PART 5
Knowledge Acquisition

16

General Concepts
in Knowledge
Acquisition

The success of knowledge-based systems lies in the quality and extent of the knowledge
available to the system. Acquiring and validating a large corpus of consistent, corre-
Jated knowledge is not a trivial problem. This has given the acquisition process an
especially important role in the design and implementation of these systems. Conse-
quently, effective acquisition methods have become one of the principal challenges
for the Al research community. 3

16.1 INTRODUCTION

The goals in this branch of Al are the discovery and development of efficient, cost
effective methods of acquisition.”Some important progress has recently been made
in this area with the development of sophisticated editors and some impressive
machine learning programs. But much work still remains before truly general purpose
acquisition is possible. In this chapter, we consider general concepts related to
acquisition and learning. We begin with a taxonomy of learning based on definitions
of behavioral learning types, assess the difficulty in collecting and assimilating large
quantities of well correlated knowledge, describe a general model for learning, and
examine different performance measures related to the leaming process.

357

358 General Concepts in Knowledge Acquisition Chap. 16

Definitions

Knowledge acquisition is the process of adding new knowledge to a knowledge
base and refining or otherwise improving knowledge that was previously acquired.
Acquisition is usually associated with some purpose such as expanding the capabilities
of a system or improving its performance at some specified task. Therefore. we
will think of acquisition as goal oriented creation and refinement of knowledge.
We take a broad view of the definition here and include autonomous acquisition,
Contrary to many workers in the field who regard acquisition solely as the process
of knowledge elicitation from experts.

Acquired knowledge may consist of facts, rules, concepts. procedures, heuris-
tics, formulas, relationships, statistics, or other useful information. Sources of this
knowledge may include one or more of the following.

Experts in the domain of interest
Textbooks

Technical papers

Databases

Reports

The environment

We will consider machine learning as a specialized form of acquisition, It is
any method of autonomous knowledge creation or refinement through the use of
computer programs.

Table 16.1 depicts several types of knowledge and possible representation
structures which by now should be familiar. In building a knowledge base, it is

TABLE 16.1 TYPES OF KNOWLEDGE AND POSSIBLE

STRUCTURES
Type of Knowledge Examples of Struciures
Facts (snow color white)
Relations (tather_of john bill)
Rules (if (temperature >>200 degrees)
(open relief_valve))
Concepts - (forall (x y) (if (and (male x)

((brother_of x)
tor (father_of y) (mother_of y)))
(uncle x y)}

Procedures, Plans, etc. T

Sec. 16.2 Types of Learning 359

necessary to create or modify structures such as these for subsequent use by a
performance component (like a theorem prover or an inference engine).

To be effective, the newly acquired knowledge should be integrated with existing
knowledge in some meaningful way so that nontrivial inferences can be drawn
from the resultant body of knowledge. The knowledge should. of course, be accurate.
nonredundant, consistent (noncontradictory). and fairly complete in the sense that
it is possible to reliably reason about many of the important conclusions for which
the system was intended.

16.2 TYPES OF LEARNING

We all learn new knowledge through different methods. depending on the type of
material to be leamed, the amount of relevant knowledge we already possess, and
the environment in which the learning takes place. It should not come as a surprise
to learn that many of these same types of learning methods have been extensively
studied in Al _

In what follows, it will bs helpful to adopt a classification or taxonomy of
learning types to serve as a guide in studying or comparing differences among
them. One can develop learning taxonomies based on the type of knowledge represen-
tation used (predicate calculus, rules, frames), the type of knowledge learned (con-
cepts, game playing, problem solving), or by the area of application (medical diagno-
sis, scheduling, prediction. and so on). The classification we will use, however, is
intuitively more appealing and one which has become popular among machine learning
researchers, The classification is independent of the knowledge domain and the
representation scheme used. It is based on the type of inference strategy employed
or the methods used in the learning process.

The five different learning methods under this taxonomy are

Memorization (rote learning)
Direct instruction (by being told)
Analogy

Induction

Deduction

Learning by memorization is the simplest form of learning. It requires the least
amount of inference and is accomplished by simply copying the knowledge in the
same form that it will be used directly into the knowledge base. We use this type
of leamning when we memorize multiplication tables. for example.

A slightly more complex form of learning is by direct instruction. This type
of learning requires more inference than rote leaming since the knowledge must be
transformed into an operational form before being integrated into the knowledge
base. We use this type of learning when a teacher presents a number of facts directly
10 us in a well organized manner.

360 General Concepts in Knowledge Acquisition Chap. 16

The third type listed. analogical learning, is the process of learning a new
concept or solution through the use of similar known concepts or solutions. We
use this type of learning when solving problems on an exam where previously
learned examples serve as a guide or when we learn to drive a ttuck using our
knowledge of car driving. We make frequent use of analogical learning. This form
of learning requires still more inferring than either of the previous forms, since
difficult transformations must be made between the known and unknown situations.

The fourth type of leamning is also one that is used frequently by humans. It
15 a powerful form of learning which. like analogical learning, also requires more
inferring than the first two methods. This form of learning requires the use of
inductive inference. a form of invalid but useful inference. We use inductive learning
when we formulate a general concept after secing a number of instances or examples
of the concept. For example. we learn the concepts of color or sweet taste after
experiencing the sensations associated with several examples of colored objects or
sweet foods,

The final type of acquisition is deductive learning. It is accomplished through
a sequence of deductive inference steps using known facts. From the known facts.
new facts or relationships are logically derived. For example, we could learn deduc-
tively that Sue is the cousin of Bill. if we have knowledge of Sue and Bill’s parents
and rules for the cousin relationship. Deductive learning usually requires more infer-
ence than the other methods. The inference method used is, of course, a deductive
type, which is a valid form of inference.

In addition to the above classification. we will sometimes refer to learning
methods as either weak methods or knowledge-rich methods, Weak methods are
general purpose methods in which little or no initial knowledge is available. These
methods are more mechanical than the classical AT knowledge-rich methods. They
often rely on a form of heuristic search in the learning process. Examples of some
weak learning methods are given in the next chapter under the names of Learning
Automata and Genetic Algorithms. We will be studying these and many of the
more knowledge-rich forms of learning in more detail later. particularly various
types of inductive learning. ' ;

16.3 KNOWLEDGE ACQUISITION IS DIFFICULT

One of the important lessons learned by Al researchers during the 1970s and early
1980s is that knowledge is not easily acquired and maintained. It is a difficult and
time-consuming process. Yet expert and other knowledge-based systems require. an
abundant amount of well correlated knowledge to achieve a satisfactory level of
intelligent performance. Typically, tens of person years are often required to build
up a knowledge base to an acceptable level of performance. This was certainly
true for the early expert systems such as MYCIN, DENDRAL, PROSPECTOR,
and XCON. The acquisition effort encountered in building these systems provided
the impetus for researchers to search for new efficient methods of acquisition. It
helped to revitalize a new interest in general machine learning techniques.

'

Sec. 164 General Learning Model 361

Early expert systems initially had a knowledge base consisting of a few hundred
rules. This is equivalent to less than 10° bits of knowledge. In contrast, the capacity
of a mature human brain has been estimated at some 10'" bits of knowledge (Sagan,
1977). If we expect to build expert systems that are highly competent and possess
knowledge in more than a single narrow domain, the amount of knowledge required
for such knowledge bases will be somewhere between these two extremes. perhaps
as much as 10" bits. :

If we were able to build such systems at even ten times the rate these early
systems were built. it would still require on the order of 10" person years. This
estimate is based on the assumption that the time required is directly proportional
to the size of the knowledge base, a simplified assumption. since the complexity
of the knowledge and the interdependencies grow more rapidly with the size of the
knowledge base.

Clearly,. this rate of acquisition is not acceptable. We must develop better
acquisition and leaming methods before we can implement such systems within a
realistic time frame. Even with the progress made in the past few years through
the development of special editors and related tools, more significant breakthroughs
are needed before truly large knowledge bases can be assembled and maintained.
Because of this, we expect the research interest in knowledge acquisition and machine
learning to continue to grow at an accelerated rate for some years in the future.

It has been stated before that a system’s performance is strongly dependent
on the level and quality of its knowledge, and that **in knowledge lies power.” If
we accept this adage, we must also agree that the acquisition of knowledge is of
paramount importance and, in fact, that *‘the real power lies in the ability to acquire
new knowledge efficiently.”” To build a machine that can learn and continue to
improve its performance has been a long time dream of mankind. The fulfillment
of that dream now seems closer than ever before with the modest successes achieved
by Al researchers over the past twenty years.

We will consider the complexity problem noted above again from a different
* point of view when we study the different learning paradigms.

16.4 GENERAL LEARNING MODEL

As noted earlier, learning can be accomplished using a number of different metheds.
For example, we can leam by memorizing facts, by being told, or by studying
examples like problem solutions. Learning requires that new knowledge structures
be created from some form of input stimulus. This new knowledge must then be
assimilated into a knowledge base and be tested in some way for its utility. Testing
means that, the knowledge should be used in the performance of some task from
which meaningful feedback can be obtained, where the feedback provides some
measure of the accuracy and usefulness of the newly acquired knowledge.

A general leamning model is depicted in Figure 16.1 where the environment
has been included as part of the overall learner system. The environment may be
regarded as either a form of nature which produces random stimuli or as a more

362 General Concepts in Knowledge Acquisition Chap. 16

Stimuli
examples
L Learner Feedback v
7| component
Environment 1 -
Critic
or teacher
Krowledge performance
base evaluator
‘ 1_[
esponse
Performance
companent
Tasks Figure 16.1 General learning model.

organized training source such as a teacher which provides carefully selected training
examples for the learner component. The actual form of environment used will
depend on the particular learning paradigm. In any case, some representation language
must be assumed for communication between the environment and the learner. The
language may be the same representation scheme as that used in the knowledge
base (such as a form of predicate calculus). When they are chosen to be the same,
we say the single representation trick is being used. This usually results in a simpler
implementation since it is not necessary to transform between two or more different
representations.

For some systems the environment may be a user working at a keybourd.
Other systems will use program modules to simulate a particular environment. In
even more realistic cases, the system will have real physical sensors which interface
with some world environment.

Inputs to the learner component may be physical stimuli of some type or
descriptive, symbolic training examples. The information conveyed to the learner
component is used to create and modity knowledge structures in the knowledye
base. This sume knowledge is used by the performance component to carry out
some tasks. such as solving a problem. playing u game. or classifying instances of
some concept. '

When given a task. the performance component produces a response describing
its actions in performing the task. The critic module then evaluates this response
relative to an optimal response.

Feedback, indicating whether or not the performance was acceptable, is then
sent by the critic module o the learner component for its subsequent use in modifying
the structures in the knowledge base. If proper leaming was accomplished. ‘the
system’s performance will have improved with the changes made to the knowledge
base. - c

The cycle described above may be repeated a number of times until the perfor-
mance of the system has reached some acceptable level, until a known learning
goal has been reached, or until changes cease 1o occur in the knowledge base after
some chosen number of training examples have been observed.

Sec. 16.4 General Learning Model 363

There are several important factors which influence a system'’s ability to learn
in addition to the form of representation used. They include the types of training
provided, the form and extent of any initial background knowledge. the type of
feedback provided, and the leaming algorithms used (Figure 16.2).

The type of training used in a system can have a strong effect on performance,
much the same as it does for humans. Training may consist of randomly selected
instances or examples that have been carefully sclected and ordered for presentation.
The instances may be positive examples of some concept or task being learned,
they may be negative, or they may be a mixture of both positive and negative.
The instances may be well focused using only relevant information. or they may
contain a variety of facts and details including irrelevant data. .

Many forms of leaming can be characterized as a search through a space of
possible hypotheses or solutions (Mitchell, 1982). To make learning more efticient,
it is mecessary to constrain this search process or reduce the search space. One
method of achieving this is through the use of background knowledge which can
be used to constrain the search space or exercise control operations which limit the
search process. We will see several examples of this in the next three chapters.

Feedback is essential to the learner component since otherwise it would never
know if the knowledge structures in the knowledge base were improving or if they
were adequate for the performance of the given tasks. The feedback may be a
simple yes or no type of evaluation. or it may contain more useful information
describing why a particular action was good or bad. Also, the feedback may be
completely reliable, providing an accurate assessment of the performance or it may
contain noise; that is, the feedback may actually be incorrect some of the time.,
Intuitively, the feedback must be accurate more than SO% of the time; otherwise
the system would never learn. If the feedback is always reliable and carries useful
information, the learner should be able to build up a useful corpus of knowledge
quickly. On the other hand. if the feedback is noisy or unreliable, the leamning
process may be very slow and the resultant knowledge incorrect.

Finally, the learning aigorithms themselves determine to a large extent how
successful a learning system will be. The algorithms control the search to find and
build the knowledge structures. We then expect that the algorithms that extract
much of the useful information from training examples and take advantage of any
background knowledge outperform those that do not, In the following chapters we

Background
knowledge

Feedback =
Learning Resultant

ith. f
Training algorithms performance

scenario

Representation Figure 16.2 Factors affecting learning
scheme performance.

364 General Concepts in Knowledge Acquisition Chap. 16

will see examples of systems which illustrate many of the above points regarding
the effects of different factors on performance.

16.5 PERFORMANCE MEASURES

In the following four chapters, we will be investigating systems based on different
learning paradigms and having different architectures. How can we evaluate the
performance of a given system or compare the relative performance of two different
systems? We could attempt to conduct something like a Turing test on a system.
But would this tell us how general or robust the system is or how easy it is to
implement? Clearly . such comparisons are possible only when standard performance
measures are available. For example, it would be useful to establish the relative
efficiencies or speed with which two systems learned a concept or how robust (noise
tolerant) a system is under different training scenarios. Although little work has
been done to date in this area, we will propose some intormal definitions for perfor-
mance measures in this section. These definitions will at least permit us to establish
estimates of some relative performance characteristics among the different learning
methods we will be considering.

Generality. One of the most important performance measures for learning
methods is the generality or scope -of the method. Generality is a measure of the
ease with which the method can be adapted to different domains of application. A
completely general algorithm is one which is a fixed or self adjusting configuration
that can learn or adapt in any environment or application domain, At the other
extreme are methods which function in a single domain only. Methods which have
some degree of generality will function well in at least a few domains.

Efficiency. The efficiency of a method is a measure of the average time
required to construct the target knowledge structures from some specified initial
structures. Sipce this measure is often difficult to determine and is meaningless
without some standard comparison time, a relative efficiency index can be used
instead. For example. the relative efficiency of a method can be defined as the
ratio of the time required for the given method to the time required for a purely
random search to find the target structures.

Robustness. Robustness is the ability of a learning system to function with
unreliable feedback and with a variety of training examples. including noisy ones.
A robust system must be able to build tentative structures which are subject to
modthcauon or withdrawal if later found to be inconsistent with statistically sound
structures. This is nonmonotonic learning. the analog of nonmonotonic reasoning
discussed in Chapter 5.

Sec. 16.6 Summary 365

Efficacy. The efficacy of a system is a measure of the overall power of the
system. It is a combination of the factors generality, efficiency, and robustness.
* We say that system A is more efficacious than system B if system A is more
efficient, robust. and general than B.

Ease of implementation. Ease of implementation relates to the complexity
of the programs and data structures and the resources required to develop the given
learning system. Lacking good complexity metrics, this measure wnll often be some-
what subjective.

Other performance terms that are specific to different paradigms will be intro-
duced as needed.

16.6 SUMMARY

Knowledge acquisition is the purposeful addition or refinement of knowledge struc-
tures to a knowledge base for use by knowledge-based systems. Machine leaming
is the autonomous acquisition of knowledge through the use of computer programs.
The acquired knowledge may consist of facts, concepts, rules, relations, plans,-
and procedures, and the source of the knowledge may be one or more of the following:
data bases, textbooks, domain experts, reports, or the environment,

A useful taxonomy for leaming is one that is based on the behavioral strategy
employed in the leamming process, strategies like rote (memorization), being told,
analogy. induction, or deduction. Rote leaming requires little inference, while the
other methods require increasingly greater amounts.

An important lesson leammed by expert systems researchers is that knowledge
acquisition is difficult, often requiring tens of person years to assemble several
hundred rules. This problem helped to revive active research in more autonomous
forms of acquisition or machine learning.

