CHAPTER

NINE

EXAMPLE MULTIPROCESSOR SYSTEMS

This chapter studies a number of existing multiprocessor systems. We begin with
an introduction of the entire multiprocessor space. Two large multiprocessor
projects are reviewed first. These are the carly C.mmp system and the S-1 system
currently under development. Then we study a number of commercially available
multiprocessors, including some models in the 1BM 370 series and the 3080 series,
the Univac 1100 series, the Tandem Nonstop system, the HEP, and the Cray
X-MP. A comprehensive literature guide on multiprocessors is given at the end
of the chapter.

9.1 THE SPACE OF MULTIPROCESSOR SYSTEMS

Multiprocessor systems can be divided into two classes: the exploratory research
computers and commercial multiprocessors. We consider a system to be ex-
ploratory if it is developed mainly for research purposes or [or dedicated missions.
Commercial multiprocessors are those systems that are available in the computer
market. A summary of existing multiprocessors is given below. We leave the
details of each system to subsequent sections. Some of the systems were studied
in the previous two chapters.

"
9.1.1 Exploratory Systems

Three exploratory multiprocessors are covered in this book. The C.mmp and Cm™
are both research multiprocessors developed at the Carnegic Mcllon University.
The C.mmp was developed in the carly seventies. 1t consists of 16 PDP-11 mini-
computers sharing a common memory via a 16 x 16 crossbar switch. We shall

h43

644 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

study the C.mmp architecture and its specially developed Hydra operating system
in Section 9.2, The hicrarchically structured Cm* has already been described in
Chapter 7. The Cm* is still being used at CMU as a research vehicle. The C.mmp
is no longer in operation now.

Another crossbar-structured multiprocessor is the S-1 system currently under
development at the Lawrence Livermore National Laboratory. It is a 16-processor
System. However, cach uniprocessor in the S-1 is custom designed for a multi-
processing environment. The §-1, once completed, should be a gigaflops machine.
We shall study its processor characteristics and software development in Section

9.3.

9.1.2 Commercial Multiprocessors

In Chapter 7, we have already studied several commercial multiprocessors,
including the CDC Cyber-170, the Honeywell 60,66, and the DEC System 10. In
Sections 9.4 and 9.5, we shall examine more large-scale multiprocessor systems,
including the IBM System 370/168 and the IBM 3081 multiprocessors. In par-
ticular, we will focus on the details of the 370/168 MP and the 3081; both are dual-
processor systems. In the Univac 1100 series, we shall study two multiprocessor
systems: the model 1100/8x and the model 1 100/9x systems, each of which has up
to four processors.

Cray Research recently announced its multiprocessor model the Cray X-MP.
This is a dual-processor system highly pipelined for both scalar and vector pro-
cessing at high speed, Denclcor, Inc. developed the HEP computer, which can be
configured to have up to 16 processors sharing multiple memories and peripherals
via a packet switching network. We shall study HEP in Section 9.4. Most of the
existing commercial mult iprocessors operate essentially with multiple SISD
operations at the highest program level; that is, single program multiprocessing
and loosely coupled multiprogramming. The HEP is an intrinsic multiprocessor
with real MIMD pipelined operations at the process level. To achieve fault-
tolerant multiprocessing, we shall study the Tandem Nonstop multiple processor
system. Multitasking techniques developed with the X-MP will be treated in
Section 9.6.

In Table 9.1, we summarize the major architectural characteristics of those
multiprocessor computers covered in this book. Speed improvement is only one
of the concerns in using a multiprocessor computer. Enhanced reliability and
availability and the promoting of resource sharing to achieve a high performance/
cost ratio are also important factors in developing multiprocessors. The general
trend for commercial machines is that high performance is achieved with multiple
highly pipelined processors. The goal is to solve large user problems b multiple
processors in a cooperative and effective manner. Most existing commercial
systems have two to four processors. Only a few systems offer 16 processors like
the Tandem and the HEP. Some rescarch multiprocessors have more than 16
processors, like the Cm*, consisting of 50 LSI-11 processors in the system,

EXAMPLE MULTIPROCESSOR SYSTEMS 645

Table 9.1 Multiprocessor computer systems

Systems Architectural features Remarks
C.mmp 16 PDP-11s, Crossbar, Hydra OS Section 9.2
fdismantled)
Cm* 50 L5I-11s, Hicrarchical processor clusters Section 7.1
Medusa and Star OS (exploratory)
$-1 16 Mark 1A processors, Crosshar. Amber OS Section 9.3
(under
development)
IBM Dual-processor systems, shared memory and separate /O, Sections 9.5.1 and
370/168MP Multiple Virtual Storage (MVS) 08 95.2 -
Univac Two- or four-processor systems. EXEC 0S, shared Section 9.5.3
1100/8x, memory and /O
1100/9x
Tandem /16 Up to 16 processors, dual-common buses, dua l-ported Section 9.5.4
cantrollers. Nonstop OS
Cray X-MP Dual processors with shared common memory and Section 9.6
dedicated pipelines, COS
Denelcor Up to 16 processors. Packet-switched network, MIMD Section 9.4
HEP pipelining

IBM 3081, Two- or four-processor systems, shared memory and 1/O Section 9.5.1
3084 devices, MVS and VM OS

Cyber 170 Two processors with a central memory controller Section 7.1.1
Honeywell A three-processor system with triple redundancy Section 7.1.1
60/66
PDP-10 Two-processor system with 3 master-slave or a symmetric Section 7.1.1
configuration

9.2 THE C.mmp MULTIPROCESSOR SYSTEM

This section reviews the architectural features of the C.mmp system and the kernel
of its Hydra operating system. Reported performance of the C.mmp will be also
examined in Section 9.2.3.

9.2.1 The C.mmp System Architecture !

’
The C.mmp is composed of slightly modified Digital Equipment PDP-11/40E
processors and built out of early 1970s technology. The average time to execute
an instruction on a PDP-11/40 is approximately 2.5 us. The architecture of the
C.mmp is shown in Figure 9.1 for a given configuration that consists of 16
computer modules connccted to 16 shared memory modules via a 16 x 16
crossbar switch (S.mp). The functional structure of a typical computer module in
the C.mmp is shown in Figure 9.2. The shared memory provides a physical address
space of 32 megabytes. The basic modifications made to the processors were to
make user execution of certain privileged instructions illegul. Examples of these

646 COMPUTER ARUCHITECTURE AND PARALLEL PROCESSING

(S.mp)
Crossbar switch
(16 x 16)

CM, cM ; see CAM 1
Interprocessor bus b

IKinlctbusl l Kclock |

Kclock: common master clock

Figure 9.1 Architecture of the C.mmp.
(Courtesy of Fuller et al., IEEE Compcon,
Kinterbus: interprocessor bus control 1973.)

instructions are HALT, RESET, WAIT, RTI (return from interrupt), and RTT
(return from trap).

Further modifications were made to permit address-bounds checking on the
stack pointer register R6, These modifications were required for software protec-
tion. The operating system is required to deposit some context information on the
stack over protected procedure calls. RT1 and RTT were modified since they modify
the processor status, which must be protected because it is used to control the
memory protection scheme. The PDP-11/40E processors were modified further to
allow an extended writable control store,

Each processor has an 8K-byte local memory that is used primarily for
operating system functions. The principal secondary memories of the Cmmp
consist of four drives of 40M-byte disk controllers, three drives of 130M-byte disk
controllers, and fixed head disks with zero latency controllers that are used for
paging space. The peripheral devices are assigned to the Unibus of specific pro-
cessors, as shown in Figure 9.2 for one processor. Hence there is no physical sharing
of peripherals. A processor cannot initiate an 1/O operation on a peripheral that

FXAMPLE MULTIFROCISSOR SYSTEMS 647

To crosshar
switch

< PDP-11 Unibus >

Local ady
@ memory 170 oo 170 Kibi
1

Kibi: interprocessor bus interface
Dmap: address translation unit

To interprocessor
bus

Figure 9.2 A typical computer module in the C.mmp,

is not on its Unibus. Fortunately, the operating system hides many of the asym-
metries of the /O subsystem from the user.

An interprocessor bus which connects the entire set of processors is used to
perform the general function of interprocess communication. The bus provides a
common clock (Kclock) as well as an interprocessor control (K interbus). These two
logically and functionally separate features travel separate data paths, although
they share a common control. Each processor has an interbus interface (Kibi) that
defines the processor's bus address and makes available the bus functions to the
software. The bus provides three basic functions, as described below.

. The first function is to continuously broadcast a 60-bit 250-k Hz nonrepeating
clock (Kcloek). This is done by mulgplexing the clock value onto a 16:bit wide
data path in four time periods, with low-order bits first. Any Kibi requesting a
clock read waits for the initial time period and then buffers the four transmissions
in four local holding registers available to the software. Clock values are often
used for unique name generation in the operating system. The otherwise unused
high-order four bits of the fourth local register are set to the processor number

648 COMPUTER ARCHITECTURE AND PARAL LEL PROCESSING

(bus address) to insure uniqueness when any number of Kibi's read the bus simul-
tancously. A countdown register is also maintained in each Kibi for interval timing.
It may be initialized by a nonzero value in the program; a one is subtracted every
16 ps (timing supplied by the Kclock) and the process is interrupted when the
register reaches zero,

The second and third bus functions are the interprocessor interrupts at three
priority levels and the control mechanism. Each processor may interrupt, halt,
continue or start any processor, including itsell. These functions are used only
when a drastic action such as systemwide reinitialization is necessary. The control
Operations are invoked by sctting the bit(s) corresponding to the processor(s) to
be controlled in a 16-bit register provided by the Kibi for the desired operation.
A second 16-bit wide data path is eight-way time multiplexed. Each control
operation is assigned a tlime period. As the appropriate period arrives, each Kibi
ORs its control operation register onto the bus and clears the regisler.

Synchronization of bus accesses and operation specification are accomplished
by the multiplexed time periods. The Kibi also inspects the bus to see il the specified
operation is being invoked on its processor: if $0, the action is performed. Setting
the ith bit of the Kibi register to one associated with one of the functions will evoke
that function on the ith processor. Thus, for example, moving a mask of all 1s into
the halt register in each Kibi will stop the entire system. Although eight time
periods are available, only six are used: three priority levels of interprocessor
interrupt, halt, continue and start: the remaining two are ignored.

Probably the greatest limiting factor in building a large computing system
from minicomputers is their small address space, In most cases, it is required to be
able to address several million bytes of primary memory from the processors. The
basic PDP-11 architecture is only capable of generating 16-bit addresses. Although
the processor may generate only a |6-bit address, the Unibus supports an 18-bit
address, and the shared memory uses a 25-bit address. An address relocation
hardware Dmap associated with each processor performs the memory address
translation. Its relationship with other bus components is shown in Figure 9.2,
The processor-gencrated addresses are divided into eight pages, where each page
is an 8K byte unit. Unibus addresses are divided into 32 pages, and the shared
memory is divided into 4096 pages.

As shown in Figure 9.3, the two extra bits of the Unibus address are obtained
from the program status register (PS) in the processor. These bits may not be
altered by any user program. The user programs are actually bound to operate
within the eight pages described by a subset of relocation registers. Such a subset
is called a space and is named by the two bits {7:8) in the PS, With these two space
bits, four address spaces can be specified as (0, 0), (0, 1), (1, 0) and (1, 1). Therefore,
four sets of eight registers are provided in each relocation unit, although the stk
page is common to all spaces to allow communication across spaces. One of these
cight registers in a given address space can be selected by using the high-order three
bits (13:15) of the 16-bit processor address word.

The four address spaces are the heart of the memory-protection mechanisms
discussed later. The address-mapping registers and PS registers are both located

o EXAMPLE MULTIPROCESSOR SYSTEMS 649

Pc status word (PS) 16-bit Pc address word
r]-c?:s >[j 1<|3:15>| <0:12>]
=] =] Q
i 2 space bits /-’ : f
P —pp—— S S ¥
: s 1
| Dmap |
i relocation registers & 3-bit register i 13-bit page
E - ’.'.' selector i dlsrll:lccm‘e'llt
! Banko |
H /' !
: ' i
3 4 :
Leos— Bank |
Ban 1{ <12:15>] <0:11 > oe-l-------""““-"j 12-bit page i
i frame 3
. \ |
Bankz{ [c!1:24><l3:1¢}>l <0:12> 1
H L B-bit page within port
— res 6 & 7 disabled for ——4:bit port number
A Mlocal and peripherals
Common 25-bil shared memory address
stack page ¥

Figure 9.3 Address relocation in the C.mmp, =

in the peripheral page, which is addressable via the (1, 1) space bits. The relocation
registers in the space described by the (1, 1) space bits are the only ones that are
directly addressable and are used exclusively by the kernel of the operating system.
Hence, protecting the PS guarantees that no addressability changes may be made
without the approval of the operating system. Direct addressability is accomplished
by disabling two of the relocation registers in (1, 1) space, one each of Mlocal and
the control register bank, for all peripheral devices (including Dmap). With these
registers disabled, addresses pass along the unibus unchanged to be received by
the addressed register or memory location.

Access to shared memory is performed in two stages: The relocation of the
18-bit processor-generated address into a 25-bit address space, and the resolution
of contention in accessing that memory location. As illustrated in Figure 9.3, the
Dmap intercepts the 18-bit unibus addresses (16-bit word plus the two space bits)
and translates them as follows: the three high-order bits of the 16-bit word select
4 register from the bank specified by the space bits. The contents of the register
provide a ! 2-bit page frame number ; the remaining 13 bits from the address word
arc the displacement within that page. The two are concatenated 1o form the 25-bit
mapping shared memory address. This transparency is performed for all memory
accesses.

In addition to the 12 page frame bits. there are four bits in each relocation
register used for control. They are designated as no-page-loaded (nonexistent
memory), write-protected (read-only), wrirten-into (dirty), and cacheable bis 10

650 comipnge ARCHITECTURE AND PARAL LEL PROCESSING

itredd ‘her values from the page may be stored in a possible per-processor
s 1ehe the per-processor cache was planned but not implemented. The cacheable
o “ been used by the operating system to avoid cache consistency. This

it he aecomplished by indicating pages that are not both shared and writable,
ftable pages are never cached.

& memory address and (possibly) 16 bits of data. cach parity checked,
Faccess function data are sent to the cross-point switch, The address
Pty «‘hed at the switch interface. If the check fails, the request is aborted
and the vocessor interrupted. Data parity is not checked until the data is read
o metony. All parity is generated and data parity checked by the relocation
Ui (Eap interface to the bus from the switch,

Ih i~ then routes the request 1o the memory port specified by the high-
order fons bus of the address. A port is requested by setting the processor’s bit in
e soquest register. Contention for the port is resolved by periodically
Rl i 'equest register into a queue register, which is left-shifted as the port
becomes wvailable, The shifting creates a priority ordered queue: As a bit is shified
oul, the corresponding processor is granted access to the port. Processor 15 is
Asstpned the high-order bit; processor () the low-order bit, defining the priority.

Wher the gucue register is zero, all requests have been satisfied. The request register
vl paid into the queue register, cleared, and a new cycle begins. A second
regguest ine same port by a processor must enter via the request register, hence

equality of service among the processors is maintained.

This two-level request mechanism also obscures the intcrnal queue’s priority
oidering 1o the point that it is of virtually no importance outside the switch,
pPreserving the symmetrical design of the cross-point. The switch’s maximum
cancurrency (16 independent paths) is achieved if all processors request different
poris The cost of address translation, switch overhead (no contention), and
round-trip cable overhead is about 1 ps. This is high by today’s standards and is
more than equal to the access time of the memory.

9.2.2 The Hydra Operating System

The operating system of the C.mmp was based on an experimental kernel called
ITydra The Lernel is the “nucleus™ of an operating system. However, we will use
Hi e Uhomel ™ synonymously with an operating system. Hydra was designed
| w!ly distributed system so that any processor can execute the kernel.
W miore than one processor can execute the kernel concurrently. This parallelism
i enhunced by using locks on various data structures and not on the code that
oo them. There were two basic goals in the design of Hydra. One was 1o
“antivesthatallow most of the facilities generally provided by an operating
written as user programs. This will permit the operating system t e
'ored to each user’s needs. The other goal was (o permit any number
cfinitions of a facility to coexist at the same time. These goals suggest
' bedesigned as a collection of basic or kernel mechanisms of universal

ity on the C.mmp,

—y

"

EXAMPLE MULTIPROCESSOR SYSTEMS 651

In order to facilitate the design of the kernel mechanisms, the separation of
mechanism and policy is required. This principle is called policy-mechanism
separation. Such separation contributes to the fiexibility of the system because it
leaves the complex decisions to the user. Policies are generally encoded in user-
level software which is external 1o, but communicates with, the kernel. Mechanisms
are provided in the kernel to implement these policies. The kernel mechanisms are
used to provide u protected image of the hardware operation. For example, a
user is not permitted to manipulate 1/O device control registers, as doing so may
allow the user to inadvertently overwrite a protected portion of memory, Allh(?/ugh
the policy-mechanism separation philosophy is desirable, there are instances in
which & kernel mechanism may actually be a parameterized policy. Parameterized
policy provides the means by which overall long-term policies can be enforced
by user-level software and simultaneously can avoid excessive domain-switching
mechanisms for decisions which require a fast response. An example of such a
policy will be given later.

The testing of Hydra is facilitated by providing language constructs which
permit abstractions of data. Such abstractions define data types by specifying the
storage structures used and a set of functions which operate on it. A property of
data abstraction is that the details of representation and manipulation are hidden
from the user. This technique is used in the design of the Hydra to enhance the
protection mechanism by extending the type definition to specify the representation
of virtual resources and the nature of the implementation of various operations on
a particular type of resource. Examples of virtual resources are file, directory,
semaphore, and page. One of the elegant features of Hydra is that it is an object-
oriented system. All information is encapsulated in structures called objects which
arc accessed only through capabilities. Hence, Hydra has capability-based
protection mechanisms 1o support the philosophy discussed..

The set of objects a process can access is its address space. Objects are of
variable size and consist of a data part and a capability list (C list). The data part
can be expressed as a tuple: representation and type. The representation component
contains the information and the trype of an object indicates the nature of the
resource. The C list consists of a set of capabilitics. The capability is represented
by a tuple: unique-name and access rights. The unique-name of an object is generated
using the 60-bit clock described previously. A process may only perform those
operations on an object that are permitted by the access rights in the capability
through which the process named the object.

The basic unit of a schedulable entity in Hydra is a process. An active process
15 not bound to a processor. Therefore, a process may migrate from one processor
to another during its lifetime. The set of objects defined by the capabilities of a
process ata given time defines the execution environment and. hence. the protection
environment. This record of the execution environment of a process is called the
local name space (LNS). an object type.

Another object type often used is the procedure. A procedure object contains

a list of references to other objects which must be accessed during the execution

of the procedure’s code. A procedure is thus considered a static entity, There is a

652 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

unique LNS for cach invocation of the procedure. This LNS disappears after the
procedure terminates,

Mareover, a procedure object may contain templates which characterize the
actual parameters expected by the procedure. When the procedure is called, the
slots in the LNS which correspond to parameter lemplates in the procedure object
are lilled with “normal™ capabilities derived from the actual parameters supplicd
by the caller. This derivation is the heart of the protection-checking mechanism,
and the template defines the checking to be performed. If the caller’s rights are
adequate, a capability is constructed in the new LNS. This LNS references the
object passed by the caller and contains rights specified in the template.

System interrupts were provided in the C.mmp architecture to facilitate inter-
processor communication. Ananalogous software mechanism is provided at the
user level by the kernel. This mechanism, called control interrupts, is used for
interprocess communication. When it oceurs and is directed 1o a process, the
receiver process transfers control asynchronously to a special address specified by
the user. This address is within the addressing domain in which the process is
executing at the time. A 16-bit mask is specified by the process that sends a control
interrupt. These bits are compared with a mask in the receiver process, and the
receiver process is interrupted only if there is a match between one or more bits,
Hence adequate protection is maintained. Control interrupts are generally slow;
however, they have some properties that make them desirable for E€ITOr IECOVEry.

The operating system provides an elegant message system for handling com-
munications between processes and thus encourages the use of cooperating
processes. The message system uses objects called ports as gateways for processes
to send and receive messages between processes. Each port has a set of logical
terminals called channels which are used to connect between sender and receiver
processes. There are basically two types of channels: input and output, Messages
arc sent from output channels and received in input channels, Two processes can
communicate if they each have a capability for the other’s port and if a com-
munication path is established between the ports,

To establish a path between the two ports, the output channel of one is
connected to the input channel of the other and vice versa. Each port provides a
message slot which is a bufler that is used to queue messages, This slot also provides
a local mechanism to name messages. The message system can operate in two
modes: nonacknowledgement and acknowledgement. In the first mode, the
sender sends a message and continues processing without waiting for a reply.
Operations in the second require a reply to a send message. A process that attempts
to receive a message before its arrival is suspended until the arrival of the message,
whereupon the procesg is unblocked. The message system is also used in 1/O
communication to provide transparency of the asymmetries of the 1/O structure
at the user level.

The message system is not very efficient, thus two other synchronization
mechanisms, locks and semaphores, are provided. Two types of locks exist in the
Hydra. The kernel lock makes use of hardware facilities such as interprocessor
interrupts which are not available at the user level and therefore can be used only

EXAMPLE MULTIPROCESSOR SYSTEMS 653

in the implementation of the Hydra. The spin lock is available to users as it does
not use privileged instructions to implement it. The kernel locks. which are used
primarily to provide mutual exclusion for operations on various system queues and
tables, pervade the implementation of the kernel. .

The kernel lock consists of three components: the lock byte, the sublock byte,
and the processor mask word. The lock byte maintains a counter of the number of
processes waiting for the lock. A process which wishes to obtain the lock indivisibly
increments and tests the lock byte with a single PDP-11 instruction: if the result
indicates that the lock is free. it is then locked and the locking process can exccupe
its critical code. Otherwise. the process sets the bit corresponding 10 its processor
in the processor mask word and exccutes 4 WAIT instruction with all interrupts
except the highest priority I1PI (interprocessor interrupt) disabled.

When a process is ready to unlock the lock. it indivisibly decrements and tests
the count in the lock byte:if the result indicates that no other processes are walling,
the lock is unlocked and normal exccution can continue. If other processes are
waiting, the unlocking process sets the sublock byte to one and sends an 1PI to
cvery processor with a bit set in the processor mask. These processors resume after
their WAIT instructions and indivisibly decrement and test the sublock byte. One
random processor will discover the count 10 be zero, remove itsell from the mask
of waiting processors, and execute its process’s critical code. The other processors
£o back to waiting.

One disad vantage of locks is thata process which waits during the execution
of a kernel or spin lock does not relinquish the processor on which the process is
executing. Kernel locks have another disadvantage which involves the overhead
of invoking lock and unlock primitives. This overhead is minimized by storing the
code for the kernel lock primitives in the processor's local memory. In this case.
there is no memory contention and no contention for the lock. However, spin
locks have one major disadvantage over kernel locks: When a processor is spinning,
it accesses shared memory and thus consumes memory bandwidth which might
have been used more constructively.

Generally, wher the probability of waiting is low. the lock primitives are very
efficient. A study performed on the C.mmp indicates that, although a process may
spend over 60 percent of its time executing kernel code, only about 10 percent of
accesses o locks cause locking. Moreover. the total fraction of time spent by
processors waiting for locks is less than | pereent. The study also shows that
operations performed on data structures while they are locked are small. The
overall average time spent in a critical section is about 300 s

Situations often arise in which lengthy blocking cannot be avoided in a system.
In such cases. using the lock primitive will result in excessive waste of resources.
For example, after a process issues an /O request. a significant amount of time
may elapse before its completion. In other cases., relatively large sections of code
may require exclusive use of a data structure. In each case. when lengthy blocking
is possible. Hydra provides two types of semaphore mechanisms, keenel semaphore
(R-Sem)and podicvsemaphore (P=Sem). Both are implementations of the generihized
or counting semaphores. The mamn differcnce between the semaphore and loek

654 COMPUTER ARCHITECTURE AND PARALLIL PROCESSING

mechanisms is that, if a process blocks as a result of executing a P operation on a
semaphore, some of the resources belonging to the blocked process will be relin-
quished until the process is able (o resume cxecution. K-Sems are designed 1o be
most efficient when no blocking occurs. Under these conditions, they are about as
efficient as lock primitives. When blocking occurs, K-Sems are considerably more
time consuming, Blocking requires the manipulation of the process queue and, in
the case of a P operation, saving the state of the blocking process. If the average
blocking period is large, the context-swap overhead of about 8 ms needed to block
and wake up a process is significant. If the blocking period is less than the context-
swap time, then the use of a K-Sem actually decreases overall system throughput as
a result of processor thrashing.

When a suspended process is unblocked, it may have to wait until the resources
it requires are released by higher priority processes which are competing for them,
A policy of fairness among competing users is enforced by providing a more
conservafive form of semaphore mechanism. This P-Sem has anadditional feature.
After a predetermined wait time clapses, the primary memory belonging to the
blocked process is made eligible for swap-out to a drum and the process is returned
to its policy module for reconsideration of long- or medium-term scheduling. The
short-term scheduler is called kernel multiprogramming system (KMPS). This is a
mechanism which one or several policy modules may control via parameterization.
Hence, KMPS is an example of a parameterized policy,

For fair multiplexing of all pracessors, the KM PS ensures the exccution of the
highest priority feasible process by using a preemptive priority resume policy.
Processes within the same priority arc scheduled in a round-robin fashion. The
scheduling parameters of a process are its priority, a processor mask, and a maxi-
mum working set size. The priority is an integer value between 0 and 255, inclusive.
The processor mask indicates the subset of processors on which the process can
execute. The mask is required because of the earlier heterogeneity of the processors
and the asymmetry of the 1/0 subsystem. The three parameters are set by the
policy module. Under certain circumstances, the KMPS will return a process to
its policy module. An example of this occurs if the KMPS blocks on a policy
medule’s semaphore.

9.2.3 Performance of the C.mmp

Experience with the C.mmp shows that unavailability of the crossbar switch used
did not pose a problem. Hard failures of the switch were rare, perhaps because of
the regularity of its structure. The processors, memory modules, and the inter-
processor bus were far less reliable by comparison. This demonstrates that the
term “reliability " is rclative. Although hard switch failures have been very rare,
one observed type of transient error demonstrates some of the difliculties in
successfully achieving logically distributed responsibility. When a process or
device is accessing memory through the switch, the accessed module is unavailable
to other processors or devices for the duration of the transaction.

EXAMPLE MULTIPROCESSOR SYSTEMS 655

A device controller experiencing an error may sometimes abort a transfer

without correctly terminating the protocol between its unibus and the switch,
with the result that the accessed memory module is “hung ™ with all its access paths
blocked indefinitely. While the distributed nature of the switch allows access paths
to other memorics to function normally, any other processor (rying o access the
hung memory will also wait indefinitely. It is impossible to detect or to recover
from this condition with software; only a manual reset can clear the memory and
[ree the waiting processors. This problem uncovers a basic design flaw in the
switch: its correct functioning depends on the correct functioning of its attached
devices. The problem was minimized by modifications to the controllers. A better
solution is for all switch transactions to “time-out™ automatically after a pre-
determined period.

In any system, three basic steps are required to handle faults successfully:
detection, diagnosis, and recovery. Fault detection is enhanced by system modu-
larity and consistency checking. All techniques for consistency checking utilize some
degree of redundancy in order to recognize inconsistencies. The sell-identifying
data structure employed for type checking within the Hydra kernel illustrates one
set of types of redundancy. Many errors can be detected by associating watchdog
timers with important system resources. This is a natural approach in a multi-
processor, where components can monitor each other relatively easily. Implemen-
tations of this technique differ, but the basic idea is that the timer will in some way
raise an error-condition indicator if it is not reset within some specified time limit.

In the Hydra, a watchdog mechanism of this type has been implemented to
detect processors that halt or become trapped in endless loops. The watchdog
depends on a word in main memory that is shared by all processors. One bit in
this word is assigned to each of the processors; if a processor is correctly executing
Hydra, it should frequently execute code, causing it to set its designated bit.
Every 4 5 cach processor also checks whether other processors have sct their bits.
Thus each processor must set its bit at least once every 4 s or it will be detected
as malfunctioning and error recovery will be initiated. Diagnosis in the
C.mmp/Hydra is carried out by a mechanism called the suspect-monitor, which
is invoked whenever a scrious error is detected. The processor that detects
the error is designated the suspect, and the rest of the system is quiesced.

One processor is then chosen at random to act as the monitor. The monitor
processor lests the suspect by stepping it through a simple diagnostic, following
the suspect through each step in the diagnostic by watching a shared word of
memory. Any failurc in this sequence is grounds for removing the suspect processor
from the configuration immediately. If the diagnostic completes successfully, the
error is logged on disk and more extensive steps are taken to try to determine its
cause. The exact tests depe®d on the nature of the error but include an extended
processor diagnostic and attempts to retry memory fetches that caused parity
failures.

Early versions of the suspect-monitor proved ineflective despite the extensive
testing performed. This was due to transient errors which occur infrequently
except under heavy loads. Thus. the suspect diagnostic rarely caught a processor

656 coMPuTIR ARCHITECTURE AND PARALLFL PPROCISSING

in the act of failure. and yet another failure often occurred soon after the system
was restarted. Such restarts are fast, typically taking less than 2 min: hence
relatively high availability was maintained. However, the loss of user jobs repre-
sents an extreme inconvenience. The suspect-monitor system’s capabilities was
improved by providing a system of processor-crror counters. These counters
record the oceurrence of particular errors on each processor. and if they exceed a
threshold for total errors or for a particular error class, the offending Processor is
amputated or removed from the configuration or quiesced. The counters are also
periodically right-shifted, causing them to decay over time so that they measure
error frequency rather than simply providing an error count. A flaw in this scheme
is that error counters are maintained for processors only. The processor that detects
an error is charged with causing it. even if no concrete evidence to that cfleet exists;
the error may actually have been caused by another processor, bad memory, or
even by soltware, In practice, the high degree of symmetry among the Processors
makes it improbable that one processor will deteet an error for which it is not
responsible with a high enough frequency to exceed its error threshold.

It was found that parity errors are the single most common failure mode. While
hard failures occur regularly, most parity failures are transient, suggesting that
perhaps error counters should be implemented for memory pages as well as for
processors. Although considerable emphasis was placed on error detection and
diagnosis in the C.mmp/Hydra, the recovery mechanisms are insufficient to
preserve integrity of smaller granules of computation.

To demonstrate the effect of memory contention in an execution environment
of the C.mmp. an experiment is described below. This experiment consists of
finding the root or zero of a function. The parallel algorithm used to solve this
problem was described in Section 8.4.2. There are (wo implementations of the
algorithm. In the first case, the code of the algorithm was stored in a single memory
page which was shared by all processes. The second implementation of the
algorithm provided separate pages of code for each process. Therefore, the first
implementation will encounter more memory conflicts. The experiments were
conducted on a C.mmp configuration consisting of Model 20 and 40 PDP-11s.

_The Model 20 is typically 50 to 60 percent slower than the Model 40. Figure 9.4

“illustrates the effect of memory contention on the performance of the two imple-
mentations of the root-finder algorithm. Notice that. beyond a certain threshold,
an increase in the number of processors will produce a negative effect on the per-
formance for the implementation with shared code page.

This algorithm was also used to study the performance of the various syn-
chronization primitives discussed above. Recall that the key feature of the parallel
algorithm is that it is synchronous. The nature of the parallel solution demands
the synchronization policy, Figure 9.5 shows the elapsed time required by the
root-finder algorithm for varying numbers of slave processes and four different
synchronization mechanisms. For these measurements. the function-evaluation
tme wans distributed normally with a mean of 72 ms and 1 standard deviation of
IR ms, The parameter ¢ refers o the wait-time constant for policy semaphores.,
Phe curve Labeled PMO corresponds roughly o the case where ¢ = 0. While

EXAMPLE MULTIPROCESSOR SYSTEMS 657

215 s

250 -

225

200 - #

Shared code page .-

e

175

Elapsed time (in seconds)

150

125

100

sr Private code pages

-
i
_
g
i
y
!

50 B
2

Number of processes

Figure 9.4 Performance degradation due to memory contentions. (Courtesy of Oleinick, Carnegie-Mellon
University, 1978.)

658 compurie ARCHITECTURE AND PARALLEL PHICESSING

550r

500

450

150

PMO semaphore

300

250

Elapsed time (in seconds)

200

150 -

PMI (e = 300) semaphore

100 Kernel semaphore
Spin lock
50 1 L i 1 1 1 1]
| 2] 4 5 6 7 B 9

Number of processes

Figure 9.5 Effect on performance of different synchronization mechanisms. (Courtesy of Oleinick,
Carnegie-Mellon University, 1978.)

many factors affect the performance of this algorithm, the damaging effect of an
inappropriate synchronization mechanism is clearly demonstrated.

9.3 THE S-1 MULTIPROCESSOR SYSTEM

The system architecture of the -1 multiprocessor system is presented below. The
system is being developed under the auspices of the United States Navy. Described
below are the basic organization and characteristics of the uniprocessor Mark 11A
used in the S-1 construction. This processor is expected to have a performance

EXAMPLE MULTIPROCESSOR SYSTEMS 659

level comparable to the Cray-1. The S-1 consists of 16 uniprocessors which share
16 memory banks via a crossbar switch. Each processor has a private cache. The
software development to be presented includes the operating system for the S-1.

9.3.1 The S-1 System Architecture

The S-1 multiprocessor system is developed to perform computations at an
unprecedented aggregate rate on a wide varicty of scientific problems. It can be
described as a high-speed general-purpose multiprocessor. The S-1 is implemented
with the S-1 uniprocessors called Mark I1As. For a large class of numerical
problems, the Mark 1IA is expected to achieve a computation rate roughly an
order magnitude greater than that of the Cray-1 computer. Figure 9.6 shows the
logical structure of a typical S-1 multiprocessor. This structure includes 16 in-
dependent Muark IIA uniprocessors which share 16 memory banks through a
crossbar switch. Each memory bank can contain up to 2*° bytes of semiconductor
memory and hence a total physical address space of 16 gigabytes (2*%).

Large memories are crucial for the efficient solution of many large problems
such as those found in the three-dimensional physical simulations of the Monte
Carlo intensive studies. These studies are of great current interest in applications
ranging from incompressible fluid flow studies 1o acoustic ray tracing in highly
stratified media. The large memory addressability of the S-1 essentially eliminates
the programming cost associated with managing multiple types of computer
system storage. Each processor-to-memory bank connection can transfer one
word per 50 ns, resulting in a peak data-transfer rate of 320 M words/s.

The crossbar switch is designed to provide access for multiple memory re-
quests. The service discipline for memory requests is such that no processor gets
two accesses to a memory bank while another is attempting to access the same
bank. The crossbar switch also handles interprocessor communications. The S-1
multiprocessor system has the capability of using dual crossbar switches for
reliability and a front-end (diagnostic-maintenance) processor to remove a failing
switch and substitute an alternate switch. Although the growth rate of such a
“square” crossbar is asymptotically O(N?), where N is the number of processors
or memory banks, the S-1 crossbar is estimated to cost somewhat less than a
single S-1 uniprocessor, Less than 25 percent of the switch, or 0.8 percent of the
total system cost, exhibits an O(N'?) growth rate. The remainder of the system cost
exhibits an O(N) growth rate. This is valid if we assume that half of the total system
cost is invested in the memory. This suggests that it is economically feasible to
implement crossbar switches for multiprocessor systems with more than 16
processors. However, thig suggestion cannot be drawn for a multiprocessor with
low-cost processors, where the cost of the crossbar switch may dominate,

Each processor in the S-1 has a private cache which is transparent to the user.
As discussed in Section 7.3, the association of a private cache with each processor
introduces the problem of cache consistency. To solve the cache coherence problem,
the S-1 multiprocessor includes a design closely related to the dynamic model
discussed in Section 7.3 In the S-1, a small tag is associated with each line or block

Memory Memory
0 e s msssermte s . s
Controller L Diagnostic Diagnostic 2] Controller
0 ProCessor Processor T 15
[- Crosshar
switch
= Diagnostic
™ processor
-
Uniprocessor 0 Uniprocessor 15 ¢
Data Instruction Data Instruction
cache cache cache cache
M M
1-14
E T —— F
P P
I |
r——o- A I——-.- A
Dire: 170 16 | wo Diag- 170 16| wo
Restie store 0 ["™ store7 ROsYe tore0 ™™™ ciore?
processor * processor o
4 | 4
Y L r
Real- 170 Mass Real- 170 Mass 7o
lime =se4nrocessor e storage |processor HINE e (I OCESS OF i slorage |processor
170 0 units 110 (1] units 7
b = e o TTe—
1 - 5 1-6
Peripheral Peripheral
equipment equipment

Figure 9.0 Logical structure of the S-
Livermare National Labacatory, 1979,

fith

I Mark 1A multiprocessor, (Courtesy of S-1 project at Lawrence

EXAMPLE MULTIPROCESSOR SYSTIMS 661

(a set of 16 words) in the physical memory. This tag identifics the unique member
uniprocessor (if any) which has been granted permission to retain (that is, own)
the block with write access. It also identifies all processors which own the line with
read access,

The memory controller allows multiple processors to own a line with read
access, However, it responds with a specialerror flag when a request is received 1o
grant read or write access for any block which is already owned with write access.
The special flag is also set when a request is received to grant write access for any
block which is alrcady owned with read access. Any uniprocessor receiving such
an access denial is responsible for requesting other uniprocessors to flush or
purge the contested block from their private caches. It does this by using send and
receive messages via the interprocessor-interrupt mechanism within the crossbar
switch. The procedure outlined above thus dynamically maintains cache con-
sistency.

