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STRUCTURES AND ALGORITHMS
FOR ARRAY PROCESSORS

This chapter deals with the interconnection structures and parallel algorithms for
SIMD array processors and associative processors. The various organizations and
control mechanisms of array processors are presented first. Interconnection
networks used in array processors will be characterized by their routing functions
and implementation methods, We then study the structure of associative memory
and parallel search in associative array processors. SIMD algorithms are presented
for matrix manipulation. parallel sorting, fast Fourier transform, and associative
search and retrieval operations.

5.1 SIMD ARRAY PROCESSORS

A synchronous array of parallel processors is called an array processor, which
consists of muitiple processing clements (PEs) under the supervision of one
control unit (CU). An array processor can handle single instruction and mulriple
data (SIMD) streams. In this sense. array processors are also known as S/AMD
computers. SIMD machines are especially designed to perform vector computations
over matrices or arrays of data. In this book. the terms array processors, parallel
processors, and SIMD computers are used interchan geably.

SIMD computers appear in two basic architectural organizations: wrr.as
processors, using random-uaccess memory; and associative processors, 1< -
content-addressable (or associative) memory. The first three sections of @'
chapter deal primarily with array processors. We will study associative processors
in Section 5.4 as a special type of array processor whose PEs correspond to the
words of an associative memory.
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5.1.1 SIMD Computer Organizations

In general, an array Processor may assume one of two slightly different configur-
ations, as illustrated in Figure 5.1. Configuration 1 was introduced in Chapter 1.
It has been implemented in the well-publicized Iliac-IV computer. This con-
figuration is structured with N synchronized PEs, all of which are under the control
of one CU. Each PE, is essentially an arithmetic logic unit (ALU) with attached
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working registers and local memory PEM, for the storage of distributed data.
The CU also has its own main memory for the storage of programs. The system
and user programs are exccuted under the control of the CU. The user programs
are loaded into the CU memory from an external source, The function of the CU
is to decode all the instructions and determine where the decoded instructions
should be executed. Scalar or control-type instructions are directly executed inside
the CU. Vector instructions are broadcast to the PEs for distributed execution to
achieve spatial parallelism through duplicate arithmetic units (PEs). :

All the PEs perform the same function synchronously in a lock-step fashion
under the command of the CU. Vector operands are distributed to the PEMs
before parallel execution in the array of PEs. The distributed data can be loaded
into the PEMs from an external source via the system data bus, or via the CU in a
broadcast mode using the control bus. Masking schemes are used to control the
status of each PE during the execution of a vector instruction. Each PE may be
cither active or disabled during an instruction cycle. A masking vector is used to
control the status of all PEs. In other words. not all the PEs need to participate in
the execution of a vector instruction. Only enabled PEs perform computation.
Data exchanges among the PEs are done via an inter-PE communication network,
which performs all necessary data-routing and manipulation functions. This
interconnection network is under the control of the control unit.

An array processor is normally interfaced 10 a host computer through the
contial unit. The host computer is a gencral-purpose machine which serves as
the “operating manager " of the entire system, consisting of the host and the pro-
cessor array. The functions of the haost computer include resource management
and peripheral and 1/0 supervisions. The control unit of the processor array
directly supervises the execution of programs, whereas the host machine performs
the executive and 1/O functions with the outside world. In this sense, an array
processor can also be considered a back-end, attached computer, similar in func-
tion to those pipeline attached processors studied in Chapter 4.

Another possible way of constructing an array processor is illustrated in
Figure 5.1b. This configuration 11 differs from the configuration 1 in two aspects.
First. the local memories attached to the PEs are now replaced by parallel memory
modules shared by all the PEs through an alignment network. Second, the inter-
PE permutation network is replaced by the inter-PE memory-alignment network,
which is again controlled by the CU. A good example of a configuration 11 SIMD
machine is the Burroughs Scientific Processor (BSP). There are N PEs and P
memory modules in configuration 11. The two numbers are not necessarily equal.
In fact, they have been chosen to be relatively prime. The alignment network is a
path-switching network between the PEs and the parallel memories. Such an
alignment network is desired to allow conflict-frec accesses of the shared memories
by as many PEs as possible. .

Array processors became well publicized with the hardware-software develop-
ment of the lliac-1V system. Since then. many SIMD machines have been con-
structed to satisly various parallel-processing  applications. The Butroughs
Parallel Element Processing Ensemble (PE PE) and the Goodvear Acrospace



I28 COMPUTER ARC HITECTURE AND PARALLEL PROCESSING

Staran are two associative array processors. Extended from the Iliac-IV design
are the Burroughs Scientific Processor (BSP)and the G oodyear Aerospace Massive-
ly Parallel Processor (MPP),

Formally. an SIMD computer C is characterized by the following set of

parameters: .
. \ C=(N,F,I.M) (5.1)

where N = the number of PEs in the system, For example, the Illiac-1V has N =
64. the BSP has N = 16, and the MPP has N = 16,384,

F = a set of data-routing functions provided by the interconnection
network (in Figure 5.1a) or by the alignment network (in Figure 5.1h).
I'= the set of machine instructions for scalar-vector, data-routing, and

network-manipulation operations.
M = the set of masking schemes, where each mask partitions the set of
PEs into the two disjoint subsets of enabled PEs and disabled PEs.

This model provides a common basis for evaluating different SIMD machines.
We will characterize various data-routing functions in the next section when we
study interconnection networks for SIMD machines. The instruction sets of
important array processors will be discussed with those example SIMD computers
in Chapter 6.

In addition to regular SIMD machines, several algorithmic array processors
have been developed as back-end attachments to host machines. Among them
are the IBM 3838 and the Datawest MATP. These attached array processors
are highly pipelined for array processing. They are not SIMD machines as dis-
cussed above. The reason that these pipeline attached processors are commercially
known as “array” processors liesin the fact that they are used for processing arrays
of data. Details of the Illiac-1V, BSP, MPP and multiple-SIMD computers using
a shared pool will be treated in Chapter 6.

= 5.1.2 Masking and Data-Routing Mechanisms

In this chapter, we consider only configuration I of an SIMD computer. Each PE,
is a processor (Figure 5.2) with its own memory PEM,: a set of working registers
and flags, namely A;, B,, C;, and §;;an arithmetic logic unit; a local index register
I;; an address register D;; and a data-routing register R;. The R; of each PE, is
connected to the R of other PEs via the interconnection network, When data
transfer among PEs occurs. it is the contents of the R, registers that are being trans-
ferred. We shall denote the N PEs as PE,fori=0.1,2..... N — 1. where the index
i is the address of PE;. To facilitate future illustrations, we assume N = 2" or
—m = log, N binary digits-arc-needed-10-encode the-address of a PE. The-address

register D, is used to hold the m-bit address of the PE,. This PE structure is essen-
tially based on the design in liae-1V.

Some array processors may use two routing registers, one for input and the
other for output. We will simply consider the use of one R, per PE, in which the
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Figure 5.2 Components in a Processing Element (PE,).

inputs and outputs of R, are totally isolated by using master-slave flip-tlops. Each
PE, is either in the active or in the inactive mode during each instruction cycle.
If a PE, is active, it executes the instruction broadcast 1o it by the CU. If a PE, is
inactive, it will not execute the instructions broadcast to it. The masking schemes
are used 10 specify the status flag S, of PE,. The convention §, = 1 is chasen for
an active PE; and S; = 0 for an inactive PE,. In the CU. there is a global index
register [ and a masking register M. The M register has N bits. The ith bit of M
will be denoted as M,. The collection of §, flags fori = 0,1.2..... N — 1 forms
status register § for all the PEs. Note that the bit patterns in registers M and S
are exchangeable upon the control of the CU when muasking is to be set
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From the hardware viewpoint, the physical length of a vector is determined
by the number of PEs. The CU performs the segmentation of a long vector into
veclor loops, the setting of a global base address, and the offset increment. Dis-
tribsgig vector clements to different PEMs is crucial to the efficient utilization of
an array of PEs. Ideally, N clements of a vector are retrieved from different PEMs
simultancously. In the worst case, all the vector clements are all in a single PEM.
They must be fetched sequentially one after another. A one-dimensional lincar
vector of i elements can be stored in all PEMs if n < N. Long vectors (n > N)
can be stored by distributing the n elements cyclically among the N PEMs. Diffi-
culty may arise in using high-dimensional arrays. For example, in matrix computa-
tions, rows and columns may both be needed in intermediate calculations. The
matrix should be stored ina way to allow the parallel fetch of either a row, a column,
or a diagonal in onc memory cycle. Skewed storage methods will be discussed in
Section 6.4 to overcome the access-conflict problem.

In an array processor, vector operands can be specified by the registers to be
used or by the memory addresses to be referenced. For memory-reference instruc-
tions, each PE; accesses the local PEM,, offset by its own index register /,. The L
register modifies the global memory address broadcast from the CU. Thus,
different locations in different PEMs can be accessed simultaneously with the
same global address specified by the CU. The following_example shows how
indexing can be used 1o address the local memories in parallel at different local
addresses,

Example 5.1 Consider an array of n x n data elements:

A=A, )O<ij<n— 1) (5.2)
Elements in the jth column of A are stored in n consecutive locations of PEM P
say from location 100 to location 100 + n — 1 (assume n < N). If the pro-
grammer wishes to access the principal diagonal elements A(j, j) for j = 0,
L,...,n — 1 of the array A4, then the CU must generate and broadcast an
effective memory address 100 (after offset by the global index register I in the
CU, if there is a base address of A involved). The local index registers must be
settobel; =jforj=0,1,....,n — 1 in order to convert the global address
100 to local addresses 100 + I; = 100 + j for each PEM;. Within each PE,
there should be a separate memory address register for holding these local
addresses. However, if one wishes to address a row of the array A, say the ith
row A(i, j) for j = 0,1,2,...,n — 1, all the I, registers will be reset to be for
allj=0,1,2,...,n — 1 in order to ensure the parallel access of the entire row.

Example 5.2 To illuslra_gr the necessity of data routing in an array processor,
we show the execution details of the following vector instruction in an array
o[ N _PEs. The sum S(k).of the first-k components-in-a-vector A-is-desired for—
cachkfromOton — |. Let A4 = (4, A,,. .. A, ). We need to compute the
following n summations:

k
Sthy= Y A4, for ki=10.1...,n =1 (5.3)

i=q



Figure 5.3 The caleulation of the sumnation S(k) = V'
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These n vector summations can be computed recursively by going through the
following n — | jterations defined by:

S{O) = AD
S(k) = Stk = 1) + A4, forks=5L2....n— 1 (5.4)

The above recursive summations for the case of n = & are implemented in
an array processor with N = 8 PEs in [logyn] = 3 steps, as shown in Figure
5.3. Both data routing and PE masking are used in the implementation.
Initially, each 4,, residing in PEM,, is moved to the R, register in PE, for
=0l .o.n=—1(n=NLgi assumed here). In the first step, 4, is routed
from R; to R,,, and added to A4, , with the resulting sum A4, + 4, in
Rispfori =0, ly..., 6. The arrows in Figure '5.3_-s'l'inw't-he"routing operations
and the shorthand notation i —Jis used to refer to the intermediate sum
Ait Ay + -0 4 Aj. In step 2, the intermediate sums in R, are routed to
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Riy ) fori=0105. In the final step, the intermediate sums in R, are routed
o R, 4fori=103. Conscquently, PE, has the final value of S(h) for k =
0.1,2....,7 as shown by the last column in Figure 5.3,

As far as the data-routing operations are concerned, PE, is not involved
(receiving but not transmitting) in stcp 1. PE, and PE, are not involved in
step 2. Also PE,, PE,, PE;, and PE, are not involved in step 3. These un-
wanted PEs arc masked off during the corresponding steps, During the
addition operations, PE, is disabled in step 1: PE, and PE, are madc inactive
in step 2; and PE,, PE,, PE,, and PEj are masked off in step 3. The PEs that
are masked off in each step depend on the operation (data-routing or arith-
metic-addition) 1o be performed. Therefore, the masking patterns keep
changing in the different operation cycles, as demonstrated by the example.
Note that the masking and routing operations will be much more complicated
when the vector length n > N.

Array processors are special-purpose computers for limited scientific applica-
tions. We will describe the detailed structures of the CU and PEs with several
SIMD computer designs in Chapter 6, The array of PEs are passive arithmetic
units waiting to be called for parallel-computation duties. The permutation
network among PEs is under program control from the CU. The above general
structures of SIMD computers may be modified in the specific SIMD machines
to be presented in Chapter 6. However, the principles of PE masking, global
versus local indexing, and data permutation are not much changed in the different
machines,

5.1.3 Inter-PE Communications

Network design decisions for inter-PE communications are discussed below.
These arc fundamental decisions in determining the appropriate architecture of
aninterconnection network for an SIMD machine. The decisions are made between
operation modes, control strategies, switching methodologies, and netvwork topologies,

Therefore, the typical operation modes of interconnection networks can be
classified into three categories: synchronous, asynchronous, and combined. All
existing SIMD machines choose the synchronous operation mode, in which
lock-step operations among all PEs are enforced.

Control strategy A typical interconnection network consists of a number of
switching elements and interconnecting links. Interconnection functions are
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realized by properly setting control of the swiltching elements. The control-
setting function can be managed by a centralized controller or by the individual
switching element. The latter strategy is called distributed control and the first
strategy corresponds to centralized control. Most existing SIMD interconnection
networks choose the centralized control on all switch clements by the control
unit. :

Switching methodology The wo major switching methodologies are circuit
switching and packer switching. In circuit switching, a physical path is actually
established between a source and a destination, In packet switching, data is put
in a packet and routed through the interconnection network without establishing
4 physical connection path. In general, circuit switching is much more suitable
for bulk data transmission, and packet swilching is more eflicient for many short
data messages. Another option, integrated switching, includes the capabilities of
both circuit switching and packet switching. Therefore, three switching methodolo-
gies can be identified: circuit switching, packet switching, and integrated switching.
Most SIMD interconnection networks are handwired to assume circuit switching
operations. Packet switched networks have been suggested mainly for MIMD
machines.

Network topology A network can be depicted by a graph in which nodes represent
switching points and edges represent communication links. The topologies tend
to be regular and can be grouped into two categories: staric and dynamic. In a
static topology, links between two processors are passive and dedicated buses
cannot be reconfigured for direct connections to other processors. On the other
hand, links in the dynamic category can be reconfigured by setting the network s
active switching elements.

The space of the interconnection networks can be represented by the cartesian
product of the above four sets of design features: {operation mode} x {control
strategy} x {switching methodology} x {network topology}. Not every combina-
tion of the design features is interest ing. The choice of a particular interconnection
network depends on the application demands. technology supports. and cost-
eflectiveness,

5.2 SIMD INTERCONNECTION NETWORKS -

Various interconnection networks have been suggested for SIMD computers, In
this section, we distinguish between single-stage, recirculating networks and multi-
stage SIMD networks. Important network classes to be presented include the
lilac network. the Mip network. the n cube, the Omega network, the data
manipulator, the barrel shifter. and the shuffle-exchange network. We shall
concentrate on nter-PE commumications as modeled by configuration | in
Figure 5.1, The Interprogessor-memory communication networks will be studied
in Chapter 7 for MIMD operations.
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521 Slatic Versus Dynamic l';l:z-n;‘nrks

The topological structure of an SIMD array processor is mainly characterized by
the data-routing network used in interconnecting the processing elements. Form-
ally, such an inter-PE communication network can be specified by a set of data-
routing functions, If we identify the addresses of ull the PEs in an SIMD machine
by the set S = 0.1.2, .. N — 1}, each routing function fis a hijection (a one-10-
one and onto mapping) from $ 1o 8. When « routing function f is executed via the
interconnection network, the PE; copies the contents ol its R, register into the
Ry, register of PE,,,. This data-routing operation occurs in all active PEs simul-
taneously. An inactive PE may receive data from another PE if 2 routing function
is executed. but it cannot transmit data. To pass data between PEs that are not
direcily connected in the network. the data must be passed through intermediate
PEs by executing a sequence of routing functions through the interconnection
network.,

The SIMD interconnection networks are classified into the following (wo
categories based on network topologies: static nerworks and dynamic networks.

Static networks Topologies in the static networks can be classified according to
the dimensions required for layout. For illustration, one-dimensional, {wo-
dimensional, three-dimensional, and hypercube are shown in Figure 5.4. Examples
of one-dimensional topologies include the linear array used for some pipeline
architectures (Figure 5.4q). Two-dimensional topologies include the ring, star,
tree, mesh. and systolic array. Examples of these structures are shown in Figures
5.4h through 54/.

Three-dimensional topologies include the completely comnecred chordal ring,
3 cube, and 3-cube-comected-cyele networks depicied in Figures 54¢ through
34j. A D-dimensional, W-wide hypercube contains W nodes in each dimension,
and there is a connection to a node in each dimension. The mesh and the 3 cube
are actually two- and three-dimensional hypercubes. respectively. The cube-
connected-cycleisadeviation of the hypercube. For example, the 3-cube-connected-
cycle shown in Figure 54j is obtained from the 3 cube,

Dynamic networks We consider two classes of dynamic networks: single-stage
versus multistage. as described below separately:

Single-stage networks A single-stage network is a switching network with N
input selecrors (IS) and N outpur selectors (OS), as demonstrated in Figure 5.5.
Each IS is essentially 4 |-to-p demultiplexer and each OS is an M-10-1 multiplexer
where I < D <V and | = M < N.Note that the crnssbur-switching network is a
single-stage network with » = M = N. To establish a desired connecting path,
— diﬁ'cmﬂ—rnn-h—mnrm'l"'s“rgﬁ':i'ls—wzﬂ'[ié':ﬁ-iﬁﬁ'c?lhti: all IS and OS selectors.

The single-stage network is also called a recirculating network. Data items
may have to recirculate through the single stage several times before reaching
their final destinations. The number of recirculations needed depends on the
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Figure 5.4 Static interconnection network topologies. (Courtesy of Feng, IEEE Computer, December
1981.)



338 conmTeR ARUHITE CTURE ANY) PARALLLL PROCESSING

0 |
1 |
: . a
- -
Ni=1 N —‘_l
Figure 5.5 Conceptual view of a single-
stage interconnection network.

connectivity in the single-stage network. Th general, the higher is the hardware
cannectivity. the less is the number of recirculations. The crossbar network is an
extreme case in which only one circulation is needed to establish any connection
path. However. the fully connected crossbar networks have a cost O(N?). which
may be prohibive for large N. Most recirculating networks have cost O( N log V)
or lower, which is definitely more cost-eflective for large N.

Mulristage networks Many stages of interconnected switches form a mudtistage
SIMD nerwork. Multistage networks are described by three characterizing fea-
tures: the switch hox. the nerwork topology, and the control structure. Many
switch boxes are used in a multistage network. Each box is essentially an inter-
change device with two inputs and two outputs, as depicted in Figure 56,
Hlustrated are four states of a switch box - straight. exchange. upper broadcast. and
lower broadcast. A two-function switch box can assume either the straight or the
exchange states. A four-function switch box can be in any one of the four legiti-
mate states.

A multistage network is capable of connecting an arbitrary input terminal
to an arbitrary output terminal, Multistage networks can be one-sided or two-
sided. The one-sided networks. sometimes called full switches, have input-output

ports on the same side. The rwo-sided multistage networks, which usually have an
input side and an output side, can be divided into three classes: blocking, re-
arrangeable, and nonblocking. A

In blocking networks. simultaneous connections of more than one terminal
pair may result in conflicts in the use of network communication links, Examples
of 4 blocking network are the duta manipulator, Omega, flip. n cube, and baseline.
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Figure 5.6 A two-by-two switching box and its four interconnection states,

Some of these networks will be introduced in subsequent sections. Figure 5.7a
shows the interconnection pattern in the baseline network.

A network is called a rearrangeable network if it can perform all possible
connections between inputs and outputs by rearranging its existing connections
so that a connection path for a new input-output pair can always be established.
A well-defined network, the Benes network, shown in Figure 5.7b, belongs to this
class. The Benes rearrangeable network topology has been extensively studied for
use in synchronous data permutation and in..asynchronous interprocessor com-
munication.

A network which can handle all possible connections without blocking is
called a nonblocking network. Two cases have been considered in the literature,
In the first case, the Clos network, shown in Figure 5.7¢, a one-to-one connection
is made between an input and an output. The other case considers one-to-many
connections, Here, a generalized connection network topology is generated to
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() Clos network

pass any ol multiple mappings ofinputs onto outputs. The erosshar switeh network
“4meonnect every input port to a free qutput port without blocking.

Crenerally, a multistage network consists of stages where N = 27 55 the num-
oer of input and output lines. Therclore. cach stage may use N/2 switch boxes.
he interc 2 atterns i 3 LO'sTage determine the network topology.

Each stage is connected to the next stage by at least N paths. The network delay is
proportional to the number » of stagesin u network. The cost of a size N multistage
network 1s proportional to N log; N. The control structure of a network deter-
mines how the states of the switch boxes will be set. Two types of control structures
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are used in a network construction. The individual stage control uses the same
control signal to set all switch boxes in the same stage. In other words, all boxes
at the same stage must be set to assume that same state. Therefore, it requires n
sets of control signals to set up the states of all n stages of switch boxes.

. Another control philosophy is to apply individual box control. A separate
control signal is used to set the state of cach switch box. This offers higher flexibility
in setting up the connecting paths, but requires n?/2 control signals, which will
significantly increase the complexity of the control circuitry. A compromise
design is to use partial stage control, in which i + | control signals are used at stage
ifor 0 <i<n— 1 Various network topologies and control structures of both
recirculating and multistage inter-PE communication networks are described in
subsequent sections,

5.2.2 Mesh-Connected Illiac Network

A single-stage recirculating network has been implemented in the Illiac-1V array
processor with N = 64 PEs. Each PE, is allowed to send data to any one of PE,, |,
PE,_,, PE..,.and PE,_, where r = /N (for the casc of the Hliac-1V,r = /64 =
8) in one circulation step through the network. Formally, the Illiac network
is characterized by the following four routing functions:

R4|(f}: (i + 1) mod N
R_y(i) = (i — 1) mod N
R, (i))=(i+r)ymod N
R_(i)=(i = rymod N

(9:5)

where 0 < i < N — 1.1In practice, N is commonly a perfect square, such as N = 64
and r = 8 in the llliac-IV network.

A reduced Illiac network is illustrated in Figure 5.8a for N = 16 and r = 4.
The real Illiac network has a similar structure except larger in size. All the index
afithmetic in Eq. 5.5 is modulo N. Comparing with the formal model shown in
Figure 5.5, we observe that the outputs of IS, are connected to the inputs of OS;
forj=i+1,i—1,i+r andi— r. On the other hand, OS; gets its inputs from
ISifori=j—1,j+1,j—r, and j + r, respectively.

Each PE; in Figure 5.8 is directly connected 1o its four nearest neighbors in
the mesh network. In terms of permutation cycles, we can express the above
routing functions as follows Horizontally, all the PEs of all rows form a linear
circular list as governed by the following two permutations, each with a single
cycle of order N. The permutation cycles (@ b ¢)(d e) stand for the permutation
a=b,b—c.c—~aand d— e, e—din a circular fashion within each pair of
parentheses:

Ryy= (01 2 s N=1)

(5.6)
R_; =(N=1::52 } 8
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Vertically, the distance r shifting operations are characterized by the following
two permutations, each with r cycles of order r cach:

Ri,=[lGi+rit2r .- i+N—y)
ot (57)
R, = [1G+N=r o i42r i4r i)

=0

For the example network of N = 16 and r = \/Iﬁ = 4, the shift by a distance of
four is specified by the following two permutations, each with four cyeles of order
four each:

Ris=(048 1201 59 13)26 10 143 7 11 15)
R_4=(12840)13951)14106 2015 11 7 3)

Itshould be noted that when either the R +1 0r R_ | routing function is exccuted,
data is routed as described in Eq. 5.6 only if all PEs in the cycle are active. When
the routing function R,, or R_, is executed. data are permuted as described in
Eq. 5.7 onlyif PE;,,, whereQ < k < r — | are active for each i. The shifting opera-
tion in a cycle will be suspended if any PE required in the cycle is disabled. For
anexample,thecycle (1 5 9 13) in the above permutation R4 will not be executed
if one or more among PE,. PE,. PE,, and PE,; is disabled by masking.

The Illiac network is only a partially connected network. Figure 5.8b shows
the connectivity of the example Illiac network with N = 16. This graph shows that
four PEs can be reached from any PE in one step, seven PEs in two steps, and
eleven PEs in three steps. In general, it takes J steps (recirculations) to route data
from PE; to any other PE; in an Illiac network of size N where [ is upper-bounded
by

I</N-1 (5.8)

Without a loss of generality, we illustrate the cases when PE, is a source node
in Figure 58. PE,, PE,, PE,,, or PE, is reachable in one step from PE,. In two
steps. the network can route data from PE, to PE,, PE;, PEs, PEg, PE,,, PE,;,
or PE,,. In the worst case of three routing steps, the following eight routing
sequences take place in the network:

0% a2 ie A0t tag ity g
iR N7 W RN
LR teg i o Ry s R Ry g

0% 15 13% 00 0% 158 145 10
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I the Hhac-1V computer. at most seven (/64 — 1) steps are needed to route
dati frony any one PE 1o another PE. Of course, if we increase the connectivity
i Figure S8, the upper bound given in Eq. 5.8 can be lowered, We shall demon-
strate this by other network types in subsequent sections. When the network is
strongly connected (e, with 15 outgoing links per node in Fgure S.8), the upper
bound on recirculation steps can be reduced to one at the expense of significantly
increased hardware in the crossbar network.