Any model of learning should include components whlch support the basic
learner component. These include a teacher or environment, a knowledge base, a
performance component which uses the knowledge, and a critic or performance
evaluation unit which provides feedback to the learner about the performance.

Factors which affect the performance of a learner system include (1) the represen-
tation scheme used. (2) the training scenario, (3) the type of feedback, (4) background
knowledge, and (5) the leamning aigorithm.

Performance measures provide a means of comparing different performance
characteristics of learning algorithms (systems). Some of the more important perfor-
mance measures are generality, efficiency, robustness, efficacy, and ease of implemen-
tation. Lacking formal metrics for some measures will require that subjective estimates
be used instead.

16.1.
16.2.

16.3.
16.4.
16.5.

16.6.
16.7,

16.8.
16.9.
16.10.

16.11.

16.12.

16.13.

16.14.

16.15.

General Concepts in Knowledge Acquisition Chap. 16

EXERCISES

Give a detailed definition of knowledge acquisition complete with -an example.

Give an example for each of the following types of knowledge: (a) a fact, (b} a
rule, (¢) a concept, (d) a procedure, (e) a heuristic, (f) a relationship.

How is machine leamning distinguished from general knowledge acquisition?

The taxonomy of learning methods given in this chapter is based on the type of
behavior or inference strategy used. Give another taxonomy for learning methods
and illustrate with some examples.

Describe the role of each component of a general learning model and why it is
needed for the leaming process. .

Explain why a learning component should nave scope.

What is the difference between efficiency and efficacy with re gard to the performance
of a learner system?

Review the knowledge acquisition section in Chapter 15 and explain why elicitation
of knowledge from experts is so difficult, !
Consult a good dictionary and describe the difference between induction and deduction.
Give examples of both,

Explain why inductive learning should require more inference than learning by being
told (instruction).

Try to determine whether inductive leaming requires more inference than analogical
learning. Give reasons for your conclusion. Which of the two types of learning, in
general, woyld be more reliable in the sense that the knowledge learned is logically
valid?

Give examples of each of the different types of learning as they relate 10 learning
you have recently experienced.

Give an estimate of the number of bits required to store knowledge for 500 if
then rules, where each rule has five conjunctive terms or conditions in the antecedent
Can you estimate what fraction of your total knowledge is represented in some set
of 500 rules?

Try to give a quantitative measure for knowledge. Explain why YOUr measure is or
is‘not reasonable. Give examples to support your arguments.)
Explain why robustness in a learner is important in real world environments.

: y 7 B -

Early Work in
Machine Learning

17.1 INTRODUCTION

Attempts to develop autonomous learning systems began in the 1950s while cybemet-
ics was still an active area of research. These early designs were self-adapting
systems which modified their own structures in an attempt to produce an optimal
response to some input stimuli. Although several different approaches were pursued
during this period, we will consjder only four of the more representative designs.
One approach was believed to be an approximate model of a small network of
neurons.

A second approach was initially based on a form of rote leamning. It was
later modified to learn by adaptive parameter adjustment. The third approach used
self-adapting stochastic automata models. while the fourth approach was modeled
after survival of the fittest through population genetics.

In the remainder of this chapter, we will examine examples of the four methods
and reserve -our descriptions of more classical Al learning approaches for Chapters
18, 19, and 20. The systems we use as examples here are famous ones that have
received much attention in the literature. They are Rosenblatt's perceptrons, Samuel’s
checkers playing system, Learning Automata, and Genetic Algorithms.

367

368 Early Work in Machine Learning ~ Chap. 17

17.2 PERCEPTRONS

Perceptrons are pattern recognition or classification devices that are crude approxima-
tions of neural networks. They make decisions about patterns by summing up evidence
obtained from many small sources. They can be taught to recognize one or more
classes of objects through the use of stimuli in the form of labeled training examples.

A simplitied perceptron system is illustrated in Figure 17.1. The inputs to
the svstem are through an array of sensors such as a rectangular grid of light sensitive
pixels. These sensors are randomly connected in groups 1o associative threshold
units (ATU) where the sensor outputs are combined and added together. [f the
combined outputs to an ATU exceed some fixed threshold. the ATU unit executes
and produces a binary output.

The outputs from the ATU are each multiplied by adjustable parameters or
weights w, (i = 1,2.. . . , k)and the results added together in a terminal comparator
unit. If the input to the comparator exceeds a given threshold level T, the perceptron
produces a positive response of | (yes) corresponding to a sample classification of
class-1. Otherwise, the output is 0 (no) corresponding to an object classification of
non-class-1

All components of the system are fixed except the weights w, which are adjusted
through a punishment-reward process described below* This learning process contin-

Assotiative
Sensor array urits

St

BRBE B o N RN

l
A
F

-
I U T T Thicthod Wit
« & 8 ‘= s » -lk\ - comparator 5 NO
- - . - \: - - XA
~- u.‘
- - ® - . - /’f [i

Figure 17.1 A simple perceptron.

Sec. 17.2 Perceptrons : 363

x, Figure 17.2 Geometrical illustration of
/owt x Wyt x; =0 separable space.

ues until optimal values of w, are found at which time the system will have learned
the proper classification of objects for the two different classes,

The light sensors produce an output voltage that is proportional to the light

 intensity striking them. This output is a measure of what is known in pattern recognition
as the object representation space parameters. The outputs from the ATUs which
combine several of the sensor outputs (x;) arc known as feature value measurements.
These feature values are each multiplied by the weights w, and the results summed
in the comparator to give the vector product r = w * x = ¥, wx,. When enough
of the feature values are present and the weight vector is near optimal, the threshold
will be exceeded and a positive classification will result.

Finding the optimal weight vector value w is equivalent to finding a separating
hyperplane in k-dimensional space. If there is some linear function of the x, for
which objects in class-1 produce an output greater than T and non-class-1 objects
produce an output less than T, the space of objects is said to be linearly separable
(see Chapter 13 for example). Spaces which are linearly separable can be partitioned
into two or more disjointed regions which divide - objects based on their feature
vector values as illustrated in Figure 17.2. It has been shown (Minsky and Papert,
1969) that an optimal w can always be found with a finite number of training
examples if the space is linearly separable.

One of the simplest algorithms for finding an optimum w (w¥) is based on the
following perceptron learning algorithm. Given training objects from two distinét
classes, class-1 and class-2

1. Choose an arbitrary initial value for w
2. After the m™ training step set
wn+| zwm+ d.xm
where
d=+1ifr=w*x<0 and x,is type class-1

=-—1lifr>0 and x, is type class-2
Otherwise set w,.,, = w, (d = 0) '
3. When w,, = w,+,. (for all j >= I) stop. the optimum w* has been found.

25=

370 Early Work in Machine Learning Chap. 17

It should be recognized that the above learning algorithm is just a method for
finding a linear two-class decision function which separates the feature space into
two regions. For a generalized perceptron, we could just as well have found multiclass
decision functions which separate the feature space into ¢ regions. This could be
done by terminating each of the ATU outputs at ¢ > 2 comparator units. In this
case. class j would be selected as the object type whenever the response at the jth
comparator was greater than the response at all other j — | comparators.

Perceptrons were studied intensely at first but later were found to have severe
limitations. Therefore, active research in this area faded during the late 1960s.
However, the findings related to this work later proved to be most valuable. especially
in the area of pattern recognition. More recently. there has been renewed interest
in similar architectures which attempt to model neural networks (Chapter 15). This
is partly due to a better understanding of the brain and significant advances realized
in network dynamics as well as in hardware over the past ten years. These advances
have made it possible to more closely model large networks of neurons.

17.3 CHECKERS PLAYING EXAMPLE

During the 1950s and 1960s Samuel (1959, 1967) developed a program which
could lear to play checkers at a master’s level. This system remembered thousands
of board states and their estimated values. They provided the means to determine
the best move to make at any point in the game.,

Samuel's system leamns while playing the game of checkers, either with a
human opponent or with a copy of itself. At each state of the game, the program
checks to see if it has remembered a best-move value for that state. If not. the
program explores ahead three moves (it determines all of.its possible moves: for
each of these, it finds all of its opponent's moves: and for each of those. it determines
all of its next possible moves). The program then computes an advantage or win-
value estimate of all the ending board states. These values determine the best move
for the system from the current state. The current board state and its corresponding
value are stored using an indexed address scheme for subsequent recall.

The best move for each state is the move value of the largest of the minimums.
based on the theory of two-person zero-sum games. This move will always be the
best choice (for the next three moves) against an intelligent adversary.

As an example of the look-ahead process, a simple two move sequence is
illustrated in Figure 17.3 in the form of a tree. At board state K. the program
looks ahead two moves and computes the value of each possible resultant board
state, It then works backward by first finding the minimum board values at state K
+ 2 in each group of moves made from state K + | (minimums = 4, 3, and),

These minimums correspond to the moves the opponent would make from
each position when at state K + |. The program then chooses the maximum of
these minimums as the best (minimax) move it can make from the present board

Sec. 17.3 Checkers Playing Example L Yal

State
K K+1 K+2
min = 4
min =3
min= 2

Figure 17.3 A two-move lovk-ahcad
sequence.

state K (maximum = 4). By looking ahead three moves, the system can be assured
it can do no worse than this minimax value. The board state and the corresponding
minimax value for a three-move-ahead sequence are stored in Samuel's system.
These values are then available for subsequent use when the same state is encountered
during a new game. ¢ 1oy

. The look ahead search process could be extended beyond three moves; however,
the combinatorial explosion that results makes this infeasible, But, when many
board states have been learned, it is likely that any given state will already have
look-ahead values for three moves, and some of those moves will in turn have
look-ahead values stored. Consequently, as more and more values are stored. look-
ahead values for six, nine, or even more moves may be prerecorded for rapid use.
Thus, when the system has played many games and recorded thousands of moves.
. its ability to look ahead many moves and to show improved performance is greatly
increased.

The value of a board state is estimated by computing a linear function similar
to the perceptron linear decision function. In this case, however, Samuel selected
some 16 board features from a larger set of feature parameters. The features were
typically checkers concepts such as piece advantage, the number of kings and single
piece units, and the location of pieces. In the original system. the weighting parameters
were fixed. In subsequent experiments. however, the parameters were adjusted as
part of the leaming process much like the weightirig parameters were in the percep-
trons, :

372 Early Work in Machine Learning Chap. 17

17.4 LEARNING AUTOMATA

The theory of leaming automata was first introduced in 1961 (Tsetlin. 1961). Since
that time these systems have been studied intensely, both analytically and through
simulations (Lakshmivarahan, 1981). Learning automata systems are finite state
adaptive systems which interact iteratively with a general environment. Through a
probabilistic trial-and-error response process they learn to choose or adapt to a
behavior which produces the best response. They are, essentially, a form of weak,
inductive leamers.

In Figure 17.4. we see that the learning model for learning automata has
been simplified to just two components. an automaton (learner) and an environment,
The learning cycle begins with an input to the learning automata system from the
environment. This input elicits one of a finite number of possible responses from
the automaton. The environment receives and evaluates the response and then provides
some form of feedback to the automaton in return. This feedback is used by the
automaton to alter its stimulus-response mapping structure to improve its behavior
in a more favorable way.

As a simple example, suppose a learning automata is being used to learn the
best temperature control setting for your office each morning. It may select any
one of ten temperature range settings at the beginning of each day (Figure 17.5).
Without any prior knowledge of your temperature preferences, the automaton ran-
domly selects a first setting using the probability vector corresponding to the tempera-
ture settings.

Since the probability values are uniformly distributed, any one of the settings
will be selected with equal likelihood. After the selected temperature has stabilized.
the environment may respond with a simple good-bad feedback response. If the
response is good, the automata will modify its probability vector by rewarding the
probability corresponding to the good setting with a positive increment and reducing
all other probabilities proportionately-to maintain the sum equal tw 1. If the response
is bad, the automaton will penalize the selected setting by reducing the probability
corresponding to the bad setting and increasing all other values proportionately.
This process is repeated each day until the good selections have high probability
values and all bad choices have values near zero. Thereafter, the system will always
choose the good settings. If, at some point, in the future your temperature preferences
change, the automaton can easily readapt.

Learning automnata have been generalized and studied in various ways. One

response : stimulus
Erwironment

Learning
automaton

Figure 17.4 Leaming automaton model.

Sec. 17.4 Learning Automata 373

Initial probabadity values

i 110 1 110 ; mo e i SRR “tak oo T Vo i 110 -

I T T
1] l Caontrol selections l
1

Temperature range settings

Figure 17.5 Temperature control model.

such generalization has been given the special name of collective learning avtomata
(CLA). CLAs are standard learning automata systems except that feedback is not
provided to the automaton after ¢ach response. In this case, several collective stimulus-
response actions occur before feedback is passed to the automaton. It has been
argued (Bock, 1976) that this type of learning more closely resembles that of human
beings in that we usually perform a number or group of primitive actions before
receiving feedback on the performance of such actions, such as solving a complete
problem on a test or parking a car. We illustrate the operation of CLAs with an
example of learning to play the game of Nim in an optimal way.

Nim is a two-person zero-sum game in which the players alternate in removing
tokens from an array which initially has nine tokens. The tokens are arranged into
three rows with one token in the first row, three in the second row, and five in the
third row (Figure 17.6).

The first player must remove at least one token but not more than all the
tokens in any single row. Tokens can only be removed from a single row during
each player's move: The second player responds by removing one or more tokens
remaining in any row. Players alternate in this way until all tokens have been
removed; the loser is the player forced to remove the last token.

We will use the triple (#,,n,,n3) to represent the states of the game at a given
time where n,, ns. and n, are the numbers of tokens in rows 1. 2, and 3, respectively.
We will also use a matrix to determine the moves made by the CLA for any given
state. The matrix of Figure 17.7 has heading columns which correspond to the
state of the game when it is the CLA’s tum 10 move, and row headings which
correspond to the new game state after the CLA has completed a move. Fractional
entries in the matrix are transition probabilities used by the CLA to execute each
of its moves. Asterisks in the matrix represent invalid moves.

Beginning with the initial state (1,3,5). suppose the CLA's opponent removes
two tokens from the third row resulting in the new state (1.3,3). If the CLA then

e © © © o Figare17.6 Nim initial configuration

374 Early Work in Machine Learning Chap. 17

removes all three tokens from the second row. the resultant state is (1.0.3). Suppose
the opponent now removes all remaining tokens from the third row. This leaves
the CLA with a losing configuration of (1.,0,0).

At the start of the learning sequence. the matrix is initialized such that the
elements in each column ure equal (uniform) probability values. For example. since
there are eight valid moves from the state (1.3.4) each column element under this
state corresponding W a valid move has been given an initial value of }. In a
similar manner all other columns have been given uniform probability values corre-
sponding 1o all valid moves for the given column state.

The CLA selects moves probabilistically using the probability values in each
column. So, for example. if the CLA had the first move, any row intersecting
with the first column not containing an asterisk would be chosen with probability
4. This choice then determines the new game state from which the opponent must
select a move. The opponent might have a similar matrix to record game stales
and choose moves. A complete game is played before the CLA is given any feedbuck .
at which time it is informed whether or not its responses were good or bad. This
is the collective feature of the CLA.

If the CLA wins a game. all moves made by the CLA during that game are
rewarded by increasing the probability value in each column corresponding to the
winning move. All nonwinning probabilities in those columns are reduced equally
to keep the sum in each column equal to 1. If the CLA loses a game, the moves
leading to that loss arg penalized by reducing the probability values corresponding
to each losing move. All other probabilities in the columns having a losing move
are increased equally to keep the column totals equal to 1.

After a number of games have been played by the CLA. the matrix elements

Current state

135 | 134 | 133 | 132 | --. | 128

135 . . . i Magalll 4

134 | 19 . . o e G

133 | w9 | 18 . i s R

121w g |z o Jeoe] o [ues

124 . 118] .« « |- | B
Figure 17.7 CLA intemal representation
of game states.

Sec. 17.56 Genetic Algorithms . 3718

which correspond to repeated wins will increase toward one. while all other elements
in the column will decrease toward zero. Consequently, the CLA will choose the
winning moves more frequently and thereby improve its performance.

