CHAPTER

SEVEN

MULTIPROCESSOR ARCHITECTURE AND
PROGRAMMING

This chapter covers multiprocessor system architectures and multiprocessing
requirements. Hardware-software factors which limit the performance are pre-
sented. The interconnection topologies between the processors and the main
memory are discussed. Models are shown to evaluate the performance of these
interconnection structures. We present some memory configurations and a
classification of operating systems for multiprocessors. Language and pro-
gramming issues in using multiprocessor systems are discussed at the end.

7.1 FUNCTIONAL STRUCTURES

In this section, we introduce the functional structures of multiprocessor systems.
Example systems discussed below include the Cm*, Cyber-170, Honeywell 60,66,
and the PDP-10 multiprocessor configurations. More example systems will be
given in Chapter 9. Functional characteristics of processor architecture for multi-
processors arc pTCSCI‘HCL’.

Multiprocessors can be grossly characterized by two atiributes: first, a
multiprocessor is a single computes that includes muitiple processors and seceond
processors may communicate and cooperate at different levels in solving a given
problem. The communication may occur by sending messages from one processor
to the other or by sharing a common memory.

There are some similarities between multiprocessors and multicomputer
systems since both are motivated by the same basic goal — the support of concurrent
operations in the system. However, there exists an important distinction between
multiple computer systems and multiprocessors, based on the extent of resource
sharing and cooperation in the solution of a problem. A multiple computer system
consists of several autonomous computers which may or may not communicate

a5



460 CoOMPUTER Ac HITECTURE AND PARALLEL PROCESSING

with cach other. An example of a multiple computer system is the IBM Attached
Support Processor System. A multiprocessor system is controlled by one operating
system which provides interaction between processors and their programs at the
process, data set, and data element levels. An example is the Deneleor’s HEP
system.

Two different sets of architectural models for a multiprocessor are described
below. One is a tightly coupled multiprocessor and the other is a loosely coupled
multiprocessor. Tightly coupled multiprocessors communicate through a shared
main memory. Hence the rate at which data can communicate from one processor
to the other is on the order of the bandwidth of the memory. A small local memory
or high-speed buffer (cache) may exist in each processor. A complete conncectivity
exists between the processors and memory. This connectivity can be accomplished
cither by inserting an interconnection network between the processors and the
memory or by 4 multiported memory. One of the limiting factors to the expansion
of a tightly coupled system is the performance degradation duc to memory con-
tentions which occur when two or more processors attempl! to access the same
memory unit concurrently. In Chapter 2, we have seen some configurations of
interleaved main memory suitable for multiprocessors. The degree of conflicts
can be reduced by increasing the degree of interleaving. However, this must be
coupled with careful data assignments to the memory modules. Another limiting
factor is the processor-memory interconnection network itself. This will be dis-
cussed in more detail later.

7.1.1. Loosely Coupled Multiprocessors

Loosely coupled multiprocessor systems do not generally encounter the
degree of memory conflicts experienced by tightly coupled systems. In such systems,
cach processor has a set of input-output devices and a large local memory where it
accesses most of the instructions and data. We refer to the processor, its local
memory and I/O interfaces as a computer module. Processes which execute on
different computer modules communicate by exchanging messages through a
message-transfer system (MTS). The degree of coupling in such a system is very
loose. Hence. itis often referred to as a distributed system. The determinant factor of
the degree of coupling is the communication topology of the associated message-
transfer system, Loosely coupled systems (LCS) are usually efficient when the
interactions between tasks are minimal, Tightly coupled systems (TCS) can
tolerate a higher degree of interactions between tasks without significant deteriora-
tion in performance,

Figure 7.1¢ shows an example of a computer module of a nonhierarchical
loosely coupled multiprocessor system. It consists of a processor, a local
memory, local input-output devices and an interface 1o other computer
modules. The interface may contain a channel and arbiter switch (CAS).
Figure 7.15 illustrates the connection between the computer modules and a
message-transfer system. If requests from two or more different computer modules



MUTTIROCUSSOR ARCHIT G TURE AND PROGRAMMING 461

- & - - . &
i I /o i
E Local bus :
. Processor '
i P) !
1 i
i Channel i
} and :
! arbiter !
i switch H
L ;

e e e L R

(@) A comoiter modue

Computer module 0 Computer module N— |

—o® 5 o
K bt . s [ ]| B s |
' -’ i

Message transfer system
(MTS)

(b) Loose coupling of computer modules

Figure 7.1 Nonhierarchical loosely coupled multiprocessor svstem.

collide in accessing a physical segment of the MTS, the arbiter is responsible for
choosing one of the simultancous requests according to a given service discipline. It
is also responsible for delaying other requests until the servicing of the selected re-
questiscompleted. The channel within the CAS may have a high-speed communica-
tion memory which is used for buffering block transfers of messages. The com-
munication memory is accessible by all processors. With the advent of VLSI
technology, the computer module can be fabricated on a single integrated circuit
and be used as the building block of a multiprocessor system.

The message-transfer system for a nonhierarchical LCS could be a simple
time shared bus, as in the PDP-11. or & shared memory system. The latter case
can be implemented with a set of memory modules and a processor-memory
interconnection network or 4 multiported main memory. In a multiported
memory system, the arbitration and selection logic of the switch are distributed
mto the memory modules. The MTS is one of the most important factors that
determine the performance of the multiprocessor system. For LCS con figurations
that use a single time shared bus, the performance is limited by the message
arrival rate on the bus, the message length, and the bus capaci ty (in bits per second).



462 commiR ARCHITECTURE AND PARALLEL PROX PRSING

Contentions for the bus increase as the number of computer modules increases,
For the LCS with a share memory MTS, the limiting factor is the memory conflict
problem imposed by the processor-memory interconnection network,

The communication memory may also be centralized and connected to a
time shared bus, or be part of the shared memory system. Conceptually, a dis-
tributed or centralized communication memory can be considered as consisting
of logical ports which can be accessed by the processors. Processes (tasks) can
communicate with other processes allocated to the same processor, or with tasks
allocated to other processors. Associated with each task is an input port stored in
the local memory of the processor to which the task is allocated. Every message
issued by the task is directed to the input port of the destination task. Communica-
tion between tasks allocated to the same processor lakes place through the local
memory only. Communication between tasks allocated to different processors is
through @ communication port residing in the communication memory. One
communication port is associated with cach processor as its input port.

The logical structure of the communication between tasks is shown in Figure
7.2. A process allocated to processor P, puts a message into the input port of
another task in P, as illustrated by the arrow marked with a. The b arrows show
a4 tlwo-step action in transferring messages between processors. Arrow b, sends a
message to the input port of processor P,. Arrow b, shows the moving of a message
to the input port of the destination process.

Processor 2
input port

Common memory
containing
communication
ports

Processor |
input port

Figure 7.2 Communication between processes in a multiprocessor environment,



i
MULTIPROCISSOR ARCHITECTURE AND PROGRAMMING 463

The Cm* Architecture For a hierarchical LCS, we consider the example of a
computer system project at Carnegie Mellon University called the Cm*. Each
computer module of the Cm* includes a local switch called the Slocal, as shown
in Figure 7.3a. The switch is somewhat similar to the CAS in Figure 7.la. The
Slocal intercepts and routes the processor’s requests to the memory and 1/0
devices outside the computer module via a map bus, shown in Figure 7.3b. It also
accepts references from other computer modules o its local memory and 1/O de-
vices. The address translation is shown in Figure 7.4. It uses the four high-order
bits of the processor’s address along with the current address space, as indicated
by the X-bit of the LSI-11 processor status word (PSW), to access a mapping table

Intercluster bus

Map bus
Processor LSI-11 bus
(LSI-ID) Slocal | 1
Memory Input-
output

(@) A computer module

Intercluster bus

|

-

Map bus

Kmap

[ o 5

M| 1/

"
.
i
H
"
1
L — |

T N N |

Computer module

|

| TR

Computer module

(b) A cluster of computer modules

Intercluster buses

Kmap Kmap
Cluster Cluster Cluster Cluster

(€) A network of clusters

Figure 7.3 Hierarchically structured multiprocessor system,



".. - “
464 COMPUTIR ARTHITECT U AND PARALLET PROCESSING

e —
l r Map Bus
processor &
[
Slocal mapping
lable SR
non-local
local
$ > | LSI-11 bus address
18
.
immediale addreas
from processor
memory
local Cm

Figure 7.4 Address mapping in the Slocal of the Cm*. (Courtesy of Cm* project at Camegic-Mellon
University, 1980, )

which determines whether the reference is local or nonlocal, A virtual address of
the nonlocal reference is formed by concatenating the nonlocal address field given
Lothe mg pping table and the source processor’s identification. This virtual address
is subsequently 1etciied oy the Kmup via the map bus 1 response (o u wiviee
request for nonlocal access. A number of computer modules may be connected to a
map bus so that they share the use of 4 single Kmap. The Kmap is a processor that
is responsible for mapping addresses and routing data between Slocals,

The computer modules are connected in hierarchical clusters by two-leve]
buses, as shown in Figures 7.3b and 7.3¢. A cluster, which is regarded as the lowest
level. is made up of computer modules, a Kmap and the map bus. Clustering can
¢nhance the cooperative ability of the processors in a cluster 1o operate on shared
data with low communication overhead. It also provides hardware facilities 1o
execute a group of tightly coupled cooperating processes. Any nonlocal reference
to memory is handled by (he Kmap in the cluster of the target memory module.
The map bus may create a bottleneck sipee only one transaction can take place
at a time. The performance of the system s facilitated by interconnecting the
clusters of computer modules in a hicrarchy. Clusters communicate via inrer-
cluster buses which are connected between Kmaps, as shown mn Figure 7.3¢. In
general. a cluster need not have a direet intercluster bus connection 1o every other
cluster in the configuration. Hence the complexity of the interconnection network
cian be simplified :

"

=



MULTIPROCESSOR ARCHTTECTURE AND PROGRAMMING 405

The Kmap is a microprogrammed, 150-ns cycle, three-processor complex with
a common data memory. The Kmap provides the address mapping, communica-
tion, and synchronization functions within the system. Morcover, key operating
system primitives can be moved into the Kmap, thercby relieving the computer
modules from major supervisor functions. The data memory is used to cache
address translation tables and mechanisms for synchronization and other resource
management functions.

The three processors in the Kmap are the Kbus, the Linc, and the Pmap, as
shown in Figure 7.5. The Kbus is the bus controller which arbitrates requests to
the map bus. The Linc manages communication between the Kmap and other
Kmap. The Pmap is the mapping processor which responds to requests from the
Kbus and Linc. It also performs most of the request processing. The Pmap com-
municates with the computer modules in its cluster via the map bus which is a
packet-switched bus. Three sets of queues provide interfaces between the Kbus,
Linc, and the Pmap. Since the Kmap is much faster than the memory in the com-
puter modules, it is multiprogrammed to handle up to eight concurrent requests.
Each of the eight partitions is called a context and exists in the Pmap. Typically,
each context processes one transaction. If one context needs to wait for a message
packet to return with the reply to some request, the Pmap switches to another
context that is ready to run so that some other transaction can proceed con-
currently.

Interciuster bus 1

Intercluster bus 0 ]I

Service Queue s

—
Return Queue Linc
-
Port0 Port 1
Send Send
Queue Queus
¥
r Run Queue

Map bus 4

Kbus Out Queue Pmap

-

Figure 7.5 The components of the Kmap in Cm*. (Courtesy of the Cm* project at Carnegie-Mellon
University, 1980.)



466 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

A service request is signaled to the K bus whenever the processor of a computer
module makes a nonlocal memory reference. Such a computer module (Cm) is
called the master Cm. In response to the scrvice requests, the Kbus allocates a
Pmap context and fetches the virtual address of the memory reference via the map
bus. Furthermore, the K bus activates the new context by placing an entry, which

The initiation is performed when the context invokes the appropriate Kbus
operation by loading a request (with the physical address) into the Kbus out
quene, shown in Figure 7.5, After loading the request into the out queue, the Pmap
makes a context switch to another runnable context. The Kmap services the out
requests by sending the physical address of the memory request via the map bus
to the destination Cm. When the destination Cm completes the memory access,
it signals a return request to the Kmap, which fetches the result of the memory
dccess via the map bus and reactivates the fequest context. These steps, which are
taken in an intracluster memory access, are depicted in Figure 7.6,

The intercluster bus is also a packet-switched bus which is jointly controlled
by the Linc processors in each of the Kmaps directly connected to the bus. The
Linc maintains queues of incoming and Oulgoing messages and interacts with the
Kbus to activate and reactivate Pmup contexts. Each Linc interfaces to two
independent intercluster buses, as shown in Figure 7.5. An intercluster message is
sent from an immediate source Kmap to an immediate destination Kmap (in one

@ processor mtiates non-lacal memory access
@ Kbus reads vinual address from master Cm
Pmap @ context actvation waits in run queus
{ ® @ Pmap microsubroutine pertarms adaress transiation

© requesttor memory cyele waits in oul queue

® Kous sendas physical agdress 10 destination Cm .
(D destnation Cm sleals memary cycle rom ils processar
@ Xbus gates felurp resull back 1o master Crm

@ processor continues

'
e &)

Kbus - N Map bus
)
( —&)
C

| m[ Cm

Figure 7.0 The steps in an intracluster memory access, (Courtesy of the Cm® project at Carnegie-Nellon
University, 1980.)



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 467

hop). These intercluster messages were designed to be used as a mechanism for
remote procedure calls between Kmaps. The identity of the destination is encoded
in the message so that the Linc can determine which message is sent (o its cluster.
If the final destination is several hops away from the initial source, the message is
handled by intermediate Kmaps until it reaches the final destination.

Intercluster messages are of two types: forward messages, which invoke a
new conlext at the destination Kmap, and return messages, which return 1o a
waiting context also at the destination Kmap. A return message contains
the context number of the context which is to be reactivated in the Pmap.
When a Pmap context desires to invoke some operation in another Kmap, it
prepares a [orward intercluster message, instructs the Linc to transmit it on a
specified intercluster bus and then swaps context. The forward message includes
the source Kmap number and the originating Pmap context number so that the
remote Kmap will be able to send back a return message.

When the remote Linc receives a forward message, it causes the Kmap to
activate a new Pmap context to decode the message and respond 1o the request.
It is assumed that the message contains some operation code which the Pmap
context can identifly and exccute. After performing the operation, the context
prepares a return intercluster message, and instructs the Linc to transmit it on a
specified intercluster bus. The Pmap also informs the Kbus that the context is now
free and switches context. As an example of such a cross-cluster operation, we
consider the mapping of a nonlocal memory reference to a location in the physical
memory of another cluster, Some computer module initiates the nonlocal memory
reference which activates a context in its cluster's Kmap. This context becomes the
master context and the Kmap becomes the master Kmap. The destination Kmap
is the slave Kmap and the new context activated at the slave Kmap is the slave con-
text, Figure 7.7 depicts the steps involved in performing a multicluster operation.

Collectively, the Kmaps and the Slocals form the distributed memory switch.
They mediate each nonlocal reference, thus sustaining the appearance of a single
large, uniformly addressed memory. However, memory reference times may have
large variations. Approximate interreference times for local, intracluster, and inter-
cluster references are 3, 9, and 26 ps, respectively. The distributed memory switch
makes the Cm* structure potentially more reliable than tightly coupled systems
because the system can still be operational in a degraded mode when an inter-
cluster bus fails. The LSI-11 processor used in the Cm is a relatively slow pro-
cessor (approximately a 0.1 MIPS) in comparison to the Kmap. It is not quite
obvious how the design of the Kmap would be affected if a faster processor is used
in the Cm. The Kmap technology and design affect the service rate it provides. In
large systems, it can be a limiting factor. The Cm* architecture seems well suited
for parallel algorithms with high locality in an intracluster bus. If locality is poor
and the processes requests frequently cross intercluster buses, the performance of
the algorithm may become poor.

The two-level hierarchy can be extended to an a-level hierarchy. An example
could consist of a binary tree structure with n levels. In such a structure, the tree
has a root node and cach node which represents a cluster has six branches. with

*



468 compPUTER ARCHITECTURE AND PARALLEL PROCESSING

Intereluster hus f : \
—

!(Dg”g@' Map bus
, Kmap | -
T,

L

m,i:'ffg:.f,..@ master Kmmo recewes request from master Gm |
@ masier Kimap prepares interciuster messaga | Cm
!.li:r:cca'r‘;pq @ message ravels o siave Kmap
(3) vave Kmap decodes iequest
@ request lor memary cycle senl o destinalion Cm
@ elurn resull sent back to slave Kmap
(D) wave Kmag orepares ieturn interclustar messige
s!av:!:amg.r @ Message reluins 1o masier Kmap
master Kmap recenwes retum message
m“,;;'?nm"l (D) resull sent to master Cm

Tanre 7.7 The steps ina cross=cluster memory access. (Courtesy of the Cm* project ut Carnegie-Mellon
University, 1980.)

the exception of the leaf nodes. The 1otal number of nodes is (6" — 1)i(b — 1), and
the number of links s (" = b)(b = 1).Ina binary tree, each cluster is connected
strictly to its two children and to a single parent. Communication between leaf
nodes faces a bottleneck toward the top of the tree. Hence, such tree structures per-
form well on a large range of problems. Binary tree structures have been shown
Lo be theoretically promising for sorting, matrix multiplication, and for solving
some NP-hard problems. The basic scheme involves divide-and-conquer tech-
nigues.

7.1.2 Tightly Coupled Multiprocessors

Because of the large variability of interreference times, the throughput of the
hierarchical loosely coupled multiprocessor may be too low for some applications
that require fast response times, If high-speed or real-time processing is desired,
tightly coupled systems (TCS) may be used. Two typical models of a TCS are
discussed. The first model is shown in Figure 7.84. It consists of p processors, |
memory modules, and d input-output channels. These units are connected through.g
a set of three interconnection networks, namely, the processor-memory inter-
connection network (PMIN), the 1/O-processor interconnection network (10PIN),
and the interrupt-signal interconnection network (ISIN). The PMIN is a switch
which can conneel CYEry processor to every memory module. Typically, this
switch isa p by I crossbar which has plsets of cross points. A set of cross points for
a particular processor-memory pair includes (n + k) cross points. where n s the



MULTIPROCESS R ARCHITECTURE AND PROGRAMMING 469

width of the address within a module and k is the width of the data path. Hence
the crossbar switch for a p by [ multiprocessor system has 2 complexity
O(plin + k). For large p and [, the crossbar may dominate the cost of the multi-
processor system. If the crossbar switch is distributed across the memory modules,
@ multiported memory results. The complexity of the multiported memory is
similir o that of the crossbar. Alternately. the PMIN could be a’multistage
network, some examples of which were discussed in Chapter 5.

A memory module can satisfy only one processor’s request in a given memory
cycle. Henee, il two or more processors attempt to aceess the same memory module,
a conflict occurs which is resolved or arbitrated by the PMIN. If necessary the
PMIN may be designed to permit broadcasting of data from one processor Lo
two or more memory modules, To avoid excessive conflicts, the number of memory
modules [ is usually as large as p. Another method used to reduce the degree of
conflicts is to associate a reserved storage area with each processor. This is the
unmapped local memory (ULM) in Figure 7.8a. It is used to store Kernel code
and operating system tables often used by the processes running on that procéssor.
For example, if each processor is multiprogrammed, each time a task switch is
desired the state of the process to be blocked may be saved in the ULM. The
ULM helps in reducing the traffic in the PMIN and hence the degree of conflicts,

Interrupt signal
interconnectjpn
network (I1S1 Input-output

channels
Disks
Hiecsines r-1) 1.O/P
- :

. inter- -
. connection =
network :—EI
(IOPIN)
Unmapped
local memory (ULM)
Memory map (MM) see =
4 A
" A
P/M interconnection
network (PMIN) %
P | 4
; Y
Shared memory modules | 0 ces =1

(@) Without private cache

Figure 7.8 Tightly coupled multiprocessor configurations.



470 compuTir ARCHITECTURE AND PARALLEL PROCESSING

Interrupt signal
intergonnection Input-output
network (ISIN) — channcls
Disks
-1 1-O/P
Processors a” inter- . H
. . .
connection L
o
network :’_—{E
(1OPIN)
Unmapped
local memory (L'LM)
Memory map (MM) “es
Private caches (PC) e E:]

P/N interconnection
network (PMIN)

4 ]

i |
DMA and buffer [ ] ees i

My, M 10

Pipelined shared 2 .
memory modules »

—{ ) Mo —OM.:_ Lm—i

L, Loy

(b) With private cache
Figure 7.8 (continued)

provided process migration is not permitted. An example of a multiprocessor
system with similar processor memory conliguration to that shown in Figure
7.8a is the C.mmp multiprocessor designed at Carnegie Mellon University with 16
processors. Details of this system are given in Chapter 9,

In the multiprocessor organization of Figure 7.8a. each processor may make
memory references which are accessed in main memory. These memory references
contribute to the memory conflicts at the memory modules. Since each memory
reference goes through the PMIN. it encounters delay in the processor memory
switch and, hence, the instruction cycle time increases. The increase in the in-
struction eyele time reduces the system throughput. This delay can be reduced by
associating a cuche with cach processor ta capture most of the references made by
doprocessor. Another consequence of the eache is that the traflic through the
crosshar swiich can be reduced. which subsequently reduces the contention at the



MULTIFROCESSOR ARCHITEC TURE AND PROGRAMMIG 471

cross points. A multiprocessor organization which uses 2 private cache with each
processor is shown in Figure 7.8b. This multiprocessor organization encounters the
cache coherence problem. More than one inconsistent copy of data may exist in
the system. Various solutions to the cache coherence problem are given in Section
7.3. Examples of multiprocessors with private caches are the IBM 3084 and the S-1.

In Figure 7.8, there is a module attached 1o cach processor that directs the
memory references to either the ULM or the private cache of that processor. This
module is called the memaory map and is similar in operation to the Slocal discussed
carlier. The general scheme for implementing memory maps was discussed in
Chapter 2. The ISIN permits each processor to direct an interrupt to any other
processor. Synchronization between processors is lacilitated by the use of such an
interprocessor network. The ISIN can also be used by a failing processor to
broadcast a hardware-initiated alarm to the functioning processors. The IOPIN
permits a processor to communicate with an 1/0 channel which is connected to
peripheral devices.

The complexity of the ISIN may vary from a simple time shared bus-to a
complex crossbar switch. For example, in the Univac 1100/80 and Honeywell
60/66 multiprocessor systems, a connection is established between every pair of
processors for the ISIN. The C.mmp system uses a time shared bus for inter-
processor communication, A time shared bus is much cheaper than a crossbar
switch but encounters more contentions and delays duc to bus-arbitration logic.
However, the interrupt request rate to the bus is usually low encugh to make the
shared bus an attractive solution lo interprocessor communication.

The set of processors used in a multiprocessor system may be homogeneous
or heterogeneous. It is homogencous if the processors are functionally identical.
For example, the multiprocessor system of the IBM 3081K has two identical
processors. Even il the processors are homogeneous, they may be asymmetric.
That is, two functionally identical components may differ along other dimensions,
such as 1/0 accessibility, performance or reliability. Examples with symmetric
multiprocessor configurations are the Honeywell 60/66 and the Univac 1100/80.
Examples of the asymmetric multiprocessors are the attached processor systems
such as the IBM 3084 AP and the C.mmp.

In most cases, the asymmetry or symmetry of the multiprocessor system is
usually transparent to the user processes. It is only of interest to the operating
system, especially with respect to load balancing and other scheduling considera-
tions. In general, a homogeneous system is easier to program and eliminates the
connector problem, which arises in getting two dissimilar processors to effectively
communicate. The symmetric system usually can better facilitate error recovery,
in case of failure.

*

Input-output asymmetricity The asymmetricity of the processors can also be
extended to the input-output devices with respect to the connectivity of these
devices to the processors. An 1/O interconnection network that has complete
conmectivity is symmetric. Because symmetric systems are usually expensive, some



472 COMPUTER ARC HEBECTURE AND PARALLEL FROUESSING

multiprocessors have a high degree of asymmetry in the 1O subsystem. Figure
7.9 is an example of an asymmetric I/O subsystem. In such systems, devices
attached to one processor cannot be directly accessed by another processor. This
is the example 1/0 subsystem used in the C.mmp. A fully symmetric subsystem
is more flexible and provides more accessibility.

Ina fully symmetric structure, the failure of a central processor does not pre-
clude the aceessibility of o given device by any other processor. In the asym-
metric case. the failure of 4 CPU causes all devices attached to that processor to
become inaccessible. Furthermore. a request for data transfer to an 1/0 device
which is attached to a given processor causes undesirable task switching overhead
il the request is made by another processor. The inaccessibility problem en-
countered by aset of devices attached 1o g faulty processor can be slightly overcome
by having redundant connections. as exemplified in Figure 7,10, In this example,

| wee Memories

’ Crossbar switch

“ee Processors

lop 1oP

10
channel

10 Ivo
channel channel

Pevice

¢ T Asy mmctrie 1/0) subsystem in multiprovessor system.



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 473

r see Memories

Crossbar switch

rs
processor Processo

10P, I0P, sds 10P,

I()l"I still accessible imthe event of processor | failure

Figure 7.10 Increased availability in an asymmetric 1/O subsystem through redundant connections.

IOP, is still accessible through processor P when processor 1 fails. The availability
is provided at the cost of additional arbitration logic required for the multiple
paths, Also, the extra logic must be sufficiently reliable that the degradation it
introduces is more than compensated by the extra reliability of redundant paths.
However, if the reliability of the extra logic is poor, then the reliability and avail-
ability of the system in Figure 7.10 will be poorer than that of the original sustem.
The disadvantage of the fully symmetric case is the cost of the crossbar switch. This
cost can be reduced without significant sacrifice in availability by using a multi-
stage network such as the delta network discussed in the previous section, or a
multiported system. Three examples of a tightly coupled multiprocessor system
are the Cyber-170, the Honeywell 60/66, and the PDP-10. These examples are
briefed below and details can be found in Satyanarayanan (1980).

The Cyber-170 architecture Figure 7.11shows an example configuration of a
Cyber-170 multiprocessor system. This configuration consists of two subsystems—
the central processing subsystem and the peripheral processing subsystem. These
subsystems have access 10 a common central memory (CM) through a central
memory controller, which is essentially a high-speed crossbar switch. In addition
to the central memory, there is an optional secondary mem ory called the extended



474 COMPUTER ARCTITIC TURE AND PARALLFL PROCESSING

F"""""""

Shtmprl

M

PPS

CM: central memory

CMC: central memory controller
CP;: ith central processor

CPS: central processing subsystem

ECM: extended core memory

PPS: peripheral processing subsystem =

Figure 7.11 A Cyber-170 multiprocessor configuration with two processors. (Courtesy of Control Datas
Corp.)

core memory (ECM), which is 4 low-speed random-access read-write memory.
The ECM and the CM form a two-level memory hierarchy, In this configuration,
the CMC becomes the switching center, which performs the combined functions
of the ISIN, IOPIN. and PMIN described in Figure 7.8

Honeywell 60/66 architecture A configuration of a Honeywell 60/66 multipro-
cessor system is shown in Figure 7.12. In this system, every central processor and
every 1/O multiplexer is connected 1o every controller (SC). This provides ade-
quatte redundancy in paths for high availability. In the event of a failure on the SC.
all lOMs are stil] accessible by each processor, The system controller acts as
memory controller for jts associated pair of memory moduies, It also acts as an



(*da0)y (amA3uol Jo £5210N07)) “WIsAs Jossadosdiyjnw 99/gg [|Imiduo v Z71°L Mndig

B{jonuod wasks Y1y (g
Kowsw W

Lxsdninw o/ WOl

Jossadoad [enual yir g

W_Eu:u_._u.."_ m.HuB_.E.:o.._ xuhzn_.—ud.
_ |
‘wol 'wor ol
| —~ 21\ _
VP A N
_ N4
Wi s W W 08— W WA 98— Ww
Ll \ M y |
\X N/
| J \ 1
@ o)

%o

»

475



476 COMPUTER ARCHITICTURE AND PARALLEL PROCESSING

intelligent switch to route interrupls and other communications among the various
system components. When more than one element attempts Lo access the same
memory module, the corresponding system controller resolves the conflict, This
triple redundancy organization is particularly designed to enhance availability and
fault tolerance.

The PDP-10 multiprocessor Figure 7.13 shows two configurations of the PDP-10
multiprocessor with multiported memory modules. Each CPU has a cache of 2K
words where cach word is 36 bits. Figure 7.13a illustrates the asymmetric master-
slave configuration. The two processors are identical, but the asymmetry is a
result of the connection of the peripherals to the master only. Hence, the slave
cannot initiate peripheral operations nor respond to an interrupl directly. The
symmetrical configuration of the PDP-10 multiprocessor is shown in Figure 7.13b.
Both processors are connected to a set of shared fast and slow peripherals. How-
ever, cach data channel is attached to one processor, which is the only processor
that can use it. Note that slow peripherals are connected to both processors via
a switch. There is no cache invalidate interface between them. It is assumed that a
software solution is used to enforce cache consistency.

The three tightly coupled multiprocessors discussed above are just a few of the
commercial systems avaldavie. There is trend to achieve improved performance

M, Up to 16 memory rmdu‘les-—-bJ M,

[ TR}
Slave
processor
DC, ' sem=s== 1/0 bus
Up to 8 data channels DC,, ith data channel
KL

Figure 7.13 Two architectural conligurations of the PDP-10 multiprocessor systen. (Courtesy of Digital
Fauipment Corp.)

(¢) A master-slave configuration



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 477

M, le——Up1o 16 memory modules —pd M

Processor Processor
0 |

m " Shared m

fast peripherals i

Upto 8 data Upto 8 data
channels channels
4 [}

i !
DC... % ~-{ bC
Shared L

fast peripherals

-

Switch

Shared slow peripherals
DC, ;: jth data channcl attached to the ith processor

{b) A symmetric configuration
Figure 7.13 (continued)

of new generation mainframes and supercomputers by tightly coupling a number of
identical processors. Other commercial systems discussed in Chapter 9 are
UNIVAC 1100/94, IBM 3081, HEP, and Cray X-MP. The relative merits of tight
coupling depend on cost effectiveness, which is technology dependent.

One of the advantages of a multiprocessing system is its potential for effective
error recoverable capability. Recoverability, however, is not synonymous with
reliability. The number of interconnections and the multiplicity of processing units
and other system modules may. in fact, cause a higher probability of failure on a
multiprocessor than on a uniprocessor. However, the inherent redundancy in a
multiprocessor system probably increases its ability to be fault tolerant,



4TR comm ITER ARCHITECTURE AND PARALLEL PROMCESSING

7.1.3 Processor Characteristics for Multiprocessing

Most multiprocessors have been built using processors not originally designed for
multiprocessor architecture. Two examples of these are the C.mmp system. which
uses DEC's PDP-11 processors, and the Cm* multiprocessor, which uses LSI-11
microprocessors. One reason for using off-the-shelf components is to shorten
development time. However, these off-the-shell components can ereate undesirable
features in the system. A number of desirable architectural features are described
below for a processor to be effective in a multiprocessing environment.

Process recoverability The architecture of a processer used in a multiprocessor
system should reflect the fact that the process and the processor are two different
entities. If the processor fails. it should routinely be possible for another processor
to retrieve the interrupted process state so that execution of the process can
continue. Without this feature, the potential for reliability is substantially re-
duced. Most processors contain the process state of the current-running process
i internal registers which are not aceessible from outside the processor and are
not written to memory in the event of a fault. With current technology. it should
be possible 1o separate the general-purpose registers from the processor itsell
without much loss of speed. It is desirable 1o have a register file shared by all
processors in the event of a gracefully degraded operation mode.

Efficient context switching Another reason for having a shared general-purpose
register is thata large register filecan be used ina multi-programmed processor. For
effective utilization, it is necessary for the processor to support more than one
addressing domain and, hence. 1o provide a domain-change or context-switching
operation. Such switching operations require extensive queueing and stack
dperations. The contex! swilch operation saves the state of the current process and
switches to a selected ready-to-run process by restoring the statc of the new process.
The state of a running processisindicated by the contents of the processor registers,
An example of a processor with multiple domains is the IBM 370/168. Two
domains, the supervisor and user modes of operation, are available. A user process
can communicate with the operating system by using @ mechanism provided
through a supervisor call (SVC) instruction.

A special instruction can be created to accomplish the context switch ef-
ficiently. An example of such an instruction is the central exchange jump (CE)
provided in the Cyber-170 processor, which has a single set of registers. The
execution of the CEJ results in the saving of the context or state of the current
process and the register set replaced by the state of another process taken from
an area in the central memory. This area is called the exchange package. Such save
dre restore operations for all processor registers can, if not properly designed,
significantly contribute to the overhead in establishing concurrency in the svstem.

By providing an ample number of register sets, a task switch can be accom-
plished clliciently by changing the contents of the current process regisier in the
processor to point to the register set containing the state of the selected process, us



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 479

shown in Figure 7.14. The current process register points to the register set
currently in use. For example, cach processor in the S-1 multiprocessor system
has 16 sets of registers. Stack instructions which rapidly save and restore the
processor status word tend to minimize switching overheads. The implementation
of reentrant procedure calls is related to the stack manipulative structure of the
Processor,

Large virtual and physical address spaces A processor intended to be used in the
construction of a general-purpose medium to large-scale multiprocessor must
support a large physical address space. Even when an algorithm is decomposed
so that it can be implemented using very small amounts of code, processes some-
times need to access large amounts of data objects. The 16-bit address space of the
processor used in the C.mmp hampered effective programming of the system.

In addition to the need for a large physical address space. a large virtual
address space is also desirable. If possible, the virtual address space should be
segmented to promote modular sharing and the checking of address bounds for
memory protection and software reliability. For example, the processor used in
the S-1 multiprocessor system has 2 gigabytes of virtual memory and 4 gigawords
of physical memory, where each word is 36 bits wide.

Processor

r‘--4v-...--------—'...-—----.-...----h—--- A-.nAAv-v..-----------—-------.I

3

: Current process register i

: i

i i

biicassminvesmplas S 5 8 e e e il

.\Comexl switch
-
- . LR ] L
-
-
'8 7

B
Multiple register sets

Figure 7.14 Context switching in a processor with multiple register sets,



480 compurr ARCHITECTURE AND PARALLEL PROCTSSING

Effective synchronization primitives The processor design must provide some
implementation of indivisible actions which serve as the basis for synchronization
primitives. These synchronization primitives require efficient mechanisms for
establishing mutual exclusion. Mutual exclusion is required when two or more
processes are in execution concurrently and must cooperate to exchange data
during the computation. Mechanisms for establishing mutual exclusion involve
some form of read-modify-write memory eycle and queucing. One such mechanism
is the semaphore. Fach semaphore has a queue associated with it and the ent rics in
the queue refer 1o processes which were suspended because of the semaphore value
of the variable, A semaphore operation requires an indivisible operation, which can
be accomplished by using the read-modify-write memory cycle to test and update
a semaphore, The queue manipulations should also be done indivisibly. Some
instructions which are used to accomplish mutual exclusion are the rest-and-set
and compare-and-swap. These primitives will be discussed in Chapter 8.

Interprocessor communication mechanism The set of processors used in a multj-
processor must have an efficient means of interprocessor communication, This
mechanism should be implemented in hardware, A hardware mechanism is very
useful for drawing the attention of the target processor. The need for such a
mechanism is even more apparent when, in an asymmetric multiprocessor system,
there are frequent requests for services exchanged between different processors.
The hardware interprocessor mechanism can also facilitate synchronization
between processors. This mechanism could, for example, be used in the event of a
processor failure to initiate a hardware signal to all functioning processors, which
would then become aware of the faulty processor and start an error recovery or
diagnostic procedure.

Since the processors in a tightly coupled system share memory, it is possible
to have software interprocessor communication without an explicit hardware
mechanism. This method is inefficient as each processor will have 10 periodically
poll its “mailbox™ to see if there is a message for it. Such polling will result in
intolerable response times for a large number of processors. Examples of systems
with hardware interprocessor-communication mechanisms are the IBM 370/168
MP, Cray X-MP, and the C.mmp, which will be discussed in Chapter 9. [tis possible «
that two or more processors may simultaneously at tempt to access a common path
in the interprocessor mechanism, Each processor must be capable of participating
in the arbitration of the requests to use the path. Since arbitration implies that on
simultaneous requests one or more processors must wait, the processor must
have a wait state or some mechanism to suspend the processor in a queue.

Instruction set The instruction set of the processor should have adequate facjgties
for implementing high-level languages that permit effective concurrency at the
procedure level and for efficiently manipulating data structures. Instructions
should be provided for procedure linkage, looping constructs, parameter manipula-
tion, multidimensional index computation, and range checking of addresses,
Furthermore, the instruction set should also include instructions for creating and



MULTIPROCESSOR ARCHITECTURE AND PROCGRAMMING 481

terminating parallel exccution paths within a program. Thus, a full set of addressing
modes are desirable. Hardware counters and real-time clocks should be provided
to generate a unique name of process identification and time-out signals required
for process management. These timers can also be used in a multiprocessing
system to detect many errors by associating 4 «watchdog” timer with important
system resources, as done in the C.mmp. A multiprocessor system provides a
natural environment where each component can monitor each other relatively
casily. There are different implementations of the error-detection technique,
but the basic idea is that the timer will in some way raise an error-condition
indicator il it is not reset within a specified time limit. Various techniques used 10
interrupt a processor will be discussed later.

7.2 INTERCONNECTION NETWORKS

The principal characteristic of a multiprocessor system is the ability of cach
processor to share a set of main memory modules and. possibly, /O devices, This
sharing capability is provided through a set of two interconnection networks. One
is between the processors and memory modules and the other, between the
processors and the 1/O subsystem. There arc several different physical forms avail-
able for the interconnection network (IN). Four basic organizations of the IN
are discussed in this scction. The classification scheme presented here is due to
Enslow (1977). Techniques are presented 10 evaluate the effective bandwidth of
some interconnection networks. -

7.2.1 Time Shared or Common Buses

The simplest interconnection system for multiple processors is a common com-
munication path connecting all of the functional units, An example of a multi-
processor system using the common communication path is shown in Figure 7.15.
The common path is often called a time shared or common bus. This organization
is the least complex and the easiest to reconfigure. Such an interconnection
network is often a totally passive unit having no active. components such as

170 Memory Memory
processor module module

o

processor Processor Processor

Figure T.15 A single-hus multiprocessor wrganization.



. :
482 COMPUTER ARCHITLCTURE AND PARALLEL PROCESSING
. =TI
switches. Transfer operations are controlled completely by the bus interfaces of
the sending and receiving units. Since the bus is a shared resource, a. mechanism
must be provided 1o resolve contention.

The conflict-resolution methods include static or fixed priorities, first-in,
fisst-out (FIFO) queues and daisy chaining. A centralized bus controller or
arbiter, though simplifying the conflict resolution, may have negative effects on
system reliability and flexibility. A unit (processor or 1/O) that wishes to initiate
a transfer must first determine the availability status of the bus, then address the
destination unit to determine its availability and capability to receive the transfer.
A command is also issued to inform the destination unit what operation it is to
perform with the data being transferred, after which the data transfer is finally
mitiated. A receiving unit recognizes its address placed on the bus and responds
to the control signals from the sender. These concepts, although basic, typify the
operations on the bus,

An example of a time shared bus is the PDP-11 Unibus, which has 56 signal
lines to provide the control, address lines, and data paths necessary to transfer
16-bit words. The function of each of the signals is shown in Table 7.1. The five
bus-request signals are used for requesting bus control by a “master” at four
different priority levels, They are also used for atrention signals by a “'slave.” The
master-slave assignment is dynamic. When a requester is granted control of the
bus, it becomes a temporary master until it relinquishes control. The master can
then sclect certain devices as slaves to control the transfer of data. Each of the
request signals has a corresponding bus-grant signal. The functions of these signals
are described in more details later.

Although the single-bus organization is quite reliable and relatively inexpen-
sive, it does introduce a single critical component in the system that can cause
complete system failure as a result of a malfunction in any of the bus interface
circuits. Moreover, system expansion, by adding more processors or memory,

Table 7.1 PDP-11 unibus signals P

Signal Number of lines Function
Address 18 Identifies destination of information (memory
location or device address)
Data 164 Information value
2 parity
Control 24
1 master sync Data transfer control
1 slave sync
| Initialization
Bus request 5 Priority interrupt request
Bus grant 5 (unidirectional) Bus assignment (made by CPU)
Bus busy 1 Bus status
Interrupt 1 Interrupt request
Selection acknowledge 1 Acknowledgment signal
Power fail 2 Power failure detection




MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 483

f i ! : t -

Bus Control p p Memory 170
modificr logic bl TRCEasTT units devices

t i t t t {

Figure 7.16 Multiprocessor with unidirectional buses.

increases the bus contention, which degrades system throughput and increases
arbitration logic. The total overall transfer rate within the system is limited by the
bandwidth and speed of this single path. For this reason, private memories and
private 1/Os are highly advantageous. Interconnection technmiques that overcome
these weaknesses add to the complexity of the system, .

An extension of the single path organization 1o two unidirectional paths, as
shown in Figure 7.16, alleviates some the problems mentioned above without an
appreciable increase in system complexity or decrease in reliability. However, a
single transfer operation in such a system usually requires the use of both buses,
hence not much is actually gained.

