CHAPTER

THREE

PRINCIPLES OF PIPELINING AND
VECTOR PROCESSING

In this chapter, the structures of pipeline computers and vector processing
principles are studied. It begins with the basic properties of pipelining, classifica-
tions of pipeline processors, and the required memory supports. Both instruction
pipelines and arithmetic pipelines are studied in Section 3.2 with design examples.
Pipeline design problems will be studied in Section 3.3, including instruction
prefetch, branch control, interrupt handling, data buffering, busing structures,
internal forwarding, register tagging, hazard detection and resolution, and recon-
figuration control. Vector processing requirements and related optimization
problems will be introduced with illustrative examples in Section 3.4. Various
pipeline supercomputer systems, attached scientific processors, vectorization
techniques, and performance evaluation of pipeline computers will be studied in
Chapter 4.

3.1 PIPELINING: AN OVERLAPPED PARALLELISM

Pipelining offers an economical way to realize temporal parallelism in digital
computers. The concept of pipeline processing in a computer is similar to assembly
lines in an industrial plant. To achieve pipelining, one must subdivide the input
task (process) into a sequence of subtasks, each of which can be executed by a
specialized hardware stage that operates concurrently with other stages in the
pipigine. Successive tasks are streamed into the pipe and get executed in an over-
lapped fashion at the subtask level. The subdivision of labor in assembly lines
has contributed to the success of muss production in modern industry. By the same
token, pipeline processing has led to the tremendous improvement of system
throughput in the modern digital computer. In this section, a sample design of a
floating-point adder is used to illustrate the concept of lincar pipelining. Basic
propertics and speedup of a lincar-pipeline processor are characterized. Various

145

146 COMPUTIR ARCHITECTURE AND PARALL LL PROCESSING

types of pipeline processors are then classified according to pipelining levels and
functional configurations, Finally, we introduce the reservation table as a design
tool of general pipelines with cither linear or nonlinear data-flow patterns,

3.1.1 Principles of Linear Pipelining

Assembly lines have been widely used in automated industrial plants in order to
increase productivity. Their original form is a flow line (pipeline) of assembly
stations where items are assembled continuously from separate parts along a
moving conveyor belt. Ideally, all the assembly stations should have equal pro-
cessing speed. Otherwise, the slowest station becomes the bottlencck of the entire
pipe. This bottleneck problem plus the congestion caused by improper buffering
may result in many idle stations wailing for new parts. The subdivision of the input
tasks into a proper sequence of subtasks becomes a crucial factor in determining
the performance of the pipeline.

In a uniform-delay pipeline, all tasks have equal processing time in all station
facilities. The stations in an ideal assembly line can operate synchronously with
full resource utilization. However, in reality, the successive stations have unequal
delays. The optimal partition of the assembly line depends on a number of factors,
including the quality (efficicncy and capability) of the working units, the desired
processing speed, and the cost effectivness of the entire assembly line.

The precedence relation of a set of subtasks {T,,Ts, ..., T,} foragiven task T
implies that some task T} cannot start until some earlier task T; (i < j) finishes. The
interdependencies of all subtasks form the precedence graph. With a linear prece-
dence relation, task T; cannot start until all earlier subtasks {7, for allj < i} finish,
A linear pipeline can process a succession of subtasks with a linear precedence
graph.

A basic linear-pipeline processor is depicted in Figure 3.1a. The pipeline con-
sists of a cascade of processing stages. The stages are pure combinational circuits
performing arithmetic or logic operations over the data stream flowing through
the pipe, The stages are separated by high-speed interface latches. The latches are
fast registers for holding the intermediate results between the stages. Information
flows between adjacent stages arc under the control of a common clock applied
to all the latches simultaneously.

Clock period The logic circuitry in cach stage S, has a time delay denoted by 7,.
= Let 7, be the time delay of each interface latch. The clock period of a linear pipeline
is defined by

t=max{ty) + 5, =1, + 1, (3.1

The reciprocal of the clock period is called the frequency f = 1/t of a pipeline
processor.

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 147

L: laich C: clock
$: the dth stape
I L L. L I
Input 5, - I :) . A s Output

¢ [

(a) Basic structure of a linear pipeline processor

Space i
T7: the jth subtask in the ithtask
:’d TI ?_3 T: T‘ 73 LR
2 1
5, 7] L i L& o L
S, ;ri r; ;r-; 'r; Ti' "ee
i T2 :] 5
S 7 i L i Ty, | e==
1 I 1 1 1 ;
0 1 2 3 4 5 6 i 8 9 10 Time
(cycles)

(b) The space-time diagram depicting the overlapped operations
Figure 3.1 Lincar pipeline processor for overlapped processing of multiple tasks.

One can draw a space-rime diagram to illustrate the overlapped operations in a
linear pipeline processor. The space-time diagram of a four-stage pipeline proces-
sor is demonstrated in Figure 3.1b. Once the pipe is filled up, it will output one
result per clock period independent of the number of stages in the pipe. Ideally,
alinear pipeline with k stages can process n tasksin T, = k + (n — 1)clock periods,
where k cycles are used to fill up the pipeline or to complete execution of the first
task and n — 1 cycles are needed to compiete the remaining n — 1 tasks. The same
number of tasks (operand pairs) can be executed in a nonpipeline processor with an
equivalent function in Ty = n -k time delay.

148 COMPUTER ARCHETECTURE AND PARALLLL I*RONCTESSING

Speedup We deline the speedup of a k-stage linear-pipeline Processor over an
equivalent nonpipeline processor as a

T n-k s

= (3.2)
Th k+m—-1)

S

It should be noted that the maximum speedupis S, — K, forn > k. In other words,
the maximum speedup that a linear pipeline can provide is k, where k is the number
of stages in the pipe. This maximum speedup is never fully achievable because of
data dependencics between instructions, interrupts, program branches, and other
factors 1o be revealed in later sections. Many pipcline cycles may be wasted on a
walting state caused by out-of-sequence instruction executions,

To understand the operational principles of pipeline computation, we illus-
trate the design of a pipeline floating-point adder in Figure 3.2. This pipeline is
lincarly constructed with four functional stages. The inputs to this pipeline are
two normalized floating-point numbers:

A=ux2°
B=hxM

where ¢ and b are two fractions and prand ¢ are their exponents, respectively. For
simplicity, base 2 is assumed. Our purpose is to compute the sum

C=A4+B=ecx2=dx2* (34)

where r = max(p, ¢) and 05 < d < |. Operations performed in the four pipeline
stages are specified below:

(3.3)

I. Compare the two exponents p and g to reveal the larger exponent r = max(p, q)
and to determine their difference 1 = Ip = ql.

2. Shift right the fraction associated with the smaller exponent by 1 bits to equalize
the two exponents before fraction addition.

3. Add the preshifted fraction with the other fraction to produce the intermediate
sum fraction ¢, where 0 < ¢ < |.

4, Count the number of leading zeros, say u, in fraction ¢ and shift left ¢ by u
bits to produce the normalized fraction sumd = ¢ x 2, with a leading bit 1.
Update the large exponent s by subtracting s = r — (0 produce the output
exponent.

The comparator, selector, shifters, adders, and counter in this pipeline can
all be implemented with combinational logic circuits. Detailed logic design of
these boxes can be found in the book by Hwang (1979). Suppose the time delays of
the four stages are t, = 60ns, T, = 50ns, 13 = 90 ns, and '1',', = 80ns and the
interface latch hasadelay of t;, = 10ns. The cycle time of this pipeline can be chosen
tobeatleast r =90 + 10 = 100 ns (Eq. 3.1). This means that the clock frequency
of the pipeline can be set o J =1t =1/100 = 10 MHz If one uses a non-
pipeline foating-point adder, the total time delay will be 1y 4+ 1y + 13 + 74 =

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 149

A=ax2’ B=bx27

——

Stages Other
fraction Fraction
Y Exgonent selector
2 subtraclor
P—'raclmn with min(p,)
& Rightshifier
r=max(p. q | =179
;F |
7772 77 2777 |
s, Fraction
adder
¥r
EZz77a
i
s, Leading zero
: counter =
c
i
1 Left shifter
-
IZEZIZE £
d
(Normalized
fraction)
s Exponent

/&
d
C=dx2'=A+8

..l"igurc 3.2 A pipelined floating-point adder with four processing stages.

IS0 COMPUTER ARCIITECTURE AND PARALLEL PROCESSING

Main memory

(multiway interleaved) Memory
hierarchy
I
Y
Cache

Pipeline stages:

Instruction update PC and check interrupt,
umnit instruction fetch,
(Instr, [+ K 4 1)] instruction deco e,
(/ unit) operand addr. calculation,
operand fetch
(Instr. 1+ K)])
Pipelined [= G
L‘{'Il?l‘a[c : .I-IFO 5
s . P- mstruction queue
ﬁ;‘:‘c“mg (Instr. /+2) (ready for execution)
(Instr, 741) J
'*‘T;’i"i““ Arithmetic
! d ot
(Instr. /) s ['.us“:
(E unit) pipelines
N

Figure 3.3 The pipelined structure of a typical central processing unit.

300 ns. In this case, the pipeline adder has a speedup of 300,100 = 3 over the non-
pipeline adder design. If uniform delays can be achieved in all four stages, say 75 ns
per stage (including the latch delay), then the maximum speedup of 300/75 = 4 can
be achieved,

The central processing unit (CPU) of a modern digital computer can generally
be partitioned into three sections; the instruction unit, the instruction queue, and
the execution unit. From the operational point of view, all three units are pipelined,
as illustrated in Figure 3.3. Programs and data reside in the main memory, which
usually consists of interleaved memory modules. The cache is a faster storage of
copies of programs and data which are ready for execution. The cache is used to
close up the speed gap between main memory and the CPU.

The instruction unit consists of pipeline stages for instruction fetch, instruction
decode. operand address calculation, and operand fetches (if needed)- The instruc-
tion queuc is a first-in, first-out (FIFO) storage area for decoded instructions and
fetched operands. The execution unit may contain multiple functional pipelines
for arithmetic logic functions. While the instruction unit is fetching instruction
I'+ K + 1. the instruction queue holds instructions I + 1, [4 3..... I + K.
and the execution unit executes instruction I, In this sense. the CPU is a good
example of a lincar pipeline. We will describe the detailed design of a pipeline
CPU for instruction execution and arithmetic computations in Section 3.3,

PRINCIFLES OF PIPFLINING AND VECTOR PROCESSING 151

After defining the clock period and speedup in Egs. 3.1 and 3.2, we need to
introduce two related measures of the performance of a linear pipeline processor.
The product (arca) of a time interval and a stage space in the space-time diagram
(Figure 3.1b) is called a time-space span. A given time-space span.can be in cither

«a busy state or an idle state, but not both. We use this coneept to measure the per-
formance of a pipcline.

Efficiency The efficiency of a linear pipeline is measured by the percentage of busy
lime-space spans over the total time-space span, which equals the sum of all busy
and idle time-space spans. Let n, k, t be the number of tasks (instructions), the
number of pipeline stages, and the clock period of a linear pipeline, respectively.
The pipeline efficiency is defined by

i n-k-t _n | 35)

Note that 7 = 1 as # — 5. This implies that the larger the number of tasks
flowing through the pipeline, the better is its efficiency. Moreover, we realize that
1 = Si/k from Egs. 3.2 and 3.3. This provides another view of the efficiency of a
linear pipeline as the ratio of its actual speedup to the ideal speedup k. In the steady
state of a pipeline, we have n > k, the efficiency should approach 1. However, this
ideal case may not hold all the time because of program branches and interrupts,
data dependency, and other reasoms to be discussed in Section 32

Throughput The number of results (tasks) that can be completed by a pipeline
per unit time is called its throughput. This rate reflects the compuling power
of a pipeline. In terms of the efficiency y and clock period 1 of a linear pipeline, '
we define the throwghpur as follows:

— " —
T kt+ (=1

= where n equals the total number of tasks being processed during an obscrvation
period kt + (1 — 1)z. In the ideal case, w = 1/t = fwhen 5 — 1. This means that
the maximum throughput of a linear pipeline is equal to its frequency, which cor-
responds to one output result per clock period. We will further evaluate the per-
formance of pipeline processors in Section 4.4.4,

']

(36)

- l=

3.1.2 Classification of Pipeline Processors

According to the levels of processing, Hindler (1977) has proposed the following
classification scheme for pipeline processors, as illustrated in Figure 3.4.

Arithmetic pipelining The arithmetic logic units of a computer can be segmentized
for pipeline operations in various data formats (Figure 3.4a). Well-known arith-
metic pipeline examples are the four-stage pipes used in Star-100, the eight-stage
pipes used in the TLASC, the up 1o 14 pipeline stages used in the Cray-1, and the

IS2 COMPUTER ARCHITECTURE AND

wra

Program
o -aa

rrrrrs

i ar

" i a v.4

Instructions
[— —
2 Memory
data
k]
Functional

units

(@) Anithmetic pipelining

(b) Instruction pipelining

Figure 3.4 Hindler clussification of pipelined processors,

PARALLEL PROCESSING

Proc. I-/—\ ; -

Task 1

Task 2

M,
Y
J’/"

Proc. 2|

M,

Task 3
Proc. 3 é—\ """

(¢) Processor pipelining

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 153

up to 26 stages per pipe in the Cyber-205. These arithmetic logic pipeline designs
will be studied subscquently.

Instruction pipelining The exccution of a stream of instructions can be pipelined
by overlapping the execution of the current instruction with the fetch, decode,
and operand fetch of subsequent instructions (Figure 3.4b). This technique is "
also known as instruction lookahead. Almost all high-performance computers
are now equipped with instruction-execution nipelines.

Processor pipelining This refers to the pipeline processing of the same data stream
by a cascade of processors (Figure 3.4¢), each of which processes a specific task,
The data stream passes the first processor with results stored in a memory block
which is also accessible by the second processor. The second processor then
passes the refined results to the third, and so on. The pipelining of multiple
processors is not yet well accepted as a common practice.

According to pipeline configurations and control strategies, Ramamoorthy
and Li (1977) have proposed the following three pipeline classification schemes:

Unifunction vs. multifunction pipelines A pipeline unit with a fixed and dedicated
function, such as the floating-point adder in Figure 3.3, is called wnifunctional.
The Cray-1 has 12 unifunctional pipeline units for various scalar, vector, fixed-
point, and floating-point operations, A multifunction pipe may perform different
functions, either at different times or at the same time, by interconnecting different
subsets of stages in the pipeline. The TI-ASC has four multifunction pipeline
processors, each of which is reconfigurable for a varicty of arithmetic logic
operations at different times.

Static vs. dynamic pipelines A static pipeline may assume only one functional
configuration at a time. Static pipelines can be either unifunctional or multi-
functional. Pipelining is made possible in static pipes only if instructions of the
same type are to be executed continuously. The function performed by a static_
pipeline should not change frequently. Otherwise, its performance may be very
low. A dynamic pipeline processor permits several functional configurations to
exist simultancously. In this sense, a dynamic pipeline must be multifunctional.
On the other hand, a unifunctional pipe must be static. The dynamic configuration
needs much more elaborate control and sequencing mechanisms than those for
static pipelines. Most existing computers are equipped with static pipes, either
unifunctional or multifunctional.

Scalar vs. vector pipelines Depending on the instruction or data types, pipeline
processors can be also classified as scalar pipelines and vector pipelines. A scalar
pipeline processes a sequence of scalar operands under the control of a DO loop.
Instructions in a small DO loop are often prefetched into the instruction buffer.
The required scalar operands for repeated scalar instructions are moved into a
data cache in order to continuously supply the pipeline with operands. The IBM

154 COMPUTER ARCHITECTURE AND PARALLEL PROCISSING

System/360 Model 91 is a typical example of a machine equipped with scalar
pipelines. However, the Model 91 does not have a cache.

Vector pipelines are specially designed 1o handle vector instructions over
vector operands. Computers having vector instructions are often called vecter
Processors, The design of a vector pipeline is expanded from that of a scalar pipeline,
The handling of vector operands in vector pipelines is under firmware and hard-
ware controls (rather than under software control as in scalar pipelines). Pipeline
YeClor processors to be studied in Chapter 4 include Texas Instruments’ ASC,
Control Data’s STAR-100 and Cyber-205, Cray Rescarch's Cray-1, F ujisu’s
VP-200, AP-120B (FPS-164), IBM’s 3838, and Datawest's MATP,

3.1.3 General Pipelines and Reservation Tables

What we have studied so far are linear pipelines without feedback connections.
Theinputs and outputs of such pipelines are totally independent. In some computi-
tions, like linear recurrence, the outputs of the pipeline are fed back as future
inputs. In other words, the inputs may depend on previous outputs. Pipelines with
feedback may have a nonlinear flow of data. The utilization history of the pipeline
determines the present state of the pipeline. The timing of the feedback inputs
becomes crucial to the nonlinear data flow. Improper use of the feedforward or
feedback inputs may destroy the inherent advantages of pipelining. On the other
hand, proper sequencing with nonlinear data flow may enhance the pipeline
efficiency. In practice, many of the arithmetic pipeline processors allow nonlinear
connections as a mechanism to implement recursion and multiple functions.

In this section, we characterize the interconnection structures and data-flow
patterns in general pipelines with either feedforward or feedback connections, in
addition to the cascaded connectionsin a lincar pipeline. We use a two-dimensional
chart known as the reservation table which is borrowed from the Gantt charts used
in operation research to show how successive pipeline stages arc utilized (or
reserved) for a specific function evaluation in successive pipeline cycles. This
feservation table was originally suggested by Davidson (1971). It is very similar to
the space-time diagram introduced by Chen (1971) (Figure 3.1b).

Consider a sample pipeline that has a structure with both feedforward and
feedback connections, as shown in Figure 3.54. Assume that this pipeline is dual-
functional, denoted as function A and function B. We will number the pipeline
stages §,, S,, S. from the input end to the output end. The one-way connections
between adjacent stages form the original lincar cascade of the pipcline. A feed-
forward connection connects a stage S, to a stage §; such that J=i+2anda
Jeedback connection connects a stage S; to a stage S, such that j < i. In this scnse,
a “pure™ linear pipeline is a pipeline without any feedback or feedforward con-
nections. The crossed cireles in Figure 3.5 refer to data multiplexers used for
sclecting among multiple connection paths in evaluating different functions.

The two reservation tables shown in Figure 3.5b and 3.5¢ correspond to the
two functions of the sample pipeline. The rows correspond Lo pipeline stages and
the columns to clock time units. The total number of clock units in the table is

1

E Feedback
connections

Multiplexer

Y

ﬁ-()utpul (A) \

\
Outpul (B)

(a) A sample pipeline

Time
& f, f 6y Pk i 4 &
S| A A A
(b) Reservation
5, A A table for
function A
S, A Al A
eIl BT RT M e ol
5| 8 B €
() Reservation
5, B B table for
function B
s, B B B

Figure 3.5 A sample pipcline and reservation tables for two of its functions.

156 COMPUTER ARCHITTUCTURE ANID PARALLEL PPROW TSSING

called the evaluation time for the given function. A reservation table represents the
flow of data through the pipeline for one complete evaluation of a given function.

A marked entry in the (i, j)th square of the table indicates that stage S, will be
used j time units after the initiation of the function evaluation. For a unifunctional
pipeling, onccan simply uscan ™ x " to mark the table entries. For a multifunctional
pipeline, different marks are used for different functions, such as the A% and B's
in the two reservation tables for the sample pipeline. Different functions may have
different evaluation times, such as % and 7 shown in Figure 3.5h and 3.5¢ for func-
tions 4 and B, respectively.

The data-flow pattern in a static, unifunctional pipeline can be fully described
by one reservation table. A multifunctional pipeline may usce different reservation
tables for different functions to be performed, On the other hand. a given reserva-
tion table does not uniquely correspond to one particular hardware pipeline. One-
may find that several hardware pipclines with different interconnection structures
can use the same reservation table,

Many interesting pipeline-utilization features can be revealed by the reserva-
tion table. It is possible to have multiple marks in a row or in a column, Multiple
marks in a column correspond to the simultaneous usage of muluple pipeline
stages. Multiple marks in a row correspond to the repeated usage (for marks in
distant columns) or prolonged usage (for marks in adjacent columns) of a given
stage. It is clear that a general pipeline may have multiple paths, parallel usage of
multiple stages, and nonlinear flow of data.

In order to visualize the flow of data along selected data paths in a hardware
pipeline for a complete function evaluation, we show in Figure 3.6 the snapshots of
cight steps needed to evaluate function A4 in the sample pipeline. These snapshots
aic tiaced along the entries in reservation table A. Active stages in cach time unit
are shaded. The darkened connections are the data paths selected in case of
multiple path choices. We will use reservation tables in subsequent sections to
study various pipeline design problems.

3.1.4 Interleaved Memory Organizations

Pipeline or vector processors require cffective access 10 lincar arrays or sequential
instructions, hence the memory must be designed to avoid access conflicts. There
is a basic attribute to measure the effectiveness of a memory configuration, called
the memory bandwidih, which is the average number of words accessed per second.
The primary factors affecting the bandwidth are the processor architecture, the
memory configuration, and the memory-module characteristics. The memory
configuration is characterized by the number of memory modules and their
addressing structure and bus width, Tehe module characteristics include the
memory-module size, access time, and cycle time. The memory bandwidth must
match the demand of the processors as discussed in Chapter 1.

The demand rate of a processor architecture and its matching memory con-
figuration is illustrated with an example: Consider a pipeline computer which
operates with four independent 32-bit floating-point arithmetic pipelines. Each

VP
fs :I
2 L%]
1
p
SZ
b b
5, s,
Y Y Y Y

‘6

)

1
]

5,
3

S

Y L] Y Y

Figure 3.6 Eight snapshots of using the sample pipeline for evaluating the A function in Figure 3.5b.

157

158 compt ITER ARCHITECTURE AND PARALLEL PROX FARSING

Memory
modules [
Pipeline | b
32
128
- ,(.
Store J Fetch 128 j Pipeline 2]
< control control |2 JT n
128 unit unit
| —- [
* Pipeline 3 1
@ 2 — 32
. ?
12
M,
Instruction
12’3 decoder

Figure 3.7 Memory organization of a four-pipeline vector processor.

pipeline requires two 32-bit operands every pipeline clock of 40 ns to produce
one 32-bit result. Four parallel 32-bit results are produced for every 40 ns. We
assume that one 32-bit instruction is fetched for each arithmetic operation.
Therefore, the demand rate of the four pipelines is to fetch 3 x 4 x 32 bits every
40ns and stored x 32 bits of result in the same 40 ns. Hence 512 bits of information
need to be accessed every 40 ns. Since each set of operands or instructions consists
of four 32-bit elements, the bus width to main memory for each access (fetch or store)
can be made 4 x 32 = 128 bits (Figure 3.7). Since there are two operand fetches,
one operand-store and one instruction fetch for cach pipeline and in each 40-ns
interval, the main memary should have four 128-bit wide unidirectional buses.
If the memory cycle time is 1.28 s, then 1.28 115/40 ns or 32 memory modules
are required 1o match the demand rate, Each memory configuration is controlled
by a memory controller that defines the storage scheme for every memory reference.
The storage scheme is the set of rules that determine the module number and the
address of the clement within each module.

The S access memory organization One of the si mplest memory configurations for
pipeline vector. processors uses low-order interleaving and applies the higher
(n — m) bits of the address to all Af = 2™ memory modules simultancously in
one access. The single access returns M consecutive words of information from
the M memory modules. Using the low-order m address bits, the information
from a particular modules can be accessed. This configuration, which is shown in
Figure 3.84, is called S access because all modules are accessed simultaneously.

PRINCIFLES OF PIPELINING AND VECTOR PROCESSING 159

Data
laich
Module 0
T .
Module |
Single
A Mulliplexer L—.- word
i access
................ 0
e eee Selector
° ——
m low-order
. address bits
Module
2m—)
4
- WA ,
ese Read-write
TR control ™
n—m high-order
address bits
(a) S-access memory configuration
A
Module AM-1 Access | ; Access 2 — e
L] @
L] []
L] .
Module 0 Access | " Access 2 i P
M- W M-
wordo YoMl wardo e gl
r ; ! 4 4 ‘ + i
Output % = A R a
From access | From accews 2

() Timing diagram for §-access configuration

Figure L8 The S-access interleaved memory configuration.

160 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

A data latch is associated with each module. For a fetch operation, the information
from each module is gated into its latch, whereupon the multiplexer can be used
to direct the desired data to the single-word bus. Figure 3.8b depicts the timing
diagram for sample multiple-word read accesses using the S-access configuration.
Notice that with a memory-access time T, and a latch delay of , the time to access
a single word is T, + 1. However, the total time it takes to access A consecutive
words in sequence, starting in module i, is T, + krif i + k < M. otherwise it is
2T+ (i + k — M)t. In both cases, | <k < M. For cllective access of long
veetors, Mt < T otherwise, there would be a data overrun. S-access configura-
tion is ideal for accessing a vector of data elements or for prefetching sequential
mstructions for a pipeline processor. It can also be used to access a block of
mformation for a pipeline processor with a cache.

When nonsequentially addressed words are requuested, the performance of
the memory system deteriorates rapidly. To provide a partial remedy for non-
sequential accesses, some concurrency can be introduced into the configuration
by providing an address latch for each memory module so that the effective
address cycle (hold time) ¢, is much smaller than the memory cycle time f,. Since
the address is typically held on the address bus at least as long as data is held on the
data bus, the data buses do not pose a limiting constraint on the performance,
By providing the address latch, the group of M modules can be multiplexed on an
internal memory address bus, called a bank or a line as o be studied in Chapter 7.

The C access memory organization When a memory operation is initiated in a
module, it causes the bank to be active for 1, seconds and the module to be active
for ¢, seconds. If 1, is much less than r,, the initiated module uses the bank for a
duration much less than one memory cycle per access. Therefore, more than one
module can share a bank, increasing the bank utilization and reducing the bank
cost. This configuration is called C aceess because modules are accessed con-
currently, as illustrated in Figure 3.9a. The low-order 1 bits are used o select the
module and the remaining n — m bits address the desired element within the
module. The memory controller is used to buffer a request which both references a
busy module and initiates service when the module completes its current cycle,
Figure 3.9b shows an example timing diagram where K consecutive words are
fetchedin T, + k - 1, assuming that the address cycle 1, = 1 = T,/M.

The effectiveness of this memory configuration is revealed by its ability to
access the elements of a vector. Consider a vector of s clements V[0:5 — 1] in
which every other element is accessed ; that is, the skip distance is 2. Assuming that
clement V[i] is store®in module i (mod M) for0 < i < s — 1, the timing diagram
in Figure 3.10a for M = 8§ illustrates the performance. After the initial access, the
aceess time for each sequential element is one per every 2t seconds, where 1 =
T,/M_1f the skip distance is increased to 3, the performance is one element per
every T seconds after the initial access. This is shown in Figure 3.10h.

In general, if an address sequence is generated with a skip distance o and there
are M modules arranged in Caccess configuration such that M and d are relatively

PRINCIPLES OF PIFFLINING AND VECTOR PROCESSING 161

Data bus
Data ; >
bus A) 4
[¥ Y
Busy/
complete Mo::"" -
signals poooeeeoeeeeneede
Read-write—m Address
Memory |04 control
controller latch [esh
= r/w
ﬂJ|- I
aﬂ
a =
1
m = | Decoder [+
a4y = 2, 2a =
{@) C-access memaory configuration
M-1k
f Access M i
Ll 1
L] » .
2 g Access 3 ;
L) 1
\ L Access 2 Access M+2 4
r L]
0 Access | e Access M+ 1 i
1
Output Word: 1:12:3 A M+2 PP
M+
Time

(h) Timing diagram for accesses 1o consecutive addresses
Figure 3.9 The C-aceess interleaved memory configuration.

[

prime, the elements can be accessed at the maximum rate of T,/M per word. It is
obvious that the S access configuration will perform worse for such address se-
quences. In the § access scheme, an address sequence which is generated with a
skip distance of d has an average data rate of dT,/M when d < M., and of T.,.
whend > M.

The storage scheme for a vector can be extended to twoand higher dimensional
arrays. As an example, consider a two-dimensional array A[0: R — 1,0: C — 1].
The clements can be mapped into a one-dimensional vector [0: s — 1] in two
basic ways: row-major form or colunm-major form. In row-major form. the index
clement A[i, j] in the vector Vis given by the iC + j. Similarly, the index of
Ali.j] incolumn-major formis jR + i. The storage scheme for the two-dimensional
array can then be derived from the storage schemes for V, as described carlier.

162 COMPUTER AKCHITICTURE AND PARALLEL PROCESSING

Module ‘}
number
14
a b el Vi14) =
3 +__q_|£]' ¥112)
v
5 _— izl {10} ’
{0} LR 1
o . i : ! !
Output Mitert="40. N2 Y4 T8 8 o W& .
o Tim:_
(a) Skip distance, d =2
Module
number r
V[15] ¥139)
V6] V0] il
(4] — - H
5 Dy : Vs,
I T T T : B
4 } izl i . Vil ; :
— Y3) —d = M ; i
Vig| | : vi42):
2 e . i
- vl ; V(33 i i
0 = — L PR
ifori=0.3:6:9:12:15/18:21:24:27:30/33:36:39 42 ‘4§
Output o LEGEY VY VY Y Sy v2£
Tim;_

(k) Skip distance, d=3

Figure 3.10 Timing diagrams for accessing the elements of & vector 10: s ~ 1] with skip distances
d=2and d = 3, respectively.

The C/S access memory organization It isalso possible to construct a configuration
that consists of a combination of the S access and C access schemes. In such a
configuration, which we call C/S access, the modules are organized in a two-
dimensional array, If the S access is M-way interleaved and the C acecess is L-way
interleaved, up to L different accesses to blocks of M conservative words can be in
progress simultaneously. This scheme is effective for multiple pipeline processors.

PRINCIPLES OF PIPELINING AND VECTOR PROCISSING 163

Memory bandwidth estimation Various analytical models have been developed
to evaluate the performance of interleaved memory configurations in a parallel-
processing environment. All the models presented here assume some form of
memory interleaving and evaluate the access-conflict problem. First, we sum-
marize the memory bandwidth when a single processor is used. A sequence of
memory requests from a process can be considered as an ordered set of memory-
module numbers from 0 1o m — |,

Hellerman presented a model in which a single stream of independent in-
structions and data-memory requests is scanned in the order of thejr arrival
until the first duplicate memory module is found. These first k-distinct requests
are then accessed in parallel. The steady-state bandwidth can be taken to be the
average length of an initial string of duplicate-free integers; that is, the distance
between the first duplicates. The probability that k is the length of a string of distinct
integers is P(k) =k -(m — DYIm* - (m — k)] for an m-way interleaved memory
system. The average bandwidih for the single processor and m memory modules is

S . ‘2. -—
B(lm)= Yk-Pky= Y k* < (m = 1!

— 3.7
(=1 W= omt(m — k)! @

B(1, m) has a good numerical approximation of m®3% when 1 < m < 45. Knuth
and Rao showed a closed-form solution of Eq. 3.7, which shows that Hellerman’s
bandwidth is asymptotic to \/rTx

Burnett and Coffman improved the model by exploiting the principle of
sequentiality of instructions. To modél this effect, the instruction requests are
separated from the data requests. The memory bandwidth can thus be increased
considerably because of the locality of programs. This was modeled by introducing
two parameters, @ and ff, where a is the probability of a request addressing the
next module in sequence (modulo m) and f = (I — a)/(m — 1). Assume that
the memory requests at the start of a memory cycle can be represented as a
sequence of m addresses ry, r,, ..., r,, such that 0 < r<m-—1forl<i<m
Assume the following propertics for the address sequence:

1
Prob[r, = k] = — forO0<k<m—1
m

Prob[riyy = (r; + Dmodm] = « forl<i<m
Prob[riy, # (r, + Dmodm] = g forl <i<m

The first property indicates that the first reference is made randomly to any memory
module. The second property indicates the probability that the next reference is
mgde to the next sequential module. The last property indicates the probability
that the next reference is made to a nonsequential module.

Since the first request can be made to any module rand omly, let us assume it is
made to module 0. Assume that the first k requests are made to distinet modules for
I < k < m. Since the first request is to module 0, an arbitrary number j of the
k — 1 requests will be of the « type and (kK — j — 1) requests will be of the ff tvpe.
For cxample, supposc m = § and a sequence of cight distinct requests

164 COMPUTER ARCHITECTURE AND PARALLFL PROGCESSING

FisFa s, Pa, rs, P, ry, ryg reference modules 2.5,6,7.0,3,4,5, respectively. Notice
that the first seven requests are to distinet modules, Thus Prob[r,] = l/m = }-
Prob[r,] = Prob[r,] = f: Prob[r,] = Plry] = P[rs] = P[r,] = a. Hence, the
scquence has a probability (1/m)a*f?. A generalization of this concept leads to an
expecied bandwidih of
. # k=]
Blm)= 3 ¥ aiphi-1¢ (i k) (3.8)
k=1 j=0
where C,(j, k) is the total number of sequences of length & with j and (k — j=1)
requests of types o and f respectively. A combinational analysis shows that

T e . ——

where (m — j — 1)(m —J=2) - (m—k+ 1)is denoted (m — j — §

The bandwidth in Eq. 3.8 increases exponentially to m with @. As the program
behavior exhibits more sequentiality, B(1, m) increases exponentially to m. Such a
behavior is more representative of instruction streams but does not adequatcly
represent the overall program behavior, which must include the data references,
The above model assumes a single processor with instruction lookahead capabili-
ties. It has been called an overlap processor model. In general, there may be some
dependency between any two addresses requested from a process. The bandwidth
can further increase if consideration of data dependencies among program seg-
ments is included in the analysis.

3.2 INSTRUCTION AND ARITHMETIC PIPELINES

Before studying various pipeline design techniques and examining vector process-
ing requirements, we need to understand how instructions can be overlapped,
exccuted, and how repeated arithmetic computations can be done with pipe-
lining. Instruction pipelining is illustrated with the designs in the IBM 360/91.
Arithmetic pipelining will be studied in detail with four design examples for
multiple-number addition, floating-point addition, multiplication, and division,
Finally, multifunction-pipeline designs and array pipelining for matrix arithmetic
will be introduced.

3.2.1 Design of Pipelined Instruction Units

Most of todays mainframes are equipped with pipelined central processors.
We will study the instruction pipeline in the IBM System/360 Model 91 as a learn-
ing example. The IBM 360/91 incorporates a high degree of pipelining in both
instruction preprocessing and instruction execution. It is a 32-bit machine specially
designed for scientific computations in cither fixed-point or floating-point data
formats. Multiple pipeline functional units are built into the system to allow parallel
arithmetic computations in cither data format.

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 165

Main storage
control unit

Memory addressd A Data llmlruclian daia

Dispatched | instructions

Y Y 1 1 Y
instruciion l-uct?-plmnl Floating-point
R execution execution
(£ unit) unit unit
{E unit) (E uni)
A
r
Data

Figure 3.11 The central processing unit (CPL) of IBM System 360/ Model 91.

A block diagram of the CPU in the IBM 360/91 is depicted in Figure 3.11. It
consists of four major parts: the main storage control unir. the instruction unit, the
fixed-point execution unit, and the foating-point execution unit. The instruction
unit (I unit) is pipelined with a clock period of 60 ns. This CPU is designed to
issue instructions at a burst rate of one instruction per clock cycle, and the perform-
ance of the two execution units (E units) should support this rate. The storage
control unit supervises information exchange between the CPU and the main-
memory major functions of the I unit, including instruction fetch, decode, and de-
livery to the appropriate E unit, operand address calculation and operand fetch.
The two E units are responsible for the fixed-point and floating-point arithmetic
logic operations needed in the execution phase.

From memory access to instruction decode and execution, the CPU is fully
pipelined across the four units shown in Figure 3.11. Concurrency among suc-
cessive instructions in the MGdel 91 is illustrated in Figure 3.12. It is desirable
1o overlay scparate instruction functions to the greatest possible degree. The
shaded boxes correspond to circuit functions and the thin lines between them refer
to delays caused by memory access. Obviously, memory accesses for fetching
either instructions or operands take much longer time than the delays of functional
circuitry. Following the delay caused by the initial filling of the pipeline, the execu-
tion results will begin emerging at the rate of one per 60 ns.

For the processing of a typical floating-point slorage-to-register instruction,
we show the functional segmentation of the pipeline in Figure 3.13 along with the
clock-time divisions. The basic time cycle accommodates the pipelining of most
hardware functions. However, the memory and many execution functions require
a variable number of pipeline cycles. In general, these storage and execution
functions require a large portion of time cycles, as revealed in Figure 3.13. After
decoding. two parallel sequences of operation may be initiated : one for operand

166 COMPUILER FUM CTECTURE AND PARALLEL PROCESSING
. s ¥
L ,&
fi‘lm:

b1, access b= €2, access = K

S 0, —f

b= I, access b=), access b= &

Iy % m__ —\m; :
b= —E,

=l by~

2

== I, access b0, access =R

v B2 7z Vzz)

= Gy be— =D, —E—l

¥

b= 1, access O, access =&,

. VA v 9

F
— G, b— D, £,]

1.t instruction §

O,: operand access, i

Gl: generate / address

D decode [, and generate O address
£, exccutce /,

R, result

Figure 3.12 Concurrency among successive instruction fetch-decode-execute in the IBM 360/91.

access and the other for the setup of operands to be transmitted to an assigned
execution station in the selected arthmetic unit. The effective memory access time
must match the speeds of the pipeline stages.

Because of the time disparities between various instruction types, the Model
91 utilizes the organizational techniques of memory interleaving, parallel arith-
metic functions, data buffering, and internal forwarding to overcome the speed
gap problems. The depth of interleaving is a function of the memory cycle time,
the CPU storage request rate, and the desired effective-access time. The Model
91 chooses a depth of 16 for interleaving 400 ns/cycle storage modules to satisfy
an effective access time of 60 ns. We will examine pipeline arithmetic and data-
buffering techniques in subsequent sections.

Concurresy arithmetic executions are facilitated in the Model 91 by using two
separate units for fixed-point execution and floating-point execution. This permits
instructions of the two classes to be executed in parallel. As long as no cross-unit
data dependencies exist, the execution does not necessarily flow in the sequence
in which the instructions are programmed. Within the floating-point E unit are
an add it and a mudeiply/divide wir which can operate in parallel. Further-
more, pipelining is practiced within arithmetic units, as will be described in Section

"16/09€ IN€] 24 vl vouangsuy Juiod-Supeoy saisidai-o)-adeiols [endi) B Jo UONEINIWEIS [BUONIUN §] T il 4

——— 2w 342 Juipadiyg

uondun)
uonsung m_-_G__UHS_- -.2._: ¢»—C..-U=_; pun
uoHnNIaNg uonanasul juiod-Suneo)4 uotpunj adesons pue __.E_:u.:::_
== T s s e suonaunj FeI0Ns pue - - Hun _._a:u_.._:-_.: Hun [osuoa
-Funeo|4 nun |osued dFel0ls uiep 9 : ; aivi01S uiepy _
@Q-1°f1 o) gl il 1 0l 6] L $ v £ z | uawdag
nun| Jiempiey [TEITGEETE)
e putJado Y P =
SRRy 10 1 um_w_“huhmhau_ _-:.::uu“ apoxap f a...“
uolIN3X3 vojimeaky | tEne 1l spassp juonansisur | 0P | yopsnnsur| MY 53008 g
PR o1 | puriade bhiawyiuy| uonnIsKg Vg LRy -nAS UL S s uoHINIsuL
] I pueiado | 8es0g [oeeeeea e AN L) ..:....mwu“_.u.v.-..m apoaag ! U aessuan
A JNWSues | (uoneinp ajqetiea) puesado Lo
uopeInp 553008 puesdQ esuIn _ uoneInp _
JqeuEp JqenEp
] g1 | » | €1 | | 11 | o | 6 | 2 L | 9 | s | * | & | ¥ ._ | [EEIETR)

2010

1s

16/09¢ 1Nd] J0 supadid vornasu ay) ur pajEnjead uorouny Sidugngy B 10 ppy [82dA] € 20) QB UOIIEAIISAI YL FITy undiy

Juut
T/
TR eel
O = x) il
/ x |
aandugnyy i 1
X o1
o 6
X 5
X L
9
g
]
53008 puesadg £
& * - 9 E adng
X I
sl ri £l rd I ot 6 8 i I wawiag
g

168

PRINCIPLES OF FIPELINING AND VEC TOR PROCISSING 169

3.2.2. Figure 3.14 shows a reservation table for the instruction pipeline in Figure
3.13. At stage 13, the path to follow depends on the instruction types, one using
the floating-point adder and the other using the floating-point multiplicr-divider.
The adder requires two cycles and the multiplier requires six cycles.