Simulated games between a CLA and various types of opponents have been
performed and the results plotted (Bock. 1985). It was shown, for example. that
two CLAs playing against each other required about 300 games before each learned -
to play optimally. Note, however. that convergence to optimality can be accomplished
with fewer games if the opponent always plays optimally (or poorly), since. in
such a case, the CLA will repeatedly lose (win) and quickly reduce (increase) the
losing (winning) move elements 1o zero (one). It is also possible to speed up the
learning process through the use of other techniques such as learned heuristics.

Learning systems based on the leaming automaton or CLA paradigm are fairly
general for applications in which a suitable state representation scheme can be found.
They are also quite robust learners. -In fact. it has been shown that an LA will
converge to an optimal distribution under fairly general conditions if’ the feedbuck
is accurate with probability greater than 0.5 (Narendra and Thathachar, 1974). Of
course, the rate of convergence is strongly dependent on the reliability of the feedback.

Learning automata are not very efficient leamers as was noted in the game
playing example above. They are, however. relatively easy to implement. provided
the number of states is not loo large. When the number of states becomes lurge.
the amount of storage and the computation required to update the transition matrix
becomes excessive.

Potential applications for learning automata include adaptive telephone routing
and control. Such applications have been studied using simulation programs (Narendra ©
et al., 1977). Although they have been given favoruble recommendutions. few if
any actual systems have been implemented. however.

17.5 GENETIC ALGORITHMS

Genetic algorithm learning methods are based on models of natural adaptation and
evolution. These learning systems improve their performance through processes which
model population genetics and survival of the fittest. They have been studied since
the carly 1960s (Holland. 1962, 1975).

In the field of genetics. a population is subjected to an environment which
places demands on the members. The members which adapt well are selected for
mating and reproduction. The offspring of these better performers inherit genetic
traits from both their parents. Members of this second generation of offspring which
also adapt well are then selected for mating and reproduction and the evolutionary i
cycle continues. Poor performers die off without leaving offspring. Good performenrs
_produce good offspring and they. in tum. perform well. After some number of
generations, the resultant population will have adapted optimally or at least very
well to the environment.

Genetic algorithm systems start with a fixed size population of data structures

376 Early Work in Machine Learning Chap. 17

which are used to perform some given tasks. After requiring the structures to execute
the specified tasks some number of times, the structures are rated on their performance,
and a new generation of data structures is then created. The new generation is
created by mating the higher performing structures to produce bffspring. These
offspring and their parents are then retained for the next generation while the poorer
performing structures are discarded. The basic cycle is illustrated in Figure 17.8.

Mutations are also performed on the best performing structures to insure that
the full space of possible structures is reachable. This process is repeated for a
number of generations until the resultant population consists of only the highest
performing structures. ;

Data structures which make up the population can represent rules or any other
suitable types of knowledge structure. To illustrate the genetic aspects of the problem,
assume for simplicity that the population of structures are fixed-length binary strings
such as the eight bit string 1 1010001. An initial population of these eight-bit strings
would be generated randomly or with the use of heuristics at time zero. These
strings. which might be simple condition and action rules, would then be assi gned
some tasks to perform (like predicting the weather based on certain physical and
geographic conditions or diagnosing a fault in a piece of equipment).

After multiple attempts at executing the tasks, each of the participating structures
would be rated and tagged with a utility value u commensurate with its performance.
The next population would then be generated using the higher performing structures
as parents and the process would be repeated with the newly produced generation.
After many generations the remaining population structures should perform the desired
tasks well.

Mating between two strings is accomplished with the crossover operation which
randomly selects a bit position in the eight-bit string and concatenates the head of

Generate initial population

|

St #s perform given
tasks repeatedly

l

Performance utility values
amigned to knowledge
structures

I

New population is generated from
best performing structures

Process repeated until
desired performance resched Figure 17.8 Genetic algorithm.

Y

Sec. 126 Genetic Algorithms 377

one parent to the tail of the second parent to produce the offspring. Suppose the
two parents are designated as xxxxxxxx and yyyyyyyy respectively, and suppose
the third bit position has been selected as the crossover point (at the position of
the colon in the structure xxx:xxxxx). Affter the crossover operation is applied, two
offspring are then generated, namely xxxyyyyy and yyyxxxxx. Such offspring and
their parents are then used to make up the next generation of structures.

A second genetic operation often used is called inversion. Inversion is a transfor-
mation applied to a single string. A bit position is selected at random, and when
applied to a structure, the inversion operation concatenates the tail of the string to the
head of the same string. Thus, if the sixth position were selected (X;X;X3XX5X4:X7Xg).
the inverted string would be XyXgk;X;X3X,X<X¢.

A third operator, muration, is used to insure that all locations of the rule
space are reachable, that every potential rule in the rule space is available for evalua-
tion. This insures that the selection process does not get caught in a local minimum.
For example, it may happen that use of the crossover and inversion operators will
only produce a set of structures that are better than all local neighbors but not
optimal in a global sense. This can happen since crossover and inversion may not
be able to produce some undiscovered structures. The mutation operator can overcome
this by simply selecting any bit position in a string at random and changing it.
This operator is typically used only infrequently to prevent random wandering in
the search space.

The genetic paradigm is best understood through an example. To illustrate
similarities between the learning automaton paradigm and the genetic paradigm we
use the same learning task of the previous szction, namely leaming to play the
game of nim optimally. We use a slightly different representation scheme here
since we want a population of structures that are easily transformed. To do this, .
we let each member of the population consist of a pair of triplets augmented with
a utility value u, ((n,,n3.m3) (m;,m,,m;)u), where the first pair is the game state
presented to the genetic algorithm system prior to its move, and the second triple
is the state after the move. The u values represent the worth or current utility of
the structure at any given time.

Before the game begins, the genetic system randomly generates an initial
population of K triple-pair members. The population size K is one of the important
parameters that must be selected. Here, we simply assume it is about 25 or 30,
which should be more than the number of moves needed for any optimal play. All
members are assigned an initial utility value of 0. The leamning process then proceeds
as follows.

1. The environment presents a valid triple to the genetic system.

2. The genetic system searches for all population triple pairs which have a first
triple that maiches the input triple. From those that match, the first one found
having the highest utility value u is selected and the second triple is returned
as the new game state. If no maich is found, the genetic system randomly
generates a triple which represents a valid move, returns this as the new state,

378 Early Work in Machine Learning Chap. 17

and stores the triple pair, the input, and newly generated triple as an addition
to the population.

3. The above two steps are repeated until the game is terminated, in which case
the genetic system is informed whether a win or loss occurred. If the system
wins, each of the participating member moves has its utility value increased.
If the system loses, each participating member has its utility value decreased.

4. The above steps are repeated until a fixed number of games have been played.
At this time a new generation is created.

The new generation is created from the old population by first selecting a
fraction (say one half) of the members having the highest utility values. From these,
offspring are obtained by application of appropriate genetic operators.

The three operators, crossover, inversion. and mutation. randomly modify
the parent moves to give new offspring move sequences. (The best choice of genetic
operators to apply in this example is left as an exercise). Each offspring inherits a
utility value from one of the parents. Population members having low utility values
are discarded to keep the population size fixed.

This whole process is repeated until the genetic system has learned all the
optimal moves, This can be determined when the parent population ceases to change
or when the genetic system repeatedly wins.

The similarity between the leaming automaton and genetic paradigms should
be apparent from this example. Both rely on random move sequences, and the
better moves are rewarded while the poorer ones are penalized.

17.6 INTELLIGENT EDITORS

In the previous chapter. we considered some of the difficulties involved in acquiring
and assembling a large corpus of well-correlated knowledge. Expert systems some-
times require hundreds or even thousands of rules to reach acceptable levels of
performance. To help alleviate this problem. the development of special editors
such as TEIRESIAS (Davis and Lenat. 1982) were initiated during the mid 1970s.
Since that time a number of commercial editors have been developed. These intelligent
editors have made it possible to build expen systems without strong reliance on
knowledge engineers.'

An intelligent editor acts as an interface between a domain expert and an
expert system. They permit a domain expert to interact directly with the system
without the need for an intermediary to code the knowledge (Figure 17.9). The
expert carries on a dialog with the editor in a restricted subset of English which
includes a domain-specific vocabulary. The editor has direct access to the knowledge
in the expert system and knows the structure of that knowledge. Through the editor.,

! For additional details related 1o the overall process of eliciting. coding. organizing. and refining
knowledge from domain experts. see Chapter |5 which examines expert system architectures and building
tools.

Chap. 17 Exercises i 379

Domain | _ Imaifigent Expert system
expert sditor [| Kiiwehinh
baie

Figure 17.9 Acquisition using an
intelligent editor.

an expert can create, modify, and delete rules without a knowledge of the intemnal
structure of the rules.

The editor assists the expert in building and refining a knowledge base by
recalling rules related to some specific topic, and reviewing and modifying the
rules, if necessary, to better fit the expert's meaning and intent. Through the editor.
the expert can query the expert system for conclusions when given certain facts. If
the expert is unhappy with the results, a trace can be obtained of the steps followed
in the inference process. When faulty or deficit knowledge is found, the problem
can then be corrected.

Some editors have the ability to suggest reasonable alternatives and to prompt
the expent for clarifications when required. Some editors also have the ability to
make validity checks on newly entered knowledge and detect when inconsistencies
occur. More recently, a few commercial editors have incorporated features which
permit rules to be induced directly from examples of problem solutions. These
editors have greatly simplified the acquisition process. but they still require much
effort on the part of domain experts.

17.7 SUMMARY

We have examined examples of early work done in machine leaming including
perceptrons which learn through parameter adjustment. by looking at Samuel's checkers
playing system which learns through a form of rote leaming as well as parameter
adjustment. We then looked at learning automata which uses a reward and punishment
process by modifying their state probability transformation mapping structures until
optimal performance has been achieved. Genetic: algorithm systems learn through a
form of mutation and genetic inheritance. Higher performing knowledge structures
are mated and give birth to offspring which possess many of their parents’ traits.
Generations of structures are created until an acceptable level of performance has
been reached. Finally, we briefly discussed semiautonomous learning systems, the
intelligent editors. These systems permit a domain expert to interact directly in
building and refining a knowledge base without strong support from a knowledge
engineer.

EXERCISES

17.1. Given a simple perceptron with a 3-x-3 input sensor ammay. compute six leaming
cycies to show how the weights w, change during the lcaming process. Assign random
weights to the initial w, values,

17.2.

17.3.

17.4.

17.5.

17.6.

17.7.

17.8.
17.9.

Early Work in Machine Learning Chap. 17

For the game of checkers with an assumed average number of 50 possible moves per
board position, determine the difference in the total number of moves for a four
move look-ahead as compared to a three move look-ahead system.

Design a learning automaton that selects TV channels based on-day of week and
time of day (three evening hours only) for some family you are familiar with.

Write a computer program to simulate the leamning automaton of the previous problem.
Determine the number of training examples required for the system to converge to
the optimal values.

Describe how a leaming automaton could be developed to learn how to play the
game of tic-tac-toe optimally. [s this a CLA or a simple leaming automaton system?
Describe the similarities and differences between leamning automata and genetic algo-
rithms. Which learner would be best at finding optimal solutions to nonlinear functions?
Give reasons to support your answer. ;

Explain the difference of the genetic operators inversion, crossover, and mutation.
Which operator do you think is most effective in finding the optimal population in
the least time?

Explain why some editors can be distinguished as *‘intelligent.”

Read an article on TEIRESIUS and make a list of all the intelligent functions it
performs that differ from so called nonintelligent editors.

18

Learning by Induction

18.1 INTRODUCTION

Consider playing the following game. [will choose some concept which will remain
fixed throughout the game. You will then be given clues to the concept in the
form of simple descriptions. After each clue, you must attempt to guess the concepl
I have chosen. T will continue with the clues until you are sure you have made the
right choice.

Clue 1. A diamond ring.
For your first guess did you choose the concept beautiful? If so you are wrong.
Clue 2. Dinner at Maxime's restaurant.

What do clues 1 and 2 have in common? Perhaps clue 3 will be enough to
reveal the commeonality you need to make a correct choice.

Clue 3. A Mercedes-Benz automobile.
You must have discovered the concept by now! It is an expensive or luxury

item.

)

82 Learning by Induction Chap. 18

The above illustrates the process we use in inductive learning, namely, inductive
inference, an invalid. but useful form of inference.

In this chapter we continue the study of machine learing, but in a more
focused manner. Here. we study a single learning method. leaming by inductive
inference.

Inductive learning is the process of acquiring generalized knowledge from
examples or instances of some class. This form of learning is accomplished through
inductive inference. the process of reasoning from a part to a whole, from particular
instances to generalizations. or from the individual to the universal. [t is a powertul
form of learning which we humans do almost effortlessly. Even though it is not a
valid form of inference. it appears to work well much of the time. Because of is
importance. we have devoted two complete chapters 1o the subject.

18.2 BASIC CONCEPTS

When we conclude that October weather is always pleasant in El Paso after having
observed the weather there for a few seasons, or when we claim that all swans are
white after seeing only a small number of white swans, or when we conclude that
all Scots are tough negotiators after conducting business with only a few, we are
learning by induction. Our conclusions may not always be valid, however. For
example, there are also bluck Australian swans and some: weather records show
that October weather in El Paso was inclement. Even so, these conclusions or
rules are useful. They are correct much or most of the time, and they allow us 10
adjust our behavior and formulate important decisions with little cognitive effort.

One can only marvel at our ability to formulate a general rule for a whole
class of objects, finite or not, after having observed only a few examples. How is
it we are able to make this large inductive leap and arrive at an accurate conclusion
so easily” For example, how is it that a first time traveler to France will conclude
that all French people speak French after having spoken only to one Frenchman
named Henri? At the same time, our traveler would not incorrectly conclude that
all Frenchmen are named Henri'

Examples like this emphasize the fact that inductive learning is much more
than undirected search for general hypotheses. Indeed, it should be clear that inductive
generalization and rule formulation are performed in some context and with a purpose.
They are performed to satisfy some objectives and, therefore. are guided by reluted
background or other world knowledge. If this were not so. our generalizations would
be on shaky ground and our class descriptions might be no more than a complete
listing of all the examples we had observed.

The inductive process can be described symbolically through the use of predi-
cates P and Q. H we observe the repeated occurrence of events Pla)), Pla.).
. - - . Play), we generalize by inductively concluding that ¥x P(x). i.e. if (canary_
1 color yellow), (canary_2 color yellow), . . . , (canary_k color yellow) then (foral!

x (if canary x)(x color yellow)). More generally, when we observe the implications

Sec. 183 Some Definitions 2 383

P(a,) — Q(b))
P(a;) = Q(b.)

- P[ﬁg) = Q(b;)

we generalize by concluding ¥xy P(x) — Q(y).

In forming a generalized hypothesis about a cnmplete (possibly infinite) class
after observing only a fraction of the members, we are making an uncertain conclusion.
Even so, we have all found it to be a most essential form of leamning.

Our reliance on and proven success with inductive leaming has motivated
much research in this area.. Numerous systems have been developed to investigate
different forms of such learning referred to. as leaming by observation, leaming by
discovery, supervised leamming, leamning from examples, and unsupervised learning.
We have already seen two examples of weak inductive leaming paradigms in the
previous chapter: leaming automata and genetic algorithms. In this chapter we will
see different kinds of examples which use the more traditional Al architecture.

In the remainder of this and the following chapter, we will study the inductive
learning process and look at several traditional Al leaming systems based on inductive
leamning paradigms. We begin in the next two sections with definitions of important
terms and descriptions of some essential tools used in the leaming systems which
follow.

18.3 SOME DEFINITIONS

In this section we introduce some important terms and concepts related to inductive
learning. Many of the terms we define will have significance in other areas as
well.

Our model of learming is the model described in Section 16.4. As you may
recall, our learner component is presented with training examples from a teacher
or from the environment. The examples may be positive instances only or both
positive and negative. They may be selected, well-organized examples or they may
be presented in a haphazard manner and contain much irrelevant information Finally.
the examples may be correctly labeled as positive or negative instances of some
concept, they may be unlabeled, or they may even contain erroneous labels. Whatever
the scenario, we must be careful to describe it appropriately.

