is achieved by the receiving modem from the signal transitions that occur in the received data. Any frequency shift that may occur between the transmitter and receiver clocks is continuously adjusted by maintaining the receiver clock at the frequency of the incoming bit stream. The modem transfers the received data together with the clock to the interface unit. The interface or terminal on the transmitter side also uses the clock information from its modem. In this way, the same bit rate is maintained in both transmitter and receiver.

Contrary to asynchronous transmission, where each character can be sent separately with its own start and stop bits, synchronous transmission must send a continuous message in order to maintain synchronism. The message consists of a group of bits transmitted sequentially as a block of data. The entire block is transmitted with special control characters at the beginning and end of the block. The control characters at the beginning of the block supply the information needed to separate the incoming bits into individual characters.

One of the functions of the data communication processor is to check for transmission errors. An error can be detected by checking the parity in each

modem

SECTION 11-8 Serial Communication 431

character received. Another procedure used in asynchronous terminals involving a human operator is to *echo* the character. The character transmitted from the keyboard to the computer is recognized by the processor and retransmitted to the terminal printer. The operator would realize that an error occurred during transmission if the character printed is not the same as the character whose key he has struck.

In synchronous transmission, where an entire block of characters is transmitted, each character has a parity bit for the receiver to check. After the entire block is sent, the transmitter sends one more character that constitutes a parity over the length of the message. This character is called a longitudinal redundancy check (LRC) and is the accumulation of the exclusive-OR of all transmitted characters. The receiving station calculates the LRC as it receives characters and compares it with the transmitted LRC. The calculated and received LRC should be equal for error-free messages. If the receiver finds an error in the transmitted block, it informs the sender to retransmit the same block once again. Another method used for checking errors in transmission is the cyclic redundancy check (CRC). This is a polynomial code obtained from the message bits by passing them through a feedback shift register containing a number of exclusive-OR gates. This type of code is suitable for detecting burst errors occurring in the communication channel.

Data can be transmitted between two points in three different modes: simplex, half-duplex, or full-duplex. A *simplex* line carries information in one direction only. This mode is seldom used in data communication because the receiver cannot communicate with the transmitter to indicate the occurrence of errors. Examples of simplex transmission are radio and television broadcasting.

A half-duplex transmission system is one that is capable of transmitting in both directions but data can be transmitted in only one direction at a time. A pair of wires is needed for this mode. A common situation is for one modem to act as the transmitter and the other as the receiver. When transmission in one direction is completed, the role of the modems is reversed to enable transmission in the reverse direction. The time required to switch a half-duplex line from one direction to the other is called the turnaround time.

A full-duplex transmission can send and receive data in both directions simultaneously. This can be achieved by means of a four-wire link, with a different pair of wires dedicated to each direction of transmission. Alternatively, a two-wire circuit can support full-duplex communication if the frequency spectrum is subdivided into two nonoverlapping frequency bands to create separate receive and transmit channels in the same physical pair of wires.

The communication lines, modems, and other equipment used in the transmission of information between two or more stations is called a *data link*. The orderly transfer of information in a data link is accomplished by means of a *protocol*. A data link control protocol is a set of rules that are followed by interconnecting computers and terminals to ensure the orderly transfer of

block transfer

CRC

full-duplex

protocol

CHAPTER ELEVEN Input-Output Organization

information. The purpose of a data link protocol is to establish and terminate a connection between two stations, to identify the sender and receiver, to ensure that all messages are passed correctly without errors, and to handle all control functions involved in a sequence of data transfers. Protocols are divided into two major categories according to the message-framing technique used. These are character-oriented protocol and bit-oriented protocol.

Character-Oriented Protocol

The character-oriented protocol is based on the binary code of a character set. The code most commonly used is ASCII (American Standard Code for Information Interchange). It is a 7-bit code with an eighth bit used for parity. The code has 128 characters, of which 95 are graphic characters and 33 are control characters. The graphic characters include the upper- and lowercase letters, the ten numerals, and a variety of special symbols. A list of the ASCII characters can be found in Table 11-1. The control characters are used for the purpose of routing data, arranging the test in a desired format, and for the layout of the printed page. The characters that control the transmission are called communication control characters. These characters are listed in Table 11-4. Each character has a 7-bit code and is referred to by a three-letter symbol. The role of each character in the control of data transmission is stated briefly in the function column of the table.

SYN character

The SYN character serves as synchronizing agent between the transmitter and receiver. When the 7-bit ASCII code is used with an odd-parity bit in the most significant position, the assigned SYN character has the 8-bit code 00010110 which has the property that, upon circular shifting, it repeats itself only after a full 8-bit cycle. When the transmitter starts sending 8-bit characters, it sends a few characters first and then sends the actual message. The initial continuous string of bits accepted by the receiver is checked for a SYN character. In other words, with each clock pulse, the receiver checks the last eight bits

Code Symbol		Meaning	Function				
0010110	SYN	Synchronous idle	Establishes synchronism				
0000001	SOH	Start of heading	Heading of block message				
0000010	STX	Start of text	Precedes block of text				
0000011	ETX	End of text	Terminates block of text				
0000100	EOT	End of transmission	Concludes transmission				
0000110	ACK	Acknowledge	Affirmative acknowledgement				
0000101	NAK	Negative acknowledge	Negative acknowledgement				
0000101	ENQ	Inquiry	Inquire if terminal is on				
0010111	ETB	End of transmission block	End of block of data				
0010000	DLE	Data link escape	Special control character				

TABLE 11-4 ASCII Communication Control Characters

432

SECTION 11-8 Serial Communication 433

received. If they do not match the bits of the SYN character, the receiver accepts the next bit, rejects the previous high-order bit, and again checks the last eight bits received for a SYN character. This is repeated after each clock pulse and bit received until a SYN character is recognized. Once a SYN character is detected, the receiver has framed a character. From here on the receiver counts every eight bits and accepts them as a single character. Usually, the receiver checks two consecutive SYN characters to remove any doubt that the first did not occur as a result of a noise signal on the line. Moreover, when the transmitter is idle and does not have any message characters to send, it sends a continuous string of SYN characters. The receiver recognizes these characters as a condition for synchronizing the line and goes into a synchronous idle state. In this state, the two units maintain bit and character synchronism even though no meaningful information is communicated.

Messages are transmitted through the data link with an established format consisting of a header field, a text field, and an error-checking field. A typical message format for a character-oriented protocol is shown in Fig. 11-25. The two SYN characters assure proper synchronization at the start of the message. Following the SYN characters is the header, which starts with an SOH (start of heading) character. The header consists of address and control information. The STX character terminates the header and signifies the beginning of the text transmission. The text portion of the message is variable in length and may contain any ASCII characters except the communication control characters. The text field is terminated with the ETX character. The last field is a block check character (BCC) used for error checking. It is usually either a longitudinal redundancy check (LRC) or a cyclic redundancy check (CRC).

The receiver accepts the message and calculates its own BCC. If the BCC transmitted does not agree with the BCC calculated by the receiver, the receiver responds with a negative acknowledge (NAK) character. The message is then retransmitted and checked again. Retransmission will be typically attempted several times before it is assumed that the line is faulty. When the transmitted BCC matches the one calculated by the receiver, the response is a positive acknowledgment using the ACK character.

Transmission Example

In order to appreciate the function of a data communication processor, let us illustrate by a specific example the method by which a terminal and the processor communicate. The communication with the memory unit and CPU is similar to any I/O processor.

Figure 11-25 Typical message format for character-oriented protocol.

SYN	SYN	SOH	Header	STX	Text	ETX	BCC
-----	-----	-----	--------	-----	------	-----	-----

434 CHAPTER ELEVEN Input-Output Organization

A typical message that might be sent from a terminal to the processor is listed in Table 11-5. A look at this message reveals that there are a number of control characters used for message formation. Each character, including the control characters, is transmitted serially as an 8-bit binary code which consists of the 7-bit ASCII code plus an odd parity bit in the eighth most significant position. The two SYN characters are used to synchronize the receiver and transmitter. The heading starts with the SOH character and continues with two characters that specify the address of the terminal. In this particular example, the address is T4, but in general it can have any set of two or more graphic characters. The STX character terminates the heading and signifies the beginning of the text transmission. The text data of concern here is "request balance of account number 1234." The individual characters for this message are not listed in the table because they will take too much space. It must be realized, however, that each character in the message has an 8-bit code and that each bit is transmitted serially. The ETX control character signifies the termination of the text characters. The next character following ETX is a longitudinal redundancy check (LRC). Each bit in this character is a parity bit calculated from all the bits in the same column in the code section of the table.

The data communication processor receives this message and proceeds to analyze it. It recognizes terminal T4 and stores the text associated with the message. While receiving the characters, the processor checks the parity in each character and also computes the longitudinal parity. The computed LRC is compared with the LRC character received. If the two match, a positive acknowledgment (ACK) is sent back to the terminal. If a mismatch exists, a

Code	Symbol	Comments						
0001 0110	SYN		First sync character					
0001 0110	SYN		Second sync character					
0000 0001	SOH		Start of heading					
0101 0100	Т		Address of terminal is T4					
0011 0100	4							
0000 0010	STX		Start of text transmission					
0101 0010			Astronomic the second second					
0100 0101	request		Text sent is a request to respond with the balance of					
	balance	24	account number 1234					
5. C.	of account							
	No. 1234							
1011 0011								
0011 0100								
1000 0011	ETX		End of text transmission					
0111 0000	LRC	3	Longitudinal parity character					

TABLE 11-5 Typical Transmission from a Terminal to Processor

SECTION 11-8 Serial Communication 435

negative acknowledgment (NAK) is returned to the terminal, which would initiate a retransmission of the same block. If the processor finds the message without errors, it transfers the message into memory and interrupts the CPU. When the CPU acknowledges the interrupt, it analyzes the message and prepares a text message for responding to the request. The CPU sends an instruction to the data communication processor to send the message to the terminal.

A typical response from processor to terminal is listed in Table 11-6. After two SYN characters, the processor acknowledges the previous message with an ACK character. The line continues to idle with SYN character waiting for the response to come. The message received from the CPU is arranged in the proper format by the processor by inserting the required control characters before and after the text. The message has the heading SOH and the address of the terminal T4. The text message informs the terminal that the balance is \$100. An LRC character is computed and sent to the terminal. If the terminal responds with a NAK character, the processor retransmits the message.

While the processor is taking care of this terminal it is busy processing other terminals as well. Since the characters are received in a serial fashion, it takes a certain amount of time to receive and collect an 8-bit character. During this time the processor is multiplexing all other communication lines and

Code	Symbol	Comments
0001 0110	SYN	First sync character
0001 0110	SYN	Second sync character
1000 0110	ACK	Processor acknowledges previous message
0001 0110	SYN	Line is idling
0001 0110	SYN	Line is idling
0000 0001	SOH	Start of heading
0101 0100	Т	Address of terminal is T4
0011 0100	4	
0000 0010	STX	Start of text transmission
1100 0010		
1100 0001	balance	Text sent is a response from the computer giving the
	is	balance of account
	\$100.00	
· · · ·		
1011 0000		
1000 0011	ETX	End of text transmission
1101 0101	LRC	Longitudinal parity character

TABLE 11-6 Typical Transmission from Processor to Terminal

services each one in turn. The speed of most remote terminals is extremely slow compared to the processor speed. This property allows multiplexing of many users to achieve greater efficiency in a time-sharing system. This also allows many users to operate simultaneously while each is being sampled at speeds comparable to normal human response.

Data Transparency

The character-oriented protocol was originally developed to communicate with keyboard, printer, and display devices that use alphanumeric characters exclusively. As the data communication field expanded, it became necessary to transmit binary information which is not ASCII text. This happens, for example, when two remote computers send programs and data to each other over a communication channel. An arbitrary bit pattern in the text message becomes a problem in the character-oriented protocol. This is because any 8-bit pattern belonging to a communication control character will be interpreted erroneously by the receiver. For example, if the binary data in the text portion of the message has the 8-bit pattern 10000011, the receiver will interpret this as an ETX character and assume that it reached the end of the text field. When the text portion of the message is variable in length and contains bits that are to be treated without reference to any particular code, it is said to contain transparent data. This feature requires that the character recognition logic of the receiver be turned off so that data patterns in the text field are not accidentally interpreted as communication control information.

DLE character

Data transparency is achieved in character-oriented protocols by inserting a DLE (data link escape) character before each communication control character. Thus, the start of heading is detected from the double character DLE SOH, and the text field is terminated with the double character DLE ETX. If the DLE bit pattern 00010000 occurs in the text portion of the message, the transmitter inserts another DLE bit pattern following it. The receiver removes all DLE characters and then checks the next 8-bit pattern. If it is another DLE bit pattern, the receiver considers it as part of the text and continues to receive text. Otherwise, the receiver takes the following 8-bit pattern to be a communication control character.

The achievement of data transparency by means of the DLE character is inefficient and somewhat complicated to implement. Therefore, other protocols have been developed to make the transmission of transparent data more efficient. One protocol used by Digital Equipment Corporation employs a byte count field that gives the number of bytes in the message that follows. The receiver must then count the number of bytes received to reach the end of the text field. The protocol that has been mostly used to solve the transparency problem (and other problems associated with the character-oriented protocol) is the bit-oriented protocol.

Bit-Oriented Protocol

The bit-oriented protocol does not use characters in its control field and is independent of any particular code. It allows the transmission of serial bit stream of any length without the implication of character boundaries. Messages are organized in a specific format called a frame. In addition to the information field, a frame contains address, control, and error-checking fields. The frame boundaries are determined from a special 8-bit number called a flag. Examples of bit-oriented protocols are SDLC (synchronous data link control) used by IBM, HDLC (high-level data link control) adopted by the International Standards Organization, and ADCCP (advanced data communication control procedure) adopted by the American National Standards Institute.

Any data communication link involves at least two participating stations. The station that has responsibility for the data link and issues the commands to control the link is called the primary station. The other station is a secondary station. Bit-oriented protocols assume the presence of one primary station and one or more secondary stations. All communication on the data link is from the primary station to one or more secondary stations, or from a secondary station to the primary station.

The frame format for the bit-oriented protocol is shown in Fig. 11-26. A frame starts with the 8-bit flag 01111110 followed by an address and control sequence. The information field is not restricted in format or content and can be of any length. The frame check field is a CRC (cyclic redundancy check) sequence used for detecting errors in transmission. The ending flag indicates to the receiving station that the 16 bits just received constitute the CRC bits. The ending frame can be followed by another frame, another flag, or a sequence of consecutive 1's. When two frames follow each other, the intervening flag is simultaneously the ending flag of the first frame and the beginning flag of the next frame. If no information is exchanged, the transmitter sends a series of flags to keep the line in the active state. The line is said to be in the idle state with the occurrence of 15 or more consecutive 1's. Frames with certain control messages are sent without an information field. A frame must have a minimum of 32 bits between two flags to accommodate the address, control, and frame check fields. The maximum length depends on the condition of the communication channel and its ability to transmit long messages error-free.

zero insertion

To prevent a flag from occurring in the middle of a frame, the bit-oriented protocol uses a method called zero insertion. This requires that a 0 be inserted

Figure 11-26 Frame format for bit-oriented protocol.

Flag	Address	Control	Information	Frame check	Flag
01111110	8 bits	8 bits	any number of bits	16 bits	01111110

8-bit flag

by the transmitting station after any succession of five continuous 1's. The receiver always removes a 0 that follows a succession of five 1's. Thus the bit pattern 0111111 is transmitted as 01111101 and restored by the receiver to its original value by removal of the 0 following the five 1's. As a consequence, no pattern of 01111110 is ever transmitted between the beginning and ending flags.

Following the flag is the address field, which is used by the primary station to designate the secondary station address. When a secondary station transmits a frame, the address tells the primary station which secondary station originated the frame. An address field of eight bits can specify up to 256 addresses. Some bit-oriented protocols permit the use of an extended address field. To do this, the least significant bit of an address byte is set to 0 if another address byte follows. A 1 in the least significant bit of a byte is used to recognize the last address byte.

control field

Following the address field is the control field. The control field comes in three different formats, as shown in Fig. 11-27. The information transfer format is used for ordinary data transmission. Each frame transmitted in this format contains send and receive counts. A station that transmits sequenced frames counts and numbers each frame. This count is given by the send count Ns. A station receiving sequenced frames counts each error-free frame that it receives. This count is given by the receive count N,. The N, count advances when a frame is checked and found to be without errors. The receiver confirms accepted numbered information frames by returning its N, count to the transmitting station.

The P/F bit is used by the primary station to poll a secondary station to

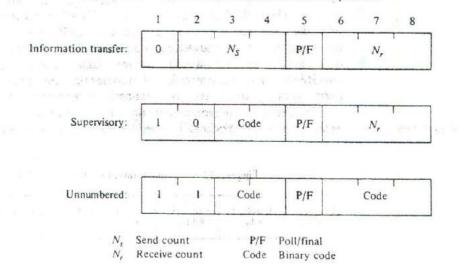
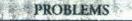


Figure 11-27 Control field format in bit-oriented protocol.


438

Problems 439

request that it initiate transmission. It is used by the secondary station to indicate the final transmitted frame. Thus the P/F field is called P (poll) when the primary station is transmitting but is designated as F (final) when a secondary station is transmitting. Each frame sent to the secondary station from the primary station has a P bit set to 0. When the primary station is finished and ready for the secondary station to respond, the P bit is set to 1. The secondary station then responds with a number of frames in which the F bit is set to 0. When the secondary station from to 1. Therefore, the P/F bit is used to determine when data transmission from a station is finished.

