
PART 3
Knowledge Organization and Manipulation

Search and Control
Strategies

In the next three chapters we examine the organization and manipulation of knowledge.
This chapter is concerned with search, an operation required in almost all Al programs.
Chapter 10 covers the comparison or matching of data structures and in particular
pattern matching, while Chapter II is concerned with the organization of knowledge
in memory.

Search is one of the operational tasks that characterize Al programs best.
Almost every Al program depends on a search procedure to perform its prescribed
functions. Problems are typically defined in terms of states, and solutions correspond
to goal States. Solving a problem then amounts to searching through the different
states until one or more of the goal states are found. In this. chapter we investigate
search techniques that will be referred to often in subsequent chapters.

9.1 INTRODUCTION

Consider the process of playing a game such as chess. Each board configuration
can be thought of as representing a different state of the game. A change of State
occurs when one of the players moves a piece. A goal state is any of the possible
board configurations corresponding to a checkmate.

It has been estimated that the game of chess has more than 10° possible
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states. (To see this, just note that there are about 20 alternative moves for each
board configuration and more than 1(0 different configurations. Thus, there are
more than 20° = I(] Iil * 2' > IO U"). This i4 another example ofthe combinatorial
explosion problem. The number of states grows exponentially with the number of
basic elements. Winning a game amounts to finding a sequence of states through
this maze of possible states that leads to one of the goal states.

An ''intelligent" chess playing program certainly would not play the game
by exploring all possible moves (it would never finish in our lifetime nor in your
distant descendent's lifetimes). Like a human, the program must eliminate many
questionable states when playing. But, even with the elimination of numerous states,
there is still much searching to be done since finding good moves at each state of
the game often requires looking ahead a few moves and evaluating the consequences.

This type of problem is not limited to games. Search is ubiquitous in Al. For
every interesting problem there are numerous alternatives to consider. When attempt-
ing to understand a natural language, a program must search to find matching words
that are known (a dictionary), s .tenee constructions, and matching contexts. In
vision perception, program searches must be performed to find model patterns that
match input scenes. In theorem proving, clauses must be found by searching axioms
and assertions which resolve together to give the empty clause. This requires a
search of literals which unify and then a search to find resolvable clauses. In planning
problems, a number of potential alternatives must be examined before a good workable
plan can be formulated. As in learning, many potential hypotheses be considered
before a good one is chosen.

9.2 PRELIMINARY CONCEPTS

Problems can be characterized as a space consisting of a set of States (not necessarily
finite) and a set of operators that map from one state to other states. Three types
of states may be distinguished: one or more initial states, a number of intermediate
states, and one or more goal states. A solution to a problem is a sequence of
operators that map an initial State to a goal state. A ''best" or good solution is
one that requires the fewest operations or the least cost to map from an initial state
to a goal state. The performance of a particular solution method is judged by the
amount of time and memory space required to compk... the mapping. Thus, a
solution based on some algorithm A 1 is considered better than one using algorithm
A, if the time and space complexity of A 1 is less than that of A.

Time and Space Complexity

Time and space complexities of algorithms may be defined in terms of their best.
their average, or their worst-case performance in completing some task. In evaluating
different search strategies, we follow the usual convention of considering worst-
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case performances and look for ways to improve on them. For this, we need the 0
(for order) notation.

Let! and g be functions of n, where algorithm A has size n. The size can be
the number of problem states, the number of input characters which specify the
problem or some similar number. Let 1(n) denote the time (or space) required to
solve a given problem using algorithm A. We say 'f is big 0 of g" written f =
0(g), if and only if there exists a constant c > 0 and an integer n0 , such that f(n)

cg(n) for all n n0. Stated more simply, algorithm A solves a problem in at
most cg(n) units or steps for all but a finite number of steps. Based on this definition,
we say an algorithm is of linear time if it is 0(n). It is of quadratic time if it is
0(n2 ). and of exponential time if it is 0(2") for some constant k (or if it is OlbA.
for any real number b > I).

For example, if a knowledge base has ten assertions (clauses), with an average
of five literals per clause, and a resolution proof is being performed with no particular
strategy; a worst-case prof may require as many as 1125 comparisons (52 X 10(9)!
2) for a single resolution and several times this number for a complete proof.

Graph and Tree Representations

It is customary to represent a search space as a diagram of a directed graph or a
tree. Each node or vertex in the graph corresponds to a problem state, and arcs
between nodes correspond to transformations or mappings between the states. The
immediate successors of a node are referred to as children, siblings, or offspring,
and predecessor nodes are ancestors. An immediate ancestor to a node is a parent.

A tree is a graph in which each node has at most one parent. One node, the
root or starting node, has no parent. Leaf or terminal nodes are nodes without children.
The number of successors emanating from a node is called the branching degree of
that node (denoted as b). A path is a sequence of nodes it where
each n, is a successor of n_ 1 for i = I .... . k.
0. 

It is always possible to convert a directed graph into a tree with multiple
labeled nodes. This can be done by opening up all but one of the several alternate
paths connecting two nodes and creating duplicate copies of the end, node, one for
each different path from the parent. We will find it more convenient, however, to
use both types of representations in the following discussion.

An And-Or graph or tree is a special type of representation for problems
which can be reduced to a set of subproblems, all of which must be solved. The
requirement for the solution of all subproblems is depicted as an And node, a node
with all arcs emanating from it connected by a curved line. Or nodes have no line
connecting its arcs to signify that any emanating path may be taken for a solution.
For example, if a robot is given the task of painting a table, it may complete the
task by scraping, sanding, and painting the table, or it may choose the simpler
solution and send it to a paintshop (Figure 9.1).

In what follows, we assume simple Or graphs or trees as the problem space



170
	

Search and Control Strategies	 Chap. 9

Task
node

and node/
Send to

piuhop

Scrape	 Sand	 P,o	 FIgure 9.1 Example of an and-or graph.

representation unless noted otherwise. And-Or graph searches are covered in Section
9.6.

Graph and Search Trees

Search can be characterized as finding a path through a graph or tree structure.
This requires moving from nude to node after successively expanding and generating
connected-nodes. Node generation is accomplished by computing the identification
or representation Code of children nodes from a parent node. Once this is done, a
child is said to be generated and the parent is said to be explored. The process of
generating all of the children of a parent is also known as expanding the node. A
search procedure is a strategy for selecting the order in which nodes are generated
and a given path selected.

Search problems may be classified by the information used to carry out a
given strategy. In blind or uninformed search, no preference is given to the order
of successor node generation and selection. The path selected is blindly or mechani-
cally followed. No information is used to determine the preference of one child
over -nother.

lii informed or directed search, some information about the problem space is
used to compute a preference among the children for exploration and expansion.
Before proceeding with a comparison of strategies, we consider next some typical
search problems.

9.3 EXAMPLES OF SEARCH PROBLEMS

In this section we describe three typical problems which illustate the concepts defined
above and which are used in subsequent sections to portray different search techniques.
The problems considered are the often-used examples, the eight puzzle and the
traveling salesman problem.

The Eight Puzzle

The eight puzzle consists of a 3-by-3 square frame which holds eight movable
square tiles which arc numbered from I to 8. One square is empty, permitting tiles
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to be shifted (Figure 9.2). The objective of the puzzle is to find a sequence of tile
movements that leads from a starting configuration to a goal configuration such as
that shown in Figure 9.2.

The states of the eight puzzle are the different permutations of the tiles within
the frame. The operations are the permissible moves (one may consider the empty
space as being moveable rather than the tiles): up, down, left, and right. An optimal
or good solution is one that maps an initial arrangement of tiles to the goal configuration
with the smallest number of moves.

The search space for the eight puzzle problem may be depicted as the tree
shown in Figure 9.3.
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In the figure. the nodes are depicted as puzzle configurations. The root node
represents a randomly chosen starting configuration. and its successor nodes corre-
spond to the three single tile movements that are possible from the root A path is
a sequence of nodes starling from the root and progressing downward, to the goal
node.

Traveling Salesman Problem

The traveling salesman problem involves n cities with paths connecting the cities.
A tour is any path which begins with some starling city, visits each of the other
cities exactly once, and returns to the starting city. A typical tour is depicted in
Figure 9.4.

The objective of a traveling salesman problem is to find a minimal distance
tour. To explore all such tours requires an exponential amount of time. For cxanipI,
a minimal solution with only 10 cities is tractable (3.628.000 tours). One with 20
or more cities is not, since a worst-case search requires oil the order of 20! (about
23 x 10') tours. The state space for the problem can also be represented as a
graph as depicted in Figure 9.5.

Without knowing in advance the length ofa minimum tour, it would be necessary
to traverse each of the distinct paths shown in Figure 9.5 and compare their lengths.
This requires some O(n!) traverses through the graph, an exponential number.

General Problem Solver

The General Problem Solver was developed by Newell. Simon. and Shaw (Ernst
and Newell, 1969) in the late 1950s. It was important as a research tool for several
reasons and notable as the first Al system which cleanly serated the task knowledge
from the problem solving part.

General Problem Solver was designed to solve a variety of problems that
could be formulated as a set of objects and operators, where the operators Were
applied to the objects to transform them into a goal object through a sequence of
applications.

Given an initial object (state) and a goal object (state), the system attempted
to transform the initial object to the goal object through a series of operator application
transformations. It used a set of methods similar to those discussed in Chapter 8
for each goal type, to achieve that goal by recursively creating and solving subgoals.
The basic method is known as means-end analysis, which we now describe.

Figure 9.4 A typical tour for the
traveling salesman problem.
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Startinç City

Next city

Return to starting city

/V . V ...........

Figure 9.5 State space representation for the TSP.

Means-end analysis. The problem space of means-end analysis has an
initial state (object) and one or more goal states (objects), a set of operators O.
with given preconditionsfor their application, and a difference function that computes
the difference between two states 5, and S, A problem is solved using means-end
analysis y:

I. Comparing the current state S i to a goal state S. and computing the difference

2. An operator O is then selected to reduce the difference Dc.

3. The operator 04 is applied if possible. If not, the current state is saved, a
subgoal is created and means-end analysis is applied recursively to reduce
the subgoal.

4. If the subgoal is solved: the saved Slate is restored and work is resumed on
the original problem.

In carry ing out these methods, the General Problem Solver may transform
some S, into an intermediate state S, to reduce the difference D,, between states S
and S, then apply another operator O to the S. and so on until the state S, is
obtained. Differences that may occur between objects will. of course, depend on
the task domain. 	 - -

As an example, in proving theorems in propositional logic, some common
differences that occur are a variable may appear in one object and not in the other.
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R&P-->O)

(P-->Q)&R

V 0) & A

(PVQ) & A

Figure 9.6 A typical solution tree for
(Q VP) &A	 (it'S.

a variable may occur a different number of times between two objects, objects will
have different signs or different connectives, associative groupings will differ, and
so on.

To ir1ujate the search process, we assume the General Problem Solver operators
are rewrite rules of the following form:

WI: IAVB)-.(BVA)
R2: (A&B)-.(B&A)
R3: (A-.B)-.(B.-.A)
R4: (A-. B)-. ('AVB)

As a simple example we suppose General Problem Solver is given the initial
propositional logic object L, (R & (P —. Q)) and goal object L 4 = ( (Q V P) &
R). To determine L. fPbm L requires a few simple transformations. The system
first determines the difference between the two expressions and then systematically
reduces these differences until Lx is obtained from L, or failure occurs. For example,
a comparison of L, and L reveals the difference that R is on the left in L but on
the right in Lg This causes a subgoal to be set up to reduce this difference. The
subgoal, in turn, balls for an application of the reduction method, namely to rewrite
L in the equivalent form L', = (('P - Q) & R). The rest of the solution process
follows the path indicated in the tree of Figure 9.6.

9.4 UNINFORMED OR BLIND SEARCH

As noted earlier, searcn problems can be classified by the amount of information
that is available to the search process. Such information might relate to the problem.
.space as a whole or to only some states. It may be available a priori or only after
a node has been expanded.
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In a worst can situation the only information available will be the ability to
distinguish goal from nongoal nodes. When no further information is known a priori.
a search program must perform a blind or uninformed search. 4 blind or uninformed
search algorithm is one that uses no information other than the initial state, the
search operators, and a test for a solution. A blind search should proceed in a
systematic way by exploring nodes in some predetermined order or simply by selecting
nodes at random. We consider only systematic search procedures in this section.

Search programs may be required to return only a solution value when a goal
is found or to record and return the solution path as well. To simplify the descriptions
that follow, we assume that only the goal value is returned. To also return, the
path requires making a list of nodes on the path or setting back-pointers to ancestor
nodes along the path.

Breadth-First Search

Breadth-first searches are performed by exploring all nodes at a given depth before
proceeding to the next level. This means that all immediate children of nodes are
explored before any of the children's children are considered. Breadth first tree
search is illustrated in Figure 9.7. It has the obvious advantage of always finding a
minimal path length solution when one exists. However, a great many nodes may
need to be explored before a solution is found, especiall y if the tree is very full.

