
PART 1
Introduction to Artificial Intelligence

Overview of Artificial
Intelligence

Artificial Intelligence (Al), as we know it today, is a relatively new field. Even
though some groundwork had been laid earlier, Al began in earnest with the emergence
of the modern computer during the 1940s and 1950s. It was the ability of these

w electronic machines to store large amounts of information and process it at
very high speeds that gave researchers the vision of building systems which could
emulate some human abilities.

During the past forty years, we have witnessed the realization of many of
these early researchers' visions. We have seen computer systems shrink in size
and cost by several orders of magnitude. We have seen memories increase in storage
capacity to the point where they equal a significant fraction of the human brain's
storage capacity. We have seen the speed and reliability of systems improve dramati-
cally. And, we have seen the introduction of many impressive software tools.

Given these new hardware and software systems and our improved understanding
of Homo sapiens, we are on the threshold of witnessing a whole new horizon of
exciting innovations. During the next few decades, we will witness the introduction
of many intelligent computer systems never dreamed of by the early visionaries.
We will see the introduction of systems which equal or exceed human abilities,
and see them become an important part of most business and government operations
as well as our own daily activities.

2--

2	 Overview of Artificial Ititelligence	 Chap. 1

1.1 WHAT IS Al?

Whit is Al exactly? As a beginning we offer the followirtig definition:

Al is a branch of computer science concerned with the study and creation of computer
systems that exhibit some form of intelligence: systems that learn icss concepts and
tasks. systems that can reason and druss useful conclusions about the world around
us. systems that can understand a natural language or perceise and coniprchend a
',tsual scene, and s ystems that periorm other types of teats that require hurmian types

of intelligence

Like other definitions of complex topics, an understanding of Al requires an
understanding of related terms, such as intelligence, knowledge reasoning thought.
cognition, learning, and a number of computer-related terms. White e lack precise
scientific definitions for many of these terms, we can give general definiti o n s of

them And, of course, one of the objectives of this text is to impart special meaning
to allot the terms related to Al. including their operational meanings.

Dictionaries define intelligence as the ability to acquire, understand and apply

knowledge. or the' abilit y to exercise thought and reason. Of course, intelligence is
more than this. It embodies all of the knowledge and feats, both conscious and
unconscious, which we have acquired through study and experience: highly refined
sight and sound perception: thought: imagination: the ability to converse, read,
write, drive a car, memorize and recall facts, express and feel emotions: and much

more.
Intelligence is the integrated sum of those feats which gives us the ability to

remember a face not seen for thirty or more years, or to build and send rockets to
the moon. It is those capabilities which set Homo sapiens apart front forms
of living things. And, as we shall see, the food for this intelligence is knowledge.

Can we ever expect to build systems which exhibit these characteristics? The
answer to this question is yes! Systems have already been developed to pertorril
many types of intelligent tasks, and expectations are high for near term deselopment
of even more impressive systems. We now have systems which can learn from
examples, from being told, from past related experiences, and through reasoning.
We hase systems which can solve complex problems in mathematics, in scheduling
many diverse tasks, in finding optimal system configurations, in planning complex
strategies for the military and for business, in diagnosing medical diseases and
other complex systems, to name a few. We have systems which can understand''
large parts of natural languages. We have systems which can see well enough to
"recognize" objects from photographs. video cameras and other sensors. We have
systems which can 'reason with incomplete and uncertain facts. Clearly, with these

• developments, much has been accomplished since the advent of the digital computer.
In spite of these impressive achievements, we still have not been able to

produce coordinated, autonomous systems which possess some of the basic abilities
of a three-year-old child. These include the ability to recognize and remember numer-
ous diverse objects in a scene, to learn new sounds and associate them with objects

Sec. 1.2	 The Importance of Al	 3

and concepts, and to adapt readily to many diverse new situations. These are the
challenges now facing researchers in Al. And they are not easy ones. They will
require important breakthroughs before we can expect to equal the performance of
our three-year old.

To gain a better understanding of Al. it is also useful to know what Al is
not. Al is not the study and creation of conventional computer systems. Even though
one can argue that all programs exhibit some degree of intelligence, an Al program
will go beyond this in demonstrating a high level of intelligence to a degree that
equals or exceeds the intelligence required of a human in performing some task.
Al is not the study of the mind, nor of the body, nor of languages, as customarily
found in the fields of psychology, physiology, cognitive science, or linguistics. To
be sure, there is some overlap between these fields and Al. All seek a better understand-
ing of the human's intelligence and sensing processes. But in Al the goal is to
develop working computer systems that are truly capable of performing tasks that
require high levels of intelligence. The programs are not necessarily meant to imitate
human senses and thought processes. Indeed, in performing some tasks differently,
they may actually exceed human abilities. The important point is that the systems
all be capable of performing intelligent tasks effectively and efficiently.

Finally, a better understanding of Al is gained by looking at the component
areas of study that make up the whole. These include such topics as robotics,
memory organization, knowledge representation, storage and recall, learning models,
inference techniques, commonsense reasoning, dealing with uncertainty in reasoning-
and decision making, understanding natural language, pattern recognition and machine
vision methods, search and matching, speech recognition and synthesis, and a variety
of Al tools.

How much success have we realized in Al to date? What are the next big
challenges? The answers to these questions form a large part of the material covered
in this text. We shall be studying many topics which bear directly or indirectly on
these questions. in the following chapters. We only mention here that Al is coming
of an age where practical commercial products are now available including a variety
of robotic devices, vision systems that recognize shapes and objects, expert systems
that perform many difficult tasks as well as or better than their human expert counter-
parts, intelligent instruction systems that help pace a student's learning and monitor
the student's progress. ''intelligent" editors that assist users in building special
knowledge bases, and systems which can learn to improve their performance.

1.2 THE IMPORTANCE OF Al

Is Al important? Definitely! Al may be one of the most important developments of
this century. It will affect the lives of most individuals in civilized countries by
the end of the century. And countries leading in the development of Al by then
will emerge as the dominant economic powers of the world.

The importance of Al became apparent to many of the world's leading countries

4	 Overview of Artificial Intelligence	 Chap. 1

during the late 1970s. Leaders in those countries who recognized the potential for
Al were willing to seek approval for long-term commitments for the resources needed
to fund intensive research programs in Al. The Japanese were the first to demonstrate•
their commitment. The y launched a very ambitious program in Al research and
development. Known as the Fifth Generation, this plan was officially announced
in October 1981 It calls for the implementation of a ten-year plan to develop
intelligent supercomputers. It is a cooperative effort between government and private
companies having an interest in the manufacture of computer products. robotics.
and related ti-Ids. With a combined budget of about one billion dollars, the Japanese
are determined they will realize many of their goals, namely. to produce systems
that can converse in a natural language, understand speech and visual scenes, learn
and refine their knowledge, make decisions, and exhibit other human traits. If they
succeed, and many experts feel they will, their success as a leading economic power
is assured.

Following the Japanese, other leading countries of the world have announced
plans for some form of Al program. The British initiated a plan called the Alvey
Project with a respectable budget. Their goals are not as ambitious as the Japanese
but are set to help the British keep abreast and remain in the race. The European
Common Market countries have jointly initiated a separate cooperative plan named
the ESPRIT program. The French too have their own plan. Other countries including
Canada. the Soviet Union, Italy, Austria, and even the Irish Republic and Singapore
have made some commitments in funded research and development.

The United States, although well aware of the possible consequences, has
made no formal plan. However, steps have been taken by some organizations to
push forward in Al research. First, there was the formation of a consortium of
private companies in 1983 to develop advanced technologies that apply Al techniques
(like VLSI). The consortium is known as the Microelectronics and Computer Tech nol-
ogy Corporation (MCC) and is headquartered in Austin, Texas. Second. the Depart-
ment of Defense Advanced Research Projects Agency (DARPA) has increased its
funding for research in Al. including development support in three significant pro-
grams: (I) development of an autonomous land vehicle (ALV) (a driverless military
vehicle) (2) the development of a pilot's associate (an expert system which provides
assistance to tighter pilots), and (3) the Strategic Computing Program (an Al based
military supercomputer project). In addition, most of the larger high-tech companies
such as IBM. DEC. AT&T. Hewlett Packard. Texas Instruments, and Xerox have
their own research programs. A number of smaller companies also have reputable
research programs.

Who will emerge as the principal leaders in this race for superiority -in the
production and sale of that commodity known as knowledge? If forward vision.
and commitment to purpose are to be the determining factors, then surely the Japanese
will be among the leaders if not the leader.

Just how the United States and other leading countries of the world will fare
remains to be seen. One thing is clear. The future of a country is closely tied to
the commitment it is willing to make in funding research programs in Al.

Sec. 1.3	 Early Work in Al	 5

1.3 EARLY WORK IN Al

As noted above, Al began to emerge as a separate field of study during the 1940s
and 1950s when the computer became a commercial reality. Prior to this time, a
number of important areas of research that would later help to shape early Al work
were beginning to mature. These developments all began to converge during this
period. First, there was the work of logicians such as Alonzo Church, Kurt Godel,
Emil Post, and Alan Turing. They were carrying on earlier work in logic initiated
by Whitehead and Russell. Tas'ski. and Kleene. This work began in earnest, during
the 1920s and 1930s. It helped to produce formalized methods for reasoning, the
form of logic known as propositional and predicate calculus. It demonstrated that
facts and ideas from a language such as English could be formally described and
manipulated mechanically in meaningful ways. Turing, sometimes regarded as the
father of Al. also demonstrated, as early as 1936, that a simple computer processor
('later named the Turing machine) could manipulate symbols as well as numbers.

Second, the new field of cybernetics, a name coined by Norbert Wiener.
brought together many parallels between human and machine. Cybernetics, the study
of communication in human and machine, became an active area of research during
the 1940s and 1950s. It combined concepts from information theory, feedback control
systems (both biological and machine), and electronic computers.

Third came the new developments being, made in formal grammars. This work
was an outgrowth of logic during the early 1900s. It helped to provide new approaches
to language theories in the general field of linguistics.

Finally, during the 1950s, the electronic stored program digital computer became
a commercial reality. This followed several years of prototype systems including
the Mark I Harvard relay computer (1944). the University of Pennsylvania Moore
School of Electrical Engineering's ENIAC electronic computer (1947). and subse-
quent development of the Aberdeen Proving Ground's EDVAC and Sperry-Rands
UNIVAC.

Other important developments during this earlv,period which helped to launch
Al include the introduction of information theory due largely to the work of Claude
Shannon, neurological theories and models of the brain which were originated by
psychologists, as well as the introduction of Boolean algebra. switching theory.
and even statistical decision theory.