The supervisory format of the control field is recognized from the first two bits being 1 and 0. The next two bits indicate the type of command. This follows by a P/F bit and a receive sequence frame count. The frames of the supervisory format do not carry an information field. They are used to assist in the transfer of information in that they confirm the acceptance of preceding frames carrying information, convey ready or busy conditions, and report frame numbering errors.

The unnumbered format is recognized from the first two bits being 11. The five code bits available in this format can specify up to 32 commands and responses. The primary station uses the control field to specify a command for a secondary station. The secondary station uses the control field to transmit a response to the primary station. Unnumbered-format frames are employed for initialization of link functions, reporting procedural errors, placing stations in a disconnected mode, and other data link control operations.

11-1.

The addresses assigned to the four registers of the I/O interface of Fig. 11-2 are equal to the binary equivalent of 12, 13, 14, and 15. Show the external circuit that must be connected between an 8-bit I/O address from the CPU and the CS, RS1, and RS0 inputs of the interface.

11-2.

Six interface units of the type shown in Fig. 11-2 are connected to a CPU that uses an I/O address of eight bits. Each one of the six chip select (CS) inputs is connected to a different address line. Thus the high-order address line is connected to the CS input of the first interface unit and the sixth address line is connected to the CS input of the sixth interface unit. The two low-order address lines are connected to the RS1 and RS0 of all six interface units. Determine the 8-bit address of each register in each interface.

11-3. List four peripheral devices that produce an acceptable output for a person to understand.

11-4. Write your full name in ASCII using eight bits per character with the leftmost bit always 0. Include a space between names and a period after a middle initial. 11-5.

11-6

What is the difference between isolated I/O and memory-mapped I/O? What are the advantages and disadvantages of each?

commanus.

a. Skip next instruction if flag is set.

b. Seek a given record on a magnetic disk.

c. Check if I/O device is ready.

d. Move printer paper to beginning of next page.

e. Read interface status register.

11-7.

A commercial interface unit uses different names for the handshake lines associated with the transfer of data from the I/O device into the interface unit. The interface input handshake line is labeled STB (strobe), and the interface output handshake line is labeled IBF (input buffer full). A low-level signal on STB loads data from the I/O bus into the interface data register. A high-level signal on IBF indicates that the data item has been accepted by the interface. IBF goes low after an I/O read signal from the CPU when it reads the contents of the data register.

a. Draw a block diagram showing the CPU, the interface, and the I/O device together with the pertinent interconnections among the three units.

- b. Draw a timing diagram for the handshaking transfer.
- c. Obtain a sequence-of-events flowchart for the transfer from the device to the interface and from the interface to the CPU.

11-8.

11-9

A CPU with a 20-MHz clock is connected to a memory unit whose access time is 40 ns. Formulate a read and write timing diagrams using a READ strobe and a WRITE strobe. Include the address in the timing diagram.

The asynchronous communication interface shown in Fig. 11-8 is connected between a CPU and a printer. Draw a flowchart that describes the sequence of operations in the transmitter portion of the interface when the CPU sends characters to be printed.

11-10. Give at least six status conditions for the setting of individual bits in the status register of an asynchronous communication interface.

11-11. How many bits are there in the transmitter shift register of Fig. 11-8 when the interface is attached to a terminal that needs one stop bit? List the bits in the shift register when the letter W is transmitted using ASCII with even parity.

11-12.

How many characters per second can be transmitted over a 1200-baud line in each of the following modes? (Assume a character code of eight bits.) a. Synchronous serial transmission.

b. Asynchronous serial transmission with two stop bits.

c. Asynchronous serial transmission with one stop bit.

11-13.

Information is inserted into a FIFO buffer at a rate of m bytes per second. The information is deleted at a rate of n byte per second. The maximum capacity of the buffer is k bytes.

a. How long does it take for an empty buffer to fill up when m > n?

b. How long does it take for a full buffer to empty when m < n?

c. Is the FIFO buffer needed if m = n?

440

11-14. The bits in the control register of the FIFO shown in Fig. 11-9 are $F_1F_2F_3F_4 = 0011$. Give the sequence of internal operations when an item is deleted from the FIFO and then a new item is inserted.

11-15. What are the values of input ready and output ready and control bits F_1 through F_4 in Fig. 11-9 when:

- a. The buffer is empty?
- **b.** The buffer is full?

c. The buffer contains two data items?

11-16. Show a block diagram similar to Fig. 11-10 for the data transfer from a CPU to an interface and then to an I/O device. Determine a procedure for setting and clearing the flag bit.

11-17. Using the configuration established in Prob. 11-16, obtain a flowchart (similar to Fig. 11-11) for the CPU program to output data.

11-18. What is the basic advantage of using interrupt-initiated data transfer over transfer under program control without an interrupt?

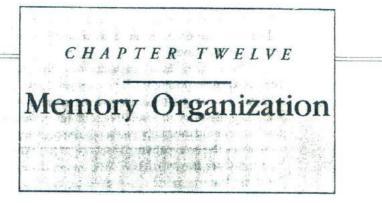
- 11-19. In most computers an interrupt is recognized only after the execution of the instruction. Consider the possibility of acknowledging the interrupt at any time during the execution of the instruction. Discuss the difficulty that may arise.
- 11-20. What happens in the daisy-chain priority interrupt shown in Fig. 11-12 when device 1 requests an interrupt after device 2 has sent an interrupt request to the CPU but before the CPU responds with the interrupt acknowledge?
- 11-21. Consider a computer without priority interrupt hardware. Any one of many sources can interrupt the computer, and any interrupt request results in storing the return address and branching to a common interrupt routine. Explain how a priority can be established in the interrupt service program.
- 11-22. Using combinational circuit design techniques, derive the Boolean expressions listed in Table 11-2 for the priority encoder. Draw the logic diagram of the circuit.
- **11-23.** Design a parallel priority interrupt hardware for a system with eight interrupt sources.
- **11-24.** Obtain the truth table of an 8×3 priority encoder. Assume that the three outputs *xyz* from the priority encoder are used to provide a vector address of the form 101*xyz*00. List the eight vector addresses starting from the one with the highest priority.
- 11-25. What should be done in Fig. 11-14 to make the four VAD values equal to the binary equivalent of 76, 77, 78, and 79?
- 11-26. What programming steps are required to check when a source interrupts the computer while it is still being serviced by a previous interrupt request from the same source?
- 11-27. Why are the read and write control lines in a DMA controller bidirectional? Under what condition and for what purpose are they used as inputs? Under what condition and for what purpose are they used as outputs?
- 11-28. It is necessary to transfer 256 words from a magnetic disk to a memory

CHAPTER ELEVEN Input-Output Organization

section starting from address 1230. The transfer is by means of DMA as shown in Fig. 11-18.

- a. Give the initial values that the CPU must transfer to the DMA controller.
- b. Give the step-by-step account of the actions taken during the input of the first two words.
- 11-29. A DMA controller transfers 16-bit words to memory using cycle stealing. The words are assembled from a device that transmits characters at a rate of 2400 characters per second. The CPU is fetching and executing instructions at an average rate of 1 million instructions per second. By how much will the CPU be slowed down because of the DMA transfer?
- 11-30. Why does DMA have priority over the CPU when both request a memory transfer?
- 11-31. Draw a flowchart similar to the one in Fig. 11-20 that describes the CPU-I/O channel communication in the IBM 370.
- 11-32. The address of a terminal connected to a data communication processor consists of two letters of the alphabet or a letter followed by one of the 10 numerals. How many different addresses can be formulated.
- 11-33. List a possible line procedure and the character sequence for the communication between a data communication processor and a remote terminal. The processor inquires if the terminal is operative. The terminal responds with yes or no. If the response is yes, the processor sends a block of text.
- 11-34. A data communication link employs the character-controlled protocol with data transparency using the DLE character. The text message that the transmitter sends between STX and ETX is as follows:

DLE STX DLE DLE ETX DLE DLE ETX DLE ETX


What is the binary value of the transparent text data?

- 11-35. What is the minimum number of bits that a frame must have in the bitoriented protocol?
- 11-36. Show how the zero insertion works in the bit-oriented protocol when a zero followed by the 10 bits that represent the binary equivalent of 1023 are transmitted.
 - REFERENCES
 - 1. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1986.
- 2. Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill, 1988.
- 3. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organization and Design, 3rd ed. New York: John Wiley, 1987.
- 4. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York: McGraw-Hill, 1984.

442

- Lippiatt, A. G., and G. L. Wright, The Architecture of Small Computer Systems, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1985.
- Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach. San Mateo, CA: Morgan Kaufmann Publishers, 1990.
- Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice Hall, 1990.
- Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN: West Publishing, 1988.
- Toy, W., and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs, NJ: Prentice Hall, 1986.
- Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley, 1981.
- Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT Press, 1990.

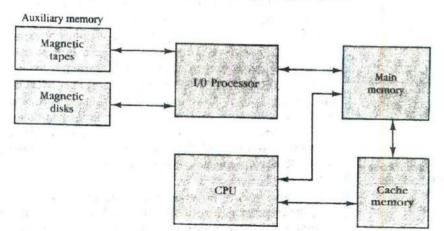
IN THIS CHAPTER

12-1	Memory Hierarchy
12-2	Main Memory
12-3	Auxiliary Memory
12-4	Associative Memory
12-5	Cache Memory
12-6	Virtual Memory
12-7	Memory Management Hardware

12-1 Memory Hierarchy

The memory unit is an essential component in any digital computer since it is needed for storing programs and data. A very small computer with a limited application may be able to fulfill its intended task without the need of additional storage capacity. Most general-purpose computers would run more efficiently if they were equipped with additional storage beyond the capacity of the main memory. There is just not enough space in one memory unit to accommodate all the programs used in a typical computer. Moreover, most computer users accumulate and continue to accumulate large amounts of data-processing software. Not all accumulated information is needed by the processor at the same time. Therefore, it is more economical to use low-cost storage devices to serve as a backup for storing the information that is not currently used by the CPU. The memory unit that communicates directly with the CPU is called the main memory. Devices that provide backup storage are called auxiliary memory. The most common auxiliary memory devices used in computer systems are magnetic disks and tapes. They are used for storing system programs, large data files, and other backup information. Only programs and data currently needed by the processor reside in main memory. All

auxiliaru memoru


other information is stored in auxiliary memory and transferred to main memory when needed.

The total memory capacity of a computer can be visualized as being a hierarchy of components. The memory hierarchy system consists of all storage devices employed in a computer system from the slow but high-capacity auxiliary memory to a relatively faster main memory, to an even smaller and faster cache memory accessible to the high-speed processing logic. Figure 12-1 illustrates the components in a typical memory hierarchy. At the bottom of the hierarchy are the relatively slow magnetic tapes used to store removable files. Next are the magnetic disks used as backup storage. The main memory occupies a central position by being able to communicate directly with the CPU and with auxiliary memory devices through an I/O processor. When programs not residing in main memory are needed by the CPU, they are brought in from auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary memory to provide space for currently used programs and data.

cache memory

A special very-high-speed memory called a *cache* is sometimes used to increase the speed of processing by making current programs and data available to the CPU at a rapid rate. The cache memory is employed in computer systems to compensate for the speed differential between main memory access time and processor logic. CPU logic is usually faster than main memory access time, with the result that processing speed is limited primarily by the speed of main memory. A technique used to compensate for the mismatch in operating speeds is to employ an extremely fast, small cache between the CPU and main memory whose access time is close to processor logic clock cycle time. The cache is used for storing segments of programs currently being executed in the CPU and temporary data frequently needed in the present calculations.

By making programs and data available at a rapid rate, it is possible to increase the performance rate of the computer

While the I/O processor manages data transfers between auxiliary memory and main memory, the cache organization is concerned with the transfer of information between main memory and CPU. Thus each is involved with a different level in the memory hierarchy system. The reason for having two or three levels of memory hierarchy is economics. As the storage capacity of the memory increases, the cost per bit for storing binary information decreases and the access time of the memory becomes longer. The auxiliary memory has a large storage capacity, is relatively inexpensive, but has low access speed compared to main memory. The cache memory is very small, relatively expensive, and has very high access speed. Thus as the memory access speed increases, so does its relative cost. The overall goal of using a memory hierarchy is to obtain the highest-possible average access speed while minimizing the total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache holds those parts of the program and data that are most heavily used, while the auxiliary memory holds those parts that are not presently used by the CPU. Moreover, the CPU has direct access to both cache and main memory but not to auxiliary memory. The transfer from auxiliary to main memory is usually done by means of direct memory access of large blocks of data. The typical access time ratio between cache and main memory is about 1 to 7. For example, a typical cache memory may have an access time of 100 ns, while main memory access time may be 700 ns. Auxiliary memory average access time is usually 1000 times that of main memory. Block size in auxiliary memory typically ranges from 256 to 2048 words, while cache block size is typically from 1 to 16 words.

multiprogramming

Many operating systems are designed to enable the CPU to process a number of independent programs concurrently. This concept, called *multipro-gramming*, refers to the existence of two or more programs in different parts of the memory hierarchy at the same time. In this way it is possible to keep all parts of the computer busy by working with several programs in sequence. For example, suppose that a program is being executed in the CPU and an I/O transfer is required. The CPU initiates the I/O processor to start executing the transfer. This leaves the CPU free to execute another program. In a multiprogramming system, when one program is waiting for input or output transfer, there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for varying the amount of main memory in use by a given program, and for moving programs around the memory hierarchy. Computer programs are sometimes too long to be accommodated in the total space available in main memory. Moreover, a computer system uses many programs and all the programs cannot reside in main memory at all times. A program with its data normally resides in auxiliary memory. When the program or a segment of the program is to be executed, it is transferred to main memory to be executed by the CPU. Thus one may think of auxiliary memory as containing the totality of information stored in a computer system. It is the task of the operating system to maintain in main memory a portion of this information that is currently active. The part of the computer system that supervises the flow of information between auxiliary memory and main memory is called the *memory management system*. The hardware for a memory management system is presented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a relatively large and fast memory used to store programs and data during the computer operation. The principal technology used for the main memory is based on semiconductor integrated circuits. Integrated circuit RAM chips are available in two possible operating modes, *static* and *dynamic*. The static RAM consists essentially of internal flip-flops that store the binary information. The stored information remains valid as long as power is applied to the unit. The dynamic RAM stores the binary information in the form of electric charges that are applied to capacitors. The capacitors are provided inside the chip by MOS transistors. The stored charge on the capacitors tend to discharge with time and the capacitors must be periodically recharged by refreshing the dynamic memory. Refreshing is done by cycling through the words every few milliseconds to restore the decaying charge. The dynamic RAM offers reduced power consumption and larger storage capacity in a single memory chip. The static RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of RAM integrated circuit chips, but a portion of the memory may be constructed with ROM chips. Originally, RAM was used to refer to a random-access memory, but now it is used to designate a read/write memory to distinguish it from a read-only memory, although ROM is also random access. RAM is used for storing the bulk of the programs and data that are subject to change. ROM is used for storing programs that are permanently resident in the computer and for tables of constants that do not change in value once the production of the computer is completed.

Among other things, the ROM portion of main memory is needed for storing an initial program called a *bootstrap loader*. The bootstrap loader is a program whose function is to start the computer software operating when power is turned on. Since RAM is volatile, its contents are destroyed when power is turned off. The contents of ROM remain unchanged after power is turned off and on again. The startup of a computer consists of turning the power on and starting the execution of an initial program. Thus when power is turned on, the hardware of the computer sets the program counter to the

random-access memory (RAM)

read-only memory (ROM)

bootstrap loader

computer startup

first address of the bootstrap loader. The bootstrap program loads a portion of the operating system from disk to main memory and control is then transferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer is larger than the capacity of one chip, it is necessary to combine a number of chips to form the required memory size. To demonstrate the chip interconnection, we will show an example of a 1024 \times 8 memory constructed with 128 \times 8 RAM chips and 512 \times 8 ROM chips.

RAM and ROM Chips

1 0 0 .1.

1 0 1 ×

1 | x x

bidirectional bus

A RAM chip is better suited for communication with the CPU if it has one or more control inputs that select the chip only when needed. Another common feature is a bidirectional data bus that allows the transfer of data either from memory to CPU during a read operation, or from CPU to memory during a write operation. A bidirectional bus can be constructed with three-state buffers. A three-state buffer output can be placed in one of three possible states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a highimpedance state. The logic 1 and 0 are normal digital signals. The highimpedance state behaves like an open circuit, which means that the output does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

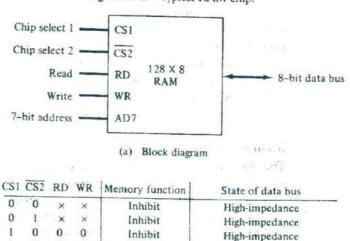


Figure 12-2 Typical RAM chip.

