
5 Nonelectrolytes
Chapter Objectives
At the conclusion of this chapter the student should be able to:

1. Identify and describe the four colligative properties of nonelectrolytes in solution.
2. Understand the various types of pharmaceutical solutions.
3. Calculate molarity, normality, molality, mole fraction, and percentage expressions.
4. Calculate equivalent weights.
5. Define ideal and real solutions using Raoult's and Henry's laws.
6. Use Raoult's law to calculate partial and total vapor pressure.
7. Calculate vapor pressure lowering, boiling point elevation, freezing point lowering,

and pressure for solutions of nonelectrolytes.
8. Use colligative properties to determine molecular weight.

Introduction
In this chapter, the student will begin to learn about pharmaceutical systems. In the pharmaceutical
sciences, a system is generally considered to be a bounded space or an exact quantity of a material
substance. Material substances can be mixed together to form a variety of pharmaceutical mixtures (or
dispersions) such as true solutions, colloidal dispersions, and coarse dispersions. A dispersion consists
of at least two phases with one or more dispersed (internal) phases contained in a single continuous
(external) phase. The term phase is defined as a distinct homogeneous part of a system separated by
definite boundaries from other parts of the system. Each phase may be consolidated into a contiguous
mass or region, such as a single tea leaf floating in water. A true solution is defined as a mixture of two
or more components that form a homogeneous molecular dispersion, in other words, a one-phase
system. In a true solution, the suspended particles completely dissolve and are not large enough to
scatter light but are small enough to be evenly dispersed resulting in a homogeneous appearance. The
diameter of particles in coarse dispersions is greater than ~500 nm (0.5 µm). Two common
pharmaceutical coarse dispersions are emulsions (liquid–liquid dispersions) and suspensions (solid–
liquid dispersions). A colloidal dispersion represents a system having a particle size intermediate
between that of a true solution and a coarse dispersion, roughly 1 to 500 nm. A colloidal dispersion may
be considered as a two-phase (heterogeneous) system under some circumstances. However, it may
also be considered as a one-phase system (homogeneous) under other circumstances. For example,
liposomes or microspheres in an aqueous delivery vehicle are considered to be heterogeneous colloidal
dispersions because they consist of distinct particles constituting a separate phase. On the other hand,
a colloidal dispersion of acacia or sodium carboxymethylcellulose in water is homogeneous since it does
not differ significantly from a solution of sucrose. Therefore, it may be considered as a single-phase
system or true solution.1 Another example of a homogeneous colloidal dispersion that is considered to
be a true solution is drug-polymer conjugates since they can completely dissolve in water.

Key Concept
Pharmaceutical Dispersions
When two materials are mixed, one becomes dispersed in the other. To classify a
pharmaceutical dispersion, only the size of the dispersed phase and not its composition is
considered. The two components may become dispersed at the molecular level forming a true
solution. In other words, the dispersed phase completely dissolves, cannot scatter light, and
cannot be visualized using microscopy. If the dispersed phase is in the size range of 1 to 500
nm, it is considered to be a colloidal dispersion. Common examples of colloidal dispersions
include blood, liposomes, and zinc oxide paste. If the particle size is greater than 500 nm (or
0.5 µm), it is considered to be a coarse dispersion. Two common examples of coarse
dispersions are emulsions and suspensions.



This chapter focuses on molecular dispersions, which are also known as true solutions. A solution
composed of only two substances is known as a binary solution, and the components or constituents
are referred to as the solvent and the solute. Commonly, the terms component and constituent are used
interchangeably to represent the pure chemical substances that make up a solution. The number of
components has a definite significance in the phase rule. The constituent present in the greater amount
in a binary solution is arbitrarily designated as the solvent and the constituent in the lesser amount as
the solute. When a solid is dissolved in a liquid, however, the liquid is usually taken as the solvent and
the solid as the solute, irrespective of the relative amounts of the constituents. When water is one of the
constituents of a liquid mixture, it is usually considered the solvent. When dealing with mixtures of
liquids that are miscible in all
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proportions, such as alcohol and water, it is less meaningful to classify the constituents as solute and
solvent.
Physical Properties of Substances
The physical properties of substances can be classified as colligative, additive, and constitutive. Some
of the constitutive and additive properties of molecules were considered in Chapter 4. In the field of
thermodynamics, physical properties of systems are classified as extensive properties, which depend on
the quantity of the matter in the system (e.g., mass and volume), and intensive properties, which are
independent of the amount of the substances in the system (e.g., temperature, pressure, density,
surface tension, and viscosity of a pure liquid).
Colligative properties depend mainly on the number of particles in a solution. The colligative properties
of solutions are osmotic pressure, vapor pressure lowering, freezing point depression, and boiling point
elevation. The values of the colligative properties are approximately the same for equal concentrations
of different nonelectrolytes in solution regardless of the species or chemical nature of the constituents.
In considering the colligative properties of solid-in-liquid solutions, it is assumed that the solute is
nonvolatile and that the pressure of the vapor above the solution is provided entirely by the solvent.
Additive properties depend on the total contribution of the atoms in the molecule or on the sum of the
properties of the constituents in a solution. An example of an additive property of a compound is the
molecular weight, that is, the sum of the masses of the constituent atoms. The masses of the
components of a solution are also additive, the total mass of the solution being the sum of the masses of
the individual components.
Constitutive properties depend on the arrangement and to a lesser extent on the number and kind of
atoms within a molecule. These properties give clues to the constitution of individual compounds and
groups of molecules in a system. Many physical properties may be partly additive and partly constitutive.
The refraction of light, electric properties, surface and interfacial characteristics, and the solubility of
drugs are at least in part constitutive and in part additive properties; these are considered in other
sections of the book.
Types of Solutions
A solution can be classified according to the states in which the solute and solvent occur, and because
three states of matter (gas, liquid, and crystalline solid) exist, nine types of homogeneous mixtures of
solute and solvent are possible. These types, together with some examples, are given in Table 5-1.
When solids or liquids dissolve in a gas to form a gaseous solution, the molecules of the solute can be
treated thermodynamically like a gas; similarly, when gases or solids dissolve in liquids, the gases and
the solids can be considered to exist in the liquid state. In the formation of solid solutions, the atoms of
the gas or liquid take up positions in the crystal lattice and behave like atoms or molecules of solids.

Table 5-1 Types of Solutions



Solute Solvent Example

Gas Gas Air

Liquid Gas Water in oxygen

Solid Gas Iodine vapor in air

Gas Liquid Carbonated water

Liquid Liquid Alcohol in water

Solid Liquid Aqueous sodium chloride solution

Gas Solid Hydrogen in palladium

Liquid Solid Mineral oil in paraffin

Solid Solid Gold—silver mixture, mixture of alums

The solutes (whether gases, liquids, or solids) are divided into two main
classes: nonelectrolytes and electrolytes. Nonelectrolytes are substances that do not ionize when
dissolved in water and therefore do not conduct an electric current through the solution. Examples of
nonelectrolytes are sucrose, glycerin, naphthalene, and urea. The colligative properties of solutions of
nonelectrolytes are fairly regular. A 0.1-molar (M) solution of a nonelectrolyte produces approximately
the same colligative effect as any other nonelectrolytic solution of equal concentration. Electrolytes are
substances that form ions in solution, conduct electric current, and show apparent “anomalous”
colligative properties; that is, they produce a considerably greater freezing point depression and boiling
point elevation than do nonelectrolytes of the same concentration. Examples of electrolytes are
hydrochloric acid, sodium sulfate, ephedrine, and phenobarbital.
Electrolytes may be subdivided further into strong electrolytes and weak electrolytes depending on
whether the substance is completely or only partly ionized in water. Hydrochloric acid and sodium
sulfate are strong electrolytes, whereas ephedrine and phenobarbital are weak electrolytes. The
classification of electrolytes according to Arrhenius and the discussion of the modern theories of
electrolytes are given later in the book.
Concentration Expressions
The concentration of a solution can be expressed either in terms of the quantity of solute in a
definite volume of solution or as the quantity of solute in a definite mass of solvent or solution. The
various expressions are summarized in Table 5-2.
Molarity and Normality
Molarity and normality are the expressions commonly used in analytical work.2 All solutions of the same
molarity
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contain the same number of solute molecules in a definite volume of solution. When a solution contains
more than one solute, it may have different molar concentrations with respect to the various solutes. For
example, a solution can be 0.001 M with respect to phenobarbital and 0.1 M with respect to sodium
chloride. One liter of such a solution is prepared by adding 0.001 mole of phenobarbital (0.001 mole ×
232.32 g/mole = 0.2323 g) and 0.1 mole of sodium chloride (0.1 mole × 58.45 g/mole = 5.845 g) to
enough water to make 1000 mL of solution.