Given (1) the observations. (2) certain background domain knowledgc and
(3) goals or other preference criteria, the task of the learner is to find an inductive
‘assertion or target concept that implies all of the observed examples and is consistent

384 Learning by Induction Chap. 18

with both the background knowledge and goals. We formalize the above ideas
with the following definitions (Hunt et al., 1966, and Rendell, 1985).

Definitions

Object. Any entity, physical or abstract, which can be described by a set
of attribute (feature) values and attribute relations is an object. We will refer to an
object either by its name o, or by an appropriate representation such as the vector
of attribute values x = (x, x;, . . . , x,). Clearly, the x, can be very primitive
attributes or higher level, more abstract ones. The choice will depend on the use
being made of the representations. For example, a car may be described with primitives
as an entity made from steel, glass, rubber, and its other component materials or,
at a higher level of abstraction, as an object used for the transportation of passengers
at speeds ranging up to 250 miles per hour.

Class. Given some universe of objects U, a class is a subset of /. For
cxample, given the universe of four-legged animals, one class is the subset horses.

Concept. . This is a description of some class (set) or rule which partitions
the universe of objects U/ into two sets, the set of objects that satsisfy the rule and
those that do not. Thus, the conceplt of horse is a description of rule which asserts
the set of all horses and excludes all nonhorses.

Hypothesis. A hypothesis H is an assertion about some objects in the uni-
verse. It is a candidate or tentative concept which partitions the universe of objects.
One such hypothesis related to the concept of horse is the class of four-legged
animals with a tail. This is a candidate (albeit incomplete) for the concept horse.

Target concept. The targe! is one concept which correctly classifies all
objects in the universe.

Positive instances. These are example objects which belong 10 the target
concept.

Negative instances. These are examples opposite to the target concept.

Consistent classification rule. This is a rule that is true for all positive
nstances and false for all negative instances.

Induction. Induction is the process of class formation. Here we are more
interested in the formation of classes which are goal-oriented: therefore, we will
define induction as purposeful class formation. To illustrate, from our earlier exampie,
we concluded that all Scotsmen are tough negotiators. Forming this concept can be
helpful when dealing with any Scot. The goal or purpose here is in the simplification
of our decisions when found in such situations.

Sec. 184 Goneraliut[ﬁn and Specialization 385

@, Vo, Va, Vo,

Figure 18.1 Lattice of object classes. Each node represents a disjunction of objects
from a universe of four objects.’

Selective induction. In this form of induction class descriptions are formed
using only the attributes and relations which appear in the positive instances.

Constructive induction. This form of induction creates new descriptors
not found in any of the instances. i

Expedient induction. This is the application of efficient, efficacious induc-
tive leaming methods which have some scope, methods which span more than a
single domain. The combined performance in efficiency, efficacy, and scope has
been termed the inductive power of a system (Rendell, 1985),

In this chapter we are primarily interested in learners which exhibit expedient
induction. Our reason for this concern will become more apparent when we examine
the complexity involved in locating a target concept, éven in a small universe.
Consider, for example, the difficulty in locating a single concept class in a universe
consisting of only four objects. Since the universe of all dichotomous sets (the
concept C and U-C) containing n-objects can be represented as a lattice structure
having 2" nodes, we see that this is an exponential search problem (Figure 18.1). -

18.4 GENERALIZATION AND SPECIALIZATION

In this section we consider some techniques which are essential for the application
of inductive leaming algorithms. Concept learning requires that a guess or estimate
of a larger class, the target concept, be made after having observed only some
fraction of the objects belonging to that class. This is essentially a process of generaliza-
tion, of formulating a description or a rule for a larger class but one which is still

26—

386 Learning by Induction Chap. 18

consistent with the observed positive examples. For example, given the three positive
instances of objects

(blue cube rigid large)
(small flexible blue cube)
(rigid small cube blue)

a proper generalization which implies the three instances is blue cube. Each of the
instances satisfies the general description.

Specialization is the opposite of generalization. To specialize the concept blue
cube, a more restrictive class of blue cubes is required such as small blue cube or
flexible blue cube or any of the original instances given above. Specialization may
be required if the leaming algorithm over-generalizes in its search for the target
concept. An over-generalized hypothesis is inconsistent since it will include some
negative instances in addition to the positive ones.

There are many ways to-form generalizations. We shall describe the most
commonly used rules below. They will be sufficient to describe all of the learning
paradigms which follow. In describing the rules, we distinguish between two basic
types of generalization, comparable to the corresponding types of induction (Section
18.2), selective generalization and constructive generalization (Michalski, 1983).
Selective generalization rules build descriptions using only the descriptors (attributes
and relations) that appear in the instances, whereas constructive generalization rules
do not. These concepts are described further below.

Generalization Rules

Since specialization rules are essentially the opposite of rules for generalization,
to specialize a description, one could change variables to constants, add a conjunct
or remove a disjunct from a description, and so forth. Of course, there are other
means of specialization such as taking exceptions in descriptions (a fish is anything
that swims in water but does not breathe air as do dolphins). Such methods will be
introduced as needed.

These methods are useful tools for constructing knowledge structures. They
give us methods with which to formulate and express inductive hypotheses. Unfortu-
nately, they do not give us much guidance on how (o select hypotheses efficiently.
For this, we need methods which more directly limit the number of hypotheses
which must be considered.

Selective Generalization

Changing Constanis to Variables.

An example of this rule was given in Section I8.1. Given instances of a
description or predicate P(ay), P(ay), - . . . Pla) the constants a; are changed to
a variable which may be any value in the given domain, that is, Vx P(x).

Sec. 184 Generalization and Specialization : 387

Dropping Condition.

Dropping one or more conditions in a description has the effect of expanding
or increasing the size of the set. For example, the set of all small red spheres is
less general than the set of small spheres. Another way of stating this rule when
the conjunctive description is given is that a generalization results when one or
more of the conjuncts is dropped.

Adding an Alternative.

This is similar to the dropping condition rule. Adding a disjunctive term general-
izes the resulting description by adding an alternative to the possible objects. For
example, transforming red sphere to (red sphere) V (green pyramid) expands the
class of red spheres to the class of red spheres or green pyramids. Note that the
internal disjunction could also be used to generalize. An internal disjunction is one
which appears inside the parentheses such as (red V green sphere).

Ciimbing a Generalization Tree.

When the' classes of objects can be represented as a tree hierarchy as pictured -
in Figure 18.2, generalization is accomplished by simply climibing the tree to a
node which is higher and, therefore, gives a more general description. For example,
moving up the tree one level from elephant we obtain the more general class description
of mammal. A greater generalization would be the class of all animals.

Closing an Interval.

When the domain of a descriptor is ordered (d, < 4, < . . . < d;) and a
few values lie in a small interval, a more restricted form of generalization than
changing constants to variables can be performed by generalizing the values to a
closed interval. Thus, if two or more instances with values D = d, and D = d,

Anything

Living things Nonliving things

Mammal

Elephant Whale

Figure 18.2 Generalization tree for the hierarchy of All Things.

388 Learning by Induction Chap. 18

where d; < d; have been observed, the generalization D = [d; . . . d]] can be
made; that is, D can be any value in the interval 4, to d,.

Constructive Generalization - !

Generating Chain Praoperties. '

If an order exists among a set of objects, they may be described by their
ordinal position such as first, second, . . . , n™. For example, suppose the relations
for a four story building are given as

above(f,.f,) & above(f, f5) & above(fy.f3)
then a constructive generalization is
most_above(f,) & least_above(f)).

The most above, least above relations are created. They did not occur in the original
descriptors.

Other forms of less frequently used generalization techniques are also available
including combinations of the above. We will introduce such methods as we need
them.

18.5 INDUCTIVE BIAS

Learning generalizations has been characterized as a search problem (Mitchell, 1982).
We saw in Section 18.2 that leamning a target concept is equivalent to finding a
node in a lattice of 2" nodes when there are n elementary objects. How can one
expect to realize expedient induction when an exponential space must be searched?
From our earlier exposure to search problems, we know that the naive answer (o
this question is simply to reduce the number of hypotheses which must be considered.
But how can this be accomplished? Our solution here is through the use of bias.
Bias is, collectively, all of those factors that influence the selection of hypothe-
ses, excluding factors directly related to the training examples. There are two general
types of bias: (1) restricting hypotheses from the hypothesis space and (2) the use
of a preferential ordering among the hypotheses or use of an informed selection
scheme. Each of these methods can be implemented in different ways. For example,
the size of the hypothesis space can be limited through the use of syntactic constraints
in a representation language which permits attribute descriptions only. This will be
the case with predicate calculus descriptions if only unary predicates are allowed,
since relations cannot be expressed easily with one place predicates. Of course,
such descriptions must be expressive enough to represent the knowledge being learned.
Representations based on more abstract descriptions will often limit the size
of the space as well. Consider the visual scene of Figure 18.3. When used as a
training example for concepts like on top of, the difference in the size of the hypothesis
space between representations based on primitive pixel values and more abstract

Sec. 185 Inductive Bias 389

P N Y

Figure 18.3 Blocks world scene.

descriptions based on a semantic net can be very large. For example, a representation
using only two levels of gray (light and dark) in a 1024 by 1024 pixel array will
have a hypothesis space in excess of s L Compare this with the semantic net
space which uses no more than 10 to 20 objects and a limited number of position
relationships. Such a space would have no more than 10* or 10° object-position
relationships. We see then that the difference in the size of the search space for
these two representations can be immense.

Another simple example which limits the number of hypotheses is illustrated
in Figure 18.4. The tree representation on the left contains more information and,
therefore, will permit a larger number of object descriptions to be created than
with the tree on the right. On the other hand, if one is only interested in learning
general descriptions of geometrical objects without regard to details of size, the
tree on the right will be a superior choice since the smaller tree will result in less
search.

Methods based on the second general type of bias limit the search through
preferential hypotheses selection. One way this can be achieved is through the use
of heuristic evaluation functions. If it is known that a target concept should not
contain some object or class of objects, all hypotheses which contain these objects
can be climinated from consideration. Referring again to Figure 18.1, if it is known

Any object Any object

Palygan Round

Triangle Square Circle Oval

Figure 18.4 Tree representation for object descriptions (s = small, | = large).

390 Learning by Induction Chap. 18

that object 05 (or the description of o;) should not be included in the target set, all
nodes above o0, and connected to o; can be eliminated from the search. In this
case, a heuristic which gives preferential treatment would not chogse descriptions
which contain o05.

Another simple example which relates to leamning an optimal play of the game
of Nim might use a form of preference which introduces a heuristic to block consider-
ation of most moves which permit an opponent to leave only one token. This eliminates
a large fraction of the hypotheses which must be evaluated (see Chapter 17).

Bias can be strong or weak, correct or incorrect. A strong bias is one which
focuses on a relatively small number of hypotheses. A weak bias does not. A
correct bias is one which allows the leamner to consider the target concept, whereas
an incorrect bias does not. Obviously, a leamer’s task is simplified when the bias
is both strong and correct (Utgoff, 1986). Bias can also be implemented in a program
as either static or dynamic. When dynamic bias is employed, it is shifted automatically
by the program to improve the learner's performance. We will see different forms
of bias used in subsequent sections.

18.6 EXAMPLE OF AN INDUCTIVE LEARNER

Many learning programs have been implemented which construct descriptions com-
posed of conjunctive features only. Few have been implemented to leamn disjunctive
descriptions as well. This is because conjunctive learning algorithms are easier to
implement. Of course, a simple implementation for a disjunctive concept leamer
would be one which simply forms the disjunction of all positive training instances
as the target concept. Obviously. this would produce an awkward description if
there were many positive instances.

There are many concepts which simply cannot be described well in conjunctive
" terms only. One of the best examples is the concept of uncle since an uncle can be
either the brother of the father or the brother of the mother of a child. To state it
any other way is cumbersome.

The system we describe below was first implemented at M.LT (Iba, 1979).
It is a more traditional Al type of leamer than the systems of the previous chapter
in that it builds symbolic English-like descriptions and the leaming process is more
algorithmic in form. This system learns descriptions which are essentially in disjunc-
tive normal form. Consequently, a broad range of descriptions is possible. Further-
more, the system can learn either concept descriptions from. attribute values or
structural descriptions of objects.

The training set we use here consists of a sequence of labeled positive and
negative instances of the target concept. Each instance is presented to the leammer
as an unordered list of attributes together with a label which specifies whether or
not the instance is positive or negative.

For this first example, we require our learner to learn the disjunctive concept
*‘something that is either a tall flower or a yellow object.”” One such instance of

Sec. 188 Example of an Inductive Learner Y

concept _name:(tall fiower or yeliow object)

positive_part:
cluster:description:
examples:

cluster:description:
axamples:

negative_part:
examples:

Figure 18.5 Frame-like knowledge
structure.

this concept is represented as (short skinny yellow flower +); whereas a negative
instance is (brown fat tall weed —). Given a number of positive and negative training
instances such as these, the leamer builds frame-like structures with groups of slots
we will call clusters as depicted in Figure 18.5.

The target concept is given in the concept name. The actual description is
then built up as a group of slots labeled as clusters. All training r.umples. both
positive and negative, are retained in the example slots for use or reuse in building
up the descriptions. An example will illustrate the basic algorithm.

Garden World Example

Each cluster in the frame of Figure 18.5 is treated as a disjunctive term, and descriptions
within each cluster are treated as conjuncts. A complete leaming cycle will clarify
the way in which the clusters and frames (concepts) are created. We will use the
following training examples from a garden world to teach our learner the concept
‘‘tall flower or yellow object.”’

(tall fat brown flower +)
(green tall skinny flower +)
(skinny short yellow weed +)
(tall fat brown weed =)

(fat yellow flower tall +)

392 : Learning by Induction Chap. 18

After accepting the first training instance, the leamner creates the tentative
concept hypothesis “‘a tall fat brown flower."’ This is accomplished by creating a
cluster in the positive part of the frame as follows:

concept_name:(tall flower or yellow object)
positive_ part:
cluster:description:(tall fat brown flower)
:examples:(tall fat brown flower)
negative_ part;

With only a single example, the leamer has concluded the tentative concept
must be the same as the instance. However, after the second training instance, a
new hypothesis is created by merging the two initial positive instances. Two instances
are merged by taking the set intersection of the two. This results in a more general
description, but one which is consistent with both positive examples. It produces
the following structure. '

concept_name:|tall flower or yellow object)
positive_part:
cluster:description:(tali, flower)
:examples:(tall fat brown flower)
(green tall skinny flower)
negative_part:
examples:

The next training example is also a positive one. Therefore, the set intersection
of this example and the current description is formed when the leamer is presented
with this example. The resultant intersection and new hypothesis is an over generaliza-
tion, namely, the null set, which stands for anything.

concept_name:(tall flower or yellow object)
positive_part:
cluster:description:()
:examples:(tall fat brown flower)
{green tall skinny flower)
{skinny short yallow weed)
negative_part:
:examples:

The fourth instance is a negative one. This instance is inconsistent with the
current hypothesis which includes anything. Consequently, the learner must revise
its hypothesis to exclude this last instance.

Sec. 18.6 Example of an Inductive Learner 333

" It does this by splitting the first cluster into two new clusters which are then
both compatible with the negative instance. Each new cluster corresponds to a disjunc-
tive term in this description. :

To build the new clusters, the leamer uses the three remembered examples
from the first cluster. It merges the examples in such a way that each merge produces
new consistent clusters. After merging we get the following revised frame.

concept_name:(tall flower or yallow abject)
positive_part:
cluster:description:(tall flower)
.examples:(tall fat brown flower)
(green tall skinny flower)
cluster:.description:{skinny short yellow weed)
:examples:(skinny short yellow weed)
negative_part:
.examples:(tall fat brown weed)

The reader should verify that this new description has now excluded the negative
instance.

The next training example is all that is required to arrive at the target concept. To
complete the description, the learner attempts to combine the new positive instance with
each cluster by merging as before, but only if the resultant merge is compatible with
all negative instances (one.in this case). If the new instance cannot be merged
with any existing cluster without creating an inconsistency. a new cluster is created.