An algorithm for the breadth-first search is quite simple. It uses a queue structure
to hold all generated but still unexplored nodes-. The order in which nodes are
placed on the queue for removal and exploration determines the type of search.
The breadth-first algorithm proceeds as follows.

BREADTH-FIRST SEARCH

1. Place the starting node s on the queue.
2. If the queue is empty, return failure and stop.
3. If the first element on the queue is a goal node g. return success and stop.

Otherwise,	 -

Figure 9.7 Breadth-first search of  tree.-
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4. Remove and expand the first element from the queue and place all the children
at the end of the queue in any order.

5. Return to step 2.

The time complexity of the breadth-first search is 0(b"). This can be seen by
noting that all nodes up to the goal depth d are generated. Therefore, the number
generated is b + b + . + W which is 0(b"). The space complexity is also
0(b) since all nodes at a given depth must be stored , in order to generate the
nodes at the next depth, that is, bd I nodes must be stored at depth d - I to
generate nodes at depth d, which gives space complexity of 0(//'). The use of
both exponential time and space is one of the main drawbacks of the breadth-first
search.

Depth-First Search

Depth-first searches are performed by diving downward into a tree as quickly as
possible. It does this by always generating a child node from the most recently
expanded node, then generating that child's children, and so on until a goal is
found or some cutoff depth point d is reached. If a goal is not found when a leaf
node is reached or at the cutoff point, the program backtracks to the most recently
expanded node and generates another of its children. This process continues until a
goal is found or failure occurs.

An example of a depth-first search is illustrated in Figure 9.8.
An algorithm for the depth-first search is the same as that for breadth-first

except in the ordering of the nodes placed on the queue. Depth-first places the
newly generated children at the head of the queue so that they will be chosen first.
The search proceeds as follows. 	 -

/\.

Figure 9.8 Depth-first scireh of a tree,
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DEPTH-FEW SEARCH

1. Place the starting node $ On the queue.

2. if the queue is empty, return failure and stop.

3. If the first element on the queue is a goal node g, return success and stop.
Otherwise,

4. Remove and expand the first element, and place the children at the front of
the queue (in any order).

S. Return to step 2.

The depth-first search is preferred over the breadth-first when the search tree
is known to have a plentiful number of goals. Otherwise, depth-first may never
find a solution. The depth cutoff also introduces some problems. If it is set too
shallow, goals may be missed; if set too deep, extia computation may be performed.

The time complexity of the depth-first tree search is the same as that for
breadth-first. 0(b4 ). It is less demanding in space requirements, however, since
only the path from the starting node to the current node needs to be stored .. Therefore,
if the depth cutoff is d, the space complexity is just 0(d).

Depth-First Iterative Deepening Search

Depth-first iterative deepening searches are performed as a form of repetitive depth
first search moving to a successively deeper depth with each iteration. It begins by
performing a depth-first search to a depth of one. It then discards all nodes generated
and starts over doing a search to a depth of two. If no goal has been found, it
discards all nodes generated and does a depth-first search to a depth of three. This
process continues until a goal node is found or some maximum depth is reached.

Since the depth-first iterative deepening search expands all nodes at a given
depth before expanding nodes at a greater depth, it is guaranteed to find a shortest-
path solution. The main disadvantage of this method is that it performs wasted
computations before reaching a goal depth. Even so, it has been shown to be asymptoti-
cally optimal over depth and breadth first search in terms of time and space complexity
(Korf, 1985). That is. depth- and breadth-first searches take at least as much time
and memory as depth-first iterative deepening searches for increasingly large searches.
The time and space complexities of this search are 0(b4) and 0(d) respectively.

This search algorithm works basically the same as the depth first search algorithm
given above for a single iteration. However, it terminates the search at depth d on
each iteration if no goal has been found, removes all nodes from the queue, increments
d by one, and initiates the search again.

Bidirectional Search

When a problem has a single goal state that is given explicitly, and all node generation
operators have inverses, bidirectional search can be used. (This is the case with

13-
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the eight puzzle described above, for example). Bidirectional search is performed
by searching forward from the initial node and backward from the goal node simulta-
neously. To do so, the program must store the nodes generated on both search
frontiers until a common node is found. With some modifications, all three of the
blind search methods described above may be used to perform bidirectional search.

For example, to perform bidirectional depth-first iterative deepening search
to a depth of k, the search is made from one direction and the nodes at depth k are
stored. At the same time, a search to a depth of k and k + I is made from the
other direction and all nodes generated are matched against the nodes stored from
the other side. These nodes need not, be stored, but a search of the two depths is
needed to account for odd-length paths. This process is repeated for lengths k = 0
to d12 from both directions.

The time and space complexities for bidirectional depth-first iterative deepening
search are both 0(b"2) when the node matching is done in constant time per node.

Since the number of nodes to be searched using the blind search methods
described above increase as fr' with depth d, such problems become intractable for
large depths. It, therefore, behooves us to consider alternative methods. Such method..
depend on some knowledge to limit the number of problem states visited. We turn
to these methods now in the next Section.

9.5 INFORMED SEARCH

When more information than the initial state, the operators, and the goal test is
available, the size of the search space can usually be constrained. When this is the
case, the better the information available, the more efficient the search process
will be. Such methods are known as informed search methods. They often depend
on the use of heuristic information. In this section, we examine search strategies
based on the use of some problem domain information, and in particular, on the
use of heuristic search functions.

Heuristic Information

Information about the problem (the nature of the states, the cost of transforming
irom one state to another, the promise of taking a certain path, and the characteristic
of the goals) can sometimes be used to help guide the search more efficiently.
This information can often be expressed in the form of a heuristic evaluation function

a function of the nodes n and/or the goals g.
Recall that a heuristic is a rule of thumb or judgmental technique that leads

to a solution some of the time but provides no guarantee of success. It may in fact
end in failure. Heuristics play an important role in search strategies because of the

poncntial nature of most problems. They help to reduc' the number of alternatives
from an exponential number to a polynomial number and, thereby, obtain a solution
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in a tolerable amount of time. When exhaustive search is impractical, it is necessary
to compromise for a constrained search which eliminates many paths but offers the
promise of success some of the time. Here, success may be considered to be tindini
an optimal solution a fair proportion of the time or just finding good solutions
much of the time. In this regard, any policy which uses as little search effort as
possible to find any qualified goal has been called a satijicing poll(-r.

Consider for example, the traveling salesman problem described above. A
simple heuristic for choosing the next city at any point in a tour is one which
picks the nearest unvisited neighbor. This policy gives no guarantee 01 an optimal
solution, but its solutions are often good, and the time required is onl y 0012.
Likewise, for the eight puzzle, using a heuristic function, which selects moves that
produce the smallest number of tiles out of place from the goal configuraion. can
result in a worthwhile time saving. In solving a problem in propositional logic,
such as proving a theorem in the General Problem Solver, the time complexit y can
often be reduced from exponential to polynomial time through the application of a
simple heuristic strategy. In General Problem Solver this is accomplished by first
planning a solution by breaking the main problem down into several subproblems
of lesser complexity. This often has the effect of reducing the oveiull complexity
by several orders of ma,.'itude.

Hill Climbing Methods

Search methods based on hill climbing get their names from the way the nodes are
selected for expansion. At each point in the search path, a successor node that
appears to lead most quickly to the top of the hill (the goal) is selected for exploration.
This method requires that some information be available with which to evaluate
and order the most promising choices,

Hill climbing is like depth-first searching where the most promising child is
selected for expansion. When the children have been generated. alternative choices
are evaluated using some type of heuristic function. The path that appears most
promising is men chosen and no further reference to the parent or other children is
retained. This process continues from node-to-node with previously expanded nodes
being discarded. Atypical path is illustrated in Figure 9.9 where the numbers by a
node correspond to the computed estimates of the goal distance for alternative paths

Hill climbing can produce substantial savings over blind searches when an
informative, reliable function is available to guide the search to a global goal. It
suffers from some serious drawbacks when this is not the case. Potential problem
types named after certain terrestrial anomalies are the foothill, ridge, and plateau
traps.

The foothill trap results when local maxima o? peaks are found. In this case
the children all have less promising goal distances than the parent node. The search
is essentially trapped at the local node with no indication of goal direction. The
only way to remedy this problem is to try moving in some arbitrary direction a
few generations in the hope that the real goal direction will become evident, backtrack-
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Figure 9.9 S,..irch	 th htl

ins to an ancestor node and trying a secondary path choice, or altering the computation
procedure to expand ahead a few generations each time before choosing a path.

A second potential problem occurs when several adjoining nodes have higher
values than surrounding nodes. This is the equivalent of a ridge. It too is a form
of local trap and the only remedy is to try to escape as in the foothill case above.

Finally, the search ma encounter a plateau type of
1 
structure, that is, an area

in which all neighboring nodes have the same values. Once again, one of the methods
noted above must be tried to escape the trap.

The problems encountered with hill climbing can be avoided using a best-
first search approach.

Best-First Search

Best-first search also depends on the use of a heuristic to select most promising
paths to the goal node. Unlike hill climbing, however, this algorithm retains all
estimates computed for previously generated nodes and makes its selection based
on the best among them all. Thus, at an y point in the search process. hest-trt
moves forward from the most promising of all the nodes generated so far. In so
doing, it avoids the potential traps encountered in hill climbing. The best-first process
is illustrated in Figure 9.10 where numbers by the nodes may he regarded as estimates
of the distance or cost to reach the goal node.

The algorithm we give for best first search differs from the previous blind
search algorithms only in the way the nodes are saved and ordered on the queue.
The algorithm reads as follows.

BEST-FIRST SEARCH

I. Place the starting node s on the queue.

2. If the queue is empty, return failure and stop.
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Figure 9.10 Best- firstsearch of a tree.

3. If the first element on the queue is a goal node g. return success and stop.
Otherwise,

4. Remove the first element from the queue, expand it and compute the estimated
goal distances for each child Place the children on the queue (at either end)
and arrange all queue elements in ascending order corresponding to goal distance
from the front of the queue.

S. Return to step 2.

Best-first searches will always , find good paths to a goal, even when local
anomalies are encountered. All that is required is that a good measure of goal
distance be used.

Branch-and-Bound Search

The branch-and-bound search strategy applies to problems having a graph search
space where more than one alternative path may exist between two nodes. This
strategy saves all path lengths (or costs) from a node to all generated nodes and
chooses the shortest path for further expansion. It then compares the new path
Ieigths with all old ones and again chooses the shortest path for expansion. In this
way, any path to a goal node is certain to be a minimal length path. This process
is illustrated in Figure 9.11.

An algorithm for the branch-and-bound strategy which uses a queue data struc-
ture to hold partial paths developed during the search is as follows.

BRANCH-AND-BOUND SEARCH

• 1. Place the start 'node of zero path length on the queue.

2. Until the queue is empty or a goal node has been found: (a) determine if the
first path in the queue contains a goal node. (b) if the first path contains a
goal node exit with success, (c) if the first path does not contain a goal node.
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Figure 9.11 Branch-and-bound search of a tree,

remove the path from the queue and form new paths by extending the removed
path by one step, (d) compute the cost of the new paths and add them to the
queue, (e) sort the paths on the queue with lowest-cost paths in front.

3. Otherwise, exit with failure.

Always extending the lowest-cost path in branch-and-bound search insures
that a lowest-cost path will be found if one exists.. Of course, this is at the expense
of computing and remembering all competing paths. We next look at a special
case of branch-and-bound search which estimates the total cost to a goal node, and
.elects the least cost path at each stage in the search.

Optimal Search and A*

The previous heuristic methods offer good strategies but fail to describe how the
shortest distance to a goal should be estimated. The A* algorithm is a specialization
of best-trst search. It provides general guidelines with which to estimate goal distances
for general search graphs.

At each node along a path to the goal, the A* algorithm generates all successor
nodes and computes an estimate of the distance (cost) from the start node to a goal
node through each of the successors. It then chooses the successor with the shortest
estimated distance for expansion. The successors for this node are then generated.
their distances estimated, and the process continues until a goal is found or the
search ends in failure.

The form of the heuristic estimation function for A* is

f(n) = g*(n) + h*(n)

where the two components gt(n) and h*(n) are estimates of the cost (or distance)
from the start node to node n and the Cost from node n to a goal node, respectively.
The asterisks are used to designate estimates of the corresponding true values f(n)
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= g(n) + h(n). For state space tree problems g*(n) = g(n) since there is only one
path and the distance g*(n) will be known to be the true minimum from the start
to the current node n. This is not true in general for graphs, since alternate paths
from the start node to n may exist.

For this type of problem, it is convenient to maintain two lists of node types
designated as open and closed. Nodes on the open list are nodes that have been
generated but not yet expanded while nodes on the closed list are nodes that have
been expanded and whose children are, therefore, available to the search program.
The A* algorithm proceeds as follows.