Table 5-2 Concentration Expressions

Expression Symbol Definition

Molarity M,c Moles (gram molecular weights) of solute in 1
liter of solution

Normality N Gram equivalent weights of solute in 1 liter of
solution

Molality m Moles of solute in 1000 g of solvent

Mole fraction X,N Ratio of the moles of one constituent (e.g., the
solute) of a solution to the total moles of all
constituents (solute and solvent)

Mole percent Moles of one constituent in 100 moles of the
solution; mole percent is obtained by
multiplying mole fraction by 100

Percent by
weight

%
w/w

Grams of solute in 100 g of solution

Percent by
volume

%
v/v

Milliliters of solute in 100 mL of solution

Percent
weight-in-
volume

%
w/v

Grams of solute in 100 mL of solution

Milligram
percent

— Milligrams of solute in 100 mL of solution

Difficulties are sometimes encountered when one desires to express the molarity of an ion or radical in a
solution. A molar solution of sodium chloride is 1 M with respect to both the sodium and the chloride ion,
whereas a molar solution of Na2CO3 is 1 M with respect to the carbonate ion and 2 M with respect to the



sodium ion because each mole of this salt contains 2 moles of sodium ions. A molar solution of sodium
chloride is also 1 normal (1 N) with respect to both its ions; however, a molar solution of sodium
carbonate is 2 N with respect to both the sodium and the carbonate ion.
Molar and normal solutions are popular in chemistry because they can be brought to a convenient
volume; a volume aliquot of the solution, representing a known weight of solute, is easily obtained by the
use of the burette or pipette.
Both molarity and normality have the disadvantage of changing value with temperature because of the
expansion or contraction of liquids and should not be used when one wishes to study the properties of
solutions at various temperatures. Another difficulty arises in the use of molar and normal solutions for
the study of properties such as vapor pressure and osmotic pressure, which are related to the
concentration of the solvent. The volume of the solvent in a molar or a normal solution is not usually
known, and it varies for different solutions of the same concentration, depending upon the solute and
solvent involved.
Molality
A molal solution is prepared in terms of weight units and does not have the disadvantages just
discussed; therefore, molal concentration appears more frequently than molarity and normality in
theoretical studies. It is possible to convert molality into molarity or normality if the final volume of the
solution is observed or if the density is determined. In aqueous solutions more dilute than 0.1 M, it
usually may be assumed for practical purposes that molality and molarity are equivalent. For example, a
1% solution by weight of sodium chloride with a specific gravity of 1.0053 is 0.170 M and 0.173 molal
(0.173 m). The following difference between molar and molal solutions should also be noted. If another
solute, containing neither sodium nor chloride ions, is added to a certain volume of a molal solution of
sodium chloride, the solution remains 1 m in sodium chloride, although the total volume and the weight
of the solution increase. Molarity, of course, decreases when another solute is added because of the
increase in volume of the solution.
Molal solutions are prepared by adding the proper weight of solvent to a carefully weighed quantity of
the solute. The volume of the solvent can be calculated from the specific gravity, and the solvent can
then be measured from a burette rather than weighed.
Mole Fraction
Mole fraction is used frequently in experimentation involving theoretical considerations because it gives
a measure of the relative proportion of moles of each constituent in a solution. It is expressed as

for a system of two constituents. Here X1 is the mole fraction of constituent 1 (the subscript 1 is
ordinarily used as the designation for the solvent), X2 is the mole fraction of constituent 2 (usually the
solute), and n1 and n2 are the numbers of moles of the respective constituents in the solution. The sum
of the mole fractions of solute and solvent must equal
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unity. Mole fraction is also expressed in percentage terms by multiplying X1 or X2 by 100. In a solution
containing 0.01 mole of solute and 0.04 mole of solvent, the mole fraction of the solute is X2 = 0.01/(0.04
+ 0.01) = 0.20. Because the mole fractions of the two constituents must equal 1, the mole fraction of the
solvent is 0.8. The mole percent of the solute is 20%; the mole percent of the solvent is 80%.
The manner in which mole fraction is defined allows one to express the relationship between the
number of solute and solvent molecules in a simple, direct way. In the example just given, it is readily
seen that 2 of every 10 molecules in the solution are solute molecules, and it will be observed later that
many of the properties of solutes and solvents are directly related to their mole fraction in the solution.
For example, the partial vapor pressure above a solution brought about by the presence of a volatile
solute is equal to the vapor pressure of the pure solute multiplied by the mole fraction of the solute in the
solution.
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Percentage Expressions
The percentage method of expressing the concentration of pharmaceutical solutions is quite common.
Percentage by weight signifies the number of grams of solute per 100 g of solution. A 10% by weight (%
w/w) aqueous solution of glycerin contains 10 g of glycerin dissolved in enough water (90 g) to make
100 g of solution. Percentage by volume is expressed as the volume of solute in milliliters contained in
100 mL of the solution. Alcohol (United States Pharmacopeia) contains 92.3% by weight and 94.9% by
volume of C2H5OH at 15.56°C; that is, it contains 92.3 g of C2H5OH in 100 g of solution or 94.9 mL of
C2H5OH in 100 mL of solution.
Calculations Involving Concentration Expressions
The calculations involving the various concentration expressions are illustrated in the following example.
Example 5-1
Solutions of Ferrous Sulfate
An aqueous solution of exsiccated ferrous sulfate was prepared by adding 41.50 g of
FeSO4 to enough water to make 1000 mL of solution at 18°C. The density of the solution is
1.0375 and the molecular weight of FeSO4 is 151.9. Calculate (a) the molarity; (b) the
molality; (c) the mole fraction of FeSO4, the mole fraction of water, and the mole percent of
the two constituents; and (d) the percentage by weight of FeSO4.
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One can use the table of conversion equations, Table 5-3, to convert a concentration expression, say
molality, into its value in molarity or mole fraction. Alternatively, knowing the weight, w1, of a solvent, the
weight, w2, of the solute, and the molecular weight, M2, of the solute, one can calculate the molarity, c,
or the molality, m, of the solution. As an exercise, the reader should derive an expression
relating X1 to X2 to the weights w1 and w2 and the solute's molecular weight, M2. The data inExample 5-
1 are useful for determining whether your derived equation is correct.
Equivalent Weights
One gram atom of hydrogen weighs 1.008 g and consists of 6.02 × 1023 atoms (Avogadro's number) of
hydrogen. This gram atomic weight of hydrogen combines with 6.02 × 1023 atoms of fluorine and with
half of 6.02 × 1023 atoms of oxygen. One gram atom of fluorine weighs 19 g, and 1 g atom of oxygen
weighs 16 g. Therefore, 1.008 g of hydrogen combines with 19 g of fluorine and with half of 16 or 8 g of
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oxygen. The quantities of fluorine and oxygen combining with 1.008 g of hydrogen are referred to as the
equivalent weight of the combining atoms. One equivalent (Eq) of fluorine (19 g) combines with 1.008 g
of hydrogen. One equivalent of oxygen (8 g) also combines with 1.008 g of hydrogen.
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Table 5-3 Conversion Equations for Concentration Terms

It is observed that 1 equivalent weight (19 g) of fluorine is identical with its atomic weight. Not so with
oxygen; its gram equivalent weight (8 g) is equal to half its atomic weight. Stated otherwise, the atomic
weight of fluorine contains 1 Eq of fluorine, whereas the atomic weight of oxygen contains 2 Eq. The
equation relating these atomic quantities is as follows (the equation for molecules is quite similar to that
for atoms, as seen in the next paragraph):



The number of equivalents per atomic weight, namely, 1 for fluorine and 2 for oxygen, is the
common valence of these elements. Many elements may have more than one valence and hence
several equivalent weights, depending on the reaction under consideration. Magnesium will combine
with two atoms of fluorine, and each fluorine can combine with one atom of hydrogen. Therefore, the
valence of magnesium is 2, and its equivalent weight, according to equation (5-3), is one half of its
atomic weight (24/2 = 12 g/Eq). Aluminum will combine with three atoms of fluorine; the valence of
aluminum is therefore 3 and its equivalent weight is one third of its atomic weight, or 27/3 = 9 g/Eq.
The concept of equivalent weights not only applies to atoms but also extends to molecules. The
equivalent weight of sodium chloride is identical to its molecular weight, 58.5 g/Eq; that is, the equivalent
weight of sodium chloride is the sum of the equivalent weights of sodium (23 g) and chlorine (35.5 g), or
58.5 g/Eq. The equivalent weight of sodium chloride is identical to its molecular weight, 58.5 g, because
the valence of sodium and chlorine is each 1 in the compound. The equivalent weight of Na2CO3 is
numerically half of its molecular weight. The valence of the carbonate ion, CO3