Merging the new instance with the first cluster results in the same cluster.
Merging it with the second cluster produces a new, more general cluster description
of yellow. The final frame obtained is as follows.

concept_name:(tall flower or yellow object)
positive_part:
cluster:description: (tall flower)
:examples:{tall fat brown flower)
(green tall skinny flower)
(fat yellow flower tall)

cluster:description:(yellow)
.examples:(skinny short yellow weed) :
(fat yellow flower tall) i
negative_part:)
:examples:(tall fat brown weed)

The completed concept now matches the target'conccpt *‘tall lower or yellow object.”’

384 Learning by Induction Chap. 18

The above example illustrates the basic cycle but omits some important factors.
First, the order in which the training instances are presented to the learner is important.
Different orders, in general, will result in different descriptions and may require
different numbers of training instances to arrive at the target concept.

Second, when splitting and rebuilding clusters after encountering a negative
example, it is possible to build clusters which are not concise or maximal in the
sense that some of the clusters could be merged without becoming inconsistent.
Therefore, after rebuilding new clusters it is necessary to check for this maximality
and merge clusters where possible without violating the inconsistency condition.

Blocks World Example

Another brief example will illustrate this point. Here we want to learn the concepi
‘‘something that is either yellow or spherical.”” For this, we use the following
training instances from a blocks world.

(yellow pyramid soft large +)
(blue sphere soft small +)
(yellow pyramid hard small +)
(green large sphere hard +)
(yellow cube soft large +)
(blue cube soft small —)

(blue pyramid soft large —)

After the first three training examples have been given to the leamer, the resultant
description is the empty set.

concept _name:(yellow or spherical object)
positive_part;
cluster:description:()
:examples:(yeliow pyramid soft large)
(blue sphere soft small)
{yellow pyramid hard small}
negative_part:
:examples:

Since the next two examples, are also positive, the only change to the above
frame is the addition of the fourth and fifth training instances to the cluster examples.
However, the sixth training instance is negative. This forces a split due to the
inconsistency. In rebuilding the clusters this time, we rebuild starting with the last
positive (fifth) example and work backwards as though the examples were put on a

Sec. 1868 Exampla of an Inductive Learner 395

stack. This is actually the order used in the original system. After the fifth and
fourth examples are processed, the following frame is produced.

wnnepl_mmo:{wliow or spherical object)
positive_part:
cluster:description:(large)
:examples:(yellow cube soft large)
(green large sphere hard)

nagative_part:
:examples:

Next, when an attempt is made to merge the third example, an inconsistency
results. Therefore, this example must be put into a separate cluster. The same applies
when dn attempt is made to merge the second example with either of the new
clusters; merging with the first cluster results in the empty set, while merging with
the second cluster results in the set (small) which is also inconsistent with the
negative example (blue cube soft small), This forces the creation of a third cluster.
Finally, after attempts are made to merge the first example (it merges with the first
two clusters), we obtain the frame

concept_name:|yellow or spherical object)
positive_part:
cluster:description:(large)
:examples:({yeliow cube soft large)
:(green large sphere hard)
:{yellow pyramid soft large)
cluster:description: (yellow pyramid)
:examples:(yellow pyramid hard small)
{yellow pyramid soft large)
cluster:description:(blue sphere soft small)
:examples:(blue sphere soft small)
negative_part:
:examples:(blue cube soft small)

Note that we still have not arrived at the target concept. The last training instance,
a negative one,

(blue pyramid soft large —)

is needed to do the trick. The first cluster is inconsistent with this instance. Therefore,
it must be split. After completing this split we get the new frame

396 Learning by Induction Chap. 18

concept_name:(yellow or spherical object)
positive_part:
cluster:description:{yellow soft large)
:examples:(yellow cube soft large)
(yellow pyramid soft large)
cluster:description:(green large sphere hard)
:examples:(green large sphere hard)
cluster:description:(yellow pyramid)
:examples:(yellow pyramid hard sma!l)
{yellow pyramid soft large)
cluster:description:(blue sphere soft small)
:examples:(blue sphere soft small)
negative_part:
:examples:(blue cube soft small)
{blue pyramid soft large)

All of the new clusters are now consistent with the negative examples. But
the clusters are not maximal, since it is possible to merge some clusters without
violating the inconsistency condition. To obtain maximality, the clusters must be
rewritten and merged where possible. This rewrite is accomplished by copying the
first cluster and then successively merging or copying the other clusters in combination.
Of course, a merge can be completed orly when an inconsistency does not result.

The first two clusters cannot be merged as we know from the above. The
first and third clusters can be merged to give yellow. The second and fourth clusters
can also be merged to produce sphere. These are the only merges that can be
made that are compatible with both negative examples. The final frame then is
given as

concept_name:[yellow or spherical object)
positive_part:
cluster:description:(yellow)
:examples:(yellow cube soft large)
{yellow pyramid hard
small)
{yellow pyramid soft
large)
cluster:description:(sphere}
:examples:(green large sphere hard)
(blue sphere soft small)
negative_part:
i :examples:({blue cube soft small)
(blue pyramid soft large)

Sec. 18.6 Example of an Inductive Learner 397

It may have been noticed already by the astute reader that there is no reason
why negative-part clusters could not be created as well. Allowing this more symmetric
structure permits the creation of a broader range of concepts such as ‘'neither yellow
nor spherical’” as well as the positive type of concepts created above. This is imple-
mented by building clusters in the negative part of the frame using the negative
examples in the same way as the positive examples. In building both descriptions
concurrently, care must be taken to maintain consistency between the positive and
negative parts. Each time a negative example is presented, it is added 1o the negative
part of the model, and a check is made against each cluster in the positive pant of
the model for inconsistencies. Any of the clusters which are inconsistent are split
into clusters which are maximal and consistent and which contain all the original
examples among them. We leave the details as an exercise.

Network Representations

It is also possible to build clusters of network representation structures and to learn
structural descriptions of objects. For example, the concept of an arch can be learned
in a manner similar to the above examples. In this case our training examples
could be represented as something like the following where, as in earlier chapters,
ako means a kind of.

((nodes (a b c)

(links (ako a brick)
(ako b brick)
(ako ¢ brick)

(supports a c)
(supports b ¢) +)

Since an arch can support materials other than a brick, another positive example
of the concept arch might be identical to the one above except for the object supported,
say a wedge. Thus, substituting (ako ¢ wedge) for (ako ¢ brick) above we get a
second positive instance of arch. These two examples can now be generalized into
a single cluster by simply dropping the differing conjunctive ako terms to get the
following. '

((nodes (a b ¢)

links (ako a brick)
(ako b brick)
(supports a ¢)
(supports b c))

398 Learning by Induction) Chap. 18

This is an over generalization. It can be corrected by a negative training example
which uses some nonvalid object sugl‘ias a sphere as the supported item,
((nodes (a b ¢) '
links (ako a brick)
(ako b brnick)
(ako ¢ sphere)
(supports a c)
(supports b ¢) —)

This example satisfies the current description of an arch. However, it has caused
an inconsistency. Therefore, the cluster must be split into a disjunctive description
as was done before in the previous examples. The process is essentially the same
except for the representation scheme.

In a similar manner the concept of uncle can be learned with instances presented
and corresponding clusters created using a network representation as follows.

((nodes (a b c).

links (ako a person)
(ako b person)
(ako ¢ person)
(male c)
(parent_of b a)
(brother_of c b) +)

Again, we leave the remaining details as an exercise.

Before leaving these examples, the reader should consider what learning methods
and tools have been used from the previous two sections, what types of bias have
been used to limit the search, and what methods of generalization have been employed
in the learning process.

18.7 SUMMARY

Inductive leaming is accomplished through inductive inference, the process of infer-
ring a common class from instances, reasoning from parts to the whole or from
the individual to the universal. Leaming a concept through induction requires general-
ization, a search through a lattice of hypotheses. Practical induction is based on
the use of methods that constrain or direct the search process. This is made possible
through the use of bias which is used to reduce the size of the hypothesis space or
to impose preferential ‘selection on the hypotheses.

Chap. 18) Exercises 399

A number of techniques are available for either selective or constructive general-
ization, including changing constants to variables, dropping conjunctive conditions,
adding a disjunctive alternative, closing the interval, climbing a generalization tree.
and generating chain properties, among others. Specialization is achieved through
the inverse operation to generalization as well as some other methods like including

-exceptions.

An example of an inductive leaming system was presented in some detail.
This system constructs concept descriptions from positive and negative examples
presented as anribute lists. The descriptions are created as clusters or disjuncts by
first generalizing conjunctive descriptions from the positive training examples until
an inconsistent negative example is experienced. This separates the clusters to produce
compatible, disjunctive descriptions. The system can also learn structural descriptions
in the form of network representations. It is possible to build negative disjunctive
descriptions as well, building clusters in the negative part of the frame structure or
both positive and negative descriptions.

EXERCISES

18.1. Define inductive leaming and cxplain: why we still use it even though it is not a
“‘valid" form of learning.

18.2. What is the difference between a class.and a concept?

18.3. What is the difference between selective, constructive, and expedient induction? Give
examples of each.

18.4. What is the purpose of inductive bias?

18.5. Give three examples in which inductive bias can be applied to constrain search.

18.6. Use the following training examplas to simulate learning the concepy **green flower
or skinny object."" Build up the congept description in clusters using the same method
as that described in:Section 18.6.

(green tall fat flower +)
(skinny green shost flower +)
(tall skinny greem flower +) -
(red skinny short weed +)
(green short fat weed —)

(tall green flower skinny +)

§8.7. Work out an example of cencept leaming using network structures. The concept to
be learned is the concept wife. Create both positive and negative training examples.

18.8. Write a computer program in LISP 1o build concept descriptions in the form of
clusters like the examples of Section 18.7.

18.9. The method described in Section ISTfmmgcmmdependsmdnwderm
which examples are presented. State what modifications would be required to make
the learner build the same structures independent of the order in which training
examples are presented.

400 Learning by Induction Chap. 18

18.10. Compare each of the generalization methods described in Section 18.4 and explain
when each method would be appropriate to use.

18.11. Referring to the previous problem, rank the generalization methods by estimated
computation time required to perform cach, '

18.12. Give an example of leaming the negative of the concept *‘tall flower or red object,””
that is, something that is “*neither a tall flower nor a red object."

19

Examples of Other
Inductive Learners

19.1 INTRODUCTION

In this chapter we continue with our study of inductive learning. Here, we review
four other important learning systems based on the inductive paradigms.

Perhaps the most significant difference among these systems is the type of
knowledge representation scheme and the leaming algorithms used. The first system
we describe, ID3, constructs a discrimination tree for use in classifying objects.
The second system, LEX, creates and refines heuristic rules for carrying out symbolic
integrations. The third system, INDUCE, constructs descriptions in an extended
form of predicate calculus. These descriptions are then used to classify . objects
such as soybean diseases. Our final system, Winston's Arch, forms conjunctive
network structures similar to the ones described in the previous chapter.

19.2 THE ID3 SYSTEM

ID3 was developed in thc'late 1970s (Quinlan, 1983) to learn object classifications
from labeled training examples. The basic algorithm is based on earlier research
programs known as Concept Leamer Systems or CLSs (Hunt et al., 1966). This

27~

402 Examples of Other Inductive Learners Chap. 19

system is also similar in many respects to the expert system architecture described
in Section 15.3. ,
: The CLS algorithms start with a set of training objects O = {0y, @3, . . .,
0,} from a universe U, where each object is described by a set of m atribute
values. An attribute A; having a small number of discrete values a;;, @p, dy
is selected and a tree node structure is formed to represent A,. The node has k
branches emanating from it where each branch corresponds to one of the a, values
(Figure 19.1). The set of training objects O are then partitioned into at most k;
subsets based on the object’s attribute values. The same procedure is then repeated
recursively for each of these subsets using the other m — 1 attributes to form
lower level nodes and branches. The process stops when all of the training objects
have been subdivided into single class entities which become labeled leaf nodes of
the tree.

The resulting discrimination tree or decision tree can then be used to classify
new unknown objects given a description consisting of its m attribute values. The
unknown is classified by moving down the leamed tree branch by branch in concert
with the values of the object’s attributes until a leaf node is reached. The leaf
node is labeled with the unknown's name or other identity.

ID3 is an implementation of the basic CLS algorithm with some modifications.
In the ID3 systém, a relatively small number of training examples are randomly
selected from a large set of objects O through a window. Using these training
examples, a preliminary discrimination tree is constructed. The.tree is then tested
by scanning all the objects in O to see if there are any exceptions to the tree. A
new subset or window is formed using the original examples together with some
of the exceptions found during the scan. This process is repeated until no exceptions
are found. The resulting discrimination tree can then be used to classify new objects.

Another important difference introduced in 1D3 is the way in which the attributes
are ordered for use in the classification process. Attributes which discriminate best
are selected for evaluation first. This requires computing an estimate of the expected
information gain using all available attributes and then selecting the attribute having
the largest expected gain. This attribute is assigned to the root node. The attribute
having the next largest gain is assigned to the next level of nodes in the tree and
so on until the leaves of the tree have been reached. An example will help to
illustrate this process.)

For simplicity, we assume here a single-class classification problem, one where
all objects either belong to class C or U-C. Let h denote the fraction of objects

4

Figure 19.1 A node created for atiribute
" A, (color) with k discrete values. a,,. a;,
8 %2 a3 %k ay(red, orange, . . - whitc),

Sec. 19.2 The ID3 System 403

that belong 1o class C in a sample of n objects from O: h is an estimate of the true
fraction or probability of objects in U that belong to class C. Also let

¢, = number of objects that belong to C und have value a,

dy = number of objects nor belonging to C and having value a,

Pu = (cg + dy) / n be the fraction of objects with value a, (we assume
objects have all attribute values so that Zipi=1

i = e lley + d,). the fraction of objects in € with attribute vulue a .oand
g = | — fy. the fraction of objects not in C with vilue i,y

Now define
Hhy= =k * logsh — (1 — k) * logdl — In
with (0) = 0. and
Hye = —fin ® logafy. = g * logag,

as the information content for class C and attribute a,; respectively . Then the cxpected
value (mean) of H,, is just

EHy)=Zp, * H,
We can now define the gain G, for attribute A, as
G,=H, —H,

Each G, is computed and ranked. The ones having the largest values determine
the order in which the corresponding attributes are selected in building the discrimina-
tion tree. .

In the above equation, quantities computed as

H=-%p, *log.p, with Ip =1

are known as the information theoretic entropy where p, is the probability of occurrence
of some event i, The quantities H provide a measure of the dispersion or surprise
in the occurrence of a number of different events. The gains G; measure the information
to be gained in using a given attribute.

In using atributes which contain much information, one should expect that
the size of the decision tree will be minimized in some sense, for example. in total
number of nodes. Therefore. choosing those attributes which contain the largest
gains will, in general, result in a smaller attribute set, This amounts to choosing
those attributes which are more relevant in characterizing given classes of objects.

In concluding this section, an example of a small decision tree for objects
described byAGur atiributes is given in Figure 19.2. The attributes and their values
are horned = {yes, no}, color = {black, brown, white, grey}. weight = (heavy.
medium, light}, and height = {tall, short}. One training set for this example consists

404 Examples of Other Inductive Learners Chap. 19

Color
G= 0361 .
-
br q '
bk w
O e e e Ll e maffm i Homed ___ _ __3 o g K _ 0O
G =0.348
i n ¥ 4] ¥ H ¥ n
o TR ol e b WlghE b s " e
G = 0.20% \
h
mo e T WLy L S N i om | F
A o i i S Haght R e R
\ G = 0.205
t 1 \ t /
A A . S 1 x ; H : 5 1
d d b b d
[2+ 18+ 16— 14+ 3- I5- 17-

Figure 19.2 Discrimination free for three atiributes ordered by information wain. Abbreviations
are br = brown. bk = black, w = white, g = gray. ¥ = yes. n = ao. h = heavy. m =
medium. 1 = light. t = tall, and s = shor.

of the eight instances given below where members of the ¢lass € have been lubeled
with + and nonmembers with — (Class C might. for example. be the class of
CAWS).

