CHAPTER

ONE
INTRODUCTION TO PARALLEL PROCESSING

Basic concepts of parallel processing on high-performance computers are intro-
duced in this chapter. We will review the architectural evolution. examine various
forms of concurrent activities in modern computer systems, and assess advanced
applications of parallel processing computers. Parallel computer structures will be
characterized as pipelined computers, array processors, and multiprocessor systems.
Several new computing concepts, including data flow and VLSI approaches. will
be introduced. The material presented in this introductory chapter will provide an
overview of the field and pave the way to studying in subsequent chapters the
details of theories of parallel computing, machine architectures. system controls.
fast algorithms, and programming requirements.

1.1 EVOLUTION OF COMPUTER SYSTEMS

Over the past four decades the computer industry has experienced four generations
of development, physically marked by the rapid changing of building blocks from
relays and vacuum tubes (1940-1950s) 1o discrete diodes and transistors (1950~
1960s), to small- and medium-scale integrated (SSI/MSI) circuits (1960-1970s).
and to large- and very-large-scale integrated (LSI/V LSI) devices (1970s and
beyond). Increases in device speed and reliability and reductions in hardware
cost and physical size have greatly enhanced computer performance. However,
better devices are not the sole factor contributing to high performance. Ever since
the stored-program concept of von Neumann, the computer has been recogpgzed
as more than just a hardware organization problem. A modern computer system is
really a composite of such items as processors, memories. functional units, inter-
connection networks. compilers. operating systems, peripheral devices, communica-
tion channcls, and database banks.

To design a powerful and cost-effective computer system and to devise efficient
programs to solve a computational problem. one must understand the underlying

2 COMPUTIR ARUHITECTURLE AND PARALL L PROCTRSING

hardware and software system structures and the computing algorithms to be
implemented on the machine with some user-oriented programming languages.
These disciplines constitute the technical scope of computer architecture. C omputer
architecture is really a system concept integrating hardware, software. algorithms,
and languages to perform large computations. A good computer architect should
master all these disciplines. It is the revolutionary advances in integrated circuits
and system architecture that have contributed most to the significant improvement
of computer performance during the past 30 years. In this section, we review the
generationsof computer systems and indicate the general trends in the development
of high performance computers.

1.1.1 Generations of Computer Systems

The division of computer systems inta generations is determined by the device
technology. system architecture. processing mode, and languages used. We con-
sider each generation to have a time span of about 10 years. Adjacent generations
may overlap in several years as demonstrated in Figure 1.1. The long time span is
intended to cover both development and use of the machines in various parts of
tie world. We are currently in the fourth generation, while the fifth generation is
not materialized vet.

The first generation (1938-1953) The inroduction of the first electronic analog
computer tn 1938 and the first electronic digital computer, ENIAC (Electronic
Numerical Integrator and Computer), 1n 1946 marked the beginning of the first
generation of computers. Electromechanical relays were used as switching devices

Computer
generation
4
Second f-
First (- SESERSIET
1 | | e | | .
1940 1950 1960 1970 1980 1990 Year

Figure 1.1 The evolution of computer systems,

INTRODUCTION TO PARALLEL PROCESSING 3

in the 1940s, and vacuum tubes were used in the 1950s. These devices were inter-
connected by insulated wires. Hardware components were expensive then, which
forced the CPU structure to be bit-serial: arithmetic is done on a bit-by-bit
fixed-point basis, as in a ripple-carry addition which uses a single full adder and
one bit of carry flag.

Only binary-coded machine language was used in early computers, In 1950,
the first stored-program computer, EDVAC (Electronic Discrete Variable
Automatic Computer), was developed. This marked the beginning of the use of
system software 10 relieve the user’s burden in low-level programming. However,
it is not difficult 10 imagine that hardware costs predominated and software-
language features were rather primitive in the early computers. By 1952, IBM had
announced its 701 electronic calculator, The system used Williams' tube memory,
magnetic drums, and magnetic tape.

The second generation (1952-1963) Transistors were invented in 1948, The first
iransistorized digital computer, TRADIC, was built by Bell Laboratories in 1934,
Discrete transistors and diodes were the building blocks: 800 transistors were
used in TRADIC. Printed circuits appeared. By this time, coincident current
magnetic core memory was developed and subsequently appeared in many
machines. Assembly languages were used until the development of high-level
languages, Fortran (formula translation) in 1956 and Algol (algorithmic language)
in 1960,

In 1959, Sperry Rand built the Lare system and IBM started the Stretch
projeet. These were the first two computers attributable to architectural improve-
ment. The Larc had an independent 1/O processor which operated in parallel with
One or two processing units. Stretch featured instruction lookahead and error
correction, to be discussed in Section 1.2, The first IBM scientific, transistorized
computer, IBM 1620, became available in 1960. Cobol (common business oriented
language) was developed in 1959, Interchangeable disk packs were introduced
in 1963. Batch processing was popular, providing sequential execution of user
programs, one at a time until done.

The third generation (1962-1975) This generation was marked by the use of
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits as the
basic building blocks. Multilayered printed circuits were used. Core memory was
still used in CDC-6600 and other machines but, by 1968, many fast computers,
like CDC-7600, began to replace cdres with solid-state memories, High-level
languages were greatly enhanced with intelligent compilers during this period.

Multiprogramming was well developed to allow the simultaneous exccution of
many program segments interleaved with 1,0 operations. Many high-performance
computers, like IBM 360/91, 1lliac 1V, TI1-ASC, Cyber-175, STAR-100, and C.mmp.
and several vector processors were developed in the early seventies. Time-sharing
operating systems became available in (he late 1960s. Virtual memory was de-
veloped by using hierarchically structured memory sysiems,

4 COMPUTER ARCHITECTURE AND PARALLFL PROCESSING

The fourth generation (1972-present) The present generation computersemphasize
the use of large-scale integrated (LS1) circuits for both logic and memory sections.
High-density packaging has appeared. High-level languages arﬁ\:mg extended
to handle both scalar and vector data, like the extended Fortran in many vector
processors. Most operating systems are time-sharing. using virtual memories.
Vectorizing compilers have appeared in the second generation of vector machines,
like the Cray-1 (1976) and the Cyber-205 (1982). High-speed mainframes and
supers appear in multiprocessor systems, like the Univac 1100/80 (1976), Fujitsu
M 382 (1981), the IBM 370/168 M?. the IBM 3081 (1980). the Burroughs B-7800
(1978), and the Cray X-MP (1983). A high degree of pipelining and multiprocessing
is greatly emphasized in commercial supercomputers. A massively parallel
processor (MPP) was custom-desizned in 1982, This MPP, consisting of 16,384
bit-slice microprocessors, is under the control of one array controller for satellite
image processing.

The future Computers to be used in the 1990s may be the next generation. Very-
large-scale integrated (VLSI) chips will be used along with high-density modular
design. Multiprocessors like the 16 processors in the S-1 project at Lawrence
Livermore National Laboratory and in the Denelcor's HEP will be required.
Cray-2 is expected to have four processors, to be delivered in 1985. Mare than 1000
mega float-point operations per second (megaflops) are expected in these future
supercomputers. We will study major existing systems and discuss possible future
machines in subsequent chapters,

1.1.2 Trends Towards Parallel Processing

According to Sidney Fernbach: * Today’s large computers (mainframes) would have
been considered *supercomputers' 10 to 20 years ago. By the same roken, roday’s
supercomputers will be considered *state-of-the-art’ standard equipment 10 to 20
Years from now.” From an application point of view, the mainstream usage of
computers is experiencing a trend of four ascending levels of sophistication:

Data processing

Information processing

» Kiowledge processing

o Intelligence processing .

The relationships between data, information, knowledge, and intelligence are
demonstraied in Tigure 1.2. The data space is the largest, including numeric
number. in various formats, character symbols, and multidimensional measures.
Datao! “cts are considered mutually unrelated in the space. Huge amounts of data
are bein senerated daily in all walks of life.especially among the scientific, business,
and gov ament sectors. An information item is a collection of data objects that are
related by some syntactic structure or relation, Therefore, information itemsforma
subspace of the data space. Knowledge consists of information items plus some
semantic meanings. Thus knowledge items form a subspace of the information

s

INTRODUCTION TO PARALLEL PROCESSING §

——

Intelligence
processing

Knowledge
processing

Increasing
complexity and
sophistication
in processing

Increasing volumes
of raw material
10 be processed

Information
processing

Figure 1.2 The spaces of data, information, knowledge, and intelligence from the viewpoint of computer
processing.

space. Finally, intelligence is derived from a collection of knowledge items. The
intelligence space is represented by the innermost and highest triangle in the Venn
diagram,

Computer usage started with data processing, which is still a major task of
today’s computers. With more and more data structures developed, many users are
shifting to computer roles from pure data processing (mainly number crunching)
to information processing. Most of today’s computing is still confined within these
two processing levels. A high degree of parallelism has been found at these levels.
As the accumulated knowledge bases expanded rapidly in recent years, there grew
a strong demand to use computers for knowledge processing. For example, the
various expert computer systems listed in Table 1.1 are used for problem solving
in specific areas where they can reach a level of performance comparable to that of
human experts. It has been projected by some computer scientists that knowlgdge
processing will be the main thrust of computer usage in the 1990s.

Today’s computers can be made very knowlegeable but are far from being
intelligent. Intelligence is very difficult to create; its processing even more so.
Today's computers are very fast and obedient and have many reliable memory
cells to be qualified for data-information-knowledge processing. But none of the

O COMPUTER ARCHITECTURE AND PARALLEL PROKISSING

Table 1.1 Some existing expert computer systems for knowledge
processing

Svetem name Experine
AQ1 Diagnoss of plant diseases
Internist, casnet Medwa! consulung

Dendral Hypothes zing molecular structure from mass spectrograms

Dipmeter, advisor Onl exploraion

EL Analyring clectrical circuits
Macsyma Mathematcal manipulation
Prospector Mineral exploration

R1 Computer configuration
SPERIL Eanthguaie damage estimation

existing computers can be considered a really intelligent thinking system. Com-
puters are still unable 1o communicate with human beings in natural forms like
speech and written languages, pictures and images. documents, and illustrations.
Computers are [ar from being satisfactory in performing theorem proving, logical
in‘erence, and creative thinking, We are in an era which is promoting the use of
coputers not only for consentional data-information processing, but also toward
the building of workable machine knowledge-intelligence systems to advance
human civilization. Many computer scientists feel that the degree of parallelism
syploitable at the two highest processing levels should be higher than that at the
data-information processi=: avels.

From an operating sistem point of view, computer systems have improved
chronologically in four phases:

« Batch processing
« Multiprogramming
« Time sharing

+ Multiprocessing

In these four operating modes, the degree of paralielism increases sharply from
phase to phase. The general trend is to emphasize parallel processing of information.
In what [:'fows, the term information is used with an extended meaning to include
data, inf rmation, knowledge, and intelligence. We formally define paragllel
processing as follows:

Dcfinion Parallel processing is an efficient form of information processing
whic: emphasizes the exploitation of concurrent events in the computing
pre s, Concurrency implies parallelism, simulianeity, and pipelining.
Paz 'lel events may occur in multiple resources during the same time interval ;
simi - !taneous events may occur at the same time instant; and pipelined events
may oceur in overlapped time spans. These concurrent events are attainable
in a computer system at sarious processing levels. Parallel processing demands
concurrent execution of many programs in the computer. [t is in contrast to

INTRODUCTION TO PARALLEL PROCESSING T

sequential processing. It is a cost-effective means to improve system perform-
ance through concurrent activities in the computer.

The highest level of parallel processing is conducted among multiple jobs or
programs through multiprogramming, time sharing, and multiprocessing. This
level requires the development of parallel processable algorithms. The imple-
mentation of parallel algorithms depends on the efficient allocation of limited
hardware-software resources to multiple programs being used to solve a large
computation problem. The next highest level of parallel processing is conducted
among procedures or tasks (program segments) within the same program. This
involves the decomposition of a program into multiple tasks. The third level is to
exploit concurrency among multiple instructions. Data dependency analysis is
often performed to reveal parallelism among instructions. Vectorization may be
desired among scalar operations within DO loops. Finally, we may wish to have
faster and concurrent operations within each instruction. To sum up, parallel
processing can be challenged in four programmatic levels:

+ Job or program level
» Task or procedure level
« Interinstruction level
Intrainstruction level

The highest job level is ofien conducted algorithmically. The lowest intra-
instruction level is often implemented direct ly by hardware means. Hardware roles
increase from high to low levels. On the other hand, software implementations
increase from low to high levels. The trade-off between hardware and software
approaches to solve a problem is always a very controversial issue. As hardware
cost declines and software cost increases, more and more hardware methods are
replacing the conventional software approaches. The trend is also supported by
the increasing demand for a faster real-time, resource-sharing, and fault-tolerant
computing environment.

The above characteristics suggest that parallel processing is indeed a combined
field of studies, It requires a broad knowledge of and experience with all aspects of
algorithms, languages, software, hard ware, performance evaluation,and computing
alternatives. This book concentrates on parallel processing with centralized
computing facilities. Distributed processing on physically dispersed and loosely
coupled computer networks is beyond the scope of this book, though a high degree
of concurrency is often exploitable in distributed systems.

Parallel processing and distributed processing arecloscly related. In some cases,
we use certain distributed techniques 1o achieve parallelism. As data communica-
tions technology advances progressively, the distinction between paraliel and
distributed processing becomes smaller and smaller. In this extended sense, we
may view distributed processing as a form of parallel processing in a special
environment.

To achieve parallel processing requires the development of more capable and
cost-effective computer systems. This book emphasizes the design and application

B COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

of parallel processing computers, including various architectural configurations,
functional capabilities. operating systems, algorithmic and pmgrammmg re-
quirements, and performance limitations of parallel-structured compulers The
ultimate goal is to achieve high performance at lower cost in performing large-
scale scientific-engineering computing tasks in the various application areas to be
introduced in Section 1.5.

Most computer manufacturers started with the development of systems with
asingle central processor. called a uniprocessor system. We will reveal various means
to promote concurrency in uniprocessor systems in Section 1.2. Uniprocessor
systems have their limit in achieving high performance. The computing power ina
uniprocessor can be further upgraded by allowing the use of multiple processing
elements under one controller. On: can also extend the computer structure to
inciude multiple processors with sk :ed memory space and peripherals under the
control of one integrated operating system. Such a computer is called a muiti-
processor system.

As far as parallel processing ‘s concerned, the general architectural trend is
being shifted away from conventional uniprocessor systems to multiprocessor
sysiems or to an array of processing elements controlled by one uniprocesser.
In all cases, a high degree of pipelining is being incorporated into the various
sysiem levels. We will introduce these parallel computer structures in Section 1.3,
After learning the parallelism in both uniprocessor and multiprocessor systems. we
will then study several architectural classification schemes based on the machine
structures and operation modes,

1.2 PARALLELISM IN UNIPROCESSOR SYSTEMS

Mot geaeral-purpose uniprocessor systems have the same basic structure. In
this section, we will briefly review the architecture of uniprocessor systems. The
deselopment of parallelism in uniprocessors will then be introduced categorically.
It is assumed that readers have had at least one basic course in the past on con-
vestional computer organization. Therefore, we will provide only concise specifi-

cations of thie architectural features of two popular commercial computers. Parallel-
processing mochanisms and methods to balance subsystem bandwidths will then
be describici for a typical uniprocessor system. Details of these structures, mechan-
isms, and methods can be found in references suggested in the bibliographic notes.

1.2.1 Bas: Uniproeessor Architecture

A typical uniprocessor computer consists of three major components: the main
memory, ti = central processing unit (CPU), and the input-output (1/O) subsystem.
The architcctures of two commercially available uniprocessor computers are gnen
below to show the possible interconnection of structures among the three sub-
systems. We will exuraine major componeats in the CPU and in the 1/0 subsystem.

INTRODUCTION 10 PARALLEL PROCESSING 9

Console |

CPU 5
RO PC I
A= _
Floppy E . g Main
disk E ° g memory
2 RIS E (2* words
§ Registers g. of 32 bits
= Local memory £ cach)
e H
i

: H !
Synchronous backplane interconnect (SBI)
—t -

Unibus m Massbus /1—Tb——
adapter adapter \jﬂ%

Y 1/0 devices 170 devices
SBl1/O

device

Input-output subsystem

Figure 1.3 The system architecture of the Hlpt-;-mini VAX-11/780 uniprocessor system (Courtesy of
Digital Equipment Corporation),

Figure 1.3 shows the architectural components of the super minicomputer

VAX-11/780, manufactured by Digital Equipment Company. The CPU contains -

the master controller of the VAX system. There are sixteen 32-bit general-purpose
registers, one of which serves as the program counter (PC). There is also a special
CPU status register containing information about the current state of the processor
and of the program being executed. The CPU contains an arithmetic and logic unit
(ALU) with an optional floating-point accelerator, and some local cache memor ¥
with an optional diagnostic memory. The CPU can be intervened by the operator
through the console connected to a floppy disk.

The CPU, the main memory (2*? words of 32 bits each), and the 1/O sub-
systems are all connected to a common bus, the synchronous backplane inter-
connect (SBI), Through this bus, all I/O devices can communicate with each other,
with the CPU, or with the memory. Peripheral storage or 1/O devices can be con-
nected directly to the*SBI through the unibus and its controller (which can be
connected to PDP-11 series minicomputers), or through a massbus and its con-
troller.

Another representative commercial system is the mainframe computer IBM
System 370/Model 168 uniprocessor, shown in Figure 1.4. The CPU contains the

—)

i e St

—

10 COMPUTER ARCHITECTURE AND PARALTEL PROE ESSING

Main memory

Logical storage units

LsLo Lsu1 LSU2 LSU3

| l I I

Storage controller

Central processing unic
(CPU)

1/0 chanrnels

170 subsvsiem

Figure 1.4 The system architecture of the mainframe IBM System 370/ Model 168 uniprocessor computer
(Courtess of International Business Machines Corp.).

instruction decoding and execution units as well as a cache. Main memory is
divided into four units. referred to as logical storage units (LSU). that are four-way
interleaved. The storage controller provides multiport connections between the
CPU znd the four LSUs. Peripherals are connected to the system via high-speed
1'0 chanmels which operate asynchronously with the CPU. In Chapter 9, we will
show thai this uniprocessor can be modified to assume some multiprocessor
configurations,

ardw o and software means to promote parallelism in uniprocessor systems
are intredu o in the next three subsections. We begin with hardware approaches
which emp' 'size resource multiplicity and time overlapping. It is necessary to
balance the 1 vocessing rates of various subsystems in order to avoid bottlenecks
and to increase total system rthroughpur, which is the number of instructions (or
basic cemputations) performed per unit time. Finally, we study operating system
software approaches to achieve pzralle]l processing with better utilization of the

system résources.
&

INTRODUCTION 10O PARALLEL PROCESSING 11

1.2.2 Parallel Processing Mechanisms

A number of parallel processing mechanisms have been developed in uniprocessor
computers. We identify them in the following six categorics:

« Multiplicity of functional units

e Parallelism and pipelining within the CPU
e Overlapped CPU and 1/0 operations

Use of a hierarchical memory system
Balancing of subsystem bandwidths
Multiprogramming and time sharing

We will describe below the first four techniques and discuss the remaining two
approaches in the subsections to follow.

Multiplicity of functional units The early computer had only one arithmetic and
logic unit in its CPU. Furthermore, the ALU could only perform one function at a
time, a rather slow process for executing a long sequence of arithmetic logic
instructions. In practice, many of the functions of the ALU can be distributed to
multiple and specialized functional units which can operate in parallel. The
CDC-6600 (designed in 1964) has 10 functional units built into its CPU (Figure 1.5).
These 10 units are independent of each other and may operate simultaneously. A
scoreboard is used to keep track of the availability of the functional units and
registers being demanded. With 10 functional units and 24 registers available, the
instruction issue rate can be significantly increased.

Another good example of a multifunction uniprocessor is the IBM 360,91
(1968), which has two parallel execution units (E units): one for fixed-point

Peripheral “_] P
PEOCESEOEE . functional -
units Multiply
PPO Multiply
PP1 Divide
= PP2 Fixed add
PP3 2 Increment
12 : - i Increment
PP4 registers |
- PEripheral fugmege i - Central —
channels PPS storage oolean
PP& Shift
PP7 Branch
PP8 — i
[}
PP9 =14 Instruction [Sooribantd]
stack
170 subsystem Memory Central processor

Figure 1.5 The system architecture of the CDC-6600 computer (Courtesy of Control Data Corp.).

12 COMPUTER ARCHITEC TURE AND PARALLEL PROCESSING

arithmenie, and the other for Noaung-point arithmetic. Within the tloating-point
E unit are two functional units: one for foating-point add-subtract apd the other
for floating-point multiply-divide. IBM 360/91 is a highly pipelined. multifunction,
scientific uniprocessor. We will study 360/91 in detail in Chapter 3. Almost all
madern computers and attached processors are equipped with multiple functional
units to perform parallel or simultaneous arithmetic logic operations. This practice
of functional specialization and distribution can be extended to array processors
and multiprocessors. to be discussed in subsequent chapters.

Parallelism and pipelining within the CPU Parallel adders. using such techniques
as carryv-lookahead and carry-save, are now built into almost all ALUs. This is in
contrast to the bit-serial adders used in the first-generation machines, High-speed
multiplier recoding and convergence division are techniques for exploring
parallelism and the sharing of hardware resources for the functions of multiply
and divide (to be described in Section 3.2.2). The use of multiple functional units
is a form of parallelism with the CPL.

Various phases of instruction executions are now pipelined. including instruc-
tion fetch, decode, operand fetch. arithmetic logic execution. and store result. To
Cicilitate overlapped instruction executions through the pipe. instruction prefetch
and data bufTering techniques have been developed. Instruction and arithmetic
pipeline designs will be covered in Chapters 3and 4. Most commercial uniprocessor
systems are now pipelined in their CPL with a clock rate between 10 and 500 ns.

Overlapped CPU and 1/O operations [0 npcrulions can be performed simul-
aneously with the CPU computations by using separate ['O contrallers, channels,
or 10O processors. The direct-memary-access (DMA) channel can be used to
srovide direct information transter between the 1/O devices and the main memory.
“he DMA is conducted on a cvele-srealing basis, which is apparent to the CPU.
Furthermore. 1/O multiprocessing. such as ihe use of the 101 O processors in
TDC-6600 (Figure 1.5), can speed up data transfer between the CPU (or memory)
and the outside world. 1/O subsystems lor supporting parallel processing will be
‘aseribed in Secticn 2.5. Buck-end database machines can be usad to manage large
intabases stored on disks.

. 'se of hierarcl’ | memory system Usually, the CPU is about 1000 times faster+
than memory access. A hicrarchical memory system can be used to close up the
peed gap. Comiryior .1- mory hierarchy is conceptually illustrated in Figure 1.6,
he innermost o dis the register files directly addressable by ALU. Cache memory
n be used to + 1ve us a bufler between the CPU and the main memory. Block s
wcass of the mu i memory can be achieved through multiway interleaving across
paraliel memory modules (see Figure I.4). Virtual memory space can be established
with the use of ditlis and tape units a1 the outer levels.
Details of memory ,\'ubsystcme for both uniprocessor and multiprocessor
computers are given in Chapter 2. Various interleaved memory organizations are
iven in Section 3.3.4. Parallel memories for array processors are treated in

INTRODUCTION TO PARALLEL PROCISSING 13

ooTiTeseemeeean s sanaseg
H CPU 1
i i
P [[Remsen |
: !
L] g
: Cache

L

Main memory
(RAMSs or core)

Fixed-head disks, drum,
charge-coupled devices,
or magnetic bubble memory

Moving head disks

o

Magnetic tape units

Figure 1.6 The classical memory hicrarchy.

Section 6.2.4, along with the description of the Burroughs Scientific Processor
(1978). Multiprocessor memory and cache coherence problems will be treated in
Section 7.3, All these techniques are intended to broaden the memory bandwidth
to match that of the CPU.

1.2.3 Balancing of Subsystem Bandwidth

In general, the CPU is the fa&cst unit in a computer, with a processor cycle 1,
of tens of nanoscconds; the main memory has a cycle time t,, of hundreds of
nanoseconds: and the 1/O devices are the slowest with an average access time [,
ofa few milliseconds. It is thus observed that

>y 31, (L.1)

A e g Foy

-

7

14 COMPUTER ARCHITECTURE AND PARALLFL PROCESSING

For example, the IBM 370/168 has 1, - Sms disk) 1, = 320 ns, and 1, = 30 ns.
With these speed gaps between the subsystems, we need to match their processing
bandwidths in order to avoid a system bottleneck problem.

The bandwidth of a system is defined as the number of operations performed
per unit time. In the case of a main memory system, the memory bandwidth is
measured by the number of memory words that can be accessed (either fetch or
store) per unit time. Let W be the number of words delivered per memory cycler,,.
Then the maximum memory bandwidth B,, is equal to

B, = — (words s or bytes/s) {1.2)
m

Forexample, the IBM 3033 uniprocessor hasa processor cycle 7, = 57 ns. Eight
double words (8 bytes each) can be requested from an eight-way interleaved
memory system (with eight LSEs in Figure 1.7) per each memory cycle 7, =
456 ns. Thus, the maximum memory bandwidth of the 3033is B,, = 8 x 8bytes 436
ns = 140 megabytes s. Memory access conflicts may cause delayed access of some
of the processor requests. In practice the utilized memory bandwidth B¥ is usually
lower than B,,; that is, By, < 8B,,. A rough measure of B has been suggested as

Bl = Bi— (1.3)
JM
where M is the number of interleaved memory modules in the memory sistem
(to be described in Section 3.1.4) For the IBM 2033 uniprocessor. we thus have an
approximate By, = {40 | ¥ =495 megabytes s.

For external memory and | O devices. the concept of bandwidth 15 more
involved because of the sequential-aceess nature of magnetic disks and taps units,
Considering the latencies and rotanonal delays, the data transfer rate may vary.
In general, we refer 1o the average data transfer rate B, as the bandwidth of a disk
unit. A typical modern disk may have a data rate of 1 megabyte/s. With multiple
disk drives, the data rate can increase 10 10 megabytes/s, say for 10 drives per
channel controller. A modern magnetic tape unit has a data transfer rate around
1.5 megabytes/s. Other peripheral devices, like line printers, readers/punch. and
CRT terminals, are much slower due to mechanical motions.

The bandwiclih of a processor is measured as the maximum CPU computation
‘ate By, as in 160 megaflops for the Cray-1 and 12.3 million instructions per second
{MIPS) for IP°1 370,168, These are all peak values obtained by 1/1, = 1 12.5ns
ind 1/80ns ripectively, In practice. the utilized CPU rate is B) < B,. The
utilized CPU rate B} is based on measuring the number of output results (in words)

or second
B = F—_i (words s) (1.4)
o IJ“
where R, is the number of word results and 7, is the total CPU time required to
generate the R, resulis. For a machine with variable word length. the rate will
vary. For example. the CDC Cyber-205 has a peak CPU rate of 200 megafiops for

Eight
double
words
(64 byies)
or
sixteen

32-bit ‘1
words

arc
accessed
per
memaors
cvele

Ll

Byte

Byte

Byte

Byte

Byie

Hyll‘

56

63

INTRODUCTION TO PARALLEL PROCESSING 15

LSE o

LSE 7

Logical
storage elements

Figure 1.7 The interleaved memory structure in 1BV 3033 uniprocessor.

16 compy TER ARCHITECTURE AN FARALLVL I'ROCTSSING

32-bit results and only 100 megaflops for 64-bit results (one VECLOT Processor is
assumed).

Based on current technology (1983), the following relationships have been
observed between the bandwidths of the major subsystems in a high-performance
UNIProcessor:

B,=B,>B,>B> B, (1.5)

This implics that the main memory has the highest bandwidth, since it must be
updated by both the CPU and the 1O devices, as illustrated in Figure 1.8, Due to
the unbalanced speeds (Eg. 1.1). we need to match the processing power of the
three subsystems. Two major approaches are described below,

Bandwidth balancing between CPU and memory The speed gap between the CPU
and the main memory can be closed up by using fast cache memory between them.
The cache should have an access time . = 1,.A block of memory words is moved
from the main memory into the cache (such as 16 words block for the IBM 3033)
so that immediate instructions/data can be available most of the time from the
cache. The cache serves as a data/instruction buffer. Detailed descriptions of
cache memories will be given in Sections 2.4 and 7.3

Bandwidth balancing between memory and 1/O devices Input-output channels
with different speeds can be used between the slow 1O devices and the main
memory. These 1/O channels perform buffering and multiplexing functions to
transfer the data from multiple disks into the main memory by stealing cycles
from the CPU. Furthermore, intelligent disk controllers or database machines can
be used to filter out the irrelevant data just off the tracks of the disk. This filtering
will alleviate the 1/O channel saturation problem. The combined buffering, multi-
plexing, and filtering operations thus can provide a faster, more effective data
transfer rate, matching that of the memory,

In the ideal case, we wish to achieve a totally balanced system, in which the
entire memory bandwidth matches the bandwidth sum of the processor and /O
devices: that is,

B! + B, = B, (1.6)

where Bj = B, and B, = B,, are both maximized. Achieving this total balance
requires tremendous hardware and sofiware supports beyond any of the existing
systems,

2.4 Multiprogramming and Time Sharing

Even when there is only one CPU in a uniprocessor system, we can still achieve a
high degree of resource sharing among many user programs. We will briefly
review the concepts of multiprogramming and time sharing in this subsection. These
are software approaches 1o achicve coneurrency in a uniprocessor system. The

nv

s

sins1#dy

elep

pue
SUOTIINAISUL
10}
Kiowaw
ayoe)y

ndo>

1

n

(paneajsaiu])
-
]
L]

S3|NpoW K10

R

|

Tt

SRS o)

Llowaw wep

(o)

“aandwod sossadosdiun v oy wapsCsgns (O ff pun *iowdm f) g0 B swsfueEgade upuspeg piwpueg g sanih g

safeiog
Aiepuong

ERll®g |

(durxajdiijnu "
*unagng) *
o (Bunany)
w uyoews N
o asequiep
10 532|000
AP 23
slauueya 0 /1 wadiau) 1aa
e ke .
@
e o
wasis 0/l PoTeTe!
Ca) o7/l

IR conm g ARCHITECTURL AND FARALLEL PROCISSING

conventional batch processing is illustrated by the sequential execution in F gure
1.9a. We use the notation i.e.and o to represent the input, compute. and out pur
operations, respectively.

Mullipmgramming Within the same time interval. there may be multiple processes
active in g computer., competing for memory. 1/0. and CPU resources. We are
awire of the faet that some coamputer programs are CPU-bound (computation
intensive), and some are I O-bownd (input-output intensive). We can mix the
execution of various types of programs in the computer to balance bandwidihs
among the various functional units. The program nterleaving is intended to
promaote better resource wtilization through overlapping IO and CPU operations,

As illustrated in Figure 1.9b, whenever a process P, is tied up with 1/0 opera-
tions. the system scheduler can switch the CPU (o process Py, This allows the
simultaneous execution of several programs in the system. When P, is done,
the CPU can be switched to Py. Note the overlapped 170 and CPU wperations and
the CPU wait time are greatly reduced. This interleaving of CPU and 1.0 opera-
tions among several programs is called multiprogramming. The programs can be
mixed across the boundary of user (asks and system processes, i cither a mono-
programming or a multiprogramming environment. The total execution time s
reduced with multiprogramming. The processes P, P, may belong to the
same or different programs,

Time sharing M ultiprogramming on a uniprocessor is centered around the sharing
of the CPU by many programs. Sometimes a high-priority program may occupy
the CPU for 100 long to allow others 10 share. This problem can be overcome by
using a time-sharing operating system. The cogeept extends (rom multiprogram-
ming by assigning fixed or variable time slices to multiple programs. In other words,
equal opportunities are given to all programs competing for the use of the CPU.
This concept is illustrated in Figure 1.9¢. The execution time saved with time
sharing may he greater than with either bach or multiprogram processing modes,

The time-sharing use of the CPU b ultiple programs in a uniprocessor
computer creates the concept of rirfual processors. Time sharing is particularly
effective when applied 10 a computer system connecled to ‘many interactive ter-
minals. Each user at a terminal can interact with the computer on an instantaneous
basis. Each user thinks that he or she is the sole user of the system. because the
response is so fust (waiting time between time slices is not recognizable by humans),
Time sharing is indispensable to the development of real-time computer systems.

Time sharing was first developed for a uniprocessor system. The concept can
be extended 1o designing interactive time=sharing multiprocessor systems. Of
course, the time sharing on multiprogessors is much more complicated..'\\’e will
discuss the operating system design considerations for multiprocessor systems in
Chapters 7.8, and 9. The performance of either a uniprocessor or & multiprocessor
system depends heavily on the capability of the operating system. Alter all, the
major function of an operating system is 1o optimize the resource allocation and
nmanagement. which often leads 1o high performance.