2-, is 2, and its equivalent
weight is 60/2 = 30 g/Eq. Although the valence of sodium is 1, two atoms are present in Na2CO3,
providing a weight of 2 × 23 g = 46 g; its equivalent weight is one half of this, or 23 g/Eq. The equivalent
weight of Na2CO3 is therefore 30 + 23 = 53 g, which is one half the molecular weight. The relationship of
equivalent weight to molecular weight for molecules such as NaCl and Na2CO3 is [compare equation (5-
3) for atoms]

Example 5-2
Calculation of Equivalent Weight
(a) What is the number of equivalents per mole of K3PO4, and what is the equivalent weight of
this salt? (b) What is the equivalent weight of KNO3? (c) What is the number of equivalents
per mole of Ca3(PO4)2, and what is the equivalent weight of this salt?

a. K3PO4 represents 3 Eq/mole, and its equivalent weight is numerically equal to one
third of its molecular weight, namely, (212 g/mole) ÷ (3 Eq/mole) = 70.7 g/Eq.

b. The equivalent weight of KNO3 is also equal to its molecular weight, or 101 g/Eq.
c. The number of equivalents per mole for Ca3(PO4)2 is 6 (i.e., three calcium ions each

with a valence of 2 or two phosphate ions each with a valence of 3). The equivalent
weight of Ca3(PO4)2 is therefore one sixth of its molecular weight, or 310/6 = 51.7
g/Eq.
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For a complex salt such as monobasic potassium phosphate (potassium acid phosphate),
KH2PO4 (molecular weight, 136 g), the equivalent weight depends on how the compound is used. If it is
used for its potassium content, the equivalent weight is identical to its molecular weight, or 136 g. When
it is used as a buffer for its hydrogen content, the equivalent weight is one half of the molecular weight,
136/2 = 68 g, because two hydrogen atoms are present. When used for its phosphate content, the
equivalent weight of KH2PO4 is one third of the molecular weight, 136/3 = 45.3 g, because the valence
of phosphate is 3.
As defined in Table 5-2, the normality of a solution is the equivalent weight of the solute in 1 liter of
solution. For NaF, KNO3, and HCl, the number of equivalent weights equals the number of molecular
weights, and normality is identical with molarity. For H3PO4, the equivalent weight is one third of the
molecular weight, 98 g/3 = 32.67 g/Eq, assuming complete reaction, and a 1 N solution of H3PO4 is

The number of equivalents per atomic weight, namely, 1 for fluorine and 2 for oxygen, is the
common valence of these elements. Many elements may have more than one valence and hence
several equivalent weights, depending on the reaction under consideration. Magnesium will combine
with two atoms of fluorine, and each fluorine can combine with one atom of hydrogen. Therefore, the
valence of magnesium is 2, and its equivalent weight, according to equation (5-3), is one half of its
atomic weight (24/2 = 12 g/Eq). Aluminum will combine with three atoms of fluorine; the valence of
aluminum is therefore 3 and its equivalent weight is one third of its atomic weight, or 27/3 = 9 g/Eq.
The concept of equivalent weights not only applies to atoms but also extends to molecules. The
equivalent weight of sodium chloride is identical to its molecular weight, 58.5 g/Eq; that is, the equivalent
weight of sodium chloride is the sum of the equivalent weights of sodium (23 g) and chlorine (35.5 g), or
58.5 g/Eq. The equivalent weight of sodium chloride is identical to its molecular weight, 58.5 g, because
the valence of sodium and chlorine is each 1 in the compound. The equivalent weight of Na2CO3 is
numerically half of its molecular weight. The valence of the carbonate ion, CO3

2-, is 2, and its equivalent
weight is 60/2 = 30 g/Eq. Although the valence of sodium is 1, two atoms are present in Na2CO3,
providing a weight of 2 × 23 g = 46 g; its equivalent weight is one half of this, or 23 g/Eq. The equivalent
weight of Na2CO3 is therefore 30 + 23 = 53 g, which is one half the molecular weight. The relationship of
equivalent weight to molecular weight for molecules such as NaCl and Na2CO3 is [compare equation (5-
3) for atoms]
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prepared by weighing 32.67 g of H3PO4 and bringing it to a volume of 1 liter with water. For a 1 N
solution of sodium bisulfate (sodium acid sulfate), NaHSO4 (molecular weight 120 g), the weight of salt
needed depends on the species for which the salt is used. If used for sodium or hydrogen, the
equivalent weight would equal the molecular weight, or 120 g/Eq. If the solution were used for its sulfate
content, 120/2 = 60 g of NaHSO4 would be weighed out and sufficient water added to make 1 liter of
solution.
In electrolyte replacement therapy, solutions containing various electrolytes are injected into a patient to
correct serious electrolyte imbalances. The concentrations are usually expressed as equivalents per liter
or milliequivalents per liter. For example, the normal plasma concentration of sodium ions in humans is
about 142 mEq/liter; the normal plasma concentration of bicarbonate ion, HCO3

-, is 27 mEq/liter.
Equation (5-4) is useful for calculating the quantity of salts needed to prepare electrolyte solutions in
hospital practice. The moles in the numerator and denominator of equation (5-4) may be replaced with,
say, liters to give

or

Equivalent weight (analogous to molecular weight) is expressed in g/Eq, or what amounts to the same
units, mg/mEq.
Example 5-3
Ca2+ in Human Plasma
Human plasma contains about 5 mEq/liter of calcium ions. How many milligrams of calcium
chloride dihydrate, CaCl2 • 2H2O (molecular weight 147 g/mole), are required to prepare 750
mL of a solution equal in Ca2+ to human plasma? The equivalent weight of the dihydrate salt
CaCl2 • 2H2O is half of its molecular weight, 147/2 = 73.5 g/Eq, or 73.5 mg/mEq. Using
equation (5-6), we obtain

Example 5-4
Equivalent Weight and Molecular Weight
Calculate the number of equivalents per liter of potassium chloride, molecular weight 74.55
g/mole, present in a 1.15% w/v solution of KCl.
Using equation (5-5) and noting that the equivalent weight of KCl is identical to its molecular
weight, we obtain

Example 5-5
Sodium Content
What is the Na+ content in mEq/liter of a solution containing 5.00 g of NaCl per liter of
solution? The molecular weight and therefore the equivalent weight of NaCl is 58.5 g/Eq or
58.5 mg/mEq.
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Ideal and Real Solutions
As stated earlier, the colligative properties of nonelectrolytes are ordinarily regular; on the other hand,
solutions of electrolytes show apparent deviations. The remainder of this chapter relates to solutions of
nonelectrolytes, except where comparison with an electrolyte system is desirable for clarity. Solutions of
electrolytes are dealt with in Chapter 6.
An ideal gas is defined in Chapter 2 as one in which there is no attraction between the molecules, and it
is found desirable to establish an ideal gas equation to which the properties of real gases tend as the
pressure approaches zero. Consequently, the ideal gas law is referred to as a limiting law. It is
convenient to define an ideal solution as one in which there is no change in the properties of the
components, other than dilution, when they are mixed to form the solution. No heat is evolved or
absorbed during the mixing process, and the final volume of the solution represents an additive property
of the individual constituents. Stated another way, no shrinkage or expansion occurs when the
substances are mixed. The constitutive properties, for example, the vapor pressure, refractive index,
surface tension, and viscosity of the solution, are the weighted averages of the properties of the pure
individual constituents.
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Key Concept
Ideality
Ideality in a gas implies the complete absence of attractive forces, and ideality in a solution
means complete uniformity of attractive forces. Because a liquid is a highly condensed state,
it cannot be expected to be devoid of attractive forces; nevertheless, if, in a mixture of A and
B molecules, the forces between A and A, B and B, and A and B are all of the same order, the
solution is considered to be ideal according to the definition just given.