Il (brown heavy tall no —)
12 (black heavy tall yes +)
13 (white light short yes =)
14 (white heavy tall yes +)
I5 (grey light short yes —)
[6 (black medium tall no —)
17 (grey heavy tall no.—)

I8 (black medium tall yes +)

The computations required to determine the gains are tabulated in Table 191,
For example, to compute the gain for the attribute color, we first compute

H =-3/8%log.3/8—5/8%*log,5/8=0955

Sec. 19.3 The LEX System 405

TABLE 19.1 SUMMARY OF COMPUTATIONS REQUIRED FOR THE GAIN VALUES,

Cik gt d',-. f‘ log fﬁ log B .l', Gj

k=1 brown 0 | 0 —_ — 0

2z black 2 3 23 -0.585 —1.585 0918

3 white | 2 112 -1.0 -1.0 1.0 0.361

4 grey 0 2 0 — — 0
k=1 tall k] [1.2 -1.0 -1.0 1.0

2 short 0 2 0 — - 0 0.205
k=1 heavy 2 -4 12 =1.0 =1.0 1.0

2 medium 1 2 112 -1.0 =1.0 1.0 0.205

3 light 0 2 0 — — 0
k=] yes 3 5 ¥s -0.737 =1.322 0971

2 no 0 3 0 -= — 0 0.348

The information content for each color value is then computed.
H(brown) =0 I
H(black) = —-2/3 *log; 2/3—1/3 *log, 1 /3 =0.918
H(white) = —-1/2*log, 1/ 2 — 1/2*log, 1/2=1.0
H(grey) = 0
EHeoo) =1/8*0+3/8*0918+ 1/4% 1.0+ 0=0.5%.
Therefore, the gain fér color is
G=H,~ H =0.955 — 0.594 = 0.361

The other gain values for horned, weight, and height are computed in a similar
manner.

19.3 THE LEX SYSTEM

LEX was developed during the early 1980s [Mitchell et al., 1983) to learn heuristic
rules for the solution of symbolic integration problems. The system is given about
40 integration operators which are expressed in the form of rewrite rules. Some of
the rules are shown in Figure 19.3a. Internal representations for some typical integrul
expressions are given in Figure 19.3b: -

Each of the operators has preconditions which must be satisfied before it can
be applied. For example. before OP6 can be applied, the general form of the integrand
must be the product of two real functions, that is udy = filx) * filx)dx. Each
operator also has associated with it the resultant states that can be produced by
that operator. For example, OP6 can have

406 : Examples of Other Inductive Learners Chap. 19

oP 1* flx)— fix) (fix) is any real function of x|
oP2 fr® flx)—=r [fix) dx (r is any real number)
oP3 [sin(x) dx — —cos(x) dx

OP4 [cosix) dx — sin(x)

OPs JUAx) + Filx)ldx — [f,{x) dx + [f(x) dx

OP6 Sudr — wr=[rdu {integration by parts)

Figure 19.3a Typical calculus operators.

JIsinlx) + cosix))dx (intl{ + sin cos) x))
Jeos?(x) dx (int{ 1 cos 2) x)}
Jx * e"dx (int{(® idi 1 e id)) x))

Figure 19.3b Typical calculus representations.

the result obtained from the opposite bindings. The choice of the result obtained
with « bound to f; and dv 1o f5 or of an incorrect or poor operator at a given stuge
in the solution will lead to failure or possibly to a lengthy solution. The learning
problem then is to create or refine heuristic rules which suggest when an operator
should be used. :

All heuristics in LEX are of the fo

If: The integrand pattern is P -
Then: Apply OPn with bindings B.

For example, a typical heuristic for OP6 would be
Jfix) * trig(x) dv — Apply OP6 with bindings « = fix). and v = trigly) dx

Part of the refinement-problem is the generalization or speciulization of the
heuristics o apply to as many consistent instances as possible. Generalization and
specialization are achieved in LEX through the use of a hierarchical deseription
tree. A segment of this tree is depicted in Figure 19.4. Thus. when a rule applies
to more than a single trig function such as to both sin and cos. the more general
ternr trig would be substituted in the rule. Likewise. when a rule is found which
upplies to both log and exp functions. the exp_log description would be used.

LEX 15 comprised of four major components as illustrated in Figure 19,5,
The Problem Generator selects and generates informative integration problems which
are submitted to the Problem Solver for solution. The Generator was included as
part of the system to provide well-ordered training examples and to make the system
a fully automatic leammer. The Problem Solver attempts to hind ‘a solution to this
problem using available heuristics and operators. (A solution has been found when
an vperator produces an expression not containing an integral.)

Sec. 19.3 The LEX System 407

. / \mm ;
B Nk
ATy

sin cos 1an In log

Figure 19.4 A segment of the LEX generalization tree grammar,

Qutput from the Problem Solver is some solution together with a complete
trace of the solution search. This is presented to the Critic unit for evaluation. The
Critic then analyzes the solution trace, comparing it to a least-cost path and passes
related positive or negative training instances to the Generalizer. A positive instance
is an operator which lies on the least-cost path, while a negative instance is one
lying off the path. Given these examples. the Generalizer modifies heuristics to
improve the selection of operators for best application during an attempted solution.

During the learning process each operator is given a version space of heuristic
rules associated with it. Rules in the version space give the conditions under ‘which
the operator applies as well as the domain of states that can be produced. The
version space is actually stored as two bounding rules, a rule G which gives the
most general conditions of application and a rule § which gives the most specific
conditions. Between these two bounds are implicitly contained all plausible versions
of the heuristic. As the system learns. the bound § is made more general to include
all positive instances presented by the Critic while the bound G is made rhore
specific to exclude all negative instances. When the two bounds become equal
(G = §), the correct heuristic has been learned.

T i i futi
Probiem raining problem Problem solution trace G
generator solver i
learned heuristics labeled training operators
Generalizer

Figure 19.5 LEX learning model.

408 _ Examples of Other Inductive Learners Chap. 19

" As an example of heuristic refinement for the operator OP6, suppose the Problem
Generator has submitted the following two integrals for solution.

J2x * sin{x) dx
J2x * cos(x) dx

Let the version space for the OP6 heuristic be initialized to the G and §
bounds illustrated in Figure 19.6. The functions fi(x) and fi(x) are any real-valued
functions of x, and § has been set to the first specific problem instance. {(Operators
between G and § are implicitly contained in the version space.)

In solving the first integral above, the Problem Solver finds that operator
OP6, integration by parts, is applicable. For this operator, two different bindings
are possible

(a) u=2x (b) u=sin(x)
dv = sin(x) dx dv = 2xdx
If the bindings given by a are used, OP6 produces the new expression
2x * (—cos(x)) — J2 * (—cos(x))dx

which can be further reduced using OP2, OP4 and other simplification operators to
give the correct solution 2

—2x * cos(x) + 2 * sin(x) + C

For this binding, the Critic will label this as a positive instance.
On the other hand, if the variable bindings given in b are used, OP6 produces
the more complex expression

X * sin(x) — [x* * cos(x) dx
Jriix)e f:tx]dx

[polyix) = fy(x)ax JFy(x) * transx)ax

/1N

[kx » sin{x)dx J 2x + triglx)dx

\ / Figure 19.6 Version space with bounds

_ [2x « sin{x)dx Gand S,

Sec. 19.4 The INDUCE System 409

In this case the Critic will label that instance as a negative one. This negative
instance will be used to adjust the version space to exclude this instance by 5pecnahzmg
the G integrand to either

poly(x) * fo(x) dx or to fi(x) * tran(x) dx
with contspoﬁding bindings

u= poly(x) and u= filx)
dv = fi(x) dx dv = tran(x) dx

both of which exclude the negative instance.

After the Problem Solver attempts to solve the second integral. f2x * cos(x) d.
the Critic labels the binding u = 2x, dv = cos(x)dx as positive. Howéver. this
example is not yet included in the version space. Consequently, § must be generalized
to include this instance. The bound § is generalized by finding the least general
function in the description hierarchy which includes both sin and cos (Figure 19.4).
This generalization produces the new version space

G: [fi(x) * tran(x) dx
S: J2x * trig(x) dx

Through repeated attempts at solving such well organized problems, LEX is
able to create and refine heuristics for each operator which designate when that
operator should be applied. Thus, the refined heuristics reduce the class of problems
to those producing acceptable solutions.

19.4 THE INDUCE SYSTEM

Several versions of the INDUCE system were developed beginning in the late 1970s
(Larson and Michalski, 1977, and Dietterich and Michalski, 1981). INDUCE is a
system which discovers similar patterns among positive examples of objects and
formulates generalized descriptions which characterize the class patterns. The descrip-
tion language and the internal representation used in the system are an extension
of first order predicate calculus. This is one of the unique features of INDUCE.
Before outlining how the system operates, we introduce a few new terms:

Selector. A relational statement defined by either a predicate or a function
together with the values it assumes. Typical selectors used to describe objects or
events in INDUCE are [shape = square V rectangular], [color = green], [size <=
4], [number_spots = 3 . . 8], [ontop(a b)]. and so on.

Complex. A logical product of selectors. A complex is a conjunctive descrip-
tion of some object (each selector in brackets is regarded as a conjunct). For example.
a plant leaf mi_gh_t be represented as

410 Examples of Other Inductive Learners Chap. 19

Leaf_1 [contains(Leaf_1,spots)|[color{Leal_1) = vellow]&
[shape(Leaf_1 = curled)(length(Leaf_1) = 4]{width(Leaf_1 = 2.3]

This expression states that a particular leaf contains spots, is yellow, curled at the
sides. is 4 cm in length and 2.3 ¢m wide.

Cover. A cover of a set of events £ is a set of complexes which describe
or contain all events in E. A cover of the set £, against the set E,, where E, and
E, are disjointed is a set of complexes which cover all events in E, and no event
in E,. For example, the complex [shape = circle] [color = red] [size < 5] covers
the set of all red circles of size less than 5 and none of the set of circles greater
than 5. ;

Characteristic description. A description of a class of objects which uses
descriptive facts that are true for all objects in the class and thus discriminates
between objects in the class and all other objects. A characteristic description of a
house is one which sets houses apart from all nonhouses,

Discriminant description. A description of a cluss given in the context of
a fixed set of other classes. A fruit tree that bears apples is a discriminant description
of an apple tree within the context of fruit trees. :

Given specifications for object descriptions and the type of inductive assertions
desired. INDUCE can discover and formulate general class descriptions of the objects.
We give here only a brief outline of the basic steps followed when inducing a
single-class description.

1. The user initially makes a determination of all descriptor types (attributes
or relations) needed to describe the objects. This requires a specification of type,
the domains, and if appropriate, the conditions of applicability. For example. in
describing living cells, number_of_tails would apply only to cells with objects
possessing tails. Next, each object is described using the given descriptors and the
class to which it belongs. In addition. general rules and descriptors which apply
for constructive induction are specified, and finally. the type of output description
desired, the characteristic and/or discriminant descriptors.

2. Given the above information, INDUCE breaks down the object descriptions
into new descriptors or complexes by dropping a single selector from each description:
it then places them in a list. Each of these new structures represents a generalization
of the object description (dropping condition rule). Clearly. some of these new
descriptors will cover negative objects as well. Consequently, the descriptors are
ordered giving highest rank to ones that cover the greatest number of positive objects
and the fewest number of negative objects.

3. New descriptions are also created by applying inference rules to the original
ones. The inference rules use constructive generalization, heuristics, and other infor-

Sec. 19.4 The INDUCE System T4

mation to create the new descriptors. These are then added to the ranked list at
their appropriate locations.

4, Each of the descriptions in the list is then tested for consistency and complete-
ness. A description is consistent if it does not cover any negative object. It is
complete if it covers all the (positive) objects. Those that pass the test are removed
from the ranked list and put on a solutions list. Incomplete but consistent descriptions
are put on a consistent list. Any descriptors remaining are specialized by appending
selectors from the original list. These modified descriptions are tested for coasistency
and completeness and the process is repeated until predefined list size limits are
exceeded or until all descriptors have been put on either the solutions or the consistent
list.

5. Each of the descriptors on the consistent list is made more generic using
generalizations such as climbing a generalization tree or closing an interval. The
generalizations are then ranked and pruned using a Lexicographic Evaluition Function
(LEF) and the best m of these are chosen as the description. The LEF uses criteria
established by the user such as maximum examples covered, simplest decriptions
(fewest terms), or user defined least cost. The final descriptions on the solutions
list are the induced (generalized) descriptions which cover all the training instances.
The following example will illustrate this process.

Assume the following three descriptions have been given for the object instances
displayed in Figure 19.7.

Jo,.0, [color(o,) = green]|shape(o,) = sphere][size(o,) = large]
[colorio,) = red][shape(o,) = box][size(o,) = large|
[supports(o,, 0,)]

305,04 [color(o,) = red][shape(o;) = cylinder][size(o,) = small]
[color(o,) = red][shape(o,) = cube][size(o,) = large]
[supports(ey.04)]

Jos.04 [color(os) = blue]|shape(os) = pyramid|[size(os) = small]
|color(o,) = red][shape(o,) = cylinder][size(o,) = large]

[supportsiog.os)]
0,
0, 0,
red red

Figure 19.7 Three positive examples for training.

412 Examples of Other Inductive Learners Chap. 19

Using the procedure outlined above, INDUCE would discover the generatized
description for the examples as **a red object supports another object,"* that is

3r,y [color(x) = red][supportsiv v)] '

19.5 LEARNING STRUCTURAL CONCEPTS

Winston's Arch system was dcveloped early in 1970 (Winston, 1975). This work
has been noted as one of the most influential projects in recent Al research and
has been cited as being responsible for stimulating renewed research in the area of
machine learning. ,

The Arch system learns concepts in the form of associative network representa-
tions (Figure 19.8) much like the cluster network representations of the previous
chapter. The Arch system, however, is not able to handle disjunctive descriptions.

Given positive and negative training examples like the ones in Figures 199
and 19.10, the system builds a generalized network description of an arch such as

(if (and (has_parts x (x; x5 x3))
(ako brick x,)
(ako brick x;)
(ako prism x;)
(supports x; x3)
(supports x, x3))
(isa x arch))

Each training example is presented as a blocks world line drawing which is
converted to a network representation. The first positive example is taken as the

sunports

paris

Figure 19.8 An arch and its network representation.

Sec. 19.6 Summary 413

{(arch(nodes(a b ¢) (archinodes{a b ¢) larch(nodes a b c)
{links(ako & brick) (links(ako a brick) (links(ako a brick)
(ako b brick) {ako b brick) {(ako b brick}
(ako ¢ brick) (ako c wedge) (ako ¢ prism)
(supportsac) + (supports a c) > (supports a c)
(supportsbc) (supports b ¢) | (supports b ¢)
{right_of b a) (right_of b a) (right_of b a) -
{left_of a b))} - (left_of a b)) (left _af a b))
Positive Example Positive Example . Generalization

Figure 19.9 Generalized description for two positive examples,

\“‘ (larch (nodes {a bc)
IR (links (ako a brick)

(ako b brick)

(ako ¢ prism)
- - (supports ac)

{supports b e}

{right_of b a)

(left_of a b)

{must_not_toueh a b))
Figure 19.10 A nonarch and the
Negative example — near miss Specialized exception resulting specialized representation.

initial concept description. The next example is then matched against this description
using a graph-matching algorithm. This produces a common subgraph and a list of
nodes and links which differ. The unmatched nodes and links are tagged with com-
ments which are used to determine how the current description should be modified.
If the new example is positive, the description is generalized (Figure 19.9) by
either dropping nodes or links or replacing them with more generalized ones obtained
from a hierarchical generalization tree. If the new example is a negative one, the
description is specialized to exclude that example (Figure 19.10).

The negative examples are called near misses, since they differ from a positive
example in only a single detail. Note the form of specialization used in Figure
19.10. This is an example of specialization by taking exception. The network represen-
tation for these exceptions are must and must not links to emphasize the fact that
an arch must not have these features.