The S-1 design provides a somewhat unconventional 1/O subsystem which
consists of many microcoded 1/O channels. Each channel is managed by an 1/0O
processor, The 1/O subsystem also contains 1/O buffers or memories which are
accessible as part of the S-1 processor’s address space. There is a 2K single-word
buffer for each channel. These I/O memories are shared between an S-1 processor
and an 1/O processor. On output, data is placed into the I/O memory and then
the 1/O processor is signalled to transmit the data to the device. Input is handled
similarly. These 1/0 memories are managed and assigned through the address-
space management mechanism of ghe S-1 processor. Thus processes may perform
I/O to devices if they have access to the 1/O memory shared with that I/O pro-
cessor. The S-1 architecture places little constraints on the 1/O processor, which
may be a commercially available minicomputer or specially designed hardware.

The I/O interconnection structure is designed to be simple and possess some
degree of fault tolerance. Each 1/O peripheral processor may be connected to
input-output ports on at least two uniprocessors, so that the failure of a single
uniprocessor does not isolate any input-output device from the multiprocessor
system. This fault-tolerance approach is used extensively in the design of the S-1
to achieve high reliability and availability, For reliability, all single-bit errors that
oceur in memory transactions are automatically corrected, and all double-bit
errors are detected regardless of whether the errors occur in the crossbar switch
or in the memory system. The crossbar can be configured to keep a backup copy
of every datum in memory so that the failure of any memory bank will not entail
the loss of crucial data. System maintenance is facilitated by connecting a diagnostic
computer to each uniprocessor, cach crossbar switch, and each memory bank. This
diagnostic computer can probe, report, and change the internal state of all modules
that it monitors, L

9.3.2 Multiprocessing Uniprocessors

The performance of cach Mark IIA is achieved by extensive pipelining due to
advances in microcode, hardware structure, and implementation technology.

662 COMPUTLR ARCHITECTURE AND PARALLEL PROCESSING

Each uniprocessor has a virtual address space of 22 thirty-six-bit words, uniformly
addressable i quarterwords, halfwords, singlewords, and doublewords. The
processor has 16 register sets for fast context switching and each register set has
32 general-purpose 36-bil registers. Two registers are used 1o maintain the pro-
cessor and user status. The virtual address space is segmented to promote modular
sharing and separate aceess for each user or tusk. Variable size segments are
implemented and bounds checking is performed Tor reliability. The protection
mechanism used in cach processor is similar 10 the ring protection system in the
Multics. Separate address spaces are allowed for cach of the four rings which
provide concentric levels of privilege. Galtes at cach level provide the necessary
protection interface for procedure calls 1o the kernel,

Facilities are included 1o perform arithmetic and logical operations on various
diata types. The data types include boolean, integer, floating-point with a set of
rounding modes. complex, veetors and matrices. The instruction set is optimized
to contain features for compilers and for operating system efficiency as well as for
arithmetic-intensive and real-time applications. In addition. special 1/0 instruc-
tions are provided to manipulate the contents of the 1O bufler. The interrupt
architecture consists of vectored interrupts with vector locations which can be
changed dynamically. Interrupts can be individually enabled or disabled and can
be programmed in cight priority levels. The processor priority is also able to be
reset. The uniprocessor has been designed to permit high-speed emulation of
general instruction set architectures,

The uniprocessor is designed especially to facilitate pipelined parallelism in
the fetching and decoding of instructions, the associated fetching of instruction
operands, and the eventual execution of instructions. The preparation and execu-
tion of instructions that specifly both scalar and vector operations are pipelined.
Every instruction proceeds through multiple pipeline stages. including instruction
preparation, operand preparation, and exccution. Figure 9.7 depicts the internal
logical structure of the S-1 Mark I1A uniprocessors. The processor consists of
five major sections which are extremely fast. relatively special-purpose program-
mable controllers that operate in parallel to provide high performange.

Four sections that form the instruction pipeline are for instruction fetch
(F sequencer), instruction decode (Psequencer). operand preparation (I sequencer),
and arithmetic exccution (A module). These sections are internally pipelined to
achieve a maximum instruction-issue rate of one mmstruction per 50 ns, which
is equivalent to a maximum data throughput rate of 720 million bytes/s. The
maximum computation rate of the pipeline is 400 megaflops. The sequencers
and the A module are I avily microcode controlled with a total of 2.5 million
control store bits with a 10tal microword width of 996 bits. A microcode is an
architecture which defines very low-level program that precisely specifies the
operation of every pipeline stage,

Figure 9.8 shows the instruction unit pipeline diagram o consist of 11 major
segments, Some stages of the pipeline, particularly those dealing with operand-
address arithmetic and instruction execution. necessarily have o wide variety of
functions, since the pipeline must process a wide variety of instructions. This

240)s
[O1IUOD 2|qeI M

21018
[011U03 J|qeIL M

(3npow)
nun

(423u3nbas |)
1un uonesedasd

" (6Lel

*£10IRI0QET] [FUONEN 310w u1Me] 1 133{01d -G Jo £591n0)) *Jossaz0adyun V] YIEL [-S 3D o amydas edrdo| pusaguy ay | (76 ey

21015
[043U03 JjqEIL AL

1008
[043u02 J|qEIn

(130uanbas 4)

L)

Mmawynse pauyadig -puesadp
L 240]s 021018
BIEp - EEp ETTRLAR 1 Ty
ol 9-1 0/1
A A
s1a181820 1351
¥ :
L 0 g
108530010 fpes =] 105533044
o/l 9-1 or1

nun
2pO3IP-UOHAINLISU]

(420uanbas)
nun
Y313)-uondniisu|

ayoes
WYY 3pana wolINIsug
A
21015
[04U02 J|qeim
(13ouanbas py)
nun .
DBIUL-LIoWapy 1ol

JBQS504) JO susouderp 105522014
Alowaw e ——b— JDURUIIUIEW
wosj-o0| woiy-0y) -ansoudelqg

S0 Asauno)) -5 ul weadep augadid yun uopanasuy g andy
ol 61 81 Ll 9l
S MdOo [ddo [m Vs |y v [Ii19m
DTN SNVAL | dvms IXaWanv| ¥03y | avawssawagy o3u L
¥ IHOVY ALND3X3 xoaY do ALVIO¥ | 3LVION [®3HOVO | aHov) viva NOLLVISNWY |
rl £l Zl 1]
JLLAWHLINY Vi 1avad o3y wisNiowoIw Y LSNIONDIN avay
ss3daay viva REL X3aNI HOL34 O3S HJ134 DIS-d

AHIVD HISN]

e d

EXAMPLE MULTIPROCESSOR SYSTEMS 668

variability in operation is effected through the extensive use of microcode. The
variability built into the microcode-controlled pipeline also facilitates high
performance emulation of other computers. The instruction sequence starts with
an instruction cache read. The private cache associated with each processor is
partitioned into instruction cache and data cache to achicve a high bandwidth.
Each cache is organized as a four-way set-associative memory with 16 words per
block. Both caches are vector-structured; that is. in the instruction cache, a cache
read can retrieve three consecutive instruction words starting at any word bound-
ary. In the data cache, reads can retrieve eight consccutive halfwords starting at
any halfword boundary. The instruction and data caches have capacities of 16K
bytes and 64K bytes, respectively. The cache replacement policy is the least
recently used algorithm.

The M sequencer predecodes instructions when loading the instruction cache
from memory on a cache miss. Predecoded information includes instructions of a
length of one, two or three words, branch offset and branch prediction. The
predecoding of instructions allows branches which are relative to the program
counter (PC) to be computed in one cycle within 8K bytes of the PC. Branch instruc-
tions are predicted to allow the pipeline processing to continue. The success or
failure of previous predictions are used to make better predictions. This is facili-
tated by recording the prediction for each location in the instruction cache with a
single bit. For the first execution, an initial prediction is used based on the instruc-
tion type. A prediction failure causes an opposite prediction to be tried on the
next execution, This technique has been found to correctly predict about 98
percent of all instructions for a typical compilation.

The P sequencer is used to calculate constants and register operands. Each
P sequencer instruction calls an 1 sequencer subroutine. The I sequencer subse-
quently calculates all operand types and complex branch addresses. An operand
queuc (not shown) exists between the 1 sequencer and the pipelined arithmetic A
module to buffer up to 16 operands of 1 to 16 bytes each. This buffering smooths
out the flow of operands between the I sequencer and the A module. Also, the
write queue (not shown) is placed between the A module and the data cache or
register to keep track of pending writes from the A module. This queue also
detects attempts by the A module to use data-cache locations which have been
scheduled to be written by other units (such as other processors). The A module,
which runs at twice the rate of other segments, performs the execution part of
instruction processing.

The address-translation mechanism ingeniously maps a 31-bit virtual address
into a 34-bit physical address, providing both scgmentation and paging. It provides
four different virtual address spaccs, onc per ring, which may overlap. A page is
4096 quarterwords long. Because a single address space may contain ds many as
2'% pages, it is evident that the page mapping tables may themsclves be paged.
The address translation mechanism has four different steps. Instead of a giant page
table of 2'? entries, it usecs many little page tables cach of 16 entries long.
Hence, not every page table needs to be in memory at once. The 16 pages pointed
to by one page table make up a segmentito.

666 COMPUTER ARCHITECTURE AND PARALLLT PROCESSING

A giant table called a descriptor segment contains a pointer to each of the
(at most) 2'% page tables for each of the four virtual address spaces. Hence, there
are at most 2'7 page tables. If the descriptor segment were placed in memory
permanently, an address reference would require two translations: one to find
the proper page table and another to find the proper page. However, the descriptor
segment itsell is composed of pages which are grouped into segmentitos, so that
an address reference would first require two translations. The first finds the
appropriate point in the descriptor segment, and then two more translations find
the target address. Figure 9.9 traces the entire address translation process,

A register called the deseriptor segment pointer holds the 34-bit physical address
of the first word of the descriptor segmentito table (DST). Because the descriptor
segment points to (at most) four sets of 2' segmentitos und cach pointer requires
cight quarterwords, the descriptor segment never exceeds 22¢ quarterwords. That
translates into a maximum of 16 segmentitos, which implies that there are at most
16 entries (called segmentito table entries) in the DST. The two-bit number of the
ring being accessed together with the least two bits of the virtual address select an
entry from the 16 in the DST. In turn, that entry paints to the physical address of
the first word of a descriptor page table (DPT), which has an entry (called a page
tahle entry) for each of the 16 pages comprising that segmentito. Bits (28:255 of
the virtual address select one entry from the 16 in that particular DPT, which
points to one page of the descriptor segment itself. The descriptor segment contains
pointers to segmentitos that make up the four virtual address spaces. The address
translation process can be followed through to obtain the physical address.

It should be noted that the entire mapping structure provided need not be
used. A segmentito or page table entry may be full either because the corresponding
segmentito or page is absent from memaory or because the virtual address space in
question is smaller than the maximum allowable size, The address translation
process outlined above will be inefficient if every address translation goes through
many indirect references. This is alleviated by providing map cache units (lookaside
buffers) which hold the most recent translations.

In addition, each map contains an 11-bit address-space identification field
which allows translations for multiple users to coexist in the map caches. The
instruction address translation unit is one-way set-associative with 1024 entries,
Two copies are provided to translate addresses of the beginning and end of
multiple-word instructions to avoid faulting within an instruction. The operand
address translation unit is four-way set-associative with 1024 entries, Two copics
are also provided to translate addresses of the beginning and end of multiple-
word operands in an instruction. This scheme also avoids faulting within an
instruction cycle.

The expected performance of Mark T1A uniprocessors is compared with the
CDC 7600 and the Cray-1 on several important benchmark miniprograms in Table
9.2. Notice that the Mark 11A computes these benchmarks at roughly the same
speed as the Cray-1 and almost twice the speed of the CDC 7600, The Cray-1 has
a performance of two to four times greater than the CDC 7600, The S-1 results
assume the use of 36-hit floating-point numbers. However, neither the CDC 7600

EXAMPLE MULTIPROCESSOR SYSTH M5 667

Virtual address

| Ring# l I Descriptor address l Target address

1 0 10 25 24 0
1
| DSegmentito#] I)Pagel‘]
10 29 28 25 .
Descriptor
@_; Segmentito table
4
noo (4*Ring# +
DSegmentito#)*8QW
¥ Descriptor
age table
STE - E '
DPagel*4QW
PTE
Translated
descriplor _
adidiess I TSegmentito# | TPagew l Offset]
24 16 15 12 1]
Target
Segmentito table -
(1 page of the
4 descriptor segment)
il :
TSegmentito#*8QW
t Target
e table
STE - = :
TPage# *4QW
PTE
Y

L :]
23 12 11 0
Physical address

Figure 9.9 Virtual-to-physical address transtation I:|..:$-I « (Courtesy of S-1 Project at Lawrence Livermore
National La%oratory, 1979,)

668 COMPUTER ARCHITECT TRE AND PARALLE] PROCESSING

Table 9.2 Comparison of the expected performances of the S-1 Mark I1A Unipro-
cessor, the Cray-1, and the CDC 7600,

Computation rate, megaflops

S-1 Mark 11A Cray-1
Miniprogram Miniprogram function Scalar Vector Scalar Vector CDC 7600
——ee T RN S el
1 Hydro excerpt 21 59 9.3 71 3.3
2 Unrolled inner product 1 74 LR 47 6.6
J Inner product 5.0 65 44 62 4.6
5 Tridiagonal elimination 7.5 7.5 76 1.6 40
7 Equation-of-state excerpl 13 46 126 RO 73
- o —_—

nor the Cray-1 provides a low-precision floating-point format. The Cray-1 has
only a 64-bit word format. For signal or real-time processing applications, the
Mark A is expected 1o perform about four times better than the Cray-1. The S-1
Mark I1A uniprocessor is built out of ECL 100K medium-scale integrated circuits
in performance-critical areas and ECL 10K circuits clsewhere, However, the §-] is
stll not realized and the expected performance being reported may be rather
optimistic.

9.3.3 S-1 Software Development

The major software arcas addressed for the S-| multiprocessor system are the
Programming language support, single-user and multiuser operating systems.
the advanced operating system, and the system design facility. Basic languages
Supported by S-1 include Pascal, Fortran, C, Ada, New Implementation of LISP
(NIL), and FASM - the Mark 11A assembler. The Pascal compiler was enhanced
with improved type definition, module definition, exception handling, and
additional control constructs. The Clanguage will be based on the Unix implemen-
tation and can be casily transported to the single-user, multiuser and advanced
operating system,

The single-user operating system (OS-0) is a simple stand-alone system which
runs a single task at 4 time and provides only basic 1/O functions, The OS-0 was
opcrational on the Mark | processor and used in the hardware system design tool.
The 08-0 is also designed to support the testing of processors and provide a
minimal base for other operating systems. The mudriuser operating system (OS-1)
to be developed will be based on the Unix operating system because it is a small,
relatively powerful system and has demonstrated a suitability for transport.
Morcover, it is well known to a large community and has a late body of software
available from the user community.,

The advanced operating system for the S-1 is the I'ull-!'unctinnalil_\' Amber.
The Amber supports a mix of applications which include real-time systems (e.g.
signal processing), interactive use (.8 program development), computation-

EXAMPLE MULTIPROCESSOR SYSTEMS 669

intensive problems (c.g., physical simulation), and sccure environments for data.
It also supports full use of the S-1 architectural features by providing multiprocessor
support, the management of large, segmented address space, and exploitation of
reliability features. The Amber O/S combines functions of the file system and
virtual memory. The file directory structure is hierarchical and trge structured.
Files are represented as segments. Segmentation facilitates dynamic linking. A
demand-paging policy is used to copy pages directly between disk records and
main memory. Page replacement works globally on all of main memory and uses
the approximate least-recently-used algorithm for eviction of pages. The LRU is
not always optimal for some applications such as real-time applications. In such
cases, other placement and replacement algorithms are used.

The Amber O/S supports multitasking by the division of problems into co-
operating tasks. It also provides low- and high-level scheduling features. The low-
level features provide simple mechanisms for real-time applications. Examples are
priority scheduling with round-robin queues, dedicated processor assignments,
and interrupt processing. The high-level scheduler may implement complex
features such as resource allocation and load balancing on multiprocessor
configurations. Interprocess communication techniques such as message channels
are provided. Other synchronization techniques supported are software interrupts
and event notifications. Time-outs on event waits are also implemented. The
Amber also possesses features to enhance availability and maintainability. Time-
outs on all waits and suspension of processes are performed to prevent deadlock
situations. Monitor tasks run concyrrently with user and system tasks to detect
hardware malfunctions.

9.4 THE HEP MULTIPROCESSOR SYSTEM

The Heterogenous Element Processor (HEP) is a large-scale scientific multi-
processor system which can execute a number of sequential (SISD) or parallel
(MIMD) programs simultaneously. The system contains up to 16 process execution
modules (PEM) and up to 128 data memory modules (DMM). The PEMs or
DMMs are connected with the 1/O and control subsystem via a high-speed
switching network. The PEM is the computational element of the HEP. In this
section, we describe the architecture of the HEP, the organization of the PEM,
and extensions made to the programming language to facilitate parallel processing
on the HEP.

9.4.1 The HEP System Architecture

The HEP is the first commercially available MIMD multiprocessor system. An
example configuration of the HEP with 28 switching nodes is shown in Figure
9.10. This configuration consists of four PEMs, four DMMs, a mass-storage
subsystem, an 1/O control processor, and node connections to four other devices.
We shall describe the mass-storage subsystem and the switch network in this

670 compunr ARCHITECTURE AND PARALLEL i WIASSING »

Processor

Processor Processor Processor

Packet
Swilched
Network

Data
memory

Data
memory

memaory

1/0 cache

Other
17O
devices

1/0
control

140 channels

Mass storage devices

Figure 910 The architecture of a typical HEP system with four processors. (Courtesy of Denelcor, Inc.,
1982.)

section. All instructions and data words in the HEP are 64 bits wide, although
data references within the PEM can access halfword, quarterword, and bytes.

The mass-storage subsystem The mass-stora ge subsystem consists of three major
components. A large MOS bufler memory provides an I/O cache function to mask
the seck and rotational delays of disks. Disk storage modules provide storage
increments of 600 megabytes. 1/O channels couple the disk storage modules (o
the 1/O cache and are controlled by the /O control processor. Figure 9.11 illus-
trates the components of the mass-storiage subsystem. The ciche memory, which
18 cight-way interleaved with a 400-ns cycle time, may be expanded from the initial
8 megabytes to 128 megabytes in increments of § megabytes. Cache accesses are
only in full words: at peak rate, a word can be accessed every 50 ns. The system
can handle up to 32 110 channels, with cach channel supporting a transfer rate
of up to 2.5 megabytes/s. Therefore, the eache memory can accommodate all
channels simultancously, thus yielding a potential transfer rate of 80 megabytes s,

Figure 9.12 identifies the relationship of the various elements in the mass-
storiage subsystem (MSS). In this figureia PDP 11744 is used as an /O and control

EXAMPLE MULTIPROCISSOR SYSTIMS 671

Switch network

1/0) cache
To 1/O and MEMOEY
control
. ITTTTTTT
e 170 channels
[FRNEREE

|— Controller

I_ Special
2 1 Cham_icl-tu-channcl : pf::m
= . . interface . 170
-
-
- 'Q
Magnetic =
tape

Disk storage
modules

Figure 9.11 The mass storage system (MSS) in the HEP, (Courtesy of Denelcor, Inc., 1982.)

processor (IOCP) to control the communication between the disk controllers
and their interfaces to cache memory. This control is accomplished via an IOP
command bus. In particular, the IOCP is used by the HEP system software as the
scheduler for all 1/0 activities on the MSS. The IOCP also has direct access (o
cache memory control for data transmission via an allocated channel. This
permits the IOCP to have direct access 1o data in the cache memory. Each disk
storage module consists of two disk drives. One of the first two drives is dual ported
in order to permit a direct connection from the drive to a disk controller i the
PDP 11/44. This allows initial program load dri:-0.

Each of the IOPs (1 through 31) consists of an 10CP bus interface, an 1,0
controller and a cache interface. The 10P bus interface has access to the PDP
11,44 unibus via the IOP command bus and an [OP controller interface. This
extends the PDP 11/44 addressing capability to the 1OP bus interface. All the 1O
channels are converted to an 1OP snapshor device in the cache memory control.
This device seans the status of all 32 channels and can service request to transfer

('T861 “up ta03j3uaqg Jo £sapno)) “gAH JO SSIN Y3 ul sjuduodwod [euogdung Z|'G 2and) 4

5 e e R e A oD

A1owWwaw Ydsed O/

i

jodiuos
fowaw ayaey

depawy |
- yamg [T
er/11-dad
d201 b
r
EEOTET
13][041uD 0 I
- - -

_r

d01

HYERN

1€
dOl

snq pUBILILINd JOf

- 0

: JALp

uod [eng : e »ia
|

i += aaup

m ¥sta

aaup
Al

I
Jaup

=a

D —

e smssssasarcnnsnncoss sesimenss sn mrmmmanann snis

672

EXAMPLE MULTIPROCISSOR SYSTEMS 673

a word for a channel every 100 ns. Cache memory request messages are received
from the switch network through the switch interface. This interface is coupled to
a switch node and can service a memory request from the switch every 100 ns.

The packet switching network The HEP switch is a synchronous, pipelined,
packet-switched network consisting of an arbitrary number of nodes. Each node,
which consists of three full duplex ports, is connected to its neighbors. These
neighbors may be PEMs, DM Ms, subsystems, or other nodes, Figure 9.13 depicts
the HEP switching node. Each node reccives three message packets on cach of
its three ports every 100 ns and altemplts to route the messages in such a way that

-
L
Port A input Port B input | Port Cinput |
e Request - Request > Request
RAM) RAM RAM
1 lr r T 1 Y

Routing logic

L] ¥

[rotoon | [romsormn | [Torcomm]
! i |

(5 Routing control

Figure 9.13 Switching node in the HEIs interconnection network. (Courtesy of Denelear, Inc.. 1982

674 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

the distance from cach message (o its addressed destination is reduced. This is
accomplished by incorporating within each node three routing tables (one per
port). which are loaded when the system is configured. Thus, each switch node is
programmed to know the best output port routing to the final destination. Such
programmed routing techniques allow for alternate routing to bypass a faulty
component. In practice, the actual routing is determined by the best routing path
and by priority in the case of conflicts. The priority is implemented by the use of
dge counters which increment with each nonoptimal routing.

A unique feature of the switching network is that the switch nodes do not
enqueue packets. These packets are routed by the switch nodes every 50 ns regard-
less of port contention. The modularity of the switching network permits field
expandability. The increased memory access times that result from the greater
physical distances between the PEMs and the DMMs can be compensated for in
two ways. Each PEM contains a local memory large enough to buffer most of the
program codes. Since each switch node is pipelined, each processor can exccute
a large number of instruction streams concurrently.

9.4.2 Process Execution Modules

The PEM is designed to exccute multiple independent instruction streams on
multiple data streams simultancously. This is accomplished by pipelining cach
PEM with multiple functional units. Before presenting the organization of the
PEM, we illustrate how the concurrency in execution of the MIMD streams is
implemented. In the first casc, consider a single instruction (SISD) stream which
is being executed by a conventional (SISD) processor, as shown in Figure 9.14a,
Very little overlap in execution can be achieved. Even with instruction-lookahead
capability, the dependency constraints resulting from conditional branch instruc-
tions limited the concurrency significantly. So also are the SIMD processors in
Figure 9.14b. These are vector-oriented computations. Because of the occurrence
of conditional branch instructions, the performance may be degraded. The machine
may have to wait for the total completion of the instruction before proceeding. That
is, the conditional branches could not make use of the replicated hardware.

However, by providing multiple independent instruction streams executing
multiple data streams in a pipelined execution environment, maximum
parallelism can be achieved. For the example shown in Figure 9.14¢, while an
ADD is in progress for one process, a multiply may be executing for another, a
divide for a third and a branch for a fourth. Because the multiple instructions
executed concurrently by an MIMD machine are independent of each other, the
execution of one instruction does not influence the execution of other instructions
and full parallelism in processing may be achieved. Note, however, that a single
process does not achieve any speedup in such a scheme as was accomplished in
the IBM 360/91 system.

Each PEM consists of its own program memory and an instruction processing
unit (IPU). as shown in Figure 9.15. The program memory in each PEM has a
capacity ranging from | to 8 megabytes. Instructions of active processes which are

Teda

Program Program
Data Dala L]
Branch Branch
Divide [Dvide
Multiply J Multiply \ y 5
Add A B Add E F|] G H
1 1 Al
Add »ALU + + T
I |
Result Result Result
e
A+B E+F G+H-
Add Add Add
LR}
(@) SISD processing (b) SIMD processing
Process Process Process Process
I 2 3 4 =
"ee Data
Branch Add Multiply| | Divide
Divide | | Branch Add Muliiply
Multiply| | Divide Branch Add J A 4
Add | [Multiply| [Divide | [Branch T HF
Branch
I . + Ty
Result Result
il il
C+D E+F
Divide - :
Multiply
Add

(c) MIMD processing

Figure 9.14 Achieving maximal paraliclism with replicated hardware in the HED, (Courtesy of Denelcor,

Inc., 1982,

|

678

676 coMmruTIR ARCHITECTURE AN PARALLEL PROCESSING

Program memory

r.--_.-...-....-.---...-.........--...-..-.-_.-‘.A....._--------.--.1
: Register Consts t

: memary ‘onstant memory :

i — = :

. Task '

i queues : Instruction
1 Control units % i processing
; Task 1 unit (1PU)
H quecues '

: CFULIFU| + | o |spi| 5| s | ua ;

i) : Function
! Create function SFU|l s S 5 fe——7 "'

: ioounits

Switch

Figure 9.15 Functional description of HEP's process execution module. iCouﬂesy of Denelcor, Inc.,
1982.)

allocated to a PEM are buffered in the program memory. These instructions are
fetched from the program memory every 100 ns with concurrent decoding and
execution of previously fetched instructions, as depicted in Figure 9.16. Up to 50
instructions may be in various stages of execution operating on one or more data
streams simultancously. However, the instruction fetch unit does not seem to
permit simultaneity in instruction letches and decodes, Also, there is only one
instruction fetch unit in the PEM. For these reasons, the performance of the HEP
processor may be limited to one instruction cycle per 100 ns. This may subsequently
limit the effective utilization of the functional units.

ThelPUin each PEM includes 2048 interchangeable general-purpose registers,
as well as constant memory and function units, The constant memory is used to
store user program constants and is read-on ly by user programs. The 4096 locations
in the constant memory eliminate the need for data memory accesses for program
constants. The function units implement the HEP instruction set, which includes
. extensions used to coordinate MIMD processing. In addition, the IPU has pro-
visions for four expansion function units. These units may be used for custom or
special-purpose instructions at the user’s option.

In the HEP system, a set of cooperating process® constitute a task, Tasks and
processes can be of two types: user or su pervisor. The execution environment of a
task is its task domain, which is defined by a 64-bit task status word (TSW). The
TSW provides protection and relocation information for each task by a specifica-
tion partition of the program, constant. register and data memories into areas,

EXAMPLE MULTIPROCESSOR SYSTEMS 677

Program
memory
Y
——
Instruction Operand OP 1 .
Process queue fetch [feich - Registers
" Op 2
[
Functional units
Increment control - Multiply >~
Add -
-
-
-
- = Divide N

Figure 9.16 Instruction execution and data flow in the HEP.

This information is encoded as the program base, program limit, data base, data
limit, constant base, register base, and register limit. All virtual addressing to
operands is relative to the base addresses in the memory area in which they are
stored. A rask status register is used to hold the TSW for each task domain. A
16-entry task queue, where cach entry contains a unique TSW, is used to imple-
ment a simple first-in first-out discipline in deciding which ready-to-run task to
schedule. The task queue is equally divided for user and supervisor tasks.

In addition (o the TSW, there is a process status word (PSW), which contains
a 20-bit program counter and other state information for a HEP process. Each
PSW points to an instruction that is ready for execution. There is a process tag
(PT) in the task queue for each PSW that points 1o an instruction that is ready for
exceution. When a task is first initiated, it has only one PSW; that is, one process.
The software creates additional PSWs as new processes are created to initiate
parallel processing within a task. There is a PSW queue which can hold a total
of 128 PSWs: 64 for user processes and 64 for supervisor processes.

These PSWs in the process queue circulate in a control loop which includes
an incrementer and a pipeline delay. The delay is such that a particular PSW
cannot circulate around the control loop any faster than data can circulute around

678 COMPUTIR ARCHITECTURE AND PARALLEL PROCESSING

the data loop consisting of general-purpose registers and the function units. As
the program counter in a circulating PSW increments to poinl 1o successive
instructions in program memory, the function units are able 10 complete cach
instruction in time to allow the next instruction for that PSW to be influenced by
its cffects. The control and data loops are pipelined in cight 100-ns segments, 5o
that as long as at least cight PSWs are in the control loop, the processor exccutes
10 MIPS. However, a particular process cannot exccute faster than 1.25 MIPS,
and will execute at a lesser rate if more than cight PSWs arc in the control loop.

The instruction issuing operation maintains a fair allocation of resources
between tasks first and between processes within a task second. The main schedule
contains 16 task queues, cach containing up to 64 PTs. A sccondary queue called
the snapshot queue records the head PT in cach task queue cach time the snap-
shot queue becomes empty. PTs arriving one at a time from the snapshot queue
cause the issuing of an instruction from the corresponding process into the
exccution pipeline,

A control unit cooperates with the function units to execute instructions in
the IPU. The control unit selects an instruction for execution from one of the task
queucs, fetches the instruetion, addresses the operands, and passes the instruction
operation code and the operands to one of the function units to perform the
specified operation. There are two types of function units: synchronous and
asynchronous. The synchronous function units are pipelined with eight linear
segments and a segment time of 100 ns. Thus, instructions are completed in
800 ns. Examples of synchronous function units are the floating-point adder
(+), the multiplier function (*), the integer function unit (IFU), the create function
unit (CFU), the hardware access (HA) unit, and the system performance instru-
ment (SPI).

The CFU performs all operations affecting the PSWs, This includes activat ing
and terminating processes, incrementing the program counter in a PSW that has
had an instruction executed, and executing branch and supervisor call instructions.
The HA executes all instructions to read or write program memory and performs
bit encode and decode operations. The SPI collects data for performance measure-
ment and monitoring counters and_tracks the number of instructions executed by
tasks. This allows billing the user for the amount of work done regardless of the
time required because of overheads.

Asynchronous function units do not necessarily complete their operations
within 800 ns. Examples of such function units are the divider (=)and the scheduler
(SFU). The divide function unit consists of up to eight individual divider modules
which asynchronously execute 64-bit floating-point divide instructions. Divide
instructions are initiated at a rate of one every 100 ns until all divider modules are
busy. Each module can execute a divide instruction every 1700 ns. This is the only
function unit in the IPU that is not pipelined. The SFU is both synchronous and
asynchronous, and executes all instructions involving data transfers between
register memory and data memory. Transfers that pass through the switch are
executed asynchronously; all others are exccuted synchronously. The SFU can
aceept a new instruction every 100 ns.

EXAMPLE MULTIPROCESSOR SYSTEMS 679

When a data-transfer instruction is executed, the SFU sends a switch message
packet containing a 32-bit data memory address, a return address identifying both
processor and process, and 64 bits of data if a store instruction was exceuted, The
SKFU also removes the process that exccuted the instruction from the control loop
and does not reinsert it until a response packet is received from the switch, When
that response packet arrives, the SFU writes the data portion of the response in
the appropriate register if a load instruction was executed. In order to perform
these functions, the SFU is equipped with a queuce similar to the queuein the control
loop of the processor proper, and a process migrates frecly between these two
Queues as 1L initiates and completes data-memory reference instructions. An
important consequence is that while processes are in the SFU queue they are not
present in the control loop queue and thus do not consume the valuable compu-
tational cycles while memory operation references are in progress.

The waiting period experienced by a process which encountered a conflicting
Access 0 memory or a busy resource does not cause the IPU to remain idle.In
fact, the IPU switches context every 100-ns cycle. The rapid context switching is
facilitated by its hardware implementation, Recall that the IPU has a program
status register and 40 general-purpose registers for cach user process. These
register sets eliminate the need (o save and restore program context when switching
between users. Thus, the IPU multiplexes the execution of instructions from up
to 128 instruction streams. This is done because the initiation of an instruction
execution must often wait for the results from the instruction immediately preced-
ing it. The IPU uses this waiting time 1o initiate instructions from other active
instruction streams. From 8 to 12 processes are usually sufficient for the IPU 1o
use all instruction cycles and thus achieve the 10 MIPS execution rate.

Protection mechanism Protection of one user process from another is accomplished
in HEP by various techniques. Nonprivileged processes in separate task domains
are prohibited from reading and writing the other’s genceral-purpose registers and
data memory by hardware address checking. All addresses are bounds-checked
against values in the TSW and access denied or permitted accordingly. Non-
privileged processes are also prohibited from directly initiating 1/O and from
modifying program memory, constant memory, the task and process queues. A
user process cannot change the environments of other user processes unless there
is controlled cooperation and their task domains overlap.

Synchronization mechanism Cooperating processes synchronize by means of
accesses to shared data, In HEP, this facility is provided by associating an access
state with each register memory and data memory locggion. In data memory, the
access states are full and empty ; a load instruction can be made to wait until the
addressed location is full and indivisibly (i.e., without allowing an intervening
reference 1o the location) set the location empty. Similarly. a store instruction can
wait for empty and then set full atany location in data memory, Inregister memory,
an instruction can require that both sources be full and the destination empty, and
then set both sources empty and the destination full. To ensure the indivisibility

6RO COMPUTTR ARCHITECTURE AND PARAL L1 PROCIESSING

of this Kind of operation, the third access state reserved is implemented in the
registers. The destination register is set reserved when the source data is sent to the
function units, and only when the function unit stores the result is the destination
set full. No instruction can successfully exccute if any of the registers it uses is
reserved.

A process failing to execute an instruction because of an improper register
access state is merely reinserted in the queue with an unincremented program
counter so that it will reattempt the instruction on its next turn for execution. A
program executing a load or store instruction that fails because of an improper
data-memory access state is reinserted in the SFU queucand generates anew switch
MESSAZe on its next attempt,

9.4.3 Parallel Processing on the HEP

Extensions were made to Fortran 77 in HEP to provide language support for
parallel processing. A special data type called the asynchronous variable was
introduced to enable synchronization between cooperating and competing pro-
cesses. The asynchronous variable type uses the access-state capability of the
HEP hardware to support the correct interaction between processes. An asyn-
chronous variable is identified with a § before the variable name. Such a variable
may be written into only when its location is empty and may only be fetched when
it is full. Either operation on an asynchronous variable that does not meet these
requirements waits under hardware control until the proper access state is set by
a parallel process.

The access state of each asynchronous variable is initially set empty or full by
the program. The HEP Fortran 77 provides two statements and five specially
designed intrinsic functions for manipulating and testing access states.

Single statements

A =8Q //Wait for full, read and set empty//
$Q =A //Wait for empty, write and set full//

Intrinsic functions

A =VALUE(SQ) //Access the value, regardless of state//
A = SETE(5Q) //Read regardless of state and set empty//

A = WAITF($Q) //Wait for full, but do not set empty//
L = FULL(sQ) //Test for full access state and return logical result//
L =EMPTY(SQ) //Test for empty access state and return logical result//

A PURGE statement is used to unconditionally set the a®cess state to empty.
Another class of extensions were made to Fortran 77 to allow parallel process
creation (similar to FORK) and termination (JOIN). The first statement. called
CREATE, 1s syntactically similar to a Fortran CALL, but it causes the created
subroutine to run in parallel with its creator. Another statement. called RESUME,
5 syntactically like a RETURN from a subroutine. However. it causes the caller
of 4 subroutine to resume execution in parallel with the subroutine. IT a sub-

EXAMPLE MULTIPROCESSOR SYSTEMS 681 -

routine was CREATEd, a RESUME has no effect. On the other hand,a RETURN
causes the termination of the process if it was CREATEd or if it previously executed
a RESUME.

