PART 2 .
Knowledge Representation

4

Formalized
Symbolic Logics

Starting with this chapter, we begin a study of some basic tools and methodologies
used in Al and the design of knowledge-based systems. The first representation
scheme we examine is one of the oldest and most important, First Order Predicate
Logic (FOPL). It was developed by logicians as a means for formal reasoning,
primarily in the afeas of mathematics. Following our study of FOPL, we then investi-
gate five additional representation methods which have become popular over the
past twenty years. Such methods were developed by researchers in Al or related
fields for use in representing different kinds of knowledge.

After completing these chapters, we should be in a position to best choose
which representation methods to use for a given application, to see how automated
reasoning can be programmed, and to appreciate how the essential parts of a system
fit together.

4.1 INTRODUCTION

The use of symbolic logic to represent knowledge is not new in that it predates the
modern computer by a number of decades. Even so, the application of logic as'a
practical means of representing and manipulating knowledge in a computér was
not demonstrated until the early 1960s (Gilmore, 1960). Since that time, numerous

47

48 Formalized Syrmbolic Logics Chap. 4

systems have been implemented with varying degrees of suctess. Today, First Order
Predicate Logic (FOPL) or Predicate Calculus as it is sometimes called, has assumed
one of the most important roles in Al for the representation of knowledge.

A familiarity with FOPL is important to the student of Al for several reasons.
First, logic offers the only formal approach to reasoning that has a sound theoretical
foundation. This is especially important in our attempts to mechanize or automate
the reasoning process in that inferences should be correct and logically sound. Second,
the structure of FOPL is flexible enough to permit the accurate representation of
natural language reasonably well. This too is important in Al systems since most
knowledge must originate with and be consumed by humans. To be effective, transfor-
mations between natural language and any representation scheme must be matural
and easy. Finally, FOPL is widely accepted by workers in the Al field as one of
the most useful representation methods. It is commonly used in program designs
and widely discussed in the literature. To understand many of the Al articles and

rescarch papers requires a comprehensive knowledge of FOPL as well as some-

-related logics. .

Logic is a formal method for reasoning. Many concepts which can be verbalized
can be translated into symbolic representations which closely approximate the meaning
of these concepts. These symbolic structures can then be manipulated in programs
to deduce various facts, to carry out a form of automated reasoning.

In FOPL, statements from a natural language like English are translated into
symbolic structures comprised of predicates, functions, variables, constants, quantifi-
ers, and logical connectives. The symbols form the basic building blocks for the
knowledge, and their combination into valid structures is accomplished using the
syntax (rules of combination) for FOPL. Once structures have been created to represent
basic facts or procedures or other types of knowledge, inference rules may then be
applied to compare, combine and transform these ‘*assumed’’ structures into new
‘“deduced'” structures. This is how automated reasoning or inferencing is performed.

As a simple example of the use of logic, the statement “*All employees of
the Al-Software Company are_programmers’” might be written in FOPL as

{¥x) (Al-SOFTWARE-CO-EMPLOYEE(x) — PROGRAMMER(x))

Here, ¥x is read as *‘for all x™" and — is read as “‘implies’" or ‘‘then.”" The
predicates AI-SOFTWARE-CO-EMPLOYEE(x), and PROGRAMMER(x) are read
as “'if x is an Al Software Company employee,"" and “'x is a programmer’' respec-
tively. The symbol x is a variable which can assume a person’s name.

If it is also known that Jim is an employee of Al Software Company,

Al-SOFTWARE-CO-EMPLOYEE jim)
one can draw the conclusion that Jim is a programmer.

PROGRAMMER (jim)

'Sec. 42 Syntax and Semantics for Propositional Logic a9

The above suggests how knowledge in the form of English senteices cun be
translated into. FOPL statements. Once translated, such statements can be typed
into a knowledge base and subsequently used in a program to perform inferencing.

. We begin the chapter with an introduction to Propositional Logic. a special
case of FOPL. This will be constructive since many of the concepts which apply
to this case apply equally well to FOPL. We then proceed in Section 4.3 with a
more detailed study of the use of FOPL as a representation scheme. In Section 4.4
we define the syntax and semantics of FOPL and examine equivalent expressions.
inference rules, and different methods for mechanized reasoning. The chapter con-
cludes with an example of automated reasoning using a small knowledge base.

SYNTAX AND SEMANTICS FOR PROPOSITIONAL LOGIC

Valid statements or sentences in PL are determined according 1o the rules of proposi-
tional syntax. This syntax governs the combination of basic building blocks such
as propositions and logical connectives. Propositions are elementary atomic sentences.
(We shall also use the term formulas or well-formed formulas in place of sentences.)
Propositions may be either true or false but may take on no other value. Some
examples of simple propositions are

It is raining.

My car is painted silver.

John and Sue have five children.
Snow is white.

People live on the moon.

Compound propositions are formed from atomic formulas using the logiéal
connectives not and or if . . . then, and if and only if. For example, the-following
are compound formulas.

“* It is raining and the wind is blowing. . ..
The moon is made of green cheese or it is not.
If you study hard you will be rewarded.
The sum of 10 and 20 is not 50.

. We will use capital letters, sometimes followed by digits, to stand for proposi-
~tions; T and F are special symbols having the values true and false, respectively.
The following symbols will also be used for logical connectives

" for not or negation
& for and or conjunction

50 Formalized Symbolic Logics ~ Chap: 4

V for or or disjunction

~— for if . . . then or implication

« for if and only if or double implication

In addition, left and right parentheses, left and right braces, and the period
willbe used as delimiters for punctuation. So, for example, to represent the compound
sentence "*It is raining and the wind is blowing™" we could write (R & B) where R
and B stand for the propositions It is raining™ and *‘the wind is blowing,"" respec-
tively. If we write (R V B) we mean ““it is raining or the wind is blowing or
both™ " that is. V indicates inclusive disjunction,

Syntax
The syntax of PL is defined recursively as follows.

* T and F are formulas.
It P and Q are formulas, the following are formulas:

(P
(P & Q)
(Pva
P— Q)
(P Q)
All formulas are generated from a finite number of the above operations.
An example of a compound formula is
{(P & {Q VR — (Q— S}
When there is no chance for :ﬁnb'rguity. we wi-ll omit parentheses for brevity:
("(P & ("(0))) can be written as “(P & “Q). When omitting parentheses, the precedence

given to the connectives from highest to lowest is °, &, V, —, and <. So, for
example. to add parentheses correctly to the sentence

P& OVRA—S—UVW
we write

({((P & "(Q)} V¥ R) — S} =~ (UV W)

Sec. 4.2 Syntax and Semantics for Propositional Logic Y 51

Semantics

The semantics or meaning of a sentence is just the value true or false: that is. it iv
an assignment of a truth value to the sentence. The values true and false should
not be confused with the symbols T and F which can appear within a sentence.
Note however, that we are not concerned here with philosophical issues relatéd to-
meaning but only in determining the truthfulness or falsehood of fornnulas when a
particular interpretation is given to ity propositions. An interpretation 101 4 sentence
or group of sentences is an assignment of a truth value to each propositional symbuol.
As an example. consider the statement (P & "Q). One interpretation (1) assigns
true to P and false to Q. A different interpretation (/) assigns true to £ and true
to Q. Clearly. there are four distinct interpretations for this sentence.

Cnee an interpretation has been given to a statement. its truth value cun be
determined. This is done by repeated application of semantic rules to larger and
larger parts of the statement until a single truth value is determined. The semantic
rules are summarized in Table 4.1 where ¢. and 1" denote any true statements. f.
and f' denote any false statements, and a is any statement.

TABLE 4.1 SEMANTIC RULES FOR

STATEMENTS
Rule True False
number statemenis stutementy
1. T F
2. ¥ 1
3. r& J &
4. tVa o & f
5 a Vi v
6 o= r—f
o f—a fesf
8. resy’ fest
9. Jiewfl X

We can now find the meaning of any statement given an interpretation / for
the statement. For example, let [assign true to P. false to Q and false to R in the
statement :

((P&Q)—=RIVQ

Appliéation of rule 2 then gives “Q as true, rule 3 gives (P & "Q) as true, rule 6
gives (P & "Q),— R as false, and rule 5 gives the statement value as false.

Properties of Statements

Satisfiable. A statement is satisfiable if there is some interpretation for
which it is true.

,HM.LNB 5-4 &097\

52 Formalized Symbolic Logics Chap. 4

Contradiction. A sentence is contradictory (unsatisfiable) if there is no inter-
pretation for which it is true. :

Valid. A sentence is valid if it is true for every interpretation. Valid sentences
are also called tautologies.

Equivalence. Two sentences are equivalent if they have the same truth value
under every interpretation

Logical consequences. A sentence is a logical consequence of another if
it is satisfied by all interpretations which satisfy the first. More generally, it is a
logical consequence of other statements if and only if for any interpretation in
which'the statements are true, the resulting statement is also true. :

A valid statement is satisfiable, and a contradictory statement is invalid, bul

the converse is not necessarily true. As examples of the above definitions consider
the following statements. ‘

P is satisfiuble but not valid since an interpretation that assigns false o P
assigns false 10 the sentence P.
PV "P is valid since every interpretation results in a value of true for

({0

P & "P is a contradiction since every interpretation results in a value of false
for (P & “P). 2 -)

P and "("P) are equivalent since each has the same truth values under every
interpretation.

P is a logical consequence of (P & Q) since any interpretation for which

(P & Q)_is true, P is also true.

The notion of logical consequence provides us with a means to perform valid
inferencing in PL. The following are two important_theorems which give criteria
for a statement to be a logical consequence of a set of statements.

Theorem 4.1. The sentence s is a logical consequence of s5,, . . . , s, if
andonly ifs, & s, & . . . & 5, — s is valid.
Theorem 4.2. The sentence s is a logical consequence of s,, . . . , g if

and only if s, & s, & . . . & 5, & s is inconsistent.

The proof of theorem 4.1 can be seen by first noting that if 5 is a logical
consequence of 5, . . . , 5,. then for any interpretation / in which 5, & s, &,
- .- &5, is true, 5 is also true by definition. Hence 5, & 5, & . . . & 5, — 5
is true. On the other hand, if 5, & 5, & . . . & 5, — s is valid, then for any
interpretation 7 if 5 & 5, & . . . & 5, is true, 5 is true also.

The proof of theorem 4.2 follows directly from theorem 4.1 since s is a

Sec. 4.2 Syntax and Semantics for Propositional Logic 53

TABLE 42 SOME EQUIVALENCE LAWS
ldempotency PVP = P
P&P=P

Associativity (PVQ)VR =PV (QVR)
PEQA&R=P&(Q&R)

Commutativiiy PVQ=QVP
P&Q=Q&P
PerQ=0Q«P

Distributivity PEZQVR) =(PEQV(PE&R)
PVIQ&ER) =(PVQ)&(PVR)

De Morgan's PVQ =P&Q

laws (P&Q)="PVQ

Conditional P—=Q="PMQ

elimination

Biconditional P&Q=(FP— Q& (Q—P)

elimination :
logical consequence of 5y, . . . ,s,ifandonly ifs, & 5, & . . . & 5, — 5 is
valid, that is, if and only if (5, & 5, & . . . & 5, — 5) is inconsistent. But

(.ﬂ &32& T &5"’ 5) = -{-(.ﬂ &52& e &S,,}VS]

t--{.ﬁ&s!&. . .&S")&,_.f)
=5|&53&. F .&I"&'.f

When s is a logical consequence of s5,, 5,, the formula 5, & 5, &
.« . & s, — s’is called a theorem, with 5 the conclusion. When s is a logical
consequence of the set § = {5\, . . ., 5,} we will also say S logically implies or
logically entails 5, written Sks.

It is often convenient to make substitutions when considering compound state-
ments. If 5, is equivalent to 5,. 5, may be substituted for 5, without changing the
truth value of a statement or set of sentences containing s5,. Table 4.2 lists some of
the important laws of PL. Note that the equal sign as used in the table has the

. s$ame meaning as €, it also denotes equivalence.

One way to determine the equivalence of two sentences is by using truth
tables. For example, to show that P — D is equivalent to P V Q and that P «> (o)
is equivalent to the expression (P — Q) & (Q — P). a truth table such as Table
4.3, can be constructed to verify or disprove the equivalences.

TABLE 43 TRUTH TABLE FOR EQUIVALENT SENTENCES

P Q P PV QI (P— Q) Q—P) (P—= Q& iQ—P)
true true false Lrue true true true
frue false False False false true false
false true Irue truc truc false false

’ false false frue true rue true true

54 Formalized Symbolic Logics ~ Chap. 4

L]

Inference Rules

The infersnce rules of PL provide the means to perform logical proofs or deductions.
The problem is, given a set of sentences § = {s,, 5.} (the premises), prove
the truth of 5 (the conclusion); that is, show that Sks. The use of truth tables to do
this is a form of ‘semantic proof. Other syntactic methods of inference or deduction
are also possible. Such methods do not depend on truth assignments but on syntactic
relationships only: that is, it is possible to derive new sentences which are logical
consequences of 5, 5, using only syntactic operations. We present a few
such rules now which will be referred to often throughout the text.

Modus ponens. From P and P — Q infer Q. This is sometimes written
fk

™™

=<
0

For example
given: (joe is a father)
and: (joe is a father) — (joe has a child)
‘conclude: (joe has a child)

Chain rule. From P— Q. and 0 — R, infer P — R Or

P—Q
o—R

P—R

For example,

given: (programmer likes LISP) — (programmer hates COBOL)
and: (programmer hates COBOL) — Programmer likes recursion)
conclude: (programmer likes LISP) — (programmer likes recursion)

Substitution. If s isa valid sentence, s’ derived from s by consistent substitu-
tion of propositions in s, is also valid. For example, the sentence PV P is valid:
therefore O V "Q is also valid by the substitution rule.

Simplification. From P & (infer P.

Conjunction. From P and from Q. infer £ & Q

Transposition. From P — Q. infer Q0 — “F.

We leave it to the reader to justify the last three rules given above.
We conclude this section with the following definitions.

Sec. 43 Syntax snd Semantics for FOPL 55

Formal system. A formal system is a set of axioms S and a set of inference
rules L from which new statements can be logically derived. We will sometimes
denote a formal system as <S. L> or simply a KB (for knowledge base).

Soundness. Let <S, L> be aformal system. We say the inference procedures
L are sound if and only if any statements s that can be derived from <§. L> is a
logical consequence of <5, L>.

Completeness. Let <S. L> be a formal system. Then the inference proce-
dure L is complete if and only if any sentence & logically implied by <§, L> can
be derived using that procedure.

As an example of the above definitions, suppose § = {P. P — O} and L is
the modus ponens rule. Then <§, L> is a formal system, since Q can be derived
from the system. Furthermore, this system is both sound and complete for the
reasons given above.

We will see later that a formal system like resolution permits us to perform
computational reasoning. Clearly. soundness and completeness are desirable proper-
ties of such systems. Soundness is important to insure that all derived sentences
are true when the assumed set of sentences are (rue. Completeness is important 1o
guarantee that inconsistencies can be found whenever they exist in a set of sentences.

4.3 SYNTAX AND SEMANTICS FOR FOPL

As was noted in the previous chapler, expressiveness is one of the requirements
for any serious representation scheme. [t should be possible to accurately represent
most, if not all concepts which can be verbalized. PL falls short of this requirement
in some important respects. I{ is too *‘coarse’ ' to easily describe properties of objects.
and it lacks the structure to express relations that exist among two or more entities.
Furthermore, PL does not permit us to make generalized statements about classes
of similar objects. These are serious limitations when reasoning about real world
entities. For example. given the following statements. it should be possiblé to conclude
that John must take the Pascal course.

All students in Computer Science must take Pascal:

John is a Computer Science major.

As stated. it is not possible to conclude in PL that John must take Pascal
since the second statement does not occur as part of the first one. To draw the
desired conclusion with a valid inference rule. it would be necessary to rewrite the
sentences. :

FOPL was developed by logicians to extend the expressiveness of PL. [Uis &
generalization of PL that permits reasoning about world objects as relational entities
as well as classes or subclasses of objects. This generalization comes from the

56 _ Formalized Symbolic Logics Chap. 4

introduction of predicates in place, of propositions, the use of functions and the use
of variables together with variable quantifiers. These concepts are formalized below .

The syntax for FOPL, like PL, is determined by the allowable symbols and
rules of combination. The semantics of FOPL are determined by interpretations
assigned to predicates, rather than propositions. This means that an interpretation
must also assign values to other terms including constants, variables and functions,
since predicates may have arguments consisting of any of these terms. Therefore,
the arguments of a predicate must be assigned before an interpretation can be made.

Syntax of FOPL
The symbols and rules of combination permitted in FOPL are defined as follows.

Connectives. There are five connective symbols: “(not or negation), & (and
or conjunction), V (or or inclusive disjunction, that is, A or B or both 4 and B),
— (implication), «* (equivalence or if and only if).

Quantifiers. The two quantifier symbols are 3 (existential quantification)
and V (universal quantification), where (3x) means for some x or there is an x and
(¥x) means for all x. When there is no possibility of confusion, we will omit the
parentheses for brevity. Furthermore, when more than one variable is being quantified
by the same quantifier such as (Vx) (Vy) (¥z) we abbreviate wii, « “ngle quantifier
and drop the parentheses to get Vxyz. .

Constants. Constants are fixed-value terms that belong to a given domain
of discourse. They are denoted by numbers, words, and small letters near the beginning
of the alphabet such as a, b, ¢, 5.3, —21, flight-102, and john.

Variables. Variables are terms that can assume different values over a given
domain. They are denoted by words and small letters near the end of the alphabet,
such as aircraft-type, individuals, x, y,.and z.

Functions. Function symbols denote relations defined on a domain D. They
map n elements (n = 0) to a single element of the domain. Symbols f, g. h, and
words such as father-of, or age-of, represent functions. An n place (n-ary) function
is written as f(r,, &, . . . , ,) where the 1, are terms (constants, variables, or
functions) defined over some domain. A 0-ary function is a constant.

Predicates. Predicate symbols denote relations or functional mappings from
the elements of a domain D to the values true or false. Capital letters and capitalized
words such as P, @, R, EQUAL, and MARRIED are used to represent predicates,
Like functions, predicates may have n (n = 0) terms for arguments written as
P(ty, ty, . . ., 1), where the terms 1, i = 1, 2, . . . , n are defined over some
domain. A O-ary predicate is a proposition, that is, a constant predicate.

Sec. 4.3 - Syntax and Semantics for FOPL : : 57

Constants, variables, and functions are referred to as rerms, and predicates
are referred to as atomic formulas or atems for short. Furthermore, when we want
to refer to an atom or its negation, we often use the word literal.”) :

In addition to the above symbols, left and right parentheses, square brackets,
braces, and the period are used for punctuation in symbolic expressians.

As an example of the above concepts, suppose we wish to represent the following
statements in symbolic form.

El: All employees eaming $1400 or more per year pay taxes.
E2: Some employees are sick today. -
'E3: No employee earns more than the president.

To represent such expressions in FOPL, we must define abbreviations for the predicates
and functions. We might, for example, define the following. :

E(x) for x is an employee.

P(x) for x is president.

i(x) for the income of x (lower case denotes a function).
GE(u,v) for u is greater than or equal to v.

S(x) for x is sick today.

T(x) for x pays taxes.

Using the above abbreviations, we can represent E1, E2, and E3 as .

E1": ¥x ((E(x) & GE(i(x),1400)) — T(x))
E2': 3y (Ely) — S(y)
E3": Vxy ((E(x) & Ply)) — "GE(i(x),ily)))

In the above, we read E1’ as *‘for all x if x is an employee and the income
of x is greater than or equal to $1400 then x pays taxes.”’ More naturally. we read
El’ as El, that is as “all employees earning $1400 or more per year pay taxes."

E2' is read as “there is an employee and the. employee is sick today'" or
“‘some’ employee is sick today."" E3’ reads *‘for all x and for all y if x is an
employee and. y is president, the income of x is nor greater than or equal to the
income of y.*' Again, more naturally, we read E3' as, “‘no employee earns more
than the president.””

The expressions E1', E2', and E3' are known as well-formed formulas or
wfis (pronounced woofs) for short. Clearly, all of the wffs used above would be
more meaningful if full names were used rather than abbreviations.

Wifis are defined recursively as follows:

An atomic formula is a wff. i
If P and Q arculrﬁ’s. then P, P& Q,PVQ,P— Q,

58 Formalized Symbolic Logics ~ Chap. 4

P e @, V¥x P(x), and Ix P(x) are wffs.
Wffs are formed only by applying the above rules a finite number of times.

The above riles state that all wffs are formed from atomic formulas and the
proper application of quantifiers and logical connectives. £
Some examples of valid wifs are

MAN(john}

PILOTifather-of(bill}}

Ixyz [(FATHER(x.y) & FATHER(y.z)) — GRANDFATHER(x.z]}
¥x NUMBER(x) — (Jy GREATER-THAN(y.x))

vx dv (Pix) & Qly)) — (Ria} V Q(b})

Some examples of statements that are not wifs are:

WP Plx) — Qix)
MAN(john)
father-of{Q{x)}
MARRIED{MAN, WOMAN)

The first group of examples above are all wifs since they are properly formed
expressions composed of atoms, logical connectives, and valid quantifications. Exam-
ples in the second group fail for different reasons. In the first expression, universal
quantification is applied to the predicate P(x). This is invalid in FOPL." The second
expression is invalid since the term John, a constant, is negated. Recall that predicates.
and not terms are negated. The third expression is invalid since it is a function
with a predicate argument. The last expression fails since it is a predicate with two
predi ate arguments. . .

Semantics for FOPL

When considering specific wifs, we always have in mind some domain D. 1f not
stated explicitly, D will be understood from the context. D is the set of all elements
or objects from which fixed assignments are made to constants and from which the
domain and range of functions are defined. The arguments of predicates must be
terms (constants, variables, or functions). Therefore. the domain of each n-place
predicate is also defined over D. \

For example. our domain might be all entities that make up the Computer
Science Department at the University of Texas. In this case. constants would be
professors (Bell. Cooke. Gelfond. and so on), staff (Martha, Pat. Linda, and so
on). books. labs, offices, and so forth. The functions we may choose might be

' Predicates may be quantified in second order predicate logic as indicated in the example, but
never ip first order logic. J

Sec. 4.3 Syntax and Semantics for FOPL 59

advisor-of(x). lab-capacity(y). dept-grade-average(z), and the predicates MAR-
RIED (x), TENURED(y), COLLABORATE(x.y), to name a few.

When an assignment of values is given to cach term and to each predicate
symbol in a wff, we say an interpretation is'given to the wif. Since literals always
evaluate to either true or false under an interpretation. the value of any given wif
can be determined by referring to a truth table such as Table 4.2 which gives truth
values for the subexpressions of the wit.

If the truth values for two different wifs are the same under every interpretation,
they are said to be equivalenr. A predicate (or wif) that has no variables is called
a ground atom.

When determining the truth value of a compound expression, we must be -
careful in evaluating predicates that have variable arguments. since they evaluate
to-true only if they are true for the appropriate value(s) of the variables. For example,
the predicate P(x) in ¥x P(x). is true only if it is true for every value of x in the
domain . Likewise, the P(x) in 3x P(x) is true only if it s true for at least one
value of x in the domain. If the above conditions are not satistied. the predicate
evaluates to false.

Suppose, for example, we want to evaluate the truth value of the expression
£. where :

B £ yx ((Alax) V BIftx))) & Cix)) — Dix)

In this expression, there are four predicates: A, B, C. and D. The predicate
A is a two-place predicate, the first argument being the constant a. and the second
argument, a variable x. The predicates B. C. and D are all unary predicates where
the argument of B is a function f(x). and the argument of C and D is the variable
% i .
Since the whole expression E is quantified with the universal guantifier ¥x.
it will evaluate to true only if it evaluates to true for all x in the domain D. Thus.
1o complete our example, suppose £ is interpreted as follows: Define the domuin
D = {1.2} and from D let the interpretation / assign the following values:
a=2
fih=2f)y=-1
Al2.1) = true. A(2.2) = fulse
Bil) = true. B(2) = false
Cil) = true, C(2) = false
Di1) = fulse, D(2) = true .

Using a table such as Table 4.3 we can evaluate £ as follows:

a. If v = 1, A2.1) evaluates to true, B(2) evaluates to fulse, and (A(2.1) V
B12)) evaluates to true. C(1) evaluates to true. Therefore. the expression n

60 Formalized Symbolic Logics Chap. 4

the outer parentheses (the antecedent of E) evaluates to true. Hence, since
D(1) evaluates to false, the expression E evaluates to false.

b. In a similar way, if x = 2, the expression can be shown to evaluate to true.
Consequently, since E is not true for all x, the expression E evaluates to
false. '

4.4 PROPERTIES OF WFFS

As in the case of PL, the evaluation of coniplex formulas in FOPL can often be
facilitated through the substitution of equivalent formulas, Table 4.3 lists a number
of equivalent expressions. In the table F, G and H denote wffs not containing
variables and F [x] denotes the wif F which contains the variable x. The equivalences
can easily be verified with truth tables such as Table 4.3 and simple arguments for
the expressions containing quantifiers. Although Tables 4.4 and 4.3 are similar,
there are some notable differences, particularly in the wffs containing quantifiers.
For example, attention is called to the last four expressions which govemn substitutions
mvolving negated quantifiers and the movement of quantifiers across conjunctive
and disjunctive connectives. :

We summarize here some definitions which are similar to those of the previous
section. A wff is said to be valid if it is true under every int@rpretation. A wff that
is false under every interpretation is said to be inconsistent (or unsatisfiable). A’
wff that is not valid (one that is false for some interpretation) is invalid. Likewise,
a wff that is not inconsistent {one that is true for some interpretation) is satisfiable.
Again, this means that a valid wff is satisfiable and an inconsistent wff is invalid,

TABLE 4.4. EQUIVALENT LOGICAL EXPRESSIONS

THh =F ; (double negation)
F&G=G&F,FVG=GVF {commutativity)
(F&G)&H=F & (G & H).

(FVGIVH=FV(GVH) {associativity)
FVIG&H =(FVG & (FVH). ?
F&IGVH = (F& G)V (F & Hy tdistributivity)
WF&G - FVG.

FVG = F& G {De Morgan’s Laws)
F—-G="FVG

FeG=(FVGH&IGVH

Ya Flx| VG = ¥x iFlx| V G,

K FaVG = X (Fx| VG

Vx Flx| & G = ¥x (F|x] & G),

I Fix) & G = I (Fx] & G)

tVx) Flx] = 3x CFlx). i

13x) Flx] = ¥x ("FIx])

Vx Flx| & ¥x Glx| = ¥x (F|x] & G|x])
Ix Fix| V 3x GIx] = 3x (F[x] V G|x])

Sec. 4.4 Properties of Wifs ; 61

but the respective converse statements do not hold. Finally, we say that a wif Q is
a logical consequence of the wfis P\, P,, . . ., P, if and only if whenever P, &
Py & . . . & P, is true under an interpretation, Q is also true.

To illustrate some of these concepts, consider the following examples:

a. P & "P is inconsistent and P V "P is valid since the first is false under
every interpretation and the second is true under every interpretation.

b. From the two wffs .

CLEVER(bill) and
Vx CLEVER(x) — SUCCEED(x)

we can show that SUCCEED(bill) is a logical consequence. Thus. assume
that both

CLEVER(bil) and .
¥x CLEVER(x) — SUCCEEDIx|

are true under an interpretation. Then

CLEVER(bill) — SUCCEED(bill)

is certainly true since the wff was assumed to be true for all x, including
x = bill. But,

CLEVER(bill) — SUCCEED/{bill)
="CLEVER(bill) V SUCCEED(bill)

are equivalent and, since CLEVER(bill) is true, "CLEVER(bill) is false
and, therefore, SUCCEED(bill) must be true. Thus, we conclude SUCCEED-
(bill) is a logical consequence of

CLEVER(bill) and ¥x CLEVER(x) — SUCCEED(x).