The I unit in the Model 91 is specially designed (Figure 3.15) to support the
above pipeline operations. A buffer is used to prefetch up to cight double words
of instructions. A special controller is designed to handle instruction-fetch, branch.
and interrupt conditions. There are two target buffers for branch handling.
Sequential instruction-fetch branch and interrupt handling are all built-in hard-
ware [catures. After decoding, the 1 unit will dispatch the instruction 1o the fixed-
point E unit, the floating-point E unit, or back to the storage control unit. For
memory reference instructions, the operand address is gencrated by an address
adder. This adder is also used for branch-address gencration, if needed. The
performance of a pipeline processor relies heavily on the continuous supply of

Main storage control unit (MSCU)

Branch

Targel buffer, 000
| 001
010
Target buffer ; T ey = From fixed-point
- T T P e execution unil
100 er
L st ol (FXEU)
PSW New PSW 101 ¥
Tl —] From float-point
et '+ ! 110 execution unit
111 (FLEU)
Controls
1. | fetch PSW
2. Branch Y ¢
3. Interrupt [1 register]
ICBRA
General registers ' v { i
Availability
I decode ']
[-1-—-1 Opcrand buffer I

ToMSCU y FLEU
To MSCU FXEU

CBRA: conditional branch recovery address
PSW: present state word

Figure 315 The instruction unit (1 unit) in 1BM 160/91 CPLU,

170 comm I?:l'u ARCHITECTURE AND PARALLEL PROCESSING

instructions and data to the pipeline. When a branch or interrupt oceurs, the
pipeline will lose many cycles to handle the out-of-sequence operations. Tech-
niques to overcome this difliculty include instruction prefetch, proper buffering,
special branch handling, and optimized task scheduling. We will study these
techniques in Section 3.3 and check their applications in real-life system designs
in Chapler 4.

3.2.2 Arithmetic Pipeline Design Examples

Static and unifunction arithmetic pipelines are introduced in this section with
design examples. We will study the pipeline design of Wallace trees for multiple-
number addition, which can be applicd to designing pipeline multipliers and
dividers. Then we will review the arithmetic pipeline designs in the IBM 360,91
for high-speed floating-point addition, multiplication, and division. The method of
convergence division will be introduced, since it has been widely applied in many
commercial computers.

Traditionally, the multiplication of two fixed-point numbers is done by re-
peated add-shift operations, using an arithmetic logic unit (ALU) which has built-in
add and shift functions. The number of add-shift operations required is propor-
tional to the operand width. This sequential execution makes the multiplication
a very slow process. By examining the multiplication array of two numbers in
Figure 3.16, it is clear that the multiplication process is equivalent to the addition
of multiple copies of shifted multiplicands, such as the six shown in Figure 3.16,

Multiple-number addition can be realized with a multilevel tree adder. The
conventional carry propagation adder (CPA) adds two input numbers, say 4 and
B, to produce one output number, called the sum A + B. A carry-save adder
(CSA) receives three input numbers, say 4, B, and D, and outputs two numbers,

a, a, a, a, a, a, =4

x) b b, b b, b, by =B

asby Gy a0y, ab, @b, ab, =W,

ab, ab, ab ab ab ab, =W,

ab, ab, ab, ab, ab, apb, =W

agby apy aby ayby aby aghy =W,

asb, o, ab, ab, ab, ap, =¥

+) ab, ab, ab, ab, ab, ab, =W,
TR T S i Pty vl P, ¥ =AxB=P

Figure 316 The multiplication array of two 6-bit numbers (4 x 8 = P).

+

PRINCIPLES OF FIPELINING AND VECTOR PROCESSING 171

the sum vector S and the carry vector C. Mathematically, we have 4 + B + D =
5 @ C. where + is arithmetic addition and @ is bitwise exclusive-or operation.

A _ e I T e S [
B [A

+) D = 1 1011 |
C =1 101 11
@) S — =1 1 1 0 0
A+ B+ D

or cas =196 01 6

A carry-propagate adder can be implemented with a cascade of full adders with
the carry-out of a lower stage connected to the carry-in of a higher stage. A carry-
save adder can be implemented with a set of full adders with all the carry-in
terminals serving as the input lines for the third input number D, and all the
carry-oul terminals serving as the output lines for the carry vector C. In other
words, the carry lines of all full adders are not interconnected in a carry-save adder.
For the present purpose, we can simply view a CPA as a two-to-one number con-
verter and a CSA as a three-to-two nymber converter.

Now we are ready to show how to use a number of CSAs for multiple-number
addition. This, in turn, serves the purpose of pipeline multiplication. This pipeline
is designed to multiply two 6-bit numbers, as illustrated in Figure 3.17. There are
five pipeline stages. The first stage is for the generation of all 6 x 6 = 36 immediate
product terms {a'b’|0 < i < Sand 0 < j < 5}, which form the six rows of shifted
multiplicands {W'|i = 1, 2,..., 6}. The six numbers are then fed into two CSAs in
the second stage. In total, four CSAs are interconnected to form a three-level
carry-save adder tree (from stage two to stage four in the pipeline). This CSA tree
merges six numbers into two numbers: the sum vector § and the carry vector C.
The final stage is a CPA (carry lookahead may be embedded in it, if the operand
length is long) which adds the two numbers S and C to produce the final output,
the product P = 4 x B.

Ifwe restrict the CSA tree to adding only multiple single-bit numbers, we have
the well-known bit-slice Wallace trees. In general, a v-level CSA tree can add upto
N(v) input numbers, where N(v) is evaluated by the following recursive formula -

N() = l&’)—h—lj x 34+ N@E—1)mod2 with N(1) =3 *® (3.9)

3

For example, one needs a 10-level CSA tree to add 64 to 94 numbers in one pass
through the tree, In other words. a pipeline with 10stages on the CSA tree is needed
to multiply two 64-bit fixed-point numbers in one pass. The floor notation | xJ
refers 1o the largest integer not greater than x.

172 cOMPUTFR ARCIITICTURE AND PARALLEL PROCESSING

A I
I
WWA%’}M/'@ .

i Shiltéd multiplicand generator

 , J,u-, iu' J.w l.w ™

i Y
5, CSA, CSA,
" © & O 1 3
Ezzzzzzzz wr/‘y ‘
r
A
S] CSA, ? three-level
CSA
¢ 5 iree
i i Y
A AL
Y
5y CSA,

P=AxB
Figure 3.17 A pipelined multiplier built with a CSA tree.

The CSA-tree pipeline can be modified to allow multiple-pass usage by having
feedback connections, The concept is illustraced in Figure 3.18. Two input ports of
the CSA tree in Figure 3.17 are now connected with the feedback carry vector and
sum vector. Suppose that the CPA expanded to require pipeline stages because of
increased operand width. We can use this pipeline to merge four additional
multiplicands per iteration. If one wishes to multiply two 32-bit numbers, only
cight iterations would be needed in this CSA tree with feedback. A complete
evaluation of the multiply function in this six-stage pipeline is represented by the
reservation table in Figure 3.19. The total evaluation time ol this function equals

PRINCIPLES OF PIPLLINING AND VECTOR PROCESSING 173

s, Shifted multiplicand generator
wl,

Wy th Wi Y.y i
I A
A N8 A B

5, CSA, CSA,
i
W2 e 2 A
r
'y
S, CSA,
: Foiic. 1§

S, CSA, -
- s
c Shifted L;_ighl 4 bils
Z’//////////AZ/?////J///FJ/////F////W L
1 r
5, CPA

Figure 3.18 A pipelined multiplier using an interative CSA tree for multiple-shift multiplication.

26 clock periods, out of wifch 24 cycles are needed in the iterative CSA-trec
hardware,

This iterative approach saves significantly in hardware compared to the single-
pass approach. As a contrast, one-pass 32-input CSA-tree pipeline requires the
use of 30 CSAs in eight pipeline stages. The increase in hardware is 26 additional
CSAs (cach 32-bits wide). The gain in total evaluation time is the saving of

174 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

-
i " "1 "p- f fn ’\I ‘ln l|| "|: "Il f:q "|\ "Jn ‘IF ’la "lv "m ";; ’_‘: ".‘l "Il "‘1" "Eh
Figure 3.19 The reservation table for the pipelined multiplier in Figure 3.18.
26 = 11 = 15 clock periods, where 11 = 1 4+ & + 2 corresponds to one cycle for

the input stage, cight cycles for the one-pass CSA tree, and two cycles for the
CPA stages.

We are now ready to present floating-point arithmetic units in the IBM
360/91. A block diagram of the floating-point exccution unit in the Model 91 is
given in Figure 3.20. The floating-point instruction unit (FLIU) communicates
with the main storage and the I unit in the CPU (Figure 3.7) in receiving instruc-
tions and data retrieval. Successively arrived instructions are queued in the in-
struction stack. A data buffer (FLB) is used to hold the block of data fetched from
the memory. High-speed data registers (FLR) are used to hold operands and inter-
mediate results, A common data bus is used to connect the three components in
this E unit. This bus consists of a group of instruction lines and two groups of
data lines, one for the FLB and the other for the FLR,

The Add unit can execute all floating-point add and subtract instructions in
two machine cycles (120 ns). The M/D unit can execute a floating-point multiply
instruction in six machine cycles (360 ns), and a floating-point divide instruction
in 18 cycles (1.8 us). A floating-point operand in the IBM 360/91 can be either short
(32 bits) or long (64 bits) with the following two floating point data formats:

Short foating-point data format

Sign Exponent Fraction ..
Lo 17 [31 @ebig R A

Long floating-point data format

Sign Exponent Fraction

[o] 17] 8-63 (56 bits)]

The Add unit allows three pairs of numbers to be loaded into the three reserva-
tion stations. The M/D unit has two reservation stations for two pairs of numbers.
The pipeline floating-point adder in the Add unit has physically segmented into
two stages. Logically, this pipeline adder can be separated into three algorithmic

To storage
via slore
data buffers

[
!

PRINCIPLES OF PIPLLINING AND VECTOR PROCESSING 17§

ToFX PT

From
storage
Instr unil -—

L PR | g

H Floating- :

i point i

: _ OP stack '

i Floating- Floating- (FLOS)

i point point B x 14 i

' registers buffers Controls j=g

i (FLR) (FLB) T i

Axi2 e 112 Execution units

' Controls ;

FLR bus
FLRB bus
]
]' Common data buﬂ—
oo S I N e ST 3 | e e L MYD unit
il :
i : H
51 W :
ERL SN B i B
: .l 3
ot b, L3
;¢¢;¢L1HLIIli
i [RES Sta 1] [RES Stat 2] [Res s3] § | | [RES St 1] [RES s 2] ;
Al A2 Al ; T
T H
i M/D 2:
i imMsDl F1 |
WO-stage P Multiply i
floating. il iteration i
point i unit :
—e..Bdd ! :
! i
Pipeline . Propagate f
i adder i
I:‘ i
Result I kA l Resuli I e

ko A il

e

Figure 3.20 The floating-point execution u

Common result bus

Business Machines Corp.)

nit in IBM System 360/ Model 91, (Courtesy of International

176 COMPUTER ARCHITICTURE. AND PARALLEL PROCESSING

IFLR busy ‘ommon data bus
Charactenisiic (8 bils) FI1.B bus
Fracuon (58 hits)

" A T " i .
N D9 20 IR 3 b it ol ey sl b
1 A

W O T T)
Les 1] [rs 2] [ks3] { sy] L oms2 | [_msa
TETETT = I]

TETTTT o

Assign gales
:——-—1 Characteristic

COMParison

: and preshifting

— (CCP)
¥ 1git
4D(D preshifter

i

Fraction adder

Vot | eeataat

fr—
Characteristic ZDC
update | r—
| DeD) P_Dsl
| e shifter

l

Postnormalization

L Result
Characteristic

Result | Fraction

Common result bus

Figure 3.21 Pipelined structure of the 1BM 360/91 floating-point ADD wnit. (Courtesy of International
Business Machines Corp.)

stages, as depicted in Figure 3.21. The functions of these three sectigns are very
similar to what we have discussed in Figure#3.2, Exponent arithmetic and fraction
addition and subtraction can be done in parallel. The fraction adder is 56 bits
wide and the two exponent adders are cach 7 bits wide. Both normalized and
unnormalized instructions can be exceuted, as listed in Table 3.1, The two-cycle
speed for double-precision (long-format) floating-point addition matches the
instruction-issuing rate of the CPU,

PRINCIFLES OF PIPELINING AND VECTOR PROCESSING 177

Table 3.1 Typical floating-point instructions in IBM
System/360 Model 91

Floating-point Processing Pipeline eycles

instruction unit needed
Load (S/L) FLIU 1

Load and 1es1 (S/L) FLIU 1

Store (S/L.) FLIU 1

Load complement (S/L) Add uni)

Load positive (S/L) Add unit 2

Load negative (S/1) Add unit 2

Add normalized (S/L) Add unit 2

Add unnormalized (S/L) Add unnt 2

Subtract normalized (S/L) Add unit 2

Subtract unnormalized (S/L) Add unn 2

Compare (S/L) Add unit 2

Halve (S/L) Add unit 2 &
Multiply M/D unit 6

Divide M/D unit I8

Note: S = shon dala format: L = long data format;
FLIU = floating-point instruction unit; M/D = muluply/divide.
Each pipeline cycle is 60 ns.

Floating-point multiply and divide share the same hardware M/D unit in the
Model 91. Multiplier recoding techniques are used to speed up the multiplication
process. Six multiplicand multiples are generated after the recoding. The complete
pipeline structure of the M/D unit is shown in Figure 3.22. The hardware resources
can be separated into two parts: the iterative hardware for multiple multiplicand
addition through a CSA tree, as shown within the dashed-line box, and the periph-
eral hardware for input reservation, prenormalization, multiplier recoding, expo-
nent arithmetic, carry propagation, and ou tput storage. A quadratic convergence
division method is applied to generate Q = N/D through dual sequences of the
multiplication of N and D by a series of converging factors until the denominator
converges to unity. The resulting numerator becomes the desired quotient.
Therefore, the aformentioned iterative-multiply hardware can do the job without
additional facilities.

The convergence division method has been implemented in many models of
the IBM 360/370 and in the CDC 6600/7600 systems. The method is briefly
described below. We want 1o compute the ratio (quotient) Q = N/D, where N is
the nuseerator (dividend) and D is the denominator (divisor). Consider normalized
binary arithmetic in which 0.5 < N < D < | to avoid overflow, Let R, for i =
1,2, ..., be the successive converging factors. One can select

Ri=14+ 8" fori=12 ...k

whered =1 - Dand0 < & < 05,

178 compuTER ARCHITECTURE AND PARALLFL PROCESSING

Multiplicand

Peripheral
hardware

Multiplier
recoding

y

Multiplicand multiple generator

M,

U

M,

r
ez

CSA
merge <
tree

s

lierative J
hardware

(

M Im Lm, Im

222 A

i 1
U222 777 .

r

r

LCSA

CSA
L

r y r

CSA

F 3
F(‘ r.!
W//ﬁ///ﬂ///yzzfg
C 5
" Shifted right (12) +"w"r'§ﬁif{é}¥ right(12)

Figure 3.22 Pipelined structure of the 1B
of International Business Machines Corp.)

M 360/91 floating-point MULTIPLY//DIVIDE w

nit. (Courtesy

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 179

To evaluate the quotient Q, we multiply both N and D by R, starting from
i = 1 until a certain stage, say k. Mathematica]ly, we have

Q_ﬁ’_NxR,szx---xR,‘
D D xR, x Ry % .- % R, !

= NXU+0) x (1 +8) %o x (1 45 3.10
=) x A+ x T+ x - x (1 + 577 (3.10)

whereD = | - §is being substituted. Denote D x Ri xRy x+vix R, = D,and
NxRyxRyx---xR,= Nifori=1,2,..., k Wehave

D; = (1 = d)1 + 3)1 + 82)- (1 + 5271
=1 =Xl + 0%)1 +8Y...(1 + 8471y

=1-5
L Multiplicand s}lil'l—l Multiplier
recoder
———t
t f
Multiple
M| | M| | m, gatng | M| | M| [M,
5 i Upper
L csaa | csa-s | o
: (LR
Lower
half

p To carry-save
— ™ To adder
loop

Carry propagate
ADDER

Result latch

DIVIDE LOOP

Figure 3.23 Convergence divide loop using the iterative hardware in IBM 360/91

floating-point
MULTIPLY/DIVIDE unir. (Courtesy of International Business Machines Corp.)

180 compuTin ARCHITECTURE ANI) PARALLEL PROCESSING

Itis clear that 0.5 < D < D, <D, < ... < Dy — |, because of the fact 0.5 >
4> 6% > é* > ... > 5" > 0. When the number of iterations k is sufficiently
large, 0" — 0 and thus D, — 1. We end up with &

Ne=Nox(l 48 x(14+8)x...x{l 4+ (3.1

which cquals the desired quotient Q = N/D = N,. The smaller the fraction 4, the
laster will be the convergence process.

The multiply hardware in the M/D unit can be used iteratively to carry out the
above convergence division of two 56-bit fractions in the Model 91. Figure 3.23
shows the divide loop when utilizing the iterative hardware in Figure 3.18 for
convergence division. A time chart is given in Figure 3.24 to show the two over-
lupped scquences of multiplications (Eq. 3.9) carried out simultancously by the
upper hall and the lower half of the divide loop. Five iterations are needed (k = 5)
lo converge the numerator into the desired quotient, the factor %' = §*7 becoming
small cnough to be considered as zero within the limit of machine precision. In
the M/D unit, 12 bits are being shifter per iteration by the multiplier recoding logic.
The theory of multiplier recoding using redundant number representation can be
found in Hwang's book on Computer Arithmetic (1979).

Concurrency in arithmetic operations has been exploited in the IBM 360/91
n four arcas:

I. Concurrent operations of the Add unit and the M/D unit within the floating-
point E unit

Clock time unit

|Il!]456139

1|||||1}_Wﬂ|ﬂ|ﬁ|ﬂ|ﬂiﬁ'ﬁ}ﬂq
5 e B S

oy, I Dwn I)I‘n’_lI [)W‘l DIV, | Divide iterations
L R R Ry R T R | Multiplier recoding
e e a At
x x X X X X X X Upper half of divide loop
BIZI8)28 121912
o e e & e
w ox X X X X X X Lower half of divide loop
= — L 4 i Ll
(9]2 |92 |99 F
L N, x R, Multiply by CSA loop

Quotient | Propagate adder

Figure 3,24 Timing chart showing the overlapped execution in the divide loop shown in Figure 3.23.

PRINCIPLES OF PIPELINING AND VECTOR PROCISSING 181

2. Pipelined cxceutions in the Add unit and the M/D unit
3. Concurrent execution within the iterative multiply hardware
4. Concurrent operations of the fixed-point E unit and floating-point E unit

The hardware examines multiple instructions and optimizes the program execu-
tion by allowing simultaneous execution of multiple independent instructions.

3.2.3 Multifunction and Array Pipelines

In this section, we study static and multifunction-arithmetic pipelines and intro-
duce the concept of array pipelining, with an example in matrix arithmetic. By
definition, a multifunction pipeline can perform different functions at different
limes upon program control or firmware control. We present a four-function
pipeline proposed by Kamal, et al (1974). This pipeline can perform multiply,
divide, squaring, and sqrt (square roor) operations. Two types of building cells are
used in this four-function pipeline construction. The two cell types are specified |
in Figure 3.25 by boolean equations. The A cell is a controlled 1-bit adder-
subtractor with bypass signal lines. The K cells are for function selection and
boundary carry control,

C ld
-
NG
Arithmetic cell
(A cell)

S=(A +(B+X)+C) +AF

X - - X
F - -
G GomBrXMALCYaAC | o
D =BC+ CF =
E=8+CF
31
\D. p
x 3 Control cell i

i L= XCI X F Figure 3.25 Building blocks used in

C, = K ol - €; the construction of the four-function

arithmetic pipeline in Figure 3.26.

182 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING
C
07777 X T A

0 cl\ BK

PP, P x B

o
=
Np)
'
=
5
2
a
=

8!

Y
-

=
=
My

b
-3

LK el

S0 E

[}

>
x
S
&
itt
p Y

L 27777272

3
2390
/
K]
N
N

a
a
LI E §
a
N
11¢
S
]
x

= 4

L 7YY

00,0, s, s, s, S, s, 5, 23
P—*—Rcm:indcr of divisinn——-—i
Quotient
Product of
or square rool }*___muhipli.:nlion___—’{
f-.— Square result —-—--1

Figure 3.26 A four-function arithmetic pipeline, (Courtesy of IEEE Trans, ¢ omputers, Kamal et al. 1974.)

The schematic design of the four-function pipeline with A cells, K cells, and
interface latches is shown in Figure 3.26. Arithmetic compultations being imple-
mented are specified below in terms of input and output relationships. 4, B, and
P lines are for operand inputs. All pairs of B and C lines can be tied together
(with the same input value) except for the sqrt operation. K and X are function
centrol signals. § and Q lines are for outputs, In the following arithmetic 1{0]
equations, all unspecificd nput lincs assume a zero input value (unless otherwise
noted). The control signal X' = | is for diride and sgrt operations.

Mudtiply operation

(4,4, A54,) + (B, By B3) x (PyP3) = (5,5,5,5.) (3.12)
Divide operation

(414,45 4,) = (B,B1B,) = (Q,0,0,) plus (535, S,) (3.13)

Quotient remainder

Sqraring operation

(P\P3)* = (5:5,5,8;) (3.14)

e g e e - £, . gy '

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 183

Square roeting operation

(4,4, Ag) = (©:02:05) plus (5,8, -+ §,) (3.15)
I Root Remainder
provided B,C; = 01 and B;C, = 10fori > 3, b

Each stage of the pipeline is essentially a ripple-carry adder-subtractor.
Results for multiply, squaring, and for the remainders of divide and sqrt arc
generated at the bottom stage of the pipeline. Quotient bits and root bits are gener-
ated at the left end of cach pipeline stage in a sequential manner.

We have only shown three pipeline stages in Figure 3.26. One can add addition-
al stages at the bottom of the pipeline. The number of A cells used in the kth stage
cquals 2k + 1. Of course, more pipeline stages imply higher precision in input-
output number representations. This four-function pipeline must operate in a
static manner, one function at a time. In this sense, it is not a dynamic pipeline.
So far, dynamic pipelines have never been implemented in commercial compulters.

Texas Instruments’ Advanced Scientific Computer (ASC) was the first vector
processor that was installed with multifunction pipelines in its arithmetic proces-
sors. We will review the system architecture of ASC in Chapter 4. Only the pipe-
line arithmetic units of ASC are studied in this section. The ASC arithmetic pipe-
line consists of eight stages, as illustrated in Figure 3.27. All the interconnection
routes among the eight stages are shown. This pipeline can perform either fixed-
point or floating-point arithmetic functions and many logical-shifting operations
over scalar and vector operands of lengths 16, 32, or 64 bits. The basic pipeline
clock period is 60 ns. One to four such pipelines can be installed in the ASC system.
The maximum speed is about 0.5 to 1.5 megaflops for scalar processing and 3
to 10 megaflops for vector processing. The results of previous executions can be
routed back as future inputs, such as those needed in vector dot product operations.

Different arithmetic logic instructions are allowed to use different connecting
paths through the pipeline. Figure 3.28 shows four interconnection patterns of the
ASC pipeline for the evaluation of the functions: fixed-point add, floating-point
add, fixed-point multiply, and floating-point vector dot product. The receiver and
output stages are used by all instructions. Simple instructions like load, store, and,
and or only use these two stages. The multiply stage performs 32 x 32 multipli-
cation. The multiply stage produces two 64-bit results, called pseudo sum and
pseudo carry, which are sent to the accumulate stage or the 64-bit add stage to
produce the desired product. The accumulator can also feed its output back to
itsell when double-precision multiply or divide operations are demanded. This
feedback is also used to implement fixed-point vector dot product instruction.

The exponent subtract stage determines the exponent difference and sends
this shift cé®nt to the align stage to align fractions for floating-point add or
subtract instructions. All right-shift operations are also implemented in this align
stage. The normalize stage does the floating-point normalization, all left-shift
operations, and conversions between fixed-point and floating-point operands.
With many functions, the ASC pipeline is still a static one, performing only one

g - V e -
Yo

184 computeg ARCHITECTURE AND PARALLEL PROCESSING .

LY

Recewver

Multiply

b
e

Accumulaie

PR |
pe—

Exponent
subtract

Align

Add

—

T Normalize

s

Output

Figure 3.27 All possible interstage connections
l' in the TI-ASC arithmetic pipetine. (Courtesy of
Stephenson 1973)

function at a time. Reconfiguration is needed when the pipcline switches its
function from one to another. Multifunction pipelines offer better resource
utilization and higher application flexibility. However, their control is much more
complicated than their unifunction counterparts. Most of today’s pipcline com-
puters choose to use unifunetion pipes because of cost effectivencss.

Array pipelines are two-dimensional pipelines with multiple data-flow strcams
for high-level arithmetic computations, such as matrix multiplication, inversion,

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING TRS

o el | | |

Receiver Receiver Receiver Receiver

| 03

MULTIPLY MULTIPLY

f

IACCUMULATH]

r r } i
EXPONENT EXPONENT
SUBTRACT SUBTRACT
ALIGN ALIGN
r Y # [4 {
ADD ADD ADD ADD
NORMALIZE| = NORMALIZE

i r i Y
Output Output Quitput Output
Fixed-point Floating-point Fixed-point Floating-point vector
add add multiply dot product

Figure 3.28 Four functional configurations in the TI-ASC arithmetic pipeline,

and L-U decomposition, The pipeline is usually constructed with a cellular array of
arithmetic units. The cellular array is usually regularly structured and suitable for
VLSI implementation. Presented below is only an intreductory sample design of
an array pipeline. This array is pipelined in three data-flow directions for the re-
peated multiplication of pairs of compatible matrices. The basic building blocks
in the array are the M cells. Each Af cell performs an additive inner-product
operation as illustrated in Figure 3.29,

186 COMPUTER ARCHI TECTURE AND PARALLEL PROCISSING

i
oy
i".'r
£ :
by 0
ey
by by
b, b, :
i
0 b5
0 0
a, a, a, o [4
0 L 1 9 1 0 h
a 0 0 a a a]
d M 12 n)
b b
c
a

d=aeh + ¢

Figure 3.29 A cellular array for pipelined multiplication of two dense matrices.

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 187

Each M cell has the three input operands a, b, and ¢ and the three outputs
@ =ab =bandd=ax b+ c Fast latches (registers) are used at all input-
output terminals and all interconnecting paths in the array pipeline. All latches
are synchronously controlled by the same clock. Adjacency between cells is defined
in three orientations: horizontal, vertical, and diagonal (45°) directions, The array
shown in Figure 3.29 performs the multiplication of two 3 x 3 dense matrices
A-B=C.

dyy dy; a;, byy b2 by, €11 €z €3
A-B=lay ay ay|-|by by by = €21 €22 €23 =C (3.16)
dyy dy; az; by, by, byy €31 €32 Ca3

The input matrices are fed into the array in the horizontal and vertical direc-
tions. Three clock periods are needed for inputing the matrix entries: one row at a
time for the A matrix and one column at a time for the B matrix. Dummy zero
inputs arc marked at unused input lines. “ Don’t care™ conditions at the output
lines are left blank. In general, to multiply two (n x n) matrices requires 3n® —
4n + 2 M cells. It takes 3n — 1 clock periods to complete the multiply process.
When the matrix size becomes too large, the global array approach will pose a
serious problem for monolithic chip implementation because of density and 1/O
packaging constraints. For a practical design of array pipelines, a block-partition-
ing approach will be introduced in Chapter 10 for VLSI matrix arithmetic. VLSI
array-pipeline structures will be treated there with the potential real-time
applications. *«

3.3 PRINCIPLES OF DESIGNING PIPELINE PROCESSORS

Key design problems of pipeline processors are studied in this section, We begin
with a review of various instruction-prefetch and branch-control strategies for
designing pipelined instruction units. Data-buffering and busing structures are
presented for smoothing pipelined operations to avoid congestion. We will study
internal data-forwarding and register-tagging techniques by examining instruction-
dependence relations. The detection and resolution of logic hazards in pipelines
will be described. Principles of job sequencing in a pipeline will be studied with
reservation tables to avoid collisions in utilizing pipeline resources. Finally, we
will consider the problems of designing dynamic pipelines and the necessary
system supports for pipeline reconfigurations.

-
3.3.1 Instruction Prefetch and Branch Handling

From the viewpoint of overlapped instruction execution sequencing for pipelined
processing, the instruction mixes in typical computer programs can be classificd
into four types, as shown in Table 3.2. The arithmetic load operations constitute
60 pereent of a typical computer program. These are mainly data manipulation

-. h b '
x, e
.ﬂ.._ i
:
PRE COMPUTER ARCHITICTURE ANID PARALLEL BROS PSGTSG o . .
‘e

Table 3.2 Typical instruction mix and pipeline cyele allocation

Contitiomal

ot e tion branch type
! e aned -
Sepment s rae Artthmwenie Toud Sure tame Hramch o Yes Na
Lt type, 60", 1 8 =" %
Instructnom leteh f] 0 L f
Devonte] 2 ° 2 -
Comdition test |
Operiond addres,
calculation 3 2 4 k. 2
Operaad fetchies |2
Arithmetie logic
CRECUIOn] X
Store result f1
Updite PC and Maps | I | | |
2 | -

Fotal pipeline cycles - 17 11 I

operations which require one or two operand fetches. The exceution of different
arithmetic operations requires a different number ol pipeline cycles. The store-type
operation does not require a feteh operand. but memory access is needed to store
the data. The branch-type operation corresponds to an unconditional jump.
There are two possible paths for a conditional branch operation. The yves path re-
quires the calculation of the new address being branched to. whereas the no path
proceeds to the next sequential instruction in the program. The arithmetic-load
and store instruetions do not alter the sequential execution order of the program.
The branch instructions (25 percent in typical programs) may alter the program
counter (PC) in order to jump to a program location other than the next instruc-
tion. Different types of instructions require different cycle allocations. The branch
types of instructions will cause some damaging effects on the pipeline performance.

Some functions, like interrupt and branch, produce damaging effects on the
performance of pipeline computers. When instruction [is being executed,
the occurrence of an interrupt postpones the exccution of instruction / + 1
until the interrupting request has been serviced. Generally, there are two types of
interrupts. Precise interrupts are caused by illegal operation codes found in
instructions, which can be detected during the decoding stage, The other Lype.
imprecise intereaprs, is caused by defaults from storage. address, and execution
functions,

Since decoding is usuall®the first stage of an instruction pipeline, an interrupt
on nstruetion ! prohibits instruction | + 1 from entering the pipeline. However,
those instructions preceding instruction 1 that have not vet emerged from the pipe-
line continue to run until the pipeline is drained. Then the interrupt routine is
serviced. An tmprecise interrupt occurs usually when the instruction is halfway
through the pipeline and subsequent instructions are already admitted into the
pipeline. When an interrupt of this kind occurs, no new nstructions are allowed to

R g

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 1R9

enter the pipeline, but all the incompleted instructions inside the pipeline, whether
they precede or follow the interrupted instruction, will be completed before the
processing unit is switched to service the interrupt.

In the Star-100 system, the pipelines are dedicated to vector-oriented arith-
metic operations. In order to handle interrupts during the excecution of a vector
instruction, special interrupt buffer areas are needed to hold addresses, delimiters,
ficld lengths, etc, that are needed to restart the vector instructions after an interrupl.
This demands a capable recovery mechanism for handling unpredictable and
imprecise interrupts.

For the Cray-1 computer, the interrupt system is built around an exchange
package. To change tasks, it is necessary to save the current processor state and
to load a new processor state. The Cray-1 does this semiautomatically when an
interrupt occurs or when a program encounters an exit instruction. Under such
circumstances, the Cray-1 saves the eight scalar registers, the cight address registers,
the program counter, and the monitor flags. These are packed into 16 words and
swapped with a block whose address is specified by a hardware exchange address
register. However, the exchange package does not contain all the hardware state
information, so software interrupt handlers must save the rest of the states. “The
rest™ includes 512 words of vector registers, 128 words of intermediate registers,
a vector mask, and a real-time clock.

The effect of branching on pipeline performance is described below by a
linear instruction pipeline consisting of five segments: instruction fetch, decode,
operand fetch, execute, and store rgsults. Possible memory conflicts between
overlapped fetches are ignored and a sufficiently large cache memory (instruction-
data buffers) is used in the following analysis.

As illustrated in Figure 3.30, the instruction pipcline executes a stream of
instructions continuously in an overlapped fashion if branch-type instructions
do not appear. Under such circumstances, once the pipeline is filled up with se-
quential instructions (nonbranch type), the pipeline completes the execution of one
instruction per a fixed latency (usually one or two clock periods).

On the other hand, a branch instruction entering the pipeline may be halfway
down the pipe (such as a *successful” conditional branch instruction) before a
branch decision is made. This will cause the program counter to be loaded with
the new address to which the program should be directed, making all prefetched
instructions (either in the cache memory or already in the pipeline) useless. The
next instruction cannot be initiated until the completion of the current branch-
instruction cycle. This causes extra time delays in order to drain the pipeline, as
depicted in Figure 3.26¢. The overlapped action is suspended and the pipeline
must be drained at the end of the branch cycle. The continuous flow of instructions
into the pipeline is thus temporarily interrupted because of the presence of a
branch instruction.

In general, the higher the percentage of branch-type instructions in a program,
the slower a program will run on a pipeline processor. This certainly does not merit
the concept of pipelining. An analytical estimation of the effect of branching on an
n-segment instruction pipeline is given below. The instruction cycle is assumed to

190 COMPUTIR ARCHITEC TLRI AND PARATLLT IPROHCTRSING

3, 3, 5, S, 5,
Fetch Fetch Store
= instrue. b Decode operands o Exccute o results f—a
tion

fa)

O T 0 910 112134151617 18 19 20 21 2
I AT [T

rl

L |
Iy e
Gl

| B

() Overlapped exceution of instructions without branching

01 2 34 3

6 7 B 9 1011 121314 1516 171819 20 21 22
e b 4 1 % 4.3 3

O 00 1 IS

|l o Time
al____
(S
A I

() Instruction /, is a branch instruction

Figure 3.30 The effect of branching on the performance of an instruction pipeline.

melude i pipeline cycles. For example. one instruction cycele is equal to five pipe-
line clock periods in Figure 330, Clearly. if a branch instruction does not oceur.
the performance would be one instruction per cach pipeline eyele. Let p be the
probability of a conditional branch instruction in a typical program (20 percent
by Table 3.2) and ¢ be the probability that a branch is successful (33 = 60 per-
cent by Table 3.2). Suppose that there are m instructions watlting to be executed

3

PRENCIPEES OF PIPLLINING AND VECTOR PROCESSING 191

through the pipeline. The number of instructions thit cause successful branches
cqualsm - p-q.Since (n — 1)/nextra time delay is needed cach successful branch
instruction, the total instruction cycles required 1o process these minstructions
equal (Lufn + m 1) + (m “peogln — 1)/ne As e becomes very large, the per-
formance of the instruction pipeline is measured by the average nunther of instruc-
tons exceuted per mstruction cyele:

lim s : ¢ - (3.17)
mew W m—=1n+m-p-g-(n - 1)n I + pgln = 1)

When p = 0 (no branch instructions encountered), the above measure reduces
to n instructions per i pipeline clocks. which s ideal. In reality, the above ratio is
always less than n. For example, with n = 5. p = 20 pereent. and ¢ = 60 percent,
we have the performance of 3.24 instructions per nstruction cycle (or 5 pipeline
cycles). which is less than the ideal execution rate of § instructions per S pipeline
cycles. In other words, an average of 352 percent cycles may be wasted because
of branching. In order 1o cope with the damaging effects of branch instructions,
various mechanisms have been developed in pipeline computers,

We have studied instruction prefetch in Section 3.2.1. where the I unit in the
IBM 360/91 was described (Figure 3.15). Formally, a prefetching strategy can be
stated as follows: Instruction words ahead of the one currently being decoded are
fetched from the memory before the instruction-decoding unit requests them.
The prefetch of instructions is modéied in Figure 3.31. The memory is assumed
to be interleaved and can accept requests at one per cycle. All requests require T
cycles to return from memory.

There are two prefetch buffers of sizes s and 1 instruction words. The s-size
buffer holds instructions fetched during the sequential part of a run. When a
branch is successful, the entire buffer is invalidated. The other buffer holds in-
structions fetched from the target of a conditional branch. When a conditional
branch is resolved and determined to be unsucecessful, the contents of this bufler
are invalidated. The decoder requests instruction words at a maximum rate of
one per r cycles. If the instruction requested by the decoder is available in the
sequential buffer for sequential instructions, or is in the target buffer if a conditional
branch has just been resolved and is successful, it enters the decoder with zero
delay. Otherwise, the decoder is idle until the instruction returns from memory.

Except for jump instructions, all decoded instructions enter the execution
pipeline, where E units are required to complete execution. If the decoded instruc-
tion is an unconditional branch. the instruction word at the target of the jump is
requested immediately by the decoder and decoding ceases until the target in-
struction returns from the memory. The pipeline will see the full memory latency
time T:since there was no opportunity for target prefetching.

If the decoded instruction is a conditional branch. sequential prefetching is
suspended during the E eyeles it is being executed. The instruction simultancously
enters the exeeution pipeline. but no more instructions are decoded until the branch
isresolved at the end of Eunits. Instructions are prefetehed from the Larget memaory

192 COMPUTIR ARCHITECTURE AND PARALLFL PROCESSING

Memory system
{access time T)

P

Sequential Target
prefetch buffer prefeich buffer
(s words) (f words)
Decoder

(r time units)

\ Exccution
pipeline

4 Figure 3.31 An instruction pipeline with both

sequential and target prefetch buffers.

address of the conditional branch instruction. Requests for ¢ target instructions
are issued at the rate of one per cycle. Once the branch is resolved, target prefetching
becomes unnecessary.

If the branch is successful, the target instruction stream becomes the sequential
stream, and instructions are requested every r time units from this stream.
Execution of this new stream begins when the target of the branch returns from
memory, or whenever E units have elapsed, whichever is later. If the branch is
unsuccessful, instruction requests are initiated every # units of time following the
branch resolution and continue until the next branch or jump is decoded.

Instruction prefetching reduces the damaging effects of ‘branching. In the
IBM 360/91, a loop mode and back-cight test are designed with the help of a
branch-target buffer. The idea is to keep a short loop of eight instruction double
words or less completely in the branch-target buffer so that no additional memory
accesses are needed until the loop mode is removed by the final branching out.
This replacement of the condition mode by the local loop mode is established once
a successful branch results and the back-eight test is satisfied, The load lookahead
mechanism in the ASC system follows a similar approach. Another approach is
to prefetch into the instruction bufler onc (by guess) or even both instruction se-
quences forked at a conditional branch instruction. After the test result becomes
available, one of the two prefetched instruction sequences will be executed and the

PRINCIFLES OF PIFPELINING AND VECTOR PROCISSING 193

other discarded. This branch-target prefetch approach may inerease the utilization
of the pipcline CPU and thus increase the total system throughput.

3.3.2 Data Buffering and Busing Structures

The processing speeds of pipeline segments are usually unequal. Consider the
cxample pipeline in Figure 3.32a. with three segments having delays 7, 1, and
Ty, respectively, If) = Ty = Tand T, = 37, obviously segment S, is the bottle-
neck. The throughput of the pipeline is inversely proportional to the bottleneck.
Therefore. it is desirable to remove the bottleneck which causes the unneces-
sary congestion, One obvious method is to subdivide the bottleneck. Figure 3.32b
shows two different subdivisions of segment S,. The throughput is increased

T, %7, = 1.7, =3T

{a) Segment 2 is the bottleneck

5,
r i o
f
T T T T T
._.

Py
{by.‘[T Hzr]_..l ::l_‘.

(b) Subdivision of segment 2

_..| 8 Lo ll s, I1]'_s:l_,
F

T AT

1) Replication of segment 2

Figure A2 Subdivision or replication to alleviate the bottleneck in a pigeline,

-

194 COMPUTER ARCHFTECTURE AND PARALLEL PROS ESSING

in cither case. However, if the bottleneck is not subdivisible, using duplicates of
the bottlencck in parallel is another way to smooth congestions, as depicted in
Figure 3.32¢. The control and synchronization of tasks in parallel segments are
much more complex than those for cascaded segments.

Data and instruction buffers Another method to smooth the traflic flow ina pipeline
is L0 usc buffers 1o close up the speed gap between the memory accesses for either
instructions or operands and the arithmetic logic executions in the functional pipces.
The instruction or operand buflers provide a continuous supply of instructions or
operands to the appropriate pipeline units. Buflering can avoid unnecessary idling
of the processing stages caused by memory-access conflicts or by unexpected
branching or interrupts. Sometimes the entire loop’s instructions can be stored in
the buffer to avoid repeated fetch of the same instruction loop. if the bufler size is
sufficiently large. The amount of buffering is usually very large in pipeline
computers,

The use of instruction buffers and various data buffers in the 1BM System/
360 Model 91 is shown in Figurc 3.33. Three buffer types are used for various in-
struction and data types. Instructions are first fetched to the instruction-fetch
buffers (64 bits each) before sending them to the instruction unit (Figure 3,15).
Alter decoding, fixed-point and floating-point instructions and data are sent to
their dedicated bufiers, as labeled in Figure 3.33. The store-address and data
bullers are used for continuously storing results back to the main memory. We
have already explained the function of target buffers for instruction prefetches.
The storage-conflict buffers are used only when memory-access conflicts are taking
place. :

In the STAR-100 system, a 64-word (of 128 bits cach) buffer is used to tempor-
arily hold the input data stream until operands are properly aligned. In addition,
there is an instruction buffer which provides for the storage of thirty-two 64-bit
instructions. Eight 64-bit words in the instruction buffer will be filled up by one
memory fetch. The buffer supplies a continuous stream of instructions to be
executed, despite memory-access conflicts.