The next step in alleviating the limitations of the time shared bus is to provide
multiple bidirectional buses, as shown in Figure 7.17, to permit multiple simul-
taneous bus transfers; however, this4ncreases the system complexity significantly.
In this case, the interconnection subsystem becomes an active device. A number
of computer systems, such as the Tandem-16 and Pluribus, employ variations
of the time shared system of buses discussed above. In general, the above organiza-
tions are usually appropriate for small systems.

In view of the increasing numbers and speeds of devices attached to a central
bus as a result of changing technology and applications, the bus can become heavily
loaded. Therefore, the bus impairs the performance of the devices and, thus, of the
overall system. There are several factors that affect the characteristics and per-
formance of a bus. These include the number of active devices on the bus, the
bus-arbitration algorithm, centralization (or distribution) of control, data width,
synchronization of data transmission. and error detection. We will examine several

Figure 717 Mubii-bus multiprocessar arganization,



484 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

bus-arbitration algorithms which control access 10 the bus by the competing
devices.

Current technology (processing speed) requires relatively simple algorithms
for bus arbitration. These algorithms are usually implemented in the hardware
and allow the arbitration for a bus cycle to be overlapped with the previous
transfer.

(A) The static priority algorithm Many digital buses used today assign unique
static prioritics to the requesting devices. When multiple devices concurrently
request the use of the bus, the device with the highest priority is granted access to
it. This approach is usually implemented using a scheme called daisy chaining,
in which all services are effectively assigned static priorities according to their
locations along a bus grant control line. The device closest to a central bus con-
troller is assigned the highest priority (Figure 7.18). Requests are made on a
common request ling, BRQ. The central bus control unit propagates a bus grant
signal (BGT) if the acknowledge signal (SACK ) indicates that the bus is idle.

The first device which has issued a bus request that receives the BGT signal
stops the latter’s propagation. This sets the bus-busy flag in the controller and the
device assumes bus control. On completion, it resets the bus-busy flag in the
controller and a new BGT signal is generated if other requests are outstanding,
The DEC PDP-11 Unibus uses this approach. The Motorola MC68000 pro-
cessor incorporates such a bus control unit.

Another DEC bus called the synchronous backplane interconnect (SBI) and
used in the VAX 11/780 computer implements static priorities using a distributed
scheme called parallel priority resolution, in which the time required to determine
which requesting device has the highest priority is fixed (unlike daisy chaining).
Using static priorities clearly gives preferences and, thus, lower wait times to
devices with higher priorities.

(B) The fixed time slice algorithm Another common bus-arbitration algorithm
divides the available bus bandwidth into fixed-length time slices that are then
sequentially offered to each device in a round-robin fashion. Should the selected

Deevice Device Device
sl I =< TR P ™M p———= Bus grant (BGT)
Bus
-control [ o 1 l L Bus busy (SACK)
unit
-q—b_.i Bus request (BRQ)
e \/r 4
<-; Bus —>

Figure 7.18 Static daisy chain implementation of a system bus.



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 485

device elect not to use its time slice, the time slice remains unused by any device.
This technique, called fixed time slicing (FTS) or time division multiplexing (TMD),
is used by Digital’s Parallel Communications Link, which also allows a flexible
assignment of available time slices to the devices, This scheme is usually used with
synchronous buses in which all devices are synchronized to a common clock.

The service given o each device in the FTS scheme for access to the bus is
independent of that device's position or identity on the bus; schemes with this
characteristic are said to be symmetric. In particular, all m devices are given one
out of every m time slices at fixed intervals in this scheme. Symmetric bus-arbitra-
tion algorithms optimally load-balance all bus requests because no preference is
given 1o any device. It further delivers a bounded maximum wait time to the
devices. However, it suffers a high average wail time (and. thus. a lower bus
utilization).

When the bus is not heavily loaded, FTS incurs a substantially higher standard
deviation from all wait times than does the static priority scheme, although the
variability of service is lower and remains constant regardless of the bus load.
Both algorithms offer good performance under light bus loading; these charac-
teristics and their relative simplicity explain their widespread popularity.

(C) Dynamic priority algorithms The following dynamic priority algorithms allow
the load-balancing characteristics of symmetric algorithms such as fixed time
slicing to be achieved without incufring the penalty of high wait times. The devices
are assigned unique priorities and compete to access the bus, but the priorities are
dynamically changed to give every device an opportunity to access the bus. If the
algorithm used to permute the priorities favors no individual device (is symmetric).
then the system load balances the bus requests, Further, using priorities overcomes
the inefficiency inherent in the fixed time slice scheme of allocating full time slices
to the devices before requests are placed. Two algorithms for dynamically per-
muting prioritics are the least recently used (LRU) and the rotating daisy chain
(RDC).

The LRU algorithm gives the highest priority to the requesting device that
has not used the bus for the longest interval. This is accomplished by reassigning
priorities after cach bus cycle. The second dynamic priority algorithm generalizes
the daisy chain implementation of static priorities. Recall that in the daisy chain
scheme all devices are given static and unique priorities according to their priorities
on a bus-grant line emanating from a central controller.

In the RDC scheme, no central controller exists, and the bus-grant line is
connected from the last device back to the first in a closed loop (Figure 7.19).
Whichever device is granted access to the bus serves as bus controller for the
following arbitration (an arbitrary device is selected to have initial access to the
bus). Each device's priority for a given arbitration is determined by that device's
distance along the bus-grant line from the device currently serving as bus controller:
the latter device has the lowest priority. Hence, the priorities change dynamically
with each bus cycle.



486 compuTir Ape HITECTURE AND PARALLYL. PROCESSING

Device Device i Device
| 2 m

Partial bus

A
controller
@l o et
——._._—-L_ — SACK

— BRQ
o v s ha

Figure 7.19 Rotating daisy chain implementation of a system bus.

g
—
—

(D) The first-come first-served algorithm In the first-come, first-served (FCFS)
scheme, requests are simply honored in the order received. This scheme is sym-
metric because it favors no particular processor or device on the bus; thus, it load
balances the bus requests. It has been shown that, under the condition of fixed
service times by the central resource (fixed bus-transfer times in this case), FCFS
yield$ the smallest possible average wail time and standard deviation of all wait
times. In essence, FCFS is the optimal bus-arbitration algorithm with respect o
these performance measures.

Unfortunately, FCFS is difficult to implement for at least IWo reasons. Any
implementation of FCFS must provide a mechanism to record the arrival order
of all pending bus requests, unlike the previous algorithms. More important, it is
always possible for two bus requests to arrive within a sufficiently small interval
50 their relative ordering cannot be correctly distinguished. Hence, any implemen-
tation can only approximate the behavior of FCFS. Despite the above difficulties
in realizing an implementation, it is important to measure the performance of
FCFS as an indicator of the best possible performance that a bus-arbitration
algorithm can achieve with respect to the above criteria,

Two other techniques used in bus-control algorithms are polling and
independent requesting. In a bus-controller that uses polling, the bus grant signal
(BGT) of the static daisy chain implementation is replaced by a set of [log, m]
polling lines, as shown in Figure 7.20. The set of poll lines is connected to each of
the devices. On a bus request, the controller seq uences through the device addresses
by using the poll lines. When a device D; which requested access recognizes its
address, it raises the SACK line (to indicate bus busy).

The bus-control unit acknowledges by terminating the polling process and D,
gains access to the bus. The access is maintained until the device lowers the SACK
line. Note that the priority of a device is determined by its position in the polling
sequence. In the independent requesting technique, a separate bus request (BRQ,)



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 487

2 e ol

4,\ lnh d,\

Device Device Device |
1

Bus llog,m] lines
control
umt - e L- L SACK

——8— —BRQ

< 4 Bu\': . e

Figure 7.20 Polling implementation of a system bus.

and bus grant (BGT,) line are connected to each device i sharing the bus, as shown
in Figure 7.21. This requesting technique can permit the implementation of LRU,
FCFS. and a variety of other allocation algorithms.

7.2.2 Crossbar Switch and Multiport Memories
Il the number of buses in a time-shared bus system is increased, a point is reached

at which there is a separate path available for each memory unit, as shown in |
Figure 7.22. The interconnection network is then called a nonblocking crossbar.

Device Device i Device
1 2 m )
BGT, } AN N i A i
BRQ,
i BGT,
BRQ,
Bus
control l
unit BGT,, [
BRQ,_ !
»
SACK
- i 5

Fignre 7.21 Independent request implementation of a system Sus



48R COMPUTI B AREIITTC TURE AND PARALLEL PROKCESSING

M, M, eee [ M,
'Pﬂ
10,
.
-
-
-
L]
.
Fo-1 :
1o, ,

Figure 7.22 Crossbar (nonblocking) switch system organization for multiprocessors. (Courtesy of ACM
Computing Surveys, Enslow 1977,)

The crossbar switch possesses complete connectivity with respect to the memory
modules because there is a separale bus associated with each memory module.
Therefore, the maximum number of transfers that can take place simultancously is
limited by the number of memory modules and the bandwidth-speed product of
the buses rather than by the number of paths available.

The important characteristics of a system utilizing a crossbar interconnection
matrix are the extreme simplicity of the switch-to-functional unit interfaces and
the ability to support simultaneous transfers for all memory units. To provide
these features requires major hardware capabilities in the switch. Not only must
each cross point be capable of switching parallel transmissions, but it must also
be capable of resolving multiple requests for access 1o the same memory module
occurring during a single memory cycle. These conflicting requests are usually
handled on a predetermined priority basis. The result of the inclusion of such a
capability is that the hardware required to implement the switch can become quite
large and complex. Althouglr'very large scale integration (VLSI) can reduce the
size of the switch, it will have little effect on its complexity.

In a crossbar switch or multiported device, conflicts occur when two or more
concurrent requests are made to the same destination device. In the following
discussion, we assume that there are 16, destination devices (memory modules)
and 16 requestors (processors), The implementation to be described can also be
used for a processor to device con nection, Figure 7,23 shows an example functional
design of a crossbar switch element or multiported memory for one module. The
switch consists of arbitration and multiplexer modules. Each processor gencrates
4 memory module request signal (REQ) 1o the arbitration unit, which seleets the

-



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 489

Data
L

- —— Dia

+ e
RD/WR Multiplexer
Vi

# 2 modules C: RD/WR p From P - P,
addr
m

7 K————— addr

[

Memory
module 4.4 control
- REQ,
= AC
Memory o o
enable REQ,
Arbitration = ACKI
module &
-
-

e REQH
p——— ACK,,

Figure 7.23 Functional structure of & crosspoint in a crosshar network .

processor with the highest priority'.‘Thc selection is accomplished with a priority
encoder. The arbitration module returns an acknowledge signal (ACK) to the
selected processor. After the processor rececives the ACK, it initiates its memory
operation.

The multiplexer module multiplexes data, addresses of words within the
module, and control signals from the processor to the memory module using a
16-to-1 multiplexer. The multiplexer is controlled by the encoded number of the
selected processor. This code was generated by the priority encoder within the
arbitration module. -

Such a scheme was used 1o implement the processor-memory switch for the
C.mmp, which has 16 processors and 16 memory modules. The switch consists of
16 sets of cross points from one processor port to the 16 memory ports, and
another 16 sets of cross points from one memory port to the 16 processor ports.
Theoretically, expansion of the system is limited only by the size of the switch
matrix, which can often be modularly expanded within initial design or other
engineering limitations. One effect of VLSI on the crossbar interconnection system
is the feasibility of designing crossbar matrices for a larger capacity thin initially
required and equipping them only for the present requirements. Expansion would
then be facilitated, since all that is required is the addition of the MISSINg Cross
points.

In order to provide the flexibility required in access to the input-output
devices, a natural extension of the crossbar switch concept is 1o use a similar switch
on the device side of the 1 O processor or channel. as shown i F iure 7,24, The



490 COMPUTER ARCHITECT LR AND PARALLEL PROKCESST NG

M, M, M,
7] D D
Pn
170,
S D
lpl
170, &

Figure 7.24 A crosshar organization for irm-:—pmcu.mr-uwmnry-l((l connections.

hardware required for the implementation is quite different and not nearly so
complex because controllers and devices are normally designed to recognize their
own unigue addresses. The effect is the same as if there were a primary bus
associated with each 1/0 channel and crossbuses for each controller or device.

The crossbar switch has the potential for the highest bandwidth and system
cfficiency. However, because of its complexity and cost, it may not be cost-effective
for a large multiprocessor system. The reliability of the switch is problematic:
however, it can be improved by segmentation and redundancy within the switch,
In general, it is normally quite easy to partition the system to logically isolate
malfunctioning units. There are a number of examples of systems utilizing the cross-
bar interconnection systems. Some of these are the C.mmp and the S-1 multi-
processor systems, which are to be discussed in Chapter 9,

I the control, switching, and priority arbitration logic that is distributed
throughout the crossbar switch matrix is distributed at the interfaces to the memory
modules, a multiport memory system is the result, as the example shows in Figure
7.25. This system organization is well suited to both uni- and multiprocessor
system organizations and is used in both. The method often utilized to resolve
memory-access conflicts is to assign permanently designated priorities at each
memory port. The system can then be configured as necessary at each installation
to provide the appropriate priority access to various memory modules for each
functid®al unit, as shown in Figure 7.26. Except for the priority associated with
cach, all of the ports are usually clectrically and operationally identical. In fact,
the ports are often merely a row of identical cable connectors. and electrically it
makes no difference whether an 1/O or central processor is attached,

The flexibility possible in configuring the system also makes it possible to
designate portions of memory as private 1o certain processors, 1/0 units, or com-



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 491

[/00 170,

Figure 7.25 Multiport memory organization without fixed priority assignment. (Courtess of ACM Com-
puting Surveys, Enslow 1977.)

binations thereof, as shown in Figure 7.27. In this figure, memory modules M,
and M, are private to processors P, and P,. respectively. This type of system
organization can have definite advantages in increasing protection against un-
authorized access and may also permit the storage of recovery routines in memory
areas that are not susceptible to modification by other processors; however, there
are also serious disadvantages in system recovery if the other processors are not
able to access control and status information in a memory block associated with a
laulty processor.

0 [ o o
M, M, M, M,
i3 32 2 3 3 2

[ ) i J

—a

170

Figure 7.26 Multiport-memory system with assigament of port priorities. (Courtesy of 4CM Compuring
Surveyy, Enslow 1977.)



492 COMPUTIR ARCHITECTURE AND PARALLEL PROCESSING

170, 170,

Figure 7.27 Multiport memory organization with private memorics. (Courtesy of ACM Computing
Surveys, Enslow 1977,)

The multiport memory system organization also can support nonblocking
access to the memory if a full-connected topology is utilized. Since each word
access is a separate operation, it also permits the exploitation of interleaved
memory addresses for access by a single processor. However, for multiple pro-
cessors, interleaving may actually degrade memory performance by increasing
the number of memory-access conflicts that occur as all processors cycle through
all memory following a sequence of consecutive addresses. Interleaving also
results in the effective loss of more than one module of memory when there is a
failure. There are a number of examples of multiport memory systems such as the
Univac 1100/90 and IBM System 370/168 to be discussed in Chapter 9.

It is very difficult to justify the use of a crossbar switeh or multiport memories
for large multiprocessing systems. The absence of a switch with reasonable cost
and performance is one of the reasons that has prevented the growth of large
multimicroprocessor systems. The high cost of the switch may be circumvented by
using a switch with a slightly restricted number of possible permutations. In the
next subscetion, we discuss some multistage networks for multiprocessors. These
networks are far less expensive than full crossbars or multiport memories for
large multiprocessing systems. Moreover. the multistage networks are modular
and easy to control. The modularity permits incremental expansion and repair-
ability. A comparison of the three multiprocessor interconnection structures is
given in Table 7.2.

7.2.3 Multistage Networks for Multiprocessors

In order to design multistage networks., we need to understand the basic principles
involved in the construction and control of simple crossbar switches. Consider
the2 x 2crossbar switch shown in Figure 7.28. This 2 x 2switch has the capability



. MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 493

Table 7.2 Comparison of three multiprocessor hardware organizations

Multiprocessors with time shared bus -

I. Lowest overall system cost for hardware and least complex.

2. Very easy to physically modify the hardware system con figuration by adding or removing functional
unils,

3. Overall system capacity limited by the bus transfer rate. Failure of the bus is a catastrophic system
lmilure.

4. Expunding the system by the addition of functional units niy degrade overall system performance
(throughput).

5. The system efliciency attainable is the lowest of all theee hasic interconnection systems.

6. This organization is usually appropriate for smaller systems anly.

Multiprocessors with crosshar switch

1. This is the most complex interconnection system. There is a potential for the highest total ransfer
rate.

2. The functional units are the simplest and cheapest since the control and switching logic is in the

switch.

+ Because a basic switching matrix 1s required to assemble any functional units into a working con-

higuration, this organization is usually cost-eflective for multiprocessars only. !

4. Systems expansion (addition of functional units) usually improves overall performance. There is the
highest potential for system efficiency such as for system expansion without reprogramming of the
operating system.

5. Theoretically, expansion of the system is limited only by the size of the switch matrix. which can
often be modularly expanded within initial design or other engineering limitations,

6. The reliability of the switch, and therelore the system. can be improved by segmentation and/or
redundancy within the switch,

e

Multiprocessors with multiport memor -

1. Requires the most expensive Memary units since most of the control and switching circuitry is
included in the memory unit,

2. The characieristics of the functional units permit a relatively low cost uniprocessor to be assembled
from them.

3. There is a potential for a very high total transfer rate in the overall system.

4. The size and configuration options possible are determined (limited) by the number and type of
memory poris available: this design decision is made quite early in the overall design process and
is difficult to modify.

5. A large number of cables and connectors are required.

of connecting the input 4 to cither the output labeled 0 or the output labeled 1,
depending on the value of some control bit ¢, of the input A. Il ¢, = 0, the input
is connected 10 the upper output, and if ¢4 = 1, the connection is made to the
lower output. Terminal B of the switch behaves similarly with a control bit Cy.
The 2 x 2 module also has the capability to arbitrate between conflicting requests.
If both inputs 4 and B require the same output terminal. then only one of them
will be connected and the other wil] be blocked or rejected. .

The 2 x 2 switch shown in Figure 7.28 is not buflered. In such a switch. the
performance may be limited by the switch setup time which is experienced cach
time a rejected request is resubmitted. To improve the performance, buffers can
be inserted within the switch, 2 shown in Figure 7.29. Such a switeh has also
been shown to be effective for pocket switching when used in a multistage network



494 comrunen ARCHITECTURE AND PARALLEL PROCESSING

Ae -0 Ao o0
B e | B \-—-.l

Control Control
bit of A4 bit of 4 ¢
C,=0 =1 Figure 7.28 A 2 x 2 crossbar switch,

Itis straightforward to construct a 1 x 2" demultiplexer using the above
described 2 x 2 module. This is accomplished by constructing a binary tree of
these modules, as shown in Figure 7.30, for a 1 x 8 demultiplexer tree. The
destinations are marked in binary. If the source A is required to connect to destina-
tion (dyd,dy),, then the root node is controlled by bit d,, the modules in the second
stage arc controlled by bit d,. and the modules in the last stage are controlled by
bit d,. It is clear that A can be connected to any one of the eight outpul terminals,
Itis also obvious that input B can be switched to any one of the eight outputs. The
method of constructing the 1 x 2 demultiplexer tree can be extended 1o build a
2" x 2" multistage network. Below we extend the tree network to devise a general
multistage network called a banyan network.

A banyan network can be roughly described as a partially ordered graph
divided into distinct levels. Nodes with no arcs fanning out of them are called
base nodes and those with no arcs fanning into them are called apex nodes. The
Janour [ of a node is the number of arcs fanning out from the node. The spread

f'-— Demultiplexers f Buffers i Muitipleners—r{

Figure 7.29 Buffered 2 x 2 crosshar switch,



MULTIPROCESSOR ARC HITECTURE AND PROGRAMMING 495

R0

= o/ l—""“‘*-o{l:l!.

o/-o'ﬁl.ﬁ
g T o1l
Ao
Ho—o 1 65
0-"/—04
0/" I~
o l\ 110
0/-0
A i

Figure 7.30 1-by-8 demultiplexer implemented with 2 x 2 switch boxes.

s of a node is the number of ares fanging into it. An (/, s, I) banyan network can
thus be described as a partially ordered graph with | levels in which there is exactly
one path from every base to every apex node. The fanout of each nonbase node
is f and the spread of each nonapex node is s. Each node of the graph isan s x f
crossbar switch.

The banyan network can be derived from a uniform tree with fanout /. We
illustrate the derivation of a (2, 2, 2) banyan network from the two-level binary
tree shown in Figure 7.31a. Since the spread is 2, it means that two arcs should be
fanning into each nonroot node. Therefore, we replicate the rest to have s copies
of the root and attach the root to the next level nodes, as shown in Figure 7.31b.
To make the spread of the leal nodes equal to two, replicate the top two levels
(interleaving the second level nodes). Join the second level nodes to the leaf nodes
to make the fanout of the second level nodes equal to 2 and the spread of the leaf
nodes equal to 2. This completes the derivation of the (2, 2, 2) banyan network and
is shown in Figure 7.31c.

A banyan network has the advantage of providing a complete intercon nection
of one set of n devices to another set of n devices at a cost in switching circuitry that
grows as i log n. A crossbar switet, by contrast, grows as n?, In gencral, an (f,s, 1)
banyan network can be defined as | recursions on an s x [ crossbar switch. A
cross point is thus a banyan of height 1. Hence different topologies of banyan
networks can be implemented for multiprocessors. However, more studies need



1242] 1%3u 3y1 jo uoiieanday (2)

T peasds —1001 2y jo uoneday ()

*
“ydesd uedueg (7 'z '7) ® Jo vonewo 4 1£°L Mniy g

(1943] 7) 7 1noue) ‘3211 vy (n)

4



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 497

to be performed to evaluate the cost effectiveness of these topologies under dif-
ferent multiprocessor work loads. Below, we discuss an implementation of a special
type of banyan network called the delta network, which has been proposed for
multiprocessors by Patel (1981).

Let an a x b crossbar module have the capability to connect, any one of its
a inputs to any onc of the b outputs, where the.outputs are labeled 0, 1,.... b — 1.
An input terminal is connecled to the output labeled d if the control digit supplied
by the input isd, where d is a base-b digit. Ana x b module also arbitrates between
conflicting requests by accepting one of the requests and blocking or rejecting
others.

A delta network is defined as an a” x b" switching network with n stages
consistingofa x b crossbar modules. The interconnection or link patterns between
stages is such that there exists a unique path of constant length from any source to
any destination. Moreover, the path is digit controlled such that a crossbar
module connects an input to one of its b outputs depending on a single base-b
digit taken from the destination address. In a delta network, no input or ouitput
terminal of any crossbar module is left unconnected.

To systematize the link patterns between stages of the delta network, we define
a g-shuffie of gc objects, denoted by S Where g and ¢ are some positive integers.

S¢ec is a permutation of gc indices 0,1,2,...,(gc — 1)) and is defined as

S,.di) = Ei + H)mod qc (1.1)

for0 <i < gc — 1. An alternative Se.(i) can be expressed as
S, i) = {qi mod(ge — 1)  for 0 <i<ge-1 (12)
i fori=gc—1

A g-shuffle of gc playing cards can be viewed as follows. Divide the deck of gc
cards into ¢ piles of ¢ cards each: top ¢ cards 0, 1, ..., (¢ — 1)) in the first pile,
next ¢ cards {¢,¢ + 1,...,(2c — 1)) in the second pile, and so on. Now pick the
cards one at a time from the top of each pile, the first card from the top of pile one,
the second card from the top of pile two, and so on in a circular fashion until all
the piles of cards are exhausted. This new order of cards represents an Sqec permu-
tation of the previous order. Figure 7.32 illustrates an example of a 4 shuffle of 12
indices, namely S,.,. From the above description, it is clear that a 2 shuffle is the
well-known perfect shuffle discussed in Chapter 5.

In order to construct an a" x b"delta network, we use the ¢ shuffle as the link
pattern between every two consecutive stages of the network. If the destination D
is expressed in a basc-b system as (dueydpy+-d,dy),, where D = Y d;b'and

0<j<n
0 < d; < b, then the base-p digit d; controls the crossbar modules of stage (n — i).
The a-shuffle function is used 1o convert the outputs of a stage to the inputs of the
next stage, where the inputs and outputs are numbered 012000 starting at the



498 COMPUTER ARCHITEC TURE AND PARALLEL. PROCESSING

i

WL -On Figure7.32 The 4 shuffle of 12 objects,

top. Figure 7.33 shows a general @" x b* delta network which has " sources and
b" destinations. Num bering the stages of the network as 1,2,... ., starting at the
source side of the network requires that there beg"~ ! crossbar modules in the first
stage. The first stage then has g"- 'b output terminals. This implies that stage two
must have a"~ b input terminals, which requires o"~ 2 crossbar modules in the
second stage. In general, the jik stage has «”~ ‘6"~ ! crossbar modules of size g x b.
Thus, the total number of 4 x b crossbar modules required in an a" x b" delta
network can be found gs (@ = n")a = b), for a #band nb"" ' for g = b. Two
delta networks, one 42 x 32 and the other 23 x 23, derived from Figure 7.33 are
shown in Figures 7.34 and 7.35, respectively; the interstage link patterns are 4
shuffle and 2 shuffle, respectively. Note that the destinations in Figures 7.34 and
7.35 are labeled in bases 3 and 2, respectively. It has been shown that the g-shuflle
link pattern used between adjacent stages allows a source to connect to any destina-
tion by using the destination-digit control ol each a x b crossbar module.



3|y nys o

u 38ug
| o — D —
H I=y=2
- =P et -mm e e
9= 49— i e
I
: {
. H
i
mIQNT e iR L LT —
- I
.
[ +§ —— gxe TR e
o —— r——-eeeea- —

(1861 PIeg ‘ssinduio)) *supsg F737] Jo Ks311n03) Wiowpdu BpQ g x 2 4V €07, 24084

7 *8us

YR —

I=qz-"

gxo

ynys o

I

gxo

ane

gso

4

| a8uig
p— =P
“ I=;-2 .
- "
gxp  jt—
— - »
H
1-4gz
=87
H ! .
. -
I9g] 152 PR
7 F—
1-q
dt— | —p
H 0 .
. L]
] 9xo  |[e—1
) [

49



00 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

0 —
0
)
|
== (cydy),
2
o
0p—00
1—01
2—02
4 —
| 0
6 — .
2
=
OpF—10
1=l
2—12
8 —
0
9 —
10 — :
2
11
0p—20
| p—21
2p—22
——
II-—
(4]
13—
1
14 —
z.
15—
Stage | 4 shuffle Stage 2

Figure 7.34 A 4% x 37 delta network. (Courtesy of JEEE Trans. Computers, Patel 1981.)

Note that the network of Figure 7.35 does not allow an identity permutation,
which is uselul if, say, memory module i is a “favorite” or home module of pro-
cessor i Therefore, identity permutation allows most of the memory references (o
be made without conflict. A simple renaming of the inputs of Figure 7.35 will
permit an identity permutation. This is shown in Figure 7.36. In this case, if all
2 % 2 switches were in the straight position. then a identity permutation is
generated, :

In general, b is a power of 2 and a is very small, usually between 1 and 4.
Figure 7.37 illustrates the functional block diagram of a 2 x 2 crossbar module.
All single lines in the figure are 1-bit lines. The double lines on the INFO box
represent address lines, incoming and outgoing data lines. and a read-write control
line. The data lines may or may not be bidirectional. The function of the INFO box



MULTIFROCISSOR ARCHITECTURE AND PROGRAMMING SO0

‘dldlldl)}!
0 ] 0 00— 000
1= 1 1 1 =01
2= 1] 1] =010
31— | | 1 o1l
4 — 0 0 0100
5 - | 1 =101
-
6= 0 0 or—110
7= | 1 =111
Stage 2 shuffle Stage 2 shuffle Stage
1 2 3

Figure 7.35 A 2' x 27 delta network. (Courtesy of JEEE Trans. Computers, Patel 1981.)

is that of asimple 2 x 2 crossbar;if the input X is 1, then a cross connection exists,
and if X is 0, then a straight connection exists.

The function of the control box is to generate the signal X and provide arbitra-
tion. A request exists at an input port if the corresponding request line is 1. The
destination digit provides the nature of the request; a 0 for the connection to the
upper output port and a 1 for the lower port. In case of conflict, the request rq is
given the priority and a busy signal b, = 1 is supplied to the lower input port. A
busy signal is eventually transmitted to the source which originated the blocked
request, The logic wjuations for all the labeled signals are given with the block
diagram. For the INFO box. the equations are given for left to right direction.
The parallel generation of X and X reduces one gate level.

The operation of a 2* x 2" delta network using the above described 2 x 2
modules is as follows: Recall that there are n stages in this network. All processors
requiring memory access must submit their requests at the same time by placing a



502 . OMPUTER ARCHITECTURE AND PARALLLY PRONCESSING

0 000
1 =001
2 r-\ =010
3 011
1 100
5 - 101
6 110
7 111
DN

Figure 736 A 2" » 2' gelta network (o allow identity permutation.

L on the respective request lines, If the busy line is 1, then the processor must re-
submit its request. This can be accomplished simply by doing nothing; ie., con-
tinue to hold the request line high. Thus the operation of the implementation
described here is synchronous: that is, the requests are issued at fixed intervals at
the sume time. An asynchronous implementation is preferable if the network has
many stages. However, such an implementation would require storage buffers
for addresses, data and control in every module and also a complex control
module. Thus, the cost of such an implementation might well be excessive.

7.2.4 Performance of Interconnection Networks

In this section, we analyze p x m crossbar networks and delta networks for
processor-memory interconnections. Both networks are analyzed under identical
assumptions for the purpose of comparison. We analyze the networks for finding
the expected bandwidth given the rate of memory requests, Bandwidth is expressed
in the average number of memory requests accepted per cycle. A cycle is defined
asthe time it takes for a request to propagate through the logic of the network plus
the time ne®ded to access a memory word plus the time used to return through the
neiwork o the source. We shall not distinguish the read or write cycles in this
analysis. The analysis is based on the following assumptions:

I Each processor generates random and independent requests for & word in

memory. The requests are uniformly distributed over all memory modules



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING O3

-2,
Request  ——pmfry Ry Request
Destination ——dd, By le—  Busy
Busy B ]
C(}.NTRUL
—_—]r,
—{d, | —
b - B la—
X X

!

INFO

<3 «’

I

X=rd + o, X = r,dy + 1yd,
Ry = rydy + r,d, R, = rgdy + ryd,
by = XB, + XB, b = XB, + XH‘I + rodyd, + rodod,

e 1 == Figure 7.37 Details of 2 x 2 delta
h=iX + hx h =X +iXx networks. (Courtesy of JEEF
Trans. Computers, Patel 1981.)

2. At the beginning of every cycle, each processor generates a new request with a
probability r, Thus, 7 is also the average number of requests generated per cycle
by each processor.

3. The requests which are blocked (not accepted) are ignored : that is, the requests
issued at the next cycle are independent of the requests blocked.

The last assumption is there to simplify the analysis. Although the model
does not make proper account of rejections, it still serves a useful purpose. It can
be solved exactly and it gives a lower bound on the expected bandwidth. In practice,
of course, the rejected requests must be resubmitted during the next cycle or
buffered in the module where the conflict occurs: thus the independent request
assumption will not hold. Later, the last assumption will be relaxed to improve



-
-
S coMPUTER A'I(T'Tlfl'l"('n IREAND PARALLEL PROCESSING

the model. Moreover, simulation studies performed by many authors for similar
problems have shown that the probability of acceptance is only shightly lowered
il the third assumption above is omitted. Thus the results of the analysis are
fairly reliable and they provide a good measure for comparing different networks.

Analysis of crosshars Assume g crossbar of size p x m that 15, p processors
(sources) and m memory modules (destinations). In a full crosshar, two requests
are in conflict if, and only if, the requests arc to the sume memory module. There-
fore, in essence we are analyzing memory conflicts rather than network conflicts.
Recall that r s the probability that a processor generates a request during a cycle,
Let ¢(i) be the probability that i requests arrive during one cycle. Then

qi) = (‘:’)r'(l oy (1.3)

n . : : p
where ( ) 1s the binomial coefficient.
i

Let E(i) be the expected number of requests accepted by the p = m crosshar
during a cyele, given that i requests arrived in the cycle. To evaluate E(i), we know
that from combinations the number of ways that i random requests can map to m
distinct memory modules is m', Suppose now that a particular memory module 1s
notrequested. Then the number of ways to map i requests to the remaining (m — 1)
modules is (m — 1) Thus. m* — (m — )" is the number of maps in which a par-
ticular module is always requested. Thus the probability that a particular module
I8 requested is [m' — (o 1)]/m'". For every memory module. if 11 is requested. it
Means one request is accepted by the network for that module. Therefore, the
expected number of aceeplances, given i requests, is

Y= = i _ i
E(i) = = (": -2 o= [l - (L-—l) ]m
m m

Thus the expected bandwidth B(p, m), that is, the average number of requests
accepted per cycle, is &

Blp.m) = Y E@)-q(i)

Ogisp

which simplifies to:

m

r\r
B(p.m) = m — m([ — —) (7.4)

Let us define the ratio ol expected bandwidth to the expected number of requests
generated per eycle as the probability of acceptance P, P is the probability that
an arbitrary request will be accepted. Therefore

p,=Hom) _m_ m (1 - ")P (7.5)
5 rp rp mn I



MUI TIPROCESSOR ARCHITECTURE AND PROGRAMMING S0S

It is interesting to note the limiting values of B(p, m) and P, as p and m grow
very large. Let k = p/m; then

km
; r
Lim (1 - —) =e "
mt m

Thus for very large values of p and m
B(p,m) ~m(l — e™""") (7.6)

n

Py e~ "™ (1.7)

— =
n
The above approximations are good within 1 percent of actual value when p and
m are greater than 30 and within 5 percent when pand m > 8. Note that for a fixed
ratio p/m, the bandwidth of Eq. 7.6 increases linearly with m.

Equation 7.5 was derived under the hypothesis of independent requests. In
reality, however, a rejected request is not simply discarded but resubmitted during
the next cycle, thereby increasing the request rate. We will not derive a detailed
model that takes into account the exact behavior of a system with rejected requests.
Instead, we will approximate the behavior by means of a simplifying assumption
that makes the improved model more tractable and is still a bound on the exact
model. We assume that the resubmitted request addresses the modules uniformly.
A processor can be in one of two states, A or W. W is the state corresponding to a
wasted cycle due to a rejected request. 4 is an active cycle during which a processor
may issue a new request. The behavior of any one processor is described by the
Markov graph of Figure 7.38.

Let g, and gy, be the steady state probabilities that the processor is in state A
and W, respectively. Solving for g, and gy, we obtain

Py

TP+l =Py (2

Ga

and
Qw=1=4q4

The request rate r should be defined more precisely as the rate assuming
conflict-free accesses. We refer to r as the static request rate. However, memory

(1=r) + rP, n1-Fy) 1-P,

Fa

Figure 7.3% Markoy graph for computing dynamic request rate r'.



506 COMPUTER ARC TITECTURE AND PARALLEL PRX ESSING

requests are also made during each wasted cycle. Theiore, the memory modules
encounter a dynamic request rate ' which i actually higher than the stalic request
rate because of memory conflicts. 7 can be obtained from the Markov graph as

F
r+ a"’-_,(i -r)

Py [I B (, _ ‘T)’] (1.10)
rp m

Equations 7.9 and 7.10 define an iteratjve process by which we can compute P,
for a given m, p.and r. # can be initialized to r for the iterative process.

Thus, P, is a measure of the wasted cycles of blocked requests. A higher p
indicates a lower number of wasted cycles and a lower P, indicates higher number
of wasted cycles. The average number of wasted cycles w per request can be
computed if we note that 4 request that is rejected i times consecutively before it
is aceepted wairs for i eycles:

=t gy = W

Therefore Eq. 7.5 becomes

St (7.11)

Note that the reassignment of g rejected request (according to a uniform
distribution among the memory modules) causes the mode] to overestimate the
bandwidth, This js assumed to simplify the model. In practice, the requests are
queued at the memory module and serviced by the module in a first-come-first-
served fashion,

fom a x b crossbar modules. Thus, there are a" processors connccted o p*
memory modules Wa apply the result of Eq. 74 for a P X m crossbar to ap
@ x b crossbar and then extend the analysis for the complete delta network,
However, 1o apply Eq. 74 to any a x b crossbar module, we must first satisfy
the assumptions of the analysis. We show below that the independent requesi
assumption holds for every a x b module in a delta network.,

Each stage of the delta network s controlled by a distinct destination digit
(in base b) for the setting of individual a x b switches. Since the destinations are
independent and unil’orn;ﬁy distributed, so are the destination digits. Thus, for
example, in some arbitrary stage i, an a x b crossbar uses digit d,_; of cach re-
quest; this digit is noy used by any other stage in the network. Moreover, no digit
other than J, i 18 used by stage i. Therefore, the requests at any a x b module are
independent ang uniformly distribyted over b different destinations, Thus we can
apply the resul of BEq. 74 to any a x b module in (he delta network.



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING S07

Given the request rate r at each of the a inputs of an @ x h crossbar module,
the expected number of requests that it passes per time unit is obtained by setting
p=aand m = b in Eq. 74, which is

-

Dividing the above expression by the number of output lines of the a x b
module gives us the rate of requests on any one of b output lines:

XY &
1 - (l — E) (7.12)

Thus for any stage of a delta network, the output rate of requests, ro,,, is a
function of its inpult rate, r, , and is given by

Tin ¢
oS, [ F) (7.13)

Since the output rate of a stage is the input rate of the next stage, one can
recursively evaluate the output rate of any stage starting at stage 1. In particular,
the output rate of the final stage n determines the bandwidth of a delta network ;
that is, the number of requests accepted per cycle.

Let us define r; to be the rate of requests on an output line of stage i. Then the
following equations determine the bandwidth B(a", b") of an a" x b" delta net-
work, given r, the rate of requests generated by each processor:

B(a", b") = b"r, (7.14)
where =1- (l -~ i;l)‘ and ro=r
The probability that a request will be accepted is
Py= !;:.:j' (7.15)

Since we do not have a closed-form solution for the bandwidth of delta net-
works (Eq. 7.14), we cannot directly compare the bandwidths of crossbar (Eq.74)
and delta networks. However, we present plots that compare the performance
of crossbar and delta networks using Eqs. 7.5 and 7.15. Figure 7.39 shows the prob-
ability of acceptance, P, for 2" x 2"and 4" x 4"delta networksand p x p cross-
bar, when the request rate for each processoris r = 1, The curve marked delta —2
is for delta networks using 2 x 2 switches and delta —4 for delta networks using
4 x 4 switches. Notice that P, for crossbar approaches a constant value as was
predicted by Eq. 7.7. 2, for delta networks continues te fall as p grows. The model
refinement developed for the crossbar switch can also be applied to delta networks
iteratively and is left as an exercise for the reader.



S08 comeuTER ARCHITECTURE AND PARALLEL PROCESSING

1o
08
<
a. Crosshar
L
= 08
2
{
[=9
e
[~
g‘o" - -l.:r-h.‘l—l
-‘E‘ Drliu-zh""n‘“hh-"-..__
—
l-..__-_--
0.2 =
ol L L% 3 1 7 ¥% 4 i 1 3
1 1 16 61 9sg 1024 4008

Number of processors, p

Figure 7.49 Probability of acceptance of P % p networks. (Courtesy of [EEE Trans, Compurers, Patel
1981.)

7.3 PARALLEL MEMORY ORGANIZATIONS

This section addresses techniques for designing parallel memories for loosely and
tightly coupled multiprocessors. The interleaving method presented is an extension
of techniques applied to memory configurations for pipeline and vector processors.
Many comrmercial multiprocessor sysiems are tightly coupled, where cach pro-
cessor has a private cache. The presence of multiple private caches introduces
the problem of cache coherence or multicache consistency. Various solutions to
cache-coherence problems are presented. Finally, we describe some simple models
to evaluate the effectiveness of the various memory configurations,

7.3.1 Interleaved Memory Configurations

Low-order :'nlcrl-.-;wing of memory modules is advantageous in multiprocessing
systems when the address spaces of the active processes are shared intensively. If
there is very little sharing, low-order interleaving may cause undesirable conflicts.
Concentrating a number of pages of a single process in a given memory module of
a4 high-order interleaved main memory is sometimes eflective in reducing memory
nterference. In this case, o specitic memory module M, may be assigned 10 plice
most of the pages belonging o q Process executing on processor i. Such o memory



MULTIPROCESSOR ARCHITICTURE AND PROGRAMMING SO0

module M, is called the home memory for processor i. If the entire set of active
pages of a process being exccuted on processor i is contained in memory M,, and
i memory M, contains no pages belonging to processes running on other pro-
cessors, then processor i encounters no memory conflicts.

If every processor has the entire set of active pages ol those processes that are
running on it in its home memory, there will be no memory conflicts, The concept
of home memory can be extended so that a set of modules {M} arc assigned as the
home memories of processor i. This assumes that there are more memory modules
than processors, so that at all times each memory module is associated with one
processor. Thatis, (M} n {M,} = ¢.fori # j. The home-memory organization for
multiprocessors has an additional architectural advantage beyond the reduction
in memory interference.

The processor-memory interconnection network (PMIN) of a multiprocessor
system may be expensive, slow, and complicated. Figure 7.40 is an alternative
organization in which each memory has two ports, one of which connects to the
PMIN and one of which connects directly to the home processor. This topology

1
-
[__ 2 Fg b S
-]
g
& -
L
L
P
ST o
—/ I
1
L
1 2 sae M
M, M, M_
Mecmories

Figure 7.40 Home memaory concept. ( Courtesy of TEEE Trans. Computers, Smith 1978.)