(b) Function table

Input data to RAM

High-impedance

Output data from RAM

Write

Read

Inhibit

address and an 8-bit bidirectional data bus. The read and write inputs specify the memory operation and the two chips select (CS) control inputs are for enabling the chip only when it is selected by the microprocessor. The availability of more than one control input to select the chip facilitates the decoding of the address lines when multiple chips are used in the microcomputer. The read and write inputs are sometimes combined into one line labeled R/W. When the chip is selected, the two binary states in this line specify the two operations of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RAM chip. The unit is in operation only when CS1 = 1 and $\overline{CS2} = 0$. The bar on top of the second select variable indicates that this input is enabled when it is equal to 0. If the chip select inputs are not enabled, or if they are enabled but the read or write inputs are not enabled, the memory is inhibited and its data bus is in a high-impedance state. When CS1 = 1 and $\overline{CS2} = 0$, the memory can be placed in a write or read mode. When the WR input is enabled, the memory stores a byte from the data bus into a location specified by the address input lines. When the RD input is enabled, the content of the selected byte is placed into the data bus. The RD and WR signals control the memory operation as well as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is possible to have more bits of ROM than of RAM, because the internal binary cells in ROM occupy less space than in RAM. For this reason, the diagram specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two chip select inputs must be CS1 = 1 and $\overline{CS2} = 0$ for the unit to operate. Otherwise, the data bus is in a high-impedance state. There is no need for a read or write control because the unit can only read. Thus when the chip is enabled by the two select inputs, the byte selected by the address lines appears on the data bus.

Memory Address Map

The designer of a computer system must calculate the amount of memory required for the particular application and assign it to either RAM or ROM. The interconnection between memory and processor is then established from knowledge of the size of memory needed and the type of RAM and ROM chips available. The addressing of memory can be established by means of a table that specifies the memory address assigned to each chip. The table, called a *memory address map*, is a pictorial representation of assigned address space for each chip in the system.

To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map forthis configuration is shown in Table 12-1. The component column specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a range of hexadecimal equivalent addresses for each chip. The address bus lines are listed in the third column. Although there are 16 lines in the address bus, the table shows only 10 lines because the other 6 are not used in this example and are assumed to be zero. The small x's under the address bus lines designate those lines that must be connected to the address inputs in each chip. The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and needs 9 address lines. The x's are always assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish between four RAM chips by assigning to each a different address. For this particular example we choose bus lines 8 and 9 to represent four distinct binary combinations. Note that any other pair of unused bus lines can be chosen for this purpose. The table clearly shows that the nine low-order bus lines constitute a memory space for RAM equal to $2^9 = 512$ bytes. The distinction between a RAM and ROM address is done with another bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the information under the address bus assignment. The address bus lines are

	Hexadecimal	Address bus									
Component	address	10	9	9 8	7	6	5	4	3	2	1
RAM 1	0000-007F	0	0	0	x	x	x	x	x	x	>
RAM 2	0080-00FF	0	0	1	x	х	х	х	х	х	>
RAM 3	0100-017F	0	1	0	x	х	x	x	х	x	>
RAM 4	0180-01FF	0	1	1	x	x	x	x	x	x	>
ROM	0200-03FF	1	x	x	x	x	x	x	х	х	2

TABLE 12-1 Memory Address Map for Microprocomputer

subdivided into groups of four bits each so that each group can be represented with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16 and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are always 0. The range of hexadecimal addresses for each component is determined from the x's associated with it. These x's represent a binary number that can range from an all-0's to an all-1's value.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address buses. The low-order lines in the address bus select the byte within the chips and other lines in the address bus select a particular chip through its chip select inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of ROM. It implements the memory map of Table 12-1. Each RAM receives the seven low-order bits of the address bus to select one of 128 possible bytes. The particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is done through a 2×4 decoder whose outputs go to the CS1 inputs in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the second RAM chip is selected, and so on. The RD and WR outputs from the microprocessor are applied to the inputs of each RAM chip.

The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected when the bit in this line is 0, and the ROM when the bit is 1. The other chip select input in the ROM is connected to the RD control line for the ROM chip to be enabled only during a read operation. Address bus lines 1 to 9 are applied to the input address of ROM without going through the decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of the ROM has only an output capability, whereas the data bus connected to the RAMs can transfer information in both directions.

The example just shown gives an indication of the interconnection complexity that can exist between memory chips and the CPU. The more chips that are connected, the more external decoders are required for selection among the chips. The designer must establish a memory map that assigns addresses to the various chips from which the required connections are determined.

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are magnetic disks and tapes. Other components used, but not as frequently, are magnetic drums, magnetic bubble memory, and optical disks. To understand fully the physical mechanism of auxiliary memory devices one must have a knowledge of magnetics, electronics, and electromechanical systems. Al-

CPU Address bus jarman ind. S. 57 Decoder' 3210 CS1 CS2 128×8 RD . Data RAM1 WR AD7 CSI Strie Si 1 cela CS2 128×8 RD Data RAM 2 WR 122 AD7 CS1 CS2 128×8 Data RD RAM 3 WR AD7 CS1 CS2 128×8 Data RD RAM 4 WR AD7 1 1 CS1 CS2 128 × 8 Data ROM AD9 9

453

·日本(小) 主人(小)

CHAPTER TWELVE Memory Organization

though the physical properties of these storage devices can be quite complex, their logical properties can be characterized and compared by a few parameters. The important characteristics of any device are its access mode, access time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and obtain its contents is called the access time. In electromechanical devices with moving parts such as disks and tapes, the access time consists of a seek time required to position the read-write head to a location and a transfer time required to transfer data to or from the device. Because the seek time is usually much longer than the transfer time, auxiliary storage is organized in records or blocks. A record is a specified number of characters or words. Reading or writing is always done on entire records. The transfer rate is the number of characters or words that the device can transfer per second, after it has been positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of high-speed rotating surfaces coated with a magnetic recording medium. The rotating surface of the drum is a cylinder and that of the disk, a round flat plate. The recording surface rotates at uniform speed and is not started or stopped during access operations. Bits are recorded as magnetic spots on the surface as it passes a stationary mechanism called a write head. Stored bits are detected by a change in magnetic field produced by a recorded spot on the surface as it passes through a read head. The amount of surface available for recording in a disk is greater than in a drum of equal physical size. Therefore, more information can be stored on a disk than on a drum of comparable size. For this reason, disks have replaced drums in more recent computers.

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material. Often both sides of the disk are used and several disks may be stacked on one spindle with read/write heads available on each surface. All disks rotate together at high speed and are not stopped or started for access purposes. Bits are stored in the magnetized surface in spots along concentric circles called tracks. The tracks are commonly divided into sections called sectors. In most systems, the minimum quantity of information which can be transferred is a sector. The subdivision of one disk surface into tracks and sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type of unit, the track address bits are used by a mechanical assembly to move the head into the specified track position before reading or writing. In other disk systems, separate read/write heads are provided for each track in each surface. The address bits can then select a particular track electronically through a decoder circuit. This type of unit is more expensive and is found only in very large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and

454

SECTION 12-3 Auxiliary Memory 455

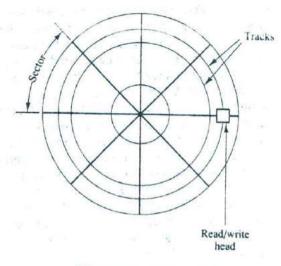


Figure 12-5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify the disk number, the disk surface, the sector number and the track within the sector. After the read/write heads are positioned in the specified track, the system has to wait until the rotating disk reaches the specified sector under the read/write head. Information transfer is very fast once the beginning of a sector has been reached. Disks may have multiple heads and simultaneous transfer of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near the center of the disk. If bits are recorded with equal density, some tracks will contain more recorded bits than others. To make all the records in a sector of equal length, some disks use a variable recording density with higher density on tracks near the center than on tracks near the circumference. This equalizes the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be removed by the occasional user are called *hard disks*. A disk drive with removable disks is called a *floppy disk*. The disks used with a floppy disk drive are small removable disks made of plastic coated with magnetic recording material. There are two sizes commonly used, with diameters of 5.25 and 3.5 inches. The 3.5-inch disks are smaller and can store more data than can the 5.25-inch disks. Floppy disks are extensively used in personal computers as a medium for distributing software to computer users.

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and electronic components to provide the parts and control mechanism for a magnetic-tape unit. The tape itself is a strip of plastic coated with a magnetic recording

456 CHAPTER TWELVE Memory Organization

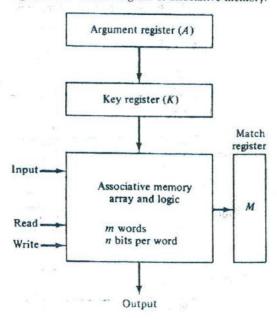
medium. Bits are recorded as magnetic spots on the tape along several tracks. Usually, seven or nine bits are recorded simultaneously to form a character together with a parity bit. Read/write heads are mounted one in each track so that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in reverse, or can be rewound. However, they cannot be started or stopped fast enough between individual characters. For this reason, information is recorded in blocks referred to as records. Gaps of unrecorded tape are inserted between records where the tape can be stopped. The tape starts moving while in a gap and attains its constant speed by the time it reaches the next record. Each record on tape has an identification bit pattern at the beginning and end. By reading the bit pattern at the beginning, the tape control identifies the record number. By reading the bit pattern at the end of the record, the control recognizes the beginning of a gap. A tape unit is addressed by specifying the record number and the number of characters in the record. Records may be of fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored in memory. An assembler program searches the symbol address table in order to extract the symbol's binary equivalent. An account number may be searched in a file to determine the holder's name and account status. The established way to search a table is to store all items where they can be addressed in sequence. The search procedure is a strategy for choosing a sequence of addresses, reading the content of memory at each address, and comparing the information read with the item being searched until a match occurs. The number of accesses to memory depends on the location of the item and the efficiency of the search algorithm. Many search algorithms have been developed to minimize the number of accesses while searching for an item in a random or sequential access memory.

The time required to find an item stored in memory can be reduced considerably if stored data can be identified for access by the content of the data itself rather than by an address. A memory unit accessed by content is called an *associative memory* or *content addressable memory* (CAM). This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location. When a word is written in an associative memory, no address is given. The memory is capable of finding an empty unused location to store the word. When a word is to be read from an associative memory, the content of the word, or part of the word, is specified. The memory locates all words which match the specified content and marks them for reading.


Because of its organization, the associative memory is uniquely suited to do parallel searches by data association. Moreover, searches can be done on

content addressable memory an entire word or on a specific field within a word. An associative memory is more expensive than a random access memory because each cell must have storage capability as well as logic circuits for matching its content with an external argument. For this reason, associative memories are used in applications where the search time is very critical and must be very short.

Hardware Organization

The block diagram of an associative memory is shown in Fig. 12-6. It consists of a memory array and logic for m words with n bits per word. The argument register A and key register K each have n bits, one for each bit of a word. The match register M has m bits, one for each memory word. Each word in memory is compared in parallel with the content of the argument register. The words that match the bits of the argument register set a corresponding bit in the match register. After the matching process, those bits in the match register that have been set indicate the fact that their corresponding words have been matched. Reading is accomplished by a sequential access to memory for those words whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in the argument word. The entire argument is compared with each memory word if the key register contains all 1's. Otherwise, only those bits in the argument that have 1's in their corresponding position of the key register are compared. Thus the key provides a mask or identifying piece of information which

Figure 12-6 Block diagram of associative memory.

specifies how the reference to memory is made. To illustrate with a numerical example, suppose that the argument register A and the key register K have the bit configuration shown below. Only the three leftmost bits of A are compared with memory words because K has 1's in these positions.

Α	101 111100	
Κ	111 000000	an tar s
Word 1	100 111100	no match
Word 2	101 000001	match

Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are equal.

The relation between the memory array and external registers in an associative memory is shown in Fig. 12-7. The cells in the array are marked by the letter C with two subcripts. The first subscript gives the word number and the second specifies the bit position in the word. Thus cell C_{ij} is the cell for bit j in word i. A bit A_j in the argument register is compared with all the bits in column j of the array provided that $K_i = 1$. This is done for all columns j = 1, 2, ..., n. If a match occurs between all the unmasked bits of the argument and the bits in word i, the corresponding bit M_i in the match register is set to 1. If one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0.

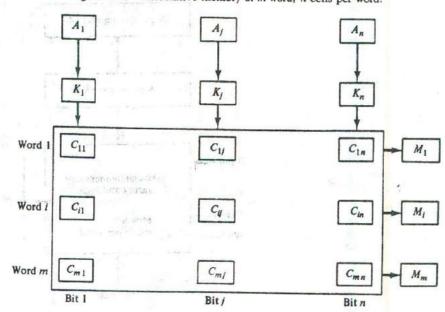


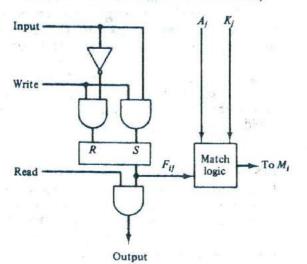
Figure 12-7 Associative memory of m word, n cells per word.

The internal organization of a typical cell C_{ij} is shown in Fig. 12-8. It consists of a flip-flop storage element F_{ij} and the circuits for reading, writing, and matching the cell. The input bit is transferred into the storage cell during a write operation. The bit stored is read out during a read operation. The match logic compares the content of the storage cell with the corresponding unmasked bit of the argument and provides an output for the decision logic that sets the bit in M_i .

Match Logic

The match logic for each word can be derived from the comparison algorithm for two binary numbers. First, we *neglect* the key bits and compare the argument in A with the bits stored in the cells of the words. Word i is equal to the argument in A if $A_j = F_{ij}$ for j = 1, 2, ..., n. Two bits are equal if they are both 1 or both 0. The equality of two bits can be expressed logically by the Boolean function

$$x_j = A_j F_{ij} + A_i' F_{ij}'$$


where $x_j = 1$ if the pair of bits in position *j* are equal; otherwise, $x_j = 0$.

For a word *i* to be equal to the argument in A we must have all x_i variables equal to 1. This is the condition for setting the corresponding match bit M_i to 1. The Boolean function for this condition is

$$M_i = x_1 x_2 x_3 \cdots x_n$$

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12-8 One cell of associative memory.

460 CHAPTER TWELVE Memory Organization

We now include the key bit K_j in the comparison logic. The requirement is that if $K_j = 0$, the corresponding bits of A_j and F_{ij} need no comparison. Only when $K_j = 1$ must they be compared. This requirement is achieved by ORing each term with K'_j , thus:

$$x_j + K'_j = \begin{cases} x_j & \text{if } K_j = 1\\ 1 & \text{if } K_j = 0 \end{cases}$$

When $K_j = 1$, we have $K'_j = 0$ and $x_j + 0 = x_j$. When $K_j = 0$, then $K'_j = 1$ and $x_j + 1 = 1$. A term $(x_j + K'_j)$ will be in the 1 state if its pair of bits is not compared. This is necessary because each term is ANDed with all other terms so that an output of 1 will have no effect. The comparison of the bits has an effect only when $K_j = 1$.

The match logic for word *i* in an associative memory can now be expressed by the following Boolean function:

$$M_i = (x_1 + K_1')(x_2 + K_2')(x_3 + K_3') \cdots (x_n + K_n')$$

Each term in the expression will be equal to 1 if its corresponding $K_j = 0$. If $K_j = 1$, the term will be either 0 or 1 depending on the value of x_j . A match will occur and M_i will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x_j , the Boolean function above can be expressed as follows:

$$M_{i} = \prod_{j=1}^{n} (A_{j} F_{ij} + A_{j}' F_{ij}' + K_{j}')$$

where Π is a product symbol designating the AND operation of all *n* terms. We need *m* such functions, one for each word *i* = 1, 2, 3, ..., *m*.

The circuit for matching one word is shown in Fig. 12-9. Each cell requires two AND gates and one OR gate. The inverters for A_i and K_j are needed once for each column and are used for all bits in the column. The output of all OR gates in the cells of the same word go to the input of a common AND gate to generate the match signal for M_i . M_i will be logic 1 if a match occurs and 0 if no match occurs. Note that if the key register contains all 0's, output M_i will be a 1 irrespective of the value of A or the word. This occurrence must be avoided during normal operation.

Read Operation

\$

If more than one word in memory matches the unmasked argument field, all the matched words will have 1's in the corresponding bit position of the match register. It is then necessary to scan the bits of the match register one at a time. The matched words are read in sequence by applying a read signal to each word line whose corresponding M_i bit is a 1.

SECTION 12-4 Associative Memory 461

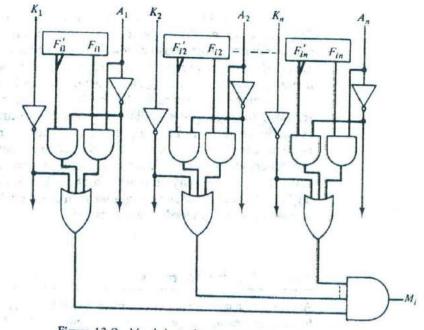


Figure 12-9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two identical items under a given key. In this case, only one word may match the unmasked argument field. By connecting output *M*_i directly to the read line in the same word position (instead of the *M* register), the content of the matched word will be presented automatically at the output lines and no special read command signal is needed. Furthermore, if we exclude words having a zero content, an all-zero output will indicate that no match occurred and that the searched item is not available in memory.