In the TI-ASC systein, two eight-word buflers are utilized to balance the stream
of instructions from the memory to the exccution unit. A memory buffer unit has
three double buffers, X, Y, and Z. Two buffers (X and Y) are used to hold the input
operands and the third (Z buffer) is used for the output results. These buffers
greatly alleviate the problem of mismatched bandwidths between the memory
and the arithmetic pipelines.

In the Floating-Point Systems AP-120B. there are two blocks of registers
serving as operand buffers for the pipeline multiplier and adder. In the Cray-1
system, cight 64-bit scalar registers and sixty-four 64-bit data buflers are used for
scalar operands, Eight 64-word vector registers are used as operand buffers for
veetor operations, There are also four instruction buffers in the Cray-1, cach con-
sisting of sixty-four 16-bit registers. With four instruction buffers, substantial
program segments can be prefetched to allow on-line arithmetic logic operations
through the functional pipes.

(*d107) SIuYdIRLA SSIUISTI] [BUOEUINU] O £331100))

“Nun wonndaxa juiod-Suiseoy |6 12poly (95 /waisiS [yE] My ut (HAD) sng e1Ep Bowwo) pue ‘sSU0IIE)S BolBA1s ‘syred Jajsues) ‘saagng mie(] ggg Aani g

. (8aD) sng wep uowwo)
nsay . 1nsay "
% 1appy
apiatp/&idigniy
(o1 = 9e1) 'y [THLD[22un0g [Fep | yuig | ey
(R=Fep) 11D [3unes | e s | deg (11 = 3ep) ¥y | THID[2un0g | dey [yuig | #ej
(6="%e1) [1a10]2mos [Fer [yws [Bey |y (@ =dep) 'y [THLO|3nos | dey | yuis | dej
3
:[e]
' sng ¥4
sng 9714
1 (gqs)
T S43j)nq eiep |s3e]
201§
L _tuouuﬂ_k

0 1

T (¥74) simsidas i sngq z

¢ wiod-Buneojq Asng (S0714) yoms i £

8 puesado 2 ¥ (9714) s13)jng
} '3 1uiod § 1wiod-8uneoy
-Buneojq 9
}

t

Hun BondsY| snq adeio)§

196 (oMpUTER ARCHITEC TURE AND PARALLLL PROKCESSING

Busing structures Ideally, the subfunction being exccuted by one stage should be
independent of the other subfunctions being exccuted by the remaining stages;
otherwise, some processes in the pipeline must be halted until the dependency is
removed. For example, when one instruction waiting to be executed is first to be
modified by a future instruction, the execution of this instruction must be sus-
pended until the dependency is released, Another example is the conflicting use of
some registers or memory locations by different segments of a pipeline. These
problems cause additional time delays. An eflicient internal busing structure is
desired to route results to the requesting stations with minimum time delays.

In the TI-ASC system, once instruction dependency is recognized, only
independent instructions are distributed over the arithmetic units. Update
capability is incorporated into the processor by transferring the contents of the
Z buffer to the X buffer or the Y buffer. With such a busing structure, time delays
duc to dependency are significantly reduced. In the STAR- 100 system, dircet routes
are established from the output transmit segment Lo the input receive segment.
Thus, no registers are required to store the intermediate results, which causes a
significant saving of data-forwarding delays.

In the AP-120B or FPS-164 attached processors, the busing structures are
even more sophisticated. Seven data buses provide multiple data paths. The
output of the floating-point adder in the AP-120B can be directly routed back to
the input of the floating-point adder, to the input of the floating-point multiplier,
to the data pad, or to the data memory. Similar busing is provided for the output
of the floating-point multiplier. This eliminates the time delay to store and to
retrieve the intermediate results to or from the registers.

In the Cray-1 system, multiple data paths arc also used to interconnect various
functional units and the register and memory files. Although efficient busing struc-
tures can reduce the damaging effects of instruction interdependencies, a great
burden is still exerted on the compiler to produce codes exposing parallelism. If
independent and dependent instructions are intermixed appropriately, more
concurrent processing can take place in a multiple-pipe computer.

3.3.3 Internal Forwarding and Register Tagging

Two techniques are introduced in this section for enhancing the performance of
computers with multiple execution pipelines. Internal Jorwarding refers to a
“short-circuit ™ technique for replacing unnecessary memory accesses by register-
to-register transfers in a sequence of fetch-arithmetic-store operations. Register
tagging refers to the use of tagged registers, buffers, and reservation stations for
exploiting concurrent activities among multiple arithmetic units. We will explain
how these techniques have been applied in (h& IBM System/360 Model 91, which
has multiple exceution units with common data buffers and data paths. The applica-
tion of these techniques is not limited to floating-point arithmetic or the System/
J60architecture. It may be used inalmost any computer that has multiple functional
pipelines and accumulators.

- P o
eptlga ut

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 197
'h

It is well understood that memory access is much slower than register-to-
register operations. The computer performance can be greatly enhanced if one can
eliminate unnecessary memory accesses and combine some transitive or multiple
fetch-store operations with fuster register operations. This concept of internal data
forwarding can be explored in three dircctions, as illustrated in Figure 3.34. We
usc¢ the symbols M, and R; 1o represent the ith word in the memory and the Jth
register in the CPU. We usc arrows + 1o specily data-moving operations such as
fetch, store, and register-to-register transfer. The contents of M;and R, are repre-

sented by (M) and (R), respectively.

Store-fetch forwarding The following sequence of the two operations store-then-
fetch can be replaced by two parallel operations, one store and one register transfer,
as shown in Figure 3.34a4:

M, — (R;) (store) i . M
Ry —(M,) (fetch)|™ O memory accesses

being replaced by

M; < (R,) (store)
Ry < (R)) (register transfer)

M, M
\ /
R, ——=R
R R,

(a) Stare-Fetch forwarding

}Only ONe Memory access

2

M, !

[1 “J
e /[
R} Ry =R

(&) Fetch-Fetch forwarding

R,

a M,
=

R, R, : Figure 3.34 Internal forwarding examples
(thick arrows for slow memory accesses and
() Store-Store overwriting thin arrows for fast register transfers).

198 compuTER ARCHITECTURE AND PARALLEL PROCESSING

Fetch-fetch forwarding The following two fetch operations can be replaced by
one fetch and one register transfer, as shown in Figure 3.34b. Again onc memory
access has been eliminated:

R, « (M) (fetch)
Ry « (M) (fetch)

}Twu MeMmory accesses

being replaced by

81 (M) (eich) O MOry access

: > MEMOry acce
R, < (R,) (register transfer) hoa ¥ feces
Store-store overwriting The following two memory updates (stores) of the same
word (Figure 3.34¢) can be combined into one. since the second store overwriles
the first:

M[— (Rl) (Sl()rc)

M; —(R,) (Smm}TWD MEMOry ACCesses

being replaced by
M; « (R;) (store) One memory access

The following example shows how to apply internal forwarding to simplify a
sequence of arithmetic and memory-access operations. Figure 3.35 depicts these
simplification steps, in which adjacent steps are combined to minimize memory
references. Nodes in the graph correspond to the memory cells, registers, an
adder, or a multiplier.

Example 3.1 The inner loop of a certain program is completed to perform the
following operations in a sequence:

I. Ry~ (M,) (fetch)

2. Ry «— (Rg) + (M;) (add)

3. Ry « (Ro) » (M3) (multiply)
4— M4 = Ro (SIOI‘C) &

After the internal forwarding, we end up handling a compound function
(macroinstruction) M, « [(M,) + (M;)] * (M,), as represented by the
simplified data-flow graph in Figure 3.354.

Both internal forwarding and resource tagging have been practiced in the
IBM Model 91 floating-point execution unit. The data registers, transfer paths,
floating-point adder and multiply-divide units, reservation stations, and the
common data bus (CDB) in the Model 91 were shown in Figure 3.33. The three
reservation stations for the adder are denoted as A 1. Aa, A;. The two reservation
stations in the multiply-divide unit arc M, and M. Each station has the source
and sink registers and their tag and control fields. The stations can hold operands
for the next execution while the functional unit is busy executing current instruction

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 199

(@) Original data Mow sequence

M,
.|

\/\/ B S
NG i LN

(b) Step | and siep 2 forwarded

() Step 3 and step 4 forwarded

Figure 3.35 Internal data forwarding in Example
thin arrows).

il (memory accesses: thick arrows: register transfers:

200 < ompu TER ARCHITECTURE AND PARALLEL PROCESSING

Three store data buffers (SDB) and four floating-point registers (FLR) are all
tagged. The busy bits in the FLRs marking their status (1 for busy and 0 for idlc)
can be used to determine the dependence of instructions in subsequent executions.

The CDB is used to transfer operands to the FLRs, the reservation stations,
and the SDB. There are 11 units that cansupply information to the CDB, including
six floating-point buffers (FLB). three adder stations, and two multiply-divide
stations. The tag ficlds of these units are binary-coded as FLBs 1 ~ 6, add stations
10 ~ 12, and multiply-divide stations & ~9. A tag is generaled by the CDB
priority controls to identify the unit whose result will next appear on the CDB.

This common data busing and register-tagging scheme permits simultancous
excecution of independent instructions while preserving the essential precedences
inherent in the instruction stream. The CDB can function with any number of
execution units and any number of accumulators. 1t provides a hardware algorithm
for the automatic efficient exploitation of multiple arithmetic units. The following
example shows how internal forwarding can be achieved with the tagging scheme
on the CDB.

Example 3.2 Consider the consecutive exccution of two floating-point in-
structions in the Model 91 (Figure 3.33), where F refers to an FLR which is
being used as an accumulator and B, stands for the ith FLB. Their contents are
represented by (F) and (B). respectively:

ADD F,B, F«(F)+(B,)
MPY F, B, F—(F)s(B,)

In the processing of the add instruction, set the busy bit of F to 1, send the
-ontents (F) and (B,) to the adder station A,, set the tag field of F to 1010
{the tag value of station A,), and then carry out the addition.

In the meantime, the decode of the mpy (multiply) instruction reveals
the fact that F is busy. This implies that the mpy depends on the result of the
add. However, the execution should not be halted. Instead, the tag of F should
be sent to the multiply station M, to set the tag of M, to be also 1010. Then
the tag of F should be changed to 1000 (the tag value of station M,) and
the content (B;) sent to M,. When the add instruction is completed, the
CDB finds that the addition result should be sent directly to M, (instead of F).
The multiply-divide unit begins its execution when both operands become
available. After the mpy operation is done, the CDB finds F via the tag 1000
of M, and thus sends the multiply result to F. In this process, the intermediate
result (after addition) will not be sent to F before sending it to M. This is
exactly a consequence of internal forwarding, using the tag as a vehicle to
identify source and destination in successive computations.

.
3.3.4 Hazard Detection and Resolution

Pipcline hazards are caused by resource-usage conflicts among various instruc-
tions in the pipeline. Such hazards are triggered by interinstruction dependencies.
I this scction, we characterize various hazard conditions. Hazard-detection

1s

PRINCIPLES OF PIPELINING AN VECTOR PROCESSING 01

methods and approaches to resolve hazards are then introduced. Hazards dis-
cussed in this section are known as data-dependent hazards. Mcthods to cope with
such hazards are needed in any type of lookahead processors for cither synchron-
ous-pipeline or asynchronous-multiprocessing systems. Another type of hazard
is due to a job scheduling problem and will be described in Section 3.3.5,

When successive instructions overlap their fetch, decode and execution
through a pipcline processor, interinstruction dependencies may arise to prevent
the sequential data flow in the pipeline. For example. an instruction may depend
on the results of a previous instruction. Until the completion of the previous
instruction. the present instruction cannot be initiated into the pipeline. In other
instances. two stages of a pipeline may need to update the same memory location,
Hazards of this sort, il not properly detected and resolved, could result in an inter-
lock situation in the pipeline or produce unrchable results by overwriting.

There are three classes of data-dependent hazards. according to various data
update patterns: write after read (WAR) hazards, read after write (RAW) hazards,
and write afrer write (WAW) hazards. Note that read-after-read does not pose a
problem, because nothing 1s changed.

We use resource objects to refer to working registers, memory locations, and
special flags. The contents of these resource objects are called data objects. Each
instruction can be considered a mapping from a sct of data objects 1o a set of data
objects. The domain D(I) of an instruction [is the set of resource objects whose
data objects may affect the execution of instruction . The range R(I) of an instruc-
tion I is the set of resource objects whose data objects may be modified by the execu-
tion of instruction I, Obviously. the operdnds to be used in an instruction execution
are retrieved (read) from its domain, and the results will be stored (written) in its
range. In what follows, we consider the execution of the two instructions | and J in
a program. Instruction J appears after instruction [in the program. There may
be none or other instructions between instructions I and J. The latency between
the two instructions is a very subtle matter. Instruction J may enter the execution
pipe before or after the completion of the exccution of instruction I. The improper
timing and data dependencies may create some hazardous situations, as shown
in Figure 3.36.

A RAW hazard between the two instructions I and J may occur when J
attempts to read some data object that has been modified by 1. A WAR hazard
may occur when J attempts to modify some data object that is read by 1. A WAW
hazard may occur if both] and J attempt to modify the same data object. Formally.
the necessary conditions for these hazards are stated as follows (Figure 3.32):

RN D(J) # for RAW
RN~ R(J) # ¢ for WAW {3.18)
DU R(J)# D for WAR

Possible hazards for the four types of instructions (Table 3.1) are listed in
Table 3.3. Recognizing the existence of possible hazards, computer designers wish
to detect the hazard and then to resolve it effectively. Hazard detection can be done

202 comrurig ARCHITECTURE AND PARALLEL PROCESSING

msiruction f

S il
AV
) Instruction

(wrile)

(read)

(@) RAW hazard

2 Instruction f
Diry S
(write)

(h) WAW hazard
Instruction f

rit
(write) R"Q
(read) —
Figure 3,36 Tlustration of RA W, Waw,

{c) WAR hazard and WAR hazard conditions,

in the mstruction-fetch stage of a pipeline processor by comparing the domain and
range of the incoming instruction with those of the instructions being processed
in the pipe. Should any of the conditions in Eq. 3.18 be detected, a warning signal
can be generated 1o prevent the hazard from taking place. Another approach is

in Eq. 3.18 may not be sufficient conditions,

Table 3.3 Possible hazards for Various instruction types

Instruction / (first)

Arithmetic and Conditional
Instruction J (second) load 1ype Store type Branch type branch type
Arithmetic und load lype RAW RAW WAR WAR
WAW WAR
WAR
Store type RAW WAW
WAR
Branch type RAW WAW WAW

Conditional branch lype RAW WAW WAW

—_—

PRING LTS O PIPFLINING AND VECTOR PROCISSING 203

Once a hazard is detected, the system should resolve the interlock situation.
Consider the instruction sequence L. L+ 0L 0,0 + 1. ..} in which a haz-
ard has been detected between the current instruction J and a previous instruction

. L. A straightforward approach is 1o stop the pipe and to suspend the execution of
instructions J, J + 1,J + 2, until the instruction | has passed the point of
resource conflict. A more sophisticated approach is to suspend only instruetion
Jand continue the flow of instructions J ¢ 1,/ + 2. down the pipe. Of course.
the potential hazards duc o the suspension of J should be continuously checked
asinstructionsJ + 1.J + 2, .. move ahead of J. Multilevel hazard detection mas
be encountered, requiring much more complex control mechanisms 1o resolve a
stack of hazards,

In order to avoid RAW hazards, IBM engincers developed a short-circuiting
approach which gives a copy of the data object 1o be written dircctly 1o the in-
struction waiting (o read the data. This concept was generalized into a technique.
known as data forwarding, which forwards multiple copies of the data to as many
waiting instructions as may wish to read 11, A data-forwarding chain can be estab-
lished in some cases. The internal-forwarding and register-tagging techniques
presented in the previous section should be helpful in resolving logic hazards in
pipelines.

3.3.5 Job Sequencing and Collision Prevention

Once a task is initiated in a static pipeline, its flow pattern is fixed. An initiation
refers to the start of a single function cvaluation. When two or more initiations
attempt 1o use the same stage at the same time, a collision results. Thus the job-
sequencing problem is to properly schedule queued tasks awaiting initiation in
order to avoid collisions and 1o achieve high throughput. The reservation table
introduced in Section 3.1.3 identifies the space-time flow pattern of one complete
data through the pipeline for one function evaluation. In a static pipeline, all
initiations are characterized by the same reservation table. On the other hand,
successive initations for a dynamic pipeline may be characterized by a sct of reser-
vation tables, one per each function being evaluated.

Figure 3.37 shows the reservation table for a unifunction pipeline. The multiple
x's in a row pose the possibility of collisions, The number of time units between
(WO initiations is called the latency, which may be any positive integer. For a
static pipeline, the latency is usually one, two, or greater. However, zero latency
is allowed in dynamic pipelines between different functions. The sequence of
latencies between successive initiations is called latency sequence. A latency se-
quence that repeats itself is called a latency eycle, The procedure 1o choose a
latency sgquence is called a control strategy. A control strategy that always mini-
mizes the latency between the current initiation and the very last initiation is called
a greedy strategy. A greedy strategy is made independent of future initiations.

A collision occurs when two tasks are initiated with a latency (initiation
interval) equal to the column distance between two x s on some row of the reser-
vation table. The set of column distances F - S [} between all possible

204 COMPUTER ARCHITECTURE AND PARALLEL PROCTSSING

I x X
2 X X X
]_ %

4 X . X

5 1 X x

Forbidden lisi: ¥ = [1,5,6,8)
Collision vector: C = (10110001)

(a) Reservation table and related terms

ki Initial state

10110001
7 e 3 4 2 FINTE The notation 7* means
any integer (latency)
10110111 ornm equal to 7 or
[greater than 7,
3 ||r‘ Y 2
1011101} 10111111

() State diagram with MAL = (3 + 4)/2 =158
Figure 3.37 heservation table and state diagram for a unifunction pipeline,

pairs of x's on each row of the reservation table is called the forbidden set of
latencies. The forbidden set contains all possible latencies that cause collisions
between (wo initiations. The collision vector is a binary vector, shown below:

C=(Cp:::C,2Cy) where C; = 1 ifie F and C, = 0 if otherwise (3.18)

For the example in Figure 3.37. the forbidden list F = {15, 6, 8}, and the
collision vector C = (10110001), where n = 8 is the largest forbidden latency
obtained from the reservation table. This means C, = |isalways true. The collision
vector shows both permitted and forbidden latencies from the sume reservation
table. One can use an n-bit shift register to hold the collision vector for implement-
inga control strategy for successive task initiations in the pipeline. Upon initiation

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 205

of the first task, the collision vector is parallcl-loaded into the shift register as the
initial state. The shift register is then shifted right one bit at a time, entering 0s
from the left end. A collision-free initiation is allowed at time instant ¢ + k if,
and only if. a bit *0" is being shifted out of the register after k shilts from time 1.
A state diagram is used 10 characterize the successive initiations of tasks in the
pipeline in order to find the shortest latency sequence to optimize” the control
strategy. A state on the diagram is represented by the contents of the shift register
after the proper number of shifts is made, which is equal to the latency between the
current and next task initiations.

As shown in Figure 3.37b, the initial state corresponds to the collision vector
(10110001). There arc four outgoing branches from the initial state, labeled by
latencies 2, 3, 4. and 7, corresponding to, respectively, zero-bit positions Cy, Cy,
C,.and C- in the vector (10110001). By shifting right the vector (10110001) two
positions, we obtain the vector (00101100). This vector is then bitwise ored with
the collision vector (10110001) to produce a new collision vector (10111 101) as the
new state pointed to by the arc labeled 2. Similarly, one obtains the new state
vectors (10110111) and (10111011) after shifting the latencies 3 and 4, respectively.
The arc 7 branches back to the initial state. This shifting process should continue
until no more new states can be generated. The shift register will be set to the initial
state, if the latency (shift) is greater than or equal to n.

The successive collision vectors are used to prevent future task collisions with
previously initiated tasks, while the collision vector C is used 1o prevent possible
collisions with the current task. If a collision vector has a * 1" in the ith bit (from
the right) at time ¢, then the task scqu?nce should avoid the initiation of a task at
time ¢ + i. The bitwise oring operations will avoid collisions in any workable
latency sequence that can be traced on the state diagram. Closed loops or cycles
in the state diagram indicate the steady-state sustainable latency scquences of
task initiations without collisions. The average latency of a cycle is the sum of its
latencies (period) divided by the number of states in the cycle. Any cycle can be
entered from the initial state.

The cycle consisting of states (10110111) and (10111011) in Figurc 3.37b has
two latencies. three and four. This cycle has a period cqual to 7 =3 + 4. The
average latency of this cycle is 3 = 3.5. Another cycle, which consists of the states
(10110001), (10111101), and (10111111), has the three latencies 2, 2, and 7, with a
period of 11. Its average latency cycle equals % = 3.66. The throughput of a
pipeline is inversely proportional to the reciprocal of the average latency. A latency
sequence is called permissible if no collisions exist in the successive initiations
governed by the given latency sequence. The maximum throughput is achieved
by an optimal scheduling strategy that achieves the minimum average latency
(MAL) without collisions. Thus. the job-sequencing problem is equivalent 1o
finding a permissible latency cycle with the MAL in the state diagram. The maxi-
mum number of x s in any single row of the reservation table is a lower bound
of the MAL. In other words, the MAL is always greater than or equal to the maxi-
mum number of check marks in any row of the reservation table.

206 oM TER ARCHITECTURE AND PARALLEL PROCESSING,

Table 3.4 Simple cycles in
Figure 3.375

Simple cycle Average lateney
(7) 7
3.7 5
(3, 4)1 15
4.3 4.6
“4.7) 5.5
2,7 4.5
(2.2, 7 36
34,7 4.6
—_—

T Greedy eycles.

Simple cycles are those latency cycles in which each state appears only once
per cach iteration of the cycle. Listed in Table 3.4 are simple cycles and their
average latencices for the state diagram shown in Figure 3.37h. A simple eycle is a
greedy eyele if cach latency contained in the cycle is the minimal latency (outgoing
arc) from a state in the cycle. For Figure 3.37h. the cycles(3.4)and (2, 2. 7) are both
greedy. with average latencies of 3.5 and 3.6. respectively. A.good task-initiation
sequence should include the greedy cycle,

The procedure 10 determine the greedy cycles on the state diagram is rather
straightforward, From each node of the state diagram, one simply chooses the
arc with the smallest latency label until a closed simple cycle can be formed. The
average latency of any greedy cycle is no greater than the number of latencies in
the forbidden set, which equals the number of 1Is in the initial collision vector.
The average latency of any greedy cycle is always lower-bounded by the MAL. In
the above example, the greedy cycle (3. 4) has an average latency ‘equal 1o the
MAL = 3.5, which is smaller than 4, the number of Is in the initial collision vector.

The job-sequencing method for static unifunction pipelines can be generalized

order to perform multiple functions, the pipeline must be reconfigurable. One
example of a statie multifunction pipeline is the arithmetic pipelines in TI-ASC,
which has eight stages with about 20 possible functional configurations. Each
task to be initiated can be associated with a function tag identifying the reservation
table to be used. Collisions may occur between two or more tasks with the same
function tag or from distinet function tags.

The stage-usage pattern for cach function can be displayed with a different
tag in the overlaid reservation table. For a p-function pipeline, an overlaid reserva-
tion table is formed by overlaying p unifunctional reservation tables. An overlaid
reservation table for a two-function pipeline is shown in Figure 3.38q. where
A and B stand for two distinet functions. Each task-requesting initiation must
be associated with a function g A forhidden set of latencies Tor 4 multifunction
pipeline is the collection of collision-causing latencies. A 1ask with function tag

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 207

r
¥ 0 | 2 k] 4
1 A B A B
2 A B
3l B AB A

(a) Reservation table of a two-function pipeline

Cross collision vectors:

Lo e.0
Vaa= (0 1’ 1’ 0
Vea= (1 0 1 0)

Collision matrices:

Ma=/0110 (an)
1010 (BA)

A Al o
Yaa= (1 0 1" 1)
Vea= (0 1 1 0)

Me={1011 (AB)
ﬂlﬁ) {BB)

(b) Cross collision vectors and collision matrices

(c) State diagram

Figure 3.38 Reservation table, cross col-
lision vectors, collision matrites, and state
diagram for a multifunction pipeline.

208 COMPUTIR ARCHITEC TURE AND PARALLEL PROCESSING

A may collide with a previously initiated task with function tag B il the latency
between these two initiations is a member of the forbidden list.

A cross-collision vector Vg, marks the forbidden latencies between the function
pair A and B, The binary vector ¥y, may be calculated by overlaying the reservation
tibles for A and B. A component ¢, = 1 if some row of the overlaid reservation
tuble containsan A i column £ (for some ryand a Bincolumnt + k;the component
o equals O i otherwise. Thus, Figure 3.38 has four cross-collision veetors: V, , =
(1T 100 Vgu=(1 01 1), Vaa=(1 010, and Vg = (0 1 | 0). In general,
there are p* cross-collision vectors for a p-function pipcline. The p? cross-collision
vectors can be rewritten into p collision matrices, as shown in Figure 3.34h. The
collision matrix M, indicates forbidden latencies for all functions initiated after
the mitiation of a task with the function tag R. The ith row in matrix M is the
cross-collision vector Vg wherei = 1,2, ... p.

A p-function pipeline can be controlled by a bank of p shift registers, Shift
register € controls the initiation of function Q. The control bits for lunction initia-
tions are the righmost bit of each shift register. Initiation of a task with function
tag @ 1s allowed at the next time instant if the rightmost bit of the corresponding
shift register Q15 0, The shift registers shift right one position per cach cycle, with
Os entering from the left. Immediately after the initiation of a task with function
tag Q. the collision matrix M, is ored with the matrix formed by the bank of shift
registers. The state of the shilt register Q is bitwise ored with the cross-collision
veetor F forall 1 < Q@ < p

A state diagram is constructed in Figure 3.38¢ for the two-function pipeline.
Ares are labeled with the latency and the function tag of the initiation. The initial
state can be one of the p collision matrices. Cycles in the state diagram correspond
Lo collision-free patterns of task initiations. Any cycle can be entered from at least
one of the initial states. For example, the cycle (A3, B1) in Figure 3.38¢ can be
reached by an arc labelled A3 from initial state I, or by an arc Bl from initial
state I The method of finding the greedy cyeles and the MAL on the state diagram
of a multifunction pipeline can be extended from that for a unifunction pipeline.

3.3.6 Dynamic Pipelines and Reconfigurability

A dynamic pipeline may initiate tasks from different reservation tables simultan-
cously to allow multiple numbers of initiations of different functions in the same
pipeline. Two methods for improving the throughput of dynamic pipeline proces-
sors have been proposed by Davidson and Patel (1978). The reservation of a
pipeline can be modified with the insertion of noncompute delays or with the use of
internal bulTers at ecach stage. The utilization of the stages and. hence. the lﬂrough-
put of the pipe can be greatly enhanced with a modified reservition table vielding
i more desirable latency pattern.

[t s assumed that any computation step can be delayed by inserting a non-
compute stuge. We consider first a unifunction pipeline. A constant latency cyele
s acyele with only one fatency, A Kitency between two tasks is said to be allowable
i these two tasks do not collide in the pipeline. Consequently. a eyele is allowable

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 209

in a pipeline ifall the latencies in the cycle are allowable. Our main concern so far
has been to find an allowable cycle which results in the MAL. However. an allow-
able cycle with the MAL does not necessarily imply 100 percent utilization of the
pipeline where utilization is measured as the percentage of time the busiest stage
remains busy. When a latency cycle results in a 100 percent utilization of at least
one of the pipeline stages, the periodic latency sequence is called a perfect cyele.
Of course, pipelines with perfect cycles can be better utilized than those with
nonperfect initiation cycles. It is trivial to note that constant cycles are all perfect.

Consider a latency cycle C. The set G,. of all possible time intervals between
initiations derived from cycle C is called an initiation interval set. For example,
Ge=1{4,8,12,...} for C = (4), and Ge=1{2.3,519.10.12, 14, 15, 17, 19, 21,
22,24, 26, ...} for C = (2, 3, 2, 5). Note that the interval is not restricted to two
adjacent initiations. Let G.{mod p) be the set formed by taking mod p equivalents
of all clements of set G,. For the cycle (2, 3,2, 5) with period p = 12, the set
Ge(mod 12) = {0, 2, 3, 5, 7, 9, 10}. The complement set G equals Z — G, where
Z is the set of positive integers. Clearly, we have G.(mod P) = Z(mod p) —
Gc(mod p), where Z, is the set of positive integers of modulo p. A latency cycle C
with a period p and an initiation interval set G- is allowable in a pipeline with a
forbidden latency set F if, and only if,

F(mod p) n Ge(mod p) = ¢ (3.19)

This means that there will be no collision if none of the initiation intervals
equals a forbidden latency. Thus, a constant cycle (/) with a period p = [1s allowed
for a pipeline processor if, and only if, | does not divide any forbidden latency in the
set F. Another way of looking at the problem is to choose a reservation table whose
forbidden latency set F is a subset of the set Gmod p). Then the latency cycle C
will be an allowable sequence for the pipeline. For example, the latency cycle C =
(2,3,2,5), Ge(mod 12) = {0,2,3,5,7,9,10} and G{mod 12) = {1, 4,6, 8, 11}, so
C can be applied to a pipeline with a forbidden latency set F equal to any subset
of {1, 4, 6, 8, 11}. This condition is very effective to check the applicability (allow-
ability) of an initiation sequence (or a cycle) toa given pipeline, or onc can modify
the reservation table of a pipeline to yield a forbidden list which is confined within
the set G(mod p), if the cycle C is fixed.

Adding noncompute stages to a pipeline can make it allowable for a givencycle.
The effect of delaying some computation steps can be seen from the reservation
table by writing a d before the step being delayed. Each d indicates one unit of
delay, called an elemental delay. 1t is assumed that all steps in a column must
complete before any steps in the next column are executed. In Figure 3.39a, the
effect of delaying the step in row 0 and column 2 by two time units and the step in
row 2 and column 2 by one time unit is shown in Figure 3.39b. The clemental
delaysd,,d,, and d, require the use of the additional delaysdy, ds, and dg to make
all the outputs simultaneously available in column 2 of the original reservation
table.

For a given constant latency cycle (1), a pipcline can be made allowable by
delaying some of the steps if. and only if, there are no more than marks in each

210 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

D 123 &%

S,
s MAL = 4

! Optimal cycle (4)
5,

(a) Reservation table

01 234567
sx d|d.

0 12
5, d, \d,
5, d, d,

(b) Delay parallel computation steps

01 2 345 678910

So d, dy dy| 4| 4,)

$ 7 Optimal cycle (1, §)
i & MAL =1

5, d,

(€) Inserting delays to make the pipeline allowable for the optimal cycle (1, 5)

0123 45678910

5o

Sl

S!
Noncompute) Id,, d,|
delays 5 Id,|

S, ldl _

S, Id|

s, ldy, dyl

(d) Assignment of elemental delays (o noncompute segments

Figure 3.39 Pipeline with inserted noncimputer delays,

row of the table. Thus by adding elemental delays, a unifunction pipeline can always
be fully utilized through the use of a eycle that has a constant latency equal to the
maximum number of marks in any row of the reservation table. The maximum
achievable throughput of that pipeline is thereby attained. On the other hand, for
an arbitrary cycle, a pipeline can be made allowable by delaying some steps. The
reservation table of Figure 339 can be made allowable with respect to the
optimal cycle (1, 5) by adding some elemental delays. The resulting table is shown

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 211

in Figure 339¢. Once 4 modified table is obtained, it is necessary to assign the
clemental delays to noncompute stages. Noncompute stages may be shared by
various elemental delays. Figure 3.39d shows the modified reservation table after
the introduction of the noncompute stages Sy, Sy, 55, Se, and S-.

The task arrivals in a pipeline processor may be periodic for a program with
inner loops. If we assume that cach task can only occupy one stage at a time, no
parallcl computations can be done within a single task. Such an assumption stems
from the practical difficultics encountered in implementing a priority scheme
involving parallel computations of a task. Once some buffers are provided intern-
ally, the task-scheduling problem can be greatly simplified. Whenever two or
more tasks are trying 1o use the same stage, only one of the tasks is allowed to use
the stage, while the rest wait in the buffers according to some priority schemes.

There are two different implementations of internal buffers in a pipeline: The
first uses one buffer for cach stage (Figure 3.40a), and the second uses one buffer
per computation step (Figure 3.40b). For one buffer per stage, two priority schemes,
FIFQO-global and LIFQ-global, can be used. In the FIFO-global scheme, a task
has priority over all tasks initiated later. In the LIFO-global scheme, a task has
priority over all tasks initiated earlier. For one buffer per computation step,
multiple buffers may be used in each segment with the following priorities: MPF:
most processed first; LPF: least processed first; LWRF: least work remaining
first; and MWRF: most work remaining first,

Reconfigurable pipelines with different function types are more desirable. Such
an approach requires extensive rc?burce—sharing among different functions. To
achieve this, a more complicated structure of pipeline segments and their inter-
connection controls is needed. Bypass techniques can be used to avoid unwanted

(&) Insert one buffer for each computation step of a Iwo-function pipeline

Figure 3.40 Inserting buffers to improve the pipeline utilization rate.

212 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

i
stages. This may cause a collision when one instruction, as a result of bypassing,
attempts to use the operands fetched for preceding instructions. To alleviate this
problem, one solution has cach instruction activate a number ol consecutive
stages down the pipeline which satisfy its need,

A dynamic pipeline would allow several configurations to be simultancously
present. For example, a dynamic-pipeline arithmetic unit could perform addition
and multiplication at the same time. Tremendous control overhead and increased
interconnection complexity would be expected. None of the existing pipeline pro-
cessors has achieved this dynamic capability. Most commercial pipelines are
static. In TI-ASC. the desired control allows different instructions to assume dif-
ferent data paths through the arithmetic pipeline at different times. All path-control
information is stored in 2 read-only memory (ROM). which can be accessed at the
initiation of an instruction,

The configuration for floating-point addition in TI-ASC (Figure 3.28h)
requires four ROM words for its path-interconnection information. This forces
the instruction execution logic to access the ROM for control signals. The ROM
words for a floating-point add may be located at 100, 101, 102, and 103, while
the words for a floating-point subtract could be located at 200, 101, 102, and 103,
Thecommon ROM words (101, 102, 103) used by both operations represent similar
suboperations contained in these two instructions. The starting ROM address i1s
supplied by the instruction-cxccution logic directly after the decode of the instruc-
tion.

The pipeline configuration for a floating-point vector dor product in TI-ASC
was depicted in Figure 3.28¢. If the dot product operated upon 1000 operands, the
pipeline would be in this configuration for 1000 clock periods. Scalar instructions
in ASC usc different control sequences. When several scalar instructions in a se-
quence are of a common type, the instructions streaming through the arithmetic
pipeline can be treated as vectors. This requires a careful selection of ROM output
signals to allow the maximum overlapping of instructions. The ability to overlap
instructions of the same type is achieved by studying the utilization of each pipeline
secgment. Overlaying identical patterns gives the minimum number of clock
periods per result. The two static arithmetic pipeline processors in STAR-100 are
reconfigurable with variable structures. Variable structure and resource sharing
are of central importance to designing multifunction pipelines. Systematic pro-
cedures are yet 10 be developed for designing dynamically reconfigurable pipelines.

34 VECTOR PROCESSING REQUIREMENTS

In this section, we explain the basic concepts of veetor processing and the necessary
implementation requirements. We distinguish vector processing from scalar pro-
cessing, present the characteristics of vector instructions, and define the perfor-
mance measures of vecton processors. We present a parallel vector scheduling
model for multipipeline supercomputers. Three vector processing methods will
be introduced for pipeline computers. After examining the architectures of various

PRINCIFLES OF PIPLLINING AND VECTOR PROCESSING 213
[}
pipeline computers, we will study in Chapter 4 various vectorization methods and
compiler-optimization problems.

3.4.1 Characteristics of Vector Processing

A vector operand contains an ordered set of n elements. where n is called the
length of the vector, Each element in a vector is a scalar quantity, which may be a
floating-point number, an integer, a logical value, or a character (byte). Vector
instructions can be classified into four primitive types:

HiV=V
b e

(3.20)
HiVx Vv

_f‘:VxS—tV

where Vand S denote a vector operand and a scalar operand, respectively. The
mappings f, and f, are unary operations and f; and f; are binary operations. As
shown in Table 3.5, the VSQR (vector Square roor) is an [, operation, VSUM
(vector summation) is an f, operation, SVP (scalar-vector product) is an f; opera-
tion, and VADD (vector add) is an fyoperation. The dot product of two vectors
ViV =31y Vi Vg is generated by applying f; (vector multiply) and then f,
(vector sum) operations in sequence. Listed in Table 3.5 are some representative
vector operations that can be found in a modern vector processor. Pipelined
implementation of the four basic vector operations is illustrated in Figure 3.41.
Note that a feedback connection is needed in the f; operation.

Table 3.5 Some representative vector instructions

Type Mnemonic Description (/ = | through N)

5 VSQR Vector square root: B(f) ~ JA(])
VSIN Vector sine: B(I) «— sin(4(1))
VCOM Vector complement: A(f) ~ A([)
7 VSUM Vector summation: §= Y., A(/)
VMAX Vector maximum: S = max;., v A(])
£ VADD Vector add ; C(I) = A(l) + B
VMPY Vector multiply: CUr) = AU « B(I) -
VAND Vector and: C(I) = A(I) and B(I) »
VLAR Vector larger: C(r) = max(A(7), B(1))
VTGE Vector test = ¢ CU) = 0if A(T) < B(1)
Ci)y = 1t A > BN
Ja SADD Vector-scalar add Bil)y= 5 + Al)

sSDIV Veetor-sealar divide: B(l) = A(I)S

L (]
[.
L .

v, s
@f:¥—av, BV s
II 12 | 1'
S e o |
. 0
. .
. .
—_ |

o
R

Figure 3.41 Four vector inStruction
QLY X V) V, (@S X Vi ¥, types for pipelined processor,

Some special instructions may be used to facilitate the manipulation of vector

* data, A boolean vector can be generated as a result of comparing two vectors, and
can be used as a masking vecror for enabling or disabling component operations

N a veetor instruction, A compress instruction will shorten a vector under the
control of a masking vector. A merge instruction combines two vectors under the
control of a masking vector, Compress and merge are special £, and [operations
because the resulting operand may have a length different from that of the input

7

{ PRINCIPLES OF PIPELINING AND VECTOR PROCTSSING 2158

* operands. Several examples are shown below to characterize these special vector
operations.

Example3.3 Let X = (2,58, 7)and ¥ = (9. 3. 6. 4). After the compare in-
struction B = X > Vis exceuted, the boolean vector B = (0, 1, 1, 1) is gener-
ated.

Let X =(1,2,3.4.5.6, 7.8)and B = (1,0,1,0,1,0, 1,0). After the exccution
of the compress instruction Y = X(B). the compressed vector ¥ — (1,3,5,7)is
generated,

Let X =(1,2,4,8), Y = (3.5, 6, 7).and B = (1,1,0,1,0,0,0, 1). After the
merge instruction Z = X, Y. (B). the result is Z=(1,2.34,5 6.7 8). The
first 1 in B indicates that Z(1) is selected from the first element of X, Similarly,
the first 0 in B indicates that Z(3) is sclected from the first element of ¥,

In general, machine operations suitable for pipelining should have the follow-
ing properties: ;

a. lIdentical processes (or functions) are repeatedly invoked many times, each
of which can be subdivided into subprocesses (or subfunctions).

b. Successive operands are fed through the pipeline segments and require as few
buffers and local controls as possible.

¢. Operations exccuted by distinct pipelines should be able to share expensive

resources, such as memories and buses, in the system.

o
~

These characteristics explain why most vector processors have pipeline
structures. Vector instructions need to perform the same operation on different
data sets repeatedly. This is not true for scalar processing over a single pair of
operands. One obvious advantage of vector processing over scalar processing is
the elimination of the overhead caused by the loop-control mechanism. Because
of the startup delay in a pipeline, a vector processor should perform better with
longer vectors. Vector instructions are usually specified by the following fields:

L. The operation code must be specified in order to select the functional unit or
to reconfigure a multifunctional unit to perform the specified operation.
Usually, microcode control is used 1o set up the required resources.

2. For a memory-reference instruction, the base addresses are needed for both
source operands and result vectors. If the operands and results are located in
the vector register file, the designated vector registers must be specified.

3. The address increment between the elements must be specified. Some computers,
like the Star-100, restrict the clements to be consecutively stored in the main
merfory, i.e., the increment is always 1. Some other computers, like TI-ASC,
can have a variable increment, which offers higher flexibility in application.

4. The address offset relative to the base address should be specified. Using the
base address and the offset, the effective memory address can be calculated.
The offset, cither positive or negative, offers the use of skewed vectors to
achieve parallel accesses.