HEP Fortran generates fully reentrant code and dynamically allocates
registers and local variables in data memory as required by the program. Hence, it
is easy lo create several processes which simultaneously execute identical programs
on different data. This can be accomplished by placing a CREATE statement in
a loop so that several parallel processes will execute identical programs on different
local data. An example of the implementation of parallel operations in the HEP
is given below.

Example 9.1

PURGE $IP, SNP
SNP = NPROCS
DO 101 = 2, NPROCS
$SIP=1-1
CREATE S($IP,SNP)
10 CONTINUE
$IP = NPROCS
CALL S(3IP.SNP)
C WAIT FORALL PROCESSES TO FINISH
20 N = $NP
SNP=N -

IF (N NE. 0) GO TO 20
SUBROUTINE S($ IP,SNP)

MYNUM = sip
SNP = SNP - 1
RETURN

END
In this example, the program creates NPROCS-| processes all executing
subroutine S, and then itself executes the subroutine S by calling it, with the result
that NPROCS p ocesses are ultimately exccuting S. The parameter SIP is used
here to identify each process uniquely. Since parameter addresses rather than
values are passed. sIP is asynchronous and is filled by the creating program and
emptied within S. This prevents the creating program from changing the value of
$IP until S has made a copy of it. The asynchronous variable sNP is used (o record
the number of processes executing S. When S is finished, §NP is decremented, and
when the creating program discovers that $NP has reached zero, all NPROCS
processes have completed execution of S (excepting possibly the RETURN
statement).
The following example considers converting a serial code into a paralle!
program in order to speed up the execution on the HEP.

e

DIMENSION A(270), B(270), C(270), D(270)

N = 270
E =00
DO 1001 =1, N
A(l) = A(1)**SIN(B(1))
IF (SIN(A(1)).GT.COS(C(1))) GO TO 10
A(l) = A(l) + C(I)
GO TO 20
10 A(l) = A(l) - D(I)
20 E=E+A()"2
100 CONTINUE

(a@) Se{‘ial code.
QOMMON A(270), B(270), C(270). D(270), $E

L = 270
N =20
PURGE SE, $IN, SIW
$E = 0.0
$IN =1
SIW = 0
DO 1001 =1, N
CREATE DOALL (SIN, SIW, L)
100 CONTINUE
200 IF (VALUE ($IW).L.T.L) GO TO 200

SUBROUTINE DOALL (SIN, $IW, L)
COMMON A(270), B(270), C(270), D(270), SE
1 I =$IN
SIN = | + 1 .
IF (LGT.L) GO TO 30
A(l) = A(1)**SIN(B(1))
IF (SIN(A(1)).GT.COS(C(l))) GO TO 10
A(l) = A(l) + C(1)
GO TO 20
10 A(l) = A(l) = D(1)
20 $E =SE + A(I)'"2
SIW = $IW + 1
GO TO 1
30 RETURN

(b) Parallel version.

Figure 9,17 Algorithm restructuring example in using HEP for parallel processing.

682

EXAMPLE MULTIPROCESSOR SYSTEMS 683

Example 9.2 The serial code shown in Figure 9.17¢ manipulates the lincar
array 4 with 270 elements and accumulates the square of the components of A
in a variable E. The asynchronous variables sE, $IN and $IW are introduced
in the parallel version of the program shown in Figure 9.17b $E is used to
mutually exclusively accumulate the square of A(i)'s when they are updated.
The parallel version creates 20 processes so that the granularity is significant
enough to have nontrivial processes. $IN 1s used to control aceesses to unique
components of A and sIN is used to terminate the parallelism when all
components of A have been updated and sE computed.

Another common technique allows processes to schedule themselves. In the
simplest case, a number of totally independent computational steps are to be
performed that significantly exceeds the number of processes available; moreover,
the execution time of the steps may be widely varying. Self-scheduling allows each
process to acquire the next computational step dynamically when it finishes the
previous one.

Example 9.3 The following example has a subroutine T which isto be executed
400 times. All iterations are assumed to be independent; 1.c.. none of the itera-
tions uses the output of any of the others. Four processes are initiated to do
the processing. The variable $START is used to keep track of the iteration
count and to assure that only 400 iterations are started. sDONE is used to
assure that all 400 iterations have completed before the main program con-
tinues. Statement 5 in the main program will cause the main program to non-
busy wait (i.e., consume no **CPU" cycles) for the 400th iteration to complete
and SALLDONE to be set full by statement 99:

PURGE $START, sSDONE, SALLDONE
$START =0
SDONE =0
CREATE T (SSTART, SDONE, SALLDONE)
CREATE T ($START, SDONE, SALLDONE)
CREATE T ($START, $DONE, SALLDONE)
CALL T ($START, SDONE, SALLDONE)

5 DUMMY = SALLDONE

END

SUBROUTINE T (5START, $DONE, SALLDONE)
10 1=19+1

IF (.G E.400) GO TO 99

E W

$SDONE = SDONE + 1

GO TO 10
99 IF (VALUE (SDONE).EQ.400) SALLDONE = 1

RETURN

END

684 COMPUTFR ARCHITECTURE AND PARALLEL PROCESSING

Self-scheduling is an excellent technique for programs which have steps with
widely varying execution times because it balances the work load among available
processes. There are many other techniques which have been used to exploit the
HEP's parallcl architecture,

There are many applications of the HEP machine. It has been suggested to
handle the traditional multiprogramming of SISD programs. The application
for which HEP was originally designed was the solution of large-scale systems of
differential equations, such as those describing flight dynamics problems. Another
problem for which the HEP is suitable is the partial differential equations describ-
ing continuous meshes. An application area for which the HEP would have a
tremendous potential is in the simulation of a discrete event system or process-
driven simulation. However, the application areas for HEP are not limited to the
above. The architecture is quite flexible for a wide variety of applications.

9.5 MAINFRAME MULTIPROCESSOR SYSTEMS

This section describes some commerical multiprocessor mainframe systems. The
systems to be described do not achieve their performance by decomposing a user
SISD algorithm into MIMD processes. Instead, the multiprocessor operating
systems achieve concurrency through explicit parallelism. The system performance
is achicved by mostly concurrent execution of independent and noninteracting
user processes. Most commercial multiprocessors offer fairly loose coupling.
Of course, the degree of coupling varies from system to system.

9.5.1 IBM 370/168MP, 3033, and 3081

The architecture of the IBM System/370 is extended from the IBM System/360.
A scries of models were developed in the System/370. Different models in the
System/370 represent different performance levels. Most models of the System/370
arc SISD machines with a uniprocessor. Multiprocessing is only an added-on
feature of the serics for the top of line in performance. In 1966, the IBM S/360
Model 67 was introduced as a dual-processor time-sharing system. The S/360
Model 65 MP is a dual-processor version of the standard Model 65. In 1974, the
IBM S/370 Models 158 MP and 168 MP were introduced as dual-processor systems
with shared real and virtual shortage. In 1976, IBM introduced the S/370 Models
158 AP and 168 AP as asymmetric multiprocessors. The code MP stands for
multiprocessing and AP for attached processing. In this section, we describe the
architectural evolution of the IBM 370/168 for both MP and AP. Processor and
operating system features for various 370/168 multiprocessor configurations are
then reviewed with emphasis on their capabilities. We will also compare the
370/168 MP with the enhanced IBM 3033 and 3081 multiprocessor systems.

A uniprocessor IBM 370/168 configuration is shown in Figure 9.18. The main
memory is divided into four logical storage units (LSU), which form a four-way
interleaved memory system. The memory access and conflict resolution is con-

EXAMPLE MULTIPROCESSOR SYSTEMS 685

Main memory modules

LSy, LSy, LSU, LSU,
7 \] i k Processor
slorage
r i TPS)

Storage controller (SC)

s
[

370/168 CPU

T -

Block multiplexer channels
(up to 12)

LSU: logical storage unit
Figure 9.18 An 1B\ 370/168 uniprocessor configuration. (Courtesy of International Business Machines
Corp.. 1978.)

trolled by the storage controller. There is only one central processing unit (CPU)
which contains the pipelined instruction decode and cexecution units together
with a fast cache. Multiple 1/O channels can be connected to the CPU. Each
channel is a specialized 1/O processor with a simple I/O instruction set and operates
asynchronously with the CPU. An AP configuration for the IBM 370/168 is
illustrated in Figure 9.19. It is extended from the uniprocessor configuration by
attaching an attached processing unit (APU).

The APU is almost identical to the standard 370/168 CPU except no 1/O
channels can be attached to it. Both the CPU and APU have their own caches.
The cache coherence problem is resolved by using the cache invalidate (CI) lines
between the CPU and APU. The interprocessor communication (1PC) lines are
used for exchanging information or interrupt signals directed between the two
processors. The structure is considered asymmetric because the APU is devoted
exclusively to computation and the CPU handles both internal computation and
I/0 communications. The multisystem control unit (MCU) performs the inter-
connection switching functions between the processors and the shared memory
modules.

An MP configuration of the IBM 370/168 is shown in Figure 9.20. Instead of
attaching an APU. another CPU is used to form a symmetric dual-processor
svstem. This MP configuration is composed of two 370/168 uniprocessor systems
with shared memories. The two CPUs have equal capabilities. Two sets of 11O

686 COMPUTER ARCHITEC TURS AND PARALLEL PROCESSING

Il..‘sul LSU | see |LSU| |LSU] ILSU' e |l.§U|
1 i ' / 3
\

i 4!‘ r i 2

Ps

, .

L

5C

|
| Multisystemn control unit (MCu) - |

P S——
CPU APU
IPC -
Attached processing unit
LER]
170 channels
Figure 9.19 An IBM 370/168 AP configuration. (Courtesy of International Business Machines Corp.,
1978.)
PSO PS,
'\ 4
Y 1
MCU =
A
Y i
S o IR
CPU, CPU,
""" e
aes LR
Channels Channels
Figure 9.20 An 1BM 370/168 MP conliguration. (Courtesy of International Business Machines Corp.,
1978.)

EXAMPLE MULTIPROCESSOR SYSTEMS 687

channels attached to each CPU are mutually exclusive and cannot communicate
with each other directly. The MCU provides the necessary interconnection hard-
ware between the two CPUs and shared memories. It also contains a configuration
control panel for the purpose of manual systems reconfiguration,

In the IBM 370/158 MP configuration, two processors share from 1 to 8§
million bytes of main storage. Fach processor has a scparate 8K-byte cache with
230-ns access time of § bytes. The two processors in the 370/168 MP share from
2 to 16 million bytes of main storage. Each CPU has cither an 8K-byte or 16K-
byte cache with a reduced 80-ns access time of § bytes. The model 158 has 10
block multiplexor channels, while the model 168 can have up to 22 block multiplex-
or channels. The block multiplexor channels permit concurrent processing of
multiple channel programs for various speed peripheral devices, as was illustrated
in Section 2.5. The Model 168 is enhanced from the Model 158 mainly in the area
of memory and 1/O subsystems. Their CPUs essentially have the same capabilities.

The 370/168 MP configuration is considered loosely coupled because two
separate copies of operating systems are running in the two CPUs. An IBM 370/168
uniprocessor system can also be reconfigured to a tightly coupled multiprocessing
system of dual CPUs with shared memories and shared I/O devices, as shown in
Figure 9.21. The two CPUs are tightly coupled by a single copy of the operating
system in the shared memory. A tightly coupled CPU pair can also be loosely
coupled with another uniprocessor CPU to form a mixture multiprocessor system,
as demonstrated in Figure 9.22. This is really a tightly coupled multiprocessor in a
loosely coupled configuration. The tightly coupled dual CPU and the uniprocessor
share some direct-access devices, such as disk, and some tape units. A channel-to-
channel adaptor can be used 1o link the two CPU modules. Each CPU module still
has some private channels connecting to some private 1/O and secondary devices,
like the 3330 disk storage subsystems.

The IBM 3033 system The 3033 multiprocessor complex consists of two 3033
Model M processors, two 3036 consoles, and the 3038 multiprocessor communica-
tions unit (MCU). Figure 9.23 shows a conceptual relationship between the MCU
and processor functions. The 3033 attached processor complex consists of a 3033
Model A processor, the 3042 attached processor, two 3036 consoles, and the
3038 MCU.

The MCU for the multiprocessor-attached processor models provides
prefixing, interprocessor communication, cache (high-speed buffer) and storage
update communication, sharing of processor storage, configuration-partitioning
control, synchronization facilities, and communication of changes to the storage
protection keys.

The MCU also enables both proggssors in an MP configuration to-access all
of processor storage while retaining the overlap capability in storage operations
permitted by cight-way interleaving. This means that both processors can have
concurrent storage operations in progress with a varying degree of overlap depend-
ing upon the particular sequence of LSU accesses. The configuration and parti-
tioningcontrolin an MP system provides a variety of storage configuration options

6RE Comp ITER ARCIHITECTURKSAND PARALLEL FPONCESSING

Dual processor
r-u-----—--'-.-....-q-..f..:..-..—_;--..a-.-.' ------------------------ meeem——. R iy
H :
i Shared :
i memory :
i i
i |

: — - & 13
! CPU, | Operating -~ CPU, ;
system i
5 ;
! H
g |
: 4—»L Configuration panel —I-d—— .
i .=
i ;
; !
S s B S TR o (N 4

RGE

170 devices

Controller

[T -

Secondary storages

T
Controller

Terminals

Figure 9.21 A tighty coupled TBNM dual processor system with a single copy of operating system residing
in the shared memory.,

EXAMPLE MULTIPROCESSOR SYSTIMS 689

Tape
Tape
Shared
memory Memory
" = Channel-to-
Tightly channel adapler
coupled IBM
dual uniprocessor
processors | CPU CcPU CPU
Disk
LE L] LN]
Disk
 S— T
Channels Channels

Figure 9.22 A tightly coupled IBM duak-processor system loosely coupled with an IBM uniprocessor.

-
Deviges Devices
I LR X] | I I ans |
Channels Channels
IBM 3038
IBM - IBM
3033/ PSCF MCU PSCF 3033
Model M Model
M
Cache Cache

Processor storage unit

LsU Lsu son LSU

MCU: muliiprocessor communications unit
I’'SCF: processor storage control function

Figure 9.23 The 1BM 3033 multiprocessor complex. (Courtesy of International Business Machines Corp..
1978.)

6N COMIPUTER ARCHITECTURE AND PARALLEL PROCESSING

which can apportion (he storage either independently to each processor for uni-
processor mode or shared between the two processors [or multiprocessor mode.
The 3033 MP complex achieves its high performance through higher interprocessor
communication. better cache and storage protection and faster access 1o shared
processor storage than the 370/168 MP.

The 3033 MP contains another improvement over the 168 MP and AP, in
that the priority bit mechanism has two levels, Low-level bits compete with low-
level bits and high-level bits compete with high-level bits but. as might be suspected
from the names. a high-level bit can preempt a low-level bit. The 3033 with jts
enhanced buffering can. at times. sustain an exceptionally long string of storage
requests, so this facility prevents a high-priority request on one processor from
being unnecessarily delayed by low-priority activity on the other. The 3033 MP
performance has been stated to be 1.6 to 18 times that of the 3033 uniprocessor
system, based on simulation results and running experience.

The IBM 3081 system The IBM 3081 processor unit has a symmetric organization
of two central processors, each with a 26ns machine cycle time, and exccutes
IBM System/370 instructions at approximately twice the rate of the IBM 3033,
One of the goals set in the design of the 3081 was better price/performance index
over the System/370 and 303x serics, The other goal was upward compatibility
with those product lines. Furthermore. it was designed to have improved reliability.
avarlability, and serviceability through new technology and partitioning and
packaging schemes, One of the major achievements in packaging is the develop-
ment of a field replaccable unit called a thermal conduction module (TCM). which
contains up to 130 1C chips on one substrate. With these TCMs, a large board
called a clark bourd was developed. Each board contains up to cither six or nine
TCMs, which made it possible 1o package the entire processor unit on four boards
in one frame.

The 3081 processor unit organization shown in Figure 9.24 consists of five
subsystems: two central processors, the system controller, the main storage, and
the external data controller (EXDC). The 3081 is called a dyadic processor since
it is configured as two identical processors that share a system controller and
EXDC within one frame. Furthermore, they act as a tightly coupled multiprocessor
which cannot be decoupled to act as two independent uniprocessors as in the
IBM 3033. The configuration is symmetrical because each processor has the same
priority and operational characteristics with respect to the central storage and
channels. Each processor has access 1o channcels and to central storage via the
controller.

The processors share main storage, which could be 16, 24, or 32 megabyies. A
segment of main memory called 113 system area is reserved for microcode, This
area also contains unit control words (UCWSs) for T O devices and system tables
and directories. Hence, the system arca is not accessible to user programs. The
RN storage is organized s o card-on-board package and is two-way interleaved.
Each board, which containg 4M bytes of main memory, is called the basic storiee
module. This module is configured so that 1 block (128 bytes) of data can be

i EXAMPLE MULTIPROCESSOR SyS1EMSs 691

Central
storage
External
Sy:
c(J:::;;::r cg:[;:t:ller
(5C) (EXDC)
ey P Figure 9.24 The IBM 3081 system components.
processor processor ’ -
(CP) (CP) (Courtesy of International Business Machines Corp.,
1980.)

accessed with a single operation to efficiently transfer a block between the processor
and memory. The interleaving scheme uses doubleword, which is the basic unit
of memory operation, and a 2K-byte address across the 4M-byte modules. The
2K byte segment, which was chosen to minimize the complexity of memory
reconfiguration, can thus be independently accessed.

The system controller provides the paths and controls the communications
between the main memory and other subsystems. The basic data-bus width of all
units connccting to the controlleg is 8 bytes with a data transfer rate of 8
bytes per machine cycle. The bus is bidirectional. The controller also contains the
storage protect keys and time-of-day clock and manages an eight-position queuc
containing storage requests. The 3081 can support up to 24 channels, which can
be of cither the byte-multiplexer or block-multiplexer type. Channels are con-
trolled by the EXDC. The EXDC consists of two types of microcode-controlled
elements. One of the elements handles the control of /O instructions and interrupts
The other handles the data control sequencing and provides buffering for each
group of eight channels.

Each processor consists of five functional elements, as shown in Figure 9.25,
and packaged withina nine-TCM board. The processor is nota pipelined processor
asin the IBM System 370/168. However, it has an effective instruction prefetching
capability. Each processor has three separate execution elements, a buffer control
clement, and a control store clement. The execution elements are the instruction
clements, variable-field element, and execution element. The instruction element
controls the instruction sequencing of a processor by initiating requests for instruc-
tions and attempting to maintain an instruction buffer of four doublewords locally.
It performs the instruction-decode and operand-address generation functions
and initiates all requests for operands. It also executes all arithmetic and logical
operations.

The variable-field element operates under horizontal microcode control,
executes all variable length, storage-to-storage instructions. Within it is o decimal
adder and its associated input and output regions. In exceuting the specified set

92 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

To the
system controller

Control store Buffer conirol
clement element
(CSE) r (BCE)
L
[1
Variable ficld Instruction Execution
element element clement
(VFE) (IE) (EE)

Figure 9.25 A ceniral processor of the IRM 3081 . (Courtesy of International Business Machine Corp.,
1980,)

of instructions, it operates together with the instruction element, which performs
operand fetches and stores in parallel. The execution element executes fixed-point
multiply and divide instructions. [t also EXccules conversion-type instructions
(e.g. binary to decimal) and floating-point instructions. The control store element
controls the sequencing of the horizontal microcode of the processor,

The buffer control element contains the 32K- or 64K -byte cache, which uses
a write-back main memory update policy. The block size is 128 bytes and the
cache iy four-way set-associative with a fumi-rcccnlly-usud replacement algorithm.
I'he cache has a two-cycle access with the virtual-to-real address translation
performed in parallel, The write-back policy used in the 3081 is different from the
write-through policy used in the 3033. Simulation studies showed that the write-
back policy was better on the 3081 as soon as the memory-access time exceeded
about ten machine cycles. Also, the write-back policy facilitated a checkpoint-
retry algorithm for the processor. The checkpoint-retry mechanism is a hardware
device which can be used (o establish a checkpoint at some instruction N. At this

the last checkpoint and the process can be restarted.

Since each processor has a cache, the write-back policy adopted creates a data
consistency problem which is managed by the system controller. The controller
implements the global table similar to Section 7.3. This table is used to enforce
consistency. The dynamic coherence scheme is used in the 3081. The difference is
that when a processor requests afetch of block which is held exclusive and modified
in remote cache, the copy of the block is updated in memory. Furthermore, the
copy in the remote cache is invalidated instead of changing state to read-only.
Thereafter, the local processar fetches the block from memory, An algorithm
which predicts the usage of a block of data was developed to minimize the per-

EXAMPLE MULTIPROCESSOR SYSTIMS 693

formance overhead of status changes and invalidation. A four-processor system
(the IBM 3084) can be configured by a set of two 3081s in either MP or AP mode.

9.5.2 Operating System for IBM Multiprocessors

All IBM 360 and 370 models have a 32-bit word divided into 4 bytes that are
byte addressable for business-oricnted (character strings) applications. The
System/370 instruction set includes fixed-point and floating-point arithmetic
operations, character manipulation, binary as well as decimal arithmetic compu-
tations plus a number of system control instructions. There are sixteen general-
purpose registers, four floating-point registers, and sixteen control registers in
the CPU. The control registers are mainly used for executing the system control
sequence in the operating system. There is also a 64-bit program status word
(PSW) register. This PSW is primarily used by user programs in indicating the
status of interrupts, overflow or underflow, and even functions as an extra program
counter, ;

In order to facilitate multiprocessing, the 1BM 370/168 has the following
special features in addition to those uniprocessor models in the System/370 series.
Each CPU use a block of 4K words to hold key status and control sequences.
Prefixing capability is provided to logically assign this block to each CPU in a
separate physical block in the shared memory. A time-of-day feature is built into
the system to synchronize the clocks of two CPUs in MP mode. Interprocessor
communication mechanisms are provided to signal a CPU or to respond
to the signal sent by another CPU. There are five different interrupt classes in
S/370 including program interrupts, 1/0 interrupts, external interrupts, machine-
check interrupts, and service-call interrupts to allow communications among user
and system programs. The PSW register is used to facilitate the interrupt services.

Instructions related to I/O operations are treated as privileged instructions.
The execution of these privileged instructions is controlled by the bit pattern in
the PSW register. Memory protection has been mechanized with the aid of the
PSW register. Other interesting functions of the 370/168 processors include
dynamic address translation to support the virtual storage operating system. The
virtual address space can cover up to 16 million bytes for any physical main
memory space from 2 million bytes to 16 million bytes in 1 million-byte increments.
Error checking and error correction capabilities are also built into the main
memory. Instruction retry and 1/0O command retry capabilities are also provided
to reduce the number of system failures.

The degree of coupling between two processors in a multiprocessor system
is determined by the capabilities of the operating system. The IBM 370/168 runs
with an Operating System/Virtual Storage 2 (OS/V#2), which is revised from the
standard S/370 operating system. This OS/VS2 is a time-sharing multiprocessing
system in a virtual storage environment supporting either a tightly coupled system
or a loosely coupled configuration. Two important features of multiprocessing in
various 370/168 configurations are the separation of architectural configurations

W—I'UMJ‘IJII'-R ARCIHTECTURE AND PARALLEL PROCISSING

(AP, MP or others) from the implementation of system control mechanisms and
the sophistication of the interprocessor communication mechanisms.

For a tightly coupled dual-processor 370/16% MP system (Figure 9.21), five
important features have been developed in the OS/VS2 to support the multi-
processing (MP) hardware. These features are listed below

L. A serialization technique called locking iy provided to disable across CPUs, Iy
allows mutually exclusive functions to run in parallel on an MP system.

2. The service management provides a new unit of dispatchability in the system
which has less overhead and better performance in encouraging parallelism in
system functions.

3. TheCPU aflinity provides a way for forcing an emulatory job step to a particular
CPU having the desired hardware feature,

4. The dispatching supports the changes in MP functions and in multiple address
spaces.

5. The alternate CPU recovery (ACR) invokes a special purpose when a CPU is
detected malfunctioning.

Various 370/168 MP conligurations have been installed with special hardware-
soltware crror-recovery mechanisms, When an error is detected on a processor, an
interrupt service is generated to recover that processor, if possible. If the interrupt
handler realizes that recovery is impossible, an SIGP instruction is issued to
specily an cmergency alert as the order code. The OS/VS2 uses a lincar ordering
scheme to avoid system deadlock. The error-recovery software will incrementally
execute all tasks holding locks until the deadlock crisis is avoided. Reconfiguration
of the 370/168 system is done through operator intervention. An MP system can
be divided into two independent uniprocessor systems. The APU in an AP con-
figuration can be disabled without paralyzing the whole system. However, a
failure of the CPU in an AP configuration will result in the failure of the entire
system.

9.5.3 Univac 1100/80 and 1100/90 Series

Large-scale mainframe computer systems in the Univac 1100 series are described
in this section. Beginning with the 1107 in 1962, the 1100 series has progressed
through a succession of compatible computer models 1o the latest 1100/80 and
1100/90. We first review the architectural evolution in the series and then discuss
the details of the models 1100/80 and 1100/90 and their operating system and
language requirements.
“»

Architectural evolution of Univac 1100 series The 1100 serics hardware architecture
is based on a 36-bit word, one's complement structure which obtains one operand
from storage and one from u high-speed register, or two operands from high-speed
registers. The 1100 Operating System s designed o support o symmetrical
multiprocessor conliguration simultineously providing multiprogrammed batch.

tiyy EXAMPLE MULTIPROCESSOR SYSTIMS 695

Class 1

L

Class 2

1106 l llDO!IU—l I n{mzn]

o ——
Class 3
l llOOMOI

SrrmssrrEmis mess s eeeems s e B L L T T T T p—

1100/80

1100/90

Figure 9.26 Architectural genealogy of the Univac 1100 series.

Class 4

time-sharing, and transaction environments. The evolution of the Univac 1100
series is depicted in Figure 9.26. AlthBugh the basic architecture has remained the
same since the 1107, the series has progressed through four architectural classes
and 24 different processor-system configurations,

The 1107 was originally designed for batch-oriented scientific and engineering
applications. The architectural and the operating system evolutions reflect a
continuing push towards more efficient interactive and business-oriented capa-
bilities. One of the strongest features of the 1100 series is its multiprocessor
capability. Multiprocessor configurations have been in general use since the
introduction of the first 1108 multiprocessor system in 1968. The System 1108 was
the first commercially available general-purpose computer to support a com-
pletely symmetrical multiprocessor system; i.., all processors share the same
memory, I/O channels, and a single copy of the executive system. The major
improvement of the 1108 system over the 1107 was increased throughput and
enhanced protection in multiprogramming environments. The primary new
feature which provided these improvements was a relative-addressing structure
which created a dynamic relocation capability. In addition to faster unit processor
operation, multiprocessor configurations were introduced which offered higher
performance and greater system availability.

Newer versions of the 1108 system are designed to be tightly coupled symmetric
multiprocessors, as shown in Figure 9.27. Each of the/main storage units is
multiported. The TEST-AND-SET instruction was added to facilitate INtErprocess
synchronization. This instruction causes the storage unit to read a semaphore bit

696 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Bank | Bank 2 Bank 3 Bank 4
Main Main Main Main
sorage storage slorage storage
65K 65K 65K 65k
MMA MMA MMA MMA
Be L] 11 |
] |
Availahility
control
unit | | 1
AACH) Central Central Central
Processor =] Processor = processor
(CPL) (CPL) (CPU)
4 -~
16 16 3 16
170 channely 170 channels 170 channels
Console Console
] 1
I 1 |
170 170
controller controller
(10C) (10C)
Channels Channels
e aew LA R
0 - 15 0 - 15
| N— J
=

To-from peripheral device interfaces

Figure 9.27 The architecture of Univac 1108 multiprocessor, (Courtesy of Sperry Rand Corp., 1965.)

and then, without allowing any other processor to access the same memory word,
to set the semaphore bit, If the semaphore was infiially set, an interrupt occurs
(indicating that the item protected by this semaphore is already used). At this
point, the interrupted process is queued until the semaphore is cleared. If the
semaphore was initially clear, the next instruction is executed. Execution of the
TEST-AND-SET instruction must precede the use of any data where erroncous
results could be produced by two or more instruction streams operating on these
data concurrently.

The introduction of the multiprocessor version of the 1108 led to the develop-
mentofa new kind of system component called the availability control unit (ACU),
This unit allows partitioning of the system into three smaller independent systems
for debugging of either hardware or software on one system, while normal opera-
tion (at reduced throughput) continues on the remainder of the system. Fach
processor periodically sends a signal 1o the ACU indicating that the processor is
stll functioning and the executive is still in control. Il the ACU does not receive all

FXAMPLE MULTIPROCESSOR SYSTEMS 697

Table 9.3 The Univac 1100 series models

Model
Features 1108 IRRLi 110O0/R0 1100/90
First delivery 1962 1972 1977 1982
Maximum number processors 2 4 4 4
Maximum number 1/ processors 2 4 Ll 4
Integer add time (ns) 750 EL1] 200 6l
Storage structure One level Primary/extended Cache/main Cache/main

Cache/disk

Instruction set 151 206 201 238

the expected signals within a predetermined time, an automatic recovery sequence
is initiated.

The functional characteristic of various 1100 systems are summarized in
Table 9.3. Readers can see the evolutional changes in processor features, memory
structures, hardware technologies, and instruction sets from 1108 to 1100/90 in
20 years, The 1110 was the first processor in the 1100 series constructed entirely of
integrated circuits (mainly with high-speed TTL). Through a chronological
development of the 1100/20, 40, and 10 systems, the 1100/80 and 1100/90 systems
merged as the latest product in the series.

-

The Univac 1100/80 systems The 1100/80 performs an add instruction in only 200
ns. Important features of the 1100/80 architecture and design approaches are
listed below:

1. Addressable memory is returned to a single level structure.

2. The cffective memory speed is increased by using a user-transparent cache:

3. Single-bit-error correction and double-bit error detection are on main memory.

4. The arithmetic-logic unit is microprogrammed.

5. Instructions have been added to accelerate user and executive common func-
tions.

6. This is automatic recovery from system failures.

A uniprocessor 1100/80 system is shown in Figure 9.28. The system is organized
with a central processor and an I/O unit attached to main storage units through a
storage interface unit. The storage interface unit contains a cache to speed up
memory reference. fderipherals are connected to the storage interface unit through
channels in the I/O units. This configuration iscalled a 1 x 1system, for it consists
of one processor and one 1/O unit. In general, 1100/80 systems are designated as
M x N configurations. where Af is the number of processors and N the number
of 1/O units. Configurations | x I, 2 x 2, and 4 x 4 arc possible. In a 2 x 2
system (Figure 9.29), two processors and two 1/0 units are connected o a storage

698 COMPUTIR ARCHITECTURE AND PARALLEL PROCESSING

MsU, MSsU, MSU, MSU,

=

CrPu

1ou

MSLU: main storage unit
SIU: storage interface unit
10U 170 unit

Figure 9.28 A single-processor Univac 1 100/80 configuration. (Courtesy of Comm. af ACM, Borgerson
et al., 1978.)

interface unit. There is still only one cache, which is common to both processors
and located in the storage interface unit.

Figure 9.30 depicts a 4 x 4 system. A second storage interface unit with its
own independent cache is now present and connected to the two additional
processors and 1/0 units, The two storage interface units have a cache invalidate
interface which ensures that if both caches contain copies of the same data. altering
the copy in one cache will cause the corresponding copy in the other to be marked
as invalid.

Main memory is a common resource for all processors and 1/O units and is
accessed by them via the corresponding storage interface units. There can be up
to four main storage units, each containing from 512K to IM words of memory.
Each main storage unit is connected to both storage interface units and can be
two-way interleaved. Processors are connected to each other by interprocessor
interrupt interfaces, which permil a processor 1o cause an interrupt in any other
processor. An 1/O unit is electrically connected to only one storage interface unit
and to the processors on that storage interface unit. As a result, a Processor cian
handle 1/0 only on 1/0 connected to the same storage interface unit as wself,

EXAMPLE MULTIFROCESSOR SYSTEMS 699

MSU, MSU, MSU, MSU

SiU

cry, |- x CPU,

10U, 10U,

srmssmssmscsesasemanes ! iNtErprocessor interrupt lines

MSU: main storage unit
SIU: storage interface unit
10U: 170 unit

Figure 929 A dual-processor Univac 1100/80 configuration. (Courtesy of Comm. of ACM, Borgerson
et al., 1978.) o

The central processor of an 1100/80 has a 36-bit word length and a reasonably
rich repertoire of fixed-point, floating-point, data-movement, and character-
manipulation instructions. The architecture is essentially register-oriented, with
separate index registers and accumulators. Most double-operand instructions
have one operand in a register and onc in memory. Central to the architecture of
this system is a set of 128 words called the general register set (GRS). Programs
can address 16 index registers and 16 accumulators.

The 1100/80 is installed with a new group of instructions to accelerate common
functions for both uscrs and the executive. These include several context-switching
instructions such as save and restore system status and load and store GRS, and
user-oriented instructions, including new constant storage and memory increment

700 comin ITER ARCHITECTURE AND PARALLEL PROCESSING

MSU, MSsU, MSU, MSU,

_— e
| X

S1U, Siu,

TR

Fam

Pt e

maaty s IS VAN S ST -}(--- cru,

4
o
g

10U, 10U, 10U, 10U,

B e 11112 2 et T o interrupt lines

MSU: main storage unit
SIU: storage interface unit
10U: 170 unit

Figure 9.30 A four-processor Univac U080 configuration. (Courtesy of Comm. of ACA, Borgerson
et al., 1974,)

and decrement instructions, Two new instructions were also added to support the
autorecovery feature of the 1100/80. These instructions reset the autorecovery
timer and toggle the iutorecovery path. When dautorecovery is enabled and the
System soltware docs not reset the dutomatic recovery timer within the preset
time interval, the system transition unit (similar to the ACU of the 1108) clears,
reloads, and reinitiates the system. Two recovery paths are provided. The alterna-
tive recovery path is system initiated when an attempted automatic recovery fails,
The instructions mentioned above provide for software resetting of the automatic
recovery time and for sclection of the first dutomatic recovery path to be uged by
the next recovery attempt,

The 1100/80 introduced instructions to aid the address-space manipulator.
The most significant new instruction transfers 4 two-word segment descriptor
directly from the seament deseriptor table to the segment descriptor register, suves
the previous contents of the segment deseriptor register, and branches, The
granularity of segment sizes has been improved on the 1100/80. Scements can be

EXAMPLE MULTIPROCESSOR SYSTIMS 701

as large as 262K words and can be specified in 64-word granules beginning on any
512-word boundary and ending on any 64-word boundary.

Input-output channels on the 1100/80 are available in two forms. Word
channels are available that are compatible with the 1110 system. Additionally,
intelligent byte channels are available that allow the direct usage of byte-oriented
peripheral equipment. The 1100/80 uses a high-speed cache memory between the
processor and main storage, The cache memory is transparent to the user. It 1s
constructed of emitter-coupled logic storage clements and contuins up to 16K
words: these words are the most recently used contents of main storage. The
physical main storage capacity was increased (o a maximum of 4M words of MOS
memory. Single-bit crror correction and double-bit error detection are provided.

The Univac 1100/90 systems The Univac 1100/90 multiprocessors are the most
recent systems by Sperry Univac. The systems permit one, two, three, or four central
processing units (CPU) as 1100/91, 1100/92, 1100/93, and 1100/94 systems, respec-
tively. The 1100/9x is an x-by-x system containing x CPUs and x /O processors,
which can be tightly coupled. Figure 9.31 shows an example of a lour-by-four
system. However, loosely coupled configurations are also possible in which there
arc two independent systems sharing one mass storage subsystem.

The 1100/94 system configuration, in additiori to having four CPUs and four
I/O processors, contains four main storage units (MSU) and two system support
processors. Each CPU is pipelined with an 8K word instruction cache and an 8K
word data cache. A word is 36 bitsawide. Each cache is organized into 256 sets
with four blocks per set. Each block contains eight words. The CPU uses a virtual
addressing scheme with 2*° words of address space. The initial address is divided
into four portions. A segmentation scheme is used with a maximum of 262,144
segments, A write-through policy is used to update the MSU. On a write to shared
data in a local cache, all caches in other CPUs containing a copy of the block are
invalidated.

Each MSU contains four independent banks. A block read is a single reference
resulting in four doubleword transfers with a 600-ns cycle time. A doubleword read
is accomplished in 360 ns. The 1100/90 systems use the same system software as
the 1100/80 systems for upward compatibility.