S10 coMpuER arcnc TURE AND PARALLEL PROCESSING

permits enhanced access by each processor 1o its home memory by frequently
avoiding switching time through the PMIN and permitting decreased cable lengths
between processors and their home memories. Since PMIN participates in only a
minority of all memory accesses with this organization, its speed becomes less
critical and substantial cost savings may also be possible, This concept was applied
in the design of Cm*, Home-memory organizations also permit significant gains
in the reliability of System operation. A single memory failure when using a home-
memory organization generally disables only a small subset of the processors
currently running, that is, those with information in the failing memory.

The concurrent (C) access memory confliguration described for pipeline pro-
cessors can also be used for multiprocessors. For tightly coupled multiprocessors. a
single C access configuration can be designed to match the bandwidth requirements
of the processors, In this case, the main memory and the processors are on the op-
posite sides of the PMIN and references 1o memory by the processors must traverse
the PMIN. Therefore, the processors encounter memory conflicts as well as trans-
mission delays. To reduce these effects, a private cache is usually associated with
each processor in g multiprocessor so that most of the referenced data and instruc-
tions ean be found in the cache. However, the data bus width may aflect the cost
and transfer time of a block of data. For example, if cach module has a data-
transici path of one E-byte wide word and there arc four memory modules on
a bank of the C access configuration, then 32 bytes may be transferred in little
more than the time required for one main memory cycle. Therefore, in a computer
with a cache block size of 32 bytes only a little over one main memory cycle would
berequired to feteh all 32 bytes,

[t should be noted thut the cache is not usually interleaved, henee the arrival
of the four words of information from main memory must be staggered slightly so
4s to allow the cache 1o accept cach & bytes separately. A block of cache loca-
tions consists of contiguous incmory locations. If the memory modules are inter-
leaved on the low-order bits of the addresses. the block transfer will be inefficient.
This occurs because consecutive memory locations of the block are in consecutive
modules, and the delay incurred in setting up a path in the processor memory _
interconnection network for cach access (0 a consecutive location of the block
becomes very significant. Below we describe a more general parallel memory
organization which can be used with a wide variety of multiple processor systems
and in which memory module interleaving can be taken a step further to permit
block transfer at even the cache bandwidth.

A two-dimensional memory organization called the L-M organization and
arranged as / C-aceess configurations, each dimension with m modules, provides
more flexibility. The L-M memory organization consists of N(=2") identical
memory modules arranged such that there are { lines or banks and m modules per
line where | = 2 for integers ff and » such that 0 < f<uwm=2""so 1hat
Im = 2" Again, a line refers to the address bus common to a set of m modules, as
shown in Figure 7.41.

However, as i consequence of hine and module sharing, the performance ma
be degraded. Furthermore. additional memory interference is mtroduced by this



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 811

Processors | 2 see P

Private
cache

Crossbar switch

= - - = - - - = il bt L L S e 1
kine. ; LC
control : k i
i . —-{ I "—< ) =10 H

i 'E
memory | e :
MM) : . i
/| . - 1

H H

=,' __{ ’Mu.m-l -—_{ } —{ )M.‘—IM-I ;

: Ly L, Ly

i i

bassorassansamimiss srvssarmasasnsns sononas ot on o e e S ene e e e e v e i e i

Figure 7.41 Multiprocessor system with private caches. (Courtesy of JEEE Trans, € ‘ompurers, Briggs and
Dubois 1983,)

organization. For a degenerate case in which there is one module per line, the
memory conflict problem arises when two or more simultancous memory requests
reference the same module, hence the same line. For the two-dimensional memory,
a conflict may also occur when a memory request references a busy line or a busy
module on a line. A memory configuration characterized by (1, m) is a particular
realization of the L-M memory organization.

Let us assume that a write-back-write-allocate cache replacement policy is
adopted in the following discussion. Let w, be the probability that the block frame
to be replaced was modified. If a cache block frame which has not been modified
is to be replaced, it is overwritten with the new block of data. However. a modified
block frame that is to be replaced must be written to main memory (MM) before a
block-read from MM s initiated. In this case, two consecutive trangfers are made
between the cache and MM. Hence, we assume that each time a cache miss oceurs
with probability w,.a block-write to MM is required with probability w, . followed
by a block-read from MM, .

One method of organiziag the cache for block-reads and -writes is 10 assume
that the two consecutive block transfers (one block-write followed by one block-
read) are made between y processor and the sume line. This assumption will be



SIZ COMPUTER ARCHITTC TURE AND PARALLEL FROCTSSING

satisfied if a set-associative cache is used in which all the blocks that map o the
S4me set are stored on the same line. This assumption implics that the number of
setsis a multiple of the number of lines, Hence, in this method a cache miss requires
the transfer of a 2b-word block with a probability w;, and the transfer of 4 h-word
with i probability | — w, .

The L-M memory organization is very cost-eficetive in matching the band width
ol a cache memory which initiates block-transfer operations as a result of cache
misses. The information is distributed in memory so that cach block of 4 program
resides on i line of memory. Consecutive words of a block are stored in consecutive
modules on the same line. In this case, a line controller (1.¢ ') is associated with each
line. The controller typically receives a cache request for a block transfer of size b and
thereby issues b internal requests (IR) to consecutive modules on the line. The
blocks in the memory are interleaved on the lines so that block i is assigned to
modules on line i mod 7,

When the main memory is used in the block-transfer mode, the address hold
timeor cycle of the memory module can be chosen to beequal to the cache cycletime
in order to effectively utilize the line. In practice, the address cycle can be made as
small as the cache eycle time by incorporating an address laich in cach memory
module. Let the cache cycle time be the unit time. Therefore, the memory cycle can
be expressed as ¢ time units. Also, the modules on a iine are interleaved in a par-
ticular fashion so that the servicing of two memory requests could be overlapped
on the same line. The modules on g line are interleaved so that a block of data of
size h(=2’) is interleaved on consecutive madules on that line. Let line i and
module j on that line be referred to as Liand M, ;, respectively, for 0 < i < [ — |
and 0 < j < m — I, Then the Ath word of the block of data which exists on line
fis in module A mod mr on that line,forO0 <k <h—1.1Itis important to note that
the first word of a block which exists on linciisin the first module M, o of that line.
Ilh < m, memory modules Miw My qnec M, ,,_,, will not be utilized since a
block starts in module M, o. Hence, for effective utilization of memory modules,
itis assumed that b > m, i

When a block request is accepted by a line i, the line controller at that line
issucs b successive internal requests to consecutive modules on line i, starting from
module M; . It is assumed thit these internal requests are issued at the beginning
of every time unit, Therefore. the internal request for the kth word of the block
will be issued 10 module M, j.where j = k mod m,for0 < k < b — 1. It is obvious
that this set of b internal requests is not preemptible. Note that if b > m or if the
cache is set associative, the (m + 1)st internal request is for module M, ,. Conse-
quently, the first internal request must be completed by the time the (m + 1)stIR is
issucd. This constraint is satisfied if ¢ <m.

In order 1o visualize the concurrent servicing of two memory requests on the
same line, we define a time unit. <11+ 1), as beginning at time t* and ending at
time (1 + 1), Therefore, the successive IRs which are generated to modules on a
line, in the servicing of a memory request, do not encounter any conflicts, If a
memory request is accepted on line i at time 1, then the IR for the kth word of a
block of size b is initiated at time ¢ + k to module M, | for j = k mod m and



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 513

0 <k < b — 1. Since the memory module cycle is ¢, module M; ;will be busy in the
intervals <t + k.t + k + ¢ for the values of j.

Since b and mare powers of 2and b 2 m. then b/m is an integer > 1. Therefore,
cach module on a line, i, which accepts a memory request for block transfer at time
treceives b/m internal memory requests. In particular, the last IR 16 module M.,
i made at time £ + (h/m — 1m = 1t + b — m. Thus. the last interval in which
module M, , i1s busy (during the current block transfer) is

U+ b—mit+hb—m+c)

Aller this period. a new block-transfer request which addresses the line can be
accepted. Because the current block transfer was initiated at time ¢, 2!l block-
transfer requests arriving at « + 1.1 + 2,,... t+h—m+ ¢ — 1 will find line i
busy. Hence, to a memory request. the line is busy for b — m + ¢ time units. We
refer 1o this as the line service time, S,. of line i. However, the actual service time. A,
ol a memory request 1o line i is b + ¢ — 1. We refer to the difference A, — 8§, as
the drain time'D, = m — 1. Since D;is independent of i, we denote D, by D for all i’s.
Hence, during S, any memory request made 10 line i will not be accepted but
queued. At the end of S, the current request proceeds to the next stage where the
data transfer is completed in time D. At the same time. a new request made 1o line i
can be accepted. Therefore, the servicing of a memory request can be considered
as proceeding in two stages of a pipeline.

7.3.2 Performance Trade-offs in Memory Organizations

In order to evaluate different multiprocessor memory configurations, we introduce
a versatile but approximate model. This model is used o illustrate the performance
trade-offs in a memory configuration. Each processor has a cache. We assume
the interconnection network between the processor and memory to be a cross-
bar switch. The models developed for the crossbar in Section 7.2 are not applicable
since they assume a unit time for the memory cycle. In practice, the main memory
cycle ¢ may vary for different memories and should be considered as an attribute
of the memory configuration.

General model In cach case, the multiprocessor system consists of p homogenecous
processors and [ banks or lines of interleaved memory. For generality. assume
that the first stage of memory service time for modules of bank k is S,. The drain
(second stage service) time of cach bank is D, . Let g, be the fraction of all references
made to bank k. We denote by T the average * think time” spent within the pro-
cessor ngdes before a reference is made to a memory module. Figure 7.42 shows a
representation of the model by a closed queucing network. We further represent the
model by a state graph shown in Figure 7.43. In this graph, node A denotes an
active state of the processor and node W, a waiting state. Node LT represents the
state for the first part of the transfer during which the line is kept busy (line service
time). The node DT represents the state in which a transfer is completed without
holding the line, The state graph does not constitute a Markov chain s:nce cach



514 compuTeR ARCHETFCTURE AND PARALLEL PROCESSING

Queues Line servers
5 n
Processor G
node

o ——

lime Line service  Drain
lime lime

N —

Actual service
Lime

Figure 7.42 Closed queucing network model for a multiprocessor system,

l._--._-.---._.______..._.l
Interactive |
states |

I Sk | Dy
: [

A | W ——e] LT }——] DT
I
| I
| *,
L-._-._—-.._-._..._-__—l

ﬁ.

Figure 7,43 Srate graph model for memory requests in a tightly coupled multiprocessor.




MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 515

state has a different average duration. Each processor goes through an independent
state (state A) followed by interactive states (states W and LT) and another inde-
pendent state (DT),

In an independent state. a Processor executes on its own node.without conflict.
Interactive states are characterized by a potential for conflicts with other pro-
cessors. Hence.during any LT state, the memory line s busy and no other processor
can access the line. Let € be the average memory-request eycle time. The perfor-
mance index is the average processor utilization U, defined as the average fraction
of time spent by each processor in processing instructions. This performance
index reflects the degree of matching between the processors and the memory
organization.

We number the processors from 1 to £ and the memory lines from 1 1o / Let

ey = [ )i a0, iy ()] (7.16)
fork = 1,... I with ix At) = 1if processor j is not waiting for or using line &, and
I A1) = 0if processor j is waiting for or using line k at time r.

10ty is called the indicator vector for line k at time 1. Fach component i, (1)
indicates whether or not processor j is waiting for or holding line k. Note that a
processor waits for or holds a line whenever it is in state W or LT (interactive
states). respectively, Let X, be the probability that a line & is busy and S, is the
average line service time of a request. Then

Xy

Prob[at least one processor is waiting for or holding line k]

I

I — Prob[no processor is waiting for or holding line k)
I'= Probf[j, , - ka iy, =1]=1- Efin g iy 20 _p]

This last equality results from the fact that the expectation of a random variable
taking only the values 0 and 1 is equal to the probability of the variable being 1.
The rate of completed requests by line k is X,/S, .

In equilibrium, this rate can be cquated to the rate of submitted requests to a
line. To compute this second member of the equation. we note that a processor
submits arequest whenever jt departs from state A. This occurs for each processor
whenever a cycle in the network of Figure 7.43 is completed. Recall that C is the
average time taken by such a cycle, The rate of submitted requests for the memory by
any one processor is | /C. Since there are P requesting processors and each request
is submitted with probability g, to line k, the average rate of submitted requests
to line &k is pg,/C.

Let ¥ be the average fraction of time a given processor is in an independent
state. Hence, Y is also the probability of being in such 2 state. The symmetry of the
system implies the same value of Y for all the processors. Since T is the average
imeinstate A, ¥ = (7" + D)/C. Substituting for 1/Cin the equation for the average
rate of submitted requests to a given line and equating this rate 1o the rate of com-
pleted request, we obtain Xo = SopYq T + Dy, Substituting for X, . we have

Eli iy i ]+ p ¥ = 1 (7.17)

A

where g, = S pg (T + D).



516 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

This equation is exact. However, the first term of the left hand side of the
cquation is very complex to estimate in general. The approximation consists in
neglecting the interactions between processors. As a result of the approximation,
the components of 1,(r) are not correlated. This approximation performs best for
4 short and deterministic line-service time. Indeed, large instances of the line-
service time are most likely to result in instantaneous longer queues and more
Interactions between the processors. Under the noncorrelation conditions

L1 I P il = EU&,.] ¢ E[ih ) E[ft,p] (7.18)

If we denote by Z, the fraction of time spent by each processor waiting for or
holding line k, Eq. 7.17 becomes (I — Z)" + p Y = 1 because of the symmetry
of the system.

On the other hand, since a processor is either in an independent state or in an
interactive state (waiting for or holding one of the lines). then, by the law of total
probability, in a system with [ lines we have

I
Y+ ¥ 2Z,=1 (7.19)
k=1
We use Eq. 7.18 with the condition that 1 — a¥Y >0 2, =1—(1-p 1) "
Consequently, by the substitution for Z, in Eq. 7.19 and rearranging, we obtain

!
Y=1-!4 YU =pYV)" (7.20)
k=]

Si is the mean line-service time and T + D is the mean time between an exit
from an interactive state and a visit to the next interactive state. Note that S, can be
found as the mean time that a processor spends holding a memory line k. Similarly,
T is found as the mean time spent outside of an interactive state. ¥ can be solved
by Newton’s iterative method given that a unique solution exists for ¥ between 0
and min(l, 1/p,). Let us illustrate the application of this model to the system
mentioned earlier. For simplicity, assume that for these examples ¢, = 1/l and
Sy = Sfor all values of k. Then Eq. 7.20 becomes:

! Y+1-1Y
y=1 [. = (—__! ) ] (1.21)
where p = pS/(T + D).

Assume that in each of these processors, a machine cycle consists of an integer
number, d, of cache cycles.-Let 0 be the probability that a memory request is issued
by a processor to the cache controller in a machine cycle. Thus, the fraction of
references made by the processor to the cache controller in each cache cycle is,
x =0/.

For the set-associative cache, if a block-write is not required (with a probability
I — wy) on a cache miss, then the line which accepts the memory request is busy
forh — m + ¢time units. However, if a block-write is required (with probability w,)
in addition to the block-read. then two consecutive block transfers (each of size b)



MULTIPROCESSOR ARCTHTIE TURE AND PR RAMMING 1T

arc made uninterruptedly on the same memory line. In this case, the line that
accepts the memory request is busy for 2 — m + ¢ time units. Hence the mean
line-service time is:

S = bl + w) — m + ¢ (7.22)

Sinee I — histhe cache-miss ratio, the probability that a given cache cyele requires
an aceess to memory is x(1 — h). We account for the crosshar switch setup and
traversal times by 1, Hence the average time spent in state A s

o I

T = + 1, (7.23)
v(l — h)
Since the drain time, = m — 1, we can determine ¥ from Eg. 7.21 for the multi-
processor system with set-assoctative caches. [he processor utilization, U, which
is the fraction of time the processor is busy processing instructions is given by

_ xl = ml 1

& = — 3
C ol — h)C

Since C = (T + D)/Y, the utilization can be rewritien as
; Y
U= BT : (7.24)
(1 — AXT + D)

We illustrate the set-associative cache example with a multiprocessor system
withp = l6processors, x = 0.4 and 1, = O(infinitely fast crossbar). The cache hit
ratio, i = 0.95, and the block size A is allowed o vary. The memory organization
has a fixed number of modules per line (im = 4), but the number of lines vary, Also
the memory module cycle time, ¢, varies, Figure 7.44 shows the application of
Eqgs. 7.21 through 7.24 for the given set of parameters.

This result assumes that the cache size is adjusted to give the same hit ratio
when the block size is varied. An increase in the block size deteriorates the utiliza-
tion. An operating region should be chosen where the utilization is acceptable. Note
that for certain values of b and ¢, small values of | will give high utilization. This
possible reduction in [ gives the designer a choice. If for a small number of lines,
! < 16, the utilization is acceptable, the designer can consider trade-offs with low-
cost multiport memory.

7.3.3 Multicache Problems and Solutions

The presence of private caches in a multiprocessor necessarily introduces problems
of cache colerence, which may result in data inconsistency. That is, several copics
of the same data may exist iedifferent caches at any given time. This is a'potential
problem especially in asynchronous parallel algorithms which do not possess
explicit synchronization stages of the computation. For example. process A,
which runs on processor i, produces data x, which is to be consumed by process 8.
which runs on processor | = | asynchronously, Process 4 writes a new x into its
ciuche while process B uses the old value of x in its cache because it is not aware of



SIR comeumer ap HITFCTURE AND PARALLEL PR FS8ING

10 r -
(b,) =
9 =
¢ - — (42)
e e ——————— o (4.4)
08 8 e - — (4,2)
L4 e e e o s el (8.4)
07

(18,2)

—T - (164
oo

Processor ut ilization, U

03

p=18
h = 0.95
;2 X =04
m =4
Y 1 =0

1 2 1 8 18

Number of lines in main memory, §
Figure 7.44 Effect of block size and main memory speed on processor utilization for the set-associative
cache, (Courtesy of 1EFE Trans. Compurers, Briggs and Dubois, Jan, 1983,)

the new v. Process maty continue to use the old value of x in its cache unless it is
informed of the presence of the new x in process A’ cache so that a copy of it may
be made in its cache. The possibility of having several processors using different
copies of the sume data must be avoided if the system is to perform correctly,
Hence, data consistency must be enforced in the caches,

Another form of the data consistency problem occurs in a multiprogrammed
multiprocessor system, In this case, a processor usually switches to other processes
at the time of the arrival of external interrupt signals or page fault operations,
If the suspended process migraltes 1o another processor, the most recently updated
data of this process might still be in the original processor’s cache. Hence a process
running on a new processor could use stale data in main memory. The new pro-
CESSOr cannot recognize the data as stale, and thus would not be working with the
process’s proper context. Such an operation is incorrect and can result in subtle
errors that are difficult to trace. In many wultiprocessor systems such as the S-1,
privileged instructions are provided to sweep the cache, The cache sweep operation
is used to deliberately update main memory to reflect any changes in cache
contents,

A system of caches is coherens if and only if a READ performed by any pro-
cessor i of a main memory location x (which may be cached by other processors)



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 519

always delivers the most recent value with the same address x. “ Most recent ™ in
this context has a special meaning in terms of a partial ordering of the READs
and WRITESs of memory throughout the multiprocessor. However. for an intuitive
understanding of the problem, it is sufficient 1o think of recency in terms of absolute
time. In these terms, whenever a WRITE is done by one processor { to a4 memory
location x. completion of the WRITE must guarantee that all subsequent REA Ds
ol location x by any processor will deliver the new contents of x until another
WRITE to x is completed.

The cache coherence problem exists only when the caches are associated with
the processors. Designs have been proposed in which the caches are associated
with the shared memory as shown in Figure 7.45. This avoids the cache coherence
problem. This architecture is good for systems with a small number of processors.
However, the potential gain in speed is then limited by the transmission delays
through the interconnection network and by the conflicts at the caches. This
technique has been shown to be adequate for multiprocessors where each processor
is pipelined and executes muitiple independent instruction streams. -

Clearly. the cache coherence problem cannot be solved by a mere write-
through policy. If a write-through policy is used, the main memory location is
updated, but the possible copies of the variable in other caches are not auto-
matically updated by the write-through mechanism. When a processor modifies
a data in its cache. all the potential copies in other caches must be invalidated.
“ Write-through™ is neither necessary nor sufficient for coherence.

Static coherence check Two different methods have been proposed to solve the
cache coherence problem. The first method. called static ecoherence check. avoids

Processors “ee

Processor/memory
interconnection network

tee MMC | Main memory caches

E Main memory

Figure 745 Caches associated with shared memony lines to avoid data inconsistencs



520 COMPUTER ARCINTECTURE AND PARALLEL PROCESSING

multiple copies by implementing different paths for shared writcable (non-
cacheable) and private (cacheable) data, By data, we mean both code and operand.
The shared data structures which are modifiable reside in main memory. They are
never placed in the cache; that is, they are noncacheable. A reference to this
shared data is made directly to main memory. Conversely, 4 read only segment of
data which is shared by several processors need not be noncacheable. The cache-
ability of read only data reduces conflicts in main memory.

IT ¢, is the time to reference a datum in main memory, 1, the cache cycle time,
and s the probability of referencing a shared modifiable datum, a lower bound on a
datum reference is .

©

(1 — sk, + st, = I,|:{I —5)+ s i—"] (7.25)

If the cycle ratio.t,,/r,. is large (a typical value is 5), the performance of this scheme
may be quite poor for algorithms with intense sharing, regardless of the cache size.
Morcover, the requests for shared data increase contentions in the interconnection
network and at the memory. The performance of this scheme can be improved by
associating a high-speed memory or cache module with each memory line. This
cache module is used to buffer the noncacheable data, thereby reducing the
effective 1,, and hence, the cycle ratio, tpir,.

In a similar scheme which avoids these problems, the shared data is accessed
through a shared cache while instruction fetches and private data references are
made in private caches. Figure 7.46 illustrates this shared cache concept. Notice
that the shared cache may consist of interleaved cache modules which may be
connected to the processors and shared memory through an interconnection
network. However, the complexity of this network is expected to be less than a full
crosshar. All data references proceed at the cache speed except when conflicts
occur at the shared cache or a miss occurs in either a private cache or the shared
cache. ;

If the hit ratio is high enough in all caches, this scheme alleviates the contention
problem at the main memory. The success of the shared cache concept relies on
the relatively low rate of shared data references. Of course, the shared data may
exhibit less locality than private data. However, the hit ratio in the shared cache
improves as the degrec of sharing of the shared variables increases. Indeed. a
processor may find a shared variable in the shared cache even if it never referenced
it before. Moreover, increasing the size of the shared cache is an effective method
to improve the hit ratio.

The shared cache concept requires that data be tagged as private or shared.
The tagging is basically static. Sratic tags are made during compile time and remain
the same throughout the lifetime of the process. Dynamic tags are made during the
execution of cooperating processes. A lookahead mechanism monitors the history
of sharing of the data space in one phase and predicts the probability of sharing of
the subspaces in the next phase. With this scheme, a data subspace could be in the
shitred cache for effective sharing in one phase and in the private caches in another
phase, for eflicient aceess, or vice-versa, The overhead mav be unaceeptable, as



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 521

Shared data path

Processors ( |

Private pC

cache -

PC 0
I - LR ]
P:w;:hdnll | Switch I

Shared
-

Processor/memaory .
H cache

interconnection network

Sl

DMA gateE

H Shared memory
L

Sl
e

Figure 7.46 Multiprocessor system with private and shared data paths.

the caches must be flushed to main memory. Moreover, the migration of data sets
can create constraints on the scheduler or loader. The tagging of data necessitates
the compiler be designed to detect private and shared data. With the advent ol
such abstract and block-structured languages as concurrent Pascal, this can be
accomplished by explicit indication of such data sets. It can be argued that the
shared cache concept lacks flexibility. =

Dynamic coherence check The second method for solving cache coherence is
more flexible than the static coherence check, but also more complex and possibly
more costly. In this scheme, called dynamic coherence check, multiple copics ure
allowed. However, whenever a processor modifies a location x in a cache block,
it must check the other caches to invalidate possible copies. This operation is
referred to as a cross-inrerrogate (XI). In the most rudimentary implementation
of this method, the caches are tied on a high speed bus. When a local processor
writes into a shared block in its cache, the processor sends a signal to all the +iote
caches to indicate that the “data at memory address x has been modilicd ™ At
the same time. it writes through memory. Note that. 10 ensure correctness of
execution, a processor which requests an X1 must wait for an acknowled ge signal
from all other processors before it can complete the write operation. The X1
invalidates the remote cache location corresponding to x il it exists in that cache



522 COMPUTER ARCTITICTURE AND PARALLEL PROCESSING

When the remote processor references this invalid cache location, it results in a
cache miss, which is serviced 1o retrieve the block containing the updated in-
formation.

For each write operation, (n — 1) XIs result. where nis the number of
processors. When i increases. the traflic on the high-speed bus becomes a bottle-
neck. Morcover, there is o notential for races if the XI requests are queued to
accommodate the peak traflic on the bus. Some commercial multiprocessors with
caches use this technique for a small number of processors. For example, the
Honeywell 60/66 and Univae 1100/80 multiprocessors have cache-invalidate
interfaces between every pair of caches. Note that the two sources of inefficiency
for this technique are the necessity of a write-through policy, which increases the
network traffic, and the redundant cache Xis which are performed. In the latter
case, a cache is purged blindly whether or not it contains the data item x.

A more refined technique filters the X1 requests before they are initiated. In a
proposed design, the memory control element (MSC) maintains a central copy of
the directories of all the caches. We will elaborate on a similar scheme called the
presence flag technique, which assumes a write-back update policy. There are two
central tables associated with the blocks of main memory (MM) (Figure 7.47).
The first table is a two-dimensional table called the Present table. In this table,
cach entry P(i, c] contains a present flag for the ith block in MM and the cth
cache.If P[i, ¢] = 1, then the cth cache has a copy of the ith block of MM, otherwise
it is zero. The second table is the Modified table and is one-dimensional. In this
table, each entry M[i] contains a modified flag for the ith block of MM. ITM[i] =1,
it means that there exists a cache with a copy of the ith block more recent than the
corresponding copy in MM. The Present and Modified tables can be implemented
in a fast random-access memory.

The philosophy behind the cache coherence check is that an arbitrary number
of caches can have a copy of a block, provided that all the copies are identical.
They are identical if the processor associated with each of the caches has not
attempted to modify its copy since the copy was loaded in its cache. We refer to
such a copy as read only (RO) copy. In order to modify a block copy in its cache, a
processor must own the block copy with exclusive read only ( EX) or exclusive
read-write (RW) access rights. A copy is held EX in a cache if the cache is the only
one with the block copy and the copy has not been modified. Similarly, a copy is
held RW in a cache if the cache is the only one with the block copy and the copy
has been modified. Therefore, for consistency, only one processor can at any time
own an EX or RW copy of a block.

To enforce the cache consistency rule, local flags are provided within each
cache in addition to the global tables. A local flag L[k, ¢] is provided for each
block k in cache ¢. This flag indicates the state of each block in the cache. A block
"in a cache can be in one of three states: RO, EX. or RW. When a processor ¢
fetches a block i on a read miss. the processor obtains an EX copy of the block,
provided no other cache has a copy of block i and the fetch was for data. In other
fetch misses, the block is assigned RO, as shown in Figure 7.48. The status informa-
tion is recorded in the cache dircctory and global tables. The status is iﬂii_calc‘(.i‘:

T ’



MULTIFROCESSOR ARCHITECTURE AND PROGRAMMING 523

8% & & B &%
S & e & s &
= 3 " = =
g = & = & =
T | - - - -l >
Cache I ’
block-frame L1k, o] k] —
contaiming hlock L -
i |
Cache number 0 1 n-1
Block 0
ase
Block Fli, 0] P, 1) P n—1) | Mi)
LELR ]
Block N -1

-~ SN\ J
Present 1able Modified table
Figure 7.47 Organization of flags for dynamic solution to cache coherence.

in the global table by setting the appropriate present flag and clearing the corre-
sponding modified bit.

As long as the copy of block i remains present in the cache, processor ¢ can
fetch it without any consistency check. If processor ¢ attempts o store into its
copy of block i, it must ensure that all other copies (il any) of block i are invalidated.
To do this, the global table is consulted. It should indicate the processor caches
that own a copy of block i. The modified bit for block i is updated in the global
table to record the fact that processor ¢ owns block 7 with RW access rights.
Finally, the local L[4, <-]Jlag is set to RW to indicate that the block is modified.
The flowchart for a store is given in Figure 7.49.

In this implementation. a block copy in a cache is invalidated whenever the
cache receives a signal from some other processor attempting Lo store nto it.
Morcover, a cache which owns an RW copy may receive a signal from a remolte
cache requesting to own an RO copy. In this case, the RW copy’s state is changed
to RO



S24 compign ARCITTECTURE AND PARALLL

Feteh block 7
in local cache ¢

Find block j 1o replace
I block 4 is RW,
MM ~— BLOCK] j,c].

Is there a copy of

PREOMISSING

D fetch
(data)

ﬁ.r[;'.ri -—EX |

GT: possible access to global 1able

WH: possible MM update

- block iin any remote +-
yes: RO cache r? 110 COpy exists
COpy existy ves: EX ves: RW
copy exists | copy exists
I fetch
Y (instruction)
r tws !
: MM =—BLOCK]i.r]
i ] 7 '
i /
L[i,c] =— RO
Copy block i from MM
to cache ¢
M([i] =—0
Send word 1o
processor MM: main memory

24

Figure 7.48 Coherence check for feteh operation.

M[i]: modified bit of block i in GT

MM =— BLOCK [i.r]: update MM with
modified copy of i in cache r

L1i.r: state flag of block | in cache r

£



MULTIPROCESSOR ARCHITECTURE AND PR(‘)‘EKAM'MINH 525

Store into
block i in
local cache ¢

{1

¥
Hin? ——

no

Find block j to replace GT, WB
If block jis RW,

MM =— BLOCK].c]

copies of yes, one RW copy in cache r

block i
7

/

Block ¢
stalus in cache
(Lls.cl)

Request cache r 1o
invalidate its copy of
block i and to write it

Invalidate all RO |P
copies of block §

Invalidate all RO
copies of block
in other caches

in other caches 10 MM
-] i |
Y
Get copy of block i
from MM with RW access =

o

Record block «
as RW in GT

~ -

\

Store in cache ©

&

Figure 7.49 Coherence check for store operation,

GT: possible access to global table
WB: possible write-back to memory
Pl: pure invalidation

MM: main memory

There are four main sources of performance degradation in the dynamic
coherence check algorithms shown in Figures 7.48 and 7.49. These sources are:

« Degradation of the average hit ratio due to block invalidation
« Traffic between caches to enlorce consistency
« Concurrent access to the global tables resulting in conflicts

« Writeback due to invalidation of RW data

7.4 MULTIPROCESSOR OPERATING SYSTEMS

In this section. we discuss the operating system requirements for multiprocessors,
First, a classification of multiprocessor operating systems is presented. We then

discuss other system software supports needed for multiprocessing.



526 « OMPUTER ARCHITECTURE AND PARALLEL PROCESSING
7.4.1 Classification of Multiprocessor Operating Systems

There is conceptually little difference between the operating system requircments
ol a multiprocessor and those of a large computer system utilizing multiprogram-
ming. However, there is the additional complexity in the operating system when
multiple processors must work simultaneously. This complexity is also a result
of the operating system being able to support multiple asynchronous tasks which
execute concurrently,

The functional capabilities which are often required in an operating system
for & multiprogrammed computer include the resource allocat ion and management
schemes, memory and dataset protection, prevention of system deadlocks and
abnormal process termination or exception handling. In addition to these capa-
bilities, multiprocessor systems also need techniques for efficient utilization of re-
sources and. hence. must provide input-output and processor load-balancing
schemes. One of the main reasons for using a multiprocessor system is to provide
some effective reliability and graceful degradation in the event of failure. Hence, the
operating system must also be capable of providing system reconfiguration schemes
to support graceful degradation, These extracapabilities and the nature of the multi-
processor execution environment places a much heavier burden on the operating
system to support automatically the exploitation of parallelism in the hardwire
and the programs being executed. An operating system which performs poorly
will negate other advantages which are associated with multiprocessing. Hence,
itis of utmost importance that the operating system for a multiprocessing computer
be designed efficiently. :

The presence of more than one processing unit in the system introduces a new
dimension into the design of the operating system. The influence of a large number
of processors on the design of an operating system is still a research problem. The
modularity of processors and the interconnection structure among them affect
the system development. Furthermore, communication schemes, synchronization
mechanisms, and placement and assignment policies dominate the efficiency of
the operating system. We introduce below only the basic configurations that have
appeared in existing multiprocessor systems,

There are basically three organizations that have been utilized in the design of
operating systems for multiprocessors, namely. master-slave configuration,
separate supercisor for cach processor, and floating supervisor control. For most
multiprocessors, the first operating system available assumed the master-slave
mode. This mode. in which the supervisor is always run on the same processor,
is certainly the simplest to implement. Furthermore, it may often be designed by
making relatively simple extensions to a uniprocessor operating system that in-
cludes full multiprogramming capabilities. Although the master-slave type of
system is simple, it is normally quite inefficient in its control and utilization of the
total system resources. The other two operating modes are superior to the master-
slave in performance.

In a master-skare mode. one processor. called the master, maintains the status
of all processors in the system and apportions the work to all the slave processors.
An examplz of the master-slave mode is in the Cyber-170, where the operating



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 527

system is executed by one peripheral processor P . All the other processors (central
or peripheral) are treated as slaves to Py. Another example is found in the DEC
System 10, in which there are two identical processors. One of the Processors is
designated as master and the other as slave. The operating system runs only on the
master, with the slave treated as a schedulable resource. i

Since the supervisor routine is always exceuted in the same processor, a slave
request via a trap or supervisor call instruction for an executive service must be
sent 1o the master, which acknowledges the request and performs the appropriate
scrvice. The supervisor and its associated procedures need not be reentrant
since there is only one processor that uses them. There are other characteristics
of the master-slave operating system. Table conflicts and lock-out problems for
system control tables arc simplified by forcing a single processor to run the execu-
tive. However, this operating system mode causes the entire system to be very
susceplible to catastrophic failures which require operation intervention to restart
the master processor when an irrecoverable error occurs. In addition to the
inflexibility of the overall system, the utilization of the slave processors may become
appreciably low if the master cannot dispatch processes fast enough to keep the
slaves busy. The master-slave mode is most effective for special applications where
the work load is well defined or for asymmetrical systems in which the slaves have
less capability than the master processor. It is the mode sometimes used if there are
very few processors involved.

When there is a separate supervisor system (kernel) running in each processor,
the operating system characteristics are very different from the master-slave
systems, This is similar to the approach taken by computer networks, where each
processor contains a copy of a basic kernel. Resource sharing occurs at a higher
level, for example, via a shared file structure. Each processor services its own
needs. However, since there is some interaction between the processors, it is
necessary for some of the supervisory code to be reentrant or replicated to provide
separate copies for each processor. Although each supervisor has its own set of
private tables, some tables are common and shared by the whole system. This
creates table access problems. The method used in accessing the shared resources
dep=nds on the degree of coupling among the processors. The separate supervisor
operating system is not as sensitive to a catastrophic failure as a master-slave
system. Also, each processor has its own set of input-output devices and files, and
any reconfiguration of /O usually requires manual intervention and possibly
manual switching.

Unfortunately, the replication of the kernel in the processors would demand
a lot of memory which may be underutilized, especially when compared with the
utilization of the shared data structures. A static form of caching could be used to
buffer frequently used portions of the operating system code, while the infrequently
used code could be centralized in a shared memory. Unfortunately, the determina-
tion of which portions of operating system are frequently executed is relatively
difficult to make and is likely to be dependent of the application workload.

The floating supervisor control scheme treats all the processors as well as other
resources symmetrically or as an anonymous pool of resources. This is the most
difficult mode of operation and the most flexible, In this mode, the supervisor



528 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

routine floats from one processor to another, although several of the processors may
be exccuting supervisory service routines simultancously. This type of system can

" attain better load balancing over all types of resources, Conflicts in service requests
are resolved by priorities that are cither set statistically or under dynamic control.
Since there is a considerable degree of sharing, most of the supervisory code must be
reentrant. In this system, table-access conflicts and table lock-out delays cannot be
avoided. Itis important 1o control these aceesses in such a way that system integrity
is protected. This mode of operation has the advantages of providing graceful
degradation and better availability of a reduced capacity system. Furthermore. i1
provide. tre redundancy and makes the most efficient use of available resources.
Examples of operating systems that execute in this mode are the MVS and VM in
the IBM 3081 and the Hydra on the C.mmp.

Most operating systems. however. are not pure examples of any of the three
classes discussed above. The only generalization that is possible is that the first
system produced is usually of the master-slave type and the ultimate being sought
is the floating supervisor control, In Table 7.3, we summarize the major charac-
teristics. advantages. and shortcomings of the above three types of operating
systems for multiprocessor computers.

s R
.

<1 Software Requirements for Multiprocessors

i :

One of the issues ofien raised in o discussion on multiprocessor software is the
question of how it differs from uniprocessor software. In particular, how does
software written (o execute on multiple processors differ from that written (o
cxecute on the more familiar multiprogrammed uniprocessor environment
There are basically two sources of differences. These are the architectural attributes
that are unique to the multiprocessor, and a new programming style peculiar to
parallel applications. Such differences would warrant that the hardware and
software of the system should provide facilities that are different from those found
in conventional multiprogrammed uniprocessor environments. A multipro-
grammed uniprocessor can simulate the multiple processor environment by
creating multiple *virtual processors ™ for the users. For example. a Unix user
routinely requests the concurrent exccution of multiple programs with the output
of one program “piped™ as the input to the other, In this case. each program may
be thought of as executing on 4 virtual processor. At this level of program execution
there are few differences between 4 multiprogrammed uniprocessor system and a
multiprocessor system, However. the presence of multiple processors and other
replicated components usually increases the amount of management sofltware
that must be provided.

An architectural attribute that may afleet programming in a multiprocessor
system s nonhomogeneity. If the central pracessors ure nonhomogencous, that is,
functionally different, they must be reated differently by software. For example,
I one processor possesses emulition capability not possessed by another. some
programs can only run 1o completion on the processor with the emulation capy-



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 529

Table 7.3 Operating system configurations for a multiprocessor computer

Muster-slare operating system:

1. The executive routine is always executed in the same processor. I the slave needs service that must
be provided by the supervisor, then it must request that service and wait until the.current program
on the master processor is interrupted and the supervisor 15 dispatched. The supervisor and the
routines that it uses do not hiave to be reentrant since there is only the one processor using them.

_ Huaving a single processor executing the supervisor simphfies the table conflict and lock-out problem
for control tables. The overall system is comparatively inflexible, This type of system requires
comparatively simple software and hardware.

. The entire system is subject 1o catastrophic failures that require operator intervention to restart
when the processor designated as the master has a failure or irrecoverable error.

4. Idle time on the slave system can build up and become guite appreciable if the master cannot execute
the dispatching routines fast enough to keep the sluve(s) busy.

5. This type of operating system is most effective for special applications where the work load is well
defined or for asymmetrical systems in which the slaves have less capability than the master processor.

=

et

Separate supervisor in each processor;

I. Each processor services it own needs. In effect, each processor (supervisor) has its own set of /0
equipment, files, etc.

2. It is necessary for some of the supervisory code 1o be reentrant or replicated to provide separate
copies for each processor.

3. Each processor (actually each supervisor) has its own set of private tables, although some tables
must be common to the entire system, and that creates table-access control problems.

4. The separale supervisor operating system is as sensitive as is the master-slave system; however,
the restart of an individual processor that has failed will probably be quite difficult.

5. Because of the point immediately above, the reconfiguration of 1/O usually requires manual inter-
vention and possibly manual switching.

Floating-supervisor operating system:

1. The “master” floats from one processor o another, although several of the processors may be
exccuting supervisor service routines at the same time,

2. This type of system can attain better load balancing over all types of resources.

3. Conflicts in service requests are resolved by prioritics that can be set statically or under dynamic
control.

4. Most of the supervisory code must be reentrant since several processors can execute the same
service routine at the same time.

5. Table-access conflicts and table lock-out delays can occur, but there is no way to avoid this with
multiple supervisors; the important point is that they must be controlled in such a way that system
integrity is protected.

bility. Hence, software resource managers must provide appropriate dispatching
mechanisms for such programs. Another example of software complexity occurs
in a system with asymmetric main memory. In this case, not all processors can
access all memosy. This complicates the operating system software for resource
management.

There is a second potential source of difference between multiprocessor and
uniprocessor software. This is in the programming style peculiar to parallel
applications. The basic unit of a program in exccution is that of a process, an
independent schedulable entity (a4 sequential program) that runs a processor and
uses hardware and software resources. It may also execute concurrently with other



53 compurer ARCHITECTURE AND PARALLEL PROCESSING

processes, delayed (at least logically) only when it needs to wait to interact with
one or more other processes. Hence, a parallel program can be said (o consist of
WO or more in teracting processes.