A SEARCH

1. Place the starting node s on open.

2. If open is empty, stop and return failure.

3. Remove from open the node n that has the smallest value of f*(n). 11 the
node is a goal node, return success and stop. Otherwise.

4. Expand n, generating all of its successors n' and place n on closed. For every
successor n', if n' is not already on open or closed attach a back-pointer to
n computef(n') and place it on open.

5. Each n' that is already on open or closed should be attached to back-pointers
which reflect the lowest g*(n) path. If n was on closed and its pointer was
changed, remove it and place it on open.

6. Return to step 2.

Next, we consider some desirable properties of heuristic search algorithms.
They are summarized in the following definitions.	 -

Admissibility condition. Algorithm A is admissible if it is guaranteed to
return an optimal solution when one exists.

Completeness condition. Algorithm A is complete if it always terminates
with a solution when one exists.

Dominance property. Let A 1 and A 2 be admissible algorithms with heurist
estimation functions h* 1 and h*.,. respectively. A 1 is said to be more in/ormci

than A2 whenever h* 1 (n) > h,(n) for all n. A 1 is also said to dominate A.

Optimality Property. Algorithm A is optimal over a class of algorithms it
A dominates all members of the class.

The admissibility condition for an algorithm has led to a corresponding definition
for a heuristic function h*; h 4 is said to be admissible if h* h for all pi. It can
be shown that if A 1 and A. are admissible, and A 1 is more informed than A. then
A 1 never expands a node not expanded by A2. In general then, it is desirable t
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find admissible heuristic functions that approximate h as closely as possible. This
will insure that few if any nodes off the optimal path are expanded. Of course, if

= h only nodes on the optimal path will be expanded. The cost of computing
such a f'tnction should also be taken into account, however. It may not be cost
effective if the computation cost is too high.

it has been shown that the A* algorithm is both complete and admissible.
Thus, At will always find an optimal path if one exists. The efficiency of an A*
algorithm depends on how closely ht approximates h and the cost of the comput-
ingft.

Iterative Deepening A

By combining a heuristic evaluation function with a modified version of the iterative
deepening search method presented earlier, we obtain iterative deepening At or
IDAt.

IDA t performs a depth search at each iteration and eliminates or trims all
branches whose estimated cost (g* + h t ) exceeds a given threshold T(i) where

= 0,1,2 . . . is the iteration number. The initial threshold T(0) is the estimated
cost of the initial state. After that, the threshold increases with each iteration. The
value of T on iteration i + I is taken as the minimum of the costs which exceed T
on iteration i.

Like At,. it can be shown that IDAt always finds a ast path if ht is
admissible. Furthermore, IDAt expands the same number of nocr as M (asymptoti-
cally).

9.6 SEARCHING Mi'iij-tjR GRAPHS

The depth-first and breadth-first strategies given earlier for Or trees and graphs can
easily be adapted for And-Or trees. The main difference lies in the way termination
conditions are determined, since all goals following an And node must be realized,
whereas a single goal node following an Or node will do. Consequently, we describe
a more general optimal strategy that subsumes these types, the AO* (0 for ordered)
algorithm.

As in the case of the At algorithm, we use the open list to hold nodes that
have been generated but not expanded and the closed list to hold nodes that have
been expanded (successor nodes that are available). The algorithm is a variation of
the original given by Nilsson (1971). It requires that nodes traversed in the tree be
labeled as solved or unsolved in the solution process to account for And node
solutions which require solutions to all successor nodes. A solution is found when
the start node is labeled as solved.

THE A0 ALGORITHM

1. Place the start node s on open.
2. Using the search tree constructed thus far, compute the most promising solution

tree T0.
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3. Select a node n that is both on open and a part of T0 . Remove n from open
and place it on closed.

4. If n is a terminal goal node, label n as solved. If the solution of n results in
any of n's ancestors being solved, label all the ancestors as solved. If the
start node s is solved, exit with success where 7'0 is the solution tree. Remove
from open all nodes with a solved ancestor.

S. If n is not a solvable node (operators cannot be applied), label n as unsolvable.
If the start node is labeled as unsolvable, exit with failure. If any of it's
ancestors become unsolvable because it is, label them unsolvable as well.
Remove from open all nodes with unsolvable ancestors.

6. Otherwise, expand node a generating all of its successors. For each such
successor node that Contains more than one subproblem, generate their successors
to give individual subproblems. Attach to each newly generated node a back
pointer to its predecessor. Compute the cost estimate h* for each newly generated
node and place all such nodes that do not yet have descendents on open.
Next, recompute the values of h* at n and each ancestor of n:

7. Return to step 1

It can be shown that AO* will always find a minimum-cost solution tree if
one exists, provided only that h*(n) h(n), and all arc costs are positive. Like
A* , the efficiency depends on how closely h* approximates it.

9.7 SUMMARY

Search is characteristic of almost all Al problems. We find search in natural language
understanding and generation, in machine vision, in planning and problem solvers,
in expert systems, in game playing programs, and in machine learning. It should
not he too surprising then that much effort has been devoted to finding efficient
search strategies.

Search strategies can be compared by their time and space complexities using
big 0 notation. It is important to determine the complexity of a given strategy
before investing too much programming effort, since many search problems are
intractable. Search spaces are usually represented as a graph or tree structure, and
a search is finding a path from some start node to a goal node.

In a blind search, nodes in the space are explored mechanically until a goal
is found, a time limit has been reached, or failure occurs. In a worst case, it may
be necessary to explore the whole space before finding a solution. Examples of
blind searches are depth-first, breadth-first, and depth-first iterative deepening
searches.

When some information is available about the goals, the problem states. or
the problem in general, it may be possible to guide the search process and eliminate
a number of implausible paths. This is the case in informed searches where cost or
another function is used to select the most promising path at each point in the
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search. Heuristic evaluation functions are used in best-first search strategies to find
good solution paths. A solution is not always guaranteed with this type of search,
but in most practical cases, good or acceptable solutions are often found.

We saw several examples of informed searches, including general best-first,
hill climbing, branch-and-bound, A*, and finally, the optimal And-Or heuristic search
known as the OA* algorithm. Desirable properties of heuristic search methods were
also defined.

EXERCISES

9.1. Games and puzzles are often used to describe search problems because they are easy
to describe. One such puzzle is the farmer-fox-goose-grain puzzle. In this puzzle, a
farmer wishes to cross a river taking his fox, goose, and grain with him. He can use
a boat which will accommodate only the farmer and one possession. If the fox is left
alone with the goose, the goose will be eaten. If the goose is left alone with the
grain it will be eaten .. Draw a state space search tree for this puzzle using leftbank
and rightbank to denote left and right river banks iespectively.

9.2. For the search tree given below, use breadth-first searching and list the elements of
the queue just before selecting and expanding each next stare until a goal node is
reached. (Goal states designated with .)

/N /CN

HI	

E	 F'	

LM

9.3. Repeat Problem 9.2 using a depth-first search.
9.4. Repeat Problem 9.2 using a depth-first iterative deepening search.
9.5. Describe and compare three primary uninformed search methods described in this

chapter.
9.6. Show that a worst-case algorithm to solve the traveling salesman problem is of exponen-

tial complexity, but an algorithm that chooses a tour through the nearest neighbor of
each city is of lower order. Give an e.11ample to show the nearest neighbor algorithm
is not, in general, optimal, but still often good.

9.7. Fifteen puzzle is like eight puzzle except there are fifteen tiles instead of eight. What
is the branching factor of the search tree for fifteen puzzle!

9.8. Describe a problem for which means-end analysis could be successfully applied. Give
an example of a few solution steps.
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9.9. Give three different heuristics for an h(n) to be used in solving the eight puzzle.
9.10. Using the search tree given below. list the elements of the queue just before the next

node is expanded. Use best-first search where the numbers correspond to estimated
cost-to-goal for each corresponding node.

A 30

C25

0 22	 E 19	 F16 G 10	 H 12I t.\	 t\ I
19	 J7	 K6	 .	 L3	 MO	 N4

9.11. Repeat Problem 9.10 when the cost of node B is changed to 18.
9.12. Give the time and space complexities for the search methods of Problems 9 2 and

9.3.

9.13. Discuss some of the potential problems when using bill climbing search. Give examples
of the problems cited.

9.14. Discuss and compare hill climbing and best-first search techniques.
9.15. Give an example of an admissible heuristic for the eight puzzle
9.16. Give two examples of problems in which solutions requiring the minimum search are

more appropriate than optimal solutions. Give reasons for your choices.

9.17. Write a LISP program to perform a breadth-first search on a solution space irce con-
structed using property lists. For example, children nodes e. f. and g of node 1) of
the tree would be constructed with the LISP function

(putprop '0 '(E F G) children)

9.18. Write a LISP program to perform a depth-first search on the tree constructed in Problem
9.17.



Matching, Techniques

Matching is a basic function that is required in almost all Al programs. It is an
essential part of more complex operations such as search and control. In many
programs it is known that matching consumes a large fraction of the processing
time. For example. it has been estimated that matching operations in many production
systems account for as much as 90% of the total computation time. Consequently.
the Al practitioner will find it is essential to learn efficient matching techniques. In
this chapter we examine such techniques and their application to different Al programs.

10.1 INTRODUCTION

Matching is the process of comparing two or more structures to discover their like--
nesses or differences The structures may represent a wide range of objects including
physical entitles, words or phrases in some language. complete classes of things,
general concpts. relations between complex entities, and the like. The representations
will be given in one or more of the formalisms like FOPL, networks, or some
other scheme, and matching will invoke comparing the component parts of such
structures.

Matching is used in a variety of programs for different reasons. It may serve
to control the sequence of operations. to identify or classify objects, to determine

188
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the best of a number of different alternatives, or to tetrieve items from a data
base. It is an essential operation in such diverse programs as spee'ch recognition,
natural language understanding, vision, learning, automated reasoning, planning,
automatic programming, and expert systems, as well as many others.

In its simplest form, matching is just the process of comparing two structures
or patterns for equality. The match fails if the patterns-differ in any aspect. For
example, a match between the two character strings acdebt'ba and acdebeha fails
on an exact match since the strings differ in the sixth character positions.

In more complex cases the matching process may permit transformations in
the patterns in order to achieve an equality match. The transformation may be a
simple change of some variables to constants, or it may amount to ignoring some
components during the match operation. For example, a pattern matching variable
such as ?x may be used to permit successful matching between the two patterns (a
b (c d) e) and (a b ?x e) by binding ?x to (c d). Such matchings are usually
restricted in some way, however, as is the case with the unification of two clauses
where only consistent bindings are permitted. Thus, two patterns such as

(a b (cd ) e f) and (a b ?x e ?x)

would not match since ?x could not be bound to two different constants.
in some extreme cases, a complete change of representational form may be

required in either one or both structures before a match can be attempted. This
will be the case, for example, when one visual object is represented as a vector of
pixel gray levels and objects to be matched are represented as descriptions in predicate
logic or some other high level statements. A direct comparison is impossible unless
one form has been transformed into the other.

In subsequent chapters we will see examples of many problems where exact
matches are inappropriate, and some form of partial matching is more meaningful.
Typically in such cases, one is interested in finding a best match between pairs of
structures. This will be the case in object classification problems, for example,
when object descriptions are subject to corruption by noise or distortion. In such
cases, a measure of the degree of match may also be required.

Other types of partial matching may require finding a match between certain
key eJernents while ignoring all other elements in the pattern. For example. a human
language input Unit should be flexible enough to recognize any of the following
three statements as expressing a choice of preference for the low-calorie food item.

I prefer the low-calorie choice.

I want the low-calorie item.

The low-calorie one please.

Recognition of the intended request can he achieved by matching against ke)
words in a template containing "low-calorie" and ignoring other. words except.
perhaps, negative modifiers.
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Finally, some problems may obviate the need for a form of fuzzy matching
where an entity's degree of membership in one or more classes is appropriate.
Some classjIjctjon problems will apply here if the boundaries betieen the classes
are not distinct, and an object may belong to more than one class.

Figure 10.1 illustrates the general match process where an input description
is being compared with other descriptions. As stressed earlier, the term object is
used here in a general sense. It does not necessarily imply physical objects. Al!
objects will be represented in some formalism such as a vector of attribute values,
propositional logic or FOPL statements, rules, frame-like structures, or other scheme.
Transformations, if required. may involve simple instantiations or unifications among
clauses or more complex operations such as transforming a two-dimensional scene
to a description in some formal language. Once the descriptions have been transformed
into the same schema, the matching process is performed element-by-element Using
a relational or other test (like equality or ranking). The test results may then be
combined in some way' to provide an overall measure of similarity. The choice of
measure will depend on the match criteria and representation scheme employed.

The output of the matcher is a description of the match. It may be a simple
yes or no response or a list of variable bindings, or as complicated as a detailed
annotation of the similarities and differences between the matched objects.