Write Operation

An associative memory must have a write capability for storing the information to be searched. Writing in an associative memory can take different forms, depending on the application. If the entire memory is loaded with new information at once prior to a search operation then the writing can be done by addressing each location in sequence. This will make the device a randomaccess memory for writing and a content addressable memory for reading. The advantage here is that the address for input can be decoded as in a randomaccess memory. Thus instead of having *m* address lines, one for each word in memory, the number of address lines can be reduced by the decoder to *d* lines, where $m = 2^d$. If unwanted words have to be deleted and new words inserted one at a time, there is a need for a special register to distinguish between active and inactive words. This register, sometimes called a *tag register*, would have as many bits as there are words in the memory. For every active word stored in memory, the corresponding bit in the tag register is set to 1. A word is deleted from memory by clearing its tag bit to 0. Words are stored in memory by scanning the tag register until the first 0 bit is encountered. This gives the first available inactive word and a position for writing a new word. After the new word is stored in memory it is made active by setting its tag bit to 1. An unwanted word when deleted from memory can be cleared to all 0's if this value is used to specify an empty location. Moreover, the words that have a tag bit of 0 must be masked (together with the K_i bits) with the argument word so that only active words are compared.

12-5 Cache Memory

locality of reference

Analysis of a large number of typical programs has shown that the references to memory at any given interval of time tend to be confined within a few localized areas in memory. This phenomenon is known as the property of locality of reference. The reason for this property may be understood considering that a typical computer program flows in a straight-line fashion with program loops and subroutine calls encountered frequently. When a program loop is executed, the CPU repeatedly refers to the set of instructions in memory that constitute the loop. Every time a given subroutine is called, its set of instructions are fetched from memory. Thus loops and subroutines tend to localize the references to memory for fetching instructions. To a lesser degree, memory references to data also tend to be localized. Table-lookup procedures repeatedly refer to that portion in memory where the table is stored. Iterative procedures refer to common memory locations and array of numbers are confined within a local portion of memory. The result of all these observations is the locality of reference property, which states that over a short interval of time, the addresses generated by a typical program refer to a few localized areas of memory repeatedly, while the remainder of memory is accessed relatively infrequently.

If the active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is referred to as a *cache memory*. It is placed between the CPU and main memory as illustrated in Fig. 12-1. The cache memory access time is less than the access time of main memory by a factor of 5 to 10. The cache is the fastest component in the memory hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most frequently accessed instructions and data in the fast cache memory, the average memory access time will approach the access time of the cache. Although the cache is only a small fraction of the size of main memory, a large fraction of memory requests will be found in the fast cache memory because of the locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to access memory, the cache is examined. If the word is found in the cache, it is read from the fast memory. If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word. A block of words containing the one just accessed is then transferred from main memory to cache memory. The block size may vary from one word (the one just accessed) to about 16 words adjacent to the one just accessed. In this manner, some data are transferred to cache so that future references to memory find the required words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a quantity called *hit ratio*. When the CPU refers to memory and finds the word in cache, it is said to produce a *hit*. If the word is not found in cache, it is in main memory and it counts as a *miss*. The ratio of the number of hits divided by the total CPU references to memory (hits plus misses) is the hit ratio. The hit ratio is best measured experimentally by running representative programs in the computer and measuring the number of hits and misses during a given interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved considerably by use of a cache. If the hit ratio is high enough so that most of the time the CPU accesses the cache instead of main memory, the average access time is closer to the access time of the fast cache memory. For example, a computer with cache access time of 100 ns, a main memory access time of 1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This is a considerable improvement over a similar computer without a cache memory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore, very little or no time must be wasted when searching for words in the cache. The transformation of data from main memory to cache memory is referred to as a *mapping* process. Three types of mapping procedures are of practical interest when considering the organization of cache memory:

- 1. Associative mapping
- 2. Direct mapping
- 3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a specific example of a memory organization as shown in Fig. 12-10. The main memory can store 32K words of 12 bits each. The cache is capable of storing 512 of these words at any given time. For every word stored in cache, there is

hit ratio

mapping

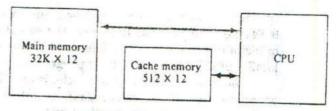


Figure 12-10 Example of cache memory.

a duplicate copy in main memory. The CPU communicates with both memories. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts the 12-bit data from cache. If there is a miss, the CPU reads the word from main memory and the word is then transferred to cache.

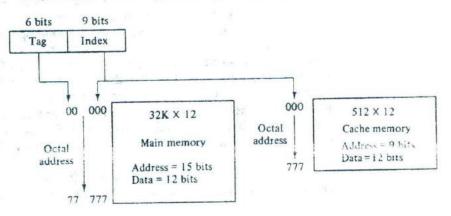
Associative Mapping

The fastest and most flexible cache organization uses an associative memory. This organization is illustrated in Fig. 12-11. The associative memory stores both the address and content (data) of the memory word. This permits any location in cache to store any word from main memory. The diagram shows three words presently stored in the cache. The address value of 15 bits is shown as a five-digit octal number and its corresponding 12-bit word is shown as a four-digit octal number. A CPU address of 15 bits is placed in the argument register and the associative memory is searched for a matching address. If the

CPU address (15 bits)

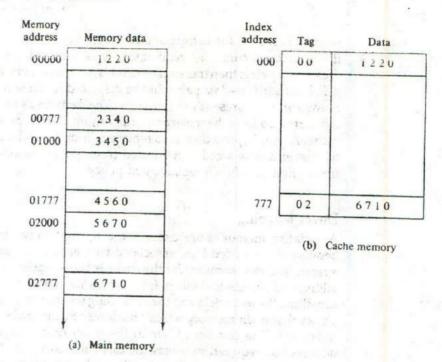
Argument register

	Address	->	D	ata —	-
0	1000		34	50	-
0	2777		67	10	
2	2345		12	34	-
		-	100	4	
б у	15.	-			3
e f	104 - 20 104 - 1902				


address is found, the corresponding 12-bit data is read and sent to the CPU. If no match occurs, the main memory is accessed for the word. The address-data pair is then transferred to the associative cache memory. If the cache is full, an address-data pair must be displaced to make room for a pair that is needed and not presently in the cache. The decision as to what pair is replaced is determined from the replacement algorithm that the designer chooses for the cache. A simple procedure is to replace cells of the cache in round-robin order whenever a new word is requested from main memory. This constitutes a first-in first-out (FIFO) replacement policy.

Direct Mapping

Associative memories are expensive compared to random-access memories because of the added logic associated with each cell. The possibility of using a random-access memory for the cache is investigated in Fig. 12-12. The CPU address of 15 bits is divided into two fields. The nine least significant bits constitute the *index* field and the remaining six bits form the *tag* field. The figure shows that main memory needs an address that includes both the tag and the index bits. The number of bits in the index field is equal to the number of address bits required to access the cache memory.


In the general case, there are 2^k words in cache memory and 2^n words in main memory. The *n*-bit memory address is divided into two fields: *k* bits for the index field and n - k bits for the tag field. The direct mapping cache organization uses the *n*-bit address to access the main memory and the *k*-bit index to access the cache. The internal organization of the words in the cache memory is as shown in Fig. 12-13(b). Each word in cache consists of the data word and its associated tag. When a new word is first brought into the cache, the tag bits are stored alongside the data bits. When the CPU generates a memory request, the index field is used for the address to access the cache. The

tag field

466 CHAPTER TWELVE Memory Organization

A A A BERTHER BORLING AND

Figure 12-13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from the cache. If the two tags match, there is a hit and the desired data word is in cache. If there is no match, there is a miss and the required word is read from main memory. It is then stored in the cache together with the new tag, replacing the previous value. The disadvantage of direct mapping is that the hit ratio can drop considerably if two or more words whose addresses have the same index but different tags are accessed repeatedly. However, this possibility is minimized by the fact that such words are relatively far apart in the address range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the numerical example shown in Fig. 12-13. The word at address zero is presently stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU now wants to access the word at address 02000. The index address is 000, so it is used to access the cache. The two tags are then compared. The cache tag is 00 but the address tag is 02, which does not produce a match. Therefore, the main memory is accessed and the data word 5670 is transferred to the CPU. The cache word at index address 000 is then replaced with a tag of 02 and data of 5670.

The direct-mapping example just described uses a block size of one word. The same organization but using a block size of 8 words is shown in Fig. 12-14.

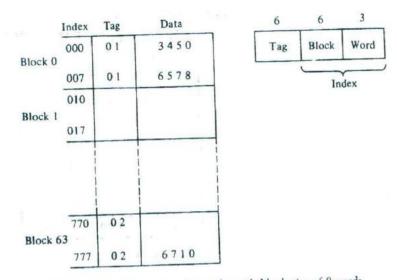


Figure 12-14 Direct mapping cache with block size of 8 words.

The index field is now divided into two parts: the block field and the word field. In a 512-word cache there are 64 blocks of 8 words each, since $64 \times 8 = 512$. The block number is specified with a 6-bit field and the word within the block is specified with a 3-bit field. The tag field stored within the cache is common to all eight words of the same block. Every time a miss occurs, an entire block of eight words must be transferred from main memory to cache memory. Although this takes extra time, the hit ratio will most likely improve with a larger block size because of the sequential nature of computer programs.

Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping is that two words with the same index in their address but with different tag values cannot reside in cache memory at the same time. A third type of cache organization, called set-associative mapping, is an improvement over the directmapping organization in that each word of cache can store two or more words of memory under the same index address. Each data word is stored together with its tag and the number of tag-data items in one word of cache is said to form a set. An example of a set-associative cache organization for a set size of two is shown in Fig. 12-15. Each index address refers to two data words and their associated tags. Each tag requires six bits and each data word has 12 bits, so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can accommodate 1024 words of main memory since each word of cache contains two data words. In general, a set-associative cache of set size k will accommodate k words of main memory in each word of cache. I

ex	Tag	Data	Tag	Data
00	01	3450	0.2	5670
	8.23	1. 1. 1. 19		
			. sector	
, +	02	6710	00	2340

Figure 12-15 Two-way set-associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main memory contents illustrated in Fig. 12-13(a). The words stored at addresses 01000 and 02000 of main memory are stored in cache memory at index address 000. Similarly, the words at addresses 02777 and 00777 are stored in cache at index address 777. When the CPU generates a memory request, the index value of the address is used to access the cache. The tag field of the CPU address is then compared with both tags in the cache to determine if a match occurs. The comparison logic is done by an associative search of the tags in the set similar to an associative memory search: thus the name "set-associative." The hit ratio will improve as the set size increases because more words with the same index but different tags can reside in cache. However, an increase in the set size increases the number of bits in words of cache and requires more complex comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of the tag-data items with a new value. The most common replacement algorithms used are: random replacement, first-in, firstout (FIFO), and least recently used (LRU). With the random replacement policy the control chooses one tag-data item for replacement at random. The FIFO procedure selects for replacement the item that has been in the set the longest. The LRU algorithm selects for replacement the item that has been least recently used by the CPU. Both FIFO and LRU can be implemented by adding a few extra bits in each word of cache.

Writing into Cache

An important aspect of cache organization is concerned with memory write requests. When the CPU finds a word in cache during a read operation, the main memory is not involved in the transfer. However, if the operation is a write, there are two ways that the system can proceed.

replacement algorithms The simplest and most commonly used procedure is to update main memory with every memory write operation, with cache memory being updated in parallel if it contains the word at the specified address. This is called the *write-through* method. This method has the advantage that main memory always contains the same data as the cache. This characteristic is important in systems with direct memory access transfers. It ensures that the data residing in main memory are valid at all times so that an I/O device communicating through DMA would receive the most recent updated data.

The second procedure is called the *write-back* method. In this method only the cache location is updated during a write operation. The location is then marked by a flag so that later when the word is removed from the cache it is copied into main memory. The reason for the write-back method is that during the time a word resides in the cache, it may be updated several times; however, as long as the word remains in the cache, it does not matter whether the copy in main memory is out of date, since requests from the word are filled from the cache. It is only when the word is displaced from the cache that an accurate copy need be rewritten into main memory. Analytical results indicate that the number of memory writes in a typical program ranges between 10 and 30 percent of the total references to memory.

Cache Initialization

One more aspect of cache organization that must be taken into consideration is the problem of initialization. The cache is initialized when power is applied to the computer or when the main memory is loaded with a complete set of programs from auxiliary memory. After initialization the cache is considered to be empty, but in effect it contains some nonvalid data. It is customary to include with each word in cache a *valid bit* to indicate whether or not the word contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of a particular cache word is set to 1 the first time this word is loaded from main memory and stays set unless the cache has to be initialized again. The introduction of the valid bit means that a word in cache is not replaced by another word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid bit happens to be 0, the new word automatically replaces the invalid data. Thus the initialization condition has the effect of forcing misses from the cache until it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary memory. Portions of a program or data are brought into main memory as they are needed by the CPU. *Virtual memory* is a concept used in some large computer systems that permit the user to construct programs as though a large

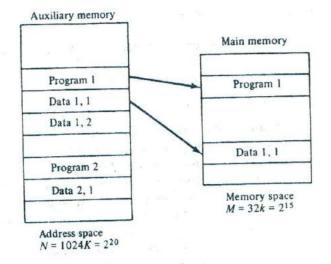
write-through

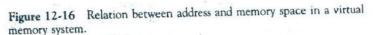
write-back

valid bit

memory space were available, equal to the totality of auxiliary memory. Each address that is referenced by the CPU goes through an address mapping from the so-called virtual address to a physical address in main memory. Virtual memory is used to give programmers the illusion that they have a very large memory at their disposal, even though the computer actually has a relatively small main memory. A virtual memory system provides a mechanism for translating program-generated addresses into correct main memory locations. This is done dynamically, while programs are being executed in the CPU. The translation or mapping is handled automatically by the hardware by means of a mapping table.

Address Space and Memory Space


An address used by a programmer will be called a *virtual address*, and the set of such addresses the *address space*. An address in main memory is called a *location* or *physical address*. The set of such locations is called the *memory space*. Thus the *a*ddress space is the set of addresses generated by programs as they reference instructions and data; the memory space consists of the actual main memory locations directly addressable for processing. In most computers the address and memory spaces are identical. The address space is allowed to be larger than the memory space in computers with virtual memory.


As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024). Fifteen bits are needed to specify a physical address in memory since $32K = 2^{15}$. Suppose that the computer has available auxiliary memory for storing $2^{20} = 1024$ K words. Thus auxiliary memory has a capacity for storing information equivalent to the capacity of 32 main memories. Denoting the address space by N and the memory space by M, we then have for this example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred to and from auxiliary memory and main memory based on demands imposed by the CPU. Suppose that program 1 is currently being executed in the CPU. Program 1 and a portion of its associated data are moved from auxiliary memory into main memory as shown in Fig. 12-16. Portions of programs and data need not be in contiguous locations in memory since information is being moved in and out, and empty spaces may be available in scattered locations in memory.

In a virtual memory system, programmers are told that they have the total address space at their disposal. Moreover, the address field of the instruction code has a sufficient number of bits to specify all virtual addresses. In our example, the address field of an instruction code will consist of 20 bits but physical memory addresses must be specified with only 15 bits. Thus CPU will reference instructions and data with a 20-bit address, but the information at this address must be taken from physical memory because access to auxiliary storage for individual words will be prohibitively long. (Remember that for

address space memory space

efficient transfers, auxiliary storage moves an entire record to the main memory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation, which means that every address is translated immediately as a word is referenced by CPU.

The mapping table may be stored in a separate memory as shown in Fig. 12-17 or in main memory. In the first case, an additional memory unit is required as well as one extra memory access time. In the second case, the table

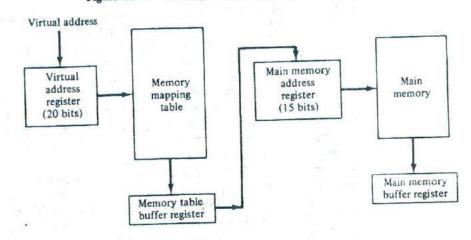


Figure 12-17 Memory table for mapping a virtual address.

takes space from main memory and two accesses to memory are required with the program munning at half spread. A third alternative is to use an associative memory as explained below.

Address Mapping Using Pages

The table implementation of the address mapping is simplified if the information in the address space and the memory space are each divided into groups of fixed size. The physical memory is broken down into groups of equal size called *blocks*, which may range from 64 to 4096 words each. The term *page* refers to groups of address space of the same size. For example, if a page or block consists of 1K words, then, using the previous example, address space is divided into 1024 pages and main memory is divided into 32 blocks. Although both a page and a block are split into groups of 1K words, a page refers to the organization of address space, while a block refers to the organization of memory space. The programs are also considered to be split into pages. Portions of programs are moved from auxiliary memory to main memory in records equal to the size of a page. The term "page frame" is sometimes used to denote a block.

Consider a computer with an address space of 8K and a memory space of 4K. If we split each into groups of 1K words we obtain eight pages and four blocks as shown in Fig. 12-18. At any given time, up to four pages of address space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each virtual address is considered to be represented by two numbers: a page number address and a line within the page. In a computer with 2^p words per page, p bits are used to specify a line address and the remaining high-order bits of the virtual address specify the page number. In the example of Fig. 12-18, a virtual address has 13 bits. Since each page consists of $2^{10} = 1024$ words, the high-order three bits of a virtual address will specify one of the eight pages and the low-order 10 bits give the line address within the page. Note that the line address in address space and memory space is the same; the only mapping required is from a page number to a block number.