®

216 COMPUTER ARCHTTEOCTURE AND PARALLEL PROCESSING

5. The vector length is needed to determine the termination of a vector instruction,
A masking vector may be used to mask off some of the elements without
changing the contents of the original vectors,

We can classify pipeline vector computers into two architectural configurations
according to where the operands are retrieved in a vector processor. One class is
the memor y-to-memory architecture, in which source operands, intermediate and
final results are retricved dircetly from the main memory. For memory-to-memory
veetor instructions, the information of the base address, the offset. the increment,
and the vector length must be specified in order to enable streams of data transfers
between the main memory and the pipelines. Vector instructions in the TI-ASC.
the CDC STAR-100, and the Cyber-205 have a memory-to-memory format. The
other class has o register-lo-register architecture, in which operands and results
arc retrieved indireetly from the main memory through the usce of a large number
of vector or sealar registers. Veetor instructions in the Cray-1 and the Fujitsu
VIP-200 use a register-to-register format. The example below demonstrates the
difference between these two vector-instruction formats.

To examine the efficiency of veetor processing over scalar processing, we
compare the following two programs, one written for vector processing and the
other written for scalar processing.

Example 3.4 Ina conventional scalar processor, the Fortran DO loop

DO 100 1=1, N
A(l)=B(1)+C(I)
100 B(1)=2+A(1+1)

18 implemented by the following sequence of scalar operations:

INITIALIZE |=1
10 READ B(l)
READ C(I)
ADD B(l)+C(l)
STORE A(l)—B(l)+C(l)
READ A(1+1)
MULTIPLY 2+A(1+1)
STORE B(l)«2+A(I+1)
INCREMENT |+ |+1
IFI<N GO TO 10
STOP

In a vector processor, the above DO loop operations can be vectorized into
three vector instructions in a sequence

A(TIN)=B(1:N)+C(1:N)
TEMP(1:N)=A(2:N+1)
B(1.N)=2-TEMP(1:N)

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 217

where A(1:N) refers to the N-clement vector A(l), A(2),..., A(N). The
introduction of the TEMP(1 :N) vector is necessary to enable the vectoriza-
tion,

The execution of the scalar loop repeats the loop-control overhead in each
iteration. In veetor processing using pipclines, the overhead is reduced by using
hardware or firmware controls. A vector-length register can be used to control
the vector operations. The overhead of pipeline processing is mainly the setup time,
which is needed to route the operands among functional units. For example, in the
ASC and Star-100 systems, each vector instruction needs to get some vector-
parameter registers or control vectors before the instruction can be initiated. Thus,
many additional memory fetches are needed to load the control registers. Another
overhead is the flushing time between the decoding of a vector instruction and the
exit of the first result from the pipeline. The flushing time exists for both vector and
scalar processing: however, a vector pipe has to check the termination condition
and the control vectors. Therefore, a vector pipe may have a longer flush time than
its sequential counterpart.

The vector length affects the processing efficiency because of the additional
overhead caused by subdividing a long vector. In order to enhance the vector-
processing capability, an optimized object code must be produced to maxi-
mize the utilization of pipeline resources. The following approaches have been
suggested:

Enrich the vector instruction set With a richer instruction set, the processing
capability will be enhanced. One can avoid excessive memory accesses and poor
resource utilization with an improved instruction set. The compress instruction in
Example 3.3 was a good example of saving memory.

Combine scalar instructions Using a pipeline for processing scalar quantities, one
should group scalar instructions of the same type together as a batch instead of
interleaving them. The overhead due to the pipeline reconfiguration can be greatly
reduced by grouping scalar instructions,

Choose suitable algorithms Often a fast algorithm that is implemented in a serial
Processor may not be at all effective in a pipelined processor. For example, the
merge-sort algorithm is more suitable for pipelining because the machine can
merge two ordered vectors in one pass.

Use a vectorizing compiler Ap intelligent compiler must be developed to detect
the concurrency among vector instructions which can be realized with pipelining
or with the chaining of pipelines. A vectorizing compiler would regenerate
parallelism lost in the use of sequential languages. It is desirable to use high-level
programming languages with rich parallel constructs on vector processors. The
following four stages have been recognized in the development of parallelism in

21¥ ¢ OMPUTER ARCHITECTURE AND PARALLEL PROCESSING

advanced Programming. The parameter in purentheses indicates the degree of
parallelism explorablé at cach stage:

Parallel algorithm (A)

= High-level language (L)
* Eflicient object code (0)
o Target machine code (M)

The degree of parallelism refers to the number of independent operations thay
can be performed simultaneously. We wish 1o find a suitable algorithm with
high parallelism (A) to solve large-scale matriy problems. We also need 1o develop
parailel lunguages to express parallclism (L), Unfortunately, no parallel language
Standards have yet been universally aceepicd, At present. most users stl| write their
saurce code in sequential languages.

In sequential languages like Fortran, Pascal, and Algol, we still have I = |
The natural parallelism in a machine is determined by the hardware. For example,
the Cray-1 has O = M =64 or 32. In (he ideal situation with well-developed
parallel user languages, we should Cxpect A>L >0 > M, as illustrated in
; fesem enmad. Ax i ot any parallelism in an algorithm is lost when it is expressed
in a sequentjal high-leve! anguage. In order 1o pPromote parallel processing in
machine hardware, an intelligen. “~mpiler is needed to regenerate (he parallelism
through veetorization, as illustrated by riguic 342h. The process to replace a
block of Sequential code by vector instructions is called vectorization. The system
software which does this regeneration of parallelism is called a vectorizing compiler.
In Chapter 4, we wil study attempts at developing parallel constructs in high-
level languages and then discuss desired features in vectorizing compilers,

A paralle] task-scheduling model s presented for multi-pipeline vector processors,
This model can be applied to explore maximum concurrency in veetor supercom-
puters. The functional block diagram of a modern multiple-pipeline vector com-
puter isshown in Figure 3.43. Thisstructure is generalized from the existing modern
veetor processors. The main memory is often interleaved 1o minimize the access
time of vector operands. Instructions and data may appear in either veelor or
scalar formats. The instruction processing wnis (IPU) fetches and decodes scalar
and vector instructions, All scalar Instructions are dispatched 1o the scalar pro-
cessor for exceution, The scalar processor itself contains multiple scalar pipelines.

A task sysrem contains a set of veeror instructions (tasks) with a precedence
relation determined only by data dependencies, A long vector task can be parti-
tioned into many subvectors, 1o be processed by several pipelines concurrently.
An increase in System overhead may be incurred with vector segmentations,
It has been proved by Hwang and Sy (1983) that the multi-pipeline scheduling
problem s N P-complete, even for restricted task clusses IIcm-i.».tE-c—.-:clmis.lrmg
lgorithms are (hys desirable for parallel veetor processing,

‘

-
PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 219
Degree 1 s
of
parallelism
A
L
0
M
Parallel Parallel Object Machine
algorithm language code code

(@) The ideal case of using parallel algorithm/language

Parallelism 4

A (Vectorization)
. | 1 il
M
L . H
Parallel Sequential Object Machine -
algorithm language code code

(b) The case of using vectorizing compiler and sequential language
Figure 3.42 Parallelism regeneration in using a vectorizing compiler for programs written in sequential
* language.

After a vector instruction is recognized by the IPU, the vector instruction
controller takes over in supervising its execution. The functions of this controller
include decoding vector instructions, calculating effective vector-operand address-
¢s, setting up the vector access controller and the vector processor, and monitoring
the execution of vector instructions. We consider here a very capable vector in-
struction controller which can partition a vector task and schedule different
instructions to different functional pipelines. In most commercial yector processors,
identical pipelines must execute the same vector instruction at the same time.
The vector machine model being presented has a structure generalized from the
commercial machines. The vecror access controller is responsible for fetching
veetor operands by a series of main memory accesses. The vector registers are used
to close up the speed gap between the main memory and the vector processor. In

220 computin am-mn-.-uuA: AND PARALLEL PROGCESSING

— Scalar processos
50 W Pipe 1 |
: Pipe 2 |
Instruction | o] Scalar » [._. -
| processing registers ot
§.1 it ____._ i
(aryy | I"imf’j
High- Vector
speed instruction
main controller *

memaory
] | Pipe | |
i [Fipe2]
Vector Vector .
] ACCess - . - L
controticr regisiers

Vector processor

Figure 343 The architceture of 4 1 ypical vector processor with multiple functional pipes.

the following discussions. we assume m ho mogeneous vector pipelines in the vector
processor, each of which is unifunctional or static-multifunctional.

We shall concentrate on scheduling vector tasks exclusively. The vector in-
struction controller in Figure 3.43 is capable of scheduling several vector instruc-
tions simultancously. The time required to complete the execution of a single
vector task is measured by 1, + 1, where 1, is the pipeline overhead time due to
startup and flushing delays, T = 1, L is the production delay, 1, is the average
latency between two successive operand pairs, and Lis the vector length (the
number of component operands in a vector). The startup time is measured from
the initiation of the vector instruction to the entrance of the first operand pair
into the pipeline. Parameters 1, and 1; vary with different vector instructions. The
overhead time 1, may vary from tens to several hundreds of pipeline cycles. The
average latency ¢, is usually one or two pipeline cycles. It is reasonable to assume
that 1, > t,.

Given a task system, we wish to schedule the vector tasks among m identical
pipelines such that the total execution time is minimized. To simplify the modcling,
we assume equal overhead.sime r, for all vector tasks. A vecror task system can be
characterized by a triple:

W= (T. < 1) (3.21)
where

LT =T Th, ..., T} is 4 set of i veetor Lisks,

- e

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 221

2. < is 4 partial ordering relation, specifying the precedence relationship among
the tasks in set T.

3. t:T— R" is a time function defining the production delay (7)) for cach T, in
1- We shall denote the value T)simplyas v, foralli =1.2,.. . .n

Let P = {P, P,,..., P} bethe set of vector pipelines and R? be the set of
possible time intervals. The utilization of a pipeline P, within interval [x, ¥] is
denoted by P(x, y). The set of all possible pipeline-utilization patterns is called the
resouree space, which is equal to the cartesian product P x R?* = [P(x, y)| P.epP
and (x, y) € R?}. A parallel schedule f for a vector task system V = (T, <,1)isa
total function defined by

[T 200 (3.22)

where 27" K is the power set of the resource space P x R*. Typically, we have the
following mapping for each T;e T. The index i;€ {1,2,...,n} could be repeated

J(T) = {Py(x,, ¥2h Pia(xa, y3), .. ., P(x,. y,)} (3.23)

This mapping actually subdivides the task T, into p subtasks T;,, T;,, .. ., T, Sub-
task T;; will be exccuted by pipeline P,; for each J=1L2...,p. We call
(Tli=12,...,p}a partition of the task T;. The following conditions must be
met in order to facilitate multiple grigclinc operations:

I. Forallintervals [x;, y,].j = 1,2, ..., P ¥ — X; > 1, and the total production
delay v; = } ., (b, — x; — t,). N

2. If P;; = P,, then (x5, ¥1 N [x,, »] = ¢. This implies that each pipeline is
static, performing only one subtask at a time.

The finish time for vector task T is F(T) = max{y,,y,,..., ¥;}. The finish
time @ of a parallel schedule for an n-task system is defined by

=

@ = max{F(T), K(T,),..., F(T,)} (3.24)

The purpose is to find a “good " parallel schedule such that o can be minimized.
This deterministic scheduling concept is clarified by the following example;

Example 3.5 Given a vector task system ¥ as specified in Figure 3.44q,
T={T. T, T,, L.}, to0 =1, 1, = 10, T2=2 13=06, and 1, =2. These
delays are marked beside each node of the task graph. We want to schedule
four tasks on two (m = 2) pipelines. A parallel schedule fis shown in Figure
3.44b, where the shaded area denotes the idle periods of the pipelines. The
vector task T, is partitioned into the two subtasks Ty, and T,.. with Tiy =
7andr,, = 3. Similarly. the vector task T, is partitioned into the two subtasks

(h) A parallel schedule for he lask system in (a)

Figure 3.44 Parallel scheduling of the task system of vector instructions in Example 3.5,

T3 and Ty, with 1, = 4 and Ty; = 2 The parallel schedulc /is specified by
the following mappings with a finish time o = F(T;) = 14:

T(T) = {P\(0.8). Py(3,7)} with S(T;) = O and F(T,) = 8
S(T) = {Py8. 1)} with §(T;) = 8and F(T}) = 11

AT3) = {Py(B.13), Py(11.14)} with S(T,) = 8 and F(T,) = 14
J(T) = {P:(0,3)] with §(T}) = Oand F(T3) = 3

The multiple-pipeline scheduling problem can be formally stated as a feasi-
bility problem: Given a vector task system V., a vector computer with m identical
pipelines. and a deadline D. does there exist a parallel schedule f for V with Sfinish
time @ such that «w < DY This scheduling problem has befn proven to be compu-
tationally intractable. In practice. the production delays of different vecior
tasksare different, These uncqual production delays lead to the intractability of the
multi-pipeline scheduling problem. Therefore, we have to seek heuristic algorithms
in real-life system designs. The heuristics must be simple to implement, with low
system overhead. and with nearly optimal performance.

Consider a vector processor with m pipelines with a fixed overhead time r,

for all instructions, The input to the scheduler is an independent task system 1’

with n vector tasks which are totally unrelated. The task scheduler is a built-in part
of the vector instruction controller. The output is the parallel schedule f for V.
Let 1) be the time span of using pipeline P for the execution of various tasks in a
given task system 1 This time span includes the overhead time t, every time the
pipeline is reconfigured to assume g new task (or a new subtask), the production
times r(or 1) und some idle times between successive tasks.

PRINCIPLES OF PIPELINING AND VECTOR PROCESSING 223

We denote the number of subtasks in a partition of task T; as p,. This task
partitioning process requires p; — | subdivisions of the original task. The total
number of subdivisions of all tasks in a parallel schedule is expressed by:

k=Y (m-=-1)=3p—n : (3.25)
i=1 i=1

The average time span t,(k) for partitioning n tasks into n + k subtasks over m
pipelines is defined by

LT+ 1) + ki,
(k) = = — - (3.26)
m
If there is no subdivision of the original tasks in a schedule, the average time span
1,(k) is reduced as follows, when & = 0,

oy =y ST 4 (3.27)
=i om

This quantity 1,(0) is an absolute lower bound of the finish time e, defined in

Eq. 3.24. This means that an optimal schedule is generated when w = r,(0).
Scheduling n independent tasks among the m pipelines is done by making the time
span t;(forj = 1.2,..., m) as close to 1,(k) as possible. As demonstrated in Figure
3.45, a bin-packing approach is used to generate a parallel schedule for inde-
pendent tasks. First, we assign some tasks to pipeline P, untiltimet, = 1,(0) — 1,/2.
Then we switch to pipeline P, for assigning the remaining tasks until r, = 1,(k) —
t,/2, where k = 0 or | depending on how many subdivisions of tasks have been

:,(o;+i;
1, ‘10
(Time) o) -t i |
7777 '
’E /7 /f’/ ///
3 227 ///////// 7.
E P'Px /// // //////.//
E E " : :_Jk!--*%
5 % uﬂ—%"- ‘

Note: shaded areas correspond to pipelines that have been assigned with vector tasks.

Figure 3.45 Multipipeline scheduling for independent vector tasks with a bin-packing approach.

224 COMPUTER ARCHITECTURE AND PARALLEL FROCESSING

performed. This generating process will reffeat in a stquential manner for the Ie-
maining pipelines,

In general, we will switch to the nc.-.,.pipclinc. Pi.\. when the following
boundary condition is met: :

L. .
1 < tk) - 3 (3.28)

Furthermore, we will subdivide the current task and update 1 (k) il the lollowing
condition is met, before switching to pipeline Py

b2 k) + (3.29)

We consider below, as an example, the schedule of a trec structured task
system based on the partitioned bin-packing procedure. This procedure generates a
partition, {E, E,.. .. <E) olallntasks in the tree system. The first block E, consists
of all tasks on leave nodes. The second block E, consists of those tasks on the
“new ™ leave nodes after removing tasks in £, from the tree, This process continues
until reaching the root, which forms the last block E, where I equals the tree height,
We shall process tasks in E;beforc E, il i < J- In this sense, each E, can be consid-
ered as a set of independent tasks, which can be dispatched concurrently as
described above,

Example 3.6 We are given a tree task system V= (T, 0, 1), where T=
i T 15} follows the tree relationship shown in Figure 3.46a. Suppose
o= Lty =2, =4,13=6,7, = 8,15 = 8,14 = 2,1, = 6,74 = d,and ty =
4, as marked in the tree graph. To schedule this tree task system on m = 4
identical pipelines, we first obtain the partition E, = {0, T, T} E, =
(L. T, TR} By = {T3), Ey = {Ty) as circled by dashed lines in the figure. A
parallel schedule f, is generated, as depicted in Figure 3.46b. Shaded areas
indicate the idle periods of pipelines. Tasks Ty, T3, Ty, Ts, T, and T, have been
subdivided into subtasks:

Jo(Ty) = {Py(0, 3)}

Jo(Tz) = {P,(3, 6.5), P,(0, 2.5)}

Jo(T3) = {Py(2.5, 6.75), P4(0, 3.75))

Jo(Ty) = {Py(3.75, 7), P4(0, 6.75))

To(T5) = {P (7, 11.75), P,(7, 12), Py(7, 8.25))
To(T) = {Fy(8.25, 11.25))

Te(Ty) = {P(7, 12)}

Tl(T) = {P(12,14.5): 1 2; < 4)

fo(To) = {P(14.5.16.5): 1 < i < 4)

The finish time @ = 16.5 has the same order of magnitude as w, = 13.25, the
finish time of ap optimal schedule.

o

PRISCTPLES OF PIPFLINING AND VECTOR PROCESSING 225

(@) A tree system of vector instructions and its partition

0] 12 14.5 16.5
7
| 7| fo T2 % fo Tsi % 1 fo | Tn
H
%] T | % 0 A | ™ Tu fogd <1 | [
i/ Ve
Pyl % T2 f Ty f ‘n s ,4 f LS h | T;
i
7
LA T b Ty fy T4 ‘o | T

(b) A parallel schedule
Figure 3.46 A tree task system of vector instructions and a parallel schedule for it

Concurrent processing allows a vector to be partitioned into several subvec-
tors for simultancous execution by parallel pipelines. The fact that the parallel
pipeline-scheduling problem is N P-complete precludes us from insisting on
finding an optimal pipeline-scheduling algorithm. Since the average time span
of all tasks is usually much longer than the overhead time, nearly optimal perform-
ance is guaranteed in the above heunstic-scheduling algorithms. With proper
refinement of the precedence relations on the task graphs, one can extend this
method to schedule vector task systems with arbitrary precedence relations. The
partitioning of a vector by time units is equivalent to partittoning by vector
lengths. The above pipeline-scheduling methodology can be applied 1o the design
and evaluation of pipeline supercomputers for parallel vector processing.

226 comimn auu-nrlllm‘p,'_nnh PARALLEL PROCESSING

3.4.3 Pipelined Vector Processing Methods

Vector computations are often involved in processing large arrays of data. By
ordering suceessive computations in the array, we can classify vector (array)
processing methods into three types:

L. Horizontal processing, in which vector computations are performed horizontally
from left 1o right in row fashion

2. Vertical processing. in which veetor compultations are carried out vertically
from top to bottom in column fashion

3. Vector looping, in which segmented vector loop computations are performed
from left to right and top 1o bottom in a combined horizontal and vertical
method

We use a simple vector-summation computation to illustrate these vector process-
ing methods,

Let {a, for 1 <i < n} be n scalar constants, X3 =000 Xpgunsnqig) for
J=1.2..... 0 be n column vectors. and Y= (. Ys 1) beacolumn vector
of m components, We need 1o compute the following lincar combination of n
veelors:
¥Y=di Xy +dy Xy + 0 +aq,-x, (3.30)

One needs to perform m-n multiplications and - (n — 1) additions in the above
vector computations. Expanding all component computations will help visualize
different computation orderings (o be used. For simplicity, we specify all multipli-
cations by the shorthand notation: z; = apxplori=1.2.....mandj=12,... .n
We can expand Eq. 3.30 into the following array of additions:

M=+ 4- 42,

Y2 =23 tZap ot oo+ 2,
(3.31)
Ya=2p + sy otz -

Let us now consider the implementation of the above array computations in a
pipeline processor. This processor has a static two-function arithmetic pipeline
with five stages. Suppose that the pipeline can perform either addition or multi-
plication of two numbers. but not both simulta neously. One should first implement
the mn multiplications through the pipeline, then follow with the implementation
of the m(n — 1) additions specified in Eq. 3.31. This separation of multiply and add
functions will result in a minimum recon figuration cost by eliminating unnecessary
pipeline setup delays and. thus, increasing the overall pipeline throughput.

In a nonpipeline sealar processor, each addition or multiplication requires
St where tis the clock period or one stage delay. The total execution time (without
pipelining) is thus equal to

Ty = [mn + m(n = 1)]-51 = (10mm — Smy (3.32)

-

PRINCIPLES OF PHSEINING AND VECTOR PROKISSING 227

We will compare the total execution times of various pipeline processing methods
with 7, in order to reveal their relative speedups. .

The way that addition pairs (operands) are scheduled distinguishes the three
processing methods. In what follows, we assume that all multiplications have
already been carried out by the pipeline in 7, pipeline cycles:

1, = 5t (setup time) + (time for the first product to come out of the pipe)
+ (mn — D)r(time for producing all the remaining products)
= mnt + 9¢ (3.33)

It is assumed that the main memory is large enough to hold all intermediate
results. There is a feedback path from the output of the pipeline to one of the
two inputs if needed for cumulative additions. Let T, be the total number of clock
periods needed for the pipelined addition in cach of the following methods, It is
assumed m 2 5 and n » 5.

Horizontal vector processing In this method, all components of the vector y are
calculated in a sequential order. yi for i=1.2,....m. Each summation
¥i = }7-, z; involving (n — I) additions must be completed before switching
to the evaluation of the next summation y;, , = ¥1_, z,, 1.j- To evaluate each y,
requires (1 + 14)¢ clock periods. The total add time for m outputs equals

T (horizomaly = (mn + t4m)i (3.34)

This method is frequently used in a scalar pipcline processor. The above
sequence of computations corresponds 1o the following Fortran program, provided
that all initial values of y, for | = 1,2, ... n are set 1o zero.

DO 100 i=1,m,1
DO 100 j=1,n,1
YJ=V1+8' -xlr

100 CONTINUE

The speedup of this horizontal pipelining on a vector processor over serial
processing in a uniprocessor is derived below:

T (10mn — Sm)t _ 10mn — 5;_:! %
2mn + ldm 4 9
(3.33)

i,—‘f T (horizontal) = (2mn + 14m + 9)_.' i

Shurin\nul -

Vertical vector p®cessing The sequence of additions in this method is specified
below with respect 1o the m-by-n array shown in Eq.3.31;

Step 1. Compute the partial sums (5, + z,,) = Vislfori=1.2 ... msequentially
through the pipeline.
Step 2. Compute the artial sums (14, + z) fori = 1, 2,....m by loading 1.
Ul pn. i3 g =

IO one input port in stage | and loading =,, into the second input port.

228 COMPUTER ARCHITECTURE AN PARALLEL PROM FSSING

Step 3to Stepn — 1, Repeat Step 2 for n — 3 times by leeding successive columns
Cipe23pe. iz,)" for j = 4, S,....n, into the second input port. The values
ofy,fori=1,2_...m emerge from the pipeline at the end of Stepn — 1.

The total add time of this vertical approach equals
T(vertical) = (mn — m + 10u (3.36)
Therefore, the speedup of vertical veetor processing over uniprocessing equals
T; 10mm — 5m

- = ot 7 B 3.37
T, + Tvertical) ~ 2mn — m + 19 ()

‘s.ucrliral =
This method has been applied to vector processing in the STAR- 100,

Vector looping method This method combines the horizontal and vertical
approaches into a “block " a pproach. The sieps are specified below.

Step L. Apply the vertical processing method to generate the first block of five
outpuls. v, v,. ..., vs, in column fashion.

Step 2o Step k. Repeat Step 1 for gencrating the remaining five-output blocks as
listed below:

Step 2: y,, Y1. «oiiio
Step 3: p, .. Yidi oo
P K: Poi-as Foy—30-an Vg
Step k + 1. Repeat Step | for gencrating the last block of r outputs, Vsr+1s
Yski+2e.c.oand yo, . wherem = Sk + rand 0 < r < 5
The total add time of this vector-looping method is given below, where
k= (m— r)/s.
Ty(vector looping) = 51 + (S5n — 1)y + (k - D[S(n — 1] + 5t
=mmt —mt — ot + rt + 14r (3.38)
The speedup of the vector-loop method over a uniprocessing method equals :

T b, 10mn — 5m
T, + T.(1oop) 2mm —m —rn +r + 23

(3.39)

vector looping —
This method has been applied in the Cray-1 for segmented vector processing.

The horizontal method is suitable for use in scalar processors but unfit for
parallel processing in a veetor processor. Both vertical and vector-looping methoe®,
are attractive for vector processors. In vertical processing, the number of vector
components m is unrestricted. However, many intermediate results (partial sums
in the example) have 1o be stored in the memory. This poses the problem of in-
creased demand for memory bandwidth, Vertical processing is more suitable for

PRINCIPLES OF PIPELINING AND VECTOR PROKCESSING 229

memory-to-memory pipeline operations, like those in the Star- 100 and the Cyber-
205. The vector-looping method is also not restricted by vector length. Since the
intermediate results appear as small blocks of data, one can usc a cache memory
or fast-register arrays to hold the intermediate results. Thus vecior looping is morc
suitable for register-to-register pipeline operations, such as in the Cray-1 and the
Fujitsu VP-200). It is interesting to note that all the speedups unproach S, the
number of stages in the sample pipeline, when n and m are very large in the per-
formance analvsis.

The speed of a scalar processor is usually measured by the number of insipo. -
tions executed per unit time. such as the use of a million instruction, per secend
(MIPS) as a measure. For a vector processor, it is universally accepted to measure
the number of arithmetic operations performed per unit time, such as the use of
mega floating-point operations per second (megaflops). Note that the conversion
between mips and megaflops depends on the machine type. Thure is no fixed
rclationship between the two measures. In general, to perform a floating-point
operation in a scalar processor may require two to five instructions. If we consider
the average as three, then one megaflops may imply three mips. This conversion
constant is machine dependent. Other authors compare the speeds of different
computers by choosing a reference machine. Readers should be 1ware of (he
difference between the peak speed and the average speed when benchimark programs
or test computations are executed on each machine. The peak specd corresponds
10 the maximum theoretical CPU rate, whereas the average speed is determined
by the processing times of a large number of mixed jobs including both CPU
and 1/O opcrations.

3.5 BIBLIOGRAPHIC NOTES AND PROBLEMS

An carlier survey of pipeline computer architecture was given by Ramamoorthy
and Li(1977). A recent assessment of pipeline processorsand vectorization methods
can be found in Hwang et al. (1981). The concept of overlapped parallelism was
studied in Chen (19714, b; 1975). Pipeline processors were described in Hayes
(1978), Kuck (1978), and Stone (1980). The classification of pipeline computers
is based on the work of Hindler (1977). Good examples of instruction and arith-
metic pipelines can be found in Anderson et al. (1967). Hintz and Taic (1972),
Majithia (1976). Hwang (1979), and Waser and Flynn (1982). Intericaved memory
systems for pipelining and parallel computers have been studicd in Hellerman
(1967), Burnett and Coffman (1970). Knuth and Rao (1975), Chang et al, (1977)
Briggs and Davidson (1977). and Briges and Dubois, (1983). A comprehensive
treatment of pipeline computer systems can be found in Kogge (1981) :

Pipeline models and task scheduling problems have been studicd i dson
(1971). Reddi (1972), Thomas and Davidson (1974), Ramamoorihy and Kim
(1974). Li (1975), and Lang et al. (1979). Instruction prefetch techniques wer
treated by Rau (1977) and Grohoski and Patel (1982). Different aspects of busk
branching. and interrupt-handling of pipeline operations were also treatod
Ramamoorthy and Li (1977). The dynamic pipelines with improved throughpu

-
230 coMPUTER A:@Hlﬂ!rnmrmb PARALLEL PROCESSING

using noncom delays and internal buffers were pProposed by Patel (1976,
1978a, b). Loolhead techniques such as hazard resolution and data forwarding
have been treated by Keller (1975) and Tomasulo (1967). The modeling of a vector
processor with multiple pipelines is based on the work of Hwang and Su (1983).
Static pipes are commercially designed because of less control and hardware
costs. However, systems requiring reliable and flexible designs may have to use
dynamic pipes in order to enhance fault-tolerance capability and to increase (he
resource utilization.

Problems
3.1 Describe the following terminologies associated with pipeline computers and vector processing :
(@) Static pipeline (k) Minimum average latency
(h) Dynamic pipeline () Precise vs. imprecise interrupts
(¢) Unifunctional pipeline (m) Perfect cycle
(d) Multifunctional pipeline (n) Greedy cycle
(e) Instruction pipeline (0) Data-dependent hazards
(f) Arithmetic pipeline (p) Short circuiting
(9) Pipeline efficiency (9) Internal forwarding
() Pipeline throughput (r) Vectorizer
(i) Forbidden latencies (s) Branch target buffering
() Collision vector (1) Register tagging

3.2 Compare the advantages and disadvantages of the three interleaved memory organizations:
the S-access, the C.access. and the C/S-access described in Section 3.1.4 for pipelined vector

3.3 Consider a four-segment normalized floating-point adder with a 10-ns delay per each segment,
which equals the pipeline clock period.

(@) Name the appropriate functions 1o be performed by the four segments.

(b)) Find the minimum number of periods required 1o add 100 floating-point numbers A+
Az + 4 A4 using this pipeline adder, assuming that the output Z of segment S, can be routed
back to any of the two inputs X or ¥ of the pipeline with delays equal to any multiples of the period.

x =
S S s b5]2

3.4 A certain dynamic pipeline with the four segments S,, S, S,, and S, is characterized by the
following reservation 1a ble:

N ‘I I"! |"_1 y fy f‘

T
PRINCIFLES OF PIPELINING AND VECTOR PROCESSING 231

(a) Determine latencies in the forbidden list F and the collision vector €.

(B) Determine the minimum constant latency L by checking the forbidden list.

(c) Draw the state diagram for this pipeline. Determine the minimal arerage latency (MAL) and
the maximum throughpur of this pipeline.
3.5 For the following reservation table of a pipeline processor, give the forbidden lisi of avoided
latencies F, the lower bound on latency, the collision vector, the state diagram.the MAL and all
greedy cuicles

n

K]

e

o -

S

3.6 The following overlayed reservation table corresponds to a two-function pipeline :

0
S\|AlB AlB
iy B|A
5B A

(a) List all four cross forbidden lists of latencies and corresponding combined eross-collision
malrices,
(8} Draw the state diagram for the two-functional pipeline.
3.7 Assume that instructions are executed in a k-segment pipeline, The delay of each segment is one
time unit. If an instruction depends on one or more of its predecessors, then all these predecessors must
complete exccution before the current instruct ion can begin exccution, If such a predecessor is N
instructions preceding the current instruction, a delay is added as k — N time units for N = &k and
no delay for N > k. Let p, be the probability of encountering a data dependency from the mth pre-
decessor. Assume an integer L > k. Suppose that p, has the distribution Po=1/Lforn=1,2,_. ., L
and p, equal zero otherwise.
(@) Find the expected value of the total time 710 execute a block of M instructions.
(6) Determine the performance P of the instruction pipeline, where

P = lim E
Mo

3.8 (&) Suppose that only two 4-segment pipelined adders and a number of noncompute delay
clements are available, The dela y of each segment is one time unit and the noncompute delay element
cin have either a one- or two-time unit delay. Using availuble resources, construct g pipeline with only
one input. @'s, 10 compute Ali) = a(i) 4 ali — 1) + ali — 2) + a(i — 3). Show the schei®utic block
diagram of your design

(&) Given one additional four-segment pipelined adder, use this adder together with the pipeline
obtained from («) to design o pipeline for computing the recurrence function V) = ali) + i — 1)
The pipeline consiructed should have a feedback. Show your schematic block diagram. Hing: x(i) =
ali} + i — 1) = g() = [we = 1) + V(i = 2] = uld) + alif = 1) 4+ [edi— 2) + nif = N =wmn +
Q= 1V = ali — 2) & Bi = 35 & e — N = Mi) + v - 4

23 COMPUTER ARCHITECT LR AND PARALLEL PROCESSING
Py

3.9 Consider the following pipelined processor with four stiges. All successor stages after each stage
must be used i successive clock periogds,

3 ofs o i oo i

Input

— O

Answer the following questions assocrated with using this pipeline with an evaluation fime of six
pipeline clock periods,

(@) Write out the reservation table for this pipeline with six columns and four rows.

(A) List the sel of forbidden latencies between task initiations,

(e} Show the initial collision vector,

(d) Draw the state diagram which shows all the possible latency cycles.

(e) List all the simple cycles from the state diagram.

(/) List all the greedy eyeles from the state diagram.

(#) What is the value of the minimal average latency (MAL)?

(4 Indicate the minimum constant latency cycle for this pipeline.

() What is the maxima| throughput of this pipeline ?

310 (a) How does the 1BM 36091 avoid problems due 1o data dependencies involving the contents of
floating-poim registers within the floating-point exceution unit” In your unswer, especially address
each type of hazard, indicating how each is controlled.

(k) The Aoating-point execution unit in the 360/91 handles data dependencies involving floating-
point register contents. What data dependencies can arise in the execution of floating-point instructions
(including loads to and stores from the foating-point registers) that involve the contents of some
memory word? How can these dependencics be managed? Efficiency is a prime consideration. Use g
block diagram 1o illustrate the organization of the major hardware units that Your solution requires,
Explain the operation of each of these units,

11 Answer the following equations related to the task initiation cycle (2, 3, 7) for a given pipelined
processor. &

(@) What are the period p and the average latency /, of this initiation cycle?

(4) Specify the initiation interval set G (mod p). o sl

(¢) What is the necessary and sufficient condition that a given task initiation cycle is allowed bya
pipeline with a forbidden latency set £? Repeat the same question for a constant initiation cycle with
period p.

312 Suppose that scalar operations take 10 times longer o execute per result than vector operations,
Given a program which is originally written in scalar code:

() What are the percentages of the code needed to be vectorized in order to achieve the speedup
factors of 2. 4, and 6 respectively ?

(&) Suppose the program contains 155 of code that cannot be vectorized such as sequential [/O
operations. Now repeat question () for the remaining code to achieve the three speedup factors.

CHAPTER

FOUR

PIPELINE COMPUTERS AND VECTORIZATION
METHODS

This chapter describes the system architectures and vector processing techniques
developed with existing pipeline. computers. The first section gives a historical
retrospective of pipeline computers in two architectural categories: vector super-
computers and attached array processors. We will examine three attached pro-
cessors: the AP-120B (FPS-164), the IBM 3838, and the MATP. Vector super-
computers to be studied include the early systems Star-100 and TI-ASC. and the
recent systems Cray-1, Cyber-205, and VP-200, and their possible extensions.
Finally, we will study vectorizing compiling techniques, optimization methods.
and performance evaluation issues in designing or using pipeline computers.

4.1 THE SPACE OF PIPELINE COMPUTERS

Pipeline computers refer to those digital machines that provide overlapped data
processing in the central processor, in the I/O processor, and in the memory
hierarchy. Pipelining is practiced not only in program execution but also in
program loading and data fetching operations. Univac-1 was the first machine
that overlapped program execution with some 1/O activitics. With the develop-
ment of interleaved memory, memory words in successive memory modules could
be fetched in a pipelined fashion. These pipeline memory fetches prompted the
overlapped instruction fetches and instruction executions as pioncered in the
IBM 7094 series in the Stretch project and in the Univac-Lare system,

The performance of a pipeline processor may be significantly degraded by the
data dependency holdup problem. The evolution of the CDC 6000/7000 series
has contributed to the development of hardware/softwire mechanisms to overcome
this difficulty. In addition to further partitioning the iNSIruclion ¢Xecution procesa,
the CDC 6000 series uses a “status checkboard ™ 10 indicate the availabilities of
various resources in the computer required to execute various stages of subsequer:

2} COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

instructions. Resource conflicts are recorded in the checkboard. Instructions being
interrupted are temporarily queued for deferred executions. A single instruction
may be deferred several times because of sequence of resource conflicts. Multiple
arithmetic units are employed in the CDC 6600/7600 10 alleviate the resource-
conflict problem in the overlapped executions of multiple instructions in the
system. '

The development of the IBM System/360 Model 91 scientific processor has
greatly enhanced the design methodology of pipeline computers. A hierarchy of
pipelines is employed in the Model 91 for instruction fetch, preprocessing, and
execution, as described in Chapter 3. Mechanisms are provided to prefetch instruc-
tions at both alternative program paths after a conditional branch instruction.
Continued instruction execution can be sustained with prefetching to increase the
system throughput. High-speed instruction and data buffers are used to make the
above approach possible. Fast internal data forwarding techniques were also
implemented in the IBM System/360 Model 91 and its successor IBM System/370
modcls to overcome the difficulty caused by hazards or out-of-sequence
executions. Many of these pipeline design techniques have appeared in later
machines like the Amdahl 470 V/6 and the IBM 3081,

4.1.1 Vector Supercomputers

A supercomputer is characterized by its high computational speed, fast and large
main and secondary memory, and the extensive use of parallel structured software.
Most of today’s supercomputers are designed to perform large-scale vector or
matrix computations in the areas of structural engineering, petroleum exploration,
VLSl circuit design, acrodynamics, hydrodynamics, meteorology, nuclear research,
tomography, and artificial intelligence. The demand for high speed and large
internal memory is obvious in these scientific applications. Large amounts of data
are often processed by a supercomputer. Usually the data elements are arranged in
array, vector, or matrix forms, The large data arrays are collected from, for example,
seismic echo signals after the set off of a sonic shock wave into the ground. In
1979 alone, 107 bits of seismic data were processed in the United States. Similar
examples can be found in radar and sonar signal processing for detection of space
and underwater targets, in remote sensing for earth resource exploration, in .
computational wind tunnel experiments, in three-dimensional stop-action com-
puter-assisted tomography, in numerical weather forecasting, and in many
real-time applications. In terms of speed, current supercomputers should be able
to operate at a speed of 100 megaflops or higher.

The first generation of vector supercomputers is marked by the development of
the Star-100, TI-ASC, and the Illiac-IV in the 1960s. By 1978, there were seven
installations of ASC, four installations of Star-100, and only one Illiac-1V system
installed at user sites. We will first study the Star-100 and ASC systems. Both the
Star-100 and the ASC systems are equipped with multiple functional pipeline
processors to achieve parallel vector processing. The Star-100 has a memory-to-
memory architecture with two pipeline processors. The ASC can handle up to

PIPELINE COMPUTERS AND VECTORIZATION METHODS 235

three-dimensional vector computations in pipeline mode. The peak speed of
both systems is around 40 megaflops. We avill study Illiac-1V in Chapter 6.

Vector processors entered the second generation with the development of the
Cray-1, the Cyber-200 series, and the Fujitsu VP-200. The Cray-1, evolved from
the CDC 6600/7600 series, is considered one of the fastest supercomputers that
has ever been built. The maximum CPU rate of the Cray-1 is 160 megaflops if all
the resources are fully utilized. The Cyber-200 series is extended from the Star-100.
The Cyber 205 has both vector and scalar pipelines, with the potential to perform
800 megaflops. As of Scptember 1982, there were over 60 Cray-1 and Cyber-205
machines installed all over the world. Recently, Fujitsu in Japan announced a
vector processor, VP-200, which can perform up to 500 megaflops.

For the future, it is highly necessary to have a vector processor which can
perform 1000 megaflops or more. Cray Research is currently extending the Cray-1
to a multiprocessor configuration, called Cray X-MP. This Cray X-MP, consisting
of dual processors, is expected to be five times more powerful than the Cray-1,
with an expected peak speed of 400 megaflops. Eventually, Cray Research plans to
further upgrade Cray X-MP to a four-processor model, called Cray-2, which will
be 12 times more powerful than Cray-1 in vector processing mode. CDC has
proposed to upgrade the Cyber-205 eventually to a vector processor that can
provide 3000 megaflops for numerical aerodynamic simulations. Each uni-
processor in the multiprocessor system S-1, under construction at the Lawrence
Livermore National Laboratory, is also highly pipelined, with an expected CPU
rate twice as fast as the Cray-1. Cray X-MP, Cray-2, and S-1 will be introduced in
Chapter 9, along with other multiprocessor systems.

4.1.2 Scientific Attached Processors

Most scientific processors are designed as back-end machines attached to a host
computer. Most of these atiached processors are pipeline structured. The most used
system is the AP-120B and FPS-164 array processors manufactured by Floating-
Point Systems, We will study three attached processors, including the AP-120B
(FPS-164), the IBM 3838, and the Datawest array transform processor.

These attached processors are mostly designed to enhance the floating-point
and vector-processing capabilities of the host-machine. They can be attached to
minicomputers and mainframes. For example, an AP-120B can be attached to a
VAX 11/780, increasing the computing power of the VAX to 12 megaflops. Attached
processors cost much less than the mainframes or supercomputers. However, most
attached array processors must be microcoded for specific vector applications.
The application software costs an:..much higher than the bare hardware costs,
especially when microcode packages must be developed by users for special-
purpose computations.

In a host back-end computer organization, the host is a program manager
which handles all 1/0, code compiling, and operating svstem functions, while the
back-end attached processor concentrates on arithmetic computations with data
supplicd by the host machine. High-speed interface is often necded between the

236 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

host and the back-end machine, In this sense, the supercomputers Cray-1 and
Cyber-205 are ulso back-end machines driven by a host machine.