Suppose the wif F [x] contains the variable x. We say x is bound if it follows
or is within the scope of a quantifier naming the variable. If a variable is not
bound, it is said to be free. For example, in the expression ¥x (P (x) — Q(x.y)). x
is bound, but y is free since every occurrence of x follows the quantifier and v is
not within the scope of any quantifier. Clearly, an expression can be evaluated
only when all the variables in that expression are bound. Therefore, we shall require:
that all wffs contain only bound variables. We will also call such expressions a
sentence, _

We conclude this section” with a few more definitions. Given wifs Fy. Fs.

62 P Formalized Symbolic Logics Chap. 4

. F, each possibly consisting of the disjunction of literals only. we say £, &

Fs & . . . & F, is in conjunctive normal form (CNF). On the other hand if each

F.i=1.. .. .nconsists only of the conjunction of literals, we say F, V F, V

LV F,isin drqum‘nw normal form (DNF). For example. the wifs (P A Q Vv

R) &(PY O)& Rand (P & O & RYyV (Q & R) V P are in conjunctive and

disjunctive normal forms respectively. Itcan be shown that any wit can be transformed
into either normal form.

" 4.5 CONVERSION TO CLAUSAL FORM

As noted earlier, we are interested in mechanical inference by programs using
symbolic FOPL expressions. One method we shall examine is called resolution. It
requires that all statements be converted into a normalized clausal form. We define
a clause as the disjunction of a number of literals. A ground clause is onc in
which no variables occur in the expression. A Horn clause is a clause with at
most one positive literal.

To transform a sentence into clausal form requires the following steps:

eliminate all implication and equivalence symbols,

move negation symbols into individual atoms,

rename variables if necessary so that all remaining quantifiers have different
variable assignments,

replace’ existentially quantified variables with special functions and eliminate
the corresponding quantifiers,

drop all universal quantifiers and put the remaining expression into CNF (disjunc-
tions are moved down to literals), and _

drop all conjunction symbols writjng each clause previously connected by the
conjunctions on a separale line.

These steps are described in more detail below. But first. we describe the
process of eliminating the existential guaniifiers through a substitution process. This
process requires that all such variables be replaced by something called Skolem
functions, arbitrary functions which can always assume a correct value required of
an existentially quantified variable.

For simplicity in what follows, assume that all quantifiers have been properly
moved 1o the left side of the expression, and each quantifies a different variable.
Skolemization, the replacement of existentially quantified variables. with Skolem
functions and deletion of the respective quantifiers, is then accomplished as follows:

1. If the first (leftmost) quantifier in an expression is an existential guantifier,
replace all occurrences of the variable it quantifies with an arbitrury constant not
appearing elsewhere in the expression and delete the quantifier. This same procedure

‘Sec.45 Conversion to Clausal Form : ‘ 63

should be followed for all other existential quantifiers not preceded by a universal
quantifier, in each case, using difterent constant symbols in the substitution.

2. For each existential quantifier that is preceded by one or more universal
quantifiers (is within the scope of one or more universal quantifiers). replace all
occurrences of the existentially quantified variable by a function symbol not appearing
elsewhere in the expression. The arguments assigned to the function should match
all the variables appearing in each universal quantifier which precedes the existential
quantifier. This existential quantifier should then be deleted. The same process should
be repeated for each remaining existential quantifier using ‘a different function symbol
and choosing function arguments that correspond to all universally quantified variables
that precede the existentially quantified variable being replaced.

An example will help to clarify this process. Given the expression
: 3|..l Wy ¥x 3y Piflu), v, =, y) — Olu.\.w'f
the Skolem form is determined as
Yv ¥x Pifial,v.x.glv.x)) — Clis.'v,g{v.x}i‘

In making the substitutions, it should be noted that the variable u appearing after
the first existential quantifier has been replaced in the second expression by the
arbitrary constant a. This constant did not appear elsewhere in the first expression.
The variable y has been replaced by the function symbol g having the variables v
and x as arguments, since both of these variables are universally quantified to the
left of the existential quantifier for y. Replacement of y by an arbitrary function
with arguments v and x is justified on the basis that v, following ¢ and x. may be
functionally dependent on them and, if so, the arbitrary function g can account for
this dependency. The complete procedure can now be given to convert any FOPL
sentence into clausal form. ‘

Clausal Conversion Procedure

Step 1. Eliminate all implication and equivalency connectives iusé PV Qin
place of P— Q and (P V Q) & (Q V P) in place of P « Q.

Step 2. Move all negations in to immediately precede an atom tuse P in
place of “("P). and DeMorgan's laws, v “F [x] in place of (Vx) F|x] and Vux
“F [x] in place of (3x) F [x]). :

Step 3. Rename variables. if necessary. so that all quantifiers have different
variable assignments; that is. rename variables so that variables bound by one quantifier
are not the same as variables bound by a different quantifier. For example. in the
expression Vx (P(x) — (v (Qlx);) rename the second dummy” variable x which
is bound by the existential quantifier to be a different variable, say v. to give Vx
(P(x)— 3y QM.

64 ' Formalized Symbolic Logics Chap. 4

Step 4. Skolemize by replacing all existentially quantified variables with Skolem
functions as described above, and deleting the corresponding existential quantifiers.

Step 5. Move all universal quantifiers to the left of the expression and put
the expression on the right into CNF,

Step 6. Eliminate all universal guantifiers and conjunctions since they are
retained implicitly. The resulting expressions (the expressions previously connected
by the conjunctions) are clauses and the set of such expressions is said to be in
clausal form.

As an example of this process, let us convert the expression

3x Wy (¥z Pifix).y.z) — (3u Qix,u) & Iv Riy.vih

into clausal form. We have after application of step 1
Ix ¥y (Vz) Pifix).y.2} V (3u Qlx.u) 8 (Iv) Riy.v))).

After application of step 2 we obtain

Ehf Vy (32 Pifix),y.2) V (Ju Q(x,u) & (3v} Riy.v})).
After app]icatinn-of step 4 (step 3 is not required)

Yy Pllal,y.aly)) V (Qla,hly)) & Riy,l{yh).

After application of step 5 the result is

Vy ((Piflal.y.g(y)} V Qla.hiy)) & (P(f{a),y.gly)) V
Riy.l(y))).

Finally, after application of step 6 we obtain the clausal form

“Pfa),y.gly)) V Qla.hiy))
"Piflaly.aly) V Riy.lty)

The last two clauses of our final form are understood to be universally quantified
in the variable y and to have the conjunction symbol connecting them.

It should be noted that the set of clauses produced by the above process are
not equivalent to the original expression, but satisfiability is retained. That- is, the
set of clauses are satisfiable if and only if the original sentence is satisfiable.

Having now labored through the tedious steps above, we point out that it is
often possible to write down statements directly in clausal form without working
through the above process step-by-step. We illustrate how this may be done in
Section 4.7 when we create a sample knowledge base.

Sec. IA.G Inference Rules ' 85

4.6 INFERENCE RULES

Like PL, a key inference rule in FOPL is modus ponens. From the assertion ""Leo
is a lion'" and the implication *‘all lions are ferocious'' we can conclude that Leo
is ferocious. Written in symbolic form we have

assertion: LION(leo)
implication: ¥x LION(x) — FEROCIOUS(x)
conclusion: FEROCIOUS(leo)

In general, if @ has property P and all objects that have property P also have
property Q. we conclude that a has property Q.

Pia)
Yx P(x) = Q(x)
Qla)

Note that in concluding Q(a), a substitution of a for x was necessary. This
was possible, of course, since the implication P(x) — Q(x) is assumed true for all
x. and in particular for x = a. Substitutions are an essential part of the inference
process. When properly applied, they permit simplifications or the reduction of
expressions through the cancellation of complementary literals. We say that two
literals are complementary-if they are identical but of opposite sign; that is, P and
“P are complementary. -

A substitution is defined as a set of pairs 1, and v, where v, are distinct variables
and 1, are terms not containing the v,. The # replace or are substituted for the
corresponding v, in any expression for which the substitution is applied. A set of
substitutions {r,/v, /vy, . . ., 1,/v,} where n = 1 applied to an expression will
be denoted by Greek letters «, B, and 8. For example, if B= {a/x, g(b)/y}. then
applying B to the clause C = P(x,y) V Q(x Ay)) we obtain C' = CB = P(a.g(bh))
V Ola f(g(b)). ‘

Unification

Any substitution that makes two or more expressions equal is called a unifier for
the expressions. Applying a substitution to an expression E produces an instance
E’ of E where £” = E. Given two expressions that are unifiable, such as expressions
C, and C, with a ypifer § with C,B = C,, we say that B is a most general unifer
(mgu) if any other unifer « is an instance of B. For example two unifiers for the
literals P(u,b,v) and P(a,x,y) are a = {a/u.bix,v/y} and B = {alu,bix,c/v.cly}. The
former is an mgu whereas the latter is not since it is an instance of the formier.
Unification can sometimes be applied to literals within the same single clause.
When an mgu exists such that two or more literals within a clause are unified, the
clause remaining after deletion of all but one of the unified literals is called a

6.—

66 Formalized Symbolic Logics Chap. 4

Juactor of the original clause. Thus, given the clause C = P V @lxy) V P(fz)
the factor C' = CB = Piftzn V Q(fiz),v) is obtained where B = {fiz)x}].

Let § be u set of expressions. We define the disagreement ser of § as the sel
obtained by comparing each symbol of all expressions in § from lett tw right and
extracting from S the subexpressions whose first symbols do not agree. For example,
let § = [Pfxorgiv)a), Pz PUiobhiw). For the set 8, the disagreement
set is {etvha. bz hiw}. We can now state a unification algorithm which returns the
mgu for a given set of expressions 8.

Unification algorithm:

1. Set & = 0 and o, = ¢ (the empty set). B

2. It the set So, 15 a singleton. then stop: o, is an mgu ot 8. Otherwise, hnd
the disagreement set 1), of S,

3. If there is a variable ¢ and term 7 in D, such that ¢+ does not occur 1o r. put
o,y = ofrel, set & =k + 1, and return to step 2. Otherwise, stop. 8 s
not unihable. 3

4.7 THE RESOLUTION PRINCIPLE

We are now ready to consider the resolution principle, a syntactic inference procedure
which, when applied to a set of clauses, determines if the set is unsatisfiable. This
procedure is similar to the process of obtaining a proof by contradiction. For example.
suppose we have the set of clauses (axioms) C;. Co, . . ., C, and we wish to
deduce or prove the clause D, that is, to show that D is a logical consequence of
C, & C, & . . . & C,. First, we negate D and add "D to the set of clauses C,.
C,., C,. Then, using resolution together with fuctoring. we can show that
the set is unsatisfiable by deducing a contradiction. Such a proof is called a proof
by refutation which, if successful, yields the empty clause denoted by |].? Resolution
with factoring is complete in the sense that it will always generate the empty clause
from a set of unsatisfiable clauses.

Resolution is very simple Given two clauses €| and C, with no variables in
common, if there is a literal 1, in C, which is a complement of a literal 1; in C;.
both 1, and 1, ara deleted and a disjuncted C is formed from the remaining reduced
clauses. The new clause € is called the resolvent of €, and C,. Resolution is the
process of generating these resolvents from a set of clauses. For example. to resolve
the two clauses

. APV Qiand (O VR)

? The empty clause [| is always false since no interpretation can. satisfy it It s denved from
combining eontradictory clauses such as P and “P.

-

" Sec.4.7 The Resolution Principle Y

we write
' PVQ.QVR
PVR

. Several types of resolution are possible depending on the number and types
of parents. We define a few of these types below.

Binary resolution. Two clauses having complementary literals are combined
as disjuncts to produce a single clause after deleting the complementary literals.
For example. the binary resolvent of

Plxaa) V.Q(x) and ~Q(b) V R(x)
" is just i
“P(b.a) V Rib).

The substitution {b/x} was made in the two parent clauses to produce the
complementary literals Q(b) and Q{bj which were then deleted from the disjunction
of the two parent clauses.

Unit resulting (UR) resolution. .. A number of clauses are resolved simulta-
neously to produce a unit clause. All excepl one of the clauses are unit clauses,
and that one clause has exactly one more literal than the total number of unit clauses.
For example., resolving the set

{MARRIED(x,y) V MOTHER(x,z} V FATHERI(y.2),
MARRIED(sue,joe), FATHER(joe,bill)}
J .
where the substitution = {sue/x, joe/y, bill’z} is used, results in the unit clause
'MOTHER[suc.biIl)}

I.innlt resolution. When cach resolved clause C; is a parent to the clause

Cisy i=1,2,. . .,n — 1) the process is called linear resolution. For example,

given t ael S of ciauses with Co C S, C, is derived by a sequence of resolutions,

C, with some clause By to get C,, then C, wuh some clause B, to get C,. and so
on until C, has been derived.

Linear input resolution. [f one of the parents in linear resolution is always
from the original sct of clauses (the B,), we have linear input resolution, For example.
given the set of clauses S = {PV Q. PV Q. PV Q. PV Q}let Cy= (P V
Q). Choosing By = P V Q from the set S and resolving this with C, we obtain
the resolvent Q = C,. B, must now be chosen from § and the resolvent of C, and
B, becomes C, -and so on.

Unification and resolution give us one approach to the problem of mechanical
inference or automated reasoning, but without some further refinements.. resolution

68 Formalized Symbolic Logics Chap. 4
can be intolerably inefficient. Randomly resolving clauses in'a large set can result
in inefficient or even impossible proofs. Typically. the curse of combinatorial explo-
sion occurs. So methods which constrain the search in some way must be used.

When attempting a proof by resolution, one ideally would like a minimally
unsatisfiable set of clauses which includes the conjectured clause. A minimally unsatis-
fiable set is one which is satisfiable when any member of the setis omitted. The
reason for this choice is that irrelevant clauses which are not needed in the proof
but which participite are unnecessary resolutions. They contribute nothing toward
the proof. Indecd, they can sidetrack the search direction resulting in a dead end
and loss of resources. Of course, the set must be unsatisfiable otherwise a proof is
impossible.

A minimally unsatisfiable set is ideal in the sense that all clauses are essential
and no others are needed. Thus, if we wish to prove B, we would like to do so
with a set of clauses S = {A,, A;, . . ., Ay which become minimally unsatistiable
with the addition of "B.

Choosing the order in which clauses are resolved is known as a search strategy.
While there are many such strategies now available, we define only one of the
more important ones, the set-of-support strategy. This strategy separates a set which
is unsatisfiable into subsets, one of which is satisfiable.

Set-of-support strategy. Let § be an unsatisfiable set of clauses and T be
a subset of §. Then T is a set-of-support for § if § — T is satisfiable. A set-of-
support resolution is a resolution of two clauses not both from § — T. This essentially
means that given an unsatisfiable set {A4,, . . . , A,}, resolution should not be
performed directly among the A, as noted above.

Example of Resolution

The example we present here is one to which all Al students should be exposed at
some point in their studies. It is the famous ‘‘monkey and bananas problem,"
another one of those complex real life problems solvable with Al techniques. We
envision a room containing a monkey, a chair, and some bananas that have been
hung from the center of the ceiling, out of reach from the monkey. If the monkey
is clever enough, he can reach the bananas by placing the chair directly below
them and climbing on top of the chair. The problem is to use FOPL to represent
this monkey-banana world and, using resolution, prove the monkey can reach the
In creating a knowledge base, it is essential first to identify all relevant objects
which will play some role in the anticipated inferences. Where possible, irrelevant
objects should be omitted, but never at the risk of incompleteness. For example,
in the current problem, the monkey, bananas, and chair are _r:ssemial. Also needed *
is some reference object such as the floor or ceiling to establish the height relationship
between monkey and bananas. Other objects such as windows, walls or doors are
not relevant.

The next step is to establish important properties of objects, relations between

Sec.47 The Resolution Principle

them, and any assertibns likely to be needed. These include such facts as the chair
is tall enough to raise the monkey within reach of the bananas, the monkey is
dexterous, the chair can be moved under the bananas, and so on. Again, all important
properties, relations, and assertions should Be included and irrelevant ones omitted.

Otherwise, unnecessary inference steps may be taken.

The important factors for our problem are described below, and all items
needed for the actual knowledge base are listed as axioms. These are the essential
facts and rules. Although not explicitly indicated, all variables are universally quanti-

fied.

Relevant factors for the problem

CONSTANTS

{fioor, chair, bananas, monkey}

VARIABLES
{x, vy, 2}
PREDICATES
{can_reach(x,y) ; X can reach y
dexterous (x) ; X is a dexterous animal
close(x,y) ;xisclosetoy
get_onix,y) ;xcangetony
under{x.y) ; X is under y
tall{x) ; xis tall
in.room(x) ; % is in the room
can_move(x,y.z) : ¥ can move y near z
can_climb(x,y)} ; % can climb onto y
AXIOMS

{inroom(bananas)

inroom(chair)

inroom(monkey)

dexterous(monkey)

tallichair)

close{bananas,floor)

un.mwdmnlnw.chait.bananasl

can.qgmb{monm chair)

(dexterous(x) & close(x,y) — can-reach(x,y)

({get.on(x,y) & under(y,bananas) & tallly) —
close(x,bananas))

{{inroom(x) & in_room(y) & in.room(z) & can.move(x.y.z))

~» close{z,floor) V underly,z))
{canclimb(x.y) - gat.on({x.y)}}

70 Formalized Symbolic Logics Chap. 4

Using the above axioms, a knowledge base can be written down directly in
the required clausal form. All that is needed to make the necessary substitutions
are the equivalences

P—Q="PVQ

.

and De Morgan’s laws. To relate the clauses to a LISP pmgmm dne may prefer-
to- think of each clause as being a list of items. For example, number 9, below,
would be written as

{or ("canclimb(?x ?y) get_on(?x y))

where 7x and ?y denote variables. :
Note that clause 13 is not one of the original axioms. It has been added for
the proof as required in refutation resolution proofs,

Clausal form of knowledge base

1. inroomimaonkey)

2. inroomibananas)

3. inroomichair)

4. talifchair)

5. dexterous(monkey)

6. carumove{monkey, chair, bananas)

7. canclimblmonkey chair)

8. “closelbananas,floor)
9. “canclimbix.y) V get_on(x.y)
10. “dexterousix) V “close(x,y) V canreachix,y)
I1. "getonixy) V ‘underly,bananas) V talily) V close(x,bananas)
12. ‘inroomix} V Cinroomly) V ‘incroomiz) V can.move(x,y.z) V close{y.floor) V under(y.z)
13. canreachimonkey bananas)

Resolution proof. A proof that the monkey can reach the bananas is summa-
rized below. As can be seen, this is a refutation proof where the statement to be
proved (can_reach(monkey bananas)) has been negated and added to the knowledge
base (number 13). The proof then follows when a contradiction is found (see number
23, below). 2 '

14. “canmovelmonkey,chair,bananas) V : 14 is a resolvent of 1.2.3 and 12

closelbananas.floor) V under with substitution {monkey x, chair y,

{chair,bananas) bananasiz}

Sec.47 The Resolution Principle

15. close(bananas,floor) V under
(chair,bananas)

16. underichair,bananas)

17. "get.onix,chair) V “talilchair) V
closeix,bananas)

18. “get.onix,chair) V close|x,bananas)
19. get.on{monkey.chair)
20. closelmonkey,bananas)

21. “closelmonkey,y) V can.reach

n

; this is a resolvent of 6 and 14

; this is.a resolvent of 8 and 15

; this is a resolvent of 11 and 18 with
substitution (chair/y} ’

; a rasolvent of 4 and 17

. a resolvent of 7 and 9

; aresolventof 18 and 19 with substitution
{monkey/x} |

; a resolvent of 10 and 5 with substitution

- (monkey.y) (monkey/x)
22. relach{monksv,banﬂnés) : aresolvent of 20 and 21 with substitution
{bananas/y}
23. 1) . : a resolvent of 13 and 22

In performing the above proof, no particular strategy was followed. Clearly.
however, good choices were made in selecting parent clauses for resolution. Other-
wise, many unnecessary steps may have been taken before completing the proof.
Different forms of resolution were completed in steps 14 through 23. One of the
exercises requires that the types of resolutions used be identified.

The Monkey-Banana Problem in PROLOG

Prolog was introduced in the previous chapter. It is a logic programming language
that is based on the resolution principle. The refutation proof strategy used in PROLOG
is resolution by selective linear with definite clauses or SLD resolution. This is
just a form of linear input resolution using definite Hom clauses (clauses with exactly
one positive literal). In finding a resolution proof, PROLOG searches a data base
of clauses in an exhaustive manner (guided by the SLD strategy) until a chain of
unifications have been found to produce a proof. i

Next, we present a PROLOG program for the monkey-banana problem to
illustrate the ease with which many logic programs may be formulated.

% Constants:
% {floor, chair, bananas, monkey)|

% Variables:
% (X, Y, Z}

% Predicates:

% {can-reach(X,Y)
% dexterous(X)
% close(X.Y)

; X can reach Y
: X is a dexterous animal
i Xiscloseto Y

Formalized Symbolic Logics Chap. 4

% get-on(X.,Y) ;XcangetonY

% under({X.Y) ; X is under Y

% tall{X) : X is tall

% in-room(X) : X is in the room

% can-move{X.Y Z) : X can move Y near Z
% can-climb(X.Y)} : X can climb onto Y
% Axioms :

in-room|(bananas).
in-room{chair).
in-room({monkey).
déxlarmltmonkm.
tall{chair),
can-move(monkey, chair, bananas).
can-climb{monkey, chair).
can-reach{X.Y) -

dexterous(X), close(X,Y).
close(X.Z) -

get-on{X.Y),

under(Y.Z),

tall(Y).
get-on(X,Y) -

can-climb{X.Y).
Under(Y.Z} -

in-room(X),

in-room(Y},

© in-room(Z),

can-move{X.Y.Z). ,

Sec. 4.8 Nondeductive Inference Methods 3 _ 73

This completes the data basc of facts and rules required. Now we can pose various
queries to our theorem proving system.

| 7- can-reach(X,Y).

X = monkey,

Y = bananas

| ?- can-reach(X,bananas).

X = monkey

| - can-reach{monkey,Y).

Y = bananas

| 7~ can-reach(monkey,bananas).
yes

|.?- can-reach(lion.bananas).
no

| ?- can-reachimonkey,apple).

no

4.8 NONDEDUCTIVE INFERENCE METHODS

In this section we consider three nondeductive forms of inferencing. These are not
valid forms of inferencing, but they are nevertheless very important. We use all
three methods often in every day activities where we draw conclusions and make
decisions. The three methods we consnderhere are abduction, induction, and analogical
inference.

Abductive Inference

Abductive inference is based on the use of known causal knowledge to explain or
Jjustify a (possibly invalid) conclusion. Given the truth of proposition Q and the .
implication P — @, conclude P. For example, people who have had too much to’
drink tend to stagger when they walk. Therefore, it is not unreasonable to conclude
that a person who is staggering is drunk even though this may be an incorrect

74 Formalized Symbolic Logics Chap. 4

conclusion. People may stagger when they walk for other reasons, including dizziness
from twirling in circles or from some physical problem.

We may represent abductive inference with the following, where the ¢ over
the implication arrow is meant to imply a possible causal relationship.

assertion QO ' '

implication P* — Q

conclusion P

.Abductive inference is useful when known causal relations are likely and deduc-
tive inferencing is not possible for lack of facts.

Inductive Inference

Inductive inferencing is based on the assumption that a recurring pattern, observed
for some event or entity, implies that the pattern is true for all entities in the class.

Given instances P(a,). P(as), P(a,). conclude that Vx P(x). More generally.
given P(a,) — Qtb)), Plas) — Qthy). . . ., Play) —= @ (b;). conclude Vx,y Pix)
— Q). .

We often make this form of generalization after observing only a few instances
of a situation. It is known as the inductive leap. For example, after seeing a few
white swans, we incorrectly infer that all swans are white (a type of Australian
swan is black), or we conclude that all Irishmen are stubborn after discussions
with only a few.

We can represent inductive inference using the following description:

lah o o+ o Play)
Yx Plx)

Inductive inference, of course, is not a valid form of inference, since it is
not usually the case that all objects of a class can be verified as having a particular
property. Even so. this is an important and commonly used form of inference.

Analogical Inference

Analogical inference is a form of experiential inference. Situations or entities which
are alike in some respects tend to be similar in other respects, Thus, when we find
that situation {object) A is related in certain ways to B, and A’ is similar in some
context to A, we conclude that B' has a similar relation to A" in this context. For
example, 1o solve a problem with three equations in three unknowns, we ry to
extend the methods.we know in solving two equations in two unknowns.

Analogical inference appears to be based on the use of a combination of
three other methods of inference, abductive, deductive and inductive. We depict
this form of inference with the following description, where the r above the implication
symbol means is related to.

Sec. 49 Representations Using Rules i 75

pr=90
PJF = QJ’
Analogical inference, like abductive and inductive is a useful but invalid form
of commeonsense inference.

4.9 REPRESENTATIONS USING RULES

Rules can be considered a subset of predicate logic. They have become a_popular
representation scheme for expert systems (also called rule-based systems). They
were first used in the General Problem Solver system in the early 1970s (Newell
and Simon, 1972). s ;
. Rules have two component parts: a left-hand side (LHS) referred to as the
antecedent. premise, condition, or situation, and a right-hand side (RHS) known
as the consequent, conclusion, action, or response. The LHS is also known as the
it part’and the RHS as the Then part of the rule. Some rules also include an else
part. Examples of rules which might be used in expert systems are given below.

IE: The temperature is greater than 95 degrees C,
THEN: Open the relief valve.

IF: ‘The patient has a high temperature,
and the stain is gram-positive,
and the patient has a sore throat,
* THEN: The organism is streptococcus.

IF: The lights do not come on,
d and the engine does not turn over,

THEN: The battery is dead or the cable is loose

, IF.A&B&C
THEN: D
A&B&(CVD) =D

The simplest form of a rule-based production system consists of three parts,
a knowledge base (KB) consisting of a set of rules (as few as 50 or as many as
several thousand rules may be required in an expert system). a working memory.,
and a rule interpreter or inference engine. The interpreter inspects the LHS of euch
rule in the KB until one is found which matches the contents of working memors
This causes the rule to be activated or to “'fire"" in which case the contents of
working memory are replaced by the RHS of the rule. The process continues by
scanning the next rules in sequerce or restarting at the beginning of the knowledue
base. :

.76 : Formalized Symbolic Logics Chap. 4

INTERNAL FORM

RULE047
Premise: (($and (same cnixt site blood)
{notdefinite contxt ident)
{same cntxt morph rod)
{same cnixt burn t))
Action: [(conclude cntxt ident pseudonomas 0.4})

ENGLISH TRANSLATION

IF: 1) The site of the culture is blood, and
2) The identity of the organism is not known with certainty, and
3) The stain of the organism is gramneg, and
4) The morphology of the organism is rod, and
5} The patient has been seriously burned
THEN: - There is weakly suggestive evidence (0.4) that the identity of the organism
is pseudonomas.

Figure 4.1 A rule from the MYCIN system.

Each rule represents a chunk of knowledge as a conditional statement, and
each invocation of the rules as a sequence of actions. This is essentially an inference
process using the chain rule as described in Section 4.2. Although there is no
established syntax for rule-based systems, the most commonly used form permits a
LHS consisting of a conjunction of several conditions and a single RHS action
term.