The organization of the memory mapping table in a paged system is shown in Fig. 12-19. The memory-page table consists of eight words, one for each page. The address in the page table denotes the page number and the content of the word gives the block number where that page is stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in main memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location indicates whether the page has been transferred from auxiliary memory into main memory. A 0 in the presence bit indicates that this page is not available in main memory. The CPU references a word in memory with a virtual address of 13 bits. The three high-order bits of the virtual address specify a page number and also an address for the memory-page table. The content of the

pages and blocks

page frame

SECTION 12-6 Virtual Memory 473

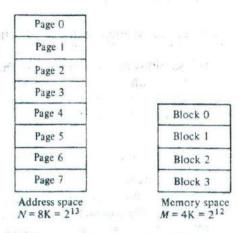


Figure 12-18 Address space and memory space split into groups of 1K words.

word in the memory page table at the page number address is read out into the memory table buffer register. If the presence bit is a 1, the block number thus read is transferred to the two high-order bits of the main memory address register. The line number from the virtual address is transferred into the 10 low-order bits of the memory address register. A read signal to main memory

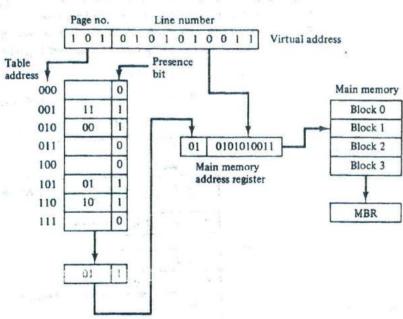


Figure 12-19 Memory table in a paged system.

Memory page table

20610 - Caller (9) 12

1440 C 1 1 1 1 1 1

transfers the content of the word to the main memory buffer register ready to be used by the CPU. If the presence bit in the word read from the page table is 0, it signifies that the content of the word referenced by the virtual address does not reside in main memory. A call to the operating system is then generated to fetch the required page from auxiliary memory and place it into main memory before resuming computation.

Associative Memory Page Table

A random-access memory page table is inefficient with respect to storage utilization. In the example of Fig. 12-19 we observe that eight words of memory are needed, one for each page, but at least four words will always be marked empty because main memory cannot accommodate more than four blocks. In general, a system with *n* pages and *m* blocks would require a memory-page table of *n* locations of which up to *m* blocks will be marked with block numbers and all others will be empty. As a second numerical example, consider an address space of 1024K words and memory space of 32K words. If each page or block contains 1K words, the number of pages is 1024 and the number of blocks 32. The capacity of the memory-page table must be 1024 words and only 32 locations may have a presence bit equal to 1. At any given time, at least 992 locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it with a number of words equal to the number of blocks in main memory. In this way the size of the memory is reduced and each location is fully utilized. This method can be implemented by means of an associative memory with each word in memory containing a page number together with its corresponding

Figure 12-20 An associative memory page table.

block number. The page field in each word is compared with the page number in the virtual address. If a match occurs, the word is read from memory and its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example of Fig. 12-19. We replace the random access memory-page table with an associative memory of four words as shown in Fig. 12-20. Each entry in the associative memory array consists of two fields. The first three bits specify a field for storing the page number. The last two bits constitute a field for storing the block number. The virtual address is placed in the argument register. The page number bits in the argument register are compared with all page numbers in the page field of the associative memory. If the page number is found, the 5-bit word is read out from memory. The corresponding block number, being in the same word, is transferred to the main memory address register. If no match occurs, a call to the operating system is generated to bring the required page from auxiliary memory.

Page Replacement

A virtual memory system is a combination of hardware and software techniques. The memory management software system handles all the software operations for the efficient utilization of memory space. It must decide (1) which page in main memory ought to be removed to make room for a new page, (2) when a new page is to be transferred from auxiliary memory to main memory, and (3) where the page is to be placed in main memory. The hardware mapping mechanism and the memory management software together constitute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into main memory and the page table is set to indicate their position. The program is executed from main memory until it attempts to reference a page that is still in auxiliary memory. This condition is called *page fault*. When page fault occurs, the execution of the present program is suspended until the required page is brought into main memory. Since loading a page from auxiliary memory to main memory is basically an I/O operation, the operating system assigns this task to the I/O processor. In the meantime, control is transferred to the next program in memory that is waiting to be processed in the CPU. Later, when the memory block has been assigned and the transfer completed, the original program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the page referenced by the CPU is not in main memory. A new page is then transferred from auxiliary memory to main memory. If main memory is full, it would be necessary to remove a page from a memory block to make room for the new page. The policy for choosing pages to remove is determined from the replacement algorithm that is used. The goal of a replacement policy is to try to remove the page least likely to be referenced in the immediate future. Two of the most common replacement algorithms used are the *first-in*,

page fault

first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for replacement the page that has been in memory the longest time. Each time a page is loaded into memory, its identification number is pushed into a FIFO stack. FIFO will be full whenever memory has no more empty blocks. When a new page must be loaded, the page least recently brought in is removed. The page to be removed is easily determined because its identification number is at the top of the FIFO stack. The FIFO replacement policy has the advantage of being easy to implement. It has the disadvantage that under certain circumstances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attractive on the assumption that the least recently used page is a better candidate for removal than the least recently loaded page as in FIFO. The LRU algorithm can be implemented by associating a counter with every page that is in main memory. When a page is referenced, its associated counter is set to zero. At fixed intervals of time, the counters associated with all pages presently in memory are incremented by 1. The least recently used page is the page with the highest count. The counters are often called *aging registers*, as their count indicates their age, that is, how long ago their associated pages have been referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory it becomes necessary to move programs and data around the memory, to vary the amount of memory in use by a given program, and to prevent a program from changing other programs. The demands on computer memory brought about by multiprogramming have created the need for a memory management system. A memory management system is a collection of hardware and software procedures for managing the various programs residing in memory. The memory management software is part of an overall operating system available in many computers. Here we are concerned with the hardware unit associated with the memory management system.

The basic components of a memory management unit are:

- 1. A facility for dynamic storage relocation that maps logical memory references into physical memory addresses
- 2. A provision for sharing common programs stored in memory by different users
- 3. Protection of information against unauthorized access between users and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to the paging system described in Sec. 12-6. The fixed page size used in the virtual

LRU

FIFO

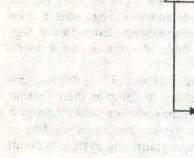
SECTION 12-7 Memory Management Hardware 477

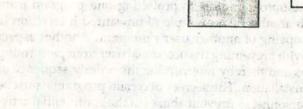
memory system causes certain difficulties with respect to program size and the logical structure of programs. It is more convenient to divide programs and data into logical parts called segments. A *segment* is a set of logically related instructions or data elements associated with a given name. Segments may be generated by the programmer or by the operating system. Examples of segments are a subroutine, an array of data, a table of symbols, or a user's program.

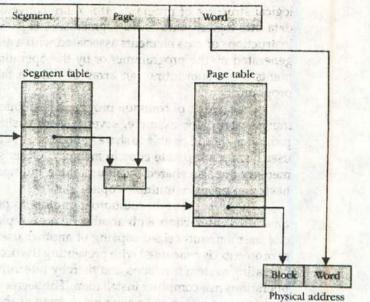
The sharing of common programs is an integral part of a multiprogramming system. For example, several users wishing to compile their Fortran programs should be able to share a single copy of the compiler rather than each user having a separate copy in memory. Other system programs residing in memory are also shared by all users in a multiprogramming system without having to produce multiple copies.

The third issue in multiprogramming is protecting one program from unwanted interaction with another. An example of unwanted interaction is one user's unauthorized copying of another user's program. Another aspect of protection is concerned with preventing the occasional user from performing operating system functions and thereby interrupting the orderly sequence of operations in a computer installation. The secrecy of certain programs must be kept from unauthorized personnel to prevent abuses in the confidential activities of an organization.

The address generated by a segmented program is called a *logical address*. This is similar to a virtual address except that logical address space is associated with variable-length segments rather than fixed-length pages. The logical address may be larger than the physical memory address as in virtual memory, but it may also be equal, and sometimes even smaller than the length of the physical memory address. In addition to relocation information, each segment has protection information associated with it. Shared programs are placed in a unique segment in each user's logical address space so that a single physical copy can be shared. The function of the memory management unit is to map logical addresses into physical addresses similar to the virtual memory mapping concept.

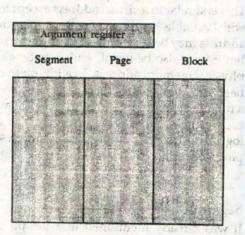

Segmented-Page Mapping


It was already mentioned that the property of logical space is that it uses variable-length segments. The length of each segment is allowed to grow and contract according to the needs of the program being executed. One way of specifying the length of a segment is by associating with it a number of equal-size pages. To see how this is done, consider the logical address shown in Fig. 12-21. The logical address is partitioned into three fields. The segment field specifies a segment number. The page field specifies the page within the segment and the word field gives the specific word within the page. A page field of k bits can specify up to 2^k pages. A segment number may be associated


segment

logical address

Logical address



THE PROPERTY.

TRUMPO

(a) Logical to physical address mapping

(b) Associative memory translation look-aside buffer (TLB)

Figure 12-21 Mapping in segmented-page memory management unit.

A ST WEDIE

with just one page or with as many as 2^t pages. Thus the length of a segment would vary according to the number of pages that are assigned to it.

The mapping of the logical address into a physical address is done by means of two tables, as shown in Fig. 12-21(a). The segment number of the logical address specifies the address for the segment table. The entry in the

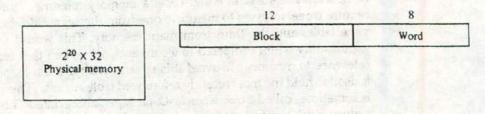
SECTION 12-7 Memory Management Hardware

479

segment table is a pointer address for a page table base. The page table base is added to the page number given in the logical address. The sum produces a pointer address to an entry in the page table. The value found in the page table provides the block number in physical memory. The concatenation of the block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories or in main memory. In either case, a memory reference from the CPU will require three accesses to memory: one from the segment table, one from the page table, and the third from main memory. This would slow the system significantly when compared to a conventional system that requires only one reference to memory. To avoid this speed penalty, a fast associative memory is used to hold the most recently referenced table entries. (This type of memory is sometimes called a *translation lookaside buffer*, abbreviated TLB.) The first time a given block is referenced, its value together with the corresponding segment and page numbers are entered into the associative memory as shown in Fig. 12-21(b). Thus the mapping process is first attempted by associative search with the given segment and page numbers. If it succeeds, the mapping delay is only that of the associative memory. If no match occurs, the slower table mapping of Fig. 12-21(a) is used and the result transformed into the associative memory for future reference.

Numerical Example


A numerical example may clarify the operation of the memory management unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit segment number specifies one of 16 possible segments. The 8-bit page number can specify up to 256 pages, and the 8-bit word field implies a page size of 256 words. This configuration allows each segment to have any number of pages up to 256. The smallest possible segment will have one page or 256 words. The largest possible segment will have 256 pages, for a total of $256 \times 256 = 64$ K words.

The physical memory shown in Fig. 12-22(b) consists of 2²⁰ words of 32 bits each. The 20-bit address is divided into two fields: a 12-bit block number and an 8-bit word number. Thus, physical memory is divided into 4096 blocks of 256 words each. A page in a logical address has a corresponding block in physical memory. Note that both the logical and physical address have 20 bits. In the absence of a memory management unit, the 20-bit address from the CPU can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The operating system may assign to this program segment 6 and pages 0 through 4, as shown in Fig. 12-23(a). The total logical address range for the program is from hexadecimal 60000 to 604FF. When the program is loaded into physical memory, it is distributed among five blocks in physical memory where the operating system finds empty spaces. The correspondence between each memory block and logical page number is then entered in a table as shown in

4	8	8
Segment	Page	Word

 (a) Logical address format: 16 segments of 256 pages each, each page has 256 words

(b) Physical address format: 4096 blocks of 256 words each, each word has 32 bits

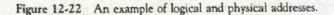


Fig. 12-23(b). The information from this table is entered in the segment and page tables as shown in Fig. 12-24(a).

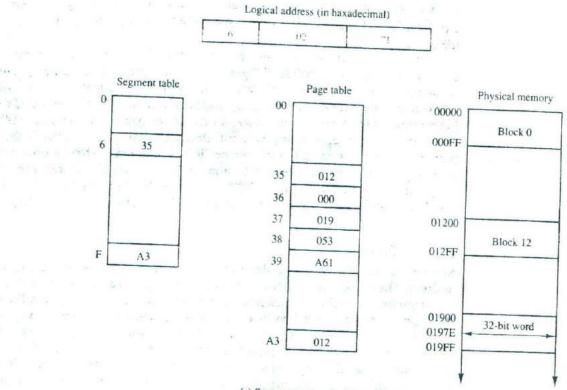
Now consider the specific logical address given in Fig. 12-24. The 20-bit address is listed as a five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. The base of segment 6 in the page table is at address 35. Segment 6 has associated with it five pages, as shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 37. The physical memory block is found in the page table to be 019. Word 7E in block 19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into block 12 and page 1 maps into block 0. The associative memory in Fig.

address	Page number	11.17	THE SH	Turbus a Color turb		
60000	Page 0	E F		Segment	Page	Block
60100	Page 1	wal!	1900	6	00	012
(0200	D 0			6	01	000
60200	Page 2	2.29	10 01 0	6	02	019
60300	Page 3			6	03	053
60400		100		6	04	A61
604FF	Page 4	VEI.	- 50123	(r	*	

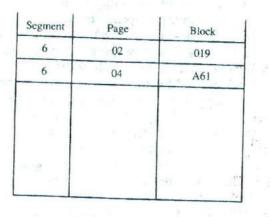
13500 (A.0. 440 Long

Figure 12-23 Example of logical and physical memory address assignment.

La Contra llave de la Contra de la


(a) Logical address assignment

H


T had anthrough the

(b) Segment-page versus memory block assignment

SECTION 12-7 Memory Management Hardware 481

(a) Segment and page table mapping

(b) Associative memory (TLB)

482 CHAPTER TWELVE Memory Organization

12-24(b) shows that pages 2 and 4 of segment 6 have been referenced previously and therefore their corresponding block numbers are stored in the associative memory.

From this example it should be evident that the memory management system can assign any number of pages to each segment. Each logical page can be mapped into any block in physical memory. Pages can move to different blocks in memory depending on memory space requirements. The only updating required is the change of the block number in the page table. Segments can grow or shrink independently without affecting each other. Different segments can use the same block of memory if it is required to share a program by many users. For example, block number 12 in physical memory can be assigned a second logical address F0000 through F00FF. This specifies segment number 15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection

Memory protection can be assigned to the physical address or the logical address. The protection of memory through the physical address can be done by assigning to each block in memory a number of protection bits that indicate the type of access allowed to its corresponding block. Every time a page is moved from one block to another it would be necessary to update the block protection bits. A much better place to apply protection is in the logical address space rather than the physical address space. This can be done by including protection information within the segment table or segment register of the memory management hardware.

The content of each entry in the segment table or a segment register is called a descriptor. A typical descriptor would contain, in addition to a base address field, one or two additional fields for protection purposes. A typical format for a segment descriptor is shown in Fig. 12-?5. The base address field gives the base of the page table address in a segmented-page organization or the block base address in a segment register organization. This is the address used in mapping from a logical to the physical address. The length field gives the segment size by specifying the maximum number of pages assigned to the segment. The length field is compared against the page number in the logical address. A size violation occurs if the page number falls outside the segment length boundary. Thus a given program and its data cannot access memory not assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights available to the particular segment. In a segmented-page organization, each

Figure 12-25 Format of a typical segment descriptor.

	Base address	Length	Protection
_			

entry in the page table may have its own protection field to describe the access rights of each page. The protection information is set into the descriptor by the master control program of the operating system. Some of the access rights of interest that are used for protecting the programs residing in memory are:

- 1. Full read and write privileges
- 2. Read only (write protection)
- 3. Execute only (program protection)
- 4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing its own instructions. Write protection is useful for sharing system programs such as utility programs and other library routines. These system programs are stored in an area of memory where they can be shared by many users. They can be read by all programs, but no writing is allowed. This protects them from being changed by other programs.

The execute-only condition protects programs from being copied. It restricts the segment to be referenced only during the instruction fetch phase but not during the execute phase. Thus it allows the users to execute the segment program instructions but prevents them from reading the instructions as data for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time. These system programs must be protected by making them inaccessible to unauthorized users. The operating system protection condition is placed in the descriptors of all operating system programs to prevent the occasional user from accessing operating system segments.

PROBLEMS

12-1.

191.

And the

a. How many 128 × 8 RAM chips are needed to provide a memory capacity of 2048 bytes?

- b. How many lines of the address bus must be used to access 2048 bytes of memory? How many of these lines will be common to all chips?
- c. How many lines must be decoded for chip select? Specify the size of the decoders.

12-2.

- A computer uses RAM chips of 1024×1 capacity.
 - a. How many chips are needed, and how should their address lines be connected to provide a memory capacity of 1024 bytes?

b. How many chips are needed to provide a memory capacity of 16K bytes? Explain in words how the chips are to be connected to the address bus.

12-3.

A ROM chip of 1024 \times 8 bits has four select inputs and operates from a 5-volt

power supply. How many pins are needed for the IC package? Draw a block diagram and label all input and output terminals in the ROM.

12-4.

12-5.

Extend the memory system of Fig. 12-4 to 4096 bytes of RAM and 4096 bytes of ROM. List the memory-address map and indicate what size decoders are needed.

A computer employs RAM chips of 256×8 and ROM chips of 1024×8 . The computer system needs 2K bytes of RAM, 4K bytes of ROM, and four interface units, each with four registers. A memory-mapped I/O configuration is used. The two highest-order bits of the address bus are assigned 00 for RAM, 01 for ROM, and 10 for interface registers.

a. How many RAM and ROM chips are needed?

b. Draw a memory-address map for the system.

c. Give the address range in hexadecimal for RAM, ROM, and interface.