Of course Al is not just the product of this century. Much groundwork had
been laid by earlier researchers dating back several hundred years. Names like
Aristotle. Leibnitz, Babbage. Hollerith. and many others also played important roles
in building a foundation that eventually led to what we now know as Al.

Work after 1950

During the 1950s several events occurred which marked the real beginning of Al.
This was a period noted for the chess playing programs which were developed by
researchers like Claude Shannon at MIT (Shannon. 1952, 1955) and Allen Newell

6	 Overview of Artificial Intelligence 	 Chap. 1

at the RAND Corporation (Newell and Simon. 1972) Other types of game playing
and simulation programs were also being developed during this time. Much effort
was being expended on machine translation programs, and there was much optimism
for successful language translation using computers (Weaver. 1955). It was felt
that the storage of large dictionaries in a computer was basically all that was needed
to produce accurate translations from one language to another. Although this approach
proved to be too simplistic, it took several years before such efforts were aborted.

The mid- 1950s; are generally recognized as the official birth date of Al when
a summer workshop sponsored by IBM was held at Dartmouth College. Attendees
at this June 1956 seminar included several of the early pioneers in Al includ-
ing Herbert Gelernter, Trenchard More, John McCarthy, Marvin Minsky, Allen
Newell, Nat Rochester, Oliver Selfridge, Claude Shannon, Herbert Simon. and Ray
Solomonoff (Newell and Simon, 1972). Much of their discussion focused on
the work they were involved in during this period, namely automatic theorem
proving and new programming languages.

Between 1956 and 1957 the Logic Theorist, one of the first programs for
automatic theorem proving, was completed by Newell. Shaw, and Simon (Newell
and Simon, 1972). As part of this development, the first list-processing language
called IPL (Information Processing Language) was also completed. Other important
events of this period include the development of FORTRAN (begun in 1954) and
Noam Chomsky's work between 1955 and 1957 on the theory of generative grammars.
Chomsky's work had a strong influence on Al in the area of computational linguistics
or natural language processing.

Important events of the late 1950s were centered around pattern recognition
and self-adapting systems. During this period Rosenblatt's perceptions (Rosenblatt.
1958) were receiving much attention. Perceptrons are types of pattern recognition
devices that have a simple learning ability based on linear threshold logic (described
in detail in Chapter 17). This same period (1958) marked the beginning of the
development of LISP by John McCarthy. one of the recognized programming lan-
guages of Al. It also marked the formation of the Massachusetts Institute of Technolo-
gy's Al laboratory. Several important programming projects were also begun during
the late 1950s, including the General Problem Solver (GPS) developed by Newell.
Shaw, and Simon (Ernst and Newe l l, 1969) written in IPL. Gelernters geometry
theorem-proving machine written in FORTRAN at the IBM Research Center, and
the Elementary Perceiver and Memorizer (EPAM) developed by Edward Feigenbaum
and Herbert Simon and written in IPL.

GPS was developed to solve a variety of problems ranging from symbolic
Integration to word puzzles (such as the missionary-cannibal problem). GPS used a
problem-solving technique known as means-end analysis discussed later in Chapter
9. The geometry theorem-proving machine of Gelernter was developed to solve
high-school level plane geometry problems. Frpm basic axioms in geometry. the
system developed a proof as a sequence of simple subgoals. EPAM was written to
study rote learning by machine. The system had a learning and performance component
where pair; of nonsense words, a stimulus-response pair, were first learned throuh

Sec. 1.4	 -Al and Related Fields

repetitive presentations (in different orders). The performance component was then
used to demonstrate how well responses to the stimuli were learned.

Some significant Al events of the 1960s include the following.

1961-65	 A. L. Samuel developed a program which learned to play check-
ers at a master's level.

1965	 J. A. Robinson introduced resolution as an inference method in

-	 logic.

1965 Work on DENDRAL was begun at Stanford University by J.
Lederberg. Edward Feigenbaum. and Carl Djerassi. DENDRAL

is an expert system which discovers molecular structures given
only infomation of the constituents of the compound and mass
spectra data. DENDRAL was the first knowledge- based expert

system to be developed.

196$ Work on MACSYMA was initiated at MIT by Carl Engfemah.
William Martin. and Joel Moses. MACSYMA is a large interac-
tive program which solves numerous t y pes of mathematical prob-
lems. Written in LISP. MACSYMA was a continuation of earlier
work on SIN, an indefinite integration solving program.

References on early work in Al include McCorduck's Machines %%'ho Think

(1979). and Newell and Simon' s Human Problem Solvini,' (1972).

1.4 Al AND RELATED FIELDS

Fields which are closely related to Al and overlap somewhat include engineering.
particularly electrical and mechanical engineering, linguistics, psychology. cogtiitie
science, and philosophy.. Robotics is also regarded by some researchers as a branch
of Al. but this view is not common. Many researchers consider robotics as a separate

interdisciplinary field which combines concepts and techniques from Al. electiical.

mechanical, and optical engineering.
Psychologists are concerned with the workings of the mind, the mental and

emotional processes that drive human behavior. As such, we should not he supriscd
to learn that researchers in Al have much in common with psschologists. t)urii
the past 20 years Al has 'adopted models of thinking and learning from psvcholiig,'
while psychologists in turn have patterned many of their experiments On questions
first raised by Al researchers. Al has given psychologists fresh ideas and enhanced
their ability to model human cognitive functions on the computer. In their hook

The Cognitive Computer. Schank and Childers 1984i estimate thatAl has

contributed more to psychology than any other discipline for s onic tone.'
Because they share so many common interests, it has been claimed that ..\f

researchers think less like computer scientists than they do pschologisis and philiio-

8 '	 Overview of ArtifIcll Intelligence	 Chap. 1

phers. As a consequence, researchers from Al and psychology We joined together
at some universities to form a separate discipline known as cognitive science. This
name has also been adopted by a few new companies offering Al services and
products. Like Al researchers, cognitive scientists are interested in the computation
processes required to perform certain human functions, and in the mental and computa-
tional states related to such processes. Like computer science, cognitive science is
still searching for a theory and foundation that will qualify it as a science.

Al also has much in common with engineering, pvAicularly electrical (EE)
and mechanical engineering (ME). Al and EE are both interested in computational
processes and systems, and how they relate to senses of perception such as vision
and speech. ME and Al share common interests in their desire to build intelligent
robots. Their goals are to build robots that can see and niove around, perform
mechanical tasks, and understand human speech.

The field of linguistics shares an interest in the theory of grammars and languages
with Al. Both fields have a desire to build a well-founded theory, and to see the
development of systems that understand natural languages, that can synthesize speech,
and that are capable of language translations.

Finally, Al has some overlap with almost all fields in that it offers the potential
for broad applications. Applications have already been proven in such areas as
medicine, law, manufacturing, economics, banking, biology, chemistry, defense,
civil engineering, and aerospace to name a few. And, it is only a matter of time
before applications will permeate the home.

1.5 SUMMARY

In this introductory chapter, we have defined Al and terms closely related to the
field. We have shown how important Al will become in the future as it will form
the foundation for a number of new consumer commodities, all based on knowledge.
It was noted that countries willing to commit appropriate resources to research in
this field will emerge as the world's economic leaders in the not too distant future.

We briefly reviewed early work in Al. considering ftrst developments prior
to 1950, the period during which the first commercial computers were introduced.
We then looked at post-1950 de velopments during which Al was officially launched
as a separate field of computer science. Fields which overlap with and are closely
related to Al were also considered, and the areas of commonality between the two
presented.

---	 .

rw

Knowledge:
General Concepts

The important role that knowledge plays in building intelligent systems is
now widely accepted by practictioners in Al. Recognition of this important fact
was necessary before successfuL real-world systems could be built. Because of
this importance, a significant amount of coverage is devoted to knowledge in this
text. We will be looking at the important roles it plays in all of the subtields of
Al. In this chapter. we attempt to set the stage fdr what follows by gaining sonic
familiarity with knowledge, and a better appreciation of its power. As noted in
Chapter I, the whole text is in a sense all about knowledge, and is organized to re-
flect the way it dominates thinking and the uirection of research in the field of Al

2.1, INTRODUCTION

Early researchers in At believed that the best approach to solutions was through
the development of general purpose problem solvers, that is, systems powerful enough
to prove a theorem in geometry. to perform a complex robotics task, or to develop
a plan to complete a sequence of Intricate operations. To demonstrate their theorics.
several systems were developed including several logic theorem powers and a general
problem solver system (described in Chapter 9).

All of the systems developed during this period proved to be impotent as

9

10	 Knowledge: General Concepts	 Chap. 2

general problem solvers. They required much hand tailoring of problem descriptions
and ad hoc guidance in their solution steps. The approaches they used proved to
be too general to be effective. The systems became effective only when the solution
methods incorporated domain specific rules and facts. In other words, they became
effective as problem solvers only when specific knowledge was brought to bear on
the problems. The realization that specific knowledge was needed to solve difficult
problems gradually brought about the use of domain specific knowledge as an integral
part of a system. It eventually led to what we now know as knowledge-based systems.
Since the acceptance of this important fact, successful problem solvers in many
domains have been developed.

2.2 DEFINITION AND IMPORTANCE OF KNOW%,EDGE

Knowledge can be defined as the body of facts and principles accumulated by human-
kind or the act, fact, or state of knowing. White this definition may be true, it is
far from complete. We know that knowledge is much more than this. It is having
a familiarity with language. concepts. procedures. rules, ideas, abstractions, places,
customs, facts, and associations, coupled with an ability to use these notions effectively
in modeling different aspects of the world. Without this ability, the facts and concepts
are meaningless and, therefore, worthless. The meaning of knowledge is closely
related to the meaning of intelligence. Intelligence requires the possession of and
access to knowledge. And a characteristic of intelligent people is that they possess
much knowledge.

In biological organisms, knowledge is likely stored as complex structures of
interconnected neurons. The structures correspond to symbolic representations of
the krowtedge possessed by the organism, the facts, rules, and so on. The average
huni . n brain weighs about 3.3 pounds and contains an estimated number of 10
neurons. The neurons and their interconnection capabilities provide about 101* bits

of potential storage capacity (Sagan, 1977).
In computers. knowledge is also stored as symbolic structures, but in the

form of collections of magnetic spots and voltage states. State-of-the-artstorage in
computers is in the range of 10 12 bits with capacities doubling about every three to
four years. The gap between human and computer storage capacities is narrowing
-apidly. Unfortunately. there is still a wide gap between representation schemes
and efficiencies:

A common way to represent knowledge external to a computer or a human is
in the form of written language. For example, some facts and relations represented

in printed English are

Joe is tall.
Bill loves Sue.
Sam has learned to use recursion to manipulate linked lists in several program-

ruing languages.