Mixing substances with similar properties forms ideal solutions. For example, when 100 mL of methanol
is mixed with 100 mL of ethanol, the final volume of the solution is 200 mL, and no heat is evolved or
absorbed. The solution is nearly ideal.
When 100 mL of sulfuric acid is combined with 100 mL of water, however, the volume of the solution is
about 180 mL at room temperature, and the mixing is attended by a considerable evolution of heat; the
solution is said to be nonideal, or real. As with gases, some solutions are quite ideal in moderate
concentrations, whereas others approach ideality only under extreme dilution.
Escaping Tendency3
Two bodies are in thermal equilibrium when their temperatures are the same. If one body is heated to a
higher temperature than the other, heat will flow “downhill” from the hotter to the colder body until both
bodies are again in thermal equilibrium. This process is described in another way by using the concept
of escaping tendency, and say that the heat in the hotter body has a greater escaping tendency than
that in the colder one. Temperature is a quantitative measure of the escaping tendency of heat, and at
thermal equilibrium, when both bodies finally have the same temperature, the escaping tendency of
each constituent is the same in all parts of the system.
A quantitative measure of the escaping tendencies of material substances undergoing physical and
chemical transformations is free energy. For a pure substance, the free energy per mole, or the molar
free energy, provides a measure of escaping tendency; for the constituent of a solution, it is the partial
molar free energy orchemical potential that is used as an expression of escaping tendency. Chemical
potential is discussed in Chapter 3. The free energy of 1 mole of ice is greater than that of liquid water at
1 atm above 0°C and is spontaneously converted into water because

At 0°C, at which temperature the system is in equilibrium, the molar free energies of ice and water are
identical and ΔG = 0. In terms of escaping tendencies, the escaping tendency of ice is greater than the
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escaping tendency of liquid water above 0°C, whereas at equilibrium, the escaping tendencies of water
in both phases are identical.
Ideal Solutions and Raoult's Law
The vapor pressure of a solution is a particularly important property because it serves as a quantitative
expression of escaping tendency. In 1887, Raoult recognized that, in an ideal solution, the partial vapor
pressure of each volatile constituent is equal to the vapor pressure of the pure constituent multiplied by
its mole fraction in the solution. Thus, for two constituents A and B,

where pA and pB are the partial vapor pressures of the constituents over the solution when the mole
fraction concentrations are XA and XB, respectively. The vapor pressures of the pure components
are pA° and pB°, respectively. For example, if the vapor pressure of ethylene chloride in the pure state is
236 mm Hg at 50°C, then in a solution consisting of a mole fraction of 0.4 ethylene chloride and 0.6
benzene, the partial vapor pressure of ethylene chloride is 40% of 236 mm, or 94.4 mm. Thus, in an
ideal solution, when liquid A is mixed with liquid B, the vapor pressure of A is reduced by dilution with B
in a manner depending on the mole fractions of A and B present in the final solution. This will diminish
the escaping tendency of each constituent, leading to a reduction in the rate of escape of the molecules
of A and B from the surface of the liquid.
Example 5-6
Partial Vapor Pressure
What is the partial vapor pressure of benzene and of ethylene chloride in a solution at a mole
fraction of benzene of 0.6? The vapor pressure of pure benzene at 50°C is 268 mm, and the
corresponding pA° for ethylene chloride is 236 mm. We have

If additional volatile components are present in the solution, each will produce a partial pressure above
the solution, which can be calculated from Raoult's law. The total pressure is the sum of the partial
pressures of all the constituents. In Example 5-6, the total vapor pressure P is calculated as follows:

The vapor pressure–composition curve for the binary system benzene and ethylene chloride at 50°C is
shown in Figure 5-1. The three lines represent the partial pressure of ethylene chloride, the partial
pressure of benzene, and the total
P.116

pressure of the solution as a function of the mole fraction of the constituents.
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If additional volatile components are present in the solution, each will produce a partial pressure above
the solution, which can be calculated from Raoult's law. The total pressure is the sum of the partial
pressures of all the constituents. In Example 5-6, the total vapor pressure P is calculated as follows:

The vapor pressure–composition curve for the binary system benzene and ethylene chloride at 50°C is
shown in Figure 5-1. The three lines represent the partial pressure of ethylene chloride, the partial
pressure of benzene, and the total
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pressure of the solution as a function of the mole fraction of the constituents.



Fig. 5-1. Vapor pressure–composition curve for an ideal binary system.

Aerosols and Raoult's Law
Aerosol dispensers have been used to package some drugs since the early 1950s. An aerosol contains
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propellants in metered dose inhalers for treating asthma, hydrofluoroalkane 134a
(1,1,1,2,tetrafluoroethane) or hydrofluoroalkane 227 (1,1,1,2,3,3,3-heptafluoropropane) or combinations
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Aerosol Vapor Pressure
The vapor pressure of pure CFC 11 (molecular weight 137.4) at 21°C is p11° = 13.4
lb/in2 (psi) and that of CFC 12 (molecular weight 120.9) is p12° = 84.9 psi. A 50:50 mixture by
gram weight of the two propellants consists of 50 ÷ 137.4 g/mole = 0.364 mole of CFC 11 and
50 g ÷ 120.9 g/mole = 0.414 mole of CFC 12. What is the partial pressure of CFCs 11 and 12
in the 50:50 mixture, and what is the total vapor pressure of this mixture? We write



The total vapor pressure of the mixture is

To convert to gauge pressure (psig), one subtracts the atmospheric pressure of 14.7 psi:

The psi values just given are measured with respect to zero pressure rather than with respect
to the atmosphere and are sometimes written psia to signify absolute pressure.

Real Solutions
Ideality in solutions presupposes complete uniformity of attractive forces. Many examples of solution
pairs are known, however, in which the “cohesive” attraction of A for A exceeds the “adhesive” attraction
existing between A and B. Similarly, the attractive forces between A and B may be greater than those
between A and A or B and B. This may occur even though the liquids are miscible in all proportions.
Such mixtures are real or nonideal; that is, they do not adhere to Raoult's law throughout the entire
range of composition. Two types of deviation from Raoult's law are recognized, negative
deviation and positive deviation.
When the “adhesive” attractions between molecules of different species exceed the “cohesive”
attractions between like molecules, the vapor pressure of the solution is less than that expected from
Raoult's ideal solution law, and negative deviation occurs. If the deviation is sufficiently great, the total
vapor pressure curve shows a minimum, as observed in Figure 5-2, where A is chloroform and B is
acetone.
The dilution of constituent A by addition of B normally would be expected to reduce the partial vapor
pressure of A; this is the simple dilution effect embodied in Raoult's law. In the case of liquid pairs that
show negative deviation from the law, however, the addition of B to A tends to reduce the vapor
pressure of A to a greater extent than can be accounted for by the simple dilution effect. Chloroform and
acetone manifest such an attraction for one another through the formation of a hydrogen bond, thus
further reducing the escaping tendency of each constituent. This pair forms a weak compound,

that can be isolated and identified. Reactions between dipolar molecules, or between a dipolar and a
nonpolar molecule, may also lead to negative deviations. The interaction in these cases, however, is
usually so weak that no definite compound can be isolated.
When the interaction between A and B molecules is less than that between molecules of the pure
constituents,
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the presence of B molecules reduces the interaction of the A molecules, and A molecules
correspondingly reduce the B—B interaction. Accordingly, the dissimilarity of polarities or internal
pressures of the constituents results in a greater escaping tendency of both the A and the B molecules.
The partial vapor pressure of the constituents is greater than that expected from Raoult's law, and the
system is said to exhibit positive deviation. The total vapor pressure often shows a maximum at one
particular composition if the deviation is sufficiently large. An example of positive deviation is shown
in Figure 5-3. Liquid pairs that demonstrate positive deviation are benzene and ethyl alcohol, carbon
disulfide and acetone, and chloroform and ethyl alcohol.
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Fig. 5-2. Vapor pressure of a system showing negative deviation from Raoult's law.

Raoult's law does not apply over the entire concentration range in a nonideal solution. It describes the
behavior of either component of a real liquid pair only when that substance is present in high
concentration and thus is considered to be the solvent. Raoult's law can be expressed as

in such a situation, and it is valid only for the solvent of a nonideal solution that is sufficiently dilute with
respect to the solute. It cannot hold for the component in low concentration, that is, the solute, in a dilute
nonideal solution.
These statements will become clearer when one observes, in Figure 5-2, that the actual vapor pressure
curve of chloroform (component A) approaches the ideal curve defined by Raoult's law as the solution
composition approaches pure chloroform. Raoult's law can be used to describe the behavior of
chloroform when it is present in high concentration (i.e., when it is the solvent). The ideal equation is not
applicable to acetone (component B), however, which is present in low concentration in this region of
the diagram, because the actual curve for acetone does not coincide with the ideal line. When one
studies the left side of Figure 5-2, one observes that the conditions are reversed: Acetone is considered
to be the solvent here, and its vapor pressure curve tends to coincide with the ideal curve. Chloroform is
the solute in this range, and its curve does not approach the ideal line. Similar considerations apply
to Figure 5-3.
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Fig. 5-3. Vapor pressure of a system showing positive deviation from Raoult's law.