An example of a rule used in the MYCIN® expert sysiem (Shortliffe, 1976)
is illustrated in Figure 4.1, i '

In RULEO47, the quantity 0.4 is known as a confidence factor (CF). Confidence
factors range from — 1.0 (complete disbelief) to 1.0 (certain belief). They provide
a measure of the experts’ confidence that a rule is applicable or holds when the
conditions in the LHS have all been satisfied.

We will see further examples of rules and confidence factors in later chapters.

4.10 SUMMARY

We have considered propositional and first order predicate logics in this chapter 2s
knowledge representation schemes. We learned that while PL has a sound theoretical
foundation, it is not expressive enough for many practical problems, FOPL, on the

IMYCIN was one of the earliest expert systems. It was.developed at Stanford University in the
mid-1970s to demonstrate that a system could successfully perform diagnoses of paticnts having infectious
blood diseases. '

Sec.4.10 Summary " 77

other hand, provides a theoretically sound basis and permits a great latitude of
expressiveness: In FOPL one can easily code object descriptions and relations among
objects as well as general assertions about classes of similar objects. The increased
generality comes from the joining of predicates, functions, variables, and quantifiers.
Perhaps the most difficult aspect in using FOPL is choosing appropriate functions
and predicates for a given class of problems.

Both the syntax and semantics of PL and FOPL were defined and examples
given. Equivalent expressions were presented and the use of truth tables was illustrated
to determine the meaning of complex formulas. Rules of inference were also presented.,
providing the means to derive conclusions from a basic set of facts or axioms.
Three important syntactic inference methods were defined: modus ponens. chain
rule and resolution. These rules may be summarized as follows.

MODUS PONENS CHAIN RULE RESOLUTION

P P—0 ch
S op . PYiG.OVR
—= . 2= PVR

Q P—R y

»

A detailed procedure was given to convert any complex set of formulas to
clausal normal forms. To perform automated inference or theorem proving, the
resolution method requires that the Set of axioms and the conjecture to be proved
be in clausal form. Resolution is important because it provides the means to mechani-
‘cally derive conclusions that are valid. Programs using resolution methods have
been developed for numerous systems with varying degrees of success, and ‘the
language PROLOG is based on the use of such resolution proofs. FOPL has without
question become one of the leading methods for knowledge representation.

In addition to valid forms of inference based on deductive methods, three
invalid, but useful.types of inferencing were also presented, abductive, inductive,
and analogical. .

Finally, rules, a subset of FOPL, were described as a popular representation
scheme. As will be seen in Chapter 15, many expert systems use rules for their
knowledge bases. Rules provide a convenient means of incrementally building a
knowledge base in an easily understood language.

EXERCISES

4.1 Construct a truth table for the expression (A & (4 V B)). What single term s this
expression equivalent to? .
4.2 Prove the following rules from Section 4.2,
(a) Simplification: From £ & Q. infer P
{b) Conjunction: From P and Q, infer P & @
(c) Transposition: From P — Q, infer Q — P

78

4.3

4.4

4.6

4.7

4.8

4.9

4.10

Formalized Symbolic Logics Chap. 4

Given the following PL expressions, place parentheses in the sppropnate places to
form fully abbreviated wffs.

@ PVQ&R—=5—-U&Q

b) PEQVP-=U—TR

©) VPV RES— U&P+R

Translate the following axioms into predicate calculus wifs. For example, A; below
could be given as

wx,y.z CONNECTED(x,y.z) & Bikesok(z) — GETTO(x.y)

Al If town x is connected to town y by highway z, and bicycles are allowed on z,
you can get fo y from x by bike. ' i
A2, If town x is connected to y by z, y is connected to x by z.
A3. If you can get to y from x, and you can get to z from y. you can gel to = from
x
A4 Town-A is connected to Town-B by Road-1.
A5. Town-B is connected to Town-C by Road-2.
Convert axioms Al-A5 from Problem 4.4 to clavsal form and write axioms A6-Al13,
below, directly into clausal form.
A6. Town-A is connected to Town-C by Road-3.
A7. Town-D is connected to Town-E by Road-4,
A8. Town-D is connected to Town-B by Road-5.
A9-A1l. Bikes are allowed on Road-3, Road-4, and Road-5.
A12. Bikes are always allowed on either Road-2 or Road-1 (each day it may be different
but one road is always possible).
A13. Town-A and Town-E are not connected by Road-3.
Use the clauses from Problem 4.5 to answer the following questions:
(a) What can be deduced from clauses 2 and 13?
(b) Can GETTO(Town-D, Town-B) be deduced from the above clauses?

Find the meaning of the statement
(PVQY&R—-SV(T& Q)
e

for each of the interpretations given below.

(a) /,: P is true, Q is true, R is false, S is true.

(b) I5: P is true, Q is false, R is true, S is true.

Transform each of the following sentences into disjunctive normal form.
(a) (P& &PV

(b) (PV Q)& (R—S)

(c) P — ((Q & R) < 5)

Transform each of the following sentences into conjunctive normal form.
(a) (P—=0)—R

b) PV(P&Q&R)

RD(PENDVIPE&E DN&S

Determine whether each of the following sentences is

(a) satisfiable

(b) contradictory

{c) valid

Chap.4 Exercises 79

SEP&EQVIIPED Sc(PVQ—=(P&ED)
Su(P&Q)—=RVQ SSIPVOQY& PV WV P
S P—=Q— P 'S PVQ& PV Q&P
4.11 Given the following wifs P — Q. "Q. and P, show that “P is a logical conseguene
of the two preceding wits: -
(a) Using a truth table
*(b) Using Theorem 4.1,
4.12 Given formulas §; and §; below. show that Q(u) is a logical consequence of the two,

StV PLO = Otx)) S Play
4.13 Transform the following formulu to prenex normal form
Vay (32 Plx.z) & Piyiz)) — Ju Qtey.u)

4.14 Prove that the formula 3x Plx) — Yr Plo) is always true if lhe domain D contains
only one element.
4.15 Find the standard normal form fur the followiny statement

Y CPG0) = (v (Pvglx)) & Wz (Plz.glx)) — Piv.2)b

4.16 Referring to Problems 4.4 and 4.5, use resolution to show (by refutation) that: you
can gét from Town-E 10 Town-C.

4.17 Write a LISP resolution program to answer different queries about a knowledge basc
where the knowledge base and queries are given in clausal form. For example.

isetq KB (A1 to A13))
{query (GETTO Town-E Town-C))

4.18 Given the following information for a database:

Al If x is on top of y, y supports x. !

AZ2. If x is above y and they are touching each other. x is on top of v.

A3. A cup is above a book.

A4. A cup is touching a book,

(a) Translate statements Al through A4 into clausal form,

(b) Show that the predicate supports (book; cup) is true using resolution.
4.19 Writc a PROLOG program using Al to A4 of Problem 4.18, and show that

SUPPORTS (book cup) is true,

v

o

Dealing with Inconsistencies
and Uncertainties

The previous chapter considered methods of reasoning under conditions of certain,
complete, unchanging, and consistent facts. It was implicitly assumed that a sufficient.
amount of reliable knowledge (facts, rules, and the like) was available with which
to deduce confident conclusions. While this form of reasoning is important, it suffers
from several limitations.

1. It is not possiblé to describe many envisioned or real-world concepts; that is,
it is limited in expressive power.

2. There is no way to express uncertain, imprecise, hypothetical or vague knowl
edge, only the truth or falsity of such statements,

3. Available inference methods are known to be inefficient. _

4. There is no way to produce new knowledge about the world. It is only possible
to add what is derivable from the axioms and theorems in the knowledge
base. Y

In other words, strict classical logic formalisms do not provide realistic representations
of the world in which we live. On the contrary, intelligent beings are continuously
required to make decisions under a veil of uncertainty. ’

Uncertainty can arise from a variety of sources. For one thing, the information

Sec. 6.1 Introduction »

we: have available may be incomplete or highly volatile. Important facts and details
which have a bearing on the problems at hand may be missing or may change
rapidly’. In addition, many of the ‘‘facts’* available may be imprecise, vague, or
fuzzy. Indeed, some of the available information may be contradictory or even
unbelievathle. However, despite these shortcomings, we humans miraculously deal
with uncertixinties on a daily basis and usually arrive at reasonable solutions. If it
were otherwis.¢, we would not be able to cope with the continually changing situations
of our world.

In this and" the following chapter, we shall discuss methods with which to
accurately represert and deal with different forms of inconsistency, uncertainty,
possibility, and belic*fs. In other words, we shall be interested in representations
and inference methods related to what is known as commonsense reasoning. Y

5.1 INTRODUCTION

Consider the following real-life * situation. Timothy enjoys shopping in the mall
only when the stores are not crow ~ded. He has agreed to accompany Sue there on
the following Friday evening since \ ‘his is normally a time when few people shop.
Before the given date, several of the ' larger stores announce a one-time, special
sale starting on that Friday evening. Ti. mothy, fearing large crowds, now retracls
the offer to accompany Sue, promising to , %0 on some future date. On the Thursday
before the sale was to commence, weather forecasts predicted heavy snow. Now,
believing the weather would discourage most . shoppers, Timothy once again agreed
to_join Sue. But, unexpectedly, on the given Friday, the forecasts proved to be
félse; so Timothy once again declined to go.

This anecdote illustrates how one’s beliefs can ¢. hange in adynamic environment.
And, while one’s beliefs may not fluctuate as much as* Timothy’s, in most situations,
this form of belief revision is not uncommon. Indeca’: it is common enough that
we label it as a form of commonsense reasoning, that is . reasoning with uncertain
knowledge.

-

Nonmonotonic Reasoning

The logics we studied in the previous chapter are known as mon Otonic logics. The
conclusions derived using such logics are valid deductions, and " they remain so.
Adding new axioms increases the amount of knowledge contained in" the knowledge
base. Therefore, the set of facts and inferences in such systems ca'm only grow
larger; they can not be reducéd; that is, they increase monotonically. \'he form of
reasoning performed above by Timothy, on the other hand, is nonmonotnic. New
facts became known which contradicted and invalidated old knowledge." The old
knowledge was retracted ca othgr dependent knowledge to become (‘mvalid,
thereby requiring further retractions. The retractions led to a shrinkage or noninono-
tonic growth in the knowledge at times. \

82 Dealing with Inconsistencles and Uncertainties Chap. §,

More formally, let KBL be a formal first order system consisting of a knowlr:dge
base and some logic L. Then, if KBl and KB2 are knowledge bases where

KB1 = KBL
KB2 = KBL U F, for some wff F, then
- KB1 g KB2

In other words, a first order KB system can only grow mo potonically with
“added knowledge.

When building knowledge-based systems, it is not reasor ,5ple to expect that
all the knowledge needed for a set of tasks could be acquired, alidated, and loaded
into the system at the outset. More typically, the initial knowlr sdge will be incomplete,
contain redundancies, inconsistencies, and other sources ¢ yncertainty. Even if it
were possible to assemble complete, valid knowledge itially, it probably would
not remain valid forever, not in a continually changin’ ¢ environment.

In an attempt to model real-world, cOmmONSe” \ce reasoning, researchers have
proposed extensions and alternatives to’ tradition” | jogics such as PL and FOPL.
The extensions accommodate different forms of uncertainty and nonmonotony. In
some cases, the proposed methods have been " ymplemented. In other cases they are
still topics of research. In this and the follov ,ing chapter, we will examine some of
the more important of these methods.

We begin in the next section with 4 description of truth maintenance systems
(TMS), systems which have been imp’ emented to permit a form of nonmonotonic
reasoning by permitting the addition of changing (even contradictory) statements to
a knowledge base. This is followed jn Section 5.3 by a description of other methods
which accommodate nonmonoton’ ¢ reasoning through default assumptions for incam-
plete knowledge bases. The as symptions are plausible most of the time, but may
have to be retracted if other ¢ _opflicting facts are learned. Methods to constrain the
knowledge that must be cor sidered for a given problem are considered next. These
methods also relate to nor ,monotonic reasoning. Section 5.4 gives a brief treatment
of modal and temporal I ,gics which extend the expressive power of classical logics
to permit representalic ;5 and reasoning about necessary and possible situations,
temporal, and other related situations.- Section 5.5 concludes the chapter with a
brief presentation o ¢ 4 relatively new method for dealing with vague and imprecise
information, nany .jy fuzzy logic and language computation.

5.2 TRUTF: MAINTENANCE SYSTEMS

Truth mai.ntenance systems (also known as belief revision and revision maintenance
systems), are companion components to inference systems. The main job of the
TMS if: to maintain consistency of the knowledge being used by the problem solver
and not to perform any inference functions. As such, it frees the problem solver
frem any concerns of consistency and allows it to concentrate on the problem solution

Sec. 5.2 Truth Maintanance Systems 83

aspects. The TMS also gives the inference component the latitude to perform nonmeno-
tonic inferences. When new discoveries are made, this more recent information
can displace previous conclusions that are no longer valid. In this way, the set of
beliefs available to the problem solver will continue to be current and consistent.
‘ Figure 5.1 illustrates the role played by the TMS as part of the problem
solver. The inference engine (IE) solves domain problems based on its current belief
set, while the TMS maintains the currently active belief set. The updating process
is incremental. After each inference, information is exchanged Between the two
components. The IE tells the TMS what deductions it has made. The TMS, in
tumn, asks questions about current beliefs and reasons for failures. [t maintains a
consistent set of beliefs for the IE to work with even if new knowledge is added
and removed. -

For example, suppose the knowledge base (KB) contained only the propositions
P, P = @, and modus ponens. From this, the IE would rightfully conclude Q and
add this conclusion to the KB. Later, if it was learned that “P was appropriate, it
wauld be added to the KB resulting in a contradiction. Consequently, it would be
necessary to remove P to eliminate the inconsistency. But, with P now removed,
Q is no longer a justified belief. It too should be removed. This type of belief
revision is the job of the TMS,

Actually, the TMS does not discard conclusions like Q as suggested. That
could be wasteful, since P may again become valid, which would require that @
and facts justified by @ be rederived. Instead, the TMS maintains dependency records
for all such conclusions. These records determine which set of beliefs are current
(which are to be used by the IE). Thus, Q would be removed from the current
belief set!by making appropriate updates to the records and not by erasing Q. Since
©Q would not be lost, its rederivation would not be necessary if P became valid
once again.

The TMS maintains complete records of reasons or justifications for beliefs.
Each proposition or statement having at least one valid justification is made a part
of the current belief set. Statements lacking acceptable justifications are excluded
from this set. When a contradiction is discovered, the statements responsible for
the contradiction are identified and an appropriate one is retracted. This in turn
may result in other retractions and additions. The procedure used to perform this
process is called dependency-directed backtracking. This process is described later.
The TMS maintains records to reflect retractions and additions so that the IE

1

Probiem solver
[2
Inference Tell =
T™S
engine - Ask

\ K"m"? / Figure 5.1 Architecture of the problem

solver with a TMS.

84 Dealing with Inconsistencies and Uncertainties Chap. 5

will always know its current belief set. The records are maintained in the form of
a dependency network. The nodes in the network represent KB .entries such as
premises, conclusions, inference rules, and the like. Attached to the nodes are justifica-
tions which represent the inference steps from which the node was derived. Nodes
in the belief set must have valid justifications. A premise is a fundamental belief
which is assumed to be always true. Premises need no justifications. They form a
base from which all other currently active nodes can be explained in terms of valid
justifications.

There are two types of justification records maintained for nodes: support
lists (SL) and conceptual dependencies (CP). SLs are the most common type. They
provide the supporting justifications for nodes. The data structure used for the SL
contains two lists of other dependent node names, an in-list and an out-list. It has
the form ' - .

{SL <in-list> <out-list>)

In order for a node to be active and, hence, labeled as IN the belief set, its
SL must have at least one valid node in its in-list, and all nodes named in its out-
list, if any, must be marked OUT of the belief set. For example, a current belief
set that represents Cybil as a nonflying bird (an ostrich) might have the nodes and
justifications listed in Table 5.1.

Each IN-node given in Table 5.1 is part of the current belief set. Nodes nl
and nS are premises. They have empty support lists since they do not require justifica-
tions. Node n2, the belief that Cybil can fly is out because n3, a valid node, is in
the out-list of n2.

Suppose it is discovered that Cybil is not an ostrich, thereby causing n5 to
be retracted (marking its status as OUT). Then n3, which depends on n3, must
also be retracted. This, in tum, changes the status of n2 to be a justified node.
The resultant belief set is now that the bird Cybil can fly.

To represent a belief network, the symbol conventions shown in Figure 5.2
are sometimes used. The meanings of the nodes shown in the figure are (1) a
premise is a true propositon requiring no justification, (2) an assumption is a current
belief that could change, (3) a datum_is gither a currently assumed or IE derived
belief, and (4) justifications are the belief (node) supports, consisting of supporting
antecedent node links and a consequent node link.

TABLE 5.1 EXAMPLE NODES IN A DEPENDENCY NETWORK

Node Status Meaning Support list Comments

nl IN Cybil is a bird (L () a premise

n2 ouT Cybil can fly ~ (SL (nl) (n3)) unjustified belief
n3 IN Cybil cannot fly (SL (n5) (nd)) justified belief
nd ouT Cybil has wings (SL(OY() retracted premise
ns IN Cybil is an Ostrich (SL{Y (N a premise

R

Sec. 52 Truth Maintenance SVIE.I‘I'I! 85

o A i s

Figure 5.2 Belicf network node meanings.

An example of a typical network representation is given in Figure 5.3. Note
that nodes T, U, and W are OUT since they lack needed support from P. If the
node labeled' P is made IN for some reason, the TMS would update the network
by propagating the ‘‘inness’’ support provided by node P to make T, U, and W
IN. . :

As noted earlier, when a contradiction is discovered, the TMS locates the
source of the contradiction and corrects it by retzacting one of the contributing
sources. It does this by checking the support lists of the contradictory node and
going directly to the source of the contradiction. It goes directly to the source by
examining the dependency structure supporting the justification and determining
the offending nodes. This is in contrast to the naive backtracking approach which
would search a deduction tree sequentially, node-by-node until the contradictory
node is reached. Backtracking directly to the node causing the contradiction is known
as dependency-directed backtracking (DDB). This is clearly a more efficient search
strategy than chronological backtracking. This process is illustrated in Figure 5.4
where it is assumed that A and D are contradictory. By backtracking directly to

T ouT
Nl PR-->T 4 : _' w ouT
IN a u ouT
N QR-->5 s) IN

Figure 5.3 Typical fragment of a belief network.

86 Dealing with Inconsistencies and Uncertainties Chap. 5

1.\/\ T

Figure 5.4 Dependency-directed backtracking in a TMS.

the source of a contradiction (the dashed line from E to A), extra search time is
avoided.

CP justifications are used less frequently than the SLs. They Just:fy a node
as a type of valid hypolhctwal argument. The internal form of a CP justification is
as follows:

{CP <conseguent><inhypotheses> <outhypotheses>)

A CP is valid if the consequent node is IN whenever each node among the
in-hypotheses is IN and each node among the out-hypotheses is OUT. Two separate
lists of hypotheses are used, since nodes may be derived from both nodes that are
IN and other nodes that are OUT.

CPs correspond to conditional proofs typically found in deduction systems.
The hypotheses used in such a conditional proof correspond to the in-hypotheses
in the CP. Since the functions of the CP are somewhat complex, we clarify their
main functions with an example.

Suppose a system is being used to schedule aircraft and crews for commerc al
airline flights. The type of aircraft normally scheduled for a given flight is a 737,
and the crew required is class A. The nodes and justifications for these facts might
be

nl ~ IN type(aircraft) = 737 (SL () (n2))
n2 ouT type(aircraft) = L400
n3 IN class(crew) = A (SL(08. . o . -2)

where the justifications for nl is n2 (with OUT status) and for n3 is nodes n8,
. . ., n22 which relate to the availability of a captain, copilot, and other crew
members qualified as class A. Now suppose it is leamed that a full class A crew is
not available, To complete a schedule for the flight, the system must choose an

Sec.5.3 Default Reasoning and the Closed World Assumption i 87

alternative aircraft, say an L400. To do this the IE changes the status of n2 to IN.
But this results in a contradiction and, hence, creation of the node

o INT contradiction. - (SU (n1.a3).(0)

The contradiction now initiates the DDB procedure in the TMS to locate the offending
assumptions. Since there is only one such node, nl, its retraction is straightforward.
For this, the TMS creates a *“nogood™’ node with a CP justification as

n5 * IN nogoodnl (CPnd (nl.n3) ()

To correct the inconsistency, the TMS next makes n2 an IN node by justifying it .
with n5 as follows

n2 IN type(aircraft) = L400 (SL (nS) ())

This in tumn causes nl to become OUT (as an assumptidn nl has a nonempty out-
list). Also, since nd was justified by nl, it too must become OUT. This gives the
following set of nodes

nl OQUT type(aircraft) = 737 (SL () (n2))

n2 IN type(aircraft) = L400 (SL (n5) ()

n3 IN class(crew) = A (SL(n8,....n22)()
n4 ouT contradiction (SL (n1,n3) ()

n5 IN nogood nl (CP nd (nl,n3) ()

Note that a CP justification was needed for the ‘*nogood’" node to prevent a
circular retraction of n2 from occurring. Had an SL been used for n5 with an nd
node in-list justification, n5 would have become OUT after n4, again causing n2
to become OUT. \

The procedures for manipulating CPs are quite complicated, and, since they
are usually convented into SLs anyway, we only mention their main functions here.
For a more detailed account see Doyle (1979). - .

We have briefly described the JTMS here since it is the simplest and most
widely used truth maintenance system. This type of TMS is also known as a nonmono-
tonic TMS (NMTMS). Several other types have been developed to correct’ some of
the deficiencies of the JTMS.and to meet other requirements. They include ' the
logic-based TMS (the LTMS), and the assumption-based TMS (the ATMS), as
well as blh.ers (de Kleer, 1986a and 1986b).

5.3 DEFAULT REASONING AND THE CLOSED WORLD ASSUMPTION

Another form of uncertainty occurs as a result of incomplete knowledge. One way
humans deal with this problem is by making plausible default assumptions; that is,
we make assumptions which typically hold but may have to be retracted if new

88 _ Dealing with Inconsistencies and Uncertainties Chap. 5

information is obtained to the contrary. For example, if you have an acquaintance
named Pat who is over 20 ycars old, you would normally assume that this person
would drive a car. Later, if you learned Pat had suffered from blackouts umtil just
recently, you would be forced to revise your beliefs.

Default Reasoning

Default reasoning is another form of nonmonbtonic reasoning; it eliminates the
need to explicitly store all facts regarding a° situation. Reiter (1980) develops a
theory of default’ reasoning within the context of traditional logics. A default is
expressed as

a(x):Mby(x), . . . , Mby(x)

c(x)

where a(x) is a precondition wiff for the conclusion wif ¢{x), M is a consistency
operator and the b,(x) are conditions, each of which must be separately consistent
with the KB for the conclusion c(x) to hold. As an cxample, suppose we wish to
make the statement, “*If x is an adult and it is consistent to assume that x can
drive, then infer that x can drive.”’ Using the above formula this would be represented
as -

(5.1

ADULT(x): MDRIVE(x)
‘ DRIVE(x)

Default theories consist of a set of axioms and set of default inference rules
with schemata like formula 5.1. The theorems derivable from a default system are
those that follow from first-order logic and the assumptions assumed from the defauit
rules. .

. Suppose a KB contains only the statements

BIRD(x): MFLY(x)
FLY(x)

_ BIRD(tweety)
A default proof of FLY (tweety) is possible. But if KB also contains the clauses
OSTRICH(tweety)
OSTRICH(x) — "FLY(x)

FLY (tweety) would be blocked since the default is now inconsistent.

Default rules are especially useful in hierarchial KBs. Because the default
rules are transitive, property inheritance becomes possible, For example, in a heirarchy
of living things, any animal could inherit the property has-heart from the rule

Vx ANIMAL(x) —» HAS-HEART(x)

Sec.53 Default Reasoning and the Closed World Assumption -89

 Transitivity can also be a problem in KBs with many default rules. Rule
interactions can make representations very complex. Therefore caution is needed
in implementing such systems.

Closed World Assumption

Another form of assumpt:on, made with regard to |m:omplele knowledge is more
global in nature than single defaults. This type of assumption is useful in applications
where most of the facts are known, and it is, therefore, reasonable to assume that
if a proposition cannot be proven, it is false. This is known as the closed world
assumption (CWA) with failure as negation (failure to prove a statement F results
in assuming its negation, “F). Thi's means that in a KB if the ground literal P(a) is
not provable, then “P(a) is assumed 1o hold.

A classic example where this typ'e of assumption is reasonable is in an airline
KB application’ where city-to-city flights, not explicitly entered or provable, are
assumed not to exist. Thus, "CONNECT (L oston,van-hom) would be inferred when-
ever CONNECT(boston,van-horn) could not be derived from the KB. This seems
reasonable since we would not want to enter Al pairs of cities which do not have
intercity fights.

By augmenting a KB with an assumption (a \metarule) which states that if the
ground atom P(a) cannot be proved, assume its negat.ion "Pfa), the CWA completes
the theory with respect to KB. (Recall that a formal K8 system is complete if and
only if every ground atom or its negation is in the sy.sem.) Augmenting a KB
with the negation of all ground atoms of the language w'hich are not derivable,
gives us a complete theory. For example, a KB containing o2y the clauses

P(a)
P(b)
P(a) — Q(a)

and modus ponens is not complete, since neither @(b) nor “Q(b) is infenable from
the KB. This KB can be completed, however, by adding either Q(b) or “0(®).

In general, a KB augmented with CWA is not consistent. This is easily seen
by considering the KB consisting of the clause

P@VQ®) -

Now, since none of the ground literals i in this clause are derivable, the augmented
KB becomes

P(a) V Q(b)
“P(a), "Q(b)

which is inconsistent. ,
It can be shown that consistency can be maintained for a special type of

90 Dealing with Inconsistencies and Uncertainties Chap. 5

CWA. This is a KB consisting of Hom clauses. If a KB is consistent and Homn,
then its CWA augmentation is consistent. (Recall that Hom clauses are clauses
with at most one positive literal.)

It may appear that the global nature of the negation as failure assumption is
a serious drawback of CWA. And indeed there arc many applications where it is
not appropriate. There is a way around this using completion formulas which we
discuss in the next section. Even so, CWA is essentially the formalism under which
Prolog operates and Prolog has been shown to be effective in numerous applications.

b

5.4 PREDICATE COMPLETION AND CIRCUMSCR/PTION n

Limiting default assumptions to only portions of a2, KB can be achieved through the
use of completion or circumscription formulas. ' nlike CWA, these formulas apply
only to specified predicates, and not globally 0 the whole KB.

Completion Formulas

Completion formulas are axioms whick, are added to a KB to restrict the applicability
of 'specific predicates. If it is know", that only certain objects should satisfy given
predicates, formulas which make this knowledge explicit (complete) are added to
the KB. This technique also re<quires the addition of the unique-names assumption
(UNA); that is, formula8 which state that distinguished named entities in the KB
are unique (different). a _

As an example of predicate completion, suppose we have the following KB:

OWNSl(joe,ford)
STUDENT(joe)
OWNS(jill,chevy)
STUDENT(jitn)
OWNS(sam,bike)
PROGRAMMER(sam)
STUDENT(mary)

If it i known that Joe is the only person who owns a Ford, this fact can be made
explicit with the following completion formula:

f: OWNSI(x,ford) - EQUAL(x,jos) (5.2)
In addition, we add the inequality formula '
"EQUAL(a,joe) (6.3)

which has the meaning that this is true for all constants a which are different from
Joe.

Sec. 5.4 Predicate Completion and Circumscription 91

Likewise, if it is known that Mt;q also has a Ford, and only Mary and Jjoe
have Fords, the completion and corresponding inequality formulas in this case would
be

¥x OWNSIford,x) — EQUAL(x,joe) V EQUAL|x,mary)
EQUAL(a jos)
"EQUAL(a,mary)

.