Sec. 2.2	 Definition and Importance of Knowledge 	 it

The first item of knowledge above .expresses a simple fact, an attribute possessed
by a person. The second item expresses a complex binary relation between two
persons. The third item is the most complex, expressing relations between a person
and more abstract programming concepts. To truly understand and make use of
this knowledge, a person needs other world knowledge and the ability to reason
with it.

Knowledge may be declarative or procedural. Procedural knowledge is compiled
knowledge related to the performance of some task. For example, the steps used
to solve an algebraic equation are expressed as procedural knowledge. Declarative
knowledge. on the other hand, is passive knowledge expressed as statements of
facts about the world. Personnel data in a database is typical of declarative knowledge.
Such data are explicit pieces of independent knowledge.

Frequently, we will be interested in the use of heuristic knowledge, a special
type of knowledge used by humans to solve complex problems. Heuristics are the
knowledge used to make good judgments, or the strategies, tricks, or "rules of
thumb'' used to simplify the solution of problems. Heuristics are usually acquired
with much experience. For example, in locating a fault in a TV set, an experienced
technician will not start by making numerous voltage checks when it is clear that
the sound is present out the picture is not, but instead will immediately reason that
the high voltage flyback transformer or related component is the culprit. This type
of reasoning may not always be correct, but it frequeitly is. and then it leads to a
quick solution.

Knowledge should not be confused with data. Feigenbaum and McCorduck
(1983) emphasize this difference with the following example. A physican treating
a patient uses both knowledge and data. The data is the patient's record, including
patient history, measurements of vital signs. drugs given, response to drugs, and
so on, whereas the knowledge is what the physician has learned in medical school
and in the years of internship, residency, specialization, and practice, Knowledge
is hat the physician now learns in journals. It consists of facts, prejudices. beliefs.
and most importantly, heuristic knowledge.

Thus, we can say that knowledge includes and requires the use of data and
information. But it is more. It combines relationships, correlations, dependencies.
and the notion of gestalt with data and information.

Even with the above distinction, we have been using knowledge in its broader
sense up to this point. At times, however, it will be useful or even necessary to
distinguish between knowledge and other concepts such as belief and hypotheses.
For such cases we make the following distinctions. We define belief as essentially
any meaningful and coherent expression that can be represented. Thus, a belief
may be true or false. We define a hypothesis as a justified belief that is not known
to be true. Thus, a hypothesis is a belief which is hacked up with some supporting
evidence, but it may still be false. Finally, we define knowledge as true justified
belief. Since these distinctions will be made more formal in later chapters., we
need not attempt to give any further definitions of truth or justification at this time.

Two other knowledge terms which we shall occasionally use are epistemology

12	 -:	 Knowledge: General Concepts	 Chap. 2

and metaknowledge. Epistemology is the study of the nature of knowledge, whereas
me,aknowldge is knowledge about knowledge, that is, knowledge about what we
know.

In this section we have tried to give a broader definition of knowledge than
that commonly found indictionaries. Clearly, we have not offered a scientific defini-
tion, nor will we in this text. That will have to wait. But, without a scientific
definition, we are not able to measure knowledge. How then will we know when a
system has enough knowledge to perform a specified task? Can we expect to build
intelligent s ystems without having a more precise definition of either knowledge or
intelligence' In spite of our igndrance about knowledge, the answer is definitely
yes. We can and have built intelligent systems as we shall see in the following
chapters.

As it happened, in 1950 Turing proposed a way to demonstrate if a machine
can think and, therefore, exhibit intelligence. Known as the Turing test, it involves
isolating a person in a room with only a computer telctyp. If the person cannot
distinguish between a roan imitating a woman and a computer imitating a man
imitating a woman on the teletype. the computer succeeded in passing the test.
(Turing's test is often mistakenly understood to be simply a test of whether or not
a person can distinguish between some other hidden person and a computer Impersonat-
ing a person.) To date no one has developed a system able to pass the Turing test.
Of course, it. may be that no one has tried. Even so, systems need not pass such a
test to he useful, and many systems have already been built that exhibit a high

level of intelligence.
Finally, our overall picture of knowledge Cannot be complete without also

knowing the meaning of closely relaed concepts such as understanding. learning.
thinking. remembering, and reasoning. These concepts all depend on the use of
knowledge. But then just what is learning, or reasoning. or understanding' Here
too we will find dictionary definitions lacking. And, as in the case of knowledge
and intelligence, we cannot give scientific definitions for any of these terms either.
But, we will gain a deeper undersLding and appreciation for the concepts thrcugh
our study of Al. In particular, we will see the difficulties encountered in attempting
to implement such concepts in computer programs. For in programs. one must be

precise.

The Importance of Knowledge

Al has given new meaning and importance to knowledge. Now, for the first time,
it is possible to "package" specialized knowledge and : ..ell it with a system that

can use it to reason and draw conclusions. The potential of this important development

is only now beginning to be realized. Imagine being able to purchase an untiring,
reliable advisor that gives high level professional advice in specialized areas, such
as manufacturing techniques, sound financial strategies, ways to improve one's health,
top marketing sectors and strategies, optimal farming plans. and many other important
matters. We are not far from the practical realization of this, and those who create

Sec. 2.3	 Knowledge-Based Systems	 13

and market such systems will have more than just an economic advantage over the
rest of the world.

As noted in Chapter I. the Japanese recognized the potential offered with
these knowledge systems. They were the first to formally proceed with a plan to
commit substantial resources toward an accelerated program of development for
super-computers and knowledge-based systems. In their excellent hook on the Fifth
Generation. Feigenbaum and McCorduck (1983) present convincing arguments for
the importance that should be ascribed to such programs. They argue that the time
is right for the exploitation of Al and that the leaders in this field will become the
leaders in world trade. By forging ahead in research and the development of powerful
knowledge-based systems. the Japanese are assuring themselves of a leading rote
in the control and dissemination of packaged knowledge. .Feigenh!uin and NkCorduck
laud the Japanese for their boldness and farsightedness in moving ahead with this

ambitious program.

2.3 KNOWLEDGE-BASED SYSTEMS

One of the important lessons learned in Al during the 1960s was that general purpose
problem solvers which used a limited number of laws or axioms were too weak to
be effective in solving problems of any complexity. This realization eventually led
to the design of what is now known as knowledge-based systems, systems that
depend on a rich base of knowledge to perform difficult tasks.

Edward Feigenbaum summarized this new thinking in a paper at the International
Joint Conference on Artificial Intelligence (IJCAI) in 1977. He emphasized the
fact that the real power of an expert system comes froth the knowledge it possesses
rather than the particular inference schemes and other formalisms it employs. This
new view of Al systems marked the turning point in the development of more
powerful problem solvers. It formed the basis for some of the new emerging expert
systems being developed during the 1970s including MYCIN. an expert system

developed to diagnose infectious blood diseases.
Since this reali,aticin. much of the work done in Al has been related to so-

called knowledge-based sstems. including work in vision. learning, general problem
'otving. and natural language understanding. This in turn has led to more emphasis
being placed on research related to knowledge representation. mernor y organization.

and the use and manipulation of knowledge.
Knowledge-based s ystems get their power front 	 expert knowledge that

has been coded into (acts. rules, heuristics, and procedures. The knowledge is stored
in a know ledge base separate front control and inferencing components (Figure
2. Ii. This makes it possible to add new knowledge or refine existing knowledge
vvithout recompiling the control and ir.tcrencing programs. This greatly simplifies
the construction and maintenance of knowledge-based systems.

In the knowledge lies the power! This was the message learned by a few
farsighted researchers at Stanford University during the late 1960s and early 1970s.

14
	

Knowledge: General Concepts	 Chap. 2

________________ 	 Intere-cofltral	

KnOwea"1
Figure 2.1 Comeneni of knowledge-Unit
based syem.

The proof of their message was provided in the first knowledge-based expert systems
which were shown to be more than toy problem solvers. These first systems were
real world problem solvers, tackling such tasks as determining complex chemical
structures given only the atomic constituents and mass spectra data from samples
of the compounds, and later performing medical diagnoses of infectious blood dis-
eases.

2.4 REPRESENTATION OF KNOWLEDGE

Given the fact that knowledge is important and in fact essential for intelligent behavior,
the representation of knowledge has become one of Al's top research priorities.
What exactly is meant by knowledge representation? As defined above, knowledge
consists of facts, concepts, rules, and so forth. It can be represented in different
form-s, as mental images in one's thoughts, as spoken or written words in some
language, as graphical or other pictures, and as character strings or collections of
magnetic spots stored in a computer (Figure 2 2). The representations we shall be
concerned with in our study of Al are the written ones (character strings, graphs,
pictures) and the corresponding data structures used for their internal storage.

Any choice of representation will depend on the type of problem to be solved
and the inference methods available. For example, suppose we wish to write a
program to play a simple card game using the standard deck of 52 playing cards.
We will need some way to represent the cards dealt to each player and a way to
express the rules. We can represent cards in different ways. The most straightforward
way is to record the Suit (clubs, diamonds, hearts, spades) and face values (ace. 2.
3......10. jack, queen, king) as a symbolic pair. So the queen of hearts might

Mental Images

Written text

Character Strings

Binary numbers

Figure 2.2 Dii'i'crent lesels iii
Magnetic spots 	 knowledge representation,

Sec 2.4 RepresentatiOn of Knowledge 	 15

be represented as <queen, hearts>. Alternatively, we could assign abbreviated
codes (c6 for the 6 of clubs), numeric values which ignore Suit (I, 2.....13), or

some other scheme. If the game we wish to play is bridge, suit as well as value
will be important. On the other hand, if the game is black jack, only face values
are important and a simpler program will result if only numeric values are used.

To see how important a good representation is, one only needs to try solving
a few simple problems using different representations Consider the problem of
discovering a pattern in the sequence of numbers I I 2 3 4 7. A change of base in
the number from IC to 2 transforms the number to

011011011011011011.

Clearly a representation in the proper base greatly simpl i fies finding the pattern

solution.
Sometimes, a state diagram representation will simplify solutions. For example,

the Towers of Hanoi problem requires that n discs (say n = 3), each a different

size, be moved from one of three pegs to a third peg without violating the rule a
disc may only be stacked on top of a larger disc. Here, the States are all the possible
disc-peg configurations, and a valid solution path can easily be traced from the
initial state through other connected states to the goal state.