To summarize then, matching may be exact, used with or without pattern
variables, partial, or fuzzy, and any matching algorithm will be based on such
factors as

Choice of representation scheme for the objects being matched,

Criteria for matching (exact, partial, fuzzy. and so On),

Choice of measure required to perform the match in accordance with the chosen
criteria, and

Type of match description required for output.

In the remainder of this chapter we examine various types of matching problems
and their related algorithms We begin with a description of representation structure's

Oblint

[

to

	

	

Match___,j____._ flepre.entar,on —a .- Transformations

-	 cottparator ,-	 Result

Representations	 Transformations
Merri.

IcI!
Figure 10.1 Typical matching process.
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and measures commonly found in matching problems. We next look at various
matching techniques based on exact, partial, and fuzzy approaches. We conclude
the chapter with an example of an efficient match algorithm used in some ruk-
based expert systems.

10.2 STRUCTURES USED IN MATCHING

We are already familiar with many of the repreemttation structures used in rn,jlchin
programs. Typically, they will be some type of ItsI structures that represenl clauses
in propositional or predicate logic such a

(or IMARRIED ?x N,) (DAUGHTER ? y)(MOTHER N1 ?z),

or rules, such as

land ((cloudy-sky) (tow-bar-pressure) (hmgh-humidity))
(conclude (rain-likely)),

or fragments of associative networks (Figure 10.2) and frames or frame-like structures
(igure 10.3).

In addition to these, other common structures include strmngs of characters
a 1 a 2 - - - a 5 , where the a, belong to a given alphabet A, vectors X =
x), where the x, represents attribute values, matrices NI (rows of Vectors), generil
graphs, trees, and sets.

- wife

,on	 br,dqe.pa"ne's

-,

(puiprop Ion (sue) wfe)
(putprop we (;oe) nbd(
Outproc, to, ( broker) profession)	 Figure 10.2 Fragment it a-,-.o
putpror sue (amy Iou)se mary) hridge-patners( 	 network and correspondine LISP c,dc
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name: data-structures
alto: university-course

department: computer-science
credits: 3-hours

prerequisites:(if-needed check catalog)

(a)

(data-structures (alto (value university-course))
(department (value computer-science))
(credits (value 3-hours))	 -
(prerequisites (:it-needed check-catalog))))

Figure 10.3 tat Frame structure and WI

(hI	 corresponding A-list code,

Variables

AU of the structures we shalIcons ider  here are constructed front basic atomic elements,
numbers, and characters. Character string elements may represent either constants
or variables. If variables, they may be classified by either the type of match permitted
or by their value domains.

We can classify match variables by the number of items that can replace
them (one or more than one). An open variable can be replaced by a single item.
while a segment variable can be replaced by zero or more items. Open variables
are labeled with a preceding question mark ( ) x. 'v. ?class). They may match or
assume the value of any single string element or word. but they are sometimes
subject to consistency constraints. For example. to he consistent, the variable ?X
can be bound only to the same top level element in any single structure. Thus (a

x d ?x e) may match (a b d h e. but not (a b d it Segment ariable types will
be preceded with an asterisk *x . *1 . *words . This type of variable can match an
arbitrary number or segment of contiguous atomic elements (anN sublist including
the empty list). For example. (t d (c f) *v) hill match the patterns

(a (b	 l tI(e [) ' h). (ci (c]) (t))

or other similar patterns Segment variables may also he subject to consistency
constraints similar to open variables.

Variables may also he classified by their value domains. This distinction will
be useful when we consider similarity measures below. The variables may be either
quantitative, having a meaningful origin or zero point and a meaningful interval
difference between two values, or they may be qualitative in which (here is no
origin nor meaningful interval value difference. These two ipes may be further
subdivided as follows.

Nominal variables. Qualitative variables whose values or states have no
order nor rank. It is only possible to distinguish equality or inequality between two
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such objects. Of course each state can be given a numerical code. For example.
"marital status" has states of married, single, divorced, or widowed. These states
have no numerical significance, and no particular order nor rank. The states could
be assigned numerical codes however, such as married = I. single = 2. divorced
= 3, and widowed = 4.

Ordinal variables. Qualitative variables whose states can be arranged to a
rank order, but the difference between two distinct values has no significance. Ordinal
variables may also be assigned numerical values. For example, the states very tall.
tall, medium, short, and very short can be arranged in order from tallest to shortest
and be assigned an arbitrary scale of 5 to I. However, the difference between
successive values does not necessarily have any quantitative meaning.

Binary variable. Qualitative discrete variables which may assume only one
of two values, such as 0 or I, good or bad, yes or no, high or low.

Interval (metric) variables. Quantitative variables which take on numeric
values and for which equal differences between values have the same significance.
For example, real numbers corresponding to temperature or integers corresponding
to an amount of money are considered as interval variables.

Graphs and Trees

Two other structures we shall consider in this section are graphs and trees. One
type of graph we are already familiar with is the associative network (Chapter 6).
Such structures provide a rich variety of representation schemes. More generally, a
graph G (V. E) is an ordered pair of sets V and E. The elements of V are nodes
or vertices and the elements of E are a subset of V X V called edges (or arcs or
links). An edge joints two distinct vertices in V.

Directed graphs, or digraphs, have directed edges or arcs with arrows. If an
arc is directed from node n to n1 , node n, is said to be a parent or successor of n,,

and n, is the child or successor of n, Undirected graphs have simple edges without
arrows connecting the nodes. A path is a sequence of edges connecting two nodes
where the endpoint of one edge is the start of its successor. A cycle is a path in
which the two end points coincide. A connected graph is a graph for which every
pair of vertices is joined by a path. A graph is complete if every element of V x
V is an edge.

A tree is a connected graph in which there are no cycles, and each node has,
at most, one parent. A node with no parent is called the root node, and nodes with
no children are called leaf nodes. The depth of the root node is defined as zero.
The depth of any other node is defined to be the depth of its parent plus I. Pictorial
representations of some graphs and a tree are given in Figure 10.4.

Recall that graph representations typically use labeled nodes and .arcs where

14-
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Ia)	 -	 tel

Figure 11)4 Examples iii tat general connected graph. Ib, diraph.	 I disconnetted graph
and idi tree of depth 3

the nudes correspond to entities and the arcs to relations Labels for the nodes and
arcs are attribute values.

Sets and Bags

A set is represented as an unordered list of unique elements such as the set 40 d
) or (black red blue green. A bag is a set which may contain more than one

copy of the same member; for example, the list a d e a b d represents a bag with
members a, b, d. and e Sets and bags are Structures frequently used in matching
operations.

10.3 MEASURES FOR MATCHING

Next, we turn to the problem of comparing structures without the use of pattern
matching variables. This requires consideration of measures used to determine the
likeness or similarit y between two or more structures, The similarit y between txI)
structures is .a measure of the degree of associaton or likeness between the ishiects
attributCs and other characteristic parts. If the describing variables are qualitEtalIc.
a distance metric is often used to measure the proximity.

Distance Metrics

For all elements .x, v	 of the set E, the function ci is a metric if and onl y it

a. d(x.x)	 0
b. d(x,v)	 0
c. d(x.v) = d(y,.r)
d. d(x.v) 5 d(.t.:) 5- d(:,v)

The Minkowski metric is a general distance measure satisfying the jbc
-sumptions, It is given by
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['•	
v

For the case p	 fhis metric is the familiar Euclidean distance When p = I. il,,
is the so-called absolute or cit y block distance.

Probabilistic Measures

In stnie cases, the representation variables should he treated as random variables.
Then one requires a measure of the distance between the variates, their distributions.
or possibly between a variable and distribution. One such measure is the Niahalanobis
distance which gives a measure of the separation between two distributions. (liven
the random Vectors X and Y let C he their covariance matrix. Then the Niahalanuhis
distance is given by

1) = X'C'Y

where the prime C) denotes transpose (row vector) and C is the inverse of C.
The X and V vectors may be adjusted fdr zero means by first subtractin g the vector
means u and ui..

Another popular probability measure is the product moment correlation r,
given by

=	 Cov(X.Y)
r	

lVar(X)*Var(Y)1I'

where Coy and Var denote covariance and variance respectively. The correlation
r. which ranges between - I and + I, is a measure of similarity frequently used in
vision applications.

Other probabilistic measures often used in Al applications are based on the
scatter of attribute values. These measures are related to the degree of clustering
among the objects. In addition, conditional probabilities are sometimes used. For
example, they may be used to measure the liklihood that a given X is a member.
of class C. P(CJX ), the conditional probability of C given an observed X These
measures can establish the proximity of two or more objects. These and related
measures are discussed further in Chapter 12.

Qualitative Measures

A number of distance measures based on qualitative variables (nominal, ordinal.
and binary) have also been defined as well as methods which deal with mixtures
of variables (Anderberg. 1973). We describe only a few such measures here to
illustrate the basic forms they take.

Measures between binary variables are best described usrng contingency tables
like Table 10.1. The table entries there give the number of objects having attribute
X or Y with corresponding value of I or 0. For example, if the objects are, animals.
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TABLE 10.1 CONTINGENCY TABLE FOR BINARY VARIABLES

Sjriahic

EII	
rt..tJ

X might he horned and Y might he lotte tailed In thiscase, the cittr a is the
number ot animals having both horns and long tails Note that ii 	 u + 0 +
il. the total number of objects

Various measures of association for such hinar ', arijhlc, have been delined
For example

a	 -	 a-i-il

a + h ± e ± (I - it 	 0

a	 a

Contingency tables are also useful for describing other qualitatise variables.
both ordinal and nominal. Since the methods are similar to those for binar y variables.
we omit the details here.

Whate'er the variable types used in a measure, they should all he properk.
scaled or normalized to prevent variables having large values from negating the
eltects of smaller valued variables. This could happen when one variable is scaled
in millimeters and another variable in meters.

Similarity Measures

For many problems, distance metrics are not appropriate Instead, a measure of
similarity satisfy ing conditions different from those of Table 10.1 may be more
appropriate Of course, measures of dissimilarit y (or similarity), like distance, should
decrease (or increase) as objects become more alike. There is strong evidence,
however, to suggest that similarities are not in general symmetric (Tversky, 1977)
and hence, any similarity measure between a subject description A and its referrent
B, denoted by .c(A,B), is not necessarily equal: that is, in general, s(A,B) k s(B,.4)
or "A is like B" may not be the same as "B is like A."

Tests on subjects have shown that in similarity comparisons, the focus of
attention is on the subject and, therefore, subject features are given higher weights
than the referrent. For example, in tests comparing countries, statements like "North
Korea is similar to Red China" and "Red China is similar to North Korea" or "the
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USA is like Mexico" and "Mexico is like the USA" were not rated as s)ilimetrical
or equal. The likenesses and differences in these cases are directional. Moreos-er.
like many interpretations in Al. similarities may depend strongly on the contest in
which the comparisons are made. They may also depend on the purpose of the
comparison.

An interesting family of similarity measures which takes into account such
factors as asymmetry and has some intuitive appeal has recentl y been proposed
(Tversky. 1977). Such measures may be adapted to give more realistic results for
similarity measures in Al applications where context and purpose should i nfluence

the similarity comparisons.
Let 0 = { O i .0, ........ the universe of objects of interest andlet A he the

set of iittributes or features used to represent o A similarit y measure s.hich ts a
function of three disjoint sets of attributes common tO iny two objects A, and 4 is

given as

s(A,.A)	 EtA, &A,. 4, - A,. A, - A,	 1(2)

where It, & A, is the set of features common to both o, and o,. A, - .1 1 	the set of

features belonging to o, and not o. and A, A, is the set of featurcs belonging to

o. and not o,. The function F is a real valued nonnegative function. Under tamrly
general assumptions equation 10.2 can be written as

s(A,,A,) = af(A, & A,,)	 hf(A, -- .4,) - cf(A, — A)	 lU.3

for some a.b.c 0 and where  is an additive inters al metric function. The function
f(A) may be chosen as any nonnegative function of the set A. like the numhr of

attributes in A or the average distance between points in A. Equation 10 .3 ma y he
normalized to give values of similarity ranging between 0 and I by writing

ftA & A
S(A A7 ) = --------	 L.__L____	 ( 10 4)

f(.4, & A,)±aJ(A, - .4,) + iii/ 0, —A,)

for some a,b n'̂  0.	 -
When the representations are graph structures, a similarity measure based on

the cost of transfonning one graph into the other may ht used. For example. a
procedure to find a measure of similarity between two lahled graph, (described in

Secdon 10.5) decomposes the graphs into basic suhgraphs and computes the rninioi,,iii
cost to transform either graph into the other one.. subpart -by subpart

Fuzzy Measures

Finally, we can define a distance between the two fuzi y sets A and B as

d(A.B) = 	- 	 ]	 -

where the total number of Objects k, in the universe is n
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Equation 10.5 measures the mean square difference in universe membership
scores between A and B. A score of I implies that the distance is maximal, wherea'-,
a score near zero can signity that either A and B are very similar or that iliosi
objects have low membership scores in both fuzzy sets. Therefore. care must he
exercised when interpreting such measures..