Once completion formulas have been added to a KB, ordinary first order
proof methods can be used to prove statements such as "OWNS(jill.ford). For example.
to obtain a refutation proof using resolution, we put the completion and inequality
formulas 5.2 and 5.3 in clausal form respectively. negate the query "OWNS(jill.ford)
and add it to the KB, Thus, resolving with the following clauses

. OWNS(x.ford) V EQUALIx joe)
2. TQUAL(a.joe)
3. OWNS(jill.ford)

from 1 and 3 we obtain
4. EQUAL(jill.joe)

and from 2 and 4 (recall that @ is any constant not = Joe) we obtain the empty
clause [], proving the query.
The need for the inequality formulas should be clearer now. They are needed
to complete the proof by restricting the objects which satisfy the completed predicates.
Predicate completion performs the same function as CWA but with respect to
the completed predicates only. However with predicate completion. it is possible
to default both negative as well as positive statements.

Circumscription

Circumscription is another form of default reasoning introduced by John McCarthy
(1980). It is similar to predicate completion in that all objects that can be shown
to have some property P are in fact the only objects that satisfy P. We can use
circumscription. like predicate completion, to constrain the objects which must be
considered in any given situation. Suppose we have a university world situati.n in
which there are two known CS students. We wish to state that the known students
are the only students. to “*circumseribe’’ the students

CSSTUDENT(a) -
CSSTUDENTI(b)

Let x be a tuple, that is x = (x;. . . . , X;). and let & denote a relation of.
the same arity as P. Also let. KB(d(x)) denote a KB with every occurrence of P

92 Dealing with Inconsistencies and Uncertainties Chap. 5

in KB replaced by &. The usual form of circumscribing P in KB, denoted as
CIR(KB:P), is given by

CMR(KB:P) = KB & |[VO(KB() & (Vxdp(x) — P(x))] — Vx[P(x) — $(x)]

This amounts to replacing KB with a different KB in which some expression
& (in this example & = (x = a V x = b)) replaces each occurrence of P (here
CSSTUDENT). The first conjunct inside the bracket identifies the required substitu-
tion. The second conjunct, Yxd(x) — P(x), states that objects which satisfy ¢ also
satisy P, while the conclusion states that ¢ and P are then equivalent.

Making the designated substitution in our example we obtain the circumscriptive
inference

From CSSTUDENT(a) & CSSTUDENT(&), infer
Vx(CSSTUDENT(x) > (t =aV x = b)

Note that ¢ has been quantified in the circumscription schema above, making
it a second order formula. This need not be of too much concern since in many
cases the formula can be rewritten in equivalent first order form.

An interesting example used by McCarthy in motivating circumscription, related
to the task of getting across a river when only a row boat was available. For problems
such as this, it should only be necessary to consides those objects named as being
important to the task completion and not innumerable other contingencies, like a
hole in the boat, lost oars, breaking up on a rock, or building a bridge.

5.5 MODAL AND TEMPORAL LOGICS

Modal logics were invented to extend the expressive power of traditional logics.
The original intent was to add the ability to express the necessity and possibility of
propositions P in PL and FOPL. Later, other modal logics were introduced to help
capture and represent additional subjective mood concepts (supposition, desire) in
addition to the standard indicative mood (factual) concept representations given by
PL and FOPL.

With modal logics we can also represent possible worlds in addition to the
actual world in which we live. Thus, unlike traditional logics, where an interpretation
of a wff results in an assignment of true or false (in one world only), an interpretation
in modal logics would be given for each possible world. Consequently, the wif
may be true in some worlds and false in others.

Modal logics are derived as extensions of PL and FOPL by adding modal
operators and axioms to express the meanings and relations for concepts such as
consistency, possibility, necessity, obligation, belief, known truths, and temporal
situations, like past, present, and future. The operators take predicates as arguments
and are denoted by symbols or letters such as L (it is necessary that), M (it is
possible that), and so on. For example, MCOLDER-THAN(denver,portland) would
be used to represent the statement ‘it is possible that Denver is colder than Portland.""

'Sec. 5.5 Modal and Temporal Logics 93

Modal logics are classified by the type of modality they express. For example,
alethic logics are concemed with necessity and possibility, deontic logics with what
is obligatory or. permissible, epistemic logics with belief and (known) knowledge,
and temporal logics with tense modifiers like sometimes, always, what has been,
what will ‘be, or what is. In what follows, we shall be primarily concerned with
alethic and temporal logics.

It is convenient to refer to an agent as the conceptualization of our knowledgc
based system (a robot or some other KB system). We may adopt different views
regarding the world or environment in which the agent functions. For example.
one view may regard an agent as having a set of basic beliefs which consists of all
statements that are derivable from the knowlege base. This was essentially the view
taken in PL and FOPL. Note, however, that the statements we now call beliefs are
not the same as known factual knowledge of the previous chapter. They may, in
fact be erroneous.

In another view, we may treat the agent as having a belief set that is determined
by possible worlds which are accessible to the agent. In what follows, we will
adopt this latter view. But before describing the modal language of our agent, we
should explain further the notion of possible worlds.

Possible Worids

In different knowledge domains it is often productive to consider pogdible situations
or events. as alternatives to actual ones. This type of reasoning is especially useful
* in fields where an alternative course of action can lead to a significant improvement
or to a catastrophic outcome. It is a common form of reasoning in areas like law,
economics, politics, and military planning to name a few. Indeed, we frequently
engage our imaginations to simulate possible situations which predict outcomes
based on different scenarios. Our language has even grown to accommodate hypotheti-
cal concépts with statements like *‘if this were possible,”” or *‘suppose we have
the following situation.”’ On occasion, we may also wish to think of possible worlds
as corresponding to different distributed knowledge bases.

Next, we wish to establish a relationship between an agent A and A’s possible
worlds. For this, we make use of a binary accessibility relation R. R is used to
define relative possibilities between worlds for agent A. Let W = {wy, w), g
denote a set of possible worlds w wp rcfcrs to the actual world. Let the relation
R(A :w;,w)) be defined on W' suchthatf{or any w,w, E W, w; is accessible from ‘w,

* for agent A whenever R is satisfied. This means that a pmpOSltlﬂll P'is true in w,
if and only if P is true in all worlds accessible from w;,.

Since R is a relation, it can be characterized with rl:laimnal properties such
as reflexivity. transitivity, symmetry, and equivalence. Thus for any w,,w;.w, o
W, the following properties are defined.

Reflexive. R is reflexive if (w,,w,) € R for each w; € W. In other words
all worlds are possible with respect to themselves.

94 . Dealing with Inconsistencies and Uncertainties Chap. 5

Transitive. R is transitive if when (w;,w;) € R, and (w;,w;) € R then (w,,w,)
€ R. If w; is accessible from w; and w, is accessible from w;, then wy is accessible
from w;. :

Symmetric. = R is symmetric if when (w..w)) € R then (w;,w) € R. If w, is
accessible from w;, then w; is accessible from w;.

Equivalence. R is an equivalence relation if R is reflexive, transitive, and
symmetric.

These properties can also be described pictorially as illustrated in Figure 5.5.
Modal Operators and Logics

As suggested above, different operators are used to obtain different modalities. We
begin with the standard definitions of a traditional logic, say PL, and introduce
appropriate operators and, as appropnate, introduce certain axioms. For example,
to define one first order modal logic we designate as Ly . the operators L and M
noted above would be included. We also add a necessity axiom which states that
if the proposition P is a logical axiom then infer LP (that is, if P is universally
valid, it is necessary that P is true). We also define LP = "MP or it is necessary
that P is true as equivalent to it is not possible that P is not true.

Different modal logics can be obtained from Ly by adding different axioms.
Some axioms can also be related to the accessibility relations. Thus, for example,
we can say that
-

If R is reflexive, add LP — P. In other words, if it is necessary that P is
true in w,, then P is true in w;.

If R is transitive, add LP — LLP. This states that if P is true in all w, accessible
from some w,, then P is true in all w, accessible from w.

Reflexive Transitive Symmetric

Figure 5.5 Accessibility relation properties.

Sec.55 . .Modal and Temporal Logics . ' o5

If R is symmetric, then add P — LMP. This states that if P is true in w,
then MP is true in all w; accessible from w;.
If R is an equivalence relation, add LP — P and MP — LMP.

To obtain a formal system from any of the above, it is necessary to add
appropriate inference rules. Many of the inference rules defined in Chapter 4 would
apply here as well, (modus ponens, universal substitution, and others). Thus, for a
typical modal system based on propositional logic, the following axioms could apply:

A. The basic propositional logic assumptions (Chapter 4) including modus ponens,
B. Addition of the operators L (necessity) and M (possibility), and
C. Some typical modal axioms such as
1. MP = “L"P‘(possible P is equivalent to the statement it is not necessary
that not P), j :
2. L(P — Q) — (LP — LQ) (if it is necessary that P implies Q, then if P'is
necessary, Q is necessary),
3. LP — P (if P is necessary then P), and
4. LP — LLP (if P is necessary, then it is necessary that P is necessary).

Axioms C3 and C4 provide the reflexivity and transitivity access relations,
respectively. If other relations are desired, appropriate axioms would be added to
those given above; for example, for the symmetric access relation P — LMP would
be added. : i

As an example of a proof in modal logic, suppose some assertions are added
to a knowledge base for which the above assumptions and axioms apply:

D. Assertions:

"1, (sam is a man)
2. M(sam is a child) h
3. L{(sam is a child) — L(sam is a child)]
4. L[(sam is a man) — “(sam is a child)]

A simple proof that “(sam is a child) would proceed as-follows. From C3 and D4
infer that 2

(sam is a man) — “(sam is a child)
From D1 and E1 using modus ponens conclude
“(sam is a child)
- Temporal Logics
Temporal logics use modal operators in relation to concepts of time, such as past,

present, future, sometimes, always, preceeds, succeeds, and so on. An example of
two operators which correspond to necessity and possibility are always (A) and

] Dealing with Inconsistencies and Uncertainties Chap. 5

sometimes (S). A propositional temporal logic system using these operators would
include the propositional logic assumptions of - 4, the operators A and S,
and appropriate axioms. Typical formulas using the & and S operators with the
predicate Q would be written as

AQ— SQ (if always @ then sometimes Q)
AQ—Q (if always Q then Q)
Q—S0Q (if Q then sometimes Q)

sQ—AQ (if sometimes Q then not always not Q)

A combination of propositional and temporal logic inference rules would then be
added to obtain a formal system.

In addition to the above operators, the tense operators past (P) and future (F)
have also been used. For example, tense formulas for the predicate (tweety files)
would be written as

(tweety flies) present tense.
P(tweety flies) past tense: Tweety flew.
F(tweety flies) future tense: Tweety will fly.

FP(tweety Hies) future perfect tense: Tweety will have flown.

It is also possible to define other modalities from the ones given above. For
example, to express the concepts it has always been and it will always be the
operators H and G may be defined respectively as

HQ ="PQ (it has always been the case that Q)
GQ ="FQ (it will always be the case that Q)

The four operators P, F, H, and G were used by the logician Lemmon (1965)
to define a propositional tense logic he called KT. The language used consisted of
propositional logic assumptions, the four tense operators P, F, H, and G, and the
following axioms:

G(Q — R) = (GQ — GR)
H(Q — R) — (HQ — HR)’
‘GHQ— Q
HGQ—Q
To complete the formal system, inference rules of propositional logic such as modus -
_ ponens and the two rules >
P N 8

HQ GQ

: Sec. 5.8 - Fuzzy Logic and Natural Language Computations . 97

were added. These rules state that if Q is true, infer that Q has always been the
case and Q will always be the case, respectively.

The semantics of a temporal logic is closely related to the frame problem.
The frame problem is the problem of managing changes which occur from one
situation to another or from frame to frame as in 8 moving picture sequence.

For example, a KB which describes a robot’s world must know which facts
change as a result of some action taken by the robot. If the robot throws out the
cat, turns off the light. leaves the room. and locks the door. some. but not all
facts which describe the room in the ngw situation must be changed.

Various schemes have been proposed for the management of temporally chang-
ing worlds including other modal operators and time and date tokens. This problem
has taken on increased importance and a number of solutions have been offered.
Still much work remains (o find a comprehensive solution.

5.6 FUZZY LOGIC AND NATURAL LANGUAGE COMPUTATIONS

We have already noted several limitations of traditional logics indealing with uncertain
and incomplete knowledge. We have now considered methods which extend the
expressive power of the traditional logics and permit different forms of nonmonotonic
reasoning. All of the extensions considered thus far have been based on the truth
functional features of traditional logics. They admit interpretations which are either
true or false only. The use of two valued logics is considered by some practitioners
as too limiting. They fail to effectively represent vague or fuzzy concepts.

For example, you no doubt would be willing to agree that the predicate " TALL™
is true for Pole, the seven foot basketball player, and false for Smitge the midget
But, what value would you assign for Tom, who is 5 foot 10 inches? What about
Bill who is 6 foot 2, or Joe who is 5 foot 57 If you agree 7 foot is tall, then s 6
foot I'l inches also tall? What about 6 foot 10 inches? If we continued this process
of incrememnally decreasing the height through a sequence of applications of modus
ponens, we would eventually conclude that a three foot person is tall. Intuitively,
we expect the inferences should have failed at some point, but at what point? In
FOPL there is no direct way to represent this type of concept. Furthermore, it is
not easy to represent vague statements such as *'slightly more beautiful,”” “‘not
quite-as young as”” “‘not very expensive, but of questionable reliability.”
**a littie bit to the left,”” and so forth.

Theory of Fuzzy Sets

In standard set theory. an object is either a member of a set or it is not. There is
no in between. The natural numbers 3, 11, 19, and 23 are members of the set of
prime numbers, but 10, blue, cow, and house are not members. Traditional logics
are based on the notions that P(a) is true as long as a is a member of the set
belonging to class P and false otherwise. There is no partial containment. This

8~

98 Dealing with Inconsistencies and Uncertainties .. Chap. 5

amounts to the use of a characteristic function f for a set A; where fu(x) = 1 if x
is in A: otherwise it is 0. Thus, f is defined on the universe U and for all x € U,
f:U— {0.1}.

We may generalize the notion of a set by allowing characteristic functions to
assume values other than 0 and 1. For example, we define the notion of a fuzzy
set with the characteristic function ¥ which maps from U to a number in the real
interval [0,1]; that is u:U — [0,1]. Thus, we define the fuzzy set A as follows
(the ~ symbol is omitted but assumed when a fuzzy set appears in a subscript):

Definition. Let U be a set, denumerable or not, and let x be an element of
U. A fuzzy subset A of U is a set of ordered pairs {(x,u\(x))}, for all x in U,
where u,(x) is a membership characteristic function with values in [0,1], and which
indicates the degree or level of membership of x in A.

A value of u,(x) = O has the same meaning asf,\{xl 0, that x is not a
member of A, whereas a value of u,(x) = | signifies that x is completely contained
in A. Values of 0<u,(x)<1 signify that x is a partial member of A.

Characteristic functions for fuzzy sets should not be confused with probabilities.
A probability is a measure of the degree of uncertainty, likelihood, or belief based
on the frequency or proportion of occurrence of an event. Whereas a fuzzy characteris-
tic function relates to vagueness and is a measure of the feasibility or.ease of
attainment of an-event. Fuzzy sets have been related to possibility distributions
which have some similarities to probability distributions, but their meanings are
entirely different.

Given a definition of a fuzzy set, we now have a means of expressing the
notion TALL(x) for an individual x. We might for example, define the fuzzy set A
= {tall} and assign values of u,(0) = uy(10) = . . . = uy(d40) = 0, u,(50) =
0.2, uy(60) = 0.4, 1,(70) = 0.6, u,(80) = 0.9, uy(90) = u,(100) = 1.0. Now
we can assign values for individuals noted above as TALL(Pole) = 1.0, and TALL
(Joe) = 0.5. Of course, our assignment of values for u,(x) was purely subjective.
And to be complete, we should also assign values to other fuzzy sets' associated
with linguistic variables such as very short; short, medium, etc. We will discuss
the notions of linguistic variables and related topics later.

Operations on fuzzy sets are somewhat similar to the operations of standard
set theory. They are also intuitively acceptable,

A = B if and only if uy(x) = ug(x) forall x E U equality

A C B if and only if uy(x) = ug(x) for all x € U containmemt

Uynp(X) = min fu,(x) uglx)} K intersection
uap(x) = max Ju, o) ug(x)} - union
Uy (x) = 1 — uylx) complement set

The single quotation mark denotes the complement fuzzy set, A’. Note that the
intersection of two fuzzy sets A and B is the largest fuzzy subset that is a subset of

; Séc. 66 Fuzzy Logic and Natural Language Computations ' 99

both. Likewise, the union of two fuzzy sets A and B is the smallest fuzzy subset
. having both A and B as subsets. '
With the above definitions, it is possible to derive a number of properties
which hold for fuzzy sets much the same as they do for standard sets. For example,
we have

AUBNGO=AUBN@AUC distributivity
ANBUO=ANBHUMAND
AUBUC=AUBUO associativity
ANBHNC=ANENO)
- ANB=BNA, AUB=BUA commutativity
ANA=4A AUA=A idempotency
There is also a form of DeMorgan’s laws: y
'H.mg,-(x} = tyryglX)
Uauay(X) = g nglx)
Note however, that
ANA#0,AUA #U
since in general for u,(x) = a. with 0 < a <I, we have
Uaua'(1) = maxfa,l —a] # 1
upgqal x) = minfa.l. — a] # 0
On the other hand the following relations do hold:
AN@=9 Auel=4A . .
. ANU=4A. AuU=U e
The universe from which a fuzzy set is constructed may also be uncountable.
For example, we can ldefine values of u for the fuzzy set A = {young} as
’ 1.0 for 0 =x =20

= % 29 -1
nalx) [l + (x 1020)] for x = 20

The values of u,(x) are depicted graphically, in Figure 5.6.
A number of operations that are unique to fuzzy sets have been defined. A
few of the more common operations include

Dilation. The dilation of A is defined as
| DIL(A) = [u(0]"? forall xin U

100 Dealing with Inconsistencies and Uricertainties Chap. 5

1 L 1 I 1 ek i 1 Figure 5.6 Degrees of membership for

10 20 30 40 50 60 70 BO 90 100 young age.

Concentration. The concentration of A is defined as
CON(A) = [uy(x))* for all x in U

Nwm?lizaﬁon. The normalization of A is defined as
NORM(A) = uy(x) / max fus(x)} for all x in U

These three operations are depicted graphically in Figure 5.7. Note that dilation
tends 1o increase the degree of membership of all partial members x by spreading
out the characteristic function curve. The concentration is the opposite of dilation.
[t tends to decreasé the degree of membership of all partial members, and concentrates
the characteristic function curve. Normalization provides a means of normalizing
all characteristic functions to the same base much the same as vectors can be normalized
1o unit vectors.

In addition to the above, a number of other operations have been defined
including fuzzification. Fuzzification permits one to fuzzify any normal set. These
operations will not be required here. Consequently we omit their definitions.

Lotfi a. Zadeh of the University of California, Berkeley, first introduced fuzzy
sets in 1965. His objectives were to generalize the notions of a set and propositions
to accommodate the type of fuzziness or vagueness we have discussed above. Since
its introduction in 1965, much research has been conducted in fuzzy set theory and
logic. As aresult, extensions now include such concepts as fuzzy arithmetic. possibility
distributions, fuzzy statistics, fuzzy,random variables, and fuzzy set functions.

Many researchers in Al have been reluctant to accept fuzzy logic as a viable
alternative to FOPL. Still, successful systems which employ fuzzy logic have been

10 1.0

B

DILIA)

1]
uylx) vy lx) wy lx)

Figure 5.7 Dilation. concentration. and normalization of u.

Sec. 5.6 . Fuzzy Logic and Natural Language Computations [}]

developed, and a fuzzy VLSI chip has been produced by Bell Telephone Laboratories,
Inc., of New Jersey (Togai and Watanabe, 1986). ;

Reasoning with Fuzzy Logic

The characteristic function for fuzzy sets provides a direct linkage to fuzzy logic.
The degree of membership of x in A corresponds to the truth value of the statement
x is a member of A where A defines some propositional or predicate class. When
us(x) = 1, the proposition A is completely true, and when ug(x) = 0 it is completely
false. Values between 0 and | assume corresponding values of truth or falsehood.

In Chapter 4 we found that truth tables were useful in determining the truth
value of a statement or wff. In general this is not possible for fuzzy logic since
there may be an infinite number of truth values. One could tabulate a limited number
of truth values, say those corresponding to the terms false, not very false, not
true, true, very true, and so on. More importantly, it would be useful to have an
inference rule equivalent to a fuzzy modus ponens.

Generalized modus ponens for fuzzy sets have been proposed by a number
of researchers. They differ from the standard modus ponens in that statements which
are characterized by fuzzy sets are permitted and the conclusion need not be identical
to the implicand in the implication. For example, let A, A1, B, and B1 be statements
characterized by fuzzy sets. Then one form of the generalized modus ponens reads

Premise: xis Al
 Implication: If x is A then y is £
Conclusion: y is 81
An example of this form of modus ponens is given as
Premise: This banana is very yellow
Implication: If a banana is yellow then the banana is ripe
Conclusion: This banana is very ripe

Although different forms of fuzzy inference have been proposed, we present
only Zadeh's original compositional rule of inference. '

First, recall the definition of a relation. For two sets A and B, the Cartesian
product A X BisLstetofallorderedpajrs(a.b). fora C Aand b C B. A
binary relation on iwo sets A and B is a subset of A X B. Likewise, we define a
binary fuzzy relation R as a subset of the fuzzy Cartesian product A x B, a mapping
of A— B characterized by the two parameter membership function ug(a,b). For
example, let A = B = R the set of real numbers, and let & = much larger than.
A membership function for this relation might then be defined as

u{ab]={n fora=b
i (I+@=-52" fora>b

102 Deaing with Inconsistencies and Uncertainties Chap. 5

Now let X and ¥ be two universes and let A and B be fuzzy sets in X and X
X ¥ respectively. Define fuzzy relations R,(x), Rg(x.y), and Rey) in X, X x Y
and Y, respectively. Then the compositional rule of inference is the solution of the
relational equation

RAy) = Ra(x) 0 Rg(x,y) = max, min{u,(x),us(x.y)}
where the symbol o signifies the composition of A and 8. As an example; let
X=v={1,234}
A = {litle} = {(1/ 1),(2/ .6),(3/.2),(4/0)
R= approxim:awly equal, a fuzzy relation defined by
4

;|

'hsl
h—ho | w

2
9
1
5
0

H
o o—

Then applying the-max-min composition rule

R(y) = max, rin {14(x), uglx.y)}
= max, {min[(1,1),(.6,.5),(.2,0),(0,0)],
min[{l..5),(.6,l).(.2..5).[0.0)].
min [(1,0),(.6,.5),(-2,1),(0,.5)],
min[(l,0).(.6,0).(,2,.5),{0.1)]}
max,{[l,.S.U,O},[.S,.ﬁ,,2,0].[0..5.‘2.0],{0.0,.2,(]]}
{111,1.61,1.51,[.21}

Therefore the solution is
Re®) = {(1 11),Q2 1.6).(3 1.5),(4/ 2)}.

Stated in terms of a fuzzy modus ponens, we might interpret this as the inference

Premise: x is little
 Implication: x and y are approximately equal
Conclusion: y is more or less little
The above notions can hc generalized to any number of universes by taking the
Cartesian product and defining relations on various subsets.
Natural I.annuajo Computations

Earlier, we mentioned linguistic variables without really defining them. Linguistic
variables provide a link between a natural or artifical language and representations
which accommodate quantification such as fuzzy propositions. In this section, we

Sec. 5.6 : Fuzzy Logic and Natural Language Computations 103

formally define a linguistic variable and show how they are related to fuzzy logic.

Informally, a linguistic variable is a variable that assumes a value consisting
of words or sentences rather than numbers. For example, the variable AGE might
assume values of very young, young, not young, or not old. These values, which
are themseives linguistic variables, may in turn, each be given meaning through a
base universe of clapsed time (years). This is accomplished through appropriately
defined characteristic functions.

As an example, let the linguistic variable AGE have possible values {very
young. young, not young, middle-aged, not old, old, very old}. To each of these
van'ablcs. we associate a fuzzy set consisting of ordered tuples {(x/u,(x))} where x

= [0,110] the universe (years). The variable AGE, its values, and their corre-
spondmg fuzzy sets are illustrated in Figure 5.8.

A formal, more elegant definition of a linguistic variable is one whlch is
based on Ianguage theory concepts. For this, we define a linguistic variable as the
quintuple

(x,T(x),U,G M)
where

" x is the name of the variable (AGE in the above example),
T(x) is the terminal set of x (very-young, young, etc.),
U is the universe of discourse (years of life),

G is a set of syntactic rules, the grammer which generates the values of x,
acid .

M is the semantic rule which associates each value of x with its meaning
M(x), a fuzzy subset of U.

The grammar G is further defined as the tuple (Vy,V,P,5) where V,, is the set of
nonterminal symbols, V; the set of terminal symbols from the alphabet of G, P is

] 10 20 30 40 50 60 70 1] 20 100 110

Figure 5.8 The linguistic variable age.

104 ' ' Dealing with Inconsistencies and Uncertainties Chap. 5

a set of rewrile (production) rules, and § is the start symbol. The language L(G)
generated by the grammar G is the set of all strings w derived from S consisting
of symbols in V7. Thus, for example, using Vy, = {4,8,C.D E S} and the following
rules in P, we generate the terminal string *‘not young and not very old."

P S—=aA - A— Aand B C—D D — young
S—SorA B—C C—very C E — old
A—B B— notC C—E

This string is generated through application of the following rules:

§—>A-—=Aand B— A and not C— A and not very C — A and not very £ — A
and not very old — B and not very old — not € and not very old — not D and
not very old — not young and not very old

The semantic rule M gives meaning to the values of AGE. For example, we might
have M(old) = {(x / ugy(x)) | xe [0,110]} where u,,(x) is defined as

0 for0 = x = 50
= — -2\ -
oia(x) (l + (‘ 550)) ' for x > 50

In this section we have been able to give only a brief overview of some of
the concepts and issues related to the expanding fields based on fuzzy set theory.
The interested reader will find numerous papers and texts available in the literature.
We offer a few representative references here which are recent and have extensive
bibliographies: (Zadeh, 1977, 1981, 1983), (Kandel, 1982), (Gupta et al., (1985),
and (Zimmerman, 1985).

5.7 SUMMARY

Commonsense reasoning. is nonmonotonic in nature. It requires the ability to reason
with incomplete and uncertain knowledge, replacing outmoded or erroneous beliefs
with new ones to better model current situations. :

In this chapter, we have considered various methods of representing and dealing
with uncertainty and inconsistencies. We first described truth maintenance systems
which permit nonmonotonic forms of reasoning by maintaining a consistent, but
changing, belief set. The type of TMS we considered in detail, was the justification
based TMS or JTMS. It maintained a belief network consisting of nodes representing
facts and rules. Attached to each node was a justification, a data structure which
characterized the In or Out status of the node and its support. The JTMS maintains
the current belief set for the problem solver, but does not perform inferencing func-
tions. That is the job of the IE.

Other methods of dealing with nonmonotonic reasoning include default reason-
ing and CWA. In both cases, assumptions are made regarding knowledge or beliefs _
which are not directly provable. In CWA, if P can not be proved, then assume P

Chep.5 Exercises 108

is true. Default reasoning is based on the use of typical assumptions about an object
or class of objects which are plausible. The assumptions are regarded as valid unless
new contrary information is leamed.