Henry's Law
The vapor pressure curves for both acetone and chloroform as solutes are observed to lie considerably
below the vapor pressure of an ideal mixture of this pair. The molecules of solute, being in relatively
small number in the two regions of the diagram, are completely surrounded by molecules of solvent and
so reside in a uniform environment. Therefore, the partial pressure or escaping tendency of chloroform
at low concentration is in some way proportional to its mole fraction, but, as observed in Figure 5-2, the
proportionality constant is not equal to the vapor pressure of the pure substance. The vapor pressure–
composition relationship of the solute cannot be expressed by Raoult's law but instead by an equation
known as Henry's law:

where k for chloroform is less than p°CHCL3. Henry's law applies to the solute and Raoult's law applies to
the solvent in dilute solutions of real liquid pairs. Of course, Raoult's law also applies over the entire
concentration range (to both solvent and solute) when the constituents are sufficiently similar to form an
ideal solution. Under any circumstance, when the partial vapor pressures of both of the constituents are
directly
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proportional to the mole fractions over the entire range, the solution is said to be ideal; Henry's law
becomes identical with Raoult's law, and k becomes equal to p°. Henry's law is used for the study of gas
solubilities discussed later in the book.
Distillation of Binary Mixtures
The relationship between vapor pressure (and hence boiling point) and composition of binary liquid
phases is the underlying principle in distillation. In the case of miscible liquids, instead of plotting vapor
pressure versus composition, it is more useful to plot the boiling points of the various mixtures,
determined at atmospheric pressure, against composition.
The higher the vapor pressure of a liquid—that is, the more volatile it is—the lower is the boiling point.
Because the vapor of a binary mixture is always richer in the more volatile constituent, the process of
distillation can be used to separate the more volatile from the less volatile constituent. Figure 5-4 shows
a mixture of a high-boiling liquid A and a low-boiling liquid B. A mixture of these substances having the
composition a is distilled at the boiling point b. The composition of the vapor v1 in equilibrium with the
liquid at this temperature is c; this is also the composition of the distillate when it is condensed. The
vapor is therefore richer in B than the liquid from which it was distilled. If a fractionating column is used,
A and B can be completely separated. The vapor rising in the column is met by the condensed vapor or
downward-flowing liquid. As the rising vapor is cooled by contact with the liquid, some of the lower-
boiling fraction condenses, and the vapor contains more of the volatile component than it did when it left
the retort. Therefore, as the vapor proceeds up the fractionating column, it becomes progressively richer
in the more volatile component B, and the liquid returning to the distilling retort becomes richer in the
less volatile component A.

Fig. 5-4. Boiling point diagram of an ideal binary mixture.



Figure 5-4 shows the situation for a pair of miscible liquids exhibiting ideal behavior. Because vapor
pressure curves can show maxima and minima (see Figs. 5-2and 5-3), it follows that boiling point curves
will show corresponding minima and maxima, respectively. With these mixtures, distillation produces
either pure A or pure B plus a mixture of constant composition and constant boiling point. This latter is
known as an azeotrope (Greek: “boil unchanged”) or azeotropic mixture. It is not possible to separate
such a mixture completely into two pure components by simple fractionation. If the vapor pressure
curves show a minimum (i.e., negative deviation from Raoult's law), the azeotrope has the highest
boiling point of all the mixtures possible; it is therefore least volatile and remains in the flask, whereas
either pure A or pure B is distilled off. If the vapor pressure curve exhibits a maximum (showing a
positive deviation from Raoult's law), the azeotrope has the lowest boiling point and forms the distillate.
Either pure A or pure B then remains in the flask.
When a mixture of HCl and water is distilled at atmospheric pressure, an azeotrope is obtained that
contains 20.22% by weight of HCl and that boils at 108.58°C. The composition of this mixture is
accurate and reproducible enough that the solution can be used as a standard in analytic chemistry.
Mixtures of water and acetic acid and of chloroform and acetone yield azeotropic mixtures with maxima
in their boiling point curves and minima in their vapor pressure curves. Mixtures of ethanol and water
and of methanol and benzene both show the reverse behavior, namely, minima in the boiling point
curves and maxima in the vapor pressure curves.
When a mixture of two practically immiscible liquids is heated while being agitated to expose the
surfaces of both liquids to the vapor phase, each constituent independently exerts its own vapor
pressure as a function of temperature as though the other constituent were not present. Boiling begins,
and distillation may be effected when the sum of the partial pressures of the two immiscible liquids just
exceeds the atmospheric pressure. This principle is applied in steam distillation, whereby many organic
compounds insoluble in water can be purified at a temperature well below the point at which
decomposition occurs. Thus, bromobenzene alone boils at 156.2°C, whereas water boils at 100°C at a
pressure of 760 mm Hg. A mixture of the two, however, in any proportion, boils at 95°C. Bromobenzene
can thus be distilled at a temperature 61°C below its normal boiling point. Steam distillation is
particularly useful for obtaining volatile oils from plant tissues without decomposing the oils.
Colligative Properties
When a nonvolatile solute is combined with a volatile solvent, the vapor above the solution is provided
solely by the solvent. The solute reduces the escaping tendency of the solvent, and, on the basis of
Raoult's law, the vapor pressure of a solution
P.119

containing a nonvolatile solute is lowered proportional to the relative number.

Key Concept
Colligative Properties
The freezing point, boiling point, and osmotic pressure of a solution also depend on the
relative proportion of the molecules of the solute and the solvent. These are called colligative
properties (Greek: “collected together”) because they depend chiefly on the number rather
than on the nature of the constituents.

Lowering of the Vapor Pressure
According to Raoult's law, the vapor pressure, p1, of a solvent over a dilute solution is equal to the vapor
pressure of the pure solvent, p1°, times the mole fraction of solvent in the solution, X1. Because the
solute under discussion here is considered to be nonvolatile, the vapor pressure of the solvent, p1, is
identical to the total pressure of the solution, p.
It is more convenient to express the vapor pressure of the solution in terms of the concentration of the
solute rather than the mole fraction of the solvent, and this may be accomplished in the following way.
The sum of the mole fractions of the constituents in a solution is unity:
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Therefore,

where X1 is the mole fraction of the solvent and X2 is the mole fraction of the solute. Raoult's equation
can be modified by substituting equation (5-12) for X1 to give

In equation (5-15), Δp = p1° - p is the lowering of the vapor pressure and Δp/p1° is the relative vapor
pressure lowering. The relative vapor pressure lowering depends only on the mole fraction of the
solute, X2, that is, on the number of solute particles in a definite volume of solution. Therefore, the
relative vapor pressure lowering is a colligative property.
Example 5-8
Relative Vapor Pressure Lowering of a Solution
Calculate the relative vapor pressure lowering at 20°C for a solution containing 171.2 g of
sucrose (w2) in 100 g (w1) of water. The molecular weight of sucrose (M2) is 342.3 and the
molecular weight of water (M1) is 18.02 g/mole. We have

Key Concept
Osmolality
In most solutions, changes in concentration are accompanied by linear and proportional
changes in the cardinal colligative properties of the solvent—vapor pressure, freezing
point, and boiling point. Measuring any of these properties provides an indirect indication
of osmolality, but among them, only vapor pressure can be determined passively without
a forced change in the sample's physical state.

Notice that in Example 5-8, the relative vapor pressure lowering is a dimensionless number, as would be
expected from its definition. The result can also be stated as a percentage; the vapor pressure of the
solution has been lowered 0.89% by the 0.5 mole of sucrose.
The mole fraction, n2/(n1 + n2), is nearly equal to, and may be replaced by, the mole ratio n2/n1 in a dilute
solution such as this one. Then, the relative vapor pressure lowering can be expressed in terms of molal
concentration of the solute by setting the weight of solvent w1 equal to 1000 g. For an aqueous solution,
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The normal boiling point is the temperature at which the vapor pressure of the liquid becomes equal to
an external pressure of
P.120

760 mm Hg. A solution will boil at a higher temperature than will the pure solvent. This is the colligative
property called boiling point elevation. As shown in Figure 5-5, the more of the solute that is dissolved,
the greater is the effect. The boiling point of a solution of a nonvolatile solute is higher than that of the
pure solvent owing to the fact that the solute lowers the vapor pressure of the solvent. This may be seen
by referring to the curves in Figure 5-6. The vapor pressure curve for the solution lies below that of the
pure solvent, and the temperature of the solution must be elevated to a value above that of the solvent
in order to reach the normal boiling point. The elevation of the boiling point is shown in the figure as T -
To = ΔTb. The ratio of the elevation of the boiling point, ΔTb, to the vapor pressure lowering, Δp = p° - p,

at 100°C is approximately a constant at this temperature; it is written as

Fig. 5-5. Theoretical plot of the normal boiling point for water (solvent) as a function
of molality in solutions containing sucrose (a nonvolatile solute) in increasing
concentrations. Note that the normal boiling point of water increases as the
concentration of sucrose increases. This is known as boiling point elevation.

or

Moreover, because p° is a constant, the boiling point elevation may be considered proportional to Δp/p°,
the relative lowering of vapor pressure. By Raoult's law, however, the relative vapor pressure lowering is
equal to the mole fraction of the solute; therefore,
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Fig. 5-6. Boiling point elevation of the solvent due to addition of a solute (not to
scale).