Operating system features in Univac 1100 series The operating system structure
for the 1100 series consists of multiple layers of software, as shown in Figure 9.32.
The structure of the kernel of the operating system is discussed here. The 1100
series executive system is called EXEC. A user’s request to EXEC is made by
executing a software interrupt inslrug‘ion called executive request interrupt (ERI).
Exccution of this instruction in a processor causes a transfer of control to the
exccutive. The EXEC has an input-output control routine concept called a
symbiont (spooling routine). These routines overlap read, print, and punch
operations with program execution. The EXEC also possesses multiprogramming
capabilities designed to operate in both a multiprogram and multiprocessor

702 comruTir ARCHITECTURE AND PARALLEL PROCESSING

| | |
Input- Input- Input- Input-
output output output output
processor | r.'rc:cr:ssr.'lr1 proges sor, processor .
| | | |
—
Main Main Main Main
Storage storage slorage Slorage
unit, unit, unit unit |
Central Central Central Central
processing processing processing processing
unit | unit, unit unit,
| | I |
Central Central Central Central
processor processor processor processor
cooling cooling cooling cooling
unit unit unit umit
System System Master
support support Operator
pmcessorl processor, cansole

Figure 9.31 The Univac 1100/94 system with four processors. (Courtesy of Sperry Rand Corp., 1983.)

cnvironment. Moreover, it supports a concurrent mix of batch, remote batch,
remote batch, demand and transaction programs.

Particular emphasis is placed on demand mode also known as time sharing,
All system facilities available in batch mode are also available in demand mode:
the same rum stream can be used in either batch mode or demand mode without
change. A run stream is a collection ol user service requests used for batch, remote
batch, and demand. Included in the fun stream are any data images supporting
cach service request. The run stream is formulated using a control language
consisting of service requests. A task is an individual serviee request, to aissign a
tape, for example. or to perform o compilation within a run stream.

EXAMPLE MULTIPROCESSOR SYSTEMS 703

End user
facilities

Communications
management system
transaction interface

package

Data
manage-
mentl
sysiem

Batch/demand
control language

Application
packages

Figure 9.32 The Univac/EXEC operating system.

The origin of a program is in symbolic elements within the run stream. These
clements are then compiled to form relocatable elements which are collected
(bound) with other relocatable elements to form an absolute element (the program).
The term “absolute™ refers to the program relative-address solution only; the
relative-addressing capability of the hardware allows the program to be loaded
(or swapped and reloaded) and exccuted anywhere within main storage. References
to shared segments of both user code and system libraries are resolved during
exccution. . '

A batch stream which enters the system is first processed by the symbiont
complex. This complex disassociates the run stream from the relatively slow unit-
record device speeds and allows tasks to proceed at higher mass-storage speeds.
The run stream is scanned for facility allocation and prescheduling. Multiple
asynchronous input-output services are allowed. This is particularly importan:
ina multiprogramming-multiprocessing environment.

T4 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Afier staging in a mass-storage schedule queue, the run stream is processed by
the coarse scheduler, which is responsible for the scheduling, selecting, and
activating of the run stream. The run is assigned a temporary program file in which
intermediate results, such as compiler output or text editor output, are held until
termination, when the file is released. The results may be retained by directing
them instead to a permanent file or copying the contents of the temporary file
prior to termination, Demand runs are scheduled for immediate activation; batch
runs are scheduled on a user-selected priority basis. A major batch-scheduling
consideration at this point is the availability of facilities such as tape devices. When
necessary facilities are available, the program is then queued for main storage
allocation.

Thedynamicallocator, which has the responsibility for the distribution of main
storage space among users, removes the program on a priority basis. The main
functions of the dynamic allocator include the allocation and release of main
storage and the initial load, swap-out, and reload of programs. The decisions of
the dynamic allocator are facilitated by relative addressing, which allows the
program to be loaded anywhere in memory. The program may be partitioned into
multiple segments which need not be loaded contiguously. Segments (usually
shared) that were not a part of the initial program may be referenced (and loaded)
dynamically. This facility allows for greater program protection and re-entrancy
efficiency. It also allows each segment 1o be loaded into a separate memory module,
thus reducing the effective instruction execution time through storage unit overlap.

A switch list is used by the 1100 EXEC to control an executing program. The
program may fork into any number of asynchronous execution paths called
activities, each of which is independently scheduled (except for synchronization
requests). It is given main memory space and a time slice under the control of a
unique switch list entry. The executing activity requests 1100 executive services
through a set of executive requests. These perform services such as input-output,
control statement processing, and activity activation. An I/O operation can be
requested by a user program. If the request is not to an I/O unit on the same storage
interface unit as the processor that is running the program, the processor will
signal another processor on the other storage interfaze unit. The I/O operation is
then initiated by this processor. The signalling is performed via the interprocessor
interrupt mechanism. On completion of the 1/O transaction for this request, the
I/O unit sends a completion interrupt signal. One of the processors on the same
interface handles this interrupt for eventual notification of the user program
which requested the 1/O transaction.

The dispatcher allocates real processor time slices to outstanding activities
according to the priority and needs of the respective activities. In a multiprocessor
system, any available processor may be assigned to exccute the next time slice.
Thus, an activity may execute successive time slices on different processors, or
two parallel activities within the same program may be executing concurrently
on different processors. Upon completion of processing within an activity, a
request for normal or abnormal termination is made. After all activities within a
task have terminated, the task is terminated and control is returned to the coarse

EXAMPLE MULTIPROCESSOR SYSTEMS 708

scheduler. We have only sketched the EXEC operations here. Interested readers
should check with the Univac EXEC manuals for details,

9.5.4 The Tandem Nonstop System

On-linc computing with continuous availability isin high demand in many husiness
applications. Certain applications, such as automatic toll billing for tclephone
systems, lose money each minute the system is down and the losses are irre-
coverable. The Tandem- 16 Nonstop shstem wasdesigned to offer better availability
than most existing multiple processor computers. The system is organized around
three types of components: the processors, device controllers, and system buses
(Figure 9.33). The processors are interconnected by the dynabus, which consists of
two buses. The device controllers are each connected to two independent 1/0
channels, one from cach processor on its side. The system is designed 1o ¢ontinue
operation through any single failure and to allow on-line repairing without
affecting the rest of the system. The on-line maintenance was a key factor in using
dual power supplics in the system.

Each processor includes a 16-bit CPU. a main memory. a bus control. and an
I'O channel (Figure 9.34). Up 1o 2M bytes of main memory are available. The
processor module is viewed by the user as a stack-oriented computer with a virtual
memory system capable of supporting multiprogramming. The CPU is a micro-
programmed processor consisting of eight registers which can be used as general-
purpose registers, an ALU, and several miscellancous llags and counters. The
instruction set includes arithmetic operations, logical operations, procedure calls
and exits, interprocessor SENDs, and 1/O operations. The system has 16 interrupt
levels which include bus data received. 1/O transfer completion, memory error.
interval time, page fault, privileged instruction violation. ctc. Packets are the
primitive data transferred over the dynabus.

Main memory is organized in physical pages of 1K words. Up to one mega-
word of memory may be attached to a processor. In a semiconductor memory
system, there are six check bits per word 1o provide singls error correction and
double error detection. The semiconductor memory with error correction is more
reliable than core. Battery backup provides short-term nonvolatility of the semi-
conductor memory system.

Memory is logically divided into four address spaces. These are the virtual
address spaces of the machine: both the system and the user have separate code
spaces and data spaces. The code space is unmodifiable and the data space can
be viewed either as a stack or a random-access memory, depending on the adress-
ing mode used. Each virtual address space has 46K words. Four maps arce
provided. one for cach logical address space. The map access time and the delay
by error correction are included in the S00-ns cycle time of the semiconductor
memory svstem. The high-level language provided on the Tandem 16 svstem is the
TAL, & block-structured, ALGOL-like language.

Multiple processors in Tandem-16 communicate with cach other over the N
busand Y bus shown in Figure 9,35, Bus access is determined by two independent

CRL61 ou “ndwo)) wapue | jo £531un0)) *s10s5230.d 1noj yirw waisss wapue | (exdl) v ¢¢g aindig

13[]021U03 AP 13

|auueys O/1

Alowapy

105533014 ndJ

[odiu0d
snqeuiqg

]]
1 F
0 o
d d
1 1 1 I
1 1 1 i |
o 2d o o 1]
d d d d
1 1 1 1 1 [
4 1 4 4 4 4
o | 2@] 0 2a o o o
d d d d d d
|auueys O/] |suueys O/ |auueys O/]
Alowapy Klowap Kiowapy
ndo ndo nd2
[041u03 [011U03 [CHLGH
sngeudq snqeuiq snqeud(q

¥

SNQEUL(

706

FXAMPLE MULTIEROCESSOR SYsTivs 707

" X bus N

} I —_

Y bus ;

L3 al

)
frueemmrmanrna sncno sk e ————— A 6 8 e i e R e e 45 T e e e mee e

‘: Processor module i
:
i Central
! — Processor i i
4 : unit o :
i s 4 ;
i / \ '
: i * :
H :‘ b i
; 1 1 i 1 LY =
. 4 3
i Interprocessor 3 X
i P o 170 channel :
§ bus Memory - — : 1 !
control oA :
-

.

e B e e e i S e ey B S B B 60 0 0 S S i 8 A B SR DA A S S e i

170 channel

Figure 9.34 System components in one processar of the Tandem(16. (Courtesy of Tandem Computer,
Inc.. 1978.)

interprocessor bus controllers. There are two sets of radial connections from each
bus controller to cach processor module. They distribute clocks for synchronous
transmission over the bus. No failed processor can dominate the dynabus utiliza-
tion. Each bus has a clock associated with it, running independently of the pro-
cessor clocks.

The dynabus interface controller consists of three high-speed caches, two of
which are associated with the two buses and one is an output queue that can be
switched between the two buses. Each caches has 16 words and all bus transfers
are made from cache to cache. All components attaching to the buses are kept
physically distinct, so that no single component failure can contaminate both
buses simultancously. Also, the controller has clock synchronization and interlock
circuitry. All processors communicate in a point-to-point manner using this
shared bus configuration.

Forany interprocessor data transfer, one processor is the sender and the other
is the receiver. Before a processor can receive data over 4 bus. the operating system
must configure an entry in a table known as the hus rece®e table (BRT). Fach
BRT entry contains the address where the mcoming data is to be stored. the
sequence number of the next packet. the send processor number, the receiver
processor number, and the number of words to be transfered. A SEND instruction
is exeeuted in the sending processor. which specifies the bus to be used. the intended

("8L61 “du] *sandwo) wapur] jo ($apn0))) ‘sajsuel) wiep 10553d0adiaju Joj 3dejsayu; snqeulp of fwapue] g6 aindig

01 105533014 1 Joss3301d
siayyng g1 o1 dn
1¥d
eleQ
I\ ' :
uq $SIpPE 13)jng
==k oL - !
i Jaquinu
: 105535014 m
H Krowa Kiowaw
i
m /
m / Jossasoxd
: s 10s5a004d - ‘01 pu3S
i 1y b
{ 13J)nq uaym
dnusaiui-0aa1 A
: s ndo \ ndd
5 y
|
ONI ONI 2qmng
1 Y sossavoid |OLNO
: [0Jiuod sng [osiuas sng
- o e .
; e) § e L |
H LA :
.............. 4 P * [
et] e T snq x-
1/ -

TO8

EXAMPLE MULTIPROC ESSOR SYSTEMS 709
receiver, and the number of words to be sent. The sending processor’s CPU stays
in the SEND instruction until the data transfer is completed. Up to 65,535 words
can be sent in a single SEND instruction. While the sending processor is exccuting
the SEND instruction, the dynabus control logic in the recciving processor is
storing the data away according to the appropriate BRT entry. In the receiving
processor, this occurs simultancously with its program execution.

A message is divided into packets of 16 words. The sending processor fills its
outgoing queue with these packets, requests a bus transfer, and transmits upon
grant of the bus by the bus controller. The receiving processor fills the incoming
queue associated with the bus and issues a microinterrupt to its own CPU. The
CPU checks the BRT entry accordingly. The BRT entries are four words that
include a transfer buffer address, a sequence number, and the sender and receiver
processor numbers. Error recovery action is to be taken in case the transfer is
not completed within a time-out interval. These parameters are placed on a register
stack and are dynamically updated so that the SEND instruction is interruptible
on packet boundarics, ;

All T/O is done on a direct memory access basis through a microprogrammed,
multiplexed channel with a block size determined by the individual controller.
All the controllers are buffered so that all transfers over the 1/O channel are at
memory speed (4M bytes/s) and never wait for mechanical motion since the
transfers always come from a buffer in the controller rather than from the actual
1'O device. There exists the 1/O Control Table (I0C) in the system data space of
cach processor that contains a two-word entry for cach of the 256 possible 1/0
devices attached to the 1/0 channel. These entrics contain a byte count and virtual
address in the system data space for 1/O data transfers. The 1/O channel moves the
I0C entry to active registers during the connection of an 1/O controller and
restores the updated values to the IOC upon disconnection. The channel transfers
data in parallel with program execution. The memory system priority always
permits I/O accesses to be handled before CPU or dynabus accesses.

The dual-ported 1/0 device controllers provide the interface between the 1/0
channel and a variety of peripheral devices. Each controller contains two in-
dependent 1/O channel ports so that it can never simultaneously cause failure of
both ports. Each port attached to an 1/0 channel must be assigned a controller
number and a priority distinct from other ports attached to the same 1/O
channel. Logically only one of the two ports of an 1/O controller is active; the
other port is utilized only in the event of a path failure to the primary port. Il a
processor determines that a given controller is malfunctioning on its 1/0 channel,
it can issue a command that logically disconnects the port from the controller.
This does not affect the ownership status. If the problem is within the port, an
alternate path can be used. .

Each disk drive in the system may be dual-ported. Each port of a disk drive is
connected to an independent disk controller. Each of the disk controllers are also
dual-ported and connceted between two processors. A string of up to cach drives
(four mirrored pairs) can be supported by a pair of controllers in this manner.
The disk controller is buffered and absolutely immune to overruns. All data

TIO €OMPUTER ARCIIITECTURE AND PARALLLL PROKESSING

transferred over the bus is parity checked in both directions, and errors are
reported via the interrupt system. A watchdog timer in the 1/O channel detects if a
nonexistent 1/0 controller has been addressed. or if a controller stops responding
during an 1/O sequence. In case of channel failure, the path switching between
devices and controller is demonstrated in Figure 9.36, where an alternate path is
chosen to provide the access of the disk.

The operating system of Tandem is called the Guardian. It is a “nonstop™
grerating system designed to achieve the following capabilities:

I. Tt should be able to remain operational after any single detected module or bus
[ailure.

2. It should allow any module or bus to be repaired on-line and then reintegrated
into the system.

3. Itis to be implemented with high reliability provided by the hardwarg but not
negated by software problems.

4. It should support all possible hardware configurations, ranging from a (wo-
processor, diskless system through a sixteen-processor system with billions of
bytes of disk storage.

5. Itshould hide the physical configuration as much as possible so that applications
could be written to run on a great variety of system configurations.

The Guardian resides in each processor but is aware of all other processors,
In fact, the operating systems in different processors constantly monitor each
other’s performance, The instant one processor’s operating system fails to respond
correctly, other processors assume that it is failing and take over its work load.
Obviously, this requires a great deal of communication among the processors. This
requires a process 1o be able to address the system resources by a logical name
rather than by a physical address. The Guardian operating system is designed in a
top down manner with three levels of well-defined interfaces, as shown in Figure
9.37. It is based on the concept of processes send ing messages to other processes.

All resources in the system are considered to be files, and each resource has a
logical file name. Communication between an application process and any
resource (disk, tape, another process, cic.) is via the file system. The file system
knows only the logical name of the intended recipient of a message. It passes the
message to the message system, which then determines the physical location of the
recipient. The message system is a software analog of the dynabus. It handles
automatic path retrics in case of path errors. Because application programs deal
only with logical file names, the system offers total geographic independence of
resources. The programmer views this m ultip[‘!cessor system as a single processor
with resources available through file system calls.

The processes and messages are further elaborated with abstraction. Each
processor module has one or more processes residing in it. A process is initially
created in a specific processor and may not execute in another processor. Each
process has an execution priority assigned o it. Processor time is allocated to the

awinjoa A_
vu._o.:_z

('BL6T “auj 13induwio? wapue | J0 £5311n03)) *3nj1e) 13{[041u03 (/) wo yigws yind Mewsly opg

1jeauo)

RoNUE

ndo>

i
siulodyoay)

,r._ﬂ:_/,

sip
Pagiisug

NdJ>

JUCE

e

Bdjonuo)

=

aunjoa A
pasositpy

2

1j01u0)

nd>

N
siod ¥y

JLE

iy

TI2 COMPUTIR ARCIITECTURE AND PARALLEL PROCISSING

015615

Files system (with enscribe)

Message system Y
< =2 (with expand) ~ >| p Guardian
170 crivers I 170 drivers [1/0 drivers

Q
1

Figure 9.37 The Guardian operating system.

highest priority process. Process-synchronization primitives include counting
semaphores and process local event flags. Semaphore operations are performed
via the functions PSEM and VSEM, similar to Dijkstra’s P and V operators.
Semaphores may only be used for synchronization between processes within the
same processor. They are typically used to control access to resources such as
resident memory buflers, message control blocks, and 1/0 controllers.

The message system provides five primitive operations, which re illustrated
in Figure 9.38 in the context of a process making an inquire 1o the process, A
process sends a message to the appropriate server process via a procedure LINK.
The message will consist of parameters denoting the type of inquires and data
needed. The message will be queued in the server process, setting an event flag,
and then the requester process may continue executing. The server process calls a
procedure to return the first message queued. It will then obtain a copy of the
requestor’s data by calling the procedure READLINK. Next, the server process
will process the request. The status of the operation and the result will then be
returned by the WRITELINK procedure, which will signal the requester process
via another event flag. Finally, the requester process will complete its end of the
transaction by calling the BREAK LINK procedure.

The message system is designed to obtain resources needed for message
transmission (control blocks) at the start of a message-transfer request. Once the

EXAMPLE MULTIPROCESSOR SYSTEMS 713

1
L i
Requestor I: Mesiage ——— : Server
k & '
n
)
—
R L
Requestor ———Data copied ———— : I: Server
dk
B L Wi
ri r
Reguestor € nla— Result copied —— i n Server
ak Lk
k e

Figure 9.38 The message system primitise deseloped in Tandem/Guardian 0.S.

LINK has been successfully completed, both processes are assured that sufficient
resources are in hand to complete the message transfer. Furthermore, a process
may reserve some control blocks to guarantee that it will always be able 10 send
messages Lo respond o a request from its message queue. Such a resource control
assures that deadlocks are prevented by complex producer-consumer interactions.

The Guardian is constructed of processes which communicate with messages.
Fault tolerance is provided by duplication of both hardware and software com-
ponents. Access to I/0 devices is provided by process pairs consisting of a primary
process and a backup process. The primary process must check out state informa-
tion to the backup process so that the back up may take over on a failure. Requests
to these devices are routed using the logical device name or number so that the
request is always routed to the primary process. The result is a set of primitives
and protocols which allow recovery and continued processing in spite of single
failures in bus, processor, or 1/O device.

A “network ™ system can link up to 255 Tandem-16 systems. The Guardian-
Expand Network system can extend the dynab®s into a long-range network. To a
user at a terminal, the entire network appears 1o be a single Tandem-16 system.
The network maintains the geographic independence of resources. Any resource
in the network can be addressed by its logical file name without regard for its
physical location. However, 1 configuration option allows users to reserve pro-
cessors for local processing requirements. thereby excluding those processors from
the network.

TH COMPUTIR ARCTITECTURE AND PARALLEL PROCESSING
9.6 THE CRAY X-MP AND CRAY-2

The Cray X-MP is a multiprocessor cxtension of the Cray-1. It contains two
Cray-1-like processors with shared memory and 1/O subsystems. The first X-MD
was installed in later 1983. Cray Research is currently also developing a four-
processor Cray-2, In this section, we describe the system architecture of X-MP and
examine its vector processing and multitasking capabilities. We will examine the
multiprocessing performance of X-MP for both compute-bound and 1/O-bound
applications. The details of Cray-2 were not available at the time this book was
published. Howcever, some target specifications of Cray-2 will be indicated simply
to show the trend of development.

9.6.1 Cray X-MP System Architecture

The system organization of the Cray X-MP is shown in Figure 9.39. The main-
frame features two identical CPUs and a multiport memory shared by both

Central memory
E; 3
| ¥ Y
b= Communication
Cruo | & CPU 1L
P = control 7=
[
F ¥
cru-io
i [} T
¥ o
55D 108
L]
A
\
= ata paih Mass storage Figure 939 Cray N-MP overall system
= =={Control path deviees organization. (Courtesy of Cray Research,
Inc., 1983.)

EXAMPLE MULTIPROCESSOR SYSTEMS T1S§
processors. Each CPU has an internal structure very similar to Cray-1. However,
there are three ports per CPU (instead of two ports in Cray-1). The extra port is
added 1o allow communication between the two CPUs via a communication and
control unit.

Shared central memory The two processors share a central bipolar memory with
4M 64-bit words. This shared memory is organized in 32-way interleaved memory
banks (twice that of Cray-1). All banks can be accessed independently and in
parallel during each machine clock period. Each processor has four parallel
memory ports (four times that of Cray-1) connected to this central memory, two
for vector fetches, one for vector siore, and one for independent 1/O operations.
The multiport memory has built-in conflict resolution hardware to minimize the
delay and maintain the integrity of all memory references to the same bank at the
same time, from all processor’s ports. The interleaved multiport memory design
coupled with shorter memory cycle time provides a high-performance and balanced
memory organization with sufficient bandwidth (eight times that of Cray-1) to
support simultancous high-speed CPU and | O operations.

The CPU of X-MP Throughout the two CPUs, 16-gate array integrated circuits
are used. These circuits, which are faster and denser than the circuitry used in the
Cray-1. contributed to a clock cvele time of 9.5 ns and a memory bank cycle time of
38 ns. Proven cooling and packagipg technigues have also been used on the
Cray X-MP to ensure high system reliability.

Each CPU is basically a Cray-1 processor with additional features to permit
multiprocessing. Within each CPU are four instruction buffers, each with 128
16-bit instruction parcels, twice the capacity of the Cray-1 instruction buffers.
The instruction buffers of each CPU are loaded from memory at the burst rate of
8 words per clock period. The contents of the exchange package have been aug-
mented to include cluster number and processor number. Increased protection of
data is also made possible through a separate memory field for user programs and
data. Exchange sequences occur at the rate of 2 words per clock period on the
X-MP.

Operational registers and functional pipelines are among the features pro-
viding compatibility with the Cray-1. There are 13 functional pipesand A, B,S, T,
and V registers as in Cray-1. With a basic machine cycle of 9.5 ns, the X-MP is
capable of an overall instruction issue rate of over 200 MIPS. Computation rates
of over 400 megaflops are possible, and combined arithmetic/logical operations
can exceed 1000 million operations per second.

CPU intercommunication The CPU intercommunication section comprises three
clusters of shared registers for interprocessor communication :and synchroniza-
tion. Each cluster of shared registers consists of eight 24-bit shared address (SB)
registers, eight 64-bit shared scalar (ST) registers, and thirty-two 1-bit synchroniza-
tion (SM) registers. Under operating system control, a cluster may be allocated to

TI6 COMPUTIR ARCIHITECTURE ANI PARALLLL PROCTSSING

both, either, or none of the processors. The cluster may be accessed by any pro-
cessorto which itis allocated in either user or system mode. A 64-bit real-time clock
is shared by the processors.

Solid-state storage device (SSD) A new and large CPU-driven solid-state storage
deviee (SSD) is designed as an integral part of the mainframe with very high block
transfer rate. This can be used as a fast-access device for large prestaged or inter-
mediate files penerated and manipulated repetitively by user programs, or used by
the system for job “swapping " space and temporary storage of system programs,
The SSD design with its large size (32 megawords), typical rate of 1000 megabytes/s
(250 times faster than disk), and much shorter access time (less than 0.5 ms, 100
times faster than disk), coupled with the high-performance multiprocessor design,
will enable the user to explore new application algorithms for solving bigger and
more sophisticated problems in science and engineering. The concept of SSD is
tustrated in Figure 9,40, |y performs much better than that of the disk due to its
shorter access time and faster transfer rate.

1/O subsystem (10S) The 1/O subsystem. which is an integral part of the X-MP
system, also contributes to the system’s overall performance. The 1/O subsystem
(compatible with Cray-1/2) offers parallel streaming of disk drives, 1/0 buffering
(8 megawords maximum size) for disk-resident and bufler memory-resident
datasets, high-performance on-line tape handling, and common device for
front-end system communication, networking. or specialized data acquisition.
The TOP design enables faster and more cfficient asynchronous /O operations for
data access and deposition of initial and final outputs through high-speed channels

«(cach channel has a maximum rate of 850 megabytes/s, and a typical rate of
40 megabytes/s, 10 times faster than disk), while relieving the CPUs to perform
computation-intensive operations.

Interfaces to front-end computers The Cray X-MP is interfaced to front-end com-
puter systems through the I/O subsystem. Up to three front-end interfaces per 1/O
subsystem, identical to those used in the Cray-1, can be accommodated. Front-end

ory /0 1/0

L

dink User User User
cru 1/0 /o 170 1o

A Figure 940 The concept of SSD in
: Cray X-MP as compared with the
il b Wi i ser User Usie Ty as compared wi v

use of disks,

X

-

EXAMPLE MULTIPROCESSOR SYSTEMS TI7

Disky
DD-29
L]

4

4 MH/

Mainframe

20U

40 MH/s

From
end
system

40 MB/s

4 MW

Tapes

Figure 9.41 The data flow and transfer rates in Cray X-MP. (Courtesy of Cray Research, Inc., 1983,)

interfaces compensate for differences in channel widths, word size, logic levels, and
control protocols, and are available for a variety of front-end systems. The X-MP
can be connected to front-end machines like IBM/MVS,CDC NOS, and NOS/BE,
systems.

The data flow patterns and data transfer rates among the mainframe (two
CPUs and main memory of 4 megawords), the SSD, the 108, the external disks
and tapes, and the front-end system are illustrated in Figure 9.41. The high-speed
transfer rates between the mainframe and SSD (1000 megabytes/s) and between
the mainframe and 10§ (80 megawords/s) make the system suitable for solving
large-scale scientific problems. which are both computation-intensive and /0
demanding.

9.6.2 Multitasking on Cray X-MP

The X-MP is designed to be u general purp.osc multiprocessor system for multi-
tasking applications. It can run independent tasks of diflerent jobs on two pro-
cessors. Program compatibility with Cray-1 is maintained for all tasks. It can also
run related tasks of a single job on two processors. The two processors are tightlv
coupled through shared memory and shared reaisters, The svstem has low overhead

718 coMmeuTir ARCHITECTURE AND PARALLEL PROCESSING

of task initiation for multitasking. Typically O(1 #5) 1o O(1 ms) times is needed,
depending on granularity of the tasks and software implementation techniques.

The two processors can assume various flexible architectural clustering
patterns. Faster exchange for switching machine state between tasks is provided,
Hardware supports the separation of memory segments for each user's data and
program to facilitate concurrent programming,

Let p = 2 be the number of physical processors in the system. Listed below are
various processor clustering patterns that are challenged in the design of X-MP.
The Cray Operating System (COS) has been designed 1o control the allocation of
the clusters of shared registers to the CPU in either user or supervisor mode,

L. All processors are identical and symmetric in their programming functions,
i.c., thereisno permanent master-slave relation existing between all processors.

- A cluster of k processors (0 < k < P) can be assigned to perform a single task.,

- Uptop + 1 processor clusters can be assigned by the operaling system,

- Each cluster contains a unique set of shared data and synchronization registers

for the intercommunication of all processors in a cluster,

5. Each processor in a cluster can run in either monitor or user mode controlled
by the operating system.

6. Each processor in a cluster can asynchronously perform either scalar or vector
operations dictated by user programs,

7. Any processor running in monitor mode can interrupt any other processor and
cause it to switch from user mode to monitor mode,

8. Detection of system deadlock is provided within the cluster,

e b2

The vector performance of each processor is improved through faster machine
clock, parallel memory ports, and hardware automatic *flexible chaining™
features. These new features allow simultaneous memory fetches, arithmetic, and
memaory store operations in a series of related vector operations (this contrasts to
the * fixed chaining™ and unit-directional vector fetchzstorc in Cray-1). As a result,
the processor design provides higher speed and more balanced vector processing
capabilities for both long and short vectors, characterized by heavy register-1o-
register or heavy memory-to-memory veclor operations,

Example 9.4 Vecior computations on X-MP are illustrated in Figure 9.42 for
the following computation:

A=B+S8sD

where boldface letters denote vector quantities. Using three memory ports per
processor, the hardware automatically “chains™ through all five vector
operations such that one result per clock period can be delivered.

EXAMPLE MULTIPROCESSOR SYSTEMS T19

A=B+s+D
= Cray-1
Fetch B 1 st chain
e N
Fetch D 1'
_{ \ Cray-|
Multiply 2d chain
4
|
Add : 1'
i B
Store A E {‘ —{ Cray-1
i 1d chain
i
Cray X-MP
One chain

Figure 9.42 Pipeline chaining in Example 9.4 for C ray X-MP,

-,

Multitasking exploits another dimension of paralielism beyond that provided
by vectorization. So far, vectorization has been focused on the low-level parallelism,
primarily among independent and statement-oriented operations from single-job
programs. The multitasking offers a high-level parallelism among independent
algorithms, which are job/program/loop-oriented to achieve both single and
multijob performance. Combining both vectorization and multitasking, one can
explore new and faster parallel algorithms at several levels, as listed below -

e .

1. Multitasking at the job level (Figure 9.43a)
2. Multitasking at the job-step level (Figure 9.43b)
3. Multitasking at the program level (Figure 9.44)
4. Multitasking at the loop level (Figare 9.45)

When this book was published, software support for multitasking at the job
level (Figure 9.43a), the program level (Figure 9.44), and the loop level (Figure
9.45) were available from Cray Research. However, the feasibility of implementing
multitasking at the job-step level (Figure 9.435) is still under further study. In what
follows, we show three examples 1o illustrate the concept of multitasking. in
particular, for the X-MP multiprocessor system.

720 COMPUTER ARCHITECTURE AND PARALLEL PROGCE

CPru-0

Jah |

CPU-1

Job 2

(@) Multitasking at the job level

CPU-0

Compile A

Load A

CPu-1

Compile B

SSING

Independent steps

Load B within ane job

(£ Multitasking at the Job-step level

Figure 9.43 Multitasking at job levels for Cray X-MP.

— —
CPL-O CPU-1
Main
Sub-A Sub-H Sub-C Sub-[
Figure 9,44 Multitasking at the program level for Cray X-MP.
DO1I=IN
(scalar or vector code)
I CONTINUE
CPLL0 CPU-1
DO11I=I,N2 DO1I=2N,2
L

(sealar or vector code)

1 CONTINULE

(scalar or vector code)

CONTINUE

Figure

945 Multitasking st the loop level for Cray X-MP,

EXAMPLE MULTIPROCESSOR SYSTEMS T21

Example 9.5 Multitasking of vector code and scalar code is illustrated in
Figure 9.46 for the following two loop computations, respectively.

DO 21=1M
DO1J=1N l
Vector
code
1 A(lJ) = B(l.J) + C(1.J)
2 CONTINUE
DO 21=1M
DO1J =1,N
Scalar
code
1 A(lJ) = A(lLJ-1)=A(1.J)
2 CONTINUE

Example 9.6 Multitasking by processor pipelining (macropipelining intro-
duced in Chapter 1) is illustrated"in Figure 9.47 for the following loop com-
putations, where S1 and S2 stand for the two vector computations involved.

DO11=2N

A(l) = A(l - 1) + B(I) S1

D(1) = A(l) + C(I) s2
1 CONTINUE

9.6.3 Performance of Cray X-MP

In this section, the performance of X-MP is evaluated with theoretical predictions
and benchmark timings as reported by the designers. The X-MP processor design
is well-balanced for processing both scalar and vector codes. At the end, we sketch
the Cray-2, which is still under development.

The overall effective performance of each processor in execution of typical
user programs with interspersing scalar and vector codes (usually short vectors) is
ensured through fast ®ata flow between scalar and vector functional units, short
memory access lime for vector and scalar references, as well as small start-up time
for scalar and vector operations. As a result of this design characteristic, the
machine can perform very well in real programming environments using standard
compiler, without resorting to an enormous amount of hand-coding or even
restructuring of the original application algorithms. Certainly. as the code is more

722 compuTer ARCHITECTURE AND PARALLEL PROCESSING

I=1 1=2 I=3 1=4 =M
Vector Vector Vector Vector 9 Vecton
code code code code cende
CPU-0 CPU-1 CPU-0O CPU-1
[| i
(a) For vecior loop
I=1 =3 I=3 =4 =M
Scalar Scalar Scalar Scalar e Scalar
code code code code code
CPU-0 CPU-1 CPU-0 J CPU-|
r 1 '

(b) For Scalar loop _

Figure 9.46 Multitasking in Example 9.5 among two CPUs in Cray X-MP.

vectorized, and the vector length is becoming longer, an even better performance
can be achieved,

With a 9.5-ns clock rate, the peak speed of one CPU in X-MP is 210 mega flops
and that of using two CPUs (dedicated to multitasking of a single large job) is 420
megaflops. We assume one unif 1o be based on compiler-generated code running
on Cray 1/S. This mecans that the * minimum™ 1-CPU rate is 1 and that of 2-CPU
1s 2. Let “typical™ be the cases of small-to-medium size vectors encountered in
typical programs. Let **maximum ™ refer to the cases of very long vectors. The
performance of various types of programs relative to that of Cray 1/S is sum-
marized in Table 9.4, The unit for 1/O rate is based on measured time per sector.

EXAMPLE MULTIPROCESSOR SYSTEMS T23

1=2
1=}
51
A2)
I=4
$1
Ald)
R R At
=
S|
, Al4)
§2 A RS R—
51
CEUD oy ALS)
82 bom e mememem e ee e ElC,
CPU-I =
CPU-0 2
CPU-I

Figure 947 Multitasking by processor pipelining in Example 9.6.

Some benchmark timings on X-MP are reported by the Cray Rescarch
designers. Table 9.5 shows the timirf#-on various vector loop families with respect
to three representative vector lengths. The improvement of X-MP over Cray 1/S
on typical vector loops ranges from 1.5 to 3.0 with respect to increasing vector
lengths, It has been also reported that for general lincar algebra (Fortran) bench-
mark programs, the speedup factor of X-MP over Cray 1/S ranges from 2.77t0 3.27.

Table 9.4 Overall performance of the Cray
X-MP relative to Cray 1/S and disk

1.CPU rate (Peak 210 megaflops)

“Minimum: | (Cray 1/S)

Typical: Scalar-dominated 1.5
Vector-dominated 2.0

Maximum: 4

2-CPU rate (Peak 420 megaflops)

Minimum: 2

Typical: Scalar-dominated 30
Vector-dominated 49

Maximum: 4

1/O rate Access time Transfer rate

Disk I |

55D 0.01 250

T24 COMPUTIR ARCHITECTURE AND PARALLEL PROCISSING

Table 9.5 Vector loop families benchmark timing on X-MP over
Cray 1/S

Short vector Medium veetor Long vector
Vector loop families (VL = 8) (VL = 128) (VL = 1024)
A=28 11 I ¥ 21
A=84+C 1.2 22 27
A=8eC 1.5 24 33
A= B 1.5 1.9 20
A=8B+C+D 1.5 27 32
A=B4+CsD 1.4 29 36
A=8+ssp 1.3 30 4.0
A=B4+(C+ D+ E 13 23 27
A=B4+C+Det 1.6 5 24
A=BeC 4+ DoE 1.3 25 31
A=B 4+ CeD4EuF 1.5 21 22
Typical 1.5 235 kXI}

Theoretically, we can roughly analyze the total speedup of X-MP over a scalar
processor as follows: Vectorization offers a speedup of 10 to 20 over scalar pro-
cessing, depending on actual code and vector length. Multitasking offers an
additional speedup of Sw = 2, depending on task size and relative multitasking
overhead. The total speedup over scalar processing is thus equal 1o § = S, =< (10
to 20). In the benchmark, SPECTRAL, for short-term weather forecasting, the
actual 2-CPU speedup has been measured as Sm = 1.89 over 1-CPU. Therefore,
we obtain § = 18 to 38 under the assumption that §, = 1.8to0 1.9,

We describe below a model developed by Ingrid Bucher (1 983) to evaluate the
performance of Cray X-MP in environments with different work loads. Work
loads on the X-MP can be characterized by three types of execution requirements:
scalar mode, vecror mode, and concurrent mode. The scalar mods is characterized
by a process code being executed sequentially either for reasons of logic or because
1L is too costly to vectorize. In the vector mode, a process code is vectorizable and
exceuted in the vector section of the processor. In this mode the process granularity
is small. In the concurrent mode, the process code 1s decomposed into cooperating
processes and can be executed on more than one processor, The process granularity
is large enough to overcome the communication and process creation overheads,

Let §,. S,,and §, represent the rates at which a machine can execute scalar,
vector, and concurrent codes, respectively. Also, let F,, F,, and F. be the fractions
of the work load that can be executed only in scalar, vector, and concurrent modes,
respectively. Therefore the time required Lo exccute this work load is proportional
1o

Fadypitple, 2 9.1)

EXAMPLE MULTIPROCESSOR SYSTEMS 725

where S i is the work load-dependent clfective speed of the machine, Equation 9.1
implies that the slowest of the execution speeds will critically influence the effective
speed unless the fractional work load F associated with it is negligibly small.