Later we will study several representation schemes that have become popular
among Al practitioners. Perhaps the most important of these is first order predicate
logic. It has become important because it is one of the few methods that has a
well-developed theory, has reasonable expressive power, and uses valid forms of
inferring. Its greatest weakness is its limitation as a model for commonsense reasoning.
A typical statement in this logic might express the family relationship of fatherhood
as FATHERjohn, Jim) where the predicate father is used to express the fact that

John is the father of Jim.
Other representation schemes include frames and associative networks (also

called semantic and conceptual networks), fuzzy logic, modal logics, and object-
oriented methods. Frames are flexible structures that permit the grouping of closely
related knowledge. For example, an object such as a ball and its properties (size,
color, function) and is relationship to other objects (to the left of, on top of, and
so on) are grouped together into a single structure for easy access. Networks also
permit easy access to groups of related items. They associate objects with their
attributes, and linkages show their relationship to other objects.

Fuzzy logic is a generalization of predicate logic, developed to permit varying

degrees of some property such as tall. In classical two-valued logic, TALL(john)
is either true or false, but in fuzzy logic this statement may he partially true. Modal
logic is an extension of classical logic. It was also developed to better represent
commonsense casoning by permitting conditions such as likely or possible. Object
oriented representations package an object together with its attributes and functions.
therefore, hiding these facts. Operations are performed by sending messages between
the objects.

Another representation topic covered more fully later is uncertainty. Not all

16	 Know*dge: General Concepts	 Chap. 2

knowledge is known with certainty. Kisowledge may be vague, contradictory, or
incomplete. Yet we would still like to be al* to reason and make decisions. Humans
do remarkably well with fuzzy, incomplete knowledge. We would also like our Al
programs to demonstrate this versatility.

2.5 KNOWLEDGE ORGANIZATION

The organization of knowledge in memory is key to efficient processing. Knowledge-
based systems may require tens of thousands of facts and rules to perform their
intended tasks. It is essential then that the appropiate facts and rules be easy to
locate and retrieve. Otherwise, much time will be wasted in searching and testing
large numbers of items in memory.

Knowledge can be organized in memory for easy acctss by a method known
as indexing. It amounts to grouping the knowledge in a way that key words can be
used to access the group. The key words "point" to the knowledge groups. As a
result, the search for some specific chunk of knowledge is limited to the group
only, a fraction of the knowledge base rather than the whole memory.

The choice of representation can simplify the organization and access operations.
For example, frames linked together in a network represent a versatile organization
structure. Each frame will contain all closely associated information about an object
and pointers to related object frames making it possible to quickly gain access to
this information. Subsequent processing then typically involves only a few related
frames.

2.6 KNOWLEDGE MANIPULATION

Decisions and actions in knowledge-based systems come from manipulation of the
knowledge in specified ways. Typically, some form of input (from a user keyboard
or Sensors) will initiate a search for a goal or decision. This requires that known
facts in the knowledge-base be located, compared (matched), and possibly altered
in some way. This process may set up other subgoals and require further inputs,
and so on until a final solution is found. The manipulations are the computational
equivalent of reasoning. This requires a form of inference or deduction, using the
knowledge and inferring rules.

All forms of reasoning require a certain amount of searching and matching.
In fact, these two operations by far consume the greatest amount of computation
time in At systems. For this reason it is important to have techniques available
that limit the amount of search and matching required to complete any given task.
Much research has been done in these areas to find better methods. The research
has paid off with methods which help to make many otherwise intractable problems
solvable. They help to limit or avoid the so-called combinatorial explosion in problems
which are so common in search.

Chap. 2	 Exercises	 17

2.7 ACQUISITON OF KNOWLEDGE

One of the greatest bottlenecks in building knowledge-rich systems is the acquisition
and validation of the knowledge. Knowledge can come from various sources, such
as experts, textbooks, reports, technical articles, and the like. To be useful, the
knowledge must be accurate, presented at the right level for encoding, complete in
the sense that all essential facts and rules are included, free of inconsistencies, and
so on. Eliciting facts, heuristics, procedures, and rules from an expert is a slow.
tedious process. Experience in building dozens of expert systems and other knowledge-
based systems over the past fifteen years has shown this to be the single most
time-consuming and ostly part of the building process. This has led to the development
of some sophisticated acquisition tools, including a variety of intelligent editors.
editors which provide much assistance to the knowledge engineers and s y stem users.

The acquisition problem has also stimulated much research in machine learning
systems, that is, systems which can learn new knowledge autonomously without
the aid of humans. Since knowledge-based systems depend on large quantities of
high quality knowledge for their success, it is essential that better methods of acquisi-
tion, refinement, and validation be developed. The ultimate goal is to develop techni-
ques that permit systems to learn new knowledge autonomously and continually
improve the quality of the knowledge they possess.

2.8 SUMMARY

In this chapter we have defined and described the importance of knowledge in
building intelligent Al computer systems. A definition of knowledge was given,
and the differences between knowledge, belief, and hypotheses were described.
The difference between knowledge and data was also clarified.

The recognition of the important role that knowledge plays in Al systems has
led several countries to commit substantial resources to long-Fange research programs
in Al. In particular, the Japanese government has undertaken a cooperative program
with several industrial companies to develop intelligent supercomputers within a
ten-year period.

Also in this chapter, we considered some of the basic research priorities related
to knowledge-based systems: knowledge representation. knowledge organization,
knowledge manipulation, and knowledge acquisition. These topics form the main
theme of the remaining chapters.

EXERCISES

2.1 Define and describe the difference between knowledge, belief, hypotheses, and data.
2.2 What is the difference between declarative and procedural knowledge?

3-

I

is	 Knowledge: General Concepts	 Chap. 2

2.3 Look up the meaning of epistemology in a good encyclopedia and prepare a definition.
2.4 The Turing test has often been incorrectly interpreted as being a test of whether or not

a person could distinguish between responses from a computer and responses from a
person. How does this differ from the real Turing test? Are the two tests equivalent? If
not, explain why they are not?

2.5 What important knowledge products are currently being marketed like other commodities?
What are some new knoledge products likely to be sold within the next ten years?

2.6 Briefly describe the me inng of knowledge representation and knowledge acquisition.
2.7 Give four different ways to represent the fact that John is Bill's father.

LISP and Other Al
Programming Languages

LISP is one of the oldest computer programming languages. It was invented
by John McCarthy during the late 1950s, shortly after the development of FORTRAN.
LISP (for USt Processing) is particularly suited for Al programs because of its
ability to process symbolic information effectively. It is a language with a simple
syntax, with little or no data typing and dynamic memory management. There are
several dialects of LISP iñchding FRANZLISP, INTERLISP. MACLISP, QLISP.
SCHEME, and COMMON LISP. The COMMON LISP version is a recent attempt
to standardize the language to make it more portable and easier to maintain.

LISP has become the language of choice for most Al practitioners. It was
practically unheard of outside the research community until Al began to gain some
popularity ten to fifteen years ago. Since then, special LISP processing machines
have been built and its popularity has spread to many new sectors of business and
government. In this chapter we give a summary of the important features of LISP
and briefly introduce PROLOG and other Al languages.

3.1 INTRODUCTION TO LISP: SYNTAX AND NUMERIC FUNCTIONS

The basic building blocks of LISP are the atom, list, and the string. An atom is a
number or string of contiguous characters, including numbers and special characters.
A list, is a sequence of atoms and/or other lists enclosed within parentheses. A

19

20	 LISP and Other Al Programming Languages 	 Chap. 3

string is a group of characters enclosed in double quotation marks Examples of

atoms, lusts and strings are

VALID ATOMS	 INVALID ATOM

this- is-a-symhol ic-atorn	 (abc

bill	 123ahc

100004352	 abcd'ef

mountain - _top	 (a b)
var	 ab cde

block #6
a12345

VALID LISTS	 INVALID LISTS

this is a list)	 this is not a list

(a (a b) c del)	 (abcdef ghii

(father sam (joe bill sue)))abck efg(

(mon tue wed thur fri sat sun) 	 (a b C (ii C)

(I	 ((ah.)(

VALID STRINGS	 INVALID STRINGS

'this is a string'' 	 this is not a string

"a h c d e fgh #Se '' 	 'neither is this

P lease enter your name"	 nor" this"

Since a list may contain atoms as well as other lists, we will call the basic
unit members top elements. Thus, the top elements of the list (a b (C d) e (f)) are
a, b, (c d), e, and (f). The elements c and d are top elements of the sublist (c d).

Atoms, lists, and strings are the only valid objects in LISP They are called
symbolic-expressions or s-expressiOns. Any s-expression is potentially a valid pro-
gram And those, believe it or not, are essentially the basic syntax rules for LISP
Of course, to be meaningful, a program must obey certain rules of semantics, that

is, a program must have meaning.
LISP programs run either on an interpreter oras compiled code. The interpreter

examines source programs in a repeated loop, called the readevalUate- Priflt loop.
This loop reads the program code, evaluates it, and prints the values returned by
the program. The interpreter signals its readiness to accept code for execution by
printing a prompt such as the -> symbol. For example, to find the sum of the
three numbers 5, 6, and 9 we type after the prompt the following function call:

569)
20

Some dialects require that symfrIiC atoms begin with a letter and do not include pareils or

single quotes

Sec. 3.1	 Introduction to LISP: Syntax and Numeric Functions 	 21

Note that LISP uses prefix notatiou. and the ± symbol is the function name
for the sum of the arguments that follow. The function name and its argument .' are
enclosed in parentheses to signify thaI it is to be evaluated as a function. The
read-evaluate-print loop reads this expression, evaluates it, and prints the saluc
returned (20). The interpreter then prints the prompt to signal its readiness to acce['t
the next input. More complicated computations can be written as a single embedded
expression. For example. to compute the centigrade equivalent of (h2 Fahrenheit
temperature 50, for the mathematical expression (5 * 9 / 5) + 32 we would write

the corresponding LISP function

-> (* (.' l . 95)50)32)
122

Each function call is performed in the order in which it occurs 'Arilhin the
parentheses. Hut, in order to compute the sum, the argument (* (I 9 5) 50) must
first be evaluated. This requires that the product of 50 and 9/5 be computed, sshich
in turn requires that the quotient 9/5 be evaluated. The embedded function c 9
returns the quotient 1.8 to the multiply function to give (* 1.8 50). This is then
evaluated and the value 90 is returned to the top (sum) function to give (-F 90 32).
The final result is the sum 122 returned to the read-evaluate-print loop for printing.

The basic numeric operations are +, -. , and I. Arguments may be integers
or real values (floating point), and the number of arguments a function takes will.
of course, differ. For example, + and * normally take zero or more arguments.
while - and / take two. These and a number of other basic functions are predefined
in LISP. Examples of function calls and the results returned are given in lahie
3.. In addition to these basic calls, some LISP implementations include mnemonic
names for arithmetic operations such as plus and times.