Predicate completion and circumscription are methods which restrict the values
a predicate or group of predicates may assume. They allow the predicates to take
on only those values the KB says they must assume. Both methods are based on
the use of completion formulas. Like CWA, they are also a form of nonmonotonic
reasoning.

Modal logics extend the expressiveness of classical logics by permitting the
notions of possibility, necessity, obligation, belief, and the like. A number of different
modal logics have been formalized, and inference cules comparable to propositional
and predicate logic are available to permit different forms of nonmonotonic reasoning.

Like modal logics, fuzzy logic was introduced to generalize and extend the
expressiveness of traditional logics. Fuzzy logic is based on fuzzy set theory which
permits partial set membership. This, together with the ability to use linguistic
variables, makes it possible to represent such motions as Sue is not very tall, but
she is quite pretty.

EXERCISES

5.1 Give an example of nonmonotonic reasoning you have experienced at some time.
5.2 Draw the TMS belief network for the following knowledge base of facts. The question
marks under output status means that the status must be determined for these datum

nodes.
INPUTS »
Premises Stats Assumptions Status
g—s IN Q out
g.R=U IN R IN
P, R—-T IN ot
P IN
QUTPUTS
Datum Status Conditions
) ? Q. Q— Sthen §
U 7 IFQ.Q,R— U, Rthen U
T ? IfR;P,R—T.PthenT

5.3 Draw a TMS belief network for the aircraft example described in Section 5.2 and
show how the network changes with the selection of an alternate choice of aircraft.
5.4 Write schemata for default reasoning using the following statements:
() If someone is an adult and it is consistent to assume that adults can vote, infer
that that person can vote.

. 108 Dealing with Inconsistencies and Uncertainties Chap. 5

(b) If onc is at least 18 years old and it is consistent to assume that one who is
physically fit and who passcs a test may obtain a pilots license, infer that such a
person can obtain a pilots license.

5.5 Show that a Hom clause data base that is consistent is consistent’ under the CWA
assumption. Give an example of a simple Hom clause CWA data base to illustrate
consistency. ; :

5.6 For the following database facts, write a completion formula that states that Bill is
the only person that lives in Dallas.

LIVESIN(ﬁll,dalli!i
LIVESIN(joe,denver)
LIVESI leu,Mnkl
OWNS (bill,computer)
STUDENT(sue)

5.7 Determine whether the following modal statements have accessibility relations that
are reflexive, transitive, or symmetric:
(a) Bill Brown is alive in the current world.
(b) In the current world and in all worlds in the future of the current world, if Jim
Jones is dead in that world, then he will be dead in all worlds in the future of that
world. .
(c) In the current world or in some world in the future of the current world, John
Jones is dead.
5.8 Write modal propositional statements for the following using the operators L and M
as described in Section 5.4, .
(@) It is necessarily true that the moon is made of green cheese or it is not made of
green cheese.)
(b) It is possible that if Kennedy were born in Spain Kennedy would speak Spanish,
(€) It is necessarily true that if n is divisible by 4 then n is divisible by 2.
5.9 Show that the dilation of the fuzzy set A = CON(B) is the fuzzy set B.
5.10 Give three examples of inferencing with English statements using fuzzy modus ponens
(see the example in Section 5.6 under Reasoning with Fuzzy Logic). .
5.11 Draw a pictorial definition for the linguistic variable TALL (similar to the variable
AGE of Figure 5.8) giving your own subjective values for TALL variables and their
values.
5.12 Define a reasonable, real valued fuzzy function $or the linguistic variable SHORT
(see the function for u,4(x)).

e

Probabilistic Reasoning

The previous chapter considered methods of representation which extend the expres-
siveness of classical logic and permit certain types of nonmonotonic reasoning.
Representations for vague and imprecise concepls were also introduced with fuzzy
set theory and logic. There are other types of uncertainty induced by random phenom-
ena which we have not yet considered. To round out the approaches which are
available for commonsense reasoning in Al. we continue in this chapter with theory
and methods used to represent probabilistic uncertainties.

6.1 INTRODUCTION

We saw in the previous chapter that a TMS deals with uncertainty by permitting
new knowledge to replace old knowledge which is believed to be outdated or errone-
ous. This is not the same as inferring directly with knowledge that can be given a
probability rating based on the amount of uncertainty present. In this chapter. we
want to examine methods which use probabilistic representations for all knowledge
and which reason by propagating the uncertainties from evidence and assertions to
conclusions. As before, the uncertainties can arise from anin ability to predict outcomes
due 10 unreliable, vague, incomplete, or inconsistent knowledge. :

The probability of an uncertain event A is a measure of the degree of likelihood

107

108 Probabilistic Reasoning Chap. 6

of occurrence of that event. The set of all possible events is called the sample
space. §. A probability measure is a function P(-) which maps event outcomes E,.
£; from S into real numbers and which satisfies the following axioms of
probability:

1. 0 = P(A) = 1 for any event A .

2. P(S) = |, u certain outcome. _ i

3. For ENE =@, forall i * j (the E; are mutually exclusive), P(E, U E, U
EyU. . J= PIE) + P(Ey) + PEyY + . . .

From these three axioms and the rules of set theary, the basic laws of probability
can be derived. Of course, the axioms are not sufficient to compute the probability
of an outcome. That requires an understanding of the underlying distributions which
must be established through one of the following approaches:

1. use of a theoretical argument which a'u:curuxely characterizes the processes,

2. using one's familiarity and understanding of the basic processes to assign
subjective probabilities, or

3. collecting experimental data from which statistical estimates of the underlying
distributions can be made.

Since much of the knowledge we deal with is uncertain in nature, a number
of our beliefs must be tenuous. Qur conclusions.are often based on available evidence
and past experience, which is often far from complete. The conclusions are , therefore,
no more than educated guesses. In a great many situations it is possible to obtain
only partial knowledge conceming the possible outcome of some event. But, given
that knowledge, one's ability to predict the outcome is certainly better than with
no knowledge at all. We manage quite well in drawing plausible conclusions from
incomplete knowledge and past experiences,

Probabilistic reasoning is sometimes used when oufcomes are unpredictable.
For example, when a physician examines a patient, the patient’s history, symptoms,
and test results provide some, but not conclusive, evidence of possible ailments.
This knowledge, together with the physician’s experience with previous patients,
improves the likelihood of predicting the unknown (disease) event, but there is
still much uncertainty in most diagnoses. Likewise, weather forecasters *‘guess’”
at tomorrow’s weather based on available evidence such as temperature, humidity,
barometric pressure. and cloud coverage observations. The physical relationships
which govern these phenomena are not fully understood; so predictability is far
from certain. Even a business manager must make decisions based on uncertain
predictions when the market for a new product is considered. Many interacting
factors influence the market, including the target consumer’s lifestyle, population
growth, potential consumer income, the general economic climate, and many other
dependent factors.

Sec. 6.2 Bayesian Probabilistic Inference 108

In all of the above cases, the level of confidence placed in the hypothesized
conclusions is dependent on the availability of reliable knowledge and the experience
of the human prognosticator. Our objective in this chapter is to describe some
approaches taken in Al systems to deal with reasoning under similar types of uncertain
conditions.

6.2 BAYESIAN PROBABILISTIC INFERENCE

The form of probabilistic reasoning described in this section is based on the Bayesian
method introduced by the clergyman Thomas Bayes in the eighteenth century. This
form of reasoning depends on the use of conditional probabilities of specified events
when it is known that other events have occurred. For two events H afd E with
the probability P(E) > 0, the conditional probability of event #. given that event
E has occurred, is defined as

P(HIE) = P(H & E) I P(E) (6.1)

This expression can be given a frequency interpretation by considering a random
experiment which is repeated a large number of times, n. The number of occurrences
of the event E, say No. (E), and of the joint_event M and E, No. (H & E). are
recorded and their relative frequencies if computed as

No. (A & E)
n

f(H & E) = f(E) = (6.2)

No. (E))
n
When n is large, the two expressions (6.2) approach the corresponding probabili-
ties respectively, and the ratio

o (H & E) I/ rftE) = P(H & E) | P(E)

then represents the proportion of times event # occurs relative to the occurrence of
£, that is, the approximate conditional occurrence of & with E. _

The conditional probability of event £ given that event H occurred can likewise
be written as

PE|H) = P(H & E) | P(H) . (6.3)

Solving 6.3 for P(H & E) and substituting this in equation 6.1 we obtain one form
of'Bayes® Rule :

P(H|E) = P(E|H)P(H) / P(E) (6.4

This equation expresses the notion that the probability of event H occurring
when it is known that event £ occurred is the same as the probability that £ occurs
when it is known that 4 occurred,. multiplied by the ratio of the probabilities of
the two events H and E occurring. As an example of the use of equation 6.4,
consider the problem of determining the probability that a patient has a certain
disease DI, given that a symptom E was observed. We wish to find P(D] k).

110 Probabilistic Reasoning ~ Chap. 6

Suppose now it is known from previous experience that the prior (unconditional)
probabilities P(D1) and P(E) for randomly chosen patients are P(D1) = 0.05, and
P(E) = 0.15, respectively. Also, we assume that the conditional probability of the
observed symptom given that a patient has disease DI is known from experience
to be P(E|D1) = 0.95. Then, we easily determine the value of P(DI|E) as

P(D1|E) = P (E|D1)P(D1) /P(E) = (0.95 % 0.05) / 0.15
=0.32 :

It may be the case that the probability P(E) is difficult to obtain. If that is
the case, a different form of Bayes' Rule may be used. To.see this, we write
equation 6.4 with “H substituted in place of H to obtain

P(E[H)P(CH)

.
PCH|E) PE)

Next, we divide equation 6.4 by this result to eliminate P(E) and get

P(H|E) _ P(E|H)P(H)

—= 6.5
PCH|E) P(EIHP(H) :

Note that equation 6.5 has two terms that are ratios of a probability of an
event to the probability of its negation, P(H|E) / P(H|E) and P(H) / PCH). The
ratio of the probability of an event E divided by the probability of its negation is
called the odds of the event and are denoted as O(E). The remaining ratio P(E|H)
/ P(E|"H) in equation 6.5 is known as the likelihood ratio of E with respect-to H.
We denote this quantity by L(E|H). Using these two new terms, the odds-likelihood
form of Bayes' Rule for equation 6.5 may be written as

OH|E) = LIE\H) O(H)

This form of Bayes' Rule suggests how to compute the posterior odds O(H|E)
from the prior odds on H. O(H). That value is proportional to the likelihood L(E|H).
When L(E|H) is equal to one, the knowledge that E is true has no effect on the
odds of M. Values of L(E|H) less than or greater than one decrease or increase the
odds correspondingly. When L(E|H) cannot be computed, estimates may still be
made by an expert having some knowledge of H and E. Estimating the ratio rather
than the individual probabilities appears t® be easier for individuals in such cases.
This is sometimes done when developing expert systems where more reliable probabili-
ties are not available.

In the example cited above, D1 is either true or false, and P(DI'E) is the
interpretation which assigns a measure of confidence that D1 is true when it is
known that E is true. There is a similarity between E, P(DI|E) and modus ponens
discussed in Chapter 4. For example, when E is known to be true and D1 and E
are known to be related, one concludes the truth of D1 with a confidence level
P(DI|E).

One might wonder if it would not be simpler to assign probabilities to as

" Sec.6.2 Bayesian Probabilistic Inference T om

many ground atoms E,, Ey, . . ., E, as possible, and compute inferred probabilities
(probabilities of £;— H and H) directly from these. The answer is that in general
this is not possible. To compute an inferred probability requires a knowledge of
the joint distributions of the ground predicates participating in the inference. From
the joint distributions, the required marginal distributions may then be computed.
The distributions and computations required for that approach are, in general, much
more complex than the computations involving the use of Bayes’ Rule.

Consider now two events A and “A which are mutually exclusive (AN°A =
@) and exhaustive (AUA) = S. The probability of an arbitrary event B can always
be expressed as

P(B) = P(B & A) + P(B & "A) = P(B|A)P(A) + P(B|'A)PCA)
Using this result, equation 6.4 can be written as
P(H|E) = P(E|H)P(H) | [PE|H)P(H) + PEIH)P(H)) (6.6,

Equation 6.6 can be generalized for an arbitrary number of hypotheses #,. i
=1, . . ., k Thus, suppose the H, partition the universe; that is, the H, are
mutually exclusive and exhaustive. Then for any evidence E, we have

& k
PEY= 2 PE&H) =3 PEIHWPH,)

i=1 i=1
and hence,
P(E|H)P(H)
‘. v

2. P(E|H;) P(H,))

=1

P(H,|E) = (6.7)

Finally, to be more realistic and to accommodate multiple sources of evidence

E,, Ez -+ .+ + Ep, we generalize equation 6.7 further to obtain
.P(HJ’Elva RN ‘Em} 2 lP(EI‘Ez. —t EMIHJP{HJ) (68)
SP(EEs, .72 E.|H)) P(H,))
=1 ;

If there are several plausible hypotheses and a number of evidence sources.
equation 6.8 can be fairly complex to compute. This is one of the serious drawbacks
of the Bayesian approach. A large number of probabilities must be known in advance
in order to apply an equation such as 6.8. If there were k hypotheses, H,. and m
sources of evidence, £, then k + m prior probabilities must be known in addition
1o the £ likelihood probabilities: The real question then is where does one obtain
such a large number of reliable probabilities?

To simplify equation 6.8, it is sometimes assumed that the'E,, are statistically
independent. In that case. the numerator and denominator probability terms P(E,.
E;. . . ., E,{H)) factor into :

¥

12 - : Probabilistic Reasoning Chap. 6

PE\|H)PEH)) . . . PERH)

resulting in a somewhat simpler form. But, even though the computations are straight-
forward, the number of probabilities required in a moderately large system can
still be prohibitive, and one may be forced to simply use subjective probabilities
when more reliable values are not available. Furthermore, the E; are almost never
completely independent. Consequently, this assumption-may introduce intolerable
erTors. .
The formulas presented above suggest how probabilistic evidence would be
combined to produce a likelihood estimate for any given hypothesis. When a number
of individual hypotheses are possible and several sources of evidence are available,
it may be necessary to compute two or more alternative probabilities and select
among them. This may mean that none, one, or possibly more than one of the
hypotheses could be chosen. Normally, the one having the largest probability of
occurrence would be selected, provided no other values were close. Before accepting
such a choice, however, it may be desirable to require that the value exceed some
threshold to avoid selecting weakly supported hypotheses. In Section 6.5 we describe
a typical system which combines similar values and chooses only those conclusions
that exceed a threshold of 0.2.

Bayesian Networks

Network representations of knowledge have been used to graphically exhibit the
interdependencies which exist between related pieces of knowledge. Much work
has been done in this area to develop a formal syntax and semantics for such representa-
tions. We discuss related topics in some detail in Chapter 7 when we consider
associative networks and conceptual graphs. Here, however, we are more interested
in network representations which depict the degrees of belief of propositions and
the caudal dependencies that exist between them. Inferencing in a network amounts
to propogating the probabilities of given and related information through the network
o one or more conclusion nodes.

Network representations for uncertain dependencies are further motivated by
observations made earlier. If we wish to represent uncertain knowledge related to
a set of propositional variables x,. .- . . , X, by their joint distribution P(x,, . . .,
x,). it will require some 2" entries to store the distribution explicitly. Furthermore,
a determination of any of the marginal probabilities x; requires summing P(x,.

. x,) over the remaining n — | variables. Clearly, the time and storage require-
ments for such computations quickly become impractical. Inferring with such large
numbers of probabilities does not appear to model the human process either. On
the contrary. humans tend to single out only a few propositions which are known
to be causally linked when reasoning with uncertain beliefs. This metaphor leads
quite naturally to a form of network representation.

One useful way to portray the problent,gomain is with a network of nodes
which represent propositional variables x,. connceted by arcs which represent causal

Sec. 8.3 Possible World Representations _ 13

x : \ x
\ : /
T
l Figure 6.1 Example of Bayesan bl
L A58 netw ok, ;

influences or dependencies among the nodes. The strengths of the influences are
quantified by conditional probabilities of each variable. For example, 0 represent

causal relationships between the propositional variubles x,. . . . | X, as illustrated
in Figure 6.1. one can write the joint probability Piy,. A) by inapection as
a product of (chain) conditional probabilities

P e eXy) = FI'.T,.,i.l’_q}P'I.l‘_-;I.t:'_.l'_dPl.t_t’.t'|.,1'_~] Pix Py Wiy

Once such a network is constructed, an inference engine can use it to maintain
and propagate beliefs. When new information is received. the etfectscan be propagated
throughout the network until equilibrium probabilities are reached. Pearl (1986,
1987) has proposed simplified methods for updating networks (trees and. more gener-
ally, graphs) of this type by fusing and propagating the effects of new evidence
and beliefs such that equilibrium is réached in time proportional to the longest
path through the network. At equilibrium, all propositiens will have consistent probi-
bility assignments. Methods for graphs are more difficult. They require the use of
dummy variables to transform them to equivalent tree structures which are then
easier to work with.

To use the type of probabilistic inference we have been considering. it 1
first necessary to assign probabilities to all basic facts in the knowledge base. This
requires the definition.of an appropriate sample space and the assignment of u priori-
and conditional probabilities. In addition, some method must be chosen to compute
the combined probabilities when pooling evidence in a sequence of inference steps
(such as Pearl’s method). Finally. when ‘the outcome of an inference chain results
in one or more proposed conclusions, the alternatives mustBe compared. and vne
or more selected on the basis of its likelihood

6.3 POSSIBLE WORLD REPRESENTATIONS

In Section 5.4 the notion of possible worlds was introduced as a formalism through
which an agent could view a set of propositions as being true in some worlds and
false in others. We use the possible world concepts in this section to describe a
method proposed by Nilsson ([986) which generalizes first order logic in the modelling
of uricertain beliefs. The method assigns truth values ranging from O to | to possible

114 Probabilistic Reasoning Chap. 6

TABLE 6.1 TRUTH VALUE ASSIGNMENTS FOR THE SET (P,

P— Q, Q)
Consistent Inconsistent
P Q P—Q .] 0 P
true true true true true false
true false false rue false true
false true true false true false
false false true false false false

worlds. Each set of possible worlds corresponds to a different interpretation of
sentences contained in a knowledge base denoted as KB.

Consider first the simple case where a KB contains only the single sentence
S. § may be either true or false. We envision S as being true in one set of possible
worlds W,, and false in another set W,. The actual world, the one we are in, must
be in one of the two sets, but we are uncertain which one. Our uncerainty is
expressed by assigning a probability P to W, and 1 = P to W,. We can say then
that the probability of 5 being true is P. '

When our KB contains L sentences, §;, . . . , S;. more sets of possible
worlds are required to represent all consistent truth value assignments. There ar¢
2t possible truth assignments for L sentences. Some of the assignments may be
inconsistent (impossible), however. For example, the set of sentences {P, P — Q,
0) has 2° possible truth assignments, only four of which are consistent as depicted
in Table 6.1. ,

If X of the truth assignments are consistent, K sets of possible worlds W, W5,
. . ., Wyare used to model the corresponding interpretations. A probability distribu-
tion is then defined over the possible worlds, where P; is the probability that W, is
the actual world, and ¥, P, = 1. The probability or belief in any sentence §; can
then be determined by summing the P; over all W; in which §; is true. .

These notions can be represented using vector notation. We use the matrix Y
with L columns and K rows to represent the truth values of the L sentences in
each of the K sets W,. The i column of V contains a one in row j if sentence S,
is true in W, and a zero if it.is false. Also let the K-dimensional column vector p

with components p;, i = I, . . ., K, represent the possible world probabilities.
With this notation, the product of V and p is a vector g which contains the probabilities
g, of sentence §,, forj = 1,. . .., L, that is

q=Vp (6.9)

The j* component g; of q is the sum of probabilities of the sets of possible
worlds in which §; is true, or the probabilistic truth value of §;. As an example of
this notation, the matrix equation for the consistent truth value assignments given
in Table 6.1 is

Sec. 64 Dempster-Shafer Theory t 115

where py. ps, Py, and p, are the probabilities for the corresponding W,. Thus. the
sentence probabilities are computed as

QL =pE)=p +ps
G=pS)=p,+p:+p,
43 =p(85) =p, +p,

Given a KB of sentences with known probabilities (obtained from an expen
or other source), we wish to determine the probability of any new sentence § deduced
from KB. Alternatively, we may wish to recompute some sentence probabilities in
KB if new information has been gained which changes one or more of the original
sentences in KB. To compute the probability of § requires that consistent trith
values first be determined for S for all sets of possible worlds. A pew augmented
matrix V can then be formed by adding a bottom row of ones and zeros to the
original V where the ones and zeros correspond to the truth assignments.

No methods have been developed for the computation of exact solutions for
the KB sentence probabilities, although methods for determining approximations
were presented for both small and large matrices V. We do not consider those
methods here. They may be found in Nilsson (1986). They are based on the use of
the probability constraints

0=p = i..andi,p, = 1.

and the fact that'consistent probability assignments aré bounded by the hyperplanes
of a certain convex hull. Suggestions have also been made for the partitioning of
larger matricc% into smaller ones to simplify the computations.

6.4 DEMPSTER-SHAFER THEORY

As noted in the previous section, the assumption of conditional independence is
probably not warranted in many problems. There are other serious drawbacks in
using Bayesian theory as a model of uncertain reasoning as well. To begin with.
the probabilities are described as a single numeric point value. This can be a distortion
of the precision that is actually available for supporting evidence. It amounts to an
overstatement of the evidence giving support to many of our beliefs. When we
assert with probability 0.7 that the dollar will fall against the Japanese Yen over
the next six months, what we really mean is we have a fairly strong conviction
there is a chance of about 0.6 to 0.8 say, that it will fall. :
Another problem with traditional theory is that there is no way to differentiate

116 : Probabilistic Reasoning Chap. 6

between ignorance and uncertainty. These are distinctly different concepts and should
be treated as such. For example, suppose we are informed that one of three terrorist
groups, A, B, or C has planted a bomb in a certain government building. We may
have some evidence to believe that group C is the guilty one and be willing to
assign a measure of this belief equal 10 P(C) = 0.8. On the other hand, without
more knowledge of the other two groups, we would not want to say that the probability
is Q.1 that each one of them is guilty. Yet, traditional theory would have us distribute
an equal amount of the remaining probability to each of the other groups. In fact,
we may- have no knowledge to justify either the amount of uncertainty nor the
equal division of it.

Finally, with classical probability theory, we are forced to regard belle.f and
disbelief as functional opposites. That is, if some proposition A is assigned the
probability P(A) = 0.3, then we must assign "A the probability P(CA) = 0.7 since
we must have P(A) + P("A) = 1. This forces us to make an assignment that may
be conflicting since it is possible to both believe and disbelieve some propositions
by the same amount, making this requirement awkward.

In an attempt to remedy the above problems, a generalized theory has been

by Arthur Dempster (1968) and extended by his student Glenn Shater
(1976). It has come to be known as the Dempster-Shafer theory of evidence. The
theory is based on the notion that separate probability masses may be assigned to
all subsets of a universe of discourse rather than just to indivisible single members
as required in traditional probability theory. As such, it permits the inequality P(A)
+ P(A) =1,

In the Dempster-Shafer theory, we assume a universe of discourse. U and a
set corresponding to n propositions, exactly one of which is true. The propasitions
are assumed to be exhaustive and mutually exclusive. Let 2Y denote all subsets of
U including the empty set and U itself (there are 2" such subsets). Let the set
function m (sometimes called a basic probability assignment) defined on 2, be a
mapping to [0,1],

m:2Y — [0,1], be such that for all subsets A C U
m(@) =

> m(A) =
ACU

The function m defines a probability distribution on 2V (not just on the singletons
of U as in classical theory). It represents the measure of belief committed exactly
to A. In other words, it is possible to assign belief to each subset A of U without
assigning any to anything smaller.

A belief function, Bel, corresponding to a specific m for the set A, is defined
as the sum of beliefs committed to every subset of A by m. That is, Bel(A) is a
measure of the total support or belief committed to the set A and sets a minimum
value for its likelihood. It is defined in terms of all belief assigned to A as well as
to all proper subsets of A. Thus,

Sec. 6.4 Dempster-Shafer Theary & 17

Beltd) = 3 m(3)
BCA

For example, if U contains the mutital!y exclusive subsets A, B, C, and D then

Bel({A,C.D})) = m({A,C.D}) + m({A Ch + m({A,.D}) + m({C.D})
+ mi{Ah) + m({Ch + m({D}

In Dempsu:r Shafer theory, a belief interval can also be defined for a subset -
A. It is represented as the subinterval [Bel(4), P1(A)] of [0;1]. Bel(A) is also culled
the support of A, and P1(A) = | — Bel ("A), the plausibility of A.

We define Bel (J) = 0 to signify that no belief should be assigned to the
empty set and Bel(U) = | to show that the truth is contained within &J. The subsets
A of U are called the focal elements of the support function Bel when m(A) > 0.

Since Bel(A) only partially describes the beliefs about proposition A. it is
useful to also have a measure of the extent’one believes in “A, that is, the doubts
regarding A. For this, we define the doubt of A as D(A) = Bel("A). From this
definition it will be seen that the upper bound of the belief interval noted above.

" PI(A), can be expressed as PI(A) = 1 — D(A) = 1 — Bel("A). P{A) represents an
upper belief limit on the proposition A. The belief interval, [Bel(4),P1(A)], is also
sometimes referred to as the confidence in A, while the quantity PI(A) — Bel(A) is
referred to as the uncertainty in A. It can be shown that (Prade 1983)

PI@) =0, PKU) =
For all A, _
: Pl(A) = Bel(A),
Bel(A) + Bel("A) = 1,
PUA) + PICA) = 1, and

For A C B,
: Bel(A) = Bel(B); PI{A) = PI(B)

In interpreting the above definitions. it should be noted that a portion of behef
‘may be committed to a set of propositions, but need not be, and if committed, it
is not necessary to commit any belief (o its negation. However, a belief committed
to. a proposition is committed to any other proposition it implies.

A few specific interval belief values will help to clarify the intended semantics.
For example,

[0.14 represents no belief in support of the proposition

[0.0] represents the belief the proposition is false

[1.1] represents the belief the proposition is true

[.3.1] represents partial belief in the proposition

[0,.8] represents partial disbelief in the proposition

[.2,.7] represents belief from evidence both for and against the proposition

118 Probabilistic Reasoning Chap. 6

When evidence is available from two or more independent knowledge sources
Bel, and Bel,, one would like to pool the evidence to reduce the uncertainty. For
this, Dempster has provided such a combining function denoted as Bel,°Bel,.

Given iwo basic probability assignment functions, m, and ni, comesponding
to the belief functions Bel, and Bel,, let A,, . . . , A, be the focal elements for
Bel, and B;, B, be the focal elements for Bel,. Then m(A) and m,(B)
each assign probability masses on the unit interval. They can be orthogonally combined
as depicted with the square illustrated in Figure 6.2 (Garvey et al., 1981).

The unit square in Figure 6.2 represents the total probability mass assigned
by both m,; and m, for all of their common subsets. A particular subrectangle within
the square, shown as the intersection of the sets A; and B;, has committed to it the
measure m,(A)my(B;). Likewise, any subset C of U may have one, or more than
one, of these rectangles committed to it. Therefore, the total probability mass commit-
ted to C will be

* > m(A)my(B) (6.9)
AnB=C
where the summation is over all i and j.
The sum in equation 6.9 must be normalized to account for the fact that
some intersections A, N B; = & will have positive probability which must be discarded.
The final form of Dempster's rule of combination is then given by

Zm(A)my(B)
A8,

ZMI{A,}m;(B;]

ANB 40

myom, = (6.10)

where the summations are taken over all i and j,

Asan example of the above concepts, recall once again the problem of identifying
the terrorist group or groups responsible for a certain attack in some country. Suppose
any of four known terrorist organizations A, B, C, and D could have been responsible
for the attack. The possible subsets of U in this case form a lattice of sixteen
subsets (Figure 6.3). ’ '

Assume one piece of evidence supports the belief that groups A and C were

-PHgiE‘l

m,18,) Figure 6.2 Composition of probability
i mass from sources Bel, and Bels.