*sandued sossdeadiun o oy Sugssadoad (o0l 2oom0e o) sopseoadde wasds Supesad ¢ asndyy

Amssasoad paseys-awig (o)
Voo L oae o = o e
aseyd 0/1 ﬁ 2
£ “ °f [mua.-l.:.s... |||||||||
H L]
ndino:e 1
smndwos 1>

ndui oy

— P3AR D
i
i
i
i
i
1
)
)
'
) . Sreloe s et p b] . oy 1
i [£ | E i et B, H 1,
_ aseyd 0 /1 Aﬂ ; m : .
H I J ' '
e e o .“ e 1. i i L
_ L " 2 ; i ”
” _. e - m d
‘ I i
! | : . i

P 1
i ' i b o
! m .
_ aseyd NdD | I — - S 1
L) L}
! H 5 L : i
[l L3 “
i W \
| H 1
: HET .
| " 1
e Suissasosd ymeq (o) ' :
']

(]
== T s 5
‘o 5 Fo ‘o 7, W b
‘e i o s

19

20 COMPUTER ARCHITEC1RE ANID PARALLLL PROCESSING
1.3 PARALLEL COMPUTER STRUCTURES

Parallel computers are those systems (hat emphasize parallel processing. The basic
architectural features of parallel computers are introduced below. We divide
parallel computers into three architectural configurations -

« Pipeline computers
* Array processors
* Multiprocessor systems

A pipeline computer performs overlapped computations to exploit temporal
parallelism. An array processor uses multiple synchronized arithmetic logic units
to achieve spatial parallelism, A multiprocessor system achieves asynchronous
parallelism th rough a set of interactjve processors with shared resources (memories,
database, etc.), These three parallel approaches to computer system design are not
mutually exclusive, In fact, most existing computers are now pipelined, and some
of them assume also an “array " ora “multiprocessor” structure. The fundamental
difference between an array processor and a multiprocessor system is that the
processing elements in an Array processor operate synchronously but processors
ina multiprocessor system may operate asynchronously.

New computing LOncepts to be introduced in this section include the data flow
computers and some V1.8 algorithmic processors. All these new approaches
demand extensive hardware to achiceve parallelism. The rapid progress in the VLSI
technology has made these new approaches possible.

1.3.1 Pipeline Computers

Normally, the process of executing an instruction in a digital computer involves
four major SLeps: instruction fetch (IF) from the main memory; instruction de-
coding (ID), identifying the operation to be performed; operand Jetch (OF), if
needed in the execution; and then execution (EX) of the decoded arithmetic logic
operation. In a nonpipelined computer, these four steps must be completed before
the next instruction can be issued. In a pipelined computer, successive instructions
are executed in an overlapped fashion, as illustrated in Figure 1.10. Four pipeline
stages, IF, ID, OF, and EX, are arranged into a linear cascade. The two space-
time diagrams show the difference between overlapped instruction execution and
sequentially nonoverlapped execution.

An instruction eyele consists of multiple pipeline cycles. A pipeline cycle can be
%! cqual to the delay of the slowest stage. The flow of data (input operands,
imtermediate results, and output results) from Stage o stage is triggered by a
cemmon clock of the pipeline. In other words. the operation of all stages is
synchronized under a common clock control. Interface latches are used between
adjacent segments 1o hold the intermediate results. For the nonpipelined (non-
overlapped) computer, it tukes four pipeline cycles to complete one instruction.
Onee a pipeline is filled up. an output result is produced from the pipeline on each

INTRODUCTION TO PARALLEL PROCESSING 21

5, 5, 8¢ s, (S1ages)

g i 1.5 ik & —’Lj_"\i_'
- - - J

(@) A pipelined processor

Pipeline
stages
op
EX hl&| 5% I eoo
OF L L4 ik TR
1D o Y as o
| 4| 4 L4 A soe
—
1 2t 53 4 Cie 8 9 Time
(pipeline
. cycles)

(b) Space-time diagram for a pipelined processor

Stages
y
o/p alp op
[[
EX I 7] - I co e
OF I| . "2 f] [
1D I 1 I et e
IF| £ 1 I I se e
1 2 k) 4 5 6 7 B 9 10 11 12 13 Time
(c) Space-time diagram for a nonpipelined processor

Figure 1.10 Basic concepts of pipelined pro and overlapped instruction execution.

L s

cycle. The instruction cycle has been effectively reduced to one-fourth of the
original cycle time by such overlapped execution.

Theoretically, a k-stage linear pipeline processor could be at most k times
faster. We will prove this in Chapter 3. However, due to memory conflicts, daia
dependency, branch and interrupts, this ideal specdup may not be achieved for
out-of-sequence computations. What has been described so far is the instruction
pipeline. For some CPU-bound instructions, the execution phase can be further
partitioned into a multiple-stage arithmetic logic pipeline, as for sophisticated

22 COMPUTER ARCHITIG TURE AND PARALLEL PROCESSING

floating-point operations. Some main issues in designing a pipeline computer
include job Sequencing. collision prevention, congestion control, branch handling,
reconfiguration, and hazard resolution, We will learn how 1o cope with each of
these problems later.

Due to the overlapped instruction and arithmetic execution, it s obvious that
pipeline muchines are better tuned (o perform the same operations repeatedly
through the pipcline. Whenever there is a change of operation. say from add 1o
miuldtiply, the arithmetic pipeline must be drained and reconfigured, which will
cause extra time delays, Therefore, pipeline computers are more attractive for
vector processing, where component operations may be repeated many times.
Most existing pipeline computers emphasize vector processing. We will study basic
VEClor processing requirements in Chapter 3. Various vectorization methods will
be presented in Chapter 4, after learning the structure and capability of com-
mercially available pipeline supercomputers and attached processors.

A typical pipeline computer is conceptually depicted in Figure L.11. This
architecture is very similar to several commercial machines like Cray-1 and VP-200,
Lo be deseribed in Chapter 4. Both scalar arithmetic pipelines and vector arithmetic
pipelines are provided. The instruction preprocessing unit is itself pipelined with
three stages shown. The OF stage consists of two independent stages, one for’
fetching scalar operands and the other for vector operand fetch, The scalar
registers are fewer in quantity than the vector registers because each vector
register implics a whole set of component registers, For example, a vector register
in Cray-1 contains 64 component registers, each of which is 64 bits wide. Fach
vector register in Cray-| requires 4096 flip-Aops. Both scalar and vector data

The scalar arithmetje pipelines differ from the vector arithmetic pipelines in struc-
ture and control strategies. Modern vector processors are usually augmented with a
powerful scalar processor (o handle a mixture of vector and scalar instructions.

Pipelined computers 1o be studied in Chapter 4 include the early vector
processors, Control Data’s Star-100 and Texas Instruments’ Advanced Scientific
Computer (ASC): the attached pipeline processors, AP-120B and FPS-164 by
Floating Point Systems, Datawest MATP, and IBM 3838; and recent vector
processors, Cray-1, Cyber-205, and Fujitsu VP-200, Vectorization methods to be
studied include resource reservation, pipeline chaining, vector segmentation,
vectorizing compiler design, and optimization of compilers for vector processing,
A performance evaluation model for pipeline processors will also be presented.

1.3.2 Array Computers -

An array processor is g synchronous parallel computer with multiple arithmetic
logic units, called processing elements (PE), that can operate in parallel in a lock-
step fashion. By replication of ALUs. one can achieve the spatial parallelism. The
PEs are synchronized 1o perform the same function at the sume time, An appro-
priste data-routing mechanism must be established among the PEs. A typical

sappqudes 101334 pue twjeds Gits sedwod augadid wiapous ¢ Jo sk wuoerng 1] anBly o

LML ERFIEY —_—v.—n..-‘:u...ru_ “uv._

EICp 10139

—
sautjadid 101094 |
_ “dA J
L]
P - s12151831
> = STIEETY
[7 -t
_ TaA f-

JOWS00IU 03034

sautjadid sejeng

L
—
[

s13351830
L=

Y

Fuissaooudasd uonandsul

IRTEY]
[TUREFY
(an
—Al10}—— paap
uolINIsU]
Y213y
iejeag

(1]
[TRIET]
uenanasu|

Y

S| fsowsw g g

< uiRp

0/1

lossasosd J1ejedg

wjup JejEag

24 COMPUTER ARCHETEC TURI AND PARALLEL PROCESSING

A 1/0
-
\4
Op e y I
Control 2 processing elements
: unit CFP: control processor
(scalar CM: control memory
processing) P processor
M M: memory
A
Ijatd --------
bus L
y PEI y])Ez ' PEA‘ i
‘ P | = - P |t P L
R Control
» (Array M
e processing)
1 A ,
r ¥ e o @ .

Inter-PE connection network
(data routing)

Figure 1.12 Functional structure of an SIMD array processor with concurrent scalar processing in the
cotarol unit,

array processor is depicted in Figure 1.12. Scalar and control-type instructions are
directly executed in the control unit (CU). Each PE consistsof aun ALU with registers
and a local memory. The PEs are interconnected by a data-routing network. The
interconnection pattern to be established for specific computation is under program
control from the CU. Vector instructions are broadcast to the PEs for distributed
execution over different component operands fetched directly from the local
memories. Instruction fetch (from local memories or from the control memory)
and decode is done by the control unit. The PFEs are passive devices without in-
struction decoding capabilitics.

INTRODUCTION 1O PARALLEL PROCESSING 24

Various interconnection structures for a set of PEs will be studied in Chapter 5.
Both recirculating networks and multistage networks will be covered. Associative
memory, which is content addressable, will also be treated there in the context of
parallel processing. Array processors designed with associative memories are
called associative processors. Parallel algorithms on array processors will be given
for matrix multiplication, merge sort, and fast Fourier transform (FFT). A per-
formance evaluation of the array processor will be presented, with emphasis on
resource optimization.

Modern array processors will be described in Chapter 6. Different array
processors may use different interconnection networks among the PEs. For
example, Illiac-IV uses a mesh-structured network and Burroughs Scientific
Processor (BSP) uses a crossbar network. In addition to lliac-1V and BSP, we will
study a bit-slice array processor called a massively parallel processor (MPP),
Array processors are much more difficult to program than pipeline machines. We
will study.various performance enhancement methods for array processors,
including the use of skewed memoiy allocation, language extensions for vector-
array processing, and possible future architectural improvements.

1.3.3 Multiprocessor Systems

Research and development of multiprocessor systems are aimed at improving
throughput, reliability, flexibility, and availability. A basic multiprocessor
organization is conceptually depicted in Figure 1.13. The system contains two or
more processors of approximately comparable capabilities. All processors share
access to common sets of memory modules, 1/O channels, and peripheral devices.
Most importantly, the entire system must be controlled by a single integrated
operating system providing interactions between processors and their programs
at various levels. Besides the shared memories and 1/0 devices, each processor
has its own local memory and private devices. Interprocessor communications
can be done through the shared memories or through an interrupt network.

Multiprocessor hardware system organization is determined primarily by
the interconnection structure to be used between the memories and processors
(and between memories and I/O channels, if needed). Three different interconnec-
tions have been practiced in the past:

2 £
s Time-shared common bus
« Crossbar switch network
« Multiport memories

These organizations and their possible extensions for muitiprocessor systems will
be described in detail in Chapter 7. Techniques for exploiting concurrency in
multiprocessors will be studied, including the development of some parallcl
language features and the possible detection of parallelism in user programs.
Special memory organization for multiprocessors will be treated in Section 7.3.
We will cover hierarchical virtual memory, cache structures, parallel memories,

‘wasds sossasosdninw gy ue jo uSsap [BuOLUNg €]°] aandyy

=
) £
Yiomiau
idnsaiu
> dossad0idiaiu) Jossadoud 1y
Aowsw [®20] ;57
Fnpow Kiowaw HEY LY
Kiowaw
paieyg
——i» _ “Inw
L]
(odinw Jo yi0miau "
fegssosn "sasmg) Uonduuoswm
oMU UoHISUUO) indino-induy
fi0 WalL-s0ss3301d13)u) : > N
-
-
LN N

SpuueYd 0 /]

26

INTRODUCTION TO PARALLEL PROCESSING 27

paging. and various memory management issues. Multiprocessor operating
systems will also be studied in Chapter 8. Important topics include protection
schemes, system deadlock resolution methods, interprocess communication
mechanisms, and various multiple processor scheduling strategies. Parallel
algorithms for multiprocessors will also be studied. Both synchronous and asyn-
chronous algorithms will be specified and evaluated.

We will present several exploratory and commercial multiprocessor systems in
Chapter 9, including the C.mmp system and Cm* system developed at Carnegie
Mellon University, the S-1 multiprocessor system developed at the Lawrence
Livermore National Laboratory, the IBM System 370/Mode! 168 MP system, the
[13M 3081, the Univac 1100 80 and 90 MP, the Tandem multprocessor, Denelcor
HEP system, and the Cray NX-MP and Cray-2 systems.

W hat we have discussed so far are centralized computing systems, in which all
hardware-software resources ire housed in the same computing center with
negligible communication delass among subsystems. The continuing decline of
computer Hardware and communication costs has made possible the decentraliza-
tion of hardware, controls, and databases in a computer system. Claims made for
distributed processing systems include fast response, high availability, graceful
degradation, resource sharing. high adaptability tochangesin work load, and better
expandability. Distributed computing is being widely practiced in banking
institutions. airline companies. government services, nationwide dealership, and
chain department stores. Computer networks and distributed processing are
bevond the scope of this book

1.3.4 Performance of Parallel Computers

The speedup that can be achieved by a parallel computer with n identical processors
worki 12 concurrently on a single problem is at most n times faster than a single
processor. In practice, the speedup is much less, since some processors are idlcat a
siven time because of conflicts over memory access or communication paths,
inefficient algorithms for exploiting the natural concurrency in the computing
problem, or many other reasons 1o be discussed in subsequenlchap‘lm Figure1.14
shows the various estimates of the actual speedup, ranging from a lower-bound
log, n to an upper-bound n/ln .

The lower-bound log, n is known as the Minsky's conjecture. Most commercial
multiprocessor systems have from n = 2to n = 4 processors. Exploratory research
multiprocessors have challenged n = 16 processors in the Cmmp and S-1 systems.
Using Minsky’s conjecture, only a speedup of 2 1o 4 can be expected from existing
multiprocessors with 4 to 16 processors. This sounds rather pessimistic. A more
aptimistic speedup estimate is upper bounded by n/ln n as derived below.

Consider a computing problem, which can be executed by a uniprocessor in
unit time, T; = 1. Let f; be the probability of assigning the same problem to i
processors working equally with an average load d, = 1/i per processor. Further-
more. assume equal probability of each operating mode using i processors, that is
f; = I'n, for n operating modes: i = 1, 2,”..,n. The average time required tosolve

28 coMpuUTER ARCHITECTURE AND PARALLEL PROCESSING

S (speedup)
4

1024 |-

512 -

32~

- -
;/ —
';':ﬂ‘ e — Iogzn (Minsky's conjecture)
- —
-
e

I L 1 1 1 I !
1 2 4 8 16 32 64 128 256 512 1024

Number of processors
Figure 1.14 Various estimates of the speedup of an n-processor system over a single processor.

the problem on an n-processor system is given below, where the summation repre-
sents n operating modes.

s 3
L] Z_"'
T, = Ef.—-d;='i;— (1.7)
i=

The average speedup S is obtained as the ratio of T, = 1 to T; that is,
»

diy n n
S=edast o 0 1.8
T 1d Islnn %
illi

For a given multiprocessor system with 2,4, 8, or 16 processors, the respective
average speedups (using Eq. 1.8) are 1.33,1.92, 3.08. and 6.93. The speedup obtained

INTRODUCTION TO PARALLEL PROCESSING 29

in Eq. 1.8 can be approximated by si/In i for large n. Forexample, § = 1000 1n 1000
= 144.72 for a system with n = 1000 processors:We have plotted the upper bound,
the lower bound, and the speedup using Eq. 1.8 in Figure 1.14.

The above analysis explains the reason why a typical commercial multi-
processor system consists of only two to four processors. Dr. John Worlton of the
United States Los Alamos Scientific Laboratory said once: “The designers of
supercomputers will do better at exploiting concurrency in the computing problems
if they use a small number of fast processors instead of a large number of slower
processors.” This conclusion coincides with the analytical prediction given in
Eq. 1.8 :

To measure the real performance of a computer system, one cannot ignore the
computation cost and the ease in programming. Comparing multiprocessor
systems with other computer structures, we conclude the following: Pipelined
uniprocessor systems are still dominating the commercial market in both business
and scientific applications. Pipelined computers cost less and their operating
systems are well developed to achieve better resource utilization and higher
performance. Array processors are mostly custom designed. For specific applica-
tions, they might be effective. The performance cost ratio of such special-purpose
machines might be low. Programming on an array processor is much more
difficult due to the rigid architecture. Multiprocessor systems are more flexible in
general-purpose applications. Pipelined multiprocessor systems represent state-
of-the-art design in parallel processing computers. Many of the computer manu-
facturers are taking this route in upgrading their existing systems,

1.3.5 Data Flow and New Concepts

New approaches to parallel processing are briefly outlined in this section. Details
of these approaches will be treated in Chapter 10.

Data flow computers The conventional von Neumann machines are called control
flow computers because instructions are executed sequentizlly as controlled by a
program counter. Sequential program execution is inherently slow. To exploit
maximal parallelism in a program, data flow computers were suggested in recent
years. The basic concept is to enable the execution of an instruction whenever its
_ required operands become available. Thus no program counters are necded in
data-driven .computations. Instruction initiation depends on data availability,
independent of the physical location of an instruction in the program. In other
words, instructions in a program are not ordered. The execution follows th» data
dependency constraints. Theoretically, maximal concurrency can be expioited in
such a data flow machine, constrained only by the hardware resource avai «hilitv,

Programs for data-driven computations can be represenicd by data fiow - pis,
An example data flow graph is given in Figure 1.15 for thé calculation of the [[low-
ing expression:

z=(x+))e2 (19)

M ocomerrin ARCHITECTURE AND PARALL L 1PROCHSSING

3 16

la} Data Mow program swaph

(h) Template implementation

Result packer Operation packet

Operation
unit{s)

———— Message link

——P Read-write access
o« | Instruction

quene —> Read access
DTS = S

Update Fetch

o e

Activity L
store

.

(¢') Basic data Now mechanism

Figuee 115 Data flow zraph, language, and architectural concept (Courtesy of Dennis 1EEE ¢ ‘vmputer,
1980},

INTRODUCTION TO PARALLEL PROCESSING 3]

Each instruction in a data flow compulter is
consists of the operator, operand receivers,

implemented as a template, which
and result destinations. Operands are

marked on the incoming arcs and results on the outgoing arcs. The template
implementation of the program graph in part a is shown in part b of Figure 1.15. The
firing rule of an instruction requires that all receivers be filled with operand values,

The basic mechanism for the execution of a
illustrated in Figure 1.15¢. Activity templates

data flow program s conceptually
are stored in the activity store, Fach

activity template has a unique address which is entered in the instruction queue

when the instruction is ready for execution,
handled by the ferch and update units, The

Instruction fetch and data access are
operation unit performs the specified

operation and generates the result to be delivered to each destination field in the
template. This basic structure can be extended to a data flow multiprocessor, to be

described in Chapter 10,

VLSI computing structures The rapid advent of very-large-scale integrated

(VLSI) technology

parallel algorithms directly in hardware,

has created a new architectural horizon in
The new high-resolution lithographic

implementing

technique has made possible the fabrication of 10% transistors in an NMOS chip.
It has been projected that by the late eighties it will be possible to fabricate VLSI

chips which contain more than 107

individual transistors. One such chip may

contain more functions than one of today’s large minicomputers. The VLS|
development phases and definitions are summarized in Table 1.2,

The use of VLS] technology

in_designing high-performance multiprocessors

and pipelined computing devices is currently under intensive investigation in both
industrial and university environments. The multiprocessors are expected 1o be
regularly interconnected. Pipelining makes it possible to overlap I/O with internal
computations. Pipelined multiprocessing is a distinct feature of most of the V1.SI

computing structures that have

been proposed in the literature. Most proposed

VLSl arithmetic devices are for vector and matrix type computations., Both globally

and image processing. We will st udy VLSI computing algorithms and architectures

in Chapter 10. -

Table 1.2 VLSI domain and definition phases

Domain Gate equivalent
coumt Line width Storage density Circuit complexity

Phase (>10* G;C)t (=25 uM) (>30 KB/CM?) (>16 KD)
VLSI-1 10°-10* G/C 24 uM 30-100 KB/CM? 16-64 KD
VLSI-2 10*-10* G,C 1-2 uM 100-300 KB CM?2 64256 KD
VLSI-3 10°<10° G/ 0.5-1 uM 300-1000 KB CM* 256-1024 KD
VLSI-4 =10"G/C <(0.5 uM > 1000 KB/CM* > 1024 KD

+G/C = gates/chip, uM = micron (107 * meter), KB = 1024 bits. and KD = 1024 devices (transis-

tors or diodes),

32 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING
1.4 ARCHITECTURAL CLASSIFICATION SCHEMES

Three computer architectural classification schemes are presented in this section,
Flynn's classification (1966) is based on the multiplicity of instruction streams and
data streams in a computer system. Feng's scheme (1972) is based on serial versus
parallel processing. Hdéndler's classificarion (1977) is determined by the degree of
parallelism and pipelining in various subsystem levels.

1.4.1 Multiplicity of Instruction-Data Streams

In general, digital computers may be classified into four categories. according
to the multiplicity of instruction and data streams. This scheme for classifying
computer organizations was introduced by Michael J. Flynn. The essential com-
puting process is the execution of a sequence of instructions on a set of data. The
term stream is used here to denote a sequence of items (instructions or data) as
executed or operated upon by a single processor. Instructions or data are defined
with respect to a referenced machine. An instruction stream is a sequence of in-
structions as executed by the machine; a dara stream is a sequence of data including
input, partial. or temporary results, called for by the instruction stream.

Computer organizations are characterized by the multiplicity of the hardware
provided to service the instruction and data streams. Listed below are Flynn's
four machine organizations:

o Single instruction stream-single data stream (SISD)

» Single instruction stream-multiple data stream (SIMD)

e Multiple instruction stream-single data stream (MISD)

e Multiple instruction stream-multiple data stream (MIMD)

These organizutional classes are illustrated by the block diagrams in Figure
1.16. The categoriz:tion depends on the multiplicity of simultaneous events in the
system components. Conceptually, only three types of system components are
needed in the illustration. Both instructions and data are fetched from the memory
aodules. Instructions are decoded by the conirel unit, which sends the decoded
struction strearr Lo the processor units for execution. Data streams flow between
the processors and the memory bidirectionally. Multiple memory modules may
'e used in the shared memory subsystem. Each instruction stream is generated by
an independent control unit. Multiple data streams originate from the subsystem
of shared memory modules. 1/O facilities are not shown in these simplified block
diagrams.

SISD computer organization This organization, shown in Figure 1.16a, represents
most serial computers available today. Instructions are executed sequentially but
may be overlapped in their execution stages (pipelining). Most SISD uniprocessor
systems are pipelined. An SISD computer may have more than one functional

unit in it, All the functional units are under the supervision of one centrol unit.
s

IS5

cu > FU |- =1 MM
(@) SISD compuier
| I}S' l
.])Ul [MMI]
D5, CL: contral unit
s = F'U} = MM, PU: processor unit
= CU MM: memory module
® ™ SM: shared memory
™ SM e IS instruction stream
i . DS: data stream
DS,
PU, | Fum
1S |
(5) SIMD computer
15, IS
= CU, = PU, DS
IS, Is,
cu, PU, _ SM
- L]
L L]
Is, 15 f cee
n
., . DS :
¥ Is, % s,
Y
(€) MISD computer
1S,
IS IS DS -
e)
15, IS, DS, s,
cu, > pu, < .
] 0] O .
o . SM @ 22
. . IS,
IM&‘!_‘I =

() NMIMD computer

Figure 1.16 Fiynn's classification of various computer organizations.

an

A4 COMPUTER ARCHITECTURE ASTY PARALLEL PROCESSING

SIMD computer organization This class corresponds to array processors. intro-
duced in Section 1.3.2. As lustrated in Figure 1.16h, there are multiple pro-
cessing elements supervised by the same control unit. All PEs réceive the same
instruction broadeast from the control unit but operate on different data sets from
distinet data streams. The shared memory subsystem may contain multiple
modules. We further divide SIMD machines mto word-slice versus bir-slice
modes, 1o be described in Section .42

MISD computer organization This organization is conceptually illustrated in
Figure 1.16¢. There are n processor units, cach receiving distinct instructions
operating over the same data stream and its derivatives. The results (output) of
one processor become the input (operands) of the next processor in the macropipe.
This structure has received much less attention and has been challenged as im-
practical by some computer architects. No real embodiment of this class exists.

MIMD computer organization Most multiprocessor svstems and multiple com-
puter systems can be classified in this category (Figure 1.16d). An intrinsic MIMD
computer implies interactions among the » processors because all memory streams
are derived from the same data space shared by all processors. If the » datwa
sireams were derived from Jisjointed subspaces of the shared memories, then we
would have the so-called multiple SISD (MSISD) operation, which is nothing
but a set of n independent SISD uniprocessor systems. An intrinsic MIMD

Table 1.3 Flynn's computer system classification

Computer class

Computes ssstem models (chapters whare the system is quoted or described)

SI1SD
(uses one
functional unit)
SISD
(with multiple
‘unctional units)

SIMD
(word-slice
processing)

SIMD
(bit-slice
processing)

“iMD
{loosely
coupled)

WVIMD
(tightly
coupled)

IBM 761 (1 1BM 1620 (1) TBM 7090 (1): PDP VAX11,780 (1.

IBM 36091 (3): IBM 370, 168UP (1): CDC 6600 (1): CDC Star-100 (4):
TI-ASC (21 FPS AP-120B (4); FPS-164 ¢4 1BM 3838 {4): Cray-1 (412
CDC Ciber-205 (4): Fuyitsu VP200 12): CDC-NASF (4): Fujitsu
FACOM-:230 73 (4).

HWhiac-1V 1&1: PEPE (1): BSP (6)

STARAN 1y MPP (6): DAP (1)

1BM 370 163 MP (9): Univac 1100:80 (91: Tandem, 16(9): IBM 3081/3084 (9.

C.m* (9

Burroughs D-825 (9): Commp (9): Cray-2(%)
S-1 191: Crav-X MP (9); Denelcor HEP (%)

INTRODUCTION TO PARALLEL PROCESSING 35

computer is tightly coupled if the degree of interactions among the processors is
high. Otherwise, we consider them loosely coupled. Most commercial MIMD
computers are loosely coupled.

In Table 1.3, we have listed several system models under each of the three
existing compulter organizations. Some of these machines will be studied in subse-
quent chapters. Readers should check the quoted chapters for details br references
related to the specific machines.

1.4.2 Serial Versus Parallel Processing

Tse-yun Feng has suggested the use of the degree of parallelism 1o classify various
computer architectures. The maximum number of binary digits (bits) that can be
processed within a unit time by a computer system is called the maximum parallel-
ism degree P. Let P, be the number of bits that can be processed within the ith
processor cycle (or the ith clock period). Consider T processor cycles indexed by
=1 2.....T The average parallelism degree, P, is defined by

T
LA
P, =" 1.10
a T (1.10)
In general, P, < P. Thus, we define the wtilization rate p of a computer system
within T cycles by

¥
2P,
i=1

T-P

P,
== (1.11)
If the computing power of the processor is fully utilized (or the parallelism is fully
exploited), then we have P, = P for all j and # = 1for 100 percent utilization. The
utilization rate depends on the application program being executed.

Figure 1.17 demonstrates the classification of computers by their maximum
parallelism degrees. The horizontal axis shows the word length n. The vertical axis
corresponds to the bit-slice length m. Both length measures are in terms of the
number of bits contained in a word or in a bit slice. A bit slice is a string of bits, one
from each of the words at the same vertical bit position. For example, the TI-ASC
has a word length of 64 and four arithmetic pipelines. Each pipe has eight pipeline
stages. Thus there are 8 x 4 = 32 bis per each bit slice in the four pipes. TI-ASC
is represented as (64, 32). The maximum parallelism degree P(C) of a given com-
puter system C is represented by the product of the word length w and the bit-slice
length m; that s, :

P(Cy=n-m (1.12)

The pair (n, m) corresponds to a point in the computer space shown by the co-
ordinate system in Figure 1.17. The P(C) is equal to the area of the rectangle
defined by the integers 7 and m.

Bit-siice iength (m)

36 COMPUTER ARCHITECTURE AND FARALLFL PROCESSING

MPP
16,384 | @ (1, 16384)

"

256 # (1, 256)

C. mmp
16} -- e(16, 16)

‘Minima PDP-11
L .”” .“6”

PEPE
®(32, 288)

{1BM 370/168

Iliac IV
Q154 62

i Cray-1

_m‘:lﬂ. 1

1 16

12

Word length (n)

-
-

e L.IT Feng's classification of eomputer systems in terms of parallelism exhibited by word length

1 bit-slice length.

There are four types of processing methods that can be seen from this diagram:

e Word-serial and bit-serial (WSBS)

o Word-parallzl and bit-serial (WPBS)
e Word-serial and bit-parallel (WSBP)
o Word-parallel and bit-parallel (WPBP)

WSBS has been called bit-serial processing because one bit (n =m = 1) is
nrocessed at a time, a rather slow process. This was done only in the first-generation

Fd

INTRODUCTION TO PARALLEL PROCESSING 37

Table 1.4 Feng's computer systems classification =

Computer model

Mode (manufacturer) Degree of parallelism (n, m)

WSPS The "MINIMA ™ (L 1)

n o= (unknown) =
m= |

WPRS STARAN (1 256)
n=| (Goodyear Acrospace)

m > | MPP (1, 16384)
(bit-slice processing) (Goodyear Acrospace)
DAP (1, 4096)
(ICL, England)

WSBP I1BM 370 168 UP (64, 1)
n>1 CDCAHEDO (60, 1)
m=1 Burrough 7700 (48, 1)
(word-shice processing) — VAX 11 780 (16/32, 1)

(DEC)

WPBHP Hhac 1V (64, 64)

n>| {Burroughs)
m >\ TI-ASC (64, 32)
(fully parallel processing) C.mmp (16, 16)
(CML)
S-1 (36, 16)
(LLXNL)

computers. WPBS (1 = |,m > 1) has been called bis (bit-slice) processing because
an m-bit slice is processed at a time. WSBP (n > 1, m = 1), asfound in most existing
computers, has been called word-slice processing because one word of n bits is
processed at a time. Finally, WPBP (n > 1, m > 1) is known as fully parallel pro-
cessing (or simply parallel processing, if no confusion exists), in which an array of
n-m bits is processed at one time, the fastest processing mode of the four. In
Table 1.4. we have listed a number of computer systems under each processing
mode. The system parameters n, m are also shown for each system. The bit-slice
processors, like STARAN, MPP, and DAP, all have long bit slices. 1lliac-1V and
PEPE are two word-slice array processors. Some of these systems will be de-
scribed in later chapters.

1.4.3 Parallelism Versus Pipelining

Wolfgang Hiindler has proposed a classification scheme for identifying the
parallelism degree and pipelining degree built into the hardware structures of a
computer system. He considers parallel-pipeline processing at three sWosystem
levels:

= Processor control unit (PCU)
« Arithmetic logic unit (ALL)
e Bit-level circuit (BLC)

IR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Tlie functions of PCU and ALU should be clear to us. Each PCU corresponds 1o
one processor or one CPU. The ALU is equivalent to the processing element (PE)
we specified for SIMD array processors. The BLC corresponds (b the combina-
tional logic circuitry needed to perform 1-bit operations in the ALU.

A computer system C can be characterized by a triple containing six inde-
pendent entities, as defined below:

T(C) =K x K.D x D'\W x W) (1.13)

where K = the number of processars (PCUs) within the computer

D = the number of ALUs (or PEs) under the control of one PCU

W = the word length of an ALU or of a PE

W = the number of pipeline stages in all ALUs or in a PE

D' = the number of ALUs that can be pipelined (pipeline chaining to be
described in Chapter 4)

K’ = the number of PCUs that ¢can be pipelined (macropipelining to be
described in Chapter 3)

Several real computer exampies are used to clarify the above parametric
descriptions. The Texas Instrument’s Advanced Scientific Computer (TI-ASC)
hus one controller controlling four arithmetic pipelines, each has 64-bit word
lengths and eight stages. Thus. we have

T(ASC) = (1 » 1.4 x 1.64 x 8> = (1.4, 64 x 8 (1.14)

Whenever the second entity, K. D. or 14", equals 1, we drop 1t. since pipelining of
one stage or of one unit is meaningless

Another example is the Control Data 6600, which has a CPU with an ALU
that has 10 specialized hardware functions, cach of a word length of 60 bits. Up to
1'! of these functions can be linked into 2 longer pipeline. Furthermore, the CDC-
6700 has 10 peripheral 1/O processors which can operate in parallel. Each [/O
processor has one ALU with a word length of 12 bits. Thus. we specify 6600 in
two parts, using the operator x to link them:

T(CDC 6600) = T(central processor) x T(I/0 processors)
= (1,1 x 10. 60> x <10, 1,12} (1.15)

Another sample system is the C.mmp multiprocessor system developed.at
Carnegie-Mellon University. This svstem can be used in a number of ways, as
istrated in Figure 1.18. The system consists of 16 PDP-11 minicomputers of a
rd length of 16 bits. Normally. it will operate in MIMD mode. as shown in
cure 1.18a. Theoretically, it can zlso operate in SIMD mode, provided all the
ncomputers are synchronized by ons master controller, as illustrated in Figure
|£b. Finally, the system can be rearranged to operate in MISD mode, as shown
“igure 1.18c. Based on these three operating modes, we specify C.mmp in three
ts. using the operator + to separate them.