Fuzzy similarity measures can be defined with inverse functions of tu,tv dis-
tances such as the measure defined in equation 10.5 above. An even simpler measure
is. of course, the characteristic function u itself, which may he regarded as a measure
of the distance of an object .r, with respect to some reference fuity set. In that
case, distance is interpreted as a function of the inverse of degree of membership.

Rather than the distance or similarity between two sets or a set and an object.
we may be interested in the distance or similatity between objects xi thenisekes.
where the fuzz y sets represent traits or characteristics of the objects. One such
si iii i laritv measure for this is

=	 (I -	 i,()])	 10.61

which gives the mean trait membership difference between two objects ., and .i,,.
Of course .s(.v.,	 0 corresponds to equal likeness or maximal similarit y , and

I for i	 j corresponds to maximum dissimilarity.

10.4 MATCHING LIKE PATTERNS

in this section we consider procedures which amount to performing a complete
match between tw' structures. The match will he accomplished by comparing the
two struCtures and testing forequality among the correspondin g parts. Pattern variables
will he used for instantiations of some parts subject to restrictions as noted below

Matching Substrings

Since many of the representation structures are just character strings, a basic function
required in man y match algorithms is to determine if a substring S consistin g of
fit characters occurs somewhere in a string S 1 of pm characters, In n. A direct
approach to this problem is to compare the two strings character-by-character. starting
with the first characters of both S 1 and S. If any two characters disagree. the
process is repeated, starting with the second character of S 1 and matching again
against S character-by-character until a match is found or disagreement occurs
again. This process continues until a match occurs or Si has no more characters.

Let i and j be position indices for string S 1 and k a position index for S. We
can perform the substring match with the following algorithm.
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i:=O
while i(n-m+1) do
begin

i:=i+1; j =i; k:-1;
while S,(jl=S211k) do
begin

it km writeln(success')
also do
begin

:j+1;.k:=k4-1
end

end
end

writeln('fail')
end.

This algorithm requires m(n - rn) comparisons in the worst case. A more
efficient algorithm will not repeat the same comparisons over and over again. One
such algorithm uses two indices, i and j, where i indexes (counts) the character

positions in S 1 and  is set to a "match state" value ranging from 0 tom (like the
states in a finite automaton). The state 0 corresponds to no matched characters
between the strings, while the state I corresponds to the first letter in S, matching
character i in S2 . State 2 corresponds to the first two consecutive letters in S2

matching letters i and i + I in S 1 respectively, and so on, with state m corresponding
to a successful match. Whenever consecutive letters fail to match, the state index
is reduced accordingly. We leave the actual details as an exercise.

Matching Graphs

Two graphs O and G match if they have the same labeled nodes and same labeled
arcs and all node-to-node arcs are the same. More generally, we wish to determine
if C2 with m nodes is a subgraph of G with n nodes, where n	 m. In a worst

case match, this will require n!/(n - m)! node comparisons and 0(m) arc comparison
Consequently, we will see that most graph matching applications deal with sm
manageable graphs only or use some form of heuristics to limit the number
comparisons.

Finding subgraph isomorphisms is also an important matching problem. An
isomorphism between the graphs G 1 and G2 with vertices (nodes) Vt. V2 and edges

El, E2. that is, (Vl,El) and (V2,E2), respectively, is a one-to-one mapping to I
between Vl and V2, such that for all vi € Vt. f(H) = v2, and for each arc el €

El connecting vi and vi', there is a corresponding arc e2 e E2 connecting f(vl)
and f(vl'). An example of an application in which graph isomorphisms are used to
determine the similarity between two graphs is given in the next section.
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Matching Sets and Bags

An exact match of two sets having the same number of elements requires that their
intersection also have that number of elements. Partial matches 6f two sets can
also be determined by taking their intersection. If the two sets have the same number
of elements and all elements are of equal importance, the degree of match can be
the proportion of the total members which match. If the number of elements differ
between the sets, the proportion of matched elements to the minimum of the total
number of members can be used as a measure of likeness. When the elements are
not of equal importance, weighting factors can be used to score the matched elements.
For example, a measure such as

s(Sl.S2) = (
	

w,N(a))/m	 (107)

could be used, where w = I and N() = I if a, is in the intersection; otherwise it
is 0.

An efficient way to find the intersection of two sets of symbolic elements
(nonnumeric atoms) in LISP is to work through one set marking each element on
the elements property list and then saving all elements from the other list that have
been marked. The resultant list of saved elements is the required intersection.

Matching two bags is similar to matching two sets exce l ' counts of the
number of occurrences of each element must also be made. For this, a count of the
number of occurrences can be used as the property mark for elements found in one
set. This count can then be used to compare against a count of elements found in
the second set.

Matching to Unify Literals

One of the best examples of nontrivial pattern matching is in the unification of two
FOPL litetaIs. Recall the procedure for unify ing two literals, both of which may

variablesvaables (see Chapter 4). For example. to unifyP(f(a,.r).v.v) and PCv.h.:)
we first rename variables so that the two predicates have no variables in common.
This can be done by replacing the x in the second predicate with a to give P(u,h,:t.
Next, we compare the two symbol-by-symbol from left to right until a disagreement
is found. Disagreements can be between two different variables, a nonvariable term
and a variable, or two nonvariable terms. If no disagreement is found, the two are
identical and we have succeeded.

If a disagreement is found and both are nonvariable terms, unification is impossi-
ble; so we have failed. If both are variables, one is replaced throughout by the
other. (After any substitution is made, it should be recorded in a substitution worktist
for later use.) Finally, if the disagreement is a variable and a nonvariable term, the
variable is replaced by the entire term. Of course, in this last step, replacement is
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possible only if the term does not contain the variable that is being replaced. This
matching process is repeated until the two are unified or until a failure occurs.

For the two predicates P. above, a disagreement is first found between the
term f(a,x) and variable u. Since f(a,) does not contain the variable u, we replace
u with f(a,x) everywhere it occurs in the literal. This gives a substitution set of
{f(a,x)Iu} and the partially matched predicates P(f(o,x),y,y) and P(f(a,x),b.:).

Proceeding with the match, we find the next disagreement pair, y and h. a

variable and term, respectively. Again, we replace the variable y with the term b
and update the substitution list to get {f(a,x)/u, b/y}. The final disagreement pair is
two variables. Replacing the variable in the second literal with the first we get the
substitution set {f(a,x)Iu,b/y,ylz} or, equivalently, {f(a,91u ,b1v,b14 . Note that this
procedure can always give the must general unifier.

We conclude this section with an example of a LISP program which uses
both the open and the segment pattern matching variables to find a match between
a pattern and a clause.

(defun match (pattern clause)
(cond ((equal pattern clause) t)	 ;return t if

((or (null pattern) (null clause)) nil) 	 equal, nil
:if not.

((or (equal (car pattern) (car clause))	 not. ?x
;binds

(equal (car pattern) ?x)l 	 ;to single
(match (cdr pattern) )cdr clause))) 	 ;term,y

;binds
((equal (car pattern) 'y) 	 ;to several
(or (match (cdr pattern) (cdr clause)) ;contiguous

(match pattern (cdr clause)))))) 	 ;terms.

Notice that when a segment variable is encountered (the *v). match is recursively
executed on the cdrs of both pattern and clause or on the cdr of clause and pattern
as v matches one or more than one item respectively.

10.5 . PARTIAL MATCHING

For many Al applications complete matching between two or more structures is
inappropriate. For example, input representations of speech waveforms or visual
scenes may have been corrupted by noise or other unwanted distortions. In such
cases, we do not want to reject the input out of hand. Our systems should be more
tolerant of such commonly occurring problems. Instead, we want our systems to
be able to find an acceptable or best match between the input and some reference
description.
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Compensating for Distortions

Finding an object in a photograph given only a general description of the object is
a common problem in vision applications. For example, the task may be to locate
a human face or human body in photographs without the necessity of storing hundreds
of specific face templates. A better approach in this case would be to store a single
reference description of the object. Matching between photograph regions and corre-
sponding descriptions then could be approached using either a measure of correlation
or, alternatively, by altering the image to obtain a closer fit. If nothing is known
about the noise and distortion characteristics, correlation methods can be ineffective
or even misleading. In such cases, methods based on mechanical distortion may be
more appropriate.

Imagine that our reference image is on a transparent rubber sheet. This sheet
is moved over the input image and at each location is stretched to get the best
match alignment between the two images. The match between the two can then b
evaluated by how well they correspond and how much push-and-pull distortion i
needed to obtain the best correspondence.

In practice a discrete version of the stretchable model is needed for Computer
implementation. One way this can be accomplished is to use a number of rigid
pieces (like templates) connected with springs. The pieces can correspond to low
level areas such as pixels or even larger area segments (Figure 10.5).

To model any restrictions such as the relative positions of body parts (eyes
must be above nose, legs below torso, and so on). nonlinear cost functions of
piece displacements can be used. The costs can correspond to different spring tensions
which reflect the constraints. For example, the Cost of displacing some pieces might
be hero for no displacement, one Unit for single increment displacements in any
one of the permissible directions (left, right, up, down), two units for two position

I[fl.•
[

Figure 10.5 Discrete version ot
stretchable overlay image.
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displacements and infinite cost for displacements of more than two increments.
Other pieces would be assigned higher costs for Unit and larger position displacements

when stronger constraints were applicable.
The matching problem here is to find a least cost location and distortion pattern

for the reference sheet with regard to the sensed picture. Attempting to compare

each component of some reference to each primitive part of a sensed picture is a
combinatonally explosive problem. However, in using the template-spring reference
image and heuristic methods (based on dynamic programming techniques) to compare

against different segments of the sensed picture. the search and match process can

be made tractible..
Any matching metric used in the least cost comparison would need to take

into account the sum of the distortion costs C, the sum of the costs for reference

and sensed component dissimilarities C, and the sum of penalty Costs for missing

components C,, Thus, the total cost is given by

tlO.8

Finding Match Differences

Distortions occurring in representations are not the only reasons for partial matches.
For example, in problem solving or analogical inference, differences are expected.
In such cases the two structures are matched to isolate the differences in order that
they may be reduced or transformed. Once again, partial matching techniques are
appropriate. The problem is best illustrated with another example

In a vision application (Eshera and Fu, 1984), an industrial part may be described
using a graph structure where the set of nodes correspond to rectangular or cylindrical
block subparts. The arcs in the graph correspond to positional relations between
the subparts. Labels for rectangular block nodes contain length, width, and height.
while labels for cylindrical block nodes give radius and height. The arc labels give
location and distances between block nodes, where location can be above, to the
right of. behind, inside, and so on.

Figure 10.6 illustrates a segment of such a graph. In the figure the following
abbreviations are used:

R = rectangular block	 1, = length of subpart
C = cylindrical block	 = width of subpart
J = joint	 h, = height of subpart
T = to-the-right-of	 r = radius of subpart
V above	 d, = distance between subparts

Interpreting the graph. we see it is a unit consisting of subparts, made up of
rectangular and cylindrical blocks with dimensions specified by attribute values.
The cylindrical block n 1 is to the right of n 2 by d 1 units and the two are connected
by a joint. The blocks n 1 and n, are above the rectangular block n 3 by d, and d
units respectively, and so on.
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\ (V d2)
lJ	 V	

Figure 10.6 Segment of an attributed
R /, v 2 , h)	 relational graph.

Graphs such as this are called attributed relational graphs (ATRs). Such a
graph C) is defined formally as a sextuple

G = (N,B,A,G,.(;5)

where N = (" 1, -. fl} is a set of nodes. .4 = ian 1 , ...., an} is an
alphabet of node attributes, B = {b 1 . b, . . . , b,,J is a set of directed branches
lb = (n,.n)). and Gn and Gb are functions for generating node and branch attributes
respectively.

When the representations are graph structures like ARGs, a similarity measure
may be computed as the total cost of transforming one graph into the other. For
example. the similarity of two ARGs may be determined with the following steps:
(I) Decompose the ARGs into basic suhgraphs, each having a depth of one, t2
compute the minimum cost to transform either basic- ARG into the other one suhgraph-
by-suhgraph, and (3) compute the total transformation cost from the sum of the
suhgraph costs.

An ARC) may be transformed by the three basic operations of node or branch
deletions. insertions, or substitutions, where each operation is given a cost ha.;'ed
on computation time or other factors.

Finding the minimal cost to transform one ARC) into another is known to he
an NP complete. problem. However, heuristic solutions using d y namic programming
methods have been developed which have time complexity of 0(rn 2 n 2 1 rn + a))
where m and n are the number of nodes in the two ARCs. For details regarding
such computation procedures the reader is referred to Eshera and Fu (l94).

10.6 FUZZY MATCHING ALGORITHMS

Fuzzy matching is accomplished by computing a fuzzy distance or similarity measure
between two objects such as those given in Section 10.3. A similarity score of I
corresponds to an identical match while a score near 0 corresponds to maximal
dissimilarity. For example, suppose two objects say o and o, are each described
by the same set of k attributes A,. I = I .....k. Each attribute may be regardod
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as a fuzzy set, and a metric similar to equation 10.6 may then be used to match
compare the two objects based on their attribute memberships.