LISP tries to evaluate everything, including the arguments of a fiinctton. But,
three types of.elements are special in that they are constant and always evaluate to
themselves, returning their own value: numbers, the letter t (for logical true), and

TABLE 3.1 PREDEFINED NUMERIC FUNCTIONS

Value
Function esit 	 returned	 Remarks

(+ 3 5 84)	 -20	 4 takes zero or more arguments
The sum of zero arguments is 0

(— tO 12)	 - 2	 - lakes isso arguments
i 2 3 4)	 24	 takes zero or more arguments

The product of no arguments is I.
and the product of I argument
is the value of the argument

25 2>	 115	 takes two arguments.

22	 LISP and Other Al Programming Languages	 Chap. 3

nil (for logical false). Nil is also the same as the empty list 0 . It is the only object
in LISP that is both an atom and a list. Since these elements return their own
value, the following are valid expressions.

->6
6
->1
T
.> NIL
NIL

3.2 BASIC LIST MANIPULATION FUNCTIONS IN LISP

Sometimes we wish to take atoms or lists literally and not have them evaluated or
treated as function calls as, for example, when the list represents data. To accomplish
this, we precede the atom or the list with a single quotation mark, as in 'man or
as in '(a b c d). The quotation mark informs the interpreter that the atom or list
should not be evaluated, but should be taken literally as an atom or list.

Variables in LISP are symbolic (nonnumeric) atoms. They may be assigned
values, that is, bound to values with the function setq. Setq takes two arguments,
the first of which must be a variable. It is never evaluated and should not be in
quotation marks. The second argument is evaluated (unless in quotation marks)
and the result is bound to the first argument. The variable retains this value until a
new assignment is made. When variables are evaluated, they return the last value
bound to them. Trying to evaluate an undefined variable (One not previously bound
to a value) results in an error. Some examples of the use of setq are as follows
note that comments in LISP code may be placed anywhere after a semicolon).

- > (setq x 10)	 ;the number 10 evaluates to itself
10	 Js bound to x and 10 is returned

;the variable x is evaluated to
10	 ;return the value it is bound to
-'(etq x (*35))	 xis reset to the value (35)
8	 ;and that value returned
->(setq x '(* 3 5)) 	 ;x is reset to the literal value
(* 3 5)	 ;) * 3 5), quota inhibits evaluation

the variable y was not previously
Unbound variableV	 ;bound to a value, causing an error

Some basic symbol processing functions are car, cdr, cons, and list. Examples
kit these functions, are given in Table 32. Car takes one argument, which must be
a list. It returns the first top element of the list. Cdr also takes a list as its argument,
and it returns a list consisting of all elements except the first. Cons takes two

Sec. 3.2	 Basic List Manipulation Functions in LISP
	

23

TABLE 3.2 BASIC LIST MANIPULATION FUNCTIONS

Remarks

Car takes one argument, a list, and
returns the first element.

Cdr takes one argument. a list, and
returns a list with the first element
removed.

Cons takes two arguments, an tie-
inent, and a list and returns a list
with the element inserted at the
beginning.

List like any number of arguments
and returns a list with the argu-
ments as elements.

Value
Function call
	 returned

(car (a b c))
	 a

(cdi '(a b C))
	

(b c)

(cons a (bc))
	 (a b c)

(list 'a '(b C))
	 (a (b co

arguments, an element and a list. It constructs a new list by making the element
the first member of the list. List takes any number of arguments, and makes them
into a list, with each argument a top member.

Note the quotation marks preceding the arguments in the function calls of
Table 3.2. As pointed Out above, an error will result if they are not there because
the interpreter will try to evaluate each argument before evaluating the function.
Notice the difference in results with and without the quotation marks.

->Icons (1 2 3) (1)1
W 23) 1)
.>(corls	 23) 111)
(6 1)
->(setq x '(a b C))

(A B C)

X

(A B C)

The syntax for a function call is

;the literal list 1 2 3) 5

."coosed" to the list 411
;the evaluated list 1 2 3) is
;consed to the list (U
;x is bound to the literal list
;Ia b cI
;the quote - inhibits evaluation
;ofx	 -
;but unquoted a evaluates to its
;previously bound value

(function-name argi arg2 .1

where any number of arguments in\' be used. When a function is called, the arguments -
are -first evaluated front 	 to right (unless within quotation marks) and then the
function is executed using the evaluated argument values. Complete the list manipula-
tion examples below.	 .

24
	

LISP and Other Al Programming Languages 	 Chap. 3

-(car (cdr '(a b Cd)))
B
->.)cdr car '((a b) c do
(8)
->)cons 'one (two three))
(ONE TWO THREE)
->(cons (car '(a b c)

(cdr (a b c)))
(ABC)
—)list '(a b) 'c 'dl)
((A B) C 0)

;extracts the second element

extracts the list (b)

inserts the element one in
;the list (two three)
;lists may continue on
;several lines, but parens
:must always balance!
;makes a list of the top
;elements

Sequences of car and cdr functions may be abbreviated by concatenating the
letter a for car and d for cdr within the letters c, and r. For example, to extract c
from the list

(a (b c) d)
we write cadadr to abbreviate the sequence car cdr car cdr. Thus

->(cadadr '(a lb c) d))
C

Other useful list manipulation functions are append, last, m1i' .. and reverse.
Append merges arguments of one or more lists into a single list. Last takes one
argument, a list, and returns a list containing the last element. Member takes two
arguments, the second of which must be a list. If the first argument is a member
of the second one, the remainder of the seco'a list is returned beginning with the
member element. Reverse takes a list as its argument and returns a list with the
top elements in reverse order from the input list. Table 3.3 summarizes these opera-
tions.

TABLE 3.3 , ATlONAL LIST MANIPULATION FUNCTIONS

Value
Function call	 returned

(append '(a) '(b C))
	

(a be)

(last 'Ia be di)	 (d)

(member 'b '(a b d))	 lb dl

(resersc '(a (b C) d))	 (d (b C) a)

Remarks

merges two or more lists into
a single list.

returns a list containing the last
element

returns remainder of second a,-
gument list starting with ele-
ment matching first argu-
ment.

returns list with top elements
in reverse order.

1.

Sec 3,3 •Delinlng Funo lonLPr,diatss. and Conditionals	 25

Complete the practice examples below.

->(append '(a (b C)) (d e))
(A (B C) 0 E
•>(append '(a) '(b C) '(d))

(A B C Dl
->(Iast (a b (c d) (e)))
((El)
->(member '(d) (a (d) e f))
((0) E F).
->(reverse '(a b (C dl e)I
(E (C Dl B A)

;returns a single list of
;top element input lists

;returns the last top
;element as a list
;returns the tail of
;list from member element
;returns the list with top
;elements in reverse order

3.3 DEFINING FUNCTIONS,, PREDICA1S, AND CONDITIONALS

Defining Functions

Now that we know how to call functions, we should learn how to define our own.
The function named defun is used to define functions. It requires three arguments:
(1) the new function name, (2) the parameters for the function, and (3) the function
body or LISP code which performs the desired function operations. The format is

(defun name (parrnl parm2 ...) body).

Defun does not evaluate its arguments. It simply builds a function which
may be called like any other function we have seen. As an example, we define a
function named averagethree to compute the average of three numbers.

->(defun averagethree (nl n2 n3)
(/ (+ ni n2 rt3) 3))

AVERAGETHREE

Note that defun returned the name of the function. To call averagethree. we
give the function name followed by the actual arguments

->(averagethree 1020 30)
20

When a function is called, the arguments supplied in the call are evaluated
unless they are in quotation marks and bound to (assigned to) the function parameters.
The argument values are bound to the parameters in the same order they were
given in the definition. The parameters are actually dummy variables (n t , n 2 , n 3 in
averagethree) used to make it possible to give a function a general definition.

26
	

LISP tnaothel"AI Prdgrathmlng'Lihguagós 	 Chap. 3

Predicate Functions

Predicates are functions that test their arguments for some specific condition. Except
for the predicate "member" (defined above), predicates return true (t) or false
(nil), depending on the arguments. The most common predicates are

atom	 >=
equal	 listp
evenp	 null
grenterp (or >) 	 numberp

oddp
lesap tor <)	 zerop

The predicate ''atom" takes lone arument. It returns t if the argument is an
tom and nil otherwise. Equal takes two arguments and returns t if they evaluate

to the same value, and nil otherwise. Evenp, numberp, oddp, and zerop are tests
on a single numeric argument. They return t if their argument evaluates to an even
number, a number, an odd number, or zero respectively. Otherwise they each return
nil.

Greaterp and lessp each take one or more arguments. If there IS only one
argument, each returns I. If more than one argument is used, greaterp returns t if
the arguments, from left to right, are successively larger otherwise nil is returned.
Lcssp requires that the arguments be successively smaller from left to right to return
I. Otherwise it returns nil. The predicates > and < have the same meaning as
greaterp and lessp respectively, except they return t if successive elements are also
equa' Finally listp and null both take a single argument. Listp returns (if its argument
evalt'.ttes to a list, and nil otherwise. Null returns t if its argument evaluates to niL
othuwisc it returns nil. Examples for calls using each of these predicates are given
in Table 3.4.

TABLE 3.4 THE MOST COMMON PREDICATE CALLS

Value
Function call 	 returned

	 Remarks

(atom 'aahb)
(equal a (Car (a b))

(cvenp
(numbcrp lOab)
(oddp 3)
(zerop .000001)
(grea(erp 24 27)

(Iessp 5 3 I 2)

(listp (a))
(null nil)

I	 aabb is a valid atom
a equals a. but note that (equal I

1.0) returns nil
nil	 3 is not an even number
nil	 lOab is not a number

3 is an odd number
nil	 argument is not zero

arguments are succeedingly larger,
from left to right

nil	 arguments are not successively
smaller, left to right

(a) is a valid list
nil is an empty list

Sec.3.4	 IJeTInlng ruric*iOflS, Predicates, and Conditionals 	 a

The Conditional Cond

Predicates are one way to make tests in programs and take different actions based
on the outcome of the test. However, to -make use of the predicates, we need
some construct to permit branching. Cond (for conditona)) is like the if-then-else
construct.