5.2.3 Cube Interconnection Networks

The cube network can be implemented as either a recirculating network or as a
multistage network for SIMID machines. A three-dimensional cube is illustrated
in Figure 3.9, Vertical lines connect vertices (PEs) whose addresses differ in the
most significant bit position. Vertices at both ends of the diagonal lines differ in

o il

(A Y eube of 8 oaodes

Rawting Fusaction

ofer{1] [zle{3] © [le{s) - Le]=rl3]

[ [ -’jrl G T B T Il ¢

[ rl (] i{]r Ay el é

iy e e

(1 he reciteubating cube nerwork

Figure 59 The cube interconmection network.
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the middle bit position. Horizontal lines differ in the least significant bit position.
This unit-cube concept can be extended to an n-dimensional unit space, called an
n cube. with n bits per vertex. A cube network for an SIMD machine with N PEs
corresponds to an n cube where n = log, N. We shall use the binary sequence
A = (@, ---ay ayay); to represent the vertex (PE) addressfor0 < A < N — .
The complement of bit a; will be denoted as a,forany 0 <i<n = L

Formally. an n-dimensional cube network of N PEs is specified by the lollowing
n routing functions:

Cilag- - ay@g) = Ay -+ Gy Tia;—y -+ @y fori=0,1,2....,n—1 (59)

In the n cube, each PE located at a corner is directly connected to n neighbors. The
neighboring PEs differ in exactly one bit position. Pease’s binary n cube, the flip
network used in STARAN, and the programmable switching network proposed
for the Phoenix project are examples of cube networks.

In a recirculating cube network, each IS, for 0 < A < N — 1 is connected

to n OSs whose addresses area, _; *++ @;4,4;a;—, * **ap for0 < i < n — 1. On the
other hand,eachOSywith T= 1,_, - - - 1,1, getsils inputs from ISs whose addresses
are fpy -ty dit_y---tg for 0 < i < n — 1. To execute the C; routing function,

IS selects the C(j) output line and the OS; selects the C,(j) input line for all j such
that0<j< N - L.

The implementation of a single-stage cube network is illustrated in Figure
59b for N = 8. The interconnections of the PEs corresponding to the three
routing functions C,., C,, and C, &re shown separately. If one assembles all three
connecting patterns together, the 3 cube shown in Figure 5.9a should be the result.

The same set of cube-routing functions, C,, C,, and C,, can also be imple-
mented by a three-stage cube network, as modeled in Figure 5.10 for N = 8.

22 i T e I

t i

' Figure 5.10 A Multistage cube network for
N=28

Stage
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Twao-function (straight and exchange) switch boxes are used in constructing
multistage cube networks. The stages are numbered as 0 at the input end and in-
creased o n — 1 at the output end. Stage i implements the ¢, routing function
(Eq.5.9)fori = 0,1,2,...,n — 1. This means that switch boxes at stage i connect
an input line to the output line that differs from it only at the ith bit position.
Based on this interconnection requirement, individual box control is assumed in a
multistage cube network.

The STARAN flip network and Pease’s binary n-cube networks are both imple-
mented with multiple stages. These two cube networks have the same topology,
asshown in Figure 5.10. They differ from each other only in their control structures.
The flip network has two control mechanisms, the flip control and the shift control.
Under the individual-stage flip control. an n-bit vector F = f,_, - f, fo deter-
mincs how stages will be set. Stage i switch boxes are set to exchange it f; = 1,
and set to straight if f; = 0. For example. if F = 001 (for N = 8), the network
connects input line a,4, a, to output line a,a, a,. This partial-stage shift control
allows barrel shifts of data Irom input 4 to output (A + 2™) (mod 27) where
0<=m=p=n using i+ | control lines at stage i for 0 < i < n — 1. The indi-
vidual box control of the Pease’s n-cube network is much more flexible than the
partial-stage control in the flip network. In other words, the n-cube network can
perform not only all the connections that STARAN can., but also some connections
Il cannol. Y

The cube-routing function ¢, for each i in Eq. 5.9 corresponds to performing
the following permutation on N PEs:

gt |
P, =[] ¢ G (5.10)
.j= i
where the ith bitof jequals zeroand PE and PE_ , are both active. For an example,
the routing function C, executed on a 3-cube network corresponds to the following
permutation over eight PEs:

Py=1(0 4)(1 (263 7)

It all the switch boxes i stage 1 arce set to exchange, the network performs the
P, permutation at stage i In general. the following multistage permutation is
conducted in an n-stage cube network

wel JN

P=11(10G f‘fi_il}) (5.11)

where the ith bt j equals 0 and the stage + switch boxes whosc inputs are labeled
permutation (0 1) (0 2y (0 4) = (0 1 2 4)1s performed only if the top row boxes are
set 1o exchange and the rest are set to straight.

Muasking may change the data-routing patierns in a cube network. The general
practice is 1o disable all PEs belonging to the sume cycle of a permutation. In the
above example. if both PE, and P, become inactive by masking, the cycles (2 6)
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are removed and the cube-routing function C, performs only the partial permu-
tation (0 4) (1 5) (3 7). However, if only PE, is disabled in the above example, the
above partial permutation will still be performed, but data in both PE; and PEg
will be transferred to PE,, causing a two-to-one conflicting transfer. PE, will not
receive any data, so the mapping will not be onto either. Masking should be
carefully applied 1o cube networks because of the send-active and receive-inactive
nature of data transfers among the PEs.

5.2.4 Barrel Shifter and Data Manipulator

Barrel shifters are also known as plus-minus-2' (PM21) networks. This type of
network is based on the following routing functions:

B, (j) = (j + 2') (mod N)
p ! : (5.12)
B_(j) = (j — 2') (mod N) :

where 0 <j <N — 1,0 <i<n— 1, and n = log, N. Comparing Eq. 5.12 with
Eq. 5.5, the following equivalence is revealed when r = /N = 272:

B.y=R,,
Bog= R
E ; (5.13)
‘4.,3 = K-&—r
B—n!! -~ R-r

This implies that the Illiac routing functions arc a subset of the barrel-shifting
functions. In addition to adjacent (+1) and fixed-distance (+r) shiftings, the
barrel-shifting functions allow either forward or backward shifting of distances
which are the integer power of two, i.e., +1, +2, +4, +8,..., +2%3, ..., +2"\.
Instead of having just four nearest neighbors as in the Illiac mesh networks, cach
PE in a barrel shifter is directly connected to 2(n — 1) PEs. Therefore, the connec-
tivity in a barrel shifter isincreased from the Illiac network by having (2n~— 5)-2""!
more direct links. As demonstrated in Figures 5.8 and 5.11 for N = 16 (n = 4,
r = 4), the llliac network has 32 direct links and the same size barrel shifter has
56 links. The two networks are identical only when the size is reduced to be no
greater thann = 2or N = §.

The barrel shifter can be implemented as either a recirculating single-stage
network or as a multistage network. Figure 5.12 shows the interconnection patterns
in a recirculating barrel shifter for N = 8. The barrel shifting functions.B 4 o, By,
and B, ; are executed by the interconnection patterns shown. For a single-stage
barrel shifter of size N = 2", the minimum number of recirculations B is upper
bounded by

B < m—ﬁ’—‘i (5.14)
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For the example barrel shifter with N = 16, it takes at most two steps to route
data from a PE to any other PE. If we assume PE, as the source node, PE, can
reach PE,, PE,, PE,, PE,, PE,,, PE,,, or PE, in one step. In two steps, PE,
can reach PE,, PE;, PE,, PE,, PE,, PE,,, PE,, or PE,,. Thus, one step is
saved by using the same size lliac network. If one replaces the 64-node Illiac-1V
network by a 64-node barrel shifter, at most three routing steps dre needed (in-
stead of seven steps). The speedup of a barrel shifter over the Illiac network of the
same size can be expressed by

_JN-1 2
iR g

where N = 2?* Therefore, the larger the network, the higher the speedup ratio.
For very large networks with N = 2%, the speedup approaches 2*/k, as demon-
strated in Table 5.1.

A barrel shifter has been implemented with multiple stages in the form of a
dara manipulator. As shown in Figure 5.13, the data manipulator consists of n
stages of N cells. Each cell is essentially a controlled shifter. This network is
designed for implementing data-manipulating functions such as permuting,
replicating, spacing, masking, and complementing. To implement a data-manipu-
lating function, proper control lines of the six groups (u}', u3', hi, h3', di', d3) in
each column must be properly set through the use of the control register and the
associated decoder,

The schematic logic circuit of &%ypical cell in a data manipulator is shown in
Figure 5.14. ForO < k < N — 1and 0 < i < n — 1, the kth cell at stage i (column
2') has three inputs, three sets of outputs, and three control signals. Individual
stage control is used with three sets of control signals per stage. The control lines
u', h', and d* are connected to the AND gates in each cell of stage i. The u' line
controls the backforward barrel shifting (—2') and the d' line controls forward
barrel shifting (+2). The horizontal line corresponds to no shifting under the
control of the i signal. Note that stage i performs the distance 2' shiftings. By
passing data through the n stages from left to right, the shifting distance decreases
from 2"~ ! to 2"" % and eventually to 2! and 2° at the output end. Note that all the

Table 5.1 A comparison of bounds on the minimum
routing steps in Illiac network and in barrel shifter of
various sizes

Network size Illiac network Barrel shifter Speed up

k N=2M (Eq. 5.5) (Eq. 5.14) (Eq. 5.15)
2 16 3 2 1.50
3 64 7 3 233
N 256 15 4 3.75
51024 3l 5 6.20
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Vigure 5.13 The data manipulator for \ = 14, (Courtesy of IEEE Trans. Computers, “eng 1974.)

shifting operations at all stages are module N. This is reflected by the wraparound
connections in the data manipulator.

In terms of permutations, the B, routing function can be expressed by the
following product of 2* cycles by size 2"/ each:

-1
[k k2 k42-2 k+3.2° .. k4 N=2) (5.16)
T k=0
Fortheexamplenetwork of N =8 the B, | Tunction is represented by the following

permutation (0 24 6)(1 35 7).Similarly. for B _ 1 we havethe following permutation
in cycle notation:
20~
[T1G+N=2"+. k+2.2 k42-2' k42 k) (5.17)
k=0 .



“r g

STRUC TURES ANID ALGGORITHMS FOR ARRAY FROCESSORS M9

i i To (k= 2')h cell of
: column 2' "

From (k =2'* ")th cell
of column 2'*!

|
h? |*-)_{-.\ ‘ = To kth cell uli
U ! column 2

From kih cell of
column 2'*!

From (k +2'* ")th cell
of column 2/ *! i i

i H To (k + 20th cell of
H column 2' '
kth cell of column 2
Figure 5.14 The logic design of an intermediate cell in the data manipulator.,

Listed in Table 5.2 are data-manipulation functions that are implementable
with the data manipulator. The network can perform various types of permuta-
tions such as shift, flip, shuffie, merge, and sort. It can be also used to replicate and
space the data. The network does not provide the capability of masking or com-
plementing. However, we include them in the table for the sake of completeness.
Primitive operations among the aforementioned data-manipulation functions
are listed below:

1. Total shift up, end around

2. Total shift up, end off

3. Spaced substrings shift up, end around
4. Contiguous substring shift up, end ofl
5. Spaced substrings shift up, end off

6. Substring flip

7. Multiplicate spaced substring up

8. Spread substrings with 2* spacing up

Additional data-manipulating functions can be generated by using different
sequences of primitive operations. One can augment the data manipulator by
introducing individual cell control instead of individual stage control. This re-
laxation in control will increase the functional flexibility at the expense of signifi-
cantly increased control cost. A prototype data manipulator has been im¢lemented
and attached as an interface device to the STARAN computer at the Rome Air
Force Development Center in New York. Because of the uniform structure and
low wirc density buildup, the data manipulator is a good candidate for VLSI
implementation.
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Table 5.2 Data-manipulating funetion (Feng)

Permuging
Total —_ End around- Up
5*"“—[ Contig :H Logic
£ Euous l'-lslt
-——Subst i :
n“g_ESpaccd- End off [a\rslhmcllc Down
Total
F]ip-—'
Subsitring
2-way Total Perfect
Shuffle x Regular
Irregular
2-way
Merge
g e

Bit reverse Total
Regular H
Sort——[ e —EMII Substring

Irregular

Replicating
Duplicate Singlestring—— Up
Subsuing‘_}_{—Cnnnguous——{

Multiplicate Unit substring ~Spaced Down
Spacing
Spread Subsirin Up

e chular—[ i £ 3

: Unit substring
Compress Irregular Down

Transfer

Muasking
Total Monotone increasing
Regular i
ik e —[Sub:ﬂ@.‘EMcnomnc decreasing
Irregular

Complementing

ones
Diminished radiy camplemem{ninus
r= s

Iwos
Radix complement lens
rks

(Courtesy of /EEE Trans. Computers, March 1974.)

5.2.5 Shuffle-Exchange and Omega Networks
The class of shuffle-exchange networks is based on two routing functions

—shuffle (S)-and-exchange (E)-tet A=a, -, a,a, bé a PE address:

Slay -y - ayay) = Oy 377 "G Aoy | (5.18)

where 0 < A < N — Land n = log, N. The cyclic shifting of the bits in A to the
left for one bit position is performed by the S function. This action corresponds to
perfectly shuffling a deck of N cards, as demonstrated in Figure 5.15. The perfect
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(0) The perfect shuffle
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Figure 5.15 The perfect shuffie and the inverse perfect shuffle for
(b) The inverse perfect shuffle N = R.
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shuffle cuts the deck into two halves from the center and intermixes them evenly,
The inverse perfect shuffle does the opposite to restore the original ordering. The
exchange-routing function I is defined by .

Ela,. ;o aytg) = @,_ y «+ ayia (5.19)

The complementing of the least significant digit means the exchange of data
between two PEs with adjacent addresses. Note that E(A) = Cy(A4), where C,
was the cube routing function defined in Eq. 5.9.

These shuffle-exchange functions can be implemented as either a recirculating
network or a multistage network. For N = 8, a single-stage recirculating shuffle-
exchange network is shown in Figure 5.16. The solid line indicates exchange and
the dashed line indicates shuffle. The use of a recirculating shuffle-exchange network
for parallel processing was proposed by Stone. There are a number of parallel
algorithms that can be effectively implemented with the use of the shuffle and
exchange functions. The examples include the fast Fourier transform (FFT),
polynomial evaluation, sorting, and matrix transposition, etc.

The shuffle-exchange functions have been implemented with the multistage
Omega network by Lawrie. The Omega network for N = R8s illustrated in Figure
5.07. An N x N Omega network consists of n identical stages. Between two ad-
Jacent stages is a perfect-shuffle interconnection. Each stage has N/2 switch boxes
under independent box control. Each box has four functions (straight, exchange,
upper broadcast, lower broadcast), as illustrated in Figure 5.6. The switch boxes
in the Omega network can be repositioned as shown in Figure 5.17b without
violating the perfect-shuffle interconnections between stages.

The n-cube network shown in Figure 5.10 has the same interconnection
topology as the repositioned Omega (Figure 5.176). The two networks differ in
two aspects:

L. The cube network uses two-function switch boxes, whereas the Omega network
uses four-function switch boxes, :

2. The data-flow directions in the two networks are opposite to each other. In
other words, the roles of input-output lines are exchanged in the two networks.

Based on the above differences, the n-cube and Omega networks have different
capabilities even with isomorphic topologies. Suppose we wish to establish the
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Figure 5.16 Shuffle-cxchange recirculating network for N = 8. (Solid lines are e xchanges and dashed lines
are shuffie.)
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D
= .
L-——l
Stage 2 | 0
Figure 5.17 The multistage Omega
(H) the Omega network with switch boy repositioned actwork proposed by Lawrie {1975).

I/O connections zero to five and one 1o seven. The Omega network (1 igure 5.17q)
can perform this task, whereas the n-cube (Figure 5.10) network cannot. On the
other hand, the n-cube network can connect five to 2cro and seven to one, but the
Omega network cannot. In general, the Omega network can perform one 1o many
connections, while the n-cube network cannot. However, if one considers only
bijections (one-to-one connections), the n-cube and Omega networks are function-
ally equivalent by some relabeling techniqucs,
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If one applics the shuflle function S i times, written as S', the binary sequence in
Eq. 5.18 will be shifted cyclically to the left i bit positions. The shuffle function S
(Eq. 5.18) corresponds to the following permutation cycles:

N=1]
[1G SG) $%Gy -9 (5.20)
i=0

where, for each cycle, j has not appeared in a previous cycle. The largest cycle in
the above permutation has order n. For N = 8, the shuffle function corresponds
to the permutation (0) (1 24) (3 5 6) (7).

The exchange function E (Eq. 5.19) can be expressed as a product of N2
cycles of order two, provided that the index j is even:

N-2
[1Gi+D (5.21)
ji=0

For N = 8, the exchange function results in the following permutation function:
(0 1)(2 3)(4 5)(6 ..

Comparing various multistage SIMD networks, we conclude that increasing
fexibilities in interconnection capabilities are found in the following order: the
flip network, the binary n cube, Omega, and data manipulator. The increased
flexibility is obtained with increased cost. The flip network is the only network
among the four that has been commercially constructed for a large network size
of N = 256. The cost-effectiveness of a network for a particular application is
the fundamental question to be answered before entering the design and construc-
tion phases. One can always use a single-stage recirculating network to simulate
the multistage counterpart. Table 5.3 shows the lower and upper bounds for all
such simulations. Entries in row i and column jare the lower and upper bounds on
the number of recirculations needed for the single-stage network i to simulate the
multistage network f, where n = log, N. These simulation bounds can be used to
analyze network suitability and capability for a particular class of applications.

Table 5.3 Lower and upper bounds on the number of transfers for the
network in row 7 to simulate the network in column J, where n = log, IV

Bound Illiac Barrel  Shuffic-exchange  Cube

Illiac Lower  — VN2 1+ /NP2 1+ N2

Upper  — VN2 3 /N-4 1+ /N2
Barrel Lower 1 - n 2
Upper 1 - n -2 2%
Shuflle-exchange Lower M=1 =1 — ISR S S N LA —
— ~=Upper.  Un  n = n+ 1
Cube Lower n n n -

Upper n n n —
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5.3 PARALLEL ALGORITHMS FOR ARRAY PROCESSORS

The original motivation for developing SIMD Array processors was 1o perform
parallel computations on vector or matrix types of data. Parallel processing
algorithms have been developed by many computer scientists for SIMD computers,
Important SIMD algorithms can be used to perform matrix multiplication, fast
Fourier transform (FFT), matrix transposition, sumination of veclor elements,
matrix inversion, parallel sorting, linear recurrence, boolean maltrix operations,
and to solve partial differential equations. We study below several representative
5iMD algorithms for matrix multiplication, parallel sorting, and parallel FFT,
We shall analyze the speedups of these parallel algorithms over the sequential
algorithms on SISD computers. The implementation of these parallel algorithms
on SIMD machines is described by concurrent ALGOL. The physical memory
allocations and program implementation depend on the specific architecture of a
given SIMD machine.

5.3.1 SIMD Matrix Multiplication

Many numerical probicas suitable for parallel ‘processing can be formulated as
matrix computations. Matrix manipulation 1s Irequendy needed in solving iinea
systems of equations. Important matrix operations include matrix multiplication,
L-U decomposition, and matrix inversion, We present below two parallel algo-
rithms for matrix multiplication. The differences between SISD and SIMD matrix
algorithms are pointed out in their program structures and speed performances,
In general, the inner loop of a multilevel SISD program can be replaced by one or
more SIMD vector instructions.

Let A =[a,]and B = [bi;] be n x n matrices. The multiplication of 4 and
Bgeneratesa product matrix C = 4 x B = [ci]of dimensionn x n. The elements
of the product matrix € is related to the elements of A and B by

Ll
y=2anxb; forl<i<nandl < j<n (5.22)
k=)

There are n® cumulative multiplications to be performed in Eq. 5.22. A cumulative
multiplication refers 1o the linked multiply-add operation ¢ « ¢ + a x b, The
addition is merged into the multiplication because the multiply is equivalent 1o
multioperand addition. Therefore, we can consider the unit time as the time re-
quired to perferm one cumulative multiplication, since add and multiply are
performed simultancously.

In a conventional SISD uniprocessor system, the n? cumulative multiplications
are carried out by a serially coded program with three levels of DO loops corre-
sponding to three indices to be used. The time complexity of this sequential
program is proportional to n®, as specified in the following SISD algorithm for
matrix multiplication.
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Example 5.3: An O(n®) algorithm for SISD matrix multiplication

Fori = 1tonDo
Forj = 1tonDe
¢y = 0 (initialization)

For k =
or 1ton Do (5.23)

€y = € + ay - by (scalar additive multiply)
End of k loop '
End of j loop
End of i loop

Now, we want to implement the matrix multiplication on an SIMD computer
with n PEs. The algorithm construct depends heavily on the memory allocations
of the A, B, and € matrices in the PEMs, Suppose we store cach row vector of the
matrix across the PEMs, as illustrated in Figure 5.18. Column vectors are then
stored within the same PEM. This memory allocation scheme allows parallel
access of all the elements in each row vector of the matrices. Based in this data
distribution, we obtain the following parallel algorithm. The two parallel do opera-
tions correspond to vector load for initialization and rector multiply for the inner
loop of additive multiplications. The time complexity has been reduced to O(n?).
Therefore, the SIMD algorithm is n times faster than the SISD algorithm for matrix
multiplication.

Example 5.4: An O(n?) algorithm for SIMD matrix multiplication

Forj = 1tonDo
Parfork = | ton Do
0 (rectorload)

Cix
Forj = 1to n Do (5.24)
Parfork = 1 ton Do

Cu = Cu + @y« by (vector multiply)

End of j loop
End of i loop

———l-should-be noted that the véctor Toad operation is performed to initialize
the row vectors of matrix C one row at a time. In the vector multiply operation, the
same multiplier ay; is broadcast from the CU to all PEs to multiply all n elements
{ba for k = 1,2, ... n} of the ith row vector of B. In total. n* vector multiply
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Figure 5.18 Memory allocation for SIMD matrix multiplication.

operations are needed in the double loops. The successive memory contents in
the execution of the above SIMD matrix multiplication program are illustrated
in Table 54. [-ach !u tor multiply instruction implies n parallel scalar multipli-
cations ineach of the n* iterations. This algorithm in Example 5.4 is implementable
on an array of n PEs.

Ifwe increase the number of PEs used inan array processor ton? an O(n log, n)
algorithm can be devised to multiply the two n = n matrices A and B. Let n = 27
and recall the hlnary cube network described in Section 5.2.3. Consider an array
processor whose n* = 2" PEs are located at the 2™ vertices of a 2m-cube network.
A 2m-cube network can be considered as two (2m — 1)-cube networks linked

. [}
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Table 5.4 Successive contents of the ¢ array in memory

¥ ..
. "

Outer  Inner Parallel SIMD operations on k = 1,2, ..., n

loop  loop — —-

i 4 =ty tay; = by Gy =g +ay x by ti O = b @ X by,

! ! G ey tay xby oo e tay x by Cip = Cia + 0y X by,
2 Cog = O+ iy X by o= + ayy % B2 Cpp = Cq + @y % by,

n Ciy =y +a,x b, =0y +a,x b, O =€t 1y, X by,

2 €3y = O H oy X by ey =+ ay, x by, Cap =g + a3y % by,
2 e b agy x by oy e+ agy % by, Cap & Cy + 133 X by,
= € =6 F oy x by €3y tay, x b, €30 % C30 + &, % by,

L ! o = Gy b Ay X by GGy tay x by, Can *= Cop + dyy X by,

2 Cop =y + 8y X by, 3 =Ca+a;xb, Con * Con + 03 > by,
n Con = Cop + 11, % b, Gz = G +a, x b, L L .
Local memory PEM, PEM, -+« PEM,

together by 2m extra edges. In Figure 5.19, a 4-cube network is constructed from
two 3-cube networks by using 8 = 2° extra edges between corresponding vertices
at the corner positions, For clarity, we simplify the 4-cube drawing by showing
only one of the eight fourth dimension connections. The remaining connections
are implied.

Let (Pam—1P2m—2- . PuPm=1 --- P1Po)2) be the PE address in the 2m cube. We
can achieve the O(n log, n) compute time only if initially the matrix elements are
favorably distributed in the PE vertices. The n rows of matrix A are distributed
over n distinct PEs whose addresses satisfy the condition

Pam-1P2m=1+++ P = Pm—1Pm-2++-Po (5.25)

as demonstrated in Figure 5.20a for the initial distribution of four rows of the
matrix 4 in a 4 x 4 matrix multiplication (n = 4, m = 2). The four rows of 4 are
then broadcast over the fourth dimension and front to back edges, as marked by
row numbers in Figure 5.20b.
The n columns of matrix B (or the n rows of matrix B') are evenly distributed
over the PEs of the 2m cubes, as illustrated in Figure 5.20c. Jhe four rows of B’
are then broadcast over the front and back faces, as shown in F igure 5.20d. Figure
5.21 shows the combined results of A and B broadeasts-with-the inner product ——

ready 10 be computed. The n-way broadcast depicted in Figure 5.20b and 5.20d4
takes log n steps, as illustrated in Figure 521 in m = log,n = log,4 = 2 steps.
The matrix multiplication on a 2m-cube network is formally specified below.
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(et} A3 cube

15 A 4 cube formed from 1wo 3 cubes

(1) The 4 cube showing onlv one of eight Tourth-dimension connections

Figure 519 The construction of (m + 1)-cube from two rm-cubes. (Courtesy of Thomas. 1981 .)

Example 5.5: An O(n log, n) algorithm for matrix multiplication

Iy

Transpose B to form B' over the m cubes x,,,_, - X0 U in nlog, n
steps (Figure 5.20¢),
N-way brouadcast cach row of B to all PEs in the m cube

Pam-1- "plrrxnr- 1 “"\IU

in nlog, n steps (Figure 5.20d ).

. N-way broadcast cach row of 4 residingin PEpo, oo ot 1 - Potoall

PEs in the m cube x5, | -2 xpup, | <= pg in n log, n steps (Figure 5.20h).
All the nrows can be broadcast in parallel.