19.6 SUMMARY

Examples of four different inductive learning paradigms were presented in this chapter.
In the first paradigm, the ID3 system, classifications were learned from a set of
positive examples only. The examples were described as attribute values of objects.
The classifications were learned in the form of discrimination tree. Once created,
the ID3 system used the tree to classify new unknown objects. Attributes are selected

414 Examples of Other Inductive Learners Chap. 19

on the basis of the information Gain expected. This results in a minimal tree size.
LEX, the second system described, learned heuristics to choose when certain operators
should be used in symbolic integration problems. One of the interesting features of
LEX is the use of a version space which bounds the set of plausible heuristics that
are applicable in a given problem state. LEX uses a syntactic form of bias, its
grammar, to limit the size of the hypothesis space. In LEX, generalizations are
found by climbing a hierarchical description tree.

The third system considered, INDUCE, formed generalized descriptions of a
class of objects in an extended form of predicate calculus. This system builds both
attribute and structural types of descriptions. One weakness of this system, however,
is the amount of processing required when creating descriptions by removing the
selectors in all possible ways. When the number of object descriptions becomes
large, the computation becomes excessive.

The fourth and final inductive learner described in this chapter was Winston's
Arch. This system builds associative net representations of structural concepts. One
of the unique aspects of this system is the use of near miss negative examples
which differ from positive examples in only a single feature. This simplifies the
learning process somewhat. This system is similar in some ways to the one described
in the previous chapter. It is not able to build disjunctive descriptions like that
system, however.

Similar features shared by all of these systems include the use of symbolic
representations, and the methods of generalization and specialization, The principal
differences among these paradigms are'the forms of symbolic representation schemes
used and the algorithms employed for generalizing and specializing,

EXERCISES

19.1. Derive the discrimination tree of Figure 19.2 using attributes arranged in the following
order: height, weight, homed, and color.

19.2. Prove that the entropy H is maximum when p, = p, forall i, j = 1.2, . . . | n,
where

H= _El Pt |°S:Pe
19.3. Plot the entropy as a function of p for the case n = 2; that 1s. plot H as p ranges
from 010 1. .

19.4. Describe how LEX generalizes from tan, cos. In. and log to transc (transcendental).

19.5. Use the concepts related to version space bounding to illustrate how a system can
learn the concept of a large circle from both positive and negative examples of
objects deseribed by the attributes shape (circle, square, triangle), size (small, medium,
large), and color (red, blue, green).

19.6. What is the difference between a standard disjunction and an internal disjunction’

19.7. What is the significance of a cover, and how does it relate to a concept?

Chap. 19 Exercises 415

19.8. What steps, if any, are taken by INDUCE to avoid overgeneralization?

19.9. Compare the methods of induction used by ID3, LEX and INDUCE. Which of the
methods i1s most efficient? Which is most robust? Which has greatest scope; that is,
which is most domain independent?

19.10. Compare Winston's Arch leaming system with the system developed by Iba (see
Chapter 18). Which is most versatile?

19.11. What is the inductive leap used in inductive leamning? Why is it potentially dangerous.
but still useful? At what point can it be taken?

SR

Analogical and
Explanation-Based
Learning

In this last chapter on autonomous acquisition, we investigate two of the most
promising approaches to artificial learning, analogical and explanation-based learning.
These approaches are both potenially powerful forms of leamning, yet to date, they
have received less attention than other muihods. We expect this will change because
of the great promise they both ofter. =

20.1 INTRODUCTION

Unlike inductive or simil :ity-based learning which . based on the observance of
a number of training excmples, analogica! and exr ination-based learning (EkL)
can be accomplished wit only a single example. In a logical learnin», one exan iple
in the form of a known solution or a past experienc * is often sufficicnt knowledge
for learning a new solut’on. In EBL, one positive Taining examole is all tha' is
needed to develop an ¢« Janation of a targe! concep . Of course, muitiple examples
may be used in beth of these learning types, but ir general, only a single exzmple

is required.
Analogies play .1 important role in our rea: sning processes. We frecuently
explain or justify on: - iomenon with @nother. A previous expericnce czr. often

serve as a framewcic . pattem for ©. ew, aualogous experience. We use the

416

Sec. 20.2 Analogical Reasoning and Learning 417

familiar experience as a guide in dealing with the new experience. And, since so
many of our acts are near repetitions of previous acts, analogical learning has gained
a prominant place in our learning processes.

EBL methods of leaming differ from other methods in that the learned knowledge
is valid knowledge. It is derived from a set of facts through a deductive reasoning
process and, therefore, is justified, consisrent knowledge. These EBL methods wil|
most likely find use in conjunction with other learning paradigms where it is important
to validate newly feamed knowledge. -

20.2 ANALOGICAL REASONING AND LEARNING

Analogies are similarities or likenesses between things otherwise different, Things
which are’similar in some respects tend to be similar in other respects. The things
or participants in analogies are unlimited. They may be physical objects, concepts,
problems and their solutions, plans, situations, episodes, and so forth,

Analogies play a dominant role in human reasoning and leaming processes.
Previously remembered experiences are transformed and extended to fit new unfamiliar
situations. The old experiences provide scenarios or explanations which tend to
match the new situation in some aspects and, therefore, offer the promise of suggesting
a solution to the new situation. The old and new situations need not be in the
same domain. Frequently, the two domains, the base and target domains, will be
entirely different, but similarities between the relatiornships of objects remain strong,,

. nucleus. In the second case, the flow behaviors are governed by the force of the
sources, the resistance of the medium, and other properties of the respective flow
in networks. _ ;

Analogical reasoning is probably the form of reasoning we are most dependent
upon for all of our decisions and actions. [is use’ spans such mundane tasks a.
finding one’s way home from work, to more complex tasks such as playing chess
or writing a technical paper. As suggested by Carbonell and Minton ([983). this
form of reasoning requires less cognitive effort than more formal types of reasoning,
which could explain why analogical reasoning is so prevelant in human thought
processes.

Analogies appear in different guises and at varied levels of abstraction. Simpler
analogies are the word-object or geometric ones often found in SAT or GRE tests.
They take the form :

A~B Lf (A is like B) or more generally
AB:CD (Aisto B as Cis.to D)

28-

418 Analogical and Explanation-Based Learning Chap. 20

where one of the components is missing. For example, the type of word-object
and geometrical analogies typically found in aptitude or GRE tests are given by

(2) (b)
house : hut (b) water : dam
tree 3

(c) (d)
green : go #0*
red : 0=*

) *#0

Examples of more abstract analogies are the planetary system or atomic model
noted above, the proof of a theorem based on a similar known proof, solving a
new problern from knowledge of an old familiar problem solving technique, learning
to play the card game of bridge from a knowledge of hearts, or producing a new
algorithm for a program using previously learned programming examples and con-
cepts.

Although applications of analogical methods have received less attention in
Al than other methods. some important results have been published including (Bur-
stein. 1986, Carbonell, 1983 and 1986, Greiner, 1988, Kling, 1971, McDermott,
1979, and Winston, 1980). Researchers in related fields have also made important
contributions. cognitive science (Gentner, 1983), and psychology (Rumeihart and
Norman, 1981). Several of the researchers in Al have produced working programs
hased on their models of the analogical process. We examine some of these models
in the following section. In the remainder of this section we investigate the analogical
reasoning process in some detail.

The Analogical Reasoning Process

Analogical reasoning was briefly described in Chapter 4 as a nonvalid fo.m of
inference. This follows from the fact that conclusions based on analogies are not
necessarily logical entailments of the source kndwledge. Analogy is a form of plausible
reasoning [t 1s based on previously tested knowledge that bears a strong resemblance
to the current situation.)

There are five essential steps mvolved in the analogical leamning process. A
central step is the mapping process which is illustrated in Figure 20.1 and described
below

Analogical Learning Process

1. Analogue recognition: A new piroblem or situation is encouniered and recognized
as being similar to a previously encountered situation

Sec. 20.2 - Analogical Reasoning and Learning 419

Base domain Target domain

Familiar situation New situation

Figure 20.1 The analogical mapping process,

2. Access and recall: The similarity of the new problem to previously experienced
ones serves as an index with which to access and recall one or more candidate
experiences (analogues).

3. Selection and mapping: Relevant parts of the recalled experiences are selected
for their similarities and mapped from the base to the target domain,

4. Extending the mapped experience: The newly mapped analogues are modified
and extended to fit the target domain situation.

5. Validation and generalization: The newly formulated solution is validated for
its applicability through some form of trial process (such as theorem provers
or simulation). If the validation is supported, a generalized solution is formed
which accounts for both the old and the new situations.

Implementation of the above process requires that several important issues be
addressed. These issues are recurrent ones that appeared several times in other
problems.

First, there is the question of representation. For analogical reasoning, it is
desirable that knowledge be stored in a form thiat is easily accessed, retrieved, and
evaluated for possible use as a candidate solution. This implies that self-contained.,
interrelated pieces of knowledge comprising a particular situation, episode, proof.
plan, concept, and other unit of knowledge should be indexed and stored for simulta-
neous recall. Object attributes and relationships should be bound together with identifi-
ers and other descriptive information for ease of use.

Second, it is desirable that an appropriate similarity measure be used to insurc
that only candidate analogues bearing a strong similarity to the new situation be
considered.

Third, it is important that the mapping process from base to target domain be
flexible enough to capture and import only the appropriate parts of the descriptions.
The’ mapping should be able to transform objects, attributes. and predicates into
corresponding ones which best meet the requirements of the target domain situation.
For a general analogical system, this mcan: that the transformation process should
be dynamically adaptable to map hetw: ifierent domains and at different levels
of abstraction.

420 Analogical and Explanation-Based Learning Chap. 20

L I Q, a, -
Iy a,
Known from Kirchhoff's law Find flow rate O,
Iys b+ 1 Qy =77
{al (b)

Figure 20.2 Analogical problem solving ¢xample.

_ Next, the newly created solution must be tested for its suitability. This test
can be as informial as a simulated solution trial in the target domain or as formal
as a deductive test of logical entailment.

Finally, having found an analogy and tested it successfully. the resultant episode
should be generalized if possible and then summarized, encoded, indexed and stored
for subsequent use in reasoning or learning. :

A simple example will help o illustrate this process. Suppose we are given
the problem of determining the flow rate of a fluid from a simple Y junction of
pipes (Figure 20.2b). We are asked to détermine the value of O given only knowledge
of the flow rates @, and Q,. A description of this unknown problem reminds us of
a similar known problem, that of finding the flow rate of electrical current in a
circuit junction. We recall the solution method to the electrical problem as being
that based on Kirchhoff's current flow law, namely, that the sum of the currents at
a junction is zero. We use this knowledge in an attempt to solve the hydraulic
flow problem using the same principles, that is, we map the electrical flow solution
10 the hydraulic flow problem domain. This requires that comresponding objects,
attributes and relations be suitably mapped from the electrical to the hydraulic domain.
We then test the conjectured solution in some way.

In the reminding process, we may alternatively be given a direct hint from a
teacher that the hydraulic flow problem is like the electrical flow.problem. Otherwise,
we must infer this likeness in some way and proceed with the conjecture that they
are alike, justifying the likeness on the basis of the consistency of nature or some
other means. _

Next. we examine some iepresentative examples of analogical learning systems.

Sec. 203 Examples of Analogical Learning Systems 421
20.3 EXAMPLES OF ANALOGICAL LEARNING SYSTEMS
‘Winston’s System

Patrick Winston (1980) developed programs that reason about relationships, motives,
and consequent actions that occur among people. Using relationships and’acts of
actors in one story (such as Macberh) the program was able to demonstrate that
analogous results occurred in different stories (such as Hamlet) when there were
similarities among the relationships and motives of the second group of characters.
The programs could also learn through the analogical reasoning process. For example,
when a teacher declared that voltage, current, and resistance relationships were
like those of water pressure, flow, and pipe resistance. the system was able to
learn basic results in electrical circuits and related laws such as Ohm's law (the
opposite of the leaming problem described above),

The. analogical mapping and learning process for this example is illustrated
in Figure 20.3. The items in the figure labeled as voltage-value-3, current-value-3,
and resistance-value-3 represent specific values of voltage, current, and resistance.
respectively.

The important features of Winston's system can be summarized as follow 5!

1. Knowledge representation: Winston's system used frame structures as part
of the Frame Representation Language (FRL) developed by Roberts and Goldstein
(1977). Slots within the frames were given special meanings, such as AKO, appears-
in, and the like. Individual frames were linked together in a network for easy access
to related items.

2. Recall of analogous situations: When presented with a current situation,
candidate analogues were retrieved from memory using an hierarchical indexing
scheme. This was accomplished by storing a situations (frame) name in the slots
of all object frames that appeared in the situation. For example, in the Cinderella
story, the prince is one of the central parts. Therefore, prince would be used as a
node in a hierarchical tree structure with sublinks

prince—AKO-man— AKO-person

and the Cinderella labei Cl would be stored in an a-ppears-in slot of the frames
helonging to the prince, the man, and the person. These slots were always searched
as part of the recall reminding process when looking for candidate analogues.

3. Similarity matching: In selecting the best of the known situations during
the reminding process described above, a similarity matching score is computed
for each of the recalled candidates. A score is corputed for all slot pairings between
two frames, and the pairing having the highest score is selected as the proper analogue.
The scoring takes into account the number of values that match between slots as

422 Analogical and Explanation-Based Learning ~ Chap. 20

Pipe law l
dep variable i “
K’ ressure pipe law farce
p pipe 1 voltage value.d
oportional vol *——J
indep variable 2 =
water.flow
_.- flow pipe law il l
flow
T currentvalued
multiplier variable multiplier electric.current ‘—J
\ water resistance
resistance pipe law t
resigtance
T resistance-value 3

Figure 20.3 Leaming electrical laws from hydraulics.

well as matching relationships found between like parts having causal relations as
noted in comment fields. .

4. Mapping base-to-target situations: The base-to-target analogue mapping pro-
cess used in this system depends on the similarity of parts between base and target
domains and role links that can be established between the two. For example, when
both base and target situations share the same domain, such as water-flow in pipes,
parts between the two are easily matched for equality. A specific pipe, pipel. is
matched with a general pipe, pipe#, specific water-flow, with general flow, and
so forth. The relationships from the general case are then mapped directly to the
specific case without change.

[n cases where base and target are different domains, the mapping is more
difficult as parts, in general, will differ. Before mapping is attempted, links are
established between corresponding parts. For example, if the two domains are water-
flow and electricity-flow (it is known the two are alike), determining the electrical

Sec. 20.3 Examples of Analogical Learning Systems 423

resistance in a circuit is achieved by mapping the pipe-water-flow laws to the electrical
domain. Before mapping, a link between the pressure and voltage laws and the
water-flow and current-flow laws is. established. The link is determined from a
hierarchical tree connecting the two parts, where voltage-2 is a specific voltage.

W
A

In all of the above components, matching plays a dominant role. First, -in
recall, matching is used to determine candidate situations. Second, matching is
used for scoring to select the best analogue. Finally, matching is used to determine
how parts and relationships are mapped from base to target domains.

Greiner's NLAG System

Russell Greiner (1988) developed an analogical learning system he called NLAG
using Stanford University's MRS logic development language. The system requires
three inputs and produces a single output. The inputs are an impoverished theory
(a theory lacking in knowledge with which to solve a given problem), an analogical
hint, and the given problem for solution. The output from the system is a solution
conjecture for the problem based on the analogical hint.

Using Greiner’s notation, the process can be described as follows. The analogical
inference process described here is represented by the operator |-. This operator
takes three inputs, !

1. A finite collection of consistent propositions (rules, facts, and the like) called
a theory (Th).

2. An analogical hint about the source and target analogues A and B respectively,
writttn A ~ B (A is fike B). Here A = {a,, . . . ,a)andB = {b,,
by} are sets of arbitrary formulae or knowledge related to some problem situa-
tions.

3. A problem to be solved in the target domain (target problem) denoted as PT.

The output from the system is a set of new propositions or conjectures ¢(4)
related to the set B that can be used to solve PT.
The above process can be summarized as follows:

Th, A ~ B |Fpr d(A)

424 " Analogical and Explanation-Based Learning Chap. 20

The NLAG system was designed to perform useful, analogical leamning. We
define the learning part here as the process of determining or creating one or more
formulas f which are not initially in the deductive closure of Th, that is, such that

Th b f holds,
{so f is not initially derivable from Th), and such that
Th b ~f,
that 1s, fis not I;;mmn to be false: w the augmented theory
Th' = Th U {f} 1s consistent.