T(Cmmp) = <16, 1,16, + {1 x 16, 1, 16> + (I, 16, 16) (1.16)
v,

FDP-11 processors

16 x 16 crosshar

4
(] s

(a) T(16, 1, 16) for MIMD mode

== (A separate host)

(Interconnection network)

Shared memories

Parallel connections
in the crossbar switch

(&) T(1, 16, 16) for SIMD mode
DS DS
. P | P *oe e

IS IS

IS: instruction stream
Ds: data stream

Crossbar swiich

(€) Tl x 16, 1, 16) for MISD mode

]

Figure LIS Operation modes in Cammp system (all double-arrowed paths are for both 1S und DS).

————

- ———

S0 COMPUTER ARCHITECTURE AND PARALLFL PROCESSING

Table 1.5 Hiindler's computer system classification

Computer System specification? .
madel T(C) (K x K, D% D, W WY
T(T1-ASC) ¢1,4,64 x 8)
TICDC-0600) ¢1, 1 % 10,60 x (10.1.12)
central 10
processor Processors
T(ltac 1V) {1, 64, 64)
TIMPP) <1, 16384, 13
T(C.mmp) 16,1, 16) + (1 ~ 16,1, 163 + <1, 16, 16>
T(PEPC) ¢1 x 3,288,321
T(IBM 360/91) 1,364 % (3~ 35D
N Pnme) (5, 1, 163
T(Cray-1) 1,12 % B 64 « (] ~ 14))
T(AP-120B) 1,23 x @~ 3

+ k. D.and W are omitied when equal 1o 1.
= For Cray-1, the pipelne chaining degree 152 varia ble witha
maximum value equal to 8.

In Table 1.5, we use Hindler's classification scheme to specify some computer
systems. It should be noted that many computers have variable numbers of stages
in diffierent functional units. Under such circumsiances. we indicate the range of
pipeline stages within parentheses,

1.5 PARALLEL PROCESSING APPLICATIONS

ast and efficient computers are in high demand in many scientific, engineering,
energy resource, medical, military. artificial intelligence, and basic research areas.
Large-scale compulations arc often performed in these application areas. Parallel
processing computers are needed to meet these demands. In this section, we
stroduce some representative applications of high-performance computers.
‘ithout using superpower computers, many of these challenges to advance
_.uman civilization could hardly be realized. To design a cost-effective supér-
computer, or to better utilize an existing parallel processing system, one must
<t identify the computational needs of important applicztions. With rapidly
“.anging application trends, we introduce only the major computations and leave
e readers to identify their own computational needs in solving each specific
roblem. :
Large-scale scientific problem solving involves three interactive disciplines:
seories, experiments, and compuiations, as shown in Figure 1.19. Theoretical
scientists develop mathematical models that computer engineers solve numerically;
is2 pumerical results may then sugzest new theories. Experimental science provides
s

INTRODUCTION TO PARALLEL PROCESSING 4]

Experimental
(physicists, engineers, e
chemists, biologists) .
Suggest and Generate data
test theory
Y
Model real processes,
Suggest and inrerpres SUBBES! experiments,
experiments analyze data,
control apparatus
A !
Theoretical Computational
(mathematicians, (computer scientists,
physicists, chemists, digital engineers,
logicians) computational physicisis)
Provide equations, Accurate calculations,
interpret results .. large-scale calculations,

suggest theory

Figure 1.19 Interaction among experiments, theories, and computations (0 solve large-scale scientific
problems (Courtesy of Rodrique et al., IEEE omputer, 1980).

data for computational science, and the latter can model processes that are hard
to approachin the laboratory. Using computer simulations has several advantages:

1. Computer simulations are far cheaper and faster than physical experiments.

2. Computers can solve a much wider range of problems than specific laboratory
equipments can.

3. Computational approaches are only limited by computer speed and memory
capacity, while physical experiments have many practical constraints,

Theoretical and experimental scientists are users of large program codes
provided by the computational scientist. The codes should yield accurate results
withminimal user effort. The computer scientists must apply advanced technologies
in numerical modeling, hardware engineering, and software development. In
what follows, we will review parallel processing applications in four categories.
according 1o their objectives, Within cach category, we will then identily several
representative application areas that have been challenged by scientists, engineers.
and programmers throughout the world.

42 COMPUTER ARCHITFCTURE AND PARALLEL PROCESSING

1.5.1 Predictive Modeling and Simulations

Multidimensional modeling of the atmosphere, the earth environment. outer
space, and the world economy has become a major concern of world scientists.
Predictive modeling is done through extensive computer simulation experiments,
which often involve large-scale computations to achieve the desired accuracy and
turnaround time. Such numerical modeling requires state-of-the-art computing
at speeds approaching 1000 million megaflops or beyond.

A. Numerical weather forecasting Weather and climate researchers will never run
out of their need for faster computers. Weather modeling is necessary for short-
range forecasts and for long-range hazard predictions, such as flood, drought. and
environmental pollutions. The weather analyst needs to solve general circulation
model equations with the computer, The atmospheric state is represented by the
surface pressure. the wind field, temperature. and the water vapor mixing ratio.
These state variables are governed by the Navier-Stokes fluid dynamics equations
in a spherical coordinate systein,

The computation is carried out on a three-dimensional grid that partitions the
atimosphere vertically into K levels and horizontally into M intervals of longitude
and N intervals of latitude (Figure 1.20). A fourth dimension is added as the
number P of time steps used jn the simulation. Using a grid with 270 miles on a
side, a 24-hour forecast wou)d need to perform about 100 billion data operations.
This forecast could be done on a 100 megafiops computer in about 100 minutes.

Altitude
T ~ Longiude

Lot iude

i Three-dimensional /
 Brids .

Atmosphere

o

Figure 1.20 The general circulation model for three-dimensional global atmosphere simulation used in
numerical weather forecasting and climate studies.

4

INTRUDUCTION TO PARALLEL PROCESSING 43

This 270-mile grid gives the forecast between New York and Washington, D.C,
but not for Philadelphia. about halfway between,

Increasing the forecast by halving the grid size in all four dimensions would
take the computation at least 16 times longer. The 100 megaflops machine, like a
Cray-1, weuld therefore take 24 hours to complete the 24-hour forecast. In other
words, to halve the grid size, giving the Philadelphia weather, requires acomputer 16
times more powerful (1.6 gigaflops) to finish the forecast in 100 minutes. Reliahle
long-range forecasts require an even finer grid for a lot more time steps, and thus
demand a much more powerful computer than the 1.6 gigaflops machine.

B. Oceanography and astrophysics Since oceans can store and transfer heat and
exchange it with the atmosphere, a good understanding of the oceans would help
in the following areas:

* Climate predictive analysis
« Fishery management

« Ocean resource exploration
» Coastal dynamics and tides

Oceanographic studies use a grid size on a smaller scale and 4 time variability on a
larger scale than those used for atmospheric studies. To do a complete simulation
of the Pacific Ocean with adequate resolution (1° grid) for 50 years would take
1000 hours on a Cyber-205 computer, =

The formation of the earth from planetesimals in the solar system can be
simulated with a high-speed computer, The dynamic range of astrophysic studies
may be from billions of Years to milliseconds. Interesting problems include the
physics of supernovae and the dynamics of galaxies. Three-dimensional, n-body
integrations ran in such a study, involving 10° particles moving sell-consistently
under Newtonian forces. The llliac-1V array processor was used in this study.

C. Socioeconomics and government use Large computers are in great demand in
the areas of econometrics, social engineering, government census, crime control,
and the modeling of the world economy for the year 2000, Nobel laureate W. W
Leontief (1980) has proposed an input-output model of the world economy which
performs large-scale matrix operations on a CDC scientific computer. This
United Nations-supported world economic simulation suggests how a system of
international economic relations that features a partial disarmament could narrow
the gap between the rich and the poor.

In the United States, the FBI uses large computers for crime control; the IRS
uscs a large number of fast mainframes for tax collection and auditing. There is no
doubt about the use of Supercomputers for national census and general public
opinion polls. It was estimated that 57 percent of the large-scale computers
manufactured in the United States have been used by the U.S, government in
the past.

L

44 COMPUTER ARCHITECTURE AND PARALLEL PROUESSING

1.5.2 Eugineering Design and Automation

Fast supercomputers have been in high demand for solving maay engineering
design problems, such as the finttc-clement analysis needed for structural designs
and wind tunnel experiments for acrodynamic studies. Industrial development also
demands the use of compulters to advance automation, artificial intelligence. and
remote sensing of earth resources.

A. Finite-element analysis The design of dams, bridges, ships, supersonic jets,
high buildings. and space vehicles requires the resolution of a large system of
algebraic equations or partial differential equations. Conventional approaches
using predeveloped software packages (written in sequential codes) require
intolerable turnaround times, Many researchers and engineers have attempited to
build more efficient computers to perform finite-element analysis or to seek finite
difference solutions. This would imply a fundamental change of engineering
design tools and higher productivity in the future.

Computational engineers have developed finite-element code for the dynamic
analysis of structures. High-order finite elements are used to describe the spatial
tiehavior. The temporal behavior can be approximated by using a central difference
explicit scheme. Vectorization procedures can be used to generate the element
stiffness and mass matrices, 10 decompose the global matrices, and to multiply
the global stiffness matrix by a vector. The CDC Star-100 and Cyber-205 have
been used to implement these computations for structural analysis.

3. Computational aerodynamics Large-scale computers have made significant
contributions in providing new technological capabilities and economies in
pressing ahead with aircraft and spacecraft lift and turbulence studies. NASA's
Ames Research Center is seeking to supplement its 1lliac-IV to do three-dimen-
sional simulations of wind tunnel tests at gigaflop speeds. The fundamental
limitations of wind tunnels and of numerical flow simulations are compared in
Table 1.6, Every wind tunnel is limited by the *scale effects™ attributed to the

Table 1.6 Fundamental limitations of wind
tunnel experiment ond of numerical flow simu-
latioas .

Wind tunnel experiment MNumerical Aow simulation

Moo size Processor speed
Wi clocity

D v . Memory capacity
Tes rrature

Wi iterference

Aw: vlastic distortions

At ssphere

Stream uniformity

-

INTRODUCTION TO PARALLEL PROCESSING 45

listed factors. In contrast, computer flow simulations have none of these physical
constraints, but have their own: computational speed and memory capacity.

Two gigaflops supercomputers, known as the Numerical Aerodvnamic Simu-
lation Facilities (NASF), have been proposed by the Burroughs Corporation and
by the Control Data Corporation. These arc specialized * Navier-Stokes " machines,
capable of simulating complete aircraft design for both the U.S.-government
and commercial aircraft companics. We will study the proposed designs, along
with their predecessor vector processors, in Chapters 4 and 6.

C. Artificial intelligence and automation Intelligent 1/O interfaces are being
demanded for future supercomputers that must directly communicate with
human beings in images, speech, and natural languages. Listed below are intelli-
gence functions which demand parallel processing:

» Image processing

» Pattern recognition

« Computer vision

« Speech understanding

Machine inference
CAD/CAM/CAI/OA
Intelligent robotics

« Expert computer systems
Knowledge engineering .

Special computer architectures have been developed or proposed for some
of the above machine intelligence applications. Recently, Japan launched a
national project to develop the fifth-generation computers to be used in the 1990s.
The Japanese envision the new generation computers to possess highly intelligent
input-output subsystems, capable of most of the above functions. CAD/CAM/CAI
stands for computer-aided design, computer-aided manufacturing, and computer-
assisted instruction, respectively. OA stands for office automation.

The projected computing power of the system being developed is 100 mega
to 1 giga logical inferences per second (LIPS). The time to execule one logical
inference equals that of executing 100 to 1000 machine instructions. Therefore,
the machine should be able to execute 10,000 to 1 mega million instructions per
second (MIPS). Such an ultrapower computer is expected to process knowledge-
based information and to serve as the multipurpose expert systems demanded by
applicationers in the future.

D. Remote sensing applications Computer analysis of remotely sensed '.wia
satellite, for example) carth-resource data has many potential applications in
agriculture, lorestry, geology, and water resourees. Explosive amounts of pictorial
information need to be processed in this area. For example. a single frame of
LANDSAT imagery contains 30 million bytes: it takes 13 such images to cover the

R LI

40 COMPUTER ARCHITECTURE AND PARAL LI PROCISSING

Geographw reference,
calibration dara, elc.

l .

S On-board
preprovessin
Earth
Data storage, Data storage
/ :
L iprepinesisii Data Information
analvsis consumption|

i T i

Human parricipation
with ancillary data

Figure 1.21 Computer analysis of remorely sensed earth resource data (Courtesy of Swain, McGraw-
Hill lngernational. 1978).

state of Alabama. What is even more demanding is the production of a complete
new sct of imageries for the entire earth surface every 15 days (Figure 1.21).

. NASA has ordered a mussirely parallel processor (MPP) for earth resources
satellile image processing. This MPP has a peak computing rate of 6 billion 8-bit
integer ~perations per second. It can almost provide real-time, time-varying scene
analysis, for example, where the sensor interacts with the scene. We will stud_‘,
MPP in detail in Chapter 6.

1.5.3 ' uecrgy Resources Exploration

Energy aflects the progress of the entire economy on a global basis. Computers
can pl.y an important role in the discovery of oil and gas and the management of
their rzcovery. in the development of workable plasma fusion cnergy, and in
ensuring nuclear reactor safety. Using computers in the energy area results in less

production costs and higher safety measures.
s

INTRODUCTION TU PARALLEL PROCESSING 47

A. Seismic exploration Many oil companies are investing in the use of attached
array processors or vector supercomputers for seismic data processing, which
accounts for about 10 percent of the oil finding costs. Seismic exploration sets off
a sonic wave by explosive or by jamming a heavy hydraulic ram into the ground
and vibrating it in a computer-controlled pattern. A few thousand phones scattered
about the spot are used to pick up the echos. The echo data are used to draw
two-dimensional cross sections that display the geometrical underground strata.
Reconstruction techniques are being used to identify the types of strata that may
bear oil. Such seismic exploration may save the drilling of many dry holes.

A typical field record for the response of the carth to one sonic input has 3000
different time values, cach at about 48 different locations. This produces about 2to 3
million floating-point numbers per kilometer along a survey line. In 1979 alone.
10'3 bits of seismic data were processed. One geophysical company in Houston
has about 2 million magnetic reels of seismic data in inventory and 300,000 reels
awaiting processing. The demand of cost-effective computers for seismic signal
processing Is increasing sharply.

B. Reservoir modeling Supercompulters are being used to perform three-dimen-
sional modeling of oil fields. The reservoir problem is solved by using the finite
difference method on the three-dimensional representation of the field. Geologic
core samples are examined to project forward into time the field's expected
performance. Presently at least 1000 flops needs to be processed per data point in
the three-dimensional mode! of an oil field. This means a superpower computer
must be employed to achizve an accurate performance 2valuation in a reasonable
time period for a large field.

Due to the importance of the Prudhoe Bay oil field, SOHIO Petroleum
Company has constructed a numerical simulator for the whole field on a vector
computer (Cyber-203)..The field is about 168 meters thick and has been subdivided
into 12 layers. With an aerial grid no finer than 160 acres. a model of 16,421 active
subsurface blocks can cover 1000 oil wells. The finite difference equations for the
reservoir model are solved iteratively on the Cyber-203. A simulated year requires
33 minutes of computer time. The success in this large modeling is attributed to
both high speed and the large main memory built into a supercomputer.

. C. Plasma fusion power Nuclear fusion researchers are pushing to use a computer
100 times more powerful than any existing one to model the plasma dynamics in
the proposed Tokamak fusion power generator. Magnetic fusion research pro-
grams are being aided by veclor supercomputers at the Lawrence Livermore
National Laboratory and at Princeton’s Plasma Physics Laboratory. The potential
for magnetic fusion to provide an alternate source of energy has become closer
as a result of the cooperative effort of the experimental program with the com-
putational simulation program. '

Synthetic nuclear fusion requires the heating of plasma to a temperature of
100 million degrees. This is a very costlv effort. The high-temperature plasma,
consisting of positively charged ions and negatively charged electrons, must be

48 comprr TER ARCHITEC [TURE AND PARALLIL PROCESSING

magnetically confined, The United States National Magnetic Fusion Encrgy
Computer Center is currently using two Cray-1's and one CDC-7600 1o aid the
controlled plasma experiments. Supercomputers have become an indispensable
tool in magnetic fusion energy exploration.

D. Nuclear reactor safety Nuclear reactor design and safety control can both be
aided by computer simulation studies. These studies attempt to provide for;

+ On-line analysis of reactor conditions

» Automatic control for normal and abnormal operations

* Simulation of operator training

* Quick assessment of potential accident mitigation procedures

The importance lies in the above operations being donc in real time. For
light reactor sa fety analysis, a TRAC code has been developed to simulate the non-
equilibrium. nonhomogeneous flow of high-temperature water and steam. Another
code, Simmer 11, has been developed to analyze core melting in a fast breeder
reactor. Only supercomputers can make these calculations possible in real time.

1.5.4 Medical, Military, and Basic Rescarch

In the medical area, fast computers are needed in computer-assisted tomography,
artificial heart design, liver diagnosis, brain damage estimation, and genetic
engineering studies, Military defense needs to use Supercomputers for weapon
design, effects simulation, and other electronic warfare. Almost all basic research
arcas demand fast computers to advance their studies.

A. Computer-assisted tomography The human body can be modeled by com-
puter-assisted tomography (CAT) sca nning. The Mayo Clinic in Rochester,
Minnesota, is developing a research CAT scanner for three-dimensional, stop-
action, cross-action viewing of the human heart. At the Courant Institute of
Mathematical Sciences, research scientists are seeking an array processor for
time-sequence, three-dimensional modeling of blood flow in the heart, with the
goal of pursuing the artificial heart, Similar approaches can be applied to reveal
the secrets of other human organs in real time,

Cross-sectional CAT images used to take 6 to 10 minutes to generate on a
conventional computer. Using a dedicated array processor, the processing time
can be reduced to 510 20 s. The image reconstruction of human anatomy in present
CAT scanners is two-dimensional, It is generated too slowly (5 s) to freeze the
motion of organs such as the heart or the lungs. The Mayo Clinic's super CAT
scanner is expected to have 2000 to 3000 megafiops speed. It will produce three-
dimensional images of the beating heart, within a few seconds, with 60 to 240 thin
adjacent cross sections stacked onc upon the other. Because of the short processing
and exposure time. three-dimensional and stop-motion pictures of a beating heart
will be possible for the first time. Dye injection may be used 10 trace the blood flow.

& antdligiesd - T e

INTRODUCTNON TO PARALLTL PROCISSING 49
B. Genetic engineering Biological systems can be simulated on supercomputers.
Genetic engineering is advancing rapidly in recent years. There is a growing need
for large-scale computations to study molecular bology for the synthesis of
complex organic molecules, such as proteins. Crystallography also can be aided
by computer processing,

A highly pipelined machine, called the Cytocomputer, has been developed at
the Michigan Environmental Research Institute for hiomedical image processing.
It can be used to search for genetic mutations. Sophisticated biomedical and com-
puter techniques are being applied to derive an accurate estimate of the mutation
rate for the human species. Gel matching between the father, mother, and child
is done in the Cytocomputer using some parallel graph-matching techniques,

C. Weapon research and defense So far. military research agencics have used the
majority of the existing supercomputers. In fact. the first Cray-1 was insialled
at the Los Alamos Scientific Laboratories in 1976. By 1951, four upzraded Cray 1's
had been acquired by Los Alamos. Listed below are several defense related
military applications of supercomputers.

« Multiwarhead nuclear weapon design (Cray-1)

« Simulation of atomic weapon cffects by solving hyvdrodynamics and radiation
problems (Cyber-205)

« Intelligence gathering, such as radar signal processing on the associative
processor [or the antiballistic missile (ABM) program (PEPE)

« Cartographic data processing for automatic map generation (S

« Sea surveillance for antisubmarine warfare (the S-1 multipro

D. Busic Research Problems Many of the aforementioned appli
related to basic scientific résearch. Below are several additional a
the use of supercomputers:

1. Computational chemists solve problems on quantum mechanics, statistical
mechanics, polymer chemistry, and crystal growth.
. Computational physicists analyze particle tracks geacrated i@
study fluid dynamics, examine quantum ficld theory, and inve
dynamics,,
3. Electronic engineers solve large-scale circuit equations usmg the iy
Newton algorithm. and lay out VLSI connections en semicon(’

]

1.6 BIBLIOGRAPHIC NOTES AND PROBLEMS

Parallel processing computers have been treated in parts of the
(1978). Kuck (1978). Stone (1980), and Buer (19%0). En | i1
Satyanarayanan (1980) devoted their books to multiprocescor cvsterms T
book by Hockney and Jesshope (1982) covers only papeline and

SO compuTER ARCIHTTECTURE AND PARALLEL PROUCESSING

The introductory material on data flow computers is based on Dennis (1980). A
recent survey of vector processing computers can be found in Hwang, et al. (1981).
Additional material on supercomputer applications can be found in Rodrique.
ct al. (1980) and Sugarman (1980). Bode and Hiindler (1980, 1982) have written
two computer architecture books in German.

Other surveys on parallel processing and supercomputer systems appeared
Kuhn and Padua (1981). IEEE Compurer Magazine (Nov. 1981). and Conmuni-
cations of ACM (Jan. 1978). The computer architectural classifications are based
on Flynn (1966). Feng (1972). and Hindler (1977). Interested readers should
regularly check the proceedings of the Anmial Sympositim e Computer Architecture,
and of the Tmernarional Conference on Parallel Processing for frontier research
development. The Jowrnal of Parallel/Distribured Compuring is a dedicated publici-
tion in this area.

Problems

L1 Distinguish among computer terminologics in cach of the following groups:

() Data processing. information processing, knowledge processing, and intelligence processing.

(h) Batch processing, multiprogramming, time sharing, and multiprocessing,

() Parallel processing at the job level. the task level. the interinstruction level, and the intra-

instruction level.

(e} Uniprocessor systems versus multiprocessor systems.

(e} Parallelism versus pipelining.

(/) Serial processing versus parallel processing.

(@) Control flow computers versus data flow computers, ;
1.2 Existing computer systems ure classified in Tables 1.3, 1 4. and 1.5, bused on the three architécrural
specification schemes given in Section 1.4, The listing in cach table is not complete. Enter the specifica-
tion of at least two additional computer systems under each architectural category of cach of the three
tables. Use the sume specification format for the existing entries in making the new entries,
1.3 The speedup of using n processors over the use of one processor in solving a computing problem
was analyzed in Section 1.3.4 under various assumptions, such as fi=1lnand d, = lfifori=1,
i i et

(a) Repeat the performance speedup analysis to derive a new speedup equation (similar to Eq. 1.8),
under the following new probability distributions of operating modes.

ﬁzT'- fori="1.2.....n {(LIT)
Si
i1

(7} Repeat part (@) for another probability distribution -

'.[

om0 l' : for P 1 3% am (1.18)
2 -
=1

() The case in () Favors the assignment of the computing task to a larger number of processors,
whereas the case in (b) favors the assignment to a smaller number of processors. The case presented in
Section 144 treats all possible task divisions equally. Plot the new spesdup curves obtained in ease (a)
amd i case (h) along with plots given in Figure 114, Can you find new upper bounds for the new
speedup curves? Derive the upper bound, if it exists

INTRODUCTION T PARALLEL PROCESSING S1

14 Name three distinet characieristics that exist in the ith generation computers for i = 1, 2, 3, and
4 but not in the st generation fory = 0, 1.2, .. i — 1, where the ihth gencration corresponds to prior
clectronic computers

1.5 Match each of the following computer systems to the phrase that best deseribes it.

— IMiac-1V (1) A cluster of mieroprocessors 2
—TEASC (2) A vector processor made in Jupan
— CDC-T600 (1) A supermini computer with virtual Memaory
— IBM 360,91 (4) The first MIMD multiprocessor consisting of 16 PDP 11 minicompiters
—— AP-1208B () The first IBM computer using the thermal conduction modules
Cray-1 (6) A multiprocessing vector processor by Cray Research
— B-5500 (7) A major computer project at IBM in the 19605
— PEPE (8) Anarray processor with 64 PEs
—— Cybher-208 () A multifunction computer with multiprocessing in 1/O subsystem
— C.mmp (10} The first operational electronic digital computer
R (1) An associate processor with 288 PEs
— MPP (12} A commercial multiprocessor with a packet switched interconnection net-
work
—— Cray X-MP (13) The first IBM scientific processor with multiple functional units
—— HEP (14} An attached array processor for minicomputers
— VP-200 (15) A first-generation pipelined vector processor
— ENIAC (16) An array pracessor with 16384 PEs
— Stretch (17) A CDC vector processor enhanced from the STAR-100
— (18) One of the first stack computers
—— VAX 11/780 (19) An array processor with 16 PEs and shared memories
— 1BM 3081 (20) A vector processor with 12 pipes and large register files

1.6 You were bricfed about 15 important applications of paraliel processing computers in Section 1.5
Choose the one of these application ateas thal interests you most for an indepth study. Dig out more
information from the library or request the source information from any application site of super-
computers that you know of. Prepare a study report based on your readings and obscrvations in the
chosen area of supercomputer applications.

1.7 In the following block of computations, ¢ and b are two external inputs and z is the final output,
Two intermediate results are labelled x and y.

Xeawa; veboby ze—(x+ y)ix —y

{a) Draw a data flow graph for this code block, where », +, —. and / are arithmetic operators,

(b) Show a template implementation of the data flow graph in (a).

(€) Indicate the events that can be done in parallel in the exccution of the above block of codes.
I8 Describe at least four characteristics of MIMD mult iprocessors that distinguish them from
multiple computer systems or computer networks.
1.9 Prove that a k-stage lincar pipeline can be at most k times faster than that of a nonpipelined serial
processor.
L.10 Summarize all forms of parallelism that can be exploited at different processing levels of a com-
puter system, including both uniprocessor and multiprocessor approaches. Discuss hardware, firmware,
and software supports needed to achieve each form of parallelism. Indicate example computers that

have achieved various forms of parallelism. . .

- 66es9

CHAPTER

TWO
MEMORY AND INPUT-OUTPUT SUBSYSTEMS

In this chapter, we describe memory organizations and input-output subsystems.
material needed to study subsequent chapters, Memories are organized in a
hierarchical order of access times. The basic techniques used to create a large
virtual address space and the necessary translation mechanisms to the physical
space are discussed. Some memory allocation and management schemes are
presented for multiprogrammed systems. Various organizations of cache memories
are presented. Techniques for estimating the effective bandwidth of such memories
are developed. Finally, techniques for exploiting concurrency in input-output
subsystems are summarized, Memory and 1/O subsystems are needed in uni-
processors, pipeline machines, array processors, and multiprocessors. Special
parallel memory structures for each class of machines are treated separately in
their respective chapters.

2.1 HIERARCHICAL MEMORY STRUCTURE

Memory systems for parallel processor computers are described in this section.
We begin with the hicrarchical memory structures and the concept of virtual
memory. Virtual memory concepts are discussed for paged systems, segmented
Systems, and systems with paged segments,

2.1.1 Memory Hicrarchy

The design objectives of hierarchical memory in a parallel processing system and
a multiprogrammed uniprocessor system are basically the same. The objectives
are lo attempt to matich the processor speed with the rate of information transfer
or the bandwidth of the memory at the lowest level and at a reasonable cost. How-
cver. one major difference exists in the hicrarchical memory structures of the two

52

MEMORY AND INPUT-OUTPUT SURSYSTEMS §3

systems. This difference is due to the memory reference characteristics of multi-
programmed uniprocessors and parallel processors. In the latter case, the existence
of multiple processors necessitates the arrival of concurrent memory requests to
memory at the same level of the hierarchy. If two or more of these concurrent
requests reference the same section of memory at the same Jevel,'a conflict is said
to oceur, which could degrade the performance of the system. Hence, memory for
a parallel processing system must be organized to reduce the potential conflicts at
cach level of the hierarchy. This is usually done by partitioning the memory at a
given level into several modules so that some degree of concurrent access can be
achieved.

Memories in a hierarchy can be classified on the basis of several attributes.
One common attribute is the accessing method, which divides the memories into
three basic classes: random-access memory (RAM). sequential-access memory
(SAM), and direct-access Storage devices (DASDs). In RA M, the access time ol
4 memory word is independent of its location. In SAMs, information is accessed
serially or sequentially, as in shift-register memory such as a first-in, first-out
(FIFO) buffer, charged-coupled devices (CCDs), and magnetic bubble memories
(MBMs). DASDs are rotational devices made of magnetic materials where any
block of information can be accessed directly. The DASDs are accessed via special
interfaces called channels, which are discussed in Section 2.5.

Another attribute often used to classify memory is the speed or access time of
the memory. In most computer systems, the memory hierarchy is often organized
so that the highest level has the fadtest memory speed and the lowest level has the
slowest speed. On the basis of access lime, memory can be further classified into
primary memory and secondary memory. Primary memory is made of RAMs and
secondary memories are made of DASDs and optional SAMs. In characterizing
the access times of memories in the hierarchy we will concentrate on RAMs and
DASD:s.

The three most common DASDs are drums, fixed-head disks, and moveable-
arm disks. For these cases, the time to transfer a block of information is t,+ tg,
where ¢, is the access time and T4 is the block-transfer time. For drums and fixed-
head disks, ¢, is the time it takes for the initial word of the desired block to rotate
into position. For moveable-arm disks, an additional “seek time™ t, is required to
move the arms into track position, Table 2.1 depicts some of the characteristics of
the different memories used in a hierarchy,

In general, the memory hierarchy is structured so that memories at level i are
“higher” than those at level | + L.1f¢; 1, and s, are respectively the cost per byte,
average access time, and the total memory size, at level i, the following relationships-
normally hold between levels i and i + |: Ci 2 Ciags i < liyy,and 5, & 5., , for
i = 1. Figure 2.1 illustrates the typical relative cost-access time relationship of
some memory technologies,

Figure 2.2 illustrates an example of a two-processor system with a three-level
memory. Memory module M, jis the local or private memory of processor j since
itis exclusively used by that processor. The local memory is often implemented as
a high-speed buffer or cache memory using bipolar technology and hence is the

L - e - 3
53 COMPUTER ARCHITYC FURE AND PARALLEL P,

Table 2.1 Characteristics of memory devices in a
R

Memaory

Level i type Technology

—

I Cache Bipolar, HMOS,

ECL

2 Minn o MOS
Primary o
memaory

3 Rulk memory Core

{optional) (LCS, ECS)

4 Fixed head Magneric
disk or
drums

5 Moveahle Magnetic
arm disk

6 Tape Mignetic

fastest memory. The cache is used 1o capt

most frequently referenced by the processor. In
processor and the cache is on a word basis. Cache memorie
detail in Section 2.3, The next lower level of memory consist
M, yand constitutes the main memory, The four modules are
metal oxide semiconductor (MOS) or ferromagnetic (core)

Cost/byte Jr

"7\ Cache
+ (bipolar)
I

\\. Main memory
' (MOS)

== CCD

o

RUCESSING

memory hierarchy

bl

Typical

Size s,
2K 128K bytes

4K 16M byies

B4K - 16M byies

M 256M bytes

BM-S00M byies

50M bytes

Average
aceess time f,

30100 ny

251 s
0s I s

510 s

515 ms

25-75 ms

1-5%

Unit of

transfer
I word

232 words

2-32 words

1K -4K bytes

4K byles

TK-16K
bytes

ure the segments of information which are

formation

Figure 2.1 Cost and access time relationship,

777 Moving-head
; disk

transfer between the
s will be discussed in
s of modules M, 510
usually designed with
technology, and the

Access time

MEMORY AND INPUT-OUTPUT SURSYSTIMS 8§

Processor memory
interconnection network

Local Fixed-head disks
memory Main or drums
Processor (cache) memory
o M M | M, ,
Mz, 1
Channels
M 5.3
P M, M, M, |
Level 2 k}
Access time A H n
Memory capacity (bytes) 5 5, 5
Cost per byte e o oy

Figure 2.2 Three-level memory hierarchy.

‘ -
unit of information transfer between the main memory and cache is a block of
contiguous information (typically 2 to 32 words). The primary memory may
be extended either with the so-called large core storage (LCS) or with extended
core storage (ECS), both of which are made of slower core memories. The average
~access time of the primary memory and its extensions are in the order of 0.5 us
and 5 s, respectively.

There exists a technological gap between the primary and secondary memory,
as evidenced by the access time characteristics shown in Table 2.1. Average access
time of secondary memories is 1000 to 10,000 times slower than that of primary
memories. Electronic disks, such as CCDs and MBM:s, have not proved cost-
effective in closing the technological gap and thus have had little impact in the
design of memory systems. Hence, as shown in F igure 2.2, the secondary memories
most often used are disks and drums.

The processor usually references an item in memory by providing the location
or address of that item. A memory hierarchy is usually organized so that the address
space in level / is a subset of that in level i + 1. This is true only in their relation,
however; address 4, in level i is not necessarily address A, in level i + 1, but any
information in level i may also exist inlevel i + 1. H owever, some of the information
in level i may be more current than that in level i + 1.

This creates a data consistency or coherence problem between adjacent levels
because they have different copies of the same information. Usually level i + 1 is
eventually updated with the modified information from leveli. The data consistency

=

Lo

56 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

problem may also exist between the local memories or caches when (wo cooperal-
ing processes, which are executing concu rrently or on separate processors, interact
via onc or more shared variables. One process may update the copy of a shared
variable in its local memory while the other process continues to access the
previous copy of the variable in its local memory. This situation may result in the
incorrect execution of the cooperating processes. In gencral, a inemory hierarchy
encounters such a coherence problem as soon as one of its levels is split into several
independent units which are not equally accessible from faster levels or processors.
Solutions to data consistency problems are discussed in Sections 2.3, 2.5, and 7.3.