The projected speed performances of the aforementioned pipeline super-
computers and attached processors are compared in Figure 4.1. We use the measure
million operations per second (mops) to refer to either megaflops or a million integer
operations per second. All speeds indicated within the parentheses refer to the
theoretical peik performance, if the machine is used sensibly. In the late sixtics,
only pipeline scalar processors were available with a maximum speed of 5 mops, as
represented by the IBM 36091 and 370/195 series, and by the CDC 6600/7600
series. The first-generation vector processors Star-100 and TI-ASC have a speed
ranging from 30 to 50 mops. The second-generation vector processors Cray-1,
Cyber-205, and VP-200 have a speed between 100 and 800 mops.

The attached processors AP-120B and FPS-164 have a peak speed of 12
megaflops. The FACOM 230/75 can perform 22 megafiops. MATP is a four-
pipeline multiprocessor which can operate up to 120 megaflops. The IBM 3838
has a peak speed of 30 megaflops. The Fujitsu VP-200 is extended from its pre-
decessor FACOM 23075, The first Cray X-MP became available in 1983,

Million operations per seconds (MOPS)

A
10' -
NASF (3,000)
F 4
’
&
'f’ Cray-2 (2,000)
/
10° (- The -~ o
second Cyber-205 (800) 7 7
generation VP-200 (500)
vector -MP
processor | Cray-1 (160) Cray X-MP (400)
.MATP (120)
10° -
The first ;5;;'-'90
generation) Attached
prcemar [, 8. @5 i
TASC 39) o p acom 23075 (22)
10 AP-1208 (12) 9 FPs-164 (12)
7600(5)
360/105,45)
/ t ¥ Scalar
processors
6600(360/91 (2)
1 ! / 1 1 1 1 A
1060 1965 1970 1975 1980 1985

Year

Figure 4.1 The thearetical peak performunce of pipelined supercomputers and attached scientitic pro-
Cessors,

PIPELINE COMPUTERS AND VECTORIZATION METHODS 237

The future supercomputers Cyber 2xx, Cray 2, and S-1 are expected to perform
over 3000 megaflops for applications in the 1990s.

Of course, the peak speeds in Figure 4.1 may not always be attainable. For
average programs written by nonspecialists, the speed is much lower, than those
peak values indicated. For mixed programs, it has been estimated that the average
rate of the Cray-1 is 24 megaflops, of the Star-100 is 16 megaflops, and of the
AP-120B is only 6 megaflops. These measured operating speeds are low because
the software is not properly tuned to explore the hardware. These issucs will be
studied in Scction 4.5 along with language, compiling, vectorization, and optimiza-
tion facilities for vector processors.

4.2 EARLY VECTOR PROCESSORS

Dedicated computers for vector processing started with the introduction of two
supercomputer systems known as the CDC-Star and the TI-ASC, both of which
have multiple pipeline processors for stand-alone operations. Based on the em-
ployed technology and architectural features, the two generations of vector
processors differ in many aspects. In this section, architectural structures, pipelined
arithmetic designs and vector processing in the Star and ASC are described. In the
next section, we will study more recenk vector processors,

4.2.1 Architectures of Star-100 and TI-ASC

The Star-100 is a vector-oriented processor with two nonhomogencous arithmetic
pipelines. Control Data Corporation started the design of Star in 1965 and
delivered it to user sites in 1973. It is structured around a four million byte (eight
million optional) high-bandwidth core memory for stand-alone operations.
Special features designed in the Star-100 include stream processing, virtual
addressing, hardware microinstructions, semiconductor memory-register file, and
pipelined floating-point arithmetic. The core memory in the Star has a cycle time
of 1.28 us. It has 32 interleaved memory banks, each containing 2048 words of
512 bits each. The memory cycle is divided into 32 minor cycles, with a rate of
40 ns each. This implies that the memory supplies 512 bits of data per minor cycle.

The pipelined arithmetic units are especially designed for sequential and
parallel operations on single bits. 8-bit bytes, and 32- or 64-bit floating-point
operands and vectors. Virtual addressing employs a high-speed mapping technique
to convert a logical address to an absolute memory address. In the ideal case, the
system has the capability of producing 100 million 32-bit floating-point results per
second. The system architecture of the Star-100 1s shown in Figure 4.2. The
memory banks are organized into eight groups of four banks each. During the
streaming operations, all four buses will be active, with each bus transferring dat:
at a rate of 128 bits per minor excle. Two of the buses are used for transferrinz

238 coMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Pipeline processor 2

| e e |
| i
: SAC ! Stream i ‘
i H
g 128 bits havrite bu i Write 1 Floating-point !
b o fanout i buffer - add pipe i
0-3] 3) p — i L |
128 bity i Register :
- a i :' divide |
B-11 8 I e L TR
12-15 12 i
Iﬁ_]g]6 128 blt& [—| IF--.---,..-v-----.--- R ‘1i
| . .
#1 Floating-point '
20-23 20 | N - add pipe ;
24-27 24 Read bus ! Read ‘ 4
fan-in 1 buffer H i
28-31 L 28 y i l F Multiply !
128bis |} ; i
RIB r ! Pipeline processor | ¢
: SR il s ot N
' String
i | 1/0 channels
: and DMA
| ! I8
fema i- J
i + YYCHI Maintenance
]-..,_ station
T
¥ YCH 24
o058
Optional
170 CH
%5-3 &9-12
Direct access
channel

Figure 4.2 The system architecture of Star-100, (Courtesy of Control Data Corp.)

operand streams to the pipeline processors. The third bus is used for storing the
result stream, and the fourth bus is shared between input-output storage requests
and the references of control vectors.

The Storage Access Control unit controls the transmission of all data to and
from the memory. It is responsible for memory sharing among the various buses
shared by the stream and 1/O units. Its principal function is to perform virtual
memory address comparison and translation. The Stream unit provides basic
control for the system. All memory references and many control signals
originate from this unit. It has the facilitics for instruction buflering and decoding.
The Read Buffer and Write Buffer are used to syachronize the four active buses to
maintain a smooth data transfer. The memory requests are buflered eight banks

PIPELINE COMPUTERS AND VECTORIZATION METHODS 239

apart to avoid access conflicts. As a result, the maximum pipeline rate can be
sustained regardless of distribution of addresses on the four active buses.

Other functional units in the Stream unit include the register file and the micro-
code memory. The register file supplies necessary addressing for all source operands
and results. It also has the capability of performing simple logical and arithmetic
operations. The semiconductor microcode memory is used as part of the stream
control. The control signals and enable conditions produced by the microcode are
used together with the hardwired control to process instructions and interrupts.
The String unit processes strings of decimal or binary digits and performs bit-
logical and character-string operations. It contains several adders to execute
binary coded decimal (BCD) and binary arithmetic.

In the Star-100 are two independent arithmetic pipelines (Figure 4.3). The pipe-
line processor 1 consists of a 64-bit floating-point (henceforth FLP) add unit and a
32-bit FLP multiply unit. The add pipeline on the right contains four segment
groups in cascade. The exponent compare segment compares exponents and saves
the larger. The difference between the exponents is then saved as a shift count by
which the fraction with the smaller exponent is right-shifted in the coefficient
alignment segment. In the add segment, the shifted and unshifted fractions are
added. The sum and the larger exponent are then gated to the normalized segments.
The transmir segment selects the desired upper or lower half of the sum, checks for
any fraction overflow, and transmits the results to the designated data bus. There
is a path from the output of the transmit segment to the input of the receive seg-
ment. This feedback feature is especially useful for continuous addition of multiple
floating-point numbers. Howeves, when nonstreaming-type operations are
performed, the exccution time can be decreased by 50 percent if the output of an
operation is needed as an input operand for subsequent operations.

With little additional hardware, it is possible to split the 64-bit add pipeline
into two independent 32-bit ones. Consequently, half-width (32-bit) arithmetic
can be available. The 32-bit multiply pipeline is implemented with multiplier-
recoding logic, multiplicand-gating network, and several levels of carry-save
adders. A resultant product of the multiplication is formed by adding the final
partial sum and the saved carry vector. The required post-normalization after
FLP multiply is done using the normalize segments of the add pipeline on the
right.

Processor number 2, depicted in Figure 4.3b, contains a pipelined add unit, a
nonpipelined divide unit, a pipelined multipurpose unit, and some pipelined merge
units. The add pipeline in processor number 2 is similar to that in processor
number 1. The multipurpose pipeline has 24 segments and is capable of performing
multiply, divide, square root, and a number of other arithmetic logic operations.
The register divide unit is a nonpipelined divider which can also perform BCD
arithmetic.

Two 32-bit multiply pipelines can be combined to form a 64-bit multiply
pipeline. This combined unit can simultaneously execute two 32-bit multiplications
or execute one 64-bit multiplication. In order to perform a 64-bit multiplication,
the multiplicand A and multiplicr B are each splitinto two parts, A = A, + A,-2%,

weadls
o1
Eieg

TETHT)

*
(d103 myeqg joaruoy jo $$531n03y) (] -181S Uy sautjadid MWy ¢ andig

T 1os53x014 (¢) weas | 405533044 (p)

¥
yiys

o —

wunoa
371|BULION

wnos
arijewaoN

1jigs
arpeuLIon
uno3 '
azewION ;
|

:

H

m_ m

FEY

ke

LU
a0
sseduson

wanodyy H
—_—

R PEIY :

1 7w

i sfaapy

{ aKa3py

e —

3piaip P swewissg) p
sanigay | | esodmdungyg _ PRV i
i 3 auadid H _. =] |

: TETHES TS §

asodandu|ny ' R :
; ey |

Jimdwos
JUIUMINg '

f

[

EETEREEY

POy woJdq

S WS Sy

1]

4.

=

PIPELINE COMPUTERS AND VECTORIZATION METHODS 24]

and B = B, + B, - 2", where w = 32 bits, the width of the basic multiply pipeline.
Then the following four multiplications are performed:

AXxB=A,x B, + (4, x B, + Ay x By)-2% + (A, x By)-2** (4.1)

Ay x By and A, x B, are executed during the first cycle of multiplication,
and A, x B, and A4, x B, during the second cycle, Afterward, all partial sums
and partial carries are merged in a 64-bit merge section, which is essentially a set
of carry-save adder trees (pipelines). The partial sum and partial product from the
64-bit merge section are then added together by two adders 1o yield the final 64-bit
product.

The Star-100 has 130 scalar instructions and 65 vector mstructions, as cate-
gorically listed in Table 4.1, Vectors in the Star-100 are formed as strings of binary
numbers or characters, or as arrays of 32- or 64-bit FLP numbers. The sparse
vector instructions can process compressed sparse vectors, When the pipeline
enters streaming operations. it is possible to maintain a 40-ns output rat¢. The
input-to-output time for the FLP add pipeline is 160 ns, because there are
essentially four pipeline scgments. The time delay of the FLP multiply pipeline
equals 320 ns. The maximum throughput for different arithmetic operations is
summarized in Table 4.2. These are peak CPU speeds. In practice, the measured
average speed of the Star-100is only 0.5 to 1.5 megaflops for scalar operations and
5 to 10 megaflops for vector operations, lower than its designed capabilities. It is
quite obvious that double-precision FLP operations require more time to com-
plete, twice the add/subtract time*and four times the multiply or divide time
compared to their single-precision counterparts.

Texas Instruments Advanced Scientific Computer (ASC) was delivered in 1972,
The central processor of ASC s incorporated with a high degree of pipelining in
both instruction and arithmetic levels, The basic components of the ASC system

Table 4.1 Instruction types in Star-100

Scalar instructions Vector instructions
Load and Store Arithmetic
Arithmetic Compare
Index Secarch
Increment and Test Move
Bit operations Normalize
Normalize Data type conversion
Data type conversion Sparse vector ' Y
Branch Vector macros
String Dot product
Logical Polynomial evaluation
Monitor eall Average difference
Average

Adjacent mean

242 COMPUTER ARCHITEC TURE AND PARALLEL PROCESSING

Table 4.2 Maximum numbers of
arithmetic operations exccutable
in the CDC Star-100 system for
short and long word lengths (in

mops)

e e S T S
Floating-point 32.bit 6d-bit
operations (short) (hamgd
Add-subtract 106) 50
Multiply 104) 25
Divide 50 12.5
Square rool 50 12.5

are shown in Figure 4.4. The central processor is used for its high speed to process
a large array of data. The peripheral processing unit is used by the operating
system. Disk channels and tape channels support a large number of storage units.
Data concentrators are included for support of remote batch and interactive
terminals. The memory banks and an optional memory extension are managed
by the memory control unit. The main memory has eight interleaved modules.
cach with a cycle time of 160 ns and a word length of 32 bits. Eight memory words
can be transferred in one memory aceess. The memory control unit is an interface
between eight independent processor ports and nine memory buses. Each processor
port has full accessibility to all memories,

The central processor can exccute both scalar and veclor instructions.
Figure 4.5 illustrates the functional pipelines in the central processor. The pro-
cessor includes the instruction processing unit (IPU), the memory buffer unit

[t e e e e e s i e
4 '
: + 1 1 ' Central
Memor Instruction processing unit i
; i -
- ! i Y
E e . e I.-..J---AT :
ef Exec L& Exec 3 i Excc Ly Exec | 5
i| unit 1 t 1
. - - . P
L 4

Peripheral Printers, card readers,
Memory . card punches
—_— - Memory prog unit P
control B :
i y ra lits
Memory umnit dise v isc storage units
hannels
Memory Tape .
channels
Data con E , Remote communications,
ala con-
[1 H terminals
W :
Memory —1 Memory | {Optionaly
extension
AERSINY.

i ===

Figure 4.4 Busie Tevas Tostruments ASC Systems contiguration.

Magnetic tape drivers

LT

PIPELINE COMPUTIERS AND VECTORIZATION METHODS 243

16 In;:::..:_lilri?n | Index regs. |B
Instructions
Vectlor
'd - 16 Base regs. paramecler regs. 8
e]
mcmotyé - IPU
ports Operand 7 NI,
- o AR
—-— ’;—" l! ..‘. “‘H‘\
- il /{ .~ S
~ -'——-—1,_.-' l, hY "-.__\
x1[¥][z] x]lv]lz: Y]z x1ly] [z
MBU
x| Y] (2] X/ly] [z x| [¥] [z Xx|[¥] |z
Y ¥ - R] L TV L Y L
AU p—Pipe 1— -—I:ipe 22— —Pipe 31— —Pipe 4 —

st O L R el e o T

Figure 4.5 Central processor of the TI-ASC with four arithmetic logic pipelines. (Courtesy of Texas
Instruments, Inc.)

(MBU), and the arithmetic unit (AU). Up to four arithmetic pipelines (MBU-
AU pairs) can be built into the central processor. The ASC instruction types are
listed in Table 4.3, The maximum ASC speed per arithmetic pipeline is given in
Table 44. On the average, only 0.5 to 1.5 megaflops and 3 to 10 megaflops per
pipeline can be expected for scalar and vector operations, respectively,

The primary function of the IPU is to supply the rest of the central processor
with a continuous stream of instructions. Internally, the IPU is a multisegment
pipeline which has 48 program-addressable registers for fetching and decoding
instructions gnd generating the operand address. Instructions are first fétched in
octets (8 words) from memory into the instruction buffers of 16 registers. Then
the IPU performs assignment of instructions to the MBU-AU pairs to achieve
optimal use of the arithmetic pipelines. The MBU is an interface between main
memory and the arithmetic pipelines. Its primary function is to support the
arithmetic units with continuous streams of operands. The MBU has three double
buffers, with each buffer having cight registers. X and Y buffers are used for inputs,
and a Z buffer is used for output. The fetch and store of data are made in 8-word

244 COMPUTIR ARCHTTECTURE AND FARALLEL PROCESSING

Table 4.3 TI-ASC instruction types

Scalar instructions Vector instructions

Load and Store Arithmelic
Arithmete Loygical

Logical Shan

Shifq onapare
Compare Merpe and COrder
Branch Move

Increment und Test Search

Stack Normalize
MNormalize Data conversion

Dista type conversion
Monitor eall

Peak picking
Select
Replace

——

Table 4.4 Maximum Hoating-
point speed of TI-ASC (in mops)

Aritl metic 32-bit 6d-bat
aperations operands operands
Add 16.6 98
Multiply l6.6 9.5
Divide 11 .67

Table 4.5 Comparison of major architectural features between

Star-100 and TI-ASC

Characteristic STAR-100

ASC

Data word size 1/8/32/64/128 bits

Instruction size 12/64 bits
Memory size I M 64-bit words
Clock rate 40 ns "
Functional 2 nonhomogencous
pipeline pipelines
unu) Add pipe + Multiphy

pipe in paralle]

() Add pipe + Divide
Mpe + Multipurpose
: "%
pipe

Aserage speed
per pipehine

G5 L5 Milops
(scalar)

310 Mflops »
{vector)

16/32/64 bits

32 bits

8 M 64-bit words

60 nsec

I 1o 4 homogeneous
pipelines:

cight exclusive segments
in each pipe with
bypasses 10 execute a
number of arithmetic
functions in FLP or
FXP formats

0.5 1.8 Mflops s«
(scalar)

1o Milops s
(vector)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 245

increments. The AU has a pipeline structure to enable efficient arithmetic computa-
tions. This unit is reconfigurable with variable interconnecting paths among eight
segments, as described in Section 3.2.3. Many similaritics exist between the Star-100
and the ASC systems. Table 4.5 summarizes the major architectural features of
these two early vector processors. »

4.2.2 Vector Processing in Streaming Mode

Continuous streaming of data from the high-bandwidth interleaved memories to
multiple pipelines makes Star very efficient for the processing of long vectors. The
key issue here is to structure the computations into vector mode, such as those
frequently done in matrix multiplication, polynomial evaluation, and the solution
of large-scale linear systems of cquations. The system software of Star provides
aids to enable the user to take full advantage of hardware capabilities. The Fortran
compiler in Star has been extended to detect loops and vectorize them into simpli-
fied vector codes. The lines of Fortran code which can be vectorized must be'well
isolated and casy to recognize. Of course, the programmer can escape from
Fortran code by directly using the mnemonic assembly language to achieve
maximal hardware performance.

The vector instruction format of the Star-100 is shown in Figure 4.6, Each
instruction has 64 bits divided into cight fields. Fields F and G specify function

|' “““““ X
o c+1 !
(offset |
for C, Z)
F G X A Y B z &
(8X, 9X) |(subfunc-| (offset | (field (offset | (field (CV base|(field
tion) for A) | length 8: for B) | length 8: |address) |length 8:
base base base
address) address) address)
Field Contents of the field in the cited register
X The offset of source operand 1
Y The offset of source operand 2
A The base address and field length of source operand |
B The base address and field length of source operand 2
»
z The base address of the control vector
C The base address and field length of the result vector
C+1 The offset of the control or result vector

Figure 4.6 The instruction format of Star-100,

246 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

and subfunction codes. The rest of the ficlds designate the working registers to be
used. The field C + | automatically specifies the register holding the offset for
control of the result vectors. The effective starting address is calculated as the
sum of the base address and the offset. The effective field length is calculated
as the offset subitracted from the ficld length. Thus: the ending address is the
sum of the effective starting address and the effective field length. With offsel
capability, the ith element in the source operand can operate with the (i + d)th
element of another source operand, where d is the difference between the (wo
offsets. The following example shows the streaming operations for vector addition
in the Star-100:

Example 4.1 Consider the exccution of a Vector Add instruction in the
Star-100:

VADD A,B,C (A+B—C) (4.2)

where A = field length of A vector = 12 halfwords (32 bits each)

field length of B vector = 4 halfwords, base address = 20000, ,,
offset for A vector = 4 halfwords

= offset for B vector = —4 halfwords

base address of control vector = 40004 ,

base address of result vector = 30000, 4. field length = 12 half-
words

C + 1 = control vector and result vector offset = 4 halfwords

]

AN<L X =
[

The starting address and effective field length of the A4 vector are calculated
in Figure 4.7. Note that bit addressing is used and a *1" in the control vector
permits storing thecorresponding element in the resulting vector. For example,
the memory location 40005 is stored with a “1," so Cy is transformed into
As + B_, - The skewing effect is apparent in thisexample. After the inst ruction
has been decoded at the stream unit, the appropriate microcode sequence is
initiated by the microcode unit (MIC) in the stream unit.

When the CPU initiates an instruction requiring microcode control, it sends
the F (function) code and a microcode pulse to the MIC. The MIC then takes over
control of the startup and termination of the instruction. In case of interrupts, it
has to branch to save all the operands and parameters necessary 1o resume cxecu-
tion afterward. The MIC is the heart of the vector processing control, consisting
of the following sequence of control steps:

I. The reading of addresses from the register file (in the stream unit) for the vector

parameters according to designations specified in the instruction

The calculation of the effective addresses and field lengths for monitoring the

starting of vector operations

3. The setting up of the usage of read-write buses as specified by the ¢ (sub-
function) field for the operands and results

(S)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 247

A source vector

10000 A, = Base address
0020 A
:m = Offset
2
0060 A
’ A" < Jtart address
10080 4 (base address — offset)
100A0 A
100C0 A,
100EQ it Actual field length
10100 Ay = field length — offset
10120 A, = 12 — 4 = B hallwords
10140 A
10160 An
8 source vector
IFF80 - I —<—Starting address —
IFFAO B,
IFFCO B, Offser
IFFEO 8_ Actual field length
20000 -B dd =4 - (-4)
5 oy s = 8 halfwords
20020 8
20040 8,
20060 B,) -t
C source veclor
30000 Ca3 G =-Base address
300200 C > C
wos0| GG Offset
30060 C > G
30080 C,>C, == Starting address
300A0| C; » A, + B,
o0co| G > G 5
J00E0) G, > G Effective
L0015y > A4 + 5 Fddh Control vector
01201 € > G 5.2 NODDDDRENON0
30140 Cm > AIO *+ Bz =Ty
30160[Cyy > A, + B, 40000 § 40004
e Offset

Figure 4.7 The vector ADD Instruction of Star-100 in Example 4.1,

4. The transfer of addresses and other information whenever needed to appro-
priate interrupt-count registers

Once effective addresses are computed, the operand elements are fetched und
paired for the operations involved. The static configuration of the execution pipe
will remain active until vector instruction is terminated. A termination is marked

248 COMPUTER ARCIHITECTURE ANIY PARALLEL FRiN ESSING -

by cither of the following cvents: () a vector is exhausted when the effective field
length becomes 0; (h) some other data fields or strings have been exhausted.

To support vector and scalar processing in Star, its operating system provides
time sharing, utilizing the concepts of virtual memory. Prepaging is allowed by a
feature known as advise 1o alleviate the 1/O-bound problem. The Star operating
system handles the functions of input, compilation, assembly, loading, execution,
and output of all programs submitted, as well as the allocation of main memory.
In addition 1o Star Fortran. an interactive interpreter called Star APL 15 also
implemented in the system. which upgrades system capability to handle a large
area of scientific computations,

Instructions in TI-ASC have 32 bits, as shown in Figure 4.5, where F is the
opeode, R. T, and M specify the arithmetic, index. and base registers, and N s the
symbolic address. ASC differs from Star in the wiy vector instructions arce imple-
mented. Instcad of using certain registers (o retrieve the operand addresses and
control information, the ASC uses a0 vecror parameters file (VPF), which consists
of eight 32-bit registers in the IPU. as shown in Figure 4.5. The function of each
VPR register is fixed. as shown in Figure 4.8. The register I, holds the opcode, the
veetor-operand type. and the length; ¥, V.. and ¥, indicate the base address and
the displacement of cach operand vector; ¥y and Ve hold the increment of the
vector index and the interaction number of inner loops; and ¥, and 1, hold
similar information for outer loops.

The above control information is loaded into these I/ registers from the main
memory before the exccution of each vector instruction. Microcode will be

(a) Instruction format

v, orr ,-u.r:T] sv | L

vl - 1 %A SAA

| Hs | xs SAB

- L SAC

Va DA, DB,

¥ DC, N,

. DA, DB, W
b DA, N,

(M) Veetor parameter tile (VIF)

Figure 4.8 The TEASC instruction Tormat and veetor parameter file.

PIPELINE COMPUTERS AND VECTORIZATION METHODS 249

generated by the timing-sequence circuitry in the MBU to control the entire
pipeline processing in the AU. This sequence includes the fetch of operands, the
sending of pairs of operands to the pipeline, the exccution phase, and the return
of successive results. The increment in ASC is variable, while only an increment of
I is possible in Star. This offers more flexibility in addressing operands. Three-
dimensional indexing is also possible in ASC to process the inner loop and outer
loop more efficiently. However, ASC does not use control vector, sparse, and
macro-vector instructions, as found in Star. Both the Star and ASC are structured
Lo execute memory-to-memory instructions in streaming mode.

4.3 SCIENTIFIC ATTACHED PROCESSORS

Attached processors are becoming popular because their costs are low and yet they
provide significant improvement on the host machines. The AP-120B and FPS-164
are back-end attached arithmetic processors specially designed to process large
vectors or arrays (matrices) of data. Operationally, these processors must work
with a host computer, which can be either a minicomputer (such as the VAX-11
series) or a mainframe computer (IBM 308X series). While the host computer
handles the overall system control and supervises I/O and peripheral devices,
the attached processor is responsible for heavy floating-point arithmetic computa-
tions. Such a functional distributiop can result in a 200 times speedup over a
minicomputer, and a 20 times speedup over a mainframe computer. Other scientific
attached processors include the IBM 3838 and the low-cost Datawest processor.
We describe in this section the architectural features of these attached processors
and assess their potential applications in the scientific and engineering areas.

4.3.1 The Architecture of AP-120B

The combination of an AP-120B and a host computer is shown in Figure 4.9.
All the peripheral devices like printers, display terminals, disk and tape units are
attached to the host computer. In fact, the AP-120B is itself a peripheral attach-
ment to the host. Since the host and back-end may have different data formats and
even unequal word lengths, an interface unit is needed to convert the data “on the
fly” and to help implement the direct-memory access (DMA) and programmed
input-output (P10) data transfers. These are two sets of registers in the interface
unit. One set is devoted to control functions via programmed I/O; the other to
block data transfers via the DMA. The programmed 1/0 section of the interface
unit provides the array processor with a simulated front panel @ the host. It
contains a switches register used by the host to enter control or parameter data
and addresses into the array processor, a light register to display contents of
registers in the array processor, and a functional register for typical front panel
commands such as start, stop, or reset.

The DMA register set includes a host memory address register, an AP memory
address register, a word count register, a control register, and a format register. The

250 COMPUTER ARCHITECTURE AND PARALLEL 1ROGCESSING

Display

. Printer
lerminal

AP-120B
Array
Host Front panel processor

Control (16 bits) il Lealsl Control (16 bits)
CPU p— t{ Function l-— i CPU
_,—a-

- v-l“l Switches IL: -
Data
Memory l———ﬁ
- 1 Lights I PHEHRIY
4 t e
———
Host memory - Array
address processor
memory
address

Interface

L |

Tape Host memory | |

file address (up to =2
18 bits) »| AP memory [
address <

| Word L =

count

I Control |

i ——]
- Format =2
Data bus (16 or 32 bits) Data bus (38 bits)
DMA

registers

Figure 4.9 The AP-120B host and interface organization.

control register governs the direction of data transfer and the mode of transfer.
The format register performs conversion between the FLP format of the host and
that of the AP-120B. Interface logic permits data transfer to occur under control
of either the host or the AP-120B. The floating-point format in the AP-120B is
38 bits long, with a 28-bit 2's complement mantissa and a 10-bit exponent biased
by 512. Using such a format, the precision and dynamic range are improved over
the conventional 32-bit floating-point format. If the host has different floating-
point data formats, the format conversion is done ““on the fly” through the
interface. Consequently, the AP-120B can concentrate on useful computational
tasks.

A detailed functional diagram of the AP-120B processor is shown in Figure
4.10. The processor is divided into six scctions, the 1/O section, memory section,
control memory, control unit, data bus. and two arithmetic units. The memory
section consists of the dara memory (MD), rable memory (TM), and two dara pacs
(DPX and DPY). The control memory or program memory (PM) has 64-bit words
with a 50-ns cycle time. The program memory consists of up to 4K words in 256-
word increments. Instructions residing in the PM are fetched. decoded, and executed
in the control unit. The data memory is interleaved with a cycle time of either 167
or 333 ns. The choice of a particular speed depends on the trade-off between cost

PIPELINE COMPUTERS AND VECTORIZATION MET1IC s 251

38-bit_bus structures Arithmetic units
—

Program
Contral - Lie- 1

¥
memory (to 4K x 64 bits)

5-PAD SPFN
=1 (16 x 16 bits) -
(address ALU)

Control
units

Memory address
registers
(MA, TMA, DPA)

x 16 bits) Floating-point

Table ™

g memory
RAM or ROM

(1o 64K x 38 bits) -

DataPADX | DPX
Memory (32 x 38 bits) = _
section -

Data PAD Y *| DPY
(32 x 38 bits)

r*‘lr

)

Y

: |

* Main data MD
> memory .
to | meg x 38 bits)] L 2o Floating-point
= MDI 4 MD multiplier
r B Host

_T... interface

7]

B L 11 t-rh Srems s

Switch REG
Function REG o
L_igllls REG

I/0
section

10P
16/32 hiars

PIOP INBS
- >

Data PAD bus (38 bits)

Figare 4.10 The block diagram of an AP120B processor. (Courtesy of Floating-Point Systems, Inc.)

152 coMIMITIR ARCHITUCTURE AND PARALLLL PROCTSSING

and performance, The data memory 1s the main data storage unmit with 38-hit
words. It is directly addressable by the | million words in 2K -word (167 ns) or K-
word (333 ns) increments. The TM has up.to 64K 38-bit ROM or RAM words of
167-ns cycle time. The table memory is used for the storage of frequently used
constants (c.g., FFT constants). It is associated with a special data path which
does not interfere with the data path associated with the data memory. The data
pads X and Y are two blocks of 38-bit accumulators. There are 16 accumulators in
cach block. These accumulators are dircctly addressable by the AP processor. Any
accumulator can be accessed in a single machine cycle of 167 ns. Simultancous
read and write are possible in cach data pad within the same cycle,

The S pad in the control unit contains two parts: an S-pad memory and an
integer ALU. The S-pad memory contains 16 directly addressable integer registers
These registers feed the address ALU 1o produce effective operand addresses. The
address ALU performs 16-bit integer arithmetic. The outputs of the address ALU
can be routed to any onc of the following address registers: MA for the data
memory, TMA for the table memory, and DPA for the data pads. Other functions
of the address ALU include clear, increment, decrement, logical and. and logrical er.

Two pipeline arithmetic units are the FLP adder (FA)and the FLP multiplier
(FM). The FA consists of two input registers, Al and A2, and a two-segment
pipeline. as shown in Figure 4.11, The sum output is a 38-bit normalized floating-
point number, The FM has MI and M2 input registers and a three-segment
pipeline which performs floating-point multiply operations. Once the pipeline is

(Possible source connections)
Al ZERO DPX DPY TM FM FA DPX DPY MD ZERO A2
L | | | 1 L i 1 1 | 1 I
| S

Al A2

Align
fractions
and add

Buffer

Normalize
and
round

(FA)

T T

A2 Ml DPX DPY

(Possible destination connections)

Figure 411 The Hoating-point adder in AP-1201.

PIPELINE COMPUTERS AND VECTORIZATION METHODS 253

full, a new result (sum or product) is produced for every machine cycle of 167 ns.
Consequently, the maximum throughput rate for the AP-120B is 12 mega floating-
point computations per second.

The AP-120B derives its high computing power from multiplicitics in all
sections of its processor organization. It uses two pipeline arithmetic units (FA
and FM), one integer ALU, multiple memories (PM. M D, TM) which can be
independently addressed., a large number of registers and accumulators (A1, A2,
M1, M2, MA, TMA, DPA, DPXs, and DPYs), and seven data paths, as shown in
the bus structures section of Figure 4.10.

Thetwo floating-point arithmetic units FAand FM can operate simultancously
and the 16-bit integer AL U can operate independently of the FA and FM. The use
of two independent blocks of accumulators (DPX and DPY) provides the desired
flexibility in handling operands and intermediate and final results. For instance,
cach block can hold a vector operand with 16 components so that a 16-element dot
product can be pecformed within the FA and the FM in pipeline mode. In other
cases, one block provides data for the FA or FM, while the other block transfers
data to and from data memory or table memory,

The pipeline structures of the FA and FM are described below. The first stage
of the FA compares exponents, shifts the fraction of the smaller number, and adds
the fractions. In the second stage, the resulting fraction is normalized and rounded.
Because of different processing speeds in the two stages, a buffer is inserted to hold
the intermediate result, The output @f the FLP adder, denoted by FA, can be
routed to five different destinations. Possible source connections to the input
registers Al and A2 are shown at the top of Figure 4.11. The FM has three stages.
In the first stage, the 56-bit product of the two 28-bit fractions is partially com-
pleted. The second Stage completes the product of the fractions. The third stage
adds the exponents, rou nds, and normalizes the fraction of the product. All possible
source and destination connections to the FLP multiplier are identified in Figure
4.12. ¢

Seven buses arc used in the AP-120B simultaneously to enable parallel
processing. Both the FA and the FM have multibus input ports. In other words,
multiple operands and results can be moved between different functional units at
the same machine cycle. Thereby, the total data path bandwidth will match the
execution speed of the pipeline adder and multiplier.

Several levels of parallelism in the AP-120B have been described. Another
aspect worthy of mentioning is the control of parallel functional units. This is
provided by the long instruction word of the AP-120B. An AP-120B instruction
has 64 bits, which are subdivided into 10 command fields (Figure 4.13). Each
command field controls a specific unit; therefore, a single AP-Y20B instruction
can initiate as many as ten operations per machine cycle, as listed in Figure. 4.13.
Multiple memory accesses. register transfers, integer arithmetic, and floating-point
computations can occur at the same time.

In summary, multiple memories, multiple functional units, parallel data
paths, and the multiple command fields in the instruetion have made the AP-120B
a fast attached proeessor for scientific computations.

254 COMPUTER ARCHITECTURE AND PARALLEL PRONISSING,

(Possible source connections)
DPX DPY TM M FA DPX DPY MD
IS | |

I . "
-
| M1 [M2

Start product
of fractions

Buffer 2

Complete
product of
fractions

Buffer 3

Add exponents
Normalize
and
Round

(FM)

B

Ml Al Ml DPX DPY

Figure 4.12 The floating-point multiplier
(Possible destination connect ions)

in AP-120B.

1L 23 &567 5.9 10 i

14 15 16 17 18 19 20 21 22|23 24 25 26 27 28 29 3031

I

Control ALU group

Adder group

Branch group

Directs operation of 16-bit control ALU Directs operation of
and associated regisiers

Moating- point adder

3233343536 37 38

Directs conditional branches

39 40 41 42 4349 45 46 47 48 49 S0[51 52 53 5455

56 57 58 59 60 61 62 63

T -

Y TRTFRH
Accumulator group S ptoer

| group

Memory group

Directs Mow of intermediate resulls 1o and from Directs
64 accumulator registers operation

o Noating-
paoint multiplier

Figure 413 The instruction format in AP-1208,

Controls memory
addressing

PIFELINE COMPUTERS AND VECTORIZATION MIETIIODS 288

4.3.2 Back-End Vector Computations

The AP-120B, unlike vector supercomputers. does not have vector instructions.
Instead, long instructions containing many coneurrent microoperations are used
to specily the parallel activitics. More than 200 application software packages
have been developed for complicated vector computations. These routines are
called a mathematical library. which is devoted to mainly vector and matrix
manipulations. These vector-processing routines are Fortran callable from the
host computer. All calls are handled by the wrray processor executive (APEX)
software, which decodes the subroutine calls from Fortran programs residing in
the host and automatically passes control parameters and routines to the AP-
120B for exccution. After completing the computation of a routine, the AP-120B
returns the results 1o the host computer for further use. The user can add new or
special routines to the mathematics library in Fortran or in AP assembly language
code. Some program develo pment software have been provided for such purposes.
In addition, there is the signal processing library. dedicated to digital signal-
processing applications. Important Fortran callable routines in these libraries are
summarized in Table 4.6, with the time measured in microseconds and the program
sizes in numbers of AP-120B microinstruction words,

In the AP-120B. differemt functions can be performed by the floating-point

adder at different times. Listed below are some typical functions:

LAl + A2)

2. Al — A2

3. A2 — Al

4. Al EQV A2

5. Al AND A2

6. Al OR A2

7. Convert A2 from signed magnitude to 2 complement format
8. Convert A2 from 2's complement to signed magnitude format
9. Scale A2
10. Absolute value of A2
11. Fix A2

Table 4.6 Floating-point arithmetic
timing for some functions in AP-1208

Travel Pipeline
Operation time interval
Add-subtract 13 ns 167 ns
Multiply S0 o 167 ns
Multiply-add 823 ns 167 ns
Complex add-subtract b1 TS KRENI
Complex multiply 1333 = 667 ns

Complex multiply-add Lee™ == (67 ns

256 COMPUTER ARCIINTRE 11 REAND PARALLIY PROCESSING

Table 4.7 Important FORTRAN ecallable routines for AP-120B
= i e e e 0

Siwe
Tuning (AP-1208
(jis per prog,
Operation Name point) words)
ee— e —

Real vector operiations

Vector add VYADD 12 8

Vector subtrag VSUB 1.2 8

Vector multiply YMUL 1.2 1

Vector divide vorv 18 44

Vector exponential VEXP 51 42

Vector sine VSIN 5.1 46

Vector cosine YCos 5.6 46

Sum of vector squares SVR 0.4 I

Dot product of iwo veetors DOTPR 0.8 9

Sum of vector clements SVE 0.4 7
Complex vector uperitions

Complex vector multiply CYMUL 20 26

Complex vector reciprocal CVRCIP 5.0 51
Matrix operations

Matrix transpose MTRANS 08 17

Martrix multiply MMUL . 58

Matrix multiply (dimension = 3 MMUL32 . 27

Matrix inverse MATINY . 130

Matrix vector multiply (3 % 3) MYML3 2 5/vector 30

Matrix vector multiply (4 x 4) MVML4 4.6/vector 39
Fast fouricr (ra nsform operations

Complex FFT CFFT . 187

Real FFT RFFT . 235
Signal Processing operations

Convo!ulion(orcorrclaliom CONV . 102

Wiener-Levinson algorithm WIENER . 68

Bandpass filter BNDPS . 287

Power spectrum PWRSPC . 268 =

* Timing unknown.

Similarly, the FM can perform many different functions, The timing for some
floating-point arithmetic operations in the AP-120B is summarized in Table 4.7,
where the travel time is the total time required to transfer data from source to
destination. and (he pipeline interval is the time between successively available
results. The pipeline interval indicates the maximum throughput rate for vector-
oriented computations,

A detailed example of vector processing in the AP-120B is given below,
First some notations are established. A semicolon ;" separates parallel operations
within an instruction word. A comma *," is used 1o separate operands. A double
slash bar *//" denotes 4 comment. An arrow "« refers to the replacement

.
PIPELINE COMPUTERS AND VECTORIZATION METHODS 257

operator for data transfers. Some operations required in presenting the example

are specified below:

FADD A1,A2
DPX(m)«FA
FMUF M1,M2
DPY(m)—FM

/1A~ A2 (floating-point add)

//Save FA in location m of data pad DPX.
/IM1 M2 (floating-point multiply)y
//Save FM in location m of data pad DPY.

where the inputs A1, A2, M1, and M3 10 the adder and multiplier come from the
nput sources specified in Figures 4.11 and 4.12, respectively,

Example 4.2 The following sequence is used 1o compute the dot product of
4

WO vectors, E X; ¥, where X and ¥, are obtained from DPX and DPY.

=0

respectively. The resulting sum of the products is to be stored in DPX;:

(1) FMUL DPX(0), DPY/(0,
(2) FMUL DPX(1), DPY(1)
(3) FMUL DPX(2), DPY(2)
(4) FMUL DPX(3), DPY(3)-

FADD FM, ZERO
(5) FMULDPX(4), DPY(4):

FADD FM, ZERO
(6) FMUL: FADD FM, FA

(7) FMUL; FADD FM, FA

(8) FADD FM, FA

(9) FADD; DPX(4)«FA

(10) FADD DPX(4), FA

+/Multiply X ¥4

//Multiply RV

//Multiply e, 5 e

//Multiply Xsya' XoY o is now done,
Save it in adder.

//Multiply X,Y4. X, Y, is now done.
Save it in adder.

//X,¥, is coming out of the multi-
plier and X, Y, from the adder. Add
them together.

//X, Y, is coming out of the multi-
plier and X, Y, from the adder. Add
them together.

/XY, is coming out of the multi-
plier and (X, YotX,Y,) from the
adder. Add them together.

[1{X,Y, +X,Y,) is coming out of the
adder, Save it in DPX(4).

[I(Xo Yo+ X, Y, +X,Y,)iscoming out
of the adder. Add it to (X, ¥, ¥Xa¥a)

(11) FADD //Push result out of adder pipeline.