The syntax for cond is

(cond	 (<tests> <action1>)
(<test ? > <action2>)

(<test> <actiorr>))

Each (<test 1 > < action>), i=lk. is called a clause. Each clause
consists of a test portion and an action or result portion' The first clause following
the cond is executed by evaluating <test 1 >. lfthis evaluates tonon nil, the <action1>
portion is evaluated, its value is rtturned. and the remaining clauses are skipped
over. If <test 1 > evaluates to nil, control passes to the second clause without evaluating
<action 1 > and the procedure is repeated. If all tests evaluate to nil, cond returns
nil.

We illustrate the use of cond in the following function maxirnum2 which
returns the maximum of two numbers.

->(defun maxirr,rn2 (a b(
(cond ((> a bI a)

It b)))
MAX) MU M2

When maxinium2 is executed, it starts with the first clause following the
cond. The test sequence is as follows: if (the argument bound to) a is greater than
(that hound to) b, return a. else return h. Note the t in the second clause preceding
h. This forces the last clause to be evaluated when the first clause is not.

->(rnaximurn2 234 320)
320

a
A slightly more challenging use of cond finds the maximum of three numbers

in the function maximum3.

.defun naxirnum3 a b C)

(cond ((> P b) (cond ((a c) a)
(I do

I)> b c) b)
(I cOO

->MAX(MUM3

28	 LISP and Other Al Programming Languages 	 Chap. 3

Trying maxinium3 we have

->(ma,iimum3 2030 25)
30

Common LISP also provides a form o' the more conventional if. then, else
conditional. It has the form

(if test --then-action .-:Cise-actiori

For this form, test is first evaluated. It it evaluates to non iii) the ': then-
action> is evaluated and the result returned>)therwise the else-action> is evaluated
and its value returned. The <else-action> is optional. It omitted, then when test
evaluates to nil, the if functn returns nil.

Logical Functions

Like predicates, logical functions may also be used for flow of control. The basic
logical operations are and, or, and not. Not is the simplest. It takes one argument
and returns t if the argument evaluates to nil, it returns nil if its argument evaluates
to non-nil. The functions and and or both take any number of arguments. For
both, the argumehts are evaluated front to right, . In the case of and, if all
arguments evaluate to non-nil, the value of the last argument is returned; otherwise
nil is returned. The argumints of or are evaluated until one evaluates to non-nil, in
which case it returns the argument value; otherwise it returns nil.

Some examples of the operators and, or and not in expressions are

->(setq x (a b co
(A B C)
->(not (atom x))
T
->)not (listp a))
NIL

-(Or (member e x) (member b x))

cB c
->(or (equal 'c (Car x)) (equal 'b (car xfl)
NIL
-s(and lhstp a) (equal 'c (caddr x)))

C
->tor (and (atom x) (equal a xl)

(and (not (atom x)) (atom (Car x))))

T

Sec. 3,4	 Input, Output, and Local Variables 	 29

3.4 INPUT, OUTPUT, AND LOCAL VARIABLES

Without knowing how to instruct our programs to call for inputs and print nsessJges
or text on the monitor or a printer, our programs will be severely limited. The
Operations we need for this are performed with the input-output (I/O) functions
The most commonly used I/O functions are read, print, prini, princ, terpri. and

format.
Read takes no arguments. When read appears in a procedure, processing halts

until a single s-expression is entered from the keyboard. The s-expression is the4l
returned as the value of 'i',id and processing Continues. For example, if we include
a read in an arithmetic pression, an appropriate value should be entered when

the interpreter halts.

,>(.. 5 (read))
6
11

When the interpreter looked for the second argument for +, it found the read
statement which caused it to halt and wait for an input from the keyboard. If we
enter 6 as indicated, read returns this value, processing continues, and the sum II
is then returned.

Print takes one argument. It prints the argument as it is received, and then
returns the argument. This makes it possible to print something and also pass the
same thing on to another function as an argument. When print is used to print an
expression. its argument is preceded by the carnage-return and line feed characters
(to start a new line)' and is followed by a space. In the following example.. note
the double printing. This occurs because print first prints its argument and then
returns it. causing it to he printed by the read-evaluate-print loop.

•>(pint '(a b dl
(A B C)
IA BC)
->lprint "hello there")
hello there"

"hello there"

Notice that print even prints the double quotation marks defining the string.
Prini is the same as print except that the new-line characters and space are

not provided (this is not true for all implementations of Common LISP).

.>)(prirl (hello)) (print (hello)))
(HELLOIIHELLO)

30	 LISP and Other Al Programming Languages	 Chap. 3

We can avoid the double quotation marks in the output by using the printing
function princ. It is the same as prini except it does not print the unwanted quotation
marks. For example. we use princ to print the following without the marks,

->(princ "hello there")
hello there "hello there'

Princ eliminated the quotes, but the echo still remains. Again, that is because
princ returned its argument (in a form that LISP could read), and, since that was
the last tiling returned, it was printed by the read-evaluate-print loop. In a typical
program, the returned value would not be printed on the screen as it would be
absorbed (used) by another function.

The primitive function terpri takes no arguments. It introduces a new-line
(carriage return and line feed) wherever it appears and then returns nil. Below is a
program to compute the area of a circle which uses several I/O functions ,, including
user prompts.

->)detun circle-area I)
(terpri)
(princ "Please enter the radius: "I
(setq radius (read))
(princ "The area of the circle is: "I
(princ (3.1416 radius radius))
(terpri))

CIRCLE-AREA
->(circle'area)
Please enter the radius: 4
The area of the circle is: 50,2656

Notice that princ permits us to print multiple Itenisn the same line and to introduce
a new-line sequence we use terpri.

The format function permits us to create cleaner output than is possible with
just the basic printing functions. It has the form (format <destination> <string>
arI arg2 ...): Destination specifies where the output is to be directed, like to the
monitor or some other external file. For our purposes, destination will always be t
to signify the default output, the monitor. String is the desired output string, but
intermixed with format directives which specify how each argument is to be repre-
sented. Directives appear in the string in the same order the arguments are to be
printed. Each directive is preceded with a tilde character () to identify it as a
directive. We list only the most common directives below.

A The argument is printed as though princ were used

-s The argument is printed as though prinl were used.

Sec. 3.4	 Input. Output, and Local Variables 	 31

1) The argument which must he an integer is printed as a
decimal nunihei

1" The argument s .icli must he a floating-poilit number is
printed as a dcciiiial floating-poi itt number.

The argument is printed as character output.

% A new-line is printed.

The field widths for appropriate argument values are specified with an integer
nimediady following the tilde symbol; for example. 'SD specifies an integer field

of width 5. As an example ol foriltat . suppose .r and v have been hound to floating-
point numbers 3.0 and 9.42 respectively. Using format, these numbers can he embed-
ded within a string nt text.

- -(format t "Circle radius 	 2F%CrcIe area - 3F' s y)
"Circle radius - 10
Circle area - 9.42"

Constructs for Local Variables

Frequently. it is desirable to designate local variables (variables which are defincd
only within a given procedure) rather than the global assignments which result
from sctq . Of course parameters named as arguments in a function definition -art-
local, The values they are assigned within the function are accessible only within
that function. For example, consider the variables .v and v in the following:

lsetq y '(a b cl)
(ABC)
- -lsetq x Id e I))
DEE)
- -(defuri local-var (a)

)setq V (coos s V)))
LOCAL-VAR
- -(local-var 61
(6 A B)

(DEE)

(ABC)

The variable r in the defun is local in scope. It reverts hack to its previous value
Mier the function local-vtr is exited. The variable v. on the other hand. is global.

It is accessible from an y procedure and retains its value unless reset with sctq.

32	 LISP and Other Al Programming Languages	 Chap. 3

The let and prog construct', also permit the creation of local variables. The
s\ ritas for the let function is

(let ((var sal t) (var, viii,)... I. <s
sshere each var, is a different variable name and val, is an initial value assigned to
each ar. respectively When let is executed. each val, is evaluated and assigned
to the corresponding vat,. and the s-expressions which follow are then evaluated in
order. The value of the last explession esiiluated is then returned If an initial

Is 1101 irichided %k
lilt it	 al,, It is •issigtted nil. and the parentheses enclosing

II tut\ he iitrtille&l

- (let ox a)
lv h)
)z el)

eons ii leor's y I list l Ill
(ABC)

The prog Itinction is sun t lar to let in that the lirsI arguments billowing It are
a list of local variables \% , here each element is either it name or a list
containing a 'ariahle name and its initial value. This is followed by the bod y of
the proc. and any number of s-expressions.

Prog executes list 5-expressions in sequence and returns nil unless it encounters
it neil Oil call named mel u in. In [hisis case the single argument 01 . return is evaluated
and returned. Pi isg also ficrittils the use of unconditional go statements and lahels.
(atoril labels) to identity the go -to transfer locations. With the go and label statements.
prog permits the wri Ii nc of unstructured programs ari,d . therefore, is not recommended
for general use. ,\ri e;irnplc of it function like riirmih (iiieiiiher) which uses iteration.
will illustrate this usc	 he iiinn Iunitiorr iiietrmh requires two aqguillelu,. all clenicrit
and a list

-)i1),irr rriemb (el 1st)
lproq ()

start
(cond beqoat el (car 1st)) (return ISM)

)setq Est (cdr 1st))
(go start)))

MEMB

Note that prog used here requires no local variables Also note the label start,
the transfer (loop back) point for the go statement. The second clause of tlic cond
executes when the first clause is skipped because setq is non-nil!

Sec. 3.5	 Iteration and Recursion
	

33

3.5 ITERATION AND RECURSION

Iteration Constructs

We saw one way to perform iteration using the prog construct in the previous
SCCI1OR. In this section. we introduce it structured turin of' iteration with the do
construct, which is somewhat like the while loop in Pascal.

The do statement hs the form

(o(, var, vat, - -.var-update,>)
(-var2 vaI 7 <var-update2>)

(<test, <re*urn-value'-)
ks-expressions>))

The val e are initial values which are all evaluated and then bound to the Corre-
sponding variables var, in parallel. Following each such statement are optional update
statements which define how the var, are to be updated with each iteration. After
the variables are updated during an iteration, the test is evaluated, and if it returns
non-nil (true). the rCturn-value is evaluated and returned. The s-expressions forming
the body of the construct are optional. If present, they are executed each iteration
until an exit test condition is encountered. An example of the factorial function
will illustrate the doconstruct.

- (defun facto,aI (n)
(do ((count n (- count 1))

(product n (product I- Count II)
((equal 0 count) produsct(((

rACTORIAt.

In this definition there is no need to include it body. All operations required
to compute the factorial of it are contained in the initial values and the update
procedures.

There is also a do* Construct which is the same as do. except the assignment
of initial values is made to each var, sequentially before the next form is evaluated.