The weight factors F,, F,, and F, have 1o be determined empirically from the
work load and adjusted by projections of how the work load will evolve in the
future. In general, the choice of machine conligurations may influence the charac-
teristics of the work load. For example, a machine with high concurrent speed
may encourage more Monte Carlo simulations. A satisfactory measure that is
independent of machine architecture and compiler optimization and characlerizes
the amount of computational work done is desirable. A generally accepted metric
for the execution speed of supercomputers is the megaflops. However, this metric
does not include much of the work done. Examples of such work are the logical
operations, integer arithmetic, and table hookups. Because of the highly parallel
architecture of each processing unit, these operations may often be performed in
parallel with the floating-point work. Nevertheless, we adopt the megaflops
measure. 3

In the vector mode, the time required to perform operations on vectors of
length N is a linear function of N given by

T= T+ NA (9.2)
where 7, is the startup time for the vector operation and A is the time per result
elements. For example, the Cray X-MP has shorter startup and element times for
its vector operations than the Cray-#8 and therefore clearly has the superior vector
processor. The vector execution speed can be estimated by

L N I
% T A+ TuN

(9.3)

Note, however, that the average time to process a vector length N has a more com-
plicated relationship than Eq. 9.2, because vectors of length N > 64 are stripmined
in sections of length 64.

Not all vector operations follow the simple relationship shown in Eq. 9.2.
For the Cray-18S, vectors must have a constant stride (distance between memory
locations), but the stride need not be 1. However, for many repetitive operations,
data are not stored in memory in a regular pattern. Hence we can identify these
types of vector operations:

I. Vector operations for vectors stored in continuous locations
2. Operations (gr vectors stored with constant stride
3. Operations for veclor operands stored in irregular locations in memory

s

Operands stored in irregular locations must be gathered, and the results may have
to be scattered back into memory. The Cray-1S performs, gathers, and scatters in

726 coMPUTER ARCIT TECTURE AND PARALLLL PROCISSING

scalar mode only. Therefore, we can modify the execution rate in the vector mode
by
2wl + 5 (9.4)
S Sa S, S,
where 5,,, 8,5, and S, , are the veetor speeds for operands stored in continuous
memory location, locations with constant stride > 1, and random locations,
respectively. £, F,, and Fy are the corresponding fractions of the vectorizable
work load,
The number of foads and store per Noating-point operation greatly influences
the vector speed. For some typical vector codes, measurements indicale that 0.6
to 1O loads and 0.2 10 0.5 stores were obscerved per floating-point operation.
Therefore, the Mloating Fortran statement

VI(I) = S1 « V(1) + S2 « Vi) (9.5)

produces the typical code. Further, two such statements are contained in a typical
DO loop. reducing the startup time for the other loop per floating-point operation
by a factor of 2 for the X-MP.

Table 9.6 contains values for veetor speeds for a work load similar 1o that at
the Los Alamos Laboratory. Table 9.7 indicates the values for a more ideal work
load. Note the effective speeds are degraded by only small amounts due to the slow
components. Measurements of the scalar speed S, is performed by running a
bench program. For example, the sealar speeds for Cray-1S and one of two pro-
cessors of the Cray X-MP are 4.2 and 5.4, respectively.

For the asynchronous concurrent mode, there are communication overheads
and portions of the parallel algorithm that must be executed sequentially. Let F.
be the fraction of code that can be executed in parallel mode on an arbitrary
number of P processors, with the remainder £y of it 10 be executed sequentially.
Then the execution time of the concurrent algorithm is proportional to

1 F

© IF‘r-l:u
- PsT,
S, PS5, W S I Teomm

(9.6)

Table 9.6 Characteristic veetor speeds (megaflops) for vector
length = 100 and work load F, = 0.78, F, = 0.20, F. = 0002,
(Courtesy of AC A Stgmerrics, Bucher 1983)

—_——mmm
5 55 £y s,
Vector specd Vector spejy Vector speed Effective
Tor eontinious for constint for random veetor

Machine VeCTives strudy ACCCss speed

Cray-15 AN S 5 ET

Cray XA e 107 1o &6 ™

* One of o provessors

1

EXAMPLE MULTIPROCESSOR SYSTIMS 727

Table 9.7 Characteristic vector speeds (megaflops) for vector
length = 500 and ideal work load F, = 0.85, F, = 015F_ = 0.00.
(Courtesy of ACM Sigmetrics, Bucher 1983)

5 Y s, 5

Vector speed Veetor speed Veator speed Effccuve °
Machine for continuous Tor constant for random vector
maodel vectors stride Hecess speed
Cray-18 6ty 6hS 5 fib
Cray X-MP* 133 132 f 133

* One of two processors,

where S, is the speed for executing the sequential portion of code and 7, is the
communication overhead. Using Eq. 9.1 and results described earlier, we can
compile characteristic speeds of Cray-1S, Cray X-MP, and some hypothetical
machines for two work loads with differing characteristics. In Tables 9.8 and 9.9,
the machines in quotes are hypothetical machines and the numbers in parentheses
are postulated numbers for hypothetical machines.

From these tables, it is obvious that the effective speed of a supercomputer is
strongly 'work load-dependent. The slowest characteristic speed will affect the
effective speed critically unless the fraction of the work load associated with that
speed is negligibly small. It acts likaa bottleneck. The most effective way to speed
up a machine is to increase this speed or to decrease the fraction of work associated
with it. The results also show that speeding up the fastest characteristic speed of a
supercomputer will markedly improve its effective speed. only if the fraction of the
work load running at that speed is close to L. If this is not the case, the installation
of additional vector pipelines on a vector computer will not be effective.

In summary, the Cray X-MP has 8 times Cray-1 memory bandwidth with
guaranteed chaining of linked vector operations. Compared to Cray-1, the X-MP
offers 1.25 to 3.75 speedup for single job and 2.5 to § times throughput on CPU

Table 98 Characteristic speeds (megaflops) for
Cray-1S, Cray X-MP, and a hypothetical machine for
vector length = 100, with work load F, = 0.20,
Fo =060, and F, = 0.20. (Courtesy of ACM Sig-
metrics, Bucher 1983)

Machine S, S 5. Ses

Cray-18 4.2 46 42 9.2
Cray X-MP (1 processor) 54 79 54 12.2
Cray X-MP (2 processors) 54 (15%) (10.5) (16.8)

“Cray X-MP™ (4 processors) 54 (316) (21.6) (20.7)

728 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Table 9.9 Characteristic speeds (megaflops) for
Cray-1S, Cray X-MP, and a hypothetical machine for
vector length = 500, with work load F,=0.10,F, = 080
and F_ = 0.10. (Courtesy of ACM Sigmetrics, Bucher

1983)

Machine S, 5 S, S
Cray-15 4.2 46 42 16.7
Cray X-MP (1 processor) sS4 133 54 232
Cray X-MP (2 processors) 54 [R] (10.8) (32.5)
“Cray X-MP™ (4 processors) 54 (53) (21.6) (40.6)

dominated job mix. The improvement in speed is due to two processors scheduled
by the COS, shorter clock period. higher memory bandwidth, and guaranteed
chaining, Like the Cray-1, the X-MP is good for both short and long vector pro-
cessing. A general guideline to explore the computing power in X-MP is to partition
tasks at the highest level to apply multitasking and then to vectorize tasks at the
lower levels as much as possible.

The Cray-2 Cray Rescarch, Inc. is currently developing the Cray-2, which is
expected to have 6 times speedup in scalar and 12 times speedup in vector opera-
tions over the Cray-1. Cray-2 is planned to have four processors using 32 M words
of main memory. The CPU cycle timeis targeted 1o be 4 ns. The 1/Owillbeimproved
20 times from current Cray-1 capability, It has been suggested that l6-gate ECL
chips will be used in Cray-2. Highly densed logic and memory modules will be
cooled by immersion in inert Aluorocarbon liquid. The longest wire length is
confined to 16 in. The system is planned to be housed in a circular frame 38 inches
in diameter and 26 inches in height, a rather condensed size for a supercomputer.
The Cray-2 is expected 1o become available in the late 1980s.

9.7 BIBLIOGRAPHIC NOTES AND PliDBLEMS

The original design of C.mmp architecture is described in Wulf et al. (1972). The
final C.mmp architecture is described in Fuller and Harbison (1978). The ex-
perience of the C.mmp among other multiprocessors is presented in Jones and
Schwartz (1980). Reliability of C.mmp has been studied in Siewiorek et al. (1978).
The Hydra operating system is described in Wulf et al. (1981). Oleinick (1978)
studied parallel algorithms for the C.mmp. Marathe and Fuller (1977) evaluated
the C.mmp architecture and the Hydra kernel.

The S-1 multiprocessor has been reported in Widdoes (1980). Lawrence
Livermore National Laboratory has published a series of reports on the S-1
project at the Lawrence Livermore National Laboratory (1981). IBM System, 370
architecture was assessed in Case and Pedegs (1978), IBM 3033 and 3081 are

EXAMPLE MULTIPROCESSOR SYSTEMS 729

described in IBM (1978, 1983). Programming and operating system design con-
siderations of tightly coupled IBM multiprocessor system are given in Arnold et al.
(1974) which includes an overview of the OS/VS2 MVS. Functional characteristics
of 370/168 can be found in the IBM manual IBM (1979). System desgription of the
Denelcor HEP computer is extracted from technical notes by Denclcor, Inc.
(1983) and a report by Smith and Fink (1980). Jordan (1983) has studied the per-
formance of the HEP. The material on the Cray X-MP and Cray-2 is based on
Chen (1983) and some technical presentations by Cray Research, Inc. Bucher
(1983) developed the performance models for Cray X-MP.

The evolution of the Sperry Univac 1100 series is reported in Borgerson et al,
(1978). The detailed description of Univac 1 100/80 systems can be found in several
Sperry Univac manuals on the processor and storage, hardware system, program-
ming, and exccutive systems. An introductory treatment of commercial multi-
processor systems, including the IBM 370/168, CDC Cyber-170, Honcywell
Series 60 Level 66, Univac 1100/80, Burroughs B7700, and DEC System 10 Model
KL-10, C.mmp, and C.m*, is given in Satyanarayanan (1980) plus an annotated
bibliography up to 1979. Surveys of earlier multiprocessors can be found in
Enslow (1974, 1977). A recent tutorial text on supercomputers by Hwang and
Kuhn (1984) covers recent vector processors and multiprocessor systems. The
Tandem Nonstop system is described in Katzman (1978). Recently, there are
a number of research multiprocessors reported by Gajski et al. (1983), Gottlieb
et al. (1983), and Fritsch et al. (1983).

Problems

9.1 Determine the evaluation time of the arithmetic expression
S = A[1]B[1] + A[2]B[2] + A[3]B[3] + A[4]B[4]

in each of the following computer systems:

(@) An S1SD system with a general-purpose PE

(b) A multifunction SISD system with one adder and one multiplier

(c) An SIMD system with four PEs

(d) An MIMD system with four processors
The addition and multiplication require two and four time units, respectively. Memory-access time
due to instruction and data fetch are ignored. The data-transfer time from one PE to another PE is
assumed 1o be one time unit in SIMD and MIMD systems, whereas it is ignored in SISD and multi-
function systems. In an SIMD system, the interconnection of PEs is in a linear circular fashion; ic.,
cach PE is connected to two neighboring PEs, In an MIMD, each PE can directly communicate with
other PEs. .
9.2 Three types of switch boxes are used to design a multistage interconnection network for an MIMD
system. A square switch has two inputs and two outputs, An arbitration switch has two inputs and one
output. A distribution switch has one input and two outputs. You are asked to design an 8 » 4 inter-
connection network using these switch modules,

(@) Use the minimum number of switch modules to construct the 8 x4 network with a unique
path between any source and any destination

(h) Repeat (@) for a4 x 8 network.

(¢} There are many ways to constructa 2= = 2" network, ifm > o, Comment on the better choives

730 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

among all the possible configurations in terms of hardware requirements and.expected network
performance.

9.3 Consider the storage of a symmetric n-by-n matrix A = (a,) in a memory system with n parallel
modules, where # is a perfect square. Devisc storage schemes 10 satisfy each of the following require-
ments. It is assumed that only [n/2] rows of the matrix are to be stored if n is odd, and [1/2] + | rows
arc needed if n is even. Fach memory module has a scparate index register to keep track of the allocation.

(a) Itis required to access any row or any column in one memory cycle. For example, we want to
access the elements a, ,, a,,, and 4y, in one cycle, or the elements Gyy, @yy, gy, Gqy, dgy, and a,,, in
another cycle.

(&) It is required to access any row or any nonoverlapping square of blocks as in the example
below:

(e) Mlustrate your memory allocation schemes for (a)and (b)) with N = 9and N = 16, respectively.
Is it possible to achieve (@) and (b) with the same scheme?
9.4 Answer the following questions associated with the C.mmp system:;

(@) Explain the special system instructions HALT, RESET. . WAIT, RTI, and RTT developed
for the PDP-11 processors in the C.mmp.

(b) Explain the function of the Dmap and of the imterprocessor bus installed in the C.mmp.

(c) What are the special features built into the H ydra operating system?
9.5 Answer the following questions on the -1 multiprocessor project:

(a) Explain the use of separate data cache and instruction cache in the pipelined design of the -1
Mark ITA uniprocessors,

(b) Explain the virtual-to-physical address translation scheme used in the S-1 system,

(c) What are the special features in the Amber operating system that facilitates multiprocessing ?
9.6 Answer the following questions for the HEP multiprocessor:

(a) Distinguish between the conventional SISD pipelining and the MIMD pipelining introduced
in the HEP. =

(b) Explain the design and priority operations of the Ppacket-swilching interconnection network
developed in the HEP,

(c) Explain the synchronization and protection mechanisms developed in the HEP.

9.7 Answer the following questions for the IBM multiprocessors:

(a) Distinguish the Attached Processing (AP) mode from the Multiprocessing (MP) mode in
various IBM multiprocessors.

(b) What are the improvements of the IBM 3081 over the IBM 370/168MP and IBM 3033 in
both technologies and designs?

(c) What are the multiprocessing features in the IBM OS/VS2 operating system?

9.8 Answer the following questions for the Univac 1100 series:

(@) Describe the increase of multiprocessing capability in various M x N configurations of the
Univac 1100/80.

(b) What are the improvements made in Univac 1100,90 multiprocessors over the Univac
1100/80 models?

(c) Explain the functional st ructure of the kernel of the EXEC operating system.

51 EXAMPLE MULTIPROCESSOR SYSTEMS 731

9.9 Answer the following questions for the Tandem nonstop system:

(a) Why can the Tandem multiprocessor tolerate all single failures in the system?

(b) Explain the alternate path switching between devices and controllers in the Tandem/16.

(¢) Describe the message sysiem developed in the Guardian operating system.

9.10 Answer the following questions for the Cray X-MP system:

(a) Explain the inter-CPU communication structure in the Cray X-MP.

(h) Explain the functions of the Solid-State Storage Device (SSD) and of the 1/0 Subsystem
(105) in the Cray X-MP.

(¢) Explain the improvements made in the Cray X-MP over its predecessor, the Cray-1.

911 A computing system has 10 tape drives available. All jobs that run on the syslem require a maxi-
mum of four tape drives to complete, but we know that they start by running for a long period with only
three they request the one remaining drive for a short period when needed near the end of their opera-
tion. (There 15 an endless supply of these Jobs.)

(@) 1 the job scheduler operates with the policy that it will not start a job unless there are four
unassigned drives, and it assigns those four drives to a job for its entire duration, what is the maximum
number of jobs that can be in progress al once? What are the minimum and maximum number of
drives thal may actually be idle as a result of this policy?

() Figure outa bevter scheduling policy to improve the drive utilization rate and at the same lime

to avoid a system deadlock. What is the maximum number of jobs that can be in progress in your new
policy? What are the minimum and maximum numbers of drives that may be idle as a result of this
policy?
9.12 Chained vector time (chime) is a useful term for discussing vector operation timing. Cray X-MP
can combine several chimes implementable on a Cray-1 into a single long chime. Give an example
veclor computation sequence (more involved than that shown in Example 9.4) to show the advantages
of using X-MP over the use of Cray-1.

CHAPTER

TEN

DATA FLOW COMPUTERS AND VLSI
COMPUTATIONS

Computer architects have been constantly scarching for new approaches to design-
ing high-performance machines. Data flow and VLSI offer two mutually support-
ive approaches towards the design of future supercomputers. In this chapter, we
study the requirements of data-driven computations, functional programming
languages, and various data flow system architectures that have been challenged
in recent years. In the VLSI computing area, we introduce topological structures
of multiprocessor arrays for large-scale numeric computations and for symbolic
manipulations, Techniques for directly mapping parallel algorithms into hardware
structures will be studied. VLSI architectures for designing large-scale matrix
arithmetic solvers are presented based on matrix partitioning and algorithmic
decomposition. Potential applications of some of these VLSI computing structures
are demonstrated for real-time image processing.

10.1 DATA-DRIVEN COMPUTING AND LANGUAGES

Data flow computers are based on the concept of data-driven computation, which
is drastically different from the operation of a conventional von Neumann ma-
chine. The fundamental difference is that instruction exccution in a conventional
computer is under program-flow control, whereas that in a data flow computer is
driven by the data (operand) availability. We characterize below these two types
of computers. The basic structures of data flow computers and their advantages
and shortcomings will be discussed in subsgquent sections.

Jack Dennis (1979) of MIT has identified threc basic issues towards the
development of an ideal architecture for future computers. The first is to achicve
4 high performance/cost ratio; the sccond is to match the ratio with technological
progress; and the third is to offer better programmability in application areas.

732

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 733

The data flow model offers an approach to meet these demands. The recent
progress in the VLSI microclectronic area has provided the technological basis
for developing data flow computers.

10.1.1 Control Flow vs. Data Flow Computers

The concepts of control flow and data flow computing are distinguished by the
control of computation sequences in two distinct program representations. In
the control flow program representations shown in Figure 10.1, the statement

Program
memory
Program Fork
memory o
i "
!
' . % Daia
i H E f} ; memory
. "i-.-_. '
W v, Data i 1 b
e memory : [
;| e ! 1
! 1 L - i 4
E 4 4 I: A Go
L 3 to
.“i’ -5 ." F iaey ﬂ
(|e (
i c < \
\ <
¥l alse o <
[F 5] r b -
- [-1
a+2 :’ . y f :;_
~ T I 1,
iy A o S
| @ P
o I i 4 [Join
] s
8 2
o
N o
vvuJ AT A
H l/ a
g i
! a =]
:
o
Vv
(a) Sequential control flow (b) Parallel control flow

Figure 10.1 Instruction execution in & control flow computer for the compitationof a = (b + 1) s (b —)
using shared data memory.,

TH COMPUTER ARCIHITECTURE AND PARALLEL PROCESSING

a=(+1)s(h—c)is specified by a series of instructions with an explicit flow
of control. Shared memory cells are the means by which data is passed between
instructions, Data (operands) are referenced by their memory addresses (vari-
ableys). In Figure 10.1, solid arcs show the access to stored data, while dotted arcs
indicate the flow of control.

In the traditional sequential control fAow model (von Neumann), there is a
single thread of control, as shown in Figure 10.1a, which is passed from instruction
to instruction. Explicit control transfers are caused by using operators like GO
TO. In the parallel control Jlow model (Figure 10.1h), special parallel control
operators such as FORK and JOIN are used 1o explicitly specify parallelism.
These operators allow more than one thread of control to be active at an instant
and provide means for synchronizing these threads, as demonstrated in Figure
1014 All underlined variables refer to addresses of operands and instructions.
Spectal features are identified below for either the sequential or parallel control
flow model :

+ Data is passed between instructions via references to shared memory cells.

» Flow of control s implicitly sequential, but special control operators can
be used explicitly for parallelism.

+ Program counters are used to sequence the execution of instruction in a
centralized control environment,

In a data flow computing environment, instructions are acuvated by the
availability of data tokens as indicated by the () in Figure 10.2. Data flow pro-
grams are represented by directed graphs, which show the flow of data between
nstructions. Each instruction consists of an operator, one or two operands,
and one or more destinations to which the result (data token) will be sent. Three
snapshots of the data flow graph for @ = (b + 1) # (b — ¢) are shown in Figure
10.3. The dots correspond to data tokens being passed between instructions. Listed
below are interesting features in the data flow model:

+ Intermediate or final results are passed directly as data token between
instructions.

* There is no concept of shared data storage as embodied in the traditional
notion of a variable,

* Program scquencing is constrained only by data dependency among
instructions,

Control flow computers have a control-driven organization. This means that
the program has complete control over instruction sequencing. Synchronous
computations are,performed in control flow computers using centralized control.
Data flow computers have a data-driven organization that is characterized by a
pissive examine stage, Instructions are examined to reveal the operand availability,
upon which they are executed immediately if the functional units are available,

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 738

(B) w)

(2 + () 1 371 UH - () (I /2
A\

B0 . Gy () 871

(@)

Figure 10.2 Instruction execution in a dataflow computer for the computation of a = (b + 1) = (b — ¢)
by direct data forwarding.

This data-driven concept means asynchrony, which means that many instruc-
tions can be executed simultancously and asynchronously. A high degree of
implicit parallelism is expected in a data flow computer. Because there is no use
of shared memory cells, data flow programs are free from side effects. In other
words, a data flow operation is purely functional and produces no side effects
such as the changes of a memory word. Operands are directly passed as * tokens ™
of values instead of as ‘“*‘address™ variables. Data flow computations have no
far-reaching effects. This locality of effect plus asynchrony and functionality make
them suitable for distributed implementation.

Information items in a data flow computer appear as operation packets and
data tokens. An operation packet is composed of the opcode, operands, and
destinations of its successor instructions, as shown in Figure 10.2. A data token
is formed with a result value and its destinations, Many of these packets or tokens
are passed among various resource sections in a data flow machine. Therefore,
the machine can assume a packet communication archit®ture, which is a type
of distributed multiprocessor organization,

Data flow machine architectures Depending on the way of handling data tokens,
data flow computers are divided into the staric model and the dynamic model, as
introduced in Figure 104 and Figure 10.5, respectively. In a static data flow

R

736 « OMPUTIER ARCHITECY URE AND PARALLEL PROCESSING

‘ 3 =0 (5)=c :
|
+(1)
Step |

l
]\}Jj
[]

1

, T
[S

\ L/“j
]

s .

(-8)=a

Figure 10.3 Three snapshots of the dataflow computation for a = (h + 1) (b — c).

DATA FLOW COMPUTERS AND VISI COMPUTATIONS 737

s Memory unit :
- (instructions) .
LE R LR
Y
Update [—— T s s e ! Fetch
unit (Instruction address) unit
L .
LR] -..
(Data
tokens) i
. Processing unit S Enabled
. (processors) < instruction queue
Figure 10.4 A static dataflow computer organization.
-
Memory unit
(instructions)
L
aes
Matching]
unit [
= (Matched token sets) 5 Update/
"3 fetch unit
4 ' s
LE R aen
(Data
tokens) Y v
ry Processing unit = Enabled
. (processors) - instruction queue

Figure 10.5 A dynamic datafiow computer organization.

T3 coMmpn TER ARCHITECTURE AND PARALLEL PROCESSING

michine, data tokens are assumed Lo move along the arcs of the data flow program
graph to the operator nodes, The nodal operation gets executed when all its
operand data are present at the input arcs. Only one token is allowed to exist on
any arc at any given time, otherwise the successive sets of tokens cannot be
distinguished. This a rehitecture is considered static because tokens are not labeled
and control tokens must be wsed to acknowledge the proper timing in transferring
data tokens from node to node. Juck Dennis and his rescarch group at the MIT
Laboratory for Computer Science is currently developing a static data flow
compulter,

A dynamic data low machine uses tagged tokens, so that more than one token
can exist in an are, The tagging 1s achieved by attaching a label with each token
which uniquely identifies the context of that particular token, This dynamically
tagged data flow model suggests that maximum parallelism can be exploited from
program graph, If the graph is cyclic, the tagging allows dynamically unfolding
OF the iterative computations, Dynamic data flow computers include the Man-
chester machine developed by Watson and Gurd al the University of Manchester,
England, and the Arvinds machine under development at MIT, which is evolved
from an earlier data flow project at the University of California at Irvine,

The two packet-communication organizations are based on two different
schemes for synchronizing instruction execution. A point of commonality in the
tWo organizations is that multiple processing clements can independently and
asynchronously evaluate the executable instruction packets. In Figure 10.4, the
data tokens are in the mnput pool of the update unit. This update unit passes data
tokens to their destination instructions in the memory unit. When an instruction
receives all its required operand tokens, it is enabled and forwarded to the enabled
queue. The fetch unit fetches these instructions when they become enabled.

In Figure 10,5, the system synchronization is based on a matching mechanism,
Data tokens form the input pool of the matching unit. This matching unit arranges
data token into pairs or sets and temporarily stores cach token until all operands
are compared, whereupon the matched token sets are relcased to the fetch-update
unit. Each set of matched data tokens (usually two for binary operations) is
needed for one instruction execution. The fetch-update unit forms the enabled
instructions by merging the token sets with copies sent to their consumer instruc-
tions. The matching of the special tags attached to the data tokens can unfold
iterative loops for parallel computations. We shall further discuss this tagged-
token coneept in later sections,

Both static and dynamic data flow architectures have a pipelined ring struc-
ture. If we include the 1/O, a generalized architecture is shown in Figure 10.6.
The ring contains four resource sections: the memories, the processors, the routing
network, and the fnput-outpus unit. The memories are used to hold the®nstruction
packets. The processing units form the task force for parallel execution of enabled
nstructions. The routing network is used to pass the result okens to their destined
mstructions. The Input-output unit serves as an interface between the data flow
computer and the outside world. For dynamic machines, the token matching is
performed by the 1/O section.

e
i

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 739

Input Qutput
— Input-output i
section
I___.' (token matching)
Routing Memory sections
network (instructions)
4
Processing et
(Data tokens) section o
(processors)

Figure 10.6 A ring-structured dataflow computer organization including the 1/O functions,

Most existing data flow machine prototypes are built as an attached processor
to a host computer, which handles the code translation and I /O functions. Even-
tually, computer architects wish to build stand-alone data flow computers. The
basic ring structure can be extended to many improved architectural configura-
tions for data flow systems. For example, one can build a data flow system with
multiple rings of resources. The rguting network can be divided into several
functionally specialized packet-switched networks. The memory section can be
subdivided into cell blocks. We shall describe variants of data flow computer
architecture in Section 10.2.

Major design issues Toward the practical realization of a data flow computer, we
identify below a number of important technical problems that remain to be solved -

1. The development of efficient data flow languages which are casy to use and to be
interpreted by machine hardware :

2. The decomposition of programs and the assignment of program modules to
data flow processors

3. Controlling and supporting large amounts of interprocessor communication
with cost-eflective packet-switched networks

4. Developing intelligent data-driven mechanisms for either static or dynamic data
flow machines

5. Efficient handling of complex data structures, such as arrays, in a data flow
environment .. -

6. Developing a memory hierarchy and memory allocation schemes for supporting
data flow computations

7. A large need for user acquaintance of functional data flow languages, sofltware
supports, data flow compiling, and new programming methodologies

8. Performance evaluation of data flow hardware in a large variety of application
domains, especially in the scientific areas

He o

40 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Approzlchﬁ to attack the above issues and partial solutions to some of them
will be presented in subsequent sections. We need first to understand the basic
propertics of data flow languages. After all, the data flow com puters are language-
oriented machines. In fact, research on data flow machines started with data flow
languages. It is the rapid progress in VLSI that has pushed the construction of
several hardware data flow prototypes in recent years,

10.1.2 Data Flow Graphs and Languages

There is a need to provide a high-level language for data flow computers. The pri-
mary goal is to take advantage of implicit parallelism. Data flow computing is
compatible with the use of dependence graphs in program analysis for compiling
in a conventional computer. An efficient data flow language should be able to
express parallelism in a program more naturally, to promote programming pro-
ductivity, and to facilitate close interactions between algorithm constructs and
hardware structures. Examples of data flow languages include the Irvine Data-
flow (ID) language and the Value Algorithmic Language (VAL) among several
single assignment and functional programming languages that have been proposed
by computer researchers

In a maximum parallel program, the sequencing of instructions should be
constrained only by data dependencies and nothing else. Listed below are useful
properties in a data flow language. We shall deseribe their implications and usages
separately.

e Freedom from side effects based on functional programming

» Locality of effect without far-reaching data dependencies

« Equivalence of instruction-sequencing constraints with data dependencies
Satisfying single-assignment rule with aliasing

Unfolding of iterative computations into parallelism

* Lack of "history sensitivity™ in procedures calls

Data flow graphs Inaconventional tomputer, program analysis is often performed
at compile time to yield better resource utilization and code optimization and
at run time to reveal concurrent arithmetic logic activitics for higher system
throughput. For an example. we analyze the following Fortran program;

Example 10.1 -

I.P=X+Y mustwail for inputs X and Y

2. Q=P <Y mustwail for instruction | to complete

3R =X xP mustwait for instruction | to complete

4.8 =R -~ Q must wait for instructions 2 and 3 to complete
5. T=R x P must wait for instruction 3 to complete

6. U=8+T mustwait for instruction 4 and § to complete

DATA FLOW COMPUTERS AND VISICOMPUTATIONS T41

Permissible computation sequences of the above program on a serial computer
include the following five:

(1,2, 3,4.5.6)
(1,%2,54.6)
(1.3,5,2.4,6)
(1,2,3,5.4.6)
(1,3,2,4,5.6)

On a parallel computer, it is possible to perform these six operations (1, [2 and 3
simultancously]. [4 and 5 simultancously], 6) in three steps instead of six steps.
The above program analysis can be represented by the data flow graph shown
in Figure 10.7. A data flow graph is a directed graph whose nodes correspond to
operators and arcs are pointers for forwarding data tokens. The graph demon-
strates sequencing constraints (consistent with data dependencies) among instruc-
tions. In a data flow computer, the machine level program is represented by data
flow graphs. The firing rule of instructions is based on the data availability. *
Two types of links on data flow graphs are depicted in Figure 0.8, The
purpose is to distinguish those for numerical data from those for boolean variables.

Figure 10.7 A dataflow graph for the computation of { =
M=V x (A + 1) =N+ 1)+ F)+(X (X =
F)ox (X +).

742 COMPUTER ARCHITECTURE ANI PARALLEL PROK ISSING

Data link Boolean link
Operator Identity Decider
g % ‘ e ’
T pate F gate Merge

R

Figure 10.8 Operators (nodes) and links (ares) for the construction of datafiow graphs.

Numerical data links transmit integer, real, or complex numbers and boolean
links carry only boolean values for control purposes. Figure 10.8 presents various
operator lypes for constructing data flow graphs. An identity operator is a special
operator that has one input arc and transmits its input value unchanged. Deciders,
gates, and merge operators are used to represent conditional or iterative compu-
tation in data flow graphs. A decider requires a value from each input arc and
produces the truth value resulting from applying the predicate P to the values
received.

Coggrol tokens bearing boolean values control the flow of data tokens by
means of the T gates, the F gates, and the merge operators. A T gate passes a data
token from its data input arc 1o its output are when it receives the true value on
its control input arc. It will absorb a data token from its data input arc and place
nothing on its output arc if it receives a false value. An F gate has similar behavior,
except the sense of the control value is reversed, A merge operator has T and F

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 743
L]

data input arcs and a truth-value control arc. When a truth value is received, the
merge actor places the token from the true input arc on its output arc. The token
on the other unused input arc is discarded. Similarly, the false input is passed to
the output, when the control arc is false.
Example 10.2 The following iterative computation is represented by the data
flow graphin Figure 10.9, using some of the operators and gra ph links specified
in Figure 10.8. The integer power z = 1" of an mput number x is desired:

input x.n
y=1,i=n
while />0 do
begin y=y+x;/=/-1 end
zZ=y
output z

(10.1)

The successive values assumed by the loop variables y and i pass through the
links labeled in the program graph. The decider emits a token carrying the
true value each time execution of the loop body is required. When the firing
of the decider yields a false, the value of y is routed to the output link z. Note
the presence of tokens carrying false values on the input arcs of the merge
operators. These tokens allow the merge operator to initiate exccution of
the loop by passing initial values for the loop variables. The initial values of
the control token.are marked as false in Figure 10.9.

False False

'

.

Figure 10.9 The dataflow graph representation of the computation @ = ¢ specified in Example 102,

P

744 coMpUTER ARCHITECTURE AND PARALLEL PROCESSING

Data flow graphs form the basis of data flow languages. We briclly describe
below some attractive properties of data flow languages.

Locality of effect This property can be achieved if instructions have no unneces-
sary far-reaching data dependencies. In Algol or Pascal, blocks and procedures
provide some locality by making assignment only to local variables, This means
that global assignments and common variables should be avoided. Dala flow
languages generally exhibit considerable locality. Assignment to a formal para-
meter should be within a definite range. Therefore, block structures are highly
welcome in a data flow language.

Freedom from side effects This property is necessary 1o ensure that data dependen-
cies are consistent with sequencing constraints. Side effects come in many forms,
such as in procedures that modify variables in the calling program. The absence
ol global or common variables and careful control of the scopes of variables make
it possible to avoid side effects. Another problem comes from the aliasing of
parameters, Data flow languages provide “call by value ™ instead of the *call by
reference.” This essentially solves the aliasing problem. Instead of having a pro-
cedure modify its arguments, a *call by value” procedure copies its arguments.
Thus, it can never modify the arguments passed from the calling program. In
other words, inputs and outputs arc totally isolated to avoid unnccessary side
effects.

Single assignment rule This offers a method to promote parallelism in a program.
The rule is to forbid the use of the same variable name more than once on the left-
hand side of any statement. In other words, a new name is chosen for any redefined
variable, and all subsequent references are changed to the new name, This concept
is shown below;

XIzp—Q x::P—Q
X=XxY =XI=XxY (10.2)
Wi=X-Y W=XI-Y

The statements on the right are made to satisfy the single assignment rule. It
greatly facilitates the detection of parallelism ina program. Single assignment rule
offers clarity and ease of verification, which generally outweighs the convenience
of reusing the same name. Single assignment rule was first proposed by Tesler and
Enea in 1968. It has been applied in developing the French data flow computer
LAU and the Manchester data flow machine in England.

Unfolding iterations A programming language cannot be considered as effective
if it cannot be used 1o implement iterative computations efficiently. Iterative
computations are represented by “cyclic” data flow graphs, which are inherently
sequential. In order to achieve parallel processing, iterative computations must
be unfolded. Techniques have been suggested to use tagged tokens to unfold

o.‘ "
.

DLTA FLOW COMPUTERS AND VISI COMPUTATIONS 745
O
activitics cmbedded in a cyclic data flow graph. In a conventional machine, the
same operation must be sequentially performed in successive iterations.

We define cach distinct evaluation of an operator as an activiry. Unigque names
can be created by tagging repeated evaluations of the same operator in different
iterations. A tagged token is formed with two parts: (data, destination activity
name). The destination activity is a unique name which identifies the context in
which a code block is invoked, the code block name. the instruction number
within the code block, and the iteration number associated with the looping index
value. This tagged information will unfold iterative computalions In d recursive
manner because the context tag may be itself an activity name.

Arvind and Gostelow (1978) have proposed a U-interpreter. which is part of
the data flow language ID. The U-interpreter is used to unfold iterations. This
notion of labeling computational activities, coupled with some rules for manip-
ulating the activity names, should help to enhance the parallelism in programs
written in any functional or data flow language. Special hardware structures are
needed to exploit the practical benefits in designing a data flow architecture with
tagged tokens. Such a dynamic architecture (Figure 10.5) needs to match the lags
of many data tokens before they can be paired to enable parallel computations
asynchronously,

10.1.3 Advantages and Potential Problems

Pros and cons of data flow computers are discussed in this section. Due to their
strong appeal to parallelism, data flow techniques have attracted a great deal of
attention in recent years. We assess first the advantages and then examine the
opposition opinions. The development of data flow computers and languages is
stillin its infancy stage. The research community is currently divided in opinions.
Itistoo carly to draw a final conclusion because the success of data flow computing
depends heavily on high technology and its matching with applications. However,
it is commonly recognized that more research and development challenges should
continue in this area, The idea of data-driven computation is rather old, but only
in recent years have architectural models with anticipated performance been
developed.