The potential of multiprocessing is achicved by enhancing jis capability for
parallel processing. Parallel Processing can be indicated in @ program explicitly or
implicitly, For explicit parallelism. USCrs must be provided with pProgramming
abstractions thay permit them to indicate explicit parallelism when desired in a
pProgram. Impliciy parallelism is detected by the compiler. In this case. the compiler
seans the souree program and recognizes the program flow. From this flow graph
and other conditions, it detects nontrivial units of program statements which may
be identified as u process. Some of these unjis may be independent and can be run
concurrently with other processes.

In a multiprocessor System, synchronization takes on increased Importance
as at could create oo high a penalty. This could significantly degrade system per-
formance if the synchronization mechanisms are not efficient and the algorithms
that use them are not properly designed. In some processors, the synchronization
pPrimitives are .t e meaiud i ChY i hardware or microcode. Therefore,
sofltware alternatives must he provided. For example. the PDp-j; Piucessors used
for the C.mmp have been implemented with the semaphurc-synchruniza[i(m
primitive in soltware, thereby taking a significan number of instructions, In an
environment where processes need to synchronize often, this may be a major
bottleneck.

ngr:nn-'.‘nntml structures are provided lo aid the programmer in developing
efficient paralle] algorithms. Three basic flonsequential program-contro] structures
have been identified. These control structures are characterized by the fact that the
Programmer need only focus on a small Program and not on the overal control of
the computation. The first example is the message-based organization which was
used in the Cm* operating system. In this organization, Computation is performed

Structure, all codes are broken into small units. The process that €xecutes the unn
ofcode (and the code itself) is called achore, An important characteristjc of a chore
Is that once it begins €xceution, it runs to completion. Hence, to avoid long waits,
chores are basica lly small, They have relatively very little input and they reference
only a few different objects. Moreover, they do not block and are noninterruptible,
As part of jts output. one chore might fequest the execution of a smalf set of
additional chores, Examples of Systems that use this structure are the Pluribus
and the BCC-500.

Consider the memory-managemen| portion of the operating system, which
controls SWapping between the main memory and a fixed-head disk. Sample
chores may include («) the disk command to request the transfer of a page of data
between the disk and the memory. and (h) ;:L-I..nm\-]udgfng completion of 4 disk-
SECLor trinsmission und arranging for any subsequent action.

The thirg nonsequential control structure is thar of Production systems, now
Often used iy aruficial intelligence Systems. Productions are expressions of the



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 531

form (antecedent, consequent). Whenever the boolean antecedent evaluates to
true. the consequent may be performed. In contrast to chores. production conse-
quents may or may not include code which might block. In a production system,
four scheduling strategies are often required (a) to control the selection of ante-
cedents to be evaluated next, (b) to order (if necessary) the execution of selected
antecedents, (c) to select the subset of runnable consequents to be executed, and
(d) to order (if necessary) the execution of the selected consequents. Note that by
the natures of all three control structures, they are all compatible with parallel
execution,

The high degree of concurrency in a multiprocessor can increase the complexity
of fault handling, especially in the recovery step. In a uniprocessor, it is always
possible to eliminate parallelism by disabling interrupts and, if necessary, halting
I/O activity. Software is needed to establish effective error recovery capability. This
software, even with the aid of hardware mechanisms, may be quite complex.
Understanding the behavior of running processes in a multiprocessor system is
more complex than in uniprocessor environments. Although parallel programs
may not be too complex to implement, there is a natural problem of nondeter-
minism in multiprocessors. Some efforts have been made to prove the correctness
of parallel programs by researchers but extending these proofs to complex pro-
grams is still a formidable task.

-
7.4.3 Operating System Requirements

The basic goals for an operating system are to provide programmer interface
(environment) to the machine, manage resources, provide mechanisms (system
defined) to implement policies (user definable), and facilitate matching applica-
tions to the machine. It must also help achieve reliability. But this and other
desirable attributes incur a cost that may be unacceptable. Guidelines should be
established for trading performance for desirable attributes. The degree of trans-
parency of the detailed machine that should be made available to the programmer
should also be determined.

There are different levels of interaction in the specification of an operating
system for multiprocessing systems. Asynchronous supervisor processes share the
specification of the address-space management, process management, and syn-
chronization levels. Efficient operating systems are designed to have a modular
structure and hierarchical organization. This makes the detection and localization
of errors easier. The classic functions of an operating system include the creation of
objects such as processes and their domains, which include the memory segments. *®
The management and sharing of segments, as was discussed in Chapter 2, are also
important operating system functions. Other functions are the management of
process communications through mailboxes or message buffers. Messages are
used to define the interface between processes and help to reduce the number of
ways an error can be propagated through the system.

In a multiprocessor system, processes can exccute concurrently until they
need to interact. Planned and controlled interaction is referred to as process



532 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

communication or process synchronization. Process communication must take
place through shared or global variables, Cooperating processes must communi-
cate to synchronize or limit their concurrency. The relationship between two
cooperating processes regarding a resource falls into one of two fundamental
categories. They are either competitors or producers-consumers. Since process
communication takes place through shared memory, competitors access this
memory 1o seize and release permanent or reusable resources. Producers-
consumers access this memory to pass temporary or consumable resources such
as messages and signals.

In systems with multiple concurrent processes, the presence of resources such
as unit record peripherals and tape drives which must not be used simultaneously
by several processes (if program operation is to be correct) introduces the require-
ment for exclusive access 1o these devices. This requirement may also be imposed
on shared objects such as a data segment during updating. Processes desiring
exclusive access to a resource may compete for it. The same competition arises
concerning access to what are called virtual resources, such as system tables and
communication buffers between cooperating processes. Since it must be guaranteed
that both processes do not access the buffer simultaneously, exclusive access o
the buffer must be ensured. This exclusiveness of access is called mutual exclusion
between processes. A request for mutual exclusion on the use of 4 resource implies
the desire to reserve or release the resource. Process cooperation and competition
may both be implemented if 4 mechanism is provided for process coordination or
synchronization. This mechanism will be discussed in Section 8.1.

The above requirements for processor cooperation and competition have
obvious implications on short- and medium-term scheduling of the multiple
processors. If a desired resource or object is not available, the process requesting
it must be suspended, blocked, or retry until it becomes available. There are often
two levels of exclusiveness. One consists of the requirements for referral of access to
a data structure (virtual resource) which may often be of short duration. The other
is the requirement for, perhaps, a substantial delay until the physical resource,
such as the processor or tape unit, becomes available. If the delay is short, it is
not worthwhile to shift the attention of the processor from the process which is
running on it to another process. If the delay exceeds the time required to switch
the processor, the ability to shift attention may be vital for efficient utilization of
the processor.

The sharing of the multiple processors may be achieved by placing the several
processes together in shared memory and providing a mechanism for rapidly
switching the attention of a processor from one process to another. This operation
is often called conrext switching. Sharing of the processors introduces three sub-
ordinate problems:

L. The protection of the resources of one process [rom willful or accidental damage
by other processes

2. The provision for communication amaong processes and between user processes
and supervisor processes



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 533

3. The allocation of resources among processes so that resource demands can
always be fulfilled

The goal of protection is to ensure that data and procedures are accessed
correctly. When two or more processes wish 10 access a sct of resources within
the multiprocessor system. it is necessary to allocate the resources in such a way
that the total resources of the system are not exceeded. Furthermore, if it is possible
for a process to acquire a portion of the resources that it requires and then subse-
quently make a request for more, it is necessary 1o ensure that future demands can
always be satisfied. As an example, suppose that the system has one card reader
and one printer. Process one requests the card reader and process Lwo requests the
printer. If processes one and two subsequently request the printer and card reader,
respectively, then the system is in a state where two processes are blocked in-
definitely. This situation is called deadlock ordeadly embrace. Methods for detecting
and preventing deadlock, protection schemes and communication mechanisms
for multiprocessor systems will be discussed in Chapter 8.

7.5 EXPLOITING CONCURRENCY FOR MULTIPROCESSING

A parallel program for a multiprocessor consists of two or more interacting
processes. A process is a sequential program that executes concurrently with
other processes. In order to understand a parallel program, it is first necessary to
identify the processes and the objects that they share. In this section we study two
approaches to designing parallel programs. One approach to be introduced below
is to have explicit concurrency, by which the programmer specifies the con-
currency using certain language constructs. The other approach is to have implicit
concurrency. In this case. the compiler determines what can be executed in parallel.
This approach is more appropriate for data-flow computations, to be discussed
in Chapter 10.

7.5.1 Language Features to Exploit Parallelism

Inorder to solve problems inan MIMD multiprocessor system, we need an efficient
notation for expressing concurrent operations. Processes are concurrent if their
executions overlap in time. More precisely, two processes are concurrent if the
first operation of one process starts before the last operation of the other process
terminates. In this case, no prior knowledge is available about the speed at which
concgrrent processes are executed. In this section, we will discuss the concurrency
explicitly indicated by the programmer,

One way to denote concurrency is to use FORK and JOIN statements.
FORK spawns a new process and JOIN waits for a previously created process to
terminate. Generally, the FORK operation may be specified in three ways: FORK
A: FORK A, J; and FORK A J. N. The execution of the FORK A statement
mitiates another process at address A and continues the current process. The



SM compunn ARCHITECTURE AND PARALLEL PROCESSING " . .

execution of the FORK A, J statement causes the same action as FORK A and
also increments a counter at address J. FORK A, J, N causes the same aclion as
FORK A and sets the counter at address J to N. In all usages of the FORK state-
ments, the corresponding JOIN statement is expressed as JOIN J. The execution
ol this statement deerements the counter at J by one. If the result is 0, the process
ACaddress J 4 1 s initiated, otherwise the processor exceuting the JOIN state-
ment is released. Henee, all processes execute the JOIN terminals. exceplt the very
last one.

Application of (hese instructions for the control ol three concurrent processes
i5 shown in Figure 7.50. These instructions do not allow a path to terminate
without encountering a junction point. The problem with FORK and JOIN is

Process 0)

Fork 4, J, 1

S

Process 0 Fork 8

ot
]

Join J Process | Process 2
=
i r
Join J Join J
]
7 ¢ ~

Process

e 1,2

Fignre 7,50 Conway ' torkjoin coneepr. (¢ oartesy of AFIEPS Press FJC( Froe., 1963)



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 535

that, unless it is judiciously used, it blurs the distinction between statements that
are executed sequentially and those that may be executed concurrently. FORK
and JOIN statements are to parallel programming what the GO TO statement
is to sequential programming. Also, because FORK and JOIN can appear in
conditional statements and loops, a detailed understanding of program execution
is necessary to enable the parallel activities. Nevertheless, when used ina disciplined
manner, the statements are practical to enable parallelism explicitly. For example,
FORK provides a direct mechanism for dynamic process creation, including
multiple activation of the same program text.

An equivalent extension of the FORK-JOIN concept is the block-structured
language originally proposed by Dijkstra. In this case, each process in a set of n
processes S;. S,..--S,, can be executed concurrently by using the following
cobegin-coend (or parbegin-parend ) constructs:

begin
8o

cobegin§,;S_;... S, coend (7.25)
Sni'r:

end

The cobegin declares explicitly the parts of a program that may execute con-
currently. This makes it possible to djstinguish between shared and local variables,
which in turn makes clear from the program text the potential source of interference.
Figure 7.51 illustrates the precedence graph of the concurrent program given
above. In this case, the block of statements between the cobegin-coend are executed
concurrently only after the execution of statement S,. Statement §,, , is executed
only after all exccutions of the statements S,, S,,..., S, have been terminated.
Since a concurrent statement has a single entry and a single exit, it is well suited

Figure 7.51 Precedence graph of the concurrent

program.



536 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

to structured programming. The processes defined by the concurrent statement are
completely independent of one another. The sct of statements S, §,.....5, are
executed concurrently as disjoint processes. The disjointness implies that a
variable v; changed by statement §; cannot be referenced by another statement
S,» where j # i In other words, a variable subject to change by a process must be
strictly private to that process, butdisjoint processes can refer to common variables
not changed by any of them.

Programs should be written so that 1t is simple for a compiler to check the
degree of disjointness, possibly by scanning the program to recognize concurrent
statements and variables accessed by them. The compiler must be able to
distinguish between variables that can be changed by a statement and variables
that can be referenced by a statement but not changed by it. These two kinds of
variables are called the variable parameters and constant parameters of a statement,

To make the checking of disjointness manageable, it is often necessary o
restrict the use of pointer variables and procedure parameters. For example, a
pointer variable may be bound to a set of variables of a given type as

vari, j ki integer: p: pointer to i or j: (7.26)

This declaration indicates that variable [1s & pointer 1o a particular set of integers.
The notation enables a compiler and its run-time system to check that p always
points to a variable of a4 well-defined type (in this case, an integer i or f).

The rule of disjointness enables the programmer to state explicitly that certain
processes should be independent of one another. This depends on automatic
detection of violations of this assumption. But as will be seen later, all multi-
processing systems must occasionally permit concurrent processes to exchange
data in a well-defined manner. The cobegin-coend notation hides this communi-
cation problem from the user, but it has to be solved at some other level.

Concurrent statements can be nested arbitrarily as in the following example,
which is illustrated in Figure 7.52:

begin
5.
cobegin
S,
begin S_; cobegin S;: 8,8, coend S_; end (7.27)
S
coend
S
end

Parallelism in the execution of statements may often be found in loops. Five
primitives are listed below to allow the cisy implementation of parallel for stite-
ments;



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 537

Figure 7.52 Precedence graph of nested concurrent processes.

« PREP: A parallel path counter, PPC, is initialized (PPC « 1). (A stack of
PPCs is kept in case of nested loops.)

¢ AND(L): Two-way fork. PPC « PPC + 1. Process at address L is initiated
and the current process is continued at the next instruction.

« ALSO(L): As above but without incrementing the PPC.

« JOIN: PPC « PPC — 1. If PPC = 0, the PPC is “popped” and processing
continues at the next instruction, else the processor executing the JOIN is
released.

« IDLE: Terminates a path and releases the processor that was executing it.

Figure 7.53 shows the realization of a parallel for (parfor) statement using
these instructions. Notice that statement S is executed for each value of i, and
that this scheme is independent of the number of processors available in the system.
Moreover, there is no need to state explicitly the relationship between the AND
and JOIN primitives. Consider the matrix computation C «— A - B, where A is



538 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Pacfor i ~— | yntil n do
F A2

begi 3
« =i+
-
L]
-]
. ' I A3
.

IFi>n
Lud GO TO A6

1 A4
AND(A2) ’

F AS
i

END for l

| A6

E

JOIN

Figure 7.53 Realization of parallel for statement using defined primitivesT(Courtesy of 4CAf Computing
Turvers Basr 1073)

ann X nmatrix and B and Care n x | column vectors, for a very large n. The
algorithm 10 compute the mairix C is given below using the parfor statement (o
spawn p independent processes. Assu me that p divides » and nip = s:

parfori «— 1 until p do
begin
forj«— (i-1)s+1 until 5 ' | do
begin
C(j) «~ O: (7.28)
for k < 1 until n do
C() - C(j) + Aqj. k) - B(k),
end
end



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 539

Each process being spawned computes the statements between the outermost
begin-end constructs for a different value of i. Hence, the computation of each
group ol C'(i) is done concurrently, Concurrent processes that access shared vari-
ables are called communicaring processes. When processes compete for the use of
shared resources, common variables are necessary to keep track of the requests
for service.

A very common problem occurs when two or more concurrent processes
share data which is modifiable. I a process is allowed to access a set of variables
that is being updated by another process concurrently, erroncous results will
oceur in the computation. Therefore, controlled access of the shared variables
should be required of the computations so as to guarantee that a process will
have mutually exclusive access to the sections of programs and data which are
nonreentrant or modifiable. Such segments of programs are called critical sections.
The following assumptions are usually made regarding critical sections:

I. Mutual Exclusion: At most one process can be in a critical section at a time.

2. Termination: The critical section is executed in a finite time.

3. Fair Scheduling: A process attempting to enter the critical section will eventually
do so in a finite time.

The mutually exclusive access to a set of shared variables can be accomplished
by a number of constructs. An example is the MUTEXBEGIN and MUTEXEND
constructs. Each construct alone does not enable a programmer to indicate
whether a variable ¢ should be private to a single process or shared by several
processes. A compiler must recognize and guard any process interaction involving a
shared variable v. The following is a notation used to declare a set of shared or
common variables of type T': var v: shared 7. Then a critical section may be
defined by csect v do §. The definition associates a statement § with a common
variable v and indicates that the statement S should have exclusive access to v.
Critical sections referring to the same variable v exclude one another in time.
By explicitly associating a critical section with the shared variable, the programmer
informs the compiler of the sharing of this variable among concurrent processes,
which is a deliberate exception to the rule of disjointness. At the same time,
the compiler can check that a shared variable is used only inside critical sections
and can generate code that implements mutual exclusion correctly. Critical
sections referring to different variables can be executed in parallel, as shown in the
following example:

var v shared V: ki
var w: shared W; :
cobegin (729)
csect v do P;
csect w do Q
coend



540 coMpuTik ARCIITECTURE ANID PARALLEL PROKFSSING
The critical sections may also be nested as follows :

csect v do

begin
Nk (7.30)
csect wdo S;

end

However. there is a potential danger of deadlock, in which one or more processes
are blocked waiting for events that will never oceur. For cxample. two concurrent
processes Py and P, may be deadlocked in the parallel program below if P, enters
section ¢ at the same time that P, enters w.

cobegin

P, esect v do csect wdo S ;
P, csect w do csect vdo S :
coend

(7.31)

When process PP tries to enter its critical section w, it will be delayed because P,
is already inside its critical section w. And process P, will be delayed trying to
cater i< section ¢ because P, is already inside its section .

The deadiccic o curs because two processes enter their critical sections in
opposite order and create a situation in which each process is waiting indefinitely
for the completion of a region within the other process. This circular wait is a
condition for deadlock. The deadlock is possible because it is assumed that a
resource cannot be released (preempted) by a process waiting for an allocation
of another resource. From this technique, an algorithm can be designed to find
a subset of resources that would incur the minimum cost if preempted. This
approach means that, after cach preemption, the detection algorithm must be
reinvoked to check whether deadlock still exists,

A process which has a resource preempted from it must make a subsequent
request for the resource to be reallocated to it. As an example, we consider a
system in which one process produces and sends a sequence of data items to
another process that receives and consumes them. It is an obvious constraint that
these data items cannot be received faster than they are sent. To satisfy this reguire-
ment. it s sometimes necessiary to delay further exeeution of the receIving process
until the sending process produces another data item. Synchronization is a general
term for iming constraints of this type of communication imposed on interactions
between concurrent processes.,

The simplest form of interaction is an exchange of timing signals between
two processes. A well-known example is the use of imerrpts 1o signal the comple-
tion of asyonchronous periplicral operations 1o the processor. Another type of
timvine chonals enrs sas gsed mocarly muliprocessing systems o synchronize



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 541

concurrent processes. When a process decides to wait for an event, the exccution
of its next operation is delayed until another process signals the occurrence of the
¢venl.

The following program illustrates the transmission of timing signals from one
process to another by means of a shared variable e of type event. Both processes
are assumed to be eyclical. Notice that the concurrent operations’ wait and signal
both access the same variable e.

var e: shared event;
cobegin
cycle “sender”
begin
... . Signal (e);. ..
end (7.32)
cycle "receiver”
begin
... wait (e):
end
coend

7.5.2 Detection of Parallelism ir‘t Programs

With reference to a sequential process, the term “parallelism™ can be applied at
several levels. Parallelism within a program can exist from the level of statements
of procedural languages to the level of microoperations. In an MIMD multi-
processing environment, the general interest lies in parallelism of processes. The
term **process " can be applied to a single statement or a group of statements which
are self-contained portions of a computation.

Process parallelism can exist at a hierarchy of levels. For example, a group
of statements is said to be processes at the first level. The statements within a
procedure called by the main program would then be the second-level processes.
If this procedure itself called another procedure, then the statements within the
latter procedure would be the third level, and so on. Therefore, a sequentially
organized program can be represented by a hierarchy of levels, as shown in Figure
7.54. Each block within a level represents a single process; as before, a process can
represent a statement or a group of statements,

Once a sequentially organized program is resolved into its various levels. a
fundamental consideration of parallel processing is recognizing processes within
individual levels which can be executed in parallel. Assuming the existence of a
system which can execute independent processes in parallel, this problem can be
approached in two ways. We have already scen how process parallelism could be
explicitly expressed by the programmer. If it is decided to make this indication
independent of the programmer, then it is necessary to recognize the parallel
execulable processes implicitly by analysis of the source program.



542 compuTER ARCHITECTURE AND PARALLEL PROCESSING

Level | Level 2 | Level 3 | Level n
1 :
! i H !
. ; |
! : H

iy v s

!

Figure 7.584 Hierarchical representation of a sequentially organized program,

i
i
!
i
'
!
i
|
i
!

Datadependencyis the main factor for the interprocess detection of parallelism.
Conswdai coveral statements T, of a sequentially organized program illustrated in
Figure 7.55a. If the execution of statement T is independent of the order in which
statements T, and T are executed (Figure 7.554, b), then parallelism is said to exist
between statements 7, and T,. They can, therefore, be executed in parallel, as
shown in Figure 7.55¢. This commutativity is a necessary but not a sufficient condi-
tion for parallel exccution. There may exist, for instance, two statements which
can be executed in either order but not in parallel. For example, an FFT computa-
tion produces its output in a scrambled order (bit reversed) as shown in Chapter 6,
Therefore, there are two waysto perform FFT computations as shown below:

1. Method one
a. Bit reverse the input,
b. Perform the FFT.

2. Merhod two
a. Perform the FFT.
h. Bit reverse the output.

Thus performing the FFT and bit-reversal operations are two distinet processes
which can be executed in aliernate order with the same result, They cannot,
however, be executed in parallel,



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING S43

o ) SES—
ol f-—

o f—

7
{
t t
{a) (b) (c)

Figure 7.55 Sequential and parallel execution of a compuialimal process,

The following Bernstein condition must be satisfied before sequentially
organized processes can be executed in parallel. Thesc are based on two separate

sets of variables for each process T;:

. The read set I; represents the set of all memory locations for which the first
operation in T; involving them is a fetch.
2. The write set 0, represents the st of all Jocations that are stored into in 7.

The conditions under which two sequential processes 7, and T, can be executed
as two independent and concurrent processes is given below:

1. Locations in I, must not be destroyed by storing operations in 0. The areas
of memory from which task T, reads and onto which task T, writes should be
mutually exclusive, that is,

L0 =9 (7.33)
2. By symmetry, exchanging the roles of T, and T,

. [2 m OI = J (734)
Furthermore, to maintain the state of the machine (the contents of the total
memory locations) when entering T, independently of the mode (parallel or
sequential) of exceution of 7, and 7y, I, must be independent of the storing
operations in T) and 75, that is,

O, Q) Iy = (7.35)



544 COMPUTER ARCHITECTURE AND PARALLEL PROCISSING

Il one looks at 7; as a statement of a high-level language. then I, and O, repre-
sent, respectively, the input (those variables which appear only at the right of an
assignment statement) and output data scts of T;, respectively. Consider the
following tasks, which represent Algol statements for evaluating three matrix
arithmetic expressions. 4, B. C. D, X, Y. and Z are each n x n matrices,

TiiX (A + B)s«(4 - B)

T: ¥« (C — D)« (C + D)™

T Z—=X+Y
For tasks T, and Ty, I, = {4, B}, 1, = {C. D}. 0, = {X} and O, = {¥). Since
HhnO,=¢.1,n0, = ¢, and 0, n Oy = ¢, tasks T, and 73 can be executed in
parallel. However task 7, cannot be executed in parallel with either of 7; or T,
since I3 Oy # ¢ or 13m0, # . Hence, we can write a concurrent program to
execute tasks 7,. T, and T, as follows:

begin

cobegin
Xe(A+ B)«(A- 8);

¥ « (€= D)= (€ +D); ukbey
coend
2 X+Y;

end

It is based on the above conditions that systems have been written for auto-
matic detection of parallelism in source programs written in high-level languages.
But the granularity of each of the processes created is usually small. At this point,
it is desirable to clarify some possible misinterpretations of the implications
of this method. The nizthod does not try to determine whether any or all of the
iterations within a loop can be executed simultaneously. Rather, the iterations
executed sequentially are considered as a single task. Given a Pascal FOR stale-
ment, it is possible to detect if all executions of the loop must be performed se-
quentially or all of them can be executed simultaneously.

The total replication test can be approached at different levels of sophistication.
LetL = {§,,....5,.....5,) be the statements com osing the FOR loop. Then one
can form the following input and output sets: [, = UG, 1,0, = Uj=, 0,, where
1, and O; are the input and output sets formed with variables referenced within L.,
with each subscripted array being an individual entry. If I, » O, = ¢, then
all loop iterations can be replicated, for example:

fori «— 1 until n do *
begin
A(i) — B(i):
C(i) « D(i): (7.37)
end

end



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 545

Butif 7, m O, # ¢,then one can look at the variables for which conflicts arise.
If those are set before they are used, then the conflict is artificial and replication
is permissible as, for example, in ; .

fori « 1 until n do
begin

A(i) — f(A(i)):

T «— g(A(i)):

B(i) +— h(T):
end

(7.38)

where a different T could be set aside for ¢ach replication. In practice, a compiler
which incorporates an intelligent recognizer of parallelism with sufficient granu-
larity is very difficult to implement. It is still a research problem. The recognizer
often represents an overhead which may not be cost-effective for analyzing certain
classes of programs in determining their parallel processability. The benefits of
parallel processing obtained by using the recognizer will accrue only if the program
is run many times in order that the initial overhead may be distributed over the
many runs of the program.

7.5.3 Program and Algorithm Restructuring

The problem of decomposing a large program into many small concurrently
executable (parallel processable) tasks has been studied for some time. Parallel
processability permits faster execution times of programs and better utilization of
resources in a mulliprocessor computer. However, if a multiprocessor system is
also capable of sequential processing of an instruction stream via a single pro-
cessor, then some determination must be made as to whether or not multipro-
cessing will be beneficial. One of the necessary conditions of a program for parallel
processing is that the program possesses many parallel paths. '

A process consists of a number of computation steps. The time to execute the
steps of the process is a random variable whose propertics are often not well
defined. When a number of processes cooperate concurrently to solve a given
problem, there are a number of factors that contribute to the fluctuations in the
execution time of a process. Some of these factors include memory contention,
processor-scheduling policies, variations in processor speeds, and interrupts and
variations in processing time due to input data distributions. This asynchronous
behavior of processes leads to serious issues concerning the efficiency and correct-
ness of the parallel algorithm. The unpredictably interleaved execution of the
cooperating processes affects the correctness issue. The efficiency of the parallel
algorithm may be reduced if svnchronization 1s introduced to resolve the correct-
ness issue. The effect of synchronization may also reduce the degree of concurrency
in the algorithm.

There are a number of architectural factors that affect the decomposition of
an algorithm for parallel processing. Some of these are the processor speed. memory



546 comrum RARCHITECTURE AND PARALLEL PROCESSING

access times, the memory bandwidth and its capacity. Depending on the archi-
tectural features, different aspects of the system may become the main bottlenecks
in achieving a high level of concurrency.

The effective utilization of many multiprocessing computers is limited by the
lack of a practical methodology for designing application programs to run on
such computer systems, A major technique is to decompose algorithms for parallel
execution. Two major issues in decomposition can be identified as partitioning
and assignment. Partitioning is the division of an algorithm into procedures,
modules and processes. Assignment refers to the allocation of these units to
pracessors. These problems are among the most difficult and important in parallel
processing. The emphasis below is to include communication factors as criteria
for partitioning. Assignment techniques will be discussed in Section 8.4.

We will consider an example of an algorithm written for a uniprocessor and
investigate the decomposition and restructuring of this algorithm for a multi-
processor system. The example is an image-processing algorithm called histo-
gramming. A typical picture is represented by a rectangular array of picture
clements (pixels). Each pixel has a small integer value (8 bits) between 0 and b — 1
(inclusive) that represents a gray scale value of a black-and-white picture or, for
color images, the intensity of a primary color. Typically, 2 < b < 256. Histo-
gramming involves keeping track of the frequency of occurrence of each gray
scale value; thus, for 8-bit pixels, b such frequencies (simple counters) must
be maintained. Let histog [0:h — 1] represent the array that keeps the count for
the number of occurrences of the gray scale value 0,1,...,b — 1. The rectangular
picture is represented by the two-dimensional array of picture elements pixel
[0:m — 1,0:n — 1], with m rows and n columns. If pixel [i, ] represents the gray
scale value of the pixel at coordinate i, Jsthen the following serially coded program
will update the histogram to include the pixel ati,j: -

var pixel [0:m - 1, 0:n — 11
var histog[0:6 - 1): integer;
initial histog[0:b - 1] = 0; //initialize frequency counters//
fori « QO untilm - 1 do
for j « O until 7 - 1 do
histog(pixelli, j]] «~ histog[pixell[i, j]] + 1;

(7.39)

The time complexity of this program is O(mmn).

This program can be restructured by realizing that the operation is iterative
and scans a row of the image in the inner loop. Since there are m rows of the image,
Wwe can partition the image into p nonoverlapping and equa! segments (assuming
p divides m), where each segment has m/p = s rows, We can then spawn a set of p
processes to histogram the whole image, where each process is assigned to histo-
gram a distinet segment of the image. However, the constraint is that all processes
Cooperite to form the histogram of the whole image; that is, they share the histog
[0:b — 1] array in updating the frequency counters. The degree of decomposition



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 547

is thus p. In general, the value of p affects the performance of the algorithm. Using
the parfor statement, the parallel algorithm to histogram the image may be written
as follows:

var histog{0:b — 1]: integer: shared; //declare shared variables//
initial Aistog[0:6 - 1] = 0; //initialize frequency counters//
parfor i — 1 until p do

begin
var pixel[(i — 1)s: i —1,0:n - 1]: pixel; (7.40)
fork « (i — 1)suntil si - 1 do
for j « O untiln - 1 do
csect histog[pixel[k, |]] do
histog(pixellk, |]] « histog[pixel(k, j]] + 1;
end

Figure 7.56 illustrates the partitioning of the histogramming problem. Since
the p processes share the histog [0:h — 1] frequency counters, there may be a
considerable degree of memory contention, assuming a tightly coupled system.

IMAGE histog
pixel[0:m—1,0:n—1)

01 n—1 __._.-# Iﬂ
0 T o -
1 P e I

i P Pr S J___.I
% . i /!

s=1 N -~ g

-~ s
s . _?".‘ i o
by . _j o i
" ~
- L :
iz g o ~
2= k. R g i ‘.'f..

. N o
- - 'I * o
. . L} .
.I.‘ N -t
? g Uy
s Ly
ol - e
¢ ol R, 'u.‘
£ X .
i T %
S iy
m-=5 CH L9
o "%
s
S
——— RN
i =T
=1 s S =
e b-1

Figure 7.56 Decomposition of histogramming problem,



S48 COMPUTER ARCHITECTURE AND PARALLEL PROCISSING

Also, the updating of each “histog™ counter must be done in a mutually exclusive
manner to avoid incorrect results. Hence, the counter update statement must be
enclosed as a critical section. The degree of decomposition influences the degree
of contention in this case. Without memory contention, the potential time com-
plexity of each processis O(sn). Since s = m/p, the decomposition of the problem into
P processes has a potential speedup of p. This speedup is never achievable in
practice, however,

We illustrate the effect of the placement of the process code. picture segments,
and bins by considering the execution of this algorithm on three different multi-
processor architectures, each with p processors. In the first case, cach of the p PEs
consists of a processor and its local memory, which is attached to a time shared
bus. In addition, a main memory, which is also attached to the bus. is shared by
allthe processors. Each PE contains the process code and its segment of the picture.
The b bins are stored in the main memory. Since each PE contains a segment of
the picture, the processors access the pixels without conflict. However, this
architecture will cause excessive conflicts to the main memory because of con-
current accesses to the bins,

In the second case, the processors share the main memory through a crossbhar
switch. The process code and the entire picture elements are in memory. The bins
are distributed across the memory modules. Therefore, in addition to conflicts of
accesses to the process code and pixels, there are also conflicts of accesses 1o the
bins.

In the third case, each processor of the second case has a private cache. Assume
that the process code is small enough to reside in the cache; hence, we have faster
access to code. Also assume that the cache is not large enough, so that the blocks of
read only pixels are fetched into the cache on demand. The pixels are thus accessed
at slightly faster than main memory speeds. However, the bins are shared writeable
memory locations. Therefore, accesses to them cause excessive “ ping-ponging”
as copics of these bins are bounced from one cache to the other because of refer-
ences for updates,

The effect of ping-ponging is considered by accesses to the bin histog[k] in a
cache with write-back memory update policy. Suppose a remote cache C; has the
latest copy of bin k, which is now referenced by a local cache C,. The reference in
C; results in a miss and causcs C; to update memory copy of bin k and also in-
validate C's copy of bin . Furthermore, C, gets the copy of bin k from memory and
incrementsit. In effect, processor i waits for two memory cycles each time a reference
10 a bin results in a miss when another processor has a copy of it. A subsequent
reference by another processor to this bin ping-pongs the bin to the processor's
cache,

IT the degree of decomposition is greater than the number of available pro-
cessors, the processing time of the histogramming problem is as slow as the
completion time of the last of the p processes. The memory contention and mutual
exclusion problems could be eliminated if cach process has b bins to generate its
“local histogram for its segment of the picture in its local memory. The algorithm
below illustrates the modification required to eliminate these problems.



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 549

var histog[0:b — 1]: integer; initial histog[0:6 — 1] = 0;
var /histog[1:, 0:b — 1]: integer; //local bins//
initial /histog[1:p. 0:b — 1] = 0.
parfor i « 1 until p do .
begin
var pixel[(i — 1)s:s1 =~ 1, 0:n - 1]:pixel;
var /histog(i. 0:b -~ 1] integer; (7.41)
for k « (i — 1)s until si + 1 do
for j « untiln - 1 do
thistog[1, pixel[k, |11 — lhistog[i, pixel[k, |]] + 1;
end
for j « 0 until b — 1 do //sum individual histograms//
for i « 1 until p do
histog[j] «— histoeg(]] + lhistog(i. j];

However, extra overhead for synchronization is needed after the completion
of all p processes to sum the individual histograms to obtain the overall histogram.
The cost of the overhead is constant regardless of the size of the picture being
processed. Slightly more local memory space is required to store the individual
histograms, but this too is independent of the size of the picture being processed.

In general, the eflicient implementation of an algorithmin a particular machine
is largely shaped by the architecture of that machine. Relatively subtle changes in
architecture can have extensive changes in the performance of the algorithm. The
relationship between communication and computation is an important factor in
designing effective parallel algorithms. One of the motivations for including
communication in designing parallel programs is that the communication time
can be greater than the computation time, based on data dependencies alone. The
way in which data is distributed among processor memories can have a significant
effect on the amount of required communication. By choosing the right data
distribution, one may be able to design algorithms requiring less communication
and thus reduce execution time, o

The histogramming problem is unique in that a single copy of the data structure
must be continually updated. If. for example, 229 pixels (a 1024 x 1024 image)
must be placed in b bins, the memory-contention proble'ms ina parallel architecture
can be formidable. As the processor speed increases relative to memory speed. it
becomes necessary o reorganize the algorithms in which the number of data
references made is minimized. For a machine like the C.mmp. where instruction
execution and data references take about the same amount of time, an atfempt to
minimize the total number of executed instructions and data references should be
equally made. As the processor speed increases. a larger proportion of the total
time is spent in referencing data. This term soon dominates the total time and must
be reduced in order 10 obtain signiticant speedup.

Also, as the capacity of the shared memory decreases. the aigorithm should
be decomposed to minimize the number of page faults between shared memory
and disk. This means avoiding multiple passes through the data which increases



* :
S50 cosmi TER ARCHITICTURE AND PARALLEL PROCESSING

the frequency of disk accesses. [t 1s desirable to exccute as many instructions as
possible on the data in shared memory before bringing in 4 new page. In spite of
this. if little computation is involved. an algorithm which makes efficient use of the
data in shared memory will still run slowly, since the processor is forced to wait
morc often for data 1o be brought in from mass storage. A deerease in the bandwidth
ol the shared memory disk link or an increase in the disk aceess time will necessitate
the same type of reorganization. Since moretimeis required to fill a buffer in shared
memory, the algorithm must do all the computing that it can before initiating
another transfer 1o or from file memory. Careful decomposition of the algorithms
o be implemented on a machine may permit the use of slower disks and lower
bandwidth channels between shared memory and disk.

In discussing the various approaches to partitioning, we emphasize the role
of communication in program partitioning techniques. Unless the communication
problem is effectively solved, delays due to communication bottlenecks may
result, Partitioning met hodologics for parallel programs evolved from two sources:
(@) extensions to concepts that play a central role in sequential program design,
especially data abstraction and information hiding concepts, and (b) techniques
for synchronizing concurrent processes. The combination of the two sources has
led to the concept of structuring systems as a set of concurrent processes that
interact through monitors, which are discussed in Chapter 8. These approaches
have been successful for real-time systems and operating systems designs which are
based on a multiprogrammed uniprocessor system.

We formally define the partitioning problem as follows: Given an algorithm,
specily the set of program units (modules or processes) that will implement the
algorithm on a specified multiprocessor system in the most efficient manner.
Efficiency can be measured by such criteria as the utilization of the processor or
the speedup of the algorithm. One general partitioning guideline is based on the
concept of computation-communication trade-offs. This concept is similar to the
idea of space-time trade-offs in sequential programming. In partitioning, one can
attempt to reduce the communication complexity by increasing the computation
complexity. Another general guideline for partitioning algorithms is clustering.
This method can be effectively applied to loosely coupled processing nodes. The
basic idea is to form groups of modules in which the number of message transfers
within groups is much greater than the number of transfers between groups.

A partitioning technique termed recursive or iterative compute-combine
method can also be used in some cases, This approach is applicable to a broad
class of problems. Examples are sorting and computing the maximum of a vector
or unimodal function. The structure of the algorithm is a tree with the leaves
representing the basic computations and the internal nodes representing the
combination of results produced by the node descendants. Another technique is
the large army technique, Takin £ advantage of paralle] processing, one creates a
large number of processes, cach performing precisely the same function, such as
in a scarch operation. When one of the processes achieves the collective goal, it
notifies the others 1o cease the iteration and to reinitialize themselves for further
iterations, if there are any.



MULTIPROCESSUR ARCHITECTURE AND PROGRAMMING 551

Multiprocessors may not provide an effective means of increasing the execution
speed of certain computationally expensive algorithms. The algorithm under
examination may not lend itsell to decomposition for a mulliprocessing environ-
ment. The problems come from one or more critical sections of unevenly sized
codes, which have to update a common data base (e.g., the same copy of a histo-
gram). In these cases, synchronization can introduce signilicant overhead and the
time lost by processes waiting for the same memory location may be large. Here,
a uniprocessor which is N times as fast would be preferable to an N -processor
systen,

Conversely, algorithms which allow favorable scheduling of processes and/or
the data to be partitioned into independent chunks often can run N times as fast
given N processes. The extra synchronization overhead is small compared to the
increase in the number of instructions exeeuted per second. Maximum performance
from an algorithm can only be obtained when it has been coded with the particular
machine architecture in mind. Effective decomposition of algorithms is dependent
on the programmer knowing the hardware capabilities and coding the algorithm
Lo take advantage of the machine’s capabilities.

7.6 BIBLIOGRAPHIC NOTES AND PROBLEMS

Multiprocessor hardware organizations and operating system configurations
were surveyed in Enslow (1974, 1977). Commercial mulliprocessors were com-
paratively studied in Satyanarayanan (1980), in which an annotated bibliography
was given. Theoretical aspects of multiprocessor systems were discussed in Baer
(1973, 1976). Experience using multiprocessor systems was summarized in Jones
and Schwarz (1980). Reliability modeling of various multiprocessor architectures
can be found in Hwang and Chang (1982). The Cm™* material is based on the
reports by Jones and Crehringer (1980).

An example of a crossbar design can be found in Wull et al. (1981). Bain and
Ahuja (1981) provided a comprehensive treatment of various arbitration
algorithms for single bus structures. Patel (1981) introduced the delta network.
Studies on packet switched networks can be found in Dias and Jump (1981) and
in Chin and Hwang (1984). The Banyan nctworks were studied by Goke and
Lipovski (1973). Parallel memory organizations for multiprocessing were treated
by Briggs and Davidson (1977) and their uses in a system with caches by Briggs and
Dubois (1983) and Yeh et al. (1983). The home memory concept was due to Smith
(1978). Multicache coherence problems were studied by Dubois and Briggs (1982)
and Censier and Feautrier (1978).

Concurrent programming techniques can be foundgn Andrews and Schneider
(1983). Communication issues in developing parallel algorithms were studied in
Lint and Agerwala (1981). An example of a multiprocessor operating system was
given in Ousterhoust et al. (1980) for the Cm* system. Operating systems for
multiprocessors were also treated in Ritchie (1973), Sites (1980), Habermann
(1976). and Denning (1976). Load balancing among multiple processors was
modeled in Niand Hwang (1953), The FORK-JOIN concept is due 1o Conwan

R ]



552 compuTER ARCHITECTURE AND PARALT 11 PROCESSING

(1963). The primitives used to implement a4 PARALLEL FOR were studied in
Gosden (1966), Synchronization primitives in concurrent Systems are proposed
by Dijkstra (1965 1968). The extensions of semaphores can be found in Hoare
(1974) and Hansen (1977). Automatic detection of parallelism can be found in
Baer (1973), The conditions that determine whether two tasks can be executed
in-parallel were proved in Bernstein (1966). Techniques for recognition of parallel
processable tasks were presented in Russel ( 1969) and Rmn;mmurthy and Gonzalez
(1969). Program decomposition for multiprocessors is discussed in Honand Reddy
(1977).