OSSN N AN,
g o e S

Figure 6.3 Lattice of subsets of the universe U.

responsible to a degree of m,({A,C}) = 0.6, and another source of evidence disproves
the belief that C was involved (and therefore supports the belief that the three -
organizations, A, B, and D were responsible; that is m->({A.B.D}) = 0.7. To obtain
the pooled evidence, we compute the following quantities (summarized in Table
6.2).

memy({AD) = (0.6)*(0.7) = 0.42
myem,({A.CH = (0.6)*(0.3) = 0.18
mema({A.B.D}) = (0.4)*(0.7) = 0.28
mom, = 0 for all other subsets of U
Bel,({A.CH = m({A.Ch + m({Ah + m({C})

TABLE 6.2 TABLEAU OF COMBINED VALUES OF
BELIEF FOR my AND m; :

; ms
{A.B.D} (0.7) vion

{A.C} 10.6) {A} (0.42) A.C) 10.18)
moU0.4) {A.8.0) (0.28) U (0.12)

6.5 AD HOC METHODS

The so-called ad hoc methods of dealing with uncertainty are methods which have
no formal theoretical basis (although they are usually patterned after probabilistic
concepts). These methods typically have an intuitive, if not a theoretical, appeal.

120 Probabilistic Reasoning Chap. 6

They are chosen over formal methods as a pragmatic solution to a particular problem,
when the formal methods impose difficult or impossible conditions.

Different ad hoc procedures have been employed successfully in a number of
Al systems, particularly in expert systems. We illustrate the basic ideas with the
- belief measures used in the MYCIN system, one of the earliest expert systems

developed to diagnose meningitis and infectious blood diseases (Buchanan and Short-

liffe, 1984). i -

MYCIN’s knowledge base is composed of if . . . then rules which are used
to assess various forms of patient evidence with the ultimate goal being the formulation
of a correct diagnosis and recommendation for a suitable therapy. A typical rule
has the form

IF: The stain of the organism is gram positive, and
The morphology of the organism is coccus, and
The growth conformation of the organism is chains
THEN: There is suggestive evidence (0.7) that the identity of the organism
is streptococcus

This is a rule that would be used by 'the inference mechanism to help identify
the offending organism. The three conditions given in the IF part of the rule refer
to attributes that help to characterize and identify organisms (the stain. morphology,
and growth conformation). When such an identification is relatively certain, an
appropriate therapy may then be recommended.

The numeric value (0.7) given in the THEN part of the above rule corresponds
to an expert's estimate of degree of belief one can place in the rule conclusion
when the three conditions in the IF part have been satisfied. Thus. the belief associated
with the rule may be thought of as a (subjective) conditional probability P(H|E, E,.E;)
= 0.7, where H is the hypothesis that the organism is streptococcus, and Ey. Ey,
and £ correspond to the three pieces of joint evidence given in the IF part, respectively.

MYCIN uses measures of both belief and disbelief to represent degrees of
confirmation and disconfirmation respectively in a given hypothesis. The basic mea-
sure of belief, denoted by MB(H E), is actually a measure of the increased belief
in hypothesis A due to the evidence £. This is roughly equivalent to the estimated
increase in probability of P(H|E) over P(H) given by an expert as a result of the
knowledge gained by E. A value of 0 comresponds to no increase in belief and |
corresponds to maximum increase or absolute belief. Likewise, MD(H .E) is a measure
of the increased disbelief in hypothesis H due to evidence E. MD ranges from 0 to
+L also, with +1 representing maximum increase in disbelief. (total disbelief) and
0 representing no increase. In both measures, the evidence E may be absent or
may be replaced with another hypothesis, MB(H,,H,). This represents the increased
belief in H, given H, is true.

In an attempt to formalize the uncertainty measure in MYCIN, definitions of
MB and MD have been given in terms of prior and conditional probabilities. It

Sec. 6.5 - Ad Hoc Methods B P11

should be remembered, however, the actual values: aré often subjective probability
estimates provided by a physician. We have for the definitions

. [| | if PH) = 1
MB(H E) ={ max|P(H|E),P(H)] — P(H) :
| mdx[l_.O] — P otherwise (6.11)
1 | if P(H) = 0
MD(H E) = { min|P(H|E),P(H)] — P(H) FERT
min(1,0] — PUT) otherwise (6.12)

Note that when 0 < P(H) <1, and E and H are independent (so PHIE) =
P(H)), then MB = MDP = 0. This would be the case if E provided no useful
information. ;

The two measures MB and MD are combined into a single measure called
the certainty factor (CF), defined by

CF(H,E) = MB(H.E) — MD(H,E) (6.13)

Note that the value of CF ranges from — | (certain disbelief) to +1 (certain
belief). Furthermore, a value of CF = 0 will result if £ neither confirms nor unconfirms
. ‘H (E and H are independent). -

In MYCIN, each rule hypothesis H; has an associated MB and MD initially
set to zero. As evidence is accumulated, they are updated using intermediate combining
functions, and, when all applicable rules have been executed. a final CF is calculated
for cach H;. These are then compared and the largest cumulative confirmations or
disconfirmations are used to determine the appropriate therapy. A threshold value
of |[CF| > 0.2 is used to prevent the acceptance of a weakly supported hypotiesis.

In the initial assignment of belief values an expert will consider all available
confirming and disconfirming evidence, E,, . . . , E;, and assign appropriate, consis- .
tent values to both. For example, in the assignment process, a value of | should
be made if and only-if a piece of evidence logically implies H (“H) with cenainty.
Additional rules related to the assignment process must also be carcfully followed
when using such methods. '

Ad hoc methods have been used in a large number of knowledge-based systems,
more 50 than have the more formal methods. This is largely because of the difficulties
encountered in acquiring large numbers of reliable probabilities related to the given
domain and to the complexities of the ensuing calculations. But, in bypassing the
formal approaches-one should question what end results can be expected. Are they
poorer than would be obtained using formal methods? The answer to this question
seems to be not likely. Sensitivity analyses (Buchanan et al.. 1984) seem to indicate
that the outcomes are not too sensitive_to either the method nor the actual values
used for many systems. However, much work remains to be done in this area
before a useful theory can be formulated. i ' 2yt

122 Probabilistic ﬁeasoning Chap. 6
6.6 HEURISTIC REASONING METHODS

The approaches o uncenamly described so far seem to lack an Al Ravor. The
uncertainty in a given hypothesis is represented as a number which is combined
with and compared to other numbers until a final number is translated into a weighted
conclusion. Once the uncertainties have been translated into numbers, (he cause of
the uncertainty, its relative importance, necessity. and other factors are lost. Further-
more, this does not appear to be the process with which humans reason about
uncertainty. Although we do weigh evidence both pro and con, we usually do not
‘arrive at a net numeric estimate of a conclusion, only whether or not the conclusion
is justified. In place of numbers, our reasoning appears to depend more on heuristics
when reasoning with uncertain, incomplete knowledge. In this section we briefly
consider this type of approach. ' '

Heuristic methods are based on the use of procedures, rules, and other forms
of encoded knowledge to achieve specified goals under uncertainty. Using both
domain specific and general heuristics, one of several alternative conclusions may
be chosen through the strength of positive versus negalive evidence presented in
the form of justifications or endorsements. The endorsement weights employed in
such systems need.not be numeric. Some form of ordering or preference selection
scheme must be used, however.

For example, in a prototype system (named SOLOMON) developed by Paul
Cohen (1985), endorsements in the form of domain and general heuristics are used
to reason about uncertainties associated with a client’s investment portfolio. In select-
ing investments for clients, there are many sources of uncertainty to contend with.
First, there is uncertainty related to the client’s lifestyle-and financial status as well
as his or her objectives. Secondly, there are varying degrees of uncertainty related
to all types of investments. Some important factors which influence an investor’s
status include age, preretirement income expected. net worth, income needs, retire-
ment programs, and tax bracket. Factors related to investments include corporate
earnings, dividends, bond and money market yields, the direction of the market,
and the rate of inflation, to name a few.

Endorsements in the SOLOMON system are justifications or reasons for believ-
ing or disbelieving a proposition or an inference. They are provided by experts as
heuristics in place of numeric probability estimates. They are expressed as rules
about the properties and relationships of domain objects. For example, heuristics
used to reason about the uncertainties related to a client’s status might take the
form of rules such as

[F: Client income need is high and net worth is medium to high,
THEN: Risk-tolerance level is medium.
IF: Client tax bracket is high and risk-tolerance level is low,
THEN: Tax-exempt mutual-funds are indicated.
IF: Client age is high and income needs are high and retirement income
is medium,

Sec. 6.7 Summary : 123

THEN: Risk-tolerance is low.
IF: Two positive endorsements are medium or high and one negative
. endorsement is high,

THEN: Then favor the positive choice.

Endorsements are used to control the reasoning process in at least two different
ways. First, preference is given to rules whicn are strongly supported. Second.
endorsements permit the condition or left-hand side of a rule to be satisfied (or
rejected) without finding an exact match in the KB. The SOLOMON system is
goal driven and uses a form of backward rule chaining. A goal is achieved when
all of the inference conditions in the left-hand side: of the goal rule have been
pwvcd This requires proving subgoals and sub-subgoals until the chain of inferences
is completed.

The control structure in SOLOMON is based on the use of an agenda where
tasks ‘dcrived from rules are ordered for completion on the strength of their endorse-
ments. Strongly endorsed tasks are scheduled ahead of weakly endorsed ones. And
when a task is removed for execution, endorsements are checked to see if they are
still worth completing.

Endorsements are propagated over inferences P — Q by combining, replacing.
or dropping endorsements E, associated with antecedents P. endorsements of the
implication itself, and other evidential relationships between Q and conclusions in
the KB.

The SOLOMON system borrowed several design features from another heuristic
-reasoning system developed by Douglas Lenat called AM (Davis and Lenat, 1982).
AM discovers basic concepts in mathematics by investigating examples of a newly
generated conjecture and looking for regularities and extreme or boundary values
in the examples. With an exponential number of available tasks, the system is
always uncertain about what to work on next. For this, AM also uses an agenda to
schedule its tasks for further investigation. Here again, heuristics are used to contml
the reasoning process. The system does this by developing a numerical “"interest™
factor rating for tasks which is used to determine the task’s position on the agenda.
Like the SOLOMON system. AM gives more strength to rules which have supportive
evidence.

Although both AM and SOLOMON take into account the importance of the
evidence, SOLOMON differs in one respect. SOLOMON also accounts for the
accuracy of the evidence just as the testimony of an eyewitness is more convincing
than circumstantial evidente. AM is unable to assess accuracy as such,

6.7 SUMMARY

Commonsense reasoning i$ nonmonotonic in nature. It requires the ability to reason
with incomplete. and uncertain knowledge. Many Al systems model uncertainty
with probabilities or levels of confidence and probability inference computations.

124 Probabilistic Reasoning Chap. 6

Each belief is assigned a degree of truthfulness or plausibility. Evidence is pooled
through combining functions which compute a combined belief probability. Two
popular approaches were considered in this chapl.er the Bayesian probability method
and the Dempster-Shafer approach.

The Bayesian approach depends on the use of known-prior and likely probabili-
ties to compute conditional probabilities. The Dempster-Shafer approach on the
other hand is a generalization of classical probability theory which permits the assign-
ment of probability masses (beliefs) to all subsets of the universe and not just to
the basic elements. A measure of belief for an assertion is then computed as a
subinterval of [0,1], where the length of the interval measures the uncertainty.

In addition to methods based on formal theories the more pragmatic ad hoc
approaches to uncertain reasoning were examined. In particular, the procedures
used in MYCIN which combine measures of belief and disbelief into certainty factors
were described. Because of its success, a number of expert systems designs have
been patterned after this method.

Finally, heuristic, nonnumeric approaches to the uncertainty problem were
considered. Here; endorsements for a given alternative would outweigh negative
factors if general rules, data, and other domain knowledge provided stronger support,
The SOLOMON and AM systems use a form of heuristic corntrol to reason wnh
uncertain knowledge.

EXERCISES

6.

-

Find the probability of the event A when it is known that some event B occurred
From experiments it has been determined that PIBJA) = 0.84, P(A) = 0.2, and P(B)
= 0.34.

6.2 Prove that if A 'and B ar¢ independent, PIA|B) = P(A). (Note that A and B are independent
g if and only if PIA & B) = PIA)P(B)).

6.3 From basic set theory prove that P("A) = | = P(A), and that PU"BlA) = | — PIBIA).

6.4 Is it possible to compute PA|"B) when you are only given PiA). P(BJA). and PIB)?

Explain your answer. :

6.5 Write the joint distribution of ;. Xy, X1 &4 %5 and x, as a product of the chain

conditional probabilitics for the following causal network:

X3 Xy *a

Chap.6 Exercises 125

6.6 Define the sentences §,. 5;, and 53 a5 §, = P, §; = Q. and §; = P — Q. Determine
the probabilistic truth values of), §,, and §; when it is known that the probabilities
of the possible worlds are given by P(W,) = 1/4, P(W,) = L/8, P(W,) = 1/8. and
P(W) = 172, :

6.7 Write a LISP program that computes certainty factors for rules based on the ad hoc
MYCIN model.

6.8 Dempster-Shafer computations were given for four terrorist organizations A, B, C,
and D in Section 6.4. Suppose now that new evidence (m,) indicates that organization
C was indeed responsible to a degree of 0.8. This requires that values for mjom, be
computed, where m; = m; + m;. Compute a new intersection tableau for the new
evidence, that is compute my (C) and my (U) versus m, (A), m, (C.A), my(A.B.D),
and m‘(m- [2 . i

6.9 In what ways do endorsement justifications differ from probabilistic justifications?

6.10 In what ways do endorsement justifications differ from fuzzy logic justifications?

7 . ==

Structured Knowledge:
Graphs, Frames,
and Related Structures

The representations considered up to this point focused primarily on expressiveness,
validity, consistency, inference methods, and related topics. Little consideration
was given to the way in which the knowledge was structured and how it might be
viewed by designers, or to the type of data structures that should be used internally.
Neither was much consideration giyen to effective methods of organizing the knowl-
edge structures in memory. In this, and the following two chapters, we address
such problems. :

In this chapter, we first look at associative networks as a form of representation
and see examples of their use and flexibility. Next, we look at frames, a generalized
structure recently introduced as a method of grouping and linking related chunks.
of knowledge. Finally, we consider structures closely related to frames known as
scripts and memory organization packets. We compare them with the frame structures
and see how they are used in reasoning systems.

7.1 INTRODUCTION

The representations studied in Chapter 4 are suitable for the expression of fairly
simple facts. They can be written in clausal form as independent units and placed
in 2 KB in any order. Inference is straightforward with a procedure such as chaining

Sec. 7.2 Associative Networks 127

PROFESSION(bob,professor)
FACULTY(bob,engineering)

MARRIED{bob,sandy)
FATHER-OF(bob,sue.joe)
DRIVES(bob,buick}
OWNS(bob.house)
“MARRIED(x,y) V MARRIED(y x)

Figure 7.1 Facts in a KB given in él-.uu;al form.

or resolution. For example, facts about Bob, a university professor, might be entered
as clauses in a KB as depicted in Figure 7.1.

The entries in the ‘KB of Figure 7.1 have no particular order or gmupmg
associated with them. Furthermore. in reprewmmg various facts about Bob, it was
necessary to repeat Bob's name for each association given. All facts appear indepen-
dently, without any linkage to other facts, even though they may be closely related
conceptually (Bob is married, owns a house, has children, drives a Buick. and so
forth).
; For small KBs, the representation used in Figure 7.1 presents no problem.
Adding, or otherwise changing facts in the KB is easy enough, and a search of all
clauses in the KB can be made if necessary when performing inferences. When
the quantity of information becomes large and more complex, however, the acquisi-
tion, comprehension, use, and maintenance of the knowledge can become difficult
oreven intractible. In such cases, some form of knowledge structuring and organization
. becomes a necessity.

Real-world problem domains typically involve a number and variety of different
objects interacting with each other in different ways. The objects themselves may
require extensive characterizations. and their interaction relationships with other
objects may be very complex.

7.2 ASSOCIATIVE NETWORKS

Network representations provide a means of structuring and exhibiting the structure
- in knowledge. In a network. pieces of knowledge are clustered together into coherent
semantic groups. Networks also provide a more natural way to map to and from
natural language than do other representation schemes. Network representations give
a pictorial presentation of objects, their attributes and the relationships that exist
between them and other entities. In this section, we describe general associative

128 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

A Figure 7.2 Fragment of an associative
HAS-PARTS network,

networks (also known as semantic networks) and conceptual graphs and give some
of their properties.

Associative networks are directed graphs with labeled nodes and arcs or arrows.
The language used in constructing a network is based on selected domain primitives
for objects and relations as well as some general primitives. A fragment of a simple
network is illustrated in Figure 7.2. In the figure, a class of objects known as Bird
is depicted. The class has some properties and a specific member of the class named
Tweety is shown. The color of Tweety is seen to be yellow.

Associative networks were introduced by Quillian (1968) to model the semantics
of English sentences and words. He called his structures semantic networks to signify
their intended use. He developed a system which **found’ the meanings between
words by the paths connecting them. The connections were determined through a
kind of *‘spreading activation'* between the two words.

Quillian’s model of semantic networks has a certain intuitive appeal in that
related information is clustered and bound together through relational links. The
knowledge required for the performance of some task is typically contained within
a narrow domain or ‘‘semantic vicinity'’ of the task. This type of organization in
some way, resembles the way knowledge is stored and retrieved in humuns.

The graphical portrayal of knowledge can also be somewhat more expressive
than other representation schemes. This probably accounts for the popularity and
the diversity of representation models for which they have been employed. They
have, for example, been used in a variety of systems such as.natural language
understanding. information rétrieval. deductive data bases. learning systems. com-
puter vision, and in speech generation systems.

Syntax and Semantics of Associative Networ.ks'

Unlike FOPL, there is no generally accepted syntax nor semantics for associative
networks. Such rules tend to be designer dependent and vary greatly from one
implementation to another. Most network systems are based on PL or FOPL with
extensions, however. The syntax for any given system is determined by the object
and relation primitives chosen and by any special rules used to connect nodes.
Some efforts have been made toward the establishment of acceptable standards by

Sec.7.2 Associstive Networks : 129

Schubert, Goebel, and Cercone (1979), Shapiro (1979). Hendrix (1979). and Brach-
man (1979). Later in this section we will review one formal approach to graphical
representations which was recently proposed by John Sowa (1984),

' Basically, the language of associative networks is formed from letters of the
alphabet, both upper- and lowercasé, relational symbols, set membership and subset
symbols, decimal digits, square and oval nodes, and directed arcs of arbitrary length.
The word symbols used are those which represent object constants and n-ary relation
constants. Nodes are commonly used for objects or nouns, and arcs (or arc nodes)
for relations. The direction of an arc is usually taken from the first to subsequent
arguments as they appear in a relational statement. Thus, OWNS(bobs, house) would

be written as

Figure 7.3 depicts graphically some additional concepts not expressed in Figure
7.1. :
A number of arc relations have become common among users. They include
such predicates as ISA, MEMBER-OF, SUBSET-OF, AKO (a-kind-of), HAS-

Institute of
Higher Learning

BUDGET

College of
Engineering

E.E Computer Science)\ LOCATION Engineering
Department department buitding

Fivure 7.3 Associative network node and arc types.

U=

130 Structured Knowledge: Graphs, Frames, and Related Structuras Chap. 7

PARTS, INSTANCE-OF, AGENT, ATTRIBUTES. SHAPED-LIKE, and so forth.
Less common arcs have also been used to express modality relations (time, manner.
mood), linguistics case refations (theme, source, goal). logical connectives {or, not,
and. implies), quantifiers (all, some), set relations (superset, subset, member), attri-
butes. and quantification (ordinal, count).

One particular arc or link, the ISA (is a) link, has taken on a special mednmg
It signifies that Bob is a professor and that the state university system is an institute
of .higher learning. ISA relationships occur in many representations of worlds: Bill
is a student, a cat is a furry animal, a tree is a plant, and so on. The ISA link is
most often used to represent the fact that an object is of a certain type (predication)
or to express the fact that one type is a subtype of another (for example. conditional
quantification). '

Brachman (1979, 1983) has given an interesting description of the background
and uses of this now famous link. For example. the 1SA predicate has been used
to exhibit the following types of structures:

. GENERIC-GENERIC RELATIONSHIPS

Subset-Superset (fighting ships-battleships)

Generalization-Specialization (restaurant-fast-foods)

AKO (an elephant is a kind of mammal)

Conceptual containment (a triangle is a polygon)

Sets and their type (an elephant and a set of elephants)

Role value restrictions (an elephant trunk is a cylinder 1.3 ‘meters in length)

GENERIC-INDIVIDUAL RELATIONSHIPS

Set membership (Clyde is a camel)

Predication (predicate application to individual as in BROWN(camel))
Conceptual containment (king ‘and the King of England)

Abstraction (the “‘eagle’” in *‘the eagle is an endangered species’’)

Figure 7.3 illustrates some important features associative networks are good
al representing. First, it should be apparent that networks clearly show an entity’s
attributes and its relationships to other entities. This makes it easy to retrieve the
properties am entity shares with other entities. For this, it is only necessary to check
direct links tied to that entity. Second, networks can be constructed to exhibit any
hierarchical or taxonomic structure inherent in a group of entities or concepts. For
example, at the top of the structure in Figure 7.3 is the Texas State University
System. One level down from this. node are specific state universities within the

system. One of these universities, the University of Texas at El Paso. is shown
with some of its subparts, colleges, which in turn have subparts, the different depart-
ments. One member of the Computer Science Department is Bob, a professor who

Sec. 7.2 Associative Networks ' 1

owns a house and is married to Sandy. Finally, we see that networks depict the
way in which knowledge is distributed or clustered about entities in a KB.

Associative network structures permit the implementation of property inheri-
tance. a form of inference. Nodes which are members or subsets of other nodes
may inherit properties from their higher level ancester nodes. For example, from
the network of Figure 7.4. it is possible to lnfer that a mouse has hair and drinks
milk,

Property inheritance of this type is recogniud as a form of default reasoning.
The assumption is made that unless there is information to the contrary, it is reasonable
for an entity to inherit characteristics from its ancestor nodes. As the name suggests.
this type of inheritance is called default inheritance. When an object does not or
cannot inherit certain properties. it would be assigned values of its own which
override any inherited ones.

Data structures patlerned after associative networks alscl permit the cfhaenl
storage of information since it is only necessary to explicitly store objects and
shared properties once. Shared properties are attached only to the highest node in
a structure to which they apply. For example, in LISP, Bob's associations (Figure
7.3) can be implemented with property lists where all of Bob's properties are linked
to one atom.

{putprop ‘bob ‘es-dept ‘member-of)
{putprop ‘bob 'professor 'isa)
{putprop "bob 'sandy 'married-to)
‘{putprop ‘bob ‘house ‘owns)

. Mputprop ‘bob ‘buick ‘drives)

The semantics of associative networks are sometimes defined along the same
lines as that of tradmmgal logics. In fact, some network system definitions provide
a meaps of mapping to and from PL or FOPL expressions. For these systems, the
semantics are based on interpretations. Thus, an interpretation satisfies a portion of
a network if and only if all arc relations hold in the given portion.

Inference procedures for networks can also parallel those of PL and FOPL.
If a class A of objects has some property P, and a is a member of A, we infer that
a has property P. Syntactic inference in networks can also be defined using parallels
to traditional logics such as unification, chaining, modus ponens, and even resolution.

O HAS-PARTS
hair -

Figure 7.4 Property inheritance in a

heirarchical network.

4
v

132 -~ Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

These procedures are implemented through node and arc matching processes and
operators which insert, erase, copy. simplify, and join networks. We examine some
typical inferencing procedures in more detail below.

Conceptual Graphs

Although there are no commonly accepted standards for a syntax and semantics
for associative networks, we present an approach in this section which we feel
may at least become a de facto standard in the future. It is based on the use of
the conceptual graph as a primitive building block for associative networks. The
formalism of these graphs has been adopted as a basic representation by a number
of Al researchers and a variety of implementations using conceptual graphs are
currently under development. Much of the popularity of these graphs has been due
to recent work by John Sowa (1984) and his colleagues. » .

A conceptual graph is a graphical portrayal of a mental perception which
consists of basic or primitive concepts and the relationships that exist between the
concepts. A single conceptual graph is roughly equivalent to a graphical diagram
of a natural language sentence where the words are depicted as concepts and relation-
ships. Conceptual graphs may be regarded as formal building blocks for associative
networks which, when linked together in a coherent way, form a more complex
knowledge structure. An example of such a graph which represents the sentence
““Joe is eating soup with a spoon’’ is depicted in Figure 7.5.

In Figure 7.5, concepts are enclosed in boxes and relations between the concepts
are enclosed in ovals. The direction of the arrow corresponds to the order of the
arguments in the relation they connect. The last or nth arc (argument) points away
from the circle relation and all other arcs point toward the relation.

Concept symbols refer to entities, actions, properties, or evenis in the world.
A concept may be individual or generic. Individual concepts have a type field followed
by a referrent field. The concept [PERSON:joe] has type PERSON and referrent
Joe. Referrents like joe and food in Figure 7.5 are called individual concepts since
they refer to specific entities. EAT and SPOON have no referrent fields since they
are generic concepts which refer to unspecified entities. Concepts like AGENT,
OBJECT, INSTRUMENT, and PART are obtained from a collection of standard
concepts. New concepts and relations can also be defined from these basic ones.

INSTRUMENT

T

SPOON

Figure 7.5 A conceptual graph.

Sec. 7.2 Associative Networks " 133

A linear conceptual graph form which is easier to present as text can also be
given. The linear form equivalent to the above sentence is

[PERSON:joe] +—{AGENT) «|EAT]-
(OBJECT) —[FOOD:soup]
(INSTRUMENT) —[SPOON]|

where square brackets have replaced concept boxes and parentheqes have replaced
relation circles.

The language of conceptual graphs is formed from upper- and lowercase letters
of the alphabet hoxes and cu'clcs dlrecled arcs. and a number of special characters
including -, L # @V, L1 G) =, <, {, and }. Some symbols
are used to exhtblt the structure of lhe graph, while others are used to determine
the referrents.

2 The dash signifies continuation of the linear graph on the next line. The question

mark is used to signify a query about a concept when placed in the referrent field:
|[HOUSE:?] means which house? The exclamation mark is used for emphasis to
draw attention to a concept. The asterisk signifies a variable or unspecified object:
[HOUSE:*x] means a house or some house. The pound sign signifies a definite
article known to the speaker. For example, [House: #432] refers to a specific house,
house number 432. The @ symbol relates to quantification: |[HOUSE: (@ n] means
n houses. V signifies every or all, the same as in FOPL. The tilde is negation.
Double quotation marks delimit literal strings. And the colon, brackets. parentheses.,
and directed arcs are used to construct graph structures as illustrated above,

Since conceptual graphs and FOPL are both a form of logical system. one
might expect that it is possible to map from one representation to the other. Indeed
this is the case, although some mappings will, in general, result in second order
FOPL statements.