Table 5-4 Ebullioscopic (Kb) and Cryoscopic (Kf) Constants for Various Solvents

Substance
Boiling Point
(°C) Kb Freezing Point (°C) Kf

Acetic acid 118.0 2.93 16.7 3.9

Acetone 56.0 1.71 -94.82* 2.40*

Benzene 80.1 2.53 5.5 5.12

Camphor 208.3 5.95 178.4 37.7

Chloroform 61.2 3.54 -63.5 4.96

Ethyl alcohol 78.4 1.22 -114.49* 3*

Ethyl ether 34.6 2.02 -116.3 1.79*

Phenol 181.4 3.56 42.0 7.27



Water 100.0 0.51 0.00 1.86

*From G. Kortum and J. O'M. Bockris, Textbook of Electrochemistry, Vol. II,
Elsevier, New York, 1951, pp. 618, 620.

Because the boiling point elevation depends only on the mole fraction of the solute, it is a colligative
property.
In dilute solutions, X2 is equal approximately to m/(1000/M1) [equation (5-16)], and equation (5-19) can
be written as

or

where ΔTb is known as the boiling point elevation and Kb is called the molal elevation constant or
the ebullioscopic constant. Kb has a characteristic value for each solvent, as seen in Table 5-4. It may
be considered as the boiling point elevation for an ideal 1 m solution. Stated another way, Kb is the ratio
of the boiling point elevation to the molal concentration in an extremely dilute solution in which the
system is approximately ideal.
The preceding discussion constitutes a plausible argument leading to the equation for boiling point
elevation. A more satisfactory derivation of equation (5-21), however, involves the application of the
Clapeyron equation, which is written as

where Vv and V1 are the molar volume of the gas and the molar volume of the liquid, respectively, Tb is
the boiling point of the solvent, and ΔHv is the molar heat of vaporization. Because V1 is negligible
compared to Vv, the equation becomes

P.121

and Vv, the volume of 1 mole of gas, is replaced by RTb/p° to give

or

From equation (5-16), Δp/p1° = X2, and equation (5-25) can be written as
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which provides a more exact equation with which to calculate ΔTb.
Replacing the relative vapor pressure lowering Δp/p1° by m/(1000/M1) according to the approximate
expression (5-16), in which w2/M2 = m and w1 = 1000 s, we obtain the formula

Equation (5-27) provides a less exact expression with which to calculate ΔTb.
For water at 100°C, we have Tb = 373.2 K, ΔHv = 9720 cal/mole, M1 = 18.02 g/mole, and R = 1.987
cal/mole deg.
Example 5-10
Calculation of the Elevation Constant
A 0.200 m aqueous solution of a drug gave a boiling point elevation of 0.103°C. Calculate the
approximate molal elevation constant for the solvent, water. Substituting into equation (5-21)
yields

The proportionality between ΔTb and the molality is exact only at infinite dilution, at which the properties
of real and ideal solutions coincide. The ebullioscopic constant, Kb, of a solvent can be obtained
experimentally by measuring ΔTb at various molal concentrations and extrapolating to infinite dilution
(m = 0), as seen inFigure 5-7.
Depression of the Freezing Point
The normal freezing point or melting point of a pure compound is the temperature at which the solid and
the liquid phases are in equilibrium under a pressure of 1 atm. Equilibrium here means that the tendency
for the solid to pass into the liquid state is the same as the tendency for the reverse process to occur,
because both the liquid and the solid have the same escaping tendency. The value T0, shown in Figure
5-8, for water saturated with air at this pressure is arbitrarily assigned a temperature of 0°C. The triple
point of air-free water, at which solid, liquid, and vapor are in equilibrium, lies at a pressure of 4.58
mm Hg and a temperature of 0.0098°C. It is not identical with the ordinary freezing point of water at
atmospheric pressure but is rather the freezing point of water under the pressure of its own vapor. We
shall use the triple point in the following argument because the depression ΔTf here does not differ
significantly from ΔTf at a pressure of 1 atm. The two freezing point depressions referred to are
illustrated in Figure 5-7. The ΔTb of Figure 5-6 is also shown in the diagram.
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Fig. 5-7. The influence of concentration on the ebullioscopic constant.

If a solute is dissolved in the liquid at the triple point, the escaping tendency or vapor pressure of the
liquid solvent is lowered below that of the pure solid solvent. The temperature must drop to reestablish
equilibrium between the liquid and the solid. Because of this fact, the freezing point of a solution is
always lower than that of the pure solvent. It is assumed that the solvent freezes out in the pure state
rather than as a solid solution containing some of the solute. When such a complication does arise,
special calculations, not considered here, must be used.
The more concentrated the solution, the farther apart are the solvent and the solution curves in the
diagram (see Fig. 5-8) and the greater is the freezing point depression. Accordingly, a situation exists
analogous to that described
P.122

for the boiling point elevation, and the freezing point depression is proportional to the molal
concentration of the solute. The equation is



Fig. 5-8. Depression of the freezing point of the solvent, water, by a solute (not to
scale).

Fig. 5-9. The influence of concentration on the cryoscopic constant for water.
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ΔTf is the freezing point depression, and Kf is the molal depression constant or the cryoscopic constant,
which depends on the physical and chemical properties of the solvent.
The freezing point depression of a solvent is a function only of the number of particles in the solution,
and for this reason it is referred to as a colligative property. The depression of the freezing point, like the
boiling point elevation, is a direct result of the lowering of the vapor pressure of the solvent. The value
of Kf for water is 1.86. It can be determined experimentally by measuring ΔTf/m at several molal
concentrations and extrapolating to zero concentration. As seen in Figure 5-9, Kfapproaches the value
of 1.86 for water solutions of sucrose and glycerin as the concentrations tend toward zero, and
equation (5-28) is valid only in very dilute solutions. The apparent cryoscopic constant for higher
concentrations can be obtained from Figure 5-9. For work in pharmacy and biology, the Kf value of 1.86
can be rounded off to 1.9, which is good approximation for practical use with aqueous solutions, where
concentrations are usually lower than 0.1 M. The value of Kf for the solvent in a solution of citric acid is
observed not to approach 1.86. This abnormal behavior is to be expected when dealing with solutions of
electrolytes. Their irrationality will be explained in Chapter 6, and proper steps will be taken to correct
the difficulty.
Kf can also be derived from Raoult's law and the Clapeyron equation. For water at its freezing point, Tf =
273.2 K, ΔHf is 1437 cal/mole, and

The cryoscopic constants, together with the ebullioscopic constants, for some solvents at infinite dilution
are given in Table 5-4.
Example 5-11
Calculation of Freezing Point
What is the freezing point of a solution containing 3.42 g of sucrose and 500 g of water? The
molecular weight of sucrose is 342. In this relatively dilute solution, Kf is approximately equal
to 1.86. We have

Therefore, the freezing point of the aqueous solution is -0.037°C.

Example 5-12
Freezing Point Depression
What is the freezing point depression of a 1.3 m solution of sucrose in water?
From the graph in Figure 5-8, one observes that the cryoscopic constant at this concentration
is about 2.1 rather than 1.86. Thus, the calculation becomes

Osmotic Pressure
If cobalt chloride is placed in a parchment sac and suspended in a beaker of water, the water gradually
becomes red as the solute diffuses throughout the vessel. In this process of diffusion, both the solvent
and the solute molecules migrate freely. On the other hand, if the solution is confined in a membrane
permeable only to the solvent molecules, the phenomenon known as osmosis (Greek: “a push or
impulse”)4 occurs, and the barrier that permits only the molecules of one of the components (usually
water) to pass through is known as a semipermeable membrane. A thistle tube over the wide opening of
which is stretched a piece of untreated cellophane can be used to demonstrate the principle, as shown
in Figure 5-10. The tube is partly filled with a concentrated solution of sucrose, and the apparatus is
lowered into a beaker of water. The passage of water through the semipermeable membrane into the
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the difficulty.
Kf can also be derived from Raoult's law and the Clapeyron equation. For water at its freezing point, Tf =
273.2 K, ΔHf is 1437 cal/mole, and

The cryoscopic constants, together with the ebullioscopic constants, for some solvents at infinite dilution
are given in Table 5-4.
Example 5-11
Calculation of Freezing Point
What is the freezing point of a solution containing 3.42 g of sucrose and 500 g of water? The
molecular weight of sucrose is 342. In this relatively dilute solution, Kf is approximately equal
to 1.86. We have

Therefore, the freezing point of the aqueous solution is -0.037°C.