Problems

7.1 Briefly describe (he following 1erms associated with a multiprocessor system;

(a) Multiple computer system

(h) Multiprocessor system

(¢} Loosely coupled multiprocessors
() Tightly cou pled multiprocessors

(¢) Homogencous multiprocessors
(/) Heterogeneous multiprocessors

(&) A cluster of computer modules

(h) Private caches versus shared caches
(i) Context switching

(/) Semaphore for synchronization

(k) Time shared common buses

(1) Crossbar switches
(m) Multipory memaory

(n) The delta netwaork

() The L-M memory organization

(p) Multicache coherence problem

(4) Master-slave operating system

(r) Floating-supervisor system

(s) Mutual exclusion between processes
(1) Bus-arbitration algorithms

(1) Explicit parallclism

(v) Critical sections
(w) Computation;cammunication trade-offs

7.2 Assume a uniprocessor with cache, The main memory consists of 16 modules which can be inter-
leaved in various ways. For each cuse below, indicate the number of mzmory cycles required per block
transfer, Also indicate the relja bility of each system by an integer k. A system is said to be k-reliable with
respect to memory if it can keep functioning after k modules raken at random are disconnected. In the
table, LSB means the least significant bit and MSB the most significant bit.

Number of
Interleaving Block size Bus widih memory cycles Reliability
4158 16 words 1 word
ZMSB-2LSB 16 words 8 words
4 8 words 8 words
IMS 4 words 8 words
IMSB-1L.58 4 words 2 words

__——_________——_...___-———____.__ — —



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 553
7.3 The functions 5,,,(i) and [,,,(i) from the Delta networks are defined as follows:

S.di) = (qx + [:]) mod gr forO<i<gr—1|
and

qi modigr — 1) for0sisqr—2
L) =1
i fori=qr—1
(a) Provethat 5, ()= [, (). ¥.0<i<gr- L
(Hint: i can be written as i = kyr + ky, where 0 < k; < r).
(b) Then show that f,_, is the inverse of /.. Thats.

frud fadid) = i

(¢) Consider an " x b" delta network which is implemented with a = b switch boxes.
(1) How many a x bswitch boxes are required?
(2) What is the delay through the network if the delay through one box 1s D7

7.4 A three-processor system uses three multiport memory modules in a shared memory system in
which each processor can access each memory module. Memory modules are assumed to be 100 percent
reliable, but the processors fail with distressing frequency. 84 percent of the time, all three processors
are working correctly, 15 percent of the time only two processors are usable, and | percent of the time
onlyasingle processor is functioning. The fraction of time during which no processor is working properly
is negligible.

What is the average throughput in this system, as measured by the average number of memory
modules active during a memory cycle? Use all of the assumptions of the multiprocessor model pre-
sented first in class. In particular, memory requests queued at a module at the start of a memory cycle
but not serviced during that cycle remain queued at the module until they are eventually serviced. Do
not worry about what happens immediately afjer a processor fails or is repaired; i.e., assume that the
system is in steady state (with one, two, or three processors functioning) virtually all of the time.

7.5 In the common bus (lime shared bus) organization shown in Figure 7.57, there are p parallel-
pipeline processors and m memory modules. The arbiter randomly selects a request from the processors
and puts it on the bus. After one time unit delay, the address (and data, if any) reaches all the memory
parts. The appropriate module then gates-in the information. The module goes through a memory cycle
of ¢ time units long. The arbiter does ot issue the selected request at time ¢ if the addressed module
is still going to be busy at time ¢ 4 1. Based on this description and the following assumptions, derive
the memory bandwidth (average number of requests accepted per memory cycle) of this organization.
Memory requests are random and uniformly distributed among all modules. The rejected requests are
ignored. One request is issued by each processor at cach time unit. No data dependency exists between

any two requests. c
[ | 1 3 4
) | 1 1
PI Pz sen PJ| M‘ M, wee M_
3 ! 4
Y i 9
Arbiter
I

Figure 7.57 A bus-structured mullipn-\'c\\ut system with a centralized bus arbviter,



554 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

7.6 Consider a p x m crosshar switch connecting p processors to m memory modules. Assume only
one input AND gate and OR gate (no wired-OR ). Assume also that all variables are available in true
and complemented form.

(a) Estimate the number of gates in the switch, ignoring the decoders and the arbiter, Assume
the dita width 1o be w bits,

(h) Design the decoder and arbiter for the above crosshar, Assume that the processor P, has
priority over P, if i < j. Estimate the number of gates for this circuit.

7.7 We have considered an 8 x 8 delta network in Figure 7.35, Answer the following questions related
to this interconnection network,

(a) Does the network have a path between any processor and any memory module?

(b) Let (dydydy), be the address of a memory module (MM) generated by a processor whose
number is (p, p, p,);. Let the control variables at stages 0, 1, and 2 be x,, x,, and x, respectively. The
convention 1s

0 for straight connection
HE I for crossed connection
The requested MM address is passed through the successive stages 1o set up the path. Find the logic
equations for x,, x,. x; as functions of d,,, dy.dy, and py, py, and p,.

(¢) Assume that processor zero accesses MM2, processor four accesses MM4, and processor six

accesses MM3. Show the paths for these three requests on Figure 7.35. Do these requests conflict?
7.8 Bricfly characterize the multicache cohorence problem and describe various methods that have been
suggested to cope with the problem. Comment on the advantages and disadvantages of each method
to preserve the coherence among multiple shared ciches used in 2 mult iprocessor system,
1.9 Distinguish among the following operating system configurations for multiprocessor computers,
In each system configuration, name two example multiprocessor compulers that have implemented
an operating system similar to the configuration being discussed. Comment on the advantages, design
problems, and shortcomings in each operating system configuration,

(a) Master-slave operating system.

(b) Separate supervisor system per processor.

(¢) Floating-point supervisor system.

7.10 Consider a computer with four processors Py, Py, Py, P, and six memory modules M,,
Mj...., Mg, The four processors can be configured as an MIMD machine or as an SIMD machine,
The illustrated memory access paticrns are generated by the processors for the computation of six
instructions with the data dependence graph shown in Figure 7.57. Each instruction needs to access
the memory modules in, at most, three consecutive memory cycles. For SIMD mode, only the same
instruction can access different modules simultaneous! y- For MIMD mode, no such restriction exists,
When two or more processors access the same module in the same cycle, the request of the lower-
numbered processor is granted, and the rest of the requests must wait for a later memory cycle,

(a) For MIMD operation, diflerent instructions can be executed by the four processors at the
same time, subject only to data dependency. What is the average memory bandwidth (words/cycle) used
in the execution of the above program in MIMD mode?

(b) Repeat the same question for using the computer in SIMD mode, The four processors must
execute the same instruction at the same time under SIMD mode.

7.11 Supposing each task is an assignment statement, restructure the following assignment statements
using Bernstein’s conditions so that we have maximum parallelism among tasks. Specify which of the
three ¢nditions you are using for the restructuring.

A=B4+C
C=D+E
F=G+E
C=L+M

M=G+(C



MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 555

Processors
P £ Py Py
Instructions
/, M, M, M, M,
1, M, M, M, M‘
1y M, M, M, M,
!" Mi Ml Mq M)
1 M, M, M, M,
—_—
% M, M, My o M,

(Entries are memory modules being requested 1o access by the processors)

Figure 7.58 Program graph and the emoTy access patiern for cither an SINHD computer with 4 PEs or
an MIMD multiprocessor with 4 Processors in Problem 7,140,



556 compruTer ARCHITECTURE AND PARALLEL PROCESSING

Write your answer so that, when two dssignment statements are pul on the same line, it indicates that
they can be processed in parallel It is easier if you reset the order of precedence in a precedence graph
(Note: The statements executed after the restructuring should have the same result as the slatements
cxccuted before restructuring )

712 A parallel computation on an M-Processor system can be characterized by a pair { P(n), T(n)),
where P(n) is the total number of unit opérations to be performed and T(n) is the total execution time
nsteps by the system, Ina serial compuration on a uniprocessor witha = |, one can write T(1) = Pty
because each unit operation requires onc step to be executed. In general, we have T( n) < P(n), if there
15 more than one operation 1o be performed per step by a processors, where n = 2, Five performance
indices have been suggested below by Lee (1980 in comparing a parallel computation with & serial
Computation,

Sin) = T(—” (The speedup)
T(n)

sa) = ) (G

E(n) = n - T(m) (The cfficiency)
Rn) = P:%Jﬁ (The redundancy)
U(n) = %L—) (The utilization)

TJ
Qn) = ., (The quality)

n-T3(n)- P(n)

(a) Prove that the following relationships hold in all possible comparisons of parallel to serial
computations,

(1)1 €8(n) <n
@) E) = X%
() U(w) = R(n) - E(n)

8(n) - E(n)
(4) Q(n) = T

mésﬂﬂsmdSI:
1

(6) '5"‘"’5ﬁ5”

(7) Q) < S(m) < n

(b) Based on the above definitions and relationships, given physical meanings of these performance
indices.



CHAPTER

EIGHT

MULTIPROCESSING CONTROL AND
ALGORITHMS

This chapter covers interprocess synchronization mechanisms, system deadlocks,
protection schemes, multiprocessor scheduling, and parallel algorithms. These are
important topics in developing a sophisticated operating system for a multi-
processor system, The parallel algogithms form the basis in using MIMD com-
puters. For other related issues that have not been covered below, readers are
advised to check the attached bibliographic notes.

8.1 INTERPROCESS COMMUNICATION MECHANISMS

Various interprocess communication schemes have been proposed by computer
designers. This section enumerates some of the process-synchronization mecha-
nisms implementable at the instruction level. High-level mechanisms such as the
P and V primitives and conditional critical regions are then presented. Examples
are given on the producer-consumer processes and the reader-writer problem
using these mechanisms. The extension of conditional critical regions to monitors
is also discussed.

8.1.1 Process Synchronization Mechanisms

Cooperating processes in a multiprocessor environment must often communicate
and synchronize. Exccution of one process can influence the other via com-
munication. Interprocess communication employs one of two schemes: use of
shared variables or message passing. Often the processes that communicate do
S0 via a synchronization mechanism. A process executes with unpredictable
speed and generates actions or events which must be recognized by another

5587

-



S58 COMPUTIR ARCHIFLCTURE AND PARALLEL PROCESSING

cooperating process. The set of constraints on the ordering of these events con-
stitutes the set of synchronization required for the operating processes. The
synchronization mechanism is used 1o delay exccution of a process in order 1o
satisly such constraints,

Two types of synchronization are commonly employed when using shared
variables. These are mmtul exclusion and condition synchronization. We recall
that mutual exclusion ensures that a physical or virtual resource is held indivisibly.
Another situation oceurs in it set of cooperating processes when a shared data
object is in a state thart is mappropriate for exceuting a given operation. Any
process which attempts such an operation should be delayed until the state of the
data object changes 1o the desired value as a result of other processes being
exceuted. This type of synchronization is sometimes called condition synchron-
ization. The mutual-exclusive exeeation of a eritical section, S, whose access is
controlled by a variable gate can be enforced by an entry protocol denoted by
MUTEXBEGIN (gate) and an exit protocol denoted by MUTEXEND (gate).
Alternatively, the effect of the entry and exit protocols can be expressed as esect
gite do S,

Thercarecertain problemsassociated with implementing the MUTEXBEGIN/
MUTEXEND construct. Execution of the MUTEXBEGIN statement should
detect the status of the critical section. If it is busy, the process attempting to
enter the critical section must wait. This can be donce by setting an indicator to
show that a process is currently in the eritical section. Exccution of the MUTEX-
END statement should reset the status of the critical section to idle and provide
4 mechanism to schedule the wailing process 10 usc the critical section (CS).
One implementation is the use of the LOCK and UNLOCK operations to
correspond to MUTEXBEGIN and MUTEXEND respectively. For these,
consider that there is a single gate that each process must pass through to enter
a CS and also leave it. If a process attempting to enter the CS finds the gate un-
locked (open) it locks (closes) it as it enters the CS in one indivisible operation so
that all other processes attempling to enter the CS will find the gate locked. On
completion, the process unlocks the gate and exits from the CS. Assuming that the
variable gate = 0(1) means that the gate is open (closed), the access to a CS
controlled by the gate can be written as

LOCK (gate)
execute critical section
UNLOCK (gate)

The LOCK (x) operation may be implemented as follows:

var x: shared integer:
LOCK (x) *begin
var y: integer;
Y e X
whiley = 1 doy «— x; // wait until gate is open //
x —1; // set gate to unavailable status i
end



MULTIPROCESSING CONTROL ANID ALGORITHMS 559

The UNLOCK(x) operation may be implemented as
UNLOCK(x): x «— O;

The LOCK mechanism as shown is not satisfactory because two or more
processes may find x = 0 before one reaches the x « 1 statement. This can be
remedied if the processor has an instruction that both tests and sets (modifies) a
word. Such an instruction, called TEST_AND_SET(x) and available on the
1BM S/370. tests and sets a shared variable x in a single read-modify-write memory
cycle to produce a variable y. The read-modify-write operation must take place
in one cycle so that the memory location, x, is not accessed and modified by
another processor before the current processor completes the test-and-set opera-
tion. The indivisibility is usually accomplished by the requesting processor which
holds the bus until the cycle is completed. Therefore the set of operations
{¥ = x; x + 1} is indivisible in the following definition of TEST_AND_SET(x):

var x: shared integer;
TEST_AND_SET(x): begin
var y: integer;
Y — X;
w Ify=0thenx « 1;
end

The LOCK operation may be rewritten as

var x: shared integer;
LOCK(x): begin
var y: integer;
Repeat {y «+ TEST_AND _SET(x)} untily = 0;
end

An important property of locks is that a process does not relinquish the processor
on which it is executing while it is waiting for a lock held by another process.
Thus, it is able 1o resume execution very quickly when the lock becomes available.
However, this property may create problems for the error-recovery mechanism of
the system whgn the processor which is executing the lock fails. The error-tecovery
procedure has to be sophisticated enough to ensure that deadlocks are not in-
troduced as a result of the recovery process itself.

Another instruction used to enforce mutual exclusion of access to a shared
variable in memory location m_addr is the compare-and-swap (CAS) instruction.
This instruction is available on the IBM 370/168. A typical syntax of this instruction
uses the two additional operands r_old and r_new, which are processor registers



560 comruter ARCHITECTURE AND PARALLEL PROCESSING

(CAS r_old, r_new, m_addr). The action of the CAS instruction is defined as
follows -

var m_addr: shared address:
var r_old, r new: registers:
var z: CAS flag;
CAS: ifr_old = m_addr then
im_addr «— r_new; z « 1
else
ir_old — m addr; z — 0

Notice that associated with the CAS instruction is a processor flag =. The Hag is
setif the comparison indicates equality. Again, the execution of the CAS instruction
(that is, the IF statement) is an indivisible operation. We illustrate the use of the
CAS instruction with a shared singly linked queuc data structure (Figure 8.1),
which is accessed concurrently by the two processes Py and P, . The two operations
which can be performed on the queue are ENQUEUE(X) and DEQUEUE.
ENQUEUE(X) adds a node X to the “TAIL™ of the queue and DEQUEUE
returns a pointer to the deleted *HEAD™ of the queue. HEAD and TAIL are
shared global variables, Assuming that the queue is never empty (for simplicity),
the ENQUEUE(X) primitive for 4 nonconcurrent system can be described as

Procedure ENQUEUE(X);

var P: pointer;  //Pis local to each invocation //
begin

LINK(X) « A: //terminate last node's link//

P — TAIL;

TAIL « X;

LINK(P) «— X; //attach new node to queue//
end

Supposeprocess P, requests to enqueue node X. While P, isexecuting the primitive,
it gets interrupted by P,. which requests to enqueue node Y 1o the same queue,
Assume that the interruption occurs at the end of statement P « TAIL. Figure
8.la illustrates the state of the queue at the time ol interruption. If P, executes the
procedure to completion after P, returns control to Py, node X will be sstached
to the queue. However, node Y. which was added by P, would have been detached
from the queue unintentionally. This error oceurs because pointer P was nol
updated to point to the last node attached by process Py, We can avoid this
problem by using the CAS instruction (o update P to point to the last attached
node. This can be accomplished by replacing the TAIL « X statement with



MULTIFROCESSING CONTROL AND ALGORITHMS 561

Process Process
P;

i Y iy [ WP T CH

(@) Before the interruption

T~~~ B\ AT

(b) After the ."'2 execution

Head

(¢) Followed by the Pl execution

Figure 8.1 Interleaved execution of ENQUEUE by process P, and process P;.

“repeat CASP, X, TAIL until TAIL = X", The modified ENQUEUE(X) primitive
is shown below:

Procedure ENQUEUE(X);
var P: pointer;
begin
LINK(X) «— A:
P « TAIL;
repeat CAS P, X, TAIL until TAIL = X;
LINK(P) «— X;
end

The CAS instruction cnsures that the logical state (P) of the interrupted
program is maintained on resumption of the interrupted program. Otherwise
it updates the state P to the most recent value of TAIL.



562 compuTER ARCHITECTURE AND PARALLEL PROCESSING

Figure 8.1h shows the outcome of the execution of the primitive by P, followed
by the completion of the execution of the primitive by P, (Figure 8.1¢). The CAS
instruction is more useful than the test-and-set instruction. An extension of the
CAS instruction is the compare double and swap, also available on the IBM 370/168.
There are other variations which enforce mutual exclusion. For example, the
Honeywell 60/66 has the hmd—uccumu[.'llnr-und-f']cz:ramcmnry-hn-.:niun (LDAC)
instruction.

The LOCK instruction using TAS has a drawback in that processes attempting
to enter critical sections are busy accessing and testing common variables, This
1s called busy-wait or spin-lock, which results in performance degradation. The
process cannot normally be context-swapped off its processor while it is waiting.
Hence, the processor is said 1o be locked out. Such lock-out is only permitted in
supervisor mode. In general, LOCK and UNLOCK primitives are not usually
allowed to be exceuted in user mode because the user process may be swapped
out while holding a critical section, On the other hand. if the user makes a super-
visor call cach time it attempts 1o access a critical scction, the overhead will be
greatly increased. Hence the CAS instruction was provided as an excellent mechan-
ism of letting the user do some synchronization in user mode.

The performance degradation due 1o spin-locks is two-fold. When a processor
Is spinning. it actively consumes memory bandwidth that might otherwise have
been used more constructively. If the spinning period is too long, u processor is
noteflectively utilized during that period. A number of methods have been proposed
to reduce the degradation due to spin-locks. The first method is aimed at reducing
the request rate to memory and. hence, the degree of memory conflicts. This is
accomplished by delaying the reissuance of the lock request for an interval T.
Thus. the LOCK(x) primitive, for example, can be modificd as

LOCK(x): begin
y — TEST-AND-SET(x);
whiley # 0 do
begin
PAUSE(T): //
y « TEST-AND-SET(x):
end
end

Note that the processor issuing the request may not be released unless T is large
enough, The choice for T depends on the granularity of the resource being re-
quested.

The second method is directed at relieving the processor of performing the
lock access by ICOTporating a separate mechanism which processes lock requests.
Fhis can be accomplished in one of severil ways. For example. the mechanism
cincontmuously aceess the lock until it is available. ns i the HEP machine,



MULTIPROCESSING CONTROL AND ALGORITIIMS S63

Concurrently, the processor can execute another ready-to-run process in its
local memory. When the processor is signaled by the mechanism that the lock
has been allocated, it immediately resumes execution of the waiting process.
Note resumption is immediate because the process was not swapped out. The
busy-wait can be avoided if, in the first access to the lock, it is found busy. In this
case. the process requesting it is blocked. When the lock becomes available, the
mechanism is signaled so that the blocked process can be readied to resume
execution. The latter scheme seems adequate for a mutually exclusive access o a
resource with large granularity.

The distribution of locks in memory is an important factor in the performance
of concurrent processes accessing lockable resources. For example, if all locks are
stored in one memory module, the contention for these locks can become excessive.
In a multiprocessor with private caches, the accesses to locks by the processors
can cause excessive overhead because of consistency checks, However, contention
for these locks can be partly relicved by distributing the locks into many blocks of
memory. 3

Two primitive operations can be defined to block a process attempting to enter
a busy critical section and wake_up the blocked process when the critical section
becomes free. These primitives are

wake_up (p): if process p is logically blocked (that is, dormant), change its state
to active; else set up a wake-up waiting switch (wws) to remember the wake-up
call 2

block (p): if process p’s wws is set, reset it and continue execution of the process;
clse change p's state to dormant

Using these operations requires a wake-up list which is updated dynamically. In
order to prevent loss of information, wake-up signals that occur while a process
is exccuting must be saved and a process should not be allowed to become dormant
until all its wake-up signals have been serviced. The wake-up waiting switch
(wws) is the mechanism used to save wake-up signals. A process identification tag
is appended to the wake-up signal, which is used to route the signal to the appro-
priate receiving process. Hardware or software mechanisms may be used to
implement the wws, which stores the wake-up signals on arrival until they are
acknowledged. This may result in a potential race condition if the mechanism is
improperly designed. Note that the blocking and unblocking operations constitute
an overhead which may be significant if designed improperly.

Lock conflicts are resolved in the implementation of the busy-wait because a
request that finds the lock busy waits until the lock is released. Serialization is
thus enforced. Another synchronization primitiveswas proposed to permit some
form of concurrency of access to a memory location while still enforcing some
serialization. The format of this primitive is fetch-and-add (X, e), where X is a
shared integer variable and e is an integer expression. Let the value of X be denoted
by Y. We abbreviate the primitive as F & A(X, ¢), which is defined to return the
old value of X and replace the contents of X' by the sum Y + e in one indivisible



564 compPuTER ARCHITECTURE AND PARALLEL PROCESSING

operation. Il several fetch-and-add opcerations are initiated simultancously by
different processors on the shared variable X, the effect of these operations 1s
exactly what it would be if they occurred in some unspecified serial order. That
15, X is modified by (he appropridte total increment and cach operation yiclds
the intermediate value of X corresponding to its position in the serial order.
As an example, consider the two processors P and P, which issue:

S F&AN. ¢), 8, F&A(X. ¢;)

respectively. Then S, and 5, may contain Y and ¥ + ¢;. respectively, or S, and
S; may contain Y 4 e;and Y, respectively, depending on the prioritics of P, and
Piand the order of arrival of their requests. In cither case, X becomes ¥ + ¢, + .

The fetch-and-add primitive can be implemented within the processor memory
switch, as shown in Figure 8.2 for the example with two simultaneous fetch-and-
adds directed at the same memory location X. In the example, it is assumed that
Psrequest has a higher priority than P,'s. The switch forms ¢; + ¢, and transmits
F&A(X. e, + ¢)) to the memory. At the same time, ¢, is stored in the switch's
register. On receipt of ¥ from memory as a result of F&A(X, ¢, + ¢)). the switch
transmits ¥ and ¥ + ¢, in response to requests F&A(X, ) and F&A(X, e,
respectively,

P »
/ I
—A— —
Y Fd A (X, e) ) " e, F& A (X, t"]
Switch

E Register

Y FEALY, 23] e}
Y

Memuory
Mmentule
Figure 8.2 Implementation of the
- Fetch-and-Add primitive (F& A,




MULTIPROCESSING CONTROL AND ALGORITHMS 565

We illustrate a simple application of F&A in a multiprocessor environment.
Suppose it is required that all processors which intend to access a given resource
must first indicate their intentions by incrementing a common counter, X, in
memory. An accurate count of these requests can be maintained if cach processor
indicates its intention by the statement F&A(X, 1). Hence if two or more processors
execute the statement simultaneously, X will contain the correct count of requests
at the completion of all instructions. Note that the value returned to each processor
as a result of execution of F&A(X, 1) can be used as its position in the request
queue.

Another synchronization primitive uses the semaphore, which consists of a
counter, a process routine queue, and the two functions P and V. This is described
in the next subsection. Although simple, semaphores are known to be sufficient
solutions to synchronization problems for permanent-resource competitors and
lemporary-resource producers-consumers. However, semaphores are often very
inconvenient in representing communication between processes. For this reason,
most operating systems also provide other process-communication mechanisms.
Two examples are events and messages,

Event primitives are typically provided by the two functions wait and signal.
A process can wait on an event or a combination of events to be true. When
another process signals an event, all processes waiting on that event are placed
on the ready queue. Other variations are also possible. One potential problem
with events is that a process has the possibility of waiting on an event that cither
never becomes true or was signal®d carlier. A slight variation of waiting on an
event, used especially in real-time systems, is waiting on a timing queue admin-
istered by the operating system for a specified time period to elapse.

Messages provide an even more flexible and direct method of interprocess
communication, especially for producer-consumer relationships. Typical primi-
tives are the functions send and receive, which allow a string of characters to be
passed between processes. Implementation variations are numerous. For example,
send may or may not wait for an acknowledgement. Receive usually waits if no
message has been sent. The Intel iAPX 432 multiprocessor system uses the send
and receive primitives. =

8.1.2 Synchronization with Semaphores

Dijkstra invented the two operations P and V. which can be shared by many
processes and which implement the mutual-exclusion mechanism efficiently. The
P and V operations are called primitives and are assumed indivisible. They operate
on a special common variable called a semaphore, which indicates the number of
processes altempting to use the critical section:

var s: semaphore

Then the primitive P(s) acts as an open bracket or MUTEXBEGIN of a critical



566 COMPUTER ARCHITECT URE AND PARALLEL PROCESSING

section; that s, it acts Lo acquire permission to enter. The V(s) primitive is the
MUTEXEND and records the termination of a critical section

P(s): MUTEXBEGIN (s)

§~8—-1;
If s < 0 then
begin

Block the process executing the P(s) and put it
in a FIFO queue associated with the semaphore s;
Resume the highest priority ready-to-run process;
end
MUTEXEND
V(s): MUTEXBEGIN (s)
s—s5+1;
If s < 0 then
begin
If an inactive process associated with semaphore s exists, then
wake up the highest priority blocked process associated with s
and put it in a ready list.
end
MUTEXEND

The semaphore s is usually uniahized to 1. When s can take values of 0 or 1. it is
called a binary semaphare, since it acts as a lock bit, allowing only one process at
a time within an associated critical scction. If s takes any integer value, it is called
a counting semaphore. Notice that the P(s) and V(s) operations are modifying s
and testing its status. P(s) and V(s) can be implemented in hardware or in software
using locks,

One common use of synchronization mechanisms is to permit concurrent
processes to exchange data during execution. The data or messages to be exchanged
are usually stored in a circular buffer which is used to synchronize the speeds of the
sending and receiving processes. Such circular buffer is usually called a message
buffer or mailbox,

For example, the Unix operating system provides an elegant form of message
buffers called Pipes. These are used as channels to stream data from one process to
another. The typing of the “|s" command on the console in a Unix environment
causes the files in the current direclory to be *listed™ on the console by running
the “Is™ process. If the user wishes to print the listing of the files on the printer.
the two coneurrent processes “Is™ and “opr” may be used and are specified as
“Isfopr.” The “|™ symbol specilies that a pipe should channel the output of *|s*
to become the input to “opr.” The “Is™ process produees the list as an output into
a pipe or bufler from which it is constmed and printed by the “opr” process. as
Hlustrated in Figure 8.3,

Whenever a process produces sequences of output which are consumed by
another process as input. there is said o be i producer-consumer relationship, A



MULTIPROCESSING CONTROL AND ALGORITHMS 567

S 1 Consol
directory '’ ¥ S

(a) Command: [y !

Current

directory Printer

(b) Command: Is opr
Figure B3 Flow of data between two processes in UNIX,

message buffer may be considered to consist of a finite number of identical slots
which are used for communication between the producer and consumer processes.
If the number of slots is finite, the buffer is arranged as a circular buffer.

To demonstrate the communication between the producer and consumer
processes, consider a finite buffer BUFFER of size n arranged as a circular queue
in which the slot positions are named 0, 1, ..., n — 1. There are the two pointers
¢ and p, which correspond to the * head " and “tail " of a circular queue, respectively,
as shown in Figure 84. The consumgr consumes the message from the head ¢ by
updating ¢ and then retrieving the message. Hence, ¢ points to an empty slot before
cach consumption. The producer adds a message to the buffer by updating p
before the add operation. Therefore, pointers p and ¢ move counterclockwise and
there can be a maximum of n message slots for consumption. Initially, p = ¢ = 0,
which indicates that the buffer is empty. Let the variables empty and full be used
to indicate the number of empty slots and occupied slots, respectively. The empty
variable is used to inform the producer of the number of available slots, while the

Figure 84 A circular message
buffer with producer pointer p and
consumer pointer c.




568 COMPUTER ARCHITEC TURE AND PARALLEL PROCESSING

Jull variable informs (he consumer of the number of messages needed to be con-
sumed. The concurrent program below illustrates the actions of the producer and

consumer processes. The producer orconsumer will be suspended when empty = ()
or full = (), respectively.

Example 8.1

shared record
begin
var p, c: integer;
var empty, full: semaphore:
var BUFFER [0:n - 1]: message;
nd
initial empty = n, full = 0.p=0c=0;
cobegin
Producer: begin
var m: message;
Cycle
begin
Produce a message m;
P(empty);
P+~ (p+1)modn;
BUFFER [p] «— m; // place message in buffer//
V(full)
end
end
Consumer: begin
var m: message:
Cycle
begin \
P (full);
€« (c+1)modn:;
m « BUFFER [c]; // remove message from buffer //
V (empty);
Consume message m:
end
end
coend L]

The P and V operations may be extended for ease of problem formulation and
clarity of solutions. The extended primitives PE and VE developed by Agerwala
(1977) are indivisible and each operates on

@ set of semaphores which must be
initialized 1o nonnegative values



MULTIPROCESSING CONTROL AND ALGORITHMS 569

.5

n¢rn):

PE(s, 8,5, ...+ s 5
MUTEXBEGIN
ifforalli,1<i <n,s,>0andforallj1<j<ms, =0

then foralli, 1 <i <n,s «s -1
else the process is blocked and put in a set of queues associated
with the set of semaphoress,.....s_:
MUTEXEND
VE(s,/S5....:5,):
MUTEXBEGIN
foralli,1<i<n s +«s +1;
wake-up hlghest pnomy process
associated with set of semaphores (s,.....s_);
MUTEXEND

ne1r e

There is no association between s, and §;. The 5; symbol is used for convenience
to represent the semaphore s; where j > n. The following examples are used to

illustrate the application of the extended primitives.

Example 8.2: N processes, equal priority, m resources Each ol N processes
requires exclusive access to a subset of mdistinct resources. The processes are
granted access without any consideration of priorities. If two processes use
disjoint subscts of resources, thgy may execute simultaneously. The solution is
given below:

varr,.r,,....r_:semaphore
initial rj =1y = -« Sig ¥=1;
Process i: begin
PE:(,  Foroteo)?
Use resource a, b, ..., X;
VE (r, vy oet,)
ead

Semaphore r, is associated with resource i. If the PE primitive is completed
successfully by a process, it indicates that resources a, b, ..., x are available
and hence are allocated to the process.

Consider the application of this example in which processes X, Y, Z
compete for card reader R, printer P, and tape unit T, as shown in Figure 8.5.
Each process requires two of the resources simultaneously: X requires R and
P, Y requires R and T, and Z requires P and T. The “Dining Philosophers’
Problem™ can be expressed as a special case of the above example (see
Problems 8.6 and 8.7).

Example 8.3: N processes, /N priorities, one resource Process i has higher
priority than process i + 1, for | i < N — L. The processes request access
to a resource and are allocated the resource in a mutually exclusive manner



570 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

var r,, Tep Tyt semaphore;

imitial p=tp=r,=1;

cobegin
Process X begin I’E{r”. rph use resource £ and £, Vl—',(r”‘ o) end
Process 1. begin PE(r,. r,): use resource ® and TUVE(ry,, r,); end

Process Z: begin l’l".{.r,., Frki use resource # and T Wil‘r,.. i) end

coend

Processes

Devices

Figure 8.5 Example of multiple resource allocation.

based on the priorities. A request by a process is not honored until all higher
priority requests have been granted, The resource is used nonpreemptively:

vars,.....,s_. R: semaphore
initial s, =5, =... = 8. =
initial R = 1.
Process i: begin
VE (s)): // register request of process i //
PE[RBy:...8 1): /] eheck to see if resource is available //
/1 and if there are any outstanding requests //
// made by higher priority processes //
PE (s,): // if not, grant resource to process i //
/{ and withdraw outstanding request //
Use resource:
VE (R); // Return or deallocate resource //
end



MULTIFROCESSING CONTROL AND ALGORITHMS 571

Note that the requesting process cannot be blocked on PE(s,) since a VE(s))
was cxecuted carlier to register request. This example may be used in servicing
prioritized interrupts. In this case the processes represent the interrupts
and R represents the processor which services the interrupts.

The above example can be clarified further by considering @ two-processor
system that runs a supervisor process and a user process. I these (wo processcs
compete for a certain resource in the system simultancously, the supervisor process
should be given higher priority. The program scgments of the supervisor and user
processes that access the shared resource are shown below:

var s, u, R:semaphore
initial s =u =0;
initial R =1;

Supervisor: begin User: begin i
VE(s); VE(u):
PE(R); PE(R, s);
PE(s); PE (u);
Use Resource; Use Resource;
VE(R); VE(R):
end end

Notice that the constructs differ Thainly in the sccond PE statements. Since the
supervisor process is of a higher priority than the user process, it only checks to
see if the resource is available [PE(R)], whereas the user process also checks to
see if there is an outstanding request from the supervisor [PE(R, s)]. Since we arc
considering simultaneous execution of the user and supervisor codes, the execution
of the PE(R, s) statement will find s = 1, which was set by the VE(s) operation in
the supervisor process. Hence, the user process will be blocked until the resource
is released by the supervisor.

Although, semaphores can be implemented using locks, they are more
commonly accessed by system calls to the supervisor. The supervisor maintains two
sets of lists or queucs: blocked and ready. Descriptors for processes that are
blocked on a semaphore are added to a block queue associated with that sema-
phore. For the gencralized Pand V, the set of blocked queues may be quite complex.
However, exccution of a PE or VE operation causcs a trap to a supervisor routine
which completes the operation, The ready list contains descriptors of processes
that are ready to be assigned to a processor for exccution. In a multiprocessor,
with master-sgve operating system, a single processor may be responsible for
maintaining the ready list and assigning processes to the slave processors. The
ready list may be shared in a multiprocessor with a distributed supervisor. In
this case. the ready list may be accessed concurrently. Therefore, mutual exclusion
must be ensured and can be accomplished by spin-locks, since enqucuc and
dequeue operations are fast on the ready list. Morcover, a processor that is at-
tempting to access the ready list cannot exccute any other process.



572 comruter ARCHITECTURE AND PARALLEL PROCESSING

Semaphores are quite general and can be used to program almost any kind of
synchronization. However, the use of the Pand V primitives in a parallel algerithm
makes the algorithm rather unstructured and prone to error. For exam ple, omitting
a P or V¥, or accidentally mvoking a P on one semaphore and a ¥ on another can
have disastrous effects, since mutual exclusion would no longer be ensured,
Also, when using semaphores, a programmer can forget to include in eritical
sections all statements that reference the shared modifiable objects. This, too,
could cause errors in execution, Another problem with using semaphores is that
both condition synchronization and mutual exclusion are implemented using the
same pair of primitives. This makes it difficult to identify the purpose of a given
P or V operation without a detailed trace of other effects on the semaphore.

8.1.3 Conditional Critical Sections and Monitors

Conditional critical section (CCS) was proposed by Hoare (1972) and Hansen
(1972) to overcome most of the difliculties encountered with P and Vs. This is a
structured and highly user-oriented tool for specifying communication among
concurrent processes. Their use allows direet expression of the fact that a process
has to wait until an arbitrary condition on the shared variables holds. Interprocess
communication in a system of concurrent processes is done by means of a shared
variable v. which is composed of the component variables i',‘ Uy, ....1,, asdefined
by:

var v:shared record v, . .., v ! (type) end

The variable v is used to name a given resource. The global state of a system of
processes is determined by the values of the shared variable v and the program
counters of the single processes. The variables in v may only be accessed within
CCS statements that name v. A CCS stalement is of the form

csect v do await C:S

where C is a boolean expression and S is a statement list. Note that variables local
to the exccuting process may also appear in the CCS statement :

A CCS statement delays the executing process until the condition, C, is true;
S is then exccuted. The evaluation of C and execution of S are uninterruptible
by other CCS statements that name the same resource. Thus, C is guaranteed to
be true when execution of § begins. Mutual exclusion is provided by guarantecing
that exceution of different CCS statements, cach naming the same resource but
not overlapped, Condition synchronization is provided by explicit boolean con-
ditions in CCS slalemcnts,g

We illustrate the use of the conditional critical sections by two applications.
The first example is a solution to the producer-consumer problem. Assume that
the two classes of processes (producers and consumers) communicate via a
bounded circular buller as in Figure 8.4. Access to this buffer must be mutually
exclusive. Seven shared variables which are associated with the eritical seetion v
are used to indicate the global status of the system of processes



MULTIPROCESSING CONTROL AND ALGORITIIMS 5§73

Example 8.4 The variables p and c are asin Example 8.1 Variables empty and

Jfull are also integer variables denoting the number of slots empty or occupied
respectively. Variables np and ne indicate the number of producers and con-
sumers respectively, which are working on the bufler.

var v: shared record
begin
var p, ¢, empty, full, np, nc: integer;
var BUFFER [0: n — 1]: message:
end
initial empty = n, full =0, p =0, ¢c = 0;
Procedure Enqueue (m: message)
begin
csect v do await empty > 0 and np = O:
begin
np<«<np+1;
empty < empty — 1;
end
p <« (p+ 1) modn;
BUFFER [p] « m;
csect v do full < full +1;

end
Procedure Dequeue (m: message)
begin -
csect v do await full > 0 and nc = O:

begin
nc<nc+1;
full < full = 1;
end
c <« (c+ 1) modn;
m < BUFFER [c];
csect v do empty < empty + 1;
end o

The second example on the use of the conditional eritical section is the solution
of the reader-and-writer problem. Improper reading and writing of shared variables
is the classic cause of difficulty in finding operating system bugs. The basic problem
is that two sets of processes executing concurrently may interleave read and write
operations in such a way that improper decisions are made and the shared variables
are left in an improper state. This kind of bug is insidious, for it may only show up
infrequently—and then the symptoms occur rarely or never repeat since they
depend on a particular concurrency relationship.

In the reader-and-writer problem, there are reader and writer processes which
share a common data segment. Any number of readers may access the segment
simultancously, but a writer must have exclusive access to it. To prevent a writer



574 COMPUTER ARCIHITECTURE AND PARALLEL PROCESSING

from waiting indefinitely long, it is necessary that no more readers be able 1o
acquire the resource from the moment that a writer first wants to acquire it until
the time it actually does acquire it The variable aw indicates the number of writers
that want to acquire the resource; nw and nr indicate the number of writers and
readers, respectively. that have acquired the resource,

Example 8.5

var v shared record aw, nw, nr - integer end
Initial aw = nw = nr = 0;
Reader: begin
csect vdo awaitaw = 0 nr « nr + 1;
read segment:
csectvdonr«—nr-1:
end
Writer: begin
csect v do
begin
aw «— aw + 1;
await nr = 0and nw = 0: nw « nw + i 1
end
write to segment;
csect v do begin
nw e« nw - 1;
aw «—aw — 1;
end
end
end

All the process-synchronization methods we have discussed are logically
cquivalent in performing the synchronization or scheduling problem. However,
some of them implement the solution 1o certain problems in a more complicated
and ineflicient manner than others. Therefore, they are not practically equivalent.

Monitors— e xrension of conditional critical sections A monitor is a shared data
structure and a set of functions that access the data structure to control the
synchronization of concurrent processes. This general definition includes sema-
phores, events, and messages as specific implementations. The notion of a monitor
is not more powerful than these other techniques— just more general. While a
process is a useful abstraction for multiprogramming. 4 monitor is a useful
abstraction for process communication. Consequently, a programmer can ignore
the implementation details of the resouree when using it and can ignore how it is
used when programming the monitor that implemenis it

T'o assure the correciness of i progrion, s useful 1o associate data structures
with the operations performed on them. A monitor provides a body in which to



MULTIPROCESSING CONTROL AND ALGORITHMS 575

Monitor

Shared
data

Figure 8.6 Monitor representation.

associate shared data structures with their critical sections. By so doing. the data
structures are no longer shared or global, but local or hidden within the body of a
monitor. In addition, process functions no longer contain critical sections. Instead,
the critical sections are centralized and protected within the monitor functions,
The restricted access to shared data structures provided by a monitor is even more
attractive if it can be checked by a compiler. Many high-level languages today
provide the means for controlling the scope of variable names.

Monitors provide support for processes to form a multiprogramming system,
While a process is active in the sense that it performs a job, a monitor is passive in
the sense that it only executes when called by a process. A monitor is necessary
only when two or more processes communicate to ensure that they communicate
properly. Figure 8.6 is a representation of two processes communicating through
shared data encapsulated by a monitor.

A monitor consists of a sct of permanent variables used 1o store the resource’s
state. and some procedures, which implement operations on the resource. A
monitor also has initialization code for the permanent variables. This code is
executed once before any procedure body is executed. The values of the permanent
variables are retained between activations of monitor procedures and may be
accessed only from within the monitor. Monitor procedures can have parameters
and local variables, cach of which tikes on new values for cach procedure activa-
tion. The structure of a monitor with name mmame and procedures OPL LOPN
15 shown helow.