. Each PE now contains a row of A and a column of B and can form the inner

product in Ofn) steps (Figure 5.21). The n elements of each result row can be
brought together within the same PEs which initially held a row of A4 in O(m)
sleps.
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(¥
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¥
Il
b,

(d) 4-way broadcase of rows of &
Figure 5.20 Allocation of the elements of two 4 x 4 matrices in a 4-cube of 16 PEs,

The above algorithm takes a total of 3n log, 1 + O(n) time steps to complete,
which equals O(n log, n). This demonstrates a gain in speed over the O(n?)
algorithm in Example 5.4 at the expense of using n* PEs over the use of only »
PEs in the slow algorithm. In Chapter 10, we shall further show a V1.SI hardware
approach to complete the n-by-n matrix multiplication in O(n) time using O(n?/m*)
VLSI processor arrays, each consisting of an array of O(m*) PEs for pipelined
inner-product computations.

5.3.2 Parallel Sorting on Array Processors

An SIMD algorithm is to be presented for sorting n? elements on a mesh-connected
(Ilhac-1V-like) processor array in O(n) routing and comparison steps. This shows 4
speedup of O(log, n) over the best sorting algorithm, which takes O(n log, n) step-
on a uniprocessor system. We assume an array processor with N = n? identical
PEs interconnected by a mesh network (Figure 5.22) similar to Hliac-1V excepi
that the PEs at the perimeter have two or three rather than four neighbors. In
other words, there are no wraparound connections in this simplified mesh network.

241 114

Figure 5.21 The final distributions of the rows of matrix A and the columns of matris 13 rewdy for inner
product in the 16 PEs of a 4cubc array processor.
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n

P

—I PE

L PE __‘ PE

Figure 5.22 A mesh connection of PEs without boundary wraparound connections for SIMD sorting.

Eliminating the wraparound connections simplifies the array-sorting algorithm,
The time complexity of the array-sorting algorithm would be affected by, at most,
a factor of two if the wraparound connections were included.

Two time measures are needed to estimate the time complexity of the parallel-
sorting algorithm. Let tg be the routing time required to move one item froma PE
to one of its neighbors, and tc be the comparison time required for one comparison
step. Concurrent data routing is allowed. Up to N comparisons may be performed
simultancously. This means that a comparison-intcrchange step between two
items in adjacent PEs can be done in 2g + t¢ time units (route left, compare, and
route right). A mixture of horizontal and vertical comparison interchanges requires
at least 4tz + 1. time units.

The sorting problem depends on the indexing schemes on the PEs. The PEs
may be indexed by a bijection from {L2,...,n} x s MILOA0, 1, s N 1}
where N = n?, The sorting problem can be formulated as the moving of the jth
smallest element in the PE array for all j=0, 1, 2,...,N — 1. lllustrated in
Figure 523 are three indexing patterns formed after sorting the given array in
part @ with respect to three different ways for indexing the PEs. The pattern in
part b corresponds to a row-majored indexing, part ¢ corresponds 10 a shuffled
row-major indexing, and is based on a snake-like row-major indexing, The choice
of a particular isslexing scheme depends upon how the sorted elements will be
used. We are interested in designing sorting algorithms which minimize the total

: mutingand-comﬁ&risansmps.._ Ay IR S

The longest routing path on the mesh in asorting process is the transposition
ol two elements initially loaded at opposite corner PEs, as illustrated in Figure
3.24. This transposition needs at least 4(n — 1) routing steps. This means that no
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.-
(@) Initial ioading pattern (&) Sorted pattern with
before sorting fow-major indexing
(c) Sorted patiern with (d) Sorted pattern with snakelike Figure 5.23 Sorting patterns with
shuffled row major row-major indexing respect to three ways of indulng

indexing the PEs.

algorithm can sort »? elements in a time of Jess than O(n). In other words, an (M)
sorung algonithm is considered optimal on a mesh of n* PEs. Before we show one
such optimal sorting algorithm on the mesh-connected PEs. Jet us review Batcher's
odd-even merge sort of 1wo sorted sequences on z set of linearly connecred PEg
shown in Figure 5.25. The shuffle and unshuffle Operations can each be implemented
with a sequence ofinterchunge operations (marked by the double-arrovs in | Jgure
£.26). Both the perfect shuffle and its inverse (unshuffle) can be done in & - I
interchanges or 2(k — 1, routing steps on a linear array of 2k PEs

Batcher's odd-cven merge sorl on a linear array has been eeneralized by
Thompson and Kung 1o u square array of PEs. Let M(j. k)be a sorting algorithm
for merging two sorted i-by-k/2 subarrays to form a sorted j-by-k array, where
Jjand kare powers of 2 and & > 1. The snakelike row-major ordering 1s assumed in
all the arrays. In the degenerate case of M(1, 2), a singie comparison-interchange
step 1s sufficient 1o sort two uni subarrays. Given two sorted columns of length
i = 2. the M(}, 2) algorithm consists of the following steps:

Example 5.6: The M Jy 2) sorting algorithm

J1: -Move all odds to the left column and all evens to the right in 2u, time,
J2: Use the odd-even transposition sort 10 sort each column in 2jty + ji, time,
J3: Interchange on each row in 21, time,

I4: Perform one comparison-interchunge in 24 + 1, time,
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G-

l @_- - ﬁ:g Figure 5.24 The transposition of two elements at opposite corner PEs.

Sorted Sorted
e ol e
L HEHsHeHoHz]
L1. Unshuffle: Odd-indexed elements of left, evens 1o right.

[(HHIGHEHAGHT

WA s
L2. Merge the subsequence of length 2.

L3. Shuffle

s R i
HHHGHAHA A

L4. Comparison-interchange (the C's indicate
comparison-interchanges).

RS

Figure 5.25 Batcher's odd-even merge
of two sorted sequences on a linesr
array of PEs.
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[0 }H1]
u n—-B - n n - n & | Perfect shutii,

W HOHS {5

Figure 5.26 The implementation of a perfect shuftie by a sequence of intercha nge operafions,

The above M(j, 2) algorithm is illust rated in Figure 5.27 for an M(4, 2)sorting,
When j > 2 and k > 2, the M(j, k) sorting algorithm for a meshed-connected
array processor is recursively specified as follows -

Example 5.7: The M( J» k) sorting algorithm

MI1: Ifj > 2, perform a single interchange step on even rows so that columns
contain either all evens or all odds, If j = 2, the columns are already
segregated, so nothing else needs to be done (time: 2r,).

M2: Unshuffle each row [time: (k — 2).1,].

M3: Merge by calling algorithm M{(j, k/2) on each half of the array [time:
1(j, k/2)].

M4: Shuffle each row [time: (k — 2)-4,].

MS5: Interchange on even rows (time: 2r,),

Mé6: Comparison-interchange adjacent elements (every even with the next
odd) (lime: 41, + A

For j> 2 and k > 2. the M( /. k) sorting algorithm is illustrated in Figure
5.28 for the case of M(4, 4). Steps M1 and M2 unshuffle the clements. Step M2
recursively merges the odd subsequences and the even subsequences, Steps 4 and 5
shulfle the odd and even together. M6 performs the final compuarison interchange,
Two sorted 4-by-2 subarrays are being merged 1o form a 4-by-4 sorted array in
snakelike row-major ordering. Let T(j. k) be the time required 1o perform all
the steps in the M, k) sorting algorithm. In the degenerated case ofk = 2, we have

T(j.2) = (2 + 6}y + (] + e (5.26)

Figure 527 Duta routing, comparison, and interchange operations performed in the M4, 2) sorting
algorithm. (Courtesy of IEEE Trans. Computers, Thampson and Kung 1977,)
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For k = 2, the time function is recursively computed by:
T(j.k) = (2k + )ty + 1 + T(j, k/2) (5.27)
By repeated substitution, we have the following time bound:
TG, k) < (2 + 8k + Slog, k), + (j + log k), (5.28)
For an n x n array of PEs, the M(n, n) sort algorithm can be done in T(n, n)
time, which is proportional to Q(n):
T(n, n) = (6n + 4log, n)ig + (n + log, ny, = O(n) (5.29)

Combining an upwards merge with the sideways merge (just described), one can
further tighten the above bound to within a factor of 6n under the assumption that
f¢ = Ig. This parallel sorting algorithm has a speedup of log, n over the best
O(n log, n) algorithm for serial sorting.

5.3.3 SIMD Fast Fourier Transform

SIMD algorithms for performing one-dimensional and two-dimensional fast
Fourier transform (FFT) are presented in this section. Let s(k),k = 0,1,... .M — 1
be M samples of a time function. The discrete Fourier transform of s(k) is defined

to be the discrete function x(j),j =0, 1,..., M — 1 where
M-1
MN= Y k)- W~ j=0,1,...,.M—1 (5.30)
k=0

and W = ™M gnd j = /1.

Consider the use of an SIMD machine with N = M/2 PEs to perform an
M-point FFT of the discrete signal sequence {s(m), 0 <m < M — 1}. The
algorithm is a parallel implementation of the decimation-in-frequency (DIF)
technique illustrated in Figure 5.29 for the case of M = 16 sampling points. The
DIF algorithm divides the input sequence {s(m)} into two hall subsequences
{f(m)} and {g(m)} such that f(m) = s(m) and

g(m)zs(m+%) form = 0, I,...,%—l

The FFT of the M-point sequence can be computed in terms of the two M/2-point
FFTs of the two sequences {f(m) + g(m)} and {[f(m) — g(m)]- W™}, where
0 < m < M/2. For M being a power of 2, repeated applications of tl'ns dividing
process require (M log, M) array operations.

For the parallel FFT algorithm, PE; initially contains s(k) and s(k + M/2),
where 0 < k < N. As in the serial mcthod, log, M stages of computations are
needed. At each stage, M/2 butterfly operations, shown in Figure 5.30, are executed.
The items being paired in a butterfly at stage k where 0 < k < log, M are those
whose indices differ in the (logy M — k = 1)th bit position of the binary represen-
tation. Because of this difference in a given bit position. the cube interconnection
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l-igurr 5.30 Compulniou ol‘ a lﬁ-pmm B I-T in an SIMD machine with 8 I‘Eh (Coﬂrlesy of IEEE Proc.
Sth Inc'l Conf. on PRIP, Mueller, et al. 1980.)
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network provides a natural means for specifying the interprocessor data transfers
required for the FFT algorithm. This network consists of n routing functions C;
for 0 < i < log; N as in Eq. 5.9. Figure 5.30 illustrates data transfers and compu-
tations performed in the one-dimensional FFT algorithm for an SIMD machine
with N = M/2 PEs.

The above algorithm performs the M-point FFT calculations using loga(M/2)
parallel data transfers. This is a lower bound on the number of data transfers re-
quired to perform an M-point FFT when the M points are initially distributed
over M/2 PEs. The number of parallel butterfly operations performed is log, M,
where each butterfly involves two complex additions and one complex multiplica-
tion in each PE. The number of butterfly steps is reduced from (M/2)log, M in a
serial FFT algorithm to log; M for a parallel FFT algorithm, using M/2 PEs.

Because M/2 PEs may not be available for the computation of an M-point
FET. it is of interest to consider FFT algorithms which use fewer PEs. A simple
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solution for using fewer PEs is to replicate the steps in the M2 PE algorithm,
For example, if N = M 4, two computations that were performed in parallel in
different PEs in the M 2 PE algorithm are now performed sequentially in the same
PE, as shown for N = 16 in Figure 5.31. The number of butterfly steps performed
is 2log, M. 2(log, M — 2) = log,(M/4)] parallel data transfers are required,
This approach can be generalized 1o perform an M-point FFT in M/2* PEs for
2<k <logaM. For N = M/2* PEs, cach PE will initially contain 2* elements.
The number of parallel butterfly steps performed will be 2" 'log, M. The data
transfers will be performed the C, functions for log, M — k — 1 > i > 0: cach
€ Tunction will be replicated 2~ ' times, The total number of parallel data transfers
will therefore be 24~ (log, M — k).

We consider next the two-dimensional FFT algorithm for processing an
M-by-M signal array. A standard approach to computing the two-dimensional
FET of a signal array S is to perform the one-dimensional FFT on the rows of §,
giving an intermediate matrix G, then performing the one-dimensional FFT on
the columns of G. The resulting matrix F is the two-dimensional FFT of S. An
SIMD algorithm which uses N = | 1?/2 PEs is presented below.

The implementation of a two-dimensional FFT makes use of the previous
work done for one-dimensional FFTs. The PFs are logically partitioned into M
rows of M/2 PEs. Each row of PEs is given a row of the input matrix S, with two
matrix clements in each PE. The two-dimensional FFT is implemented by simul-
tancously having each row of PEs compute the FFT of its row of the input matrix
o obtain G. The PEs are then logically reconfigured to form M columns of Mj2
processors, with cach column of PEs having a column of G. Then each column of
PEs computes the FFT of its column of G to obtain F.the FFT of the input matrix.
This approach can be considered a row-column method in that it transforms the
rows of the matrix S to produce G, then transforms the columns of the intermediate
matrix G to produce F,

Initially, the PEs are logically configured as M rows of M/2 PEs, logically
numbered (i, j), where 0 < i < M and 0 < J < M 2. The physical address of PE
(1.) 18 i(M/2) + j. The physical address can be represented in binary as

Pau-2P2u-3" Pu=\Pu-2"""PiPo

where p = log, M. Bits p,_, -+ p, are the binary representation of j, and bits
P2 2" Py~ are the binary representation of i. The input matrix 8 is distributed
such that PE (i, j) has S(i.j) and 8@, j + M/2). Thus, each row of PEs can perform
the onc-dimensional FFT on its row of § with N = M/2. In this case, the cube
functions required for data transfers will exchange data based on the lower order
# — 1 bits of the physical address: i.c., the functions will act on j independently of j,
Thus, the one-dimensional FFT can be performed on each row independently
and simultaneously. The result G is distributed to cach column of PEs which holds.

two columns of G, with each PE holding one element from each of the two columns
of G.

The PEs are now logically reconfigured to form M columns of M2 PEs, with
cach column of PEs having one column of G. Two maltrix elements are in each PE,
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Fable 5.5 SIMD machine recontiguration for iwo-dimensional FFT computations
[ notation (i, ) denotes the l'l—:uj

Contiguration: M-by-M 2 array
0,0 . @ (0.M2 = 1)

(1.0 (L1 (1, M2 = 1)

(M=1.00 (M=11) oo (M= 1LM2Z=1)

Configuration : M/2-by-Af drray

(0. 0) (M/2,0) (0, 1) (M2, 1) e (0, M2 = 1) (M2, M2 — 1)
(1,0) (M2 +1.0) (1. 1) (M2+1,1) ...
(M2=2,00 (M=1.0) (M2~ 1. D (M=11 - M2-LM2-1) (M- 1M2—1)

To do this, PE (i, j) is renumbered (k, I) where &k = i mod (M/2) and | = 2j +
LM/, Effectively. this renumbering takes each column of the original configur-
ation, divides it in half, and aligns the halves to form two columns, as shown in
Table 5.5. In terms of the binary representation of the physical address, the binary
representation of k is Piu-3"""Py-1, and the binary representation of / s
Pu-2"""PoPau-.

After the renumbering. G is distributed to each pair of PE columns PE(k, 24)
and PE(k, 24 + 1), where 0 < k, A4 < M/2. Within such a pair of PE columns,
PE(k, 24) has two points from the kth row of G, and PE(k, 21 + 1) has two cor-
responding points from the (k + M2)th row of G. for 0 < k < M /2. Within each
of the two columns of G, these are precisely the points which must be paired at the
start of the one-dimensional M-point, M/2 PE algorithm. Using the Cy,- 2 function,
PE(k, 22) and PE(k, 24 + 1), where 0 < k. A < M/2, can exchange data so thai
each column of PFEs gets a different column of G with each PE holding the two
elements of G needed to start the one-dimensional FFT. In terms of physical PE
addresses, p,,_ , corresponds 1o the high order position and the routing function
Cau-2¢quals C, . In terms of logical numbering, p,,,_ , is the low order bit in the
binary representation of the logical column index, so the €y, -2 Touting function
effects the exchange of elements between the corresponding rows in columns
2iand 24 + 1, for0 < A < M/2.

Each column of PEs now performs the one-dimensional FFT on 1ts column
of G. However, to perform the FFT on a column, it is necessary to perform data
transfers based on the row index, which is given by k and represented by
P2u-3 " P, of the physical PE address. Therefore, whenever €, is executed in (he
original algorithm, ¢, +u-1 18 executed in this algorithm. In this way. the cube

-routing functions-atow communication within a column instead of within a row.

The complexity of this SIMD algorithm has been derived from the one-
dimensional FFT case. The number of multiplication steps required is 2log, M ;
the number of addition steps required is 2(2log, M); and the number of data trans-
fer sters required is dog,(M/2) + 1 = 2log; M — |. The complexity of a serial
FET algorithm is M? log, M multiplications and 2Af2 log, M additions. To sum
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up, the speedup of a parallel two-dimensional FFT algorithm is M?/2 over a serial
FFT algorithm. Without surprise, this speedup equals the number of PEs in the
SIMD array processor.,

5.3.4 Connection Issues for SIMD Processing

SIMD array processors allow explicit expression of parallelism in user programs.
The compiler detects the parallelism and generates object code suitable for execu-
tion in the multiple processing elements and the control unit. Program segments
which cannot be converted into parallel executable forms are executed in the
control unit; program segments which can be converted into parallel executable
forms are sent to the PEs and executed synchronously on data fetched from
parallelmemory modules under the control of the control unit. To enable synchron-
ous manipulation in the PEs, the data is permuted and arranged in vector form.
Thus. to run a program more efficiently on an array processor, one must develop
a technique for vectorizing the program codes. The interconnection network plays
a major role in vectorization. Several connection issues in using SIMD inter-
connection networks are addressed below.

Permutation and connectivity In array processing, data is often stored in parallel
memory modules in skewed forms that allow a vector of data to be fetched without
conflict. However, the fetched data must be realigned in a prescribed order before
it can be sent to individual PEs for processing. This alignment is implemented by
the routing functions of the intercofinection network, which also realigns the data
generated by individual PEs into skewed form for storage in the memory modules.

A rearrangeable network and the nonblocking network can realize every
permutation function, but using these networks for alignment requires considerable
effort to calculate control settings. A recursive routing mechanism has been
suggested for a few families of permutations needed for parallel processing; how-
cever, the problem remains for the realization of general permutations. Many
attempts have been made on the permutation capabilities of single-stage networks
and blocking multistage networks. These networks cannot realize arbitrary
permutations in a single pass. Recent results show that the baseline network can
realize arbitrary permutations in just two passes while other blocking multistage
networks, such as the Omega network, need at least three passes. Wu and Feng
(1981) have proved that the shuffle-exchange network can realize arbitrary
permutations in 3(log, N) — | passes where N is the network size.

Partitioning and reconfigurability A configuration concept has been proposed to
better use the interconnection network. Under this concept, a network is just a
configuration in the same topologically equivalent class. To configure a permu-
tation function as an interconnection network, we can assign input-output link
names in a way that realizes the permutation function in one conflict-free pass.
Assigning logical names that realize various permutation functions without
conflicts is called a reconfiguration problem. Through the reconfiguration process.
the baseline network can realize every permutation in one pass without conflicts.
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This means that concurrent processing throughout could be enhanced by the
proper assignment of tasks to processing clements and data to memory modules.

When dividing an SIMD interconnection network into independent subnet-
works of different sizes, each subnetwork must have all the interconnection
capabilitics of a complete network of the same type and size. Hence, with a par-
titionable network, a system can support multiple SIMD machines. By dynamically
reconfiguring the system into independent SIMD machines and properly assigning
tasks to each partition, we can use resources more efficiently. Siegel (1980) has
proved that single-stage networks such as the shuffle-exchange and Illiac networks
cannot be partitioned into independent subnetworks, but blocking multistage
networks such as a data manipulator can be partitioned.

Reliability and bandwidth The reliable operation of interconnection networks is
important to overall system performance. The reliability issue can be thought of
as two problems: fault diagnosis and fault tolerance. The fault-diagnosis problem
has been studied for a class of multistage interconnection networks constructed
of switching elements with two valid states. The problem is approached by gener-
ating suitable fault-detection and fault-location test sets for every fault in the
assumed fault model. The test sets are then trimmed to a minimal or nearly minimal
set, The second reliability problem concerns mainly the degree of fault tolerance.
It is important to design a network that combines full connection capability with
graceful degradation in spite of the existence of faults.

A high network bandwidth is ofien desired at reasonably low network cost. The
network bandwidth is defined as the number of PE requests honored per unit of
time. Several analytical methods have been used to estimate network bandwidth.
We shall treat some of them in Section 7.2.4. Most analytical models suggested
by researchers are too simplified and closed-form solutions are not attainable.
Numerical experiments can simulate actual PE-connection requests by tracing
the program to be execuied. Continued rescarch efforts are needed in this area
to accurately estimate the bandwidth of various interconnection networks,

The cost of a nelwork is primarily determined by the switching complexity.
To achieve a cost-effective network design. one must find the optimal trade-off
between performance (bandwidth) and cost (complexity). The main difficulty
lies in the fact that bandwidth analysis depends on unpredictable program behavior
and cost varies rapidly with progress in technology. Cost effectiveness must also
insure Hexibility in application programming and reliability in achieving fault
tolerance. These are wide open areas of further research on interconnection net-
works for bath SIMD and MIMD computers.

5.4 ASSOCIATIVE ARRAY PROCESSING

Two SIMD computers, the Goodyear Aerospace STARAN and the Parallel
Element Processing Ensemble (PEPFE). have been built around an associative
memory (AM) instead of using the conventional random-access memory (RAM).
The fundamental distinction between AM and RAM is that AM is content-
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addressable, allowing parallel access of multiple memory words, whereas the
RAM musi be sequentially accessed by specifying the word addresses. The inherent
parallelism in associative memory has a great impact on the architecture of
associative processors, a special class of SIMD array processors which update
with the associative memories, ;

In this seciion, we describe the functional organization of an associalive array
processor and various parallel processing functions that can be performed on an
associative processor. We classify associative processors based on associative-
memory organizations. Finally, we identify the major searching applications of
associative memories and associative processors. Associative processors have
been built only as special-purpose com puters for dedicated applications in the past.

S.4.1 Associative Memory Organizations

Data stored in an associative memory are addressed by their contents. In this
sense, associative memories have been known as content-addressable memory,
parallel search memory, and multiaccess memor v. The major advantage of associa-
tive memory over RAM is its capability of performing parallel search and parallel
comparison operations. These are frequently needed in many important applica-
tions, such as the storage and retrieval of rapidly changing databases, radar-
signal tracking, image processing, computer vision, and artificial intelligence.
The major shortcoming of associative memory is its much increased hardware
cost. Presently, the cost of associatife memory is much higher than that of RAMs.

The structure of a basic AM is modeled in Figure 5.32. The associative
memory array consists of n words with m bits per word. Each bit cell in then x m
array consists of a flip-flop associated with some com parison logic gates for pattern
match and read-write control. This logic-in-memory structure allows parallel
read or parallel write in the memory array. A bit slice is a vertical column of bit
cells of all the words at the same position. We denote the Jjthbit cell of the ith word
asBjfor1 <i<nand 1 <j<m The ith word is denoted as:

= W, = (ByB;---B,,) fori=1,2,...,n
and the jth bit slice is denoted as:
B}=(BUBUH-B,,J} fop =12 . =m

Each bit cell B;; can be written in, read out, or compared with an external
interrogating signal. The parallel search operations involve both comparison and
masking and are executed according to the organization of the associative memory.
There are a number of registers and counters in the associative memory. The
comparand register C = (C,, C,, ..., C.,) is used to hold the key operand being
searched for or being compared with. The masking register M = M, M,,....M,)
is used to enable or disable the bit slices to be involved in the parallel comparison
operations across all the words in the associative memory:

The indicator register [ = (1. 1;, ..., 1,) and one or more temporary registers
T=(T\. T,...., T,) are used to hold the current and previous match patterns,
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respectively. Each ol these registers can be set. reset. or loaded from an external
source with any desired binary patterns. The counters are used to keep track of the
i and j index values. There are also some match detection circuits and priority logic,
which are peripheral 1o the memory array and are used to perform some vector
boolean operations among the bit slices and indicator patterns.

The search key in the C register is first masked by the bit pattern in the \f
register. This masking operation selects the effective fields of bit slices 1o be in-
volved. Parallel comparisons of the masked key word with all words in the associa-
tive memory are performed by sending the proper interrogating signals to all the
bit slices involved. All the involved bit slices are compared in parallel or in a
sequential order, depending on the associative memory organization. It is possible
that multiple words in the associative memory will match the search pattern.

Therefore, the associative memory may be required to tag all the matched words.
The indicator and temporary registers are mainly used for this purpose. The in-
terrogation mechanism, read and write drives, and matching logic within a typical
bit cell are depicted in Figure 5.33. The interrogating signals are associated with
cach bit slice, and the read-write drives are associated with each word. There are
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two types of comparison readouts: the bit-cell readout and the word readout.
The two types of readout are needed in two different associative memory organizi-
tions.

In practice, most associative memgyies have the capability of word parallel
operations; that is, all words in the associative memory array are involved in the
parallel search operations. This differs drastically from the word serial operations
encountered in RAMs. Based on how bit slices are involved in the operation,
we consider below two different associative memory organizations:

The bit parallel organization Ina bit parallel organization, the comparison process
is performed in a parallel-by-word and parallel-by-bit fashion. All bit slices which
are not masked off by the masking pattern are involved in the comparison process.
In this organization, word-match tags for all words are used (Figure 5.34a). Each
cross point in the array is a bit cell. Essentially, the entire array of cells is involved
in a search operation.

Bit serial organization The memory organization in Figure 5.34h operates with
one bit slice at a time across all the words. The particular bit slice is selected by an
extra logic and control unit. The bit-cell readouts will be used in subsequent
bit-slice operations. The associative processor STARAN has the bit serial memory
organization and the PEPE has been installed with the bit parallel organization.