To transform a conceptual graph to a predicate logic- statement requires that
unique variable names be assigned to every gemeric concept of the graph. Thus.
the concepts EAT and FOOD of Figure 7.5 would be assigned the variable names
x and y, respectively. Next, all type labels such as PERSON and FOOD are converted
to unary predicates with the same name. Conceptual relations such as AGENT,
OBJECT. and INSTRUMENT are converted to predicates with as many arguments
as there are arcs connected to the relation. Concept referrents such as Joe and soup
become FOPL constants. Concepts with extended referrents such as V map to the
universal quantifier Y. Generic concepts with no quantifier in the referrent field
have an existential quantifier, 3, placed before the formula for each variable. and
conjunction symbols, &, are placed between the predicates.

As an example, one could convert the sentence *'Every.car has an engine’™”
from its conceptual graph representation given by ‘

[CAR:¥] —(PART) —(ENGINE]

to its equivalent FOPL representation. Using the rules outlined above, the equivalént
FOPL representation derived is just

134 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7
wx 3y (CAR(x) ={ENGINE(y) & PART(x.y)))

Mapping the other way, that is from FOPL statements to conteptual graphs.
begins by putting the FOPL formula into prenex normal form. and converting ull
logical connectives to negation and conjunction. Next, every occurrence of universal
quantification Vx is replaced with the equivalent form “3x (in graph notation this
is [x"[with the subsequent addition of balancing brackets | | to close off the
expression). Every variable x and every occurrence of x is then replaced with the
most general type concept denoted as [T:*x]. And finally. every n-ary predicate
symbol is replaced with an n-ary concept relation whose ith arc is attached to the
concept in the ith argument place in the predicate.

Implication in a conceptual graph can be represented with negation and conjunc-
tion. For example, the FOPL equivalent of £ — Q can be written as “[P "[Q]]
(recall that P — @ = ("P V Q) = "(P & ~Q)). In this expression, [is read as if
and the nested "[is read as then. More generally, we write the implication as
“[*p"1*q]] where *p and *q are themselves any conceptual graph.

Inference can be accomplished by modifying and combining graphs through
the use of operators and basic graph inference rules. Four uscful graph formation
operators are copy, restrict, join, and simplify. These operators are defined as follows.

Copy. Produces a duplicate copy of a CG.

Restrict.. Modifies a graph by replacing a type label of a concept with a
subtype or a specialization from generic 10 individual by inserting a referrent of
the same concept type.

Join. Combines two identical graphs C, and C, by attaching all relation
arcs from C, to C, and then erasing C;.

Simplify. Eliminates one of two identical relations in a conceptual graph
when all connecting arcs are aiso the same. "

As an example of the use of the formation rules, consider the sentence “Tweety
ate a fat worm.”” This sentence can be broken down into five basic or cannonical
conceptual graphs corresponding to the five words in the sentence.

Tweety: [BIRD:tweety]

ate: [Animal] < (AGENT) « [ATE} — (Patient) — [ENTITY]
a: {1 e |
fat: [FAT] = (ATTRIBUTE) «— [PHYSICAL-OBJECT]

WOrm: [WORM]

* The [T:*| signifies that something of an unspecified type exists (T is the most
general type of all concepts).

Sec. 7.2 Associative Natworks - 138

From these basic graphs a single conceptual graph can be constructed using
the formation operators. First, the subgraph from **a fat worm™ is constructed by
restricting PHYSICAL-OBJECT in the fat graph to WORM and then joining it to
the graph for worm to get [FAT] « [ATTRIBUTE] « [WORM]. Next, ENTITY
in the graph for ate is restricred to WORM and joined to the graph just completed.
This gives : :

[ANIMAL] « (AGENT) « [ATE] — (PATIENT) — [WORM]| « (ATTRIBUTE) — [FAT].

The final conceptual graph is obtained by restricting ANIMAL to BIRD with referrent
Tweety, joining the graphs and labeling the whole graph with PAST (for past tense).

(PAST) — [[BIRD: tweety] «— [AGENT) « [EAT] — (PATIENT) — [WORM|— (ATTRIBUTE) — (FAT]]

In forming the above graph, concept specialization occurred (e.g., when restric-
tion took place as in PHYSICAL-OBJECT to WORM). Thus, the formation rules
and their inverses provide one method of inference. When rules for handling negation
and other basic inference rules are combined with the formation rules, a complete
inference system is obtained. This system is truth preserving. The inference rules
needed which are the equivalent of those.in a PL system are defined as follows.

Erasure. Any conceptual graph enclosed by an even number of negations
may be erased.

Insertion. Any conceptual graph may be inserted into another graph context
which is enclosed by an odd number of negations.

Iteration. A copy of any conceptual graph C may be inserted into a graph
context in which C occurs or in which C is dominated by another concept.

Deiteration. Any conceptual graph which could be the result of iteration
may be ¢rased from a conceptual graph context.

Double Negation. A double negation may be erased or drawn before any
conceptual graph or set of graphs.

As an example of some of the above rules, any graph w may be inserted in
the implication “[u"[v]] to derive ~[u w™[v]]. Any graph w may be erased from
the consequent of an implication ~[«”[v w]] to derive “[u"[v]]. Any graph w may
be erased from the antecedent of an implication only if it has been independently
asserted. Thus if u and ~[u »"[w]] then derive ~[v” w]]. i

Note that deiteration and double negation are equivalent to modus ponens,
that is, given p and “[p~[q]], deiteration permits erasure of p inside the first bracket
to get “["[g]]. Double negation then permits erasure of “[" to obtain the final
result g. !

136 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

Other inference methods including inheritance (if all A have property P and
all B are A, all B have property P) and default reasoning are also possible with
conceptual graphs. The implementation of modal logic formalisms with these graphs
is possible by using concepts such as possible and necessary. Heiristic reasoning
can be accomplished within the theory of conceptual graphs.

In summary, conceptual graphs offer the means to represent natural language
statements accurately and to perform many forms of inference found in common
sense reasoning.

7.3 FRAME STRUCTURES

Frames were first introduced by Marvin Minsky (1975) as a data structure to represent
a mental model of a stereotypical situation such as driving a car, attending a meeting.
or eating in a restaurant. Knowledge about an object or event is stored together in
memory as a unit. Then, when a new situation is encountered, an appropriate frame
is selected from memory for use in reasoning about the situation.

Frames are general record-like structures which consist of a collection of slots
and slot values. The slots may be of any size and type. Slots typically have names
and values or subfields called facets, Facets may also have names and any number
of values. An example of a simple frame for Bob is depicted in Figure 7.6 and a
general frame template structure is illustrated in Figure 7.7.

From Figure 7.7 it will be seen that a frame may have any number of slots.
and a slot may have any number of facets, each with any number of values. This
gives a very general framework from which to build a variety of knowledge structures.

The slots in a frame specify general or specific characteristics of the entity
for which the frame represents, and sometimes they include instructions on how o
apply or use the slot values. Typically, a slot contains information such as attribute
value pairs, default values. conditions for filling a slot, pointers to other related
frames. and procedures that are activated when needed for- different purposes. For
example, the Ford frame illustrated in Figure 7.8 has attribute-value slots (COLOR:
silver, MODEL: 4-door, and the like), a slot which takes default values. for GAS-
MILEAGE, and a slot with an attached if-needed procedure.

{(bob
(PROFESSION (VALUE professar))
[AGE (VALUE 42))
(WIFE (VALUE sandy))
(CHILDREN (VALUE sue joe))
{ADDRESS (STREET (VALUE 100 elm))
(CITY (VALUE dallas))
(STATE (VALUE)
" (ZIP [VALUE 75000)1))

Figure 7.6 A simple instantiated person frame.

Sec.7.3 Frame Structures . ' 137

(<frame name>
(<slot1> (<facet1><valuel>.,..<valuek,>)
(<facet2><valuel>. .. .<valuek;>)

(< slot2> (<facet1><valuel>....<valuek,>)

Figure 7.7 A general frame structure.

The value fget in the GAS-MILEAGE slot is a function call to fetch a default
value from another frame such as the general car frame for which Ford is a-kind-
of (AKO). When the value of this slot is evaluated, the fget function is activated.
When fget finds no value for gas mileage it recursively looks for a value from
ancestor frames until a value is found.

The if-needed value in the Range slot is a procedure name that, when called,
computes the driving range of the Ford as a function of gas mileage and fuel capacity.
Slots with attached procedures such as fget and if-needed are called procedural
attachments or demons. They are done automatically when a value is needed but
not provided for in a slot. Other types of demons include if-added and if-removed
procedures. They would be triggered, for example, when a value is added or removed
from a slot and other actions are needed such as updating slots in other dependent
frames.

Like associative networks, frames are usually linked together in a network
through the use of special pointers such as the AKO pointer in Figure 7.8. Hierarchies
of frames are typical for many systems where entities have supertype-subtype or
generic-instance relationships. Such networks make it possible to easily implement
property inheritance and default reasoning as depicted in Figure 7.8. This is illustrated

('l?rd ({AKO (VALUE car))
(COLOR (VALUE silver))
{MODEL (VALUE 4-doorl}
(GAS-MILEAGE (DEFAULT fget))
(RANGE (VALUE if-needed))
(WEIGHT (VALUE 2600))
{FUEL-CAPACITY (VALUE 18))

Figure 7.8 A Ford frame with various slot types,

138 Structured Knowledge: Graphs, Frames, and Related Structuras Chap. 7

Transport
Origin:
Destination:
Public i Private
conveyance comnveyance
Reservation: Plan route:
Pack: Pack:
Aiir Land Sea Air Land Sea
transport transport transport i . .
t - .
Airport Tickets: Port $. J
Limo: / \ Bus:

Bus Train Lime
Figure 7.9 Network of frames for transportation methods.

in the network of frames which represents various forms of transportation for people
(Figure 7.9).

Frame-Based Representation Languages

Frame representations have become popular enough that special high level frame-
based representation languages have been developed. Most of these languages use
LISP as the host language. They typically have functions to create, access, modify,
update, and display frames. For example, a function which defines a frame might
be called with

(fdefine f-name <parents><slots>)

where fdefine is a frame definition function, f-name is the name assigned to the
new frame, <parents> is a list of all parent frames to which the new frame is
linked, and <slots> is a list of slot names and initial values. Using the function
fdefine to create a train frame we might provide the following details.

(fdefine general-train land-transport
(type (VALUE passenger))
[class (VALUE first-class second-class sleeper))
(food (restaurant (VALUE hot-meals)}
({fast-food (VALUE cold-snacks))

Sec. 7.3 ’ Frame Structures _ 133

A few other functions typically provided in a frame language include

(fget f-name slot-name facet-name) ;returns data from
i :specified location
(fslots f-name) ;returns names of
;slots
(ffacets f-name slot-name) ;returns names of
facets
{fput f-name slct-name facet-name) ;adds data to a
: - :specified location
(fremove f-name slot-name facet-name) ;removes data from

ispecified location

Ueveral frame languages have now been developed to aid in building frame-
based systems. They include the Frame Representation Language (FRL) (Bobrow
et al., 1977), Knowledge Representation Language (KRL), which served as a base
language for a scheduling system called NUDGE (Goldstein et al., 1977) and KLONE

* (Brachman, 1978).

Implementation of Frame Structures

One way to implement frames is with property lists. An atom is used as the frame
name and slots are given as properties. Facets and values within slots become lists
of lists for the slot property. For example. to represent a train frame we define the

following putprop. : :

(putprop ‘train ((type (VALUE passenger))
(class(VALUE first second sleeper))
(food (restaurant (VALUE hot-meals))
(fast-food (VALUE cold snacksl})
‘land-transport)

Another way to implement frames is with an association list (an a-list). that
is, a list of sublists where each tublist contains a key and one or more corresponding
values. The same train frame would be represented using an a-list as

(setq train ‘((AKO land-transport]
(type (VALUE passenger))
(class (VALUE first second sleeper))
(food (restaurant (VALUE hot-meals))
(fast-food (VALUE cold snacks))))

140 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

It is also possible to represent frame-like structures using object-oriented pro-
gramming extensions to LISP languages such as FLAVORS (described in Chapter
8). .

7.4 CONCEPTUAL DEPENDENCIES AND SCRIPTS

Scripts are another structured representation scheme introduced by Roger Schank
(1977). They are used to represent sequences of commonly occurring events. They
were originally developed to capture the meanings of stories or to *‘understand™
natural language text. In that respect they are like a script for a play.

A script is a predefined frame-like structure which contains expectations, infer-
ences, and other knowledge that is relevant to a stereotypical situation. Scripts are
constricted using basic primitive concepts and rules of formation somewit like
-the conceptual graphs described in Section 7.2. Before proceeding with a description
of the script, we describe the primitives and related rules used in building them.
They are known as conceptual dependencies (not to be confused with conceptual
graphs).

Conceptual Dependencies

Conceptual dependency (CD) theory is based on the use of a limited number of
primitive concepts and rules of formation to represent any natural language statement.
The theory states that different sentences which have the same meaning should
have the same unique CD representation. Furthermore. representitions for any sen-
tence should be unambiguous as the speaker intends, even though it may have
syntactic ambiguity. as in *'[saw the Golden Gate Bridge flying into San Francisco
this afternoon.™ It 1s the contention that any concept. like dreaming. thinking.
bellowing. or scheming can be described in terms of these primitives.

In CD theory five different types of ontological (state of being) building blocks
are distinguished. Each of these types, in turn. has several subtypes. The types are
made up of entities. actions. conceptual cases, conceptual dependencies, and concep-
tual tenses.

ENTITIES

Picture producers (PP) are actors or physical objects (including human memory)
that perform different acts.
Picture aiders (PA) are supporting properties or attributes of producers.

ACTIONS

Primitive actions (ACTS) as listed in Figure 7.10.
Action aiders (AA) are properties or attributes of primitive actions.

Sec. 74 Conceptual Dependencies and Scriﬁts 141

Primitive
actions Intended meaning

ATRANS Transfer of an abstract entity
ATTEND Focusing attention on an object
CONC To think about something

EXPEL Expulsion of anything from the body
GRASP Grasping or holding an object tightly
INGEST Ingesting something

MBUILD Building on information

MOVE © Moving a part of the body
MTRANS Transfer of mental information
PROPEL Application of force -
PTRANS Physical transfer from one location 1o another
SPEAK = Emitting a sound

Figure 7.10 Conceptuul dependency primitive actions.

CONCEPTUAL CASES (ALL ACTIONS INVOLVE ONE OR MORE OF THESE)

Objective Case
Directive Case
Instrumental Case
Recipient Case

CONCEPTUAL DEPENDENCIES

Semantic rules for the formation of dependency structures such as the relationship
between an actor and an event or between a primitive action and an instrument,
(see Figure 7.11).

P
PP&ACT Bird=»PTRANS | - Bird few
PP=PP Joesastudent Jow 1s 0 student
ACT+=-pp JoedsPROPE L<door Joe pushed the door
PP B ' Sue
- A[T—LPP Joe ﬂﬂ'I"RANS-—L Joe gave Sue a fower.
. to Joe
flower !
B ’ ! Joe
ACT—§ Joe <> INGEST « ¢ Joe ate some soup
To do ;
soup To
spoon

Figure.7.11 Some typical conceptual dependency structurcs.

42 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7
CONCEPTUAL TENSES (TIME OF ACTION OR STATE OF BEING)

Conditional (c)
Continuing (k)
Finished Transition (tf)
Future (f)
Interrogative (?)
Negative (/)

Past (p)

Present (nil)

Start Transition (ts)
Timeless (delta)
Transition (t)

Conceptual structures in the form of a graph are used to represent the meanings
of different English (or other language) sentences. The. graphs are constructed from
clementary structures in accordance with basic syntax rules. Some of the basic
concept rules are as follows.

PP ACT Some picture producers perform
primitive actions.
PP PA Picture producers have attributes.
ACT <« O—PP Primitive actions have objects.
— PP
ACT «—R— Primitive actions have recipients.
PP

LOC '
ACT « D—-[Primitive actions have directions.
LOC

T Conceptualizations have times.
LOC Conceptualizations have locations.
ACT 1 — Primitive actions have instruments.

Using these syntactic elements, structures which represent any senlence can
be constructed. Some examples of simple graphs and their corresponding sentences
are illustrated in Figure 7.11.

More complex sentence representations are constructed from the basic building
blocks given above. Note the similarities between CD theory and the conceptual
graphs of the previous section. Both have primitive concepts and relations defined,
and both have a syntax for graphical representation. Conceptual graphs differ from
CDs mainly in that the conceptual graph is logic based, whereas CD theory is
mainly concemed with the semantics of events. We now turn to the event represe ntation
structure which uses CDs, the script. .

Sec. 74 Conceptual Dependencies and Scripts 143
Scripts
Scripts are frame-like structures used m represent commonly occumng experiences

such as going to the movies, shopping in a supermarket, eating in a restaurant, or
visiting a dentist. Like a script for a play, the script structure is described in terms

SCRIPT-NAME: food market *
TRACK ¢ supermarket
ROLES : shopper
deli attendant
seafood attendant
checkout clerk
sacking clerk
. other shoppers
CONDITIONS : shopper needs groceries
food market open i
PROPS : shopping cart
display aisles
market items.
checkout stands
cashier
money
SCENE1 : Enter Market
shopper PTRANS shopper into market
shopper PTRANS shopping-cart to shopper
SCENE2 ¢ Shop For ltems
shopper MOVE shopper thmugh aisles
shopper ATTEND eyes to display items
shopper PTRANS items to shoppmg cart
SCENE3 ¢ Check Qut
shopper MOVE shopper to checkout stand
shopper WAIT shopper turn
shopper ATTEND eyes to charges
shopper ATRANS money to cashier
sacker ATRANS bags to shopper

SCENE4 * : Exit Market
. shopper PTRANS shopper to exit market
RESULTS : shopper has less money
shopper has grocery items s

market has less grocery items
market has more money

Figure 7.12 A supermarket uriﬁi structure.

144 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

of actors, roles, props, and scenes. Slots in a script which correspond to’ parts of
the event are filled with CD primitixes as defined above. An example of a supermarket
script is illustrated in Figure 7.12. This script has four scenes which correspond to
the main events which commonly occur in a supermarket shopping éxperience.

Reasoning with Scripts

Since scripts contain knowledge that people use for common every day activities,
they can be used to provide an expected scenario for a given situation.

Reasoning in a script begins with the creation of a partially filled script named
to meet the current situation. Next, a known script which matches the current situation
is recalled from memory. The script name, preconditions, or other key words provide
index values with which to search for the appropriate script. Inference is accomplished
by filling in slots with inherited and default values that satisfy certain conditions.
For example, if it is known that Joe-PTRANS-Joe into a supermarket and Joe-
ATRANS-cashier money, it can be inferred that Joe needed groceries, shopped for
items, paid the cashier, checked out, and left the market with groceries but with
less money than when he entered.

Scripts have-now been used in a number of language understanding systems
(English as well as other languages) at Yale University by Schank and his colleagues.
One such system is SAM (Script Applier Mechanism) which reads and reasons
with text to demonstrate an **understanding™ of stories (such as car accident stories
from newspapers) that were script based. Other programs developed at Yale include
PAM. POLITICS, FRUMP, IPP, BORIS, BABEL, and CYRUS. All of these pro-
grams deal with reading, planning, explaining. or in some way understanding stories
They all used some form of script representation scheme.

7.5 SUMMARY

In this chapter we have investigated different types of structured knowlcdge representa-
tion methods. We first considered associative networks, a representation based on
a structure of linked nodes (concepts) and arcs (relations) connecting the nodes.
With these networks we saw how related concepts could be structured into cohesive
units and exhibited as a graphical representation.

Next, we looked at conceptual graphs, a structured formalism based on tradi-
tional logics and which uses primitive building blocks for concepts and relationships
between the concepts. How conceptual graphs and formulas in FOPL could be
mapped from one to the other and how inferring with conceptual graphs compared
to logical inference were demonstrated.)

We then considered' frame structures as general methods of representing units
of knowledge. Frames are composed of any number of slots, each with any number
of facets, and they in tumn, contain any number of values. The contents of a siot
may be attributes which characterize the frame entity, pointers to related frames,

Chap.7 Exercises 145

procedures; or even other subframes. Inference with frames is accomplished through
property inheritance, default values, embedded procedures, and the use of heuristics.

Finally, we described a special frame-like structure called a script. Scripts
are used to represent stereotypical patterns for commonly occurring events. Conceptual
dependency theory provides primitive building blocks for actions and states that
occur within a script. Like a play, a script contains actors, roles, props, and scenes
which combine to represent a familiar situation. Scripts have been used in a number
of programs which read and ‘‘understand’” language in the form of stories.

EXERCISES:

7.1 Express the following comepu as an associative network structure with interconnected
nodes and labeled arcs.
Company ABC is a software development company. Three departments within
the company are Sales, Administration, and Programming. Joe is the manager
of Programming. Bill and Sue are programmers. Sue is married (o Sam. Sam is
an editor for Prentice Hall. They have three children, and they live on Elm
street. Sue wears glasses and is five feet four inches tall.
7.2 Write LISP expressions which represent the associative network of Problem 7.1.
a. using property lists, and
b. using a-lists.
7.3 Write PROLOG expressions which represent the associative network of P-mlem 7.1.
7.4 Transform the FOPL statements given below into equivalent conceptual gmphs
a. Vx NORMAL(x) & GROWN(x)-WALK(x).
b. ¥x,y MARRIED(x,y) — MARRIED(y .x).
c. Vx HASWINGS(x) & LAYSEGGS(x) — ISBIRD(x).
7.5 Transform the following conceptual graphs into equivalent FOPL statements.
a. [PERSON:suc] +{(AGENT) +[DRINK]-
. IO‘BJECT)+ |[FOOD:milk]
(INSTRUMENT)— [GLASS]
b. (PAST)— [[CAMEL:clyde] «(AGENT) «[DRINK}— (OBJECT)-
[WATER}— (ATTRIBUTE)— [50-GALLONS]]
7.6 The original primitives of conceptual dependency theory developed by Schank fail 1o
represent some important concepts directly. What additional primitives can you discover
that would be useful?
7.7 Create a movie script similar to the supermarket script of Figure 7.11.
7.8 What arc the main differences between scripts and frame structures?
7.9 Express the following sentences as conceptual dependency structures.

a. Bill is a programmer.
b. Smgleu'yaboxafcaMy

¢. Charlie drove the pickup fast.
7.10 Create a frame network for terrestrial motor vehicles (cars, trucks, motorcycles) and
give one complete frame in detail for cars-which includes the slots for the main component

-

148 Structured Knowledge: Graphs, Frames, and Related Structures Chap. 7

parts, their attributes, and relations between parts. Include an as-nceded siot for the

gas of each type mileage.
7.11 Write a LISP program to create a frame data structure which represents the car frame

of Problem 7.10.
7.12 Compare the inference process using frames (o that of inference in FOPL. Give examples

of both.]

-8

Object-Oriented
Representations

The previous chapter marked a departure from the approaches to knowledge representa-
tion of earlier chapters in that the methods there focused on adding structure to the
knowledge. Structure was added by linking concepts through relations and clustering
together all related knowledge about an object. In some cases, as with frames,
procedures related to the knowledge were also attached to the knowledge cluster.
The approach in grouping knowledge and related procedures together into a cohesive
unit is carried even further with object-oriented systems which we examine in some
detail in this chapter.

8.1 INVRODUCTION

Grouping related knowledge together in Al systems gains some of the same cognitive
advantages realized in the human brain. The knowledge required for a given cognitive
task is usually quite limited in domain and scope. Therefore, access and processing
can be made more efficient by grouping or partitioning related knowledge together
as an unit. We saw how this notion was implemented with linked frames in the
previous chapter. We shall see in this chapter, that object-oriented systems share a
number of similarities with the frame implementations.

In procedural programming languages such as Pascal or FORTRAN, a program

147

148 Object-Oriented Representations Chap. 8

consists of a procedural part and a data part. The procedural part consists of the
set of program instructions, and the data part, the numbers and character strings
that are manipulated by the instructions. Programs typically contain several modules
of instructions that perform computations on the same data set. When some change
is made to the format of the data, every module that uses it must then be modified
10 accommodate the newly revised format. This places a heavy burden on the software
maintenance process and makes these types of programs more prone to errors.

In an object-oriented system (OOS) the emphasis betwecn data and procedures
is reversed. Data becomes the primary object and procedures are secondary. For
example, everything in the universe of an OOS is an object, and objects are inaccessible
to outside procedures. This form of structuring is sometimes called encapsulation
or data hiding. It is a well known system design principle used to make systems
more modular and robust. With encapsulation, objects are associated with their
own procedures and, as such, are responsible for their own actions. Thus, when
some change is required in the data or procedure, only the changed object need be
modified. Other objects are not affected and therefore require no modifications.

In object-oriented systems there is a simplicity in ‘structure because almost
everything is an object. For example, a car can be regarded as an object consisting
of many interacting components or subobjects: an engine, electrical system, fuel
system, drive train, controls, and so on. To model such a system using an object-
oriented approach requires that all parts be declared as objects, each one characterized
by its own attributes and its own operational behavior. Even a simple windshield
. wiper would be described as an object with given attributes and operations. As
such, it might be described as the structure presented in Figure 8.1.

This object has a name, a class characterization, several distinguishing attributes,
and a set of operations. Since all characteristics of the wiper object, including its
operations, are contained within a single entity, only this entity needs changing
when some design change is made to this part of the car. Other objects that interact
with it are not affected, provided the communication procedures between the objects
were not changed.. To initiate the task of cleaning moisture from the windshield
requires only that a message be sent to the object. This message can remain the

OBJECT NAME left wiper

AKO wiper
ATTRIBUTES made of rubber and metal
length: 14 inches

color: black and silver

location: lower left windshield

function: rub moisture from windshield
OPERATIONS mm-on swiich: move in arc on windshield

repeating clockwise then counter-clockwise

wrm-off switch: move to home position

Figure 8.1 Object description for a windshicld wiper.

Sec. 8.2 Overview of Object-Oriented Systems 149

same even though the structure of the wiper or its-mode of operation may have
changed. § ;

Because there is more than one wiper, each with similar attributes and operations.
‘some savings in memory and procedures can be realized by creating a generic
class which has all the characteristics which are common to the left. right. and
rear wipers. The three instances retain some characteristics unique to themselves.
but they inherit common attributes and operations from the more general wiper
class. :

The object paradigm described above seems to model real-world systems more
closely than the procedural programming models where objects (data) and procedures
are separated. In object-oriented systems, objects become individual, self-contained
units that exhibii a certain behavior of their own and interact with other objects
only through the passing of messages. Tasks get performed when a message is
sent to an object that can-perform the task. All the details of the task are rightfully
hidden from other objects. For example. when your car needs repairing. vou send
a message to the repair shop. The repair shop. in turn, may need parts from one
or more manufacturers for which they must send messages. When the car has been
repaired, the repair shop sends you a message informing you of that fact.

In having the shop repair your car, you probably are not interested in all the
details related to the repair, the fact that messages were sent to other organizations
for parts. that they were obtained by Federal Express, and that certain detailed
procedures were taken to complete the repair process. Your primary concem is
that the repair operation was properly completed and your car returmed in working
order. The need to model operational behavior such as this has prompted the develop-
ment of object-oriented systems.

2 OVERVIEW OF OBJECT-ORIENTED SYSTEMS

The basic idea behind an OOS is the notion of clusses of objects interacting with
each other to accomplish some set of tasks. The objects have well-defined behaviors.
They interact with each other through the use of messages. When a task needs to
be performed, an object is passed a message which specifies the task requirements.
The receiving object then takes appropriate action in response to the message and
responds by returning a message to the sender. In performing the required task.
the receiver may need assistance from other objects, thereby prompting furthér mes-
sages to be sent. . it ;

These ideas are illustrated in Figure 8.2 which depicts the simulation of a
seaport facility. Ocean ships arrive for docking, unloading, loading, and departing.
When the facilities (tugboats, berths, and loading and unloading equipment and
crews) are busy, arriving ships must queue and wait at sea until space and other
facilities are available. The harbor master coordinates the arrivals and departures
by assigning tugs and other resources to the amiving ships. The objects in this
example are, of course, the individual ships, the tugs, the docks, the harbor master,

150 ' Object-Oriented Representations Chap. 8

Sea vessel

—— e g e e e 7 characteristics

and maneuvers

|

|

|

: Loading
r- ¥ taciities
: Harbor
| |Du¢k2 master
|

|

- (]

l Figure 8.2 Objects communicating o
' complete a task.

and the cargo handling facilities. Actions are initiated by message passing between
these objects. The dashed lines connecting members of the class of sea vessels
depict the way common characteristics and operational behaviors are shared by
members of the same class (they all have a coordinate position, a maximum cruising
speed, cargo capacity, and so on).