5§76 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

mname monitor;
var declarations of permanent variables
procedure OP1 (parameters)
var declarations of variables local to OP1
begin
code to implement OP1
end

procedure OPN (parameters)
var declarations of variables local to OPN
begin
code to implement OPN
end
begin
code to initialize permanent variables
end

The procedure OPJ within monitor mname can be invoked by executing
call mname - OPJ (arguments).

The exccution of the procedures in a given monitor is guaranteed to be mutually
exclusive. This cnsures that the permancnt variables are never accessed con-
currently. :

Pushing the monitor concept to its logical limit suggests that systems should
be designed as collections of processes and monitors only. In this case, every data
structure is local to cither a process or monitor. This decomposition is valuable in
large systems since it simplifies the problems of program validation and main-
tenance. If a data structure changes, it is clear which functions are affected, and
the addition of a new process or monitor does not require the revalidation of
unchanged components.

The current state of a monitor is defined by the monitor image, that is the
memory associaled with the monitor program. A monitor image represents
cither permanent or temporary resources that are the elements of process inter-
action. A process image is that portion of memory belonging to a process and
defining its states. The process image changes with the execution of a program
associated with the process. In the absence of process activity, process images
and monitor images differ significantly. In this idle state, process images are of
no importance and may vanish. However, mnnilq images—at least those rep-
resenting permancent resources—must remain and resume a nonassigned state.

Monitor functions are reentrant but contain nonreentrant sections—i.c.,
critical scctions. Indeed, monitor functions must be designed to protect against this,
Monitor functions need not be considered as part of the monitor image. In fact,
il two dilferent monitor variables are accessed in the same way, a single copy of a
program may be shared between the two monitors.



MULTIPROCESSING CONTROL AND ALGORITHMS §T7

When a monitor function is called but is blocked from handling the request
immediately. it may take several actions. It may immediately return a blocked
indication, it may loop or busy-wait until the request can be handled, or it may
place the process on a waiting queue for the resource requested. In the latter case,
the waiting queue must be a part of the monitor data structure. In rehl-time systems,
It is sometimes best o return a blocked indication and let the process decide
whether to try again later or give up.

An operating system contains a kernel or nucleus which contains a few
special processes to handle intialization and interrupts and a basic monitor to
support the concept of a process. The basic monitor includes functions to switch
environments between processes and to create. spawn. or fork a new process. The
kernel is also one part of an operating system that exccutes in the privileged state.

Besides the kernel, an operating system consists of many monitors and a few
processes. The processes include several kinds of 1/0 processes that are activated
as needed and at lcast one active process 10 look for new jobs and create user
processes for them. All monitors are part of the operating system and form the
bulk of the system. They are used to manage the resources of the system. For
cxample, monitors (ransmit messages between processes, control competing
processes, enforee access rights, and communicate with 1/0 processes.

8.2 SYSTEM DEADLOCKS AND PROTECTION

With a high degree of concurrency in multiprocessors. deadlocks will arise when
members of a group of processes which hold resources are blocked indefinitely
from access to resources held by other processes within the group. We shall present
some effective techniques for detecting, preventing, avoiding, and recovering from
deadlocks. Also, we will discuss various protection mechanisms which can be
used in a multiple process environment to ensure only authorized access to
resources. '

=

8.2.1 System Deadlock Problems

We use the following example to explain the cause of system deadlock and the
means 10 break a deadlock.

Example 8.6 Consider the three concurrent pracesses P, P, and P, sharing
four distinct resources controlled by the four semaphores §,. 8,. 5;.and §,.
All semaphores have an initial value 1, P-V primitives are used tospecify the
resource-request patterns shown in Figure 87« Assume one unit of cach
resource type.

We use a directed graph in Figure X.7h to show the possible resource-
allocation ordering, The nodes correspond to resource semaphores, one per
type. An edge (labeled P)) from 8, to 8, means that resource S, has been allo-
cated to process Pand Py s requesting resource 8, Following this rule. we



578 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

P, P, P,
L L .
- - -
- -

. - .

: H .
Py PS)  PS)

. H

. - .
P(Sl) P(-')‘]] -

. - L

: H

Ms)  US) M)
US) WSy MS)
us) WSy

(a) Three concurrent processes

(4) Resource allocation graph (¢) Resource allocation graph
corresponding to part (a) after changing the order
of P(5,) and P(5,) in part (@)

Figure 8.7 Concurrent processes for the deadlock study in Example 8.5.

obtain the resource-allocation graph in Figure 8.7b. The existence of a loop
in the graph shows the possibility of a deadlock,

For example, the three nodes S,. S,, and S, form a loop in the clockwise
direction. This means a deadlock situation in which resources Sy, 5,1, and Sy
have been allocated to processes Py, P, and Py, respectively. Py is waiting for
P, to release S,, while P, is waiting for Py to release S, and Py is waiting
for P, to release §,. These three processes thus enter a circular wair situation,



W

MULTIPROCESSING CONTROL AND ALGORITHMS 579

so that no process among the three can proceed. This situation is called system
deadlock or “deadly embrace™,

Supposc we modify the request pattern in process P by exchanging the
order of requests P(S,) and P(S,). A new resource-allocation graph results in
Figure %.7¢, where the edge direetion has been reversed from node & o' 8.
Since there are no loops in this modificd graph, no circular wait will be possible.
Thus deadlock can be avoided. Because of data dependencics or other reasons,
the change of request order may not be permitted in gencral. Thus betier
techniques are needed to avoid deadlock. We shall show some of these tech-
niques later.

In general, a deadlock situation may occur if one or more of the following
conditions are in effect :

. Mutual exclusion: Each task claims exclusive control of the resources
allocated to it.
. Nonpreemption: A task cannot release the resources it holds until they are
used to completion,
3. Wait for: Tasks hold resources alrcady allocated 1o them while waiting for
additional resources.
4. Circular wait: A circular chain of tasks exists, such that cach task holds one
or more resources that are béing requested by the next task in the chain.

(2%

The existence of these conditions effectively defines a state of deadlock in
the previous example. In many ways, the first three conditions are quite
desirable. For consistency, data records should be held until an update is
complete. Similarly, preemption (the reclaiming of a resource by the system)
cannot be done arbitrarily and must be supported by a rollback recovery
mechanism, especially when data resources are involved. Rollback restores a
process and its resources to a suitable previous state from which the process
can eventually repeat its transactions.

Solutions to the deadlock problem have been classified as prevention, avoidance.
detection, and recovery techniques. Prevention is the process of constrainin gsystem
users so that requests leading 1o a deadlock never occur, For deadlock prevention.
the system is designed so that one or more of the necessary conditions outlined
above never hold. The scheduler then allocates resources so that the deadlocks
will never occur. Fordeadlock avoidance, the scheduler controls resource allocation
on the basis of advance information about resource usage so that deadlock is
avoided. With deadlock detection and recovery, the scheduler gives resources to
the process as soon as they become available and, when a deadlock is detected.,
the scheduler preempts some resources in order to recover the system from the
deadlock situation,

Empirical observations have suggested that deadlock prevention mechanisms
tend to undercommit resources while detection techniques give away resources so
freely that prolonged blocking situations arise frequently. Avoidance schemes fall



S80 compuTIR ARCHITECTURE AND PARALLEL PROCESSING

somewhere in between. Avoidance or prevention mechanisms must ensure that a
deadlock will mever oceur for every request. resulting in undue process waits and
run-time overhead. A prevention mechanism differs [rom an avoidance scheme in
that the system need not perform run-time testing of potential allocations. In both
prevention and avoidance cases, recovery from a system implementation error
needs a rollback mechanism.

8.2.2 Deadlock Prevention and Avoidance

By restricting the behavior of the processes so that one of the necessary conditions
for the occurrence of a deadlock is violated, deadlocks will never occur. This
approach has been called static prevention, since the rule for allocatin g resources
does not depend upon the current state of the system. One method s to relax the
mutual-exclusion condition by permitting simultancous access to resources by
processes. This, for cxample, is possible in a read-only data object. However, in
general the physical or iogical properties of the resources may not always permit
simultancous access. Examples of these resources are card readers, printers, and
critical sections of code. Hence, prevention of deadlock permitting simultancous
access (o resources 18 impractical.

Similarly, the denial of the nonpreemption condition in a general case is
unrealistic since physical resources such as line printers cannot be preempted.
However, the nonpreemption condition can be waived for processors and memory
pages which may be time-multiplexed among several processes, The forcible
deallocation of a resource and the allocation of the resource to the preempting
process may cause an intolerable overhead which, if not carefully controlled, may
result in an inefficient wtilization of resources. Another approach to preventing
deadlock is to constrain each task to completely allocate all its required resources
in advance of its execution. This limits the degree of concurrency and also under-
utilizes the resources. This technique derives from the wait-for condition.

Finally, by constraining the resource types into a linear ordering, circular
waiting can be prevented. In this method, the resource types are ordered into a
resource hierarchy so that, for a system with m resource types, R, < R, < -+ < R,.
If a task has been allocated a resource of type R,, it can only request a resource R
which is at a higher level so that R; < R;. The rule for releasing resources is that
resource R;must be released before R, if R; < R;. By this means, circular chains
of blocked tasks cannot occur since cach task requests resources in the same
orderly way. A deadlock cannot occur in a system with linearly ordered resources.
The feasibility of enforcing resource ordering by compile-time checks is a major
advantage of this scheme. Restrictions on the allowatfe sequences of task requests
force knowledgable use of the ordering rule. This technique is used in the IBM
370 series MVS operating system.

To avoid deadlocks in a multiprogrammed multiprocessing system in which
the necessary conditions for deadlocks can exist, it is usually necessary to have
some advance knowledge of the resource usage of processes. Sometimes deadlock
avoidance techniques are called dynamic prevention methods since they attempt to



MULTIPROCESSING CONTROL AND ALGORITHMS S81

allocate resources depending upon the current state of the system. These methods
lead to better resource utilization,

One basic model that is assumed consists of a sequence of task steps during
cach of which the resource usage of the task remains constant. The execution of a
task step first involves the acquisition of those resources needed by the given
task step but not passed on by the previous task step. Next follows a period of
execution during which the resource requirement remains invariant. Finally, at
the completion of execution, all those resources not needed by the subsequent
task step are released and returned to a pool of available resources.

Before discussing the avoidance techniques, it is convenient to describe another
model for the resource-allocation system in a multiprocessor. A resource-allocation
system (RAS) includes a set of independent processes [ P.in=1)a
sct of m different types of resources R\,Ry....,R, (m = 1)so that cach R, has a
fixed number of units ¢;- The RAS also includes a scheduler that allocates the
resources to the processes according to certain rules fulfilling some specified
criteria.

The system state of 2 RAS is defined by (W A f). where W = (w,.w,, ... Y W,)
is the request matrix, which has the dimensions n by m. The entry w; = w(j)is the
maximum number of additional units of resource R, that the process P, will need
at one time to complete its task. w, is the want vector for process P;- A =
(a,a,,...,a)isthe allocation matrix (n > m). The entry A,; = a,(j) is the number
of units of resource R; allocated to process P,. a, is the allocation rector for process
P;. The vector f = R S f=) is the free (available) resource vector and ¢ =
(e, 3,0, ¢,)is the System capacity vector. Since f, < ¢;is the number of available
units of resource type R;. we can find f; 10 be

fi=c¢i— Y a(j) (8.1)

=]

That is, the sum of the resources allocated and those available of type R; must be
equal to the total number of units of that type in the system.

When A = 0,The system is in the initial state. Inthisstate, D = (d,. d,,...,d,)
= W is called the demand matrix and ¢ — f, where d, is the demand vector for
process P;.

Certain basic assumptions are made regarding avoidance methods. Before a
process enters the system, it is required to specify for each resource the maximum
number of resource units it will ever need. There is no preemption and a process
releases a resource after it has completed its task. Morcover, d; < ¢ for all .

A scquence of task Steps P, Prsy o+ Py, is called a terminating seqivence for
(W, A, f), where () is the index of the process in the jth place, if

W =1 (8.2)
and



S82 comeuTER ARCHITECURE AND PARALLEL PROCESSING

Note that cach occurrence of a process in the sequence goes through the following
eycle: request resource, use resource, release resource. Hence the want veetor for
@ process must not be greater than the free resource vector plus the “released ™
resource vector for the process to be run. A terminating sequence is complete if all
processes are in the sequence.

The system state (W, A, f) is safe if there is a complete lerminating sequence
for it; that is, if there is a way to allocate the resources claimed by the processes
$0 that all of them can finish their task. The safeness of a statc can be expressed as
a safe request matrix S, where 8,5 is the maximum number of units of resource R,
that can be granted safely if process P, requests them.

Example 8.7 If we restrict each process to making a single request for a finite

number of units and the state of the system (W,A f) for three processes and two

resource types is;

[ 25 T
(=]

0 1
W= A=10 0 f=(1.1
11

L= ]
—_

then the system is in a safe state. Notice that from Eq. 8.1, ¢ = (2,2) and
PPy P, is a complete terminating sequence, If P, requests only one unit of
R, the system will be in a safe state, since in that casc Py P, P, is a terminating
sequence containing P,. Therefore, S;,1 = L Similarly, if P, requests only
one unit of R,, S, 5 = 1. However, if P, requires at the same time one unit of
R, and one unit of R,, the request cannot be granted safely.

This example shows that the matrix S can be used only for single requests, If
a process requires more than one resource, a rule stating the order in which the
resources will be requested must be defined. In general, the computation of § may
be time consuming. However, it is possible to compute S concurrently with process
execution in a multiprocessor system. This reduces the overhead significantly.

8.2.3 Deadlock Detection and Recovery

The deadlock detection algorithm uses the information contained in a state of the
system to decide whether or not a deadlock exists. For the case of a system with
only one unit of each resource type, it is sufficient for the detection mechanism to
find a circuit (circular wait) in the directed graph. Thus the deadlock detection
mechanism maintains and examines a directed state graph to determine whether
a circuit exists each time a resource is requested, acquired, or relcased by a task.

We can extend this technique to systems that have more than one unit of cach
resource type. Since a circuit in the state graph is only a necessary condition for a
deadlock, a more eclaborate state-detection mechanism is required. Using the
notation developed previously, we recall that the free-resource vector f is such
that its component f; satisfies Eq. 8.1. Let 0 indicate a (row) zero vector, in which
all components are zero. Also, x < ¥. where x and y are vectors, holds if and only



MULTIPROCESSING CONTROL AND ALGORITHMS 583

il each pair of corresponding elements is related by <. The algorithm presented
below is designed to reveal a deadlock by simply accounting for all possibilitics of
sequencing the tasks that remain to be conipleted. Suppose at time 1 the state of
the system is given by (W, A, f), where W is the want matrix, A_the allocation
matrix, and f the free-resource matrix. The following algorithm determines the
existence of a deadlock at time

Procedure DETECT DEADLOCK
begin
Initialize Rows — {1,2,. . .n i
while | € ROWS such that w,_ < v do
begin
ROWS — ROWS - {i};
Ve—v-a;
end
If ROWS # ¢ then DEADLOCK:
end

The “while" statement searches for an index i in ROWS such that a; < v. If none
is found, a nonempty set in ROWS indicates the existence ol a deadlock ; otherwise,
there is no deadlock. An important point to remember is that a program bug can
cause a deadlock even in situations where deadlocks theoretically cannot occur.
An ultimate time out can be a simple defensive check on the correctness of the
system as well as a way to prevent indefinite deadlocks,

Given thatadeadlock has occurred. perhaps the simplest approach to recover-
ing from it would involve aborting cach of the deadlocked tasks or, less drastically,
aborting them in some sequence until sufficient resources are released to remove
the deadlocks in the set of remaining tasks. Algorithms could also be designed that
scarch for a minimum-sized set of tasks which, if aborted, would remove the
deadlocks. A more general technique involves the assignment of a fixed cost b, to
the removal (forced preemption) of a resource of type R; from a deadlocked task
that is being aborted.

8.2.4 Protection Schemes

Protection is a mechanism which checks whether the concurrent Processes are not
trying. in case of error or malicious action, to exceed their rights in accessing the
sct of objects in the system. Protection should be distinguished from security,
whichis a policy used to denote mechanisms and tech niques that control'who may
use or modify the computer system or the information stored in it. The protection
mechanism protects one process from another. This includes the protection of the
supervisor from the users and viee versa. The inclusion of an clficient protection
scheme in a system also prevents the wide propagation of ¢rrors, The technigues
of error confinement are based on hardware and firmware mechanisms of access
control 1o entities or objects of the system. These mechanisms do not prevent



S84 comrurer ARCHITECTURE AND PARALLEL PRUK ESSING

occurrences of errors but are intended to limit their incidence on the protected
objects. An addressing mechanism that decomposes the space of objects into
protected domains is one scheme that makes the confinement and the non-
propagation of errors casicr. A domain is the set of objeets that may be dircctly
accessed by the process to which authorization is granted.

One common set of objects that is protected i a compulter system is the set
of memory locations. It is imperative 1o protect the address space of one task from
the other by enforcing a separation of address space among different tasks.
The protection of shared memory is classificd into the protection of the physical
and local address spaces.

The protection of physical address space could be accomplished by partitioning
the physical memory into nonoverlapping blocks (page frames), each of which is
assigned a lock, Each process has a key (often called an access key) as part of its
process-identification word, Access (o a block of memory by a process is granted
if the process” access key fits the lock of the block. In fact, any process with a match-
ingkeycan have aceess 1o the block. Hence, this scheme is not an effective protection
mechanism if the blocks are shared by several processes.

Memory protection on the virtual address space is more effective. In systems
that use base or relocation registers for mapping the virtual address to the
physical address, protection is accomplished with bounds registers. Bounds registers
specify the lower (base address) and upper bounds of the address space. An access
by a process to memory outside the predefined bounds is trapped by the system
as an access violation. This technique assumes that the address space for the process
is in contiguous memory locations. The protection of the address space is further
cnsured since systems do not permit the modification of the bounds register by a
user process. Sharing of address space by more than two concurrent processes is
still difficult since the address space of each process is contiguous and the bounds
registers perform linear mapping of addresses.

Another method for memory protection is for each task to have a segment
table (ST), which consists of entries that include the set of access rights and the
base address to pages or segments of the task. During the execution of a task, it
uses the segment table base register (STBR) to obtain access by authenticat-
ing the privileges of the processes, as shown in Figure 8.8. If the access-code
ficld (AKR) of the virtual address matches the permitted access rights for the
segment (ace) in STE(s), the segment is accessed. When a task switch occurs, the
STBR is modified to point to the ST of the new task.

In process systems, there is a classic distinction between user privileges and
supervisor privileges. The protection of su pervisor processes [rom user processes
is enforced partly by a hardware mechanism which defines two operating modes:
supervisor mode and user mode. This can be accomplished ®y a single bit in the
processor’s control register. Generally, there are machine instructions, called
privileged instructions, which are not executable by user processes. These instruc-
tions can be considered the set of objects § which needs to be protected from the
user that attempts execute access. The user domain in this case lacks all rights in
the set R = {r|r = (5. exceute), s € S1. The protection is enforced by trapping the



MULTIPROCESSING CONTROL AND ALGORITHMS S8S

s
|}
o
=
n :
§ Virtual address Segment table base register
< Segment number Word index (STBR)
[AKR' [ 5 i ] { Address l Lengih

Segment table (ST)

Segment | —
<a> -
-
-
Segment
<a> =
-
-
Segment STE(s)
< 5>

-Addussl“ﬂ:c] L l ¥

-
-
-

—

= if STE(s) - acc# (AKR)
— access fault

If STE(s) « L > i then access fault

Figure B8 Address mapping in a segmented system.

user process that attempts to use r € R. The user process can request Lo use a
system procedure that contains privileged instructions by migrating from the
user domain to the supervisor domain, where the supervisor can access r € R on
behalf of the user process,

The multilevel protection scheme as implemented in Multics can be used
effectively in multiprocessors. In this scheme, which is often called the layered
protection system, the basic unit of protection is a segment. Segments are grouped
into aset of n levels or classes. The layering scheme results in a nested ring structure
consisting of n rings, as shown in Figure 8.9. Each level or class of segments is
assigned to a distinct ring. Therefore, the implementation of the virtual address
and the ST entry will have an extra field for representing the ring number of the
segment.



S8O «« IMPTITER ARCHITEC TURE AND PARALLEL PROCESSING

Ringn—1

Ring 0

Gate 0

Ring number Segment number Word number

Virtual address: | r ] 5 ' i

STE(s): [ Address [acc[ L I r l F—I

Figure 8.9 Layered protection scheme in the MULTICS and segment table entries.

The access capabilities of ring r;is a subset of ring ry whcncvcl;_ring r > r;, for
Tis ri€{0, 1,....n — ). Access control is performed between classes and not
within a class. Hence, one segment can reference another segment without a
validation check if both scgments are in the same class. However, the crossing of
a ring boundary results in an access fault, which invokes the operating system to
perform a validation check. If the crossing is from a ring r; to ring r, + 1, then the
access is permitted. If the crossing is. from ring r; to ring r; — 1, the operating
system validates the permission. To call an inner ring, only certain entry points are
permitted. These entry points are called gates. The segment which makes the call
must present a valid key to match one of the locks at the gate. The validation
process is performed by a gatekeeper process. The list of ent ry points corresponding
to the set of locks is called a gate list.

In this system, segments that belong to a process can, for example, be assigned
10 & given ring. If the segments are shared by multiple processes, the disjointness



MULTIPROCESSING CONTROL AND ALGORITHMS 587

of the classes of segments can be relaxed. A shared segment is assigned to a con-
secutive set of rings called an access bracket. In this case, the ring field in Figure
8.9 contains a sct of two integers (low, high). A call from a segment in ring r, 1o a
segment with aceess bracket (ny, ny), will not fault if n, < r, < n,. However, if
ri < ny, the aceess fault still occurs. A modified version of the layered protection
scheme is used in the S-1 multiprocessor system. In most cases, however, the ring
concept is not practical for more than three rings.

In order 1o provide useful conventions for sharing among processes. it is
necessary 1o have a systematic way of describing what is to be shared and-of
controlling access o shared objects from various processes, This machinery can
be described in terms of an idealized system called the object system, which consists
of three major components: a set of objects X, a set of domains D, and an access
matrix A. Objects are the protected entities. Typical objects are domains, files,
processes and segments. Objects are assigned a unique name in the system, for
example, by using a 64-bit counter. Recall that domains are entities which have
access to objects. The property of a domain is that it has potentially different access
than other domains. Note that objects do not necessarily belong to a domain but
can be shared between domains.

The access of a domain to objects is determined by the access matrix A. Its
rows are labeled by domain names and its columns by object names. Element
A[i, j] specifies the access which domain i has on object j. Each element consists
of a set of strings called access attribuges. Typical attributes are read (r). write (w),
execute (x), wakeup (s5). A domain has a y-access to an object if v is one of the
attributes in that element of A. Associated with cach attribute is a bit called the
copy flag which controls the transfer of access.

The system itsell attaches no significance to any access attribute except
“owner ™ or to object names. Thus the relationship between, say, the file-handling
module and the system is typical of the following: A user calls on the file-handler
to create a file. The file-handler asks the system for a new object name n, which the
system delivers from its stock of 2°* object names (e.g,, by incrementing a 64-bit
counter). The system gives the file-handler owner access to object n. The file-
handler enters i in its own private tables, together with other information about
the file which may be relevant (e.g., its disk address). It also gives its caller owner
access to n and returns n to the caller as the name of the created file. Later, when
some domain d tries to read from file n, the file-handler will examine A [d, n] to
see if “read™ is onc of the attributes of domain d, and refuse to do the read if it
15 nol.

The sparsity of the access matrix A4 makes it impractical Lo represent as an
ordinary matrix in rfemory. An alternative method. which is implementable,
is 1o have a list T of pairs <y: A[d. 1']> which is searched whenever the value of
A[d. x] is required. This pair is usually called capabiliry. In general, a capability
defines the rights (st of operations allowed) that a process has on an object.
A capability is a system-maintained unforgettable ticket which, when presented.
can be taken as incontestable proofl that the presenter is authorized to have

aceess to the object named i the ticket according to the access rights defined



588 CoMPUTR AR THTECTURE AND PARALLLL PROCESSING

A finit€ sequence of capabilitics is called a capability list or € list. A C list
associated with a process defines the running environment (running domain) of
the process at a given time; that is, the set of objects that it may use and the opera-
tions which it may perform on these objects, as shown in Figure 8.10. Process
execution corresponds to runmng over a succession of domains: migrating from
one domain to another expresses the variation of the flexibility of the process.
Addressing by capabilitics and system structuring by domains permit the solution
of protection and error-confinement problems, These classic notions are the basis
of numerous capability-based addressing systems such as the C.mmp Hydra and
the Intel IAPX 432 system.

The resources in a domain of a process as shown in Figure 8.10 consist of the
processor register file (RF), the focal memory (LM), and the local capability list,
Resources outside the domain are accessed only through capabilities stored in
the local C list. Any domain can have access (0 any object if a capability for the
object appears in its local C list. On a segment machine, capability lists can be
supported by special segments (C list segments). A capability can be accessed by
indexing into the C list, as shown in Figure 8.11. In this illustration, the capability
is divided into four parts:

. - Data
Register segment
file s
(RF) $
0
é o | Procedure|
Local 3 e
memory
(LM) .
.
L]
n-1 i
Local C list
Domain: D, [ RE ]
LM
-
Process: P, H
» C list

Domain: D,

Process: P,

Figure 8.10 Damains, capabilitics, and objects.



MULTIPROCESSING CONTROL AND ALGORITHMS 589

C list
. Master object :
Index ¥ table
(MOT)
10 . -
Type Segment 4
| 17 I‘ >
MOT index 1T = > L
4319963
Umque name 4319963 Size
. -
Right Read . 5,: Segment
| 11 I[ -
. ;
-
-
Figure 8.11 C-list and capabilities. -

« A type definition of the designated object

« A pointer to a Master Object Table (MOT)

« An object identifier (unique name)

« A set of rights which defines the operations allowed on the object

The MOT entry pointed by the capability contains the absolute address of the
object and its unique identifier. The MOT concept makes addressing of the object
casy and a relocation of the object needs only the updating of an address in the
MOT., even if this object is shared between several processes. It also makes the
access slow.

In gencral, protection can be applied on an object or a path to the object. For
example, the access-matrix concept applies the protection on the path, while the
entry in the segment table applics it on the object. Protection placed on the access
path to objects generally requires less overhead than protection pl.tu.d on the
objects. However, in some cases. both methods are required.

Capabilities have an advantage over privilege-checking in that the protection
check is performed at the beginning of the object name interpretation without
leaving the execution environment, Henee the error is confined to the execution
cnvironment. I a process refers 10 an object through C lists. it 1s impossible to
name any object to which the process has no access rights. However. it can become
wasteful m storage spuce and the overhead in loading and saving a C list upon



S0 COMPUTER ARCHITECTURE AND PARALLIL PROCESSING
-

activation and deactivation of the process can become substantial. If a parent
process adds or deletes access rights to its C list regarding objects that are shared
by its children processes, then the access rights must be modified for the several
C lists of the children processes. This problem does not occur if the protection
15 on the objeet, since the change in access rights is made in one plaice  at the
object.

8.3 MULTIPROCESSOR SCHEDULING STRATEGIES

In this section, we discuss the processor management techniques used in multi-
processor systems. The introduction of multiple processors complicates the
scheduling problem. Deterministic and probabilistic models have been used 1o
evaluate some scheduling schemes. Generally, finding an optimal algorithm for
the processor scheduling problem in multiprocessors is computationally intract-
able. However, some dynamic-scheduling algorithms are close to optimal.

8.3.1 Dimensions of Multiple Processor Management

Multiprocessor management and scheduling have been a fertile source of inter-
esting problems for researchers in the field of computer engineering. Replicated
components, particularly those that are nonhomogencous (heterogeneous) or
asymmetric, increasce the amount of management that must be provided by either
the operating system or the application or both. In its most general form, the
problem involves the scheduling of a set of processes on a set of processors with
arbitrary characteristics in order to optimize some objective function. This
involves the selection of a process for execution from a set of processes.

Basically, there are two resource-allocation decisions that are made in multi-
processing systems. One is where to locate code and data in physical memory—a
placement decision: and the other is on which processor to exccute each process—an
assigmment decision. These decisions are often trivial for a uniprocessor system in
which assignments are dictated, Furthermore, the physical memory address space
is accessible to the single processor in a uniprocessor system, hence the question
of accessibility never occurs and memory-contention problems can be minimized
by interleaving. Oftentimes, assignment decision is called processor management.,
It describes the managing of the processor as a shared resource among external
users and internal processes. As a result. processor management consists of two
basic kinds of scheduling: long-term external load scheduling and short-term
internal process scheduling,

In genceral, active processes undergo different state transitions in the course of
their lifetimes in the system. A process is in the run state if it is Using a processor.
A suspended process may enter the pool of blocked processes. A process is blocked
il it cannot run because it is waiting for some external response, such as a wake-up
signal. which may arrive to unblock it The unblocking operation changes the
statas of the process ta readv-1o-rnn or ready state. whereitis eventually seheduled



MULTIPROCESSING CONTROL AND ALGORITHMS 591

to a processor. Figure 8.12 illustrates the possible state transition experienced by a
process. The scheduler at this level performs the short-term process-scheduling
operation of sclecting a process from the sct of ready-to-run processes. The sclected
processisassigned to run on a processor. The medium and long-term load-scheduling
operation is used to select and activate a new process to enter the processing
environment. The activation of the new process causes it to be put on the ready
list. Long-term load-scheduling also acts to control the degree of multiprocessing
(that is, the number of active processes) in the system which, if cxcessive, may
cause thrashing (see Chapter 2).

The process scheduler or dispatcher performsits function each time the running
process is blocked or preempted. Its purpose is to select the next running process
from the set of ready queucs. The process scheduler resides in the kernel and can
be considered a monitor for the ready queues. Since it is probably the most fre-
quently executed program in the system, it should be fairly efficient to minimize
operating system overhead.

Terminated/
inactive

Trggsition Event . '
Activate process

Run process

Preempt process

Block process

Wakeup process

Terminate process

Figure 8.12 States of a process and their state transitions.

L= R T N



592 comruTER ARCHITECTURE AND PARALLEL PROCESSING

The ready list can either be local or global. A local ready list may be associated
with each multiprogrammed processor which has a local memory. Thus a process,
once activated, may be bound to a processor. The local ready list reduces the
access time of the list and, hence, the overhead encountered by the dispatcher.
However, the local ready list concept discourages process migration. Moreover.
under light system load, the processor utilization may not be equally distributed
among all processors. To permit process migration, a global ready list which
resides in the shared memory may be used. This has the disadvantage of requiring
more overhead in saving and restoring process states by the process scheduler.
However, the standard deviation of the processor utilization is small.

The general objectives of many theoretical scheduling algorithms are 1o
develop processor assignments and scheduling techniques that use minimum
numbers of processors to execute parallel programs in the least time. In addition,
some develop algorithms for processor assignment to minimize the execution time
of the parallel program when processors are available,

There are basically two types of models of processor scheduling, deterministic
and nondeterministic. In deterministic modcls, all the information required to
express the characteristies of the problem is known before a solution to the
problem, that is, a sehedule, is attempted. Such characteristics are the execution
time of cach task and the relationship between the tasks in the system. The objective
of the resultant schedules is to optimize one or more of the evaluation criteria. For
example, in deterministic models, the execution time of cach process can either be
interpreted as the maximum processing time or as the expected processing time,
In the former case, the time to complete the schedule would be considered
the maximum time to complete the system of processes, and in the latter
case, the length of the schedule represents a rough estimate of the mean length
of the computation. The motivation for this objective is that, in many cases,
a4 poor schedule can lead to an unacceptable response time or utilization of
sysicm resources.

Deterministic models are not very realistic and do not take into consideration
the irregular and unpredictable demands made on the multiprocessor system.
Hence, stochastic models are oficen formulated to study the dynamic-scheduling
techniques that take place in the system. In stochastic models, the execution time
of a process is a random variable 1 with a given cumulation distribution function
(cdf) F.

Processor scheduling implics that processes or tasks are to be assigned to a
particular processor for execution at a particular time. Since many tasks can be
candidates for execution, it is fiecessary to represent the collection of tasks in a
manner which conveniently represents the relationships (if any) among the tasks.
Generally, we will refer 1o @®et of related processes as a task system or a job. A
job, which consists of u set of processes, is represented as a precedence graph, as
shown in Figure 813. The nodes in the graph are tasks which may represent
independent operations or parts of a single program which are related to each
other intime. The collection of nodes represents asetof processes T = {T,..... g o

and the dirceted edge between nodes implies that a partial ordering or precedence



MULTIPROCESSING CONTROL AND ALGORITHMS 593

Figure 8.13 Representation of a task system, 7 = (T,,..., T\,).

relation < exists between the processes. Therefore, if 7, < T}, process T; must be
completed before T; can be initiated. Processes with no predecessors are called
initial processes (e.g., Ty), and those with no successors are called final processes
(e.g., Tjg)- The individual nodes within a graph can be related to each other in a
number of ways. =

For example, it is possible for all processes in a graph to be independent of
each other. In this case, there is no precedence relation or partial ordering between
the processes and all the processes can be scheduled concurreptly, provided there
are enough processors available. The width of the task”graph®G, denoted by
width(G), is the maximum size of any independent subsct of processes. In Figure
813, |, <Th, 1, <T,, T, < T, and T; < T,. The width of the graph is 3.
Associated with each node is a second attribute which refers to the time required
by a hypothetical processor to exccute the code represented by the node. Some-
times, this attribute is called the weight of the node. In a deterministic model, this
attribute is a constant for each node, whereas, in a stochastic model, it is a random
variable with a mean and standard deviation or a known distribution.

Given a computation graph and a multiprocessor system with p processors, a
task assignment or a schedule must be developed such that it gives a description of
the processes to be run and in what order as a function of time. The schedule must



594 compuTER ARCHITECTURE AND PARALLEL PROCESSING

not violate any of the precedence relationships or the requirement that no more
than onc processor can be assigned to a task at any time,

Ina multiprocessor system, one may associate a process deseriptor node (PDN)
with cach exccutable and active process. This process may consist of 4 number of
fields, as shown in Figurc 8.14. The parent ficld is a pointer 1o the set of processes
which initiated the process. the child field points to the set of processes 1o be
initiated by the current process and the register state defines the register values of
the given process. The kernel of the operating system uses the coneept of PDNs
to monitor the status of the processes.

In some systems, when processes are created, they exist as unrelated units,
independent of each other. In other systems, the order of creation is remembered
and a parent-child relationship is maintained between one process and the new
process it creates. Both approaches have ad vantages und disadvantages. Typically,
a child process is limited to using only those resources owned by its parent and is
deallocated if its parent terminates. In most general-purpose systems, when a
process is destroyed, its process image is returned to a pool of unallocated memory.
However, in many dedicated or real-time systems, processes are never destroyed.
Instead, they are created at compile time or initialization time and run forever,
even at times when there is no work to do.

During the execution of a process on a processor, external stimuli such as
interrupts may arrive and require urgent service because of input or output device
constraints. If the interruption and subsequent resumption of the process in
execution is permitted before its termination, preemprive scheduling is used. If

PDN
Process identification
(pid)

Priority

Parent .-_..[:H.._.{:@

Delay time

Process status

Register state

Size of process

: Pointer 1o
ST(M Segment table

o ] i S
1 _

Figure 8,14 Process deseriptor node of an setive task.



MULTIFROCESSING CONTROL AND ALGORITHMS 595

interruption before process completion is not permitted, nonpreemptive or basic
scheduling is applied. In general, preemptive disciplines generate schedules that
are better than those generated by nonpreemptive disciplines, It is also true,
however, that a certain penalty exists for preemptive schedules that do not exist
in the nonpreemptive case. The penalty lies in the context-switching overhead,
which consists of the system-interrupt processing and additional memory required
to preserve the state of the interrupted process. This overhead may be acceptable
if 1t occurs infrequently, however, in an environment in which preemption occurs
frequently, unacceptable performance degradation may result.

Oftentimes, certain tasks may get preferential treatment over the others in
a computer system. Systems in which this is true provide priority scheduling. In a
priority-scheduling system, tasks are grouped into priority classes and numbered
from I to n. IUis usually assumed that the lower the priority-class number, the
higher the priority: that is, tasks in priority class i are given preference over tasks
in priority class j. il i < j. A good scheduling policy should be fair and maximize
throughput; giving preference to high priority tasks, yet preventing “starvation™
of low priority tasks.

Priority scheduling can be combined with preemptive or nonpreemptive
scheduling to provide control policies. They are used to resolve a situation wherein
a task of class i becomes a ready-to-run task when a task of class j is running in a
processor, for i < j. In a preemptive priority scheduling, the running task is inter-
rupted and the new task runs on thag processor. A further refinement of this policy
is the preemptive-resume priority scheduling, in which the task whose execution was
interrupted continues execution at the point of interruption when the task is
reassigned to run on the processor. In a nonpreemptive priority scheduling, the
new ready-to-run process waits until the process currently running on the processor
terminates its execution before it gains access to the processor.

Many parallel algorithms require the concurrent execution of multiple pro-
cesses 1o achieve a significant performance speedup. The scheduling strategy plays
a very important role in meeting the concurrency requirements. Usually the
scheduler is designed as a mutually exclusive program which can only be executed
by one process at any time. The problem which may be encountered is whether
the scheduling of the set of concurrent processes cooperating in a job should be
performed as a group or individually. Each process in the set could be assigned to
a processor as it becomes available and runs the process immediately. Since this
strategy depends on the dynamic availability of processors, the execution time
ofthe job may belarge and depends on the time the last process in the set is assigned.

Il preemption of processes is permitted, the parallel processes of a job may be
scheduied as a group. Processors executing low priority jobs may be preempted to
release the processors for the parallel process system. The required number of
processors for that job must be available before any process in the set is assigned
for execution. It is, however, inefficient to allocate a processor to a process which
has to dcelay its exccution because its siblings (cooperating processes) have not
yet been assigned to processors. This strategy limits the degree of decomposition
to the total number of processors in the system.



596 COMPUTER ARCHITECTURE AND PARALLEL PPOCESSING

A number of measures have been developed to evaluate the effectiveness of
processor schedules. Some of these measures are (a) response or completion time,
(h) speed-up ratio, and (¢) processor utilization. The objectives for multiprocessor
fesource management and scheduling are the same performance objectives as
for their uniprocessor counterparts, namely, maximizing throughput, minimizing
response time, or completing processing of tasks in order of priority. Consequently,
the multiprocessor schedulers have much in common with single processor
schedulers.

8.3.2 Deterministic Scheduling Models

Deterministic schedules are usually displayed with timing diagrams called Gantt
charts. We define some measures of performance based on Gantt charts. The flow
time of a process is equal to the time its execution is completed. The flow time of
i schedule is defined as the sum of the flow times of all processes in the schedule,
For example, the flow times of processes T, and T, in Figure 8.15 are seven and
two, respectively, while the flow time of the schedule is 25.5. The mean flow time is
obtained by dividing the flow time of a schedule by the number of processes in
the schedule. The utilization (or fractional busy time) of processors P,, P,, and Py
i50.93, 1.00, and 0.86, respectively. These utilization values are obtained by dividing
the time during which the processor was busy by the total time during which it
was available for execution. The idle time of Py. Py, and P, is 0.5, 0.0, and 1.0,
respectively.

Figure 8.16 shows a process system schedule for a given program graph on two
processors. The numbers associated with each node in the process graph represent
the exccution time of the process. Figure 8.16b gives the optimal schedule for the
graph using two processors. Note that this schedule is achieved by keeping a
processor idle even when there is a process to execute. Figure 8.16¢ shows that
activating the schedulable process as soon as possible does not necessarily achieve
an optimum schedule. The total execution time ET, of the process graph G on a
uniprocessor is the sum of the numbers (weights) associated with each node.-
Hence, ET, = 27. From Figure 8.16b, the execution time on the two-processor
system is ET, = I5. Therefore the speedup, S, = ET,/ET, = 23 = 1.8, for p=2

£ T LF &
5 T h
Py 7 LA Ty LH
I I T
0 1 2 3 4 5 1] 7

Figure 8,15 Tusk schedule in Gantt chart form,



MULTIPROCESSING CONTROL AND ALGORITHMS 597

PIT T e T, T T
Pl ¢ T T Ty Ty (-]
1 ~ 4l T T T I T T T
0 2 ¢ 4 6 8 10 12 14

(b) Optimal schedule

AT A 7 7, T,
Pl e n T, ) T ¢

1 1 I I I T T T = ik i, P
0 1 4 6 B 10 1z 14 16

(¢) Schedule when processors are activated as soon as possible

Figure 8.16 Task schedule in chart form, using p = 2 processors, (Courtesy of ACM Computing Surveys,
Gonzalez. Sept. 1977.)



598 COMPUTFR ARCHITECTURE AND PARALL FI PROCESSING

The mean utilization U, of the p processor system in the case of Figure 8.16h
is U, = (30 — 3)/30 = 0.9, for p = 2. The reader can casily show that by increasing
the number of processors to 3, the speedup does not increase. In fact, the utilization
reduces (o 0.6. Hence, the execution of the process graph in Figure 8. 164 is most
cost-cffective on a two-processor system. The rationale behind the minimization of
finishing or completion time is that system throughput can be maximized if the
total computation time of cach set of processes is mimmized. Throwghpur is
defined as the number of process sets processed per unit of time.