In addition to the do and prog constructs for iteration, one may use a mop
function. Loop has the simple form

(loop <s-expressions -(

where the s-expressions are evaluated repeatedly until a call to a return is encountered. -

4,-

34	 LISP and Other Al Programming Languages Chap. 3

01 course, let and other functions can be embedded within the loop construct if

local variables are nccdcd

Recursion

For many problems, recursion is the natural method of solution. Such problems
occur frequently in mathematical logic, and the use of recursion will often result
in programs which are both elegant and simple. A recursive function is one which
calls itself successively to reduce a problem to a sequence of simpler steps. Recursion
requires a stopping condition and a recursive step.

We illustrate with a recursive version of factorial. The recursive step in factorial
is the product of ,,.and factorial(it-l). The stopping condition is reached when n =

0.

.'(defun factorial (n)
(cond ((zerop n) 1)

it I • n (factorial C- n 1M)))
FACTORIAL
-(factorial 6)
720

Note the slopping condition on the second line of the function definition, and

the recursive step on the last line.
We present another example of recursion which defines the member function

called newmemhcr.

>(defun newmember let 1st)
(cond ((null)st) nil)

((equal el (car 1st)) 1st)
(It (newniember el (cdr ist)fi)(

NEWMEMBER

lithe atom e and list (a J, c d) are given as the arguments in the calf to newniember,

c gets bound to ci and (a h (d) is hound to lxi. With these bindings, the first cond

test fails, since lxi is not null. Consequently, the second test is executed. This also

fails since el, bound to c, does not equal the car of 1st which is a. The last test of

the cond construct is forced to succeed because of the t test. This initiates a recursive

call to ncwntciuhcr with (lie new arguments ('I (still hound to c) and the cdi of. 1st

which is (h e M. Again, a inalch fails during the ond tests; so another recursive
call is made, this time with arguments ci (still bound to c) and lxi now bound to

(c (i). When this calf is executed, a match is found in the second cond test so the
value of 1st (C d) is returned.

Sec.'S.G PrósèIythpfld An.j'	
is

3.5 PROPERTy LIST8 AND ARRAYS

Property Usts

One of the unique and most Useful features of LISP as an Al language is the
ability to assign properties to atoms. For example, any object, say an atom which
represents a person, can be given a number of properties which in some way character-
ize the person, such as height, weight, sex, color of eyes and hair, address, profession,
family members, and so on. Property list functions permit one to assign such properties
to an atom, and to retrieve, replace, or remove them as required.

The function putprop assigns properties to an atom. It takes three arguments:
an object name (an atom), a property or attribute name, and property or attribute
value. For example, to assign properties to a car, we can assign properties such as
make, year, color, and style with the following statements:

->(putprop 'car 'ford 'make)
FORD
- '>(putprop 'car 1988 'year)
1988
'>(putprop 'car 'red 'color)
RED
->(putprop 'car 'fourdoor 'style)
FOUR-DOOR

As you can see, the form of putprop is

(putprop object value attribute)

where value is returned. The object, car, will retain these properties until they are
replaced with new ones or until removed with the remprop function which takes
two arguments, 1the object and its attribute, in other wot1s, properties are global
assignments. To retrieve a property value, such as the dolor of car, we use the
function get, ¶hich also takes the two arguments object and attribute.

->(get car 'color)
RED
->(get 'car 'make)
FORD
.>(pprop 'car 'blue 'color)
BLUE
.>(get 'car color)
BLUE
->(r,mprop 'car 'color)
BLUE
.>(get 'car 'color)
NIL

36	 LISP and Other Al Programming Languages 	 Chap. 3

The property value may be an atom or a list. For example. if Danny has pets
named Schultz. Penny. and Etoile, they can be assigned as

->(putprOp 'danny '(schultz penny etoile) 'pets)
(SCHULTZ PENNY ETOILE3
.>(gbt danny 'pets)
(SCHULTZ PENNY ETOILE)

To add a new pet named Heidi without knowing the existing pets one can do

the following:

.>(putprOp 'danny (cons 'heidi (get '4ienny 'pets)) 'pets)
(HEIDI SCHULTZ PENNY ETOILE)

Items can be removed from a list of values in a similar manner.
Since some versions of Common LISP do not provide the putprop function,

it may be necessary to define your own. This can be done with the following

code.

.>tdetun putprop (object value property)
Isetf (get object property) value)).

PUTPROP

The new function self used in the above definition is like setq except it is
more general. It is an assignment function which also takes two arguments, the
first of which' may be either an atom or an access function (like car. cdr. and get)
and the second, the value to be assigned. When the first argument is an atom. setf
behaves the same as setq. It simply binds the evaluated second argument to the
first. When the first argument is an access function. self places the second argument,
the value, at the location accessed by the access function For example. if (a b C)

has been bound to x. the expression (self (car x) 'd) will replace the a in (a b c)

with d. Likewise, self can be used directly to assign or replace a property value.

->(setf (get 'car 'color) 'pink)
PINK
.>(get 'car 'color)
PINK

As we shall' see in later chapters, property lists provide us with a convenient
mechanism with which to represent knowledge. One such representation is the concep-
tual network where objects. their attributes, and relations to other objects are casil

Sec.1.	 Property Lists anI krre$'
	

37

Ipprop 'bird 'fly 'locomotion)
(pstprop 'sweaty 'bird 'li-i)
(pttv'oP 'tweaty . '(winga tail) 'haa- pant) 	 Figure 3.1 Representation of fac ts and
)potprop 'sweaty 'yellow 'color) 	 relations as a network.

expressed. in Figure 3.1 some facts about Tweety, the famous Al bird, have been
represented as a network using property lists.

Arrays

Single- or multiple-dimension arrays may be defined in LISP using the make-array
function. The items stored in the array may be any LISP object. For example, to
create an array with ten cells named myarray, vie bind the unquoted name to an
array using setf (or setq) with the make-array function and a specification of the
number of cells.

->(setf myarray (make-array '110)))
#A(N)L NIL NIL NIL NIL NIL NIL NIL NIL NIL)•

Note that the function returns the pound sign (#) followed by an A and the array
representation with its cells initially set to nil.

To access the contents of cells, we use the function aref which takes two
arguments, the name of the array and the index value. Since the cells are indexed
starting at zero, an index value of 9 must be used to retrieve the contents of the
tenth cell.

->(aref myarray 9)	 -.
NIL

To store items in the array, we use the function setf as we did above to store
properties on a property list. So, to store the items 25, red, and (sam sue linda) in
the first, second, and third cells of myarray,we write

38	 USP and Other Al Progr.milng languages .Chap. 3

->(setf (aref myarray 0) 25)
25
->(setf tarot myarray 1) 'red)
RED
->Csetf (arermyarrey 2) '(*am sue linda))
(SAM SUE LINDA)

3.7 MISCELLANEOUS TOPICS

We complete our presentation of LISP in this section with a few additional topics,
including the functions mapcar, eva), lambda, trace and untrace, and a brief description
of the internal representation of atoms and lists.

Mapping Functions

Mapcar is one of several mapping functions provided in LISP to apply some function
successively to one or more lists of elements. The first argument of mapcar is a
function, and the remaining argument(s) are lists of elements to which the named
function is applied. The results of applying the function to successive members of
the lists are placed in a new list which is returned. For example, suppose we wish
to add I to each element of the list (5 10 15 20 25). We can do this quite simply
with mapcar and the function 1+.

->(mapcar 1+ '(510152025))
(6 11 1621 26)

If we wish to add the corresponding elements of two lists (even of unequal
length), say (I 2 3 4 5 6) and Il 2 3 4), we use the + function with the lists to
obtain the sum of the first four elements.

->(mapcar -' '(1 23456) '(1 234))
(2468)

It should be clear that mapcar can be used in a variety of ways in lieu of
iterative functions. And, the function being applied to the lists may be either user
defined or built-in.

Lambda Functions

When a function is defined with defun, its name and address must be stored in a
symbol table for retrieval whenever it is called in a program. Sometimes, however,
it is desirable to use a function only once in a program. This will be the case

Sec*, 	 MneouirTbOiceedtO hna q2tj

when it is •uied in a mapping operation such as with lnapcar, which must take a
procedure as its first argument. LISP provides a method of wining unnamed or
anonymous functions that are evaluated only when they are encountered in a program.
Such functions are called lambda functions. They have the following form

(lambda (arguments) <function-body>)

We illustrate the use of a lambda function to compute the cubed value of a
list of numbers. This will be accomplished by using mapcar to apply a lambda
cube function to a list of numbers. When a function is called by another function,
it should be preceded by the characters #' to indicate that the following item is a
function. This is equivalent to preceding the function with a single quotation mark
(') or the function named function in some LISP dialects. The lambda function we
need to find the cube of a single number is just (lambda (x) (5 x x x)). We use
this with mapcar now to find the cubes of the numbers (I 2 34)

->(defun cube-hat (let)
(mapcar #'(lambd. (xl V x x xfl let))

CUBE-LIST
->(cubelist 0 234))
(182764)

Internal Storage.

As we have seen, lists are flexible data structures that can shrink or grow almost
without limit. This is made possible through the use of linked cell structures in
memory to represent lists. There can be visualized as storage boxes having two
components which corresponer to the car and cdr of a list. The cells are called
cons-cells, because they are constructed with the cons function, where the left compo-
nent points to the first element of a list (the car of the list) and the right component
Doints to the remainder of the list (the cdr of the list). An example of the representation
or the list (a (b c (d)) e f) is given in Figure 3.2.

Flure 3.2 Reprewetation (or the list (. (b c (4)) el)

40	 LISP and Otherogrsmmlngliinguag4s Chap. 3

The boxes with the slash in the figure represent nil. When cons is used to
construct a list, the cons-cells we created with pointers to the appropriate elements
as depicted in Figure 3.2. The use of such structures permits lists to be easily
extended or modified.

3.8 PROLOG AND OTHER Al PROGRAMMING LANGUAGES

PROLOG (for PROgramming in LOGic) was invented by Alain Colmerauer and
his associates at the University of Marseilles during the early 1970s. PROLOG
uses the syntax of predicate logic to perform symbolic, logical computations. It
has a number of built-in features (particularly control features) that limit its flexibility
but simplify many aspects of programming.

Programming in PROLOG is accomplished by creating a data base of facts
and rules about objects, their properties, and their relationships to other objects.
Queries can then be posed about the objects and valid conclusions will be determined
and returned by the program. Responses to user queries are determined through a
form of inferencing control known as resolution. This process is described in the
next chapter.