Most advantages arc claimed by rescarchers in this area. The claimed
advantages were only partially supported by performance analysis and simulation
experiments. Operational statistics are not available from existing prototype data
flow machines. Therefore, some of the claimed advantages are still subject to
further verification. Data flow computers are advantageous in many respects over
the traditional von Neumann machines, These aspects are elaborated below in
terms of projected performance, matching teclyology, and programming pro-
ductivity.

Highly concurrent operations Parallclism can be casily exposed in a data flow
program graph. The data flow approach offers a possible solution to the problem
of efficiently exploiting concurrency of computation on a large scale. It benefits

T46 COMPUTER ARCHITECTURE AND PARALLEL FROCHSSING

not only regularly structured but also arbitrary parallelism in programs. The
direct use of values instead of names of value containers (addresses) cnables purely
functional programming without side eflects. Asynchronous parallelism can be
exploited at the instruction level or at the procedure level. Inherently sequential
computations can be unfolded to enable parallelism. The data flow approach has
applied pipelining, array processing, and multiprocessing techniques discussed in
previous chapters for control flow computers.

The data flow language does not introduce inst ruction-sequencing constraints
other than the ones imposed by data dependencics in the algorithm. In theory,
maximum parallelism can be achieved if sufficient resources are provided. This
approach extends naturally to an arbitrary number of processors in the system.
The speedup should be linearly proportional to the increase of processor number.
The high concurrency in a data flow computer is supported by easier program
verification, better modularity and extendability ol hardware, reduced protection
problems, and superior confinement of software errors.

Matching with VLSI technology Recall the basic architecture of a data flow
computer (Figure 10.6). The memory section contains instruction cells which can
be uniformly structured in large-scalc memory arrays. The pool of processing
units and the network of packet switches can be each also regularly structured
with modular cells. All this homogeneity and modularity in cellular structures
contributes to the suitability of VLSI implementation of major components in
a data flow computer. As introduced in Chapter 1, the impressive progress in
microelectronics technology has made it possible 1o challenge the fabrication of
large arrays of processors, memories, and switches on VLSI chips.

The interconnection between chips can be built into highly densed packaging
systems. It is fair to say that data flow machine architecture matches nicely with
the technological supports that we anticipate to have. The potential of VLSI and
VHSIC technologies can be fully exploited in the development of data flow
machines. The operations in a data flow computer may be asynchronous. How-
ever, the hardware components can be designed with synchronous functional
pipes and clocked memory and switch arrays. With more lessons to be learned
and the data flow hardware properly evaluated, it would be appropriate to con-
sider VLSI implementation of some large-scale data flow systems,

Programming productivity In a control flow vector processor or a multiprocessor
system, the percentage of code that can be vectorized ranges from 10 to 90
percent across a broad range of scientific applications. The nonvectorizable code
(scalar operations) tends to become a bottlencck. Automatic vectorization requires
sophisticated data flow analysis, which is difficult in Fortran because of the side
effects caused #y the global scope and aliasing of variables. A well-designed data
flow computer should be able 1o overcome these difficulties and to remove the
bottleneck caused by assorted scalar operations.

It has been claimed by many computer researchers that functional pro-
gramming languages will increase the software productivity as compared to the

DATA FLOW COMPUTERS AND VIST COMPUTATIONS 747

imperative languages like Fortran and Pascal. This is especially true when the
computing environment demands a high degree of parallel processing to achieve
a prespecified level of performance. Intuitively, this assertion is valid for certain
algorithm constructs and work-load distributions, However, more empirical
results are needed to prove its validity for general scientific computations.

Shortcomings of data flow computing Critics ol the data flow approach have
pointed out quite a number of potential problems in the development and appli-
cation of data flow computers at the instruction level. It 15 instructional to learn
from these reserved positions and to explore other alternatives to achieve high per-
formance. In the conventional computer with centralized control hardware, an
imperative language such as Fortran is used and an intelligent compiler is needed
to normalize the program and to generate the dependence graph, which guides
the vectorization and optimization processes we have studied in previous chapters.
High-level use of the dependence graph is practiced here primarily at compile
time. The major advantages of this high-level approach arc summarized below:

e There is no need to use a new lunctional programming language, which

ordinary programmers may be reluctant to learn.

« Existing software assets for vectorizing, compiling, and dedicated application

software can continue to be utilized.

« Data flow analysis at the higher level of procedures and loops will result in

less overhead when averaged over all instructions to be executed.
-

In the data flow approach, special functional programming languages must
be used which can be easily compiled into a dependence graph. The object code
is generated to efficiently map the dependence graph onto the data flow machine
with distributed control hardware. Some advantages of high-level data flow
machines become potential shortcomings in the data flow computer, which cxploits
parallelism at the lowest level of instruction execution. Apparent disadvantages
of instructional-level data flow computers are summarized below:

. The data driven at instruction level causcs excessive pipeline overhead per
instruction, which may destroy the benefits of parallelism. The long pipeline
filling problem is attributed to queueing all enabled instructions at the input
ports of every subsystem in the data flow ring. The queue lengths absorb some of
the parallelism in a program, thus, performance becomes weak for improper
buffering 2nd traffic congestion.

2. Data flow programs tend to waste memory space for the increased code length
due to the single assignment rule and the excessive copying of data arrays.
The damaging effects of (e memory access conflict problem are so far not
well addressed by data flow rescarchers.,

3. When a data flow computer becomes large with high numbers of instruction
cells and processing elements, the packet-switched network used becomes
cost-prohibitive and a bottleneck to the entire system.

TR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

4. Some critics feel that data flow has a good deal of potential in small-scale or very
large-scale parallel computer systems, with a raised level of control. For
medium-scale parallel systems, data flow competes less favorably with the
existing pipeline, array, and multiprocessor computers. We shall further
discuss this assessment in Section 10.2.3,

10.2 DATA FLOW COMPUTER ARCHITECTURES

Several interesting data flow computer architectures are studied in this section,
The intent is to identify related architectural concepts rather than to describe the
implementation details, We shall start with static data flow computers represented
by the Dennis machine at MIT. Then we describe several ring-structured, dynamic
data flow computers, including the original Irvine machine and its successor
machine at MIT, the EDDY system in Japan, and the Manchester machine in
England. Several specially designed data flow systems will be briefly examined,
including the Utah machine, the French LAU system, and the Newcastle data-
control flow computer. Design alternatives of data flow computers will also be
discussed to inspire future development.

10.2.1 Static Data Flow Computers

Jack Dennis and his associates at MIT have pioneered the arca of data flow
research. They have developed a static data flow computing model and the associ-
ated language supports. There are two interesting data flow projects at MIT. For
identification purpose, we distinguish them by calling them the Dennis machine
and the Arvind machine. The Dennis machine has a static architecture, whereas
the Arvind machine is dynamic, using tagged tokens and colored activities.

Data flow graphs used in the Dennis machine must follow a static execution
rule that only one data token can occupy an arc at an instant. This leads to a
static firing rule that an instructio= is enabled if a data token is present on
each of its input ares and no token is present on any of its output arcs. Thus, the
program graph contains control tokens as well as data tokens, both contributing
to the enabling of an instruction. These control tokens act as acknowledge signals
when data tokens are removed from output arcs.

The Dennis machine is designed (o exploit the concurrency in programs
represented by static data flow graphs, The structure of this data flow computer
is shown in Figure 10.10; it consists of five major sections connected by channels
through which information is sent in the form of discrete tokens (packets):

* Memory section consists of instruction cells which hold instructions and their
operands.

e Processing section consists of processing units that perform functional
operations on data tokens.

DATA FLOW COMPUTERS AND VLS| COMPUTATIONS 749

Processing section
f B

Processing
¢ unit) ™

Processing
4 unit 0

(Control i
tokens) Y i

Control
network

(Data (Operation
tokens) packets)

(r‘ i \
Instruction

=1 cell block

\

1

Distribution Arbitration
network . - . network

(L]
-e

& Instruction I

\ \' = J /

Memory section

Figure 10.10 The static dataflow computer architecture proposed at MIT. (Courtesy of Dennis et al.,
1979.)

e Arbitration network delivers operation packets from the memory section to
the processing section.

« Control network delivers a control token from the processing section to the
memory seclion.

o Distribution network delivers data tokens from the processing section to the
memuory section.

750 «« IMIPUTER ARCHITECTURE AND PARALLEL PROCISSING

Instructions held in the memory section are enabled for execution by the
arrival of their operands in data tokens from the distribution network and control
tokens from the control network. Enabled instructions, together with their
operands, are sent as operation packets to the processing section through the
arbitration network, The results of instruction execution are sent through the
distribution network and the control network 1o the memory section, where they
become operands of other instructions, Each instruction cell has a unique address,
the cell identifier. An oceupied cell holds an instruction consisting of an operation
code and several destinations. Each destination contains a destination address,
which is a cell identifier, and additional control information used by processing
units to generate result tokens, An instruction represents one or more operators
of the program graph, together with its output links. Instructions are linked
together through destination addresses stored in their destination fields.

Each instruction cell contains receivers which await the arrival of token values
for use as operands by the instruction. Once an instruction cell has received the
necessary operand tokens and acknowledge signals, the cell becomes enabled and
sends an operation packet consisting of the instruction and the operand values
to the appropriate processing unit through the arbitration network. Note that
the acknowledge signals are used to correctly implement the firing rule for pro-
gram graphs,

The arbitration network provides a path from each instruction cell to each
processing unit and sorts the operation packets among its output ports according
to the operation codes of the instructions they contain. For each operation packet
received, a processing unit performs the operation specified by the instruction
using the operand values in the packet and produces one or more result tokens,
which are sent to instruction cells through the control network and distribution
network. Each result token consists of a result value and a destination address
derived from the instruction being processed by the processing unit, There are
control tokens containing boolean values or acknowledge signals, which are sent
through the control network, and data packets containing integer or complex
values, which are sent through the distribution network.

The two networks deliver result tokens to receivers of instruction cells as
specified by their destination address fields; that is, data packets are routed
according to their destination address, The arrival of a result token at an instruc-
tion cell either provides one of the receivers of the cell with an operand value or
delivers an acknowledge signal; if all result tokens required by the instruction in
the cell have been received., the instruction cell becomes enabled and dispatches
its contents to the arbitration network as a new operation packet,

The functions performed by the processing unit are distributed among several
sections of the data _ﬂow,‘sroces:mr. The operations specified by instructions are
carried out in the processing section, but control of instruction sequencing is a
function of the control network, and the decoding of operation codes is partially
done within the arbitration network. The address fields (destination addresses) of
instructions specify where the results should be sent instead of addressing a shared

DATA FLOW COMPUTERS AND VLS| COMPUTATIONS 751

memory cell. Instead of instructions fetching their operands, the operand values
are sent to the instructions,

All communication between subsystems in the Dennis machine is by packet
transmission over the channels. The transmission of packets over each channel
uses an asynchronous protocol so that the five sections of the computer can
operate independently without using central timing signals. Systems organized
to operate in this manner are said to have the packet communication architecture.

The instruction cells are assumed 1o be physically independent, so at any time
many of them may be enabled. The arbitration network should be designed to
allow many instruction packets to flow through it concurrently. Similarly, the
control network and the distribution network should be designed to distribute
dense streams of control and data packets back to the instruction cells. In this
way, both the appetites of pipelining and parallelism are satisfied. The arbitration,
distribution, and control networks of the data flow processor are examples of
packet-switched routing networks that perform the function of directing packets
to many functional units of the processor. If the parallelism represented in the
data flow graph is to be fully exploited, routing networks must have a high band-
width,

When the number of instruction cells becomes large, the three networks
shown in Figure 10.10 may become exceedingly large and thus cost prohibitive.
One approach that has been suggested to overcome this difficulty is to use the
concept of cell blocks. A cell block is a collection of instruction cells which share
the same set of input and output parts from the distribution, control, and arbi-
tration networks. The cell-block implementation and its use in the machine
architecture are demonstrated in Figure 10.11. By using shared 1/O ports, the
arbitration networks can be partitioned into subnetworks of significantly smaller
sizes; so can the other networks in the system.

In Figure 10.12, we show an example design of the cell block-structured data
flow multiprocessor system. The system consists of four processors and 32 cell
blocks. Three building blocks can be used to construct the 32 x 4 arbitration
network and the 4 x 32 distribution network. Illustrated in Figure 10.13 are the
2 x 1 arbiter; the 1 x 2 distributor, the 2 x 2 switch, and the 3 x 2 switch used
in the network constructions in Figure 10.12 and Figure 10.14, respectively. The
distributors are blocking free. The arbiter can pass only one input to its output.
The 2 x 2 switch has nine possible states, two of which may cause blocking.
The 3 x 2 switch has 27 states, 14 of which will cause blocking. Whenever a
blocking takes place, only one of the conflicting requests can get through the
switch.

The blocked requests will be discarded in an unbuffered network and the
requests will be resubmitted. For a packet-switched network with buffers at the
inputs of the switches or arbiters, the blocked requests will be held waiting to be
passed to the output ports in a later time. The buffered Delta networks discussed
in Chapter 7 can be modified to be used in a data flow environment. An example
buflered arbitration network of size 27 x 8 is shown in Figure 10.14. Each input

.

Memory section

Arbitration

—_—
| r—]
— . ____F_—-______'J =" To PE:
]
=)

Distribution :

(LYl

network
From
PEs

.
. network
-

.
Instruction block Arbitration

’ = To PEs

. -

-

Insiruction network .

cells 3 .

-
|

— (| “—1

|

inte cell blocks,

Figure 10.11 The concept of grouping instruction cells

[- Processor | I
— Processor 2 I
- —{ Processor 3 }
- Processor 4 -
[(Result tokens) (Operation packets)
1I i ;
AL p——
packer 32x32
o= [Pr 12 switched Cell block |} nnlckﬂ ot 13%4
> distri. netwaork switched rbitea:
»{ bution | = | for . 4 o] Metwork | G
neiwork | » | token 4 ¥ . Fur_ ek
distri- arbitra- ”
bution tion
== { Cell block 3] I—-I b
P]

Memory store
Figure 10,12 A 4-processor dataflow computer with 32 cell blocks interconnecied by a 32 x 4 arbitration
etwork and a 4 x 32 distribution nerwork,

752

L 2]

i ; r3

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 753

e e e e g ——
5 '.-“
‘““- o"..—

-
..--*A"-

Figure 10.13 Switches, arbiters, and distributers used
in network construction (dash lines are all the possible
(d) A 1-by-2 distributor request paths).

portofthe 3 x 2 switch has a buffgr. A round-robin scheme can be used to resolve
conflicts among multiple requests destined to the same output ports.

Since the arbitration network has many inputs, a serial format is appropriate
for packet transfer between instruction cells (or cell blocks) and the arbitration
network 1o reduce the number of connections needed. However, to achieve a high
rate of packet flow at the output ports, a parallel format is required. For this

ek b
.-_.f'f_{é,‘.

T54 coMpUTIR ARCHITECTURE AND PARAT LEL PROCESSING

J———
i
|

-
= .

e
— |

— | ——
s -
—
——

—-‘.]
——

——
—— b

e |
—_— =
——
—_—
—_—
e

Figare 10,14 A 27-by-8 buffered Delta network for resource arbicration in a Delta network,

s

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 755

reason, serial-to-parallel conversion is done within the buffers as a packet travels
through the arbitration network. Parallel-to-serial conversion is performed in the
distribution network for similar reasons. The control network is usually unbuffered
with direct circuit-switching paths.

The data flow project led by Dennis at MIT is undergoing-four stages of
development:; y

I. The construction of a four PE prototype machine to support language concepts
of scalar variables, conditionals, and iterations used in signal processing
. The extension of the scalar data flow machine to a vector/scalar processor to
support data structures for scientific computations and to develop a user pro-
gramming language
3. The overcoming of the program size limitation of stages one and two by adding
cache memories and backup storage areas for inactive programs
4. The building of a general-purpose data flow computer which stands alone,
compiles its own program, and runs a time-sharing service to multiple users

b

Currently, the prototype hardware is under construction and a compiler is being
written for the VAL programming language. A number of supportive projects
on fault tolerance, data flow hardware description languages, etc., are also in
progress at MIT's Laboratory for Computer Science.

-
10.2.2 Dynamic Data Flow Computers

Three dynamic data flow projects are introduced below. In dynamic machines,
data tokens are ragged (labelled or colored) to allow multiple tokens to appear
simultaneously on any input arc of an operator node. No control tokens are
needed to acknowledge the transfer of data tokens among instructions. Instead,
the matching of token tags (labels or colors) is performed to merge them for in-
structions requiring more than one operand token. Therefore, additional hardware
is needed to attach tags onto data tokens and toperform tag matching. We shall
first present the Arvind machine, followed by the EDDY system and the Manchester
data flow machine.

The development of the Irvine data flow machine was motivated by the desire
to exploit the potential of VLSI and to provide a high-level, highly concurrent
program organization. This project originated at the University of California at
Irvine and now continues at the Massachusetts Institute of Technology by Arvind
and his associates. The architecture of the original Irvine machine is conceptually
shown in Figure 10.15. The ID programming language was developed for this
machine. This machine has not been built; but extensive simulation studics have
been performed on its projected performance.

The Irvine machine was proposed to consist of multiple PE clusters. All PE
clusters (physical domains) can operate concurrently, The physical domains are
interconnected by two sysiem buses. The token bus is a pair of bidirectional

.-
- e -

.‘; o L
756 coMPuUTER ARCHITECTURE WA:',M"IJL'I*mxmmxu

A ph‘fx:fd‘crr'min-
,—"—-—J'}-_\

The counter-
The pipelining of rotating token
lokens within ring buses

a physical domain

(a) Token rings and local pipelining

Physical domain ¢ Physical domain d + 1

— ——— - e ~
Token buses
A see A

Local bus

Global bus

(b) Processor clusters and interconnection buses

Figure 1015 The Irvine dataflown computer. (Courtesy of [EFE Frans. € omputers, Gostelow and Thomas,
October 1980.)

shift-register rings. Each ring is partitioned into as many slots as there are PEs
and each slot is cither empty or holds one data token. Obviously, the token rings
are used to transfer tagged tokens among the PEs.

Each cluster of PEs (four PEs per cluster, as shown in Figure 10.15) ghares a
local memory through a local bus and a memory controller. A global bus is used
to transfer divta structures among the local memories. Each PE must accept all
tokens that are sent 1o it and sort those tokens into groups by activity name. When
allinput tokens for an activity have arrived (through tag matching), the PE must
execute that activity. The U-interpreter can help implement iterative or procedure

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 757

computations by mapping the loop or procedure instances into the PE clusters
for parallel executions,

The Arvind machine at MIT is modified from the Irvine machine, but still
based on the ID language. Instead of using token rings, the Arvind machine has
chosen to use an N x N packet switch network for inter-PE cormmunications
as demonstrated in Figure 10.16a. The machine consists of N PEs, where

PE
1 1
PE
NxN
network
- -
: .
-r,
N-1 N=1
PE +
(@) The machine architecture
op nc nd

G

Constants
G

. p, nt, af)

s p',nt', af") Destinations

% p7 nt”, uf)

(B) A typical instruction

Figure 10.16 Arvind's datatlow machine organization and instruction format. (Courtesy of Arvind et al.,
Sept. 1980.)

o L T e, =

758 COMPUTER ARCHITECTURE AN PARALLEL PROCTSSING

cach PE is a complete computer with an instruction set, a memory, tag-matching
hardware, etc. Activities are divided among the PEs according to a mapping from
tags to PE numbers. Each PE uses a statistically chosen assignment function to
determine the destination PE number.

A general format for instructions is shown in Figure 10,16, where op is the
opcode. neis the number of constants (maximum of two) stored in the instruction,
and nd is the number of destinations for the result token. Each destination is
identificd by four fields (5. p.ot,af): where s is the destination address, p indicates
the input port at the destination instruction, n¢ indicates the number of tokens
needed to enable the destination instruction. and af indicates the assignment
function 10 be used in selecting the PE for the execution of the destination
instruction.

The functional structure of each PE is shown in Figure 10.17. The mnput
section has a register which il empty can 4ccept a token either from the communi-
cation system or from the output section of the same PE. Fach activity requires

L

Input

Waiting-matching
Section

\ &
Program and Instruction
data memory fetch section ;

o

Service section
(ALU
PE mapping)

I'structure
memaory

Output

Figure 10,17 The processing clement (I'F) in Arvind s datatlow machine ar MIT,

DATA FLOW COMPUTERS AND VISI COMPUTATIONS 759

cither one or two tokens, as indicated by the nr field of a token. If the activity
corresponding 1o the input token requires another token, the waiting-matching
section is informed. The latter has a buffer to hold those tokens for which another
token with a matching tag has not yet arrived. Whenever the tags of two tokens
malch, both tokens are moved to the mstruction-fetch buffer. Based on the slate-
ment number part of the tag, an instruction from the local program memory is
fetched.

If a match for the tag of the input token is not found and the waiting-matching
-buffer is full, a refusal to accept the token will cause a deadlock. Therefore, if the
buffer-full condition exists, the token has to be stored somewhere else and retrieved
at a later time, After the instruction has been fetched, an operation packet con-
taining the operation code, the operands, and the destinations is formed and sent
to the service section. The service section contains a floating-point ALU and the
hardware o calculate new activity names and destination PE numbers.

The I structure is a special tagged memory for storing arraylike data structures
with constraints on their creation and access. Essentially, an element of an 1
structure can be defined only once, A presence bit is associated with every element
of an I structure. An attempt to read an clement whose presence bit is not set
causes the read (0 be deferred. The use of 1 structures can avoid excessive array
copying. The service section also processes the memory operations except | struc-
ture reads. After the ALU or the memory produces the result and the new tags and
destination PE numbers have been computed, the result tokens are sent to the
output section. Since it is possible 10 encounter delays in transmitting a token
through the communication network, some buffer space is provided in the output
section.

A separate section to hold deferred reads (i.e., requests o read an element
of an I structure before it has been produced) is needed to avoid the blocking of
the service section. Every unsuccessful read request will be marked and set aside.
An unusual feature of the PE is that it has no program counter. Instead, it main-
tains a list of enabled activities in the service section and can execute them in any
order. A PE will have 100 percent ALU utilization as long as there is at least one
enabled activity in the service queue at any given time instant.

A group of PEs known as a physical domain is allocated whenever a procedure
or a loop is invoked. All activities of the invoked procedure (or loop) take place
within the physical domain except those activities which are caused by an operator
that changes the context part. The activitics of a procedure (loop) can be distri-
buted within a physical domain on the basis of the instruction number of the
iteration number of an activity name. Tag matching may contribute to additional
overhead, which is potentially a performance bottleneck for dynamic dita flowy
computers.

In order to include the possibility of activating several code blocks (not neces-
sarily distinct from each other) within a physical domain, one can assign a different
color 1o eack activation, However, only a finite number of colors are allowed
within a physical domain and, if all colors of a physical domain are in use. no
new loop or procedure activation can be scheduled on it. Colors are released when

2 VT

760 « OMPUTER ARCHITECTURE AND PARALLEL PROGCISSING

a loop or procedure terminates. Sharing of code blocks within a physical domain
i1s feasible because all invocations carry different colors. Several calor registers
are used in each PE. This will help distribute logical activities to PEs on aresource-
sharing basis. Coloring will increase resource utilization and thus total system
throughput.

In Japan, the development of a scientific data flow machine called EDDY
(Experimental system for Data Driven processor arra¥) is in progress. The
hardware consists of 4 x 4 PEs and two broadcast control units (BCUs), as
shown in Figure 1018, Each PE is composed of two microprocessors (Z8001)
and is connected directly with eighi neighboring PEs. The broadcast control can
load or unload programs and data to or from all PEs, in column or row, at the

same time,

inter- Toall 16 PEs

face

Host
computer

—

———

Memory p—
-

-—..

d O

Broadcast conirol
Peripheral

PE, — PE, PE, PE, |-
£ PE, — PE, PE, PE, |-

8
- N\

3
& —— PE, PE, PE,, FE, |-
l l &,
e PE,, PE,, PE,, PE, |-
—— / T \

(Local memory is attached with cach PE)

Figure 10,18 The EDDY dataflow machine in Japan, (Courtesy of Conf. Proc. 10th dnnual Symp.,
Computer Arvchitecture, Takakashi and Amamiyn, June 19831.)

DATA FLOW COMPUTERS AND VLS| COMPUTATIONS 761

The software system implemented on each Z8001 * simulates " the circular
pipeline data flow control of the PE in detail, using logical simulation clocks, It
generates statistical data, such as operation rates of the function units and average
queue length. The simulation results will be used to help develop the custom-
designed PE hardware. The functional language to be used in EDDY is called
VALID.

The custom-designed PE is a circular pipeline consisting of an instruction
memory section, operand memory section, operation section and communication
section, as shown in Figure 10.19. On the arrival of each operand token, the
instruction memory fetches its operation node and sends both the fetched instruc-
tion and operand data to the operand memory section. If the arrived data is an
operand for a two-operand operation, the operand memory scarches for its paired
partner associatively. When the paired operand is found, an operation packet is
constructed and sent to the operation section. When no paired operand is found,
the arrived data token is stored in the operand memory with a key attached.’

All data tokens are tagged, which represents their execution environment so
as 10 allow more than one token to be travelling on an arc. In order to realize
highly distributed control, it is important to decentralize the tagging control. It
is also necessary to mechanize the tagging control so as to extract maximal
parallelism. The EDDY system uses a mixed strategy with both static tagging and
dynamic tagging. In static lagging, execution environments are predefined and a

[SR e ek 8 Lo S 445 St e e e T S .
- 00 [} - Focionr]|
{ i i unit ‘

H Read i Read-write ! :

f Instruction memory |} { | Operand memory | : | Functional :

: ii H unit !

i Operation P4 Operand i :

i nodes i data jo : i
Loz S 1] Seadiel | i
Instruction memory (IM Operand memory (OM) - :
section section L F“.“dm“’l H
e unit H

'

H H

. .

: i

)i

|

e A — 00 | -t

Link memory Inter-PE

Operation unit
1051 section

LT T T R S— | —

communication
Link nodes control
W B T umm— TERpe (— 4
Communication unit (CLI)
sechion

Figure 10.19 The functional design of each PE in the EDDY system.

762 COMPUTER ARCHI L TURE AND PARALLEL 120000 IASING

unique tag is assigned to cach of them. In dynamic tagging, tags are assigned 1o
each environment dytﬂlﬁiﬁl’l’:ﬁ% execution environment is represented by a
(tag) name.

The environment name and opeode are used as a key for the associative
search. The operation section consists of several functional units mcluding some
number crunchers. The communication section cansists of final link memaory and
an mter-PE commumecation controller. This controller sends result packels 1o
link memory or to other PEs and also recerves result packets from other PEs and
transmits them 1o its own link memaory,

The data flow project at Manchester niversity has included the design of
the high-level, single-assignment programming language Lapse: the implementa-
ton of translators for Lapscand a subsct of Paseal: and the production of a detailed
stimulator for the Manchester compute architecture. Currently the group is
completing a 20-processor data low computer prototype.

The Manchester machine also dssumes i ring structure, as demonstrated in
Figure 10.20. Five functional blocks communicite in clockwise direction around
arng A token package is the nain umit of information and comprises a data-
vitlue, label, and destination node pointer, The matching wnir groups tokens. When
suflicient 1okens arrive Lo fire a node, an appropriate group package finds a
destination node description n the node store. An exceutable package [containing
operator, operands, label, and pointer(s) to further destination node(s)] is sent
10 the processing unit for exceution. The swirch handles external Input output.
The token quene saves excess tokens generated at about the same time

Parallel duta-driven rings have been suggested 1o extend the Munchester
machine (Figure 10.21), Very high processing rates may be achieved by connecting
multiple numbers of pipelined rings in this approach. A unidirectional pipelined
exchange switch is mod ularly extensible and of relatively simple form as compared

Input . —
- Output
—
Switch
nit ;
Labeled 1okens et Token
[Queue
MNode
Processing sMore -
unit tenablad 1 Matching *
(PLy) nstrue- uni
tioms)
I

Figure 10200 The N Lanchester datatlon computer weganization, (Courtesy of AFIPS Proc. of ACC,
Worison and Guord, Jone 19749,

el
e M AR DATA FLOW COMPUTLES AND VIS COMPUTATIONS 763
Input CQuiput
- TO
({Labelled
tokens) Exchange
switch TO ¥
network
b .
PU NS fe— MU
PU NS MU
- - - -
- - - -
e [0 Ja{ i T e

Figure 10.21 Multiple ring architecture proposed for the Manchester machine (TQ: Token Queue; MU:
Matching Unit; NS: Node Store; PU: Processing Unit). (Courtesy of Computer Design, Gurd and
Watson, July 1980.)

-
to a crossbar switch, for example. In such a very large system, the major problem
is to distribute the work load cvenly among multiple data flow rings demonstrated
in the figure.

10.2.3 Data Flow Design Alternatives

There are several data flow projects that have special architectural approaches
different from the static or dynamic machines described in previous sections. In
fact, the first operational data flow machine in the USA is the Data-Driven
Machine (DDM-1) designed by A. Davis and his colleagues in 1976, The program
and machine organization are based on the concept of recursion, markedly
different from the previous data flow systems we have examined. The computer
is composed of a hierarchy of computing elements (processor-memory pairs),
where each element is logically recursive and consists of further offspring elements.

Logically the DDM architecture is tree structured, with cach computing
clement being connected to a parent element (above) and up to cight offspring
clements (below), which it superviscs. The DDM project is cwerently located at
the University of Utah. It is operational and communicates with a DEC-20/40,
which is used for software support of compilers, simulators, and performance
measurement programs.

In Toulouse, France, a data flow system called LAU has been constructed
with 32 bit-slice microprocessors interconnected by multiple buses. The LAU

764 comru TER ARCHITICTURE AND PARALLEL PROGCESSING

programming language is based on single assignment rule, but the computer's
program organization is hased on control Mow concepls. In the computer, data
are passed via sharable memory cells that are accessed through addresses embed-
ded ininstructions. Seperate control signals are used 1o enable instructions.

In Newcastle, England, another data flow system s under development. This
system uses both dita tokens and control tokens 1o enable mnstruction execution,
The Newcastle system is a combination of the data Row and control flow mech-
ANISMS in one integrated system approach

Up 1o 1983, only the DDM at Utah, the EDDY in Japan, the Manchester
machine, and the French LAU system are operational data flow computers. There
ire many other rescarch projects that are devoted 1o virious aspects of data flow
computing. Most data flow projects emphasize run-time simultaneity at the
instruction level. Unless the program being executed is embedded with a high
degree of parallelism. the pertormance of such instruction-level data-driven com-
puters could be very poor because of high system overhead in detecting the
parallelism and in scheduling the available resources. Two design alternatives
to the data flow approach are discussed below. These maodified approaches offer
higher machine compatibility and better utilization of the existing soltware assets.

Dependence-driven approach This approach was independently proposed by
Gajski et al. (1982), and by Motooka ¢t al. (1981). The idea is to raise the level
of parallelism 1o compound-finetion (procedure) level at run time. A compound
lunction is a collection of computational tasks that are suitable for parallel pro-
cessing by multiprocessors. Listed below are six compound functions investigated
by the research group at the University of Hlinois:

« Array (vector matrix) operations

e Lincar recurrence

e For-all loops

« Pipeline loops

Blocks of assignment statements
Compound conditional statements

A program is a dependence graph connecting the compound-function nodes.
Dependence-driven refers 1o the application of data flow principles over multiple
compound-function nodes. In a sense. it is procedure driven. Instead of using data
Now languages. traditional high®level language programs can be used in this depen-
dence-driven approach (Figure 10.22). Additional program transformation
packages should be developed to convert ordinary language programs to depen-
dence graphs and 1o generate codes from dependence graphs. A hardware organ-
wation needed for dependence-driven computations s illustrated in Figure
.23, Such a dependence-driven machine has global controller for multiple
processor clusters and shared memory and other resources. instead of decentral-
tzed control as emphasized in a data-driven muachine,

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 765

(Dependence-driven)
ordinary
language program

1

l Program normalization]

Dependence
graph generation

(Data-driven)
dataflow language program

1

Dependence
graph generation

B T TR NIt

Dependence graph

Arc and node
transformation

'

L Code generation -l

'

Machine with structured
control hardware

-
I Code generation ’

Machine with decentralized
control hardware

e b S sE RSt rsme s oh as e = o e am—— e

Figure 1022 Comparison between data-driven and dependence-driven computing models. {Courtesy of
IEEE Computer, Gajski et al., February 1982.)

A second opinion has been expressed on data flow machines and languages
by the dependence-driven researchers. Two questions were raised : First, are data
flow languages marketable? To date, the high-speed computer market has been
dominated by conservatism and software compatibility. Can data flow languages,
as currently proposed, overcome this conservatism? Second, will data flow
language® enhance programmer productivity? Although data flow researchers
have made some claims to this effect, they remain unsubstantiated.

Dependence-driven researchers felt that, in small-scale parallel systems, data
flow principles have been successfully demonstrated. When simultaneity is low,
irregular, and run time-dependent. data flow might be the architecture of choice.
In very large-scale parallel systems, data flow principles still show some potential

TO6 COMPUTI I ARC T 11RT AND PARALLEL PROK | SSING

[

‘ Global controller

B e

Vo

kol

i 1

£ 3

k [}

;o ; 1 1
' P

i

LA IProwesson Processor Fy= Proceswor
§ cluster cluster cluster
.]

L) .

L]

P ‘

" 1}

o

L]

{ L] 1
. .

&3

E L Interconnection netwark

'

L]

;] 4 ! f
) LR

i

i | i | Y
'

:'

1}

- Shared memuory space

Control

Figure 10.23 The hardware structure suggested for high-level data How computing. foe either the
dependence-driven model or (he event-driven model,

for high-level control, It is in medium-scale parallel systems that data flow has
little chance of success, Pipelined, parallel, and multiprocessor systems are all
effective in this range. For data flow processing to become established here, iis
inherent ineflicicncies must be overcome.

Multilevel event-driven approach The dependence-driven was generalized to an
event-driven approach by Hwang and Su (1983¢). An evenr is a logical activity
which can be defined at the job (program) level, the procedure level, tfe task level,
or at the instruction level after proper abstraction or engrossment, as illustrated in
Figure 10.24. Hierarchical scheduling is needed in this event-driven approuach. A
mechanism for program abstraction needs 1o be developed. Such a mechanism
must not require high system overhead. It could be implemented partially at
compile time and partially at run time. The choice depends on the performance
criteria to be used in promoting parallel processing at various levels. Hierarchical
scheduling of resources is the most challenging part of research in this approach.

Heuristic algorithms are needed for seheduli ng multiple events to the available
resources inan event-driven computer. Instead of using the tirst-in. first-out (FIFO)
scheduling policy on all enabled activities, as in a data-driven computer, this
approach considers the use of priority qucues in the event scheduling. The priority
15 determined by pre-run-time estumating of the time-space complexities of all
enabled events, The optimal mapping of lagical events to physical resources has

BATA 1LOW Y OMIPUTIRS AR VI SEEOMPL A TIONS ToT

r Joh level

S |

Compound tancnon level

ot e c—

Procedure level

(Engrosvymenty) (Abstractions)

Fack level

Subtask level

Instruction level

Figure 10.24 Multilevel program absteaction in the event-driven data flow computing model,

proven to be NP-complete. The heuristics using priority queues will result in
nearly optimal performance, if the complexity estimations are sufficiently accurate.
Intuitively, o multilevel event-driven approach should be more appealing to
general-purpose computer design which uses both data flow and control flow
mechanisms. Due to the complexity i hierarchical control, many rescarch and
development efforts are still needed to make this approach workable and cost
effective.

For rescarch-oriented readers. we identify below a number of important
issues that demand further efforts towards the development of workable data flow
multiprocessor systems,

Ll
1. The design of a machine instruction sel and Iugh-]t':ci data flow languages
2. The design of the packet communication netw orks for resouree arbitration and
for token distribution
3 The development of data Now processing clements and the structured memory
4. The development of activety control mechamsms and data flow operating
system functions

J

T68 coMmpPuTIR ARCHITECTURE AND PARALLEL PROCTSSING

5. Overhead estimations of data flow computers, including development overhead,
exccution overhead, and application overhead

6. Performance analysis of data flow machines for irregular parallelism with
intermix of scalar and vector computations

7. Relative performance of asynchronous data flow machines as compared with
synchronous SIMD, MIMD, or pipeline computers

8. The development of program debugging tools and tuning mechanisms

Data flow offers a viable approach 1o improve today’s computer performance.
The development of data flow computers is in its infancy stage. With the push of
VLSI computing structures, we can anticipate an important role of data flow
mechanisms and their variations in future computers.