The associative memories are used mainly for search and retrieval of non-
numeric information. The bit serial organization requires less hardware but is
slower in speed. The bit parallel organization requires additional word-match
detection logic but is faster in speed. We present below an example to illustrate the
search operation in a bit parallel associative memory. Bit serial associative
memory will be presented in Section 5.4.3 with various associative scarch and
retrieval algorithms.

‘Example 5.8 Consider a student-file search in a bit parallel associative mem-
ory, as illustrated in Figure 5.35. The query needs to search all students whose
age is not younger than 21 but is younger than 31. This requires performing the
not-less-than search and the less-than search on the age ficld of the file. Two
matching patterns are used in the two subsequent searches. The masking
pattern selects the age field. The lower-bound 21 is loaded into the C register
as the first key word. Parallel comparisons are performed on all student records
(words) in the file. Initially, the indicator register is cleared to be zero.

After the first search, those studenis who arc not younger than 21 arc
marked with a I in the indicator register, one bit per each student word, This
matching vector is then transferred to one of the Tregisters. Then the upper- .

— bound 31 is foaded into € as the second-matehing key-After thesecond search.
a new maiching vector is sent to the I regisier. A bitwise ANDing operation
is then performed between the [ and T registers with the resulting vector re-

siding in the I register as the final output of the search process. The whole
search process requires only two accesses of the associative memory. An output

circuit (shown in Figure 5.34) is used to control the reading out of the result.
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Figure 5.35 An associative memory used for the storage and retrieval of a student file,

5.4.2 Associative Processors (PEPE and STARAN)

An associative processor is an SIMD machine with the following special capa-
bilities: (1) Stored data items are content-addressable, and (2) arithmetic and logic
operations are performed over many sets of arguments in a single instruction.
Because of these content-addressable and  parallel progessing capabilitics,
associative processors form a special subclass of SIMD compulters, Associative
processors are cffective in many special application arcas. We classify associative
processors into two major-ghasses, 4he fully parallel versus the bit serial organiza-
tions, depending on the asédciative memory used. Two associative processors are
functionally described beics" along with their potential applications,
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The PEPE architecture There are two types of fully parallel associative processors:
word-organized and distributed logic. In a word-organized associative processor,
the comparison logic is associated with each bit cell of every word and the logical
decision is available at the output of every word. In a distributed-logic associative
processor, the comparison logic is associated with each character, cell of a fixed
number of bits or with a group of character cells. The most well-known example
of a distributed-logic associative processor is the PEPE. Because of the require-
ment of additional logic-per-cell, a fully parallel associative processor may be
cost prohibitive. A distributed-logic associative processor is less complex and thus
less expensive. The PEPE is based on a distributed-logic configuration developed
at Bell Laboratories for radar signal-processing applications.

A schematic block diagram of PEPE is given in Figurc 5.36. PEPE is composcd
of the following functional subsystems: an output data control, an element memory
control, an arithmetic control unit, a correlation control unit, an associative
output control unit, a control system, and a number of processing elements. Each
processing clement (PE) consists of an arithmetic unit, a correlation unit, an asso-
ciative output unit, and a 1024 x 32-bit clement memory. There are 288 PEs
organized into eight element bays. Selected portions of the work load are loaded
from a host computer CDC-7600 1o the PEs The loading selection process is
determined by the inherent parallelism of the task and by the ability of PEPE’s
unique architecture to manipulate the task more efficiently than the host computer.
Each processing element is delegated the responsibility of an object under observa-
tion by the radar system, and each processing element maintains a data file for
specific objects within its memory and uses its associative arithmetic capability
to continually update its respective file.

PEPE represents a typical special-purpose computer, It was designed to
perform real-time radar tracking in the antiballistic missile (ABM) environment.
No commercial model was made available. It is an attached array processor to the
general-purpose machine CDC 7600, as demonstrated in Figure 5.36.

The bit-serial STARAN organization The full parallel structure requires expensive
logic in each memory cell and complicated communications among the cells.
The bit serial associative processor is much less expensive than the fully parallel
structure because only one bit slice is involved in the parallel comparison at a
time. Bit serial associative memory (Figure 5.34b) is used. This bit serial associative
processing has been realized in the computer STARAN (Figure 5.37). STARAN
consists of up to 32 associative array modules. Each associative array module
contains a 256-word 256-bit mulridimensional access (MDA) memory, 256 pro-
cessing elements, a flip network, and a selector, as shown in Figure 5.38a. Each
processing element operates serially bit by bit on the data in all MDA memory
words. The operational concept of a STARAN associative array module is
illustrated in Figurc 5.38h.

Using the flip network, the data stored in the MDA memory can be accessed
through the 1'O channels in bit slices, word slices, or a combination of the two.
The flip network is used for datu shifting or manipulation to enable parallel
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search, arithmetic or logical operations among words of the MDA memory, The
MDA was implemented by Goodyear Aerospace using random-access memory
chips with additional XOR logic circuits. The first STARAN was installed for
digital image processing in 1975, Since then, Goodyear Aerospace has announced
some enhanced STARAN models. The size of the MDA memory has increased to
9216 % 256 per module in the enhanced model with improved 1 O und processing
speed.

To locate a particular data item, STARAN initiates a search by calling for a
match specified by the associative control logic. In one instruction execution, the
data in all the selected memories of all the modules is processed simultaneously
by the simple processing element at each word. The interface unit shown in Figure
3.37 involves interface with SENSOTS. conventional computers, signal processors,
interactive displays, and mass-storage devices, A variety ol 10 options are
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implemented in the custom-interface unit. including the direct-memory aceess,
butfered 1/O channels, external function channels and parallel 1,0.

Each associative array module can have up to 256 inputs and 256 outputs
into the custom-interfiuce unit, They can be used to increase the speed of inter-
array data communication to allow STARAN to communicate with a high-band-
width 'O device and to allow any device 1o communicate directly with the
associative array modules, In miny applications, such as matrix computation, air-
traffic control, sensor-signal processing and data-management systems, a hybrid
system composed of an associative processor and 4 conventional sequential
processor can increase the throughput raie, simplify the software complexity, and
reduce the hardware cost.

STARAN has high-speed input-output capabilitics and the ability to interface
easily with conventional computers. In such a hybrid system, each associative
array module performs the tasks best suited 10 its capabilities. STARAN handles
the parallel processing tasks and the conventional computer handles the tasks
that must be processed in a single sequential data stream,

PEPE and STARAN are two la rge-scale associative processors that have been
implemented for practical applications. The high cost-performance ratio of
associative processors has limited them to be used mainly in military applications,
Associative memories and processors have also been suggested for the design of
text retrieval computers and back-end database machines. Several exploratory
database machines are based on the use of associative memory, as reported in the
hook by Hsiao (1982),

5.4.3 Associative Search Algorithms

Associative memories are mainly used for the fast search and ordered retrieval of
large files of records, Many researchers have suggested using associative memories
for implementing relational database machines. Each relation of records can be
arranged in a tabular form, as illustrated in Example 5.8. The tabulation of records
(relations) can be programmed into the cells of an associative memory. Various
associative search operations have been classified into the following categories by
T.Y. Feng (1978),

Extreme searches

The Maxima: The Jargest among a set of records is searched.

T'he Minima: The smallest among a set of records is searched.

The Median: Search for the median according 1o & certain ordering.
Equivalence searches

Equal-to: Exact match is searched under a certain cquality relation.

Not-equal-to: Search for those elements uncqual to the given key.
Similar-ro: Search for dmatch within the masked ficld,



6 COMPUTER ARCTITICTURE AND PARALLFL PROCTSSING

Proximate-to: Search for those records that satisfy a certain proximity (neighbor-
hood) condition.

Threshold searches

Smaller-than: Search for those records that are strictly smaller than the given key.

¥ Greater-than: Scarch for those records that are strictly greater than the given key.

Not-smaller-than: Scarch for those records that are equal to or greater than the
given key.

Not-greater-than: Search for those records that are equal to or smaller than the
given key.

Adjacency searches
Nearest below: Search for the nearest record which is smaller than the key.
Between-limits searches

[X, Y]: Search for those records within the closed range {z|X <z < Y}
(X, ¥): Search for those records within the open range {z|X- < = < Y}.
[X, Y): Search for those records within the range {z|X < z< Y}

(X, Y]: Search for those records within the range {z|X <z < Y}

Ordered retrievals

Ascending sort: List all the records in ascending order,
Descending sort: List all the records in descending order.

Listed above arc primitive scarch operations. Of course, one can always com-
bine a sequence of primitive search operations by some boolean operators to form
various query conjunctions. For examples, one may wish to answer the queries
equal-to-A but not-equal-to-B; the second largest Sfrom below; outside the range
[X, Y]; etc. Boolean operators AND, OR, and NOT ecan be used to form any
query conjunction of predicates. A predicate consists of one of the above relational
operators plus an attribute such as the pairs { <, A} or { #, A}. The above search
operators are [requently used in text retrieval operations. '

Two examples are given below to show how to perform associative search
operations. We consider the use of a bit serial associative memory (Figure 5.34)
in which all the memory words can be accessed (read) in parallel, but where bit
slices of all words or within a specified field of all words must be processed sequen- ¢
tially one slice after another from let to right in the AM array. The following nota- =

“tions arc used to designate any specific field of a word:

e st The starting bit address of a field, where 1 < 5 < n,
e [: The ficld length in bits.
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s k: The index within the field, where | < &k < o

i; The index lor different bit slices, where | < § < n.

« ji The index for successive words, where | < j < .

Furthermore, we use 1 = (1. 1,..., 1) and 0 = (0, 0,. .., 0) to denote the binary
vectors of all Is or of all 0s, respectively. The indicator register 1 is formed with
S-R Mip-flops I;fori = 1,2,...,n The reset and sct signals of flip-flop I, are denoted
as R; and §;, respectively. In the specification of the following algorithms, we use
Ii(k) to refer to the contents of flip-flop I, at the kth step. The same convention
applies to T(k), R,(k), and S,(k). The initial contents of the working registers arc
indicated by 1(0) and T(0).

Example 5.9: The MINIMA search This algorithm searches for the smallest
number among a set of n positive numbers stored in a bit serial AM array. Each
number has / bits stored in a field of a word from the bit position s to the bit
positions + f — 1.

1.

Initialize
C—LIO=1LTO)0;k=1j=s+k—1, Me(0...11... 10...0).
[ bitsof 15
. Load Ti(k) = I(k - Dn(C;@B)loralli=12...,n
. Detect Q(k) = | ] Ti(k).
i=1
. Reset Tby applying r(k) = T(k)y~ Q(k)foralli=1,2,. ... n.

- Increment k « k + 1. Then proceed to step 2 if k < f — 1, or read out the

work W, indicated by I,(f) = 1ifk = /.

Example 5.10: The NOT-SMALLER-THAN search This algorithm searches
for those numbers that are greater than or equal 10 a given number N. Assume
the same field format as in Example 5.9.

Initialize

C=NIO 1T ~Lk=)j=s+k—1,M0...011..10...0.

J bits ol 1

. If C; =0, then load Ti(k) with T(k — )~ (C, @ B;)): clse modily I by

applying Ry(k) = T(k) n(C; @ B,) forall i = 1.2, .. n.

. Increment k «— k + 1. Then test if k = /. If no, proceed to step 2. If ves,

read out those qualified numbers indicated by I(f) = 1.

In steps 2 and 4 of Example 5.9 and in step 2 of Example 5.10, all n words are
involved in the specified operations. The bit-slice operations are governed by the
increment of index k in the loop. When a bit parallel associative memory is used,
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the above algorithms have (o be modified. The bit parallel associative memio
were only used in nonnumeric text retrieval operations. The bit sciial ass
memories were mostly used to perform associative numeric computalion.

5.5 BIBLIOGRAPHIC NOTES AND PROBLEMS

General discussions of array processors can be found in the texts by Thuroer
(1976). Kuck (1978), and Stone (1980). Interconnection networks for SINi]
networks have been surveyed in Feng (1981)ina comparative manner The SIN 1)
computer model was proposed by Siegel (1979). A comprehensive treatinent of
interconnection networks can be found in the book by Siegel (1984). Mulii
stage cube-type networks and their capabilities are discussed i Batcher (1974,
Pease (1977), and Wu and Feng (1980). The barrel shifter and data manpulito
are based on the work of Feng (1974) and Bauer (1974). The shuflle-exchange
networks are discussed in Stone (1971) and Lang and Stone (1976). The Ormery
network was introduced by Lawrie (1975). Wu and Feng (1981) have studied the
universality of shuffle-exchange networks. Network partitioning has been studie
by Siegel (1980). Network reliability and fault tolerance were studied in Wu nil
Feng (1979) and in Shen and Hayes (1980).

A comparative study of large-scale array processors was given in Paul (1974
Thurber (1979), and Hwang et al. (1981). Associative search algorithms are based
on the unpublished notes by Feng (1977). Stone (1980) has described the O(n?)
algorithm for matrix multiplication. The parallel sorting method for mesh
connected array processors is developed by Thompson and Kung (1977). The
FFT algorithms on SIMD computer are based on the work of Mueller. ot 4!
(1980). The O(n log, n) algorithm for matrix multiplication on a cubc network: i«
based on the work of Thomas (198 1),

Associative memories and associative processors have been surveyed mn
Yau and Fung (1977). There are also two published books, Thurber (1976) and
Foster (1976), which are devoted to associative processors. More detailed informs
tion of PEPE can be found in Vick and Merwin (1973). The STARAN system archi-
tecture and applications are discussed in Batcher (1974 and Rohrbacher and
Potter (1977). Additional SIMD computer algorithms can be found in Sione
(1980), Kuck (1977), Thurber and Masson (1979), and Hockney and Jesshope
(1981).

Problems
S.1 Explain the following terminologies associated with SIMD compulers:
(¢} Lock-step operations (/) Barrel-shifting functions
(k) Masking of processing elements (¢) Shuffle-exchange functions
(¢) Routing functions for Illiac network (f1) Associative memory
_m.xmmmmmmi—m—nﬁ serial associutive proces «
(¢) Cube-routing functions (/) Adjacency search

5.2 Youare asked to design o daty routing network for an SIMD array processor witly 256 11+ i
eychie shifters are used so that a route from one PE to another requires only one unit of time Nt e
power-of<two shift in either direction.
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(a} Draw the interconnection barrel shitung network, showing all directly wired connections
among the 266 PEs In the drawing, at least one node (PE) must show all its connegtions 10 other PEs.

(#) Calculate the minimum number of routing steps from any PE, 1o any other PE,,, for the
arbitrary distance | < & < 255, Indicate also the upper bound on the minimum routing steps required
5.3 Cogesider 04 PEs (PE, to PE,,) in the Hliac-1V. Determine the minimum number of data-routing
steps needed 1o perform the following inter-PE data transfers: PE 10 PE, | ynuss Where 0 < § < 63
and U < &k < 63
5.4 Consider the use of a four-PE array processor 1o multiply two 3 x 3 matrices. The interconnection
structure of the four PEs is shown in Figure $.39. Wraparound connections appear in'all rows and
columns of the array. You need to map the matrix elements initially one to each of the processors.
All the 3 multiplieations needed for each output element ¢;y must be performed in the same PE in
order to accumulate the sum of products. Of course, you are allowed 1o shift the mat rixelements around
il needed.

(@) Show the initial mapping of the 4 and B matrix elements to the processors before the first
multiplication is carried oul. (You may have to wrap around the matrix. )

(B) What are the initial multiplications to be carried out in each processor (there may be more
than one multiplication in each processor) without any data shifting?

(c) Parallel shifts are carried out in the horizontal and vertical directions. Show the mapping of
the A and B matrix elements 1o the processors before the second group of multiplications can be
carried out.

(d) What are the multiplications to be carried out in each processor without any further shifting?
{Don't bother with summing with the previous terms. Summation operations in dot product operations
are embedded in the multiply hardware automatically |

PE, PE.

E, PE,
4y 4y oy by by by fi fnn fy
Iy Oy e | by by by = | 6 o 6y
Sy g oy by by by, u tn

Figure 5,39 The multiplication of two 3 x 3 matrices on g mesh of 4 PEs in Problem 8 4.
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() Suppose the two matrices have already been allocated as in part (). Assume each processor
can perform one multiplication per unit time or one shift in a single direction per unit time for cach
number. (IF you shift 1wo numbers, it takes two units of time.) Determine the time units needed 1o
complete parts (4), (¢}, and (d), respectively. Minimizing the total time delay 1 the design goal.

5.5 Lot A bea 2% » 27 mairix stored in row-major order in the main memory. Prove the transposed
matrix 4" can be obtained by performing m perfect shuffles on A4

5.6 Givenann x nmatrix A = (a,). we want 1o find the n column sums:

wel
S, = Eﬂ'” I"l}rj:l};’,_...n—l

-0
using an SIMD machine with i PEs. The madtrix is stored in a skewed format, as shown in Figure 5.40.
The jth calumn sum 5, is stored in location fiin PEM, at the end of the computation, Use the machine
orgamization as shown in Figures 514 and 5.2. Write an SIMD algorithm and indicate the successive
memary contents in the execution of the algorithm.
8.7 Consider the use of the associative memory array in Figure 5.32 for implementing a Not-Equal-To
search, Assume bit-slice parallel-word aperations similar to thase described in Examples 5.9 and 5.10.
Write out the detailed steps. Initial conditions in registers and the intermediate and final indicator
pattern must be interpreted,
5.8 (@) Benes binary network is u 1 ype of multistage network which is rearrangeable and nonblock ing
hecause it can perform all possible connections between inputs and outputs by rearranging its existing
conneetions so that a new path for a new nput-output pair can always be established, Develop a routing
algorithm to realize the following permutation inan 8 x 8 Benes nelwork:

(nlzsasﬁ?)
3 =
P=\37402615

Controlsetting of the input and output switching elementsis shown in Figure 5.41 from the first iteration
of the algorithm. The algorithm to be developed is recursive in nature. It can be applied recursively 1o
the two middle subnetworks. labelled a and hin the figure.

I’Efﬂn PEMI “en PEhf._l
L L] -
- . -
B .
@ %.0 @, Bo.m-1
a+l Dn 90 e I
- . L]
- - LE R .
L - -
LY .2 “n-1.0
Ld L]
: H :
8 Sy S, L
- -
: : . Figure 540 Memory allocation for the
matrix computations in Problem 5.6,
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Subnciwork a
[ E : > - ~— - o
1 i bt |
!
i !
2 ] i h i 2
3 ; y - - { i 1
4 —] N - |- 4
' 1
! i
i / i
6 —» ; h . ]
7— e = - : - 7

| (T R L) Y - Rt L AR S |

Subnetwork b
Figure 541 An 8 x 8 Benes network for Problem 5.8,

(k) Classify those mulustage SIM D interconnection networks you have studied according to the
three distinet features blocking, rearrangeable. and nonblocking.
8.9 Consider an Nanput Umega network where each switch cell is indivadually controlled and N = 2%

(a) How many different permutation funcuions (one-to-one and onto mapping) can be defined
over N inputs”

(h) How many different permutation functions can be performed by the Omega network in one
pass? TN = ¥, what s the percentage of permutation functions that ean be performed in one pass?

(o) Given any source-destimation (5 — 2) pair, the routing path can be umiquely controlled by
the destmation address. Instead of wang the destination address (1) as the routing 1ag, we define
T = 5@ 0 as the routng tag. Show thiat 1 alone can be used 1o determune the routing path. What is
the advantage of using T as the routing 1ag? ]

idh The Omepa network is capible of performing broadcastng (one source and multiple destina-
tons). 11 the number of destimation PEs s i power of twao, can vou give a simple routing algorithm to
achieve this capabiliny?
S0 How many steps are reguired to broadeast anoimformation wem from one PE 10 all other PEs
i each of the Tollowing simgle-stage interconnection netwaorks? (N = 2" Phs).

{ay A shuffle-cxchange network. Each stepcould be either ashuille or an exchange but not mixed.

(hy A cube network. The €, routing is performed lor eachsiepi 0 < 1 < n — 1.
5.11 Prove or disprove that the Omega network can perform any shift permutation in one pass. The
shift permutation s defined as follows: given N = 2" inputs, a shift permutation is either a circular left
shift or a circular right shift of & positions, where 0 < & < N,
5.12 A polynomial, plx) = 3 ¥ 7 a,x' can be evaluated in 2 log, N steps i an SIMD computer with
N PEs. where N s o power of 2 Assume that cach PE can perform enther an add or o multiply under
masking control A shuffle miernconnection exists among the N PEs. Fach PE has a data register and
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Table 5.6 The shuffic-multiply sequence for SIMD
polynomial evaluation in Problem 5.12.

Data Mask  Data Mask [Data Mask ata

ay 0 g f iy 1] ey
, 1 uyx 0 ax 3] oy N
‘.‘-: 0 , | l(_\.\': 1] 7 x*
ay ] oyx | ayxt 0 iy
a, 0 iy 0 oy | gt
dy 1 X 0 X I I
a, 0 y I g X2 | @, A"
= | & | vt | x*
First iteration Second iteration Third iteration
Multiply by v Multiply by +* Multiply by x*

evaluate the polynomial requires first to generate all the product terms. a v’ fori =0, 1, ..., N—1
by a sequence of log, N shuflle-multiply operations as listed in Table 5.6, and then to generate the sum
ofall product terms by a sequence of log, N shuffic-add operalions.

(@) Show the major components and interconnection structure of the desired SIMD machine for
the size of N = 8,

(b) Figure out the exact sequence of SIMD machine instructions needed to carry out ihe shuffle-
multiply sequence in Table 5.6, The shuffie instruction is used 1o generate the successive mask vectors.
The PE operates by broadcasting the successive multipliers, x. x', and x*, retrieved from the cighth
data register,

(¢) Before entering the shuffle-add sequence, the cighth data register should be reset 10 zero.
Repeat question (b) for the summing sequence. At the end, the final sum can be retrieved from any one
of the eight PE registers.

(d) Explain the advantages of using the shuffie interconnection network for the implementation
of the polynomial evaluation algorithm, as compared with the use of the Illiac mesh network for the
same purpose.

4 mask flag. The machine is equipped with both broadcasting and masking capabilities (instructions). To




CHAPTER

SIX

SIMD COMPUTERS AND PERFORMANCE
ENHANCEMENT

This chapter is devoted 1o array-structured SIMD computer systems. Three
milestone array processors, Illiac-1V, BSP, and MPP, will be studied in detail.
These systems represent two decades of development of array processors. The
three systems differ not only in their hardware-software structural features but
also in their programming and application requirements. The Iliac-I1V uses local
memories attached to the processing elements. The BSP has parallel memory
modules shared by all arithmetic elements. The Illiac-1V uses the mesh network
and the BSP uses the crossbar network. The MPP is a bit-slice array processor
built with VLS] technology.

After studying these SIMD computers, we discuss general methods to enhance
the performance of SIMD array processors. These include parallel memory
allocation, language extensions for array processing, and improvement of the
system throughput. Finally, multiple-SIMD computer organizations are pre-
sented for parallel vector processing in multiarray processors with shared
resources,

6.1 THE SPACE OF SIMD COMPUTERS

In this section, we review major SIMD computers that have been constructed,
designed, or proposed up to early 1983, We use the term array processor exclusively
for SIMD computers using conventional (nonassociative) random-access memory
and the term associative processor for SIMD computers usin £ associative memory,

REA)
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We divide the space of SIMD computers into five subspaces, based on word-slice
sind bit-slice processing and the number of control units used:

Word-slice array processors
Bit-slice array processors
Word-slice associative processors
Bit-slice associative processors

Multiple-SIMD computers

Known SIMD computers in each class will be briefly surveyed below, among
which only the llliac-1V, the BSP, and the MPP will be described in detail. SIMD
computer architectures and example systems are summarized in Table 6.1, Section
numbers are identified within the parentheses for SIMD computers covered in
this book. For those systems that are not covered, major reference books and
articles are identified by the author’s name and the year of publication.

6.1.1 Array and Associative Processors

In 1958, Unger conceived a computer structure for spatial problems. The Unger
spatial computer is conceptually shown in Figure 6.1. A two-dimensional array of
PEsis controlled by a common master. Unger's machine was proposed for pattern-
recognition applications. The concept of lock-step SIMD operation was further
consolidated in the Solomon eomputer proposed by Slotnick, et al., in 1962. The
Solomon computer, though never built, motivated the development of the Illiac
series and many later SIM D machines. In 1965, Senzig and Smith designed a vecror
arithmetic multiprocessor (VAMP) which consists of a linear array of PEs with
shared memory modules and a shared arithmetic pipeline, as illustrated in Figure
6.2, Each PE is a virtual processor, having only a few working registers in it. This
pipeline-array processor was designed to save hardware in vector processing.

The Illiac-1V evolved from several predecessors in the Illiac series. It was the
first major array supercomputer developed in the late 1960s, We shall study the
Iliac-IV system and its successor system, the BSP, in Section 6.2. Both systems are
no longer operational. However, we wish to learn the design methodologies and
the application experiences accumulated with the development of these two
systems. In 1979, two proposals were made to extend the Illiac IV-BSP archi-
tecture to meet the future demand of gigaflop machines, The Phoenix project
suggested a multiple-SIMD computer consisting of 16 Illiac-IV arrays with a total
of 1024 PEs. Burrou;.hs proposed an array architecture which upgrades the BSP
to 512 PEs shaging 521 memory modules. This Burroughs computer proposal was
for the Numerical Acrodynamic Simulation Facilities demanded by the NASA
Ames Research Center in the United States.