Tasks are performed when a message is sent from one object to another..For
exmaple, the harbor master may send a message (o a lug o provide assistance to
ship 87 in deberthing from dock 2. This would then result in a sequence of actions
from the tug having received the message.

In general, a task may consist of any definable operation. such as changing
an object’s position, loading cargo, manipulating a character string, or popping up
a prompt window. A complete program would then be a sequence of the basic
tasks such as the simulated movement of ships into and out of the seaport after
discharging and taking on cargo.

8.3 OBJECTS, CLASSES, MESSAGES, AND METHODS

In this section we present definitions for the basic concepts that make up an OQOS:
the object, message. class, methods, and class hierarchies, There are probably as
many as fifty different QOS languages, and the examples presented in this section
may not comply exactly with any one in particular. The examples are representative
of all OOS however, and are based mainly on material from the Smalltalk family.
including Smalltalk 80 (Goldberg and Robson. 1983. and Kaehler and Patterson,
1986), Smalltalk/V (Digitalk, Inc., 1986), and Liule Smalltalk (Budd, 1987). Special-
ized OOS languages are considered in Section 8.5.

Sec. 8.3 Objects, Classes, Messages, and Methods 151

Objects

Objects are the basic building blocks in object-oriented systems. All entities except
parts of a message, comments, and certain punctuation symbols are objects. An
object consists of a limited amount of memory which contains other objects (duta
and procedures). They are encapsulated together.as a unit and are accessible
that object only. Examples of objects are numbers such as 5, 31, 6.213. strings
like ‘this is a string,’ arrays such as #(23 ‘a string’ 311 (3 4 5)), the Turtle (a
global graphics object originally used in LOGO), a windshield wiper as described
above, a ship. and so on. Objects are characterized by attributes and by the way
they behave when messages are sent to them. All objects belong to some class.
They are created by declaring them as instances of an existing class and instantiating
instance variables. The class to which an object belongs can be determined by .
sending it the message *‘class."’ i

Messages

Actions are performed in-an OOS by sending messages to an object. This corresponds
to a function or procedure call in other languages. The messages are formatted
strings composed of three parts: a receiver object, a message selector, and a sequence
of zero or more arguments. The format of a message is given as

<object><selector><arg, args. . .=

The object identifies the receiver of the message. This field may contain an
object item or another message which evaluates to an object. The selector is a
procedure pame. It specifies what action is required from the object. The arguments
are objects used by the receiver object to complete some desired task. Messages
may also be given in place of an argument since a message always elicits an object
as a response.

When an object receives a valid message, it responds by taking appropriate
actions (such as executing a procedure or sending messages (o cther objects) and
then returning a result. For example. the message 9.~ 5 causes the receiver object
9 to respond to the selector — by subtracting 5 from 9 and returning the object 4.

There are three types of messages: unary, binary. and keyword (n-ary). Al!
three types parse from left to right, but parentheses may be used to determine tt
order of interpretation. A unary message requires no arguments, For example. eact
of the following are unary messages:

' 5 sign
10 factorial
‘once upon a time’ size
#(a b ¢ d) reversed
68 asCharacter

152 Object-Oriented R-pr'-nentations Chap. b

In each of these examples, the first item in the message is the receiver object, and
the second item the selector. The first example returns the integer +1 to signify a
positive algebraic sign for the number 5. The second example returns 3628800 the
factorial value of the integer 10. The third example returns 16, the length of the
string. The fourth returns the array #(d ¢ b a), and the fifth returns D. the ASCII
character equivalent of 68.

Binary messages take one argument. Arithmetic operations are typical of binary
messages, where the first operand is the receiver, the selector is the arithmetic
operation to be performed. and the second opera.nd is the argument. Examples of
binary messages are

10 + 32 “an addition message”

13-9 "‘a subtraction message’’

2+°17 "multiplication message”

54/ 2 “rational division message"

#labc) #(def) "the comma concatenates Iwo arrays”
7<9 "relational test message”

7 fu 12 "an x-y coordinate point reference’”

Comments may be placed anywhere within an OOS program using the double
quotation marks as seen in the above examples. Note that the last three examples
are nonarithmetic binary messages. They result in the combining . two arrays
into one, a boolean relational -test, and the creation of a graphics coordinate point
at column 7, row |2, respectively.

The third and most general type of message is the keyword message. These
messages have selectors which consist of one or more keyword identifiers, where
each is followed by a colon and an argument. The argument can be an object or
any message, but if it is another keyword message, it must be enclosed in parentheses
to avoid ambiguity. Examples of keyword messages are

5 between: 4 and. 10 “a Boolean test”

‘aecdb’ copyFrom: 2t0: 5 “copies position 2 of the
string to position 5"

#(a bcx)at: 4 put: #(de) “the elements of #(d e)
replace x in the array™

‘texas’ size between: 2 + 2 and: 4 factorial

setl add: (i + 1) "add new element to set 1"

The last two examples above contain messages within méssages. while the
last example has a message delimited with parentheses. In executing a message

Sec. 8.3 Objects, Classes, Messages, and Methods . 153

without parentheses, the execution proceeds left to right with unary messages taking
precedence followed by binary, and then keyword. Therefore, the messages ‘texas’
size and 4 factorial are completed before the keyword part between:and: in the last
example above. :

Methods

Procedures are called methods. They determine the behavior of an object when a
message is sent to the object. Methods are the algorithms or sequence of instructions
executed by an object. For example, in order to respond to the message 5 + 7.
the object 5 must initiate a method to find the sum of the integér numbers 5 and 7.
On completion of: the operation, the method retums the object 12 to the sending
object. . ‘ :

Methods are defined much like procedures in other programming languages
using the constructs and syntax of the given OOS. The constructs used to build
higher level methods are defined in terms of a number of primitive operations and
basic methods provided as part of the OOS. The primitives of an OOS are coded
in some host language such as an assembler language or C. For example, the operation
for integer addition used in some versions of Smalltalk would be written as

+ aNumber
* <SameTypeOfObject self aNumber>
ifTrue: [<integerAddition self aNumber-|
ifFalse: [super + aNumber]

The name of this method is + and the argument is an object of type aNumber.
The primitive operation SameTypeOfObject tests Whether the two object arguments
are of the same type (instances of the same class). The variable self is a temporary
variable of an instance of the class it belongs to, Integer. If the two objects are of
the same type, the primitive IntegerAddition in the ifTrue block of code is executed
and the sum returned. Otherwise, a search for an appropriate method is made by
checking the superclass of this class (the class Number) . The up-arrow “ signifies
_ the quantity to be returned by the method. :

A typical OOS may have as many as a few hundred predefined primitives
and basic methods combined. We will see examples of some typical methods in
the next section.

Classes and Hierarchies

A class is a general object that defines a set of individual (instance) objects which
share common characteristics. For example, the class of rabbits contains many individ-
ual rabbit objects, each with four legs, long ears, whiskers, and short bushy tails.
The class of natural numbers contains many instance objects such as 43,91 Pl ow
All objects are instances of some class and classes are subclasses of some higher

154 Object-Oriented Representations Chap. 8

class, except for a most general root class. The root class for an OOS is the class
named Object. '

Classes can often be divided into subclasses or merged into superclasses. The
class of fruit can be divided into citrus and noncitrus, both of which can be further
divided. Fruit is pant of the superclass of plant-grown foods which in tumn is part
of the class of all foods. Classes permit the formation df hierarchies of objects
which can be depicted as a tree or taxonomic structure as illustrated in Figure 8.3

Objects belonging to the same class have the same variables and the same
methods. They also respond to the same set of messages called the protocol of the
class. Each class in a hierarchy inherits ‘the variables and methods of all of its
parents or superclasses of the class.

When a message is sent to an object, a check is first made to see if the-
methods for the object itself or its immediate class can perform the required task.
If not, the methods of the nearest superclass are checked. If they are not adequate,
the search process continues up the hierarchy recursively until methods have been
found or the end of a chain has been reached. If the required methods are not
found, an error message is printed.

Some OOSs permit classes to have two or more direct superclasses (Stefik
and Bobrow, 1986). For example, StereoSystem may have superclasses of Appliances,
LuxuryGoods, and FragileCommodity. As such, a slereo object may inherit character-
istics and methods from all three superclasses. When this is the case, an inheritance
precedence must be defined among the superclasses. One approach would be to try
the leftmost superclass path in the hierarchy first. If applicable methods are not
found up this path, the next leftmost path is taken. This process continues progressively
shifting to the right until a method is found or failure occurs.

An OOS will have many predefined classes. For example, a few of the classes
for the Smalltalk family and their hierarchical structure are depicted in Figure 8.4.

Each of the classes depicted in Figure 8.4 has a number of methods that
respond to the protocol for the class. A class may also inherit methods from a
superclass. For example, all classes inherit the method ‘== anObject’’ which
answers true if the receiver and anObject are the same, and answers false otherwise.

S

Plant Dairy Meat Fish
Grains Fruit Vegetable Beef Chicken

/\

Citrus Noncitrus

Lemon Orange Grapefruit Figure 8.3 A class hierarchy of foods.

Char

Sec. 8.4 Simulation Example Using an 00s Program 155

Obiject
Magmi tude Class Random Collection
MNumber Set Keyed collection
Sequenceable’ Dictionary
collection
Arrayed collection List File :
/ I \ Figure B.4 Partial hwerurchy of prede
Byte array Array String fined OOS clusses.

Polymorphism is the capability for different objects to respond 1o the same
message protocols but exhibit their own unique behaviors in response. For example,
a message containing the selector moveForward could invoke the forward movement
of a ship as well as advancing a piece in a game such as checkers. Both classes
use the same message template but respond differently. The only requirement is
that the message protocol for the two classes be implemented as required for. the
given class.

8.4 SIMULATION EXAMPLE USING AN 00S PROGRAM

In this section, we present a simple example of an OOS program to demonstrate
some of the features defined above. The example is a program to simulate the
seaport operations described in Section 8.2. Before we begin however, we define
some additional syntax and operations used in an QOS. ; '

An 0OOS will have most of the basic programming constructs of a procedural
language such as Pascal, including arithmetic and. string manipuylation operations.,
assignment and conditional siatements. logical expressions, iteration’ and sc on. A
few examples will help to illustrate some of the basic constructs and syn actical
conventions.

1. A period is used as a statement separator. not as a terminator.

-2. A block object is a sequence of OOS staternents (messages) enclosed within
square brackets. A block is like an in-line procedure that. when evaluated. returns
the last value executed within the block. Blocks are instances of the Block class
that execute when sent the message value. value: or value:value:. depending on
whether the block has zero, one, or two arguments.

156 Object-Oriented Representations Chap. 8

3. Variable assignment is made with : = as in Pascal. Some OOS implementations
use the back arrow <« like Algol for assignment

index := 1 {or index « 1).

4. The vertical bar is used as a delimiter to identify a set of tempoiary variables
used in methods as well as a separator of method definitions within a class.

5. An up arrow which immediately precedes an item signifies that the item is
to be retumned in response o a message.
6. Boolean relational tests use the relational symbols and syntax of the OOS
such as
5 < 'string’ size
{"camel” at: 3) isVowel.
7. Conditional statements follow the test condition as in
a<b ifTrue: [a print]
) ifFalse: [b print].
8. Typical logical expressions are given by
a>=band: [c <=d]
x isDigit or: [$F <= y and: [y <= $L]]
The dollar sign preceding a character identifies character objects.

9. Typical iteration constructs are whileTrue, whileFalse, timﬁepcai, and
do.
=1 i
li print. i := i + 2. i == 10] whileTrue.

1 to: 10 do [[:j| array at: j] print].
paths := 6.
paths timesRepeat [ship move: 100; turn: 380//paths].

10. The variable self in a method refers to the receiver object of the message
that invokes the method. The variable super is used in a method to invoke a search
_ for a method in an object’s superclass.

In addition to the above examples, an OOS will have many special methods
for the definition of classes and objects and for the definition of class behaviors
and class related tasks.

‘Simulation of Seaport Operations

An event driven simulation of the seaport operation described in Section 8.2 is a
computed sequence of the events of interest which occur at discrete time points.

Sec. 8.4 = Simulation Example Using an O0S Program 157 .

This system would have as a minimum the three events: (1) cargo ship arrivals,
(2) ship berthing operations, and (3) cargo transfer and ship departures. These events
are symbolized by the following expressions which will be used in our program.

shipAurival
shipDocking
shipDeparture

In the interest of clarity, several simplifying assumptions are made for the
simulation problem. First, we limit our objects of interest to three classes. namely
the class of ships (three types of cargo ships), the group of entities which make up
the harbor operations (tugs, docks, cranes, crews, and the like) treated collectively
as oné object class called HarborOperations, and the class called Simulator. The
Simulator class is defined to permit separale simulation runs, that is, separate instances
of Simulator.

Second, we assume that ships arriving to find all berths full d:pan immediately
from the system. Ships arriving when at least one of the eight berths is available
are scheduled for docking and cargo transfer. Once a ship has been docked, its
departure is then scheduled. ;

To add some realistic randomness to the operation, the time between ship
arrivals is assumed to be exponentially distributed with a mean value of 3 time
units. The time to dock is assumed to be uniformly distributed with a range of 0.5
to 2.0 time units, and the time to transfer cargo is assumed to be ‘exponentially
distributed with a mean of 14 time units. Finally, to simulate three different types
of ships, a newly arriving ship is randomly assigned a cargo weight of 10, 20. or
30 thousand tons from an empirical distribution ‘with probabilities 0.2, 0.5, and
0.3, respectively.

The three types of simulated events may occur at any discrete time point.
and they may even occur concurrently. To manage these events, we require a system
clock to assign scheduled event times and a data structure in which to record all
pending events. At any time during the run, the pending event list could include a
scheduled ship arrival at current time f,,,,, plus some time increment t,, the berthing
of a ship at time 1., + 1, and the departures of one or more ships at 1., + f.
f,ow + 13, and 50 on. Scheduled events are removed from the list of pending events -
‘in the order of smallest time value first.

Pending events are held in a dictionary data structure which contains index-
value pairs of objects. And, since multiple events may occur at the same time
points, we use a set to -hold all events indexed by the same time value. Thus,
pending events will be stored in a dictionary of indexed sets with each set containing
one or more of the basic events.

Messages required to access sets and dictionary objects (collectively referred
to as collections) are needed in the program. The messages and the comresponding
actions they elicit are as follows.

158 Object-Oriented Representations Chap. 8

MESSAGE RESULTING ACTION

add: adds an element to the receiver collection, like a list

at: returns the item in the dictionary whose key maiches the
argument

at: ifAbsent: returns the element given by the key in the first argument and
evaluates the second argument if no argument exists

at:put: places the second argument into the receiver collection under
the key given by the first argument

first retuins the first element from.a Set.

includesKey: returns true if the key is valid for the receiver

isEmpty returns true if the receiver collection contains no elements

keysDo: evaluates each key element of the one argument block which
follows according to the procedure given in the block

remove: removes the argument object from the receiver collection

removeKey: removes the object with the given key from the receiver collection

For output from the simulation, we print the arrival time of each ship, indicating
whether it docks or not, each ship departure, and the total cargo transferred at the
end of the run, ; '

With the above preliminaries, we now define the three classes and their corre-
sponding methods. We begin with the class Simulator which is the most complicated.
To define a class, the word Class is given followed by the class name and (optionally)
by the class’s immediate superclass; if no superclass is given, the default class
Object is assumed. This is followed by a list of local variables within vertical bar
delimiters. The method protocol for the class is defined next, with the methods
separated by vertical bars. The message template for each method is given as the
first item following the vertical bar. When local variables for a method are needed,
they follow the message template, also given within vertical bars.

Class Simulator
|currentTime eventsPending|
[
new :
eventsPending := Dictionary new.
currentTime := 0
I .
time
" currentTime
|
addEvent: event at: eventTime
(eventsPending includesKey: eventTime)
ifTrue: [leventsPending at: eventTime) add: event]

Sec, 84 Simulation Example Using an OOS Program 159

ifFalse: [eventsPending at: eventTime
put: (Set new ; add: event]]

addEvent: event next: delayTime
self addEvent: event at: currenfTime + delayTime

proceed |minTime eventSet eveént|
mintime := 99999,
eventsPending keysDo: :
[:x] x.< minTime) ifTrue: [minTime := x).
currentTime := minTime.
eventSet:= eventsPending at:
minTime ifAbsent: [nil).
event := eventSet first. >
eventSet remove: event. ;
(eventSet isEmpty) .
ifTrue: [eventsPending removeKey: minTime).
self processEvent: event :

The method responding to the message addEvent checks to see if a time value
(key) exists in the dictionary. If so, it adds the new event to the set under the key.
If the time does not already exist, a new set is created. and the event is added to
the set and the set put in eventsPending. The proceed method finds the smallest
event time (key) and retrieves and removes the first element of the set located
there. If the resultant set is empty. the key for the empty set is removed. A message
is then sent to the processEvent object in the class HarborOperations which is defined

next.

Class HarborOperation :Simulator
|totaiCargo arrivalDistribution dockingDistribution

I

serviceDistribution remainingBerths|
|

new

totalCargo .= 0.

remainingBerths : = 8.

arrivalDistribution ;= Exponential new: 3.
shipDistribution :'= DiscreteProb new: #(0.2 0.5 0.3)
dockingDistribution := Uniform new: #(0.5 2.0).
serviceDistribution : = Exponential new: 14,

self scheduleArrival

‘scheduleArrival |[newShip time|

newShip := Ship new,
self addEvent: [self shipArrival: newShip|
at: (self time + (arrivalDistribution next))

160 Object-Oriented Representations Chzp. 8

processEvent: event
event value.
(‘ship arrived at’, self time) print.
totalCargo : = totalCargo + (shipSize * 10).
self scheduieArnvai

|
reportCargo
{'total cargo transferred’, totalCargo) print
]

The method new initializes some variables. including the amrival. docking.
and service distributions. A sample from a distribution- is obtained by sending the
distribution the message next. (The programming details for the generation of random
samples from all distributions have been omitted in the interest of presenting a
more readable example.) The scheduleArrival method sends a message to the Shlp
class to create a new ship and then adds the event block

[self shipArrival: newShip]

to the pending event list at the arrival time value. The processEvent method is
activated from the proceed method in the Simulator class. It initiates evaluation of
the event block stored in the pending list, prints a ship arrival mc\wge and computes
the new total for the cargo discharged.

Next, we define the class Ship.

Class ship
|shipSize|
|
new
shipSize := shipD.stribution next
|
shipSize
" shipSize
|

With the object classes defined, we can now write the statements for the
three object events. The arrival event is initiated from the HarborOperation class.
This event then schedules the next operation (docking). which in turn schedules
the ship departure event.

shipArrival: ship
(remainingBerths > 0)
ifTrue: [remainingBerths := remainingBerths - 1.
self addEvent: [self shipDocking: ship]
at: (self time + dockingDistribution next)|.
ifFalse: |'all berths occupied, ship depants’ print|

Sec. 8.5 Object‘Oriented Languages and Systems 161

shipDocking: ship
totaiCargo := totalCargo + shipSize.
self addEvent: [self shipDepart: ship|
next: (serviceDistribution next)

shipDepant: ship
‘ship departs after cargo transfer’ print,
remainingBerths := remainingBerths + 1 ’

To run the simulation program we simply execute the following statements.

Simulator new,
port := HarborOperation new
Iport time < 720] whileTrue: [port proceed)

Note that the. message **port proceed'" in the whileTrue block is sent to Harbor-
Operation. Since there is no method proceed in this class, it must be inherited
from the Simulator class, '

An environment for an OOS will usually include all of the basic primitives,
class and method definitions, an editor, a browser, window and mouse facilities,
and a graphics output.

8.5 OBJECT-ORIENTED LANGUAGES AND SYSTEMS

In addition to the Smalltalk family of 00S languages, a number of other languages
have been developed, includi ng object-oriented extensions to LISP dialects and special,
purpose languages. Typical of the LISP extensions is the FLA VORS add-ons.

00S .with Lisp Extensions

In FLAVORS, classes are created with the defflavor form, and methods of the
Aavor are created with defmethod. An instance of a ftavor is created with a make-
instance type of function. For example, to create a new flavor (class) of ships with
instance variables x-position, y-position, x-velocity, v-velocity, and cargo-capacity.
the following expression is evaluated:

(defflavor ship (x-position y-position x-velacity
y-velocity cargo-capacity))

Methods for the ship flavor are written in a similar manner with a defmethod. say
for the ship's speed, as

(defmethod (ship :speed) ()
(sqrt {+ (* x-velocity x-velocity)
% y-velocity y-velocity))))

L=

162 Object-Oriented Representations Chap. 8

To create an instance of ship one then uses the form
(setf ship42 (make-instance "ship))

In addition to user defined methods, three additional predefined methods are
available for a flavor. They are used to assign values to instance variables, to initialize
variable values, and to get values of.the variables. These options are specified in
the defflavor statement when the flavor is created. For example, to include these
optional methods, the following form is used:

(defflavor ship (x-position y-position x-velocity
y-velocity cargo-capacity)
4]
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

. Values for the ship instance variables can now be assigned either with a message
or when an instance of the ship is created.

(send ship42 :set-cargo-capacity 22.5) or

(setf ship42 (make-instance "ship :x-position 5.0
:y-position B.0))

Variable assignments can be examined with the describe method, one of the base
methods provided with the system.

{describe shipa2)
#<SHIP 1234567 >, an object of flavor SHIP,
has instance variable values:

X-POSITION 50
Y-POSITION 8.0
X-VELOCITY unbound
Y-VELOCITY unbound

CARGO-CAPACITY 225

Default values can also be assigned to instance variables with the defvar statement.
(defvar *default-x-velocity® 12.0}

Thus, unless x-velocity is explicitly assigned a value in a make-instance or defflavor
statement, it will be given the default value 12.0.

Flavors are defined hierarchically by including one or more superclasses in
the second subform of the defflavor statement, thereby permitting flavors to be

© Sec. 85 Object-Oriented Languages and Systems : 163

“'mixed."" Inheritance of methods is then achieved much the same as in the Smalltalk
case. For example. to create a ship flavor which has two superclass flavors named
moving-object and pleasure-craft, the following form would be used:

(defflavor ship (x-position y-position passenger-capacity)
{moving-object pleasure-craft):
:gettable-instance-variables)

If the flavor moving-object has a method for speed, it will be inherited unless a
method for speed has been defined explicitly for the ship flavor.

The base flavor for FLAVOR extensions is the vanilla-Aavor. This flavor will
typically have a number of base methods including a :print-self and describe method
as used above. Geperic instance variables are also defined for the vanilla-Aavor.
Through method inheritance and other forms. methods may be combined to give a
variety of capabilities for flavors including the execution of some methods just
prior to or just after a main method.

Special Purpose 0O0S Languages

A typical special purpose OOS language is ROSS (for Rand QOS) developed by
the Rand Corporation for military battle simulations (Klahr et al, 1980, 1982).
This system has been implemented in several dialects of LISP as an interactive
simulation system which includes a movie generator and graphics facility. Visual
representations can be generated as the simulation is runhing. and-on-the-fly changes
can easily be made to a program. It has been used to simulate both air and ground
battles. fis

Messages are sent to objects in ROSS with an “ask™ form having the following
structure. / '

(ask <object>><message>)

For example, to send a message 10 a fighter-base requesting that a fighter be sent
to intercept a penetrator. the following message might be sent:

(ask fighter-basel send fighter2 guided by radar3
1o penatrator2) ’

In response o this message. a method associated with the fighter-base class
would be evaluated and appropriate actions would then, be initiated through direct
computations and embedded message transmissions to other objects.

Object hierarchies which provide variable and method inheritance in much
the same way as FLAVORS or Smalltalk can also be created. A simulation program
in ROSS would be created in.gsitmilar manner to that of the example presented in
the previdus section, but with a number of basic methods for simulation behaviors

164 Object-Oriented Representations Chap. 8

/ g
Moving object Fined object *
Communication

channel

Red forces Bilue forces

Fighter Radar Fighter base

Penetrator Gommand Migsile
i base launcher

Figure 8.5 An :inmple of a batile class hierarchy..

already predefined. A typical class hierarchy for a battle simulation might be defined
as the structure illustrated in Figure 8.5. '

8.6 SUMMARY

Object-oriented systems are useful in modeling many real-world situations in which
real objects can be put in a one-to-one cormrespondence with program classes and
objects. In an OOS all entities are objects, and objects are protected from other
entities. They interact with other objects through an interface which recognizes a
set of messages called the protocol for the class. Each class within an. OOS will
have its own unique behavior which is governed by a set of class methods. Methods
and instance variables may be inherited by a class of abjects from its parents or
superclasses. Multiple inheritance is also supported by many systems.

0O0S languages are well suited for certain types of system simulation problems
because of the natural way in which OOS programs model real systems. To build
a simulation program in an QOS such as Smalltalk, one first defines the object
classes required, their hiérarchical relationship with each other, and the behaviors
of the objects within each class. The events of importance are also defined and the
sequence in which they may occur. Message formats for class protocols are then
defined, and the specific methods are then coded. /

0OS capabilities have been developed for several LISP sytems as add-ons
such as found in FLAVORS. Special purpose OOS languages have also been developed
such as the ROSS system which was developed to provide capabilities not available
in other simulation languages. - ' !

‘Chap.8 Exercises ' ST

"EXERCISES

8.]. Show the order of evaluation for the subexpressions gwcn in lhc following cxpression:
9/2 between: 8 + 19 sgit and: 4‘5
8.2. What values will be printed after the following scquenccs'.’
A i=117
Je=li=i+l]
1 print
b. j value print (after the sefjuence in a above)
¢. i value print (after the sequence in b above)
8.3. What is the class of Class” What is the superclass of Class?
8.4. What is the result from typing the following expression?

3 + (4 print) | +

8.5. A bag is like a set except the same item may occur more than once. One way to
lmplcmcnl the class Bag is with a dlclmnary where the value contained in the dictionary
is the number of times the item occurs in the bag. A partial implementation for a bag
is given below. Complete the implementation, keeping in mind that instances of dictionary
respond to first and next with valucs and not keys. The current key is accessible,

however, if currentKey is used.

Class Bag ;Collection
| dict count]
|
new
dict: =Dictionary new
|. . . some methods go here. . ..
| Ffirst]
(count: =dict first) isNil ifTrue:[" nill.
count:=count - 1.
" dict currentKey

| next
[count notNil] whileTrue:
[{count=>0)
ifTrue: [count: scount - 1. ° dict currentKey]
ifFalse:[count: =dict next]].)
nil

8 6. One method of defining a discrete probability distribution is to provide the actual sample
space elements in a collection. A random sample can then be obtained from the collection
entries. Produce a class dcscrtpuon for a class called SampleSpace which will be used
to rm:bmly select poirits using the following:

166 Object-Oriented Representations Chap. 8

sample := SampleSpace new ; define: #{(12 93 141911 21)
sample first
12

8.7. Modify the simulation program gien in Section 8.4 to collect use statistics on the
tugs; at the end of the run a printout of average lug usage should be made,