An 8-bit computer has a 16-bit address bus. The first 15 lines of the address are used to select a bank of 32K bytes of memory. The high-order bit of the address is used to select a register which receives the contents of the data bus. Explain how this configuration can be used to extend the memory capacity of the system to eight banks of 32K bytes each, for a total of 256K bytes of memory.

12-7.

12-12.

12-6.

A magnetic disk system has the following parameters:

 T_s = average time to position the magnetic head over a track

R = rotation speed of disk in revolutions per second

 N_t = number of bits per track

 N_s = number of bits per sector

Calculate the average time T_a that it will take to read one sector.

- **12-8.** What is the transfer rate of an eight-track magnetic tape whose speed is 120 inches per second and whose density is 1600 bits per inch?
- 12-9. Obtain the complement function for the match logic of one word in an associative memory. In other words, show that M'_i is the sum of exclusive-OR functions. Draw the logic diagram for M'_i and terminate it with an inverter to obtain M_i .
- 12-10. Obtain the Boolean function for the match logic of one word in an associative memory taking into consideration a tag bit that indicates whether the word is active or inactive.
- 12-11. What additional logic is required to give a no-match result for a word in an associative memory when all key bits are zeros?
 - a. Draw the logic diagram of all the cells of one word in an associative memory. Include the read and write logic of Fig. 12-8 and the match logic of Fig. 12-9.

b. Draw the logic diagram of all cells along one vertical column (column j) in an associative memory. Include a common output line for all bits in the same column.

- c. From the diagrams in (a) and (b) show that if output *M*, is connected to the read are or the same word, then the matched word will be read out, provided that only one word matches the masked argument.
- 12-13. Describe in words and by means of a block diagram how multiple matched words can be read out from an associative memory.
- 12-14. Derive the logic of one cell and of an entire word for an associative memory that has an output indicator when the unmasked argument is greater than (but not equal to) the word in the associative memory.
- 12-15. A two-way set associative cache memory uses blocks of four words. The cache can accommodate a total of 2048 words from main memory. The main memory size is 128K × 32.
 - a. Formulate all pertinent information required to construct the cache memory.
 - b. What is the size of the cache memory?

12-16.

12-17.

The access time of a cache memory is 100 ns and that of main memory 1000 ns. It is estimated that 80 percent of the memory requests are for read and the remaining 20 percent for write. The hit ratio for read accesses only is 0.9. A write-through procedure is used.

- a. What is the average access time of the system considering only memory read cycles?
- b. What is the average access time of the system for both read and write requests?
- c. What is the hit ratio taking into consideration the write cycles?

A four-way set-associative cache memory has four words in each set. A replacement procedure based on the least recently used (LRU) algorithm is implemented by means of 2-bit counters associated with each word in the set. A value in the range 0 to 3 is thus recorded for each word. When a hit occurs, the counter associated with the referenced word is set to 0, those counters with values originally lower than the referenced one are incremented by 1, and all others remain unchanged. If a miss occurs, the word with counter value 3 is removed, the new word is put in its place, and its counter is set to 0. The other three counters are incremented by 1. Show that this procedure works for the following sequence of word reference: A, B, C, D, B, E, D, A, C, E, C, E. (Start with A, B, C, D as the initial four words, with word A being the least recently used.)

12-18.

A digital computer has a memory unit of $64K \times 16$ and a cache memory of 1K words. The cache uses direct mapping with a block size of four words.

- a. How many bits are there in the tag, index, block, and word fields of the address format?
- b. How many bits are there in each word of cache, and how are they divided into functions? Include a valid bit.
- c. How many blocks can the cache accommodate?

12-19.

- An address space is specified by 24 bits and the corresponding memory space by 16 bits.
 - a. How many words are there in the address space?
 - b. How many words are there in the memory space?

c. If a page consists of 2K words, how many pages and blocks are there in the system?

12-20.

A virtual memory has a page size of 1K words. There are eight pages and four blocks. The associative memory page table contains the following entries:

Page	Block
0	3
1	1
4	2
6	0

Make a list of all virtual addresses (in decimal) that will cause a page fault if used by the CPU.

12-21.

A virtual memory system has an address space of 8K words, a memory space of 4K words, and page and block sizes of 1K words (see Fig. 12-18). The following page reference changes occur during a given time interval. (Only page changes are listed. If the same page is referenced again, it is not listed twice.)

20126140102357

Determine the four pages that are resident in main memory after each page reference change if the replacement algorithm used is (a) FIFO; (b) LRU.

12-22.

- Determine the two logical addresses from Fig. 12-24(a) that will access physical memory at hexadecimal address 012AF.
- The logical address space in a computer system consists of 128 segments. 12-23. Each segment can have up to 32 pages of 4K words in each. Physical memory consists of 4K blocks of 4K words in each. Formulate the logical and physical address formats.
- Give the binary number of the logical address formulated in Prob. 12-23 for 12-24. segment 36 and word number 2000 in page 15.

REFERENCES

- 1. Baer, J. L., Computer Systems Architecture. Potomac, MD: Computer Science Press, 1980.
- 2. Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 1. New York: John Wiley, 1989.
- 3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

486

- Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed. New York: McGraw-Hill, 1990.
- 5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York: McGraw-Hill, 1984.
- Kain, R., Computer Architecture: Software and Hardware, Vol. 1. Englewood Cliffs, NJ: Prentice Hall, 1989.
- 7. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization. Englewood Cliffs, NJ: Prentice Hall, 1989.
- 8. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ: Prentice Hall, 1990.
- Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach. San Mateo, CA: Morgan Kaufmann Publishers, 1990.
- Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice Hall, 1990.
- Stone, H. S. (ed.), Introduction to Computer Architecture, 2nd ed. Chicago: Science Research Associates, 1980.

Multiprocessors

THIRTEEN

IN THIS CHAPTER

CHAPTER

- 13-1 Characteristics of Multiprocessors
- 13-2 Interconnection Structures
- 13-3 Interprocessor Arbitration
- 13-4 Interprocessor Communication and Synchronization
- 13-5 Cache Coherence

13-1 Characteristics of Multiprocessors

A multiprocessor system is an interconnection of two or more CPUs with memory and input-output equipment. The term "processor" in *multiprocessor* can mean either a central processing unit (CPU) or an input-output processor (IOP). However, a system with a single CPU and one or more IOPs is usually not included in the definition of a multiprocessor system unless the IOP has computational facilities comparable to a CPU. As it is most commonly defined, a multiprocessor system implies the existence of multiple CPUs, although usually there will be one or more IOPs as well. As mentioned in Sec. 9-1, multiprocessors are classified as multiple instruction stream, multiple data stream (MIMD) systems.

There are some similarities between multiprocessor and multicomputer systems since both support concurrent operations. However, there exists an important distinction between a system with multiple computers and a system with multiple processors. Computers are interconnected with each other by means of communication lines to form a *computer network*. The network consists of several autonomous computers that may or may not communicate with each other. A multiprocessor system is controlled by one operating system that provides interaction between processors and all the components of the system cooperate in the solution of a problem.

MIMD

490 CHAPTER THIRTEEN Multiprocessors

microprocessor

Although some large-scale computers include two or more CPUs in their overall system, it is the emergence of the microprocessor that has been the major motivation for multiprocessor systems. The fact that microprocessors take very little physical space and are very inexpensive brings about the feasibility of interconnecting a large number of microprocessors into one composite system. Very-large-scale integrated circuit technology has reduced the cost of computer components to such a low level that the concept of applying multiple processors to meet system performance requirements has become an attractive design possibility.

Multiprocessing improves the reliability of the system so that a failure or error in one part has a limited effect on the rest of the system. If a fault causes one processor to fail, a second processor can be assigned to perform the functions of the disabled processor. The system as a whole can continue to function correctly with perhaps some loss in efficiency.

The benefit derived from a multiprocessor organization is an improved system performance. The system derives its high performance from the fact that computations can proceed in parallel in one of two ways.

- 1. Multiple independent jobs can be made to operate in parallel.
- 2. A single job can be partitioned into multiple parallel tasks.

An overall function can be partitioned into a number of tasks that each processor can handle individually. System tasks may be allocated to specialpurpose processors whose design is optimized to perform certain types of processing efficiently. An example is a computer system where one processor performs the computations for an industrial process control while others monitor and control the various parameters, such as temperature and flow rate. Another example is a computer where one processor performs highspeed floating-point mathematical computations and another takes care of routine data-processing tasks.

Multiprocessing can improve performance by decomposing a program into parallel executable tasks. This can be achieved in one of two ways. The user can explicitly declare that certain tasks of the program be executed in parallel. This must be done prior to loading the program by specifying the parallel executable segments. Most multiprocessor manufacturers provide an operating system with programming language constructs suitable for specifying parallel processing. The other, more efficient way is to provide a compiler with multiprocessor software that can automatically detect parallelism in a user's program. The compiler checks for data dependency in the program. If a program depends on data generated in another part, the part yielding the needed data must be executed first. However, two parts of a program that do not use data generated by each can run concurrently. The parallelizing compiler checks the entire program to detect any possible data dependencies. These that have no data dependency are then considered for concurrent scheduling on different processors.

VLSI

SECTION 13-2 Interconnection Structures 491

tightly coupled

loosely coupled

Multiprocessors are classified by the way their memory is organized. A multiprocessor system with common shared memory is classified as a *sharedmemory* or *tightly coupled multiprocessor*. This does not preclude each processor from having its own local memory. In fact, most commercial tightly coupled multiprocessors provide a cache memory with each CPU. In addition, there is a global common memory that all CPUs can access. Information can therefore be shared among the CPUs by placing it in the common global memory.

An alternative model of microprocessor is the *distributed-memory* or *loosely coupled* system. Each processor element in a loosely coupled system has its own private local memory. The processors are tied together by a switching scheme designed to route information from one processor to another through a message-passing scheme. The processors relay program and data to other processors in packets. A packet consists of an address, the data content, and some error detection code. The packets are addressed to a specific processor or taken by the first available processor, depending on the communication system used. Loosely coupled systems are most efficient when the interaction between tasks is minimal, whereas tightly coupled systems can tolerate a higher degree of interaction between tasks.

13-2 Interconnection Structures

The components that form a multiprocessor system are CPUs, IOPs connected to input-output devices, and a memory unit that may be partitioned into a number of separate modules. The interconnection between the components can have different physical configurations, depending on the number of transfer paths that are available between the processors and memory in a shared memory system or among the processing elements in a loosely coupled system. There are several physical forms available for establishing an interconnection network. Some of these schemes are presented in this section:

- 1. Time-shared common bus
- 2. Multiport memory
- 3. Crossbar switch
- Multistage switching network
- 5. Hypercube system

Time-Shared Common Bus

A common-bus multiprocessor system consists of a number of processors connected through a common path to a memory unit. A time-shared common bus for five processors is shown in Fig. 13-1. Only one processor can communicate with the memory or another processor at any given time. Transfer

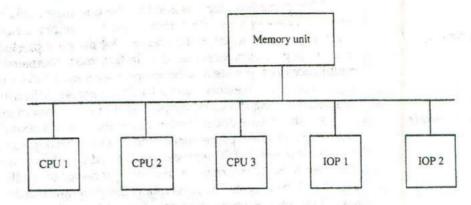


Figure 13-1 Time-shared common bus organization.

operations are conducted by the processor that is in control of the bus at the time. Any other processor wishing to initiate a transfer must first determine the availability status of the bus, and only after the bus becomes available can the processor address the destination unit to initiate the transfer. A command is issued to inform the destination unit what operation is to be performed. The receiving unit recognizes its address in the bus and responds to the control signals from the sender, after which the transfer is initiated. The system may exhibit transfer conflicts since one common bus is shared by all processors. These conflicts must be resolved by incorporating a bus controller that establishes priorities among the requesting units.

A single common-bus system is restricted to one transfer at a time. This means that when one processor is communicating with the memory, all other processors are either busy with internal operations or must be idle waiting for the bus. As a consequence, the total overall transfer rate within the system is limited by the speed of the single path. The processors in the system can be kept busy more often through the implementation of two or more independent buses to permit multiple simultaneous bus transfers. However, this increases the system cost and complexity.

A more economical implementation of a dual bus structure is depicted in Fig. 13-2. Here we have a number of local buses each connected to its own local memory and to one or more processors. Each local bus may be connected to a CPU, an IOP, or any combination of processors. A system bus controller links each local bus to a common system bus. The I/O devices connected to the local IOP, as well as the local memory, are available to the local processors. If an IOP is connected directly to the system bus, the I/O devices attached to it may be made available to all processors. Only one processor can communicate with the shared memory and other common resources through the system bus at any given time. The other processors are kept busy communicating with their local memory and I/O devices. Part of the local memory may be designed

shared memory

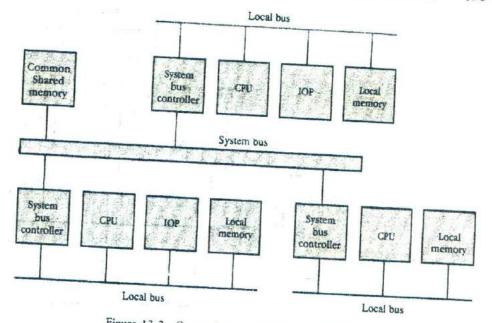


Figure 13-2 System bus structure for multiprocessors.

as a cache memory attached to the CPU (see Sec. 12-6). In this way, the average access time of the local memory can be made to approach the cycle time of the CPU to which it is attached.

Multiport Memory

A multiport memory system employs separate buses between each memory module and each CPU. This is shown in Fig. 13-3 for four CPUs and four memory modules (MMs). Each processor bus is connected to each memory module. A processor bus consists of the address, data, and control lines required to communicate with memory. The memory module is said to have four ports and each port accommodates one of the buses. The module must have internal control logic to determine which port will have access to memory at any given time. Memory access conflicts are resolved by assigning fixed priorities to each memory port. The priority for memory access associated with each processor may be established by the physical port position that its bus occupies in each module. Thus CPU 1 will have priority over CPU 2, CPU 2 will have priority over CPU 3, and CPU 4 will have the lowest priority.

The advantage of the multiport memory organization is the high transfer rate that can be achieved because of the multiple paths between processors and memory. The disadvantage is that it requires expensive memory control logic and a large number of cables and connectors. As a consequence, this interconCHAPTER THIRTEEN Multiprocessors

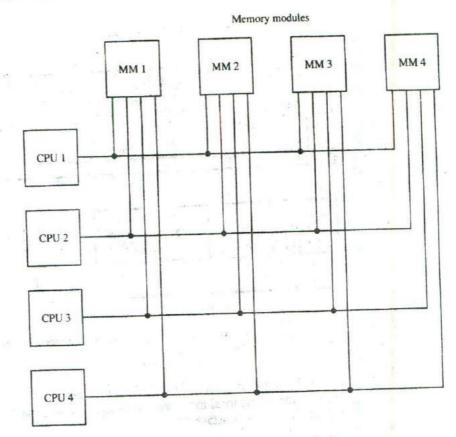
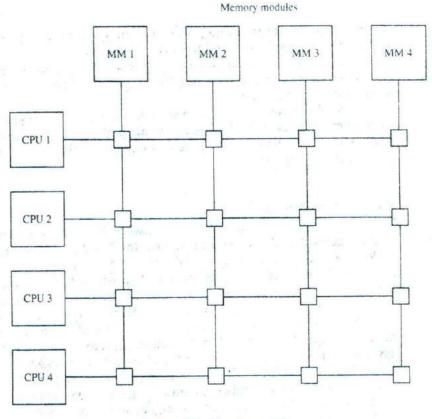
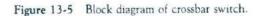
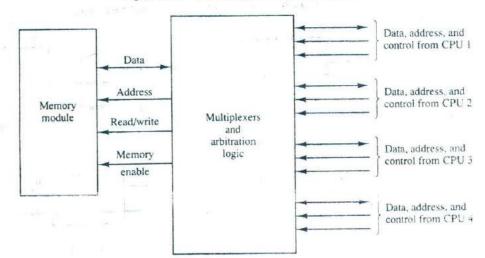


Figure 13-3 Multiport memory organization.


nection structure is usually appropriate for systems with a small number of processors.

Crossbar Switch

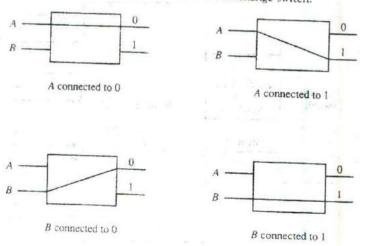

The crossbar switch organization consists of a number of crosspoints that are placed at intersections between processor buses and memory module paths. Figure 13-4 shows a crossbar switch interconnection between four CPUs and four memory modules. The small square in each crosspoint is a switch that determines the path from a processor to a memory module. Each switch point has control logic to set up the transfer path between a processor and memory. It examines the address that is placed in the bus to determine whether its particular module is being addressed. It also resolves multiple requests for access to the same memory module on a predetermined priority basis.


Figure 13-5 shows the functional design of a crossbar switch connected to one memory module. The circuit consists of multiplexers that select the data,

494

interchange switch

address, and control from one CPU for communication with the memory module. Priority levels are established by the arbitration logic to select one CPU when two or more CPUs attempt to access the same memory. The multiplexers are controlled with the binary code that is generated by a priority encoder within the arbitration logic.