Several bit-slice array processors have been developed in Eumpc and the
United States. The latest CLIP-4 is a bit-slice array processor built with a cellular
mesh of 96 < 96 PEs with cight neighbors per PE. The CLIP series is designed for
bit-slice image-processing applications. The Distributed Array Processor (DAP)
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Table 6.1 SIMD computer systems

Computer Architecture! Developer and references

Unger wos array Proposed by Unger (1958)

Solomon WOSs arriy Propgied by Slotnick (1962)

VAMP WOS array Proposed by Senzig and Smith (1965)

ILLIAC WOs array* Iliac-1V operational 1972 (Section 6.2)

BSP WOS array Developed by Burroughs and suspended in
1979 (Section 6.2)

CLIP bis array Developed at Universiny College,
London, See Dull (1976)

DAP bis array Developed by ICL, England,
section 3.3 in Hockney and Jesshope
(1981)

MPP bis array Developed by Goodyear Aerospace
(Section 6.3)

PEPE WOS dss Developed by Burroughs Corp, and System
Dev. Corp. (Section 5.4.2)

STARAN bis ass Developed by Goodyear Aerospace Corp.
(Section 5.4.2)

OMEN bis ass Developed by Sanders Associates,
chapter 7in Thurber ( 1976)

RELACS bis ass Proposed for database machine in Berra
and Oliver (1979)

MAP wos MSIMD Proposed by Nutt (1977) (Section 6.4.4)

PM* wos MSIMD Proposed by Briggs and Hwang et al,
(1979) (Section 6.4.4)

Phoenix wos MSIMD Proposed by Feierbach and Stevenson
{1979)

NASF WOS array Proposed in Stevens (1979)

' wos (word slice). bis (bit slice), a5 (assocntive), array (uiray processor),

¥ Original Mlise design had MSIMD with 4 €L and 256 PEs.

was developed by International Computer Limited in England. The DAP can be
constructed in groups of 16 PEs in various sizes, such as 32 x 32, 64 x 64, 128 x
128 and 256 < 256. The MPP is a 12§ x 128 bit-slice array processor, to be
described in Section 6.3. The MPP represents state-of~the-art construction of
large-scale SIMD computers in the carly 1980s. It will be used to process satellite
images for NASA applications.

Four associative processors are listed in Table 6.1. The PEPE is the only
word-slice associative processor that we know of. The rest are bit-slice array
processors. In Thurber (1976), details of the PEPE, the STARAN, and the OMEN
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i 4 et

Master comrol

Figure 6.1 Unger's spatial computer concept, (Courtesy of Proc. of IRE, October 1958.)

are given. At present. most associative processors are designed to perform fast
information retrieval and database operations. The RELACS is an associative
database machine proposed by rescarchers at Syracuse University in 1979. It is
based on using staged memory between the disks and the host processor. Associa-
tive memories are used to implement relational database operations. We have
already studied the PEPE and the STARAN architecture in Section 54.2. The
STARAN is the only commercial associative processor that has several installa-
tions in operation at present,

6.1.2 SIMD Computer Perspectives

It is quite clear that SIMD computers are special-purpose systems. For a specific
problem environment, they may perform impressively. However. array processors
have some programming and vectorization problems which are difficult to solve.
The reality is that array processors are not popular among commercial computer
manufacturers. The performances of several array processors are compared in
Figure 6.3. Only the peak performance is indicated under ideal programming and

résource allocation conditions. As the size of the PE-array increases, the per-
formince should increase lincarly. Of course. the peak speed is also a function of
the word length especially for bit-slice operations. For vector processing, the
performance depends also on thie vector length.
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Virtual
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Figure 6.2 The vector arithmetic multiprocessor (VAMP) proposed by Senzig and Smith. (Courtesy of
AFIPS Proc. FICC, 1965.)

Multiple-SIMD (MSIMD) computers form a special subclass of MIMD
computers. Multiple instruction streams exist in a multiple-array processor.
Each instruction stream handles multiple data sets, as does an SIMD array. The
iac-IV was originally proposed as an MSIMD machine. There are also other
MSIMD computers, such as the Pheonix project and the PM* proposed in the
literature. We shall briefly introduce these systems in Section 6.4.4. The MSIMD
computers can offer higher application flexibility than can a single SIMD machine.
So far, none of the proposed MSIMD machines has been built.

Listed below are some application areas that have been challenged or suggested
for array processors and, in particular, for the liac-1V, the BSP. the MPP, and
the STARAN systems:

» Matrix algebra (multiplication, decomposition, and inversion)
» Matrix cigenvalue calculations

« Linear and integer programming

+ Geeneral circulation weather modeling

¢ Beam forming and convolution
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Figure 6.3 The family tree of SIMD array processors (numbers in brackets are estimated peak performance
in mflops).

« Filtering and Fourier analysis

« Image processing and pattern recognition
e Wind-tuned experiments

= Automated map generation

 Real-time scene analysis

Some of these applications will be studied with the architectural descriptions in
subsequent sections. The above listing is by no means exhaustive. Most of these
- applications need to process spatially distributed data.

6.2 THE ILLIAC-IV AND THE BSP SYSTEMS

Presented below are the system architecture, hardware and software features, and
application requirements of the Illiac-IV and the BSP computer systems. The
Illiac-1V system was developed at the University of Tllinois in the 1960s. The
system was fabricated by the Burroughs Corporation in 1972, The original objective
was to develop a highly parallel computer with a large number of arithmetic units
to perform vector or matrix computations at the rate of 10” operations per second.
In order to achieve this rate, the syslem was to employ 256 PEs under the super-
vision of four CUs. Due Lo cost escalation and schedule-delays, the system was—

ultimately limited to one quadrant with 64 PEs under the control of one CU. The
speed of the 64-PE quadrant is approximately 200 million operations per second,
The Hliac-1V computer has been applied in numerical weather forecasting and in
nuclear engineering research, among many other scientilic applications.
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6.2.1 The llliac-IV System Architecture

The 64 PEs in the Iliac computer are interconnected as a two-dimensional mesh
network, shown in Figure 6.4. The PEs are numbered from 0 to 63. The data flow
through the llliac-IV array includes the CU bus for sending instructions or data in
blocks of eight words from the PEMs to the CU. Data is represented in either 64-
or 32 bit floating-point, 64-bit logical. 48- or 24-bit fixed point, or 8-bit character -
mode. By utilizing these data formats, the PEs can hold vectors of operands with
64, 128, or 512 components. The instructions to be executed are distributed

throughout the PEMs. The operating system supervises the execution of instruc-
tions fetched from the PEMs.

Control unit
ADB Accumulators
ACARD
1 ACAR]
ACA -
. ACAR] Control unit bus
.
Simple
3] ALU
T
# Mode Common } Instruction
bit data i control
line y bus J path
LR R ]
4 A 4
Y Y \
PE, PE, PE,,
To PE To PE,
6 i
A A Routing A
C. -] 8 network B )
- R -5 - R +- aw i R
S S
X A X
D
A ' A
Y L | Y
1] ) 0
] 1
PEM, PEM, PEM,,
- - LR -
2047 2047 2047
Y Y i
vee

L

Figure 6.4 A 64-PE llliac IV array. (Courtesy of IEEE Proc, Bouknight et al., April 1972.)
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The common data bus is used to broadeast information from the CU to the
entire array of 64 PEs. For example, a constant multiplier need not be stored 64
times in cach PEM instead, the constant can be stored ina CU register and then
broadeast to each enabled PE. Special routing instructions are used to send
information from one PE register to another PE register via the routing network,
Standaid load or store instructions are used to transfer information from PE
registers to PEM. At most. seven routing steps are needed to transfer information
among the PEs via the mesh network. The soltware figures out the shortest routing
path in cach data-routing operation. The mode-bit line consists of one line coming
from the A register of each PE in the array. These lines can transmit the mode bits
of the D register in the array to the accumulator register in the CU. There are CU
instructions which can test the mask vector and branch on a zero or nonzero
conditirn.

The [lliac-1V communicates with the outside world through an 1/0 subsystem
(Figure 6.5), a disk file system, and a B6500 host computer which supervises a large
laser memory (10'2 bits) and the ARPA network link. The disk has 128 hieads, one
per track, with a 40-ms rotation speed and an effective transfer rate of 10? bits per
second. The B6500 manages all programmer requests for system resources. The
operating system, including compilers, assemblers, and 1/O service routines, are
residing in the B6500. As a total system, the Nliac-1V array is really a special-
purpose buck-end machine of the B6500. The ARPA net linkage makes the Illiac-1V
available to all members of the ARPA network.

The control unit (CU) of the Hliac-1V array performs the following functions
needed for the execution of programs:

1. Conltrols and decodes the instruction streams.
2. Transmits control signals 1o PEs for vector execution.
3. Broadcasts memory addresses that are common to all PEs.

lni!

bit
laser ARFA
memory network
A link

BASOO contral computer

L 4
r 1
Disk file . 170
system ] subsystem § i
Figure 6.5 The Illiac IV 1/0 System.
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4. Manipulates data words common to the calculations in all PEs.
5. Receives and processes trap or interrupt signals.

A block diagram of the CU is shown in Figure 6.6. The CU by itself is a scalar
processor. in addition to its capability of concurrently controlling the PE-array
operations. The instruction buffer (PLA) and local data buffer (LDB) are 64-word
fast-access buffers. The PLA is associatively addressed to hold current and pending
instructions. The LDB is a data cache with 64 bits per word. There are four
accurmulator registers (ACAR). The CU arithmetic unit performs 64-bit scalar

From PE memory

l
1512 s

Instruction Associative I;;::l
buffler = memory buffer
(PLA) {CAM) (LDS)
[
Y32
Instruction Program
REG counter
pravsaraulne isettsamenaanseoncnen s wiMRS Kibat bonieonioadas sriense dunssansehriiens e 1
i i
i 24} t6s 64 YoiY64 i
: ACARO Shift/Logie H
i 24Y {34 T unit (CULOG) H
: Address i
(ADVAST); | AC0 T [ :
!
H I_ ACAR 3 E
5 RE! ’
241 +64 [ 24
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(FINQ) (MSU)
24
i 64 Y24 -0.
Broadcast
data
ot
Control signals Common data bus 170 request Maode F/F
from PEs to PEs from 1/0 from PEs

Figure 6.6 Functional block disgram of the Illise IV control unit. (Courtesy of IEEE Proc. Bouknight
et al., April 1972))
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addition, subtraction, shift and logic operations. More complex and vector
arithmetic logic operations are relegated 1o the PEs. Address arithmetic is per-
formed by the 24-bit address adder. The final quene is used 1o stack the addresses
and data waiting to be transmitted to the PEs.

All instru®tions are 32 bits wide and classified as either CU instructions or

ADVAST decodes all instructions and executes the CU instructions. The A DVAST
constructs the necessary address and data operands after decoding a PE instruc-
tion. The PLA instruction buffer can hold 128 instructions, sufficient to hold the
inner loop of many programs,

A block diagram of the processing element is shown in Figure 6.7. The PE
computes with the distributed data and reforms local indexing for skewed memory
fetch. Major components in a PE include:

L. Four 64-bit registers: A is an accumulator, B is the operand register, R is the
data-routing register. and § is a general-storage register,

2. An adder; multiplier. a logic unit, and a barrel switch for arithmetic, boolean.
and shifting functions, respectively.

3. A 16-bit index register and an adder for.memory address modification and
control.

4. An 8-bit mode register to hold the results of tests and the PF masking infor-
mation.

Each PE has a 64 bit wide routing path to four neighbors. To minimize the
physical routing distance, the PEs are grouped as shown in Figure 6.7. This
drawing has been logically described in Figure 6.8 for a smaller network size.
Routlng by a distance of plus or minus eight occurs interior to cach group of eight
PEs. The CU data and instruction fetches require blocks of eight words, which
are accessed in parallel. The individual PEM is a thin-film memory with a cycle
time of 240 ns and an access time of 120 ns. Each has a capacity of 2048 words,
Each PEM is independently accessible by its attached PE, the CU. or other IO
connections. The computing speed and memory of the [liac-1V ATTaYys require a
substantial secondary storage for program and data files, A backup memory is used
for programs with data sets exceeding the fast-memory capacity.

6.2.2 Applications of the Illiac-1V

The Hliac-IV was primarily designed for matrix manipulation and for solving

— partial-differential-equations. Many ARPA net users attempt to use the Illiac-1V
for their own applications. The main difficulties in programming the Illiac-1V are
the exploitation of identical arithmetic computations in user programs and the
proper distribution of data sets in the PEMs to allow parallel accesses. In this
section. we examine several programming problems of the liac-1V.
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Figure 6.7 The internal structure of the processing element in Illiac 1V. (Courtesy of JEEE Proc. Bouk-
night et al., April 1972.) .
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Figure 6.8 The lliac 1V routing network. (Courtesy of JEEE Trans. Compurers, Barnes et al., August
1968.)

In a conventional serial computer, the addition of two arrays (vectors) is
realized by the following Fortran statements:

DO 100 1=1,N
100 A(1) =B(1) +C(l) (6.1)

These two Fortran statements will be com piled into a sequence of machine instrue-
tions which include the initialization of the loop, the Tooping-control instructions.
the component-addition instruction, and the storage of the result. The initialization
instructions are outside the loop. All the remaining machine instructions must be
executed N times in the loop.

The Nliac-1V can perform the additions in the loop simultaneously by involving
all 64 PEs in synchronous lock-step fashion. The data must be allocated in the
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PEMs to support parallelism in the PEs. We consider below the programming of
the computations in Eq. 6.1 on the Hliac-1V.

Example 6.1

Case 1: N = 64 (The array matches the problem size) Only three Illiac-1V
machine instructions are necded to implement the Eq. 6.1 loop. The 64
components of the A, B, and C arrays are allocated in memory locations «,
%+ 1. and = + 2 of the PEMs, respectively, as shown in Figure 6.9. The
machine instructions are:

LDA « + 2 (Load the accumulators of all PEs with the C array).
ADRN & + 1 (Add to the accumulators the contents of the B array)
STA = (Store the result in the accumulators to the PEMs)

Note that all the 64 loads in LDA, the 64 adds in ADRN, and the 64 stores in
STA are performed in parallel in only three machine instructions. This means
a speedup 64 times faster than a conventional serial computer.

Case 2: NV < 64 (The problem size is smaller than the array size) In thiscase, only
a subsct of the 64 PEs will be involved in the parallel operations. The same
memory allocation and machine instructions as in case 1 are needed, except
some of the memory space and PEs will be masked off, The smaller the value

5
PE, PE PE,,
RGA RGA RGA
L J L ] =3
L A A
! 1 1
Location 0
- - L]
- - -
L - -
Location a A1) A2) Alfd)
Location o + | Bl B(2) oo B(64)
Location a+ 2 an Q(2) (6d)
- -
- - -
. -
s "
Location 2047
PEM, PEM, PEM,,

Figure 6.9 Data allocation in PEMs to execate the program:
DO 101=1, 64
10 A(l) = R(l) = C()
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N compared 1o 64, the severer the idleness of the disabled PEs and PEMs in
the array.

Case 3:9V > 64 (The problem size is greater than the array size) The memory
allocation problem becomes much more complicated in this case. The case
of N = 66 is illustrated in Figure 6.10. The first 64 elements of the A, B and C
arrays are stored from locations a, ¢ + 2, and a + 4. respectively, in all PEMs,
The two residue elements A(65), A(66); B(65), B(66); and C(65), C(66) are
stored in locations « + 1.2 + 3,and x + 5, respectively, in PEM,, and PEM,,.
The unused memory locations are indicated by question marks. Six machine-
language instructions are needed to perform the 66 load, add, and store
operations:

L. Load the accumulator from location x + 4.

2, Add 1o the accumulator the contents of location » + 2.
3. Store the result to location a.

4. Load the accumulator from location o+ 5.

5. Add to the accumulator the contents of location % + 3,
6. Srore the result to location % + 1.

PE, PE, BT
RGA RGA RGA
e
y |
Y i ;o
Location 0
- .
- - -
- - -
Location o All) A(2) A(64)
Location o + | Al6S) A(66) ?
Location « + 2 (1) B(2) Bi64)
LR
Location o + 3 Bi65) B(66) 2 7
Location e« + 4 [QFD] an 164
Location oz + 5 C(65) C66) ?
- -
- - -
Location 2047 B ——
PEM, PEM, PEM,,

Figure 6.10 Data allocation in PEMs to execute the program.
DO 10 1 =1, 66
10 Afl) = R(1) + C(l)
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Thetworesiduedata items inthe A, B, and C arrays require three additional
Iliac instructions. In fact, the above six instructions can be used to perform
any vector addition of dimensions 65 < N < 128 in Illiac-1V. The particular
storage scheme shown in Figure 6.10 wastes almost three rows of storage
(62 x 3 = 186 words).

Next, we consider the implementation of a linear recurrence in the Hliac-IV:

DO 100 1=2,64
100 A(1)=B(l)+A(I-1) (6.2)

This recursive loop demands the following set of Fortran statements to be executed
sequentially:

A(2)=B(2)+A(1)
A3)=B(3)+A(2)

A(63)=B(63)+A(62)
A(64)=B(64)+A(63)

We can rewrite the above sequential statements as follows:
-

A(2)=B(2)+A(1)
A(3)=B(3)+B(2)+A(1)
A(4)=B(4)+B(3)+B(2)+A(2)

A(I.\l)=B(N]+B(N-1)+'"+B(2) +A(1)

The above 63 computations can be computed independently and simulta-
neously in the Illiac-1V. We write

k
Ak)y= A()+ Y B(I) for2<k <63 (6.3)
1=2
A Fortran code is given below to perform the above expanded computations:

S=A(1)
DO 100 K=2,64
S$=S5+B(K)

100 A(K)=S

The implementation of this decoupled Fortran program on the liac-1V
requires the following machine instructions, based on the memory allocation
shown in Figure 6.11.
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. Enable all PEs.

. All PEs load accumulators from memory location .

. Set index i + 0.

All PEs load registers from their accumulators.

All PEs route their register contents to the right for a distance of 2"
. Setindex j «— 2" — |, !

. Disable PEs from 0 through j.

. All enabled PEs add to accumulators the contents of routing registers,
Reseti+1i + 1.

10. Ifi < 6, go to step 4.

11. Enable all PEs.

12. All PEs store results in accumulators to memory location & + 1.

XN AN -

Figure 6.11 shows the status of data in the PEM. the accumulator, the routing
register, and the mode-status registers from those enabled and disabled instructions
after step 8 is executed, when i = 2. Parallelism has been revealed after decoupling
in this example. 3

Most of the Illiac-1V system software is executed by the host processor B6500.
This system manager performs the standard B6500 operations, handles user-
seeking Illiac-IV services, and implements the necessary features to support the
operation of the PE array, the disk-file system, and the I/O subsystem. The [lliac-1V
array can be visualized as the highest priority time-sharing user of the B6500 among
many users connected via the ARPA net. Results produced by the B6500 or by the
Illiac-1V programs may be printed locally or transmitted over the ARPA net to
remote output devices local to the user. The Illiac-I1V array has a small resident
operating system executed by its CU which will allow the fast processing of traps
and other special loading operations.

The Tlliac-1V operating system runs between a diagnostic mode and a normal
mode. The main task of the diagnostic mode is the testing and diagnosis of possible
faults in the I/O subsystem and in the llliac-1V array itself. The Illiac-IV operating
system consists of a set of asynchronous processes which run under the control of
the B6500 master-control program. The following events may take place when a
user submits an Illiac-1V job to the B6500; p

1. The B6500 translates Algol or Fortran programs into binary.input files to be
used by the Illiac-1V arra» processor.

2. The Illiac-1V programs written in Ask, Glypnir, or llliac-IV Fortran will
operate on the files prepared by the B6500 programs and prepare binary
output files,

3. The B6500 transforms the binary files from the Illiac-1V to the reguired external
form for use or storage. - i

4. An Illiac control-language program contro’s the operating system for the job
which it defines.

The B6500 programs and the Illiac-1V programs communicate via the disk
files (for data) and via the 48-bit path for CU interrupt signals. The protocol for
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these signals over the 48-bit path is administered by two modules. The fiest is a
small executive program residing in the [liac-1V itself (called OS4)which processes
allinterrupts for the array, handles all communications between the user programs
and the rest of the operating system, and provides a few standard [unctions for use
in the arrayeThe 0S4 communicates with a module (known as the job partner) in
the B6500, which acts as a clearing house for all communication between the 084
and thus the user program running on the Iliac-1V. The Job partner thus initiates
all data transfers between the B6500 and the Hliac-1V disk. This arrangement
emphasizes the B6500 as an I/O processor for the Hliac-1V or, conversely. the
Illiac-1V as a peripheral processor for the B6500.

The Illiac-1V is very difficult to program properly if one does not banish
nearly all serial machine preconceptions and habits. It is worth pointing out the
differences between the Illiac-1V high-level languages and the existing languages:

1. The natural method of addressing PEMs is by rows of 64 words, since the words
of PEMs may be addressed in parallel. However, a column of words in one
PEM may not be addressed at once. )

2. The vector elements are operated upon based on the mode pattern. The Hliac-1V
language should allow efficient manipulation of the mode patterns,

3. The Hliac language should allow reasonable expression of routing and indexing
independently in each PE.

The design experiences of the 1liac-1V are very uscfulin developing later SIMD
array processors. The performance of the Illiac-1V is about two to four times faster
than the CDC-7600. The Hliac-IV has limited scalar capability; it uses a recircu-
lating mesh network with fixed size. Some of these difficulties have been overcome
in later array processors like the BSP and the MPP. We shall discuss some per-
formance enhancement methods, including the skewed-memory allocations and
some language extensions, in Section 6.4,

6.2.3 The BSP System Architecture

The BSP was a commercial atiempt made by the Burroughs Corporation beyond
the llliac-1V in order to meet the increasing demand of large-seale scientific and
engineering computers. [t improves in many aspects on the Miac-1V design. We
describe below the parallel architecture of the BSP and its conflict-free memory
organization. Even though the BSP has been suspended by Burroughs, it is 4
well-designed array supercomputer that we can still learn much from. The BSP
extends the array processing capability of the Illiac-1V to a4 vectorizing Fortran
machine. With & maximum speed of 50 megallops, the BSP was designed to perform
large-scale computations in_the fields of numerical weather prediction, nuclear
~ energy, scismic signal processing, structure analysis and econometric modeling.
The BSP is not a stand-alone computer. It is a back-end processor attached to
a host machine, a system manager, such as the B7800 depicted in Figure 6.12. The
motivation for attaching the BSP 10 a Sysicm manager is to free the BSP from
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B 7800/B 7700 system manager Scientific processor ¢
Charge-coupled device
Central Input-output | | 1.5M bytes/second (CCD)
processor processor [ data and code files file memory
(4 - 64M words)
.t
X ", 75M bytes/second
O s
m _’\“r 5 Parallel processor
9’,,;\9_ Instruction
'f‘,h_\:_ or control | Main memory
“ LA .:.}q\ memory (0.5 - BM words)
% 2 (256K words)
NS
.{5\\
Networks LY
W Instruction Arithmelic
processor [ elements

Figure 6.12 The Burroughs scientific processor attached to a host processor.

routine management and 1/O functions in order to concentrate on arithmetic
computations. The system manager provides time-sharing services, data and
program-file editing, data communication to remote job-entry stations, terminals
and networks, vectorizing compilh‘lg and linking of the BSP programs, long-term
data storage, and database-management functions. Major components in the
BSP include the control processor, the parallel processors, a file memory, parallel-
memory models, and the alignment network shown in Figure 6.13.

The control processor provides the supervisory interface to the system manager
in addition to controlling the parallel processor. The scalar processor processes
all operating system and user-program instructions, which are stored in the
control memory. It executes some serial or scalar portions of user programs with a
clock rate of 12 MHz and is able to perform up to 1.5 megaflops. All vector instruc-
tions and certain grouped scalar instructions are passed to the parallel processor
controller, which validates and transforms them into microsequences controlling
the operation of the 16 arithmetic elements (AEs). The bipolar control memory has
256K words with a 160-ns cycle time. Each word has 48 bits plus 8 parity-check
bits to provide the SECDED capability. The control and maintenance unit is an
interface between the system manager and the rest of the control processors for
initiation, communication of supervisory command and maintenance purposes.

The parallel processors perform vector computations with a clock period of
160 ns. All 16 AEs must execute the same instruction (broadcast from the parallel
processor controller) over different data sets. Most arithmetic operations can be
completed in two clock periods (320 ns). The BSP is capable of executing up to
50 megaflops. Data for the vector operations are stored in 17 parallel memory
modules, each of which contains up to 512 K words with a cycle time of 160 ns.
The data transfer between the memory modules and the AEs is 100 M words per
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Figure 6.13 Functional structure and pipelined processing in the BSP. (Couresy of IEEE Trans. Computers,

Lawrie and Vora, 1982.)

second. The organization of the 17 memory modules provides a conflict-free

memory that allows access to vectors of arbitrary length and with a skip distance

which is not a multiple of 17,

Memory-to-memory floating-point operations are pipelined in BSP. The
pipeline organization of the BSP consists of five functional stages. First, 16 operands
are fetched from the memory modules, routed via the inpur alignment network into
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the AEs for processing, and routed via the output alignment nerwork into the
modules for storage. These steps are overlapped, as illustrated in Figure 6.13.
Note that the input alignment and the output alignment arc physically in one
alignment network, The division shown here presents only a functional partition
of the pipeline stages. In addition to the spatial parallelism exhibited by the 16
AEs and the pipeline operations of the fetch, align. and store stages, the vector
operationsin the AEs can overlap with the scalar processing in the scalar processor.
This results in a powerful and flexible system suitable for processing both long
and short vectors and isolated scalars as well.

Both alignment networks contain full crossbar switches as well as hardware
for broadcasting data to several destinations and for resolving conflicts if several
sources seek the same destination. This permits general-purpose interconnectivity
between the arithmetic array and the memory-storage modules. It is the combined
function of the memory-storage scheme and the alignment networks that supports
the conflict-free capabilities of the parallel memory. The output alignment network
is also used for interarithmetic element switching to support special functions such
as the data compress and expand operations and the fast Fourier transform
algorithm.

The file memory is a semiconductor secondary storage. It is loaded with the
BSP task files from the system manager. These tasks are then queued for execution
by the control processor. The file memory is the only peripheral device under the
direct control of the BSP; all other peripheral devices are controlled by the system
manager. Scratch files and output files produced during the execution of a BSP
program are also stored in the file memory before being passed to the system
manager for output to the user. The file memory is designed to have a high data-
transfer rate, which greatly alleviates the 1/0-bound problem.