In modeling the performance of a hicrarchical memeory, it is often assumed that
the memory management policy is characterized by a success function or hit ratio
H. which is the probability of finding the requested information in the memory of
a given level, In general, H depends on the granularity of information transfer.
the capacity of memory at that level, the management strategy, and other factors.
However. for some classes of management policies, it has been found that H is
most sensitive to the memory size 5. Hence the success function may be written as
H(s). The miss ratio or probability is then F(s) = 1 — H(s). Since copies of infor-
mation in level i are assumed (o exist in levels greater than i, the probability of a hit
at level i and of misses at higher levels 1 to i — 1. is:

hi = H(s)) — H(s,_,) (2.1)

where Ay is the access frequency at level i and indicates the relative number of
successful accesses to level i. The missing-item fault frequency at level i is then
Ji=1= hy.

2.1.2 Optimization of Memory Hierarchy

The goal in designing an n-level memory hierarchy is to achieve a performance
close to that of the fastest memory M, ;and a cost per bit close to that of the cheap-
cst memory M, ;. The performance of the hierarchy may be indicated by the
effective hierarchy access time per each memory reference. However, it should be
noted that the performance depends on a variety of interrelated factors. These
include the program behavior with respect to memory references, the access
time and memory size of each level, the granularity of information transfer (block
size), and the management policies. One other important factor that also affects
the effective access time is the design of the processor-memory interconnection
network, which is discussed in Sections 5.2 and 7.2.

The interrelation among some of these factors can be used to derive a criterion
for optimizing the performance of the memory hierarchy. One performance
measure is the effective memory access time. Another measyge may include the
utilization of the processor. The effective access time T, [rom the processor to the
ith level of the memory hierarchy is the sum of the individual average access times
fy of cich level from k = 1 10 i

T=Y 4 (2.2

MEMORY AND INPUT-OUTPUT SUBSYSTEMS §7

In general, 1, includes the wait time due to memory conflicts at level k and the delay
in the switching network between levels k — 1 and k. The degree of conflicts is
usually a function of the number of processors. the number of memory modules,
and the interconnection network between the processors and memory modules,
In most systems, a request for a word which is not in memory level i causes the
block of information which contains the requested word to be transferred from
level i + 1 to level i. When the block transfer to level 1 has been completed, the
requested word is accessed in the local memory.

The effective access time for each memory reference in the n-level memory
hierarchy is

Substituting h, and T, into Eq. 2.3,

=Y \[H(s.) = HG,_)] (2.4)
i=1
Assuming that there is a copy of all requested information in the lowest level n,
H(s,) = 1. In the derivation of Eq. 2.4, it is convenient to define H(s,) = 0, hence
F(s0) = 1. Rewriting Eq. 2.4:

T = 3 [0 — His,-)]y,
i=1
Since 1 — H(s;-) = F(s;_,), we obtain
T = E F(s, — 1), 2.5
i=1

If¢(1;) is the cost per byte of memory at level i which is expresged as a function of its
average access time, the total cost of the memory system is

L
C=Y ct)s; (2:6)
i=1
A typical memory-hierarchy design problem involves an optimization which
minimizes the effective hierarchy access time T subject to a given memory system
cost Co and size constraints. That is, minimize T = Di=y F(s;-)1, subject to
the constraints C = Y'*_, (1,)s; < C,, where 5;>0andt,>0fori=1,2,....n
In practice, the cost constraints should include the cost of the processor-memory -
interconnection network. .
' In the memory types we have discussed so far, the cortents of a memory loca-
tion is accessed by spacifying the memory location or address of the item. In another
type of memory, associative memory, the data stored in the memory can be accessed
by specilying the contents or part of the contents. In this sense, associative memory
has also been known as content-addressable memory and parallel search memory.
The major advantage of associative memory over the RAM is its capability of

SHOCOMPUTER ARCHITECT URE AND PARALLEL PROCESSING

performing parallel scarch and comparison operations, which are needed in many
important applications, such as table lookup, information storage and retrieval
of rapidly changing databases, radar-signal tracking and processing, image
processing, and real-time artificial intelligence computations, The major disad-
vantage of associative memory is its much inereased hardware cost. Currently,
associative memories are much more expensive than RAMs, even though both are
built with integrated circuitry, However, with the rapid advent of VLSI technology.
the price gap between these types of memories may be reduced in the future.
Associative memories and associative processors will be treated in Section 5.4,

2.1.3 Addressing Schemes for Main Memory

In a parallel processing environment, main memory is a prime system resource
which is normally shared by all the processors or mdependent units of a pipelined
processor. Care must be taken in the organization of the memory system Lo avoid
severe performance degradation because of memory interference caused by two
Or more processors simultancously attempting to access the same modules of the
memory system. It would be undesirable to have one monolithic unit of memory
Lo be shared among several processors. as this would result in serious memory
interference. Hence, the main memory Is partitioned into several independent
memory modules and the addresses distributed across these modules. This scheme.
called interleaving. resolves some of the interference by allowing concurrent
accesses to more than one module. The interleaving of addresses among M modules
is called M-way interleaving.

There are two basic methods of distributing the addresses among the memory
modules. Assume that there are a total of N = 2" words in main memory. Then the
physical address for a word in memory consists of n bits, a,_a,_,.. .ayy. One
‘method. high-order interleaving. distributes the addresses in M = 2 modules so
that each module 7. for 0 < i < M — 1, contains consecutive addresses 2" ™ 1o
(i + 1)2'"™ — 1, inclusive. The high-order m bits are used to select the module
While the remaining n — m bits select the address within the module, as depicted
in Figure 2.3. =

The second method. low-order interleaving, distributes the addresses so that
consecutive addresses are located within consecutive modules, The low-order
n bits of the address sclect the module. while the remaining n — m bits select the
address within the module, as shown in Figure 2.4, Hence, an address 4 is located
in module 4 mod M.

The two schemes depicted in Figures 2.3 and 2.4 represent extremes in the
choice of the address decoding. The first scheme permits easy memory expansion
by the addition of one or more memory modules as needed to a maximum of Af — 1.
However, the placement of contiguous memory addresses within a module may
cause considerable memory conflicts in the case of pipelined, vector. or array
(SIMD) processors. The sequentiality of instructions in programs and the sequen-
tiality of data in vector processors cause consecutive instructions or data to be in
the sume module. Since memory cycle time is much greater than the pipeline clock

el 1 4

MEMORY AND INPUT-OUTPUT SURSYSTEMS SO

m bits n = bits
Module Address in module
;_V. - - s J
Decoder A=t AB: address bulfer
2 - lassi sss 0 = DB: data butfer
Sde |00
3
AB DB AB DB AB DB
Module see Mm_iulc cee Module
0 i 2m—]

Figure 2.3 Parallel memory system with comSecutive words in a2 module.

time, a previous memory request would not have completed its access before the
arrival of the next request, thereby resulting in a delay.

In array processors, if the data elements of a vector reside in the same module,
there will be insignificant parallelism in computation because the elements cannot
be fetched simultaneously by all processors for the *lock-step™ manipulation.
The high-order interleaving can be used without conflict problems in multipro-
cessors il the modules are partitioned according to disjoint or noninteracting
processes. In practice, however, processes interact and share instructions and
data in multiprocessor systems and will thereby encounter considerable conflicts
in a high-order interleaved memory subsystem. For the above reasons, low-order
interleaving is frequently used to reduce memory interference.

An advantage of high-order interleaving is that it provides better system
reliability, since a failed module affects only a localized arca of the address space
and therefore provides graceful degradation in performance. The failed module
can be logically isolated from the system and the memory manager can bé informed
so that no process address space is mapped into the failed module. A failure of
any single module in the second scheme will almost certainly be catastrophic to
the whole system. The second scheme, however. seems preferable if memory inter-
ference is the only basis of choice.

A compromisc interleaving technique is to partition the module address
field into the two sections S, _, and S, so that section S, is the least significant

60 comruir \Rt'l!lllt'll'RI.ANI?I’ARH\III1 PROCESSING

W A o bt -
Address in module I Module ’
et .
s __J';_____Y
%_ "
i _l_ F—iy
- Jecoder
Al address buffer A I i 0

DB: data bulfer

-

Maodule
0

Module
1

Module
2m—|

Figure 2.4 Parallel memaory system with consecutive words in consecutive modules,

r bits of the memory address and section Sm-, is the high-order m-r bits of the
address. Notice that the module address is formed by the concatenation of section
Sm-, and S,. In this scheme, the addresses are interleaved among groups of 2°
memory modules. This tends to reduce memory interference to a segment of shared
data. The memory system is expandable in blocks of 2* modules: however, a single
module failure disables an entire block of 27 modules. This scheme is appealing for
systems with a large number of memory modules if r is chosen to be very small.

2.2 VIRTUAL MEMORY SYSTEM

In many computer systems, programmers often realize that some of their large
programs cannot fit in main memory for execution. Even if there is enough main
memory for one program. the main memory may be shared with other users,
causing any one program to occupy some fraction of memory which may not
be sufficient for the program to execute. Thé®isual solution is to introduce manage-
ment schemes that intelligently allocate portions of memory to users as necessary
for the eflicient running of their programs. The use of virtual memory to achieve
this goal is described in this section.

%

MEMORY AND INPUT-OUTPLT SUBSYSTEMS 61

2.2.1 The Concept of Virtual Memory

Mcmory management is distributed over several overlapping phases. It begins
with the program structure and design, the naming function performed by the
compiler in translating the program modules from programming language into
modules of machine code or unigue identifiers. A linker then combines these
modules of unique identifiers and the composite is translated by a loader into
main memory locations. The set of unique identifiers defines the virtual space or
the name space and the set of main memory locations allocated to the program
defines the physical memory space. The last phasc of memory management is the
dynamic memory management required during the execution of the program.

In carlier computers, when the entire program would not fit into memory
space at one time, a technique called overlay was used. Phases of the program were
brought into memory when needed, overlaying those that were no longer needed.

Memory requirements of some programs are difficult to predict, a factor
that influences memory management during executions. Another and perhaps the
strongest influence is that high-performance computer systems are often operated
in multiprogramming mode. The result of these influences is that the fraction of
main memory which is assigned to any one program is unpredictable outside the
cxecution environment. Only at execution time are physical addresses assigned,
for only then are the total memory size, the currently unused memory space, and
the sizes of the various routines from called libraries known.

Virtual memory gives programmers the illusion that there is a very large
memory at their disposal, whereas the actual (physical) memory available may
be small. This illusion can be accomplished by allowing the programmer to operate
in the name space while the architecture provides a mechanism for translating
the program-gencrated (virtual) addresses (during execution) into the memory-
location addresses. In multiple processor systems with virtual memory, this
mechanism must be provided for each processor. Assume that the name space
Vi generated by the jth program running on a processor consists of a set of n unique
identifiers. Hence

Vi=1{0,1,.0.,n — 1}

Assume that the memory space allocated to the program in execution has m
locations. This space can be represented as a sequence of addresses:

M=1{01,....m—1}

since main memory can be regarded as a linear array of locations, where each
location is identified by a uni®ue memory address. Also, since the allocated memory
space may vary with program execution, m is a function of time.

At any time 1 and for each referenced name x e V;, there is an address map

J{0: V= M U {¢}

62 coMPUTER ARCHITECTURE ANIY PARALLET PRONCESSING

which identifies a mapping between names and memory addresses at instant r
SO as 1o hind them. The Funniun_.fru) is defined by

Il 6] ¥ il at time r item x is in M at location ¥
X, e y 2 i :
4 I ifattime 7 item x is missing from M

When f[x, (] = ¢, an addressing exception or missing item fault is said 1o oceur,
which causes a fault handler to bring in the required item from the next lower level
of memory. The fault handler also updates the /, map to reflect the new binding of
names to memory addresses. In a general hierarchy. the missing item is retrieved
by sending a memory request for the item to successive lower levels until it is found
ina level, say k. Three basic policies define the control of the transfer of the missing
item from a lower level 1o the desired level. A placement policy sclects a location
in memory where the fetched item will be placed. Where the memory is full, a
replacement policy chooses which item or items to remove in order to ereate space
for the fetched item. A ferch policy decides when an item is to be feiched from lower
level memory. These policies and their impact on memory management will be
discussed fully in Section 2.3.

Program locality The sequence of references made by the jth program in execution
can be represented by a reference string Ri(T) = rDrg2). .. r(T). where
r1) € Vis the rth virtual address generated by process /. It is common knowledge
that the virtual addresses generated are nonrandom but behave in a somewhat
predictable manner, Such characteristics of programs are due to looping, se-
quential and block-formatted contro] structures inherent in the grouping of
instructions, and data in programs. These properties, referred 10 as the locality of
reference, deseribe the fact that over an interval of virtual time, the virtual addresses
generated by a typical program tend 10 be restricted to small sets of its name space,
as shown in Figure 2.5, For example. if one considers the interval A in Figure
2.5. the subset of pages referenced in that interval is less than the set of pages
addressable.

There are three components of the locality of reference, which coexist in an
active process. These are Temporal., spatial, and sequentiality localities. In temporal
locality, there is a tendency for a process o reference in the near future the elements
of the reference string referenced in the recent past. Program constructs which
lead 10 this concept are loops. temporary variables, or process stacks. In spatial
locality there is a tendency for a process to make references to a portion of the
virtual address space in the neighborhood of the last reference. The principle of
sequentiality states that if the last reference was rr). then there is a likelihood that
the next reference is to the immediate successor of element ri(t). Traversals of a
sequential set of instructions and arrays of data enforce spatial and sequentiality
localities. It should be noted that each process exhibits an individual character-
istic with respect to the three types of localities.

Each type of locality aids or influences the characterization of an eflicient
memory hierarchy. The principle of spatial locality permits us to determine the
size of the block to be transferred between levels. The principle of temporal

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 63

Page . '
numbers i
'
| I
1 I
{ .
p L
P
T
|
g
| |
i -
ﬁ P h_l
T T
| 1
| 1
1
i1 |
: 1
= 5
Loy
P
' |
! 1
| 1
H
i
b L]
"
l 1
i
]
i
I
L o
A Time

Figure 2.5 An example of a page reference map for a process.

locality aids in identifying the number of blocks to be contained at each level.
Sequentiality locality permits the distribution of the unique identifiers to con-
currently operating devices at certain levels of the hierarchy for concurrent
accesses.

From Figure 2.5, if the reader considers a hypothetical interval time window
A which moves across the virtual time axis, it can be scen that only a subset of the
virtual address space is needed during the time interval of the history of the process.
The subset of virtual space referenced during the ‘interval 1, t + A is called the
working set W(t, A). During the execution of a process, the working set quickly
accumulates in the highest level of the memory hierarchy to reduce the effective
memory access time of a reference. In general, the time window A is a critical
paramclerl.v.'hich may be chosen to optimize the working set of the process over
its lifetime,

Program relocation During the execution of a program, the processor generates
logical addresses which are mapped into the physical address space in the main
memory. The address mapping. considered as the function fi:Vi— M, is per-
Formed both when the program is initially loaded and during the execution of the

64 coMPUTIR AR HETECTURE AND PARALLEL PROCESSING

program. The former case is called stasie relocation; the latter is called dynamic
relocation. Static relocation makes it difficult for processes to share information
which is modifiable during execution. Furthermore, if a program is displaced from
main memory by mapping, it must be reloaded into the same set of memory
locations, thereby fixing or binding the physical address space of the program for
the duration of the execution. This constraint causes ineflicient memory manage-
ment policies. Multiprogramming systems do not generally use static relocation
because ol these and other disadvantages. In order 1o effectively utilize memory
resources, dynamic relocation is often used, in which the function f, 18 varied
during the execution of the programs. '

One technigue in performing dynamic relocation is to use a set of base or
relocation registers in which the content of 2 relocation register is added to the
virtual address at each memory access. In this case, the programs may be initially
loaded into memory using static relocation, after which they may be displaced
within memory and the contents of the relocation register adjusted 1o reflect the
displacement. Two or more processes may share the programs by using diflerent
relocation registers,

Address map implementation The address map / can be implemented in several
ways. The simplest implementation, direct mapping, is a table with n entries so
that the xth entry contains ¥ whenever f(x) = y and is null (¢) otherwise. The
time to access the clement identified by x involves an additional memory uccess:
the time to look up the xth entry in the table, If the table is implemented in main
memory. the efTfective access time of the element may be intolerable, Fast registers
may be used at a great expense. Since the virtual space size n may be much greater
than the physical space size m in practice, the table would contain n — m null
entries. Even il we created a table with only m entries, the execution time variation
of m may present some management problems, as we shall see later. Another
implementation, associative mapping, uses an assaciative memory (AM) that
contains those pairs (x, y) for which f(x) =) and the search is by content. Since
the search time in an AM increases with a=1 increase in the number of entries, a
small high-speed buffer is often used. This bufier, often called the translation
lookaside buffer (TLB). maintains the ma pping between recently used virtual and
physical memory addresses.

The implementation discussed above for the address map is still impractical
because the virtual memory size n is usually too large, so that even the locality
set of the program cannot be stored in a practical AM. In the following three
sections, we examine methods that result in considerable reduction in the amount
of mapping information that must be stored. Each method groups information
into nonoverlapping blocks. so that the entries in the address may refer to blocks
instead of individual addresses in the address space. The first method organizes
the address space into blocks of fixed size, called a page. The second method
organizes the name space into blocks ofu'rbiiralr_v size, called a segment. In the
third method. we combine paging and segmentation,

MEMORY AN ISPUT-OUTPUT SUBSYSTEMS 65

.

Virtual memory in perspective The principle of locality of reference has proved
virtual memory to be effective for the given access times and costs. That is, users
have been willing to accept the overhead and burden of a page management system
in order to have the benefits of an apparently large memory. If the cost of a large
memory is so inexpensive that the user is willing to buy it in the first place regardless
ol the mefficiency in its use because the references are lo.al, then virtual memory
may be unimportant. The rhlcrucumpulcrs used in offices and small businesses
probably fitin this category today and will certain ly be in this category when 256K
and possibly 1M random-access memory chips are in high production,

At this point, it may be more effective to have large real memory for a small
computing system than virtual memory in a two-level system, although paging
hardware for automatic relocation will still be useful, Whereas virtual mem ory was
present on the majority of interactive, time-shared systems in the 1970s, it may
disappear from use on small personal systems. However, virtual memory will
continue to be used in many large systems, such as large database systems or com-
puting facilities, where the program-size requirements are extremely large and do
not fit into real memory at an economical cost.

2.2.2 Paged Memory System

In this scheme, the virtual space is partitioned into pages. which can be resident in
matching size blocks (called page frames) in memory. Each virtual address that is
generated by a program in execution consists of two fields: a virtual page number
ip. which is the mapped field, and tHe displacement i, of the word within the page,
which is the unmapped field. The address map consists of a page table (PT), from
which is read the corresponding base address of the page frame if the page exists
in the main memory, The simplest page table may contain one entry for cach
possible virtual page,
) There is one page table for each process, and the page table is"created in main
memory at the initiation of the process. A page table base register (PTBR) in each
processor contains the base address of the page table of the process that is currently
running on that processor. Th page table entry may be accessed by indexing into
the page table array, Figure 2.6 shows how the page table is used by dircct mapping
to implement the mapping of a virtual address to a physical address. Each page
table entry (PTE) consists of a ralid bit (F), a permissible access code (RWX), a
miemory-disk bit (M) and a page-frame address (PFA).

The valid bit, if set, indicates that the page exists, or is nonnull. A page which is
null (valid bit cleared) would have to be created when referenced. A page is said
to be active with respect to a process if it 1s resident in main memory. The memory
bit (M) flag is set in the page table entry of that process and the PFA field of the
PTE contains the address of the page in memory. In contrast. a nonnull page is
inactive with respect to a process if the memory bit (Af) is cleared. Then the PFA
field of the PTE contains the disk address of the page.

The page table mapping mechanism is rather netlicient since it requires two
memory accesses for cach data accessed. This may be tmproved by using a fast

GO COMPUTER Al HITECTURE AND PARALLEL PROCESSING

Requested
access
(PTHR) g lype = Virtual address
Base register J S/U l@ Page number iy] Word offset i,
| Page 1able
i PTE(,)
f"l('IRW)(IM{PI PFA
S5/Us supervisor/user mode
£ valid bit L

M: memory-disk bit ;
RWX: read-write-execute access FFA [

PFA: page frame address Physical address
P private bit (cacheable)
I PTEG,) « F=1/0—page exist/null page
If I‘TE{r‘I_p s RWX=RWX —valid access
If PTE{E{_) Al = I—-PTE{iﬂloPFA is page address in main memory
clse it is disk address of page
It PTE (i) « P =1 —page private

Figure 2.6 Virtual to real page address translation.

random-access memory or register set to store the page table. For example, the
Xerox Sigma 7 processor has a 256 register-set of nine bits each and a page size of
512 words. This corresponds to a virtual memory of 2'7 words (128 K). A better
solution is to exploit the locality of reference property of programs and use an
associative map which consists of an N-entry translation lookaside buffer (TLB).
Hence the TLB may contain the N most recently accessed virtual page numbers
and their corresponding page-frame addresses. _

In a system with a single virtual address space, all users reside in the same
virtual memory. Another method is to partition the virtual space into several
independent areas, allocating one to each active process. This can be accomplished
by using the high-order bits of the virtual page number as a process identification,
These bits with the PTBR can be used to select the page table of a process.

Yet another technique of maintaining multiple virtual address spaces is to
fix the virtual space and concatenate a system-generated process identification
with the virtual address. This is illustrated in Figure 2.7. Fora multiprogrammed
processor. a page map entry typically consists of six fields: a virtual page number
ip» a process identification, the RWX, a modified bit (C). and the PFA in shared
memory. The process identification of the currently running process is in the
current process register (CPR) of the processor.,

When a virtual address is generated by a running process, the virtual-to-real
address translation involves the associative comparison of the virtual page number

ssasppe awes) 23ed §1 wad - ()TN
Jaquinu voniesynuapr ssasoad st pid - (X)FINd
ss2001d 01 a1eaud st 3Fed— | =4 « (X)3INd

payipow ¥4 Fed—| =2 » (NIWNJ

Jpow 10s1a4adns — | =n/s

ss21ppe [easAyg Ao

" WS Ul Vid o

A A A
(Vid)

“dutnan 2w JUPSI GOQIENII) SSIAPPN [AE 0 (g LT iy |

£10WaW i ssaIppe awelj afed

d | 2| W |pdXm

A

;

-

1nej $5335y

[ns)

Loyod
wawaeday
TN
“ - dew 28eyg = 1ynej 28y
5 atL
9
s _ “ _ ua_ _ XMY _
SS3Ippe [Benidiy adfy
§52008

pasa®ay

.68 COMPUTIR ARCHITECTUR) AND PARALLEL PROCESSING

ip with all the page map entries (PME) that contain the same process identification
as the current running process. If there is a malch, the page-frame number is
retricved and the physical address formed by concatenating the displacement
with the PFA. Ifthere is no match, a page fault interrupt occurs, which is serviced to
locate the page. Moreover, if the page-access key presented by the virtual address
does not match the RWX field of the PME with a corresponding virtual page
number and PID. an access violation is trapped. When a referenced page is
modified, the modified bit C of the corresponding PME is set in the page map. This
bit may be used by the replacement and memory update policies,

When a page fault occurs because the virtual page number I, was not found in
the TLB, a dynamic address translation is requested, using the page table which is
resident in main memory. The virtual page number i, used as an index, is added
to the page table address in the PTBR and the resulting address is used to access
the PTE as described earlier. If the PTE indicates that the page is not in main
memory, the running process is blocked or suspended. A context swirch is then
made to another ready-to-run process while the page is transferred from drum or
disk to memory and the PTE entry updated. The page address on disk or drum
may be found in the address field of the PTE. The context or task switch involves
the saving of the state of the faulting process and restoring the state of the runnable
process in the processor,

The TLB is invalidated or its contents are saved in memory as part of the
faulting process. The task switch is made because the page-transfer operation is
slow compared to the processor speed. If the page is in memory, the TLB is up-
dated with the virtual page number and the page’s page-frame address pair before
the process resumes execution. Updating the TLB involves replacing one of its
entries if it is full. The entry chosen for replacement is usually the least recently
used entry. Additional control bits, such as a set of usage bits, are associated with
cach page map entry. The usage bits determine which entry is overwritten during
the replacement policy. Sometimes a private bit P is associated with each page to
indicate that the page is private to a process or shared-by a set of processes.

Pure paged memory systems can become very inefficient if the virtual space is
large. The size of a page table can become unreasonably large. For<example,
consider a system with a 32-bit virtual address and a 1024 (1 K)-byte page size,
The page address field is thus 22 bits, assuming byte addressability. Hence, we
have 222 page table entries! Assuming that we have an 8M-byte main memory,
there are 2%/2'% = 213 page frames, Therefore, in the PTE we have a 13-bit
page-frame field, or approximately 4 bytes per PTE. The total space consumed by
a page table is thus 224 bytes! In such cases, the page table may have to be paged
also.

There are other disadvantages of a pure paged system. There are no mechan-
isms for a reasonable implementation of sharing. The size of a program space is
not always an integral number of pages hence, oftentimes, internal fragmentation
oceurs in memory because the last part ol the last page is wasted. In addition, there
is another type of storage fragmentation called rable fragmentation, which occurs
because some of the physical memory are occupied by the page tables and so are

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 69

unavailable for assignment to virtual pages. The VAX 11/780 virtual memory
system is described below as an example of a paged memory system.

The virtual address of the VAX 11/780 is 32 bits wide and the page size is
27 = 512 bytes. For each reference, this address is translated., via a page map, to a
physical address that is 30 bits wide. The entry format of the page table is shown in
Figure 2.8. Bit 31 of the PTE represents the valid bit which, when set. indicates
that the referenced page is in main memory. Therefore, bits ¢20:05 of the PTE
contain the physical page-frame number of the page. If the valid bit is resel. bits
{20:03 of the PTE contain the invalid memory address of the referenced page. Thus
a page fault occurs and bits {25:0) of the PTE are used to determine the location
of the page on disk.

The modified bit (bit 26) of the PTE, if set, indicates that the page was modified.
Hence, the disk copy of the page must be updated when the page frame is de-
allocated. The modified bit is set on the first reference to the page. Bits (30:27,
of the PTE contain the protection mask or access privileges permitied on that
page. The protection mask is defined for four process types: kernel, executive,
supervisor, and user processes. In a memory reference, the requested access 1ype
for the process is compared to the allowable accesses, if any. Access is denied if an
unpermitted access was requested.

Virtual address:

_ 98 0
Virtual page number Byte offset
Physical address:
29 98 0
Page frame number Byte offset
lr’l.ge table entries:
31 30 2725 2120 0
V| PROT |M| RESV. Page frame number
T— Modified bit .
Kernel) -
Protection mask; Eascutine 7
B Supervisor
User
Valid bit

Figure 2.8 Address and page table entry formats of VAX-11/780 virtual memory (Courtesy of Digital
Equipment Corp.).

T0 COMPUTER ARCHITECTURE AND PARALLEL PHOCESSING

Virtual sddress SPIRE TERIONS!

PO (program) —
region
Process
Space
= Each user has its own
Pl (control) e
process space
region
e
Svst
:'“I-t;m All users share the same
sgian system region
Systern
space

Figure 2.9 Partitions of virtal address space (Courtesy of Digital Equipment Corp.).

For further memory protection, the virtual address is partitioned into two
spaces, process and system. Each of the two spaces are further partitioned into
two regions. The process space consists of program (P0) and control (P1) regions,
as shown in Figure 2.9. These regions permit two directions of growth. The system
space consists of a system and unused regions. Bits of the virtual address <31:30>
are used to specify the addressed region. A page (able is established for each region.
Each user process is assigned its own process space and, therefore, page tables for
its private program and control regions. However, all user processes share the
same system space.

Since all users share the same system space, there is only one page table for
the system space. This page table is called the system page table (SPT). The SPT
is described by two hardware registers: the system base register (SBR) and the
system length register (SLR). The SBR contains the starting physical address of
the SPT, which must be contiguous and cannot be paged,

Similarly, two hardware registers are allocated to each of the program and
control regions’ page tables of the user process. These registers are POBR and
POLR for the program region’s page table, and P1BR and PILR for the control
region's page table, as shown in Figure 2.10. These registers are always loaded
with the address and length of the page tables for the process in execution.

The process page tables are.gtored in the contiguous system space’s virtual
memory, therefore, the page table's base registers contain system space addresses
so that the process-space page tables can be paged. An address reference in the
Process space requires a two-level address translation. The address translation
process isillustrated in Figure 2.11. To speed up the translation process, an associa-
tive page map (address translation buffer) is provided. It has 128 entries divided

R

MEMORY AND INPUT-OUITPUT SUBSYSTEMS 71

3 29 98 0
[' l Virtual page number Offset _I
00— PO region
01— P1 region i
10— System region
11— Unused "
(a) Virtual address format
0
User
program
PO
2% | l Eh
User stack
Pi Supervisor stack
Executive stach
Kernel stack 4
| = Other process-specific
m code and data

. I;ng: () Hardware regisicrs always loaded
PIl: PIBR with addresses and lengths of page
: P;LR tables for process in execution

Figure 2.10 Region add-essing scheme (Courtesy of Digital Equipment Corp.).

into two 64-entry groups for process and system spaces. On a context switch, only
the process space entries are purged.

2.2.3 Segmented Memory System

Programs which are block-structured and written in languages such as Pascal, C,
and Algol yield a high dcgrccofmodularity, These modules may include proczdures
or subroutines which call other procedures. The modules are compiled to produce
machine codes in a logical space which may be loaded. linked. and executed, The
set of logically related contiguous data elements which are produced is com monly
called a segment, which is given a segment name. Segments are allowed 1o grow and
shrink almost arbitrarily, unlike pages, which have fixed sizes. Segmentation is a

T2 COMPUTER ARCIHITIC T URE AND PARALLEL PROCESSISNG "
technique for managing virtual space allocation, whereas paging is a concept used
to manage the physical space allocation. In a segmented system, a user can define
a very large logical space, which can be managed efficiently. An element in a seg-
ment is referenced by the segment name clement name pair ((s), [i]). During
program execution. the segment name (57 is translated into a segment addresy
by the operating system. The element name maps into a relative address or dis-
placement within the segment during program compilation,

A program consists of a set of linked segments where the links are created as
result of procedure segment calls within the program segment. The method of

3 0
(10] Virtual page number System virtual
address
=-SBR
|~]
SLR
29 r]

System page table l Page frame number] Offset
Physical memory address

(@) System address translation

Get virtual

address
Process Form system virtual (Add POBR or
space address of process P1BR +4sVPN)
Is bit 31 =17 ~ho ™ page table entry
Svstem yes =
space
Form physical Form physical address (Add VPN of
address of of system PTE (1o map process vir-
system PTE process table) tual PTE ad-
dress to SBR)
Fetch system Fetch system PTE
PTE from from memory
il Form physical address
of process PTE
Fetch process PTE (May cause a
from memory page lault)

. Form physical address
* of operand

Translation complete

(&) The address translation algorithm

MEMORY AND INPUT-OUTPUT SURSYSTEMS T3

VPN | Offset] Process space virtual address

Virtual address ol

ace pa bl
s g e 10 | VPN i(lf!-s_l.-t_| page table entry in

system space

Base address of SPT

I [
5;;’::’ Frame # [Offset |
table Physical address
of process PTE
PO or PI
*—A fault can occur at page
either of these accesses table

to memory

-

r
Physical address | Frame# | OffstTP

(¢) Process virtual address translation

Figure 2.11 Address translation mechanisms in VAX-11/780 virtual memory (Courtesy of Digital
Equipment Corp.).

linking the segments is an implementation problem. There are other implementa-
tion problems in the segmentation concept, including the determination of the
number of segments 1o be allowed in the system and the maximum size of each
segment. The method for sharing and protecting the segments and for mapping
the virtual address into a physical address is also a design factor.

Segmentation was used in the Burroughs B5500. Each process in the system
has a segment table (ST), pointed to by a segment table base register (STBR), in
the processor when the process is active. The STBR permits the relocation of the
ST, a segment itself, which is stored in main memory when the process is active.
The ST consists of segment table entries (S¢'E), each of which has a node structure
shown in Figure 2.12. 5 3

The address field contains the absolute base address of the segment in memory
if the segment is present, as indicated by the missing segment flag F. I the segment
is missing from memory, the address field may point to the location of the segment
in disk. L and RWX fields contain the length and access rights (read, write. execute)

T4 COMPUTIIR AR HITLCLURE AND PARALLEL PROCESSING

Virtual address Segment table base register
Segment number Word index (STBR)

5] { J Addrus\l Length J

Segment table (ST)

Segment jo—
<@ > ¥
_— -
L]
- = 25 5
Sepment
< & > .
el .
Segment
<3 > STE(s)
“ o Address IRWX[L I F | IfSTE(s) « F= 1 then segment fault
' . IfSTE(s) « L >{ then address out
i . ol range;
‘ . Hence access violation

Figure 2,12 Address mapping in a segmented system.

attributes of the segment, respectively, Figure 2.12 illustrates how the physical
address is determined from the scgmented virtual address, which consists of the
segment number s and the index i of the word within the segment. Scgments
may be shared by several processes, as shown in Figure 2.13 for two processes in
separale processors. Notice that the relative positions of a shared segment need
not be the same in different segment tables. =

When a segment s is initially referenced in a process, its segment number s
is not established. The segment must therefore be made known 1o the process by
providing a corresponding segment number as an entry in the ST to be used in
subsequent references. Using the segment name (directory pathname) {s) as a
key, a global table, called the active segment table (AST), which is shared by all
processes, is searched to determine whether the segment is active in memory. If it is,
the absolute base address of the segment and its attributes are returned and an
entry is made in the AST to indicate that the process is using this segment. If (s>
does not exist in AST, a file directory search is initiated o retrieve the segment and
its attributes. The returned absolute base address of the segment and its attributes
are entered into the AST and a newly created node of the ST. A segment number s,
which is the displacement of the node. is assigned by the operating system from the
set of unused segment numbers for that process.