10.3 VLSI COMPUTING STRUCTURES

Highly parallel computing structures promise to be a major application area for
the million-tra nsistor chips that will be possible in just a few years. Such computing
systems have structural properties that are suitable for VLSI implementation.
Almost by definition, parallel structures imply a basic computational clement
repeated perhaps hundreds or thousands of times, This architectural style imme-
diately reduces the design problem by similar orders of magnitude. In this section,
we examine some VLSI computing structures that have been suggested by com-
puter researchers. We begin with a characterization of the systolic architecture.
Then we describe methodologies for mapping parallel algorithms into processor
arrays. Finally, we present the reconfigurable processor arrays for designing
algorithmically specialized machines. Only globally structured, cellular array
stiuctures are presented below, Modularly structured VLSI computing structures
will be presented in Section 10.4. Described below are key attributes of VLSI
computing structures,

Simplicity and regularity Cost effectiveness has always been a major concern in
designing special-purpose VLSI systems; their cost must be low enough Lo justify
their limited applicability. Special-purpose design costs can be reduced by the
use of appropriate architectures. If a structure can truly be decomposed into a
few types of building blocks which are used repetitively with simple interfaces,
great savings can be achieved, This is especially true for VLSI designs where a
single chip comprises hundreds of thousands of identical components. To cope
with that complexity, simple and regular designs are essential. VLSI systems based
on simple, regular layout are likely to be modular and adjustable to various
performance levels,

Concurrency and communication Since the technological trend clearly indicates a
diminishing growth rate for component speed, any major improvement in compu-
tation speed must come from the concurrent use of many processing elements.

DATA FLOW COMPUTERS AND VISI COMPUTATIONS 769

The degree of concurrency in a VLSI computing structure is largely determined
by the underlying algorithm. Massive parallelism can be achieved if the algorithm
is designed to introduce high degrees of pipelining and multiprocessing. When a
large number of processing clements work simultaneously, coordination and
communication become significant —especially with VLSI technology where
routing costs dominate the power, time, and arca required to implement a com-
putation. The issue here is to design algorithms that support high degrees of
concurrency, and in the meantime to employ only simple, regular communication
and control to allow cflicient implementation. The locality of interprocessor
communications is a desired feature to have in any processor arrays.

Computation intensive VLSI processing structures are suitable for implementing
compute-bound algorithms rather than 7/Q-bound computations. In a compute-
bound algorithm, the number of computing operations is larger than the total
number of input and output elements. Otherwise, the problem is 1/O bound. For
example, the matrix-matrix multiplication algorithm represents a compute-bound
task, which has O(n”) multiply-add steps. but only O(n*) 1/O elements. On the
other hand, adding two matrices is 1/O bound, since there are #* adds and 3n?
1/O operations for the two input matrices and one output matrix. The I, O-bound
problems are not suitable for VLSI because VLSI packaging must be constrained
with limited 1/O pins. A VLSI device must balance its computation with the 1/O
bandwidth. Knowing the 1/O-imposed performance limit helps prevent overkill
in the design of a special-purpose WLSI device.

10.3.1 The Systolic Array Architecture

The choice of an appropriate architecture for any electronic system is very closely
related to the implementation technology. This is especially true in VLSI. The
constraints of power dissipation, 1/O pin count, relatively long communication
delays, difficulty in design and layout, etc.. all important problems in VLSI, are
much less critical in other technologies. As a compensation, however, VLSI offers
very fast and inexpensive computational eléments with some unique and exciting
properties. For example, bidirectional transmission gates (pass transistors) enable
‘a full barrel shifter to be configured in a very compact NMOS array.

Properly designed parallel structures that need to communicate only with
their nearest neighbors will gain the most from very-large-scale integration.
Precious time is lost when modules that are far apart must communicate. For
example, the delay in crossing a chip on polysilicon, one of the three primary
interconnect layers on an NMOS chip, can be 10 to S0 times the delay of an
individual gate. The architeet must keep this communication bottleneck uppermost
in his mind when evaluating possible structures and architectures for implemen-
tation in VLSI.

The systolic architectural coneept was developed by Kung and associates at
Carncgie-Mcllon University, and many versions of systolie processors are being
designed by universities and industrial orgamzations. This subscetion reviews the

770 compuEn ARCHITECTURE AND PARALLEL PROCESSING

basic principle of systolic architectures and explains why they should result in
cost-effective, high-performance, special-purpose systems for a wide range of
potential applications.

A systolic system consists of a set of interconnected cells, each capable of
performing some simple operation, Because simple, regular communication and
control structures have substantial advantages over complicated ones in design
and implementation, cells in a systolic system are typically interconnected to
form a systolic array or a systolic tree. Information in a systolic system flows
between cells in a pipelined fashion, and communication with the outside world
occurs only at the ** boundary " cells. For example, in a systolic array, only those
cells on the array boundaries may be 1/O ports for the system,

The basic principle of a systolic array is illustrated in Figure 10.25. By replacing
a single processing element with an array of PEs. a higher computation throughput
can be achieved without increasing memory bandwidth. The function of the
memory in the diagram is analogous to that of the heart ; it * pulses™ data through
the array of PEs. The crux of this approach is to ensure that once a data item is
brought out from the memory it can be used effectively at cach cell it passes. This
is possible for a wide class of compute-bound computations where multiple
operations are performed on each data item in a repetitive manner.

Suppose each PE in Figure 10.25 operates with a clock period of 100 ns. The
conventional memory-processor organization in Figure 10.25a4 has at most a
performance of 5 million operations per second. With the same clock rate, the
systolic array will result in 30 MOPS performance. This gain in processing speed
can also be justified with the fact that the number of pipeline stages has been
increased six times in Figure 10.25b. Being able to use each input data item a
number of times is just one of the many advantages of the systolic approach.
Other advantages include modular cxpansionability, simple and regular data and

(a) The conventional processor

Memory

PE| PE| PE| PE | PE | PE

Figure 10.25 The concept of systolic processor array.
(&) A systolic processor arrray (Courtesy of IEEE Computer, Kung, Janusry 1981.)

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 771

control flows, use of simplg and uniform cells, elimination of global broadcasting,
limited fan-in and fast respa®e time.

Basic processing'cells used in the construction of systolic arithmetic arrays
are the additice multiply cells specified in Figure 3.29. This cell has the three inputs
ab.c, and the three outputs @ = a, b = b, and o — ¢ + a+ b, One can assume
sixinterface registers are attached at the | O ports of 4 processing cell. All registers
are clocked for synchronous transfer of data among adjacent cells. The additive-
multiply operation is needed in performing the inner product of two vectors,
matrix-matrix multiplication, mutrix inversion, and L-U decomposition of a
dense matrix,

Hlustrated below is the construction of a systolic array for the multiplication
ol two banded matrices. An example of band matrix multiplication is shown in
Figure 10.26a. Matrix A has a bandwidth (3+2) — 1 =4 and matrix B has a
bandwidth (2 + 3) — 1 = 4 along their principal diagonals. The product matrix
C = A B then hasa bandwidth (4 + 4) — | = 7alongits principal diagonal. Note
that all three matrices have dimension 1 x n, as shown by the dotted entries. The
matrix of bandwidth w may have e diagonals that are not all zeros. The entries
outside the diagonal band are all zeros.

It requires w; x w, processing cells to form a systolic array for the multi-
plication of two sparse matrices of bandwidths wy and w,, respectively. The
resulting product matrix has a bandwidth of wy + wy — L. For this example,
Wy % wy =4 x 4= 16 multiply cells are needed to construet the systolic array
shown in Figure 10.265. It should be'noted that the size of the array is determined
by the bandwidths wy and w,, independent of the dimension n x » of the matrices.
Data flows in this diamond-shaped systolic array are indicated by the arrows
among the processing cells.

The clements of A = (a;) and B = (b)) matrices enter the array along the
two diagonal data streams. The initial values of C = (¢,)) entries are zeros. The
outputs at the top of the vertical data stream give the product matrix. Three data
streams flow through the array in a pipelined fashion. Let the time delay of each
processing cell be one unit time. This systolic array can finish the band matrix
multiplication in7 time units, where)

T=3n+ min(w,,w,) (10.3)

Therefore, the computation time is linearly proportional to the dimension n of the
matrix. When the matrix bandwidths increase (0 w, = w, = a (for dense matrices
A and B), the time becomes O(4n). neglecting the 1/O time delays. If one used a
single additive-multiply processor to perform the same matrix multiplication.
O(n?) computation time would be needed, The systolic multiplier thus has a speed
gain of O(n?). For large n. this improvement in speed is rather impressive.

VLSI systolic arrayvs can assume many different structures for different
compute-bound algorithms. Figure 10.27 shows various systolic array configu-
rations and their potential usiagein performing those computationsis listed in Tahle
10.1. These computations form the hasis of signal and image processing, mairix

i

arithmetic, combinatorial, database algorithms. Due o their stimplicity and

T L
=
-
e & i =
& 8 - (&1
u ~
v & g o -,—
S Lz gm Iy
< ¢ o
_ -
-
n M : CH
—— o
e = g :
= =)
=4
- - .. .-Iu
el - . = 3
& L E : 3
o o w x ;
T & g [E
: =
] -] = 5)
& & o -]
v =
=
iz ° 4 i ;
. J 3
: 3
<
I 1
o
]]
o < 5
2 ; rl‘l.lllnllll|.l-|l!!llll|!l
&
L o =
u e - =
O e
s ~ - @
8 o g

(B) The systolic array
¥ for band matrix multiplication. (Courtes

Y of Proc., of the Symposium on

Figure 10.26 A systolic arra

son, November 1978.)

Sparse Matrix Computing and Their Applications, Kung and Leiser

772

DATA FLOW COMPUTTRS ANY VLS COMPUTATIONS T73

L —
J =
(@) One-dimensional linear array

{ iﬁ
= I’
-

(h) Two-dimensional square array

o | I |

d) Binary 1
(d) Binary tree (e) Triangular array

Figure 10.27 Various systolic array configurations,

strong appeal to intuition, systolic techniques attracted a great deal of attention
recently. However, the implementation of systolic arrays on a VLSI chip has
many practical constraints.

The major problem with a systolic array is still in its 1/O barrier. The globally
structured systolic array can speed-up computations only if the 1/O bandwidth is
high. With current IC packaging technology, only a small number of 1/0 pins can ¢
be used for a VLSI chip. For example, a systolic array of n? step processors can
perform the L-U decomposition in 4a time units. However, such a systolic array
in a single chip may require 4n x W 1/O terminals, where w is the word length.

174 compuTER ARCHITECTURE AND PARALLLT PROCESSING

Table 10,1 Computation functions and desired VILSI structures

Processor array structure Computation lunctions

LI Dincar arrays Firdfilter, convolution. discrete Fourier tramsform (DFT), solution of
trangular hincar systems, carry pipchning. cartesian produet, add-
CvEn transportation vort, real-ime pronty queuc, pipeline arithmetic

unis

2-1) square arrays Dynamic programming for aptimal parenthesization, graph algorithms
invalving adjacency matrices

2-1 hexagonal arcays Matrix arithmetic (matrix multiplication, L-U decompasition by Gaus.
stan elimination without pivoling, QR-fuctonization), transitive
closure. puttern match, DIET, relational database operations.

Trees Searching algorithms fqueries on nearest neighbor, runk, etc . systolic
search tree), parallel function evaluation, recurrence evaluation,

Triangular arrays Insersion of tria ngular matrix, formal language recognition,

For large n (say n > 1000) with typical operand width w = 32 bits, 1t is rather
impractical to fabricate an n x n systolic array on a monolithic chip with over
4n x w = 12.000 1/O terminals. Of course, 1/0 port sharing and time-division
multiplexing can be used to alleviate the problem. But still. 1/O is the botilencck.
Until the 1/0 problem can be satisfactorily solved, the systolic arrays can be only
constructed in small sizes. The modular VLS] approach to be described in Section
10.4 offers an alternative 10 overcome this difficulty.

10.3.2 Mapping Algorithms into VLSI Arrays

Procedures to map cycelic loop algorithms into special-purpose VLSI arrays
are described below. The method is based on mathematical transformation of
the index sets and the data-dependence vectors associated with a given algorithm,
After the algorithmic transformation, one can devise a more efficient array
structure that can better exploit parallclism and pipclining by removing un-
neeessary data dependencices.

The exploitation of parallelism is often necessary because computational
problems are larger than a single VLSI device can process al a time. If a parallel
algorithm is structured asa network of smaller computational modules, then these
modules can be assigned to different VLSI devices. The communications between
these modules and their operation control dictates the structure of the VLSI
system and its performances, In Figure 10.28, a simplistic organization of a
compuler system is shown conmsisting of several VLSI devices shared by two
proigssurs through a resource arbitration network.

The 1/O bottleneck problem in a VLS| system presents a serious restriction
imposed on the algorithm design. The challenge is to design parallel algorithms
which can be partitioned such that theamount of communication between modules
is as small as possible. Moreover, data cntering the VLSI deviee should be utilized
exhaustively before passing again through the /O ports. A global model of the
VLSI processor array can be formally described by a J-tuple (G,F,T); where G is

DATA FLOW COMPUTERS AND VS| COMPUTATIONS 775

(Shared memory modules)

M M s M

Interconnection network

Processor 1 l Processor l

Resource arbitration network

VLSI VLSI i VLSI
device device device Figure 10.28 A dual-processor sys-
tem with shared memories and
(Shared VI 51 resource powl) shared VI1.SI resource pool.

the network geometry, Fis the cell function, and 7' is the network timing. These
features are described below separately,

The network geomerry G refers 1o the geometrical layout of the network. The
position of cach processing cell in the plane is described by its Cartesian coor-
dinates, Then, the interconnection between cells can easily be described by the
position of the terminal cells, These interconnections support the flow of data
through the network ; a link can be dedicated only to one data stream of variables_
or it can be used for the transport of several data streams at different time instances.
A simple and regular geometry is desired to uphold local communications.

The functions F associated 1o cach processing cell represent the totality of
arithmetic and logic expressions that a cell is capable of performing. We assume
that each cell consists of a small number of registers, an ALU, and control logic.
Several different Lypes of processing cells may coexist in the same network : how-
ever, one design goal should be the reduction of the number of cell types used.

The network timing T specifies for each cell the time when the processing of
functions Foceurs and when the data communications take place. A correct timing
assures that the right data reaches the right place at the right time. The speed of
the data streams through the network is given by the ratio between the distance of
the communication link over the communication time. Networks with constant
data speeds are preferable because they require a simpler control loge

The basic structural features of un algorithm are dictuted by the dat: and
control dependencics. These dependencies refer o precedence relations of

776 COMPUTER ARCHITECTURE AND PARALLLL PROCESSING

computations which need to be satisfied in order to compute correctly. The absence
of dependencies indicates the possibility of simultancous computations. These
dependencies can be studied at several distinct levels: blocks of compultations
level, statement (or expression) level, variable level, and even bit level. Since we
concentrate on algorithms for VLSI systolic arrays, we will focus only on data
dependencies at the variable level. '

Consider a Fortran loop structure of the form;:

DO 10 /' =p, g
DO 10 /2= 2 42

DO 10 In = fa yn

S, (1) (10.4)
S;_('l
Sy(h
10 CONTINUE
where I/ and « are integer-valued linear expressions involving I', ..., ~! and
=I5 12 1") is an index vector, §1:8;,....8yarc assignment statements of

the form x = E where x isa variable and E is an expression of some input variables,
The index set of the loop in Eq. 10.4 is defined by:

SM={....m:I"<I < ...l sr<w) (10.5)

Consider two statements S(I,) and S(1,) which perform the functions f{1,)
and g(1,), respectively. Let Vi(/f(1,)) and V,(g(1,)) be the output variables of the
Wo statements respectively,

Variable V,(g(1,)) is said to be dependent on variable V,(J(1,)) and denote
V(I (1)) = Vi(g(L,)), if () 1, > 1, (less than in the lexicographical sense); (ii)
J(Iy) = g(1,); and (iii) Vi(/(1,)) is an input variable in statement S(I,). The differ-
ence of their index vectors d = I, — 1, is called the data-dependence vector. In
general, an algorithm is characterized by a number of data-dependence vectors,
which are functions of elements of the index set defined in Eq. 10.5. There is a
large class of algorithms which have fixed or constant data dependence vectors.

The transformation of the index sets described above is the key towards an
efficient mapping of the algorithminto special-purpose VLSI arrays. The following
procedure is suggested to map loop algorithms into VLSI computing structures,

Mapping procedure
- Pipeline all variables in the algorithm,
- Find the set of data-dependence vectors,
3. Identify a valid transformation for the data-dependence vectors and the index
sel.
4. Map the algorithm into hardware structure,
5. Prove correctness and analyze performance.

bd ==

We consider an example algorithm to illustrate the above procedure: the
L-U decomposition of a matrix A into lower- and upper-triangular matrices by

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 777

Gaussian elimination without pivoting. It is shown that better interconnection
architectures can be formally derived by using appropriate algorithm trans-
formations.

Example 10.3 The L-U decomposition algorithm is expressed by the following
program: 3

for k<0 until n-1 do
begin
ukkh.l’rakh
for j«-k+~1 until n—1 do
Uy +~3,
for i=—k+1 until n-1 do
}lk._a-h.ukk (10.6)
for i—k+1 until n-1 do
forj k+1 untiln-1 do
aw“au"’;muh;
end.

This program can be rewritten into the following equivalent form in
which all the variables have been pipelined and all the data broadcasts have
been eliminated :

for k<0 until n-1 do
begin
T 1=k
j—k;
U, —1/ay
for j—~k+1 until n-1 do
2: begin
i—k;
U +—aj
end 24
for i—k+1 until n-1 do
3 begin
Jk;
Ul e—ui=t; (10.7)

for i—k+1 until n-1 do
for j—k+1 until n-1 do
4. begin
it
up —us
s —ak=talls vul=t
end
end

T8 comeu g ARCHITECTURE AND PARALLEL PROCISSING

The data dependencies for this three-loop algorithm have the nice property
that

d; = (1,.0,0)

d, = (0. 1,.0) (10.8)
d, = (0,0, 1)

We write the above in matrix form D = [d,.d..d,] = I. There are several other
algorithms which lead 1o these simple data dependencies, and they were among
the first to be considered for the VLS] implementation,

The next step is to identify a linear transformation T to modify the data depen-
deneies to be T-D = A, where A = [d,.8,.0,] represents the modified data
dependencies in the new index space., which is selocted a priori. This transformation
T must offer the maximum concurrency by minimizing data dependencies and
T is a bijection. A large number of choices exist, cach lcading to a different array
geometry. We choose the following one:

I] l k k
T=1|0 1 O suchthat (7| =T-|i (10.9)
0 0 I] i

The original indices k. i, j are being transformed by T into £, 7, /. The organization
of the VLSI array forn = § generated by this T transformation is shown in Figure
10.29.

In this architecture, variables aly do not travel in space, but are updated in
time. Variables £ move along the direction J (east with a speed of one grid per

*

Figure 10.29 A square systolic array for L-U decomposition (n = 5) in Example 10,3, (Courtesy ofl IEEE
Proceedings, Moldovan, January 1983.)

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 779

time unit), and variables !, move along the direction 7 (south) with the same
speed. The network is loaded initially with the toeflicients of A, and at the end
the eells below the diagonal contain L and the cells a bove the diagonal contain U

The processing time of this square array s 3n — 5, All the cells have the sume
architecture. However, their functions at one given moment may differ. It can be
seen from the program in statement (10.7) that some cells may execute loop four,
while others execute loops two or three. If we wish 1o assign the same loops only
(0 specilic cells, then the mapping must be changed accordingly.

For example, the following transformation :

| | I
T = 1-=1 | 0
-1 0 |

introduces a new data communication link between cells toward north-west. These
new links will support the movement of variables al,. According to this new
transformation, the cells of the first row always compute loop two, the cells of
the first column compute loop three. and the rest compute loop four. The reader
can now easily identify some other valid transformations which will lead to differ-
ent array organizations.

The design of algorithmically specialized VLSI devices is atits beginning. The
development of specialized devices to replace mathematical software is feasible
but still very costly. Several important technical issues remain unresolved and
deserve further investigation. Some of these are: 'O communication in VLSI
technology, partitioning of algorithms to maintain their numerical stability, and
minimization of the communication among computational blocks,

10.3.3 Reconfigurable Processor Array

Algorithmically specialized processors often use different interconnection strue-
tures. As demonstrated in Figure 10.30, five array structures have been suggested
for implementing different algorithms. The mesh is used for dynamic program-
ming. The hexagonally connected mesh was shown in the previous section for L-U
decomposition, The forus is used for transitive closure. The binary tree is used for
sorting. The dowble-rooted tree is used for searching. The matching of the strue-
ture 10 the right algorithm has a fundamental influence on performance and cost
effectiveness,

For example, if we have an n x n mesh-connected microprocessor structure
and want to find the maximum of #° clements stored one per processor, 2n — |
sieps are necessary and suflicient to solve the problem. But a faster algorithmically
specialized processor for this problem uses . tree machine to find the solution in
2 log n steps. For large n, this is a benefit worth pursuing, Again, a bus can be
introduced to link several ditferently structured multiprocessors, including mesh-
and tree-connected multiprocessors, But the bus bottleneck is quite serious. What
we need 18 a more polvmorphic multiprocessor that does not compromise the
benefits of VLSI technaloa

(@) Mesh for dynamic {b) Hexagonally connected
programming mesh for L-U decomposi- tion

i
o
Ol

(€) Torus for
tr insitive
closure

(d) Binary tree for sorting

(€) Doubly rooted tree for searching

Figure 10,30 Algorithmically specialized processor array configurations. (Courtesy of 1EEE Computer,
Sn}'dcr,.luﬂu-r, 1982.)

TR0

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 781

A family of reconfigurable processor arrays is introduced in this section. This
configurable array concept was first proposed in 1982 by Lawrence Snyder at
Purdue University. Each configurable VLSI array is constructed with three types
of components: a collection of processing clements, a switch lattice, and an
array controller. The switch lattice is the most important component and the
main source of differences among family members, Itisa regular structure formed
from programmable switches connected by data paths. The PEs are not directly
connected 1o cach other, but rather are connected at regular intervals to the
switch lattice. Figure 10,31 shows three examples of switch lattices. Generally, the
layout will be squure, although other geometrics are possible. The perimeter
switches are connected 1o external storage devices. With current technology, only
afew PEs and switches can be placed on a single chip. As improvements in fabri-
cation technology permit higher device densities, a single chip will be able to hold
a larger region of the switch lattice.

Each switch in the lattice contains local memory capable of storing several
configuration scttings. A configuration setting enables the switch to cstablish a
dircct stutic connection between two or more of its incident data paths. For
example, we achieve a mesh interconnection pattern of the PEs for the lattice in
Figure 10.314 by assigning north-south configuration seltings to alternate switches
in odd-numbered rows and east-west settings 10 switches in the odd-numbered
columns, Figure 10.324 illustrates the configuration; Figure 10.324 gives the
configuration settings of a binary tree.

The controller is responsible fof loading the switch memory. The switch
memory is loaded preparatory 1o processing and is performed in parallel with the
PE program memory loading. Typically, program and switch settings for several
phases can be loaded together. The major requirement is that the local configu-
ration settings for each phase’s interconnection pattern be assigned to the same
memory location in all switches,

Switch lattices 1t is convenient to think of the switches as being defined by several
characteristic parameters -

« m—the number of wires entering a switch on once data path (path width)

 d—the degree of incident data paths to a switch

e ¢—the number of configuration settings that can be stored in a switch

* g—the number of distinct data-path groups that a switch can connect
simultancously.

The value of m reflects the balance struck between parallel and serial data trans-
mission. This balunee will be influenced by several considerations, one of which
is the limited number of pins on the package. Specifically, if a chip hosts a4 square
region of the lattice containing n PEs. then the number of pins required is propor-
tonal to my "

The value of ¢ will usually be four. as in Figure 103 1a, or cight, as in Figure
10.31e. Figure 10.31h shows o mixed strategy that exploits the tendency of switches

-

switch lattice structures (circles

represent switches and squares represent PEs).

(Courtesy of IEEE Compurer, Snyder, Janusary

Figure 10,31 Three
1982.)

R IXIRIKIKIXIXIX T

XXX KIXIX]
XIXIXIXIRIXIXT
VPV S o

o IXIXIRIXTXIX XX]

* RRRRIRRRIR
shehglglydghad

£

DATA FLOW COMPUTERS AND VLS COMPUTATIONS TR

(@) The switch lattice of Figure 10.31a
configured into a mesh pattern

O WD O g Do O
O O
o @)
O O
O O
Root O
O £
®) @)
O O O O T e
(b) The switch lattice of Figure 10.31a 10.31a. (Courtesy of IEEE Computer,
configured into a binary tree Sayder, January 1982.)

to be used in two different roles. Switches 3! the intersection of the vertical and
horizontal switch corridors tend to perform most of the routing, while those
interposed between two adjacent PEs act more like extended PE ports for selecting
data paths from the * corridor buses,™ The value of ¢ is influenced by the number
of configurations that may be needed for a multiphase computation and the
number of bits required per setting.

784 compuTER ARCHITECTURE AND PARALLEL PROCESSING

The crossover capability is a property of switches and refers Lo the number of
distinct data-path groups that a swiltch can simultaneously connect. Crossover
capability is specified by an integer g in the range 1 to d/2. Thus, | indicates
O crossover and d/2 is the maximum number of distinet paths intersecting at a
degree d switch.

" It is clear that lattices can differ in several ways. The PE degree, like the
switch degree, is the number of incident data paths. Most algorithms of interest
use PEs of degree eight or less. Larger degrees are probably not necessary since
they can be achieved either by multiplexing data paths or by logically coupling
processing clements, e g, two degree-four PEs could be co upled to form a degree-
six PE where one PE scrves only as a buffer,

The number of switches that Separate two adjacent PEs is called the corridor
width, w. (See Figure 10.31¢ fora w = 2 lattice.) This is perhaps the most signifi-
cant parameter of a4 lattice since it influences the cfficiency of PE utilization, the
convenience of interconnection pattern embeddings, and the overhead required
for the polymorphism.

Pattern embedding A given interconncection pattern can be embedded in a pro-
grammable switch lattice. We say that the switch lattice **hosts the given pattern.
Figure 10.33 shows the embedding of the complete bipartite graph in the lattice
of Figure 10.31¢ where the center column of PEs is unused., Increasing the corridor
width improves processor utilization when the complex interconnection patterns
must be embedded because it provides more data paths per unit area.

For most of the algorithmically specialized processors arrays, a corridor width
of two suffices to achieve optimal or near optimal PE utilization, However, 1o be
sure of hosting all planar interconnection patterns of » nodes with reasonably
complete processor utilization, a width proportional to log n may be necessary.
It is possible, using basis elements of 15-node trees embedded in 4 x 4 square
regions of the lattice, to achieve a completely planar embedding of a 255-node
complete binary tree (Figure 10.34) into the lattice of Figure 10.31a. There is
only one unused PE in this planar embedding, as marked by the darkened square
at the lower right corner.

By integrating programmable switches with the processing elements, the com-
puter achieves a polymorphism of interconnection structure that also preserves
locality. This enables us to compose algorithms that exploit different interconnec-
tion patterns. In addition to responding to problems of different sizes and charac-
teristics, the flexibility of integrated switches provides substantial fault tolerance,
The above reconfigurable processor array embedded in the switch lattice is a good
candidate for waver-scale integration (WS1). WSI has been previously attempted
by discretionary wiring. Due to the additional masking steps required, this has
not proved 1o be practical, Other rescarchers are currently investigating laser
restructuring and fuse-blowing approaches to implementing WSI.

The concept of WSI implementation of the reconfigurable switch lattice is
Hlustrated in Figure 1035. A 9 x 9 grid of building blocks is patterned on a 4-
inch wafer. Multiple 2 x 2 virtual lattices are mapped intoad x 3 building block,

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 78S

Figure 10.33 A bipartite graph embedded into the lattice of
Figure 10.31¢ using a switch with 2 crossover value g = 2.
(Courtesy of IEEE Computer, Snyder, January 19§2.)

(b) Embedding of the
bipartite graph

TBG COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

0O0D0O0OODODODOODOOOO

00000000000000000000

D oo
-

o0o0oo

O Do O] JoQDoQdoO -

000

© 0 0

o

o

(]
P OOODO0ODODO0O0OCOOOQ

o [J o [}o-{

O

] Oo{}-04{1}0O

0 0 0O 0—0O

O

[JoQ0o

o000 O0OO0OOO

JoDooQ L] -0

ofoD

Co0oo0o000OOQ

c0oQO

o+{]o 0o

O

0—0 0 0 O

o

D O 0 O O—0

O 00O0O0CQ

¥

D 0 0O

00 0
[Jo o

0o C

(1 o 0O

0 0 O-o{}o)

o 0o QD
L= e <]

Qo0

L) o 0 o D-o-0)0

o o

DOOOOQOOOOQODOOO

(] O
o oo

U 00 o 00O

0 QOOOO

o

[0 Do DoQ0Oo
?00000O0OOO

Co000o00Q000 0

ol o

[J o O o

LeoepDonDon

-

0O00OQ

00 0QO
L)

© oo0oo0o0 o

O

Jo0Oo
000 OO0

o0 oo L] © () O

oo

Q0000

Domo

UJo OonO L

J oo O

tree into the switch lattice of Figure 10.31a (the

unr)r

Figure 10.34 Planar embedding of a 258 node b
root of the tree is at the center of the lLatti

EE Computer, Snyder, January 1982.)

ce). (Courtesy of 1E

.

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 78T

<] Bonding pad

E] Driver

Figure 10.35 Layout of @ Wafer Scale Integrated (WSI) processor array. {Courtesy of K. S. Hedlun,
Ph.D. Thesis, Purdue University, June 1982).

as illustrated in Figure 10.36, WSI implementation of highly parallel computing
structures, either static function or programmable, demands high yield on the
wafer. To implement a wafer scale system, all PEs on a wafer are tested, and then
the good PEs are connected together. The wafer is structured so that the presence
of faulty PEs is masked off and only functional PEs are used.

With current technology, machines with over 300 processors per wafer can be
fabricated. These waler-scale machines will be cheaper, faster, and more reliable
than their counterparts implemented with single chip components. However, many
practical problems of testing. routing around a faulty PE, power consumption,
synchronization, and packaging remain to be solved. Both VLSI and WSI com-
puting structures are being vigorously sought by parallel computing specialists.
Three dimensional VLSI computing structures were also recently proposed. in
which multi-layer devices are demanded.

788 coMpuTER ARCHITECTURE AND PARALLEL PROCESSING

DPE

Figure 1036 A 2 x 2 virtual
lattice and a 4 x 3 building block
for WSI implementation. (Cour-
tesy of Proc. of Ine'l Conf. on
Parallel .Prm-as.(r'ug. Hedlund and
Snyder, August 1982.)

10.4 VLSI MATRIX ARITHMETIC PROCESSORS

In this section, we describe modular VLS architectures for implementing
large-scale matrix arithmetic processors. We begin with the cellular design of
several primitive matrix arithmetic modules. A class of partitioned matrix algor-
ithms-and their pipelined network implementations are then presented. Perfor-
mance analysis is given for these VLSI matrix arithmetic solvers. Finally, we show
how these matrix solvers can be used for real-time image processing,

10.4.1 VLSI Arithmetic Modules

Four primitive VLSI arithmetic modules are functionally introduced in Figure
10.37. These VLSI devices are building blocks for implementing the partitioned
matrix algorithms to be studijed shortly. These modules are used to perform m = m
submatrix or m-element subvector computations. Each module is constructed with
a cellular array of multipliers, dividers, and interface latches for pipelined oper-
ations. The schematic logic designs of these primitive VLS] chips are described
below.

The D module is for -1 decomposition of an intermediate m x m submatrix
A, =L, U, along the principal dingonal of a given matrix A (4., will be defined

A—a| (D module)

- U/
a4, &, a,) AN My uy,y
a, a, a, =]4 1 LB N Uy
9 Iy Oy hy hy 1 0 0

(@) Submatrix decomposition module
—

U—d (Imodule) | U'l'=y

1" 12 13 b I T L 1
0 by gy | wL9, W ¥
0 0 uy o Oy 53

(&) Submatrix inverter

|~

(M module) }—= D

A A A —

B,...BB,

p
D=C+ .r.'l.‘!i-}?r where C, D, and

i=
1A, and B for i=1,....,pl are mx.m
matrices.

{¢) Matrix multiplier

c

t

(V module) g

A .. A —

by ...by —d

r
d=c+ :Idt-b, where ¢, d,
=
“’. fori=1,....p} are mx |
column vect and 14, fori=1.... p|

are m X m omatrices.

(d) Matrix=vector multiplier

Figure 10.37 VLSI arithmetic modules
for matrix computations. (Courtesy of
IEEE Trans. Compaters, Hwang and
Cheng, December 1082.)

789

790 computir ARCHITECTURE AND PARALLEL PROCESSING

shortly). The | module is for the inversion of a triangular m x m submatrix. The
input-output arithmetic specifications of these VLSI modules are given in the
drawing. Both D and I modules have a fixed delay of 2m time units. One time
unit equals the time required 1o perform one multiply-add operation a x b +
¢ = d,or onedivide operation a/b = ¢, by one step processor in the cellular arrays
shown in Figure 10,38 and Figure 10.39.

The M module is the predominant device to be used in the construction of
various matrix solvers. Accurnulative chain matrix multiplications are performed
by an M module as specified in Figure 10.40. The number p of pairs of m x m
matrices 1o be multiplied and added is determined by the external input sequence.
Therefore, the time delay of an M module is equal to p-m + 1. The V module is
modified from the M module for accumulative submatrix-vector multiplications,
The delay of a V module is also measured as p-m + 1. Because each D, I, or M
module contains an array of about m? step processors. their interior chip com-
plexity is O(m?). Each V module contains a pipeline of m step processors and thus
has an interior chip complexity of O(m). The time delays of each D or I module
has an order O(m) and those for M and V modules are O(m - p), depending on the
number of input pairs (o be processed.

10.4.2 Partitioned Matrix Algorithms

Based on the state-of-the-art electronic and packaging technologies, we can only
expect VLSI arithmetic devices designed to implement regularly structured func-
tions with limited 1/O terminals. A modular approach to achieve VLSI matrix
arithmetic is amenable from the viewpoints of feasibility and applicability. A
matrix partitioning approach is presented below to overcome those technological
constraints in constructing large-scale matrix processors. Four partitioned algor-
ithms are described below for modular VLSI implementation :

¢ L-U decomposition by a variant of Gaussian elimination s
« Normal inversion of a nonsingular triangular matrix

« Multiplication of two compaltible matrices

* Solving a triangular system of equations by back substitution

L-U decomposition by partitioning A partitioned approach is proposed to circum-
vent the 1/0 problem of systolic arrays by using m x m VLSI modules, where m
is smaller than # in at least two orders of magnitude. Of course, 1/0 port sharing
and time-division multiplexing are often used to satisfy the IC packaging con-
straints, cven for small m. The partitioned triangular decomposition is illustrated
in Figure 1041, The given matrix A = (a,,) is partitioned into A2 submatrices of
the order m x m cach, The submatrix computation sequence is identificd in
SIeps. This method is equivalent 10 Crout's method when m = 1. However,
we consider nontrivial cases where m — 2

(1861 Legy ‘Buaqs) pue
SuBMY uauyiuy sandwo)) fo duds yig fo soig 3331 J0 Asapnoy) ‘vopisodwosap 1771 8301 doj ajnpour Jupnduiod |S1A gE 1 24ndly

1
.9
sBplap :g ¥y Yip) fip 5 sinduj
Ludapinw Gy r o) =
myadninwsp xwg U i, Yy iy Ty 5
Raduinw I} dW s
yaey " Iry Iy Iz, rig fp Ty Hp Iy
1 i 4 f t 1 t
— T B |
Xina N LAY xXina
1
NdIN
W 13 n
. a | 7
Ndiv Xedy
B |
|
o 1
®
w
2 n]
q o ", __.h
D -p [
:: _qu
e "
r-___ nm_- wna_ _..n.a n.. sinding
4 v
q] w0
_J :.___ _~____ L _:____ n.a n.__
___:_ nm

71

792 compuTER ARCHITECTURE AND PARALLEL PROCESSING

¢
a
b b
& Laich Inputs
d=anb+c f o -
- Hia
@
0 L
s S
= Lo Uiy

4 |
D b D f= iy ity Hy “y

1 h b & 6§ B i
4 i L
iy Vi 1 Yia Iy
b
‘u i Yu fs . |
7 V:(vu_]=u = (1)
Outputs y]
Vi Vg i
h
L 1

Figure 10.39 VLSI computing module for the inversion of a triangular matrix. (Courtesy of IEEE Prac.
of Sth Symp. on Computer Avithmeric, H wang and Cheng, May 1981))

Al step one, L-U decomposition of submatrix Ay, is performed using a D
module to generate the two triangular submatrices L, , and Uy such that 4,, =
Ly, - Uy Two I modules are used to compute the inverse submatrices L;,' and
Ut at step two. The following matrix multiplications are then performed by
2(k — 1) M modules in parallel at step 2.