In summary, concurrent computations in the BSP are made possible by four
types of parallelism:

1. The parallel arithmetic performed by the 16 arithmetic elements

2. Memory fetches and stores, and the transm;ss:on of data between memory and
arithmetic elements

3. Indexing, vector length, and loop-control computations in the parallel processor
controller

4. The generation of linear vector operating descriptions by the scalar processor

The 16 AEs operate synchronously under the control of a single micro-
sequence in SIMD mode. Each AE has only the most primitive operators hard-
wired. The control word is 100 bits wide. Besides being a floating- poml. machine,
the AE has substantial nonnumaric capability as well,

Floating-point add, subtract, and multiply each take two memory clocks. The
use of two clocks balances the memory bandwidth with the AE bandwidth for
triadic operations. A triadic operation is defined as having three operands and one
result. The floating-point divide (requiring 1200 ns) is implemented by generating
the reciprocol in a Newton-Raphson iteration. ROMs exist in each AE to give
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the first approximations for the divide and the square root iterations, The foating-
point format is 48 bits long. 1t has 36 bits of a signiticant fraction and 10 bits of a
binary exponent. This gives 11 decimal digits of precision. The AE has double-
length accumulators and double-length registers in key places. This permits the
direct implemeftation of double-precision operators in the hardware. The AE
also permits software implementations of triple-precision arithmetic operations.
It has been estimated that 20 to 40 megaflops could be achieved for a broad range
of Fortran computations in the BSP.

6.2.4 The Prime Memory System

The BSP parallel memory consists of 17 memory modules, each with a 160-ns
cycle time. Since we access 16 words per cycle, this provides a maximum effective
10-ns memory-cycle time. This is well balanced with the arithmetic elements which
perform floating-point addition and multiplication at the rate of 320 ns/16 opera-
tions = 20 ns per operation, since each operation requires two arguments and
temporary registers are provided in the arithmetic elements.

Only array accessing (including 1/0) uses parallel memory, since programs
and scalars are held in the control memory. Thus, perfect balance between parallel
memory and floating-point arithmetic may be achieved for trial vector forms since
three arguments and one result (four memory accesses) are required for two arith-
metic operations. For longer vector forms, since temporaries reside in registers,
only one operand is required per operation. so there is substantial parallel-
memory bandwidth remaining for input and output of information.

The main innovation in the parallel memory of the BSP is its 17 modules, In
past supercomputers it has been common to use a number of parallel-memory
modules, but such memory systems are vulnerable to serious bandwidth degrada-
tion due to conflicts. For example, if 16 memories were used and a 16 x 16 array
were stored with rows across the units and one column in each memory unit, then
column access would be sequential.

The BSP offers a linear vector approach to parallelism, Memory addressing
methods of achieving such parallelism are deseribed in this section. The basic
quantity susceptible to parallelism in the BSP is the linear vector. A linear vector
is a vector whose clements are mapped into the main memory in a linear fashion,
The linear-vector components are separated by a constant distance d. For example,
in a Fortran columnwise mapping, columns have d = |, rows have d = n, and
forward diagonals have ¢ = n + 1. The manipulation of linear vectors in a BSP
utilizes both spatial and temporal parallelism.

A unique feature of the BSP is its conflict-free memory system which delivers
a uscful operand to each AE per each memory cycle. The distance between elements

ol a vector need not be unity. Therefore, DO T6ops may contain nonunity incre-
ments, or the program may access rows, columns, or diagonals of matrices without
penalty. Supercomputer designers have elected either to use memories with
severe access restrictions or have used expensive fast-memory parts to attain a
degree of conflict-free access through memory-bandwidth overkill.
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The hardware techniques used to ensure conllict-free access in the BSP
include a prime number of memory ports, full crossbar switches between the
memory ports and the AEs, and a special memory address generation which
computes the proper addresses for a particular address pattern. This address
pattern is the one used by orthodox serial computers. That is, each higher memory
address refers to the “next™ word in memory. With this pattern, the parallel
memory is completely compatible with all the constructs of present programming
languages. In particular, Fortran EQUIVALENCE, COMMON, and array-
parameter passing can be implemented in the same way as on a conventional
computer.

Consider a BSP-like machine with N AEs and M memory modules, where M
is a prime number. The modular number w specifies which memory unit a data
element associated with a linear address a is stored. This module number can be
computed by

= a(mod M) (6.4)

The address offset i within the assigned memory module is calculated by

o l—:? J (6.5)

Figure 6.14 shows a 4-by-5 matrix mapped columnwise into the memory of a
serial machine. For simplicity of illustration. assume N — 6 and M = 7 in the
hypothetical machine. (The BSP has N = 16 and M — 17.) The module and offset
calculations are shown in the illustration. The module number will remain con-
stant for a cycle equal to the number of AEs, then it will increment by one value,
The offset corresponds 10 repeated cycles of the same module with no value
repeating in one cycle and the length of the cycle equal 1o the number of memory
banks.

Example 6.2 Aslong as the number of AEs is less than or equal 1o the number
of memory banks, the sequence of offset values will cause a different memory
bank to be connected 10 each AE. Thus, each AE may recoive or send a uniaue
data object. The particular storage pattern produced in this six AE, seven
memory bank system for the 4-by-5 example array is shown in Figure 6.14.
The module and offset calculations for the second row of the array is explained
below. The starting address is 1 and the skip distance is = 4. We obtain the
following module numbers and address offsets:

u = 1(mod 7), S(mod 7), 9%(mod 7). 13(mod 7), 1 7{mod 7)
=1 5, 2 6, 3 (6.6)
The offsets within each memory module are obtained accordingly as
L&), L34 L3) Li2h 1)
O 8 T 2 2 (6.7)

The decision of using M = 17 memory modules for the N = 16 AEs will
provide conflict-free array access to most common array partitions and yet have

]

i

Il
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For example, if M=7, N =6, the 4 x5 array is mapped
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Array elements [": pl"u] ay I“-ll

Calrideadesdudfool o] )
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module

Figure 6.14 The BSP memory mapping for a linearized vector of matrix elements. (Courtesy of Burroughs
Corp. 1978.)

little redundant memory bandwidth, since only one memory module is unused per
cycle. Itis clear that conflict-free access to one-dimensional arrays is possible for
any arithmetic sequence index pattern except every 17th element. For two-

dimensional arrays with a skewing distance of four, conflict-free access is possible
for rows, columns. diagonals, back-diagonals. and other common partitions,
including arithmetic-sequence indexing of these partitions. The method can be
extended to higher numbers of dimensions in a straightforward manner.
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The unused memory cells are the result of having one less AE than there are
memory banks. However, the example case is not a useful occurrence. For the
real BSP with 16 AEs and 17 memory banks, division by 16 is much simpler und
faster than division by 17. One then pays the penalty of supplying some extra
memory to reach a’given usable size. The above equations yield an AE-centrist
vantage point. As long as the same set of cquations is always applied to the data
from the first time it comes in as I/O onward, then the storage pattern is completely
invisible to the user. This applies to program dumps as well because the hardware
always obeys the same rules.

Conflict does occur if the addresses are separated by an integer multiple of the
number of memory banks. In this case, all the valucs one wants are in the same
memory bank. For the BSP, this means that skip distances of 17, 34, 51, etc., should
be avoided. In practice, 51 is a likely problem skip. This is because it is the skip of
a forward diagonal of a matrix with column length 50. If conflict occurs in the BSP,
the arithmetic is performed correctly, but at 15 the normal speed. The system
logs the occurrence of conflicts and their impact on the total running time. This
information is given to the programmer for corrective action if the impact was
significant.

6.2.5 The BSP Fortran Vectorizer
The BSP has a total of 64 vector instructions, which can be grouped in four types:

» Array expression statements

» Recurrence and reduction statements

« Expand, compress, random store, and fetch

« Parallel data transmissions between control memory and file memory

Array expression statements include indexing and evaluating righthand side
array expressions ranking from monad to pentad (five righthand side operands),
plus the assignment of the resulting values to parallel memory. The array opera-
tions are performed in an element-by-clement fashion and allow scalars and arras
variables of one or two dimensions to be mixed on the righthand side. For example:

DO 51=1,30
DO 5J=7,25
5 X(LJ)=(A(LJ+1)«0.5+B(l1+1,J))
*X(1LJ+1)+C(J)

(6.8)

would be compiled as a single vector form. This vector form can be regarded as a
six-address instruction that contains the four array arithmetic-operation specifi-
cations and the assignment operation.
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Recurrence vector instructions correspond to assignment statements with
data-dependence loops. For example:

DO 31=1,25

3 Y()=F()*Y(1-1)+G(l) (69)

has a righthand side that uses a result computed on the previous iteration. This
recurrence produces an array of results while others lead to a scalar resull. For
example, a polynomial evaluation.by Horner's rule leads to the following reduction:

P=C(0)
DO 51=1,25
5  P=C(l)+YsP. (6.10)

The third type of vector instructions involves various sparse-array operations.
For example, in the case of a Fortran variable with subscripted subscripts, e.g.,
A(B(I)), no guarantee can be made concerning conflict-free access to the array A.
In this case, the indexing hardware generates a sequence of addresses that allows
access to one operand per clock. These are then processed in parallel in the arith-
metic elements. Such accesses are called random store and random feich vector
forms.

Sparse arrays may be stored in memory in a compressed form and then
expanded to their natural array positions using the input-alignment nctwork.
Alter processing, the results may be compressed for storage by the output-align-
ment network. These are called compressed vector operand and compressed vector
result vector forms and use control-bit vectors that are packed in such a way that
one 48-bit word is used for accesses to three 16-clement vector slices.

The fourth class of vector instructions is used for 1/O. Scalar and array assign-
ments are made to control memory and parallel memory, depending on whether
they are to be processed in the scalar processor unit or the parallel processor,
respectively. However, it is occasionally necessary to transmit data back and
forth between these memories. Transmissions to file memory are standard 1/O
types of operations. In Table 6.2, representative vector instructions in the BSP
are listed. These four types of vector instructions comprise the entire array functions
performed by the BSP,

In ordinary Fortran programs, it is possible to detect many array operations
that can easily be mapped into BSP vector instructions. This is accomplished in
the BSP compiler by a program called the Fortran vectorizer. We will not attempt
a complete description of the vectorizer here, but we will sketch its organization,
emphasizing a few key steps.

First, consider the gencration of% program graph based on data dependencies.
Each assignment statement is represented by a graph node. Directed arcs are

drawn between nodes to indicate that one nodeis-to-be-executed-before-another.
The BSP does a detailed subscript analysis and builds a high-quality graph with
few redundant arcs, thereby leading to more array operations and fewer recur-
rences.
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Example 6.3 Consider the following program which explains the problem of
scoping and data dependence:

DO 51-1,25
A(l)=3+B(1) .
DO 3J=1,35 (6.11)
X(LI)=A(1)*X(1.J-1) +C()
B(1)=2+B(1+1)

A dependence graph {or (his probiem is shown in Figure 6,154, where
nodes are numbered according to the statement label numbers of the program.
Node 1 has an arc to node 3 because of the A(/) dependence, and node 3 has
a self-loop because X(7, J — 1)is used one J iteration afier jt is generated. The
crossed arc from node 1 1o node § is an antidependence arc indicating that
statement 1 must be executed before statement 5 to ensure that B(/) on the

statements,

Given a data-dependence graph, loop control can be distributed down to
individual assignment Statements or collections of statements with internal
loops of data dependence. In our example, there is one loop (containing just
one statement) and two individual assignment statements, After the distri-
bution of loop control. the graph of Figure 6.154 may be redrawn, as shown
in Figure 6.154, which can easily be mapped iito RSP v ClOT BsFUClidin.
Statements | and 5 go directly into drray-expression vector forms since they
are both dyads.

Besides vectorizing loops which do not contain branches or eyelie depen-
dencies, the BSP vectorizer (executed by the system manager) can issue vector
instructions even for BRANCH and IF statements as long as the branch paths
are known to be under the control of bit vectors. The vectorizer also detects cyclic
dependencies and converts them to vector recurrence statements. The following
example shows the vectorization of g program containing an IF statement in a
loop:

DO 11=1,92,
DO J=146 (6.12)
1 IF(A(I.J).LT.0)B(1.J) =A(1,J) +3.5.

This loop can be mapped into a single drray-expression-statement vector
form with bit-vector control that performs the parallel tests and makes the appro-
priate assignments 1o B(J. J). By using loop distribution, many of the IFs found
in ordinary Fortran programs can be transformed into vector operations that

: :



(@) A data dependence graph

=

(4 Graph with distributed loop control

Figure 6.15 Dependence graph description of the Loop
program in Eq. 6.11.

420
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Table 6.2 Veetor forms in the BSP

e S
MONAD It aceepts one vector sei eperand, e opd
does vne monadic DpCration on g1,
and produces one veetor sep result
DYAD Tt aceepts two veetor set operinds, Ze—Adop B

does one operation on them, and
produces one veclor set resuli

VSDYAD Itis similar to the DYAD except Z—AopB
eperand B s a scalar.

EXTENDED DYAD 1y ACCepls two veclor sel operands, (21, 22) A op B
does one operation, and produces
two vector set results,

DOUBLE PRECISION It aceepts four vector set operands (Z1,22) — (A1, AL op (BI1, B2)
DYAD (e, lwo double-precision
operands), performs one operition,
and produces two vector set results,

DUAL-DYAD It aceepts four veetor st operands,  Z —~ Aop, B Y o Cop,D
does two operations, and produces
WO veclor sel results,

TRIAD It uceepts three vector set operands,  Z « (A op, B) op, C
does two operations, and produces
one vector set result.

TETRADI It accepts four set operands, does Z « ((A op, B)op, C) opy D
three operations, and produces one
vector set result,

TETRAD? It s similar to the TETRADI except  Z «— (A op, B) op; (C op, D)
for the order of operations
PENTADI It accepts five vector set operands, Z—(((Aop, B)op, C)op, D) op, E

does four operations, and
produces one vector set result,

PENTAD2 1tis similar to the PENTADI except 2+ ((Aop, B)op, (Cop,D))op, E
for the order of operations

PENTAD3 It1s similar to the PENTADI except /o (A op, Biop, Clopy(Dop, E)
for the order of operations,

AMTM It s similir 1o the MONADandis 7 « op A

wsed o transmit from parallel
Memory 1 control memaory

TMAM It sccepis 6 vector set operands Z o A0, 0y, A2(D, 0y,
from control memory Lo transmit A0, 0), A4(0, 0),
10 parallel memory, AS(0,0), ABI0, 0)

COMPRESS It aceepis a vector ser operand, X « A, BVO .

vompresses it under a it vector
operand control, and produces i
vector sel result,

EXPAND It accepts a vector operand, expands it under a bit vector X o V. BVO
control. and produces a vector set resull
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Table 6.2 (Cont.)

MERGE It is the same as the EXPAND except that the vector set X« V. BVO)
result elements corresponding to a zero bit in BV are
not changed in the parallel memory.

RANDOM FETCH It performs the operation Z(j, k) « U, k), where U is
a vector and s an index vector set

RANDOM STORE It performs the operation X(I(, k)) — A(j, k), where X is a
vector and 115 an index vector set.

REDUCTION It aceepts one veetor sel operand and produces one vector
result given by
XY = AGLOY op AL 1) op AG, 2) op A, 3). .. A, L),
where op must be a commutative and associative opzrator

DOUBLE PRECISION It accepts two vector set operands (one double-precision
REDUCTION vector set) and produces two vector results (one d.p.
vectar) given by (X, (1), Xy() — (A4,(i, 0),
A0 00 op (A, G, 1), A5i, 1)) op . (A, (i, L), Aq(i, L)),
where op must be a commutative and associative operator,

GENERALIZED DOT It accepts two vector set operands and produces one vector
PRODUCT result given by
AU = (AU, 0) opy 81, 0)) op, (AL 1) opy BG, 1))
opy ... {Ali, Lyopy B(i. L)}, where op; must be a
commutative and associative operator.

RECURRENCE-IL It accepts two vector set operands and produces one vector
result given by X(#) « ({...{(B(i, 0) op, A(i, 1))
opy B, 1)} op, ...} op, A(l, L)) op, B(i, L) where op,
can be ADD or IOR and op; can be MULT or AND.

PARTIAL It accepts one vector set operand and produces one vector
REDUCTION sct result given by Z(i, /) «— Z(i, j — 1) op AU, ), where
op must be a commutative and associative operator.
RECURRENCE-1A It accepts two vector set operands and produces one vector

set result given by Z(i, /) « {2(i,j — 1) op, A(i, )} op;
B(i, f). where op; can be MULT or AND and op, can be
ADD or 10R.

allow substantial speedups on the BSP. Of course, there is also a residual set of
IFs that must be compiled as serial code. Fortran language extensions have also
been made in the BSP to facilitate vector processing.

6.3 THE MASSIVELY PARALLEL PROCESSOR
n.

A large-scale SIMD array processor has been developed for processing satellite
imagery-at-the NASA-Goddard-Space Flight Center. The computer has been —
named massively parallel processor (MPP) because of the 128 x 128 = 16.384
microprocessors that can be used in parallel. The MPP can perform bit-slice
arithmetic computations over variable-length operands, The MPP has a micro-
programmable control unit which can be used to define a quite flexible instruction
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set for vector, scalar, and 1/O operations. The MPP system is constructed entirely
with solid-state circuits, using microprocessor chips and bipolar RAMs,

6.3.1 The MPP System Architecture

In 1979, NASA Goddard awarded a contract to Goodyear Aerospace to construct
4 massively parallel processor for image-processing applications. The major
hardware components in MPP are shown in Figure 6.16. The array unit operates

/—’ s
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128 bit 128 bit

input _g _E output

interface ;: Array unit (ARU) E interface
o 7]
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PDMU ARU External PDMU ARU
input Swilching control oulput
register interface regisier
Control * stalus [_
Array control
unit {ACL)
I*rog:ams. "
data Control Slatus
? { Program and data 1
management umit
(PDMU) >
. Alpha ;
r:;fncm Disk numeric l-rlim.rr_-r
terminal e

t 3  External computer [ )

Figure 6.16 The system architecture of the MPP system. (Courtesy of IEEE Trans, € omputers, Batcher,
1980,)
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with SIMD mode on a two-dimensional array of 128 x 128 PEs. Each PE s
associated with a 1024-bit random-access memory. Parity is included to detect
memory faults. Each PE is a bit-slice microprocessor connecled 1o its neares|
neighbors. The programmer can connect Opposite array edges or leave them open
so that the array topology can change from u planc 10 a horizontal cylinder, a
vertical cylinder, or a torus. This feature reduces routing time significantly in a
number of imaging applications,
For improved maintainability, the array has four redundant columns of PEs,
The physical structure of the PE array is 132 columns by 128 rows. Hardware
faults are masked out with circuitry to bypass a faulty column and lcave a logical
array structure of 128 x 128. Arithmetic in cach PE is performed in bit serial
fashion using a serial-by-bit adder and a shif register to recirculate operands
through the adder. Thisincreases the speed of multiplication, division. and floating-
point operations significantly. The PE array has a cycle time of 100 ns. The array
control unit (ACU) is microprogrammable. It supervises the PE array processing,
performs scalar arithmetic, and shifis data across the PE array,
The program and data management unit is a back-end minicomputer. It manages
data flow in the array, loads programs into the controller, executes system-test and
diagnostic routines, and provides program-development facilities. A Digital
Equipment PDP-11/34 minicomputer is used with interfaces to the array and
the MPP external computer interface. Peripherals include a magnetic tape drive
(9-track, 800/1600 BPI), two 67-megabyte disks, a line printer,and an alphanumeric
terminal with CRT display. The I/O interface can reformat the data so that images
are transferred in and out of the array in specific formats. These registers arc built
with the mmltidimensional access memories developed earlier in the STARAN
computer. The MDA memory provides data buflering as well as performing some
data manipulations between the PE array, the database-management machine,
and the external host computer.
The MPP system has more than one operational mode. In the stand-alone
mode, all program development, execution, test, and debug is done within the
MPP system and controlled by operator commands on the user terminal. The
array can transfer data in and out through the disks and tape units or through the '
128-bit MPP interfaces. In the on-line mode, the external computer can enter
array data, constants, programs and Jjob requests. It will also receive the output
data and status information about the system and the program. Data can be
transferred between the MPP and the external computer at 6M bytes per second.
In the high-speed data mode, data is transferred through the 128-bit external
interfaces at a rate of 320M bytes per second,
The PEs are bit-slice processors for processing arbitrary-length operands. The
array clock rate is 10 MHz With 16,384 PEs operating in parallel, the array has a 4
very high processing speed (Table 6.3). Despite the bit-slice nature of each PE, the
floating-point speeds compare favorably with other ~_fast_number-crunching
machines:Figure 6,17 shows the array unit. which includes the PE array, the
associated memory, the control logic, and [/0 registers. The PE array performs all
logic, routing, and arithmetic operations. The Sum-OR module provides a zero
test of any bit plane. Control signals from the array controller are routed to all
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Table 6.3 Speed of typical operations in M PP

Peak speed

(mops*)

Addition of arrays

8-bit integers (9-bit sum) 6553

12-bit integers (13-bit sum) 4428

32-bit floating-point numbers 430
Mudtiplication of arrays (element-by-element)

#-bit integers (16-bit product) 1861

12-bit integers (24-bit product) 910

32-bit floating-point numbers 216
Muliiplication of array by scalar

B-bit integers (16-bit product) 2340

12-bit integers (24-bit product) 1260

32-bit floating-point numbers 373

* Million operations per second (mops)

PEs by the fan-out module. The corner-point module selects the 16 corner elements
from the array and routes them to the controller. The 1/O registers transfer array
data to and from the 128-bi 1/O interfaces, the database machine, and the host
computer. Special hardware features of the array unit are summarized below :

- Random-access memory of 1024 bits per PE

Parity on all array-processor memory

Extra four columns of PEs to allow on-line repairing
Program-controlled edge interconnections

Hardware array resolver to isolate array errors

- A buffer memory with corner-turning capability

DB -

128 128 Processing 128 128
> inpul clemeni = Oulpul p—ptp
reg array reg

—

Disable
M-CLK

control
S.CLK
enahble

'_ LOR ] L Fan-oul module —I register Y
#s J 33* |$ *IO#!S*I tm PDMU data

& control bus

Resolve LOR o

ADDR v T IR

Figure 6.17 The PE array and supporting devices of the array wnit. (Courtesy of Goodyear &t‘l‘u'\pm.:t'- 3
Corp.)

MEM-ADDE
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Each PE in the array communicates with its nearest neighbor up, down, right,
and left  the same routing topology used in the Hliac-1V. The ability to access
data in different directions can be used 1o reorient the arrays between the bit-plane
format of the array and the pixel format of the image, The cdges of the array can
be left open 10 have a row of zeros enter from the left edge and move to the right
or to have the opposite edges wrap around. Since cases have been found where
open edges were preferred and other cases have been found where connected
edges were preferred, it was decided to make edge-connectivity a programmable
function,

A topology register in the array control unit defines the connections between
Opposite edges of the PE array. The top and bottom edges can either be connected
or lelt open. The connectivity between (he left and right edges has four states: apen
(no connection), cylindrical (connect the lefi PE of cach row to the right PE of the
same row), open spiral (for 1 < n < 127, the lefi PE of row n is connected to the
right PE of row n — 1), and closed spiral (like the open spiral, but also connects
the left PE of row 0 to the right PE of row 127). The spiral modes connect the 16,384
PEs together in a single linear-circuit list.

The PEsin the array are implemented with VLS| chips. Eight PEs arc arranged
ina2 x 4subarray on a single chip. The PE array is divided into 33 groups, with
each group containing 128 rows and 4 columns of PEs. Each group has an
independent group-disable control line from the array controller. When a group
is disabled, all its outputs are disabled and the groups on either side of it are joined
together with 128 bypass gates in the routing network,

6.3.2 Processing Array, Memory, and Control

Each PE has six 1-bit flags (A, B, C. G, P, and S), a shift register with a pro-
grammable length, a random-access memory, a data bus (D), a full adder, and some
cembination logic (Figure 6.18). The P register is used for logic and routing opera-
tions. A logic operation combines the state of the P.register and the state of the
data bus (D) to form the new state of the P register. All 16 boolean functions
of the two variables P and D are implementable. A routing operation shifts the
state of the P register into the P register of a neighboring PE (up, down, right, or
left). The G register can hold a mask bit that controls the activity of the PE. The
data-bus states of all 16,384 enabled PEs are combined in a tree or inclusive-OR
elements. The output of this tree is fed to the ACU and used in certain operations
such as finding the maximum or minimum value of an array in the array unit.
The full adder, shift register, and registers A, B, and C are used for bit serial
arithmetic operations. To add two operands, the bits of one operand are se-
quentially fed into the A register, least-significant-bit first : @ rresponding bits of
the other operand are fed into the P register. The full adder adds the bits in A and

P 10 the carry bits in the C-register-to-form the sum and carry bits. Each carry bit
is stored in C to be added in the next cyele, and each sum bit is stored in the B
register. The sum formed in B can be stored in the random-access memory and or
in the shift register. Two's complement subtaction is performed.
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Figure 6.18 Functional structure of a processing element (PE) in the MPP, (Courtesy of EEE Trans.
Computers, Batcher, September 1980.)
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Multiplication in the MPP is a series of addition steps where the partial
product is recirculated through the shift registers A and B, Appropriate multiples
of the multiplicand are formed in P and added to the partial product as it recircu-
lates. Division in the MPP is performed with a nonrestoring division algorithm.
The partial dividend is recirculated through the shif register and registers A and B
while the divisor or jts complement is formed in P and added to it. The steps in
Roating-point addition include comparing exponents, placing the fraction of the
operand with the leqst exponent in the shift register, shifting 1o align the [raction
with the other fraction, storing the sum of the fractions in the shif register and
normalizing i1, Floating-point multiplication includes the multiplication of the
fractions, the normalization of the product, and the addition of the exponents,

The S register is used to input and output array data. While the PEs are
processing data in the random-access memories, suceessive columns of mput data
can be shifted from the left into the array via the S registers. Although § registers
in the entire plane are loaded with data, the data plane can be dumped into the
random-access memories by interrupting the array processing in only one cycle
time. Planes of data can move from the memory elements to the § registers and
then be shifted from left 10 right column by column. Up to 160 megabytes/s can
be transferred through the array 1/0 ports. Processing is interrupted for only
100 ns for each bi plane of 16,384 bits to be transferred,
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The random-access memory stores up to 1024 bits per PE. Standard RAM
chips irg available 1o expand the memory planes. Parity check ing is used to detect
Mmemory faults. A parity bit is added to the cight data bits of cach 2 x 4 subarray
of PEs. Parity bits are generated and stored for each memory-write cycle and
checked when the memories are read. A parity error sets an error flip-flop asso-
ciated with cach 2 x 4 subarray. A tree of logic clements gives the array controller
aninclusive-OR of all error flip-flops. By operating the group-disable control lines,
the controller can locate the group containing the error and disable it.