(12) Dprj)"‘ FA //The result i X ¥, is stored in
oPX(4). °

In the above sequence of computations. eyeles 1 to 3 are used to fill the FM

pipeline: exeles 4 to 5 to fill the FA pipeline: cycles 6 to 8 to drain the F\! pipeline:;
cycles 9 to 1o drain the FA pipeline, and the final result is stored in data pad XL

258 COMPUTER ARt 1) IECTURE AND PARALLLY FROCESSING

The dummy add “FADD ™ without arguments in cycle 11 is used only to push the
last computation ouf of the pipeline. Remember that there are three stages and
two buffer registers in the FM pipeline, hence two dummy multiplies are needed
to push the last two computations out of the pipeline. For long vectors, the speed
to exccute dot product in the AP-1208 js much faster than in a serial processor,
The AP-120B has been applied extensively in the field of digital-signal pro-
cessing. The execution sequence of fast Fourier transform (FFT)in the AP-120B is
shown below as an example. The FFT program resides in the program memory of
the AP-120B. The array of data to be transformed is stored in the main memory of
the host computer, The FFT computation sequence consists of the following steps:

. The host Computer issues an 1/0 instruction to initiate the FFT program in

the AP-120B.

2. The AP-120B requests host DMA cycles to transfer the array of data from host
memory to data memory in the AP-120B. The floating-point format is converted
during the Aow of data through the interface unit,

- The FFT computations are performed over a 38-bit floating-point data array.

4. The AP-120B requests the host DMA cycles to return the results of the FFT

frequency-domain coeflicients array.

L)

Example 4.3 The above operations are called by a host machine with the
following four Fortran statements:

CALL APCLR //Clear AP-120B.

CALL APPUT (+--+-) /[Transfer data to AP-120B.

CALL CFFT (-+-++-) //Perform FFT,

CALL APGET (oo) //Transfer results to host.
where “...... " denotes the parameters used in the routines,

For the convolution of two arrays, say A and B, all required operations can
also be done by the AP-120B. Once the transfer of data arrays is initiated, there is
no need to wait until completion of the entire array transfer. Such convolution
requires a sequence of forward FFT and inverse FFT operations, as listed below:

- Transfer arrays 4 and B to AP-120B.
. Perform FFT on 4 array.

. Perform FFT on B array.

Multiply the results of steps 2 and 3.
Perform inverse FFT of the result obtained from step 4.
- Return the final result to the host computer.

= O I T S e

4.3.3 FPS-164, IBM 3838 and Datawest MATP

The FPS-164 is evolved from the proven architecture of its predecessor products,
the AP-120B, the AP-190L, and the FPS-100 by Floating-Point Systems, Inc. It is

L
PIFELINE COMPUTERS AND VECTORIZATION METHODS 259

attached to cither the input-output channel or the DMA ¢hannel of a host com-
puter by means of a hardware and software interface similar to that for the AP-
120B. The host machine can bea DEC VAX 11/780. an IBM 4341, or an IBM 3081,
ranging from superminis to large mainframes. The FPS-164 improves its per-
formance over the AP-120B by extended precision (64-bit floating-point numbers
instead of 38 bits, as in the AP-120B) and a much enlarged memory of 16 million
64-bit words. The FPS-164 can be programmed with cither a Fortran-77 subset,
FPS-164 symbolic assembly language, or the extensive library of preprogrammed
mathematics, matrix, and applications routines.

A functional block diagram of the FPS-164 is given in Figure 4.14. There are
eight independent pipeline functional units (the FLP multiplier. the FLP adder,
the data pads X and Y, table memory, main memory, integer ALU, and the
data pad bus) interconnected by seven dedicated data paths. The peak speed is
still 12 megaflops. The 64-bit data word provides 15 decimal-digit accuracy. The
64-bit address space covers 16 million words, Multi-user protection is provided by
using memory base and limit registers and privileged instructions. The vectored
priority interrupts allow real-time applications. The dynamic range and accuracy
of the FPS-164 improves significantly over the AP-120B. Furthermore. the
processor has instructions which assist software implementation of double-word
floating-point arithmetic. Diagnostic and reliability features are also built into
the FPS-164 to enhance dependability of the system in case of hardware or software
failures.

The IBM 3838 is a multiple-pipeline scientific processor. It is evolved from
the earlier IBM 2938 array processor. Both processors are specially designed to
attach to IBM mainframes, like the System/370, for enhancing the vector-process-
ing capability of the host machines. These attached pipeline processors reflect
recent progress in scientific processing at IBM beyond the level of the 360/91 and
the 370/195. Vector instructions that can be executed in the 3838 include the
componentwise vector add, vector multiply, the inner product, the sum of vector
components, convolving multiply. vector move, vector format conversion, fast Fourier
transforms, table interpolations. vector trigonometric and transcendental functions,
polynomial evaluation, and marrix operations. Like the AP-120B and the FPS-164,
both the IBM 2938 and the 3838 arc microprogrammed pipeline processors which
can be supplied with custom-ordered instruction sets for specific vector applica-
tions.

The hardware architecture of the 1BM 3838 array processor is shown in
Figure 4.15. The processor can attach to a System/370 via a block-multiplexer /O
channel with a data transfer rate of 1.5 M bytes per second. With an optional two-
type interface, the maximum data-transfer rate can be doubled to 3 M bytes/s.
The 3838 appears to the host processor I,.f()_“hanncl as a shared control unit.
Up to seven users can be simultancously active in the 3838. The tasks defined by
cuch user are pipelined at various subsystems in the 3838. The control processor
cun assist the user with a set of scalar instructions and the NCCCSSArY Tegisters in
preparing vector instructions. The bulk memory is used to hold a large volume of
vector operands. The 1/O unir supervises the transfer of data or programs between

260 « OMPUTER ARCIHITECTURE AND PARALLEL PROCESSING

170 bus

Huost
computer

V4

Ry

Main memory mz:(L:y
3
,J . Control
I4 r N
oll 53 '1 l
255
0 255 32-bin
< Instruction cache 1024 words subroutine stack A4
J
i 64-bit data e — |
i oregisters 31
; Multiple
31 X H 64-bit 32-bit
7 : data address
) : : paths registers
ﬁ 0 f
{10 :
I SN,) WAWAE. e]
3 V4 2 ¢l Vs
Al A2 Ml M2 5 D
Ja. Address
Adder Multiplier Address integer
unit . unit unit arithmetic
Floating- unit
point
4} arithmetic units {; {B
A
P i |

Figure 4.14 The FPS-164 system diagram. (Courtesy of Floating-Point Systems, Inc.)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 261

(To host computer)

1/0 channel
. f ey
= /0 Arithmetic :
T element preeeesemeeessesseeess -
' : controller emmeeans H
? ; H E Microprogram
Contr::!r Writable : ' i control
o i control Angles i
y 3 storage : P
G Data : ¥ Sinfcosin | : |
E ee] transfer : Reciprocator = pipeline ; '
E controller Rddf‘ss = (5 stages) (3 stages) : :
el i sasneased:
- i i I !
Working o] FLP adder :
store - Floating- (4 stages)
(right) = point !
E - multiplier }— "'"'""""""—
Working 2 (4-stage
store s pipeline) FLP adder
(left) (4 stages)
L
k__\,_._._J .

(4-stage pipe) Data

Figure 4.15 The arithmetic processor in IBV /3838, (Courtesy of International Business Machines Corp.)

the host and the bulk memory. Data-word size of the 3838 is 32 bits, matching that
of the System/370 machines.

The transfer of the working sets of the vector segments between the bulk
memory and the working stores is supervised by the data transfer controller (DTC).
Each working store can hold 8192 bytes. Vector-addressing parameters are
supplied to the DTC by the control processor. This DTC is micréprogrammed to
generate the effective memory addresses for both the bulk and working memories
before data can be properly transferred. Furthermore, the DTC can perform
data-format conversion during the data flow. The arithmetic controller is also a
microprogrammed unit. The microprogram sequences performed by the arithmetic
pipelines are initialized by this controller. The use of the working stores by the
arithmetic pipelines and by the DTC is synchronized. The basic pipelineg cycle time
is 100 ns in the 3838, :

There are five pipeline arithmetic units in the 3838. The pipeline units as
diagrammed in Figure 4.15 include two floating-point adders of four stages each;
a four-stage floating-point multiplier; a three-stage sine/cosine pipeline: and a
five-stage reciprocal estimator. Even the working stores appear as & four-stage
pipeline. The delay of each stage is 100 ns. The interconnection paths between
these functional pipes are under the microprogrammed control of the arithmetic

262 COMPUTER ARCHINTTCTURE AND PARALLEL PROX ESSING

element controller. The access of the writable control storage is also pipelined
with two stage delays.

The programs and data 1o be processed by the 383X are prepared by the host
computer. Both vector and scalar instructions can be contained in these 3834
programs. The host sends the programs and data to the 3838 through the 1/0
channel. Data will be stored in the bulk store. The instructions will be exccuted
by the control processor. After the decoding of cach instruction, the control
processor provides linked lists of microprogram sequences for supervising the
pipelined execution of the instructions, While the arithmet ic pipelines are updating
vector data from one working store, the DTC can load the other working store,
Therefore, data loading and instruction execution can be done simultancously at
the two banks of the working stores. This facilitates the multiprogrammed use of
the 3838. Concurrent pipelinings allow multiple users to share the hardware
resources in achieving high system throughput, The maximum speed of the 3838
has been estimated to be 30 megaflops.

Datawest, Inc. at Scottsdale, Arizona, has built a very sophisticated attached
processor called MATP for large scientific compulations, The MATP consists of
up to four pipeline processors. These processors, forming a hybrid MIMD-SIMD
System. are microprogrammable and share a common data memory. Each pro-
cessor can be controlled by separate writable control stores. The primary means
of host communication is through a set of program channels that connect to host
/O channels.

A schematic functional block diagram of the Datawest MATP is shown in
Figure 4.16. This processor is designed to work with a Univac 1184 computer.
Using a Univac and an MATP at a cost of $4 million, Datawest claims that it can
attain a peak rate of 120 megaflops. This compares favorably with the 160-mega-
flop Cray-1 with a $10 million cost. The Fujitsu FACOM 230/75 is another
attached array processor with a peak performance of 22 megaflops when attached
to a FACOM 200M mainframe,

A comparison of three competing attached processors manufactured in the
United States is given in Table 4.8. All three processors, FPS'AP-120B, IBM's 3838,
and Datawest’s MATP, are pipelined and microprogrammable. The speeds shown
are theoretical peak speeds in megaflops. The speed of the MATP corresponds to
a maximum configuration of four processors. It is interesting to note the multi-
processor structure in the MATP. This concept of pipelining in a multiprocessing
mode is also seen in other supercomputers like the Cray X-MP and HEP to be
introduced in Chapter 9.

Attached array processors are effective in seismic-signal processing. If one
enlarges the instruction repertoire of array processors, they cag be turned into
general-purpose scientific processors. The attempt by Datawest is a good example.
Most scientific computers remain outside the mainstream of developing large
computers for business use. The peak speed shows only a theoretical limit. It is
the degree to which parallelism is exploited in the application programs that
determines the effectiveness of a scientific processor. In general, attached processors
have specialized architectures that appeal better to programs containing many

PIPELINE COMPUTERS AND VECTORIZATION METHODS 263

CPU
Data
channel
Addresses * 4 4
Data Data
Random-access | Address
memory and
4 Jr 'y 4} 44 data
1 1 r]
Writable Writable Writable Writable
control control control control
store slore slore slore
1 4 L #Data and
b { 1 y address
o Control [*=%— cCanirol 1 Control *1 Control
processor processor [—»] processor processor
4 L 4 Control
Y [- ¥ yand data
Arithmetic = Arithmetic Arithmetic [4| Arithmetic
processor processor | processor processor
Control
l,.] Program Program L | Program Ly] Program
channel channel channel channel
CPU CPU CPU CPLU

Figure 4.16 The architecture of the MATP: an MIMD/SIMD processor with shared data memaory space.
(Courtesy Datawest, Inc.)

264 COMPUTER ARCHITECTURE AND PARALLFL PROCESSING

Table 4.8 Comparison of attached processor capabilities

Features AP-120B IBM 3838 MATP
Data word size 38 bits 32bits 32 bits
Processor Pipelined Pipelined Pipelined
Number of
controllers | 1 1o 4
Number of
processors I I ltod
Memory size KW IM 2 16K -byie 65K bytes
bytes sections
Clock rate 167 ns 100 ns 100 ns
Microprogrammed Yes Yes Yes
Writable control Yes Manufacturer Yes
store only
Architecture Pipeline Pipeline Pipeline
MIMD/SIMD
Maximum speed
{in megaflops) 12 30 120
Add 6 20 2 x 40
Multiply 6 10 40

vector or matrix instructions with regularly structured parallelism. Programs with
arbitrary scalar operations may not be suitable for execution in attached scientific
processors that are available in the computer market. .

44 RECENT VECTOR PROCESSORS

The three most recently developed vector processors are described in this section,
namely Cray Research's Cray-1, Control Data's Cyber-205, and Fujitsu’s VP-200.
All three are commercial supercomputers with multiple pipelines for concurrent
scalar and vector processing. Possible extensions to these vector supercomputers
will be elaborated at the end. We focus on the architectural structures, special
hardware functions, software supports, and parallel processing techniques that
have been developed with these second generation vector processors,

4.4.1 The Architecture of Cray-1

The Cray-1 has been available as the first modern vector processor since 1976. The
#irchitecture of Cray-1 consists of a number of working registers, large instruction
buffers and data buflers, and 12 functional pipeline units, With the *chaining™ of
pipeline units, interim results are used immediately once they become available.
Theclock ratein the Cray-1is 12.5ns. The Cray-1 isnota *“stand-alone " computer.
A Tront-end host computer is required 1o serve as the system manager. A Data
General Eclipse computer or a Cray Research “A™ processor has been used s the

PIPELINE (OMPUTERS AND VECTORIZATION METHODS 265

front end, which is connected to the Cray-1 CPU via 1/O channels. Figure 4.17
shows the front-end system interface and the Cray-| memory and functional
sections. The CPU contains a computation section, a memory section, and an 1/0
section. Twenty-four 1/O channels are connected to the front-end compuler, the
1/O stations, peripheral equipment, the mass-storage subsystem, and a maintenance
control unit (MCN). The front-end system will collect data, present it to the Cray-1
foi processing, and receive output from the Cray-1 for distribution to slower
devices. Table 4.9 summarizes the key characteristics of the three sections in the
CPU of the Cray-1.

The memory section in the Cray-1 computer is organized in ¥ or 16 banks with
72 modules per bank. Bipolar RAMs are used in the main memory with, at most,
one million words of 72 bits cach. Fach memory module contributes 1 bit of a
72-bit word. out of which 8 bits are parity checks for single error correction
and double error detection (SECDED), The actual data word has only 64 bits.
Sixteen-way interleaving is constructed for fast memory access with small bank
conflicts. The bipolar memory has a cycle time of 50 ns (four clock periods). The
transfer of information from this large bipolar memory to the computation section
can be done in one, two, or four words per clock period. With a memory cycle of
30 ns, the memory bandwidth is 320 million words/s, or 80 million words per clock
period.

Computation section

* Registers
* Functional units
* [nstruction buffers

Memory section

0.25Mor0O5Mor | M |
64-bit bipolar words

1/0 section
* 12 input channels
* 12 output channels

2 £ o g N T 1
Mass storage [I'!;.)r:r]--:mi L'ulu]:\uI:n,
subsystem | sations, an |

periphieral equipment |

SN S—; |
Figure 4.17 Front-end system interface and (ray=1 connections,

266 comruTER ARCHITECTURE AND PARALLEL PROCESSING

Table 4.9 Characteristic of the Cray-1 computer system

Computation section
6d-bit word length
12.5-ns elock period
2's complement arithmetic
Scalar and vector processing modes
Twelve fully segmented functional units
Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address (B) registers
Eight 64-bit scalar (S) registers 5
Sixty-four 64-bit intermediate scalar (T)registers
Eight 64-clement vector (V) registers, 64-bits per element
Four instruction buffers of 64 16-bit parcels each
Integer and floating-point arithmetic
128 instruction codes

Memory section
Up to 1,048,576 words of bipolar memory
(64 data bits and eight error correction bits)
8 or 16 banks of 65,536 words cach
Four-clock-period bank cycle lime

AT AU UL OWLCIUCK PRETIOUS ITINSTEr Tate 10 A Gnd'S registers
Four words per clock period transfer rate 10 instruction buflers
Single error correction and double error detection (SECDED)

Input-output section
Twelve input channels and twelve oulput channels
Channel groups contain either six input or six output channels
Channel groups served equally by memory (scanned every four clock periods)
Channel priority resolved within channel groups
Sixteen data bits. three control bis per channel. and four parity bits
Lost data detection

Such high-speed data-transfer rales are necessary to match the high processing
bandwidth of the functional pipelines.

The I/O section contaizs 12 input and 12 output channels. Each channel has
4 maximum transfer rate of 80 M bytes/s. The channels are grouped into six input
or six output channel groups and are served equally by all memory banks. At
most, one 64-bit word can be transferred per channel during each clock period,
Four input channels or four output channels operate simultaneously to achieve
the maximum transfer of instructions to the computation section, The MCU in
Figure 4.17 handles system initiation and monitors system performance. The mass
storage subsystem provides large secondary storage in addition to the one million
bipolar main memory words.

A functional block diagram of the computation section is shown in Figure
4.18. It contains 64 x 4 instruction buffers and over 800 registers for various
purposes. The 12 functional units are all pipelines with one to seven clock delays
except for the reciprocal unit, which has a delay of 14 clock periods. Arithmetic
operations include 24-bit integer and 64-bit floating-point computations. Large

((AO) + (AK)

Shift
Logical
Add

Vevtor
g |tunctional

J"J l', 2 units -

17

A0y | T

through
77

Memory

Ir

Figure 4.18 Arithmetic logic pipelin
of Cray Research, Ine)

J 7
)
v
! Recip Ap
Vector L L Multiply
cantrol l.l" Add
\ i 3 =
VM L-.I ‘SJ Floaring-
. 5 point
RTC 4_:? 5 functionall |
g—{——j—' S, units
Scalar registers a

Logical
Add

{(Ah) + jkim) _S‘f
Exchange Scalar
control functional

(AD) l_ Vector unis
a XA |control
Address registers
BOO ; y EL1 A,
through w"r,
a,
4
BT
r
| |4, Ay |4, IAdd.resbI
31, |funciiona
((Ah) + jkm) ’l |(units
1 II '
N
H A b1

00 0 | . 225

- ; i 170 2

- : Y control

i NIP CcIp

4 [)

17 Y .__Eu.‘cuunn

IStruction
buflers
es, registers, bullers, memaory, and data pathsin the Cras-1 (Conrtesy

-

6

268 COMPUTIR ARe HITECTURE AND PARALLLL PROCESSING

numbers of high-speed registers contribute to the vector and scalar processing
capability of the Cray-1. Without these many registers, the functional units cannot
operatewithaclock rateof 12 ps, According to usage, there are five types ol registers:
three primary types and two intermediate types. The three primary types of registers
are address (A), scalar (S). and recror (V) registers. The functional units can
directly uccess primary registers. To support the scalar and address registers,
an intermediate level of registers exists which is not accessible dircctly by the
functional units. These registers act as buflers between the bipolar memory and
the primary registers. The intermediate registers that support address registers are
called address-save registers (B), and those sy pporting scalar registers are called
scalar-save registers (T). Block transfers are made possible between B and T
registers and the bipolar memory banks,

There are cight address registers with 24 bits cach used for memory addressing,
indexing, shift counting, loop control, and 1/O channel addressing. Data can be
moved directly between bipolar memory and A registers or can be placed in B
registers first and then moved into A registers. There are sixty-four 24-bit B
registers. The B registers hold data to be referenced repeatedly over a sufficiently
long period. It is not desirable to retain such data in the A registers or in the bipolar
memory. Examples af siueh weae amatao . i

There are eight 64-bit § registers servingas the storage of source and destination
perands for the execution of scalar arithmetic and logical instructions. S registers

fers oceur at a maximum rate of one word per clock period.

There are eight V registers; each has 64 component registers. A group of data
is stored in component registers of a V register (o form a vector operand. Vector
instructions demand the iterative processing of components in the su bregisters. A

Vregister and ends with delivering the vector result to a V register, Successive com-

(VL) register. Vectors having a length greater than 64 are handled under program
controlin groups of 64 plus a remainder. The contents of a V register are transferred
to or from memory in a block mode by specifying the address of the first word in
memory, the increment for the memory address, and the vector length.

All instructions, either 16 or 32 bits long (Figure 4.19a), are first loaded
f®m memory into one of four instruction buffers, each having sixty-four 16-bit
registers. Substantial program segments can be prefetched with the large instruc-
tion buffers. Forward and backward branching within the buffers is possible.
When the current instruction does not reside in a buffer, one instruction bufler is
replaced with a new block of instructions from memory. Four memory words are

PIPELINE COMPUTERS AND VECTORIZATION METHODS 269

H 00D D .
B K PSR

m
f=—First parcel —=faSccond parcels|
(@) Instruction fields in Cray-1
A h i y k
4 k] 3 3 3 |

e e

Operation code
3 Result Operand Operand
register register register

{#) Binary vector instruction

£ h i Jk
4 3 3 6
i s

o h
i Operand Shift, mask count

and result
register

(¢) Unary vector instruction Figure 4.19 Instruction format of the Cray-1.
-

fetched per clock period to the least recently used instruction buffer. To allow fast
issuing of instructions, the memory word containing the current instruction is the
first to be fetched. The Cray-1 has 120 instructions with 10 vector types and |3
scalar types, the majority of which are three-address instructions (Figure 4.195).
Figure 4.19¢ shows the format of a unary vector instruction.

The Pregister is a 22-bit program counter indicating the next parcel of program
code to enter the next instruction parcel (N1P) register in a linear program sequence.
The P register is entered with a new value on a branch instruction or onanexchange
sequence. The current instruction parcel (CIP) register is a 16-bit register holding
the instruction waiting to be issued. The NIP register is a 16-bit register which
holds a parcel of program code prior to entering the CIP register. If an instruction
has 32 bits, the CIP register holds the upper half of the instruction. The lower
instruction parcel (LIP) register, which is also 16 bits long, holds the lower half.
Other registers, such as the vector mask (VM) registers, the base address (BA), the
limit address (LA) registers. the exchange address (XA) register, the flag (F) register.
and the mode (M) register. are used for masking. addressi ng, and program eontrol
purposes.

The twelve functional units in the Cray-1 are organized into four groups-
address, scalar, vector. and floating-point pipelines, as summarized in Table 4 10
Each functional pipe has several stages. The register usage and the number of
pipeline stages for each functional unit are specified in the table. The number of

270 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

-
Table 4.10 Cray-1 functional pipcline units

_ £ Register Pipeline delays
Functional pipelines _) usage (elock periods)

Address functional units
Address add unit
Address multiply unit

> >
r

Scalar functional units

Secalar add unit 5 3
Scalar shift unit S 2 or 3if double-word shift
Scalar logical unit S 1
Population/leading zero count unit S k]
Vector functional units
Vector add unit Vors k|
Vector shift unit VaorS 4
Vector logical unit Vors 2
Floating-point functional units
Floating-point add unit Sand V 6
Floating-point multiply unit Sand V 7
Reciprocal approximation unit Sand V14

required clock periods equals the number of stages in each functional pipe. Each
functional pipe can operate independently of the operation of others. A number of
functional pipes can operate concurrently as long as there are no register conflicts.
A functional pipe receives operands from the source registers and delivers the
result to a destination register. These pipelines operate essentially in three-address
mode with limited source and destination addressing,

The address pipes perform 24-bit 2's complement integer arithmetic on
operands obtained from A registers and deliver the results back to A registers.
There are two address pipes: the address add pipe and the address multiply pipe.
The scalar pipes are for scalar add. sealar shift. scalar logic, and population-leading
zero count, performing operations over 64-bit operands from S registers, and in
most cases delivering the 64-bit result to an S register, The exception is the
population-leading zero count, which delivers a 7-bit integer result to an A register.
The scalar shift pipe can shift either the 64-bit contents of an S register or the
128-bit contents of two S registers concatenated together to form a double precision
word. The population count pipe counts the number of *17” bits in the operand,
while the leading zero count counts the number of 0" preceding a 1 bit in the
operand. The scalar logical pipe performs the mask and boolean operations.

The vector pipes include the vector add. vector logic. and vector shift. These
units obtain operands from one or two V registers and an S register. Results from
a vector pipe are delivered to a V register. When a floating-point pipe is used for a
veclor operation. it can function similar to a vector pipe. The three floating-point
pipes are for FLP add. FLP mulriply. and reciprocal approximation over floating-
point operands. The reciprocal approximation pipe finds the approximated

PIPELINE COMPUTERS AND VECTORIZATION METHIONRS
reciprocal of a 64-bit operand in ﬂmtirii‘-t .nt format, Note that no divide p
exists in the Cray-1. The Cray-1 performs floating-point division by multiply;
the reciprocal of the divisor with the dividend, Add pipes of various types have ex
two, three or six stages, All logical pipes have only one or two stages. Multis
pipes require six or seven clocks for completion. The reciprocal approximati
pipe has the longest delay of 14 clock periods. The two shifters have two, three,
four clock delays,

The scalur add pipe and vector add pipe perform 64-bit integer arithmetic
2's complement mode., Multiplication of two fractional operands is accomplish
by the floating-point multiply pipe. The floating-point multiply pipe recognizes
a special case the condition of both operands having zero exponents and retur
the upper 48-bits of the product of the fractions as the fraction of the result, leavi
the exponent field zero. Division of integers would require that they first be co
verted to FLP format and then divided by the floating-point reciprocul approxim
tion pipe. The floating-point data format contains a 48-bit binary costiicient ar
a 15-bit exponent field. Sign magnitude mantissa is assumed. Double-precisic
computations having 95-bit fractions are performed with the aid of softwa
routines, since the Cray-1 has no special hardware supporting multiple precisic
operations. Logical functions are bitwise and, exclusive or, and inclusive
operations,

In the Cray-1, the startup time for vector operations is nominal: thereby, eve
for short vectors the performance is quite good. Because of the short startup tiy
of the vector pipes, there is little loss of speed in processing short vectors. Fe
typical operations, vector lengths of three clements or less run faster in scalar mod
while those of four elements or more run faster in vector mode. The vector mode
definitely faster than scalar mode for long vectors. Of course, a vector operatio
can also be processed as an iterative scalar operation, as it is done on any scals
processor.

o T grii 25 .

4.4.2 Pipeline Chaining and Vector Loops

TheCray-1isdesigned to allow many asithmetic operations performed on operand
that are resident in registers before returning them to memory. Resources lik
registers and functional pipes must be properly reserved to enable multiple vecto
processing. In register-to-register architecture, all vector operands are preloades
into fast vector registers before feeding them into the pipelines. Intermediate an
final results (outputs from pipeline) are also loaded into vecior registers befor
storing them in the main memory. We consider below the resource reservatior
problem associated with a register-to-register vector processor like the Cray-1. A
illustrated in Figure 4.20, vector instructions can be classified inta four types. The
type I instruction obtains operands from one or two vector registers and return:
results to another vector register. The type 2 vector instruction consumes a scalas
operand from an S, register and a vector operand from a V} register and returns the
vector results to another vector register, V. The type 3 and type 4 structions
transfer data from memory to a vector register and vice versa, respectively. A date:

272 coMptTIR ARCHITLCTURE ANDY PARALLEL PROVCISSING

1) Type 3 vector instruction

(@) Type 4 vector instruction
Figure 4.20 I-.'Bm 1ypes of veetor instruction in the Cray-1.

PIPELINE COMPUTERS AND VECTORIZATION METHODS 273

path between memory and working registers can be considered a data transmit
pipeline with a fixed-time delay.

When a vector instruction is issued, the required functional pipes and operand
registers are reserved for a number of clock periods determined by the vector
length. Subsequent vector instructions using the same set of functional units or
operand registers cannot be issued until the reservations are released. Two or
more vector instructions may use different functional pipclines and different vector
registers at the same time, if they are independent. Such concurrent instructions
can be issued in consecutive clock periods. Figure 4.21a shows two independent
instructions, one using the add pipe and the other using the multiply pipe. Figure
4.21b depicts the demand on the add pipe by two independent vector additions.
When the first add instruction is issued, the add pipe is reserved. Therefore, the
issue of the second add instruction is delayed until the add pipe is freed. Figure
421¢ shows two different vector instructions sharing the same operand register
V. The first add instruction reserves the operand register V,, causing the issue of
the multiply instruction to be delayed until the operand register V4 is freed. Figure
4.21d illustrates the reservations of both the add pipe and the operand register ¥,.
Like the reservation required for operand registers, the result register needs also
to be reserved for the number of clock periods determined by the vector length
and the pipeline delays. This reservation ensures the proper transmittal of the
final result to the result register.

A result register may become the operand register of a succeeding instruction.
In the Cray-1, the technique is called chaining of two pipelines. Pipeline chaining

Vo e ¥, +V,
qu—V“Vs

(@) Independent instructions

Bheh+h

VeV + vy

(&) Functional unit reservation

l’! - V! + Vz
V$ - VI + I”
(¢) Operand register reservation

= > >
'D.-|I+'3

Vit v,
Figure 4.21 The resersation of functional
(e) Functional unit and operand register reservations units and operand registers.

274 coMpUTER ARCHITECTURE AND PARALLEL PROCESSING .

is expanded from the concept of internal forwarding, discussed in Section 3.3.3.
Basically, chaining is a linking process that occurs when results obtained from one
pipeline unit are directly fed into the operand registers of another functional pipe.
In other words, intermediate results do not have 1o be restored into memory and
can be used even before the vector operation is completed. Chaining permits
successive operations to be issued as soon as the first result becomes available
as an operand. Of course, the desired functional pipes and operand registers must
be properly reserved; otherwise, chaining operations have to be suspended until
the demanded resources become available. The following example is used to
illustrate pipeline chaining in the Cray-1. Becausc only cight vector registers are
available, the number of pipeline functions that can be linked together is bounded
by eight. Usually only two 1o five functions can be linked in a cascade,

Example 4.4 The following sequence of four vector instructions are chained
together to be executed as a compound function:

Vo <~ Memory (Memory fetch)
VaeVo+ ¥, (Vector add)
Viv ¥y < A4, (Left shift)

Vs = V3 a ¥ (Logical product)

A pictorial illustration is given in Figure 4.22 to show the chaining of the
memory fetch pipe, the vector add pipe, the vector shift pipe, and the vector
logical pipe into a longer pipeline processor. The contents of the register
A, determine the shift count, A timing diagram of the chaining operations is
shown in Figure 4.23, The memory fetch instruction is issued at time to. Each
horizontal line shows the production of one component of the result in register
V. The time spans in four pipelines are indicated by solid heavy line sections
(marked by b, e, h, and k). The dashed lines represent the transit times (marked
by a, ¢, d, [, g, i, j, and |) between memory fetch and functional pipelines or
between transfers among vector registers. One operand is fetched from memory
to the pipeline cascade per clock period. The first result emerges at clock
period 1,5 and a new component result enters the ¥y register for each clock
period thereafter,

In a vector operation, the results are normally not restored to the same vector
register used by the source operands. Under certain circumstances, it may be
desirable to route results directly back to one of the operand registers. Such
recursive operations on functional pipelines require special precautions to avoid
the data-jamming problem. To sec how recursive computation can be realized in
a pipeline. component operations must be properly monitored. Associated with
cach vector register is a component counter. When a vector instruction is issued.
all component counters dre set to zero. Normally, sending an operand from a
source register to a functional pipeline causes the associated component counter

PIPELINE COMPUTERS AND VECTORIZATION METHODS 175

M a
3 i
m 1
" 2
; 3 Memory
4 fetch
Vo 3 B
d 6
; — x 7
N g |
1
Vector d
add 2 vi
pipe .
3 »
V2
£ W L o | 1
. 1
2 Right
V3 shift
j < 3 pipe
i e S IR
R
A J
] V4
product .
pipe 2 -
Vs
| - -
L]

Figure 4.22 A pipeline chaining example in Cray-1. (Courtesy of Cray Research, Inc., Johnson 1977.)

to beincremented by one. Similarl ¥, acomponent result arriving at a vector register
from a functional pipe causes the associated component counter to be incremented
by one. When a vector register serves as both operand and result register, its
component counter Will not be updated until the first result returns from the
functional pipe. While the counter is held at zero, the same operand component
is repeatedly sent to the functional pipe.

The recursive use of functional pipelines can be applicable to many vector
operations, either arithmetic or logical. The initial value in a component register
depends on the operation to be performed. Since cach vector register in the Cray-1

LT 2ndig up aydwexa durueyd oy 0§ weaderp dupuny g7p aandi g

TA JOIU3WR[3 01 Jun [euonouny ppe 1a8a1ul woJy wns jo msuen i
L3
un jeuonauny ppe 12831ur £q wns jo uonendwos :a

$A JOIUIW32 01 ynsal [BUL) JO 1sURL

nun [euonaung [exdo) £q paunojiad uonesado endo| 1y

HUn [EUONIdUN) [B210] OF pA PUB £A U1 SIUBWP puriado josues i iun [eUonaUN] ppe 1383141 01 [A pue g ut SIUAW3]3 puesado jo nsuesy ip

£A Jo A3 O

VIBUQTIAUNG IYS WOL) Wns patjiys jo ysues 4 OA J© 1UW3[2 01 ,HUN [BUONDUNY B3, WO prom K1owais JO nsuen

Hun [ruonaung 1tys £q pawsojiad uonesado yiys y «IUN [RUOHIUNY PERL, YENOIY) PIOM A1OWIW JO NstpIl Wy

HUR [BUOLIUNJ 1J1Ys 01 24 Ul quawaps pueiado jo nsuesy «I1UN [BUOHUN pR3l, 01 piom Alowaw jo psuvs) p
/ ¥ £ y i f 3 p 2 q)
——— e et - e =3
»
-
-
%A
“SA =
hn o —
'SA
"5a
—an —
sy T TE———————
[
By — e
0.
SA
J ﬁ._.._,v oru__ -4 ..u.. 9“___ rnﬁ. 1& p...__ nu.. _n.__ ou_ !.w w____ L__- fu n____ v__‘ m_H n_h :__. u__H J J r_- m.. 5 J _..h .._,. __.. a‘.

276

R SN e

— - L

PIPELINE COMPUTERS AND VECTORIZATION METHODS 277

can accommodate at most 64 elements, long vectors are processed in segments,
The program construct for processing long yectors is called a vector loop. The
segmentation of long vectors into loops is done by the system hardware and
software control, The programmer never sees this segmentation into vector loops.
Each pass through the loop processes a 64-clement (or smaller) section of the long
vectors. Generally, the loop count is computed from the vector length before
entering the loop. Inside the loop, each of the twelve functional pipes can be fully
utilized to process the current section. The following is an implemented example
demonstratiz.g vector looping in the Cray-1.

Example 4.5 Let A4 and B be vectors of length N. Consider the following loop
operations:

DO 10 1=1,N
10 A(1)=5.0+B(1)+C

When N is 64 or less, a sequence of seven instructions generates the A array:;

85, <50 Set constant in scalar register

S;«C Load constant C in scalar register
VL« N Set vector length into VL register

V,-~B Read B vétor into vector register

Vie=S sV, Multiply each component of the B array by a constant
Vi=8:+V% AddCto 5« B() :
AV Store the result vector in A array

The fourth and sixth instructions use different functional pipelines with
shared intermediate registers. They can be chained together. The outputs of
the chain are finally stored in the 4 array. When N exceeds 64, vector loops
are required. Before entering the loop, N is divided by 64 to determine the
loop count. If there is a remainder, the remainder elements of the A array are
generated in the first loop. The loop consists of the fourth to the seventh
instructions for each 64-element segment of the A and B arrays.

Recursion can be implemented by vector operations in the Cray-1 with the
help of the component counters. Let 1 be the component counter associated with
a vector register V1. To introduce recursions, one vector register, say Y0, must
serve as both an operand register and a result register. Under such circumstances,
Co will be held to zero until the first component result is returned from the func-
tional pipe to V0. In other words. Co updates according to its function as a result
register. During this period, the same component operand from CQ,, the first
component register in VO, is repeatedly sent to the functional pipe until Cy incre-
ments after the first result. The use of the same component from VG can repeat for

278 coMPUTER ARCHITECTURE AND PARALLEL PROGCESSING

Loy fipay MMHM:MM@M
W Wl e 20 i
Whe Wl - oW,
eVl peemn o
ey e N
Ve Vil e . W
Vo, VI, Vi,
. LR S
Moa Ml o i
VO + VI Vig=vo, v, Vo,
VO, + V1, VI,= vo,, Ml isiees - 1 0 Vo,
ki i hi "k T | P ")
b Ll N e I Vo,
VOu+ Vi Vi, = Vo, Vi, Vo

12

Figure 4.24 A timing chart showing the recursive summation of the vector components in Example 4.6,

subsequent components in VO until the entire vector operation is done. The
following example will clarify this recursion concept.

Example 4.6 Consider the use of the floating-point add pipe for the recursive
vector summation VO « V0 + V1. where the vector register V1 holds an
array of floating-point numbers to be added recursively. The timing chart of
the recursion is shown in Figure 4.24, Initially, both counters Co and C, are
sct to be zero. The initial value in the first component register V0, of V(
is also set to zero. The FLP add pipe requires six clock periods to pass through,
Register transfer to or from the FLP add pipe takes another clock period.
Therefore, the total cycle is 1 + 6 + 1 = 8 clock periods, as shown in Figure
4.24. The vuctor-\ength register is assumed to have a value of 64 for a single
vector loop,

The counter ¢, is kept at zero until time ty. During this cycle, V0,
(which is set to 0) is sent to the pipeline. However, the counter C, keeps
incrementing after each elock period. Therefore, Vig. V1,...., Vi, are sent
to the pipeline in subsequent 64 clock periods after r,,. After Iy, Co gets incre-
mented by u:]::"'tflcr‘ each clock period. This means the successive outpul sums
are added recursively with one additional component from VI in every eight
clock periods. When the computations are completed. the component registers
ol VO should be loaded as shown in Table 4.11. The 64 components are
divided into cight groups of eight component sums each. The last summation
group from Y0y, to VO, , holds the eight summations of the cight components
of VI, cach,

PIPELINE COMPUTERS AND VECTORIZATION METHODS 279

Table 4.11 Successive contents of vector register V0 in Example 4.6

(VO,) = (V0y) + (Vi) = 0 + (V)
(VO,) = (VO,) + (V1) = 0 + (V1,)
(V0;) = (V0g) + (V1) = 0+ (V1)
(VO,) = (V0,) + f\”:} =0+ ‘v[ﬂ
(YO,) = (V05) + (V1) = 0 + (V1)
(VO,) = (V0p) + (VI,) = 0 + (V1)
(VOg) = (V0u) + (V1g) = 0 + (V1)
(V0,) = (V0,) + (V1,) = 0 4 (VI,)

¢ The first group

(V0) = (VO,) + (V1,) = (V1,) + (V1)

(V03) = (VO.) + (Vig) = (V1)) + (VIy)

(V0ia) = (V0,) + (Vl,0) = (V1) + (V1)

(V0,,) = (VO,) + (V13;) = (VI3) + (V1,,) } The second group
(V0y3) = (VO,) + (V1,3) = (VL) + (VI,;)

(VOy5) = (VO;) + (V1,5) = (VI,) + (V1,)

(voln] = (VD.]- + {‘V]“] = (Vly) + Nll} + (‘”u) TGroup 3
through

(V035) = (V0,5) + (V1s3) = (VI5) + (VI,5) + (Vigy) + (Vi) + (Viso) Lo

+ (Vi) + (Vigg)

(V056) = (V045) + (Vlsg) = (V) + (V) + (VI 18) + (V1) + (V1))
(V0s7) = (V04) + (Vigs) = (V1) + (Vigdet (V145) + (V1s) 4 (Vi)
+(Vlg) + (Vi) + (Vi) =
(VOs5) = (V050) + (V153) = (V13) + (Vig) + (Vigg) + (Vige) + (V152)
+ (Vi) + (Vi) + (Vi)
(V055) = (V0ygy) + (Vigg) = (V1y) + (V1y3) + (Vi) + (Vlgs)
+ (Vi) + (V1) + (V) + (V) | The cighth group
(V0s0) = (V053) + (Vigg) = (V1) + (V1;3) + (Vlgo) + (V13g) (result)
+ (Vi) + (V1) + (Vigs) 4 (Vi)
(V0gy) = (V053) + (Vigy) = (V1) + (V13) + (V1g) + (Vi)
+ (Vlye) + (Vi) + (Vi) + (Vi)
(V0s3) = (V0s) + (V1g) + (V1,) + (V133) + (V1s0)
+ (Vlye) + (V1) + (V1) + (Vi) =
(VOg3) = (V0s,) + (Vlgy) = (V1;) + (V1,5) + (Vigy) + (Viyy)
+ (Visg) + (Vi) + (Vi) + (Vigy)

The above recursive vector summation is very useful in scientific computations.
For an example, the dot product of vectors A - B = Y a;- b, can be implemented in
the Cray-1 by chaining the following two operations: a vector multiply V1 «
V3 V4 followed by a floating-point add VO «— VO + V1. If the vector length is
64, the dot product can be reduced to 8 sums (from 64) after the chained multiply
and add operations. The next iteration is to find the sum of the eight subsums to
product the final result. For recursive vector multiplication, similar operations can
be implemented with a floating-point multiple pipe, except the initial value of VO,
should be 1 instead of 0. This operation should be useful in polynomial evaluations.