Example 5-12
Freezing Point Depression
What is the freezing point depression of a 1.3 m solution of sucrose in water?
From the graph in Figure 5-8, one observes that the cryoscopic constant at this concentration
is about 2.1 rather than 1.86. Thus, the calculation becomes

Osmotic Pressure
If cobalt chloride is placed in a parchment sac and suspended in a beaker of water, the water gradually
becomes red as the solute diffuses throughout the vessel. In this process of diffusion, both the solvent
and the solute molecules migrate freely. On the other hand, if the solution is confined in a membrane
permeable only to the solvent molecules, the phenomenon known as osmosis (Greek: “a push or
impulse”)4 occurs, and the barrier that permits only the molecules of one of the components (usually
water) to pass through is known as a semipermeable membrane. A thistle tube over the wide opening of
which is stretched a piece of untreated cellophane can be used to demonstrate the principle, as shown
in Figure 5-10. The tube is partly filled with a concentrated solution of sucrose, and the apparatus is
lowered into a beaker of water. The passage of water through the semipermeable membrane into the



solution eventually creates enough pressure to drive the sugar solution up the tube until the hydrostatic
pressure of the column of liquid equals the pressure causing the water to pass through the membrane
and enter the thistle tube. When this occurs, the solution ceases to rise in the tube. Osmosis is therefore
defined as the passage of the solvent into a solution through a semipermeable membrane. This process
tends to equalize the escaping tendency of the solvent on both sides of the membrane. Escaping
tendency can be measured in terms of vapor pressure or the closely related colligative property osmotic
pressure. It should be evident that osmosis can also
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take place when a concentrated solution is separated from a less concentrated solution by a
semipermeable membrane.

Fig. 5-10. Apparatus for demonstrating osmosis.

Osmosis in some cases is believed to involve the passage of solvent through the membrane by a
distillation process or by dissolving in the material of the membrane in which the solute is insoluble. In
other cases, the membrane may act as a sieve, having a pore size sufficiently large to allow passage of
solvent but not of solute molecules.
In either case, the phenomenon of osmosis depends on the fact that the chemical potential (a
thermodynamic expression of escaping tendency) of a solvent molecule in solution is less than exists in
the pure solvent. Solvent therefore passes spontaneously into the solution until the chemical potentials
of solvent and solution are equal. The system is then at equilibrium. It may be advantageous for the



student to consider osmosis in terms of the following sequence of events. (a) The addition of a
nonvolatile solute to the solvent forms a solution in which the vapor pressure of the solvent is reduced
(see Raoult's law). (b) If pure solvent is now placed adjacent to the solution but separated from it by a
semipermeable membrane, solvent molecules will pass through the membrane into the solution in an
attempt to dilute out the solute and raise the vapor pressure back to its original value (namely, that of
the original solvent). (c) The osmotic pressure that is set up as a result of this passage of solvent
molecules can be determined either by measuring the hydrostatic head appearing in the solution or by
applying a known pressure that just balances the osmotic pressure and prevents any net movement of
solvent molecules into the solution. The latter is the preferred technique. The osmotic pressure thus
obtained is proportional to the reduction in vapor pressure brought about by the concentration of solute
present. Because this is a function of the molecular weight of the solute, osmotic pressure is a
colligative property and can be used to determine molecule weights.

Fig. 5-11. Osmotic pressure osmometer.

An osmotic pressure osmometer (Fig. 5-11) is based on the same principle as the thistle tube apparatus
shown in Figure 5-10. Once equilibrium has been attained, the height of the solution in the capillary tube
on the solution side of the membrane is greater by the amount h than the height in
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the capillary tube on the solvent (water) side. The hydrostatic head, h, is related to the osmotic pressure
through the expression osmotic pressure π (atm) = Height h× Solution density ρ × Gravity acceleration.
The two tubes of large bore are for filling and discharging the liquids from the compartments of the
apparatus. The height of liquid in these two large tubes does not enter into the calculation of osmotic
pressure. The determination of osmotic pressure is discussed in some detail in the next section.



Measurement of Osmotic Pressure
The osmotic pressure of the sucrose solution referred to in the last section is not measured conveniently
by observing the height that the solution attains in the tube at equilibrium. The concentration of the final
solution is not known because the passage of water into the solution dilutes it and alters the
concentration. A more exact measure of the osmotic pressure of the undiluted solution is obtained by
determining the excess pressure on the solution side that just prevents the passage of solvent through
the membrane. Osmotic pressure is defined as the excess pressure, or pressure greater than that
above the pure solvent, that must be applied to the solution to prevent the passage of the solvent
through a perfect semipermeable membrane. In this definition, it is assumed that a semipermeable sac
containing the solution is immersed in the pure solvent.
In 1877, the botanist Wilhelm Pfeffer measured the osmotic pressure of sugar solutions, using a porous
cup impregnated with a deposit of cupric ferrocyanide, Cu2Fe(CN)6, as the semipermeable membrane.
The apparatus was provided with a manometer to measure the pressure. Although many improvements
have been made through the years, including the attachment of sensitive pressure transducers to the
membrane that can be electronically amplified to produce a signal,5 the direct measurement of osmotic
pressure remains difficult and inconvenient. Nevertheless, osmotic pressure is the colligative property
best suited to the determination of the molecular weight of polymers such as proteins.
van't Hoff and Morse Equations for Osmotic Pressure
In 1886, Jacobus van't Hoff recognized in Pfeffer's data proportionality between osmotic pressure,
concentration, and temperature, suggested a relationship that corresponded to the equation for an ideal
gas. van't Hoff concluded that there was an apparent analogy between solutions and gases and that the
osmotic pressure in a dilute solution was equal to the pressure that the solute would exert if it were a
gas occupying the same volume. The equation is

where π is the osmotic pressure in atm, V is the volume of the solution in liters, n is the number of moles
of solute, R is the gas constant, equal to 0.082 liter atm/mole deg, and T is the absolute temperature.
The student should be cautioned not to take van't Hoff's analogy too literally, for it leads to the belief that
the solute molecules “produce” the osmotic pressure by exerting pressure on the membrane, just as gas
molecules create a pressure by striking the walls of a vessel. It is more correct, however, to consider the
osmotic pressure as resulting from the relative escaping tendencies of the solvent molecules on the two
sides of the membrane. Actually, equation (5-30) is a limiting law applying to dilute solutions, and it
simplifies into this form from a more exact expression [equation (5-36)] only after introducing a number
of assumptions that are not valid for real solutions.
Example 5-13
Calculating the Osmotic Pressure of a Sucrose Solution
One gram of sucrose, molecular weight 342, is dissolved in 100 mL of solution at 25°C. What
is the osmotic pressure of the solution? We have

Equation (5-30), the van't Hoff equation, can be expressed as

where c is the concentration of the solute in moles/liter (molarity). Morse and others have shown that
when the concentration is expressed in molality rather than in molarity, the results compare more nearly
with the experimental findings. The Morse equation is
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Osmotic pressure and the lowering of vapor pressure, both colligative properties, are inextricably
related, and this relationship can be obtained from certain thermodynamic considerations.
We begin by considering a sucrose solution in the right-hand compartment of the apparatus shown
in Figure 5-12 and the pure solvent—water—in the left-hand compartment. A semipermeable membrane
through which water molecules, but not sucrose molecules, can pass separates the two compartments.
It is assumed that the gate in the air space connecting the solutions can be shut during osmosis. The
external pressure, say 1 atm, above the pure solvent is Po and the pressure on the solution, provided by
the piston in Figure 5-12 and needed to maintain equilibrium, is P. The difference between the two
pressures at equilibrium, P - Po, or
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the excess pressure on the solution just required to prevent passage of water into the solution is the
osmotic pressure π.

Fig. 5-12. Apparatus for demonstrating the relationship between osmotic pressure and
vapor pressure lowering.

Let us now consider the alternative transport of water through the air space above the liquids. Should
the membrane be closed off and the gate in the air space opened, water molecules would pass from the
pure solvent to the solution by way of the vapor state by a distillation process. The space above the
liquids actually serves as a “semipermeable membrane,” just as does the real membrane at the lower
part of the apparatus. The vapor pressure p° of water in the pure solvent under the influence of the
atmospheric pressure Po is greater than the vapor pressure p of water in the solution by an amount p° -
p = Δp. To bring about equilibrium, a pressure P must be exerted by the piston on the solution to

increase the vapor pressure of the solution until it is equal to that of the pure solvent, p°. The excess
pressure that must be applied, P - Po, is again the osmotic pressure π. The operation of such an
apparatus thus demonstrates the relationship between osmotic pressure and vapor pressure lowering.