If the attribute', represent linguistic variables such as height. weight, facial-
appearance. color ot-eves. and type-of-hair, each variable may be assigned a limited
number 01 values. For example, a reasonable assignment for height would he the
integers 10 to 96 corresponding to height in 'inches. Eye colors could he assigned
brown, black, blue. hazel, and so on An object description of tall, slim, pretty.
blue e yed, blonde s ill have characteristic function values for the b ye attributes of
u.,(o 1 ) and u (o) for objects o l and o respectively A measure of fuzzy similarity
between the two objects can then he defined as

.1 ) ( i .0,) = I	 (I - (I).

where

	

(I - -	 - u4,(o)) 2 j (109)
I, [,

For an accurate match, the quantity d in equation 10.9 should be computed
for several different values of each linguistic 'variable (very short, short, medium,
tall, and very tall) and the average taken This will be done at the expense of
much computation. however.

Note that it is always possible to define the attribute domains as discrete
finite approximations to any domain as we have done for height. and the characteristic
values for tall might be	 10)	 ... u,1 ( 50) = 0	 = 0.5

The number (k) of attributes and domain values chosen for each attribute will
depend on the specific Furthermore, it should be noted that the characteris-
tic values will be subjectise ones Even so. selecting only a few relevant attributes
and assigning a modest number of values for each domain can give a good approxima-
tion to fuzzy likenesses

10.7 THE RETE MATCHING ALGORITHM

Production lOr rule-based) systems are described in Chapter IS. They are popular
architectures for evert s)stenls. A typical system will contain a Knowledge Base
which contains structures representing the domain expert's knowledge in the form
of rules or productions. a working memory which holds parameters for the current
problem. and an inference engine with rule interpreter which determines which
rules are applicable for the current problem (Figure 10.7).

The basic inference cycle of a production system is match, select, and execute
as indicated in Figure 10.7. These operations are performed as follows.

Match. During the match portion of the cycle, the conditions in the left
hand side (LHS) of the rules in the knowledge base are matched against the contents
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Figure 10.7 Production system components and basic cycle,

of working memory to determine wh
i
ch rules have their LUIS conditions satisfied

with consistent bindings to working memory terms. Rules which are found to be
applicable (that match) are put in a conflict set.

Select. From the conflict set, one of the rules is selected to execute. The
selection strategy may depend on recency of useage, specificity of the rule, or

other criteria.

Execute. The rule selected from the conflict set is executed by carrying
out the action or conclusion part of the rule, the right hand side (RHS) of the rule.

This may involve an I/O operation, adding., removing or changing clauses in Working

Memory or' simply causing a halt.

The above cycle is repeated until no rules are put in the conflict set or until a

stopping condition is reached.
A typical knowledge base will contain hundreds or even thousands of rules

and each rule will contain several (perhaps as man y as ten or more) conditions.

Working memories typically contain hundreds of clauses as well. Consequently.
exhaustive matching of all rules and their LUIS conditions against working-memory
clauses may require tens of thousands of comparisons. This accounts for the claim
made in the introductory paragraph that as much as 90 17c of the computing time for

such systems can be related to matching operations.
To eliminate the need to perform thousands of matches per cycle, an efficient

match algorithm called RETE has been developed (Forgy. 1982). It was initially
developed as part of the OPS family of programming languages (Brownston, et al.,
195) This algorithm uses several novel features, including methods to avoid repetitive
matching on successive cycles. The main time-saving features of RETE are as

follows.

1. In most expert systems, the contents of working memory change very little
from cycle to cycle. There is a persistence in the data known as temporal redundancy.
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Figure 10.8 Changes to working memor are mapped it) the conflict set

This makes exhaustive matching on every cycle unnecessary. tnstead, by saving
match information, it is only necessary to compare working memory changes on
each cycle. In RETE. additions to, remoals from, and changes to working memory
are translated directly into changes to the conflict set (Figure 10.8). Then, when a
rule from the conflict set has been selected to fire, it is removed from the set and
the remaining entries are saved for the next cycle Consequently. repetitive matching
of all rules against Working Memory is asoided. Furthermore, by indexing rules
with the condition terms appearing in their LHS (described below), only those rules
which could match Working Memory changes need to be examined. This greatly
reduces the number of comparisons required on each cycle.

2. Many rules in a knowledge base will have the same conditions occurring
in their LHS. This is just another way in which unnecessary matching can arise
Repeated testing of the same conditions in those rules could be avoided by grouping
rules which share the same conditions and linking them to their common terms, It
would then be possible to perform a single set of tests for all the applicable rules.
A description of this linking process is given below.

When the rules are first loaded Into the knswleslge base, they are examined
and processed by a rule compiler. The compiler checks the LHS conditions and
forms an association between rule names and their LHS condition terms. In addition,
the ..compiler builds a network structte which connects all rules having common
conditions in their LI-IS. The network is then used during run time to locate and
test rule conditions which might be satisfied with consistent bindings to new working-
memory clauses figure 10.9 illustrates hoA rules sharing common LHS teriits are
grouped together and indexed with these common condition terms.

One way to form the associations and indices using LISP is with prapert\
lists. For example.

(putprop 'R6 father 'cond-l)
(putprop 'R6 father 'cond-2)
(putprop 'R12 'father 'cond-l)

sets up a link between rules and their LHS conditions, whereas statements like

(putprop father (cons R6 (get 'fa'ther 'cond-l) 'cond-1))

link specific LHS terms to all rules which contain the term in th same LI-IS positions
When a change is made to working memory, such as the addition of the clause
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Figure 10.9 Typical rules and a portion of a compiled network.

(father bill joe), all rules which contain father as an LHS condition are easily identified
and retrieved.

In RETE, the retrieval and subsequent testing of rule conditions is initiated
with the creation of a token which is passed to the network constructed by the rule
compiler. The network provides paths for all applicable tests which can lead to
consi s tent bindings and hence to complete-LHS satisfaction of rules. The matcher
traverses the network finding all rules which newly match or no longer match Working
Memory element ,;. The output from the matcher are data structures which consist
of pairs of elements •. a rule name and list of working-memory elements that match
its LHS. like (R6 ((father bob sam) (father mike bob)).

The reader will , notice that the indexing methods described above are similar
to those presented in the following chapter. Other time-saving tricks are also employed
in RETE however, the ones noted above are the most important. They provide a
substantial saving over exhaustive matching of hundreds or even tens of thousands
of conditions.
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10.8 SUMMARY

In this chapter we have examined representation structures used in match comparison
operations, and considered various measures of similarity and distance between
two or more such structures.

We began by reviewing some representation structures such as FOPL e\pres
sions, rules, frames, fuzzy sets, and networks. We added to this group general
graphs. trees. Sets, and bags. We defined pattern variables as open or segment
based on the number of constant terms the could hind with. \ke Ul'.&i defined
variables as a function of their domains, nominal, ordinal, binary, and interval.

Next, we considered various measures that could be used in assessinz the
likeness or proximity of two or more objects. These included Euclidean distance.
probabilistic measures, qualitative measures, various similarity measures, and fu,i
measures.

We then examined matching algorithms for exact matches where the structures
were required to be identical, be transformable, or be capable of binding to pattern
variables with certain constraints.

We also considered partial matching problems and saw two examples in which
partial matches were more realistic than exact matches. Fuzz y matching procedures
for objects were also described and appropriate measures presented.

Finally, we concluded the chapter with a description of an important matching
algorithm used in the OPS programming languages. This is the RETE algorithm
which takes advantage of the fact that the contents of working memory change
little from cycle to cycle, and many rules share the same conditions in their LHS.
By properly indexing predicates and rules and saving match information. RETE is
able to eliminate exhaustive matching on every cycle and update the conflict set
only as needed.

EXERCISES

10.1. Indicate whether or not consistent substitutions can t made which result ill matches
for the following pairs of clauses. If substitutions can be made. given example, tit
valid ones.

a. P(a.f(x,b).gtt(a.y)Lz). P(a.f,yf.g(f(x.yflc)
b. P(a,x) V Q(b,y,fty)) V R(x,y).

P(x,a) V Q(f(y).y.b) V R(y.x)
C. R(a,b,c) V Q(.v,z) V P(f(a,x,bI,

P(z) V O(x.y,b) V R(x.y,z)

10.2. State what variable bindings. if any, will make the following lists match

IS-
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a. (abc (d a) 0, ( 7x b C Id 7y1 ?z)
b. ('x a b Ic dl x), lie 0 a b y e I)
c. lx y a b C Id e)). (a Ii Ii (0) a b c z)

10.3. Write a LISP function called "match" that takes two arguments and returns T if
the two are identical, returns the two arguments if one is a variable and the other a
term and returns nil, otherwise.

10.4. Identify the following variables as nominal, ordinal, binary or interval:
temperature	 sex
wavelength	 university class
population	 intelligence
quality of restaurant

10,5. What is the difference between a bag and a set? Give examples of both. Hov. could
a program determine whether a data structure was either a bag or a set?

10.6. Compute the Mahalanohis distance between two normal distributions having zero
means, variances of 4 and 9, and a covariance of 5.

10.7. Give three dierent examples of functionsf that can be used in the similarity equations
10.3 and 10.4.

10.8. Choose two simple objects 01 and 02 that are somewhat similar in their features
Al and A2, respectively, and compute the similarity of the two using a form ol

equation 10.4.
10.9. Define two fuzzy sets ''tall" and "short'' and compute the distance between theill

using equation 10.5.
10.10. For the two sets defined in Problem 10.9. compute the similarity of the two using

equation 10.6.
10.11. Write a LISP function to find the intersection of two sets using the marking method

described in the subsection entitled Matching Sets and Bags.
10,12. Write a LISP function that determines if two sets match exactly.
10.13. Write pseucocode to unify two FOPL literals.

10.14. Write a LISP program based on the pseudocodc developed in Problem 10.13
10.15. Write pscudocodc to find the similarity between two attributed relational graphs

(AGRs).
10,16. Suppose an expert system working memory has n clauses each with an average ol

four if .. then conditions per clause and a knowledge base with 200 ules. Each
rule has an avereage of five conditions. What is the time complexity of a matching
algorithm which performs exhaustive matching?

10.17. Estimate the average time savings if the RETE algorithm wals used in the previous
problem.

10. 18. Write a PROLOG program that determines if two eis match exactly

10.19. Write a PROLOG program that determines if two sets match except possibly for the
first elements of each set.



II

Knowledge Organization
and Management

We have seen how important the choice of a suitable representation an he in the
solution of knowledge-based problems. When a good representation i chosen for
a class of problems, the solution process can be greatly simplified. A poor representa-
tion can lead to excessive effort or even failure. Another factor which can have a
significant impact on the ease with which problems are solved is the accessibility
of the knowledge. By accessibility, we mean the ease and the reliability sith which
a specific set of knowledge can he selectively found and retrieved for use over
extended periods of time.

The problem of access is closely related to and dependent on the wa y in
which the knowledge is organized and maintained in memory. Through appropriate
structuring of the knowledge, the retrieal process can be greatly expedited But a
memory organization for an intelligent system must not he a Static one, In order to
be effective, it must he dynamic. since knowledge will continuall chai.ge with
modifications to the environment. New knowledgeowledge must be integrated th the old,
and outmoded knowledge must be modified or forgotten. This requires continual
reorganization of the knowledge.

Knowledge-based systems tend to require large amounts of knowledge. And.
as knowledge bases increase in size and complexity, the access problem becomes

more difficult. The time to search.- test, select, and retrieve a minimal amount of
requisite knowledge from a large, body of knowledge cn be very time consuming

211
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it the knowledge is poorl y organized. Such problems can easil y become intractible
or at best intolerable.

In this chapter, we investigate various approacheslo the effecti'e organization
of knowledge within memors.. We reco g nize that while the reprcsentitom of knoAl-
edue is still an Important taclor, we are more concerned here with the broader
pn)hlein, that of organization and maintenance for efficient storage and recall as
wl I as for i ts manipulation.

111 INTRODUCTION

Flic advantages of usin g structured kniwledge representation schemes (frames, aooi-
dative networks, or object-oriented structures) over unstructured ones (rules Or K
clauses) should he understood and appreciated at this point. Structured schemes
group or link small related chunks of knowledge together as a unit. This simplifies
the processing operations. since knowledge required For a given task is usually
contained within a limited semantic region which can be accessed as a unit or
traced through a few linkages.

But, as suggested earlier, representation is not the only factor which affects
efficient manipulation. A program must first locate and retrieve the appropriate
knowledge in an efficient manner whenever it is needed. One of the most direct
methods for finding the appropiiate knowledge is exhaustive search or the enumeration
of all items in memory. This is also one of the least efficient access methods.
More efficient retrieval is accomplished through some form of indexing or grouping.
We consider some of these processes in the next section where we review traditional
access and retrieval methods used in memory organizations This is followed by a
description of less commonly used forms of indexing.