A crossbar switch organization supports simultaneous transfers from all memory modules because there is a separate path associated with each module. However, the hardware required to implement the switch can become quite large and complex.

Multistage Switching Network

The basic component of a multistage network is a two-input, two-output interchange switch. As shown in Fig. 13-6, the 2×2 switch has two inputs, labeled *A* and *B*, and two outputs, labeled 0 and 1. There are control signals (not shown) associated with the switch that establish the interconnection between the input and output terminals. The switch has the capability of connecting input *A* to either of the outputs. Terminal *B* of the switch behaves in a similar fashion. The switch also has the capability to arbitrate between conflicting requests. If inputs *A* and *B* both request the same output terminal, only one of them will be connected; the other will be blocked.

Using the 2 × 2 switch as a building block, it is possible to build a multistage network to control the communication between a number of sources and destinations. To see how this is done, consider the binary tree shown in Fig. 13-7. The two processors P_1 and P_2 are connected through switches to eight memory modules marked in binary from 000 through 111. The path from a source to a destination is determined from the binary bits of the destination

Figure 13-6 Operation of a 2×2 interchange switch.

SECTION 13-2 Interconnection Structures 497

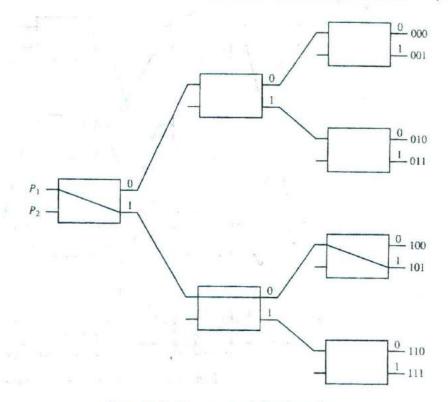


Figure 13-7 Binary tree with 2×2 switches.

number. The first bit of the destination number determines the switch output in the first level. The second bit specifies the output of the switch in the second level, and the third bit specifies the output of the switch in the third level. For example, to connect P_1 to memory 101, it is necessary to form a path from P_1 to output 1 in the first-level switch, output 0 in the second-level switch, and output 1 in the third-level switch. It is clear that either P_1 or P_2 can be connected to any one of the eight memories. Certain request patterns, however, cannot be satisfied simultaneously. For example, if P_1 is connected to one of the destinations 000 through 011, P_2 can be connected to only one of the destinations 100 through 111.

Many different topologies have been proposed for multistage switching networks to control processor-memory communication in a tightly coupled multiprocessor system or to control the communication between the processing elements in a loosely coupled system. One such topology is the omega switching network shown in Fig. 13-8. In this configuration, there is exactly one path from each source to any particular destination. Some request patterns, however, cannot be connected simultaneously. For example, any two sources cannot be connected simultaneously to destinations 000 and 001.

omega network

CHAPTER THIRTEEN Multiprocessors

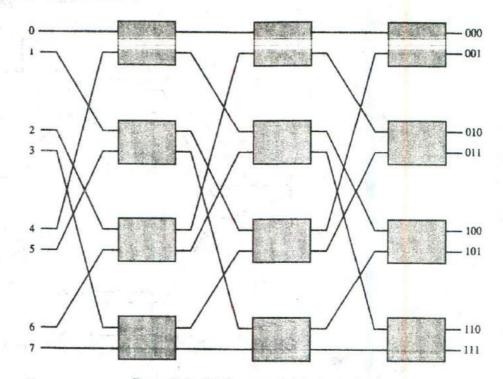


Figure 13-8 8 × 8 omega switching network.

A particular request is initiated in the switching network by the source, which sends a 3-bit pattern representing the destination number. As the binary pattern moves through the network, each level examines a different bit to determine the 2×2 switch setting. Level 1 inspects the most significant bit, level 2 inspects the middle bit, and level 3 inspects the least significant bit. When the request arrives on either input of the 2×2 switch, it is routed to the upper output if the specified bit is 0 or to the lower output if the bit is 1.

In a tightly coupled multiprocessor system, the source is a processor and the destination is a memory module. The first pass through the network sets up the path. Succeeding passes are used to transfer the address into memory and then transfer the data in either direction, depending on whether the request is a read or a write. In a loosely coupled multiprocessor system, both the source and destination are processing elements. After the path is established, the source processor transfers a message to the destination processor.

Hypercube Interconnection

The hypercube or binary n-cube multiprocessor structure is a loosely coupled system composed of $N = 2^n$ processors interconnected in an *n*-dimensional binary cube. Each processor forms a node of the cube. Although it is customary

498

to refer to each node as having a processor, in effect it contains not only a CPU but also local memory and I/O interface. Each processor has direct communication paths to n other neighbor processors. These paths correspond to the *edges* of the cube. There are 2^n distinct *n*-bit binary addresses that can be assigned to the processors. Each processor address differs from that of each of its n neighbors by exactly one bit position.

Figure 13-9 shows the hypercube structure for n = 1, 2, and 3. A one-cube structure has n = 1 and $2^n = 2$. It contains two processors interconnected by a single path. A two-cube structure has n = 2 and $2^n = 4$. It contains four nodes interconnected as a square. A three-cube structure has eight nodes interconnected as a cube. An *n*-cube structure has 2^n nodes with a processor residing in each node. Each node is assigned a binary address in such a way that the addresses of two neighbors differ in exactly one bit position. For example, the three neighbors of the node with address 100 in a three-cube structure are 000, 110, and 101. Each of these binary numbers differs from address 100 by one bit value.

Routing messages through an *n*-cube structure may take from one to *n* links from a source node to a destination node. For example, in a three-cube structure, node 000 can communicate directly with node 001. It must cross at least two links to communicate with 011 (from 000 to 001 to 011 or from 000 to 010 to 011). It is necessary to go through at least three links to communicate from node 000 to node 111. A routing procedure can be developed by computing the exclusive-OR of the source node address with the destination node address. The resulting binary value will have 1 bits corresponding to the axes on which the two nodes differ. The message is then sent along any one of the axes. For example, in a three-cube structure, a message at 010 going to 001 produces an exclusive-OR of the two addresses equal to 011. The message can be sent along the second axis to 000 and then through the third axis to 001.

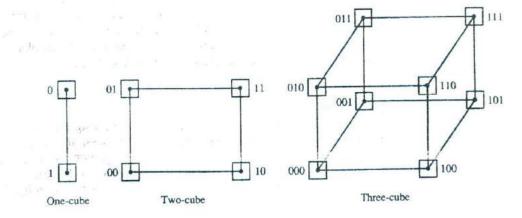


Figure 13-9 Hypercube structures for n = 1, 2, 3.

A representative of the hypercube architecture is the Intel iPSC computer complex. It consists of 128 (n = 7) microcomputers connected through communication channels. Each node consists of a CPU, a floating-point processor, local memory, and serial communication interface units. The individual nodes operate independently on data stored in local memory according to resident programs. The data and programs to each node come through a message-passing system from other nodes or from a cube manager. Application programs are developed and compiled on the cube manager and then downloaded to the individual nodes. Computations are distributed through the system and executed concurrently.

13-3 Interprocessor Arbitration

Computer systems contain a number of buses at various levels to facilitate the transfer of information between components. The CPU contains a number of internal buses for transferring information between processor registers and ALU. A memory bus consists of lines for transferring data, address, and read/write information. An I/O bus is used to transfer information to and from input and output devices. A bus that connects major components in a multiprocessor system, such as CPUs, IOPs, and memory, is called a *system bus*. The physical circuits of a system bus are contained in a number of identical printed circuit boards. Each board in the system belongs to a particular module. The board consists of circuits connected by a wire to the corresponding pin of all other connectors in other boards. Thus any board can be plugged into a slot in the backplane that forms the system bus.

The processors in a shared memory multiprocessor system request access to common memory or other common resources through the system bus. If no other processor is currently utilizing the bus, the requesting processor may be granted access immediately. However, the requesting processor must wait if another processor is currently utilizing the system bus. Furthermore, other processors may request the system bus at the same time. Arbitration must then be performed to resolve this multiple contention for the shared resources. The arbitration logic would be part of the system bus controller placed between the local bus and the system bus as shown in Fig. 13-2.

System Bus

A typical system bus consists of approximately 100 signal lines. These lines are divided into three functional groups: data, address, and control. In addition, there are power distribution lines that supply power to the components. For example, the IEEE standard 796 multibus system has 16 data lines, 24 address lines, 26 control lines, and 20 power lines, for a total of 86 lines.

system bus

The data lines provide a path for the transfer of data between processors and common memory. The number of data lines is usually a multiple of 8, with 16 and 32 being most common. The address lines are used to identify a memory address or any other source or destination, such as input or output ports. The number of address lines determines the maximum possible memory capacity in the system. For example, an address of 24 lines can access up to 2²⁴ (16 mega) words of memory. The data and address lines are terminated with three-state buffers (see Fig. 4-5). The address buffers are unidirectional from processor to memory. The data lines are bidirectional (see Fig. 12-3), allowing the transfer of data in either direction.

Data transfers over the system bus may be synchronous or asynchronous. In a synchronous bus, each data item is transferred during a time slice known in advance to both source and destination units. Synchronization is achieved by driving both units from a common clock source. An alternative procedure is to have separate clocks of approximately the same frequency in each unit. Synchronization signals are transmitted periodically in order to keep all clocks in the system in step with each other. In an asynchronous bus, each data item being transferred is accompanied by handshaking control signals (see Fig. 11-9) to indicate when the data are transferred from the source and received by the destination.

The control lines provide signals for controlling the information transfer between units. Timing signals indicate the validity of data and address information. Command signals specify operations to be performed. Typical control lines include transfer signals such as memory read and write, acknowledge of a transfer, interrupt requests, bus control signals such as bus request and bus grant, and signals for arbitration procedures.

Table 13-1 lists the 86 lines that are available in the IEEE standard 796 multibus. It includes 16 data lines and 24 address lines. All signals in the multibus are active or enabled in the low-level state. The data transfer control signals include memory read and write as well as I/O read and write. Consequently, the address lines can be used to address separate memory and I/O spaces. The memory or I/O responds with a transfer acknowledge signal when the transfer is completed. Each processor attached to the multibus has up to eight interrupt request outputs and one interrupt acknowledge input line. They are usually applied to a priority interrupt controller similar to the one described in Fig. 11-21. The miscellaneous control signals provide timing and initialization capabilities. In particular, the bus lock signal is essential for multiprocessor applications. This processor-activated signal serves to prevent other processors from getting hold of the bus while executing a test and set instruction. This instruction is needed for proper processor synchronization (see Sec. 13-4).

The six bus arbitration signals are used for interprocessor arbitration. These signals will be explained later after a discussion of the serial and parallel arbitration procedures.

synchronous bus

asynchronous bus

the factor of the	Signal name
Data and address	-
Data lines (16 lines)	DATA0-DATA15
Address lines (24 lines)	ADRS0-ADRS23
Data transfer	
Memory read	MRDC
Memory write	MWTC
IO read	IORC
IO write	IOWC
Transfer acknowledge	TACK
Interrupt control	
Interrupt request (8 lines)	INTO-INT7
Interrupt acknowledge	INTA
Miscellaneous control	
Master clock	CCLK
System initialization	INIT
Byte high enable	BHEN
Memory inhibit (2 lines)	INH1-INH2
Bus lock	LOCK
Bus arbitration	
Bus request	BREQ
Common bus request	CBRQ
Bus busy	BUSY
Bus clock	BCLK
Bus priority in	BPRN
Bus priority out	BPRO
Power and ground (20 lines)	

TABLE 13-1 IEEE Standard 796 Multibus Signals

Reprinted with permission of the IEEE.

Serial Arbitration Procedure

Arbitration procedures service all processor requests on the basis of established priorities. A hardware bus priority resolving technique can be established by means of a serial or parallel connection of the units requesting control of the system bus. The serial priority resolving technique is obtained from a daisy-chain connection of bus arbitration circuits similar to the priority interrupt logic presented in Sec. 11-5. The processors connected to the system bus are assigned priority according to their position along the priority control line. The device closest to the priority line is assigned the highest priority. When multiple devices concurrently request the use of the bus, the device with the highest priority is granted access to it.

Figure 13-10 shows the daisy-chain connection of four arbiters. It is assumed that each processor has its own bus arbiter logic with priority-in and priority-out lines. The priority out (PO) of each arbiter is connected to the

503 SECTION 13-3 Interprocessor Arbitration

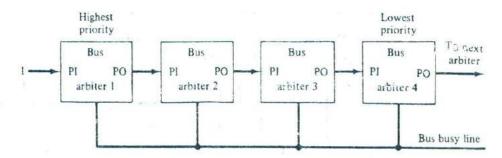


Figure 13-10 Serial (daisy-chain) arbitration.

priority in (PI) of the next-lower-priority arbiter. The PI of the highest-priority unit is maintained at a logic 1 value. The highest-priority unit in the system will always receive access to the system bus when it requests it. The PO output for a particular arbiter is equal to 1 if its Pl input is equal to 1 and the processor associated with the arbiter logic is not requesting control of the bus. This is the way that priority is passed to the next unit in the chain. If the processor requests control of the bus and the corresponding arbiter finds its PI input equal to 1, it sets its PO output to 0. Lower-priority arbiters receive a 0 in PI and generate a 0 in PO. Thus the processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the system bus.

A processor may be in the middle of a bus operation when a nigherpriority processor requests the bus. The lower-priority processor must complete its bus operation before it relinquishes control of the bus. The bus busy line shown in Fig. 13-10 provides a mechanism for an orderly transfer of control. The busy line comes from open-collector circuits in each unit and provides a wired-OR logic connection. When an arbiter receives control of the bus (because its PI = 1 and PO = 0) it examines the busy line. If the line is inactive, it means that no other processor is using the bus. The arbiter activates the busy line and its processor takes control of the bus. However, if the arbiter finds the busy line active, it means that another processor is currently using the bus. The arbiter keeps examining the busy line while the lower-priority processor that lost control of the bus completes its operation. When the bus busy line returns to its inactive state, the higher-priority arbiter enables the busy line, and its corresponding processor can then conduct the required bus transfers.

Parallel Arbitration Logic

The parallel bus arbitration technique uses an external priority encoder and a decoder as shown in Fig. 13-11. Each bus arbiter in the parallel scheme has a bus request output line and a bus acknowledge input line. Each arbiter enables the request line when its processor is requesting access to the system

504 CHAPTER THIRTEEN Multiprocessors

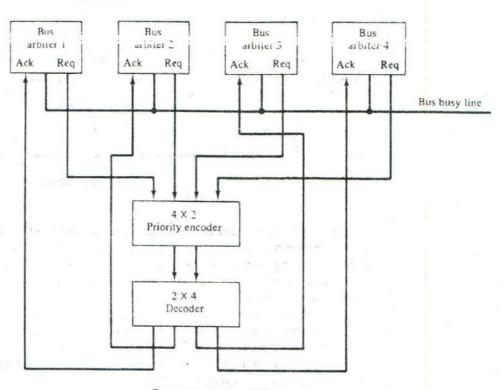


Figure 13-11 Parallel arbitration.

bus. The processor takes control of the bus if its acknowledge input line is enabled. The bus busy line provides an orderly transfer of control, as in the daisy-chaining case.

Figure 13-11 shows the request lines from four arbiters going into a 4×2 priority encoder. The output of the encoder generates a 2-bit code which represents the highest-priority unit among those requesting the bus. The truth table of the priority encoder can be found in Table 11-2 (Sec. 11-5). The 2-bit code from the encoder output drives a 2×4 decoder which enables the proper acknowledge line to grant bus access to the highest-priority unit.

We can now explain the function of the bus arbitration signals listed in Table 13-1. The bus priority-in BPRN and bus priority-out BPRO are used for a daisy-chain connection of bus arbitration circuits. The bus busy signal BUSY is an open-collector output used to instruct all arbiters when the bus is busy conducting a transfer. The common bus request CBRQ is also an open-collector output that serves to instruct the arbiter if there are any other arbiters of lower-priority requesting use of the system bus. The signals used to construct a parallel arbitration procedure are bus request BREQ and priority-in BPRN, corresponding to the request and acknowledge signals in Fig. 13-11. The bus clock BCLK is used to synchronize all bus transactions.

Dynamic Arbitration Algorithms

The two bus arbitration procedures just described use a static priority algorithm since the priority of each device is fixed by the way it is connected to the bus. In contrast, a dynamic priority algorithm gives the system the capability for changing the priority of the devices while the system is in operation. We now discuss a few arbitration procedures that use dynamic priority algorithms.

The *time slice* algorithm allocates a fixed-length time slice of bus time that is offered sequentially to each processor, in round-robin fashion. The service given to each system component with this scheme is independent of its location along the bus. No preference is given to any particular device since each is allotted the same amount of time to communicate with the bus.

In a bus system that uses *polling*, the bus grant signal is replaced by a set of lines called poll lines which are connected to all units. These lines are used by the bus controller to define an address for each device connected to the bus. The bus controller sequences through the addresses in a prescribed manner. When a processor that requires access recognizes its address, it activates the bus busy line and then accesses the bus. After a number of bus cycles, the polling process continues by choosing a different processor. The polling sequence is normally programmable, and as a result, the selection priority can be altered under program control.

The *least recently used* (LRU) algorithm gives the highest priority to the requesting device that has not used the bus for the longest interval. The priorities are adjusted after a number of bus cycles according to the LRU algorithm. With this procedure, no processor is favored over any other since the priorities are dynamically changed to give every device an opportunity to access the bus.