Standard 4 x 1024 RAM chips are used for the PE memories. As shown in
Figure 6.19,2 x 4 subarrays of PEs are packaged on a custom VLS] CMOS-S0S
chip. The VLSI chip also contains the parity tree and the bypass gates for the
subarray. Each printed circuit board contains 192 PEsinan 8§ x 24 array. Sixteen
boards make up an array shice of 128 x 24 PEs. Five array slices (80 boards) make
up the bulk of the entire PE array. The remaining 12 PE columns are packaged on
16 1'O-processor bourds. which also contain the topology switches, the 1/O
switches, and the 1/O interfice registers. The 96 boards of the array are packaged
in one cabinet with forced-air ceoling.

Like the control unit of other array processors, the array controller of the
MPP performs scalar arithmetic and controls the operation of the PFs. It has
three sections that can operate in parallel, as depicted in Figure 6.20. The PE

North neighbors
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Figure 6.19 The interconnection of VILSI PE and RAM chips in the MPP array, (Courtesy of Goodyear
Aerospace Corp, 1980.)
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Figure 6.20 The control unit of the PE array in MPP.

control performs all array arithmetic in the application program. The 1/O control
manages the flow of data in and out of the array. The main control performs all
scalar arithmetic of the application program. This arrangement allows array
arithmetic, scalar arithmetic, and input-output to take place concurrently.

The PE control generates all array control signals except those associated with
the 1/O. It contains a 64-bit common register to hold scalars and eight 16-bit index
registers to hold the addresses of bit planes in the PE memory elements to count
loop executions and to hold the index of a bit in the common register. The PE
control reads 64-bit-wide microinstructions from the PE control memory.
Most instructions are read and executed in 100 ns. One instruction can perform
several PE operations, manipulate any number of index registers, and branch
conditionally. This reduces the overhead significantly so that PE processing power
15 not wasted.

The PE control memory contains a number of system routines and user-writlen
routings to operate on arrays of data in the array. The routines include both array-
to-array and scalar-to-array arithmetic operations. A queue between the PE
control and the main control queues up to seven calls 1o the PE control routines.
Each call contains up to eight initial ndex-register values and up to 64 bits of
scalar information. Some routines extract scalar information from the array (such
as a maximum value) and return it 1o the main control,

The 1/O control shifts the S registers in the array, manages the flow of informa-
tion in and out of the array ports, and interrupts PE control momentarily to
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transfer data between the § registers and buffer arcas in the PE memory elements.
Once initiated by the main control, the I/O control can chain through a number
of I/0 commands. The main control is a fast scalar processor which reads and
cxecutes' the application program in the main control memory. It performs all
scalar arithmetic itself and places all array arithmetic operations on the PE
control call queue.

The MPP being delivered to NASA uses a DEC VAX-11/780 computer as
the host. The interface to the host has two links: a high-speed data link and a
control link. The high-speed data link conneets the 1/O interface registers of the
MPP to a DR-780 high-speed user interface of the VAX-11/780. Data can be
transferred at the rate of 6 megabytes/s. The control link is the standard DECNET
link between a PDP-11 and a VAX-11/780. The DECNET hardwarc and sofltware
allow the VAX users to transfer their program requests to the MPP from remote
stations,

6.3.3 Image Processing on the MPP

In this section, some proposed image processing applications are described for the
MPP. The intent is to familiarize our readers with the MPP instruction set, the
data access in the staging memory, and parallel processing potentials of the MPP
system. The speed power of the MPP promises the development of new image
processing techniques, such as for real-time time-varying scene analysis. We shall
restrict ourselves to the computation aspects of image processing rather than the
statistical or syntactic theories behind image processing and pattern recognition.

The MPP organization described in previous sections can be functionally
simplified to consist of only three major components, as shown in Figure 6.21.
The PE array and the staging memory are connected by a high-speed 1/O bus

Control
unit

A

= \

The 128 x 128
PE array

4
A

Staging memory

4

High-speed 170 Figure 6.21 The staging memory concept in the MPP,
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i
capable of transferring 320M bytes/s. The staging memory acts as a data buffer
between the parallel and the outside world. The staging memory can accept data
from conventional and special-purpose peripherals at rates up to 320M bytes/s.
Its internal controller allows it to pack and reformat data so that the parallel
array can more efficiently process them.

The staging memory can randomly address any individual datum but, for any
given address, it fetches a block of 16K data elements and sends it to the array.
where each microprocessor memory receives one datum. The exact configuration
of the block of data fetched by the staging memory is under program control. For
example. if k is the specific address, data are fetched from the following addresses:

k, k + n, k + 2n, .k +127n,
k + m, k4 n+m, k+ 2n+m, ook + 1270 + m,

k+12Tm, k+n+ 127m, k+2n 4+ 127m, ... k + 127n + 127m

The parameters nand mas well as the address k can be specified by the programﬁcr.
Figure 6.22 illustrates the accessing of a block of 128 x 128 pixcls, starting at (x, y),
from a 512 x 512 image stored in the staging memory.

Instruction set of the MPP The instruction set for the MPP can be divided into
three subsets: sequential, parallel, and interface. The sequential instructions are
similar to those of any other sequential computer. They consist of load, store, add,
subtract, compare, branch, logical Bperations, etc. Executed by the sequential
controller alone, these instructions are used primarily to direct program flow and
to calculate individual parameters and constants that will be broadcast to the
parallel array.

The parallel instructions, also similar to conventional sequential instruction
sets, consist of load, store, add, subtract, compare, and logical operations, but not
branch. The parallel instructions are stored in the sequential controller's memory

e 512 column
(x, ¥
128
A block
128| of 16 K
512 pixels
rows
k = yeS12 + x
n=|
m = 512
Figure 6.22 Parallel access to the staging memory.
(Courtesy of FEEFE Computer, Potter, January 19%3.)
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intermingled with the other instructions, When the sequential controller detects a
parallel instruction, it passes it via the interface registers to the parallel array,
# here it is executed by all 16K processors simultancously. This fundamental form
of parallelism provides the incredible computing power of the MPP,

The MPP, like most SIMD processors, has a set of interface instructions that
allows the movement of data between the sequential and parallel portions. Con-
stants and paramcters can be broadcast to each of the parallel processors by the
sequential controller with a special version of the parallel instructions, But the
inverse operation—moving parallel results to the sequential portion—can be
more complex, The key is the ability to select a unique processor of the 16K to be
active,

Each of the PEs is assigned a unique identification number. The STEP instruc-
tion selects the Jowest-numbered PE to be active and thus enables it to communi-
cate with the sequential controller. The STEP instruction can be combined with a
previously executed comparison or other logical operation so that only those PEs
satisfying the logical conditions are involved in the operation,

The STEP instruction can also be combined with other instructions to se-
quence through specified subsets of PEs. This allows the data from each PE to be
processed in turn by the sequential controller and by the PE array that is under
program control. Described below are several planned image processing applica-
tions of the MPP. Performance results on the MPP were not available at the time
this book was produced. -

Feature extraction The first step in many image-pattern recognition problems is
to extract features such as edges. regions. and texture measurements on which to
base classifications. Two-dimensional or areal functions such as two-dimensional
convolution and correlation are frequently used to extract this information. For
these situations. the 16K processors are interconnected into a grid in which each
processor can communicate with its four neighbors, as illustrated in Figure 6.23.
Using these interconnections, feature extraction functions can be efficiently
executed.

Pattern classification The statistical classification of pixels based on multispectral
data s quite straightforward in an SIMD computer like the MPP. Data for 16K
pixels are input to the parallel array so that all the multispectral data associated
with one pixel are stored in the memory of one processor, as illustrated in Figure
6.24. One iteration of the classification algorithm then uses the 16K classification
results to be calculated.

Syntactic pattern analysis In addition to feature extraction. the parallel array can
be-used very effectively 1o guide tinguistic techniques. In general, these techniques
consist of a large number of production or reduction rules that must be selectively
applied. Il one ruleis stored in each PE, then 16K rulescan be updated and searched
in parallel without being ordered.



« ¥ : " :¥“

SIMD COMPUTI RS A%D FURIORMANCE ENHANCEMERT 433

Channel 1 Channel 2 ———=
data data ———-

Micro-
processor 2, 1

Micro- /

rocessor |, | s 1
p Memory for microprocessor |, 1
1 i

Memory for microprocessor 2, |

Micro-

I 1
processor 1, 2 Memory for microprocessor |, 2
)

Figure 6.23 Image data storage in the bit-plane addressable MPP memory system. (Courtesy of JEEE
Compurter, Potter, January 1983.)

In the MPP and other SIMD processors, a different rule can be assigned to
cach PE. Consequently, when a feature is found, all of the rules can be considered
in parallel to determine those that apply; the STEP instruction can then be used
to sequence through the rules that require processing. Since the addition and
deletion of rules in the array memory is a simple operation requiring no sorting,
data packing, or garbage collection, this approach will be extremely useful in
situations where the grammar is undergoing modification.

Real-time scene analysis The existence of new special-purpose image processing
hardware like the MPP allows the development of new techniques for scene
analysis. Since imagery can be processed in real time by these machines, the rich
information content of time-varying imagery can be trapped for scene analysis,
Real-time interaction with the three-dimensional world scene itself means that
scene analysis need no longer involve the difficult task of producing detailed exact
models of the real world from a single frame of imagery.

Capable of over 6 billion operations per second, the MPP is useful for pattern-
recognition tasks such as image processing where large numbers of values must
be calculated. The fﬁ:ra]iel-scarch aspect of SIMD computers promises to be
extremely useful in more complex algorithm areas, too, such as linguistic scene
analysis, where large grammars arc used. The speed of the MPP not only makes
real-time scene analysis possible, but also offers the prospect of real-time time-
varying scene analysis with an interactive moving sensor.
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Figure 6.24 The PE-grid and end-around connection in the MPP.

6.4 PERFORMANCE ENHANCEMENT METHODS

The effectiveness of an SIMD array processor depends on the computation Lypes,
the interconnection network. the data storage schemes, the vectorization of
programs, the language features, and the compiling techniques. Several perfor-
mance enhancement methods are introduced below for array processors. The
performance of SIMD array processors is then evaluated from the viewpoint of
system throughput versus work-load distributions, Finally. we study multiple-
SIMD computer organizations and related design issues.

6.4.1 Parallel Memory Allocation

An array processor is effective only for those computations that can be vectorized.
The program must try to take advantage of the spatial parallelism exhibited by
multiple PEs. A high-speed interconnection network is needed 10 route data
among the PEs quickly. Furthermore, vector operands to be used by the PE must
be properly stored in the data memories to allow for parallel fetch of certain
specific array patterns. Array processors have been considered special-purpose
computers in the sense that only matrix computations of fixed sizes can fully
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‘explore the hardware parallelism. In order to increase application flexibility and
enhance performance, efficient memory allocation schemes have been sought by
many researchers and users of SIMD machines.

Consider a parallel memory system of M memory modules. Each of the M
memories contains K words and has its own index register, The desirability of
fetching matrix clements in rows, columns, or diagonals is clear from most matrix
operations. While many computations on arrays may be formulated as row and
column operations, operations on squares and blocks (submatrices) are often
performed. Matrix multiplication by partitioning is an obvious example. Square
(or nonsquare) submatrices become very important when an array is much larger
or smaller than the number of available memory modules. One would like to
have a parallel memory with as fine a resolution as possible. For example, an
M module memory system can be used to access M x M arrays one row at a time
or one \/M x /M block at a time. In the latter case, the subarray \/M x \/If
should be fetched in one memory cycle. Large arrays of dimension p,/M x q\/va
can also be handled in parallel steps if p and g are integers. If p and g are not integers,
then some fetches yield less than M useful array elements.

Consider the storage of a two-dimensional array of, at most, M - K clements,
The dimensions of the original array are P x Q, such that P > M and Q > K.
The standard arrangement of matrix elements is called a matrix space, as illustrated
in Figure 6.25. We are interested in fetching M words in parallel, one word from
cach memory. We call any vector of M words (not necessarily one from each
memory) an M vector. Among all possible M vectors, we want to determine those
that can be accessed in a single meémory cycle. The total number of possible M
vectors equals [M K/M]. Any particular mapping of the MK elements into the M
memory modules will allow the access of any one of K different M vectors in a
single memory cycle. Thus, the ratio of all possible M vectors to those one can
access with a particular allocation scheme is approximated below using Stirling’s

formula:
MK 1w
KM= [——. 6.13
bl i il Wi

' 1] Ty oy, @ Figure 6.25 Matrix space: column 1 is wnderlined, a
square block is in squares, and the main diagonal is circled.
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This ratio means that there is no guarantee we wall find one or a imited number of
allocation schemes that will allow us 1o access an arbitrary M vector in g single
memory cycle.

Deline o as the distance (mod M) measured in columns between adjacent
clements of a subarray in the P x Q space. Fn‘.c.\amplc. the elements of a row or
of a diagonal have d = 1, the elements of a column have d = 0, and the even-
subscripted elements of a row or d iagonal have d = 2.1fQ < M. stored arrays can
be mapped into memory modules by placing the adjacent elements of rows in the
same relative locations of adjacent memory modules (i.e., rows across the memory).
IfQ > M, the above mapping can be performed on partitions of Q.

Furthermore, we define s, the skewing degree of a storage scheme, as the dis-
tance measured in columns that each row has been shifted with respect to the
row above it. All shifting must be done mod M. One value of s is used for an entire
array. Figure 6.26 illustrates the storage of an array with skewing degrees s = 0
and 5 = |.

The clements of an M vector fetched in one memory cycle will have the same
order they had in matrix space if, and only if, 1 =d + (j — 1)s(mod M) for all
i < j, where i and j are the subsequent rows in P x Q@ space [rom which elements
are fetched. Let j — i =r. Note that d + r x stmod M) is the displacement
between successive clements to be fetched. I this is not one, the elements are not
in successive memory modules. For each stored M vector, we define an ordered
sel as =

S={kll<k <sMlc<ic< M} (6.14)

The ith element of the M vector is stored in memory module k;. Let s/ = d + r x
s(mod M) be the displacement between successive M-vector elements. If an M
vector is relatively prime 1o s', then we can access the M vector in one memory
cycle. It follows that if some stored M vector is not relatively prime to g, then M/g
elerhents may be accessed at once and ¢ feiches are required to complete the access
of that vector.

If we restrict ourselves to M = 2* for some integer L, we can access rows and
diagonals with s = 0 or rows and columns with s = 1. However,if s = landd = |
for diagonals and d + 5 = 2, we cannol access diagonals (Figure 6.25) in parallel.
In fact, for any s, s or 5 + 1 must be even. This proves the impossibility of fetching
rows. columns, and diagonals using one storage scheme when M is an even integer.

With the following nonuniform skewing scheme, it is possible to access rows,
columns, and some square blocks, Suppose we choose 1 = \-’(M + di{mod M),
where 6, = 1ifrow indexi = k /M + 1 fork > 1. and 8, = Dotherwise, Within a
strip of width \/M. we can clearly access a | M x /M block in one cycle.
Across these strip boundaries, conflicts arise in fetching square blocks. However,
due to the additional skewing by one at strip boundaries, it is possible to access
columns because 1 is relatively prime to M, as shown in Figure 6.26. Sometimes
an access to rows or columns of a square block may be desired. Then blocks may
be regarded as one memory access and the above method can be applied. This
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Memory module

Address 2 3 4

(a)

Memory module
Address 1 2 3 4

Figure 6.26 A stored array with skewing degree
(b) (@)S=0and (b)) S = 1.

strategy may be useful in parallel memories in which each memory module
produces several processor words as one superword.

In some programs, not every element of a row or column is to be accessed at
each step. Instead, some index set is used to produce a partition. Let us restrict
such index sets to arithmetic sequences with ¢ being the difference between succes-
sive elengnts of the arithmetic sequence. Then to fetch indexed rows, for example,
we have r = Oand d = c. By the accessibility condition, ¢ must be relatively prime
to M. The only safe value for M in this case is a prime number. Consider several
values of M = 2?* 4+ 1, such as M = 17 and M = 257, which are both prime.
and M = 65, which is not. Thus J7, 67 (the next prime greater than 65), or 257
may be considered as good candidates for the selection of M. The number 127 is
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Table 6.4 A skewed memory allo-

cation for the prime memory
-
Module

Address M, M, My M, M,

0 00 10 20 3 X
1 50 60 70 X 40
2 2 x DL H
i 71 x 41 51 61
4 x B3 42 33 a3
3 42 52 62 72 x
6 B3 23 B 5 g3
7 63 73 X 43 hE]
8 34 x 04 14 24 =
9 x 44 54 i 74
10 05 15 25 35 x
11 55 65 75 x 45
12 26 36 x 06 16
13 76 X 46 56 1]
I+ % 07 17 27 w
15 47 57 67 77 X

also interesting, being an odd power of two minus one and not much larger than a
perfect square. -

A storage scheme is a set of rules which determines the module number and
address within that module where a given array element is stored. We will restrict
our attention to two-dimensional arrays. However, generalization of these storage
schemes is simple for higher-dimensioned arrays. Described below is the storage
scheme successfully developed by Lawrie and Vora (1982) for the BSP,

Example 6.4 Table 6.4 shows an 8 ~ § array stored in five memory modules
using column major storage, Any five consecutive elements of a row, column,
diagonal, etc.. lie in separate modules and thus can be accessed in parallel
without conflict, For example, the second through sixth elements of the first
row are stored in module numbers 3. | 4,2, 0, and at addresses 2.4.6,8, 10,
respectively,

Let M be the number of memory modules and P be the number of processors,
where we assume P < M and M is prime. The two storage equations / (i, j) and
4(i, j) determine the module number and address, respectively, of element (i, j) of
the array. In our case we have the following equations:

.

G =[j x I + i+ base] mod M (O .

T e aEe— ~ oo L X T +i+base]
gl jy = ——— = — 4
P

where we assume the array is dimensioned (1, J), base is the base address of the
array, and the number of processors P is the greatest power of two less than M.,

(6.16)
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Notice that these equations require a mod M operation where M is a prime
number. They also require an integer divide by P operation. However, P is a power
of two, which makes this divide casily implementable. This simplification is made
possible by the “holes™ shown in the table.

The number of holes in each row of the memory is equal to M — P in general,
For example, if M = 37 and P = 32, then 4 of the memory i wasted. These
holes could be filled with other data, eg., scalar data, but a cleaner solution is
available at the expense of an increase in the complexity of the indexing equations,

A P vector is defined as a set of elements of the array formed by the linear
subscript equations:

Ha.b,c,e) = {A(i,j):i=ax+bj=cx+el0<x<P< M} (6.17)

where the array is dimensioned A(/,J). Thus, ifa = b= 0and ¢ = e = 1, then
the P vector (P = 5) is the second through sixth elements of the first row of A:
A0, 1), A(0, 2), ..., A0, 5). Ifa = ¢ = 2and b = e = 0, then the P vector (P = 4)
is every other element of the main diagonal of A(0, 0), A(2, 2),..., A(6, 6). Note
that the elements of the P vector are ordered with index x.

The index equation is defined below for the P vector V. We define a(x) to be
the address in module u(x) of the xth element of the P vector. Thus, combining
Eqs. 6.15 through 6.17, we obtain

H(x) = flax + b,cx + e)
= [(cx + €) « I + (ax + b) + base] mod M
= [rx + B] mod M (6.18)

where r = a + ¢l and B = b + el + base. We define r 1o be the order of the P
vector and B to be the base address. Next, we define

a(x) = glax + b, cx + e)

- [(c'x + &) = I + (ax + b) + base]
E F

_[rx+ B]
- P

Itis easy to show that if r is relatively prime to the number of memory modules, then
access 1o the P vector can be made without memory conflict.

Since it is most convenient to generate the address a(x) in memory pu(x), we
solve for x in terms of y and get

(6.19)

x{(p) = [(u — B)r'] mod M (6.20)
where r x r' = | mod M. Substituting this into Eq. 6.19, we get Y
{(a + I)[(4 — B)r mod M] + b + el + base}
w(p) = P

_ {r[(ie — By’ mo_c_! M] -I»__l
P

(6.21)
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Example 6.5 Consider the 2 vector 100, 0. 1 1 borew the second through sixth
elements of the first row of A(Y x 8. Wehave 8 = Sand o = 8: thus

plx) = [(x) x & + 8] mod 5

* [(x) x & + §)
2(X)= 4

Sineer = 2(ie.? x & = I mod 5B = 8,and M = 5,thefollowing addresses
arc obtained as shown in Table 6.4:
1Y — 5 |
) = | [2(;1 Eij_r_nud_.] + 8i
4
mx) =(3,1,4,2,0)

alx) = (2,4, 6.8, 10)
a(u) = (10,4, 8, 2. 6)

The proper addresses in memorics Mg, M,...... M, are 10, 4, 8, 2.6, respec-
tively.

We use the pu(x) equation in the xth processor to determine the module number
of the memory containing the xth element of the desired N veetor. At the same time,
addressing hardware in memory ¢ uses the A pfequation to determine the necessary
address of the desired element. We use A p) instead of 2(x) because this eliminates
the need 1o route the addresses from the processors through the switch,

The design of the access conflict-free memory is based on the use of a prime
number of memorics, Crucial to this design is the simplification of the offset
cquations. Most of the mod M operations and offset calculations can be done with
ROMS or with some indexing hardware, The design of this memory system firs
nicely. in the context of the BSP. The indexing hardware carries out the necessary
addressing and alignment caleulitions automatically once the initial vector-set
descriptors have been set up. The problem of indesing overhead and memory -
access conflicts may seriously deteriorate the system performance if not properly
controlled.

6.4.2 Array Processing Languages

Three high-level languages have been proposed for Hliac-1V: T'ranqual, Glypnir.
and Hhiae-1V Fortean. The Tranqual is the first Algol-like language proposed for
Hiac-1V. 1t was designed 1o allow programmers to manipulate arrays of data in a
parallel fashion, independent of the machine organization. However, the develop-
ment of Tranqual was halted by the demand for an extended Fortran for Hliac-1V._
Glypmirisalsoan Algol-like block-structured fanguage. but it is specially designed
to be compatible with B6500 Algol in the sense that it was wrillen to better exploit
the parallelism in the Miac-1V architecture,

AlFarithmetic operations are carried out under the control of a mask pattern.
The mask provides 64 true-false values of a boolean veetor to be associated with

at
.
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each of the PEs. When a bit of the mask pattern is true, the corresponding PE is
enabled and may thus deliver the results of an operation, Consider the Glypnir
expression

A=BeC : (6.22)

When A, B, and C arc vector-valued PE variables (vectors), each may have up to
64 components. The above multiplication means that each component of B is
multiplied by the corresponding clement of € and the resulting product vector 15
stored in A, However, when € is a CU variable (a scalar), the multiplication will
be repeated 64 times in an invisible PE variable.

Special facilities exist Lo allow the rotation and shifting of rows to the right
and left in a way similar to the more familiar operations conventionally carried
out on words, thus allowing the Route instruction to be utilized. For and if
statements are also provided, but often give unconventional results. For instance,
given the PE variables A, B, and C, the statement .

If 4 > Bthen C:= Aelse C:= B (6.23)

will deliver the maximum elements of A and B to € and may result in both the
then and else statements to be exccuted.

Blocks of assembler language can be explicitly embedded in a Glypnir program
for the optimization of any section of code. It has also facilities to refer to selected
hardware registers for lower-level Tode optimization. However, the language
demands that the programmer undertakes the detailed supervision of storage
allocation and be constrained to only Illiac-1V rows (64 components) or vectors
of rows. To remove these restrictions, the Illiac-1V Fortran allows the user to
program with vectors of any length in either “straight™ or “skewed” storage
allocations. Skewed allocation allows equal accessibility of rows or columns in
an array.

In Illiac-1V Fortran, the binary data type can be used to specify bit-control
vectors for masking purpose. The DO statement has been extended to allow parallel
execution of arithmetic expressions, and extra constructs have been added to the
language to allow the shifting and rotation of vectors and array rows. The only
significant change are the EQUIVALENCE and COMMON statements, where
the two-dimensional STORE of Illiac-1V imposes reactions on the usual serial
definition,

A parallel-processing programming language Actus has been introduced by
R. H. Perrott (1979) for array processors. Most parallel computers use extensions
of existing languages. such as the extended Fortran for the Star-100, the.CFT for
Cray-1, and Glypnir language for the llliac-1V. The language SL-1 is one of the few
languages that has tried to bring some of the benefits of structured programming
to the Star-100 system. More recently, Vectran has been developed by the IBM
research group to facilitate the application of vector-array processing algorithms.
Actus offers a theoretical extension of the language Pascal. Actus atiempts (o
redress Lhe technology imbalance between hardware and software development
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for synchronous parallel machines. 1t is aimed at exploiting parallelism and in-
corporating some software engineering approaches. The main features in Actus
are briefly introduced. The algorithmic and data constructs in A ctus are of sufficient
generality to make efficient use of parallel resources.