A ''smart" expert system can he expected to have thousands or even lens of
thousands of rules (or their equivalenti in its KB. A good example is XCON (or
RI). an expert system which was developed for the Digital Equipment Corporation
to configure their customers' computer systems. XCON has a.rapidly growing KB
which, at the present time. Consists of more than 12.000 production rules. Large
numbers of rules are needed in systems like this which deal with complex re:'soning
tasks. S ystem configuration becomes very complex when the number of components
and corresponding parameters is large (several hundred). If each rule contained
aboutfour or live conditions in its antecedent or If part and an exhaustive search

is used, as man y as 40,(X)-50,(XXJ tests could he required on each recognition
c ycle. Clearl y , the time required to perform this number of tests is intolerable.
Instead, some form of niemnorv management is needed. We sa one way this problem
was solved using a form of indexing with the RETE algorithm described in the
preceding chapter. More direct memory organization approaches to. this problem
are considered in this chapter -

WeWe humans five in a dynimic, continually changing environment. To cope
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with this change. our memories exhibit some rather remarkable properties We are
able to adapt to varied changes in the environment and still improse our pertorivanee
This is because our memor y sssIem is continuousl y adapting through a rrilif,ilion
process. Ness knossledge is continualIN being added to our memories. existin g knoss I.
edge is continualk being revised. and less important knowledge is er,idualk being
forgotten. Our memories are continuall y bein g reorL'anhlcd to expand ttu r recall
and reasonin g abilities. This process leads to iinpro ed memor\ performance ih ri tu h
out most of our lives.

When dcxc loping computer memories for intelligent ' sICilts . 55 C I t1\ -, ,t ill
ssiine useful insight b learning \% hat xx e can from human meinoi sx sic ins	 c
xx ou Id expect  ci iniputer memors 55 stems ill soiue of the same feat nrc s For

example. h u loan memories tend to he limitless in capaci1 .anxl ihe pit is ide a
uniform grade of recall sers ice, independent of the amount of inIorinaii'ii sitired
For later use, xxe ha\e sunititarucd these and other desirable characteristics that
' c f eel alleffective computer memor y organh/ation sxsteili should possess

I. It should he possible to add and integrate nevi, knowledge in mernoli, as needed
Without concern for limitations in size

2. Any or ganizational scheme chosen should facilitate the reinemberint! pro cess
Thus, it should he possible to locate ativ stored item of knowledge eI!i entl
from its content alone.

3. The addition of more knowledge to memory should have no advnrse etIc..ts
oil ax'cessihiIit of items already stored there. Thus, the search tulle should
not increase appreciably with the amount of information stored

4. The organi ation scheme should Facilitate the recognition of sininilar items of
know ledge. This is essential for reasoning and learning functions It SlitlCcsis
that existing knowledge he used to determine the location and manner in xx h ich
new knowled ge is inte g rated into memor\

5. The nnrganilation should facilitate the process of consolidating recurrent inc dciii
or episodes and torgett i ng' ' knowledge when it is no In luger \ '111d tnt no
lon ger needed

These characterist
i
cs suggest that memory he organized around ,n

lusters of knowledge Related clusters should be grouped and stored in close princrin
it\ to each other and he linked to similar concepts through ussuciatixe relations
Access to any given cluster should he possible through either direct or indirect
links such is concept pointers indexed h) meaning. Index kc 	 "fill s nnninoinnniu'
meanings should provide links to the same know ledge clusters 1 hese notions are
illustrated graphieulk in Figure II. I where the clusters represent urhitrars groups
of close!> related know ledge such as objects and their properties or basic conceptual
cate gories. The links connecting the clusters are Iwoxxa y pointers which provide
relational associations between the clusters thev connect.
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assratIve links

Figure 11.1 Indexed clusters of linked knowledge

The Frame Problem

One tricky aspect of systems that must function in dynamic environments is due to
the so-called frame problem. This is the problem of knowing what changes hase

and have not taken place following some action. Some changes will he the direct
result of the action. Other changes will be the result of secondary or side etiects
rather than the result of the action. For example, if a robot is cleaning the floor ,, in
a house, the location of the floor sweeper changes with the robot even though this

Source input

Anal /Ze alternateCorTipute index	 Contexts

'It
Retrieve relevant	 Faiknowledge

t
Succeed

Marco,,

Reorganize
memory

Figure 11.2 Memoni organi,ation
functions
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is not explicitly stated. Other objects not attached to the robot remain in their rigina)
places: The actual changes must somehow be reflected in memory. a feat that requires
some ability to infer. Effective memory organization and management methods must
take into account effects caused by the frame problem.

In the remainder of this chapter we consider three basic problems related to
knowledge organization; ( I ) classifying and computing indices for input information
presented to a system. 12) access and retrieval of kno ledge from memory through
the use of the computed indices, and (3) the reorganization of memory struciure

when necessary to accommodate additions, revisions, and forgetting. These tunetion

are depicted in Figure 11.2.

11.2 INDEXING AND RETRIEVAL TECHNIQUES

When a know ledge base is too large to he held in main niernon . it iliust he stored
as a tile in secondary storage (disk, drum or tape). Storage and retrieal of intoi In -At ion
in secondary memory is then performed through the transfer ol equalsi/c ph 'deal
blocks consisting of between 2 12561 and 2H4096) bytes. When an item of intornia-
tion is retrieed or stored, at least one complete block must he transferred bet's een

main and secondary memory . The time required to transfer a block t\pIcall\ r.iilges

between It) ms. and 100 ms. . about the same amount of time required to sequeritiall

search the whole block for an item. Clearl y . then, grouping related knoss ledge
together as a unit can help to reduce the number of block transfers, and hence die

total access time.
An example of et)eet i e grouping alluded to abos e . an he found in some

expert s y stem KB organizations. Grouping together rules s hih share some of the
saIflC conditions (propositions) and conclusions call block transfer tutics since
such rules are likely to he needed during the saute problem sols ing session (oiic
qucntly . collecting rules together h similar conditions or content call 	 to teduec

the number of block transfers required. A noted before, the RF II al,orithiv -

scribed III 	 previous chapter. is all 	 of this i fie ol oreani/ai[oil

Indexed Organization

While organ ,o ion hr content call 	 to reduce block transfers, an i tide sed or 0
non scherne call greatly reduce the time to determine the storage location of a:i

item Indexin g is accomplished hr organi/ing the intormation in some iy for
easy access. One vay to index is by segregating knov ledge into tso or more groups
and storing the locations of the kno ledge (or each group in a smaller index tile
To build an Indexed tile. kno ledge stored as units Isuch as recordst is first arranged
sequentially (sortCdl hr some key value. The ker can he anr chosen tick) or fields
that uniquely identity the record. A second tile containing indices for the record
locations is created while the sequential knowledge tile is being loaded Each physical
block in this main tile results in one entry in the index tile. The index tile entries
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are pairs of record key values and block addresses. The key value is the key of the
first record stored in the corresponding block. To retrieve an item of knowledge
from the main file, the index file is searched to find the desired record key and
obtain the corresponding block address. The block is then accessed using this address.
Items within the block are then searched sequentially for the desired record.

An indexed file contains a list of the entry pairs (k.b) where the values k are
the keys of the first record in each block whose starling address is b. Figure 11.3
illustrates the process used to locate a record using the key value of 378. The
largest key value less than 378 (375) gives the block address (800) where the item
will be found Once the 8(0 block has been retrieved, it can be searched linearh
to locate the record with key value 378. This key could he any alphanumeric string
that uniquely identifies a block, since such strings usually have a collation order
defined b y their code set.

If the index file is large, a binary search can he used to speed up the index
file search. A binary search will significantly reduce the search time over linear
search when the number of items is not too small. When a file contains n records,
the average time for a linear search is proportional to n/2 compared to a binary
search time on the order of ln,(n).

Further reductions in search time can be realized using secondary or higher
order (hierarchically) arranged index tiles. In this case the secondary index file
would contain key and block-address pairs for the primary index tile. Similar indexing
would apply for higher order hierarchies where a separate hi used for each
level. Both binary search and hierarchical index file organization may be needed
when the KB is a very large tile.

index	 KB file
fIe bIok ddree of eord, k key
(kb)	 b	 k	 Other record fieId

key	 009. 100	 100	 009...............
y.elue p	 138,200	 100	 110....................

378,	 100	 014....
100	 021..
100	 032....

375, 800	 200	 138...
41 .0,900	 .

200	 165.

_800 375
800 377
800 378
800 382
800 391
800 405
900 410
900 412

Figure 11.3 Indexed file organization.
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When the total number of records in a KB tile is n with r records stored per

block giving a total of b blocks tn = r * hI. the average search time for a nonindexed,

sequential search is b / 2 block access tinces plus it 2 record tests. This compares

with an index search time of h / 2 index tests, one block access, and r 2 record

tests: A binary index search on the other hand would require only ln(/n index
tests, one block access, and r 2 record tests. Therefore. we see that for aric ii

and moderately large r 13() to SO), the time savings possible using hinar indexed

access can be substantial.
Indexing in LISP can he implemented ith property lists. A-lists, and or

tables. For example. a KB can be partitioned into segments b y storing each segment
as a list under the property value for that seement. Each list indexed in this sa
can be found v ith the get property function and then searched sequentiallN or sorted
and searched with binary search methods. A hash-table is a special data structure
in LISP which provides a means of rapid access through kes hashing. We resiess
the hashing process next.

Hashed Files

Indexed organizations that permit efficient access are based on the use of a hash
function. A hash function. h. transforms ke y values k into integer storage location
indices through a simple computation. When a maximum number of items or categories

C are to be stored, the hashed values h(k) will range front to C - I. Therefore.

given any key value k. h(k) should map into one of 0 ....- I.
An effective, but simple hash function can be computed by choosing the largest

prime numberp less than or equal to C. converting the key value k Into an integer

- k' if necessary, and then using the value k mod p as the index value h. For example.

if C is lO). the largest prime less than C is p 997. Thus. it the record key

salue is 12345789 (a social security number. the hashed value is h = (k iiod

997) = 273.
When using hashed access, the value of C should he chosen large enough to

accommodate the maximum number of categories needed. The use of the prime
number p in the algorithm helps to insure that the resultant indices are soiiics hat
uniformly distributed or hashed throughout the range 0 . - C -

This type of organization is well suited for groups of items coresponding to

C different categories. When two or more items belon g to the same cate gory . the

will have the same hashed values. These values are culled .cvnonv,ns. One \a to
accommodate collisions (simultaneous attempts to access synonyms) is with data
structures known as buckets. A bucket is a linked list of one or more Items, where
each item is a record, block, list or other data structure. The first item in each
bucket has an address corresponding to the hashed address Figure II .4 illustrates
a form of hashed memory organization which uses buckets to hold all Items ith
the same hashed key value. The address of each bucket in this case is the indexed
location in an array.
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Hashed address

Figure 11.4 Flashed .memor) tile organization.

Conceptual Indexing

The indexing schemes described above are based on lexical ordering, where the
collation order of a key value determines the relative location of the record Keys
for these items are typically chosen as a coded field (employee number, name,
part number, and so on) which uniquely identifies the item. A better approach to
indexed retrieval is one which makes use of the content or meaning associated
with the stored entities rather than some nonmeaningful key value. This suggests
the use of indices which name and define or otherwise describe the entity being
retrieved. Thus, if the entity is an object, its name and characteristic attributes
WOU 'd make meaningful indices. If the entity is an abstract object such as a concept.
the name and other defining traits would be meaningful as indices.

How are structures indexed by meaning, and how are they organized in mel11or
for retrieval? One straightforward and popular approach uses associative networks
(see Chapter 7) similar to the structures illustrated in Figure 11.1. Nodes within
the network correspond to different knowledge entities, whereas the links are indices
or pointers to the entities. Links connecting two entities name the association or
relationship between them. The relationship between entities may be defined as a
hierarchical one or just through associative links

As an example of an indexed network, the concept of computer science ICS
should be accessible directly through the CS name or indirectly through associative
links like a university major, a career field, or a type of classroom course. These
notions are illustrated in Figure 11.5.

Object attributes can also serve as indices to locate items or categories based
on the attribute values. In this case, the best attribute keys are those which provide
the greatest discrimination among objects within the same category. For example,
suppose we wish to organize knowledge by object types. In this case, the choice
of attributes should depend on the use intended for the knowledge. Since objects
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Figure 11.5 Associative network indexing and organuzailon.

may be classified with an unlimited number of attributes (color. size, shape, markings.
and so on). those attributes which are most discriminable with respect to the concet
meaning should be chosen. Alternatively, object features with the most predictive
power make the best indices. A good index for bird types is one based on individual
differences like feet. size, beak shape, sounds emitted, special markings, and so
forth. Attribute values possessed by all objects are useful for forming categories
but poor for identifying an object within the category.