R = .. oo £ o+ s e

MEMORY AND INPUT=-OUTPUT SUBSYSTEMS TS

STBR, STBR,

o=n e 1

';—ll <d> ||=

Figure 2.13 Sharing of segments by two active processes,

Associated with each process is a known segment table (KST), which contains
entrics on a sct of segments known to the process. Each entry in the table contains
4 segment name-segment number pair. This is used 10 obtain the segment number
when subsequent references are made to the segment name in the process. The
address mapping mechanism shown for the segmented system involves a method
of indirection to access each word that is referenced. This inefficiency may be re-
solved by the use of associative mapping techniques, as discussed in the paged
system.

When a segment is copied from disk to memory, it is moved in its entirety.
This is also true when the segment is relocated in memory. An appropriate size of
contiguous data area must be found and allocated to that segment before the trans-
fer operation is initiated, It is not ften that a contiguous block of memory is
found to fit the segment. In many cases, there are unused fragments of space, called
holes, each of which may not always fit the segment to be placed. Various placement
algorithms have been proposed. We present four of them.

Let sy, 55...., 5, be the sizes of the n holes available in memory, and let s be
the size of the segment to be placed. If the holes are listed in order of increasing size,
5; £ 53 < -+ < 5, then the best fit algorithm finds the smallest i. such thats < s,.
Similarly, the worst fir algorithm can be defined if the holes are listed in order of
decreasing size. This algorithm places the segment in the first hole and links the
hole formed by the remaining space into the appropriate position in the list. In a
third algorithm, called the first fit. the hole table lists holes in order of increasing
initial address. The hole with the smallest i. such that s < s,. is selected.

The fourth algorithm is the buddy system. In this case we assume that the seg-
ment size is s = 2' for some & < n. This policy maintains n hole lists, one for each

76 COMPUTER ARCHITHCTURE AND PARALLEL PROCESSING

size hole, 2. 2. 2". A hole may be removed from the (i + 1)th list by splitting
it into half, thereby creating a pair of “buddies™ of size 2, which arqentered in the
i list, Conversely, a pair of buddies may be removed from the i list, coalesead. and
the new hole enterad in the (i + Dth list. With this scheme. we can develop an
algorithm to find a hole of size 2*.

The best fit algorithm appears to minimize the wastage in each hole it sclects,
since it selects the smallest hole that will fit the scgment to be placed. However, the
worst fit algorithm is based on the philosophy that the allocation of a larger hole
will probably kave a hole large enough to be useful in the near future. It also
assumes that making an allocation from a small hole will leave an even smaller
hole, which will probably be useless without coalescing with other holes. The
first fit and the buddy system are the most ethaent algorithms,

In most cases. a time-consuming memory compaction is used 1o collect frag-
ments of unused space into one contiguous block for the appropriate segment
size. Moreover. since in the process of compaction segments in use are moved,
the corresponding segment table entrics must be modified. The unoccupiad holes
of various sizes which tend to appear between successive segments give 1152 10 a
phenomenon called external fragmentarion. This causes memory management
inefficicncies. Morzover. a whole segment may be brought into memory when only
a small fraction of its address space will be referenced during the lifetime of the
process, resulting in superfluiry. These problems can be alleviated by combming
segmentation with paging. It should be noted that table fragmentation also oceurs
in segmented sysiems

Virtual addrss

O T

Segment Page Word i

ST of N STBR
number number number Sk g
4*—‘}: Address |Length
]
FT of segment s STE(D {

- 1 © Addren [I{W,‘QILJF

Page i, of
segment s PTE(,) 1

“+——1® Address I."

WORDXs, 7. i,

Figure 2.14 Address mapping In a system with paged Faments.

MEMORY AND INPUT-OUTPUT SUNSYSTEMS T7

2.2.4 Memory with Paged Segments

In this case, paging and segmentation are combined 1o gain the ad vantages of both.
There are two types of paged segment schemes. One uses linear segmentation, in
which the paging characteristics dominate, and the other is segmented name space,
in which the segmentation characteristics dominate. In both cases, cach scgment
is divided into pages and is referenced by the processor via a page table for that
segment. An entry in the PT of a segment s contains an address ficld and a page
presence bit, F. If the page is present in main memory, the address field contains the
absolute base address of the page. A referenced page which is absent in memory
Causes a page-fault interrupt, which invokes the page-fault handler to retrieve the
page from disk to the memory. Figure 2.14 illusirates the mapping of the initial
address triple (s.i,.i,) to the physical address. The mapping of a virtual address
to a physical address requires two levels of indirection, which is inefficient. Again,
the mapping operation can be improved dramatically by using the associa-
tive mapping technique in each processor as illustrated in Figure 2.15. However,
the improvement may be at a considerable cost, The Multics system,IBM 370/168,
and the Amdahl 470 V/6 are examples of systems with segmentation and paging.
During the mapping of a virtual address of a known segment to the physical
address. an access fault may occur in the TLB because of the absence of the segment
or page number in the associative memory. Using the segment number, the infor-
mation about the page address could be obtained from the page table, which is
stored in main memory, and possibly from a local table memory (LTM) for a
nonconflicting access. However. stoting the page table in LTM may not facilitate
the sharing of the segment. It may also create table consistency problems. An entry

Translation lookahead
bulfer (TLB)

i Main memory
pid [RWX| Scg # Page # page address
RWX L] . © o i
]] & L] 2.
L.
w5
L g ¢
5 1 = A E
L] E [
o°'F
S E
= w.E
i 2
b » | &
&
& o B
Virtual address Physical address

Figure 2,15 Associative map for paged sepments.,

TR COMPUTER ARCHITFCTURE AND PARALLLL PROGCISSING

in the TLB is chosen for replacement with the new segment number, page number,
and page address triple.

If the segment number is not known when using segmentedsname space, a
segment fault occurs. which invokes a procedure to make the segment known and
causes the processor to perform a context switch to another process. The segment
_ is made known by searching for the segment pathname in the AST. If it exists, the
segment is in memory and is being used by an active process. Hence, its PT location
in shared memory is known and is obtained from the AST entry. An unused
segment number for the faulting process is obtained and an entry is made in the
process control block of the process to prepare the process for subsequent execution.
However, if the segment is not known to any active process, a directory search is
parformed to find the location of the segment in the file memory. A free PT and
un unused AST entry are obtiained. These segment attributes are copied to the
PT and a pointer is established in the AST entry to point to the PT. A page of
the segment is then copied to the memory and the appropriate entries are made
in the ST of the process, as described previously.

In a virtual memory system. a page-fault interrupt typically violates the
assumption made about interrupts on a processor. While interrupts occur asyn-
chrovously, they are constrained to be serviced at the end of an instruction cycle.
However, a page fault interrupt which occurs within an instruction cycle must be
serviced before the instruction cycle can be completed. This problem occurs. for
example, when an instruction encoding crosses & page boundary or when a refer-
ence is made to an operand which is outside the page. Hence, at the point of inter-
rupt. the page{ault handler must determine how fur the instruction has progressed
and what it must do to restart or continue the insiruction cycle.

In some systems. many instructions can bz restarted simply by backing up the
program counter and reexecuting the instruction from the beginning. However,
the partial execution of other instructions may have already made irrevocable
changes 1o the registers and memory states. Such instructions must be restarted
from the point of interruption. In general, this raquires the saving of many “atomic™
processor states. such as machine cycles, or the prohibition of any instructions
which cannot be “backed out™ of.

There are certain problems involved with using an associative map (TLB) in
2 multiprogrammd processor. The size of 2 TLB is fixed and hence can contain
only a limited number of entries. If a segment number—page number pair {s, i,)
does not exist in the TLB at the time of reference. it is accessed from the PT of the
segment in memory and is used to replace an entry in the TLB. When a page fault
or segment fault occurs because the page or segment is not in memory, the processor
suspends the faulting process and switches 1o a ready-lo-run process.

The new process creales its own address space, which is different from the
suspended process. Therefore, all the eatries in the TLB map become invalid. The
mapping mechanism must ensure that no old TLB entry is used in the new address
space. as this may result in incorrect access to physical words of the suspanded
process and thereby create a hole in the protection mechanism. This problem can
besolved by the context switch mechanism. which can invalidate all entries of the

1

N - s o A

MEMORY AND INPUT-OUTPUT SUBSYSTIMS 79

TLB by the usc of a special instruction, as was done in the original GE-645 Multics
system. This technique degrades the performance of the system since the new pro-
cess goes through initial slow indirect accesses 1o retrieve the s, i,) entries from
the STs and PTs of the process.

Further problems exist when all TLB entries are invalidated..As the new pro-
cess slowly fills up the TLB map with the valid entries, it may be interrupted or
page faulted again, which will cause the TLB entries to be invalidated once more.
Processes may continuously undergo the TLB reload cost and severely degrade
the system performance. This problem can be solved by introducing in each TLB
entry a process identification field which contains a short encoding of the process
identification number. This technique, as implemented in the 1BM 370/168,
permits the associative map to contain more than one process entry (address
space). However, only the entry that matches the currently running process is
used. A process may therefore be restarted with part of its mapping entrics in the
TLB, thereby reducing the reload cost.

Choice of page size In purely segmented memory systems, we found that external
fragmentation is a potential cause of memory under-utilization. The external
fragmentation can theoretically be avoided by paging. However, paged segments
reduce the utilization of memory by using additional storage space forsegment and
page tables (table fragmentation) and by rounding up the memory requirements
for a segment to an integral number of pages (internal fragmentation). If z words
isthe sizeof a pageand sisthe segment size in words, the number of pages allocated

to the segment is
n(s, z) = P.l
2

I(s,2) = n(s,2)z — 5

Hence, the amount of space

usually called the internal fragmentation is wasted in the last page allocated to the
segment because of the rounding off effect, assuming that z > [. The page table for
the segment occupies the following number of words:

T(s, z) = en(s, 2)

where ¢ is a constant, .
The fraction w of memory wasted because of paging in a segmented system is

_ n(s,2)z — 5 + cn(s, 2)

(2.7)

The expectation of the numerator of w is (¢ + 2)E[n(s,)] — E[s] and that of the
denominator is E[s]. If we denote the ratio of the expectations by i, we have
o e+ DE[n(s, 2)] - E[s]

v —

E[x]

80 compuTiR ARCIHITICTURE AND PARALLEL PROCESSING

IFwe let § = E[s], it can be shown that £[n(s, z)] = §/z + 4. Hence

_ (v +Nsfz+ 1Y)
W= - - —
5

1 (2.8)

By setting dw/dz = 0. we find that the optimum page size , and the minimum
fractional wasted space Wy arczg = \.-"'2¢ Sand Wy, = \.""21';'5' + ¢/25. In general, the
fractional wasted space decreases when the segments (and pages) increase in size.
This is in contrast to the requirements for contiguous segments, which should be
small in size to reduce external fragmentation.

The choice of the page size z is a critical parameter which affects the perform-
ance of a virtual memory system. Assuming that § = 8192 bytes and ¢ =
2p = 256 bytes. This seems rather small when it is known that typical values of
zare 256 to 2048 bytes. In practice, the choice of z depends mostly on the efficiency
of the paging device.

2.3 MEMORY ALLOCATION AND MANAGEMENT

In this section, we discuss the various models and classificatipn of memory manage-
ment schemes. Basically, two policies, fixed and variable partitioning, are identified
to manage the allocation of memory pages to active processes. In the fixed alloca-
tion scheme, the partition of memory allocated to an active process is fixed during
the lifetime of the process. The variable allocation scheme permits the partition to
vary dynamically during the lifetime of the process and according to the memory
requirements of the active process. Various paging algorithms are discussed for
both the fixed and variable partitioning policies.

2.3.1 Classification of Memory Policies

In general, the page-fault rate fis not a value entirely intrinsic to the process. It
is a critical parameter which depends on the memory management policy, which
in turn determines: (1) how many pages of main memory are allocated to the
process, and (2) what policy is chosen to decide which of the process's pages reside
in main memory. A memory policy’s control parameter can be used to trade paging
load against resident set size.

A memory management policy change which improves the page-fault rate
without changing the system load or other system parameters is expected to im-
prove processor utilization, increase the system throughput, and decrease the
response time. To show whether a change in the memory policy improves process-
g elficiency, it is usually sufficient 10 ®iow that the change does not increase a
process-paging rate. We will now discuss the various memory management
policies.

Two classes of memory management policies are often used in multiprogram-
ming systems, fixed partitioning and variable partitioning. These have been treated
comprehensively by Denning and Graham and the terminologies used here are

MEMORY AND INPUT-OUTPUT SURSYSTEMS Bl

borrowed from their work. Let us denote by 4 = {P,. P,,....P,} the set of
active processes during the interval in which the level of multiprogramming is
fixed [d = d(1)]. To each P, at time 1 is associated its resident set Z(t) (which is the
sdt of the page frames of the process present in memory) containing = (1) = | pages.
In general, the resident sets Z (1)s" overlap because of the sharing that takes place
among active processes, The management configuration is represented by a parti-
tionvector Z(t) = [Z,(1), ..., Z[(1)]. Hence, the size vector z(1) = [2(1), ..., 241)].
The total set of page frames used by the d processes is

d
Z() = Z,(VuZy)u---UZ) = |J Z(1) (2.9)
i=1
Let zi(r) represent the number of pages shared by processes P; and P; such that
P; # P;and let z;,(r) represent the number of pages shared by processes i, j, and
k, at t. That is, ignoring the t's, we wrile

=mZ) zy=nmZ nZ)zp=mZ,NZ,NZ,)

where n(z) is the number of pages in a set z. The sum of all z(r)'s with r subscripts
represents the total number of pages shared by r processes at time 1. We will denote
this by N(1). Hence, N,(1) = } z2(t), Ny(1) = Y z,(1), Ny(1) = ¥ z,,(t), where

l <i<j<k<--<d Note that N,(r) has (f) terms and the last sum, N {t),

reduces 1o a single term that md:calcs the number of pages shared by all the d
processes. If M is the total number of page frames available for allocation in
memory, then Feller (1970) found

d
L (=Iy*'N s M
r=1}
at every time instant t. The pages of main memory which are unused by any active
process is called the resource memory and is denoted by

d
Ry=M— 3 (=1Y*"'N() (2.10)

r=]

Analytical modeling of the sharing concept is very difficult. Most results
obtained to date assume that there is no sharing and N, = 0 for r > 1. This
simplifies the problem greatly and the reserve memory becomes R(t) = M — N, (1).
A memory management policy includes a method of estimating programs *locality
scts. The estimates obtained are used to specify the content (and size, :fadjustablc)
of each process resident set. «#

If the resident set size z(1) is a fixed constant z for all r during which process
P, is active, then the size vector Z(r) is constant during any interval in which the
sct of active processes is fixed; this is known as the fixed-partition approach. In
variable partitioning. the partition vector Z(r) varies with time. The important
advantage of fixed partitioning is the apparent low overhead of implementation,

82 COMPUTER ARCIITECTURE AND PARALLEL PROCESSING

since partition changes occur as infrequently as possible; that is, when the set of
active processes changes. This advantage can be very easily offset (even if the mem-
ory requirements of each process can be predicted prior to processing) when one
accounts for the changing locality in a process. Consider the behavior of a fixed
partition when each process of the set of active processes (P, ..., P,) has a large
variance in locality set size as the time varies.

Since the partition is fixed, there is no way to reallocate page frames from
Z;10 Z jatatime when P;’s locality is smaller than zand Plslocality is larger than
2, even though such a reallocation would not degrade the performance of P, but
would improve the performance of P;. This effect has been analyzed by comparing
fixed versus variable memory-partitioning strategies in terms of the probability
that the memory space a process demands exceeds the allocated space. A study
suggests that the variable-partitioning strategy is much better than the fixed-
partitioning strategy because there is a severe loss of memory utihization for
processes that exhibit a wide variance of locality size.

In addition to the fixed- and variable-partitioning strategies, a memory
policy can cither be global or local. A local policy involves only the resident set
of the faulting process; the global policy considers the history of the resident sets
of all active processes in making a decision.

We describe the behavior of programs being executed in terms of certain
parameters which define various memory management policies for fixed- and
variable-partitioning strategies. Recall that a program in execution generates a
sequence of references (known as an address frace) to information in its virtual
address space. The ith process’s behavior is described in terms of its reference
string, which is a sequence:

RAT) = r(1)r(2)---r(T)

in which r,(k) is the number of the page containing the virtual address references
of the process P; at time k, where k = 1, 2, ..., Tmeasures the execution time or
virtual time. The set of pages that P, has in main memory just before the kth
reference is denoted by Z,(k — 1), and its size (in pages) by z(k — 1). A page fault
occurs at virtual time k if r,(k) is not in Z(k — 1).

There are basically two memory-fetching policies used in fetching the pages
of a process when a page fault oceurs, demand prefetching and demand ferching, In
demand prefetching, a number of pages (including the faulting page) of the process
are fetchea in anticipation of the process’s future page requirements. In general,
prefetching can, if properly designed, improve performance by permitting an
overlap between the execution and the fetching of the same program, Prefetching
techniques will be discussed later. In demand fetching. only the page referggeed is
fetched on a miss. Demand fetching can result in an increase in superfluity. Under
the assumption of demand fetching, Z () 1s the same as Z(k — 1) plus r{k), less
any pages {y,] of Z(k — 1) replaced by the memory policy. Hence, using set
notations,

ZiR) = Zk — D)+ {r(k)) = {1}

(2.11)
k) < 2k = 1)+ |

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 83

The memory policy, or paging algorithm A, is a mechanism for processing the
reference string R(T) and for determining the sequence of resident sets
ZAN)Z(2) -« Z(T) and, hence, the paging rate experienced by process P,. We
should note that although the behavior of a process is formulated with respect
to its virtual time, the behavior of the system is formulated with respect to real
time.

The concept of program locality usually applics to phases of the program
execution. Although there is a strong correlation between adjacent phases of the
execution of the program, there are transitions between phases which do not always
satisfy the concept of locality. The transitions between phases are usually character-
ized by fairly disruptive changes in the set of favored pages, which cannot be
predicted from the past behavior. Although intraphase behavior covers the ma-
jority of the virtual time, it is the interphase behavior that produces the majority
of the misses or faults. This enforces the reason for some type of anticipatory
fetch policy. i

A number of models for program locality have been developed. Two examples
are the independent reference model (IRM) and the least recently used stack model
(LRUSM). The IRM regards the reference string as a sequence of independent
random variables with a common stationary reference distribution. Hence the
probability that the r(k) reference is in page j is written as:

Prlrdk) =j1 =a; forallt
-
This model predicts a geometric interreference distribution:

k)= =ap*~'a; fork=12...

The optimal memory policy for IRM replaces the page with the smallest value of
a; among the pages present in the resident set. The IRM is the simplest way of
accounting for the nonlinearities observed in the swapping curves of real programs.
Note that an assumption of completely random references would imply linear
swapping curves. The IRM is not a good model of overall program behavior.

It has been shown that the LRUSM is a result of the LRU memory policy.
This model uses an “LRU stack,” which is a vector that orders the pages by
decreasing recency of reference. Just after referencing r(r), the first position will
contain r(z). A stack distance g(1) is associated with the reference r(r). g(r) is
the position of r(1) in the stack just after r(r — 1). The LRU stack has the property
that (a) the LRU policy's resident set of capacity s pages always contains the
first s elements of the stack, and (b) the missing-page rate is the frequency of
occurrences of the event g(1) > 5. The LRUSM assumes that the distances are
independent random variables with a common stationary distribution. Thus the
probability of referencing a page in stack at distance j is

Prig(t) = j1 = b; for all 1

Ifby 2 by 2--2b;>--- = b, then the LRU policy is optimal both in fixed-
space and variable-space strategies. The LRUSM is slightly better than the IR M.

84 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

The above models do not adequately capture the essence of program behavior,
which demands the changing need for memory from one phase to another. A
realistic model must account for multiple program phases over locality sets of
significantly different sizes and must not rule out strong correlations between
distant phascs. Some phase-transition models of program behavior have been
developed which are more realistic than the last two models. Briefly, the program
model consists of a macromodel and a micromodel. The macromodel is a semi-
Markovchain whosc“states“uremuluallydisjuinlI()culétysctsandwhosc“holding
times™ are phases. The macromodel is used to generate a sequence of locality-set -
holding-time pairs (S, T). The micromodel is used to generate a reference substring
of length T over the pages of locality set S. For the micromodel, the IRM or
LRUSM may be used,

The page-fault rate function for process Py, denoted by fi(4, 5), is the expected
number of page faults generated per unit of virtual time when a given reference
string R, is processed by memory policy A, subject to the memory space con-
straints s. The page-fault rate function is one of the most important parameters in
the study of memory management. Most studies performed indicate that this
function is relatively independent of R;. For the fixed-memory allocation, the
space constraints are interpreted to mean that the resident set sizes must satisfy
=i(k) = s for all virtual times k. For the case of variable-space allocation, the space
constraint s is interpreted as the average resident set size of process P,, that is

d
L Y zk) (2.12)
dk=1

for a system with active processes. In both allocation schemes, the page-fault rare
for the total page is

d
S =3 flA.s) (2.13)
i=1
which is the figure of merit to be minimized, subject to the allocation constraints
o
z (—I)H'IJV, <M
r=1

where N, is the number of pages shared by r processes and M is the total number of
page frames in the main memory.

Another measure of the page-fault rate is the lifetime function e(z;), which
gives the mean execution interval (in virtual time) between successive page laults
for process Pgwhen it has =, of its pages in shared memory. The derivation of this
function assumes a given memory policy. A knee of a lifetime curve is a point at
which e4z,)/z; is locally maximum. The primary knee is the global maximum of
“i=o i Atypical lifetime curve is shown in Figure 2.16.

Several empirical models of the lifetime curve have been proposed. One is the
Belady model:

i g I — f.'-:‘,-‘ (2.14)

MEMORY AND INPUT-OUTPUT SUBRSYSTEMS BS

Time/ fault X
7
A Ak
S
LAY
7 elz2,)
L b LT T T .
i+ Primary knee
Ll
]
1
I
]
I
I
]
L
]
E i
U F |
= ’ 1 5
= e 1/ Increasing load control
E ,
> ’ :
I
Secondary knee
L}
'
I
|
|
i
- |
i]
‘4 ' a
> = 2,

Mean size of resideni set
Figure 2,16 A lifetime curve,

where z; is the mean resident set size, a is a constant, and k is normally between 1.5
and 3. In general, « and k depend on the program characteristics. This model is often
a reasonable approximation of the portion of the lifetime curve below the primary
knee, but it is otherwise poor.

A second model is the Chamberlin model:

e 2.15
=TT Ay 5y

This model was derived empirically as a result of many measurements performed
on computer systems. It was observed that the lifetime curve e,(z;) is concave for
small values of z, #hd becomes convex as z; increases, as shown in Figure 2.16. Two
parameters characterize the behavior of a process P, in the concave-convex model:
¢;» the number of pages for which e, = b,, that is, for which the mean execution
interval is half of the longest interval for P;; and b;, the mean execution interval
between page faults when the procass P, is allocated a memory space of ¢; page
frames. The parameter ¢, gives a relative measure of the memory space needed to
enable the process 1o be executed efficiently. It can be seen from Eq. 2.15 that the

B6 COMPUTER ARCHITECTURE AND PARALLEL PROCTSSING

transition from the concave to the convex region occurs at z; = ¢;/y/3, and that
in z; = ¢; the curvature in the convex region is maximum. Therefore, ¢, could be
considered a reasonable approximation to the memory demand of)

Although this model has a knee, it is not a very good match for real programs.
It is generally quite casy to measure lifetime curves [rom real data and such
measurements are generally more reliable than estimates from models. If the page
transfer time is S then the page-fault rate for process Pos

S | 5

e L

This equation can be used to derive an optimization problem, which can then be
solved to obtain optimum memory space allocation in a multiprogramming system.
Another measure that is often used is the space-time product of an active pro-
cess. This product is the integral of a program’s resident set size over the time T'it
IS running or waiting for a missing page to be swapped into shared memory. Let
=(1) be the size of the resident set at time 1, t; be the time of the ith page
fault (i = 1...., K).and D be the mean swapping delay. The space-time product is

T K
ST = Y=+ D X:{.rl) (2.17)
r=1 i=1
If s is the mean resident set size, we can approximate ST by noting that the first
sum becomes sT. If we approximate the second sum by sK and note that sK =
S(K/T)T = sf(s)T, where f(s) is the missing page rate, the space-time product is
approximated by

ST = Ts[1 + Df(s)] (2.18)

Although Eq. 2.18 is simple to compute, the approximation is not very reliable.
Note that §f(s) = s/e(s) is minimum at the primary knee of the lifetime curve.
If D is large, choosing s at this knee will approximately minimize the space-time
product.

2.3.2 Optimal Load Conirol

Main memory is considered a prime system resource which is used dynamically
by the active processes in a multiprogramming environment. The number of active
processes (degree of multiprogramming) in a parallel processor system is usually
greater than the number of available processors so that when one of the running
processes is suspended the processor may switch to another active process. This
capability requires the memory be able 10 hold the pages of the active processes
in order 10 reduce the context switching time. In general, multiprogramming im-
proves concurrency in the use of all system resources. but the degree of multi-
programming should be varied dynamically 1o maintain both a low overhead on
the system and a high degree of coneurrency.

MEMORY AND INPUT-OUTPUT SURSYSTEMS B7

--—{_D_[]; Page tZ]» o
=" A

Page 110 ———

—I1T1] ficrro —rF
e
.

—{TTTTI] Fiero

|

Process queue
and -
load control

New Terminated
processes processes

Figure 2.17 A multiprogrammed multiprocessing virtual memory system model.

Usually these are two conflicting requirements. Increasing the degree of
multiprogramming may overcommit the memory to holding sets of only a few
pages or segments of the active processes. In such a case, a context switch to a
process with too small a working set may almost immediately encounter another
page fault, which would necessitate another context switch to get another procegs
with a small working set. If these activities occur continuously, the system is said to
be thrashing, whercupon its performance is degraded considerably as it spends
most of its time page-faulting and context-switching. The number of active pro-
cesses or the degree of multiprogramming (DOM) will be denoted by a time-
dependent variable d(r).

Figure 2.17 depicts the model of the multiprogrammed multiprocessor system.
This network consists of two main portions: the active nerwork which contains

BR coMpPUTIR ARCHITECTURE AND PARALLEL PROCESSING

the processors, memaory and the file memory, and the passive network which con-
tains a process queuc and the policies for admiting new processes lo active status.
A process is considered active if it is in the active neiwork, where it is eligible to
reczive processing and have pages in main memory. Fach active process is waiting
or in service at one of the three classes of resources in the active network, It waits
at the file 1/O class whenever it requires a segment Lo be transferred between main
memory und the disk memory, An active process walts at the paging device modules
whenever it requires i page to be transferred between main memory and a paging
device. such as a drum or fixed-head disk. Otherwise it is in the CPU station,

The box labeled * Process queue ™ contains a set of enabled (passive) processes,
a decision policy for activating them, and a load-control mechanism for controlling
d(r). Notice that each CPU node is usually considered to have a cache whose
action is transparent, i.¢., a cache miss does not necessitate a context switch. When
i process cither issues a file 1/O request or creates a page fault, it will releasc its
processor to another ready process and wait for the completion of the /O transac-
tion. Such a model, as depicted in the Figure 2.17, is called a closed queucing net-
work model with d processes, where o is the steady-state degree of multipro-
gramming.

In addition to the DOM, another parameter used in the memory management
model is the average total time used (o service each process which requested paging
device /. This time, which is denoted D;. is the demand per process for the ith
device. For each device, D, is the product of the mean number of requests per
process for that device and the mean time to service one request. For the paging
device, the demand per process grows with d because higher DOMs imply smaller
resident sets and higher rates of paging. For devices such as CPU and 1O, the
demand per process does not depend on . The demand for each CPU is the mean
execution time E of a process. The average number of page faults per process is
E/L(d), where L(d) denotes the lifetime or mean time between faults for a DOM
of d.

The demand for the paging device is D; = ES/L(d), where S is the mean time
to service one page transfer (exclusive of queueing delays). If the function L(d) is
not available from a direct measurement of the system, it can be estimated from
the lifetime curve of a typical program. One method to estimate L(d) is to set
L(d) = e(M/d), where ¢,(x) is the mean time between page faults for a typical
program when the given memory policy produces a mean resident set size of x
pages and M is the number of available pages of main memory.

The queueing network model of Figure 2.17 can be used to estimate the system’s
throughput X,. whicd is the number of processes completed per second. The
throughput is proportional to the average utilization of the CPUs, U, and is given
by N,E. Figure 2.18 illustrates typical CPU utilization curves as a function of
the DOM. The curve rises toward CPU saturation as the degree of multipro-
gramming 4 increases, but is eventually depressed by the ratio L(d)/S$, the utilization
of the saturated paging device. As suggested in Figure 2.18a, the DOM d, at which
Ld) = S is slightly better than the optimum d,,. Note that beyond dg. the system
begins to thrash.

MEMORY AND INPUT-OUTPUT SURSYSTEMS 89

Utilization
'y

]
v

\ CPU saturation

o e e e - - —

\ Lid) Paging
saturation

Degree of multiprogramming

{r) Small main memory

Utilization
4

A}

i

u

o

Degree of multiprogramming

(B) Large main memory
Figure 2.18 Optimum degrees of multiprogramming.

0 COMPUTER ARCHITICTURE AND PARALLEL PROXCESSING

This is known as the 1. = § criterion, which can be used as an adaptive load
control. It keeps the averaged lifetime at least as great as the page-transfer time
for a page fault. The size of the main memory certannly allects the [= § eriterion,
A very large main memory ollsets the instabilitics in memory policies and over-
heads created when the resident sets attempt to overflow the available memory
space. The degree of multiprogramming can increase considerably in a system
with a very large main memory without significant overhead because ol swapping,
as illustrated in Figure 2.18h. Onee the main memory is large enough to allow the
CPU utilization to be near one for some (. further increases of memory cannot
increase the system throughput or decrease the response time.

An approximation of the optimum DOM, as characlerized by the relation
L. = aS for some constant. is not quite adequatc. Thisapproximation fails when the
system is 1/O bound or when the maximum lifetime £ does not exceed the page-
Sswapping time, The optimum DOM is actually achicved by running each process
at its minimum space-time product. which is more diflicult 1o achieve than the
L = 4§ criterion. Recall that if the total delay (queucing time plus swap time S)
per page fault is large, the space-time product will be minimized approximately
al the primary knee of the lifetime curve.

This knee criterion can be used as a basis for load control. It is more robust
than the L = § criterion. The knee criterion is a memory allocation strategy
which achieves the maximum ratio of the lifetime to the memory allotment for
process in a multiprogramming set. To limit the drop of CPU utilization. a maxi-
mum limit d,,,. is set on the DOM. The function of the load controller is to attempt
to set d,,, near the current optimum. If the number of submitted processes at a

CPU
utilization

4

H
}
= :
& K
i With limited queue
H L
! Y
H HY
! i X
H | =
i Y
H i L)
: i K ” _
i i %, Without limit
i ", it memaory
i : ., Queue
g ! “"‘-.4.
i i ®
; i
A -
”’" ';"I-l\

Number of submitted Processes

Figure 2.9 Elfect of the load control on CPU wtilization.

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 91

given time docs not exceed d,,,,,, all are active: otherwise. the excess processes are
held inactive in a memory queue. The limit effect of the memory queue is illustrated
in Figure 2.19. In practice, the optimum DOM varies with the work load, therefore
an adaptive control is required to adjust d,,,.

The load control is accomplished by a component of a dispatcher, which is
part of the operating system. The purpose of the dispatcher i5 to control the
scheduling of processes and allocation of main memory so that the throughput
for cach work load is maximum. The dispatcher consists of three components: the
scheduler, the memory policy and the load controller, The scheduler determines
the composition of the active set of processes. It does this by activating processes
from the passive process queue into the active set. The memory policy determines
a resident sct for each active process and, as we have seen, the load controller
adjusts the limit dy,,, on the degree of multiprogramming. All memory policies
manage a pool of unused space in main memory. The pool contains the pages of
resident sets of recently deactivated processes. Under a fixed-space policy, the
pool also contains pages which have recently left the resident sets of active pro-
cesses. By comparing the measured memory demand of a process with the pool’s
size, the scheduler avoids activating a process if the activation would overload the
system,

2.3.3 Memory Management Policies

The following definitions will be used in describing various paging algorithms.
Given a reference string R(1) = r(1)x(2) - - - K(t), the forward distance d,(x) at time
t for page x is the distance of the first reference to x after time r. That is,

' dld {I.- if r(t + k) is the first occurrence of x in R(x) — R(1) (2.19)

oC il x does not appear in R(x0) — R(r)

Similarly, we define the backward distance b(x) as the distance to the most recent
reference of x in R(r). Hence

bi(x) = {k if r(t — k) is the last occurrence of x in R(r) (2.20)

o] il x never appeared in R(r)
Let Q(Z) be the page replaced from resident set Z when a page fault occurs.