There are at least two reasons for minimizing the number of processors
required Lo process a process system. The first and most obvious 1s cost. The
second reason is the processor utihzation, If the number of processors required
to exccute a set of processes in a given time is less than the total number of pro-
cessors available, then the remaining processors can be used as buck p processors
for increased reliability and as background processors for noneritical com-
putations.

A key issue in the study of processor scheduling is the amount of overhead or
computation time needed to locate a suitable schedule. A scheduling algorithm is
4 procedure that produces a schedule for every given set of processes. An efficient
scheduling algorithm is one that cun locate a suitable schedule in an amount of
time that is bounded in the length of the input by some polynomial. Construction
of optimal schedules is NP-complete in many cases, NP-complete implies that an
optimal solution may be very difficult to compute in the worst possible input
casc. However, construction of switable schedules, that is, computing a reasonable
answer for the typical input case, is not NP-complete. Therefore suitable schedules
can be obtained for concurrent processes.

In this subsection, we examine deterministic schedules which can be used to
optimize measures of performance. Unless stated explicitly, we assume a scheduling
environment which consists of a number of identical processors, a set of processes
with equal or unequal execution times and a (possibly empty) precedence order.
First we consider preemptive schedules using two processors.

In order to understand the preemptive schedule (PS) on P Processors, we
define process graphs with mutually commensurable node weights. A set of nodes
is said to be mutually commensurable if there exists a t such that cach node weight
is an integer multiple of 1. In a preemptive schedule, a processor may be pre-
empted from an executing process if such an action results in an improved measure
of performance. The PS algorithms are due to Muntz and Coffman (19606).

Assume that the process graph consists of n independent processes with
weights (process duration or exccution times) of foly..oot, and p processors.
The optimal PS has a completion time of:

(1) = m:u-! max Ir, \'.',i- (8.3)
l1=icm P r.'—l !

The optimal PS length cannot be less than the larger of the longest process or the
sun of the execution times divided by the number of processors,



MULTIPROCESSING CONTROL AND ALGORITHMS 599

For their optimal algorithm, the set of nodes of unit weight in a graph are
partitioned into @ sequence of disjoint subsets such that all nodes in a subset are
independent. All nodes in the same subset or at the same level are candidates for
simultancous exccution or group scheduling. In a graph of N subsets or levels,
the terminal node occupies the first level exclusively. Those nodes which may be
executed during the umit time period preceding the execution of the terminal node
occupy the second level, and so on. The initial or entrance node in the graph
occupics the Nth level Such an assignment of levels gencrate what is called
precedence partitions,

In particular, the assignment procedure outlined above corresponds to the
latest precedence partitions. That is, the assignment of nodes to levels is done in a
manner which defers process initiation to the latest possible time without increasing
the minimum completion time. Such a schedule is called the latest-scheduling
strategy. This strategy assumes that the number of processors available is greater
than or cqual to the maximum number of processes at any level (width of G): This
strategy may be contrasted with the earliest-scheduling strategy, which schedules
a process as soon as a processor is available and the precedence constraints have
been satisfied. Note that the earliest strategy produces earliest-precedence parti-
tions.

For any arbitrary graph G, a precedence relation will exist between the subsets
of the latest strategy duc to the precedence which exists between the nodes in the
original graph. A PS can be congtructed for graph G by first scheduling the
highest-numbered subsel, then the subset at the next lower level, and so on. Note
that when a subset consists of only one node, a node from the next lower subset is
moved up if it does not violate the precedence constraints of the original graph.
I cach of the subsets is scheduled optimally, a subset schedule results. For two
processors and equally weighted nodes, an optimal subset schedule for G is an
optimal PS for G.

This result is extended to the case of graphs having mutually commensurable

node weights. In order 1o generate the optimal result, it is necessary to convert”

graph G into another graph G, in which all nodes have equal weights. This is done
by taking a node of weight r, and creating a sequence of n nodes such that t, = nt,
as illustrated in Figure 8.17. Note that the integrity of the original graph must be
maintained. It can then be shown that an optimal subset schedule for G,, is an
optimal PS for G, with k = 2.

In this approach, one must note whether the number of processes at any level
is even or odd. If it is cven, then all processes at that level can be executed in the
minimum amount of time with no idle time for either of the two processors. If
the number of processes is not a multiple of two, then the last three processes to
be scheduled at that level can be executed in no less than § unit, since all pro-
cesses in G, are of unit duration. By using the form shown in Figure 8.18, three
processes in a given level can be executed in minimum time without processor idle
time. Since scheduling in this manner cnsures that no processor is idle, the subset
sequence can be seen o gencrate a minimal-length PS. An example of the optimal
PSalgorithmisshown in Figure 8.19. For this example, the optimal subset sequence
for Gis {Ti ki {Tas Tl {Ts T, B AT Tk (T, Tig) (T

N



600 comMpUTLR ARCHITECTURE AND PARALLEL PROCESSING

Figure 8.17 Comparison of a graph with lly able node
weights with the corresponding graph having nodes of equal weight. (a)
Graph G node weights w, = 7, w, = 14, wy = 10 1f2; (b) graph G,
)] wo=31f2.

The optimal results derived above can be extended to the case in which any
number of processors are allowed when the computation graph is a rooted tree
and the node weights ¢, are mutually commensurable. A rooted tree is one in which
cach node has at most one sucgyssor, with the exception of the root or terminal
node, which has no successors. We discuss below some techniques for nonpre-
emptive schedules.

Recall that, in non preemptive or basic schedules, a processor assigned 1o a
process is dedicated to that process until it is completed. The initial investigations
discussed  here develop optimal nonpreemptive two-processor schedules for
arbitrary process orderings in which all processes are of unit duration. A particular



MULTIPROCESSING CONTROL AND ALGORITHMS 601

’ R] % i

Figure 8.18 ‘Minimum-time execution format for three unit tasks with two Processors,

(@

Figure 8.19 Illustration of subset

T
. 7 sequence algorithm, (a) Graph G !’nr
P, % T Ty 7 T T:ID % a set of tasks, with all nodes having
5 6

unit weight; (b) optimal preemptive
schedule. (Courtesy of ACM Com-
puting  Surveys, Gonzales, Septl.
(b) 1977.)



602 COMPUTER ARCHITECTURE AND PARALLEL PREW ESSING

simple class of scheduling algorithms for nonpreemptive schedules is the class of
list-scheduling algorithms. A list-scheduling algorithm assigns distinct prioritics (o
processes and allocates resources 1o the processes with highest priorities among
those runnable at any time instant when the resource becomes free, A list sehedule
or list L for 4 graph G of n processes is denoted by L =T Toi: a 1,) and repre-
Sents some permutation of the n processes. A process is said to be ready if all of its
predecessors have been completed. In using a list o gencerate a schedule, an idle
Processor is assigned (o the first ready process found in the list. An algorithm for
generating such an optimal list is described below,

The algorithm is a recursive procedure which begins by assigning subscripts
in ascending order to the process (processes) which is (are) exceuted last owing (o
precedence constraints in the process graph. Notice that the set of successors of
these processes is empty. Assignment procecds “up the graph™ in a manner that
considers as candidates for the assignment of the next subscript all processes whose
successors have alrcady been assigned a subscript. Consideration of processes in
this manner amounts to examining processes in a given latest-precedence partitiag,
although the processes are not executed ata time that corresponds to this partition.
In effect, the processes in a graph can be initially assigned subscripts in an arbitrary
manner. This algorithm then reassigns subseripts in the method outlined above,
The list is formed by listing the processes in decreasing subscript order, beginning
with the last subscript assigned. The optimal schedule is formed by assigning
ready processes in the list to idle processors. The algorithm is illustrated in Figure
8.20 by means of a process graph with reassigned subscripts, the resultant list 1.*,
and the optimal schedule.

The above algorithm does not always yield optimal results when the number
of processors is increased beyond two, or when the number of processors is two
and processes are allowed o have arbitrary durations, We describe a nonpre-
emptive scheduling method by Hu (1961). Two problems for process of unit
duration were addressed. In the firsi case, given a fixed numbers of processors, it is
required to determine the minimum time required 10 execute a process graph. The
second case determines the number of processors required to process a graph in a
given time,

We begin to arrive at a solution to these problems if we develop a labeling
scheme for the nodes of the graph. A node T} is given the label o, = X, + 1, where
Aiis the length of the longest path from 7; (o the final node in the graph. Labeling
begins with the final node, which is given the label 2, = 1. Nodes that are one unit
removed from the final node are given the label 2, and so on. This labeling scheme
makes it clear that the minimum time o, required to exeeute the graph is related
10 2, the node(s) with the highest numbered label, by

"I}I“Ill = ’“LI\
The optimal solutions by Hu are limited to rooted trecs, Using the labeling
procedure deseribed above, one can ohtiin an optimal schedule for P processors

by processing a tree of unit-length processes in the following nunner:



MULTIPROCESSING CONTROL AND ALGORITHMS 603

(a)
Pl To | To | Te| T | Tu | To| W | T | T n
A T | o [T | T | T | % | T A |5
]
0 = 4 6 8 10

(b)

Figure 8.20 lllustration of Coffman and Graham algorithm. (a) Task graph with rezssigned subscripts
L* = (Tyys Tyny---. Ty); (8) optimal schedule. (Courtesy ACM Computing Surveys, Gonzales, Sept.
1977.)

I. Schedule first the p (or fewer) nodes with the highest numbered label, ic., the
starting nodes. Il the number of starting nodes is greater than p, choose p nodes
whose a; is greater than or equal to the a, of those not chosen. In case of a tie,
the choice is arbitrary.

2. Delete the p processed nodes from the graph. Let the term * starting node "
now refer to a node with no predecessors.

3. Repeat steps 1 and 2 for the remainder of the graph.



604 CoMrUTER ARCHITECTURE AND PARALLEL PROCESSING

Label

P‘ 19 T’lﬂ Tl 5 T.l 1 r. Ts r‘l r'
7
'PZ (L) T'Il Tf] rlo T:-' T‘ /
7
p AEAEAE: /
3 17 H 9 ] k] /ﬁ
(&)

Figure B.21 1Hustration of Hu's optimal algorithm. (a) Rooted tree labeled according to Hu's procedure ;
(&) optimal schedule for three processors. (Courtesy ACM Computing Surveys, Gonzalez, Sept. 1977.)

The schedules generated in"this manner are optimal under the stated constraints.
The labeling and scheduling procedures are quite simple to implement and are
illustrated in Figure 8.21,

Recall that the minimum time required 1o exccute a task graph by Hu's
procedure is 7, Suppose we wish to process a graph within a prescribed time r,
where 1 = o, + Cand C is a nonnegative integer. The minimum number



MULTIPROCESSING CONTROL AND ALGORITHMS 605

of processors p required (o process the graph in time 1 is given by

g
Y g + 1 =) <p (8.4)
=1

pri= ¥+ C
where p(i) denotes the number of nodes in the graph with label z;'and 3* is the
value of the constant y, which maximizes the given expression. To illustrate this
result, consider Figure 8.21. For € = 0, for example, value 3* occurs when y = |
or y = 2. This indicates that, in order to process the graph in minimum time, four
processors are needed. For C = 1,1 = 8 and y* occurs when y = 2 or y = 5, and
three processors are required. Varying C further, we find that three processors are
required when the processes must be processed within nine units, but only two pro-
cessors are needed for a maximum processing time of 10 units.

Another study by Graham shows that, for a computing system with n identical
processors in which processes are assigned arbitrarily to the processors, the
completion time of the set of processes will not be more than twice the time required
by an optimal schedule. This bound was derived in connection with the so-called
multiprocessor anomalies. These anomalies are derived from the counterintuitive
observation that the existence of one of the following conditions can lead to an
increase in execution time:

1. Replace a given process list L by another list L', leaving the set of process times
U, the precedence order <, and the number of processors n unchanged.

2. Relax some of the restrictions of the partial ordering.

3. Decrease some of the execution times.

4. Increase the number of processors.

A general bound has been obtained by executing a set of processes twice.
During the first execution, the processes are characterized by the parameters g,
<, L, n,and w (the length of the schedule), and during the second execution by ',
<’ L', n’,and o such that ' < p and every constraint of <’is also in <, i.e., <’
is contained in <. The result of this gencral bound is that

o7 8 R e (8.5)
n

This bound is the best possible, and, for n = ', the ratio 2 — 1/n can be achieved
by the variation of any one of L, pt, or <.

The above result was extended to a nonhomogeneous processor system by
Liu and Liu. Suppose a multiprocessor system consists of n; processors of speed
i, fori=1,2,..., k,such that y¢; > py > -+« > g = 1, then

w

— < 41—
o Hy

Hy

&
> g

i=1

(8.6)



606 ComeiTER ARCHITECTURE AND PARALLEL PRO WIESSING

Example 8.8 Consider a system with one processor of speed five and five
processors of speed one. By Eq. 8.6, we have

w5 5 11

= + |- =

“ | 10 2
Comparing this bound with that in Eq. 8.5 for a multiprocessor system with
10 identical processors of speed | (by substituting five identical processors of
speed 1 for the processor of speed 5), the ratio 2 — Y is achieved. The deter-
mination of a close to optimal schedule is more important for a heterogencous
system than for a homogencous system.

Because of the limitations on optimal algorithms, bounds have heen derived
for the behavior of nonoptimal algorithms, The concept of precedence partitions
can be used 1o generate bounds for processing time and the number of processors
for graph structures whose nodes require unit-execution time. As indicated carlicr.
precedence partitions group processes into subsets to indicate the carliest and
latest limc(during which processes can be initiated and still guarantee minimum
exceution time for the graph. This time is given by the number of partitions and is
a measure of the longest path in the graph. For a graph of N levels, the minimum
execution time is m = N units. In order 1o exceute a graph in this minimum time,
the lower bound on the number of processors p required is given by

l N
p= mux[ max |L; ~ E|, max [ T IL,-[]] (8.7)
l<ich t=isall iz
and the upper bound on the number of processors p required is given by
p < min [mux |L;|, max IE,-J] (8.8)
1sisN¥l1<icN 1=ichN

In both cases, L, and E, refer to the ith latest and earliest precedence partitions,
respectively, and | x| represents the cardiality of the set x. The processes contained
in L; n E; are called essential processes. Those processes contained in the ith
subset given by L, ~ E; must be initiated i — 1 units after the start of the initial
process in the graph to guarantee minimum execution time.

8.3.3 Stochastic Scheduling Models

Using nondeterministic techniques, the execution time of a process 7, is given by
the random variable r,. with cumulative distribution function F,. Given a process
eraph G, let 1; be the random variable representing total execution time (the time
from when all processes are started until the last process terminates). Assume g
has a edf Fy,. There is a class of process graphs for which F, can be expressed
simply in terms of Fio Below, we give o methodology, developed by Robinson
(1979), for estimating F,. for this cluss,



MULTIPROCESSING CONTROL AND ALGORITHMS 607

Process graphs In order to determine the possible execution of job 7, we define
chains and simple process graphs. A subgraph of a process graph G is a chain if
the set of processes in the subgraph are totally ordered. The length of a chain is
the number of processes in the chain. If in a chain, the initial process is 7; and the
final process is T;, we say it is a chain from T; to T;. A subgraph of a process graph
G that is a chain is said to be a chain in G, In the following definition, a class of
process graphs is defined for which F; can be expressed simply in terms of the
cdfs of process execution time £,. Let C,, C,. ..., C,, be all chains from initial to
final processes in G. For cach chain C; containing processes 7;,, T;,.. ... let X, be
the expression x; x;, .... formed by concatenating the polynomial variables
Xips Xigs - - -, associated with processes T;, T,.. ..., respectively. Then G is said to
be simple if the polynomial X(G) = X, + X, + ... + X, can be factored so that
cach variable appears cxactly once. Examples of simple and nonsimple process
graphs are shown in Figure 8.22.

The class of parallel algorithms represented by simple process graphs are
exactly those that can be written in block-structured languages with parallel
blocks, provided no synchronization takes place between any of the components
of a parallel block.

A set of processes is independent if, for any two processes 7; and T;in the sct.
neither T, < T; not T; < T,. In this example (Figure 8.22q), processes in sct
{T}. T3, T,} are ll'ldeLl'ldLﬂl So also are processes in set {Ty, T,}. Figure 8.22
shows some process graphs 1o explaffi the simplicity of graphs.

Let K be the number of processofs in the system. If K = width(G), cach process
in G begins execution immediately after the last predecessor completes. Let
C,, Gy, ..., C, beall the chains from initial to final processes in graph G. Also let
the exccution time of process 7; be t; with edf F,. Then the total execution time of
task system G is the maximum of the execution times of all the chains in G. That is,

tg = max 3 1 (8.9)
I<ism T,ely

Note that + ‘and max are commutative and associative operations, respec-
tively. Moreover, + distributes over max. For example, max(a, b) + ¢ =
max(a + ¢, b + ¢). Thus, if G is simple, the expression for t above can be factored
in terms of max and + so that cach random variable appears only once. Then,
if the 1;'s are independent, the expression for F; may be found by substituting F,
for t;, * (convolution) for +, and - (multiplication) for max in the expression for

tg. The convolution of edfs F, and F, is written as [ollows:

= .
FieFit) = J‘ Fy(t — w)F s du (8.10)
For the example in Figure 8.23, there are three chains. C, = T, T T, €y =

T, T, Ts, and C3 = Ty Te. Therefore

b = MaAN{(ry + Iy + ) (L + 03 + 1) (1 + 1))



= _t'ﬂl COMPUTER ARCHITECTURE AND PARALLEL PROC ESSING

(@) Gy: simple x,x %, + x,x, 6, +
Ko Xy =[(x; + 20y +x, ]x,

(b) G,: simple x,x; + x,x,+
Xy Xy X %, = (6 +2,)(xy +x,)

Figure 8.22 Examples of simple and nonsimple
task graphs. (Courtesy /EEE Trans. Software
() Gy: nonsimple XXy XX+ X0, Engg. Robinson, January 1979,)

Since ty + t5is commop in the first two summations,
tg = max{max(t,, t;) + ty + 15,1, + 14}

This expression can be factored further by noting that t4 is common to both
summations:

g = max{max(ry, ;) + ty, tg} + 1< (8.11)



MULTIPROCESSING CONTROL AND ALGORITHMS 009

Chains:

Gy =TTy
G =T,T\T,
(“ = ?"?]

1= max |E ‘;‘ = nax (1 + 6+ 1), (6 + 8+ 4D, (G + 1))
T;cC, = max |max(r,, L)+ 1 rl+ {y and l<i<m

Fs = [(F,F) o (FF )l o F,

Figure 8.23 Computation of 1, and F for task graph ;. (Courtesy JEEE Trans. Software Engg., Robinson,
Jan, 1979.)
e

In Eq. 8.11, each random variable dppears only once. Hence, F; may be found by
the substitution rule:

Fe=((F, Fy)eFy) F)F;s (8.12)

As another example, consider the four-process merge-sort depicted by the
process graph in Figure 8.24. Process S, performs the sorting of one distinct subfile
a;, which is a fourth of file A. After the pair of either subfiles a, and a, or a, and a,
are sorted, they are merged by the exccution of process M, or M, respectively.

=

Level
s

M,

Figure 8.24 Four-process merge sort.



610 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Merging is a method of combining two or more sorted files into a composite sorted
file. In Figure 8.24, cach M; is a merge of the sorted subfiles produced by its im-
mediate predecessors.

Il all permutations of keys are cqually likely, then the exeeution times of S
53,85, and S, have the same cdf and the exeeution times of M, and M, have the
samce cdf. Let the edf of the execution times of the S's be Fy and that of M, and
M; be F,. Furthermore, let the edf of the execution time of My be F,. Then
width(G) = 4. G is simple and the process-execution times are independent. Let
the execution times of the Ss and M; be f5, and ry, . respectively. Hence, the
execution time of the four-process merge-sort is

lg = maximax(ty,, Isg,) + 1., max(ts,. ts) + tp,} + ty,

Since 15, Isy+ Us,s U5, have the same cdf F, and Ity Lae, have the same edf F, | the
edf of 1, is F, -

Fo=(FisFy)-(F{ s F))+ Fy = (F} o F,)2 « F, (8.13)

This should be compared with the edf of the execution time for a one-process
(sequential) merge-sort :

Fua=F %F ¢ F s F o« F,s FysF, (8.14)
since the exccution time for the sequential merge-sort is
taq =I5, + 15, + ts, + 15, + tyy, + tyg, + tng, (8.15)

Notice that Eq. 8.15 assumes that the processing environment of the sequential
merge-sort is the same as the concurrent merge-sorl. In practice, this is not true,
since the sequential merge-sort does not encou nter interprocess-communication
problems or memory conflicts which create overheads in the concurrent merge-
sort. Hence, in practice, Iieq 18 usually less than that predicted by Eq. 8.15. In the
next section, we consider the effect of these overheads on the performance of the
algorithm.

 Let ygand Hyeq be the mean execution times of the probability density functions
fe = Fz and Juq = Fioy, respectively. We can then estimate the theoretical
speedup of the four-process merge-sort as

5, = 1o (8.16)
H\rq

Equation 8.9 is not very useful when the cdfs of the process exccution time
are not known, Bounds can be derived for the mean execution time by using more
limited knowledge about the exceution times of processes. Let us denote the
expected value of a random variable x by E(x). The level of a process T in a process
graph G is the maximum length of any chain in G from an initial process to T.
The depth of G, denoted by depth(G), is the maximum level of any process. Given
a process graph G with the number of availuble processors K = width(G) and
with the r; independent, Jet Ci. Cy.o00 €, be all chains in G from initial 1o final



MULTIPROCESSING CONTROL AND ALGORITHMS 611

processes. Also let H; be the set of all processes of level i, for | < i < L. where
L = depth(G). For any set of n random variables {x, ),

E( max {x,-}) = max [ E(x)) - (8.17)

lsicn I<i=n

from which the lower bound follows. For the upper bound, let ty = 0 and define
S, j) = 0if C; m Hjis empty; otherwise f (i, J)isthe index of the single process in
C;m H, Then from Eq. 8.9,

t; = max( 3 'n-.n)E 2 max (te ) (8.18)

Isism\l<jcl Isjisl tgigsm

Therefore

max ( ¥ E(;j)) S Elte)s 3 E(mux .'J-) (8.19)
1sism\T,eC, 1=islL Tyelly

The upper bound in Eq. 8.19 is useful only if something can be said about
E(max{t }). Anapplicable result from order statistics is that, if the random variables
Xpy Xz, .-, X, are independent and identically distributed (iid.) with the mean
p and standard deviation o, then

m-—1
E{ max Ix?}} e (8.20)
{Islsm 2m =1

Henee, if the number of available processors K > width(G), the ¢;'s are independent,
depth(G) = Land the m; processes on level j have identically distributed execution
times with the mean y; and standard deviation a;, then

Y u<EQg) < X (}q + —,::’_1— a‘) (8.21)

isisL l<j=L 1 — |

Queueing model Probabilistic models are often formulated to investigate the
properties of dynamic scheduling methods that take the form of queueing systems.
These require the specification of certain characteristics and attributes of the
queucing system, such as the probability distribution functions of the interarrival
times of processes, the service times of the processes, and the specification of the
service discipline. The service or queucing discipline is the scheduling rule which
determines both the sequence in which processes are executed and the processor-
occupancy period each time a process is selected for service. A number of assum p-
tions are usually made regarding queucing systems to make the analytical model
tractable. These include the independence of processes and the statistical
independence of the interarrival and service times.

A very simple model of scheduling in a multiprocessing system consists of p
identical processing elements and a single infinite queuc to which Processes arrive.
This model may be appropriate for a system with a global ready list and no pre-
cmptions. The mean processing time of processes on each processor s 1 uoand the



612 coMPUTIR ARC HITECTURE AND PARALLEL PROCESSING

mean interarrival time of processes to the system is 1/A. Assuming that the service
and interarrival times are exponentially distributed and the service discipline for
processes is the common first-come-first-serve (FCFS), various performance
factors can be obtained. Figure 8.25 illustrates the resulting queueing model in
which processes arrive at a rate 4 and are serviced at a rate . The utilization of the
processors is

p = - (8:22)

where i is the traffic intensity and is defined by u = A/i. The mean response time
of processes is [K leinrock (1976)]

Clp,u) 1
: s 8.23
mpll —p) H o8

where C(p, u) is Erlang’s C formula and is given by

R(p.u) =

u?

C(p,u) =

u"

p-1
W+ pl = p) ¥ ar
e 1.

There are a number of other scheduling algorithms, such as round robin (RR),
preemptive, and nonpreemptive priority service disciplines, which can be modeled
by the use of queucing systems. In an RR service discipline, each time a process is
selected for execution, it is selected from the head of the ordered queue and allocated
a fixed duration of run time called the time slice or quantum. If a process terminates
exceution before the end of the quantum, it departs from the processor. If at the

Task arrival
rate, A " IIII

Queue

Processors
Figure 8.25 Queucing model of first-come-first-serve scheduling discipline in @ multiprocessor system.



MULTIPROCESSING CONTROL AND ALGORITHMS 613

end of the quantum the process has not completed its execution (requires additional
quantum), it is recycled to the end of the queue to await its next selection. New
process arrivals simply join the end of the queue. The RR service discipline can be
combined with the preemptive priority discipline to ereate a multilevel round-robin
scheduling discipline. This discipline is used to give higher priofity processes
more frequent control than lower priority oncs. Policies based on priority can be
static (if the priority of a process remains fixed) or dynamic (if the priority of a
process is allowed o change).

In the RR service discipline, a process in the run state is interrupted at the
end of its quantum and may cnlter the ready state. An external event may cause the
blocking of a running process. These transitions may necessitate a context switch.
FFurthermore, a running process can cause an explicit process switch by invoking
a privileged instruction. For example, in the case of a fault, the process can cause a
trap which switches context to the operating system, as in the IBM 370 supervisor
call (SVC) instruction to be described in Chapter 9.

Long-term scheduling operations are used to control the load on the muln-
processor system by making decisions on activating new processes. One method
to implement the schedule is to use priority queues for incoming processes.
Prioritization of processes in a system may result in indefinite postponement of
low priority processes if the arrival rate of the high priority processes is high. A
set of processes which cooperate to solve a problem may be given higher priority
than a single independent process. =

Since there are many processors as well as memory modules to be scheduled,
it may be useful to perform group scheduling, in which a set of related processes are
assigned to processors to run simultancously. Group scheduling can be extended
to make placement decisions for groups of objects at a time, or to swap groups of
related objects in and out. These different group schedulers have several possible
advantages. First, if closely related processes run in parallel, blocking due to
synchronization and frequency of context switching may be reduced. These will
in effect aid in increasing performance. Second, if placement decisions are made
for a group of abjects with known reference patterns, the “distance ™ between the
various processes and their referenced objects might be minimized. Hence,
cffcctive memory management for a set of related processes is easier since
the time period for sharing is restricted to the short presence of the processes
in the system. In general. a group assignment will not be very successful in lessening
the number of context switches unless the processes within the group are™in step " so
that few of them will be blocked from lack of input or other synchronization
requirements.

8.4 PARALLEL ALGORITHMS FOR MULTIPROCESSORS

In this section, we deseribe and classify the various types of parallel algorithms
The characterization of parallel algorithms will help in the design and analysis of
these algorithms. Some example algorithms are given. Technigues are shown to
determine the performance of MIMID parallel algorithms



614 coMPUTER ARCHITECTURE AND PARALLEL PROCESSING
8.4.1 Classification of Parallel Algorithms

Although extensive rescarch has been performed on SIMD algorithms, there are
few results available concerning the specification, design and analysis of MIMD
multiprocessor algorithms. That is the basis for this section, A parallel algorithm
for a multiprocessor is a set of k concurrent processes which may operate simul-
laneously and cooperatively to solve a given problem. If k = I, it 1s called a
sequential algorithm. To ensure that a parallel algorithm works correctly and
effectively to solve a given problem, processes interact to synchronize and exchange
data. Hence, in a task system, there may be some points where the processes
communicate with other processes. These points are called interaction points, The
interaction points divide a process into stages. Therefore, at the end of each slage,
@ process may communicate with some other processes before the next stage of
the computation is initiated.

Becausc of the interactions between the processes, some processes may be
blocked at certain times, The parallel algorithms in which some processes have to
wait on other processes are called synchronized algorithms. Since the execution
time of a process is variable, depending on the input data and system interruptions,
all the processes that have to synchronize at a given point wait for the slowest
among them. This worst case computation speed is a hasic weakness of syn-
chronized algorithms and may result in worse than expected speedup and processor
utilization,

To remedy the problems encountered by synchronized parallel algorithms,
asynchronous parallel algorithms exist for some set of problems. In an asynchronous
algorithm, processes are not generally required to wait for each other and com-
munication is achieved by reading dynamically updated global variables stored
in shared memory. However, because of the concurrent memory accesses per-
formed, conflicts may occur which will introduce some small delay in processes
accessing common variables, For convenience, we shall often refer to synchronized
and asynchronous parallel algorithms simply as synchronized and asynchronous
algorithms, respectively.

Another alternative approach to constructing parallel algorithms is macro-
pipelining, which is applicable if the computation can be divided into parts, called
stages, so that the output of one or several collected parts is the input for another
part. The program flow is illustrated in Figure 8.26. Because each computation
part is realized as a separate process, communication costs may be high unless
communication is achicved by address transmission. The question may arise as
to whether to move the output data to the site of the next process in the pipeline or
to move the next process, in particular its code, to the site of the data.

As an example, consider a simple pipeline compiler. Different processes are
responsible for lexical analysis, syntax analysis, semantic analysis, optimization,
and code generation. Source input is lexically analyzed and the recognized lexemes
are input to the syntax-analysis process, thus building input for the semantic
analyzer that, in turn, produces a tree for the code generator, Generated code is
adapted by the final optimization process before being archived as the final



MULTIPROCESSING CONTROL AND ALGORITHMS 615

Buffer Buffer
® L] [ ] L
. » . .
Input Input
o 1o
Output IP| Output P|
from from
i P,
Process Process Process
P P, Py
Outpait
data
sel

Figure 8.26 Program flow in macropipelines.

compiler output. Note that the progesses that result from pipelining are hetero-
geneous, while those resulting fromspartitioning are homogencous.

The time taken to execute a fixed stage of a process is a random variable
satisfying some cumulative distribution function. The fluctuations may be due to
the variability of the processor’s speeds and the input to the stage. A process may
be blocked at the end of a stage because it is waiting for inputs in a synchronized
algorithm or for the entering of a critical section in an asynchronous algorithm.
The blocking time of a process is the total time that the process is blocked. If the
multiprocessor system is heterogencous, the execution time of a process will be
smallest il the process is assigned to run on a faster processor. As an illustration
of the variability due to input, we recall that the number of comparisons needed
to sort n clements by the Quicksort algorithm ranges from O(n log, n) to 0(n?),
depending on the ordering of the input elements. The fluctuations in execution
time may also result from delays due to memory conflicts, system interrupts, page
faults. cache misses and the system work load. A typical source of nonnegligible
overhead is that due to the execution of synchronization primitives. Synchroniza-
tion primitives are needed for synchronizing processes and implementing critical
sections. )

An algorithm which requires execution on a multiprocessor system must be
decomposed into a set of processes Lo exploit the parallelism. Two methods of
decomposition naturally arisc: static decomposition and dynamic decomposition.
In static decomposition. the set of processes and their precedence relations are
known before execution. In d ynamie decomposition. the set of processes changes
during execution, Static decomposition algorithims offer the possibility of very
low process communication. provided the number of processes are small; however.



616 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

their adaptability is limited. Dynamic decomposition algorithms can adapt
ceffectively to variations in exccution time of the process graph. but only at the
expense of high process communication and other design overheads.

8.4.2 Synchronized Parallel Algorithms

A synchronized parallel algorithm is a parallel algorithm consisting of processes
with the property that there exist a process such that some stage of the process is
not activated until another process has completed a certain stage of its program.
The synchronization can be performed by using the various synchronization
primitives discussed in Section 8.1. For example. suppose it is required to compute
the matrix Z = A-B + (C + D) (I + G) by maximum decomposition. A syn-
chronized parallel algorithm may be constructed by creating three process Py, Py,
and Py, as shown in Figure 8.27. Processes P, P,, and P, consist of two, one, and
wo stages, respectively, as shown below.

Example 8.9

var W, Y: shared real; var S_, Sv: semaphore; initial S = cC =0
cobegin
Process P,: begin
V—AxB,//stage1of P, //
P(S,);
Z~V+Y;//stage20f P, //
end
Process P,: begin
W« C xD;//stage 1 of P,//
V(S,):
end
Process P,: begin
X — 1+ G; // stage 1 of Py//
P(5.);
Y ~W+X;//stage2of P,//
V(S,)):
end
coend

Clearly, the activation of the second stage of process P is subject to the condition
that process P, is completed. Siseilarly, the second stage of P, cannot be initiated
unless the second stage of P; is completed. Hence, the set of processes P, P,, and
P 1s a synchronized parallel algorithm.

Since the time taken by a stage of a process is a random variable, synchronized
algorithms have the drawback that some processes may be blocked at a given
time, thereby degrading the performance of the algorithm. To illustrate the effect
of the drawback, consider a synchronized algorithm with » processes. Assume



MULTIPROCESSING CONTROL AND ALGORITHMS 617

Process P, -
AT _‘/'-. ""..__‘
7 Stagetof P,  Stagelof P
| w=cxp |} | Xersg |
) " 'd ;

et
- ta
F .,

<" Stage 1 of P, ",

V=AxB

Process Pl.f
4
|‘.‘

“._ Stage2of P,
."‘- ."
%

Figure 8.27 Example of a synchronized algorithm with synchronizing stages.

=,

that this algorithm is run on a homogeneous multiprocessor system with n pro-
cessors and the algorithm takes T,. During the execution of the algorithm, let ¢
denote the total time that i processes are running; that is, n — [ processes arc
blocked. Hence, T, = 3., t;. Assume that the algorithm can be run on a uni-
processor system in a time T, < Z7=1 (i-1,). Therefore, the speedup S, on an n-
processor system is bounded by

2 (i)

> — (8.24)

|

i=1
where S, < nis obvious.

The degradation of performance can be clarified further by considering the
class of synchronized parallel algorithms where only identical stages of processes
are synchronized. Synchronized parallel algorithms which are adapted from
SIMD algorithms are generally of this type. Consider the execution of a set of
processes in'which it is required to synchronize n identical stages and the time taken
by the ith stage is a random variable r,. Since the stages are all identical, the ;s
are identically distributed random variables with a mean, say, of 1. Synchronization

stages are complete. Hence, the expected time taken by the synchronized stage of
any process is the mean T of the random variable 77 = max, | trather than

'|
venily



618 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

{. In general, T is larger than t. The ratio T)t = 4y 15 the penalty factor lor syn-
chronizing the n identical stages. If the penalty factor is large, the performance of
the synchronized algorithm is largely degraded. The speedup bound S, and the
penalty factor A, give some indications of the performance of synchronized
algorithms.

Synchronized iterative algorithms In practice, a large number of problems are
solved by iterative methods. For example, zeros of function f may be computed
by Newton's iteration method :

Xipy =X — f10x)"'f(x) (8.25)

Wwhere f'(x) is the derivative of f(x). The solution of a linear system of an equation
by iteration is of the form

Xie, = Ax, + b (8.26)

where the x;, b are vectors cach of size nand A is an n x n matrix.

A common application of iterative methods is in solving elliptic differential
cquations with boundary conditions (boundary-value problems). A simple but
important equation of physics is Poisson’s equation:

82 -) 2
ﬁ + ;—; = f(x,¥) (827)

When f(x, y) = 0forall x, ¥, this equation is known as the Laplace equation, The
boundary-value problem consists of finding the function u(x, y) that satisfies
Eq. 8.27 within a closed region D and conditions prescribed on the boundary of
D. Let D be a square domain in R2. Also let the value of « be fixed on the boundary
of D (denoted by D). That is u(x, ¥) = f(x, y) for all x, y € D. This is the Dirichlet
problem. To solve this boundary-value problem on a digital computer, the domain
D is sampled by superimposing a rectangular m by n grid or mesh. The distance
between any two mesh points on any horizontal or vertical line is the mesh width,
denoted by h. If h is small enough, we can approximate Eq. 8.27 by

u _ ulx + hy) + W(—h, y) — 2u(x, y)

ox? h?

(8.28)
Pu _ ulx,y +h) + y(x,y = h) = 2u(x, )
&y h?

A discrete approximation to Eq. 8.27 is thus
AWx, y) = Wx + I y) = u(x = h, y) — u(e, h + h) — Wy —h) = —h¥(x, y)
(8.29)
Considering only the points in the mesh, we can rewrite Eq. 8.29 as

W ;= ;:l.(bi.,i Fly gty U, + Ui j-1) (8.30)



MULTIPROCESSING CONTROL AND ALGORITHMS 619
fori=1,2...,mandj = 1,2,...,nwhereu, ; = u(ih, jh)and b, , = — h*f(ih, jh).
Equation 8.30 relates the update formula for any point (i, j) l0 only its nearest
neighbors. A linear system of equations results in the m-n unknown values of
the {u} at all the points on the mesh inside 2. Note that the dlmr..mmn of the mesh
is m by n.

The solution can be found iteratively by various methods. Two methods are
discussed in this section. In the first method, we use a synchronized algorithm to
solve the partial differential equation (PDE). In the next subsection, we will discuss
an asynchronous algorithm to solve the PDE problem. However, in both cases,
we assign a contiguous subset of the grid array i, ;) to a process. One possible
partitioning scheme 1s to make each subset consist of a number of consecutive
rows of the grid. Thus, when the grid is stored in row-major format, a contiguous
sct of clements is allocated for cach process. The synchronized algorithm consists
of computing locally the values of the rth iterate {uf”)] from the values of the
(r — Dthiterate {uf’; '} as follows:

wfh = Kby + ol + o+ + ullD

When all processes have completed the computation of their iterates locally, the
variables are updated in all other processes. It is after this synchronization step
that the (r + I)th iteration is initiated. This procedure is continued until the
ilerates converge to within an acceptable tolerance. The time in which a problem
is solved depends both on the speedarp and the convergence of the algorithm,

In general, an iterative algorithth can be described by an iterative function

Xier = PR Xio gy oo Ximgsy) (831)

where x; € R™.

The problems that can be formulated by an iteration function as described in
Eq. 8.31 are numerous. They include relaxation methods for solving differential
cquations, solutions to linear and nonlinear systems of equations, and searches for
extrema of functions. One approach to partitioning iterative algorithms for multi-
processors is to exploit the parallelism within the iteration function. Among all
the possible partitions of ¢, one tries to obtain a set of parallel tasks of the same
size or, at least, of the same complexity so that the execution times of the tasks are
independent and identically distributed (i.i.d.).

For example, in the case of Jacobi's iteration to solve a linear system of equation
(LSE), Eq. 8.31 reduces to Eq. 8.26. Il the system has a dimension n, we can allocate
p processors. each updating n/p unknown iterates, assuming that n is divisible by
p. This decomposition strategy of an iteration function is called vertical de-
composition. In this case, if the matrix A has no sparsity structure. all the tasks
have identical stochastic properties. Since some instances of the iterates x or
sonre elements of the matrix B may be null. the processing time of cach task is a
random variable. However, the edf of the processing time is the same for all
tasks. This definition assumes also that the processors are identical and under
control of the same integrated operation system, For example, one may observe
that in the teration of Eq. 825, the evaluations of fand /7 at x; can be done in



620 compPuTER ARCIITECTURE AND PARALLEL PROCESSING

parallel, and in the matrix iteration of Eq. 8.26, all the components of the vector
Xi4 1 can be computed simultancously. Another strategy to implement Eq. 8.31
on a multiprocessor is 1o exploit the fluctuations in the speed of a process. In this
case, the idea is to use more than one process 1o compute the same function in
parallel and expect that the process which obtains the result first takes less than
the average time.

In the following discussion, we give an example of a synchronized algorithm
that locates the zero of a monotonically increasing continuous function f(x).
Itis assumed that f(x) has opposite signs at the endpoints [ and u such that the
intervalis [u — 1|, as shown in Figure 8.28. The process terminates when |u — [| < g,
a permissible error. It should be noted that the algorithm presented can be casily
modified to deal with discrete f, and thus can be used to search for a desired item
in an ordered list.

The zero-searching algorithm is iterative and consists of n slave processes and
@ master process. The master process divides the given interval « — linto n + |
subintervals, cach of size A = [(u — Df(n + 1)]. Each slave process i evaluates the
function at x; + [ + iA as a stage of the process. When all of these evaluations
complete, the master process compares the computed function values for the sign

!
|

s ———
RS S ——

Figure 8.28 Finding the zero of a function f{.x) with 10 processors, where processor p, evaluates f(x) at
=4 iA A= u—Iftn+ 1)



MULTIPROCESSING CONTROL AND ALGORITHMS 621

change that indicates the presence of a root in a particular subinterval. This
becomes the new interval of uncertainty to be subdivided for the next iteration.
This cycle continues until the size of the interval containing the root is sufficiently
reduced. The following example explains the zero-scarching algorithm.