Facts in PROLOG are declared with predicates and constants written in lowercase
letters. The arguments of predicates are enclosed in parentheses and separated with
commas. For example, some facts about family relationships could be written as

sister(sue,bi$I)
parent(ann.sam)
parent(joe.ann)
male(Joe)
female(nn)

The first fact is the predicate sister with arguments sue and bill. This predicate
has the intended meaning that Sue is the sister of Bill. Likewise, the next predicate
has the meaning that Ann is the parent of Sam, and so on.

R
,
ules in PROLOG are composed of a condition or "if' part, and a conclusion

or "then" part separated by the symbol :- which is read as "if' (conclusion if
conditions). Rules are used to represent general relations which hold when all of
the conditions in the if part are satisfied. Rules may contain variables, which must
begin with uppercase letters. For example to represent the general rule for grandfather.
we write

grandfather(X.Z) :- parent(X,V), parent(Y.Z). male(X)

This rule has the following meaning:

For all X, Y, and Z.
X is the grandfather of Z

Sec. 3.8	 Prolog and Other Al Programming Languages	 41

IF Xis the parent of Y. and

Y is the parent of Z, and

X is a male

Note that separate conditions in the rule are separated by commas. The commas
act as conjunctions, that is, like and statements where. all conditions in the right-
hand side must be satisfied for the rule to be true.

Given a data base of facts and rules such as that above, we may make queries
by typing af,er the query symbol -? statements such as

7 parent(X,ssm)
X-ann
?- male(joe)
yes
?-grandtather(X,Y)
Xjoe, Ysam
?-female(joé)
no

Note that responses to the queries are given by returning the value a variable can
take to satisfy the query or simply with yes (true) or . no (false).

Queries such as these set up a sequence of one or more goals that are to be
satisfied. A goal is satisfied if it can be shown to logically follow from the facts
and rules in the data base. This means that a proper match must be found between
predicates in the query and the database and that all subgoals must be satisfied
through consistent substitutions of constants and variables for variable arguments.
To determine if a consistent match is possible. PROLOG searches the data base
and tries to make substitutions until a permissible match is found or failure, occurs.
For example, when the query

?.grandf ather(X sam)

is given, a search is made until the grandfather predicate is found in the data base.
In this case, it is the head of the above grandfather rule. The constant Sam is
substituted for Z, and an attempt is then made to satisfy the body of the rule. This
requires that the three conditions (subgoals) in the body are satisfied. Attempts to
satisfy these conditions are made from left to right in the body by searching and
finding matching predicates and making consistent variable substitutions by (I) substi-
tuting Joe forX in the first subgoal parent(X.Y)and later in the third subgoal male(X.
(2) substituting Sam for Z in the second subgoal.parenflY.Z). and (3) substituting
Ann for Y in the first two subgoals parent(X.Y) and parent(Y.Z). Since consistent
variable substitutions can be made in this case, PROLOG returns X = Joe, in
response to the unknown X in the query. PROLOG will continue searching through
the database until a consistent set of substitutions is found. If all substitutions cannot
be found, failure is reported with the printout no.

itt

42	 LISP and Other Al Programming Languages Chap. 3

Lists in PROLOG are similar to list data structures in LISP. A PROLOG list
is written as a sequence of items separated by commas, and enclosed in square
brackets. For example, a list of the students Tom. Sue, Joe, Mary, and Bill is
written as

lIom.sue.loe,mary.biHI

A list is either empty (J or nonempty. If nonempty, a list is considered as an
object with a head and a tail, corresponding to the car and cdr of a list in LISP.
Thus, the head of the above list is Tom, and the tail is the remaining sublist
(sue,joe.mary,biIl. Since the tail is a list, it too is either empty or it has a head
and tail. This suggests a binary tree representation similar to linked LISP cons
cells.

PROLOG provides a notation to separate the head and tail, the vertical bar
as in IHeadiTaill. This permits one to define the Head of a list as any number of
items followed by a j and the list of remaining items. Thus, the list [a,b,c.d] may
be written as (a,b,c,d] IaR b , c .d l) = Ia.bIIc,dI]	 a,b,c,dll]J.

Matching with lists is accomplished as follows:

?•lHeadjTaill = ltorn,suejoe.maryl.
Head = torn
Tail	 lsue,joe,maryl

A number of list manipulation predicates are available in most PROLOG imple-
mentations, including append, member, conc (concatenate), add, delete, and so
on. One can also define special predicates as needed from the basic definitions
included. For example, a definition of the member function member(X,L). where
X is an item and L is a list, can be written as a fact and a rule.

member(X.IX TaHD.

membejX,l Head jTajIl)
member(X,Tail).

Sec. 3.9 Summary

The first condition States that X is a member of the list 'L if X is the head of L.
Otherwise, the rule States that X is a member. of L if X is a member of the tail of
L. Thus,

7- memberlc,la,b,c.dI)
yea
7- rnember(b.(a,lb,cl,dl) 	 .	 .	 .
no

PROLOG has numeric functions and relations, as well as list handling capabili-
ties, which give it some similarity to LISP. In subsequent chapters, we will see
examples of some PROLOG programs. For more details on the syntax, predicates,
and other features of PROLOG the reader is referred to the two texts, Bratko (1986),
and Clocksin and Mellish .(1981).

(iher programming languages used in Al include C, object oriented extensions
to LIS. such as Flavors, and languages like Smalltalk. The language C has been
used by some practictioners in Al because of its popularity and its portability.
Object oriented languages, although they have been introduced only recently, have
been gaining much popularity. We discuss these languages in Chapter 8.

3.9 SUMMARY

In this chapter we introduced LISP, the programming language of Al. We defined
LISP syntax and examined a number of built-in functions, including the numeric
functions (+, -. . I), and the list manipulation functions (car, cdr, cons, list,
append, last, member, and reverse). We also defined a number of predicate functions
such as equal, null, numberp, atom, listp, and so on: We then described how to
define our own functions using defun. We saw how to use the conditional cond
and the logical functions and, or, and not.

The input-output functions print, prini, princ, read, terpri. and format were
defined and example programs presented. We saw how to write iterative programs
with the do, loop, and prog constructs. We saw how to define and use local variables
with the let and prog functions. We discussed recursion, and saw examples of its
use. We then looked at property lists, a valuable method with which to assign
multiple values or properties to variable atoms. Array definitions and examples
were briefly introduced, and a few miscellaneous topics such as mapping functions
(mapcar), the lambda form, and'internal list representations concluded our treatment
of LISP.

Finally, we introduced the logic programming language PROLOG, and gave
some simple examples of its use. We concluded the chapter with a few comments
regarding other Al languages and noted that object oriented languages are described
in detail in Chapter 8.	 .

44	 LISP and Other Al Programming Languages 	 Chap. 3

EXERCISES

3.1 Write a LISP program to convert centigrade temperatures to Fahrenheit.
3.2 Define a function called first-element that takes a list as its argument and returns the

first top element of thelist
3.3 Define a function called number-of-elements that takes a list as its ony argument and

returns the number of top elements in the list.
3.4 Define a function called rotate that takes a list and rotates the elements by one position

as in

(rotate (a b c dl) returns (0 A B Q.

3.5 Define a function newlist that takes one argument and returns it as a list, lithe argument
is already a list, including the empty list, newlist returns it without change. If the
argument is an atom, it returns it as a list.

3.6 Define a function named addlist that takes two arguments, an item and a list. If the
item is in the list, the function returns the list unaltered. If the item is not in the list.
the function returns the list with the item entered as the first element. For example.

(addlist c (a bed)) returns (a b dl but
(addliat 'a '(a b C)) returns (a a b c).

3,7 Define a function construct-sentence which takes two lists as arguments. The lists are
simple sentences such as

(the dog barked) or
(the dog chased the car).

The function should check to see if the subject of the sentence is the same in both
sentences. If so, the function should return the compound sentence

(the dog barked and chased the car).

If the two sentences do not have the same subject, the function should return DII.

3.8 Write a function called word-member which takes one list as argument. The function
should print a prompt to the user

(please type any word)

If the word typed is a member of the list the function should return i, otherwise nil.
For example,

> (word-member '(the brown fox ran))
(please type any word) fox
T

Chap. 3	 Exercises

3.9 Write a function talk that takes no arguments. It prints the prompt (without quotation
- marks or parentheses)

What is your name?

The function should then read an input from the same line two spaces following the
question mark (e.g., Susan), issue a line feed and carriage return, and then print

Hello. Susan. What is your beat friend's name?

As before, the user should type a name (e.g.. Joe). The program should then respond
with

Very interesting Joe is my best friend too!

3.10 Write an iterative function named nth-item that takes two arguments, a poitve integer
and a list. The function returns the item in the nth position in the list. If the integer
exceeds the number of elements in the list, it returns nil. For example.

(nth-item 3 '(a b c d a f)) returns c.

3.11 Write a recursive function named power that takes two numeric arguments, it and m.
The function computes the nth power of m (mj"). Be sure to account for the the case
where it =0, that is m0 = I. For example.

(power 4 3) returns 43 = 64.

3.12 Define a function called intersection which takes two lists as arguments. The functioty
should return a list containing single occurrences of all elements which appear in both
input lists. For example,

(intersection (a b e g k It '(a c a g x y))

should return (a e g).
3.13 Write a new function called new-reverse that takes a list as argument. The function

should return the list in reversed order. Do not use the LISP function reverse to define
new-reverse. For example,

(new-reverse '(a b If a) Of should return
(I If a) b a).

3.14 Write an iterative function named sum-all using do that takes an integer n as argument
and n-turns the sum of the integers from I to it. For example,

(sum-all 5) should return 15.

46	 LISP and Other Al Programming Languages Chap. 3

3.15 Write a function called sum-squares which uses mapca, to find the sum of the squares
of a list of integers. The function takes a single list as its argument. Write a lambda
function which mapcaz uses to find the square of the integers in the list. For example,

(sum-squares (2 3 1 4)) should return 30.

3.16 Write a PROLOG program that answers questions about family members and relation-
ships. Include predicates and rules which define sister, brother, father, mother, grand-
child, grandfather, and uncle. The program should be able to answer queries such as
the following:

7- father(X, bob).
7. grandson(X, Y).
7- uncle(bill, sue).
7- mother(mary, X).

3.17 Trace the search sequence PROLOG follows in satisfying the following goal:

7- member(c,Ia,b.c.dJ).

3.18 Write a function called match that takes two arguments, a pattern and a clause. if the
first argument, the pattern, is a variable identified by a question mark followed by a
lowercase letter (like ?x or ?y), the function should return a list giving the variable
and the corresponding clause, since a variable matches anything. If the pattern is not
a variable, it should return r only if the pattern and the clause are identical. Otherwise,
the function should return nil.

I,'