Below we list examples of commonly used demand-paging page-replacement
memory policies for fixed-space and local-policy allocation schemes:

1. Least recently used (LRU)— At page fault replaces the page in Z(t) with the
largest backward distance:

O(Z(1) =y if and only if b()) = max [b,(x)] (2.21)
xedir) . *
2. Belady's optimal algorithm (MIN)— At page fault replaces the page in Z(1)
with the largest forward distance:

Q(Z(n) = y if and only if d,()) = max [d,(x)] (2.22

i

92 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

This algorithm minimizes the number of page laults.

3. Least frequent ly used (1.FU) Replaces the page in Z(1) that has been referenced
the least number of times.

4. Fivst-in, first-out (FIFG) Replaces the page in Z(/) that has been in memory
for the longest time.

5. Clock algorithm (CLOCK) A disconcerting feature with the FIFO algorithm
18 that it may end up replacing a frequently referenced page because it has been
in memory for the longest time. This problem is alleviated by associating a
usage bir with each entry in the FIFO queue, which is made circular, and estab-
lishing a pointer for the circular queue. The usage bit for an entry in the queue is
set upon initial reference. On a page fault, the pointer resumes a cyclic scan
through the entries of the circular queue, skipping used page frames and re-
setting their usage bits. The page frame in the first unused entry is selected for
replacement. This algorithm attempts to approximate LRU within the simple
implementation of FIFO,

6. Last-in, first-out (LIFO)— Replaces the page in Z() that has been in memory
for the shortest time.

7. Rundom (RAN D) — Chooses a page in Z(r) at random for replacement.

Since the LRU policy is one of the most popular algorithms. we will describe
its implementation. Associated with this policy is a dynamic list known as the
LRU stack, which arranges the referenced pages from top to bottom by decreasing
order of recency of reference. At a page replacement time, the LRU policy chooses
the lowest-ranked page in the stack, therefore, the contents of an s-page resident
sct must always be the pages occupying the first s stack positions. When a page is
referenced, the stack is updated by moving the referenced page to the top and
pushing down the intervening pages by one place. The position at which the refer-
enced page was found before being promoted to the top is called the stack distance.
A page fault occurs in an s-page resident set at a given reference if and only if the
stack distance of that reference exceeds s. In the fixed partitioning strategy, each
active process has its own LR U stack

Algorithms such as LRU, LFU, LIFO, FIFO., and RAND, which are called
nonlookahead algorithms, are realizable. MIN is a lookahead page-replacement
algorithm and is not realizable, but provides a benchmark on which we can measure
the relative performance of the realizable algorithms. Figure 2.20 illustrates the
typical relative page-fault rates for various paging algorithms. The page-fault
rate f(A. s) for a given algorithm A and resident size constraint s can be computed
from the reference string R.

Let $(A. 5. R) represent the set of pages in the resident set-size constraint s
at time instant j when processing a reference string R. A natural expectation is
that il the size constraint s increases, the following inclusion property would hold:

S{A. 5. R)c S(A.s + ILR) (2.23)

However, the FIFO algorithm has the disadvantage of exhibiting erratic and
undesirable behaviors under certain circumstances and does not always satisfy

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 93

JiA, 5)

Nonlookahead algorithms

Figure 2.20 Page fault rates of realizable and nonrealizable algorithms for various resident set sizes.

the inclusion property. For example, consider the processing of the reference
string R = 12314, using the FIFO algorithm, when the address space of the process
is the set M = {1, 2, 3, 4} for two resident size constraints, s = 2 and s = 3. Below
we show the sequence of S states generated as a result of the processing of the string
R. In this illustration, an asterisk (») after a reference indicates that no page
lault occurred, otherwise, a page fault did occur.

P8, 1SS, 08, S
R=1" 2 gy iy
i W) 1}$=2
23173801 g
1061 b dkile 2
v UL kD) 3}.;:3
E B L

Notice that S3(FIFO, 2, R) & S4(FIFO, 3, R) and, hence, does not satisfy the inclu-
sion property. The normalized page-fault rate can be obtained from the expression

. N(A, 5, R)
A, 5) = — 2.24
J(A,5) R (2.24)

94 coMmpuUTER ARCHITECTURE AND PARALLEL PROCISSING

where N(A, s, R) is the number of page faults which occurred in the processing of
the reference string R using algorithm A and a resident set-size constraint of .
| R|is the cardinality of R or the number of references in R. For the example above,
[(FIFO.2) = 1.0 and f(FIFO, 3) = 0.8. Algorithms which satisfy the inclusion
property are called stack algorithms.

Although this method of derivation of the page-fault rate for a given reference
is adequate, it does not account for the mechanisms by which programs generate
reference strings. Morcover, the procedures do not readily extend to the analysis
of variable-space policies which use the locality of reference model. We will now
consider the paging algorithms for variable-space partitioning strategy using a
global policy.

Several important algorithms for implementing variable-spacc partitioning
strategies have been used. One approach to the memory management commonly
used extends the idea of a fixed-space replacement policy simply by applying the
replacement rule to the entire contents of main memory, without identifying
which process is using a given page. Examples of this approach are:

1. Global LRU — which arranges all the pages of the active processes into a single
global LRU stack. Whenever an active process runs. it will reference its locality
set pages and move them to the top of the global LRU stack.

Global FIFO —which arranges all the pages of the active programs into a single
global FIFO list.

(=]

A load control is necessary for the successful implementation of the global
LRU policy, for if there are too many active processes, pages will be taken from the
resident set of the least recently run process (whose pages will tend 1o occupy the
lowest stack positions), whereupon that process, when run, will soon experience a
page fault. This type of policy has been found highly susceptible to thrashing and
may not perform better than fixed-space partition policies.

There is a variation of the global LRU policy which uses a usage bit u and a
changed bit ¢, which are associated with every resident page. The bit u is set to 1
by the addressing hardware on any reference to the given page and is cleared 1o 0
by-the memory management routine. The bit ¢isset to 1 by the addressing hardware
on the first write reference to the given page and is cleared when the page is loaded
or when the disk copy is updated. At intervals, the memory management process
scans all resident set pages and maintains them in four lists according to the
possible values of the bits (1, ¢). At a page fault, the first page of the first non-
empty list in the order (1.€) = [(0,0). (0, 1).(1.0). (1, 1)] is selected for replacement,
This policy, which approximates LRU. is subject to the same problems as LRU
when used for multiprogramming.

Another variation of the global LRU and FIFO combines clements of both
policies. It is called global FINUFO (first-in, not-used. first-out). In this policy,
all the pages of the active processes are linked in a circular list with a pointer
designating the current position. Each page has a usage bit which is set by the

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 95

hardware to | when the page is referenced. Whenever a page fault occurs, the
memory policy advances the current-position pointer around the list clearing set
usage bits and stopping at the first page whose usage bit is already cleared to 0:
this page is selected for replacement. This paging algorithm was used in the
Multics system. The above variable-space allocation policies do not attempt 1o
identify locality sets and protect them from preemption.

Another example of the variable memory partitioning is the working-set
(WS)algorithm, which takes into account the varying memory requirements during
the execution of a process. Denning (1968) introduced the concept of working set 1o
describe program behavior in virtual memory environments. The working set
W) is used to denote an estimator of a locality set. W(r, ()) of a process at
time 1 is defined as the set of distinct pages which are referenced during the exccu-
tion of the process over the interval (t — 0, 1), where is the window size. The
working-set size w(s, 0) is the number of pages (cardinality) of the set W(, ().

This algorithm retains in memory exactly those pages of each process that
have been referenced in the preceding 0 seconds of process (virtual) time. If an
insufficient number of page frames are available, then a process is deactivated
in order to provide additional page frames. Notice that the working-set policy
is very similar to the LRU policy in that the working-set algorithm specifies the
removal of the LRU page when that page has not been used for the preceding (0
time units, whereas the LRU algorithm specifies the removal of the sth least
recently used page when a page fault gccurs in a memory of capacity s.

The success of the working-set algorithm is based on the observed fact that a
process executes in a succession of localities; that is, for some period of time the
process uses only a subset of its pages and with this set of pages in memory, the
program will execute efficiently. This is because, at various times, the number of
pages used in the preceding 0 seconds (for some appropriate 0) is considered to be
a better predictor than simply the set of K (for some K) pages most recently used.
Thus for example, a compiler may need only 25 pages to execute efficiently during
parsing, but may need 50 during code generation. A working set with the correct
choice of the parameter § would adapt well to this situation, whereas a constant
K over both phases of the compiler would either use excess space in the syntax
phase or insufficient space in the code-generation phase. The working-set paging
algorithm, although eflicient, is difficult to implement, however.

Yet another variable-partitioning strategy which can use local or global
policy is the page-fault frequency (PFF) replacement algorithm. The PFF also
attempts to follow variations in localities when allocating memory space to
processes. This policy is implemented using hardware usage bits and an interval
timer and i® invoked only at the time of a page faull. Let ¢’ and ¢ for ¢ > (" denote
two successive (virtual) times at which page faults occur in a given process. Also.
let R(1. () denote the PFF resident set just after time t. given that the control
parameter of PFF has the value ¢. Then

Wit —1") ile —t' >0

|
R(t.) =
b]f\'(!'. M + r(r) otherwise

96 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING P v 8

“where (1) is the page referenced at time ¢ (and fourfd AHssiagaang(hic resident
set). The interfault interval ¢ — ¢"is used as a working-set window and the param-
eter) acts as a threshold to guard against underestimating, the working set in
casc of a short interfault interval. Hence, if the interval is too short, the resident
set is augmented by adding the fault page r(r). The usage bits, which are reset at
each page fault, are used to determinc the resident set if the timer reveals that the
interfault interval exceeds the threshold. Note that 1/0 can be interpreted as the
maximum tolerable frequency of page faults.

Various experimental studies have shown that WS and PFF, when properly
“tuned " by good choices of their control parameters, perform nearly the same as
each other and considerably better than LRU. The PFF may display anomalies
for certain programs since it does not satisfy the inclusion property, Since global
memory policies make no distinctions among programs, their load controls
have no dynamically adjustable parameters. However, these controls cannot
ensure that each active program is allocated a space-time minimizing resident set.
Local memory policies such as WS and PFF offer a much finer level of control
and are capable of much better performance than global policies. These policies,
however, present the problem of selecting a proper value of the control parameter
@ for each program.

Finally, we present an ideal variable-space memory policy which could be
local or global. This is the optimal variable replacement algorithm called VMIN,
The VMIN generates the least possible fault rate for each value of mean resident-
set size. At each reference r(r) = i, VMIN looks ahead: if the next reference to
page i occurs in the interval (1, 1 +), VMIN keeps i in the resident set until that
reference; otherwise, VMIN removes i immediately after the current reference.
Page i can be reclaimed later when needed by a fault. In this case, 0 serves as a
window for lookahead, analogous to its use by WS as a window for lookbehind.,
VMIN anticipates a transition into @ new phase by removing each old page from
residence after its last reference prior to the transition. This results in a behavior
depicted in Figure 2.21. In contrast, WS retains cach segment for as long as 0 time
units after the transition. VMIN and WS generate exactly the same sequence of
page faults for a given reference string. The suboptimality of WS results from resi-
dent set *“overshoot " at interphase transitions, as shown in Figure 2.21. However,
since VMIN is a lookahead algorithm, it is not practical.

Prefetching techniques Prefetching is a technique to reduce the paging traffic
during locality phase transitions. Recall that there are two aspects of phase
transition behavior. The first aspect is the removal of the pages of the old locality
set; the second aspect is the fetching of the pages of the new locality set.,§ prefetch
policy must dictate three main issues:

1. When do you initiate a prefetch?
2. Which block or blocks do you prefetch?
3. What replacement status do you give the prefetched block ?

MEMORY AND INPUT-OUTPUT SURSYSTEMS 97

Resident
sel size
(pages)

WS

at+b

Irremovable
overshoot

i

r t+8

Virtual time

Figure 2.21 Behavior of policies near a transition between phases.

One prefetch technique is the well-known swapping, commonly used in multi-
programmed or time-sharing systems. If we do not use swapping, in such systems
a context switch occurring because of the end of a time slice is followed by a slow
purge of the process’s blocks from memory. Similarly, later reactivation of the
process is followed by a slow and tedious recognition of the locality set. This
behaves as a transition of localities. A compromise between demand fetching and
swapping is to demand fetch during a process’s active intervals and use swapping
at the end and beginning of the time slice to save and restore, respectively, the
working set of the process.

Another type of prefetching technique is based on the frequently observed
principles of spatial locality and sequentiality of references in programs. An
example of a prefetching algorithm exploiting this property is the so-called one
block lookahead (OBL) algorithm. We illustrate this algorithm by considering a
stack of s pages, where s is the page allotment to the process. The demanded page
is placed at the top of the stack in the usual manner. When a page fault occurs, the
page that is the sequential successor of the demanded page in the virtual address
space is prefetched. provided it i1s not resident in main memory. When such a
prefetching occurs, an additional replacement is done and the prefetched page is
placed at the bottom of the stack. Thus, if another page fault occurs before the

PH COMPUTER ARCHITECTURT AND PARALL L PROETSSING

prefetched page is referenced, then the prefetched page is replaced. In all other
respects, this stack s maintained like an LRU stack.

This algorithm, when applied 10 database systems and veclor operations,
performs adequately where a high degree of sequentiality is present. It has been
observed that common programs in execution do not possess adequate spatial
locality unless the page size is rather small. As we shall see in Section 2.4, systems
with caches employ a small block size so the OBL algorithm may be used to ad:
vantage in them. Also, since the units of information transfer from memory to the
processor are quite small, and the instruction stream tends to exhibit a high degree
of sequentiality. sequential prefetching of instructions into an instructor buffer
is commonplace. Sequentiality may be induced in the data streams for vector in-
structions. Prefetching algorithms must be designed carefully so as not to nullify
the potential gain in the reduction of page faults or misses by a disproportionate
increase in the number of fetches.

2.4 CACHE MEMORIES AND MANAGEMENT

Cache memories are high-speed buffers which are inserted between the processors
and main memory to capture those portions of the contents of main memory which
are currently in use. They can also be inserted between main memory and mass
storage. Since cache memories are typically five to 10 times faster than main
memory, they can reduce the effective memory access time if carefully designed
and implemented. This section discusses the characteristics of cache memories
and the various cache management strategics. Four cache organizations —direct,
fully associative, set associative, and sector mappings —are discussed. Cache
replacement policies are used to decide what cache block to replace when a new
block is to be brought into the cache.

2.4.1 Characteristics of Cache Memories

The success of cache memories can be attributed to its property of locality of
references. The effectiveness of the cache in capturing localities is measured by the
asymptotic fraction of program references found in the cache, called the hit ratio h.

The design of a cache memory for a concurrent computer system usually
involves the minimization of a number of parameters, such as the miss ratio (1 — h),
the access time, the delay due to a miss, and the penalty for updating main memory.
Italso involves maintaining data consistency between the cache and main memory
and, in the case of a multicache system, maintaining data consistency between the
multipie caches. These and other aspects are discussed below. First, we describe
the functional operation of a cache.

Operation of a cache The cache memory generally consists of two parts, the cache
directory (CD) and the random-access memory (RAM). The memory portion is
partitioned into a number of equal-sized blocks called block frames. The directory,

g St o i

i 120

MEMORY AND INPUT-OUTPUT SURSYSTEMS 99

which is usually implemented as some form of associative memory, consists of
block address tags and some control bits such as a “dirty ™ bit, a “valid ™ bit, and
protection bits. The address tags contain the block addresses of the blocks that are
currently in the cache memory. The control bits are used for cache management
and access control. Hence, the cache contains a set of address-data pairs, cach of
which consists of the main memory block address and a copy of the contents of the
main memory block corresponding to that address.

The cache directory can be implemented as cither an implicit or explicit lookup
table. In the explicit directory, the referenced data is fetched from the memory
portion of the cache only after the corresponding address tag has been searched.
The implicit lookup table permits the simultancous searching of the address tags
and the fetching of the corresponding data. However, the presence of the desired
block and its location in the cache are only detected at the end of the cache cycle.

The operation of the cache is simple in concept, as illustrated in Figure 2.22,
for a fetch operation. The processor generates is a virtual address which is mapped
into a physical memory address via a translation lookaside buffer (TLB). If there
is a TLB hit. the corresponding physical page address is retrieved to form the phys-
ical address and the replacement status of the TLB entries is updated. If the TLB
does not contain the (virtual, physical) address pair required for translation,
the virtual address is passed along to the address translator to determine the
physical address. This translation is performed, as discussed in Section 2.2, by
using the high-order bits of the virtual address as an entry into the segment and
page tables. The address pair is returned to the TLB (possibly replacing an existing
TLB entry).

From the cache’s viewpoint, the physical address formed consists of two com-
ponents: the block-frame address and the byte within the block. The block-frame
address is used to search the cache directory. If there is a march (cache-hit), the
block (or part of it) containing the target locations is copied from the RAM portion
of the cache into a shift register. Concurrently, the replacement status of the cache
entries is updated. The shift register is shifted to select the target bytes which are
transmitted to the CPU. If a miss occurs during the fetch operation, the block is
fetched from main memory by using the physical address. The fetched block is
stored in the cache and also passed to the shift register for selection of the target
bytes.

Recall that, in a paging system, a miss in main memory (page fault) necessitates
a context switch to another runnable process because the time to service a page
faultis usually much greater than the context switch overhead. In a cache, however,
the time to service a miss is comparatively smaller than the context switch time
and, because of the small size of the cache, misses are more frequent than page
faults. Also, context switching will invariably cause the new process Lo encounter
initial cache misses in an attempt to restore its “locality set™ in the cache. For
these reasons, the process does not context switch on a cache miss.

Design aspects In general, the design of a cache is subject to different constraints
and trade-offs than that of main memory. One of the important parameters in the

100 compuTER ARCHITECTURE AND PARALLEL PROCESSING

Virtual address

Byte

Page i

ROl il within
page

Scarch TLB

yes

(page address supplied)

memory using block

real address; select
~-CD entry for

replacement

1

Store block
in cache

Figure 2.22 Simplified Alowchart of cache operation for a fetch.

4 4
no
Block g
! { L [P within
‘ block
Select TLB 5:;‘3 g Update
entry for dynamirr."::lsddorcss o i A
replacement translator (DAT)| |31 of TLB, Search Update
cache replacement
= | directory (CD) status of CD
Translate 4
virtual address
to real address
\ l
Put (virtual, no Get block
real) address
pair in TLB Get block from groes cactia

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 101

design of a cache memory is the placement policy, which establishes the correspon-
dence between the main memory block and those in the cache. Other organizational
parameters are the fetch policy, the replacement policy, the main memory update
policy, homogeneity, the addressing scheme, cache and block sizes. and the cache
bandwidth. The main memory update policy decides the time the information in
memory is to be updated once the processor has requested a modification of the
information. The fetch policy denotes how, when, and what information is to be
fetched into the cache. The cache could be partitioned into several independent
caches to segregate various types of references. An unpartitioned cache is said
to be homogeneous. The cache could be multiported so that two or more requests
can be made to the cache concurrently. In this case, a priority algorithm must
exist 1o select one of the arbitrating requests. Furthermore, the cache accesses can
be pipelined as in many mainframes, so that more than one cache access can be in
progress concurrently. For example, four cache requests can each be in a unique
phase of completion if the cache cycle is partitioned into four segments as follows:
priority selection, TLB access, cache access, and replacement status update.

Cache bandwidth The cache bandwidth is the rate at which information can be
transferred from or to the cache. The bandwidth must be sufficient to support the
rateof instructionexecution and 1;O. The bandwidth can be improved by increasing
the data-path width, interleaving the cache for concurrency, and decreasing the
access ime. The cache bus width affeCts the cost, reliability, and throughput of the
system. An increase in bus width increases the access time because of packaging
problems and additional gate delays because of line drivers and receivers. It also
diminishes the signal-switching noise immunity. However, the wider the bus, the
faster the data transfer. The number of fetches to main memory required to load a
block of a given size depends on the bus width. Interleaving the cache can keep
the bus width low while maintaining the bandwidth.

Effects of multiprogramming Most cache-based concurrent computers are, in fact,
multiprogrammed. In most cases, each process gets to use the processor for a time
slice or quantum in a round-robin fashion until the process terminates. Because
of the alternate use of the processor, a significant fraction of the cache misses is
due to the loading of the data and instructions for the new process which is
assigned to the processor at the end of an intertask interval. This assumes that
there is only one context in the cache in a given time slice and cache is purged at
the end of the time slice. However, if the cache contains multiple contexts, a con-
text switch may still increase the **cold-start™ miss ratio because some of the
new process’s context may have been displaced in the cache. Note that the contexts
can be distinguished in the cache by augmenting the address space of each
context with a unique address space identification or process identification.

The problem of high cold-start miss ratios can be alleviated in a number of
ways. A large cache can be used <o that several processes’ contexts will exist in it
simultaneously. The scheduling policy can be modified to give priority to a task
most likely to have its context in the cache, The time slice can be increased so that

102 COMPUTER ARCHITECTURE AND PARALL LT PROCTSSING

the frequency of task switches is reduced and a task, once assigned to the processor,
will get a chance to reach a steady-state (* warm-start ') miss ratio before the next
context switch. Anothersolution is to save the Process’s context in main memory on
a context switch and reload it en masse the next time it is assigned to the processor.

Data consistency The problem of having several different copies of the same block
in a system is referred to as the cache coherence or data consistency problem. This
problem exists in a uniprocessor with cache when the processor can be active
after modifying a word in the cache #nd before the copy in memory has been
updated. The effect of the main memory update policy on data consistency will
be discussed in Section 2.4.3, If the processor is the only unit 1o access memory,
then the coherence problem is a mere theoretical observation without practical
bearing on the correctness of the program execution. However, practical systems
contain 1/O units which require access to the memory. The method in which the
1/O unit accesses the memory in a system with cache may create consistency
problems, as will be scen in Scction 2.5. In a multiple processor system with
caches, the data consistency problems may also exist between caches. Solutions
to such coherence problems will be discussed in detail in Chapter 7.

2.4.2 Cache Memory Organizations

The cache is usually designed to be user-transparent. Therefore, in order to locate
an item in the cache, it is necessary to have some function which maps the main
memory address into a cache location. For uniformity of reference, both cache
and main memory (MM) are divided into equal-sized units, called blocks in the
memory and block frames in the cache. The placement policy determines the
mapping function from the main memory address to the cache location,

Placement policies There are basically four placement policies: direct, fully
associative, set associative, and secior mappings. In discussing the mapping
functions, we will consider a specific running example in which each processor’s
cache is of size 2K (2048) words with 16 words per block. Thus the cache has
128 block frames. Let the main memory have a capacity of 256K words or 16,384
blocks. The physical address is representable in 18 bits.

Direct mapping This is the simplest of all organizations. In this scheme, block i
of the memory maps into the block frame i modulo 128 of the cache. The memory
address consists of three fields: the tag, block, and word fields, as depicted in
Fig#re 2.23. Each block frame has its own specific tag associated with it. When a
block of memory exists in a block frame in the cache, the tag associated with that
frame contains the high-order 7 bits of the MM address of that block. When a
physical memory address is generated for a memory reference the 7-bit block
address field is used to address the corresponding block frame. The 7-bit tag
address field is compared with the tag in the cache block frame. If there is a match,
the information in the block frame is accessed by using the 4-bit word address field.

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 103

Cache Main memory
— 7bits =~— . Block 0
[Ta - Block |
e : Block2 |
Block 0 . v
4 4
L] -
-
[T . Block 127
. Block 128
Block | : Block 129
. W .
- LU . - .
[T .
Block 255
] . Block 256
i, T T Block 257
.
. -
[T : S e Block 4095
Block 127 i RO Block 4096
- vy -
- R, .
" Siay .
Block 16383
Main memory address 7 T 4
b ~ A — A ~ J
Tag Block Word

Figure 2.23 Direct mapping cache organization.

This scheme has the advantage of permitting simultaneous access to the
desired data and tag. If there is no tag match, the output data is suppressed. No
associative comparison is needed and, hence, the cost is reduced. The direct map-
ping cache also has the advantage of a trivial replacement algorithm by avoiding
the overhead of record keeping associated with the replacement rule. Of all the
blocks that map into a block frame, only one can actually be in the cache at a time.
Hence, if a block caused a miss, we would simply determine the block frame this
block maps onto and replace the block in that block frame. This occurs even when
the cache is not full.

A disadvantage of direct-mapping cache when associated with a processor is
that the cache hit ratio drops sharply if two or more blocks, used alternately,
happen to map onto the same block frame in the cache. The possibility of this
contention may be small in a uniprocessor system if such blocks are relatively
far apart in the processor-generated address space. The possibility of this conten-
tion in a multiple-stream shared cache system may be much higher than that in a
uniprocessor because many concurrently active streams are sharing the cache.
The instruction cache in the 1BM System/370 Model 158 uses direct mapping.

104 COMPUTER ARCHITECTURE AND PARALLEL PROC LS8N

— b e 4 Soche
e Block |
I Tag | 2 P
- -
Block 0
-
-
S . -
[Ta .
-
Block | _ .
.
. —_— ——
[Tag | : Block i
gl SRR SSRGS =
r_..-r--___.___. -
Tag * -
.
Block 127
E .
Block 16382
Block 16383

Main memory address 14 4]

LS M s

Tag
Figure 2.24 Fully associative cache organization,

Fully associarive In terms of performance, this is the best and most expensive
cache organization. The mapping is such that any block in memory can be in any
block frame. When a request for iwblock is presented to the cache. all the mapentries
are compared simultaneously (associatively) with the request to determine if the
request is present in the cache. In the running example, 14 tag bits are required to
identify the memory block when it is present in the cache. Figure 2.24 illustrates the
fully associative buffer, The mapping flexibility permits the development of a
wide variety of replacement algorithms, some of which may be impractical.
Although the fully associative cache eliminates the high block contention, it
encounters longer access lime because of the the associative search.

Set associative This represents a compromise between direct- and associative-
mapping organization. In this scheme, the cache is divided into SsetswithE= MS
block frames per set, where M is the total number of block frames in the cache. A
block #in memory can be in any block frame belonging to the set i modulo S, as
shown in Figure 2.25 for the running example. where M = 128 and § = 64,

MEMORY AND INPUT=OUTPUT SUBSYSTIMS 105

; i Block 0
: .
T sl Block |
L] Block 0 .
Set 0 Tag ML =LA
Block 1 “ Block 63
Tag Block 2 Block 64
Set | T . ol Block 65
fecits. | Block 3 .
3 -
-
A, TP S—r.
Tag Block 126 J Block 4095
Set 63 A - = -
L Block 127
Block 16383
Main memory address B 6 4
A A
;—_Y"__'k_ﬁ v
Tag Set Word

Figure 2.25 Set associative cache organization,

Several possible schemes are used for mapping a physical address into a set
number. The simplest and most common is the bit-selection algorithm. In this
case, the number of sets S is a power of 2 (say 2*). If there are 2/ words per block.
the first j bits, 0,...,j — 1, select the word within the block, and bits Jyevord + k
— 1 select the set via a decoder. Hence, for the example, the 6-bit set field of the
memory address defines the set of the cache which might contain the desired block,
as in the direct-mapping scheme. The 8-bit tag field of the memory address is
then associatively compared to the tags in that set. If a match occurs, the block is
present. The cost of the associative search in a fully associative cache depends on
the number of tags (blocks) 1o be simultaneously searched and the tag field length.
The set-associative cache attempls 1o cut this cost down and yet provide a per-
formance close to that of the fully associative cache. For this reason, it is the most
commonly used placement policy for cache memories.

The main consideration in choosing the values for S and E depends on direc-
tory lookup time, cost, miss ratio, and addressing. Note that $ and E are inversely
related, assuming a constant M = SE = 2™ The set size defines the degree of

106 COMPUTIR ARCIITECTURE AND PARALLEL PROCESSING

associutive search and thus the cost of the search. The addressing scheme used
can indicate whether an overlap in cache lookup and the translation operation
(via TLB) is possible in order to reduce the cache access time. Reeall that the only
address bits of a virtual address that get mapped in a virtual memory system are
the ones that specify the page address. In order 1o illustrate how an overlap may
oceur. assume that there are 2/ byles per block and 2* sets in the cache. Let the
page size be 27 bytes. Assuming bit selection mapping. p — j bits are immediately
available 1o choose the set, since the low-order p bits. which specify the byte within
the page. are invariant with respect Lo the mapping. It is quite advantageous to
make p — j > k so that the set can be selected immediately, in parallel with the
translation process. This overlap is shown in Figure 2.26. However, ifp—j<k,
then the search for the cache block can only be narrowed down to a small number,
L e)

The effect S and E have on the miss ratio can only be measured by trace-
driven simulation on a typical work load. However, Smith (1978) derived a relation-
ship between the miss ratio for fully associative and set associative cache organiza-
tions. Assuming an LRU stack-programming model with coefficients drawn from
the lincar paging model, it was shown that the ratio of the miss ratios between the
sel associative and the fully associative cache is

5 — 1/5
R(E, S) = EE—_I']—S for E> 3 (2.26)

~igure 2.27 shows an example on the effect of Sand E on the miss ratio. Experimen-
tal results have shown for uniprocessors that a set size in the range of 2 to 16 per-
forms almost as well as fully associative mapping at little cost increase over direct
mapping. Notice that when E = m, it is the fully associative mapping and when
E = 1,1t is the direct-mapping scheme. Table 2.2 shows some examples of systems
that use set-associative cache and the choices of § and E.

Sector mapping In this scheme, the memory is partitioned into a number of
sectors, cach composed of a number of blocks. Similarly, the cache also consists
of sector frames, each composed of a set of block frames. The memory requests
are for blocks, and if a request is made for a block not in cache, the sector to which
this block belongs is brought into the buffer with the following constraints: A
sector from memory can be in any sector in the buffer, but the mapping of blocks
in a sector is congruent. Also, only the block that caused the fault is brought into
the cache, and the remaining block frames in this sector frame are marked invalid.
A valid bit is assocified with each block frame to indicate the blocks in a sector
that have been referenced and hence retrieved from memory. Figure 2.28 illustrates
the sector-cache organization for the running example with 16 blocks per sector
and, henee, eight sector frames in the cache. This cache also attempts to reduce the
cost of the map since it requires relatively few tags, which permits simultancous
comparisons with all tags, The 1BM System/360 Model 85 has a sector-cache
organization with 16 sectors and 16 blocks per sector,

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 107

i

!

S YN [N -y

p.
L

Page

number

S |
b e
nUmBEr 1 block

Search TLB

TLB

ves (page address supplied)

Virtual address

Use set nu
10 select

R

mber
sel

address 1

hit
el
no
r r Jr
Send virtual Update
g::i; Tr{';rB address to replacement
Py dynamic address status of
placement translator (DAT) TLB

A

Translate
virtual address
to real address

Read out set of

ags

.......

Put (virtual,
real) address
pair in TLB

Figure 2.26 Set associative cache operations,

addres!

Compare

5

Update
replacement
status of set

memory using hlock

Get block from

real address; select
set entry for
replacement

\

Store block
in cache

—

Get block
from cache

3 {
Select
ldesired bytes|

from block

A

Send byte/
word to
processor

108 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Vary number of sets

I T T T I l I I T T I I T I I l T T
WEFV-APL-WTX-FF1
0000 p— Q-10000, 12 byte blocks —
: 0 32 sets)
o \ seses B wels -
b ".\ ----- 128 sets =
0.050 = g Y s—e—em D65 scls =]
- AN -
LY
B
= - \ A
s e
= = 512 sets =
0.010 == —
-]
0.005 —_— =
3 I 1 Y e N O
0 20,000 40,000 0,000

Cache capacity

Figure 2.27 Miss ratios as a function of the number of sets and cache capacity (Smith, 4CM Surveys,
1982). 3

Block and cache size sclection In caches, a block is so small that spatial locality
effects are the main consideration in the choice of the block size. The effect of
cache size and block size on the hit ratio relates to spatial and temporal localities.
For a given cache size, the miss ratio improves as the block size increases, because
an increase in the block size captures more of the spatial locality. This improvement
is achieved to the detriment of the temporalocality, because the total number of

Table 2.2 Typical values
of § and £ in example

systems

System (S, E)
Amdahl 470v/6 (2, 256)
Amdahl 470v/7 (8, 128)
Amdahl 470v/8 4, 512)
IBM 370/ 168-3 (8, 128)
I1BM 3033 (16, 64)
DEC VAX 11/780 (2. 512)

Honeywell 66,60 (4, 124)

[Tag

Block O

Sector (0

Block 1

Block 0
Block |

Block 16

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 109

Sector ()

Sector |

-
Block 14
Block 15

| Tag | Block 16
Sector 1 :

Block 31

M~
[—

| Tag Block 112
Sector 7 .