L,= A, - Uj} forp-ae2, 3,..... &

10.11
Uy = L7 - 4,, org = 2. 3. ..k £)

1y, fz’_l T I" fy FJ 1
2 1 1
Y b ees B HY HY HY
ey,
G Gy eee o 5o
93
o cF oo o o} A& Y
r 2

By B oeee B WD W) HY
1]
93

AMU: additive
multiply unit
W dn i
dy dy Q4 2

b i
dy =a;,—;5, b

= I
4\ 3=9— = b))
r

= - L 0

ﬂ'21"524 ;=:bn
r

= 5 pin

dy=ay =5 b,

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 793

>
>
!
> i AMU —i-d,,
4
S — ;
5 H
> - AMU > dy,
> ~ AMU —_——
B M EEE RS S E § 8 SRR IS SRR e s a8 6 e o
£ o H2 [A2
sl w4 4
! : s control
Lo+ b el L latch
: gL MPX: multiplexer
el + b1 -} DMX: demultiplexer
cel) o+ b3 .ol
el 0 ey 2
a a—bee
¢

Figure 10.40 VLSI arithmetic module for the multiplication of two sequencesofl2 x 2 matrices. (Courtesy
of IEEE Proc. of 5th Symposium of Computer Arithmetic, Hwang and Cheng, May 1981.)

794 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

k= n/m

Columns
1 e m vew 2m een im “ee {k=1)m esee ksm =n
| 1 1 1
Rows | —
Step | Step 2
H (k—1)
. submatrices
m
= Step 3 Step 4
- (k=2) (T
. submatrices
2m -
. Step 2 Step § Step 6
. (k=1) (k—3) e
S sub- submatrices
malrices
3m —
Step 4
- (k—2) . .
. sub- $
martrices
-
& 1 Step 6
% k-3) Step Step
. b 2k—3 2%-2
. matrices
(k—1)em = .
o Step Step
: oo 2k-2 2k~ 1
n=kem L \

7
AY
L All squares are m x m submatrices.

Figure 10.41 Computation scquence of the partitioned L-U decomposition algorithm by Hwang and Cheng
(1982). s

In subsequent steps, we gencerate the following intermediate submatrices
using the M modules:

s |
Apg = A= ¥ Lo v U forp,g=2.3..... k (10.12)
s=1
Local L-U decompositions are then performed on A,, at successively odd-
numbered steps along the principal diagonal as shown in Figure 10.41:

) A S (10.13)

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 798

The remaining off-diagonal submatrices L, and U,, are computed by inverting
the diagonal submatrices U,, and L, and then multiplying them by intermediate
submatrices A, and 4,, at successively even-numbered steps. For r = 2,3, ..., k,
we compute

Lo, =g) forp=r+1,...,k

e 5 .
u, =,{_I_"I‘j|_lI forg=r+1,... ,k (i0.14)

(L]

The partitioned L-U decomposition is exemplified below. Each capital entry
in the matrix A represents an m x m submatrix. The given matrix has an order n.
We assume »n = m -k for some integer k. The given matrix A is thus partitioned
into k* = n*/m? submatrices. The L-U decomposition of matrix A can be done in
2k — 1 submatrix steps. All the diagonal elements of L are equal to 1. All diagonal
submatrices of U are upper triangular matrices. The following example corre-
sponds to the case of k = n/m = 3: "

Example 10.4

Ay A, das
Lli 0 0 UII Ul: Ul!

= LZI LZZ 0 - 0 U:; U]] = L'U
Ly, Ly, Ly 0 0 Uy

l. Ay = Ly, - Uy, (D module)
2. Ly = Ay, - Ujy's Ly, = Ay, - Uy

Upp = Liy' s Aja; Uy = Lt v Ay, (I modules and M modules)
Y Ay &My = Bl = Loy Wiss

Ay =Ayy =Ly, -Usdyy = Ay; — Ly, - Uy; (M modules and
D modules)

4 Uy =L3) - Assi Ly, = 4,,- U5 (1 modul:e.s and M modules)

3 Ayy = Ayy = (Lyy - Upy + Ly; - Upy) = Ly, - Uyy (M modules and
D modules)

The above interactive procedures are summarized in Figure 10.42 for parti-
tioned L-U decomposition of any groups of any nonsingular dense matrix A of

796 compPuTER ARCHITECTURE AND PARALLEL PROCESSING

ALGORITHM (Partitioned L-U Decomposition)

H

An n x n dense matrix A = (a,,) partitioncd into k¥m x m submatrices Ayforij=1,2....k
wheren = k-m.

k-(k + 1) submatrices Layforgsp=1,2..., kand U, fors 2 r= 1,2, ...k cach of order
m x m.
Procedures:
(1) Decompose A,, into L,, and U, , such that Ly -Uyy =iy,
(2) Computc inverse matrices L;' and U],
Compute L,, = A,, - U; U, =L;' A, forp=23,.. k

(3) For g — 2to (k — 1) step | do

-1
Compute A, = A, - Y L, - U,;:

Decompose A, = Loyg- Ui
Compute the matrices L' and U,

Forp « (g + 1) to k step | do

=1
Compute dpy = Ay — ¥ L,,-Uy;

=1

r=1
and j" =A, - Z L,,-U, forr = min(p, q);

=1

Compute L, = 4_,-U,,"; U, =L, -4

L ar’
Repeat
Repeat
A=
(4) Compute Ay, = 4, — Y L,,- U,
=1

Decompose A,, = L,,- U,,

Figure 10.42 Partitioned algorithin for L-U decomposition. (Courtesy of IEEE Trans. Computers,
Hwang and Cheng, 1982.)

order n. Submatrix computations are specified in groups. Each group can be
computed in parallel by multiple VLSI modules. Submatrix computations can

also be computed in sequential order, if only a limited number of VLSI chips are
available.

Matrix inversion and multiplication A partitioned algorithm is described for iter-
ative inversion of an n x n nonsingular triangular matrix using I and M modules.
For clarity, we demonstrate the partitioning method by finding the inverse of an
example 4m x 4m upper triangular matrix U = (u;) with m x m modules. The
inverse matrix ¥ = (v;) = U~' is partitioned into k% = (n/m)? = (dm/n)° =
4% = 16 submatrices, as exemplificd below:

Example 10.5
uU-!=
L. ¥y, = uri; Vi =
2. Fy Vig - (U4
Vis = — Vis (U
3. Vi = -V (U,
Vig = =V, “(Uis
4 Vg = =¥ - (U,

DATA FLOW COMPUTERS AND VLS COMPUTATIONS 797

Ull Ulz Ula Uu e
0 U, U,y Uy,
0 0 Us, Uss

. 0 0 0 U

Vi Via Vis Via
0 Vaa Vas Vae | _ v
0 0 Vi, Via
0 0 0 Via

Uzd'i Vas = Usd Vg = Uz (I modules)

V)i Vay = — V322 (U, - Vis)s

- Ves) (M modules)

' VZJ + Ujs - V33)

Vg + Usy - Vo) (M modules)

= Vz‘ + Ul! = y:g‘ o U14 - V“) (M deu!es)

Partitioned multiplication ono large n x n matrices, say A - B = C, is
rather straightforward. We include it here for completeness. Basically,eachm x m

submatrix C,, of matrix C is obtained by performing C,, = y*_, A, B,
one M module for each p, ¢ = 1,2,..

, by
-y k, where km = n and A, and B, are

m X m submatrices of the input matrices A and B respectively.

Triangular linear system solver The VLSI solution of a triangular linear system of
equations can be done in k back-substitution steps. In the following example, x,

andb;fori=1,2, ..

Example 10.6

Uyy
0
0
0
Loxg = Ugd " by
2 x5 = U} (by — Uy - xy)
3. Xy =
4%, =Up'-[b, — (U,

., k are m x 1 subvectors and Uy

Uzt [by — Wy -x; + Uze - x4)]

are m x m submatrices:

-

Uiz Uis U, X b,
Uz, Uss Usq X2 s b,
0 Usy Uss X3 by
0 0 L' P X, by

(I modules and V modules)

(I modules and V modules)
(I modules and V modules)

21X+ Ups x5 + Uy -xy)] (I modules

and V modules)

TIR coMPUTER ARCHITECTURE AND PARALLEL PROCESS] NG

In general, k = n/m steps are needed in the back substitution. Matrix U is parti-
tioned into k = (k + 1)/2 submatrices of order m x m each. The solution vector
x is divided into & subvectors.

10.4.3 Matrix Arithmetic Pipelines

Several matrix arithmetic processors are described below using those VLSI arith-
metic modules as building blocks. These matrix networks will be used in Section
10.4.4 for the implementation of a feature extractor and a pattern classifier. The first
network is for L-U decomposition of an n = # matrix A. The second one is for
the inversion of a triangular matrix of order #. The third one is for partitioned
matrix multiplication, and the fourth one is for solving a triangular system of
cquations. With a pipelined architecture, only linear number O(n/m) of VLSI
chips is needed. The projected speedup of O(n')/ O’ fm) or O(n?)/O(n) is rather
impressive for n = m in real-time computations.

Matrix arithmetic solvers An L-U decomposition network is designed in Figure
10.43 for the computations in Example 10.4. In general, such a VLSI network
needs o use one D module, two | modules, and 2k — | M modules. These VLSI
arithmetic modules are interfaced with high-speed latch memories 1o yield pipe-
lining operations with feedback connections. Multiplexers are used to select the
appropriate input to the functional modules at different steps. Note that the steps
are divided according 1o submatrix operations. Each step may require a different
number of pipeline cycles to complete the operation. To decompose an n x n
matrix A into the two triangular matrices L and U such that A = L - U, the
network requires O(n?/m) time with a total module count of O(n/m). It requires
O(n)time delay for implementing the same algorithm on a uniprocessor computer.

Parallel M modules can be used to perform the partitioned matrix multi-
plications, as demonstrated in Figure 10.44 for the case of k = n/m = 3. O(n*/m)
time is required with the use of O(n/m) M modules. Moreover, one can achieve
O(n) time at the expense of using O(n*/m*) M modules for partitioned matrix
multiplication. =

The matrix inversion algorithm in Example 10.5 is realized by the pipelined
matrix network in Figure 10.45. In general, inverting a triangular matrix of order
n requires the use of & I modules and 2(k — 1) M modules. Thus, the total module
count equals k + 2(k — 1) = 3k — 2 = O(k) = O(n/m) for n > m. The input
assignments and data flows at intermediate and output terminals are also specified
in the drawing. The total time delay in using this network to generate the inverse
matnx V.= U~ "is equal to O(n?/m) for n > m.

Figure 10.46 shows the pipelined network for solving a triangular system of
equations, as demonstrated in Example 10,6, In general, the network requires one
Fmoduleand [(n + m + 2)/2m + 2)] V modules. The time delay of this network
15 O(n) with the use of O(a/m) V modules,

Performance analysis VLSI module requirements and the speed complexity of
the above matrix algorithms are analyzed below. We consider two architectural

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 799

b L: laich
—] e ae—
U it W i M[—>
1 2 " e
P
r o /
M - A
External)
nput e q
o ¥
o M Ui
3 ¥ ’
3
h ’ = U”
Ly Ly Ly M Uz,
i
/ '
4—‘—@:
——E—ﬁ— M =
L MPX: multiplexer
Terminalsi @ | 6 | c Jd|e| sl e || ililkl t|lp]|lals]i
e
Step 1 A“
Step 2 A UL TR Ay [Azl L0 L Ay o100]0]0
Stepd | Ay Up [Ly Lo | Uy | Yya| Loy | A Ay Ay
Step 4 uh'la, L A 0 0
Steps |4, Y| Ly | A
Uss| Lya

Figure 1043 Arithmetic pipeline for partitioned 1-U decomposition#Example 10.4). (Courtesy of
Computer Vision, Graphics, and Image Processing, Hwang and Su, 1983a.)

Ry COMPUTER ARCHITY CTURE AND PARALLE PROCESSING

I inverter module M: multiply module L: laich

g V?!

G ; & Wia B
U'“.4’.a'|_,.-t;l'u,lz‘,i_,!,}_.N 3 (TRLS T ILE

o Note: All U, ¥, are mx m submatrices
defined in the example.
Figurce 10,44 A pipelined VIS matrix inverter (Example 10.5), (Courtesy of ¢ omputer Vision, Graphics
and Image Processing, Hwang and Su, 1983a,)

configurations for the partitioned matrix arithmetic algorithms. In a stricely paral-
fel configuration, all submatrix operations at each step are performed in parallel
by multiple VLS modules, This implies minimum time delay in each step. The
total time delay among all steps is also minimized by overlapping some step
Operations. In a serial-parallel configuration, the number of available VLSI
modules in each ste P is upper bounded. Thus, some parallel-executable operations

One modular
slep o
I 1 &
Ay A A, A, a4, Ay Ay A4, A, g 1T 1. 1
Ch G G,
[+]
A Ao A Ay A R
23 12 a i | n 21 23 22 21
) Cn Co G,

Ail Aj! AJI AJ! 4;2 AJ] A!J A!I All

”33 ‘Hz) ,.';” ﬂi: H:: Eu 831 B” Bll
Figure 1045 Partitioned matrix multiplication using the M module specified in Figure 10,40,

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 801

L
o
a
— 1
b k
e
v
c
g
(3
% e &
-—s
> Z v f
/ -
(A
h
v i
e
Input terminals Outputs
Steps a b c ™ & Ui F h i J k
Seepl | U, | US| b, 0 X,
—
Step2 | Uy | Uy! by 0 £ Uy | & Xy
Step3 | Uy |UZ'| b, | © o 0 1
% Uy,
Stepd | U, | UT'| b, 0 x| U, | & X
x| Uy
Xy Uid

Figure 10.46 A VLSI triangular system solver (Example 10.6). (Courtesy of Computer Vision, Graphics,
and Image Processing, Hwang and Su, 1983a.)

BOZ coMPUTIR ARe HITECTURE AND PARALLEL PROC E551NG
may have 1o be executed sequentially. Of course, serial-parallel operations will
result in longer time delays because of limited hardware modules.

To implement the partitioned L-U decomposition algorithm, we need to use
one D module, two I modules, and large number of M modules. The number of
ngeded M modules depends on the chosen architectural configuration. The parti-
tioned L-U decomposition can be realized in O(n) time with O(n®/m?) VLSI
modules cach with interior chip complexity O(m?), Using a uniprocessor, O(n?)
time steps are needed (o perform the L-U decomposition. It is interesting to note
that, with the partitioned approach, the triple product of the chip count O(n? Im?),
the compute time O(n), and the chip size O(m?) yiclds the uniprocessor compute
time O(nt); that is:

O(n*/m?) - O(n) -O(m?) = O(n?) (10.15)

This property is called conservation law between available hardware chips and
achicvable speed.

The chip count O(n?/m?) is too high to be of practical value because of the
fact that n » . Therefore, we have to bound the chip count with a linear order
O(n/m) in a serial-parallel implementation of the partitioned matrix algorithm.
One can use 2n/m — | M modules to implement a serial-parallel architecture for
L-U decomposition as shown in Figure 10.42. Using O(a/m) modules yields a
prolonged time delay O(n?/m) forn » m > 1.

The conservation law is again preserved in serial-parallel architecture; that is:

O(n/m) - O(n*fm) - O(m?) = Oo(n?) (10.16)

Similar analysis can be made to estimate the chip counts and time delays
for partitioned matrix inversion and multiplication. In Table 10.2, we show that
the first three matrix algorithms can each be implemented by O(n?/m?) VLSI
modules with O(n) time delays for the strictly parallel architecture, and by O(r1/m)
modules with O(n?/m) time for the serial-parallel configuration. Multiplication
needs to use M modules exclusively. To solve a triangular LSE, :hcl total time
delay is O(n) and O(n/n7) VLSI mod ules are used. The strictly parallel architecture
is suggested for constructing a VLSI triangular system solver. Again the conser-
vation law holds as:

O(n/m)- O(n) - O(m) = O(n?) (10.17)

Where O(#?) is the compute time of using a uniprocessor o solve triangular system
of algebraic equations.

Itis obvious that trade-offs exist between the module counts and time delays of
all partitioned matrix algorithms. By presetting a speed requirement, one can
decide the minimum number of VLSI modules needed to achieve the desired speed
performance. On the other hand, one can predict the speed performance under
prespectfied hardware allowance. This trade-off study is necessary for cost-effective
design of large-scale matrix system solvers.

e g

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS BO3

Table 10.2 Hardware requirements and speed performances of partitioned VLSI
matrix algorithms

VLSI architecture and complexity

Serial-parallel architecture

Strictly parallel archiectures with bounded number
with minimum time delays of VLS| modules
Total Towal
Matrix algorithm VLSI module count compute VLSI module count compute
and module types time and module types time
L-U decompaosition O(n® m?)) Olnm)
D.ILM* Mn) D, 1. M* O(n*.fmj
Inversion of O(H!_H!I et)
1
triangular matrix L M* Otn) IL.M* Ofr{m)
Matrix multiphcation O(n*/m*)
e M* Ofn) Otn/m) O(n® /m)
Me
Solving trigngular Ofn/m)
linear system Ly Otn)

of equations

Nare: All measures are based on the assumption n 2 m = |, where n is the matrix order and m
is the VLSI module size.
* Predominating VLSI modules to be uid.

10.4.4 Real-Time Image Processing

A computational model for a statistical image analysis system is illustrated in
Figure 10.47. All pattern vectors x (the raw patierns to be recognized) form the
input space V. To design a feature extractor, one has to produce a set of m trans-
formation vectors {d;|i = 1, 2,..., m} from a set S of training samples with
known classes. Each d, is an n-dimensional column vector. We denote the jth
sample of class s as x}"". The output of the extractor is the feature vector y, which
is related to the input x by a linear transformation y = D -x, where D =
[dy.d,,....d,)" isanm x ntransformation matrix.

VLSI feature extraction Foley and Sammon (1975) have introduced a discrimi-
nating method to generate an optimal sct of transformation vectors based on
maximum separability instead of best picture fitting. The Foley-Sammon algo-
rithm is modified below to allow modular implementation of a feature exlractor
by the proposed VLSI hargware.

Let n, be the number of training samples and m, be the sample mean for class s.
The sample offset 2" is a column vector formed by the following vector subtrac-
tion:

5

7 =x}"7—m ﬂ\rj:l,z,..‘,n,

BO4 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Training samples Training features

. 1
™y
Feature = = WY Patiern Class
extraction . classification label
V.
Feature
Input bk i
space

Figure 10.47 A statistical pattern recognition system,

The sample offset matrix Z, isan n x n,matrix formed by Z, = (2,29, . . . 2],
A within-class scatter matrix S, is obtained by performing an orthogonal matrix
multiplication, where S, is an# x n matrix:

S, =2,.27 (10.18)

A weighted scatter matrix A is defined below for classes s and 1. The fraction
C.where 0 < € < |, is determined by a generalized Fisher eriterion:

A=C-S, +(1-0-5 (10.19)

Let m = m, — m, be the mean difference. We define an h x 4 matrix B, = (b))
for h=1,2,..., m~ 1, where by=dl A1 “d; for 1 <, j < h. Foley-
Sammon algorithm is summarized below:

Foley-Samumion fearure extraction algorithm
I. Initialize i = I and B]'! = p; !, Compute d, by
dy =2 -A"'.m (10.20)
where a, is a scalar constant satisfyingd, -d] = | and

2% =(mr-[A“]’-m)"

2. Increment j «—j + I, Halt, if i > m, *
3. Compute the ith transformation vector d, by
d,=d-AT' -(m - [d,.d,,....d,2,] B -w) (10.21)

where w = [Fety 0.0, -0 01" is a column vector with (i — 1) elements, and'
xsatisfiesd' - d; = 1. Go to step 2.

,
we
i

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 805

The above computations involve the inversions of Aand B, = 1,2,..., m,
which are very lengthy. Instead of performing recursive matrix inversion, a block-
partitioning method is used to generate the inverse matrices A~' and B;'. In a
feature extraction process, matrix computations include Z - 27 Z, -ZT, and
(d,dy ..., d_,]-B %, A" 'and B/ " forall i=1,2,..., m — 1. Figure
10.48 shows the functional design of a VLSI feature extractor. This extractor is
constructed with three subsystems: scatter matrix generator, matrix inverter, and
feature generator, as shown by dash-line boxes. The vector subtractor is imple-
mented with modified V modules for generating Z,, Z7, Z,, Z;, and the mean
difference m used in the above algorithm. Two matrix multiply networks (Figure
10.44) are used to perform the orthogonal matrix multiplications. Each network
contains n/m M modules. The weighted matrix adder can be implemented by
n/m M modules with some special constant inputs.

The inversion of the scatter matrix A is done by employing an L-U decom-
position network (Figure 10.43), two triangular matrix inverters (Figure 10.45),
and one multiply network to yield the computation A™!' =(L-U)™! =
U™'-L7'. The inverse matrices B ' for i = 2, 3,..., m — 1 can be similarly
generated by this matrix inverter. Let D; = [d,, d,, . . ., d;]. The matrix multi-
plications D, - B ! are performed by the same matrix multiply network generating
the scatter matrix S'. If i/r is not an integer, the matrices D, and B; ' can also be
augmented with zeros and the identity matrix in order to use standard VLSI
modules. The above computations aré recursively performed by the transformation
vector generator. This generator can be implemented by V modules with modified
constant inputs. The matrix-vector multiplier is implemented with V modules.

E Scatter matrix generator
i
1 Z
! = Matrix S, O M i
H multiply } i atrix inverter
L] .
! > newwork . i !
Training __, | Vector | & Weighted | 14 LU
samples ‘::> subtractor z malirix -t decomposition
1 ' 2 adder : network
: Matrix E
X, i multiply S, f i] 1
. - network 1 T Y
H DB %
! L dl] R B £ Triangular Triangular
e — B Ny e I [0 LPERH. matrix matrix
D, inverter inverter
1
T e — R e e A i 9
veclors | =
Fealire ' Matrix- 1 Transformer i 4! Matrix
e Q:: vevtor +—] vector et = multiply
| muitiplier st generator H B, network
H ¢] $
| Feature generator d Tl :
- S i ot 0. e S T e i i e e i - B o i o s e . o -

Figure 1048 The schematic design of 2 VI.S1 patiern classifier. (Courtesy of Compurer Vision, Graphics,
and Image Processing, Hwang and Su, November 1983.)

806 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

VLSI pattern classification Linear discriminant functions can be used for pattern
classification. To distinguish among p pattern classes, P — 1){2 pairwise discrim-
inant functions are needed. A linear discriminant function between two distinct
classes is defined by:

Ay)=v".y 44 (10.22)
wherey = (3, 5, . .. » V)" is the feature veetor, ¥ = {0y, 03, .., 0.)7 is called
the discriminant vector and o is a scalar threshold constant. The discriminan
vector v and threshold constant « are determined with the aid of a set £ of training
features with known class labels. The feature pattern y is classified into class s jf
Ay) 2 0, and into class 1, if otherwise.

Fisher's method is used to generate the discriminant vector v from training
features, The threshold constant « can be set 1o “zero™ with an appropriale
choice of the coordinate system. Let y{¥ be the jih training feature vector of class
s forj=1,2.. . » M. The feature mean difference is f = f, — f, and feature
offset vector s Wil gl g An mox my feature offset matrix W, =
v wg. w..'] is defined for each class. The covariance matrix for class 5 is
computed by;

2=

where Z, has dimension m x . The following computation steps are needed
to generate the discriminant vectors needed for pattern classification.

W= (10.23)
m, — |

A linear pattern classification algorithm

. Compute f = f, — 1, and the feature offset matrices W, by subtracting the
mean f, from each training feature Wihorj=1,2,.... m,.

2. Generate matrices Y and 2, using Eq. 10.23,

3. Solve the following linear system of equations to determine the discriminant
vector v:

E +5)e=r1 (10.24)

Functional design of a VLS| pattern classifier based on the above algorithm
tched in Figure 10.49. The schematic design of the covariance matrix gener-

triangular system solver (Figure 10.46). This matrix solver is needed to solve the
dense system specified in Eq. 10.24. The Fisher classifier is essentially a threshold
decision unit (Eq, 10.22) which can be easily implemented by some combinational
logic circuits and the modified V modules. The VLS] approaches to both feature
extraction and pattern classification can result in significant speedups of

O(n?) O(n?)

oo sk inll 4 or e

O(n? Jm) O(n)
This will make it possible to achieve real-time image processing.
Feature extraction ang pattern classification are initjal candidates for pos-
sible VLSI implementation, VLSI computing structures have been proposed for

(10.18)

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 807

Covariance matrix generator

T .
W = Matrix Wl
multiply
i W network l proc e W S "y
(] 1 ’
] 1 1)
L ey 1} . ‘p :
Training | Viior Weighted |X 4L L-u - i
feature matrix decomposition ;
subtractor > !
vectors ; — adder E network o ;
] 4 '
i i ! : |
i Wae! Matrix £ rlg Linear system solver i
! multiply H i
: I wIb newwork | Wew! ' ;
' . :
SR T R RS e TSI = e . SO - Triangular | |
: - | sysiem i
L _j H solver :
: i
= :
Fisher b R k)
Feature finea s .
b classifier v

L—.-(‘Ias; labels

Figure 10.49 The schematic of 3 VLSI feature extractor, (Courtesy of Computer Vision, Graphics, and
Image Processing, Hwang and Su, November 1981.)

general signal/image processing applications. Other methods, such as the cigen-
vector approaches to feature selection and Bayes quadratie discriminant functions,
should also be realizable with VLSI hardware. It is highly desirable to develop
VLSI computing structures also for smoothing, image registration, edge detection,
image scgmenlation, texture analysis, multistage featurc sclection, syntactic
pattern recognition, pictorial query processing, and image database management.
The potential merit lies not only in speed gains, but also in reliability and cost
cflectiveness.

10.5 BIBLIOGRAPHIC NOTES AND PROBLEMS

The data flow approach to designing high-performance computers was pioneered
by Dennis (1974), among many other researchers. A good distinction between
control flow computers and data low computers can be found in Treleaven et al.
(1982). A special issuc on data flow system appeared in the IEEE Computer
Magazine in February 1982. This issue contains several introductory articles on
data flow languages, machine architectures, and song: critics’ opiniors. Static
data flow machines are described in Dennis et al. (1979) and Dennis (1980). Data
flow languages have been studied in Tesler and Enea (1968), Backus (197%),
Ackerman and Dennis (1979), Arvind et al. (1978), and Arvind and Gostelow
(1982). Potential problems of the data flow approach are assessed by Gajski et al.
(1982).

The Irvine data flow machine with tagped tokens is reported in Arvind and
Gostelow (1977), Gostelow and Thomas (1980), and Thomas (1981). The

BO8 compirin ARCHITECTURE AND PARALL LT PROCESSING

Manchester machine is reported in Gurd and Watson (1980). The MIT dynamic
data flow project has been described in Arvind et al, (1980) and Arvind (1983). The
EDDY system js described in Takahashi and Amamiya (1983). The French LAU
system is described jn Syre et al. (1977, 1980). The Utah machine is described in
Davis (1978). The Newecastle control data flow machine is described in Treleaven
(1978). The dependence-driven approach was proposed by Gajski etal. (1981), The
event-driven approach using priority quencs was suggested by Hwang and Sy
(1983c). Packet switching networks for dataflow multiprocessors were treated in
Dias and Jump (198]) and in Chin and Hwang (19%3).

Systolic array for VLS] computation was suggested by Kung and Leiserson

Thesis (1982). Partitioned matrix algorithms and VLS| image processing structures
are based on the work by Hwang and Cheng (1982) and by Hwang and Su (1983a).
A wavelront approach to designing cellular processor arrays can be found in
R Kung et al, (1982). The 3-dimensional VLS] architecture was treated in
Grinberg et al (1984),

Problems

10.1 Describe the following terms associated with data flow computers and languages:
(@) Control flow computers
(5) Data-driven computations
(€) Static data flow computers
{d) Dynamic data flow com pulers
(€) Data flow graphs and languages
N Single-assignment rule
@) Unfolding of iterative computations
(h) Freedom from side effects
() Dependence-driven computation
() Coloring technique
(%) Event-driven computation
10.2 Draw data flow graphs 10 represent the following computations:

(@) If (a=b) and (c <d) then c—c-a

else ce—c+a
(b)) Fori—1 until mdo
begin
C(i)«0
For j«1 until n do
Cli]«C[i] +a[i,h] » b[j)
end

() Z=N!=Nx(N-1}K{N"2}x..Ax2k1

Youareallowed to gse the merge operator. the tue gare., the false gare, the multiply operator, the
add or subiract operator, the logical and the canmpate eperator in your graph construction.

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS 809

10.3 It is desired to construct a packet-switched arbitration network for a static data flow computer
similar to the Dennis machine at MIT. Use 5 x 2 swilch boxes as building blocks 10 construct the
network, A unique addressing path is demanded in the network,

(@) Design the 5 x 2 switch box with multiplexers, demultiplexers, and buffers. Switch control
mechanism should be explained.

(b) Construct a §* x 2* buffered Delta network with the S » 2 switch boxes to be used for

arbitration purpose. Show all the interconnections between stages.

(€) There are 243 possible states of a typical 5 x 2 swiich box. Each input port sends one request
to be connected to one of the two output ports or none. Assuming that all states are equally probable.
derive the blocking probability of a typical 5 = 2 switch box. When the switch is in a nonblocking
state, all requests from input ports are connecled to distinct oulput porls without conflicts. Whenever
two or more input requests are destined to the same ouiput port, the switch is entering a blocking
state. The blocking probability indicates the chance that a switch may be blocked.

(d) Repeat the same question in part (b) for a 2 = 2 switch box. Compare the blocking proba-
bilities between § x 2 and 2 = 2 switch boxes. Which one has higher blocking probability?

(¢) Based on the blocking probability found in part (c), derive an C€xpression 1o represent the
network blocking probability. if requests from all 125 input ports are equally probable and their
destination distribution is uniform among the cight output ports.

104 (a) Use & x 8 switch boxes 1o construct a 64 x 64 routing network for the Arvind machine
with 64 PEs. Label all the input-output ports and show all the interconnections among the 8 x § boxes

(b) Show how 10 join two 64 x 64 networks (o form a network of size 112 % 112. Some outputs
of one network can be connected to some inputs of the network in the joining process.

(c) Suppose that cach 8 x 8§ switch box has a delay of D. Analyze the delays of the 64 = &8
network and of the 112 x 128 network scparately, under no blocking conditions.

10.5 Given a sequence of weights leog, ey, oo o) and an input sequence of signals { Xy, vy, ... s
design two lincar systolic arrays with & processing cells to solve the convolution problem

Vo= Xy o+ aky o4 ayx, (10.27)

(a) In the first design, you are given the unidirectional cells which COMPULE Vo = N + 12 A,
as shown in Figure 10 50a. Explain your design, the distribution of the inputs, and the systolic flow
of the partial results y,'s from left to right.

(b) In the sccond design. you arc given the bidirectional eclls which COMPULE Jouy = Vi +
@ -x,, and x,,, = x,,, as shown in Figure 10,505, Explain the design and operation of this systolic
convolution array.

*in
i

Jin Four

o Your TFin T WX,
Cell type (a)
vﬂut ‘vln
P - e Py, e

oul n m

*.Iﬂ g xw(

Ty o Ko i Figure 10.50 Processing cell types for the coe-

struction of a linear systolic array for one-di-
Cell type (b) mensional comolution (Prablem 10,3),

g

Bl0 COMPUTER ARCHITIC TURE AND PARALLEL PROCISSING

{¢) Comment on 1he advantuges and drawbacks in each design:

« Note thatin both designs (@) and (B), weights are preloaded to the cells, one it each cell, and stay
al cells throughout the computation. In design (b), the v,'s and the v's move systolically in opposite
directions,

10.6 Consider the implementation of the partitioned 11 decomposition algorithm (Figure 10.42)
with the VLSI mairix arithmenic modules shown in Figure 1037 We will analyze the hardware and
fime complexities: the module count M snd the compute ime 1 for chip complexity ¢ - Otmy in
cuch of the following architcenaral configurations:

(a) In serial-paralle! implementation, prove thut M = O(n/m)and T = ((n? ')

(h) For strictly parallcl implementation, prove that M — O im*yand 7 = Ofn),

In the above proofs, n is the fiven matrix size and m is the VLS module size. 1Uis assumed that m iy
much greater than .

10.7 Consider the VLS im plementation of an optimal parenthesization algorithm based on integer
programming. A string of » mutrices is multiplied «

M=M M x.:xpg, (10.25)

Ll gy, vy 0 rebd ithe dimensions of the n matrices with r, |, and v, dimensions of M, Denote by

1 ' [Y
iy the minimum cost of computing the product M,- M, ... M,. The algorithm which produces
m,, is given below:

fori—1tondom «0
for 11 to n-1 do
fori—=1ton-1do
begin
je—=i+1
mtthIN(mik+mk+1,j+ri—!rkr;}
I<k<j

end

Following the mapping procedure in Section 10.3.2, transform the above algorithm into a suitable
form which can be implemenied by the triangular array shown in Figure 10.50, All the processing
cells perform the same functions to be defined in Your transformed algorithm.
[Hini: One possible transformation of the indices T: (1, i, k) — (£, k) s given by f = max(2/ + i — &,
=i+ k+DiT=lviiandk=~¢).
10.8 Develop a cellular array processor for implementizsg a tridiagonal linear system solver. Specily
the cell functions. the VLSI Arruy structure, and the data flow patterns in the cellular array. You have
freedom in choosing either « global systelic approach or modular pipelined approach based on
“block ™ partitioning and buck substitution, Comment on the speed and hardware complexitics in
your design,
10.9 Consider the program graph shown in Figure 10.51. The critical path is a, b, ¢, Cavovas cx, Which
results in & lower bound on exceution of 13 time units, assuming that division takes 3 time units, multi-
plication 2, and addition 1. A & ¥pothetical data flow computer has four processing units, cach capuble
of exceuting any function. We idealize the maching by assuming that memory and interconncetion
delays are zevo. In cach of the following machine utilizat ions, show the schedule (a time-space diugram
similar to that in Figure 3.46) of the 34 eomputing events (8 divisions, 8 mult iplications, and 8 additions)
and indicate the total exceution time and utilization rate of processors,

(a) Use only one processor 1o perform sequential execution, one operation at a time.

(h) Use three processors to perform static data flow computations with i one-token-per-arch
policy. Note that the three processors can be pipelined to execute a block of statements inside the loop,

(e} Use four processors 1o perform dy namic data flow computations such that tokens are labeled
and logical events are colored to share the available resoyreys,

DATA HLOW COMPUTERS AND VLSI COMPUTATIONS 811

input d.e.f
g =0
for | from 1 to 8 do
begin

a; =d, + ¢

biI = a; * Ii

e = b+ ¢y
end
output a b e

Figure 10.51 A program graph for Prob. 108, (Courtesy of IEEE Computer, Gajski, et al., Feb. 1982.)

{d) Apply a random scheduling policy on four processors,

ey

(e) Using a control flow vector machine with a “perfeet” veetorizing compiler, which could
detect the recurrence and achieve full vectorization. Note that intermediate variables can be introduced

1o completely balance the computing load among the four processors.

Hint: Parts (c)and {¢) should result in the same minimum exceution time. However, processor wtilization

rates would be different,

10.10 Consider a squarc I-Tliiil'lﬁ B = A+ C, where A, B, and C arc all m x n matrices, the inverse
A~ " of matrix 4 is known and the rank of matrix Cequals k for some k < n. You are asked to design

a cellular array of processors to find the inverse, B~ of matrix B, given the above conditions.
(a) Construct the VLSI processor array to find B~" given A~ and rank (€) = &k = 1.
(b) Modily the design in part (@) to find B~ ' given 4! and rank (C)=k>1.

Ly T W

" Ln i o 4
R o 1f -"g’h R ;
%eall B - - Lig T - ‘ “#
W A s L 2 i &Y .
IR e ey e i ol B D Rl B HT
4 - % L o ' Br oz
e~ L b i &