250 COMPUTT Y AR VURE AND PARALLLL PROCESSING

The performance of the Cray-1 may vary from 3 1o 160 megaflops, depending
on the applications and programming skills. Scular performance of 12 megaflops
was observed for matrix multiplication. Vector performance of 22 megallops was
observed in vector do product operations. Supervector performance of 153
megaflops was observed in assembly-code matrix multiplication. These speeds are
spectal peak values, The Cray-1 will more likely have an average veclor-super-
veetor performance in the riange of 201080 megaflops, denending of course on the
work load distribution,

In order to achieve even better supercomputer performance, Cray Research
his extended the Cray-1 1o the Cray X-M P, 2 dual-processor system with looscly
coupled multiprogramming and single-program multiprocessing. The Cray
X-MP has cight times the Cray-1 memory bandwidth and a reduced clock period
Of 9.5ns. It has guaranteed chaining. Furthermore. the software for the Cray
X-MP is compatible with that of the Cray-1. The first customer shipments of the
Cray X-MP ook plice in 1983, with full production in 1984

The Cray X-MP offers impressive speedup over the Cray-1. For mixed Jobs,
it has been estimated that the Cray X-MP has a 2.5 to 5 times throughput gain
over the Cray-1. For scalar processing, it is 1.25 to 2.5 times faster than the Cray-1.
Again, it is excellent for both short and long vector processing, as is the Cray-1.
When the Cray X-Mp gets upgraded to the Cray-2 after the mid-80s, the per-
formance is expected 1o increa sesix times in scalar and 12 times in vector operations
over the Cray-1, The Cray-2 will have four processors with a basic pipeline clock
rate of 4 ns, 312 M words of main memory. and 20 times improved 10, We will
study various Cray Research’s multiprocessors in detail in Chapter 9,

4.4 The Architecture of Cyber-205

The Cyber-205 fepresents more than 20 years of evolution in scientific computing
by the Control Data Corporation from the carly CDC-1604, through the CDC
6600,7600 scries, to the Star-100 and Cyber-203. The Cyber-203 improves over
the Star-100 by the use of semiconductor memory, concurrent scalar processing,
and a memory-interface design that permits instructions to be issued every 20 ns,
The improvements of (he Cyber-205 over the 203 stem from the usc of entire 1.S1
circuitry with large bipolar memory, additional vector instructions, and support
Oy the NOS hased operating system. The Cyber 205 became available in 1981,

The system architecture of Tyber 208 (Figure 4.25) differs from that of the
Star-100 (Figure 4.2) in the addition of a powerful zcalar processor and wo more
veetor pipelines (for a total of four vector pipes). The basic pipeline clock period
of the Cyber-205 pipelines is 20 ns and the memory cycle is 80 ns, half of that of the
Star. Only 26 distinet LSI-chip types are used. which significantly increases
system reliability and nmaintainability. Instead of using slow core memory, the
Cyber-205 uses bipolar main memory of up to four million 64-bit words with 1.
RO-ns cyele time, Memory-access patterns include S12-bit superwords (cight
O4-bit words) for veetor operands and fullwords (64 bits) and halfwords (32 bits)
for sealar operands, The main memory bandwidth is 400 MW s significantly

Ley

PIPELINE COMPUTERS AND VECTORIZATION METHODS 81

1 million | _ . —np Uit |
words 4
Y 1
= -
. < - Sln?rn Vector
b3 i unit arithmetic pipes
I million | ¢ L
option] e
2" o f =
:2 million a tring
i option : c - unit
s (16-bit)
4
Y
1/0(16) |
ports |

Figure 4.25 The Cyber-205 computer syu;n configuration. (Courtesy of Control Data Corp.)

higher than that in the Cray-1. The high memory bandwidth is needed to support
the memory-to-memory pipeline operations.

Instruction-execution control resides in the scalar unit, which receives and
decodes all instructions from memory, directly exccutes scalar instructions, and
dispatches vector and string instructions to the four vector pipes and the string unit
for execution. It also provides orderly buffering and execution of the data and
instructions. With independent vector and scalar instruction controls to a single-
instruction stream, the scalar unit can execute scalar instructions in parallel with
the execution of most vector instructions.

The scalar arithmetic unit contains five independent functional pipes for
add/subtract, multiply, log, shift, and divide/sqrt operations over 32- or 64-bit
scalars. The peak speed of the scalar processor is 50 megaflops. The vector pro-
cessor has the option of having one, two, or four floating-point arithmetic pipes.
The stream unit manages the data streams between central memory and the vector
pipelines. A vector arithmetic pipe can perform add/subtract, multiply, divige,
sqrt, logical, and shift over 32- or 64-bit vector operands. Each vector pipeline
is directly connected to the main memory without using vector registers (Figure
4.25a). The string unit processes the control vectors during streaming operations.
It provides the capability for BCD and binary arithmetic-address arithmetic and
boolean operations,

252 COMPUTIR A i (TS ANID PARALLEL PROCESSING
e

The vector startup time in the Cyber-205 is much longer than that of the
Cray-]. A vector miy comprise up to 65,635 consecutive memory words, Control
veeTors are used (o address data that is stored in nonconsecutive locations. Each
pipeline receives two mput streams and gencrates one output stream of floating-
point numbers. Each stream 15 128 bits wide, supporting a 100-megaflops computa-
tion rate of 32-bit results or 50 megallops for 64-bit results per cach vector pro-
cessor. With four vector pipes, the Cyber-205 can produce 200 mega Nops for 64-bit
results and 400 megaflops for 32-bit results in vecror add/subtract or in vector
multiply operations. The Cyber-205 can also be used o perform linked reetor
multiply and pecior add/subtract operations with a maximum rate of 800 or 400
megaflops for 64- or 32-bit results, respectively, on a four-processor configuration.
The vector divide and Square root aperations are much slower than the add/ subtract
or multiply operations.

Each vector arithmetic uni consists of five functional pipes, as shown in
Figure 4.264. The detailed pipeline stages in the Noating-point add wnir and the
multiply wnit are shown in Figure 4.26h and ¢. Both pipeline units have feedback
connections for accumulative add or multiply operations. These two units are
improved over the designs in the Star-100 (Figure 4.3). The pipeline delays in both
Vector-sealar units are summarized in Table 4.12. With a 20-ns clock rate. the
number of required clock periods is also shown in each case. The loud/store is also
pipelined. Pipelining produces one result per each clock period of 20 ns. The result
from any of the above units can be routed dircctly 1o the mput of other units
without stopping in some intermediate registers. This process is called short-
stopping, as facilitated by the feedback connections in Figure 4.25, The theoretical

ak performance of the Cyber-205 is summarized in Table 4.13 for 32- and 64-bit
results,

The bipolar memory is four-way interleaved, giving an effective cycle time of
20 ns per word, The central memory is a virtual memory system with advanced
memory management features such as key and lock for memory protection and
separation, hardware mapping from virtual to physical address, and user program-
data sharing capability. The page sizes vary from small (1K, 2K, 8K words) to
large (65K words). The Cyber-205 has 16 1/0 channels, each 16 bits wide. The
I/O system consists of multiple minicomputers for handli ng up to 10 disk stations.

Table 4.12 Pipeline delays in the Cyber-
2058

el s B g

Time delays Clock

Functiona! pipe (ns) periods
——
Load-store T 15
Add-subtract 100 5
Multiply 100 3
Logical 60 a3
Dividesguare root 1080 (64 bits) 54

Conversion B0 (32 birs) n

PIPELINE COMPUTERS AND VECTORIZATION METHODS 283

Operand A

LT |
Operand B
128 bits

Data
interchange

1

Contral

(a) One vector arit i his

“ Shortstc

Operand A J

g ¢ i TRidih PR A 4 : Y

b _Sign {Compare [Alignment | . Il INom

Operand | control exponents| - shir | [AdEfefE g1
A28 bits] '

Result C
+nl128 bits

, “1(b) The floating-poin
Opera_ﬁa:.'k_ e et g
128 bits Partial sum

St : 1 ResuiC
* Operand B 128 bits.

| Muttiply [Partaraany T

- gy =8 Te)
128 bits d B
3 =l % e T 4r
Input | Divideand| | X
complement| square roorf

() The Noating-point mult
Figure 4.26 Pipelined structure of one vector processor in the

284 COMPUTER ARCHITEC TURE AND PARALLEL PROCESSING

Table 4.13 Peak performance of Cyber-205

Peak performance

{megallops)

Dne Two Four

Vector instructions Operand length pipe pipes. pipes
Vector add=subtract 32 hits 100 200 400
64 bits 50 100 200
Vector multiply 32 bits 100 200 400
64 hits 50 100 200
Vector linked multiply and 32 hits 200 400 800
add or subtract 64 hits 100 200 BOO

Vectar divide-square root 32 bits 15.3 0.6 61.2
64 bits 8 16 32

Vector divide-square root 32 bits — al.2 1224
(high-speed option) 64 bits = 32 64

Each station can accommodate cight disk drives, Filty megabaud serial line
interfaces and network access devices can be used to connect the Cyber-205 with
the Cyber net. X

Software support for the Cyber-205 consists primarily of the Cyber-200-0S,
the Cyber-200 Fortran, the Cyber-200 Assembler META, and Cyber-200 utility
programs. The Cyber-205 Fortran compiler provides code optimization, loop
collapsing into vector instructions whenever possible, effective utilization of the
large register file, and accessibility to 256 Cyber-205 instructions, divided into 16
vector types and 10 scalar types.

The most obvious architectural improvement of the second generation vector
processors over the first generation is the inclusion of a scalar processor for non-
vector operations. By far, the Cray-1 and Cyber-205 are the fastest processors
manufactured in the United States. with cycle times of 12.5 and 20 ns, respec-
tively. Both systems use bipolar ECL circuits. Only four chip types arg used in the
Cray-1 versus 26 chip types in the Cyber-205. Multiple unifunction pipelines are
used in the Cray-1, while the Cyber-205 is equipped with multifunction static
pipelines. In both systems, fast bipolar main memory is used,

To compare the vector-processing capabilities of the Cray-1 and Cyber-205,
we consider the parallel execution of the following program.

Example 4.7

DO 10 I=1, 1024
10 Y(1) =A(1)=B(1)

On the Cray-1, the above DO loop would be computed at a CPU rate of

1 OO0 :
————— = §() megaflops
12.5 ns answer

PIPELINE COMPUTERS AND VECTORIZATION METHODS 28RS

For the Cyber-205, the corresponding CPU rate would be

1000

= 50 megallops, pipe
20 ns/answer SO mP

If two vector pipelines are used in the Cyber-205. then 100 megaflops could
be achieved. The entire operation must be grouped in 16 successive segments
of 64 operations each, since 64 is the loop vector length in both systems.

The Cyber-205 has richer vector instructions than the Cray-1, whereas the
latter has better scalar instructions. With two pipeline processors, the Cyber has
a 10-ns effective burst rate. The Cray-1 can be attached to IBM, CDC, or Univac
front-end host computers. The Cyber-205 can be driven by the Cyber-170 series or
the IBM 303X. A major difference between the two supercomputers is the all-LSI
chip technology in the Cyber-205 as opposed to the SSI logic parts in the Cray-1,
except for the LSI 4K RAM chips in the Cray-1. The two systems differ also in.the
arithmetic pipes, masked vector operations, and in the 1/O linkage operation to
the front-cnd host.

4.4.4 Vector Processing in Cyber-205 and CDC-NASF

In this section, we describe several special features in the Cyber-205. These features
are necessary to facilitate memory-to-memory vector pipelining. We shall first
review memory-mapping schemes ir'the Cyber-205. Then we illustrate the use of
bit vectors for controlled vector processing. The effect of startup delays on the
Cyber-205 will be evaluated. We describe the improvement of the I/O configura-
tions in the Cyber-205 as compared with the earlier Star-100 system. Finally, we
study the enhanced model proposed by Control Data for future supercomputing.

The Cyber-205 provides high-speed memory-to-memory vector operations.
Consider a Fortran declaration DIMENSION A(4,4), B(4,4,4). In a normal
Fortran memory-allocation system, the entire array A could be considered a
vector of length 16 and B could be a vector of length 64 if all the data were to be
processed as a unit with all elements independent of one another. If every other
plane of the B array were to be processed, one could view the data as being in four
vectors, cach of length 16 elements (Figure 4.27a). The requirement for contiguous
storage of data in memory arises from the engineering solution to achieve high
bandwidth (Figure 4.27b), but the conceptual notion of dealing with problem
solutions in vector form is being exploited by mathematicians in the development
of new algorithms.

The concept of memory-to-memory vector pipelining in the Cyber-205 is
illustrated in Figure 4.28. Since the data arriving at the arithmetic pipeline are
usually contiguous, every segment in a pipeline will be performing useful work
except at the very beginning and end of a vector operation, From an engineering
point of view, this makes very efficient use of the circuitry employed, at a cost of
some time to “get the operation rolling™ (first result returned to memory or
registers) due to the length (in number of clock cycles) of the pipeline.

®
286 COMPUTIR ARC HITECTURE AND PARAILLFL PRECTESSING

Experience has shown that few supercomputers totally operate on a single
massive problem in a dedicated manner. The normal installation finds the waking
hours being consumed by algorithm development, program debugging, and
interactive execution of rescarch programs and even large production programs,
The evening and midnight hours are usually more structured, with one or more
major programs monopolizing the machine's resources and with, perhaps, a
modest amount of interactive debugging being pursued in a background mode

Array Bin
Array A in Fortran order
Fortran order

qg

01 o1] [17] [33] [#9]
02 02 [0z] [18] [34] [50]
03] 03] 03] (9] [35] [51]
04| | 04 04] [20] [36] [52]
Array A viewed T}? Hﬂlj_ T'I? _:'.I— 37 5—3
as vector of 06 | 06 | 06 | 22 ET] 54|
lengih 16 —1 —— —1 1 — —
07 07 07|23 | 39 | 55|
08 | 08| [08] [24] [0 56
09 | 09]. 09] [25] [@1] [57
10 (10 10] [26] [42] [s8]
s [V1} m (1] [27] [#3] [s9]
(12 12 12] 28] [44] [e0]
(13 3] [13] [29] [5] [for]
[14] E] 14] [30] [6] [62]
15 15 s [31] {47] [e]
o) wl L] (o] [[
| 17 Array B viewed as
18 four vectors each

of length 16
Array B viewed

as single vector 63
of length 64

(e} Fortran arrays as vectors

Figure 4.27 Memaory mapping examples i the Cylber-205.

One memory

PIPELINE COMPUTERS AND VECTORIZATION METHODS 287

X g i s
40|41 | 42| 43|44 45| 46 | 47 Bank §
32[33)34]35[36[3713839 Bank 4
2425 26| 27{28]29] 30 [31] Bank 3
t6[17]18f1920]21] 22] 23 Bank 2
OBIO9 | 10)11|12]13 14 |15 Bank |
{m 01]02] 03 04] 05| 06 | 07 Bank 0

Yiclds eight consecutive
64-bit words

19]20]21]22]23

To be sent to two (or four)
identical functional units

request

¥ ' X

+ o + +
= » " x
| + + + +

(b) CybeF-20 memory allocation

Figure 4.27 (continued) (Courtesy of JEEE Trans. Computers, Lincoln 1982.)

Virtual memory plays a major supporting role in a supercomputer. Listed

below are the important memory functions in the Cyber-205:

Assist in memory management: The operating system can commit and de-
commit arbitrary blocks of real memory without having to ensure the physical
contiguity of a user’s workspace. This reduces overhead for actions such as the
accumulation of unused space, which could be quite costly in large memory
systems (on the order of eight million words).

- Provide identically appearing execution of all jobs: This means that a program’s

dimension statements and input parameters can remain unchanged whether or
nota 4-hour run is being contemplated or a simple debugging run of a particular
phase is intended.

- Eliminate working Space constraints from algorithm development: -Mathe-

maticians and programmers can begin developing an algorithm as if they had
available an infinite workspace in which to put data and temporary results.
Once the algorithm is developed. the programmer must introduce the means
to handle paging of the information in order to optimize the performance of the
systemand to eliminate the thrashing that can occur in virtual memory machines
moving data to and from real central memory,

(T861 wjosury ‘suzindwe)) suvsy 3537 jo Ksapmnoy) "S07-42940 aq) ui Buguiadyd 401594 Kowdw-o0)-Kiowapy g7y undy

Kowapy
0050
Se—rerew
(]
12
00cd
92 LONINIISUL 101394 e
1ppy Je g+vaav 28
T v 'q e

88 8V sy

o e AR '
0lg o1V v

induj

288

PIFELINE COMPUTERS AND VECTORIZATION METHODS 2R9

A most significant contribution of the Cyber-205 was the notion that strings of
binary bits (called hit vectors) could be used to carry information about vectors
and could be applied to those vectors to perform some key functions. Since the bit
strings became the key to the vector-restructuring concept, a means had to be
provided to manipulate bit vectors as well as numeric vectors: thus was added the
string Tunctional unit to the hardware ensemble in both the Star-100 and the
Cyber-205. The functions of compress. mask. merge, scatter. and gather were
incorporated. In addition, many of the reduction operations like sum, product. and
imner product were implemented directly in the hardware,

Two special vector instructions using the control bit vectors are illustrated in
Figure 4.29. In part a, the two source vectors A and B are merged under the control
of the bit vector C 1o give the result vector R. The merging is conducted so as to
select from A on “1"in C, and from B on “0" in C. In part b the source vector A

Source vector Alum|.a\n*A;!{Aci{mn‘mn]amim7;” { [A0)]

i Y y
R

Result vector [lelk(l)!kl!r{kﬂ)’R(Jj]R(S}]R(MIR(T}]1 Uktn)l

L b

Source vector B’P(O:[[HI}IB{.’H[RUJ'Iu4|Jll|§:Iiuf.Jlln'n] }{lﬂml
Biveeor [(T]0 T[T Jo [T [0l o3 1]

(@) The MERCE
instruction

Bitveesr (10 1]]ol 1]} 1]
Source vector IAI(‘!A(])i:\tlil--\{."l[a‘\(-i)]f’\m g IAII'JI

1 { !
R
Result vector [RtOHR(lI[Rt?)}R{]II -é R{n)

(& The COMPRESS
MEIrUCtion

Figure 4.29 Two sector instructions in the Cyher-208 asing contral sectors,

290 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

is being compressed to give the result vector R under the bit vector B. The compres-
sion is done on “0"” in B. These instructions are extremely useful in manipulating
sparse matrices,

Startup time of vector operations includes the instruction translation time and
the delay imposed by fetching and aligning the input streams and by aligning and
moving output streams to memory. Figure 4.30 illustrates the impact of startup
time on the effectjve performance of the Cyber-205 architecture. A major improve-
ment in the overall performance of this type ol memory-to-memory vector archi-
tecture requires careful attention to startup time. In addition to the raw improve-
ment in clock speed, the designers were directed to other methods for reducing
the delay in vector initiation.

The actions of address sctup and management of vector arithmetic control
lines require substantjal speedup. In addition, providing separale and independent
functional units in each of the scalar and Vector processors permits execution of
those functions in parallel. Hence, the apparent startup time becomes smaller than
what the hardware provides. This feature, in the best cases, results in parallel
execution of both scalar and vector floating-point operations with a consequent
increase in overall performance.

Identified below are three major changes in the architecture of the Star-100 to
yield the Cyber-205:

L. In the Star-100, the operation of the scalar unit was coupled with the vector
unit such that only one type of operation could be performed at a time, The
Cyber-205 has the ability to run both vector unit and scalar unit in parallel.

2. To fit a variety of operating environments, the Cyber-200 family was provided
with a range of small page sizes beginning with 4096 bytes and ending with

+ 65,536 bytes. The large page size of the Star-100 was retained since it appeared
to be optimum for large production programs.

3. The input-output system employed in the Star-100 was of the *star network "
type, with node-to-node communication between the CPU and attached
peripherals. The change to a network form of I/O which is called the loosely
coupled network (LCN), was a major switch for hardware and software alike
on the Cyber-205,

Figure4.31 illustrates the star network connection of the Star-100 and attached
peripherals and contrasts this with the Cyber-205. Note that the connectivity of
the Cyber-205 is potentially much greater than that of its predecessor. In addition,
data transfers between elements of the Cyber-205 system can bypass the front-end
clements; in the Star-100, data rates between permanent file storage and the CPU
are limited by the capacity of the front-end processor, which lypisally is on the
order of 1 to 4 Mbits/s.

Transmission of data is accomplished on a high-speed, bit-serial trunk to
which 2 to 16 system elements can be coupled. The method of establishing a link
is based on addresses in the serial message which can be recognized by the hard-
ware trunk coupler, called the nerwork access device (NAD). The most significant

o

Dt

Mflops

MMops

arﬂ'[—

]

PIPELINE COMPUTERS AND VECTORIZATION METHO

LT

32 bit, & pIPE

—_—

700 -
600) b~
500
400 32 bit. 2 pipe —t
64 bit, 4 pipe

00
i 64 bit, 2 pipe i
100

] 1 1 1]

2K 4K 6K BK 10K 65K
Vector length
(a) Linked triad performance
800 [=
T =
600 -
500 —
400 — Rbit,4pipe
300 —
200 32 bit, 2 pipe "
64 bit, 4 pipe
64 bit, 2 pi
100 . — -
1 1 i l 1 |
2K 4K 1N L1 10K 65K

Vector length

(H) Multiplv-add performance

Figure 430 Effect of startup del
on the Cyber-205 performan
(Courtesy of IEELE Trans. Co
puters, Lincoln 1982.)

292 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Mass Maintenance
Storage Control
Station Unu

Star
Central Mu?ndu
Core
Processing Sinrnse
Unit ik

Mass
Storage /

Station

\

r H
[)
1} 1}
A
Station P
Contral ;:"".1“
Uﬂl! atation
Magnetic
Tape 2
Station Lyb;rsmr Access
Link Station
Station :

(2) The “star-network™ for Star-100

CDC CDC - _—
Cyber 200/ — Cyber 18 Cyber 170
Model 205 MCU Station
[NAD[NAD]NAD[NAD[NAD) [NaD] [NAD]
=
=
—_— =)
NAD: network NA NAD
access
device 763 7639
19 19
DIS IS
19 819
4 2 DISK DIS

(b) The “loosely coupled network” for Cyber-205.

Figure 4.31 Input-output subsystem configurations in the Star-100 and the Cyber-205. (Courtesy of
{EEE Trans. Computers, Lincoln 1982))

PIPELINE COMPUTI RS AND VICTORIZATION METHODS 293

aspect of this decision has been the philosophical departure from dedicated peri-
pherals to shared peripherals, which are accessed on a Y party line® basis. Once
this change has been incorporated in the system software, the actual transmission
media and hardware form of NAD i« mnvisible to the user,

In 1979, Control Data Corporation proposed 1o the NASA Ames Rescarch
Center a supercomputer design. called the Numrical Aerodynamic Simuelation
Facility (NASF). to be used in the 19905 for acrospace vehicle or superjet designs,
The purpose is to provide predictive three-dimensional modcling of the wind
tunnel experiments characlerized by viscous Navier-Stokes fluid cquations. This
computational approach to solve fluid dynamic problems s only constrained by
processor speed and memory space. It costs much less than building a huge wind
tunnel, which is limited by so many physical factors. The speed requirement of the
NASE was set to be at least [00K) megallops. Feasibility has been established and
US. government funding is being awaited before proceeding with the design and
construction of such a supercomputer.

The CDC/NASF design extends the structure of the Cyber-205, as shown in
Figure 4.32a. There are five vector pipelines in NASF, with one Serving as a spare
unit. Functional components in one vector pipeline are shown in Figure 4.32b. A
separate scalar processor is used. The clock rate of this proposed design is 8 ns.
The memory hierarchy has three levels: an 8 M word of ECL cache, a 32 M word
MOS intermediate memory, and a CCD sequential memory of 128 M words.
Within each vector pipeline. adders, multiplicrs and complementers are all
duplicated in pairs 1o facilitate parallel real or complex number calculations and
error checkings. The SpAre vector pipe can be switched in automatically whenever
a failure is detected. This allows on-line repairing of the failing unit.

With an 8-ns clock rate, the CDC NASF can operate with a rate of 500
megaflops for 64-bit results and 1000 megaflops for 32-bil results. Since cach result
may be produced with one to three floating-point operations, depending on
whether real or complex operands arc involved, the theoretical peak performance
of the NASF should be tripled. as 1500 megaflops for 6<4-bit results and 3000
megallops for 32-bit results. Besides CDC, Burroughs has also submitted a proposal
to build the NASF as an SIMD Array processor.

4.4.5 Fujitsu VP-200 and Special Features

Fujitsu announced the FACOM vector processors VP-100 and VP-200 in July
1982, High performance in this machine is achieved by LSI technology, improved
architecture, a sophisticated compiler, and a number of advanced features in both
the hardware and sofiwgge areas. It can be used as @ loosely coupled bick-end
system. The block diagram of the VP-200 is shown in Figure 4.33. The system has
4 sealar processor and a veetor pracessor which can operate concurrently. Like
inthe Cray-1, Large and fast registers. buffers, and multiple pipes are used 1o enable
register-lo-register operations. The main memory has up o 236 M bytes connected
to the veetor registers vis two load-store pipelines. Each of the two load-store prpes

294 COMPUTER ARCIHITECTURE AND PARALLEL PROCISSING

Inputs

b]

Input interface/buffer I

¥ o) !

Front-end Front-end
adder adder

[[

[Multiplexing interface]
e SR

Complementer ‘ Multiplier ’ | Multiplier l [Complementer]
)
Back-end Back-end
adder adder
[_ Output interface/delay]
l l l Qutputs

{a) Functional design of one vector pipeline

A‘--..--.-.--._.-.-....._.- i T T
i - 170 unit | 1/0 channels
i f t
i : Main memory
i Memory hierarchy backup store ™ Tcontrol
| 1 t !
! [Memory interchange unit : | f
| t L
H [L Vector streaming unit —l
i
] Scalar ! *

processor
LW Vector
. . - pipelines
: . H H . (one spare)

(8) The overall system archhecture
Figure 4.32 The proposed CDC NASF supercomputer. (Courtesy of Control Data Corp.)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 295

Mask Registers

IKkH
P Vector
Main Vidla | Logical processor
storage i i
registers
256MB | 4 > oKD =1 Multiply
Y l;f)ldf \ . Divide e
Store 1
B1KB
Sealar Scalar
= ?ﬁ" fler execution processor
stk unit
GPR
Channels FLPR

Figure 433 The FACOM vector pro<ess VIP-200. (Courtesy of Fujitsu Limited, Japan.)

has a data bandwidth of 267 M words in either direction. This rate matches the
maximum throughput of the arithmetic pipes. There are four execution pipelines
in the vector processor. Data format for vector instructions can be bit strings,
32-bit fixed-point, and 32- or 64-bit floating-point operands. There are 83 vector
instructions and 195 scalar instructions in the VP-200. Most of the scalar in-
structions arc IBM 370 compatible and the scalar unit interfaces with the main
memory via larger buffer storage.

In the VP-200, the vector registers can be dynamically reconfigured by con-
catenation toassume variable lengths up to 1024 words. Vector instructions include
vector compare, masking, compress, expand, macros, and controls, in addition Lo
arithmetic logic operations. Concurrent operations include two load-store, mask,
two out of three arithmetic pipes, and scalar operations. The throughput of the
add-logical pipe and the multiply pipe is 267 megaflops each, whereas that of the
divide pipe is 38 megaflops. Hence 533 megaflops is the maximum throughput
when the add-logical and the multiply pipes run concurrently. The VP-200 has
advanced optimization facilities 1o generate efficient object code through vector-
ization of sequential constructs, pipeline parallelization, vector-register allocation,
"2d generation optimization.

The strength of the VP-200 lies in its impressive throughput and easy pro-
gramming environment. The Fortran 77 compiler is developed with advanced
automatic optimization feature and convenient tuning tools and application
library. The system can be a simple add-oy 1o a front-end processor with MVS OS
as a loosely coupled multiprocessor. It can utilize many of the existing software

296 COMPUTER AR HITECTURE AND PARALLEL PROCESSING

assets, With morc reliable circuit and packaging technology, the system can self-
recover from hardware errors. The Fortran 77/vP components’in the VP-200
include language processors for both scalar and vector objects, tuning tools,
debugging tools, and sy broutine packages for special scientific computations, such
as for solving linear Systems, eigenvalues, differential cquations. fast Fourier
transform, cic,

Although high-speed tomponents. high degree of parallclism and/or pipelining,
and large-sized muin memory are the basic requirements 1o stretch the computa-
tional capabilities of 1 supcercomputer, the VP-200 designers consider the following
features as also important for such a machine to be versatile enough for a wide
range of applications:

l. Efficient processing of DO loops which contain IF statements
2. Powerlul vector editing capabilities

3. Efficient utilization of the veclor registers

4. Highly concurrent vector-vector and scalar-vector operations

Technology. architecture, compiling algorithms. and the implementation of
special hardware and software features in the VP-200 are described below. Readers
may find some of these features similar to those in the Cray-1 and Cyber-205. and
some [eatures are uniquely developed in the Fujitsu machine.

Technologies utilized Fujitsu’s latest technologies are utilized in the FACOM
vector processor. Logic LSIs contain 400 gates per chip, with some special func-
tional chips such as the register files containing 1300 gates. Signal propagation
delay per gate of these 1SIs are 350 picoseconds (ps). Memory LSls containing
4K bits per module with an access time of 5.5 ns are used where extremely high
speed is necessary, Up to 121 LSIs can be mounted on a l4-layered printed circuit

mainframes. It is with these technologies that a 7.5-n¢ clock is realized for the vector
unit and a 15-ns clock is realized for the scalar unit. As for the main memory,
64K-bit MOS static RAM LSIs are used with chip access time of 55 ns. The main
memory is 256-way interleaved. Vectors can be accessed in contiguous. constant-
strided, and indirect addressed fashion. .

Vectorizing compiler— Fortran 77[VP A vectorizing compiler, Fortran 77/VP, has
been developed for (he FACOM vector processor. Fortran 77 has been chosen as
the language for this machine so that the large software assets can become readily
available. In order to obtain high vectorization ratio for a wide range of application
programs, the Fortran 77/'VP comiler vectorizes not only the simple DO loops
butnested DO loops and the macro o perations such as the inner product efficient] y.
It also detects and separates the recurrences., ’

Ease of use is another objective of the compiler. Debugging aids. a performance
analyzer, an interactive vectorizer. and a vectorized version of the scientific sub-
routine. library are some of the software included in Fortran 77/VP. With the

PIPELINE COMPUTERS ANID VECTORIZATION METHODS 297

interactive feature, for example, a programmer can provide the compiler with
useful information for higher vectorization.

Conditional vector operations The anilysis of the application programs indicates
that the conditional statements are frequently encountered within DO loops. The
FACOM vector processor provides three different methods 1o efficiently execute
conditional branch operations for vectors: masked arithmetic operations, com-
press-expand functions, and vector indirect addressing,

In order to control conditional vector operations and vector editing functions,
bit strings (called mask vectors) are also provided. A total of 256 mask registers,
32 bits each, the store mask vectors, and the mask pipe perform logical operations
associated with the mask vectors.

Example 4.8 This example describes the masked operations in VP-200 -

| 1 0 1 Q 50 | I Mask vector
AfdAr Ay R As AL A Ay Vector A

B~ H: "By B,y By B.. B By Vector B

4+ + + + 4+ Add operation

Ay By Ch Ag.Cs Cy: Ak, Result on vector C
+ 4+ + + o+

B, B, B, B- By

In the case of the masked arithmetic operations, the add-logical pipe generates
mask vectors to indicate the true-false values of conditional statements. and the
arithmetic pipeline units take such mask vectors via mask registers as the control
inputs. The arithmetic pipeline units store the results back to vector registers only
for the elements having Is in the corresponding locations of the mask vector: Old
values are retained otherwise. For a given vector length, the execution time of a
masked arithmetic operation is constant regardless of the ratio of true values to
the vector length (ealled ~true ratio”).

Since the true ratio of conditional statements widely varies from one case 1o
another, the compiler must select the best method for individual cases. More
precisely, there are two key parameters in selecting the best one to use: the rrue
ratio and the relative frequency of load-store instruction executions over the total
instruction executions within the DO loop. If the true ratio is medium to high. the
masked arithmetic operation is selected : otherwise, the compress-expand method
is selected when the frequency of load-store operations is low, and the indirect
addressing is selected when such frequency is high. The Fortran 77/VP compiler
analyzes the DO loop. compares the estimated exccution times for all three
methods, and selects the best one. A programmer can also interactively provide
the compiler with the information on the true ratio.

Vector editing functions The FACOM vector processor provides two types of
editing functions: compress-expand operations and vector indirect addressing.

298 compPuTER ARCINTECTURE AND PARALLEL PROCESSING

These functions can be used not on ly for the conditional vector operations but for
Sparse matrix computations and other data editing applications. Vectors on vector
registers can be cdited by compress and expand functions by using load-store pipes
as data alignment circuits; no access (o the main memory is involved in these cases,
Compressing a vector A means that the elements of A marked with Is in the
corresponding locations of the mask” vector are copied into another vector B,
where these elements are stored in contiguous locations with their order preserved.
Expanding a vector means the Opposite operation, as the example below shows:

Example 4,9 This example describes the compress operation in VP-200.

1 1 ¢S I A ¢ S I Masked vector
Al A; AJ A4 As Aa A? An Vector A
A A A, Ay Ag Compress A

In the vector indirect addressing, a vector J on vector registers holds the indices
for the elements of another vector A stored in the main memory, which is to be
loaded into vector C defined on vector registers, Namely, C(I) = A(J(I)). Thisis a
very versatile and powerful operation, since the order of the elements can be
scrambled in any manner. The data transfer rate for vector indirect addressing,
however, is lower than that for the contiguous vectors, due to possible bank and/or
bus conflicts.

Example 4.10 This example describes the vector indirect addressing in VP-200,

1 O O e B Mask vector
| S AR O List vector generation
A A AL A, A, Indirect vector load A

Vector compress-expand operations are performed in two steps: mask vector
generation and actual operations. Frequently used mask patterns may be stored
in mask registers, The compiler also checks whether the domains occupied by the
source vector and the destination vector overlap. The indirect addressing, on the
other hand, takes three steps: mask vector generation, index list vector generation
from the mask vector, and loading the vector from the main memory. Frequently
used list vectors may also be stored in the main memory.

Vector registers optimization One of the most unusual features of the FACOM
vector processor is the dynamically configurable vector registers. The concept of
vector register is very important for eflicient vector processing, since it drastically
reduces the frequency of accesses to the main memory. The results of our study
indicate that the requirements for the length and the number of vectors vary from

PIPELINE COMPUTERS AND VECTORIZATION METHODS 299

one program to another. To make the best utilization of the total size of 64K bytes,
the vector registers can be concatenated to take the following configurations:
32 (length) x 256 (vector counts), 64 x 128, 128 x 64, ... 1024 x & The length
of vector registers is specified by a special hardware register. and it can be altered
by an instruction in the program. .

The compiler must know the frequently used hardware vector length for cach
program, or even within one program the vector length may have to be adjusted.
When the vector length is 100 short, load-store instructions will be issued more
frequently, whereas if it is unnecessarily long, the number of available vectors will
be small and vector registers will be wasted. As a general strategy, the compiler puts
a higher priority on the number of vectors in determining the register configuration.
A programmer can also interactively provide the compiler with the information on
the vector length.

High-level concurrency The FACOM vector processor allows concurrent opera-

tions at different levels. In the vector unit, five functional pipelines can operate

concurrently: two out of three arithmetic pipeline units, two load-store pipes, and

mask pipe. Within each arithmetic pipeline unit, vector operands associated with
. consecutive instructions can flow continuously without flushing the pipe.

The vector unitand the scalar unit can also operate concurrently, as illustrated
in Figure 4.34. Without such a feature, the scalar operations between the vector
operations could cause considerable performance degradation. Serialization
instructions are provided to preserve the data dependency relations among
instructions.

Pipeline
resources
4 Vi
Vector 2 >
Vi
S
52
Scalar ¥ S3
SA
Vector — V4
55
Scalar S6
57
“ | o
-
Time

Figure 4.34 Concurrent processing of sector and scalar instructions in VP-200. (Courtess of Fujitsu
Limited, Japan.)

300 COMPUTER ARCTIM CIURE AND PARALLLY PROCESSING

The compiler performs the extensive data-flow
and schedules the instruction stream,
pipeline units are kept as busy as possible,
instruction sequence, balanced
of serialization instructions, w

A comparison of the modern pipeline
studied is given in Table 4.14. This 1
basic system specific
CPU speed. vectori
extensions for the Cray-1, the Cyhe
processor in the Cyber-205 is

programs

of the Cray X-MPp
models.

Table

Architecture and
capability
——
Organization

Instruction repertoire

Functional pipelines.
pipeline cycle

Vector registers,
main memory

Peak CPU speed
Vectorizing facilities

Front-end host
computers

Possible fulure
extended models

e

and the options of h
Cyber-205. one can conclude t hat thet
the same computing powe

ations. functional pipes,
zing facilities, front-

able summarizes

hree vector su
r. It is interesting 10 w

4.14 Comparison of three pipeline vector supercomputers

analysis of the Fortran source
so that the vector arithmetic
This process includes the reordering of
assignments of two load-store pipes, and insertion
herever necessary. .
vector supercomputers that we have
the instruction repertoire,
vector registers, main memory, peak
¢nd host computers, and possible future
r-205, and the VP-200. The option of one vector
assumed in the comparison. With the introduction
aving two or four vector processors in a
percomputers have essentially
atch for their future upgraded

Cray Research’s
Cray-1

Control Data's
Cyber-205
(I vector processor)

Fujitsu's
VP-200

Register-lo-register

128 instructions,
10 vector types
13 scalar types

12 pipelines: 3 vector,
4 scalar, 2 floating
point, and 2 integer.
clock period: 12.5 ns

§x 64 x § =4K
bytes, 32 Mbytes

160 mflops

Cray Fortran
compiler (CFT)
with automatic
vectorization by
user intervention

IBM/MVS,
CDC/NOS, Univac

Criy X-MP with 420
megaflops, Cray-2
with 2000 megafiops

S T A

Memory-to-memory

256 instructions.
16 1ypes
10 scalar types
11 pipelines: 6 vector
and 5 scalar
functions. clock
period: 20 ns

Vector register unused,

32 Mbyte main
memory

200 mflops
Vector arithmetic with

automatic
vectorization

Cyber-170 series
IBM 303x
CDC Cyber 3XX
with over
10 pegaflops

Register-to-register

83 veetor and

195 scalar
instructions

6 pipelines;
add-logical,
multiply, divide,
mask, and two
load-store, clock
period 7.5 ns

32 x 256 x 8 = 64K
bytes, 256 Mbytes

500 mflops

Fortran 77/VP
compiler with
interactive
vectorizer

FACOM M series
IBM/MVS

(unknown)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 3m

In the next 10 years (1984 10 1994). a new generation of supcrcomiputer wall
emerge, driven by customer demands and other compelitive pressures. Memory
capacities will be 2 to 4 times greater than now possible, and processing speeds
will be improved from 2.5 1o 20 times current rates. These goals will be achieved
by employing another generation of device technology, with emphasis on larger
scales of integration,

The major clement of this nexi generation will be continued evolution of
architectures involving parallelism and the incorporation of many artificial
intelligence functions and more intelligent 1/O interfaces. Vector processors,
multiprocessors, und similar parallel structures will be required Lo keep pace with
the demand for computational power. The exploitation of these architectures
through new algorithms, operating systems, and compiler technology is the key to
achieving the goals of the next generation consumers,

4.5 VECTORIZATION AND OPTIMIZATION METHODS

In this section, we study four issues towards performance enhancement of vector
processors. We begin with an introduction of parallel language features for vector
processing. Parallel constructs in extending high-level languages are described by
examples, instead of abstract declarations. The design phases of a vectorizing
compiler for generating veetor codes from sequentially written source codes are
characterized with various vectorizing facilitics. Then we study various optimiza-
tion methods to gcncrate efficient objeet code, Finally, analytical to0ls for
evaluating the performance of a pipeline computer are presented.

4.5.1 Parallel Languages for Vector Processing

In recent years, substantial efforts are being exerted on developing high-level
languages with paralle] constructs to facilitate vector processing. As discussed in
Section 3.5.1, the use of sequential languages will lose the parallelism specified in
a good algorithm. Thus vectorization (Figure 3.28) is highly nceded 10 restore the
concurrency in parallel algorithms so that they can be efficiently implemented on
d vector processor. Most commercial vector processors have built-in hardware to
support extended high-level languages, like the extended Fortran in the Cray-1,
and the Fortran 77 extension in the FACOM VP-200,

Two vector processing languages have been proposed recently: one is the
Actus by Perrott (1979) and the other is the Vectran by Paul and Wilson (1975).
Unfortunately. neither of these parallel languages has been successfully tested on a
real machine. Parallel languages are far from being standardized. The desired
features include flex ibifir v in declaring and select ing array objects in columns, rows.
blocks, diagonals, and in virious subarray expressions: ¢ffectiveness in manipu-
lating sparse and dense MRHTICES, arra conforming: to allow transportability: and
mechanisms 1o break recrori=ation harriers.