Block 127

Tl N, ([Block 1636
E E Sector 1023
[Block 16383

Main memory address 10 [4 4

s ¥ e Y
Sector Block Waord
(tag)

Figure 2.28 Sector mapping cache.

blocks in the cache is diminished proportionally. At some point, the miss ratio
curve levels off for a black size such that the effects of a block-size increase on
both localities compensate each other. Beyond this block size, most of the spatial
locality has been captured and the miss ratio curve inflects, as the cache is not
capable of holding the temporal locality of the program.

When the number of blocks in the cache is so small that blocks are swapped
constantly between the cache and the memory, the efliciency of the cache goes to
zero. The block size corresponding to the minimum miss ratio depends not only
on the cache and its organization but also on the program behavior or work load.
Because properties of programs vary widely, the choice of block and cache sizes
must result from extensive simulations based on traces of programs constituting
a representative work load. In Figure 2.29, we show two exa mple miss ratio curves
for a given work load in which the time slice @ is varied and represented in a
number of memory references. 1t can be seen that Q also aflects the selection of the
block and cache sizes.

Vary block size

,_I T T T T Il T T T T I T T T T 'I T
' WIVAPL- WX
0.100 |— Q- 10000, 64 wers
L -'.
I“
o]
0050 + %
2
a L
> " . 16 bytes
0010 — S “(‘-----A- s, —
- -__'“-,‘\ e T
B 128 bytes 32 bytes]
Mer 0 TeEERs e .
i 256 bytes
f= =2
i L .l 1 1 I 1 'l A i I i A ' A I L A
il 20,000 40,000 60,000
Cache capacity
ta) Quantum size, Q= 10,000 references
Vary block size
[—I| R B TR B l S I T
\
0100 }— WEV-APL-WTX-FFT —
L L Q:-250K, 64 sers -
0.050 ¢ -
2 i
g
w
= 0.010 —
= =
L 32 bytes
0.005 |- "'"-*---—~—-£---........_..-_...__......
™ i
| \.\ - “*-—--(_“ bytes J
128 bytes ~ e 1
0.001 —
- 1 1 1 1 Ly 1
3 ek e
4] 20,000 40,000 60,000

Cache capacity

(1) Quianitum size, Q= 250K references
Figure 2.29 \liss ratios as fumction of block size and cache capacity (Smith, ACA! Surveys, 1983},

I

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 111

For a given block size, a cache size increase is accompanied by an improvement
in the miss ratio as more of the temporal locality is contained in the cache, Finally,
the size and behavior of supervisor programs are a major factor in the selection
of the cache size, us the supervisor typically uses the processor 25 to 60 percent of
the time.

Practical translation lookaside buffers The TLB is typically designed as a small
sel-associative memory. However, the design is somewhat different from a set-
associative cache. Unlike the set-associative cache, the inpul to the TLB is the
virtual page number with no offset. However, if bit-sclection algorithms were
used, the low-order TLB entries would not be used efficiently. Therefore, the
virtual page number is first randomized by hashing and the result applied as
input to the TLB. Hashing can be performed rapidly by a set of exclusive-or
logic on some bits of the virtual page number. However, the overhead due to
hashing can be avoided, as in the VAX 11/750, which hasa TLB with 256 sets and
a set size of two. In this case, the set is selected with the high-order address bits
and five low-order bits of the page number. Other examples of systems with TLB
are the IBM 3033 (with 64 sets and two elements each), Amdahl 470V/6 (with
128 sets and two elements each), and the Amdahl 470V/7 and V/8 (with 256 sets
and two elements cach).

During a context switch, the entries of the TLB become invalid if only one
context’s address-space identifications reside in the TLB. Hence, the TLB is
purged or invalidated at context switch. The purge operation, usually initiated by
a privileged instruction, may create and extra overhead, For example, in the IBM
3033, it takes 16 machine cycles to purge the TLB.

Virtual versus physical addressing We have seen that the cache is addressed
using the physical address. Although in the set-associative caches the translation
of the virtual address can be overlapped with the lookup in the cache, the lookup
cannot be completed until the physical address is available. The cache access
time could be significantly reduced if the translation step could be eliminated. In
this case, the cache would have to be addressed directly using the virtual address.
The major problem with using virtual addresses to access the cache is that these
names are defined within a process. Two processes may know the same physical
word under different virtual names. Conversely, the same virtual name may
designate different blocks for different processes. If the processor is multipro-
grammed, a context switch is accompanied by a cache sweep or purge. Otherwise,
the new process may issue a reference with a virtual name which will hit on a block
that had the same name for the previously running process, This problem can be
avoided by augmenting the virtual address with an address-spaez identification,
which makes it unique.

However, there is still a possibility that several copies of the same physical
block may exist in the cache under different names. This is called the synonym
problenm and causes coherence problems within the cache. If a block is shared among
several active processes, several of its copies can be present in the cache under

HIZ COMPUTER ARCHITECTURE AND PARALLEL IPRONCESSING

different names. The solution is to avoid multiple copies of the same block in the
same cache by detecting the synonym when it occurs and enforcing consistency.
Synonyms can be detected by mapping the virtual address into a physical address
via a TLB and determining if there exist other virtual addresses in the cache that
have the same physical address. This can be accomplished by a mapping device
that is inverse (o the TLRB and is called an inverse translation buffer (ITB). The
ITB is accessed on a physical address and indicates all the virtual addresses
associated with that physical address that is in the cache.

To reference memory, the virtual address is applied to the TLB at the same
time as the cache. If a miss oceurs in the cache, the physical address obtained from
the TLB is used (o request a fetch of the block f[rom main memory. Simultaneously,
the physical address is also used to scarch the ITB to determine if that block is
already in the cache under a different name (virtual address). If it is, the virtual
address is renamed and moved to its new location to avoid multiple copies of the
same block for consistency reasons. Also, the block-fetch request 1o memory is
discarded. Otherwise, the block fetched from memory is used and the ITB and
cache updated accordingly. The addressing of the cache by virtual addresses may
decrease the cache access time on a hit atthecost of increased hardware complexity.

Partitioned cache Another issue in the design of a cache is the partitioning of the
cache into several independent caches in order to segregate various types of
references. Usually, segregation is limited to reference types that are hardware-
detectable: for example, instructions versus data, or references in user mode
versus references in supervisor mode. It could be extended to compiler-imposed
segregation, in which references could be tagged at compile time. This extension,
however, violates the principle of cache transparency, which simplifies the com-
piler. Splitting the cache generally improves the cache bandwidth and access time.

In a pipelined system, the processor is usually physically partitioned into two
units, the I unit and the E unit. The 1 unit performs instruction fetch and decode
and forwards the decoded instruction to the E unit, which executes it. In the
execution phase, the E unit may [etch and store operands. By splitting the cache
into data (D) and instruction (I) caches, the I cache (D cache) can be placed next
to the T unit (E unit) to permit simultaneous access and reduce the access time.
While one instruction is being fetched from the I cache, another instruction in the
E unit can be accessing its operands from the D cache.

Itis generally known that a significant fraction of misses is due to task switch-
ing for the execution of supervisor tasks. In order to reduce these miss transients,
the cache can be split between a user cache and a system cache, Depending on the
mode of exccution, one cache or the other is referenced. Note, however, that the
supervisor cache may still have a high-miss ratio because agits large working set.

The most obvious problem with split-cache organization is the consistency
problem, because two copies of an information may now exist in separate caches.
For example, in a pipelined processor, instructions being modified by the E unit
must be stored in the I cache before they can be fetched. However, the E unit can
access the D cache, Even if we assume that programs are not sell-modifying, a

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 113

cache block may contain instructions and data. Presumably, this effect can be
minimized by designing compilers to insure that instructions and data are in
separate blocks. Another problem with split cache results in possible inefficient
usc of cache memory. Locality properties of instructions and data are not homogen-
cous in this case. The miss ratio may increase as a result of splitting the cache.
However, this depends on the work load. Examples of systems with split cache are
the S-1 and the Amdahl 580.

2.4.3 Fetch and Main Memory Update Policies

As discussed earlier, this policy is used to decide when and what information to
fetch into the cache. There are three basic types of fetch policies which are applied
to cache: demand, anticipatory, and selective fetches. Demand and anticipatory
fetch techniques used for paging systems can be applied to caches, In selective
fetch, some information, such as shared writeable data, may be designated as
unfetchable: further, there may be no fetch-on-write when a miss occurs, as dis-
cussed below.

Prefetching can be successfully used to prefetch the needed blocks ahead of
time so that the cache miss ratio can be reduced. The major factor in determining
the usefulness of prefetching in a cache is the block size. It has been found that a
block size of less than 512 bytes results in useful prefetching. Only the OBL pre-
fetch algorithm is usually considered because of its ease of implementation at
cache speeds. Several possibilities exist for deciding when to initiate a prefetch.
For example, for all i, prefetch block i + 1 if a reference is made to block i for the
first time.

This technique, termed always prefetch, while good in reducing the miss ratio,
creates more traffic to the cache and main memory. In multiprocessor systems,
this may be detrimental. A refined technique is to prefetch block i + 1 only on a
miss to block i. Yet another technique is tagged prefetch which, in addition to
prefetching on a miss, also prefetches block i + 1 if a reference to a previously
prefetched block i is made for the first time. Prefetching has been found to be very
effective in pipelined systems such as the Amdahl 470 V/8, which uses prefetch on
a miss.

One technique used to reduce the wait time of the processor during the fetching
of a missed block is to forward the requested word directly to the processor first
and then complete the fetching of the block in a wraparound fashion. This tech-
nique is called load-through or read-through.

The time when a word in memory is updated after a write depends on the
write policy. One possibility, write-through (WT), is to update directly the memory
copy of the data word. In this case, the copy of a block in the cache is never different
from its copy in memory. Two variations of write-through are possible. The first
is the write-through-with-write-allocate (WTWA) policy, in which a block is loaded
into the cache on a write-miss. In WTWA, both read and write references con-
tribute to the hit ratio. The sccond possibility is the wrire-through-with-no-
write-allocate (WTNWA) policy. in which blocks are loaded into the cache on

1L « omrning B ARCHITECTURE AND PARALLEL PROKESSING

read-misses but not on write-misses. In WT. the effectiveness of the cache is limited
by the fact that 5 to 30 percent of ull memory references are write operations.
When no buffer is provided at the memory. the processor is blocked during
the write-through. In general, one can consider that the memory address and
data registers form a bufler of size one. If another write-through or a miss occurs
when i previous write has not been comipleted, the processor is blocked.

In order 10 estimate the effect of the write policies on the average memory
dceess time, let w, be the fraction of writes in the system and assume a nonread-
through feteh policy. Also, let 1, t, . and Iy be the cache cycle time., the memory
cyele dime (1, < 1,). and the block transfer time. respectively, Assuming 1 WTWA
policy. the average time to complete a reference when no buffer is present is

e+ (1 =My + o, —1) (2.27)

Note this assumes that the writes (o cache and main memory are performed
simultancously in the case of a hit and the miss ratio is 1 — h, For WTNWA
policy. the arerage cvele time is

L+ (1= (1 = W)ty + wlr, — L) (2.28)

Note that the hit ratios in Eqs. 2.27 and 2.28 are not equal because of the differ-
ence in block-frame allocation, However, both equations have the same lower
bound r, + w(1,, — t,), which occurs when h = 1. This lower bound limits write-
through policies 1o low-performance caches.

To improve the effectiveness of WT. increased buffering must be provided
at the memory. The processor stores the write request in a FIFO buffer and then
proceeds. To take full advantage of the buffering capability, block transfers due
to cache misses should have a higher priority in accessing memory than write
requests. Additional hardware checks the write buffer to ensure that a block re-
quested by the processor does not contain any word waiting in the FIFO buffer,
If the buffer contains such a word. the block is updated accordingly beflore it
reaches the cache. At the limit, if the buffer has infinite size, the processor never
waits for the completion of a write request, and thus the cache with WT policy
can potentially achieve an average reference time of

e + (1 =)y (2.29)

The alternate policy is wrire-hack (WB). The WB always allocates a cache block
frame on a miss, When a write-hit occurs, only the block in the cache is modified.
The memory update takes place when a block is replaced and swapped back to
memory. Note that since the block-frame allocations in WB and WTWA are
the same, the hit ratios are equal for both policies, The policy in which all replaced
blocks arc written back to memory is called simple write-back (SWB). Of course,
the SWB results in many redundant swaps, during which the Processor waits.
To improve performance, a replaced block is written back only if it has been
moditied. A “dirty™ bit is included in the directory with the tag of each cache
frame. The dirty bit is reset when the block is loaded in the cache and is set when
uny word of the block is modified. This strategy is called flagged write-buck (FWB),

MEMORY AND INPUT-OLTPUT SURSYSTEMS T1S

and it increases performance at low cost by reducipg the average time the processor
wails on a cache miss,

To further improve the performance, the write-backs on misses have Lo be
buffered. In a technique called flugged register write-back (FRWB). the modilied
block selected for replacement is first written in a fast register to aveid interfering
with the fetch. The new block is then brought into the freed cache block frame. 1
block write-back to the memory is activated later and is completed ™ ini the back
ground.” In an extension 10 this policy, the blocks to write back could be buffer
as the modified words are in WT. The fetching of blocks from memory 1o cache
on misses is given higher priority, and special hardware checks for tic possib!:
presence of a requested block in the write-back queue. The cost effectiveness of
such an extension depends on the relative improvement achieveable bevond
FRWB.

As for WT, we can estimate the efficiency of write-back strategies for some
special cases. For SWB, the average reference time is

.+ 2(1 — g (2.30)
For FWB. it is
e+ (1 = h)rg + wytg) =t + (1 = h)(1 + wyiy (2.31)

where w; is the probability that a replaced block has been modified.

The comnarison between WT and WB is rather complex and depends on the
program behavior. However, threcqnajor factors influence the effectiveness of
WT or WB in a given system: the extent of memory traffic, data consistency, =nd
reliability. WT usually results in more memory traffic, which can be very detri-
mental to the performance of a system with multiple processors. However, when the
WT is used. main memory is always consistent with the cache, since the meimory
always has the updated copy of the data. Thus the failure of a processor and its
cache permits recoverability.

2.4.4 Block Replacement Policies

When a miss occurs in a cache and a new block has to be brought in, a decision
must be made as to which of the old blocks is to be overwritten if the cache is full.
Various replacement algorithms have been proposed to select the block to b~ dis-
placed. The property of locality of reference in programs gives a clue as to the 1ypes
of algorithms that may result in a reasonable strategy. We would expect that « good
replacement rule would appropriately treat a program’s pages, depending on their
reference probabilities. Since the cache has a small size it is generally overcommit-
ted; that is, it is generally impossible to keep the working set of even one program
in the cache at a time, except for some systems, such as Amdahl 470 V/& and
IBM 3033, with a 32K or more byte cache. Also, because of the consirained
mapping mechanisms, only fixed-space replacement algorithms arc gencrally
considered. For example, in the set-associative cache, the block to be replaced is
within a set and thus the replacement algorithm is invoked for block frames
within that set.

B sl
IO COMPUTTR ARCHUTTCTURE AND PARALLFL PROCESSING

Examples of commonly used fixed-space policies are feast recently used
(LRU) which, at a cache miss. replaces the least recently-referenced block of the
resident set; first-in, first-out (FIFO) which, at a miss. replaces the longest resident
block: and random (RAND) which, at a miss. replaces a randomly chosen block
from the set in the cache. It has been found that, on the average, LRU performs
better than FIFO or RAND and is therefore preferred.

We will discuss the implementation of the LR U policy, which is used very often
s it cache-replacement policy. Associated with an instance in this policy is a
dynamic list. called the LRU stack, in which is arranged the referenced block-
Irame numbers from top 10 bottom by decreasing recency of reference. At a block
replacement time, the LR U policy chooses the lowest-ranked block-frame number
in the stack. Each time a black frame of the cache is refcrenced, the stack is updated
by moving the referenced block-frame number x to the top and pushing down the
intervening blocks by one position, thereby giving x a new lease on its life in the
cache. The position at which the referenced block frame x was found in the stack
before heing promoted to the top is called the stack distance of x.

Forsmaliset sizes. the LRU policy may be implemented cfficiently in hardware
S dts Lo operate at cache speeds. Three implementation schemes are discussed.
The first scheme employs a set of fast counters. called age registers. Each age
register is associated with every block in a set. As an example, consider the LRU
stack implementation of a four-block set. Associate a 2-bit counter with each block,
which car therefore count from 0 1o 3. Each time a reference results in a hit and a
block frame with count f is referenced. its counter is reset to 0 and all other counters
with a value less that j are ircremented by 1. The other counters are unmodified.
If a reference vesults in a miss and the set is full, the block with counter valuej = 3
is overwritten with the new block and its counter is reset to 0. The counters of the
other three blocks are incremented by 1. The block with a counter value of Jcan
be ubtained by an associative search of the counters. If the set is not full when the
miss oceurs, the counter associated with the new block loaded from main memory
is reset to O and all others incremented by 1. A little thought will show that the
counter values of oceupied blocks are always distinct.

A second implementation employs a set of D flip-flops to maintain the status
of the blocks which currenily reside in the cache. A few logic gates can achieve the
updating function. Since there is plenty of time to update the LRU stacks for cache
misses. only the updating for hit requests is considered in the example. For a set
containing E blocks, that is. for a set of size E. log, E bits will be sufficient to address
any given block in the set and a total of E log, E bits are enough to keep all the
necessary information for LRU replacement operation. Figure 2.30 shows one
example of an LRU stack with set size equal to 4. In this example, the four words of
tie stack are denoted as X. ¥. Z, and W, Register X corresponds to the top & the
stack and register W the bottom of the stack. Register X contains the block
number XX register Y contains the block number Y, ¥,. and so on.

The number of the block just accessed is available on lines I, and I, and the
number of the least-recently-used block is available as W, By, Three control
signals, NX, N Y and NZ. are provided. cach of which controls its corresponding

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 117

Hit clock
AL Fat o -
Iy T Xy N Yo 7y S Wy,
7 D 7 D D = D Cem e —— B
ck ch ck ck
' e
=] Vrny e
ck ek | ck ck
'fl X\ B .'I'_l ~ 7| ~ W I o
D = D) D =)] .
NX NY NZ

NX=(X, & L v(Xg® Iy
NY=(¥, i)Yy » Iy
NZ=(Z;m)28 Iy)

Figure .30 An implementation of the LRU algorithm.

block in the LRU stack. N X is 1 if the block that has just been accessed is not block
number X ; otherwise, N X is 0. The values of N Yand NZ can be obtained similarly.
Whenever a request results in a hit, a hit clock is generated immediately to control
the updating process. Each of these three control signals, together with the hit
clock, determine if the corresponding block should be shifted to the right in
the LRU stack. The number of the block that has just been accessed is loaded into
the leftmost pair of D flip-flops every time a hit in this set occurs. The contents
of the other pairs are shifted to the right until the previous position of the just-
accessed block is reached. The rightmost pair of the D flip-flops always indicates the
number of the least recently used block in the set associated with this LRU stack.

A third implementation uses E£(E-1) active bits of status for a set with E
clements. These E(E — 1) active bits are derived from an E-by-E binary matrix in
which the diagonal elements are passive and always zero. When the black in the
jth block frame is referenced, the jth row of tife binary matrix is first set to all 1's
and then the jth column is set to all 0's. It is easy to show that, using such a scheme,
the most recently used block is always the block in the block frame that has the
largest number of 1's in its row. Similarly, the least recently used block is in the
block frame with the smallest number of 1's in its row.

The three implementation schemes discussed above require a number of
status bits that increase with the square of the set size. For a small set size (4 or 6),

HE coMmpurer ARCHITECTURE AND PARALLEL PROCESSING

it is acceptable. However, for machines with a large set size (8 for IBM 370/168-3;
and 16 for IBM 3033), it may be too expensive and slow. In such systems, the set of
elements is partitioned into nonoverlapping groups. The LRU group is determined
and the LRU element within the group is selected for replacement. If this scheme
were applied to a set size of 8, in which the groups consist of 2 elements each, the
implementation would use 20 active status bits instead of 56.

It has been shown that, in general, the effect of cache replacement algorithms
on the performance of the cache js secondary when compared to the effect of the
mapping on performance. The fully associative cache is most sensitive to the re-
placement algorithm (and least sensitive to mapping), while the direct-mapping
cache is the most sensitive 10 mapping (and least sensitive to the replacement al-
gorithm).

2.5 INPUT-OUTPUT SUBSYSTEMS

In this section, we review techniques for handling 1,0 processing. Several schemes
are presented to handle different types of I/O transactions. Interfacing methodolo-
gies for slow, moderate, and fast devices are given. Methods for handling single,
multiple, and priority interrupt requests are discussed. Techmiques used to achieve
maximum concurrency of I/O and CPU processing are introduced. Architectures
of some intelligent 1/O subsystem controllers are presented. Example I/O proces-
sorsdiscussed include the IBM channels, the CDC integrated peripheral processing
units, and the Intel I/O processor.

2.5.1 Characteristics of 1/O Subsystems

The performance of a computer system can be limited by compute-bound jobs or
input-output (1/0Q) bound jobs. The emphasis in the following discussion is on the
1/0O problem and various techniques which can be used to manage I/O data transfer.
An example 1/0 subsystem for a dual processor system is shown in Figure 2.31,
The subsystem consists of 1/0 interfaces and peripheral devices. Sometimes the
distinction between the device and its associated interface is fuzzy. The I/O inter-
face controls the operation of the peripheral device attached to it. The control
operations are initiated by commands from the CPU. The set of commands used
to accomplish an 1/O transaction js calied the device driver or software. ‘The
functions of the interface are to buffer and perform data conversion into the 're-
quired format. It also detects transmission errors and requests regeneration of an
/O transaction in case of error. Moreover, the interface can interrogate, start,
and stop the device according to commands issued by the CPU. In some cascs,
the interface can also interrogate the CPU if an urgent attention is requested by
the device. Not all interfaces possess these capabilitics and many design options
are available depending on the device characteristics. Below. we outline a few
devices and their speed characteristics,

MEMORY AND INPUT-OUTPUT SURSYSTEMS 119

Memory Memory

ii ii ii Address bus i ii

I . V2 | TR I

cPU CPU

|] ﬁ v Controlhusv i I[A

L

170 1O
; interface interface
140 A y
subsystem: Y "
110 170
device device

Figure 2.31 1/O subsystem in a dual processor system.

There are many different types Of peripheral devices. Most of them are electro-
mechanical devices and hence transfer data at a rate often limited by the speed of
the electromechanical components. Table 2.3 shows some typical peripheral
devices. Bubble memories, disk drums, and tape devices are mass storage devices
which store data cheaply for later retrieval. Typical capacities of mass storage
devices are: fixed-head and moving-head disks 512M bytes; floppy disks, IM
bytes; 9-track tape, 46M bytes; and cassette tape, from 64K to 512K bytes.
Display terminals are input-output devices which consist of keyboards and cathode
ray tubes (CRT). The keyboard acts as input while the CRT is the output display.
In some cases where the CRT is replaced by a printer, the terminals are called
teletypes.

Since terminals are often used interactively and are relatively slow devices, a
reliable technique for transmitting characters ‘between the processor and the
terminal is serial data transmission. This method is cheaper than parallel trans-
mission of characters because only one signal path is required. Data communica-
tion over long distances is usually done serially. For this reason, remote communi-
cation can be done over telephone lines by using a modem (modulator-deriodulator)
interface. The modem is used at each end of the transmission line. There are a
variety of character codes used in the transmission of data. However, one of the
standard codes often used is the American Standards Committee on Information
Interchange (ASCII). which uses seven-bit characters.

120 compuTER ARCHITECTURE AND PARALLEL PROCESSING

Table 2.3 Some 1/O devices

1/0 device Function Data rate
Bubble memories Mass storage 300K, 4M cps
Chiurged-coupled devices Mass storage S00K, 4M cps
[2isk Mass storage
Fixed head 30K, 2M cps
Moving head 30K. IM ¢cps
Floppy 25K cps
Display terminal Input-output 10-300 cps
Line printer Output
Tmpact 100-3000 Ipm
Electrostane 300-40,000 Ipm
Ink jei 100-3000 Ipm
Tape drive Mass storage
Reel 1o reel 15-300K cps
(7, 9 tracks)
Cassette 10-400 cps

I/O subsystems may be classified according to the extent to which the CPU is
involved in the /O transaction. An I/O transaction can be the transfer of a single
bit, byte, word, or block of bytes of information between the I/O device and the
CPU, or between the 1/0 device and the main memory. The simplest 1/O archi-
tecture is one in which all processing is performed sequentially. In such systems,
the CPU executes programs that initiate, test the status of the device, perform the
data transfer, and terminate 1/O operations. In this case, the I/O transaction is
performed using program-driven 1/0. Most computers provide this option, as it
requires minimal hardware. However, as the action of the program-driven 1/0
is illustrated in Figure 2.32, the CPU can spend a significant amount of time testing
the status of the device. This busy-wait feature of the program-driven 1/O scheme
has the disadvantage that the time required to transfer a unit of information
between main memory and an 1/O device is typically several orders of magnitude
greater than the average instruction cycle. Therefore, even a moderate 1/O transfer
rate will significantly degrade the useful cycles of the CPU in performing actual
computations. Hence, the system performance may be degraded significantly.

A solution to this possible degradation is to permit concurrent CPU and
1/O processing, This can be achieved by a modest increase in the hardware com-
plexity of the interface. As the degree of concurrency is increased, the complexity
of ithe hardware will have to be increased to match the data transfer requirements.
One scheme uses a “pseudo™ program-driven 1/O method. In this scheme, the
CPU initiates the 1/0 transaction and resumes its regular computation. When
the device is ready with the data, in an input operation, the device controller
notifies the CPU of the presence of the data in the controller's buffer, The CPU
can then service the device to retrieve the dats. A siilar description can be made
regarding an output operation. The notification signal is referred to as an interrupr
reyeesis Anotaterrupt capability relieves the CPU from the task of periodically
testing the 10 device status,

MEMORY AND INPUT-OUTPUT SURSYSTEMS 121

Select 1/0 device

I

Read device
status

Read data
from device
interface

Figure 2.32 Programmed-driven 1/0.

Although an interrupt request may arrive asynchronously during an instruc-
tion cycle. most processors permit the current instruction cycle in progress to be
completed before the interrupt request is serviced. When an interrupt request is
issued by a device to the CPU, the CPU may not be willing to accept the interrupt. It
indicates its willingness (or unwillingness) to receive interrupts by setting (or
resetting) an interrupt-enable flag in the CPU by executing an enable (or disable)
interrupt instruction. This flag informs the device of the CPU’s interruptibility
status. When the CPU receives an interrupt, it acknowledges the interrupt by
issuing an interrupt acknowledge signal to the device controller. At the same time,
it saves the status of the interrupted process. The CPU then transfers control to a
specified location in memory where the service'routine of the device resides. The
transfer of control is similar to a procedure call. The device is serviced and the
status of the interrupted process is restored before its execution resumes, More
details on interrupts will be given later.

The ultiggate degree of concurrency in 1/O processing can be achieved if the
device controller is intelligent enough to perform the I/O transaction between the
device and the main memory without the intervention of the CPU. This parallel-
ism is very effective when a block of data is to be transferred. This requires the
device controller to be capable of generating a sequence of memory addresses.
However, the CPU is still responsible for initiating the block transfer. As an ex-
ample, we illustrate a typical sequence of operations required to transfer a block

122 COMPUTER ARCHITECTURE AND PARALLEL FROCISSING

ofdata from a device to main memory. The CPU initializes a buffer in main memory
which will receive the block of data after the 1/O transaction is complete. The
address of the buffer and its size are transmitted to the device controller, and the
address of the required block of data in the device, is also given ta the controller.

The CPU then executes a special “start 1/O ™ command which causes the 1/0
subsystem (o initiate the transfer. While the transfer is in progress, the CPU will
be free to perform basic computations, thereby improving overall system perform-
ance. When the block transfer is complete, the CPU is notified. Notice that since
the CPU and the controller share the main memory, the device will periodically
“steal™ memory cycles from the CPU 1o deposit the data in memory. The cycle-
stealing is very effective since the devices are ofien slower than the CPU. When
the CPU and the device controller conflict in accessing the bus or a memory
module, the device is given priority over the CPU in the access since it is a more
time-critical component. This type of 1/O data transfer scheme is called direct

Characier
System disassembly unit

clock § =y :
| i £ Transmit Parity

= data gen

i regisier

3 rmgﬁ*—J

shifv register | =~ o Serial output

Register
select and
read-write
cantrol

Transmitter empty

Status Generate interrupt
< register request

A
| Interrupt

5 % -
Write logic (1o CPU)

l:. Consrol # Receiver full
register

Interrupt

To Daia

CPU <> bust" ki=="y

data bus huffcr;

Internal bus

Y I H
Receive : .
Aira Parity

register aheck

: ~ :
T t ; L
& |
Receive

shift -< Serial input
| register

Character
v assembly unit

Figure 2.33 Simplified 1/0 interface for serial duata.

MIEMORY AND INPUT-OUTPUT sunsysTems 123

memory access (DMA). The 1/O controller often used for DM A operations is called
an I/O data channel.

Notice that the DM A facility does not yield total control of the 1O transaction
to the 1/O subsystem. The 1/O subsystem can assume complete control of the
1/O transactions if a special unit, called an 1/0 processor (I10P) is*used. The IOP
has a direct access to main memory and contains a number of independent data
channels. It can execute I/O programs and can perform several independent 1/0O
transactions between main memory and devices or between two devices without

_the intervention of the CPU.

2.5.2 Interrupt Mechanisms and Special Hardware

An example ol an interface used for slow 1/O devices is the universal asynchronous
receiver-transmitter (UART), often used in a microcomputer system. Its architec-
ture is depicted in Figure 2.33. Its function is to buffer and translate between the
parallel word format used by the CPU and the asynchronous serial format used
by most slow-speed devices. The interface consists of addressable 1/O registers
or ports. The formats of the status and control registers are shown in Figure 2.34.
The control register is a write-only register which is used to program the command
specification. The status register contains the current state of the device and the
outcome of the 1/O transaction. Of importance is the device's busy-ready flag,
which indicates whether the device is busy servicing an 1/O transaction or is ready
to receive the next transaction. Thi¥is the flag used when performing I/O transac-
tions in busy-wait mode.

fevice peady/busy L Device interrupt

Error indicators

(a) Readable status register

Mode ———r 1 Start device
(interrupt/noninterrupt) 'Y
Master resel/synchronization Character format

selector (baud rate) selectpr

(b) Writcable control register
Figure 2.34 Foratat of control and status registers in interface of Figure 2,33,

1

124 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

System
clock
— ! Repusier
. select
: and
. o read-write
control
(?I:’U P Data
i bus
rJh-ll:.,i buffers
us

—

1O
direction
register

Por

T]T :

Control
and
slatus
register
for port |

b~ > Bidirectional daa

Hand shake lines

Interrupt request
for port |

Internal bus

—

Control and

status
regisier
for port n

JAUnterrupt request
for port n

id

-
Hand shake lines

I

Port
n

ity Bidirectional
| data

Feer]

1/0
direction
regisier n

Figure 2.35 Simplified 1/O interface for paraliel data.

MEMORY AND INPUT-OUTPUT SUBSYSIIMS 125

Figure 2.35 shows an example of a simplified parallel interface which contains
n programmable data ports. Each data port is controlled by two associated control-
status and 1/O direction registers. By loading the appropriate command into the
control-status register, the CPU can define the characteristics of the data port.
Some definable characteristics arc /O direction, 1/0 mode, and intérrupt mode. For
the 1/O direction, each bit, group of bits of the data port can be individually
programmed as either input or output. For the /0 mode, each port can be pro-
grammed as direct 1/0, strobed 1/O, or bidirectional 1/0. Moreover, each porl can
be programmed as interrupting or noninterrupting. In direct /O, the device acts as
a passive unit, Strobed and bidirectional 1/0 modes are used with active devices
which must have established 1/0O communication protocols. A procedure, called
handshaking, of mutual communication and cooperation between the CPU and a
device is established so that the CPU knows when the input data is ready or when
the output port is vacant.

In a handshake interface. the circuitry that receives data must first indicate its
willingness to do so with a “ready™ signal. For the example in Figure 2.36, this
willingness is indicated by the INPUT LATCH EMPTY signal. Hence, if the input
latch is empty, the sender can strobe in the data into the interface and indicate the
presence of the data to the receiver (the CPU in this case) by generating an inter-
rupt request. Note that the interrupt request is generated only if the CPU is willing
to be interrupted (by the indication of the interrupt-enable signal from the CPU).

There are basically three classes of interrupts in a computer system: internal,
external, and software interrupts. Infernal interrupts, often called traps,are generated

Sender
To TRI- t 1
nput :
GPLdng &—— STATE Latch]
i buffer data | o
EN CLK i Vise

vice select :D__._l INPUT STROBE
Read 1/0 - -
(data ready): Handshake

({from CPU) H i
1R pp @[INPUT LATCH EMPTY | lines
s (data acknowledge)
Interrupt s \ a0
enable / FF

(from CPU) R
crd I

handshake
lines

Interrupt
request -+
(to status register
and interrupt circuit)

Figure 2,36 Input interface with handshaking.