By following this analysis further, it should be possible to obtain an equation relating osmotic pressure
and vapor pressure. Observe that both the osmosis and the distillation process are based on the
principle that the escaping tendency of water in the pure solvent is greater than that in the solution. By
application of an excess pressure, P - Po = π, on the solution side of the apparatus, it is possible to
make the escaping tendencies of water in the solvent and solution identical. A state of equilibrium is
produced; thus, the free energy of solvent on both sides of the membrane or on both sides of the air
space is made equal, and ΔG = 0.
To relate vapor pressure lowering and osmotic pressure, we must obtain the free energy changes
involved in (a) transferring 1 mole of solvent from solvent to solution by a distillation process through the
vapor phase and (b) transferring 1 mole of solvent from solvent to solution by osmosis. We have

as the increase in free energy at constant temperature for the passage of 1 mole of water to the solution
through the vapor phase, and

as the increase in free energy at a definite temperature for the passage of 1 mole of water into the
solution by osmosis. In equation (5-34), V1 is the volume of 1 mole of solvent, or, more correctly, it is
the partial molar volume, that is, the change in volume of the solution on the addition of 1 mole of
solvent to a large quantity of solution.
Setting equations (5-33) and (5-34) equal gives

and eliminating the minus sign by inverting the logarithmic term yields

Equation (5-36) is a more exact expression for osmotic pressure than are equations (5-31) and (5-32),
and it applies to concentrated as well as dilute solutions, provided that the vapor follows the ideal gas
laws.
The simpler equation (5-32) for osmotic pressure can be obtained from equation (5-36), assuming that
the solution obeys Raoult's law,

Equation (5-36) can thus be written

and ln(1 - X2) can be expanded into a series,

When X2 is small, that is, when the solution is dilute, all terms in the expansion beyond the first may be
neglected, and

so that

For a dilute solution, X2 equals approximately the mole ratio n2/n1, and equation (5-42) becomes

where n1V1, the number of moles of solvent multiplied by the volume of 1 mole, is equal to the total
volume of solvent V in liters. For a dilute aqueous solution, the equation becomes

which is Morse's expression, equation (5-32).
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Example 5-14
Compute π
Compute π for a 1 m aqueous solution of sucrose using both equation (5-32) and the more
exact thermodynamic equation (5-36). The vapor pressure of the solution is 31.207 mm Hg
and the vapor pressure of water is 31.824 mm Hg at 30.0°C. The molar volume of water at
this temperature is 18.1 cm3/mole, or 0.0181 liter/mole.

a. By the Morse equation,

b. By the thermodynamic equation,

The experimental value for the osmotic pressure of a 1 m solution of sucrose at 30°C is 27.2
atm.

Molecular Weight Determination
The four colligative properties that have been discussed in this chapter—vapor pressure lowering,
freezing point lowering, boiling point elevation, and osmotic pressure—can be used to calculate the
molecular weights of nonelectrolytes present as solutes. Thus, the lowering of the vapor pressure of a
solution containing a nonvolatile solute depends only on the mole fraction of the solute. This allows the
molecular weight of the solute to be calculated in the following manner.
Because the mole fraction of solvent, n1 = w1/M1, and the mole fraction of solute, n2 = w2/M2, in
which w1 and w2 are the weights of solvent and solute of molecular weights M1 and M2 respectively,
equation (5-15) can be expressed as

In dilute solutions in which w2/M2 is negligible compared with w1/M1, the former term may be omitted
from the denominator, and the equation simplifies to

The molecular weight of the solute M2 is obtained by rearranging equation (5-46) to

The molecular weight of a nonvolatile solute can similarly be determined from the boiling point elevation
of the solution. Knowing Kb, the molal elevation constant, for the solvent and determining Tb, the boiling
point elevation, one can calculate the molecular weight of a nonelectrolyte. Because 1000w2/w1 is the
weight of solute per kilogram of solvent, molality (moles/kilogram of solvent) can be expressed as

and

Then,
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or

Example 5-15
Determination of the Molecular Weight of Sucrose by Boiling Point Elevation
A solution containing 10.0 g of sucrose dissolved in 100 g of water has a boiling point of
100.149°C. What is the molecular weight of sucrose? We write

As shown in Figure 5-8, the lowering of vapor pressure arising from the addition of a nonvolatile solute
to a solvent results in a depression of the freezing point. By rearranging equation (5-29), we obtain

where w2 is the number of grams of solute dissolved in w1 grams of solvent. It is thus possible to
calculate the molecular weight of the solute from cryoscopic data of this type.
Example 5-16
Calculating Molecular Weight Using Freezing Point Depression
The freezing point depression of a solution of 2.000 g of 1,3-dinitrobenzene in 100.0 g of
benzene was determined by the equilibrium method and was found to be 0.6095°C. Calculate
the molecular weight of 1,3-dinitrobenzene. We write

The van't Hoff and Morse equations can be used to calculate the molecular weight of solutes from
osmotic pressure data, provided the solution is sufficiently dilute and ideal. The manner in which osmotic
pressure is used to calculate the molecular weight of colloidal materials is discussed in Chapter 17.
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Example 5-17
Determining Molecular Weight by Osmotic Pressure
Fifteen grams of a new drug dissolved in water to yield 1000 mL of solution at 25°C was
found to produce an osmotic pressure of 0.6 atm. What is the molecular weight of the solute?
We write

where cg is in g/liter of solution. Thus,

or

Choice of Colligative Properties
Each of the colligative properties seems to have certain advantages and disadvantages for the
determination of molecular weights. The boiling point method can be used only when the solute is
nonvolatile and when the substance is not decomposed at boiling temperatures. The freezing point
method is satisfactory for solutions containing volatile solutes, such as alcohol, because the freezing
point of a solution depends on the vapor pressure of the solvent alone. The freezing point method is
easily executed and yields results of high accuracy for solutions of small molecules. It is sometimes
inconvenient to use freezing point or boiling point methods, however, because they must be carried out

or
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As shown in Figure 5-8, the lowering of vapor pressure arising from the addition of a nonvolatile solute
to a solvent results in a depression of the freezing point. By rearranging equation (5-29), we obtain

where w2 is the number of grams of solute dissolved in w1 grams of solvent. It is thus possible to
calculate the molecular weight of the solute from cryoscopic data of this type.
Example 5-16
Calculating Molecular Weight Using Freezing Point Depression
The freezing point depression of a solution of 2.000 g of 1,3-dinitrobenzene in 100.0 g of
benzene was determined by the equilibrium method and was found to be 0.6095°C. Calculate
the molecular weight of 1,3-dinitrobenzene. We write

The van't Hoff and Morse equations can be used to calculate the molecular weight of solutes from
osmotic pressure data, provided the solution is sufficiently dilute and ideal. The manner in which osmotic
pressure is used to calculate the molecular weight of colloidal materials is discussed in Chapter 17.
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Example 5-17
Determining Molecular Weight by Osmotic Pressure
Fifteen grams of a new drug dissolved in water to yield 1000 mL of solution at 25°C was
found to produce an osmotic pressure of 0.6 atm. What is the molecular weight of the solute?
We write

where cg is in g/liter of solution. Thus,

or

Choice of Colligative Properties
Each of the colligative properties seems to have certain advantages and disadvantages for the
determination of molecular weights. The boiling point method can be used only when the solute is
nonvolatile and when the substance is not decomposed at boiling temperatures. The freezing point
method is satisfactory for solutions containing volatile solutes, such as alcohol, because the freezing
point of a solution depends on the vapor pressure of the solvent alone. The freezing point method is
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inconvenient to use freezing point or boiling point methods, however, because they must be carried out
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Determining Molecular Weight by Osmotic Pressure
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at definite temperatures. Osmotic pressure measurements do not have this disadvantage, and yet the
difficulties inherent in this method preclude its wide use. In summary, it may be said that the cryoscopic
and newer vapor pressure techniques are the methods of choice, except for high polymers, in which
instance the osmotic pressure method is used.
Because the colligative properties are interrelated, it should be possible to determine the value of one
property from knowledge of any other. The relationship between vapor pressure lowering and osmotic
pressure has already been shown. Freezing point depression and osmotic pressure can be related
approximately as follows. The molality from the equation m = ΔTf/Kf is substituted in the osmotic
pressure equation, π = RTm, to give, at 0°C,

or

Lewis6 suggested the equation

which gives accurate results.

Table 5-5 Approximate Expressions for the Colligative Properties

Example 5-18
Osmotic Pressure of Human Blood Serum
A sample of human blood serum has a freezing point of -0.53°C. What is the approximate
osmotic pressure of this sample at 0°C? What is its more accurate value as given by the
Lewis equation? We write

Table 5-5 presents the equations and their constants in summary form. All equations are approximate
and are useful only for dilute solutions in which the volume occupied by the solute is negligible with
respect to that of the solvent.
Chapter Summary
This chapter focused on an important pharmaceutical mixture known as a molecular
dispersion or true solution. Nine types of solutions, classified according to the states in which
the solute and solvent occur, were defined. The concentration of a solution was expressed in
two ways: either in terms of the quantity of solute in a definite volume of solution or as the
quantity of solute in a definite mass of solvent or solution. You should be able to calculate
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molarity, normality, molality, mole fraction, and percentage expressions. Ideal and real
solutions were described using Raoult's and Henry's laws. Finally, the colligative properties of
solutions (osmotic pressure, vapor pressure lowering, freezing point depression, and boiling
point elevation) were described. Colligative properties depend mainly on the number of
particles in a solution and are approximately the same for equal concentrations of different
nonelectrolytes in solution regardless of the species or chemical nature of the constituents.
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Practice problems for this chapter can be found at thePoint.lww.com/Sinko6e.
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