JOZ CoMPUTER AR T TURL AND PARALLFE PROCESSING

OF course, the usefulness of a new language depends on its application arc.
We briefly characterize below, by Fortran extension examples, some of th
aitractive features in a typical parallel Janguage. A vector may be identifie
implicitly by the appearance of an array name followed by specific subscripts. Tl
extended notation may be specified through an impliecd DO nowtion as follows:

ETfesz]
e.:a,
e (4.3
.
91 ‘!83

where ¢, €, and €3 are expressions of indexing parameters as they appear in
DO statement: ¢, indicates the first clement or the initial index value, €, indicates
the terminal index value, and cy is the index increment or skip distance. If ¢, is
omitted. the increment is one; this includes all of the elements from e, to ¢,. The
single symbol “* ™ indicates that all of the elements ure in a particular dimension,
Il the clements are to be used in reverse order, the notation *-+™ may be used.

Example 4.11 Given: DIMENSION X(8). Y(10, 4)

Then: X(2:8:2) represents the elements X(2), X(4), X(6), X(8);
Y(3:5, 3) represents the elements Y(3.3), Y(4,3). Y(5.3);
Y(+.3) represents the third column of the maltrix Y
Y(5,2:%) represents the elements ¥Y(5,2), Y(5.3). Y(5.9).

A vector statement allows different portions of an array to be idcntified
explicitly by separate names. No extra storage is allocated for an identified vector.
Each identified vector is simply a virtual name for a collection of elements in the
original vector. '

Example 4,12 Giren: REAL X(10,10)

Then: VECTOR X ROW 2(1:10) is a vector consisting of the second row of X :
VECTOR X DIAG(1:10) represents the diagonal elements of X;
VECTOR X COL (1 :10:3)is a vector consisting ol X(1.5), X(4.5). X(7.5)

In a binary vector operation, the two operands must have equal length with
only a few exceptions. Each vector operation may be associated with a logical
array that serves as a control vector. A WHERE statement may allow the pro-
grammer to indicate the assignment statements to be executed under the control
of a logical array, The following PACK and UNPACK operations demonstrate
Lhe use of control vectors.

L
Example 4.13 Giren: DIMENSION A(6), B(6), C(B); DATAA/-3, =213,
—2.5/
Then: PACK WHERE (A .GT. 0) B=C causes elements of C in positions
corresponding 10 "trues” in A.GT.0 10 be assigned to B elements such
that B(1) = C(3). B(2) = Ci4). B(3}) = C(6);

PIPELINE COMPUTERS AND VECTORIZATION METHODS 303

UNPACK WHERE (A.GT.0) A=B inserts the clements of B into A
in positions indicated by A.GT.0. Thus. A(3) = B(1), A(4) = B(2),
A(6) = BQ3).

. Anintrinsic function needs to compute with cach clement of a vector operand.
For example A(] :10) = SIN(B(1:10)) is a vector intrinsic function. Several special
vector instructions are shown in the following example:

Example 4.14 Given: DIMENSION A(50). B(50), C(50)

Then: C(2:9) = VADD(A(2:9),B(1.8)) performs the vector addition:
S = SIZE(A(1:50:4)) equals the lengih of the sparse vector A(1:504)
S = DOTPD(A B) forms the dot preduct of vectors A and B;
S = MAXVAL(A) finds the largest value of vector A,

A Fortran vectorizer has the capability of detecting parallelism in serially
coded Fortran programs. It recognizes Fortran constructs that can be executed in
parallel. Basic operations performed by the vectorizer program are precedence
analysis and code generation, In performing the analysis, the vectorizer analyzes
Fortran instruction sequences for possible translation into a vector syntax. This
phase is extremely machine dependent since it must consider special characteristics
of the hardware, An ideal vectorizer performs sophisticated analysis of data
dependencies and determines the possibility of vectorization. General guidelines
in designing a vectorizer include:

. Determining the flow pattern between subprograms

- Checking the precedence relat ionship among the su bprograms evL ¥
- Checking the locality of variables

Determining the loop variables

. Checking the independence of variables

. Replacing the inner loop with vector instructions

Tovw & wro —

Described below are six examples for converting conventional Fortran
statements into vectorized codes. presumabl y by a vectorizing compiler.

Example 4.15 A simple DO loop containing independent instructions and no
branch statements can be converted to a single vector instruction. The follow-
ing DO-loop statements:

DO 20 1=8,120,2
20 A(1)=B(143)+C(1+1)

are being converted into a single vector statement

A(8:120:2}=B(T‘!:123:2}+C{9:12‘!:2] (4.4)

I COMPUTIR ARCTHTECTURI AND PARALLEL PROCISSING
Y

Example 4.16 A recurrence computation can be converted into vector form,
subject only to precedence constraint. The recursion

A(0)=X
DO 20 1=1,N
20A(H)=A(1)+B)+C(1+1)

is being converted 1o he:

A(0) =X (4.5)
A(1:N)=A(0:N:1)+B(1:N)+C(2: N + 1) -

Example 4.17 An IF statement in a loop can be eliminated by setling a corre-
sponding control vector together with a WHERE statement. such s con-
verting

DO 20 I=1,N
20 IF(L(1).NE.O) A(I)=A(l)~1

o
WHERE (L(1).NE.O) A(1:N)=A(1:N)—1 (4.6)

Example 4.18 Exchanging the execution sequence sometimes will enable
parallel computations, such as converting

DO 20 I1=1,N
A(l)=B(1-1)
20 B(1)=2+B(l)

to the following code:

B(1 iN)=2+B(1:N)
A(1:N)=B(0:N-1) &7

Example 4.19 Temporary storage can be used to enable parallel computa-
tions, such as converting the statements

DO 201=1,N
A()=B(I)+C(1)
* 20 B(l)=2+A(1+1)

Lo vector code

TEMP (1:N)=A(2:N+1)
A(1:N)=RN1 NJHTC(1:N) (4.8)
R{1-!*.'j+2-TEMP(1:N]

PIPELINE COMPUTIRS AN VECTORIZATION METHODS MS

Example 4.20 Prolonging the vector length is always desirable for pipeline
processing. The two levels of array computations

DO 201=1,80
DO 20 J=1.10
20 A(1L,J)=B(1.J) +C(1.J)

can be rearranged to promote better pipelining:

DO 20 J=1,10
DO 201=180
20 A(LJ)=B(1,J)+C(l,J)

Other techniques such as register allocation, vector hazard, and instructions
rearrangement are also machine dependent. For example, we want to allocate the
vector registers in the Cray-1 to result in minimal execution time. Rearranging the
execution sequence to execute the same vector operations repeatedly can reduce
the pipeline reconfiguration overhead in a multifunctional pipe. A vectorizer
informs the programmer of the possibility of parallel operations. It provides also
a learning tool, in that the programmer can examine the output of the vectorizer
and tune the computations for better pipelining. Automatic vectorization and code
optimization will increase the programming productivity on vector processors.

4.5.2 Designof a Vectorizing Compiler

A vectorizing compiler anal yzes whether statements in DO loops can be executed
in parallel and gencrates object codes with vector instructions. The higher the
vectorization ratio, the higher will be the performance. To achieve this, the
compiler vectorizes complicated data accesses and restructures program sequences,
subject to machine hardware constraints. Barriers to vectorization exist in con-
ditional and branch statements, sequential dependencies, nonlinear and indirect
indexing, and subroutine calls within loops. In this subsection, we outline the
design considerations of a vectorizing compiler and illustrate some vectorization
techniques.

Let us first review the phases of a conventional Fortran compiler. The first is
a lexical-scan and syntax-parsing phase which converts the source program to
some intermediate code, quadruples, for example. Quadruples usually have fields
for specifying the operations, up to two source operands, a result operand, and
auxiliary information: the auxiliary field will be used by the next two phases of
code optimization and code generation. The purpose is to specify which operands
are found in registers, which registers are occupied, whether the instruction should
be deleted. and 48 on. For an example, the lexical parser converts a Fortran state-
ment A = A + B« Cto the following quadruples;

T1<B+C
A=A+T1
where T1 is a compiler generated temporary identifier,

B
K

RIS COMPUTER ARCHITTIC TURY AND PARALLEL PROCESSING

In the second phase for optimization, the compiler accepts quadruples as
inputs and produces modificd quadruples as outputs. The optimizer might find
that the subexpression B « C iy redundant, one whose value had been previously
computed and called as identifier T2. The multiplication can thus be climinated -

T1e-T2
A~A+TI

The optimizer may also discover that T1 will never be used again, so all of its use
can be directly replaced by the original T2 and its definition be climinated. resulting
in the single statement A-A+T2 A register allocator attlempts 10 assign
heavily used quantities to CPU registers. IT it is discovered that A is frequently used,
A will probably be assigned o a register. say R3, and will be recorded as auxiliary
information :

A(R3)«A(R3)+T2

In the third phase, the code generator translates the final intermediate code
into a machine-language program based on the auxiliary information. A code
fragment is selected to represent the quadruple in machine code. The code frag-
ment, along with all other fragments and some initializing code, would be written
in linkage-editor format. In the above example, machine addresses have been
assigned to identifiers A and T2. Thus we can write the quadruple in a machine
code:

ADD R3, M(T2)

where M(T2) refers to the memory location of the identifier T2,

Inavectorizing Fortran compiler, the scanner and parser need not be modified.
With the scalar code already in place, we want (o convert a series of scalar opera-
tions into vector code. Iet us consider some optimization techniques which can
catend he intermediate code. Since the optimization techniques are machine
dependent, we will consider a Cray-like structure in which all the vector operations
are register-to-register. -

A vectorizing compiler will analyze the structure of Fortran programs being
compiled. We have seen many examples in previous sections on converting DO
loops and other scalar operations in the source program to vector instructions in
the object code. In general, the higher the vectorizing ratio, the better will be the
performance. This is due to the fact that vector speed is much higher than scalar
speed in a veclor processor. As illustrated in Figure 4.35, we assume the speed
ratio of vector to scalar operations to be 50. The shaded areas correspond to
reduced execution time for vector instructions: one veetor process is reduced from
50 scalar processes as shown, Two levels of vectorization are shown in the figure,

Simple scalar operations like inner product. random-aceess integer operations,
and simple DO arithmetic can be vectorized casily at the first level for a vectorizing
ratio of 50 pereent. The remaining complicated aperations like scatter, con-
ditional statements, gather and others can only be vectorized by very imtelligent

= PIFELINE COMPUTERS AN VECTORIZATION METHODS 307

Veetorizing Ratio

507 10075
: Complicated Simple
Scalar code | operation operation
Simple
veclorizaton 1 s0ls1
Partially . " Veetor I
C t eclor Jorm
vectorized ﬂ::::]:;: - ”
code
Complicated ;
vectorization 3 i: Intrinsic scalar operation
2 Execution in [mot vectorizable)
Vector code | vector lorm
Vector Speed _
< Scalar Speed =i
1,23

Figure 4.35 Vectorization ratio and saving in execution time. (Courtesy of Fujitsu Limited, Japan,)

compiler which can efficiently access complicated data structures and tune
branch-disturbed program structures. The compiler requires sophisticated opti-
mization techniques and improved hardware architecture. Major optimizing
functions are listed below according to the levels of sophistication in generating
efficient scalar and vector code modules.

1. General optimization
(a) Common expression elimination
(b) Invariant expression movement
(c) Strength reduction
(d) Register optimization
(e) Constant folding
2. Extended optimization
(a) Intrinsic function integration such as SQRT, SINE, etc.
(b) User Fortran subprogram integration
(¢) Reductions of iteration numbers in nested DO loops
(d) Reorder of execution sequence to reduce pipeline overhead
(¢) Temporal storage management
(/) Code avoidance
3. Vector extended optimization
(a) Full vectorization
(b) Pipeline chaining
(c) Pipeline antichaining
(d) Vector register optimization
(e) Parallelization

"

I8 COMPUTER ARCHITEC TURE AND PARALLEL PROCESSING

=== LE SS
Vectorization 1 o YYD
) From scalar 10 vector
. —) |
_
Pipeline parallelization —p= 0 ==
S e~ —

High-speed
object
module

Vector register el]

Large capacity
VECIOT FERIsler

oplimization

Advanced
General Optimization optimization
technigue

Figure 4.36 Vectorizing compiler design techniques in the Fujitsu FACOM VP-200. (Courtesy of
Fujitsu Limited, Japan.)

The general optimization and extended optimization contribute to the genera-
tion of efficient scalar code. The vector extended optimization is added to produce
fast vector instructions. The three levels of optimization features are demonstrated
in Figure 4.36. The vectorization converts scalar to vector. The parallelization
utilizes multiple pipes simultaneously. The vector register optimization allocates
large-capacity registers properly. The general optimization can be achieved with
many of the existing compiler assets. The above oplimizing features have been
implemented in vectorizer packages in most commercial supercompulers.

4.5.3 Optimization of Vector Functions

Described below are nine common practices in optimizing the vector functions,
Some of these techniques apply not only to pipeline computers but also to array
processors. Tuning tools for an interactive vectorizer are then introduced. Again,
we use some examples 1o illustrate various optimization functions and tuning
facilities,
»

(A) Redundant expression elimination Afier the scan and parse phase, some
redundant operations in the intermediate code could be climinated. The number
of memory accesses and the execution time can be reduced by often eliminating
redundant expressions.

PIPELINE COMPUTERS AND VECTORIZATION METHODS 309

Example 4.21 Consider the following extended Fortran code:

DIMENSION A(100), B(50), C(50)
C(1:50)=A(1:99:2)+B(1:50) +A(1:99:2)*C(1:50)

A possible set of intermediate code is generated on the left below. With

climination of redundant statements, the simplified code is generated on the
right below, if the compiler detected the fact that the B array and C array are

identical.

V1—A(1:99:2)

V2+B(1:50)

V3e-V1sV2 V1—A(1:99:2) _
Vae—A(1:99:2) V2—B(1:50) @9)
V5+—C(1:50) > VieVisVv2 .
V6+—V4sV5 V1e2+V1

V7+-V3+V6 C(1:50) V1

C(1:50)«V7

(B) Constant folding at compile time«In its full generality, constant folding means
shifting computations from run time to compile time. Although the opportunities
to perform operations on constant arrays is not often, such opportunities will
crop up occasionally, particularly as initialized tables. For example, a DO loop
for generating the array A(I) = Ifor [= 1,2, ..., 100 can be avoided in the execu-
tion phase because the array A(I) can be generated by a constant vector
g M T 100) initialized in the compile time.

(C) Invariant expression movement The innermost loops are often just scalar
encodings of vector operations. In such a case, the innermost loop can be replaced
by some vector operations if there is no data dependence relation or no loop
variance. If some of the statements are loop-variant, the loop-invariant expressions
may be moved out of the loop. This is called code motion. Consider the following
two-level DO loop:

DO 20 1=1,N
DO 20 J=1,M

B(l.J)=B(L.J)+A(J)=C(J)
20 CONTINUE

310 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Assuming no other computations affecting the variables A, B,C, Iand J, the above
program can be vectorized as follows:

DO 201=1,N

B(I,¢)=B(l,t}+A(a}¢C[*)
DO 20J=1,M

20 CONTINUE

The vector multiplication can be moved out of the outer loop using a temporary
vector T(+):

T(*)=A(+)+C(%)

DO 201=1,N

B(l.#)=B(l,«)+T(s)
DO 20 J=1.m

20 CONTINUE

(D) Pipeline chaining and parallelization In vector processor with multiple
[unctional pipes, the performance can be upgraded by chaining several pipelines.
The result from one pipeline may be directed as input to another pipeline. The
. lave due 0 siurig inkermediate results are thus climinated. The inter-
mediate results need not be stored back into the memory with the chaining. An
intelligent compiler should have the capability of detecting sequences ol operations
that can be chained together. We have seen some chaining operations of multiple
pipelines in Section 3.4.1. Figure 4.37 shows the parallel use of two load-store pipes
which are chained with the multiply pipe and then the add pipe in the VP-200.

r All) = B=CiI) + DIsE(T) + F(I}+G{I) for] = L2,...N
Load/ ’
Store F load ?\:io"
pipe 1 :
Load/ 4 H
Store -,::\ :
fieen i |
Multiply Multipl}"\ i
pipe iy I
Aldll \: : Add \ :
e L :

by Uy gy
Figure 4.37 Pipeline Charining and parallelization for linked sector sperations, (Courtesy of Fujitsu
Limited, Lapan.)

PIPELINE COMPUTI RS AND VECTORIZATION METHODS 311

Example4.22 Based onthe hardware architecture of the VP-200 in Figure 4.33,

we can implement the following vector operations, as demonstrated in
Figure 4.37.

A(l}*B(l):C(I}..'*D(I)-C{I]+F(I)-G[l] for 1I=1,2Z,...., N (4.10)

Three pairs of vector load operations, (B, C), (D, E), and (F, G), are done in
two load-store pipelines. Three vector multiply operations, B « C, D » E, and
F « G, are carried out in the multiply pipeline from time t,. The two vector
add operations are executed in the add pipeline from time t5. The first result
becomes available at t,. With a minor pipeline reconfiguration delay, the
store operation begins at ts. The entire operation requires tg — 1, =
4N + A, where A, =1, — 1, is the delay of onc pipeline. It was assumed
that all pipes have equal delays.

(E) Vector register allocation On a machine like the Cray-1 allowing the chaining
of vector operations, the importance of register allocation cannot be overstated.
To achieve the maximum computing power, the execution units must be fed a
continuous stream of operands, Retaining vectors in registers between operations
is one way to achieve this. However, the strategy of vector register allocation
emphasizes local allocation rather than global allocation, because of the limited
number of available vector registes in a system.

Example 4.23 The vector expression A — B « C can be exccuted in the
Cray-1 by using the three vector registers VI, V2, and V3 as follows:

VieA
V2+B
V3-C
V2+e-V2.v3
V1eVvi-v2

If we do the multiply before loading the vector A into a register, only two
vector registers are required:

Vi<B
V2+—C
V1eViav2
V2+A
V2+V2-V1

This sequence of five instructions requires 31 clock periods on the Cray-1, as
opposed to 26 clock periods for the sequence using three vector registers,

JIZ coMPUTER ARCHITICTURD AND PARALLEL PROCISSING

In general, an optimizing compiler will simulate the instruction timing and
keep assigning intermediate results 1o new registers until a previously assigned
regisier becomes free. In the absence of a carcful timing simulation, the best
strategy that a compiler can adopt is the * round-robin ™ allocation of registers.
Another solution to the register allocation problem is to generate code for a group
ol arithmetic expressions using large numbers of virtual registers, then to schedule
the resulting code to minimize issue delays and map the virtual registers into 4
finite number of real registers. This process has the danger of requiring more than
the number of available registers, in which case some spilling must be done.
Besides, moving instructions around to minimize issuc delays may destroy the
use of common subexpressions, As done in FACOM VP-200. register concaten:-
tion offers another approach 1o processing vectors of variable lengths.

(F) Reorder the execution sequence In a multifunction pipeline, reconfiguring the
pipe for different functions requires the overhead of Mushing the pipe, establishing
new data paths, ete, Instructions of the same type may be grouped together for
pipeline execution, The instructions on the left of the following code block can be
regrouped to yield the sequence on the right:

A1eA2+A3 A1—A2+A3
Ad—A5+AB B1—A7+A8

B1+-A7+A8 > B5<C14C2 (4.11)
B2+ B3+B4 Ad A5 «AB

B5+C1+C2 B2+-B3+B4

The sequence on the left requires three pipeline reconfigurations, while the right
one requires only one. An intelligent compiler should be able to reorder the
execution sequence to minimize the number of required pipeline reconfigurations.

(G) Temporary storage management In the optimization phase of a vectorizing
compiler, the generation of too many intermediate vector quantities can quickly
iead to a serious problem. For example, the execution of the vector instruction
A(1:4000) = A(1:4000)%B(1:4000) + C(1 4000) in the Cray-1 may need 63 vector
registers (with 64 components each) to temporarily hold all intermediate product
terms. The Cray-1 does not have this many vector registers 1o store all the inter-
mediate results. Therefore, the intermediate results must be temporarily stored
in the memory. For this reason, the compiler must allocate and deallocate
lemporary storage dynamically since vector registers may be thought of as tem-
poraries and spillage out of them needs memory. Temporary storage management
is closely related to the policy of register allocation. A vector loop can be used 1o
solve the storage allocation problems. Since each vector register can handle 64
clements. we partition the 4000-component veetors into 64-clement Lroups is

follows:
DO 20 K=1.4000,64
L=MIN(K+63,4000)
A[K:L)=A(K:L}rB{K,L}*C{K.L}
20 CONTINUE

PIPELINE COMPUTERS AND VECTORIZATION METHODS 313

In any case, run-time storage management is an expensive feature to be
included in a Fortran-based language. There are two techniques to reduce the
design cost. First, if the compiler allocates a specific area to fixed-length and
variable-length temporaries, the allocation of the fixed-length area can be done at
compile time, climinating some run-time overhead and permitting access of the
temporaries by some generated codes. Second, the number of fixed-length tem-
poraries can be increased by “strip mining " with a width equal to the length of
vector registers in the target machine.

(H) Code avoidance A somewhat radical approach to the optimization of vector
operations is based on the technique of copy optimization. The idea is to avoid
excessive copying arrays unless forced to do so by the semantics of the language.
Consider the following code sequence:

A(1:50)=B(1:99:2)

C(1:50)=2.0+A(1:50)

A copy is avoided (or at Jeast delayed), if the compiler adjusts the storage-mapping
function for array A to reference the storage for array B. Thus, instead of prod ucing
the following code:
-
V1+-B(1:99:2)
A(1:50)v1

Vi<A(1:50)
V1-2.0«V1
C(1:50)~v1:;

it would generate the following simplified code:

V1-B(1:99:2)
V12041
C(1:50) V1

modified source program will be optimized towards full vectorization by the
vectorizing compiler. A number of compiler directive lines are useful to check
whether recurrence appeared in the source code. the true ratio in IF statements,
the vector length distribution, and others. The vectorizing compiler generates the

-

314 COMPUTIR ARCHIT CTURE AN PARALLEL PROCESSING

< ﬁ Interactiv FORTRANTT/VD
. 5
veclorizer @ compiler

{vectorization)

e Display the tuning information A
or

* Display the veclorizing effects

Optimization mformation:

Improved
FORTRAN

SOUICe

Optimal

object
P code

* Necurrence or not

* True ratio of the
IF statement

* Vector length Inserted

luning statements

R

User's source

Figure 4.38 The tuning facilities in FACOM VP-200. (Courtesy of Fujitsu Limited, Japan.)

optimal object code with vector instructions after the tuning process is completed.
An example is given below to illustrate the tuning concept realized in the VP-200.

Example 4.24 Consider the following DO loop containing an IF statement:

DO 20 =1,N
IF(A(1).GE.10) GO TO 20
T=C1+A(1)+C2+B(l)

A(1)=SIN(T)
20 CONTINUE »

If one realizes the true ratio is 90 percent, the compiler chooses vector indirect
addressing which results in several times better performance than the case
without information for tuning. The compiler chooses masked arithmetic,
if the optimization information is not available.

4.5.4 Performance Evaluation of Pipeline Computers

[n this section, we evaluate the performance of pipelined vector processors. The
system performance is measured in terms of processor utilization and the speedup
over aserial computer. The efliciency of a computer depends heavily on the inherent
parallelism in the programs it exccutes. Fully exploring the embedded parallelism
is the responsibility of both system designers and programmers. The performance

PIPELINE COMPUTERS AND VECTORIZATION METHODS 315

F
of a pipeline computer depends on the pipeline rate. the work load distributions,
the vectorization ratio, and the utilization rate of system resources.

The system performance of a vector processor is measured by the maximum
throughpur (W), that is, the maximum number of results that can be generated per
unit ume, such as the megaflops we have used. The processing of a vector jobin a
pipeline occupies the equipment (segments) over a certain length of time. The
enclosed areain a space-time diagram depicts the pipeline hardware utilization as a
function of time. The segments of a pipeline may operate on distinct data operands
simultancously. Pipelining increases the bandwidth by a factor of k, since it may
carry k independent operand sets in the k segments concurrently. A pipeline
computer requires more hardware and complex control circuitry than a corre-
sponding serial computer, The following notations are used in the performance
analysis:

o k: the number of stages in a functional pipe
T': the total pipeline delay in one instruction execution
n: the number of instructions contained in a task (program)
Ni: the length of vector operands used in the ith instruction (1 <i <n)
W: the throughput of a pipeline computer
7;: the time required to finish the ith instruction in a pipeline computer
(1 <i<n)

e T,:the total time required to finish a task consisting of n instructions

* S, the speedup of a pipeline coputer (with k stages) over a corresponding
serial computer :

= 1 the efficiency of a pipeline computer

1]

The parameter T is assumed to be independent of the type of instructions.
N(i) = 1 means a scalar instruction: N(i) > 1 refers to a vector instruction. The
average delay in a stage is t = T'/k. We can write

T}:(k—l)-r+N,-r=(N,+k—l)-% _ (4.12)

where (k — 1)z is the time required to fill up the pipe. As N; becomes long, T;
approaches N;- 1 because k is usually a small integer. The system throughput W
then approaches k/T, accordingly. The above derivation is for a single vector
instruction with vector length N,,

Consider a sequence of n vector instructions. The degree of parallelism in each
vector instruction is represented by its vector length N, fori = 1,2,..., n. Suppose
that the execution of different types of vector instructions takes the same amount
of time if they have the same vector length. The total execution times required in
a pipeline processor is equal to

2 gt o
7, = ',T".:.---[(k— 1) n + ZN,] (4.13)

i=} L =}

L]

ME6 COMPUTIR ARCHITICTURE AND PARAL LEL PROECTSSING

The same code if executed on an equivalent-function serial computer needs a
time delay 7, = 7T - i N.. The following speedup is obtained over a serial com-
puter that does the ,‘iia-l:lt‘ Job:

. 7. YN, k- SN,
Sy = ,r,_ ¥ -';-_{l;\ l-]',: 5 \'] “JA r [;.];”I+ iN -
[- J-l_,-__.',li." = =

The ¢fficiency of the pipeline computer is defined as the total space-lime
product required by the job divided by a total available space-time product :

5= = (4.15)

The pipcline efficient can be interpreted as the ratio of the actual speedup to
the maximum possible speedup k. A numerical example is used to demonstrate
the analytical measures. Consider a vector job with a vector length distribution
Ni=7.3,10,1,4,6,2.5 2. 4for n = 10 vector instructions. Figure 4.39 plots S,
and n against different values of k with respect to the above distribution. When k
increases beyond the average vector length of N, (ic.. 44 in this example). the
increase in speedup becomes rather flat while the processor utilization continues
to decline.

In general, pipeline processors are in favor of long vectors. The longer the
vector fed into a pipeline. the less the effect of the overhead will be exhibited.
Figure 4.40 shows the relation between the vector length and the system perfor-
mance on a pipeline computer with k = § stages. The speedup increases mono-
tonically until reaching the maximum value of k = 8, where the length approaches
infinity. The dashed linc in Figure 4.41 displays the effect due to partitioning the
vector operand into 16-element segments. The maximum speedup drops to
8 » 16/(16 + 7) = 5.5 with vector looping. This occurs when the vector length is a
multiple of 16, the number of component registers in the vector register.

The pipeline efliciency depends also on the vector length distribution. Too
many scalar operations of different types will definitely downgrade the system per-
formance. To overcome this drawback, an intelligent vectorizer can help improve
the situation. The Cray-1 has a scalar processor which is more than two times
faster than the CDC 7600. When the vector length is short, execution by a scalar
processor should be faster than exceution in a vector pipeline.

The throughput rate reflects the progcessing capability of a pipeline processor,
A higher throughput rate miy be obtained at the expense of higher hardware cost.
Therefore, the cost effectiveness of @ pipeline design should not be ignored.
Cost effectiveness can be meusured by megaflops per million dollars. Table 4.15
presents the performance and cost ratio of several pipeline computers, The

clliciency of & pipeline computer may depend on both hardware cost and the

L

"-"—-
PIPELINE COMPUTERS AND VECTORIZATION METHODS 317
JP 4
“5: =
Y a
&
= 0
l 1 | | 1 1 | |
1 2 3 4 5 6 7 8 9 10
Number of pipeline stages
Figure 4.39 The speedup (5,) and efficiency (y) of s pipelined pr with & stag
A
8.000 -
8.400 (Without vector segmentation)
P | Leam e, L gaamem——=
e e \ LT
'E 4.800 o 5 ;
2 L.~ (With vector segmentation
< into 16-element groups)
[=4
& 3.200 |-
o
1.600
0.000 | 1 ! 1 1 1 1 TS
] 8 16 24 32 40 48 56 64

Vector length

Figure 4,40 Pipeline speedup with and without ¥ector looping. (Courtesy of Advances in Computers,

Val. 20, Hwang et al. 1981.)

R COMPUTIR ARCHITECTURE AND PARALLEL FROCESSING

(Shaded areas correspond to the productive work accomplished by all segments)

’; ","'f
5, -lﬂouleneck} /WWW a .

5 %’% ---------------- % E

'
‘Ih_
4 i Time
r-7 tr:—l]'.rr Ll
Ieye

1

Figure 4.41 The space-time diagram of a linear pipeline with nonuniform stage delays.

delay of each pipeline stage. Let C; be the cost and 1, be the delay of the ith stage
S; in a pipeline having k stages. Let n be the total number of jobs streamed into
the pipeline during the period of measurement (assuming continuous input of
jobs). Let t be the pipeline clock period equal to the delay of the bottleneck stage
(7 = 1, in Figure 4.41). The efficiency # in Eq. 4.15 can be refined 1o be:

&

n- EC;'T]

i=1

n= T (4.16)

iici.lir,un_.,.,]

As illustrated in Figure 4.41, the numerator in Eq. 4.16 corresponds to the total

weighted space-time span of n productive jobs. The denominator designates the
total weighted space-time span of all k stages, including both productive and idle
periods of all hardware facilities. In the ideal case with uniform delay (t, = t for
all i), this efficiency can be reduced to the form in Eq. 3.5:

n

== m (4.17)

n

PIFELISE COMPUTERS AN VIE LOREZ A TION METTI s 39

Table 4.15 Performance and cost of several pipeline computers

Performance and

CPU cost Average cost ralio Relative
Pipeline (milli®s of performance (megaflops per performance
compuler of dollars) (megallops) millions of dollrs) el ratin
CDCO600 515 063 0.42 !
Star-100 S8.0 6.6 210 5
AP-1208 50.1 1.9 79.0 188

Cray-1 £4.5 200 4.44 1

Note that n = S, /k. where S, is the speedup defined in Eq. 4.14. When the pipeline
approaches the steady state with sufliciently long vector input, the limiting effi-
ciency becomes

0
_ZC}--f.-
lim y = ﬂ—r—— (4.18)
= T- z(‘{
i=1

In the ideal case of uniform delay, (t, = t for all i), the above limit will be 1 and the
maximal speedup will be achicved (S, — k).

The cost effectiveness is indicated by the potential throughput performance
relative to the total processor cost. The optimal pipeline design will maximize such
a performance-cost ratio. Let 7, be the total time required to process a job in a
nonpipeline serial processor, Consider the execution of the same Job in an equiv-
alent pipeline processor with k stages. The pipeline clock period is set 1o be 1 =
I/k + 0, where 8 is the latch delay. Thus, inn-t = T, + n- 0 time units, # results
can be produced. This implics the following system throughput:

" 1
W = . g S (4]9}
n(T/k+0) Tjk+0

k
Let € = z C; be the total cost of all pipeline stages and d be the average
i=1
latch cost. The cost of the entire pipeline is equal to C + (& -), A performance-cost
ratio (PCR) for the pipeline processor is defined as
g B 1
T C+kd (T/h+0)(C+k-d)
The optimal design of a static linear pipeline processor requires kg, stages such
that the PCR is maximized. Differentiating the PCR with respect Lo k, we obtain
the first-order derivative
dPCR) 1-Chk* - 0-d
ak (T + OF(C + kd)

PCR (4.20)

(4.21)

320 COMPUTER ARCHITECTURE AND PARALLEL PROCESSISNG
t

Maximum

Performance cost ratio (PCR)

> k

li:l.'i

Number of pipeline stages
Figure 4.42 The performa neefcost ratio (PCR) as a function of the number of stages in a pipeline,

When d(PCR)/3k = 0, we have k = ko from T, - C/k§ — 0-d = 0. Therefore, the
optimal design should have k, pipeline stages, where

T
A 3 g il . 4,
Ao 9." { 22}

This is indeed the maximum, because one can prove that 3*(PCR)/dk? < 0 when
evaluated at k = k,.

This optimal stage number is always greater than one for a reasonably com-
plex pipeline. In the above discussion, we have emphasized local optimization of
the pipeline processor, In practical design, one has to consider the global perfor-
mance of the entire computer system, which may include parameters on memory
access and program behavior. The PCR given in Eq.4.20 is ploited in Figure 4.42
as a [unction of the number £ of pipeline stages. The peak of the curve corresponds
to the optimal mm]pcr. ko . of pipeline stages.

4.6 BIBLIOGRAPHIC NOTES AND PROBLEMS

Comparative studies of the early vector processors Star-100 and TI-ASC were
given by Higbice (1973) and Theis (1974). The Cray-1 and Cyber-205 have been
characterized in Kozdrawicki and Theis (1980). Hockney and Jesshope (1981)

PIPELINE COMPUTERS AND VECTORIZATION METHODS 321

have treated pipeline vector processors and array processors, Others can be found
in Thurber (1976, 19794, b), Kuck (1977), Chen (1980), and Kogge (1981} Litcra-
ture devoted to the CDC Star-100 and TI-ASC can be found in CDC manuals,
Hintz and Tate (1972), Purcell (1974), Stone (1978), Ginsberg (1977), Waison
(1972a, b), Watson and Carr (1974), and Texas Instruments manuals,

The Cray-1 computers were studied in Johnson (1978), Petérson (1979),
Russell (1978). Cray Rescarch manuals, Dorr (1978), and Basket and Keller
(1976). The Cyber-205 is described in Kaseie (1979). The material presenfed
in Section 4.4.4 is based on the work by Lincoln (1982). Manual information on
the Cyber-205 can be found in CDC manuals. Material on the VP-200 is based
on the report by Miura and Uchida (19%3). The AP-120B has bees deseribed and
assessed in Wittmayer (1978), and Floating Point Systems manuals Other attached
processors were reported in Datawest (1979), IBM (1977), and Thurber (19790

Vectorization methods for pipeline computers can be found in € DC and Cray
Research manuals, Paul and Wilson (1978), Kennedy (1979). Lovemun (19775,
and Hwang ct al. (1981). Vectorizing compilers are also studied in Arnold (1982,
Brode (1951), and Kuck et al. (1983). Parallel programming languapcs and the
optimization of vector operations are still wide open arcas for further rescarch
and development. Performance of pipeline processors has been evaluated in Chey
(1975), Bovet and Varneschi (1976). Baskctt and Keller (1977). Larson
Davidson (1973), Ramamoorthy and Li (1975), Hwang and Su (1983}, and Stole
(1977).

Problems

4.1 Design a pipeline multiplier using carry-save adders and a carry-lookahead adder (o muiuply &
stream of input numbers X, Xy, X, ... by a fixed number Y. You may assume that all A, and ¥ are
n-bit positive integers. The output should be 4 stream of a-hit products X,- ¥, X b XY
Determine the pipeline clock rate in terms of the delays a. fi. and 7. where

x = delay of one stage of a 3-input and !vuut'pul carry-save adder

fi = delay oLihe carry-lookahead adder

]

delay of the interface litch between stages

4.2 ('ﬂnsier a static multifunctional pipeline processor with & stages, euch stage huving o deliy
of 1/ time units. The pipeline must be drained between different functions, such as addition a ol muln
plication. Memory-access time, control-unit time, etc., can be ignored, There are sufficient nv atar: o
lemporary registers 1o use,

() Determine the number of unit-time steps 7, required 1o compute the product of two s
matrices on @ nonpipeline scalar processor, Assume one unit time per esch addition o0 each noult
plication operation in the scalar processor,

(f) Determine the number of time steps T, required 1o compute the matrix product. us
multifunction pipeline processor with a total pipeline delay of vne time unit,

(c) Determine the speedup ratios T,/ 7, . whenn = Lo = band no= m -k for sony
4.3 Compare the second-generation vector processors Criny- 1, Cyber-205, and VP-200 111 the 1ol
Aspects:

(a) Instroction sets: vector versus scalar instructions

L

322 compuTin ARCHITECTURE AND PARALLEL PROCESSING .

() Register files and main memogy-organization

(d) Vectorization and optimization methods

() Strengths and weaknesses in using the machine
4.4 Pipeline chaining has demonstrated ity advantages in muny veetor provessors From the viewpoints
of resource reservation (registers and functional pipes) and the precedence graphs of arthmetic
expressions, find necessary and sufficient conditions that allow the chaiming of functional pipes. For
different task systems, different chaining conditions may be found for different tvpes of daa depen.
dence graphs. Assume some fixed delays of the pipes, registers and memory and some fised vector-length
distribution.
4.5 Conduct a thorough survey of virious veclorizing compilers in existing vector supercomputers
and compare their special features and relistive strengths for a number of representanive kernel com-
putations such as those for solving partial differentia) cquations, oil reservoir modeling, electric power
flow analysis. linear programming, elc,

X[i)
B(1)
¢ e->-| LATCH,
L | l Y
1 —p— MUX MUX et 0
1 \
1
2
3
L]
-
.
K
Y
Y = ZIN]
cl c0 Inpui pair
0 o0 C, Xl g
D Wi C, Bi1-j) -
5 B B(r) , X1i]
1 | B(r) , B(t—j)

Figure 4.43 The hardware otganization of a vector reduction pipeling,

-

PIPELINE COMPUTERS AND VECTORIZATION METHIODS 323

4.6 Conduct a thorough comparison of back-end computer systems, including both vector super-
computers and the attached scientific processors, in the Tollowing aspects:

fa) Peak scalar performance

(h) Peak vector performance

te) Pipeline clock rate

(d)y Memory bandwidth

fe) Cost of central processing unit

(fy Performance/cost ratio

{g) Main memory capacity

(h) Register files/bullers

{1y Functinnal pipelines
4.7 Let A(1:2N8), BO1:2N), CiL:2N) and DU 2N) be cach a 2N -element vector stored in the main
memory of a vector processor. Each veetor register in the processor has N components, There are two
Inad-stare pipes. one mudtiphy pipe, and one add pipe that are avatlable 1o be used, Draw a space-time
dragram (similar to that i Figure 4.37 for Example 4.22) 1o show the papeline chaming and paralleliza-
fion operations 1o be performed in the execution of the following linked vector instructions with
minimum time delay :

A(1)=B(l) «C(1) +D(I)
for 1=1,2,...,N,N+1,..., 2N

Assume that all pipeline units, regardless of their functions, have equal delays as assumed in Figure 4.37.
Sufficient numbers of vector registers are assumed available, and they can be cascaded together to hold
longer vectors, such as 2N, 3N, elc.
4.8 A vector arithmetie reduction unit is shown in Figure 4 43 This multifunction pipeline can accept
vector inputs and produce u single scalar output at the end of computation. The feedback connection is
needed for accumulated arithmetic operations. Develop four fast algorithms for scheduling the succes-
sive computations (mulriph's and add-subtract's), needed i the following veetor reduction arth-
metic operations:

{a) The summation of the n components in a veclor

(&) The dot product of two n-element vectors

{c) The muluplication of two n x n matrices

(d) The searching of the maximum among n components of a veclor
Hint: Algorithm (a) may be used in algorithm (b). Both (a) and (h) may be used in algorithm (¢). In
part (e, comparison is done by subtraction through the pipeline unit,
4.9 Let D be a stream of data (tasks or operand sets). Suppose that we wish 1o perform two functions
f, and £+ on every task in 0. That is, for cach operand set x in D, we want o compute f,(f(x)). The
computations are to be performed on a machine with multiple pipeline functional units, one of which
computes the function f, and another which computes f;. The reservation tables for f, and f, are given
below.

};‘12345618 _r:.:ll]-lSt’s?S‘Jlﬂ
SN X S |x X @
S2 A x S2 . X
53 X s3) .
54 |~ L . X S4 \ X

= 4
55 { X S8 A

e S
56 . \

324 COMPUTER ARCHITECTURG AND PARALLEL PROCESSING

(&) Pipeline chaining
Figure 4,44 The chaining of three pipelines in Problem 4.10,

(@) What are the maximum throughputs for the /i and g, pipelines, assuming that they work
completely independen:ly on one another? Thar js, assume that the two pipelines work on completely
independent data streams Dy and D,

(&) In chaining, the output of one pipeline is applied directly to the input of another pipeline.
One can think of this as configuring the pipelines such that the output latch or buffer of the firs pipeline
becomes the input latch or buffer of the sccond. What is the maximum throughput for tasks in D if the
Jiand £ pipeline functional units are chained together? i

(c) What can you conclude about the general effectiveness of chaining pipelines that have feed-
back? Consider the effect on memory contention and the demand on memory bandwidth as part of

4.10 Consider three f; unctional pipelines Jiofy, and /1 characterized by the reservation tables in Figure
4.44q,

(@) Whatare the minimal average latencies in using the f,, J3.and £, pipelines indepcndenl!y?

(b) What is the maximium throughput if three pipelines are chained into a linear cascade as shown
in Figure 4.4457
4.11 Show the timing diagrams for implementing the (wo sequences of vector instructions (described in
Example 4.23) on the Cray-1 machine, Verify the total clock periods required in each of the two com-
puting sequences,