We specialize this type of learming to be analogical learning by requiring
that the process use the operator f~ and have as inputs both the theory Th as well
as the hint A — B. Also, the new formulae f should be about the target analogue A

= d(A) where & is some set of arbitrary formulac). The source analogue B
should aiso satisty the analogy formulae. Thus, we must also have Th E $(B).

Finally,. we specialize the definition further to wseful analogical learning by
requiring that the conjectured formulae &(A) returned by the system be limited to
those formulae that are useful in the sense that the &, wgether with Th, can solve
PT. that is $

Th U {&(A)} EPT.

This definition of useful analogical learning is summarized in Figure 20.4
where we have named the conditions described in the above definirion as unknown,
consistent, common. and useful.

These notions are illustrated in terms of our earlier example for the hydraulics
or electrical flow problem (Figure 20.2). Thus. B here corresponds to the known
theory Th that given an electnical Y junction as in Figure 20.2a, then [y = [+ /..
The problem PT is to find @, the fluid flow rate m a similar Y junction of pipes
when @hand @, are known. The analogical hint, A B, is that the hydraulics
flow problem is like the electrical current flow problem. The useful formula needed
to solve the problem is of course @, = @, + Q> A more complex ‘example would,
of course, require more than a single formula

Since many analogies may satisfy the theory and the analogical hint. it is
necessary to restrict the analogies considered to those which are useful. For this.
NLAG uses heuristics to select only those formulae which are likely to be useful.

One heuristic used by the system is based on the idea that relationships in

Th, A — Bt pr lA)

where UNKNOWN: Th FalAa)
CONSISTENT: Th ~aiA)
COMMON: Th E &8 Figure 20.4 Summary of useful
USEFUL: Th U {&lA)} Fer anslogical inference

Sec. 203 Examples of Analogical Learning Systems 425

~ one domain should hold in other, similar domains (in two domains governed by
physical laws). In our example, this is the law related to zero flow rates into a
junction and the corresponding reusable zero-sum formula for general, physical
flows. Thus, only those uninstantiated abstract formulas found in the base analogue
would be permitied as conjectures in the target analogue solution. Furthermore,
this same heuristic requires that the selected formulae be atomic: formulac of the
form'fi(a,, @y, @) are permitted, whereas formulae containing multiple con-
junctive or disjunctive terms such as

fila,b) & fib.c) V fila,c.d.€)

are not permitted. These formulae must also satisfy the uscfulness condition (Figure
20.4). : ;
A heuristic which helps to further prune the abstract solutions described above
uses the target domain problem PT, to suggest a related query in the source domain.
The corresponding source domain query PS is then used in tum to select only
those formulae which are both abstractions (as selected above) and are also relevant.
For example, the target query PT" = *'Find the flowrate in the given pipe structure’’
is used to find the analogous source domain query P§ = *‘Find the current in the
given electrical structure.”” This query is then used to determine which facts are
used ito solve PS. These facts are then used as a guide in selecting facts (formulae)
for the target domain to solve PT. _

Other system heuristics require that formulae maust all come from th: same
domain, that more general abstractions be preferred over less general one:. and
that for a given abstraction, instances which require the fewest conjectures be chosen.
In general, these heuristics are all based on choosing only enough new information
about the target analogue to solve PT and then stop.

Carbonell's Systems

Carbonell developed two analogical systems for problem solving. each based on a
different perception of the analogical process (1983 and 1986). The first system
was based on what he termed transformational analogy and the second on derivational
analogy. The major differences between the two methods lie in the amount of details
remembered and stored for situations such as problem solution traces and the methods
used in the base-to-target domain transformational process.

Both methods used a knowledge representation and memory indexing and
recall_scheme similar to the memory organization packets or MOPs of Roger Schank
(Chapter 11). Both methods also essentially followed the five-step analogical learning
process outlined in the previous section, The main differences between the two
methods can be summarized as follows:

Transformational Analogy. Probiem solving with this approach is based
on the use of means-end analysis (MEA) as described in Chapter 9. Known problem
solutions -are indexed and stored for later reirieval. The solutions are stored as an

426 Analogical and Explanation-Based Learning Chap. 20

initial state, a goal state, and a sequence of actions (operators) which, when applied
to the initial and intermediate states, result in a transformation to the goal state.
When a uew problem is encountered, it is matched against potentially relevant
known ones using a suitable similarity measurement. The partial match producing
the highest similarity measure is transformed to satisfy the requirements of the
new problem. In finding a solution to the new problem using the known mapped
solution, it is often necs ssary to disturb some states to find operators which reduced
the current-to-goal state differences. With this method, the focus is on the sequence
of actions in a given solution, and not on the derivation process itself.

Derivational Analogy. This approach requires the storage of much more
information than the transformational approach. It is intended that the analogies
here be made more on the basis of the complete reasoning process than on the
sequence of solution states for the past problem solutions. In solving newly encoun-
tered problems, a plan is formulated using the complete solution trace of the analogue.
This plan includes a list of all subgoals derived, alternative solution paths generated
and those rejected, each step of the solution process and the decisions made at
cach step, pointers to knowledge which proved to be useful in the solution. and
detailed failure information when a solution cannot be found. This plan is modified
to fit the new problem domain. If it cannot produce a solution, other methods are
applied such as MEA.

Both of the systems developed by Carbonell are useful as analogical rescarch
tools. And both worked reasonably well in more than one domain.

20.4 T XPLANATION-BASED LEARNING

One of the most active areas of learning research to emerge during the early 19805
is explanation-based learning (also known as explanation-based generalization). This
s essentially a form of deductive generalization. It has been successfully demonstrated
for the general area of concept learning.

In EBL. four kinds of information must be known to the learner in advance.

. A formal statement of the goal concept to be learned,
- Al least one positive training example of the concept,
. Domain theory, which relates to the concept and the training example, an
. Criteria for concept operationality. ;

W N =

. The notion of operationality in item 4 requires some explanation. We say a
procedure is operational if, for some ament and task, the procedure can be applied
by the agent to solve the task. Thus. if the concept to be learned is one related to

- the recognition of pencils, operational criteria in this case would be given as a
structural definition which could serve to uniquely identify pencils. If the concept
is related to the function or use of pencils, the operational criteria would be given
as a functional definition. ' '

Sec. 204 Explanation-Based Learning 427

The objective of EBL is to formulate a generalized explanation of the goal
concept. The explanation should prove how the training example satisfies the concept
definition in terms of the domain theory.

The EBL method constructs an explanation of the concept based on the given
example in terms of the domain theory. The explanation is a deductive proof of
how the example satisfies the goal concept definition. Once an explanation has
been developed, it is generalized by regressing the goal concept through the explana-
tion structure. We illustrate these ideas with an example given by Mitchell. Keller.
and Kedar-Cabelli (1986).

The concept to be learned in this example is the conditions under which it is
safe to stack on~ item on top of another item. The training example is given as a
description of a pair of objects; one object is a box which is stacked on top of the
other object, an end table. The domain knowledge needed by the system consists
of some structural attributes and relationships between physical objects such as
volume, density, weight, lighter-than, fragile, and so on. The operational criteria
in this case requires that the concept definition be expressed in terms of the predicates
used 1o describe the example. The objective of the leaming process here is to develop
a generalization of the training example that is a sufficient concept definition for
the goal concept which satisfies the operationality criteria. These definitions are
summarized in Figure 20.5. .

In carrying out the EBL. method, the system must first construct an explanation
of how the training example satisfies the goal concept. This requires that it select
those attributés and relations which are relevant and which satisfy the operational
criteria, From the goal concept definition it is seen that it is safe-to-stack an object
x on an object y if and only if either y is not fragile or x is lighter than v. A
search through the domain theory for the predicate FRAGILE fails: therefore, a
scarch is then made for the predicate LIGHTER. This predicate is found in the
rule

WEIGHTIps.vy) & WEIGHTIp2w2) & LESS{wy . w)l — LIGHTER(p;.p2)

Matching objl to x (to p; in the above rule) and obj2 to ¥ (1o p; in the above rule)
we can form the following partial explanation for safe-to-stack.

SAFE-TO-STACKobj ' obj2i

|

LIGHTER[obj1.0by2]

|
' | |

WEIGHT (abj1.w,) LESS wy,w;) WEIGHT(obiZ,w;)

Continuing with the explanation process, we find rules relating the weights
with volume and density and to an endtable. After instantiation of these terms, we

428 Analogical and Explanation-Based Learning Chap. 20

Known:
Concept Definition:
Pairs of objects <x,y> are SAFE-TO-STACK when
SAFE-TO-STACK(x,y)+ ~FRAGILE(y) V LIGHTER(x.y).

Training Example:
ONiobj1,0bj2)
iSA(obj1,box)
ISA(obj2.endtable)
COLOR(obj1,red)
COLOR(obj2,blue)
VOLUME{obj1,1)
DENSITY(abj1,0.1)

Domain Theory:
VOLUME(p;.vy) & DENSITY(p,,d,) — WEIGHT(py.v,"d,}
WEIGHT(p,,w,) & WEIGHT(p2.ws) & LESS(wy,w;) —
LIGHTER(p,.p.)

ISAlp,.endtable) — WEIGHTIp, 5/ (i.e. a default)
LESS(0.1,5)

Operationality Criteria:
The learned concept should be expressed in terms of the same predicates used to deseribe
the exampie, i.e. COLOR, DENSITY, VOLUME, ete. or simple predicates from the domain
theory (e.g. LESS).

Determine:
A genera'ization of the training example that is a sufficient goal concept definition which
satisfies the aperationality criteria.

Figure 20.5 Safe-to stack example for EBL.

are led to the complete explanaton tree structure given below in which the root
terms are seen to satisfy the operationality criteria.

SAFE-TO-STACK|obj1,obj2)

LIGHTERIobj1,0bi2!

WEIGHT{ob)1,0.1) LESS(0.1,5) WEIGHT{obj2. 51

VOLUME (abj1,1) UENSlTWob}'I.& 1 ISA(obj1,endiabile)

Sec. 204 Explanation-Based Learning 429

The next step in developing the final target concept is to generalize the above
structure by regressing or back-propagating formulae through rules in the above
structure step by step, beginning with the top expression SAFE-TO-STACK and
regressing SAFE-TO-STACK(x,y) through the goal rule (the - FRAGILE disjunct
is omitted since it was not used). LIGHTER(p,.p;) — SAFE-TO-STACK(p,.p-)
yields the term LIGHTER(x,y) as a sufficient condition for inferring SAFE-TO-
STACK(x,y). In a similar way LIGHTER(x.y) is regressed back through the nexi
step to yield WEIGHT(x.w,) & WEIGHT(y,w;) & LESS(w,.w,). This expression
is then regressed through the final steps of the explanation structure to yield the
following generalized, operational, definition of the safe-to-stack concept.

VOLUME(x,v1)

& DENSITY(x,d1)

& LESS(v1*d1.5)

& ISAly.endtable) — SAFE-TO-STACKIx.y)

The complete regression process is summarized in Figure 20.6 where the under-
lined expressions are the results of the regression steps and the subslitutions are as
noted within the braces.

In summary, the process described above produces a justified generahization
of a single training example as a leamed concept. It does this in a two step process.
The first step creates an explanation that contains only relevent predicates. The
second step uses the explanation structure to, establish constraints on the predicate
values that are sufficient for the explanation to apply in general. This differs from
inductive learning in that a single training example is adequate to learn a valid
description of the concept. Of course there is a trade-off here. The EBL method
also requires appropriate domain knowledge as well as a definition of the target
concept.

Goal concept: SAFE-TO-STACK(x,y)

SAFE-TO-STACK(p,p;) 120y vigy:
LIGHTER(p,p;) ' o !
LIGHTER(x.y) A %%y VIR
! : !

WEIGHT(py) LESS (wy,wy) WEIGHT{p,.wy)
WEIGHTI:,W,I LESS{NI.UU;'I' WEIGHT ly.wy)
VOLUME(p,vy] DENSITY(pydy) ' ISA(p,. endtable)

VOLUME(xyv,) = DENSITY(xd,) LESS(v,*d,5) ISA

Figure 20.6 Generalization by regression through the explanation structure.

430 Analogical and Explanation-Based Learning Chap. 20

There is an apparent paradox in the EBL method in that it may appear that
no actual learning takes place since the system must be given a definition of the
very concept to be learned! The answer to this dilemma is that a broader, generalized,
and more useable definition is being leamed. With the EBL method, existing know!-
edge is being transformed to a more useful form. And, the learned concept applies
to a broader class than the supplied definition. This newly learned concept is a
valid definition since it has been logically justified through the explanation process.
The same claim cannot be made of other nondeductive learning techniques like
inductive or analogical learning.

The notion of operationality used in EBL systems should depend on the purpose
of the learning system. As such, it should be treated as a dynamic property. For
example, a robot may need to learn the concept of a pencil in order to recognize
pencils. In this case, operationality should be interpreted in terms of the structural
properties of the pencil. On the other hand, if the purpose of learning the pencil
concept relates to design, the robot would be better served with a functional definition
of a pencil. Keller (1988) discusses the operationality problem and its application
in a program called MetalLEX (a successor to LEX described in Chapter 19).

205 SUMMAPRY

We have described two of the more promising approaches to machine learning, the
analogical and explanation-based leamning paradigms. These methods, unlike similar
ity-based methods, are capable of creating new knowledge from a single training
example. Both methods offer great potential as autonomous learning methods.

Learning by analogy requires that similar, known experiences be availuble
for use in explaining or solving newly encountered experiences. The complete process
can be described in five steps: (1) a newly encountered situation serves as a reminder
of a known situation. (2) the most relevent of the reminded situations are accessed
and recalled, (3) the appropriate parts of the recalled analogues are mapped from
the base domain to the target domain. (4) the mapped situation or solution is extended
to fit the current problem, and (5) the extended solution is tested, generalized. and
stored for subsequent recall.

A number of analogical research learning systems have been developed. Four
representative systems have been described in this chapter.

Explanation-based leamning is a form of deductive learning where the learner
develops a logical explanation of how a positive training example defines a concept.
The explanation is developed using the example, the concept definition, and relevant
domain theory. A key aspect of the explahation is that it satisfy some operational
criteria. possibly through the use of only attributes and predicates that are used in
the domain theory and/or the example.

The EBL method is a two step process. In the first step. an explanation of
the concept is formulated using the training example and domain theory. In the
second, this explanation is generalized by regressing formulae step-by-step back

Chap. 20 Exercises 43

through rules in the explanation structure. The final concept, if successful, is a
definition which both satisfies the operationality criteria and is also a valid definition
of the concept.

20.1.
20.2.
20.3.

20.4.
20.5.

20.6.
20.7.
20.8.
2.
20.10.
20.11.

20.12.
20.13.

20.14.

EXERCISES

Describe two examples of analogical learning you have experienced recently.

Why is it that things similar in some ways tend to be similar in other ways?

Consult a good dictionary and determine the differences between the definitions of
analogies, metaphors, and similes. i :
Make up three new analogies like the examples given in Section 20.2.

Relate each of the five steps followed in analogical learning to the following example:
Riding a motorcycle is like riding a bicycle with an engine in it.

Compare the analogical system of Winston to that ‘of Greiner. ln what ways do they
differ?

What appears to be more important in mapping from base to target domain, object
attributes, object relationships, or both? Give examples to support your conclusions.
What are the main differences between Carbonell’s transformational and derivational
systems? X

Define operationality as it applics to explanation-based learning and give an sxample
of it as applied to some task.

Explain why each of the four kinds of information (concept definition, positive training
example, domain theory, and operational criteria) is needed in EBL.

If the end table in the Safe-to-Stack example had not been given a default weight
value, what additional steps would be required in the explanation to complete the
tree structure? :

What is the purpose of the regression process in EBL?

Work out a complete explanation for the concept safe to cross the street, This requires
domain theory about traffic lights, and traffic, a positive example of a safe crossing,
and operational criteria. i

The lcarning methods described in Part V have mostly been single paradigin methods.
yet we undoubtedly use combiped learning for much of our knowledge learning.
Describe how analogical learning could be combined with EBL as well as inductive
learning to provide a more comprehensive form of leaming.