126 COMPUTER ARCHITECTURE AND PARALLLT PROCESSING

within the CPU as a result of certain internal processor events. Traps may occur
because of arithmetic-exception conditions, such as overflow and underflow (divide
by zero) operations. It may also occur as a result of program faults, such as page
faults, protection violation or the exccution of an illegal instruction. Hardware
[aults, such as memory-parity errors and power failures, can also generate a trap.
On the oceurrence of a trap. the processor saves the state of the current process and
transfers control 10 a frup rector location in memory, where the trap event is
handled. Different trap vectors are often provided for different conditions or set
of conditions.

Software interrupts, or system calls, affect the processor state in much the
sime way as a hardware interrupt. An example of a software interrupl oceurs in
the execution of the SVC system call instruction provided in IBM System 370.
System call instructions are often used as a convenient and efficient method of
calling operating system utilities.

External interrupts can be further classified as maskable interruprs (M1) and
nonmaskable interrupts (NMI). Nonmaskable interrupts are considered the highest
priority interrupts because they cannot be ignored. even if the CPU interrupt
system is not enabled. NMI is particularly useful in monitoring a watchdog timer.
Itis also used in handling power failures, Maskabie interrupts are accomplished
through the use of an interrupt-enable flag associated with each device or set of
devices. When this flag is set by the CPU. the flag permits the interrupt issued by
the corresponding device to be received by the CPU. Otherwise, the device inter-
rupt request is masked and does not reach the CPU until the interrupt-enable
flag is set. The interrupt-enable flag is often incorporated in the device interface,
as shown in the example of Figure 2.36.

In many applications, more than one device operating in interrupt mode may
be connected to the computer. When an interrupt request reaches the CPU, it is
known that at least one device caused the interrupt. Notice that since interrupts
2re asynchronous, there is a possibility that twe or more devices will generate
interrupts simultancously. For the moment. assume that only one device caused
the interrupt. In the simple 1/0 bus configuration of Figure 2.31, the 1/O devices
are identified by their addresses. The address lines can also be used to identify the
interrupting device. The interrupting device can be identified by a simple polling
arrangement, as shown in Figure 2.37.

In this scheme, called the polled interrupt method, the interrupt received
by the CPU causes ii to transfer control 10 a specified location, where the interrupt
service routine is stored, The interrupt service routine consists of an interrupt
polling routine which polls the devices in order to establish the identity of the

senterrupting device. The polling is performed by testing the interrupt bit of the
status register of each device controller. When the interrupting device isdetermined,
acall is made to the particular device handling procedure. If more than one device
caused the interrupt, these devices are serviced in the order established by the
polling direction. Hence all the devices that ciused interrupt within the unpolled
subevele are serviced.

L

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 127

.

CPU INT ‘<]E_—

e
controller

4 Interrupt

/0 -
device 1

Memory (">

System bus
-

e -
controller n
Interrupt

A n

170

device n

\Y

Figure 237 Polled interrupt method.

This method is effective for slow- to moderate-speed devices. Howevgy. the
order of polling may have inherently established some form of fixed priority levels.
The various methods used for establishing bus-control priority will be discussed in
Section 7.2: that is, rotating daisy chaining, fixed-time slice, dynamic priority, and
independently using a built-in hardware that automatically selects the highest
priority device from the set of interrupting devices and also supplies the unique

128 compuTter ARCHITECTURE AND PARALLEL PROCESSING

starting address or interrupt vector of the device. This interrupt vector permits the
CPU to transfer control to the device service routine at the corresponding vector
location in main memory. A system that possesses this capability is said (o have
vectored interrupts.

A vectored-interrupt system requires a priority scheme to be provided in the
hardware. This priority scheme could be fixed, rotating, or dynamic priority. When
the CPU accepts an interrupt request, it sends an acknowledgement to the vectored-
interrupt controller, The controller, upon receipt of this acknowledgement. sends
the unique interrupt vector of the highest priority device of the set of unmasked-
interrupting devices. This action is illustrated in Figure 2.38. The interrupt-
acknowledge signal can in turn be transmitted to the highest priority device
controller, which caused the interrupt in order to reset the interrupt request from
that device.

2.5.3 1/0 Processors and 1/O Channels

The logical solution to the problem of obtaining maximum concurrency in [O
processing is to deploy an intelligent 1/O system which isolates the CPU from the
1/O peripherals. The CPU is therefore free 1o proceed at full speed with its primary
task of internal program processing and data manipulation, The intelligent 1/0
subsystem is facilitated by an 1/0 processor (I0P). Basically, an 1/O processor is
one which is capable of executing a small set of commands to service the 1/O re-
quest. Figure 2.39 illustrates the principal architectural components of an intelli-
gent 1/O subsystem. As shown in the figure, the 1/O processor is attached directly
to the system bus and is responsible for selecting and retricving individual 1/0
commands from main memory. 10P generally contains a processor specifically
designed for 1O processing and a number of 1/O channels. The channels provide
a4 communication path from the I/0 processor to the device controllers and
devices. I/O channels can also exist without the IOP, as shown in the figure,

In its simplest form, and when it exists alone, a channel may be a small pro-
cessor that performs DMA operations for a small set of devices. If the channel
is incorporated within an 0P, it is essentially a passive component with no
logical processing capacity of its own. When the channel possesses processing
capability, it is often used as an 1OP, Notice that a number of devices and their
controllers can be connected to an active channel, Hence, the channel must be
capable of sclecting the highest priority requesting device and also servicing it.
The stand-alone channels in the 1/O subsystem are used in various mainframes
such as the IBM 370. IOPs are used in such systems as the CDC 6600 and the

- and 16-bit Intel microcomputers.

Channel architecture There are basically two types of channels: selector and
multiplexor, as used in the IBM 370 systems. A selector channel is an IOP designed
to handle one 1/O transaction at a time. Once the device is selected., the set of 1O
operations for a given transaction runs lo completion before the next transaction
is initiated. The selector channel is thus normally used to control high-speed 1'0

1001338
wdnuaug

(NdD woj)
AFpajmouydr
idnasanug

“WAYSAS JANLI UL PAI0NII A KYTT ANl

129

13151821 ysep

< yoren]

HOULS

e

12po3UI
Aldoud

Fuipusd 1dnissiug

(Nndoon
1sanbay
idnuaaiug

e— 1=y)
L] .
. . (Nd2>
- . Y h# 135)
e
P— ‘W
< 0
h.f.. -
1=1- gy)
(s13[j041u00
. e diaap
. wousj)
. b saul|
1sanbay
¢ 1 dnaam
wapuadapu]
oy <
! F
yae|

1sanbas dnasaug

130 COMPUTER ARCIHITECTURE ANI? PARALILLL PROK ERSING

(N
- _.‘ ‘ : System bus }L \" = ~

6';“_\.' ':/(.I'll.} L G‘!TU/J [M!M] i ‘ME—'Mr

170 processor

| B |~ [aEa]
o{ e o] =T
0

1o

channel
channel

170 [-—

Y/

: 5 - L
- = .
” Ei I/ Multichannel l 170
"l e e e J I switch ontroller
e) 70 4 £ __;_nutrn? er h :mu | contrg
*._f"‘"“a 4.&{1@"“ =g | e
B - = A i 3
Low-] High- : ’ i
speed speed | Device ——y Q)c\- e
devices device 1o
controller J =

Figure 2.39 Architecture of an intelligent 1/O subsystem,

devices such as fixed-head disks and drums. Figure 2.40 shows the architecture
of a typical selector channel. The channel consists of word assembly and dis-
assembly registers (WAR and WDR), which store the current word being received
from the external device and the current word being transferred to the device,
respectively. The channel ean be made to receive or transmit data in character,
halfword, or fullword mode. Thus, the assembly-disassembly registers can operate
accordingly. The devices could be operating too fast (in the case of input) for the
channel to handle the data reliably. For example, the next character could arrive
before the current one in the WAR has been transmitted to the CPU, If this occurs,
an overrun error or buffer full interrupt is generated to the CPU, which ¢an
request retransmission. One way to alleviate this problem is to double-buffer the
in_gm data, This discussion can also apply to the WDR when operating on a slow
output device,

The initialization of the sclector channel requires the definition of the location
of the first word in memory, the length of the block to be transferred, and the
device address. The initialization program is stored in memory and can be ex-
ceuted by the channel in order to initialize its internal registers. The registers used
in this case are the device address register (DAR), the block count register (BCR),

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 131

WDR _I'arity
gen Outpul data
buffer (o device)
|] . [} fl
L1 Buffer| Bulfe Aulter overtlow
L] “m" mLerrapt
P lulll .
Send 7 Y
—{ PDAR ——= Device address
To] Channel Translor
IChannel Z A control e | i S
system <, A P —— > [BCR ——= complete
data bus = VAt ——— interrupt
-
= [MAR ——= Memory address
o 'y
{ Receive Bulfer
| : Tull - Parity
i @ { IT]—v- error
= intebrupt
F: : Parity Input
e check [daa (from device)
WAR & buffer

BCR: block count register

DAR: device address register

MAR: memory address register -
WAR: word assembly register

WDR: word disassembly register

Figure 2.40 Selector channel architecture.

and the memory address register (MAR). In order to perform an [/O transaction,
the CPU transmits a START signal and the device address to the channel on which
the selected device is attached. The channel then fetches the channel address word
(CAW) from a prespecified location in memory. This word, which was stored
prior to initiation of the I/O transaction, contains the starting address of the
I/O program (called channel program) to be executed by the channel.

The channel program consists of channel command words (CCW) or control
words or instructions. In most sophisticated channels, the channel programs may
include commands for positioning the read-write heads of disk drives, rewinding
tapes, and selecting or testing the status of a device. In addition, the set of CCWs
may contain instructions which permit looping and branching. The concept
of the single-channel program can be extended to the CPU preparing an arbitrare
number of 1/O transactions to be executed by the I/O subsystem as a sequence
of I/O transactions. This feature is known as command chaining.

If the addressed device is available, the channel executes the channel program
to perform the /O transaction: otherwise, the request may be queued or the
CPU notified of the unavailability of the device. Ifthe channel program is executed,

132 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

the DAR, BCR, and MAR are initialized and the block transfer initiated. Subse-
quently. the MAR contains the current memory address and the BCR contains
the remaining block length. After the transfer of a word between the main memory
and the channel, the MAR and BCR are incremented and decremented by one,
respectively, to reflect the updated values. When the BCR counts down 1o zero.,
a “transfer-complete™ interrupt is generated and sent to the CPU. In case of
errors (parity or lost character), an error interrupt is also generated. The typical
maximum data rate of a selector channel is on the order of 1 to 3 megabytes/s.

A multiplexor channel is an IOP which can control several different 1/0O
transactions concurrently. In this case, the data transfers are time-multiplexed
over the 1/O interface. This type of channel can be further divided into block and
character multiplexors. The character multiplexors are used to handle low-speed
devices, whereas block multiplexors are used for medium- and high-speed devices.
The block or character multiplexor consists of a set of subchannels, each of which
can act as a low-speed selector channel, as shown in Figure 2.41.

Each subchannel contains a bufler, device address register, request flag, and
some control and status flags. However, the subchannels share global channel
control. Each subchannel is required to have a memory address register (to main-
tain the current memory address) and a block count register (1o maintain the length
of block remaining to be transferred). In a character multiplexor channel with a
large number of subchannels, as in the IBM 370 system with 256 subchannels, it
is cost prohibitive to maintain these pairs of registers in the subchannels. Hence,
these registers are maintained in main memory and are accessed by the channel
control, as shown in Figure 2.41. The channel controller can select a subchannel
for a burst mode or multiplex mode. In the multiplex mode, the scan control
cyclically polls the request flag of cach subchannel. If the flag is set, the subchannel
is selected for a character or block transfer. The subchannel mode control is checked
to determine the direction of the transfer operation. When the character or block
is transferred, the next subchannel is polled. The block multiplexor interleaves
by blocks instead of characters as in a character multiplexor.

For example, suppose that three successive I/O transactions X, Y, and Z
are requested. Assume that each transaction is required to transfer a string
of n characters. X, Y, and Z are sequences of characters Xo, Xy,..., X,_y, Y,
Yy oliaerand ZRZy 2, respectively, If these transactions are
initiated on a selector channel, then the selector channel transmission appears
as XoX .. X, 1 Yo Y, ... Y002, 2, .«.Z,_. On a character multiplexor with
at least three subchannels, they may appear as XoYoZoX Y \2Zy... X, 1Y, .\ Z,_,.
On a block multiplexor programmed for k characters per blocks (assuming that
k < n), the sequence may appear as XoX L3N N Y N 252, va's gy
X Xipey vy o Fo¥e, Tk YoursZiZi oy ..y Zsy .y ... and so on. The frequent
swilching and the associated overhead degrade the performance of the character
multiplexor. The maximum data rate for the character multiplexor is typically
on the order of 100K to 200K bytes p/s. The maximum data rate of the block
multiplex or channel approaches that of the selector channel as the block size k
approaches the string length n,

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 133

Parity error
Error Error [*
interrupt
Character
lost
-
Character
selector
To system Channel Wwari
bus buffer anCh::arkll.)f K>
logic
* 4 Transfer i Send/
T Ry < et i i L receive
Semod: Read- : Scan - —
i oxc write : control 4
and 1 t t I
block count &
Memory
address <:: Channel
request —p— control
Status <: and status
completion
interrupt

Figure 2.41 Architecture of character-multiplexor channel.

Internal channel bus

Subchannel 1

~ Mode |
control
|__staws |

L]

_ Subchannel n—1
; Char
o Thairres

Req
Mag

4

— Request

Mode
control
i status

-

A

control

status

e T T TR ———-

With current technology, an 1/O processor can be implemented on a single
chip for migrocomputer and minicomputer systems. An example of an IOP on a
chip is the INTEL 8089 integrated IOP, which is capable of being interfaced to
8-bit and 16-bit systems. This IOP contains two independent 1/O channels and a
processor on the same chip, as shown in Figure 2.42. It also contains a bus inter-
face, an assembly-disassembly register file and an instruction fetch unit. In order
to enable autonomous operation of the 1/O channels, each channel maintains its
own register set, control and status registers. and a flexible channel controller.

1M COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

1/0 channel | Y
DMA REQ, —— Channel Main
DMA ——p | conirol control
TERMINATE,
Register J [=50
r e | [— AR it
| et B il control and [T——_> Status
———— arbiter
1/0 channel 2 Internal
bus Address/
DMA REQ, — [Channel e 7 Wobus K0 0
DMA —p! | control
TERMINATE, Fu .
Register L Assembly/ <:J
file disassembly
) Instruction
fetch unit

Figure 2.42 The Intel-8089 1/O processor with two separate /O channels (El-Ayat, JEEE Compurter,
1979).

Both channels may operate concurrently, executing channel programs or perform-
ing high-speed DMA transfers by time multiplexing the access and use of the
external bus. The bus control and interface logic are shared by the two channels.
The 10OP is capable of alternating between the two channels with every internal
cycle (4 to 8 clock cycles). This permits very fast service response times to the
channel requesting service. A priority algorithm is used by the 1OP to select a
channel when concurrent requests are made.

Each register set of a channel contains eight user-programmable registers,
four of which are 21-bit-wide address registers. The other four registers are 16 bits
wide. This is illustrated for a single channel in Figure 2.43. The address registers
can be used to address 1 megabyte of system memory or 64K bytes of I/O space.
Bit 20 of the address register is used to select the address space as system or
local 1/O space. The GA and GB registers are used to reference the source and
destination locations during any data transfer operation. The GC register can
also be used as a general register pointer by the channel program. The task pointer
(TP) serves as the channel program counter, which is initialized whenever the
channel is started. Using the TP, the instruction unit in the IOP can fetch the next
CCW. The TP can also be manipulated by the channel program.

The byte register (BC) contains the number of bytes to be transferred during
DMA operation. BC can also be set up to terminate the DM A transfer if this mode
is sclected. The index register (IX) is used as an index in the indexed addressing
mode. The mask-compare register is used to perform masked-byte comparisons
during channel program execution and DMA operations, During program execu-
tion, the comparisons are used for conditional branching. and in the DMA mode,

MEMORY AND INPUT-OUTPUT SURSYSTEMS 1358

20 19 0
General purpose address register A (GA)
[.
General purpose address register B (GRB) 2;’1;
4 S address
General purpose address register ¢ (GO) registers
Task pointer (TP)
170 or _T
meémory space 15 o
Index (I1X)
Byte count (BC) Four
16-bit
Mask } Compare registers
Channel control (CC)

(@) User programmable registers

=

19 -
L Parameter pointer —I

| Channel control pointer |

(b) Nonuser programmable registers

Figure 2.43 Register set of a chanael in Intel IOP (Courtesy of IEEE Computer, 1979, El-Ayat).

they may terminate the current DMA transfer. The channel control register (CC)
is a special 16-bit register which defines the channel’s operation during DMA
transfer operations. In addition to the user-programmable registers, there are
two non-user programmable 20-bit registers, also shown in Figure 2.43,

The assembly-disassembly register file is used in the DMA transfer mode.
For example, when data is transferred during a DMA operation from an 8-bit
bus 1o @ 16-bit bus, the IOP assembles 2 bytes in its assembly register file before
transferring a word to the destination, A simplified computational nt®del of the
INTEL 1OP is given in Figure 2.44. After reset, a channel attention (CA) input
pulse forces an internal initialization sequence. Then the processor is ready to
dispatch an 1/O transaction request to either of the two channels to perform the
desired 1 O task. The /O channel normally begins its operation in the task block
(TB) staze with the execution of the 1O program and enters the DMA state under
IOP program control. In this state. the channel proceeds with high-speed data

fl

136 COMPUTER ARCHITECTURE AND PARALLLL PROCESSING

End
initialization

Channel |

" —

™8
process

Begin DMA

Terminate data

End XFER

DMA request

Channel | controller

CA: channel atiention

System initialization

Channel dispaicher

CA
Channel 2

Terminate
DMA

transfer

f]
i.'JMA request

Begin DMA

End XFER

Channel 2 controller

Figure 2.44 Simplified computational model of the Intel 1/O processor (Courtesy of TEEE Computer,

1979, El-Ayat),

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 137

To central memory
controller and
processing subsystem

Bus
8 E -
'u PPU, e 0 e mm, ,i
Input-output crossbar switching
network
Channel Channel | o ® Channel ° Channcl
0 1 i c—
/ / \ _

e TR (i’> QI’) d’) ?)

DC: device controller

[device

Figure 2.45 Logical representation of peripheral processing subsystem for CDC-6600 and Cyber 174
{Courtesy of Control Data Corp.).

transfers in either burst or request-synchronized mode until the occurrence of a
valid termination condition, which returns the channel to the TB state. HALT
commands force the channel into the idle state until further dispatching occurs

Another example of an integrated 10P is in the CDC 6600 1O subsystem
The integrated 1OP is also used as the peripheral processing subsystem (PPS) ir
the Cyber 170 multiprocessor system. It consists of a set of 10 peripheral process-
ing units (PPU) which share a set of channels 1o which devices and their controliers
are connected. A logical representation of such an 1/O subsystem is showsn i
Figure 2.45.

IR COMPUTER ARCHITIC TURE AND PARALLEL PPROCESSING

10 memories, 4096 words each, 12-bit

I'IZI-‘IJISI;IW"T*I'H]

N

e

10 programs $
in
barrel

(time-shared
instruction
control)

Central Central
memory memory
(60) (60)

(12)
(12)
\ Real time

[o]t|2|3|4[sla[7]s]uglmlullzﬁomnnels

bun
External equipment

.
Figure 2.46 Barrel processing of 1/O transactions in CDC integrated peripheral processing units (Courtesy
of Control Data Corp.).

The CDC 6600 integrated peripheral processor uses a so-called barrel design
to share logical units within the IOP, It uses a set of registers to share 4 common
arithmetic*®ogic unit and a data distribution system in a synchronous fashion,
The barrel contains 10 peripheral processing units (PPUs) and a PPU is 12-bits
wide. A PPU instruction requires a number of steps for its execution. The execu-
tion in each step is performed in a distinet **slot™ which logically represents a
PPU. Hence, the PPU instruction is executed as in a cyclic pipeline process, as
shown in Figure 2.46. This execution sequence is possible because each instruction

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 139

cycle is an integral number (up to 10) of minor cycles. A minor cycle is 100 ns and
a major cycle is 1000 ns; hence, the choice of 10 PPUs.

In cach minor cycle, all information in the barrel is moved one position (syn-
chronously) after each step is executed in its current slot. The information in each
PPU is moved through the shared slot position once every major cycle. Since each
PPU operates once per major cycle, the maximum data rateis 12 bits = 1000 ns =
12 x 10° bits/s. Therefore, the 10 PPUs are time-shared by the slot hardware with-
out significant degradation in performance. However, since the CDC 6600 is «
60-bit computer, five PPU transfers are required to form a 60-bit word. Also,
since the 1'O processing is synchronized in the CDC system, no handshaking is
necessary as in the IBM channels.

1/O configuration in systems with cache There are two basic methods of connecting
an 1/O subsystem to the processor-memory complex in a system with a cache. In
the first configuration, the 1/O channel can be attached to the cache so that the
cache is shared by the processor and channel, as shown in Figure 2.47a. The
channel competes with the processor for access to the cache. An I/O channel is
often slower than the processor. Thus connecting the channel to the cache does
not significantly improve the performance of 1/O transfers. I/O transfers have
little locality and they increase the traffic between the cache and memory. This
increase is caused by three main effects: main memory update of memory-bound
1/O data; misses caused by channel fetehes from memory ; and channel programs
(and 1/O data) occupying cache, reducing the effective cache aggregate miss ratios
seen by processor-bound jobs. The configuration of Figure 2.47a may also en-
counter cache data-overrun, in which the data transfer occurs at a rate higher than
the cache controller can sustain.

An alternate configuration is 1o connect the channel to the memory directly,
as shown in Figure 2.47b. In this case, the channel competes with the cache con-
troller for access 1o the memory. However, the 1/O channel and processor execu-
tions conflict at miss times only, assuming a write-back memory update policy.
Also, the cache is not encumbered with the data blocks destined to 1/O. It has,
however, one major drawback: data consistency or coherence problems. To
illustrate, consider a cache which uses write-back main memory update policy.
Assume that the processor has modified a copy of a data element X in the cache
so that the value of the copy in the cache is NEWX and the memory has not been
updated.

Let OLDX be the value of X in memory. Before the memory is updated. the
I/O channel requests a feich from location X in the memory, which delivers
OLDX instead of NEWX. A coherence problem has occurred. One solution is to
keep a dynamic table in the memory controller which, at any time, indicates the
set of blocks in the cache and their status (whether modified or unmodified). 1 et
the modified status be denoted by RW. When the I/O channel makes a reference
o @ memory block which is also in the cache. the status is checked by the memory
controller. If it is RW and the channel requests a read, the data is fetched from the
cache. However, il the channel requests a write to the block. the corresponding

140 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Memaory I
[Cache }

Storage control [
| — Al

Cru [Channel]

(@) The 1/0 processor accesses the cache

‘ Memory |

Memory control
and arbitration

E;_cE| Channel

CPU

Figure 2.47 Two I/O configurations for a
(b) The 1/0 processor accesses the memory uniprocessor with cache.

cache block frame is invalidated before the memory block is modified by the chan-
nel. A similar description can be g:'t'cn for a processor reference,

Note that for asystem with buffered write-through update policy, the coherence
problem is automatically corrected in the second configuration if the write queue
is maintained within the memory controller. However, this configuration may
also encounter the data-overrun problem. More cache coherence studies will be
given in Chapter 8,

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 141

2.6 BIBLIOGRAPHIC NOTES AND PROBLEMS

A model of memory hierarchies in which the memory management strategy is
characterized by the hit ratio was given by Chow (1974). Storage syslems are
covered in detail by Matick (1977, 1980). The Vax 11/780 paging system was dis-
cussed in DEC (1979) and Levy and Eckhouse (1980). Cache memories for multi-
processors was studied by Dubois and Briggs (1982a). A discussion of virtual
memory and the concept of locality of reference are given in Denning (1970),
Denning and Graham (1975) and Baer (1980). A treatment of paged, scgmented
memory systems and systems with paged segments can be found in Watson (1970),
These concepts and their implementations were also described thoroughly in
Bensoussan et al. (1972),

Characteristics of cache memories and their organizations have been studied
by various authors as in Conti (1969), Mead (1970), Bell et al. (1974). Anintroduc-
tion of the characteristics of cache memories is givenin Kaplan and Winder (1974),
Recently, Smith (1982) presented a comprehensive survey paper on cache mem-
ories. The LRU hardware diagram and its description were given in Yeh (1981).
The relationship between the miss ratios for set-associative and [ully associative
cache was derived in Smith (1978) assuming a linear paging model of program
behavior which was studied in Salizer (1974).

The effect of sharing in the resident set of pages was developed by using the
results on union of events in Feller (1970). The demonstration of the flexibility and
efficiency of the variable partitioning strategy was givenin Cofilman and Ryan (1972).
Details of some fixed allocation strategies and stack algorithms are given in
Coffman and Denning (1973). The two-parameter fit for the lifetime function was
proposed in Chamberlin, Fuller,and Lin (1973). Thevariable-partitioning strategies
are presented in Denningand Graham (1975). The working-set model was presented
in Denning (1968) and its properties in Denning and Schwartz (1972). The reader is
encouraged to read Denning (1980) and Baer (1980) for a complete study of
memory management policies.

A general overview of I/O architecture was presented in Buzen (1975). There
are good treatments of 1/O subsystems and their organizations in Baer (1980),
Hayes (1978), and Kuck (1979). Details of 1/O subsystems in IBM System /370 and
the CDC 6600 integrated peripheral processing subsystem can be found in [BM
(1974) and Thorton (1970), respectively. Another overview on 1/0 channel archi-
tectures can be found in Lane (1980). A description of the architecture of Intel IOP
is given in El-Ayat (1979). The reader is encouraged to read this reference for
typical applications and programming example of the 1/O processor.

Problems

2.1 Consider a two-level memory hrerarchy (M), My) for 4 computer system, as depicied in the

following diagram. Let €, and C, be the costs per bit, &y and §; be the storage capacities. und 1, and
1y be the access times of the memories M, and My, respectively. The bt ratio 1 s defined as the

142 COMPUTER ARCHTTECTURE AND PARAL LEL PROCISSING

probability that a logical address generated by the CPU refers 1o information stored in M. Answer the
following questions associated with this virtual memory system.

(a) What is the average cost € per it of the entire memory hicrarchy?

(6) Under what condition will the average cost per bit € approach €7

(c) Whatis the average access time 1, for the CPU 1o access a word from the memory system?

(ef) Letr = 1,1, be the speed ratio of the two memories. Let E = 4, /13 be the access efficiency
ofthe virtual memony system. Express Einterms of rand HAlso plot £against Hlorr = 1,2, 10, and
100 respectively on a grid-graph paper.

(€) Suppose that r = 100, what 15 the required minimum value of the hit ratio 1o make £ > 0.907

'
i X
M,
A
'
M,
2.2 A page trace is @ sequence of page numbers P = r,, ry. ry... .. Baiiga PR s where r, is the

page number of the Ath address in a sequence of addresses

Page trace aiab B & geb
Page laults . . . " .
Mp contents a g a et et g b

= =W bl vava

The fault rate F is the number of page faults divided by the number of page addresses (length of the
page trace). For this example, F = § = 0.625. The hit ratio H is | — F. For the remainder of this
problem, let P = abacabdbacd.

(a) Produce a table similar to the above table for page trace P under a FIFO replacement algo-
rithm with memory size, |[Mp| = 2 page frames. What is the hit ratio?

(b) Do the same for an LRU replacement algorithm.

(¢) Repeat (a) and (b) for [Mp| = 3 page frames.

(d) Intuitively, both FIFO and LRU would seem to be good " algorithms. A most recently used
(MRU) algorithm intuitively sounds like a bad algorithm. Repeat (¢) with an MRU replacement
algorithm, Compare this with the results obtained in (a) through (¢). What does this say about the
particular page trace P and aboul the generality of results obtained by comparing replacement algor-
ithms based on a single page trace? 3
2.3 Inauniprocessor with cache, the processor issues its memory access requests to the cache controller
(CC). In the case of a miss or a write-through, the CC interacts with the memory controller (MC).
Draw the flowcharts deseribing the operations of a CC for a read and a write operation, Consider the
write-back-writc-allocate with flagged swap and the write-through-write-allocate strategies. Assume
that no read-through is implemented. Indicate how to modify the flowcharts for () a write-back-
write-allocate with simple WH and with flagged register WB and for (5) write-through without write-
allocation,

MEMORY AND INPUT-OUTPUT SUBSYSTEMS 143

2.4 Consider the following search algorithm:

begin
ifound—-N+1;i-0;
while (ifound+i) do
begin
f—i+1;
if (template=data [i])
then ifound—i;
end
end

In this program, datali] is an array of N(=2") floating-point numbers: remplate 15 a floating-point
number; N.i, and ifound are integers. A floating-point number occupies two memory words, while an
integer occupies one memory word only. Assume that the program code as well as the variables N.i,
ifound, and template fit on the same memory page. Dara [+] is stored in a sel of consecutive pages,
starting at the beginning of a page. A page is P = 2" words long. The memory is M = 2™ words long
(M < N). Assume that there is one and only onc clement equal to templare in the array dara. The
algorithm is run on a uniprocessor with a paged virtual memory system. The replacement policy is
LRU.

(a) If Probability[ifound = i] = (1/N) (1 < i< N), determine the mean number of page faults
in the cases where the memory does not contain any of the process pages at the beginning of the process,
and where the memory is preloaded 1o capacity with the program page and the first 27°% — | data
pages of the process.

(h) Repeat (a) if Probability[ifound = |'] =GNl —g)' ' for 1 i< N, 0<gq< 1, where

GN) = I/[1 = (1 — ']
2.5 A computer architect is considering the adoption of write-through-with-write-allocate (WTWA) or
write-back (WB) cache management strategy. Assuming no read-through, each block consists of b
words, which can be transferred between main memory (MM) and cache in & + ¢ — 1 time units,
where cis the MM cycle time. The cache is independent of the strategy and is given by h. The probability
that a memory reference is a write is w, and the probability that the block being replaced in the cache
was modified (in WB strategy) is w,,. Usually wy, > w,.

(a) Using each sirategy, give a formula for the expected time to process a reference in terms of the
above variables.

(b) Assuming w, = 0.16 and w, = 0.56, what is the performance of the WB sirategy in com-
parison to WTWA strategy when (1) & — 1 and (2)h — 0.

(¢) Give a general expression describing when WTWA is better than WB as a function of k and b.
Assume that w, = 0.16, w, = 0.56, and ¢ = 10. '

{d) Doesw, depend on h? Give intuitive reasons.

2.6 A certain uniprocessor compulter system has a paged segmentation virtual memory system and also
a cache, The virtual address is a triple (s, p, d) where 5 is the segment number, p is the page within s,
and d is the displacement within p. A translation lookaside buffer (TLB) is used to perform the address
translation when the virtual address is in the TLB. If there is a miss in the TLB, the translation is
performed by accessing the segment table and then a page table, cither or both of which may be in the
cache or in main memory (MM). -

Address translation via the TLB requires one clock eycle, A fetch from the cache requires two
clock cycles (one clock cycle 10 determine if the requesied address is in the cache plus one clock cycle to
read the'data). A read from MM requires eight clock cycles. There is no overlap between TLB trans-
lation and cache access. Once the address translation is complete, the read of the desired data may be
from either the cache or MM. This means that the fastest possible data access requires three clock
cycles:

144 computin ARCHITECTURE AND PARALLEL PROCESSING

one for TLB address translation and two to read the data from the cache. There are nine other ways in
which a read can proceed., all requiring more than three clock cycles,

la) Assuming a TLB hit ratio of 0.9 and a cache hit ratio of &, enumerate all 10 possible read
patterns, the time taken for cach, and the probability of occurrence for each pattern. What is the
average read time in the system? (Assume that when g werd is fetehed from memory, o read-through
pohicy is used.)

(k) The above discussion assumes that the cache is always given a physical memory address.
Suppose that the cache is presented with the virtual address of the data being requested rather than its
physicul address in memory. In this case, the TLB ranslation and cache scarch can be done concur-
rently. This means that whenever the requested data is in the cache, no address translation is necessary
and only two clock eycles are required for the fetch. If the data is not in the cache, enther a TLB transla-
tion segment table - page table access is needed 1o generate the physical address of the data. When data is
wrilten into the cache, it is tagged with its virtual address. Find the average read time for a system
organized in this fashion, Assume that only one clock cyele is required to establish that an item is not
i the cache.

{¢) What are the disadvantages of a cache using virtual addresses?

2.7 In the LRU stack model, assume that the stack distances are independently and idenncally drawn
from a distribution VU= 1.2.. .., n forastack of size #,. Since each set in the cache constitutes
separate associative memory, it can be managed with LRU replacement. Show that the probability
i, S) of referencing the ith most recent ly referenced block in a set, given S seis. iy

o= Fro G (57 (02)

2.8 Consider three interleaved memory organizations for a main memory system containing § memory
modules, My, M, ..., M,. Each module has a capacity of 2K words. In total, the memory capacity is
16K words. The maximum memaory bandwidth is § words/cycle. In each of the following organizations,
first specify the memory address format (14 bits). then show the address assignment patterns in cach
memory module, and finally indicate the maximum bandwidth when one of the 8 modules fails 10
function. Cemment on the relative merits of the three interleaved memory organizations.

(a) Eight-way interleaved memory organization (one group),

(b) Grouped four-way interleaved organization (Iwo groups).

(¢) Grouped two-way interleaved organization (four groups).