In the *first-come*, *first-serve* scheme, requests are served in the order received. To implement this algorithm, the bus controller establishes a queue arranged according to the time that the bus requests arrive. Each processor must wait for its turn to use the bus on a first-in, first-out (FIFO) basis.

The rotating daisy-chain procedure is a dynamic extension of the daisychain algorithm. In this scheme there is no central bus controller, and the priority line is connected from the priority-out of the last device back to the priority-in of the first device in a closed loop. This is similar to the connections shown in Fig. 13-10 except that the PO output of arbiter 4 is connected to the PI input of arbiter 1. Whichever device has access to the bus serves as a bus controller for the following arbitration. Each arbiter priority for a given bus cycle is determined by its position along the bus priority line from the arbiter

time slice

polling

FIFO

LRU

rotating daisy-chain

*

whose processor is currently controlling the bus. Once an arbiter releases the bus, it has the lowest priority.

13-4 Interprocessor Communication and Synchronization

The various processors in a multiprocessor system must be provided with a facility for communicating with each other. A communication path can be established through common input-output channels. In a shared memory multiprocessor system, the most common procedure is to set aside a portion of memory that is accessible to all processors. The primary use of the common memory is to act as a message center similar to a mailbox, where each processor can leave messages for other processors and pick up messages intended for it.

The sending processor structures a request, a message, or a procedure, and places it in the memory mailbox. Status bits residing in common memory are generally used to indicate the condition of the mailbox, whether it has meaningful information, and for which processor it is intended. The receiving processor can check the mailbox periodically to determine if there are valid messages for it. The response time of this procedure can be time consuming since a processor will recognize a request only when polling messages. A more efficient procedure is for the sending processor to alert the receiving processor directly by means of an interrupt signal. This can be accomplished through a software-initiated interprocessor interrupt by means of an instruction in the program of one processor which when executed produces an external interrupt condition in a second processor. This alerts the interrupted processor of the fact that a new message was inserted by the interrupting processor.

In addition to shared memory, a multiprocessor system may have other shared resources. For example, a magnetic disk storage unit connected to an IOP may be available to all CPUs. This provides a facility for sharing of system programs stored in the disk. A communication path between two CPUs can be established through a link between two IOPs associated with two different CPUs. This type of link allows each CPU to treat the other as an I/O device so that messages can be transferred through the I/O path.

To prevent conflicting use of shared resources by several processors there must be a provision for assigning resources to processors. This task is given to the operating system. There are three organizations that have been used in the design of operating system for multiprocessors: master-slave configuration, separate operating system, and distributed operating system.

In a master-slave mode, one processor, designated the master, always executes the operating system functions. The remaining processors, denoted as slaves, do not perform operating system functions. If a slave processor needs

506

an operating system service, it must request it by interrupting the master and waiting until the current program can be interrupted.

In the separate operating system organization, each processor can execute the operating system routines it needs. This organization is more suitable for loosely coupled systems where every processor may have its own copy of the entire operating system.

In the distributed operating system organization, the operating system routines are distributed among the available processors. However, each particular operating system function is assigned to only one processor at a time. This type of organization is also referred to as a floating operating system since the routines float from one processor to another and the execution of the routines may be assigned to different processors at different times.

In a loosely coupled multiprocessor system the memory is distributed among the processors and there is no shared memory for passing information. The communication between processors is by means of message passing through I/O channels. The communication is initiated by one processor calling a procedure that resides in the memory of the processor with which it wishes to communicate. When the sending processor and receiving processor name each other as a source and destination, a channel of communication is established. A message is then sent with a header and various data objects used to communicate between nodes. There may be a number of possible paths available to send the message between any two nodes. The operating system in each node contains routing information indicating the alternative paths that can be used to send a message to other nodes. The communication efficiency of the interprocessor network depends on the communication routing protocol, processor speed, data link speed, and the topology of the network.

Interprocessor Synchronization

133

The instruction set of a multiprocessor contains basic instructions that are used to implement communication and synchronization between cooperating processes. Communication refers to the exchange of data between different processes. For example, parameters passed to a procedure in a different processor constitute interprocessor communication. Synchronization refers to the special case where the data used to communicate between processors is control information. Synchronization is needed to enforce the correct sequence of processes and to ensure mutually exclusive access to shared writable data.

Multiprocessor systems usually include various mechanisms to deal with the synchronization of resources. Low-level primitives are implemented directly by the hardware. These primitives are the basic mechanisms that enforce mutual exclusion for more complex mechanisms implemented in software. A number of hardware mechanisms for mutual exclusion have been developed. One of the most popular methods is through the use of a binary semaphore.

Mutual Exclusion with a Semaphore

A properly functioning multiprocessor system must provide a mechanism that will guarantee orderly access to shared memory and other shared resources. This is necessary to protect data from being changed simultaneously by two or more processors. This mechanism has been termed *mutual exclusion*. Mutual exclusion must be provided in a multiprocessor system to enable one processor to exclude or lock out access to a shared resource by other processors when it is in a *critical section*. A critical section is a program sequence that, once begun, must complete execution before another processor accesses the same shared resource.

A binary variable called a *semaphore* is often used to indicate whether or not a processor is executing a critical section. A semaphore is a softwarecontrolled flag that is stored in a memory location that all processors can access. When the semaphore is equal to 1, it means that a processor is executing a critical program, so that the shared memory is not available to other processors. When the semaphore is equal to 0, the shared memory is available to any requesting processor. Processors that share the same memory segment agree by convention not to use the memory segment unless the semaphore is equal to 0, indicating that memory is available. They also agree to set the semaphore to 1 when they are executing a critical section and to clear it to 0 when they are finished.

Testing and setting the semaphore is itself a critical operation and must be performed as a single indivisible operation. If it is not, two or more processors may test the semaphore simultaneously and then each set it, allowing them to enter a critical section at the same time. This action would allow simultaneous execution of critical section, which can result in erroneous initialization of control parameters and a loss of essential information.

A semaphore can be initialized by means of a test and set instruction in conjunction with a hardware *lock* mechanism. A hardware lock is a processorgenerated signal that serves to prevent other processors from using the system bus as long as the signal is active. The test-and-set instruction tests and sets a semaphore and activates the lock mechanism during the time that the instruction is being executed. This prevents other processors from changing the semaphore between the time that the processor is testing it and the time that it is setting it. Assume that the semaphore is a bit in the least significant position of a memory word whose address is symbolized by SEM. Let the mnemonic TSL designate the "test and set while locked" operation. The instruction

TSL SEM

will be executed in two memory cycles (the first to read and the second to write) without interference as follows:

$R \leftarrow M[SEM]$	Test semaphore
$M[SEM] \leftarrow 1$	Set semaphore

critical section

hardware lock

The semaphore is tested by transferring its value to a processor register R and then it is set to 1. The value in R determines what to do next. If the processor finds that R = 1, it knows that the semaphore was originally set. (The fact that it is set again does not change the semaphore value.) That means that another processor is executing a critical section, so the processor that checked the semaphore does not access the shared memory. If R = 0, it means that the common memory (or the shared resource that the semaphore represents) is available. The semaphore is set to 1 to prevent other processors from accessing memory. The processor can now execute the critical section. The last instruction in the program must clear location SEM to zero to release the shared resource to other processors.

Note that the lock signal must be active during the execution of the test-and-set instruction. It does not have to be active once the semaphore is set. Thus the lock mechanism prevents other processors from accessing memory while the semaphore is being set. The semaphore itself, when set, prevents other processors from accessing shared memory while one processor is executing a critical section.

13-5 Cache Coherence

The operation of cache memory is explained in Sec. 12-6. The primary advantage of cache is its ability to reduce the average access time in uniprocessors. When the processor finds a word in cache during a read operation, the main memory is not involved in the transfer. If the operation is to write, there are two commonly used procedures to update memory. In the *write-through* policy, both cache and main memory are updated with every write operation. In the *write-back* policy, only the cache is updated and the location is marked so that it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a common memory. In addition, each processor may have a local memory, part or all of which may be a cache. The compelling reason for having separate caches for each processor is to reduce the average access time in each processor. The same information may reside in a number of copies in some caches and main memory. To ensure the ability of the system to execute memory operations correctly, the multiple copies must be kept identical. This requirement imposes a *cache coherence* problem. A memory scheme is *coherent* if the value returned on a load instruction is always the value given by the latest store instruction with the same address. Without a proper solution to the cache coherence problem, caching cannot be used in bus-oriented multiprocessors with two or more processors.

Conditions for Incoherence

Cache coherence problems exist in multiprocessors with private caches because of the need to share writable data. Read-only data can safely be replicated without cache coherence enforcement mechanisms. To illustrate the problem, consider the three-processor configuration with private caches shown in Fig. 13-12. Sometime during the operation an element X from main memory is loaded into the three processors, P_1 , P_2 , and P_3 . As a consequence, it is also copied into the private caches of the three processors. For simplicity, we assume that X contains the value of 52. The load on X to the three processors results in consistent copies in the caches and main memory.

If one of the processors performs a store to X, the copies of X in the caches become inconsistent. A load by the other processors will not return the latest value. Depending on the memory update policy used in the cache, the main memory may also be inconsistent with respect to the cache. This is shown in Fig. 13-13. A store to X (of the value of 120) into the cache of processor P_1 updates memory to the new value in a write-through policy. A write-through policy maintains consistency between memory and the originating cache, but the other two caches are inconsistent since they still hold the old value. In a write-back policy, main memory is not updated at the time of the store. The copies in the other two caches and main memory are inconsistent. Memory is updated eventually when the modified data in the cache are copied back into memory.

Another configuration that may cause consistency problems is a direct memory access (DMA) activity in conjunction with an IOP connected to the system bus. In the case of input, the DMA may modify locations in main memory that also reside in cache without updating the cache. During a DMA output, memory locations may be read before they are updated from the cache when using a write-back policy. I/O-based memory incoherence can be overcome by making the IOP a participant in the cache coherent solution that is adopted in the system.

Solutions to the Cache Coherence Problem

Various schemes have been proposed to solve the cache coherence problem in shared memory multiprocessors. We discuss some of these schemes briefly here. See references 3 and 10 for more detailed discussions.

A simple scheme is to disallow private caches for each processor and have a shared cache memory associated with main memory. Every data access is made to the shared cache. This method violates the principle of closeness of CPU to cache and increases the average memory access time. In effect, this scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache to each processor. One scheme that has been used allows only nonshared and read-only data to be stored in caches. Such items are called *cachable*. Shared writable data are noncachable. The compiler must tag data as either cachable or noncachable, and the system hardware makes sure that only cachable data are stored in caches. The noncachable data remain in main memory. This method

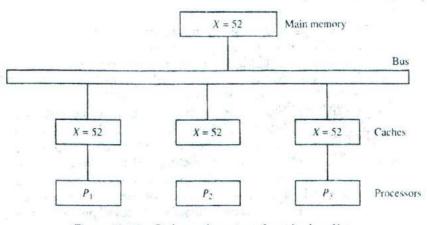
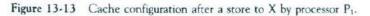
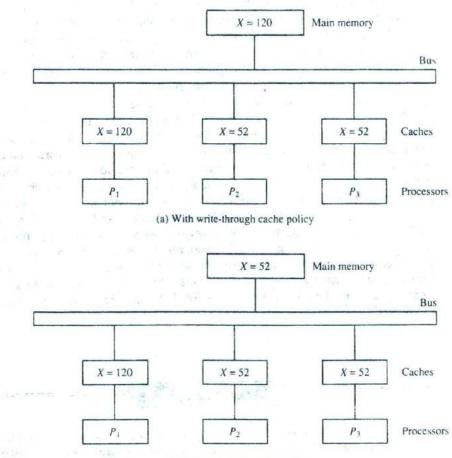




Figure 13-12 Cache configuration after a load on X.

(b) With write-back cache policy

511

restricts the type of data stored in caches and introduces an extra software overhead that may degradate performance.

A scheme that allows writable data to exist in at least one cache is a method that employs a *centralized global table* in its compiler. The status of memory blocks is stored in the central global table. Each block is identified as *read-only* (RO) or *read and write* (RW). All caches can have copies of blocks identified as RO. Only one cache can have a copy of an RW block. Thus if the data are updated in the cache with an RW block, the other caches are not affected because they do not have a copy of this block.

The cache coherence problem can be solved by means of a combination of software and hardware or by means of hardware-only schemes. The two methods mentioned previously use software-based procedures that require the ability to tag information in order to disable caching of shared writable data. Hardware-only solutions are handled by the hardware automatically and have the advantage of higher speed and program transparency. In the hardware solution, the cache controller is specially designed to allow it to monitor all bus requests from CPUs and IOPs. All caches attached to the bus constantly monitor the network for possible write operations. Depending on the method used, they must then either update or invalidate their own cache copies when a match is detected. The bus controller that monitors this action is referred to as a *snoopy cache controller*. This is basically a hardware unit designed to maintain a bus-watching mechanism over all the caches attached to the bus.

Various schemes have been proposed to solve the cache coherence problem by means of snoopy cache protocol. The simplest method is to adopt a write-through policy and use the following procedure. All the snoopy controllers watch the bus for memory store operations. When a word in a cache is updated by writing into it, the corresponding location in main memory is also updated. The local snoopy controllers in all other caches check their memory to determine if they have a copy of the word that has been overwritten. If a copy exists in a remote cache, that location is marked invalid. Because all caches snoop on all bus writes, whenever a word is written, the net effect is to update it in the original cache and main memory and remove it from all other caches. If at some future time a processor accesses the invalid item from its cache, the response is equivalent to a cache miss, and the updated item is transferred from main memory. In this way, inconsistent versions are prevented.

snoopy cache controller

13-1.

Discuss the difference between tightly coupled multiprocessors and loosely coupled multiprocessors from the viewpoint of hardware organization and programming techniques.

PROBLEMS

- **13-2.** What is the purpose of the system bus controller shown in Fig. 13-2? Explain how the system can be designed to distinguish between references to local memory and references to common shared memory.
- 13-3. How many switch points are there in a crossbar switch network that connects p processors to m memory modules?
- 13-4. The 8 \times 8 omega switching network of Fig. 13-8 has three stages with four switches in each stage, for a total of 12 switches. How many stages and switches per stage are needed in an $n \times n$ omega switching network?
- 13-5. Suppose that the wire breaks between the switch in the first row, second column and the switch in the second row, third column in the omega switching network of Fig. 13-8. What paths will be disconnected?
- 13-6. Construct a diagram for a 4 × 4 omega switching network. Show the switch setting required to connect input 3 to output 1.
- 13-7. Three types of switches are used to design a multistage interconnection network: an interchange switch with two inputs and two outputs as in Fig. 13-6, an arbitration switch with two inputs and one output, and a distribution switch with one input and two outputs.
 - a. Show how the arbitration and distribution switches operate.
 - b. Using arbitration and interchange switches, construct an 8×4 network with a unique path between any source and any destination.
 - c. Using distribution and interchange switches, construct a 4×8 network with a unique path between any source and any destination.
- 13-8. Draw a diagram showing the structure of a four-dimensional hypercube network. List all the paths available from node 7 to node 9 that use the minimum number of intermediate nodes.
- 13-9. Draw a logic diagram using gates and flip-flops showing the circuit of one bus arbiter stage in the daisy-chain arbitration scheme of Fig. 13-10.
- 13-10. The bus controlled by the parallel arbitration logic shown in Fig. 13-11 is initially idle. Devices 2 and 3 then request the bus at the same time. Specify the input and output binary values in the encoder and decoder and determine which bus arbiter is acknowledged.
- 13-11. Show how the arbitration logic of Fig. 13-10 can be modified to provide a rotating daisy-chain arbitration procedure. Explain how the priority is determined once the bus line is disabled.
- **13-12.** Consider a bus topology in which two processors communicate through a buffer in shared memory. When one processor wishes to communicate with the other processor it puts the information in the memory buffer and sets a flag. Periodically, the other processor checks the flags to determine if it has information to receive. What can be done to ensure proper synchronization and to minimize the time between sending and receiving the information?
- 13-13. Describe the following terminology associated with multiprocessors.
 (a) mutual exclusion; (b) critical section; (c) hardware lock; (d) semaphore;
 (e) test-and-set instruction.
- 13-14. What is cache coherence, and why is it important in shared-memory multiprocessor systems? How can the problem be resolved with a snoopy cache controller?

 Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John Wiley, 1989.

REFERENCES

- DeCegama, A. L., Parallel Processing Architecture and VLSI Hardware. Englewood Cliffs, NJ: Prentice Hall, 1989.
- Dubois, M., C. Scheurich, and F. A. Briggs, "Synchronization, Coherence, and Event Ordering in Multiprocessors." *IEEE Computer*, Vol. 21, No. 2 (February 1988), pp. 9–21.
- Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.
- Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1986.
- Hays, J. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill, 1988.
- Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York: McGraw-Hill, 1984.
- Kain, R., Computer Architecture: Software and Hardware, Vol. 2. Englewood Cliffs, NJ: Prentice Hall, 1989.
- 9. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization. Englewood Cliffs, NJ: Prentice Hall, 1989.
- Stenstrom, P., "A Survey of Cache Coherence Schemes for Multiprocessors." IEEE Computer, Vol. 23, No. 6 (June 1990), pp. 12–24.
- 11. Stone, H. S., High-Performance Computer Architecture. 2nd ed. Reading, MA: Addison-Wesley, 1990.
- 12. Tabak, D., Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.