Truly intelligent methods of indexing will be content associative and usually
require some inferring. Like humans, a system may fail to locate an Item when it
has been modified in memory. In such cases, cues related to the item ma y be

needed. For example, you may fail to remember whether or not you hav, ever
discussed American politics with a foreigner until you have considered under what
circumstances you may have talked with freigners (at a university, while traveling
or living abroad, or just a chance meeting). An example of this type of indexing
strategy is discussed in Section 11.4.

113 INTEGRATING KNOWLEDGE IN MEMORY

Integrating new knowledge in traditional data bases is accomplished by simply adding
an item to its key location, deleting an item from a key directed location, or modifying
fields of an existing item with specific input information. When an item in inventory
is replaced with a new one. its description is changed accordingly. When an iern
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is added to memory, its index is computed and it is stored at the corresponding
address

More sophisticated memory systems will continuously monitor a knowledge
base and make inferred changes as appropriate. We have seen one example of
memory reorganization in the truth maintenance systems (TMS) described in Chapter
5. The primary purpose of those systems, however, is maintaining consistency among
the knowledge units, not reorganization and recall. A more comprehensive manage-
ment system will perform other functions as well, including (I)the formation of
new conceptual structures. (2) the computation and association of causal linkages
between related concepts. (3) generalization of items having common features and
the formation of specialized conceptual categories, and (4) specialization of concepts
that have been over-generalized. Examples of these notions are given in the following
section under memory organization with li-MOPs.

Hypertext

H ypertext systems are interesting examples of information organized through associa-
tive links, somewhat like semantic or associative networks. These systems are interac-
tive window systems connected to a data base through associative links. Unlike
normal text which is read in a linear fashion, hypertext can be browsed in a nonlinear
way by moving through a network of information nodes which are linked bidirection-
ally through associative relationships. Users of hypertext systems can wander through
the data base scanning text and graphics, creating new information nodes and linkages
or modify existing ones. This approach to documentation use is said to more closely
match the cognitive process. It provides a new approach to information access and
organization for authors, researchers, and other users of large bodies of information.

11.4 MEMORY ORGANIZATION SYSTEMS

HAM, a Model of Memory

One of the earliest computer models of memory wasthe Human Associative Memor\
(HAM) system developed by John Anderson and Gordon Bower (1973). This memory
is organized as a network of propositional binary trees. An example of a simple
tree which represents the statement ''In a park a hippie touched a debutante'' is
illustrated in Figure 11.6. When an informant asserts this statement to HAM, the
system parses the sentence and builds a binary tree representation. Nodes in the
tree are assigned unique numbers, while links are labeled with the following functions:

C: context for tree fact	 P: predicate
C: set membership	 R: relation
F: a fact	 S: subject
L: a location	 T: time
0: object
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y9\	 71\

L
park	 psi	 hipo.e	 4	 5

II	 ligure 11.6 Org ant,ation ol	 kdo.
touCh	 debutante	 in HAM.

As HAM is informed of new sentences, they are parsed and formed into ne
tree-like memory structures or integrated with existing ones. For example. to add
the fact that the hippie was tall, the following .suhtree is attached to the tree structure
of Figure 11.6 by merging the common node hippie (node 3) into a single node.

21

•	
,/3

patt	 3.	 24

	

hippie	 tall

When HAM is posed with a query, it is formed into a tree structure called a
probe. This structure is then matched against existing ' memory structures for the
best match. The Structure with the closest match is used to formulate an anser to
the query.

Matching is accomplished by first locating the leaf nodes in memory that
match leaf nodes in the probe. The corresponding links are then checked to see it
they.have the same labels and in the same order. The search process is constrained
by searching only node groups that have the same relation links, based on reeene
of usage. The search is not exhaustive and nodes accessed infrequently may be
forgotten. Access to nodes in HAM is accomplished through word indexing in
LISP (node words in tree structures are accessed directly through property lists or
A-lists).

Memory Organization with E-MOPé

Roger Schank and his students at Yale University have developed several computer
systems which perform different functions related to the use of natural language
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text, knowledge representation, and memory organization. One system of particular
interest was developed by Janet Kolodner (1983a, 1983h, 1984) to study problems
associated with the retrieval and organization of reconstructive memory. Her system.
called CYRUS (Computerized Yale Retrieval and Updating System) stores episodes
from the lives of former secretaries of state Cyrus Vance and Edmund Muskie.
The episodes are indexed and stored in long-term memory for subsequent use in
answering queries posed in English. The system has many of the features we have
described above under conceptual indexing.

The basic memory model in CYRUS is a network consisting of Episodic
Memory Organization Packets (E-MOPs). Each such h-MOP is a frame-like node
structure which contains conceptual information related to different categories of
episodic events. E-MOPs are indexed in memory by one or more distinguishing
features. For example, there are basic E-MOPs for diplomatic meetings with foreign
dignitaries, specialized political conferences, traveling, sightseeing, negotiations.
State dinners, as well as other basic events related to diplomatic state functions.
The diplomatic-meeting E-MOP, called $MEET, contains information which is com-
mon to all diplomatic meeting events. The common information which characteriies
such an E-MOP is called its content. For example, $MEET might contain the following

information:

actor	 Cyrus Vance

participants : 	 foreign diplomats

topics	 :	 international contracts

actions	 participants talk to each other

goals	 :	 to resolve disputed contract

A second type of information contained in h-MOPs are the indices which
index either individual episodes or other E . MOPs which have become speciali7attons
of their parent h-MOPs. For instance, specific diplomatic meetings are indexed by
features unique to the individual meetings such as location, actual topic discussed,
or the actual meeting participants. A typical SMEET h-MOP which has indices to
two particular event meetings EV I and EV2, is illustrated in Figure If 7.

One of the meetings indexed was between Vance and Gro!nyko of the USSR
in which they discussed SALT (arms limit talks). This is labeled as event EV I in
the figure. The second meeting was between Vance and Begin of Israel in which

they discussed Arab-Israeli peace. This is labeled as event EV2. Note that each of
these events can be accessed through more than one feature (index). For example.
LVI can be located from the SMEET event through a topic value of "Arab-Israel
peace." through a participants' nationality value of "Israel,'* through a participants
occupation value of 'head of state." and so on.

As new diplomatic meetings are entered into the system, they are either integrated
with the SMEET E-MOP as a separately indexed event or merged with another
event to form a new specialized meeting E-MOP. When several events belonging
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Frame $MEET

Content

	

- -.	 included in:	 negotiations
participants: 	 Foreign diplomats
topic-	 I	 international contracts
topic involves: the United States
activities:	 political and occupational for Vance

223

Topic

Arab - israel	 SALT
peace

EV1	 EV2

Participants'
nationality

Israel	 USSR

EVI	 tV2

Underlying
teipic

Peace	 Arms
limits

4

EV1	 EV2

	

• Top ics	 Panticipjnts

	

sides	 occupdt,r,fls

Israel	 USS'	 Foreign	 Head of
and	 minister	 state

Arabs

EVt	 1V2	 EV2	 EV1

Figure 11.7 An cxaiaipk of an E:\lOFi ',uh ti tndescd events 1:5 I and P.

to the same MOP category are entered. common e'rent features are used to generalize
the E-MOP. This information is collected in the traitie contents. Specialization ina
also he required when over- generalization has occurred. Thus, mctnor\ is cntinualIv
being reorganized as ness facts are entered This process prevents the addition of
excessive memory entries and touch redundancy which would result it eser' event
entered resulted in the addition of a separate event. Reorganization can also cause
forgetting. since originally assigned indices may he changed when ness structures
are formed. When this occurs, an iem cannot be located so the s ystem attempts
to derive . new indices from the context and through other indices by reconstructing
related events.

To see how CYRUS builds and maintains a memory organtzatton. we briefly
examine how a basic E-MOP grows and undergoes revision with time Initially,
the $MEET E-MOP of Figure 11.7 would consist of the Content part of the frame
only. Then, after a first -meeting occurred, indices relevant and unique to that meeting
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are established and recorded, and pointers are set to the corresponding event. Subse-
quent meeings also result in the determination of new event indices, or, if two or
more of the new meetings have some features in common, a new sub-EMOP would
be formed with indices established and pointers set to the new E-MOP. This process
continues with new indices to events added or new E-MOPs formed and indexed
as new meetings occur. Furthermore, the content portion of all E-MOPs is continually
monitored and modified to better describe the common events it indexes. Thus,
when a number of meeting events exhibit some new property, the frame content is
generalized to include this property and new indices are determined. When over-
generalization occurs, subsequent events will result in a correction through some
specialization and recoruputation of indices.

After the two diplomatic meetings described above had been entered, indices
are developed by the system to index the events (EVI and EV2) using features
which discriminate between the two meetings (Figure 11.7). If a third meeting is
now entered, say one between Vance and Sadat of Egypt. which is also about
Arab-Israeli peace, new E-MOPs will be formed since this meeting has some features
in common with the Begin (VI) meeting. One of the new E-MOPs that is formed
is indexed under the previous topic index. It has the following structure:

Topic

	

E- MOP)	 SALT

Topic Arab-Israeli peace
Underlyins topc: peace

	

Involves:	 Israel and the Arabs 	 EV2
Participants: heads of state

Participants'
nationalities

	

Israel	 Egypt

I,
	F's/i	 EV2

The key issues in this type of organization are the same as those noted earlier.
They are (I) the selection and computation of good indices for new events so that
simiiaevents can be located in memory for new event integration. (2) monitoring
and reorganization of memory to accommodate new events as they occur, and (3)
access of the correct event information when provided clues for retrieval.
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11.5 SUMMARY

Effective memory organization can facilitate remembering (knowledge retrieval and
access). memory management (knowledge reorganization), and forgetting. These
are important components of the overall knowledge manipulation process. They
are essential adjuncts to the reasoning and learning functions..

Popular forms of intelligent knowledge organization schemes are associative
networks, networks of frames, or other structured representation schemes. These
schemes will permit the effective organization and revision of knowledge into mean-
ingful categories. Items within each category should share common features and
individual items are best indexed by their differences.. Access to categories and
items can then be made through indices determined by content rather than meaningless
keys. The best type of indices are those with good predictive power. Thus, relevant
features determined by content and uniqueness to an item are good sources for
index determination.

The CYRUS system is a good example of "intelligent" memory organization.
It exhibits many of the desirable features possessed by human memories as described
in this chapter. They include integrating and indexing events by context, memory
reorganization by generalization or specialization, and the formation of new memory
structures. Reorganization is performed to reflect commonalities and unique differ-
ences among events.

E-MOPs are the basic organization unit within CYpRUS. They organize events
by indexing them according to their differences. Similarities between events make
up the generalized episode descriptions, and separate E-MOPs are associated by
causal links.

EXERCISES

11.1. What important characteristics should a computer memory organization System po.ssess
11.2. Explain why each of the characteristics named in Problem 11.1 are important.
11.3. What basic operations must a program perform in order to access specific chunks of

knowledge?
11.4. Suppose 64-byte records arc stored in 	 . . ize 2 bytes. Describe a suitable

index file to access the records using the f0V wing keys (start with block address

rabbit	 dog .	 cat	 duck
chicken	 pig	 cow	 rat
horse	 ox	 .mule	 parrot
gopher	 mouse	 deer	 elk

11.5. If ten chunks of knowledge were each stored in records of 64 bytes and the records
randomly stored in eight blocks of secondary memory, what would be the access

16-
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time when a block can be located and read on the average within 60 ma. and the
time to search each record is one m. per block? Compare this time to the time

•	 required to search a single block for the same information.
11.6. Referring to Problem 11.4, describe how a hashing method could be applied to

•	 search for the indicated records.
11.7. Draw a conceptual indexing tree structure using the same keys as those given in

•	 Problem 11.4, but with the addition of a generalized node named farm-animals.
11.8. Using the same label links as those used in HAM, develop propositional trees for

•	 the following sentences.
The birds were singing in the park.
John and Mary went dancing at the prom.
Do not drink the water.

11.9. For the previous problem, add the sentence "There are lots of birds and they are
small and yellow."

11.10. Develop an E-MOP for a general episode to fill up a car with gasoline using the
elements Actor, Participant, Objects, Actions, and Goals.

11.11. Show how the E-MOP of Problem 11.10 would be indexed and accessed for the
two events of filling the car at a self-service and at a full-service location.

11.12. Are the events of Problem II. II good candidates for specialized E-MOPs Explain
your answer.

11.13. Give an example of a hashing function that does not distribute key values uniformly
over the key space.

11.14. Draw a small hypertext network that you might want to browse where the general
network subject of artificial intelligence is used. Make up your own subtopics and
show all linkages which you feel are useful, including link directions between subtopics.

11.15. Show how the E-MOP of Figure 11.7 would be generalized when peace was one of
the topics discussed at every meeting.

11.16. Modify the E-MOP of Figure 11.7 to accommodate a new meeting between Vance
and King Hussain of Jordan. The topic of their meeting is Palestinian refugees.