Example 10

real procedure rootf(f, |, u, n)
begin
function f;
var A, /, u, y[1:n]: shared real;
var i: shared integer;
while |[u - /| > edo
begin
A« u—[/|/(n+1):// compute subinterval //
parfor i=1 until n do // create n slave process //
begin
y[i] < f(/ + iA); // evaluate function, f(x) //
end
/— 1+ A;i« 1;// obtain new interval of uncertainty //
while sign (y[i] = sign (y[i + 1]) do

begin
fe—l+Ai—a+1;
end -
u—[l+A;

end
z « (/+ u)/2; // zero of function, f(x), isz //
end procedure rootf

The key feature of this algorithm is the synchronization that occurs between
the slave processes. Each slave process which completes its evaluation of the func-
tion is blocked. The two sequences of statements */ « | + A:i« i + 1;" are not
executed unti all n slave processes have completed their evaluations of the function.
Every slave process is awakened from the blocked state when the next iteration
begins, and all the slave processes become eligible to resume execution simul-
taneously. The nature of the parallel solution demands this synchronization
policy. \

Let the time needed to evaluate fat a point in the interval be a random variable
r with mean 1, and time needed 1o determine the new uncertainty interval and 10
check the stopping criteria be another random variable ¢ with mean ¢. For this
example, we assume that i > ¢ so that ¢ can be ignored in the analysis. It is also
assumed that the execution time of the synchronization primitive can be ignored.

In evaluating the relative performance of the synchronized parallel zero-
searching algorithm. we note that, on a uniprocessor. the binary scarch produces
the best known search method and takes at most [log, i — 1]] function evaluas-
tions. Hence the expected running time is [ log. [1 — 1] 1.



622 compuTir ARCHITECTURE AND PARALLEL PROCESSING

For the synchronized parallel algorithm, it is clear that every iteration reduces
the length of the interval ofuncertainty by a factor of n + I, when nslave processors
are used. Therefore, the algorithm uses [log,. [u — I[] iterations and is optimal.
However. the expected time for each iteration is A,¢ rather than 1, where 2,18 the
penalty factor of synchronizing n function evaluations. Therclore, the expected
running time of the algorithm is [log, , vl =117 - 2,1 Since the speedup is of the
order of log n, it performs poorly for large n. Hence when n is large a different
search scheme that is efficient must be devised. The synchronized parallel algor-
ithm can be inefficient when A, 18 large also, which usually happens when n is
large. '

Example 8.11 This example is a synchronized parallel algorithm which is
iterative. In this case, the iteration function is decomposed so that each itera-
hon step is performed by more than one process, and the processes are
synchronized at the end of each iteration. Consider the solution of a linear
system of equations with two concurrent processes, using Eq. 8.32, The most
natural technique is to decompose each vector X; into two segments x!') and
X{*. each of size n/2 (assuming n is divisible by 2) and update them by two
parallel process as follows:

X Ay A X i
[ ii‘l] iy [A_.] Az | x(® + b'? (8.32)
where x{! = A x(" + A, x{® + b™ and Xy = Ay £ AL x4 b,

That is, at an iteration step, each process updates half of the components and starts
the next iteration only after both processes have completed updating their iterates.

8.4.3 Asynchronous Parallel Algorithms

Ineach asynchronous parallel algorithm, there is a set of global variables accessible
to all processes. When a stage of a process is completed, the process reads some
global variables. Based on the values of the variables read together with the results
Just obtained from the last stage: the process modifies a subset of the global variables
and then activates the next stage or terminates itself. In many cases, in order to
ensure logical correctness, the operations on global variables are programmed as
critical sections,

Therefore, in an asynchronous algorithm, the communications between
processes are achieved through the global variables or shared data and there is no
explicit dependency between processes as in synchronized parallel algorithms,
The main characteristic of an asynchronous parallel algorithm is that its processcs
never wait for inputs at any time but continue execution or terminate according to
whatever information is currently contained in the global variables. However,
it should be noted that processes may be blocked from entering critical sections
which are needed in many algorithms,

For illustrative purposes, we show an asynchronous iterative algorithm
corresponding to the familiar Newton's iteration for finding the zeros of a function
fx) In this case, we conveniently create three global variables vy, v,, and ry o



MULTIPROCFSSING CONTROL AND ALGORITHMS 623

contain the current values of f(x), f*(x), and x, respectively. For example, after
the (i + I)th iteration of Eq. 8.25, f(x;_,), f'(x;-,), and x; are updated as f(x,),
f'(x;).and x,, ,.respectively. Suppose that the evaluation of f'(x) is computationally
more expensive than that of f(x). then a reasonable asynchronous iterative

algorithm consisting of two processes Py and P, can be defined as follows. Let
process P update variables ¢y and 5, while process P, updates v;. The program
below shows a sketch of processes Py and P,.

Example 8.12

function f, f’;
var v, v,, v,: shared real;
cobegin
Process P, : begin
while {termination criteria S not satisfied» do
begin
v, «— f(v,): [/ step1of P, //
Vg ey = vz ff step 2 of Py /S
end
end P,
Process P,: begin
while {termination criteria S not satisfied) do
v, f'(v,y); //step1ofP,//
end P, =
coend

From the program it could be seen that, as soon as a process completes up-
dating a global variable, it proceeds to the next updating by using the current
values of the relevant variables without any delay. Suppose that the iterates are
labeled in the order they are computed by step 2 of process P,. Then, in general,
the iterates generated do not satisfy the recurrence relation of Eq. 8.25. For
example, if the initial values of the variablesare vy, = f(x,).v2 = f'(xo)and vy = x4,
then the sequence and time period of step completions for cach iteration within
each process may be illustrated by a timing diagram, as shown in Figure 8.29. The
number i on a demarcation on the timing diagram indicates the point where the
ith iteration starts for that process. Then, for this illustration,

X2 = x; — f(x0)”f(x0)
Xy =Xy = (%) f(x2)
Xa = X3 — f’(-"z)-lf(-\'s)

From the concurrent program given above for P, and P,. the recurrence relation
that is generally followed by the exccution of the processes is

Nioy =X = [ f(x) (8.33)
where j < i Therefore. the iterates generated by the asynchronous iterative
algorithm are different from those generated by the sequential algorithm or
synchronized iterative algorithms. It is diflicult to derive any general theory for



624 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

P ,r(.l’ll X, f(.rﬂ ) X3 f(xl',l ; X,

Py: Sy Jixy) Jrteg)

Figure K.29 Time dingram for an asynchronous parallel algorithm.

the properties of the sequence N1 because of the Aluctuations of (he speed of a
process. Morcover, since the iterates generated by an asynchronous iterative
algorithm in general do not satisly any deterministic recurrence relution such as
Eq. 8.25, it is difficult to obtain a general theory concerning conditions for con-
vergence gethe speed of convergence,

The design of an asvnchronous iterative algorithm for a general iterative
process (Eq. 8.31) involves the identification of some set of global variables
W) o[2]. ..., e[n]) such that cach iterative step can be regarded as computing
the new values of the ¢,'s from their old values. In general, itis desirable (o choose
the v's so that the updating of cach v, constitutes a significant portion of the work
involved in one iteration. For example, consider the matrix iteration of Eq. 8.26.
In this case, v[]'s may be chosen as scgments of equal size of the components in a
veclor iterate. After the ofi]'s have been chosen, concurrent processes which
update the ¢[i]'s asynchronously can be defined as follows. Suppose there arc n
elements each in the vector x;and b, The set of global variables {o | Je[2),...,e[n])
can be partitioned into p subscts, cach of size n/p = s (assuming that p divides n).
The kth process updates the subsct {v[(k = 1)s + 11,..., vlks]}, where v/
represents the current value of the jth component of the vector x;. Below is a P-
process (Eq. 8.31) involves the identification of some set of global variables
algorithms to solve the linear system of equations represented by Eq. 8.26.

Example 8.13

var v[1:n]: shared real;
parfor k = 1 until p do
fori= (k- 1)s+ 1 until ks do
begin
var acc: real;
var A (k ~o1)s + 1: ks, 1: n):real;
varb[(k - 1)s + 1: ks] : real;
ace « 0.0;
for j =1 until n do
acc e« acc + Ali,j] « v[j];
v[i] - acec + bli];
end



MULTIPROCESSING CONTROL AND ALGORITHMS 625

The above asynchronous iterative algorithms require parallelism inside the
iteration function ¢. It is possible to construct an asynchronous parallel algorithm
to speed up the iterative process (Eq. 8.31) and not use any parallelism inside the
iteration function ¢. These algorithms, called simple asynchropous iterative
algorithms, always generate the same sequence of iterates as the sequential
algorithm. In general, these algorithms do not achieve speedup by sharing work:
instead, the speedup is achieved by taking advantage of the fluctuations in the
evaluation time. Below is an example of a simple asynchronous iterative algorithm
which consists of k identical processes Py, ..., P,, each of which evaluates the
iteration function ¢ by using the most recent iterates available at the time the
evaluation is performed. In the concurrent program given below, i and x; are
global variables while j is local to the process. The value of variable i is the index
of the iterate which was most recently computed; hence, the “if ™ statement is
executed as a critical section.

var s: semaphore; initial s = 1;
var i, x[1:n] : shared : real;
parfor i — 1 until k do

begin
while termination condition S not satisfied do
begin
j—i+1; -
x[j] = ¢ (x[i-11x[j-2]....x[j=d]):
P(s);
ifi<jtheni«j;
V(s);
end
end

The main advantage of simple asynchronous iterative algorithms is their
general_applicability. The algorithms are not restricted to numerical iterative
processes only. In fact, they can be employed to speed up any sequence of processes.
These algorithms are particularly attractive when decomposition of the processes
isdifficult. There are, however, some disadvantages. First, note that critical sections
are needed in the algorithms. Second, it seems that unless fluctuations in computa-
tion time due to the system are large and coclficient of variation of the random
variable 1 (time needed for one evaluation of the iteration ¢ by one process) is
large, the speedup of the algorithm will be quite limited.

Concurrent quicksort algorithm In order to implement a parallel algorithm to
sort an array ol numbers, we discuss an example using the quicksort technique.
The parallel algorithm consists of a variable number of processes which are
created dynamically and assigned to processing clements (PE). The processes
share the array of elements and a stack. The stack contains descriptors for con-
tinuous subsets of the array that have not yet been sorted. The stack must be



626 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

accessed in a mutually exclusive manner. The stack is initialized to contain a sinple
descriptor which describes the whole array.

In cach pass, a process tries to Pop a descriptor for a new subset from the
shared stack. If successful, the process partitions the subsct into two smaller ones
consisting, respectively, of all elements less than and greater than some estimated
median value. This median is computed as the mean of the first, last and middle
clements of the subset. After this partitioning, a deseriptor for the shorter of the
new subsets is pushed onto the stack, and the longer subset is further partitioned
in the same way. This procedure is continued until the number of clements in
each subset is no more than a preselected threshold value. This subset may then
be sorted in a single process using the simple insertion sort method.

The above parallel algorithm was implemented with a 20480-clement array
and run on the Cm*, A brief deseription of the Cm* architecture was given in
Section 7.1. Figure 8.30 shows he speedup of the parallel algorithm as a function
of the dumber of processes for three operating environments. The speedup is
relative to the speed of a uniprocess with the threshold value set to 10, The graphs
are shown for a threshold value of 10, The three operating system environments
consist of Smap, Medusa, and Staros. Smap is just a basic monitor with no operating

4.0~
SMAP
I i o
3.0 - ~ ey
& b MEDUSA
- N\
N
l \
N
b
i N
] - \\
E 2.0 \\\
2] \‘\
'\\ )
x.,__?_‘l:ﬁll()&
1.0
1 1 | 1 1 | | 1 | 1 1 |
] 1 2 3 d 5 fi 7 L] 9 10 1 12

Number of processors ——e

Figure 8.30 Speedup of paraticl quicksort alporithm on Cm®,



MULTIPROCESSING CONTROL AND ALGORITHMS 627

system features. Medusa and Staros are two different operating systems designed
for the Cm*. Notice the effect of the operating system on the performance of the
algorithm. This is due to the overhead incurred by the invocation of the operating
system functions for process scheduling and other chores. The performance peaks
for a degree of decomposition between 6 and 8. This is due to the heavy contention
of references to all the'shared data located in one of the computer modules.

Asynchronous PDE A purely asynchronous method can be constructed to solve
the PDE problem. In this method, each process updates the value of each point
using the current values of immediate neighbors directly from the shared array
so that it is available for other processes. This reduces the working space because
no buffers are needed (as in the synchronized algorithm) and also assumes that
the newest and probably the best approximation is used as soon as it is computed.
The only variable that has to be locked against simultaneous use is the one that
records the number of processes that have not finished their computations yet.
This variable is accessed once per iteration. A counter is kept by each process 10
denote the number of performed iterations, Since each process has the same amount
of work to do during each iteration, the value of its counter is a good measure of the
relative speed of the process.

Experiments were performed on the Cm* to measure the performance of the
asynchronous PDE algorithm using a 150 x 150 grid and fixed-point arithmetic.
Figure 8.31 illustrates the speedup obtained with various degrees of decomposition

L8

120
11.0

T

100~
9.0~
8.0
1.0

A R R G TR T Sl A B LT e

Speedup ——

T ceeo . (MEDUSA

50

4.0~ s = |
e
3.0+ i)
e _STAROS
2.0} ———
1.0
W oL e BT Y S VY O I TR o

"4 06 8 10 12 4 18 J8 W 12 24 26 W 30 3] 3¢
Number of processors, — -

Figure 831 Speedup of purely asynchronous PDE algorithes on the Cm*.

TSR



e ST o

628 COMPUTER ARCHITECTURE AND PARALLEL PROCESS! NG

and operating system environments, As long as most of the processes run in the
cluster contain the global data. the speedup is almost lincar. Otherwise, the speedup
resembles that of the slowest process. In general, the distribution of the global data
among the clusters will affect the performance. Also, the convergence depends on
the relative speed of the various processes evaluating different parts of the grid.
In general, asynchronous algorithms, if available, are preferred to synchronized
algorithms provided the computations converge to the desired result.

8.4.4 Performance of Parallel Algorithms

Techniques developed in Section 83 do not account for the communication
overhead caused by the interconnection topology. In this section, we study a
methodology for evaluating the performance of a parallel algorithm which inter-
acts with an architecture. Synchronized iterative algorithms are used as an cxample
with loosely coupled multiprocessor systems. Finally, the effect of the degree of
decompdsition of a parallel algorithm on the performance is discussed.

Performance measures The effectiveness of a multiprocessor for a synchronized
iterative algorithm depends on the performance features of the algorithm. In
tightly coupled systems, performance is affected by memory interference. Con-
versely, the cost of interprocessor communication is the dominant factor for
loosely coupled systems. In this section, we develop simple and approximate
analytic models to estimate the relative effects of synchronization and inter-
Processor communication on the performance of a synchronized iterative
algorithm, We recall from Section 8.4.2 that, in synchronized iterative algorithms,
a cycle of operations is repeated until the result or a satisfying approximation to
the result is obtained.

The model discussed here is for vectorial decomposition of iterative algorithms
into i.i.d. tasks. The general case is very complex. Only the concurrent phasc of
the algorithm is modeled. Within cach iteration, there may be a purely sequential
phase which may include checking the con vergence criterion after all processors
awe synchronized or when initiating a new iteration, Including such a sequential
phase is a simple extension of the model.

An implementation of #n algorithm on a given architecture is characterized
by a set of performance features, U dae oo, Jol. extracted from the analytical
model. Let F be the feature space for the given architecture and algorithm. F can
be seen as the product space of the one-dimensional spaces generated by cacl
feature: ¢ -

F=Aint x {h)x-x {} (8.33)

The topology of the space Fis complex. The feature values may be real along
somne coordinate axes, and Jiscrete along some others. A performance index for a
given architecture i+ real functin defined 0a 1 by the analytical model, Local
maxima of G ind dte operatng porits in I where the architecture and the
algorithm imsplonien s (oom are particularly well sinclicd with respect to the index.




MULTIPROCESSING CONTROL AND ALGORITHMS 629

The power of analytical models resides in the estimation of the impact on the
performance of a given feature or subsct of features in isolation,

A symmetric multiprocessor system is made up of a set of identical processors.
Generally the computation on each processor consists of a random number of
instruction executions. The randomness in this number results, for example, from
the evaluation of a function whose definition varies over its domain or of a function
computed by a serics expansion. In a minicomputer or a microprocessor. an
instruction cycle consists of a variable number of machine cycles. Typical machine
cycles are instruction fetch, operand fetch, and execution cycle, We will thus
distinguish between memory access cycles and execution cycles. When a request
for a memory word is rejected because of conflicts, the processor automatically
retrics by initiating a new memory access cycle. Memory access time fluctuarions
result. The execution part of an instruction cycle also has a random duration. Its
duration may depend on the operand values. The number of machine cycles in
the execution of an instruction is thus random, resulting in execution time
fluctuations. y

Since we are strictly concerned with the modeling of synchronized iterative
processes, we concentrate on the efficient implementation of one iteration of any
iterative algorithm with a given structure and size on an MIMD machine. In this
framework, we consider the input data set for an algorithm described by Eq. 8.31
as including both the iterates x; and the parameters defining @. In the case of an
LSE, for example, these parameters are the system coefficients. Another cause of
processing time fluctuations is the oceurrence of external interrupts and page faults
in the local or shared memories. To effectively isolate the performance of the
algorithm on the architecture, we assume that each processor is uniprogrammed
and that the memories are large enough to accommodate the address space of each
process so that page faults do not occur. Moreover, external interrupts are disabled.

A loosely coupled multiprocessor system is one in which the processors access
their instructions and data in their local memory. Thus, no memory access time
fluctuation exists in this system. To communicate, the processors can initiate a
data block transfer through their direct memory access (DMA) gate and high-speed
bus (HSB) with broadcasting capability. The DMA gate has a fast communication
memory (CM) which can be accessed also by the processor. To send a message
to other processors, a processor stores the message in the CM, then initiates the
transfer. The DMA controller of the sender monitors the bus. When it is free, a
connection is established on the bus with the DMA controllers of the receivers,
in time 1. The message is transmitted on the bus and is simultancously read by
the receivers in time 5. The total time the bus is busy for one message transfer is
thus

e = lan + Ipp (8.34)

The communication memory speeds up the transfers by reducing the overhead

in cach transfer. Moreover, the overlap between processing in the local memory
and transfer between the communication memories is conflict free. If the CM is
double buffered. the processor and the DMA controller can access it concurrently



630 COMPUTER ARCINTECTURS AND PARALLEL PROCESSING

withgut conflicts. Under these conditions, 1., from Eq. 8.34 is deterministic for a
givenFansfer,

To implement a synchronized algorithm on a loosely coupled system by
veetorial decomposition, each of the P processors updales its subset of the iterates,
then sends the values 1o the (P — 1) other processors through the HSB. When a
processor has reccived the updates from all the other processors, it can proceed
to the next iteration,

Assume that the iterative algorithm is decomposed vectorially into P iid.
tasks. The P processors iterate through cycles in which they compute their subset
of the iterates (processing phase), eventually communicate, and synchronize, as
illustrated in Figure 8.32 The performance index is the efficiency factor E, defined
as the fraction of time a processor is doing useful work, In a loosely coupled system,
uscful work is done during the entire processing phase only. This is not so in
tightly coupled systems, where the cycles wasted in memory conflicts have to be
deducted. This definition of the cfliciency isolates the effect of the architecture on
the performance. To compare the performance of the parallel algorithm with its
corresponding sequential version, we would multiply the efliciency as defined here
by a factor taking into account software restructuring or added software overhead
in each iteration and by the ratio of the number of iterations required in both
cases.

The techniques used to model the effect of synchronizations are drawn from
order statistics. Let T.p be the processing time of the jth processor 1o terminate
(in the chronological order) when P processors are used. The estimation of the
mean of 7}, is equivalent 0" the estimation of the mean of the Jjth order statistic
among F independent samples drawn from the processing time distribution. For
many distributions of interest, and for i.1Ld. processes, the mean of T,.p is given by

My =m+ 00 (8.35)

where m and & arc the mean and variance of the processing time, and 0, i1s the
mean of the jth order statistics among P samples drawn from the processing time
distribution with mean 0 and variance 1. For example, for a uniform distribution,

G- P=1°
==

Communication phase

" AL
Processing phase '4 "
p——
Send Receive
Compute iterates = iterate » iterate
values values
Lo ]
4

Figure 8.32 Typical flowehart for a Process in o synchronized iterative algorithm,



MULTIPROCESSING CONTROL AND ALGORITHMS 631

For an offset exponential (an exponential plus a constant),
0p=H, —Hp_, - |

where H is the ith harmonic number as defined bY ¥y cxzs 1/k. for i > 0. For a
Gaussian, no analytical formula has yet been found. The 0,.p can, however, in this
case be casily tabulated by using tables and recurrence relations.

The mean iteration time is then simply taken as the mean Pth order statistic
among P independent samples:

my=m+ Op.po (8.36)

where m, is the mean iteration time, and 0., depends uniquely on the distribution
of the normalized processing time.

For thescexamples, a Gaussian processing-time distribution has been assumed.
The choice is justificd by the computation model defined earlicr. A computation
is seen as a random number of instruction cyeles, cach taking a random time. By
an extension to the central limit theorem, the computation-time distribution tends
to a Gaussian when the average number of instructions increases, provided the
fluctuations of the number of instructions are small relative to the sum of the
fluctuations of each individual instruction. The Gaussian was shown to predict
quite accurately the speedup of iterative algorithms on C.mmp.

We present a model for evaluating the performance of iterative algorithms on
a loosely coupled system. Let us denote the two buffers of the communication
memory of a processor by CM[19 and CM[2]. In cach cycle of a vectorially
decomposed synchronized algorithm, each processor goes through the following
phases:

I. Read the iterate updates received during the previous iteration in CM[1].
2. Update a subsct of the iterates.

3. Write iterate updates in CM[1].

4. Initiate transfer of the iterate updates to the (P — 1) other Processors.
3. Wait for reception of all other iterate updates in CM[2].

6. Switch CM[1] and CM[2] and go to 1.

The first three phases comprise the processing time.

A high-speed bus has simultaneous read-write capability and takes advantage
of the randomness of the processing times according to the scheme described. The
time taken by a block transfer is given by Eq. 8.34. It is assumed to be the same for
all processors. For the high-speed bus, we derive a lower bound on the mean
iteration time m, for any pm(.‘cssing:l.lmc distribution with mean order statistics
given by Eq. 8.35.

The first processor in chronological order to complete its processing phase
(atime T} ,) always finds the bus free. The total iteration time is at least | 2T, +
Ptcy. We also have I > Ty, + 1, since at the termination of the last processor
at Tp.p, one transfer at least has yet to take place. In general, when the jth processor



632 COMPUTIR ARCHITECTURE AND PARALLFL PROSCESSING

is finished, there remain at least (P — j + 1) transfers on the bus [it is efectively
(P — j + 1) when the processor finds the bus frec], so that
I'= Max [Tjp+ (P —j+ I)g) (8.37)
oty vsilP
Assuming equal block transfer times, Eq. 8.37 is exact and can be used in 2
simulation when the processing time distribution is known.
In taking the average of Eq. $.37. we note that, in general, if x,, .. ., | X, are n
random variab]es -

1-_‘( max {.\',:) =z max {E(x;)}

I<i<n lzizn

where E(max) is the average of the maxima and E(x;) is the average of x,. According
to this result, we write
ny = Max [mg 4 Ojip-aa + (P — j + Digy] (8.38)
al

j=1,
Taking the lower bound for . we can derive the efficiency as:
"y, Mg 1
™ T Max [me + 0,p0s + (P — j + Bts] - 14
i=1.p

- (8.39)

with

A(P1 (‘r)- ";'h} =~ Max {Oj:}' 5 CU T {P - J #+ I)'f'n,:‘l
J=1,...P
The set of performance features are P, Co.tey = tey/my and Cy = aglmyg.

The eflicicney actors for the loosely coupled system are displayed in Figure
8.33 as a function of the features, From these figures, it is clear that the high
sensitivity of the performance index to the communication to computation
times ratio «, limits the applicability of loosely coupled architectures for syn-
chronized iterative algorithms. Such architectures are well matched for algorithms
with a low communication to computation times ratio. However, when this ratio
increases beyond a few percent, the efficiency decreases rapidly. This property
reflects the power of a high-speed bus with broadcasting capability.

The above methodology can be used to study the degree of matching between
an algorithm and a multiprocessor architecture. This methodology is based on
extracting performance features for a class of algorithms and an architecture from
an approximate analytical model. The features define a multidimensional space. A
performance index is then g mapping from the feature space on the real line. Given
the architecture. algorithms pertaining to the class defined by the hypothesis of®
the model can be partially ordered according 1o the value of the performance
index. This ordering allows us to locate regions in the feature space where the
architecture is well matched 10 algorithms in the class,

The dificulty of this approach is in striking a proper balance between the
simplicity and tractability of the analytical model and its aceuracy. As modeling



MULTIPROCESSING CONTROL AND ALGORITHMS 633

b Dotied line: P=4
A L
) .."\ .
A T, Dashed line: P=16
s7sH \ i

ol Solid line: P=64

750

625

375

230

127

Communication to computation times ratio, #,(in percent)

Figure 833 Efficiency versus feature 1, for a loosely coupled system with a high speed, (Courtesy IEEE
Trans., Software Engg., Dubois and Briggs, July 1982.)

tools improve, the analytical model may be refined.- Even if approximate, the
feature space approach is much more realistic than complexity studies.

In Figure 8.34, cuts through the feature space are displayed. These cuts are
two planes for each case. The index function E is represented by contours of equal
index value. Loosely coupled systems are effective for processing-intensive
computations (low values of feature t;). The regions with a high-efficiency factor
shrink as the number of processes increases. Visualizing the feature space by cuts
such as in Figure 8.34 is of great help in understanding the interaction between
the architecture and the class of algorithms. Other architectures could be studied
using the methodologies discussed.

The estimation of E is very important to the software designer for MIMD
systems, since it is the proportionality factor between my and m;, the average
iteration time (see Eq. 8.38 for example). As a result of the analysis, a given imple-



634 COMPUTER ARCHITECTURE AND PARALLFL PROCESSING

20 T T T T T T T
Solid line: P=16 E= 6.8

Dashed line; P=4

Communication to computation times ratio, r2, (in percent)

25

Coeflficient of variation Cy (in percent)

Figure 8.34 Featurc planes for loosely coupled system with high-speed bus. (Courtezy of /EEE Trans.
Software Emgg., Dubois and Briggs, July 1982.)

mentation may be revealed as inefficient for the architecture and may have to be
restructured,

Effect of decomposition of performance Another interesting problem is to estimate
the eflect of the degree of decomposition of a given algorithm on the speedup in
order to evaluate the optimum decomposition. For such a study, the assumptions
on the computation to partition must be stronger, We use the equations derived
in the previous section on the performance of synchronized algorithms.
Wedefine a homogencous computation as follows. Let SUM bea computation.
SUM is seen as a random number of instruction cyeles. IFSUM can be partitioned
into computation units with the same stochastic propertes (" Lid units”), then it
is sitid to be homogencous with respect to the unit. Moreover, we assume i Gaussian



MULTIPROCESSING CONTROL AND ALGORITHMS 635

distribution for the time taken by a computation unit for the same reasons as
mentioned previously. This property isimportant so that the underlying processing-
time distribution is preserved for all partitions of the computation. Toe obtain a
decomposition of a homogencous computation in iid. tasks, we partition the
computation into sets containing the same number of units. Each set defines a
process. The number of such processes in the partition is the degree of decomposi-
tion, denoted by P since one processor is devoted 1o cach process. The maximum
degree of decomposition (PMAX) is obtained when cach process contains only
one computation unit. '

A simple model for the mean and variance of the number of active cycles in a
process of a homogencous computation as a function of the decomposition is

2

my =m, + — and o =8 + p (8.40)

m, and o arc the mean and variance of the fixed overhead independent of
the decomposition, while my and o3 correspond to the mean and variance of the
partitionable part of the computation,

As the degree of decomposition increases, the number of iterates to be com-
puted by each process reduces proportionally (accounting for the second term in
Eq. 8.40). The overhead term might include the initiation of a transfer through the
high-speed bus. In most implementations, making a private copy of the iterate set
will be required at the beginning of gach iteration and should be accounted for in
m,, and o3.

For the loosely coupled system, the block transfer time is modeled by

(o = tas + (8:41)
As in Eq. 8.35, the transfer time is deterministic and assumed identical for all
the processes. The first term of Eq. 841 represents the transfer overhead (time
between the reservation of the bus or memory module and the actual beginning of
a transfer) plus the time taken possibly by the transfer of a fixed amount of in-
formation independent of the decomposition. Since the number of iterates com-
puted by each process decreases proportionally to the decomposition, the transfer
time decreases accordingly. Equation 8.41 means that the time to initiate a transfer
t4 and the speed of the transfer are independent of the decomposition, an
assumption not always verificd for the bus system but nonctheless simple and
realistic in most cases. The speedup, denoted by Sp, is defined as the ratio of the
times taken by the algorithm on a uniprogessor and on a multiprocessor system
when the degree of decompositi®n is P (with maximum PMAX). It is computed
as follows for the case when m, = a3 = 0.
For the loosely coupled architecture with a high-speed bus, we have

(8.42)




636 coMPUTER ARCIY TECTURE AND PARALLEL PROCESSING
with

Bp = Max [0,0-Co- /P4 (P =+ 1)-(P-t'y + 1]
F= e P
T an Ty

s ! y
gy =2 and ¢, =

mg m, ny

Note that, contrary to the general study discussed earlier, the parameters are
normalized in this seetion with respect to the total computation M.

The speedup curves aredisplayed in Figure §.35. Cy (the coeflicient of variation
of the total computation) is shown to limit the optimum decomposition in mos
cases. Loosely coupled systems have a very good speedup when 1, is small
(0.1 percent) and 1, ~ (. However, a nonnull constant term (Figure 8.36) in cach

64,0['

Solid line: C'" =.1 percent
56.0 -
Dashed line: C,=21.5 percent f o To) =

p=0

48.0

3.0

Speedup

240

16,0

8.00

0.00 1 1 1 1 1 1 )
0.00 B.0G 16.0 240 2.0 40.0 48.0 56.0 64.0

Degree of decomposition 2
Figure 8,35 Speed =up versus decomposition for o loesely coupled sy stemwith a high-speed bus. (Courtess of
TEEE Trans. Software Enge. Dubsais and Briggs, July 1982.)



MULTIPROCESSING CONTROL AND ALGORITHMS 637

0.0
Solid line: Cp=.1 percent
1m0l Dashed line: C,=2.5 percent
14p=-05 percent
1o (Vo) =
1.0 e 7e)
[-% A
= remrre e men = ees s SE T ——
3 e R
vl B eeeeami m e e I T oI -
16.0 ..-”_:__._ ---- 1
o
RO00 = 10
10
0.00 1 1 1 1 1 1 1 J
0.00 8.00 16.0 24.0 320 40.0 48.0 56.0 64.0

Degree of decomposition P

Figure 8.36 Speed-up versus decomposition for a loosely coupled system with a high-speed bus. (Courtesy
of IEEE Trans. Sofrware Engg., Dubois and Briggs, July 1982.)

transfer causes the speedup to peak. In this latter case, the optimum decomposition
is limited to a degree of 16 to 40 for the examples considered.

The speedup conceivably peaks out or saturates when the decomposition
increases, This intuitive reasoning is confirmed quantitatively by the curves of
Figure 8.34. These results can be used as a guideline by the compiler or the user
for an effective decomposition of an MIMD iterative problem into tasks of similar
statistical properties.

8.5 BIBLIOGRAPHIC NOTES AND PROBLEMS

Parallel algorithms for multiprocessors are analyzed in Kung (1976), including
both synchronized and asynchronous algorithms. Other discussions including
macropipelines can be found in Jones and Schwarz (1979). Baudet (1976) studied
the performance of asynchronous parallel algorithms. Mathematical analysis of
simple task graphs was developed in Robinson (1979). Iterative techniques for
solving linear systems of equations are given in Conrad and Wallach (1977).
Numerical methods are given in Dahlquist and Bjérch (1974). Performance of
quicksort and PDE algorithms on Cm* is given in Deminet (1982). The perfor-
mance of synchronized iterative algorithms was presented in Dubois and Briggs
(1982a), Parallel tree scarch algorithms for muliiprocessors can be found in
Hwang and Yao (1977).

Some good sources of operating system design concepts arc given in Coffman
and Denning (1973), Habermann (1976). and Holt et al. (1978). A general overview



638 COMPUTER ARCHITECTURE AND FARALLEL PROCESSING

of protection of information in computer systems was presented in Saltzer and
Schroeder (1975). One of the carlier sources of information on protection mechan-
isms was given in Lampson (1974). A basic source of capability-based addressing
schemes is in Fabry (1974). Application of capability-based addressing schemes
to existing machines is presented in Lampson and Sturgis (1976) and Levy (1983).
Another example of the implementation of protection schemes is in the Multics
project Saltzer (1974). A complete overview of the deadlock problem is presented in
Isloor and Marsland (1980), Some spectfic research in the solution to the deadlock
problem are given in Coffman ¢t al. (1971) and Holt (1972). Another comprehen-
Sive treatment of prevention, detection, and recovery of system deadlocks is given
in Shoshani and Coffman $|‘)7U}. An extension of such technigues 10 multi-
processor systems is given in' Fontao (197]).

A gencral overview of process synchronization mechanisms s given in
Madnick and Donovan (1974). The concepts of wakeup and block primitives are
discussed in Habermann (1976). The wait and signal primitives are claborated on
in Stone (1980). The concept of pipes in the UNIX operating system can be found in
Ritchic (1973). An application of synchronization primitives to the implementation
of such pipes is given in Holt et al. (1978). An extension of the semaphore primitives
developed by Dijkstra (1968) is presented in Agerwala (1977). The implementation
of conditional critical regions and the construction of monitors are givenin Schmid
(1976). A general treatment of monitors is covered in Hoare (1974), Conditional
critical regions were proposed by Hoare (1972) and Hansen (1972). Recently,
concurrent programming was studied in Andrews and Schneider (1983).

A general overview of deterministic schedules is presented in Gonzalez (1977).
Preemptive deterministic schedules have been researched in Muutz and Coffman
(1969). Some nonpreemptive schedules are discussed in Coffman and Graham
(1972)and Iiu (1961). The multiprocessor anomalies are demonstrated in Graham
(1972). The processor bounds are developed in Ramamoorthy et al. (1972) and
Liu and Liu (1974). Probabilistic scheduling algorithms are presented in Coffman
and Denning (1973). Load balancing in multiple processors is also studied in Ni
and Hwang (1983). Traditional books on queueing theory such as Kleinrock (1975)
are sources of information on probabilistic schedules. The group scheduling
coneept was discussed in Jones and Schwarz (1979).

Problems

R.1 Describe the following terminologies associated with multiprocessor operating systems and
MIMD algorithms:

() Mutual exclusion

(M) The TEST-AND-SET instruction

() The ENQUEUE and DEQUELE aperations

() The Pand ¥ operators

() Conditonal eritical sections

(/> Deadlock prevention and avoirdance

ta) Deadlock detection and recovery



MUL TIFROCESSING CONTROL AND ALGORITHMS 639

(h) Protection versus sccurity mechanmisms

{i) Deterministic versus stochastic scheduling

(j) Multiprocessor anomalies

(k) Synchronized versus asynchronous parallel algorithms
() Degree of decomposition of a parallel algorithm P
8.2 The ﬁnlluwmg 15 @ proposal to handle the “empty stack problem "ol a stack that s used o structurne

a shared storage (or page) pool. GETSPACE 15 4 procedure whueh retarns a pomter oo free page.

Before calling GETSPACE. a process should enter a crtical section for stack mspection, for wihich

purpaose a global (shared vanable) count STACK LENG TH records the current number of Tree pages.
A process should not call GETSPACE unul STACKLENGTH = 0. Similarly, there 15 0 RELEASE

(i) procedure, which releases page 1 1o the page pool. Write two procedures: FREEPAGE 1o get and

return a pointer to a free page. and RETURN-PAGE (1) 1o release page  using PP and V primatives.

(Hint: A binary semaphore mutex should be used to control avcess to the stack. Mutex is initialized

to I Also use "STACKLENGTH ™ as a semaphore to controlacedss to the vanable STACKLENGTH

for update).

8.3 Consider the following program

Fori=1 to ndo
cobegin
5, [0); 850175 [i1;

coend

k processors are devoted to the above computation. Each computation S [i], for | < j < k 1akes an
unpredictable and random time 1o execute. Complete the program between the begin and end state-
ments for process j using eritical section (esegl) on the shared vanable, peount. and P and V operations
on the binary semaphores s. The primitives implement the synchromzation of these k processors.
Hinr: The last processor to finish one iteration for one value of { updates peount and “awakens™ the
other blocked processors through <

var pcount: shared; initial pcount =k - 1
vars = {s,,....s | : binary semaphore; initial s = {1, 1, ..., 1};
{Process 1}:
{Process j}:
For « 1tondo
begin

¢S, (i)

end
{Process j + 1};

8.4 Assume that £, and f, are pointers 1o two sorted lists, cach arranged as a circular doubly hnked it
with headnodes £, and /., respectnely. £, and f; are sorted in ascending order and cach node has three
ficlds, namely, LLINK (left ink), DATA and RUINK (right link) (Figure 8 37) Write an asynchronous
MIMD algorithm for two processes Py and P 1o mergethe filesf, and 1, intoa sorted bist /. also arranged
as a circular Bst. Process 17 retrieves from the fronts of £, and £, to produce a sorted sublist o while
P, retrienes from the rears of f, and £, 1w produoce the sorted sublist J; unnl enther £ or 2 becomes
empty. Attach the nonempty bist to d, and dy o produce [ Beturn any urtased nonde o the storage
pool wath the operation POOL (v Note that sublists




640 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

(LLINK Data RLINK LLINK /i
Rear Fronmt

ne> <

)

e

Rear Front

For any node v,

I v # f or f,and LLINK(v) # Jior f, then DATA(Y) < DATA (LLINK(v))

d, e

Empty list d, Empty list d,
Figure 8.37 Parallel merging in Problem 8.4,

8.5 The following is a synchronized #-process MIMD algorithm to compute vector:

Yy=A:xtb whereyisnx1, Aisnxn bisn x 1
PROCESS:
{Parfor i« untiln - 1 do
{y (i) «~ 0;
For j < Q untiln - 1 do
(i) «y (i) + A (.) * x(j);
y (i) =y (i) +b (i);

Assume that each assignment of the variable 7 in the Parfor statement takes ¢ seconds. The time it
takes to start or spawn a new process for a given 1 is a sum of independent random variables Nia x,—ic
where x; is exponentially distributed with mean dgne 1/(j + 1)A What is the speedup S, of the parallel
process if multiplication and addition takes 1, and 1, seconds, respectively, on each processor and n
concurrent processes are used? Also assume that ne < 1/4. Then plot S, versus n for values of 1/AT =
0.1, 0.5, 08, 1, 2, 5, and 10,

8.6 Dijkstra’s problem of dining phile wophers (slightly generalized) is: There are n philosophers whose
lives consist of alternately thinking and cating. The philosophers eat at a large circular table with a
preassigned plate For cach. Between two plates is a fork, which may be used by either adjacent philoso-



MULTIPROCESSING CONTROL AND ALGORITHMS 641

pher. Inorder to cat, a philosopher must have two forks (one on his left and the other one on his right)
Devise a control program of the general form; Note that the n philosophers may not necessarily follow
the same control program 1o claim and release the forks.

Philosopher (i): begin
Think;

R & - )

Eat;

<ok B e

end

where (a) and (b) are code sections which claim and release the two forks, respectively, You sFould
specify these two code sections such that the following properties are met :

(a) Use P-V for communication and synchronization

{(h) Allow a fork to be held by only one philosopher at a time.

(e} Use strictly local information, e.g . LEFT.FORK and RIGHT.FORK 1o indicate the two
forks (resources) at both sides of each philosopher (process). "

(d) Guarantee that no philosopher will starve, that is when the n processes enter a deadlock
situation
8.7 Solve the dining philosophers problem using (a) gencralized P and V, (b) conditional critical
regions,
8.8 Using P-V operations, write the synchronizing program for the task graph shown in Figure 838,
where Tiis the statement that controls the exceution of task T Solution should be of the following form

Figure 8.38 The task graph for Problem 8.8,



642 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Define semaphore;
Initialization of semaphores;
cobegin

s

T".‘,:

T"?:

Tgs

Tt
coend

8.9 {a) Which combination of processes cause deadlock in the five process code segment programmed
below? The processes are A, B, C, D, and E.

Begin
shared record
begin
varS, S,,S,, S,: semaphore;
var blocked, unblocked: integer:
end
initial blocked = 0, unblocked = 1;
initial S, =S, =S, = unblocked, S, = blocked;
cobegin
A: begin P(S,); V(S,); P(S,); V(S,) end;
B: begin P(S,), P(S,); V(S,); V(S,); V(S,) end;
C: begin P(S,): P(S;); V(S,); V(S,) end
D: begin P(S,): P(S.); P(S,): V(8,): V(S,) end
E: begin P(S,); P(S,); V(S.); V(S,) end
coend
End

(b) Besides the combination of processes mentioned in your answer to part (a). which additional
process(es) could be indefinitely blocked because of this deadlock?

(c) For the processes given, is deadlock inevitable, or does it depend on race conditions? Justify
your answer.

(d) Assume that the skeletal code segment programmed above is an abbreviated version of a
more complex program and that onl y the details of the semaphore-related codeis shown here, Guarantee
that all five processes in the real program complete by making a minor change to one of the skeletal
processes.

B.10° Write a parallel algorithm to implement the concurrent Quicksort algorithm described on pages
625-626.
8.11 Show that the use of PE and VE could result in a deadlock or possibly starvation in a system of
resources.