The array is declared in Actus by indicating the maximum extent of parallelism.
The syntax can support any number of dimensions. For example, a scalar array is
represented by:

var sealara: array(1. .m, 1. .n) of integer; (6.24)

l.e.. scalara contains m x n (predefined) integer numbers. The low indices are
restricted to one for convenience. The maximum extent of parallelism is introduced
by replacing only one pair of sequential dots *. " by a parallel pair "

varpara: array[l:m, 1. .n] of real : (6.25)

indicates an array para of m x n real numbers for which the maximum extent of
parallelism is m. The array para can be manipulated m elements at a time since it
has been declared as a parallel variable with that extent of parallelism. The array
is thus the main data structure to indicate variables which can be manipulated in
parallel. Thus 2[1:4, 2] is equivalent to referencing in parallel, af 1, 2], af2, 2],
2[3, 2], o[4, 2], and a[2:3, 1] is equivalent to relerencing in parallel a2, |] a[3, 1].

Identifiers can be used to represent a sequence of integer numbers. They are
used to assign values to parallel variables with an extent of parallelism equal to the
number of values. The form of a parallel constant is

const identifier = start: {increment) finish: (6.26)

where the values of start. increment, and finish must be integers and the sequence
1 'start, start + increment. start + 2 w increment, .. ., finish.” If the increment
Is unity, it may be omitted, e.g.. “const n = 30:seq = 1:n; oddseq = |:(2)3]."
Parallel constants can be used to assign values 1o parallel variables: for example,
“'seq” with an extent of parallelism 50 and “oddseq™ with an extent 16.

The extent of parallelism can be changed by the use of an index set which
identifies the data elements that are (o be altered. The members of an index sel are
(ordered) integer values, each of which identifies a particular element of a data
type that can be accessed in parallel. An index set is defined with the data declara-
tions

index index = i: j; (6.27)
where i and j are constant integer values such thati < J-The elements i to f inclusive
will be accessed whenever the index-identifier index is used as a parallel-array
index. ¥

The advantages of using index sets are that (i) statements become more
readable since they use the identifier name; and-the (if) extent of parallelism in-
volved can be evaluated before the statement is encountered. Index-set identifiers
cannot be redefined, but they can be operated upon by union ( +), intersection (*),
and difference (—) in order to facilitate parallel computations. The complement
(—) gives the other members of the declared extent of parallelism.
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In order to enable the movement of data between elements of the same or
different parallel variables, two primitive data-alignment operators are included
in the Actus language. These are

1. The shift operator, which causes movement of the data within the range of the
declared extent of.parallelism

2. The rotate operator, which causes the data to be shifted circularly with respect
to the extent of parallelism

A single extent of parallelism can be associated with each simple or structured
statement of the language which involves one, or more than one, parallel variable;
this must be less than or equal to the declared extent of parallelism for the parallel
variables involved. Hence, during program exccution, the smallest unit for which
the extent of parallelism can be defined is the single assignment statement. This
does not exclude the use of scalar and parallel variables in the same statement, but
facilitates testing and data alignment of the parallel variables. :

In order to avoid repeatedly indicating the extent of parallelism for a series of
assignment statements in which the extent will not change, the within construct
has been introduced. This, in turn, will avoid a calculation of the extent of
parallelism for each of the statements individually. It takes the form:

within specifier do statement (6.28)

where ** specifier” is either an index-set identifier oran explicitextent of parallelism.
The specifier defines the extent of parallelism for the ** sratement.” This construct
avoids a calculation of the extent of parallelism until another extent-setting con-
struct is encountered or the construct is exited. If another extent-setti ng construct
is encountered, the current extent of parallelism is stacked and the new extent
cvaluated and applied. This is the rule which governs the nesting of all extent-
setting constructs. The within construct also serves another purpose when it is
embedded in a loop: the specifier can consist of variables which are changed each
time through the loop, thus, for example, cnabling the examination of various
subgrids within a larger grid.

To allow for tliose situations where selection or repetition is concerned, the
structured programming concepts of if, case, while, and for were expanded to
enable the test or loop variables to contain parallel as well as scalar variables.
Selective statements are used to spread the extent of parallelism between two or
more execution paths, as determined by a test expression in the if or case constructs.

If a test expression involves parallel variables, the test is evaluated for each
indicated element of the variables. For an example:

if a[0:49] > 5[0:49] then al #]* = a[ #]— " (6.29)

In this example, 50 elements of a are tested to see which are greater than the corre-

sponding clements of b; those elements that are greater are decremented by 1.
There are two types of repetitive statements, depending upon whether the

number of times the statement is to be exccuted is known before the statement is
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ercountered or whether the number is dependent on conditions generated by the
staiement. '

The parallel quantficrs any and all can be used with parallel test variables,
in which case the extent of parallelism must be explicitly defined in the statements
of the construct (as with a test which involves scalar variables only). For an
example:

while any («[1:50] < A[1:50]) do a[1:50] := a[1:50] + | (6.30)

all the elements of a are incremented by one until none of the ¢lements of a are
less than their corresponding clement in b.

Functions and procedures can be declared using the data declarations and
statements previously defined: the maximum extent of parallelism of all variables
must be known at compile time. The Pascal scope rules for procedures and func-
tions apply; hence, local variables cannot have their extent of parallelism aliered
by a function or procedure call.

The formal parameter list for both functions and procedures was expanded to
allow for parameters which are parallel variables. The actual parameters can then
be either of the same extent of parallelism or a section of the same extent of a larger
parallel variable. Only procedures and functions involving scalar variables may
be parameters. In the case of a function, either a scalar or parallel variable can be
returned as a result of its execution: the extent of parallelism can be different from
that of the parameter(s). Procedures can be used 1O return one or more results
which can be either scalar or parallel variables or a mixture of both,

The features of Actus have been described using a syntax similar to that of
Pascal;this was due to a plan 1o use an existing Pascal compiler for its implementa-
tion at the Institute of Advanced Computation, NASA /Ames Research Center in
California. The Pascal P compiler was used in the creation of the Actus compiler.
This P compiler is being modified and enhanced with the new features 1o form an
Actus P compiler which also generates code for a hypothetical stack computer,
Since this code is machine independent. the Actus P compiler can be used as a
basis for the implementation of Actus on other parallel machines. Preliminary
results of the implementation indicate that the features of Actus can be mapped
onto the instruction set of the Illiac-1V.

Another consideration in implementing the Actus language is to automate the
management of the memory. It is important to determine either from the user or
by the compiler the size of the working set: the working set is the minimum amount
of the database required 10 be resident in the fast store so that processing can
continue without excessive interruptions. On the basis of such mformation. the
fast store can be divided into buffers and processing can be overlapped with

—backing store transfers. Thus,-the compiler rather than the user is responsible for
the organization of data transfers.

In summary, two rescarch objectives were achieved by the Actus language and

by its compiler. The first objective was achieved by introducing the concept of

the extent of parallelism. whose maximum size is defined in the data declarations
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and subsequently manipulated (in parallel) cither in part or in total by the state-
ments and constructs of the language. Using this concept, it was found to be
possible to adapt a unified approach for both types of computers. The second
objective was achicved by modilying existing data and program-structuring con-
structs of Pascal to accommodate the special demands of a parallel environment,

6.4.3 Performance Analysis of Array Processors

A space-time approach is used below to evaluate the performance of SIMD array
processors. The execution of a vector job in an array processor occupies the equip-
ment space of PEs over a period of the time space. An analysis of an SIM D machine
withm PEs is presented below. Ideally, data operands in an arra y processor should
be uniformly distributed among the PEMs. This effectively creates m separate data
streams. Theoretically, the maximum speedup cannot exceed m when compared
with a functionally equivalent SISD computer. We use the following notations to
formulate expressions in measuring the speedup, the throughput, and the wtilization
of an array processor:

m: The number of PEs in an array processor

t,: The time required by a PE to complete the execution of a broadcast instruction
from the CU

n: The number of instructions to be executed in a specific job

N: The length of a vector operand'in the ith instruction (1 < i <n

W,: The throughput of an array processor

1;: The time required to finish the ith instruction in an array processor

15: The total time required to finish the execution of a job in an array processor

Sy: The speedup of an array processor (with m PEs) over a serial computer

¢: The efficiency of an array processor

Note that this list of performance parameters is very similar to those for
pipeline computers studied in Section 4.5.4. The m PEs correspond to the k pipeline
segments. In fact, the vector job parameters nand N, are the same in analyzing both
types of vector processors. The instruction execution time t,0f a PE is assumed to
be a constant equal to the average time for typical instructions. Figure 6.27 shows
the space-time diagram for the execution of the ith vector instruction on an array
processor with m = 3 PEs, where N, = 10 operands are contained in the ith
vector instruction. The PE arrays are used four times to complete the execution
of the 10 operations. During the fourth iteration, two PEs are disabled.,

In an array processor, 1h® time required to finish the ith instruction is com-

puted by
= [-_‘L] 2 (631)
m
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Figure 6.27 The space-time diagram for an array processor with 3 PEs.

]

for a vector job consisting of n vector instructions having various numbers N;of
operands for i = 1, 2,..., n. The total time required to complete the execution of
the vector job in an array processor is

"

T; = L=1,- Z [:—l(] {6.32)

=1 =1

The same job if executed on a serial SISD compuler requires

[

T=1,- YN (6.33)
i=1
where ¢, was assumed to be independent of instruction types (in an average sense),
The improvement in speed is represented by the following speedup ratio;

LN

= (634)
5‘: [N/m]

The efficieney ¢ of an array processor is displayed by the utilization rate of
the available resources (PEs). The PE utilization rate shows the percentage of PEs
being actively involved in the execution of the vector job. The space-time product
offers a measure of this utilization of resources. Formally, we have

O = k. = fsi'
m-t, m

(6.35)

I'his shows that the efficiency ¢ corresponds to the ratio of the actual speedup §,,
to the maximum speedup m. In the ideal case ¢ — 1, when §,, — m,

Example 6.6 To illustraie the above performance measures, we choose the
same vector distribution as in Figure 4.39. The mean vector length of the job
distribution is 4.4. On the average, 4.4 PEs are needed 10 execute a veetor
mstruction among a set of 10 instructions. Similar to that plotted in Figure
4.39, we calculate the efficiency (using Fq. 6.35) and the speedup (Eq. 6.34) of
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danarray processor having mr Pl (I < m < 10). The numerical results are
plotted in Figure 6.28. The speedup increases monotonically with respect 1o
the number of available PEs, whereas the eflicivacy dechines with (he mnerease

of PEs.

For an array processor, not only the veetor length but also the residue of the
vector length will affect the system performance, For example, to execute a vector
instruction of length 65 on the Illiac-1V computer with 64 PEs requires one
additional instruction cycle to exccute the residue of one component operation.
The system performance will be degraded due 1o small residues, Degradation
results mainly from many idle PEs. Figure 6.29 shows the speedup (utilization)
against vector length on an array processor with eight PEs, Here we consider only
the execution of a single vector instruction (n = 1). The maximum speedup is
achieved when N, is a multiple of m = §.

For small residues, the speedup drops rapidly. When N, approaches infinity,
the ill effect of residue becomes less severe, The PE utilization will approach one
when the vector length goes 1o infinity, as shown by the envelope of the saw-tooth
curve. Parallel algorithms, good memory-allocation schemes, and optimizing
compilers are needed in array processors. Whether a large array processgr will
perform as ideally projected depends heavily on the skill of the users. The lailure
of promoting the Nliac-1V and the BSP into the commercial market was mainly
due to user reluctance in accepting SIMD computers for general-purpose appli-
cations.

5.0

4.0
g g
=1 b+ ]
= wn
=2
2.0
=110
1 1 1 | | 1 | 1 ]
| 2 k] 4 5 6 T 8 9 10
m
Figure 6.28 Efficiency and Speedup o an urray processor with various number of P,
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Figure 6.29 The speedup (utilization) of an 8-PE array versus vector length.

6.4.4 Multiple-SIMD Computer Organization

A shared-resource arrday processor consists of two or more CUs sharing a pool of
dynamically allocatable PEs, Such a parallel computer is depicted in Figure 6,30,
The system operates with multiple single-instruction multiple-data (MSIMD)
streams. Each CU must be allocated with a subset of PEs for the execution of a
single vector job (an SIMD process). The ozly way vector jobs can interact with
cach other is through their independent use of the same PE resources,

Examples of MSIMD drray processors include the original Illiac-IV design
with four CUs sharing 256 PEs (Figure 6.31), the Multi-Associative Processor
(MAP) with eight CUSs sharing 1024 PEs, and the PM* system proposed at Purdue
University (Figure 6.32), The PM* was proposed as a reconfigurable computer
system which can operate in either MSIMD mode, multiple SISD mode, or in
MIMD mode. A typical configuration of the PM* consists of 16 CUs with, say,
1024 PMUs, The system was intended to be used for computer imaging applica-
tions. The PM* has been upgraded to a generalized research mult Iprocessor system.,
called PUMPS, at_Purduc University.—n-the-Phoenix Computer project, the
coupling of sixteen 64-PE arrays is being considered 1o extend the Hliac-1V design
for MSIMD array processing.
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Figure 630 SIMD versus MSIVID computer organization. (Courtesy of JEEE Trans, Computers,
Hwang and Ni, September 1981),)

There arc three possible multiarray Hliac configurations, as shown in Figure
6.31. This provides some fexibility in matching array size 1o problem (matrix) size.
The end connection of the PEs in each array can be reconnected 1o the ends of
other arrays to form dual two-quadrant arrays with 128 PEs each, or to form a
single four-quadrant array of 256 PEs. For multiarray configurations, all CUs
receive the same instruction string and any data centrally accessed. The CUs
execute the instructions independently, Inter-CU synchronization takes place
only on those instructions in which data on control imformation must cross the
array boundaries. The multiplicity of array configurations introduces additional
complexities in program control and memory addressing.
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Figure 6.31 The original Illiac IV design an® multiple configurations. (Courtesy of IEEE Trans. Com-
puters, Barnes, et al., August 1968.)
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The scheduling of PE resources in an MSIMD computer can be modeled by
the queucing network in Figure 6,33, There are m identical CUs in the system, each
of which handles an instruction st ream. An available CU enters the busy state only
ifthere is a vector job and the PEs demanded by that job are available from the PE
pool, otherwise it remains in the wait state. There are n identical PEs sharcd by all
the CUs. Each subarray of PEs can be allocated 1o one CU through a partitionable
interconnection network. All instructions are stored in the CU memory and
decoded by the CUs. Only the vector-type instructions are broadcast to the
allocated subarray of PEs for execution. Control-type or scalar instructions are
directly executed through the CUs. All the PEs can independently accept one
assignment at a time. The local memory of each PE is used to store only the distri-
buted data sets to be used for SIMD processes.

The subset of PEs allocated to a CU may vary in size for different jobs. In the
casc of the original llliac-1V design, the three multi-array configurations (i) {64, 64,
64, 64} (4 active CUs), (ii) 128, 128 (2 active CUs), and (i) 256 (1 active CU)
corresponds to four, two, and one instruction streams, respectively. Note that
some of the CUs may be left idle due to the limited number of available PEs in the
resource pool. In the Phoenix extension, the increased reconfiguration capability
offers better application flexibility than the Illiac-1V. The PE array partitioning in
the Illiac-1V is called block reconfigurable. Each block of PE corresponds to one
quadrant of the array. In a generalized MSIMD computer, all the PEs should be

A arrival rate of input processes

u: service rate of each control unit Control units

The shared-resource
pool of r PEs

NN
NN

Figure 6,33 The MSINMD model with m control units {CUs) and a shared-resource pool of r Processing
Elements (PEs). (Courtesy of IEEE Trans. Computers, Hwang and Ni, September 1980),
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dynamically partitionable into su barrays of various sizes. The PM* was proposed
Lo operate in this fashion.

Several rescarch issues of MSIMD computers are identified below. The goal
is to design MSIMD computers for multiple array processing in an interactive
manner. These design issues must be properly addressed in order to achieve high
performance at reasonable system cost. The operating system of an MSIMD
computer is much more complicated than that of a single SIMD machine.

Performance optimization The performance of an MSIMD computer is measured
by the utilization rates of the CUs and PEs and by the average job response time,
The computer is modeled in Figure 6.30 as a multiserver queueing system. Based
on reasonable assumptions of the job arrival distribution, the CU service rate,
and the queueing discipline used, one can predicate the expected performance.

The optimal choice of the size of the PE resource pool is a fundamental issue
for a given number of CUs in the system. The selection depends on the input work-
load distribution, the cost of the PEs and their interconnection networks, and the
queueing discipline used in allocating the shared PEs to the CUs, The -, ,
allocation can be optimized by promoting the CU-PEs utilization rates at reduced
system cost. The results obtained from theoretical queueing analysis need to be
verified with machine simulation experiments before meaningful system sizes can
be decided for specific application problem environments.

Partitioning the routing network The allocation of PE blocks to multiple CUs
demands the use of some partitionable inter-PE routing networks, With a large
number of PEs, the network size may become too large 1o be cost effective. With
partitioning, smaller networks may be interconnected to route the data at much
lower hardware cost. Of course, the partitionability from large permutation
networks to multiple but disjoint subnetworks depends on the network type, the
increased delay and blocking rate after partitioning, and the emulation capabilities.
among reconfigured network topologies. Without a partitionable interconnection
network, the MSIM D computer cannot operate flexibly and efliciently.

Algorithms and system control Multiple SIMD operations need to decompose a
large computation problem by algorithmic partitioning, Of course, the algorithm
decomposition must he constrained by the hardwire resource configuration and
availability. Furthermore, none of the proposed array-processing languages can
handle multiple data arrays. Designing an effective operating system to coordinate
the multiple CU operations is 4 very challenging effort. The experience in develop-
ing an MSIMD operating system will help develop an intrinsic MIMD operating
system, especialy for scientific applications,

Due to inexpericnce in the aforementioned problem areas, MSIMD machines
are still in the proposal stage among computer architects. Extensive research and
development efforts are necessary towards the production of multiple array
processing systems. MSIMD computers are more suitable for regularly structured
scientific computations,
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6.5 BIBLIOGRAPHICAL NOTES AND PROBLEMS

The original SIMD coneepl can be traced to Unger (1958) and Slotnick, et al,
(1962). The structure of the original 256-PE Hliac-1V computer was first reported
m Barnes, et al. (1968). The Wiac-T1V software and applications programming was
reported by Kuck (1968). A more recent report of the Iliac-1V system was given
in Bouknight, et al. (1972). The Actus language extensions for array processors
are based on the work of Perrott (1979). Assessments of the first-generation vector
processors, including the Hliac-1V, were given by Stokes (1977) and Theis (1974).
The language Glypnir was described in Lawrie, et al. (1975). The Fortran-like
language CFD was reported by Stevens (1975), Programming experiences on the
Hliac-IV are summarized in Stevenson (1980), Possible extension of the Iiac-1V
to the Phoenix array processor was discussed in Feierbach and Stevenson (1978).

The Burroughs Corporation has published a series of technical notes on the
BSP architecture (19784, b, ¢). The BSP was comprehensively reported in Kuck
and Stokes (1982). Arithmetic design of the BSP was reported in Gajski and
Rubinficld (1978). The prime memory system is based on the work of Lawric and
Vora (1982). The MPP has been reported in Batcher (1980). Detailed design
features of the MPP are described in a final report by Goodyear Aerospace
Corporation (1979). The image processing applications of the MPP are reported
by Potter (1983). The skewed allocation of parallel memories is based on the work
of Budnik and Kuck (1971). A good summary of BSP features is given in Kozdro-
wicki and Theis (1980), where comparisons of the BSP to Cyber-205 and Cray-1
are provided. The throughput analysis of array processors is based on the compara-
tive study by Hwang, et al. (1981). Multiple SIMD computer organizations are
modeled in Hwang and Ni (1979, 1980). The partitioning of permutation network
for MSIMD machine has been studied in Siegel (1980).

Problems

6.1 Explain the following system features associated with the Illiac-1V, the BSP, and the MPP array
processors.

(@) Multi-array configurations of the Illiac-1V

(#) The prime memory for the BSP

(¢) The bit-slice operations in the MPP

() Concurrent scalar-array operations in the BSP

(¢) Concurrent /O and arithmetic logic operations in the MPP array

(/) The staging memory configurations in the MPP

(g) Host computers for the Illiac-1V, the BSP, and the MPP

() The 1/O facilities in the iac-1V, the BSP, and the MPP
6.2 Prove that the llliac recirculating network cannot be partitioned into independent subnetworks,
each of which would have the properties of a complete lliac network. (Hint: Use the rotating functions

6.3 Devise an SIMD algorithm for finding the inverse of an & = 8 triangular matrix 4 = (a,) on the
Hliae-1V computer with 64 PEs. Show the memory allocation and CU instructions needed to implement
the algorithm. Minimizing the number of instruction steps and the required data memory words is the
primary design goal. The given matrix A is assumed 1o be nonsingular. The successive contents of the
involved PE registers and of the PEMs should be demonstrated along with the instruction steps.
Masking can be used 1o enable and disable the PEs.
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6.4 Using the vector instruction lorms specified in Table 6.2, devise a BSP program for solving a linear
triangular system of algebraic cquitions with n unknowns. Youcan assumen s P = 16,the number of
arithmetic elements in the BSP. A block ™ back su bstitution method issuggested to solve the triangular
system. Memory allocation for the characteristic matriy must be specified among the m = |7 memory
modules.

6.5 Givenann x m image, the gray level for cach pixel (picture element) is between Qand b — |, Let
Al /] denote the gray level at the pixel (i, ;). An algorithm to construct g histogram in an SISD com.
puter is shown below :

Fori=0tb — | do
Histog(i)~0;
Fori = ltondo
For j = | to mdo
Histog(A[i, j])- Histog(A[i, j]) + 1:

Suppose we want to use an SIMD machine with » PEs to construct the histogram. Assume
M ponm, and p(p = 2) are powers of 2, and nfp = k isan integer. Each PEM stores k rows of
image data. e g., PEM,, stores rows one 1o k., etc. The storage formats arc shown in Figure 6,34, where

Address PE M, PEM,
0 Al Alk+1,1) Aln—k +1,1)
1 Al1,2) Alk+1.2) Aln—k+1.2)
. :
—_— | —
krm — | Alk,m) Al24,m)
-
- -
— |
@ A (0) A,(0)
_— _
] ht1) hn
e — e ]
-
-
-
"___'——._
ath-| holb—1) htb-1) h, (8=-1)
- - -
L] - -
- - L]
| - 1

Figure 6.4 Data storage lor the histogramming in Problem 6.5,
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the memory locations from 2 + A — | n cuch PEM are used 1o store a Jocal histogram. The method
to construet the histogram consists of forming a local lnstogram in each PE sied then combining logal
tustograms to get a global histogram

The organization of éach PE, is shown in Figure 5.2. Fach PE, can communicate with its neigh-
boring PE, .y and PE, _, in one routing step. You are allowed 10 use the vector instructions and scalar
instructions listed in Table 6.5, The number below each instruction indicates the instruction cycle time.
Also, we assume that there are five elobal index registers in the control unit,

(u) Using these instructions, write a Program to construct a histogram in the SIMD machine. The
resulting data should be stored in the memory locations a2 + 1, .. 3 + b — I imPEM,.

(h) Compute the total number of cycles required in Your program. What is the speedup of your pro-
gram over a conventional one in an SISD computer, which consists of the CU and one PE? Assume the
scalar counterpart of each vector instruction consumes the same time as each vector instruction, Note
that there is no communication cost in an SISD computer.

6.6 Consider the evaluation of the following inner-product expression in an SISD machine with one
PE or in an SIMD machine with m PEs connected by a linear circular ring:

S=Y4-8 (6.36)

It is assumed that cach ADD operalion requires two time units and cach MULTIPLY operation
requires four time units. Data shifting along the bidirectiona) ring between any adjucent PEs requires
one lime unit,

(@) What is the evaluation time of § on the SISD compuler?

(&) What is the evaluation time of Son the SIMD computer?

(€) What is the speedup of using the SIMD machine over the SISD machine for the evaluation
of §7
6.7 Consider A couples of vectors The ith couple consists of 4 row vector R, and a column vector €
cach of dimension N = 2" To compute the pairwise inner product for the ith couple, we perform
the following:

N
1P = ¥ RLAsC[1] (6.37)
=1
Below s the algorithm 1o perform IFQloralli= 1.2, K
Fori«— 110K do
begin
IPli]0;

Forje I 1o N do

IP[i]+~IP[i] + R.li=C 17,
end

(@) Neglecting the initialization step, index updating and testing, find the total compute time on
a uniprocessor as a function of K and N, Assume that multiplication and addition take the same unit
time o complete,

(M) To speedup this computation, an SIMD machine can be used by exploiting the parallelism in
the compwiation. Two different implications are suggested below Find the compute time in cach case.

() Use P = N processing clements (PEs) 10 compute /P[] successively for each couple of
vectors R, €.

(1) A couple of vectors are allocated 1o cach PE, which computes one inner product. The number
of PEsis P = K in this case.
6.8 Consider an SIMD machine with 256 PEs using a perfect shuffle interconnection network, I the
shutlle interconnection function is executed 10 times, where will the data item originally in PE,,,
bhe loscated ?
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6.9 We have learned that an SIMD machine with £~ 2% Pl can access without conflict the rows,
columns, diagonal, and reverse diagonal of 4 matrix from A — 27% + | parallel memory modules, if
the skewing distance § = 2% Prove that it is also possible to aceess any 2"hy-2" square block in one
memaory cyche under the same condition,
6.10 Table 6.4 shows the skewed memory allocition for an ¥ x 8 matrix i oan array processor with
M = 5 memory modules and P = 4 Processors

(ey Listall patterns that can be accessed in one memory cyele.

(M Givea Pyector 17(1, 1. 1, 1), Caleulate the word addresses in the memory modules involved



